https://theses.gla.ac.uk/

Theses Digitisation:
https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author
A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

```
                                by
```

W.N.Strickland B.Sc. (Agriculture).

A THESIS PRESENYED FOR THE DTGREE OF DOCTOR OF PHILOSOPFY OF THE UNIVERSITY: OF GLASGOW.

February. 1957.

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10656392
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

Page.

1. GENERAI INTRODUCTION.
2. PROBIEMS
3. I. MATERIAI AND METHODS.

6
8.
IV. SEGREGATION RATIOS TNCONSISTMNT WITH THE HYPOTHESIS OF SINGLE GENE INHERITANCE.

1. Some causes of deviation from 1:1 segregation ratios.
2. Discussion of experimental observations.
V. ABNORMAL AND "TWWIN" PERTTHECIA. 1. Abnormal perithecium.
VI. RECOVERY OF BOTH PRODUCTS OF AN EXCHANGE IN A SHORT RIGION.
3. VII. ANAIYSTS OF A DUPLICATION OF A SEGMENY OF THE BI CHROMOSOME.
4. APPENDIX 1.
5. BIBITOGRAPHY.

TABLES A. to K:

ACKNOWLEDGEMENTS.

The author wishes to thank Prof. G.Pontecorvo, F.R.S. for suggesting the problem, for his interest throughout the wotk and for his invaluable criticisms. The author also wishes to thank Dr. S.D.Silvey for working out the statistical methods in Section III - 2 - b and Section III - 2 - c and Dr. H.I.K. Whitehouse for his suggestions on the estimation of chromatid interference. The criticisms of colleagues in the Department of Genetics of Glasgow University have also been very helpful.

The work has been made possible by a Research Grant from the Faculty of Science of Glasgow University and by the tenure of an Agricultural Research Council Assistantship.

GENERAJ, INTIRODUCTION.

Genetics is today being studied in organisms ranging from viruses to man but in the majority of these the four products of an individual meiosis: are not recovered and so a problem can only be studied by the use of random strands. However, the resolution of some problens requires the recovery of all four products of meiosis (e.g. the study of chromatid interference) thus limiting the range of organisms which can be used. It is occasionally possible to recover two of the four products; for example, by the use of attached-X chromosomes (Fmerson and Beadle 1933; Beadle and Zmerson 1935; Bonnier and Nordenskiold 1937; Anderson 1925 and Welshons 1955) and by the use of mitotic crossing over in Aspergillus nidulans (Roper and Pritchard 1955). Tetrads which have already been used for genetical work are found in such organisms as Chlamydomonas reinhardi (Smith and Regnery 1950; Hartshorne 1953; Sager 1954); Chlamydomonas moewusii (Lewin 1953); Sphaerocarpus donnellii AIIen 1926; Knapp 1936, 1937) ; Neurospora crassa (Iindegren/s 1932 to 1942; Howe 1954; Stadler 1955; Houlahan et al 1949 and many others) ; Neurospora sitophila (Vilcox 1928; Lindegren 1932; Aronescu 1933; Wulker 1935; Whitehouse 1942; Fincham 1951) ; yeasts (Winge 1935; Lindegren 1949; Roman, Hawthorne and Douglas 1951; Roman and Sands 1953; Roman,

Phillips and Sands 1955; Bevan 1956); Aspergillus nidulans Hemmons 1952; Pontecorvo 1953); Aspergillus glaucus (Sharpe 1956) ; Venturia (Boone 1951; Keitt 1952); Glomerella
(Wheeler 1953); Podospora (Rizet and Engelman 1949); Funaria (Wettstein 1923) and one of the higher plants Salpiglossis (Reimann-Philipps 1955).

Tetrads offer the advantage that the position and
type of the various chromosome exchanges can be more completely ascertained. When three or more markers are used, chromatid and chiasma interference can be distinguished. Further, in crosses involving many loci, the frequency of multiple exchanges is known, making it possible to examine the distribution of exchanges in tetrads.

Two important points that can best be examined by tetrad analysis are whether or not the reciprocal products of an exchange are recovered and also: whether allele ratios inconsistent with Mendelian laws occur. In the majority of analysed tetrads, these products are recovered and the allele ratios are consistent with Mendelian laws. However, Mitchell (1955a) has found an example in Neurospora crassa where the reciprocal products of an exchange are not recovered and there are a few instances of $4: 0,3: 1,1: 3$ and $0: 4$ ratios where a $1: 1$ ratio was expected - e.g. Reimann-Philipps 1955; Lindegren 1955 and Mitchell 1955b. Tetrad analyses also
establish the stage of meiosis at which exchanges probably oceur (Wettstein 1923; Anderson 1925; Allen 1926).

Centromere positions can be located in either ordered or unordered tetrads. If the tetrad is ordered, the centromere can be mapped in relation to a single marker (Lindegren 1932). For an unordered tetrad it is necessary to have either three independent markers or two linked and one independent marker before the centromeres can be mapped (Whitehouse 1950; personal communication; Papazian 1951, 1952; erkins 1949). In Aspergillus nidulans the position can be identified by the analysis of mitotic exchanges (Pontecorvo and Kafer 1956) but tetrads must be analysed to estimate the second division segregation frequencies. Tetrad analysis also provides an independent check of the mitotic method.

Tetrads are also useful in demonstrating non-Mendelimn segregation of extra-nuclear determinants. By this means non-Mendelian segregation has been found in Chlamydomonas reinhardi (Sager 1954); Aspergillus glaucus (Sharpe 1956) and Neurospora crassa (Mitchell et al 1953). Knapp showed that chromosome aberrations and lethal mutations that are undetectable with random strands may be found by the use of tetrads (cited by. Perkins 1953). Random strands are more efficient than tetrads
for estimating linkage values (Papazian 1952; Perkins 1953).
Two random strands give as much information as the four products of a single meiosis (Mather and Beale 1942). On the other hand if the genotypes of three of the four products of one meiosis are known, the fourth genotype can be deduced or if only two of the products are known and they carry the same allele for all but one of the loci, the other two genotypes can be deduced. This: is based on the assumption that meiosis proceeds normally as it does in all but a very few tetrads. In this study, only those tetrads with three or more identified genotypes have been included among the fully classifiable sample. The ascus of Aspergillus nidulans includes four pairs of genetivally identical spores so the same amount of information could be extracted from four as from eight spores, if one were to be picked from each pair. Of course, it is obviously impossible to pick one spore from each pair in practice.

PROBLEMS.

The primary objects of this study were to locate some or all of the centromeres and to analyse interference (both chromatid and chiasma) in the BI chromosome of Aspergillus nidulans. The BI chromosome is the best marked chromosome of A.nidulans. The results of these two parts of the work are presented in Sections II and III.

Some of the asci gave allele ratios for particular markers differing from the 1:1 ratio expected from single gene heterozygosis. Also one of the perithecia contained asci carrying a semi-lethal factor while other perithecia contained asci of both selfed and crossed origin. Closely linked markers were included in some of the crosses to check on the recovery of the reciprocal products of exchange. These by-products of ascus dissection are discussed in Sections IV to VI.

Pritchard (1956) found and analysed a duplication of a segment of the BI chromosome. A few asci from a cross involving this duplication were dissected and are briefly discussed in Section VII.

I. MATERIAL AND METHODS.

1. Life cycle of Aspergillus nidulans. As a detailed description of the life cycle of A. nidulans has been given before (Thom and Raper 1945; Pontecorvo 1953) only the main features will be given here. Aspergillus nidulans (Eidam) Winter is a homothallic ascomycete. The hyphae are branching and divided into "cells" which are multi-nucleate. When grown on solid medium a compact colony is formed. The hyphal strands anastomose quite freely so that heterokaryons are easily obtained.

Some of the hyphal cells differentiate into multi-nucleate conidiophores which terminate in a globose vesicle. From the surface of this vesicle a number of sterigmata are produced and from the tip of each, a chain of asexual conidia is abstricted. The nuclei within a single chain are usually identical but the nuclei of different chains on the same conidiophore may be different. The mature haploid conidia are 3 to 3.5 microns in diameter and the wild type colour is green.

The sexual spores are formed within perithecia or more exactly, cleistothecia - which contain up to 100,000 asci. The perithecia have hard, dark brown walls and are mature after 8-10 days incubation of cultures at 37° C. The asci contain eight ascospores within an
extremely fragile wall.
Cytological analysis of the events occurring
during perithecial formation is incomplete owing to the minute size of the nuclei. However, on both cytological and genetical evidence, the eight spores of an ascus are derived from a diploid nucleus which has undergone meiosis followed by a mitotic division. Analyses of single perithecia from heterokaryons show that the asci of any one perithecium are usually all selfed of one or the other parent or all hybrid. Most hybrid perithecia are thus derived from two nuclei which may become associated early in the development of the ascogenous hyphae. If this association occurs, it would be followed by conjugate divisions of the nuclei prior to fusion in pairs in the ascus primordium.
2. Media. Wild type Aspergillus nidulans will grow on a minimal medium containing a carbon source and a few salts. This medium was made up as follows:-

Sodium nitrate 6g.; potassium chloride .52g.; magnesium sulphate ($7 \mathrm{H}_{2} \mathrm{O}$) . 52 g .; potassium di-hydrogen phosphate $1.52 \mathrm{~g} . ;$ traces of iron and zinc; dextrose $10 \mathrm{~g} . ;$ distilled water 1000 ml . The pH was adjusted to 6.5 with the medium sodium hydroxide and/filtered before sterilization.

Biochemical mutants could be grown on this medium by adding the appropriate growth factors.

Complete medium was made with the same ingredients as the minimal medium above with the addition of:-

Difco Bacto Peptone 2g.; yeast extract "Yeastrel" $1 \mathrm{~g} . ; 5 \mathrm{ml}$. of an hydrolysate equivalent to 200 mg . of casein per ml.; 3 ml . of yeast nucleic acid equivalent to 100 mg . per ml . and 1 ml . of a vitamin solution. The vitamin solution contained:- riboflavin $10 \mathrm{mg} . ;$ nicotinamide $10 \mathrm{mg} . ;$ p-amino benzoic acid 1 mg .; pyridoxin-HCL 5 mg .; aneurin-HCL $5 \mathrm{mg} . ;$ biotin . 02 mg. ; Ca-pantothenate 20 mg. ; choline chloride 20 mg. ; inositol $40 \mathrm{mg} . ;$ folic acid 1 mg . and distilled water 10 ml . Koch sterilized.

The pH was adjusted to 6.0 to 6.2. The medium was filtered before addition of the vitamin solution and was then sterilized.

Both media as given above were in the liquid state. In order to solidify these media, 1.25% agar was: melted in the water before the addition of any of the ingredients.

All ingredients were of analytical reagent standard.
3. Strains used. All the mutants used in the crosses were already available in the Department of Genetics. Table of mutants used for tetrad analysis.

	Mutant	Nature of mutant.
ad1	requiring adenine	Mutagenic Apent.
ad8	requiring adenine	U / V
ad.20	partially requiring adenwine	U / V

ad14 requiring adenine U/V
ad15 requiring adenine U/V
ad17 requiring adenine U/V
an requiring aneurin $\quad \mathrm{J} / \mathrm{V}$
bi1 requiring biotin X-rays
met1 requiring methionine U/V
paba1 requiring p-amino : X-rays
pro1 requiring proline U/V
pro3 requiring proline U/V
pyro4 requiring pyridoxine \quad X-rays
ribo requiring riboflavin U/V
sd requiring thiosulphate Nitrogen mustard
thi2 requiring "thiazole" U/V
wn
white conidia
Spontaneous
y
yellow conidia
X-rays.

1. 4. Methods of crossing strains, strains to be crossed were first purified by isolating a single conidium onto a slope of complete medium. The purified strains were tested for their nutritional requirements. Conidia from the two strains were then streaked together on a Petri dish of minimal medium and a few drops of liquid complete medium were spread along the streak to facilitate germination. The dishes were incubated for three weeks to a month at 37° C. Perithecial and ascus analyses were not carried out until after this incubation period.

Instead of a Petri dish, a slope of minimal medium in a "boiling tube" was occasionally used.
5. Methods of genetic analysis. The two methods of analysis used in this study were perithecium analysis and ascus analysis.
(a) Perithecium analysis. Hemmons (1952) and Hemmons, Pontecorvo and Bufton (1953) found that the asci within any one perithecium tended to be of one type: all selfed of one or the other parental type or all hybrid. A random sample of spores taken from one hybrid perithecium will therefore be equivalent to a sample of gametes from an individual in higher organisms.

Following their technique, a perithecium was picked and cleaned of hyphal fragments and conidia by rolling it with a needle over a dish containing 3% agar. When the perithecium was clean, it was crushed in .2 ml . 80 of either 1 in 1000 Tween/or 1 in 1000 Calzolene oil. The number of spores was estimated by a"haemocytometer count and the suspension was then diluted down to a concentration of between 300 to 500 per ml .1 ml . of this diluted suspension was spread on each of three plates of complete medium giving a sample of 90 to 150 colonies. After 48 hours the plates were examined and the allele ratio for a single pair of "visible" markers was determined. If this allele ratio proved to be 1:1, sufficient of the spores to bring the to tal number to more than 300 were plated.

These 300 or more colonies were then tested for their nutritional requirements. Firstly, they were inoculated at marked points on further dishes of complete medium. These are called "master plates". Then, using the "multi-wire" replicator devised by Forbes (unpublished) the colonies were replicated from the master plates onto dishes of medium lacking, one at a time, the growth factors in the cross. If a colony failed to grow on a particular plate, then it required the growth factor which was missing. If a colony grev on the same plate, it did not require that growth factor. The inäculations were classified for growth or non-growth after 24 hours and again after 48 hours.
(b) Ascus analysis. The method used initially was that developed by Hemmons (1952). This method is outlined as follows:-

Equipment and instruments used. A micro-loop was constructed from $\frac{1}{6}$ " internal diameter soda glass tubing drawn out twice and with the end bent around to form a loop approximately 15 microns in diameter. The shaft of the loop was bent upwards to an angle of approximately 40° so that it would easily enter the ascus suspension (Figure 1). This loop could be used for all the manipulations required. Hemmons used a De Fonbrune micro-manipulator in conjunction
with a binocular microscope (magnification $\times 360$) and micro-loops were made with a De Fonbrune micro-forge. A deep green and an orange filter were used together on the light source.

The dissecting chamber. This was made from $\frac{5}{8}$ " internal diameter glass tubing from which a $\frac{1}{4}$ " length was taken. A slot $\frac{1}{4}^{\prime \prime}$ wide was then cut out of the side of this circle, thus producing a horse-shoe shape. One end of this horse-shoe was attached to a 3 " x $1^{\prime \prime}$ microscope slide with the slot facing across the width of the slide. Enough water was introduced to cover the bottom of the chamber (figure 2).

The ascus suspension. This was prepared by placing a perithecium in a drop of sterile water on a $\frac{7}{8}$ " square No. 2 coverslip and then lightly puncturing the perithecium to liberate the contents. The coverslip was then inverted onto the chamber on the microscopenstage. EThe micro-loop could be introduced through the aperture in the side of the chamber.

Ascus dissection. The micro-loop was introduced into the chamber and focussed in a central position. Then the loop was raised into the suspension and manoeuvred into position above an unbroken ascus. The ascus was; removed by lowering the loop onto the ascus and then on out of the drop. Care was taken that no conidia or free

Figure 1. Micro-loop viewed from the side and from above. (Greatly magnified). After Hemmons (1952).

Figure 2. Moist chamber and loop as seen from above. After Hemmons (1952).
ascospores were attached to the loop. The ascus was then transferred to an agar drop on the underside of a second coverslip, substituted for the first. The number of ascospores in the ascus was checked and then by further substitutions, each ascospore was transferred to a separate coverslip. Thus the coverslip carrying the ascus had to be transferred backwards and forwards eight times during the dissection of a single ascus. The numbered agar drop suspensions were then inverted onto specially prepared "depression" slides (see Hemmons 1952) and incubated at $37^{\circ} \mathrm{C}$.

A number of modifications of these techniques have since been introduced and are listed below:-

Equipment and instruments used. These were the same as those used by Hemmons except that a Singer micro-manipulator replaced the De Fonbrune and a deep green filter by itself was used on the light source.

The dissection chamber. Instead of continually substituting one coverslip for another during the dissections, a dissecting chamber large enough to hold two coverslips was used. The base of the chamber was a microscope slide $3^{\prime \prime} \times 1^{\prime \prime}$ and the sides were three strips of a microscope slide $3 / 10^{\prime \prime}$ in height down both lengths and across one breadth. The other breadth was left open
for the introduction of the micro-loop. Sufficient water to cover the bottom of the chamber was added to prevent dehydration of the preparations. A low ridge across the open breadth prevented the water from running out of the chamber and reduced air currents while dissections were in progress. This chamber was similar to the one used by Lindegren (1949) in the dissection of yeast asci.

The ascus suspension. This was prepared in the manner described by Hemmons exeept for the following points. Firstly, a ring of vaseline was applied to the edges of the coverslip to keep the drop centred. Secondly, Tween 80 (at a concentration of 1 in 1000) was used in place of water because its lower surface tension enabled the micro-loop to be introduced into the suspension with the minimum of disturbance. Thirdly, the isolation of asci was made easier by transferring most of the suspension to a second coverslip and then diluting the remainder of the suspension on the first coverslip. This diluting process was repeated from the second to a third cover-slip and so on. Since the asci and free spores, etc. were well spread out on the diluted remainders, intact asci were more easily separated from free conidia and ascospores.

Ascus dissection. The diluted suspension was inverted and placed at one end of the dissecting chamber. A thin layer of medium was then poured into a Petri dish
and cut up into approximately $3 / 10^{\prime \prime} \times 6 / 10^{\prime \prime}$ rectangles. One of these rectangles was placed on a $\frac{7}{8}$ " square No. 2 coverslip and further divided into eight pieces. The coverslip was then inverted onto the dissecting chamber adjacent to the ascus suspension. Asci were removed from the suspension as described by Hemmons. Isolated asci were transferred from the ascus suspension to one of the eight pieces of medium by moving the microscope sitage instead of the coverslip. At this point the number of ascospores was checked. IF the ascus was not to be dissected, the eight spores were left on this one piece. IF the ascus was to be dissected, seven of the ascospores were again picked up by the loop, and distributed one by one to the remaining seven pieces of medium. The coverslip was then removed and the eight pieces were slid off onto marked positions on a Petri" dish of medium. Twelve undissected asci or five dissected asci could be fitted into a Petri dish (Figures 3 and 4).

Classification for colour and nutritional
requirements of the germinated spores from the dissected asci was done as described for perithecium analysis.

The modifications of Hemmons' techniques described here have enabled the speed of ascus dissection to be appreciably increased.

Figure 4. The arrangement of twelve undissected asci on a Petri dish of complete medium.

II. LOCATION OF CENTROMERES.

1. Methods of analysis. When dealing with an organism such as Neurospora which has ordered tetrads, it is possible to distinguish the products of the first and second meiotic divisions by the positions of the spores in the ascus. The centromeres may then be mapped in relation to a single gene for each chromosome. However, in unordered tetreds, the products of the first and second divisions cannot be distinguished and it is necessary to have either three independent loci or two linked and one independent locus before the centromeres can be mapped. Formulae have been given by Whitehouse (private communication; 1950); Papazian (1951; 1952) and Perkins (1949). The formulae as given by whitehouse are used in this instance.

Thitehouse (1949) and Perkins(1949) showed that if two loci are unlinked, the proportion of tetratype asci (in the absence of interference) is:-

$$
p=x+y-3 x y / 2
$$

where p is the proportion of tetratypes and x and y are the proportions of second division segregations at the loci A and B respectively. Since there are two variables X and y and only one equation, it is not possible to solve for both x and \dot{y}. By introducing a third
independent locus \underline{C} and hence a third variable \underline{Z}, it is possible to obtain three equations which may then be solved for the three unknowns, X, \bar{y} and \underline{z}.

Thus $q=y+z-3 y z / 2$ and $r=x+z-3 x z / 2$
where q and \underline{x} are the proportions of tetratypes with respect to B and C and A and C respectively and Z is the proportion of second division segregation at the C locus. The solution of these three equations gives:-

$$
\begin{align*}
& x=\frac{2}{3}\left(1 \pm \sqrt{\frac{4-6 p-6 r+9 p r}{4-6 q}}\right) \tag{1}\\
& y=\frac{2}{3}\left(1 \pm \sqrt{\frac{4-6 p-6 q+9 p q}{4-6 r}}\right) \tag{2}\\
& z=\frac{2}{3}\left(1 \pm \sqrt{\frac{4-6 q-6 r+9 q r}{4-6 p}}\right) \tag{3}
\end{align*}
$$

When two real solutions: are obtained for any one of these formulae, one will be greater than $\frac{2}{3}$ and one will be less than $\frac{2}{3}$ but since proportions of second division segregation greater than $\frac{2}{3}$ are likely to be rare (Mather 1938), the smaller value is probably the correct one. Perkins (1955) has, however, collected several instances where the frequency of tetratype asci is greater than the maximum $\frac{2}{3}$ expected in the absence of interference. The frequencies of the tetratype asci in the cases cited ranged from 74.6% to 98.8%.

If two of the loci are linked and the third locus is independent, it is still possible to locate the centromeres as follows:(Whitehouse.private communication):-

Let A, \underline{B} and C be three loci; A and B linked and \subseteq independent.

Let X, X and an 2 be their respective second division segregation frequencies.

Let $2 P$, 9 and \underline{x} be the tetratype frequencies of A and B; B and C and C and A respectively. Therefore P is the recombination frequency of A and B (if there are no 4-strand double exchanges).

Then, as in the previous case:-
$q=y+z-3 y z / 2$
$r=x+z-3 x z / 2$
and also $2 P=x+y$ or $x-y$ or $y-x$
Solving for X , y and \underline{Z} gives:-
$2 P=x+y \quad x-y \quad y-x$
$x=2 \cdot \frac{2 P-q+r-3 P r}{4-3 q-3 r} \frac{2}{3} \cdot \frac{3 P r-q+r-2 P}{r-q} \frac{2}{3} \cdot \frac{3 P r+q-r-2 P}{q-r}$
$y=2 \cdot \frac{2 P+q-r-3 P q}{4-} \frac{2}{3 q-3 r} \cdot \frac{3 P q-q+r-2 P}{r-q} \frac{2}{3} \cdot \frac{3 P q+q-r-2 P}{q-r}$
$z=\frac{q+r-2 P}{2-3 P} \quad \frac{q-r+2 P}{3 P}$
$\frac{2 P-q+r}{3 P}$
It should be noted that owing to double exchanges, equation (4) is only true if A and \underline{B} are near the centromere. Thus, if A and B are remote from the centromere, they may have almost identical second division segregation frequencies although they are known to be 10 or 20 units apart.

The proportion of ditype to tetratype asci with respect to any two markers will be dependent on the number of exchanges between the markers and their respective centromeres. When both or one of a pair of markers are segregating independently of their centromeres, the proportion of tetratype asci will be $\frac{2}{3}$ in the absence of interference. Therefore a tetratype frequency of $\frac{2}{3}$ can still mean that one of the pair of markers is linked to its centromere (Whitehouse 1949).

In the first three crosses analysed, full dissection and classification of the asci was carried out. A method for detecting close linkage of a marker to its centromere, without complete ascus dissection, was: later developed. This method depends on the availability of a "visible" marker already known to be closely linked to its centromere and the ability to select automatically against the mariker whose relationship with its centromere is to be determined.

This rapid method is most conveniently illustrated by describing an actual example. In Aspergillus nidulans the marker determining white conidia (wn) was found to be 18.5 units from its centromere. A large number of nutritional mutants was available and in the following example prol was used in an attempt to find its second division segregation frequeney. It is not linked
to wn. From the cross wn prol $/ /++$, whole undissected asci were placed on medium which selected against those spores requiring proline. This made it possible to distinguish the different types of asci as follows:-

Ascus	Ascospores		Colour
type.	Growing	Not growing	colony f
Parental			
ditype.	*+ and ++	wn proi and wn proi	Green
Non-parental			
ditype.	wnt and wnt	+prol and +pro1	White
Tetratypes.	wnt and ++	wn proi and +prol	

Thus the frequency of tetratypes can be determined simply by examining the colour of colonies originating from whole asci.

In this method, there is a systematic source of error because a tetratype may be classified as a parental or a non-parental ditype if one of the colours accidentally fails to show up. This could happen when some of the ascospores either fail to germinate or germinate but are overgrown by hyphae from other ascospores. If large, this kind of error could simulate close linkage to a. centromere where none exists. Consequently, this method is useful only for a quick screening of a number of mutants and must be followed, where linkage to a centromere is suggested, by complete analysis of fully dissected asci for the actual estimation of linkage.

This screening method can also detect close linkag'e between two markers. An excess of parental ditypes over non-parental ditypes would indicate such linkage.
2. Experimental. Six crosses were used in this part of the work. All eight spores in a tetrad did not invariably germinate. The proportionsof asci with one, two or three and four spores with different genotypes growing are given in Table 1. If meiosis was assumed to be normal in tetrads with only three genotypes among the germinating ascospores, the four th genotype could be inferred. Therefore, tetrads with three or four genotypes among the germinating ascospores have been pooled.

The first two crosses analysed (namely y sd// bi1 pyrot; and ad1//y sd pyro4) were chosen so that all the markers except \dot{y} and bil were located on different chromosomes. With the exception of y and bi1, the frequency of tetratype asci with respect to all pairs of markers did not deviate from. 67 in any case, indicating that not more than one of each pair of markers could be linked to their centromeres (Tables 2 and 3). The third cross wn adi pro1 pabal $y / / y$ pyro4 was chosen because the analysis of mitotic crossing over (Pontecorvo and Kafer 1956) had indicated that a centromere was fairly close to prol and because wn, pyro4 and prol were located on different chromosomes. Irur thermore, wn and ad1, although located on the same chromosome, segregated independently.

Table 1.
Number of hybrid asci dissected and the number of genotypes recovered from the germinated ascospores.

Cross	Number of genotypes recovered. $3 \& 4$ Total.			
y sd//bil pyro4	37	5	6	48
adi//y sd pyro4;	27	4	1	32:
wn adi proi pabal y//y pyro4	107	7	2	116
wn adil $\mathrm{y} / / \mathrm{y}$ sd	24.	-	-	24
wn adi4 $\mathrm{y} / / \mathrm{bil}$ thi2	11	-	-	11.
wn a.d14 $\mathrm{y} / / \mathrm{bi} 1$	48	4	-	52

N.B. Abnormal asci have not been included in this table.

Numbers of parental ditypes, non-parental ditypes and tetratypes recovered from the fuliy classifiable, normal asci of the cross y sd//bil pyro4.

Numbers with respect to:-	$\begin{aligned} & \text { Number of } \\ & \text { ditypes (D) } \end{aligned}$	Number of tetratypes (T)	Probability of a $1: 2$ ratio of D:T.
y \& sd	$\begin{array}{ll} \hline \text { P.D. } & 9 \\ \text { N.P.D. } & 4 \end{array}$	24	N.S.
$y \& b i 1$	$\begin{array}{lr} \text { P.D. } & 33 \\ \text { N.P.D. } & 1 \end{array}$	3	$<.001$
y \& pyros	$\begin{array}{ll} \text { P.D. } & \frac{11}{\mathbb{N} . \text { P.D. }} \end{array}$	20	IN.S.
sd \& bil	$\underset{\text { P.P.D.D.: }}{ } \quad \frac{11}{5}$	21	N. S.
sd. \& pyro4	$\begin{array}{ll} \text { P.D. } & 5 \\ \mathbb{N} \cdot P . D . & 6 \end{array}$	26	N.S.
bil \& pyro4	$\begin{aligned} & \text { P.D. } \frac{11}{7} \\ & \text { N.P.D. } \end{aligned}$	19	. $05-.04$

Table 3.

Numbers of parental ditypes, non-parental ditypes and tetratypes recovered from the fully classifiable, normal asci of the cross ad1//y sd pyros.

Numbers with respect to:-	$\begin{aligned} & \text { Number of } \\ & \text { ditypes (D) } \end{aligned}$	Number of tetratypes (T)	Probability of a $1: 2$ ratio of D:T.
ad1 \& y	$\begin{array}{ll} \text { P.D. } \\ \text { I.P.D. } & 4 \end{array}$	17	N.S.
ad1 \& sd	$\begin{array}{ll} \text { P.D. } & 3 \\ \text { N.P.D. } & 4 \end{array}$	20	N.S.
ad1 \& pyro4	$\begin{array}{ll} \text { P.D. } & 7 \\ \text { N.P.D. } & 4 \end{array}$	16	N.S.
y \& sd	$\begin{array}{ll} \text { P.D. } & 6 \\ \text { N.P.D. } & 5 \end{array}$	16	N.S.
y \& pyro4	$\begin{array}{ll} \text { P.D. } & 5 \\ \text { N.P.D. } & 5 \end{array}$	$1{ }^{17}$	IV.S.
pyro4 \& sd	$\begin{array}{ll} \text { P.D. } & 2 \\ \text { N.P.D. } & 6 \\ \hline \end{array}$	19	N.S.

It will be seen from Table 4. that the ratio of ret ditypes to tetratypes with respect to wn and prol differs from the $1: 2$ ratio expected in the absence of linkage of one or both markers to a centromere. Although the ratio of ditypes to tetratypes with respect to wn and pabal does not differ significantly from the 1:2 ratio expected, the tetratype frequency is used in the calculation of centromere distances as pabal is known to be 8 to 10 units from pro1 (Forbes 1956).

Ratios of parental to non-parental ditypes which differ significantly from 1:1 indicate linkage when the parental ditypes are in excess. This is seen in the case of the bil and y markers in the cross y s $\bar{\alpha} / / \mathrm{bil}$ pyro4 (Table 2) and in the case of the prol and pabal markers in the cross $\frac{w n ~ a d 1 ~ p r o 1 ~ p a b a l ~}{\text { frequency }} / / y$ pyro4 (Table 4). The recombination/of the former was calculated to be $.068 \pm$.034 and of the latter to be .084 $\pm .018$.

The unlinked marker wn and the two linked markers pro1 and pabal have been mapped in relation to their centromeres using the formulae given by Whitehouse (private communication). The application of these formulae to these data gave the following recombination frequencies:-

$$
\begin{aligned}
& \text { pro1 - centromere }=.180 \pm \\
& \text { pabal - centromere }=.265 \pm \\
& \text { wn - centromere }=.187 \pm
\end{aligned}
$$

Numbers of parental ditypes, non-parental ditypes and tetratypes recovered from the fully classifiable, normal asci of the cross wn ady prol pabal $y / / y$ pyro4.

Numbers with respect to:-	Nümber of ditypes (D)	Number of tetratypes (T)	Probability of a 1:2 ratio of D: ${ }^{\text {T. }}$
wn \& prol	$\begin{array}{ll} \hline \text { P.D. } & 31 \\ \text { I.P.D. } & 21 \end{array}$	55	<.001
wh \& pabal	$\begin{array}{ll} \text { P.D. } & 22 \\ \text { N.P.D. } & 21 \end{array}$	64	. $2-.1$
wn \& pyro4	$\begin{array}{ll} \text { P.D. } & 10 \\ \text { N.P.D. } & 16 \end{array}$	81	. 04
wn \& ady	$\begin{array}{ll} \text { P.D. } & 15 \\ \mathbb{N} . \text { P.D.D. } & 17 \end{array}$	75	N.S.
ad1 \& proi	$\begin{array}{ll} \text { P.D. } & 12 \\ \text { N.P.D. } & 20 \end{array}$	75	N.S.
ad1 \& pabal	$\begin{aligned} & \text { P.D. } \\ & \text { N.P.D. } \\ & \hline 17 \end{aligned}$	79	IV.S.
a.d1 \& pyro4	$\stackrel{\text { P.D. }}{\text { N.P.D. }} \quad 23_{23}$	64.	N.S.
pro1 \& pabal	$\begin{aligned} & \text { P.D. } \\ & \text { N.P.D. } \quad 89 \end{aligned}$	18	$<.001$
pro1 \& pyro4	$\begin{array}{ll} \text { P.D. } & 17 \\ \text { N.P.D. } & 15 \end{array}$	75	N.S.
pabai \& pyro4	$\begin{array}{ll} \text { P.D. } & 16 \\ \text { N.P.D. } & 14 \\ \hline \end{array}$	77	N.S.

The recombination frequencies were obtained by halving the second division segregation frequencies. The calculation of standard errors of these recombination fractions poses a difficult problem. An attempt to solve the problem is not justified by these small data which are intended to give no more than an indication of centromere positions.

It was fortunate that one of these markers i.e. wn was "visible" as this enabled the quick method for screening further markers to be used. The method was: first checked by selecting against prol in the cross wn ad1 prol pabal $y / / y$ pyro4 analysed above by full dissection. The results (Table 5) did not differ from those obtained by full dissection, showing the method to be reliable. A number of markers was wherefore examined by this method. In each case a small number of asci were fully dissected to check the viability of the ascospores (Table 1). Using the quick method, parental ditypes, non-parental ditypes and tetratypes were determined in the various crosses by the colour of the colony (Table 5 and Figure 5). In all cases except the cross wn ad14 y/ bil met1 the ratios of ditypes : tetratypes did not differ from the expected ratio of $1: 2$. This cross was therefore further analysed by complete ascus dissection (Table 6), and the unlinked markers wn, ad.l4

Number of parental ditypes, non-parental ditypes and tetratypes recovered from the fully classifiable , normal asci of the cross. wn adlit $\mathrm{y} /$ /bil met1. The biotin requirement was not classified.

Numbers with respect to:-	Number of ditypes		
wn \& ad14		\quad	Number of
:---			
tetratypes (T)		Probability of	
:---			
a. 1:2 ratio of			
D:T.			

and metz were mapped in relation to their centromeres using the formulae given by whitehouse (1950). The recombination frequencies obtained by the application of these formulae to the data were as follows:-
wo - centromere $=.478 \pm$ or $.184 \pm$
ad14 - centromere $=.478 \pm$ or $.184 \pm$
meta - centromere $=.502 \pm$ or $.165 \pm$
The recombination frequencies were again
obtained by halving the second division segregation stone of the is
frequencies. The latter values ace probably in each fist
x case the correct ones as the former would indicate second division segregation frequencies greater than . 67 .

The incomplete asci from the two crosses
showing centromere linkage (Table 1) constitute such
a small fraction of the total that they have been
ignored. Perithecial analyses of all the crosses were done before ascus analysis in order to detect any gross abnormalities of behaviour.

Figure 5. Visual determination of parental ditypes, non-parental ditypes and tetratypes with respect to the markers $w n$ and thi2 in the cross wn ad14 $\mathrm{y} / \mathrm{m} \mathrm{b} 11$ thi2. The whole undissected asci were placed on minimal medium + adenine + biotin thus selecting against ascospores requiring "thiazole". Starting in the top row and reading from right to left in each successive row, the colonies are counted as 1 to 12. The colonies showing only white conidia are parental ditypes (Numbers 3 and 5); the colonies showing yellow conidia only, green conidia only or a mixture of yellow and green conidia are non-parental ditypes (Numbers 2, 4 and 9); and the colonies showing either a mixture of white and green or white and yellow conidia are tetratypes (Numbers 1, 6, 7 , $8,10,11$ and 12)
3. Correction of recombination frequencies. As pointed out by Spiegelman (1952) it has often been assumed that $p_{A B}=\frac{1}{2} P_{A B}$ where $p_{A B}$ refers to recombination
 corresponding second division segregation frequency. This assumption has been made in calculating the recombination frequencies between the centromeres and the various mankers in Section II - 2. The justification usually offered for this formula is that in random strand analysis only half of the exchanges are recovered since in a large population only one strand is recovered from each tetrad. Both Rizet and Engelmann (1949) and
Papazian (1951) have made use of this conversion factor but have pointed out that, except over short map distances, it is at best an approximation. This is because the limit approached by $\underline{p}_{A B}$ as the number of chiasmata between A and B increases is .5, whereas the limit of $P_{A B}$ is 67 . For long map distances the conversion factor would yield a value of .33 instead of the .5 expected.

Spiegelman has calculated a conversion factor which, assuming no interference, takes account of this discrepancy. This is:-

$$
\begin{equation*}
p_{A B}=\frac{1}{2}\left(1-\left(1-\frac{3}{2} P_{A B}\right)^{\frac{2}{3}}\right) \tag{5}
\end{equation*}
$$

This formula has been used to recalculate the
recombination frequencies between the centromeres and the linked markers - wn, adit, prol and met1. For the cross wn ad1 pro1 pabal $y / / y$ pyro4 the recombinations frequencies were altered to:-

$$
\begin{aligned}
& \text { pro1 - centromere }=.202 \pm \\
& \text { paba1 - centromere }=.326 \pm \\
& \text { wn - centromere }=.211 \pm
\end{aligned}
$$

and for the cross wn ad14 $y / /$ bil mety, the recombination frequencies were altered to:-

$$
\begin{aligned}
& w n-\text { centromere }=.207 \pm \\
& \text { ad14 }- \text { centromere }=.207 \pm \\
& \text { met1 }- \text { centromere }=.183 \pm
\end{aligned}
$$

III. ANALYSIS OF MULTIPLTE EXCHANGES.

1. Introduction. The analysis of multiple exchanges presents two distinct problems:- (a) the relationship of the chromatids involved in two or more exchanges and (b) the distribution of the exchanges along the chromosomes. If the chromatid relationships in the multiple exchanges are not random, the phenomenon is generally referred to as "chromatid interference" and if the distribution of the exchanges is not random, the phenomenon is generally referred to as "chiasma interference". In order to avoid confusion in terminology these terms are used in this thesis a.lthough "type interference" and "position interference" seem more exact (Carter and Robertson 1952).

Both chromatid and chiasma interference may be studied by cytological observations, by whole tetrad analysis, and by half tetrad analysis. If the assumption is made that chromatid interference does not occur, then random strand analysis provides information on chiasma interference. The assumption of no chromatid interference must be made because the results of the two types of interference cannot be separated by random strand analysis.

Cytological evidence of chromatid interference can be obtained either by direct study of various stages of meiosis or by observing bridges and fragments in
inversion heterozygotes. Direct s女uady has show an excess of compensating over non-compensating double exchanges in Stenobothrus: (Darlington and Dark 1932), Melanoplus femur-rubrum (Hearne and Fuskins 1935), and Trillium erectum
(Huskins and Newcombe 1941). Work on inversion heterozygotes indicates that compensating double exchanges are more frequent than non-compensating double exchanges in Fritillaria (Frankel 1937); equally frequent in Gasteria (GIles 1944) and less frequent in Tulipa (Upcott 1937).

The data from the attached-X chromosomes of Drodophila show that 2-, 3- and 4-strand double exchanges occur with a frequency of 1:2:1 (Anderson 1925. Emerson and Beadle 1933 and Beadle and Fnerson 1935). On the other hand Bonner and Nordenskiold(1937) found that 4-strand double exchanges occurred more frequently than 3 - and 2-strand double exchanges, but that this interference diminished with increasing distance from the centromere. Recently, Welshons (1955) has repeated the experiments of Bonnier and Nordenskiold and has found no evidence of chromatid interference.

Morgan (1933) used a closed-X chromosome of Drosophila and Weinstein (1936) applied a mathematical treatment to some Drosophila data obtained from various sources to show that exchanges occurred at random between non-sister chromatids.

Reviews of the tetrad data analysed for interference have been presented by Whitehouse (1942), Papazian (1952) and Perkins (1955). Lindegren (1933, 1936a, b) presented data from tetrad analysis of Neurospora crassa but in all three papers, there were insufficient numbers of double and multiple exchanges to allow any conclusions on chromatid and chiasma interference to be drawn. Lindegren and Lindegren (1937. 1939) reported ratios of 2-:3-:4-strand double exchanges of $27: 14: 8$ in the "sex" chromosome and of 20:17:4 in the second chromosome of Neurospora crassa. They later discovered that 15 of the 2-strand type in the second chromosome could have been either 2- or 4-strand doubles (Iindegren and Lindegren 1942). The recalculated values were therefore 24 2- or 4-strand : 17 3-strand double exchanges and this ratio does not differ from the expected 1:1. In the same paper (Iindegren and Lindegren 1942) they found locally specific patterns of chromatid and chiasma interference in four regions of the "sex" chromosome of Neurospora crassa. Across the centromere they found a high degree of both negative chromatid interference and negative chiasma interference. Some or all of this negative interference may be ascribed to centromere mis-assortment (Perkins 1955). When other pairs of intervals were considered, varying patterns of chromatid and chiasma interference emerged. Whitehouse (1942)has pointed out a
number of errors made by Lindegren and Lindegren (193\%, 1939) in the analysis of their data and has carried out the necessary recalculations. Whitehouse further showed that in these data of the Lindegren's, passing of the centre nuclei at the second division of meiosis could account for less than 1% of the asci. Recent work by Howe (1954, 1956) and Stadler (1955, 1956) on Neurospora crasea showed no interference across the centromere. These authors uged an independent marker to detect meiotic nuclear passing or errors in dissection. The data of Houlahan, Beadle and Calhoun (1949) included insufficient numbers of double exchanges to assess significance.

Wulker (1935), working with Neurospora sitophila recovered 8 2-strand : 28 3-strand : 8 4-strand double
 exchanges but this retio is-only-significant at about the 7\% yevien.

Tetrads of Sphaerocarpus donnellii (Knapp 1937) gave no indications of chromatid interference but very long intervals were used and interference may have been obscured. Wettstein (1923) described a cross in the moss Funaria hygrometrica with four linked factors where parental and non-parental ditypes but no tetratypes were observed. These results could be explained by positive chromatid interference or by exchange at the 2-strand stage of meiosis. In summary, the available data on chromatid
interference does not give any conclusive answer. In most of the cytological work there are excesses of compensating over non-compensating double exchanges. Excluding the results of Bonnier and Nordenskiold (1937) which were not confirmed by the comparative work of Welshons (1955), the attached-X data of Drosophila show that the relationship of the strands taking part in multiple exchanges is random. Except for the work of Lindegren and Lindegren (1937, 1939, 1942) which has been extensively corrected and criticized, the same conclusion is reached from the tetrad data. The data of Wettstein (1923) may or may not indicate chromatid. interference.

The presence or absence of chromatid interference is important in relation to the conclusions drawn from random strand analysis about chiasma interference. There is general agreement that in Drosophila melanogaster there is no chiasma interference across the centromere and positive chiasma interference in the arms of the chromosomes (e.g. Weinstein 1918; Anderson and Rhoades 1930; Graubard 1934 and Stevens 1936), but in all these examples the assumption was made that there was no chromatid interference. By the analysis of random strands, the effects of chromatid and chiasma interference cannot be separated. If there is chromatid interference in the chromosomes of Drosophila melanogaster the conclusions on chiasma interference may well be wrong.
(2) Methods of analysis.
(a) Linkage estimates. For the tetrad data, these were made by the method of Mather and Beale (1942).
(b) Tests for the homogeneity of the exchange distributions from the different perithecia. The tests were made by the following method:-

Let there be 0 -...-.-. k perithecia.
Let $s_{i}=$ number of exchanges in the $i^{\text {th }}$ perithecium.
Let $n_{i}=$ number of asci sampled in the $i^{\text {th }}$ perithecium,
If s_{i} is Poisson with mean $n_{i} \lambda$, (and $n_{i} \lambda$ is large)
then s_{i} is approximately normal with mean $n_{i} \lambda$ and variance $n_{i} \lambda$ and $\frac{s_{j}-n_{i} \lambda}{\sqrt{n_{i} \lambda}}$ is approximately normal with mean 0 and
variance 1.

$$
\text { Also } \frac{\left(s_{i}-n_{i} \lambda\right)^{2}}{n_{i} \lambda} \text { is } \chi_{(1)}^{2}
$$

Therefore $\sum_{i=1}^{k} \frac{\left(s_{i}-n_{i} \lambda\right)^{2}}{n_{i} \lambda}$ is $\chi^{2}(k)$
If λ is replaced by the estimate $\frac{\sum s_{i}}{\sum n_{i}}=\frac{S}{N}$ then,
$\sum_{i=1}^{k} \frac{\left.t s_{i}-n_{i} \frac{S}{N}\right)^{2}}{n_{i} \frac{S}{N}}$ iss $\chi^{2}(k-1)$
Therefore

$$
\sum_{i=1}^{k} \frac{n_{i}\left(p_{i}-p_{0}\right)^{2}}{p_{0}} \text { is } \chi_{(k-1)}^{2} \text { where } p_{i}
$$

is the mean of the $i^{\text {th }}$ perithecium and p. is the overall mean. By multiplying out:-

$$
\begin{aligned}
& \frac{1}{p} \cdot\left[\sum_{i=1}^{\frac{k}{k}}\left(n_{i} p_{i}^{2}-2 n_{i} p_{i} p_{i}+n_{i} p_{0}^{2}\right)\right] \\
& =\frac{1}{p} \cdot\left[\sum_{i=1}^{k} n_{i} p_{i}^{2}-N p_{0}^{2}\right] \\
& =\frac{1}{p} \cdot\left[\sum_{i=1}^{k} \sum_{i} p_{i}-N p_{0}^{2}\right] \\
& =\left[\frac{\sum_{i=1}^{K}}{p_{i}} s_{i} p_{i}\right]-N p .
\end{aligned}
$$

(c) Estimation of the expected number of 4 -strand double exchanges within the genetically marked intervals of the crosses. If only two makers are available in a cross, then three clasps of tetrad are detectable. These are:Class (1). Those tetrads with no exchange in the interval between the two markers.

Class (2). Those tetrads with a single exchange in the interval between the two markers.

Class (3). Those tetrads with a 4-strand double exchange in the interval between the two markers.

However, in tetrad analysis, the 3 -strand double exchanges within intervals are included in Class (2) and the $2-s t r a n d$ double exchanges within intervals are included in Clams (1).

In the absence of interference, the distribution of the exchanges within the intervals is multinomial with probabilities:-
$P_{0}($ non-exchange tetrads $)=e^{-m}+\frac{1}{4}\left(1-e^{-m}-\frac{m e^{-m}}{1!}\right)$
$P_{1}($ single exchange tetrads $)=\frac{m e^{-m}}{1!}+\frac{1}{2}\left(1-e^{-m}-\frac{m e^{-m}}{1!}\right)$
$P_{2}(1-$ strand double exchanges $)=\frac{1}{4}\left(1-e^{-m}-\frac{m e^{-m}}{1!}\right)$
where \underline{m} is the mean number of exchanges and is small.
Hence approximately, since \mathfrak{m} is small:-
$P_{0}=1-m+\frac{5}{6} m^{2}$
$P_{1}=m-\frac{3}{4} m^{2}$
$P_{2}=\frac{1}{8} m^{2}$
Solving for m in terms of P_{1} :-
$m=\frac{2}{3}\left(1-\sqrt{\left(1-3 P_{1}\right)}\right)$
Therefore $P_{2}=\frac{1}{B} P_{1}^{2}\left(1+\frac{3 P_{1}}{2}\right) \quad$ (approximately)
This formula (ba is similar to that given by
Papazian (1952). Papazian's formula was $\mathbb{N}=\frac{F^{2}}{8}\left(1+\frac{2 F}{3}\right)$
where II is the 4-strand double exchange class and E is the single exchange class. It was pointed out by Dr. D.D. Perkins (private communication) that Papazian's formula is incorrect.
(d) Correction of the frequencies of the 2-, 3and $4-$ strand double exchanges between two intervals A and B by the use of tetrads with a 4 -strand double exchange within either A or B and accompanied by a single exchange in B and A respectively (Whitehouse 1956, private communication Whitehouse showed that for a pair of intervals:-$d=x-\frac{n x y}{z}+\frac{n y^{2}}{2 z}$ or $d=x+\frac{n y}{z}\left(\frac{y}{2}-x\right)-\cdots-(6)$ $e=y-\frac{n y^{2}}{z}+\frac{n y(1-y)}{z}$ or $e=y+\frac{n y}{z}(1-2 y)-(7)$ $f=z-\frac{n y z}{z}+\frac{n y^{2}}{2 z}$ or $x=z+\frac{n y}{z}\left(\frac{y}{2}-z\right)$
where x, y and Z are the actual proportions of 2-, 5- and 4-strand relationships between exchanges and $x+y+z=1 ;$, \underline{e} and E are the observed proportions of 2-, 3- and 4-strand relationships between exchanges and $d+e+f=1$; and n is the ratio of those tetrads with a 4-strand double exchange within one of the intervals and a single exchange in the other interval to the frequency of $d+e+f$.

Now from equation (7)

$$
\begin{equation*}
z=\frac{n y(1-2 y)}{e-y} \tag{9}
\end{equation*}
$$

and from equation (8)

$$
\begin{align*}
& x=z+\frac{n y^{2}}{2 z}-n y \\
& \text { or } 2 z^{2}-2 z(x+n y)+n y^{2}=0 \tag{10}
\end{align*}
$$

Hence $\mathrm{f}=\frac{\mathrm{ny}(1-2 y)}{e-y}+\frac{y(e-y)}{2(1-2 y)}-n y$
Multiplying this expression by $2(1-2 y)(e-y)$

where $s=4 n+1$

$$
\begin{aligned}
& t=4 e n-2(e+2 f+3 n) \\
& u=e^{2}+4 e f+2 f+2 n-2 e n \\
& v=-2 e f
\end{aligned}
$$

Z is then found from equation (9) and $x=1-y-z$.
It was pointed out (Whitehouse -private communication) that where $e=.5$, then $y=.5$ and that it is then possible to find $\underset{\sim}{z}$ from the quadratic equation (10).

The cubic equation (11) has three solutions (theoretically) while the quadratic equation (1ф) has two solutions (theoretically). However, not all of these solutions will be real.
3. Experimental. Among four crosses used for interference analysis, the markers in the first were confined to the right arm of the BI chromosome and a region . 3 units in length was included in the hope that some information on exchange in such a short region would be obtained. However, it soon became apparent that with the methods of ascus dissection available at the time, analysis of such a short region was impractical. The second cross was therefore set up with markers covering approximately 69 units of the BI chromosome. The independent marker pyro4 was included in the second cross to assist in the detection of abnormalities of development of the ascus. Techniques of ascus dissection became so improved later on that an analysis of a short region was again attempted. The choice of this third cross was unfortunate as the distribution of the exchanges from the different perithecia proved to be heterogeneous (Table 10). The cross was therefore abandoned and a fourth cross which included two short regions was analysed. All the asci used in interference analysis were fully dissected and classified for conidial colour and nutritional requirements.

The four crosses which will hereafter be referred to as Cross 1, Cross 2 , Cross: 3 and Cross: 4 were:-

Cross 1. pro1 bi1//pabal y ad8.
Recombination frequencies calculated from the ascus analysis.

Cross 2. ribo ad14 paba1 $y / / a n$ pro1 bil pyrot.
Recombination frequencies calculated from the ascus analysis.

Cross 3. pro1 pabal y//ad17 bil.

Recombination frequencies calculated from the ascus analysis.

Cross: 4. pro3 bil//pro1 ad15 paba1 y.
Recombination frequencies calculated from the ascus analysis

The prol and pro3 markers can be recognized visually by their growth on minimal medium. The prol marker determines a fair degree of growth after 3 days incubation at 37° C. while the pro3 marker determines distinctly less growth after 3 days incubation at 37° C. (Figure 6).

Analyses of Crosses 1, 2 and 3 by the use of random strands from single perithecia were carried out before dissection was started. The perithecial analysis of Cross 4 was done by Dr.E.Calef and he has kindly allowed me to use his results. In all four crosses, perithecia used for perithecial analysis and for ascus analysis were obtained. from the same Petri dish. Details concerning the markers used can be found in Section I - 3. The perithecial analyses of all four crosses gave no evidence of chromosomal re-arrangements but the markers an and ad14 in Cross 2 gave
a reduced viability significant at the 5% level. In the ascus analysis the ribo marker (Cross 2) had a reduced viability significant at the 5% level, but the viability of all the other auxotrophs was as good as that of their corresponding prototrophs.

In order to test whether the incomplete asci from each cross constituted a selected sample, the recombination frequencies obtained from the "fully classifiable ascus samples" were compared to the recombination frequencies obtained from the perithecial analyses (Table 7). This procedure was adopted because the incomplete asci from each cross constituted such a small fraction of the total (Tables 12 , 13, 14 and 15). Table 7 shows no differences between the recombination frequencies obtained from ascus analysis and from random strand analysis.

The exchange distribution among thee asci from different perithecia proved to be homogeneous in Crosses 1, 2 and 4 but not in Cross 3 (Tables 8, 9, 10 and 11). Cross 3 has therefore not been considered any further.

Table 7.
Recombination fractions in Crosses 1, 2 and 4 as obtained by random strand analysis and by ascus analysis. The random strand estimates of Crosis 4 were kindly supplied by Dr. E. Cailef.

Cross 1 (pro1 bi1//paba1 y ad8).

Interval	Recombination fractions: estamated by:- Random strands.	Asci.

Cross 2(ribo ad14 paba1 y//an pro1 bi1 pyxo4).

Interval	Recombination fractions estimated by:- Random s.trands.	Asci.
ribo - an	$.165 \pm .0131$	$.164 \pm .0154$
an - ad14	$.066 \pm .0087$	$.070 \pm .0103$
ad14-pro1	$.295 \pm .0161$	$.254 \pm .0182$
pro1 - paba1	$.057 \pm .0082$	$.063 \pm .0102$
paba1 -y	$.093 \pm .0102$	$.093 \pm .0123$
$y-$ bi1	$.042 \pm .0071$	$.047 \pm .0094$

Cross: 4 (pro3 bi1//pro1 ad15 paba1 y).
Interval \quad Recombination fractions estimated by:-

pro3-pro1	Not scored	$.003 \pm .0015$
pro1-ad15	$.063 \pm .0122$	$.073 \pm .0078$
ad15-pabai	$.003 \pm .0025$	$.002 \pm .0012$
paba1-y	$.139 \pm .0173$	$.127 \pm .0096$
y-bil	$.028 \pm .0083$	$.044 \pm .0061$

Table 8.
Tests of homogeneity of exchange frequencies between the perithecia of Cross 1 (pro1 bil//pabal y ad8). Perithecia with 5 or fewer exchanges have been pooled.

Perithecium Number	Number of fully classifiable asci (ni)	Number of exchanges (s.i)	Mean number of exchanges (pi)
1.	31	15	- 4839
2	28	13	. 4642
3	25	15	. 6000
4,14 \& 15	42	18	. 3095
5	13	9 8	. 6154
6	24	11	. 4583
7	28	21	. 7500
8	27	14	. 5185
This perithecium carried a semi-lethal (dwarf).			
10	27	13	. 481.5
11	26	18	. 6923
12.	28	18	. 6429
13	29	21.	. 7241
16	30	15	. 5000
17	22	14.	. 6364
18	12	6	. 5000

Total number of asci (N) $=392$
Mean number of exchanges (p.) $=.5485$

$$
X_{(14)}^{2}=1.1 .42 \quad \text { Probability } \# .70-.50
$$

Tests of homogeneity of exchange frequencies between the perithecia of Cross 2. (ribo adit pabal y//an proc bill).

Perithecium Number	Number of fully classifiable asci (ni)	Number of exchanges (si)	Mean number of PYro4 exchanges (pi)
1	24	36	1.5000
2	23	35	1.5217
3	26	35	1.3462
4	29	43	1.4828
5	24	38	1.5833
6	17	19	1.1176
7	13	13	1.0000
8	10	14	1.4000
9	24	31	1.2917
10	74	93	1.2568

Total number of asci (N) $=264$
Mean number of exchanges: (p.) $=1.3500$
$X_{(9)}^{2}=5.87 \quad$ Probability $=.80-.70$

Tests of homogeneity of exchange frequencies between the perithecia of Cross 3 (pro1 pabal y//adir bili). Perithecia with 5 or fewer exchanges among the tetrads have been pooled.

Perithecium Number	Number of fully classifiable asci (ni)	Number of exchanges (si)	Mean number of exchanges (pi)
1	54	18	.333
3	26	15	.5769
4	19	16	.8421
5	20	15	.7500
$2,6,7$, 889	32	18	.5625

Total number of asci (\mathbb{N}) $=151$
Mean number of exchanges (p.) $=.5430$

$$
x_{(4)}^{2}=9.17 \quad \text { Probability }=.05
$$

Table 11.
Tests of homogeneity of exchange frequencies between the perithecia of Cross 4 (pro3 bil//pro1 adi5 paba1 y).

Perithecium Number	Number of fully classifiable	Number of exchanges (si)	Mean number of exchanges (pi)
1	20	5	.2500
2	16	7	.4375
3	94	53	.5638
4	79	47	.5949
5	49	28	.5714
6	168	74	.4405
7	147	71	.4830

Total number of asci (N) $=573$
Mean number of exchanges (p.) $=.4974$
$x_{(6)}^{2}=6.47 \quad$ Probability $=.50-.30$
Summary of the data obtained from Cross 1 (pro1 bi1//paba1 y ad8).
Non-exchange tetrad.s 223
Single exchange tetrads. pro1- paba1 28
paba1-y 86
y - bil. 18
Total132
Double exchange tetrads
4-strand double within pro1 - pabal 1
4-strand doubles within paba1 - y 6
4-strand double within y - bili 1
pro1-pabal; pabal-y 9
pro1 - pabai: y - bil 4
pabal - y; y - bi1 6
y - ad8; ad8 - bi1 1
Total 28
Triple exchange tetrads pro1-paba1; paba-y; y - bi1 2
4-strand double within prol - paba; single y -
bil 2
4-strand double within pro1-pabal; single paba: - y 3
4-strand double within pabal-y; single y - bil 1
4-strand double within y - bil; single paba1 - y 1
Total.9Incomplete asci55
Perithecium No. 9 carrying semi-lethal (dwarf) 62
Abnormal asci 3
GRAND TOTAL 512
Distribution of the exchanges in the sample of asci.

	Number	f exc	ges.		
	0	1	2	3	Total
Observed	223	132.	28	9	392
Expected	226.2	124.1	34.0	7.7	$392=$

Table 13.

Summary of the data obtained from Cross 2 (ribo adl4 paba1 y//an pro1 bi1 pyroi).
 67
Single exchange tetrads ribo - an 27
an - ad14 4
ad14 - pro1 39
 5
paba1 - y 11
y - bil 3
Total89
Double exchange tetrads
4-strand double within ribo - an 1
4-strand doubles within ad14 - pro1 4
4-strand double within an - adi4 1
ribo - an; ad14 - prol 16
ribo - an; pro1-paba1 3
ribo - an; pabai - y 4
ribo - an; y - bil 2
an - ad14; ad14 proli 4
an - ad14; prod - pabai 1
an - ad14; paba1 - y 3
an - ad14; y-bil 1
adi4 - pro1; pro1 - pabal 7
ad14 - pro1; pabai - y 8
ad14 - pro1; y - bil 2
pro1 - pabal; paba1 - y--- 2
pro1-pabal; y - bil 1
paba1-y; y - bil 3
Total63
Triple exchange tebrads4-strand double within ribe - an; single ad14 -pro1 ----------1.
4-strand double within ribo - an; single y - bi1 1
4-strand doubles within adi4 - pro1; single: ribo - an ---- 7
4-strand double within adi4 - prol; single pabal - y ---------- 14-strand double within pabal - y; single prol-paba1 --a----- 1
4-strand double within y - bil; single adl4 - pro1 1.
ribo - an; an - ad14; ad14 - pro1 5
ribo - an; an - ad14; paba1 - y 1
ribo - an; ad14 - pro1; pro1 - paba1 5
ribo - an; ad14 - pro1; pabail - y 5
Triple exchange tetrads
ribo - an; ad14-pro1; y - bil 1
an - ad14; ad14 - pro1; pro1 - pabal 1
an - ad14; adi4 - pro1; paba1 - y 1
an - ad14; ad14-prol; y - bil 3
ad14 - pro1; pro1- pabai; paba1 - y 2
adi4 - pro1; pro1 - pabai; y - bil 1
ad14 - prol; pabal - y; y - bil --- 1
pro1-paba1; paba1 - y; y - bil. 1
Total39
Quadruple exchange tetrads
4-strand double within an - ad14; singles ad14 -prol and y - bil.1
4-strand double within adi4 - pro1; singles proit
1
ribo - an; ad14 - pro1; pro1-paba1; paba1 - y 2
ribo - an; adi4 - pro1; pabal - y; y - bil --- 1
Total 5
Quintuple exchange tetrad
4-strand double within ribo - an; singles an -
 1
Total 1
Incomplete asci 25
Selfed green asci 1.
Abnormal asci 3
GRAND TOTAL 293
Distribution of the exchanges in the sample of asci.
Number of exchanges.
Observed 67 89 6301
$34 \& 5$
Total:
Expected 68.4 $92.4 \quad 62.4$39

$$
6
$$

$$
28.1 \quad 12.7
$$

$$
264
$$

$$
264
$$

Table 14.

Summary of the data obtained from Cross 3 (pro1 pabai $y / /$ad17 bi1.
Non-exchange tetrads 93
Single exchange tetrads pro1-ad17 15
ad17 - pabai 0
pabal - y 16
y-bil 5
Total 36
Double exchange tetrads: prol - ad17; pabai 7
pabal - y; y - bil 4
pro1-ad17; y - bil 4
4-strand double within pro1 -- ad17 1
4-strand doubles within pabal - y 4
Total.20
Triple exchange tetrads pro1-ad17; pabai-y; y - bil 1. 4-strand double within pro1 - ad17; single paba1-y 1
Total 2
Incomplete asci 6
Abnormal asci 3
GRARD TOTAI 160
Relationship of adjacent exchanges.

2-strand	3 -strand	4 -strand
2	3	3
1	4	-
$\frac{2}{5}$	$\frac{1}{8}$	$\frac{2}{5}$

Distribution of the exch anges in the sample of asci.

	Number of exchanges.							
	0	1	2	3.	Total			
Observed	93	36	20	2	151			
Expected	88.0	47.8	13.0	2.2	151			

$X_{(3)}^{2}=6.9 r \quad$ Probability $=.10-.05$

Summary of the data obtained from Cross 4: (pro3 bil// pro1
ad15 paba1 y)
Non-exchange tetrads 340×4
Single exchange tetrads pro3-prol. 3
pro1 - ad1.5 49
ad15 - pabal. 2
pabal - y 105
y - bil 32
Total$191+2$
Double exchange tetirads pro1-ad15; paba1-y 18
pro1 - ad15; y - bil 4
paba1 - y; y - bil 8
4-strand double with in pro1 - ad15 3
4-strand double within pabal - y 5
Total38
Triple exchange tetrads:
pro1-ad15; pabail-y; y - bil 3
4-strand double within prol - adi5; single
y - bil 1
4-strand double within y - bil; single prol-
ad15 1
Total 5
Quadruple exchange tetrad
4-strand double within paba1 - y; singles pro1 1
Total $-$
Incomplete asci1
Abnormal asci 2
GRAND TOTAL 611
Distribution of the exchanges in the sample of asci.

Number of exchanges.					
	0	1	2	$3 \& 4$	Total
Observed	0.4 Q	191.	38	6	575
Expected	347.5	1.72 .9	43.0	11.6	575
$X_{(3)}^{2}=3.83$		Probability $=.30-.25$			

4. Strand relations in multiple exchanges. The
information on these relationshipe from Crosses 1, 2 and 4 has been summarized in Tables 16 to 21.

In a hypothetical case, when two intervals A and B are marked on a chromosome, various tetrad classes can be detected. (Whitehouse 194:2). These are as Pollows:-

Class	Type	exchange.
	Interval A.	Interval B.
1	None	None
2	Single	None
3	None	Single
4	Sing le	Single
5	4-strand double	Single
6	Single	4-sitrand double
7	4-strand double	None
8	None	4-strand double
9	4-strand double	4-strand double

It camnot be excluded that the $4-s t r a n d$ doubles which occur within intervals (Classes 5 to 9) were caused by exchanges at the two strand stage of meiosis. The tetrad class normally used in the evaluation of chromatid interference is Class 4. This class will include 2-, 3- and 4-strand double exchanges in a ratio of $1: 2: 1$ if chromatid interference is absent. Classes 5 and 6 cannot be used as the relationship between the two adjacent exchanges is
indeterminate. However, the omission of Classes 5 and 6 may introduce an error into the proportions of 2-, 3- and 4-strand double exchanges observed in Class 4.

When the two intervals are short, the size of Classes 5 and 6 is small and the errox introduced by their omission is negligible. However, as the intervals become longer, the size of Classes 5 and 6 will increase and the error will no longer be negligible.

The error introduced by the omission of these two classes is really caused by the fact that the comparable class with a 3 -strand double exchange within one interval and a single exchange in the other jnterval is inevitably . included in Class 4 , while the class with a 2 -strand double exchange within one interval and a single exchange in the other interval will be included in either Class 2 or 3. Funthermore, the type of "double exchange" observed between the two intervals (actually arising from a single exchange in the one interval and:a-strand double exchange in the other interval) will give the relationship of the single exchange and the furthest exchange of the 3 -strand double. This will be different from the relationship of the single exchange and the closest exchange of the 3 -strand double. The latter gives the important strand relationships.

Using the method of Whitehouse (1956, private communication) (see section III $-2-\mathrm{d}$), the frequency of

Classes 5 and 6 in the present data could be used to correct for the proportions of tetrads in Class 4 which arose from three exchanges and which therefore showed the wrong strand relations: There were no tetrads in Class 9, showing that tetrads with four or more exchanges in the two intervals did not occur. When the frequency of tetrads with four or more exchanges in the two intervals is high, then the correction factor cannot be used.

There were a number of methods by which the data could be analysed. These were:-
(1) The relationship of all pairs of exchanges were considered, regardless of the position of the centromere, the intervals in which the exchanges occurred and whether or not there was another exchange between the two being considered. The disadvantages of this method were that it was assumed that the mechanism of exchange was uniform along the length of the chromosome and that an intervening exchange had no effect on the relations of the strands involved in the two bounding exchanges. Crosses 1, 2 and 4 were examined by this method but whitehouse's correction factor was not used. This correction factor cannot be used when no allowance is made for possible effects of intervening exchanges.
(8) The assumption that an intervening exchange had an effect on the strand relations of the bounding
exchanges could, of course, be almost overcome by considering only adjacent exchanges. (The only intervening exchanges which are then not recovered by tetrad analysis are the 2-strand double exchanges within intervals). These adjacent exchanges were considered regardless of the interval in which they occurred and regardless of the centromere position. This type of analysis was extended by jgnoring the exchanges which occurred in 1, 2 or more: intervals at one or other end of the marked region or at both ends simudtaneously. The effect of this analysisi was to consider the strand relationships of adjacent exchanges when varying lengths and regions of the chromosome were used. Crosses 1, 2 and 4 were examined by this method and since the frequency of undetected intervening exchanges must be so low as to be negligible, Whitehouse's correction factor was applied to the data. (3) It was quite possible that the centromere had a differential effect as was observed by Lindegren and Lindegren (1942). Therefore, if the centromere was included in the marked region, the data were analysed in relation to it. In Crossiz the strand relationships of those pairs of exchanges which fell wholly in one or the other of the chromosome arms and also the strand relationships of those pairs of exchanges where one fell in one arm and the other fell in the other arm were considered.

Only Cross 2 was analysed by this method and exchanges in the ad14 to centromere to prol interval had to be ignored, as it was not known on which side of the centromere they occureed. No allowance was made for intervening exchanges and so, again, Whitehouse's correction factor was not used.

In the present study the data picked out of the three crosses as a result of the use of any one of these methods were referred to as "a sample", or more specifically "a sample of double exchanges", "a sample of adjacent exchanges", etc.

The analysis was complicated by small numbers of pairs of exchanges recovered in some of the samples. Therefore, the samples in which the total number of pairs of exchanges was less than 20 were ignored. This meant that the following samples were ignored in the analysis:-

Table 16. Cross 1. pro1 bil//pabal y ad8. The samples of adjacent exchanges found in the chromosome lengthe pro1 to y and pabal to bili.

Table 17. Cross 2. pibo ad14 paba1 y//an pro1 bi1
pyro4. The samples of adjacent exchanges found in the chromosome lengths an to prol; ad14 to pabal; ribo to adi4; pro1 to bil; pro1 to y and pabal to bil.

Table 18. Cross 4. pro3 bi1//pro1 ad15 paba1 y. The sample of adjacent exchanges found in the chromosome length pabal to bil.

The remaining data of Crosises 1, 2 and 4 (Tables 16 to 21) were considered according to each of the methods outlined above. If all four chromatids participated at random in double and multiple exchanges, the ratio of 2-: 3-:4-strand double exchanges should have been 1:2:1. This ratio was broken down into four components, namely:-
(1) The ratio of compensating ($2-$ strand +4 -strand doubles) : non-compensating (3-strand doubles) should have been 1:1.
(2) The ratio of 2-:4-strand doubles should have been 1:1.
(3) The ratio of 2-:3-strand doubles should have been 1:2.
(4) The ratio of 4-:3-strand doubles: should have been 1:2.

The UNCORRECTED samples were compared first to these ratios:-
(a) Cross 4. Three samples were available with total numbers of double exchanges greater than 20 (Table 18) and in all of them, the ratios of 2-:3-:4-strand doubles were 1:2:1. The component ratios were:-
(1) Compensating:non-compensating double exchanges ---------- 1:1.
(2) 2-:4-streand double exchanges -..---.--- 1:1.
(3) 2-:3-strand double exchanges -----..-- 1:2.
(4) 4-:3-strand double exchanges --...------ 1:2.
(b) Cross 2. Twelve samples were available with total numbers of double exchanges greater than 20 (Table 17) and in all of them, the ratios of 2-:3-:4-strand doubles were 1:2:1. The component ratios were:-
(1) Compensating:non-compensating double exchanges 1:1
(2) 2-:4-strand double exchanges ----n--n-1:1 except for two samples --n---.- i. e. the sample of adjacent exchanges in the chromosome leng'th an to bil and the sample of adjacent exchanges in the chromosome length adi4 to bil. In both samples there were excesses of 2 -strand double exchanges.
(3) 2-:3-strand double exchanges --------1:-1.
(4) 4-:3-strand double exchanges -....-...-n- 1:2.
(c) Cross 1. Only two samples were available with total numbers of double exchanges greater than 20 (Table 16) and in both of them, the ratios of 2-:3-:4-strand doubles were 1:2:1. The component ratios were:-
(1) Compensating:non-compensating double exchanges --n-n-1:
(2) 2-:4-strand double exchanges --n----- 1:1.
(3) 2-:3-strand double exchanges ---mon-- 1:2.
(4) 4-:3-strand double exchanges ---------1:2.

Secondly, the CORRECTED samples were compared to these ratios.
(a) Cross 4. There were two samples with numbers greater than 20 which could be corrected by Whitehouse's Pormulae (Tables 18 and 21). In both of them, the ratios of 2-:3-:4-strand doubles were 1:2:1. The component ratios were:-
(1) Compensating:noncompensating double exchanges --------- 1:1.
(2) 2-:4-strand double exchanges --n-----1:1.
(3) 2-:3-strand double exchangea --m------ 1:2.
(4) 4-:3mstrand double exchanges --.n--n- 1:2.
(b) Cross 2. There were nine samples with numbers greater than 20 which could be corrected by Whitehouse's formulae (Tables 1.7 and 20). In all of them, the ratios of 2-:3-:4-strand doubles were NOT 1:2:1. The component ratios were:-
(1) Compensating:non-compensating double
exchanges 1:1.
(2) 2-:4-strand double exchanges …-....-- NOT 1:1
too many 2 -strand double exchanges.
(3) 2-:3-strand double exchanges --...-- NOT $1: 2$ with one exception. Barring the exception, which may have been the consequence of sampling error, there were too many 2 -strand doubles. The exception involved the sample of adjacent exchanges found in the chromosome length from ribo to pro1.
(4) 4-:3-strand double exchanges ---n---n NOT $1: 2$.-..---... too few 4-strand double exchanges.
(c) Cross 1. There was only one sample with numbers greater than 20 which could be coxrected by Whitehouse's formulae (Tables 1,6 and 19). In this one sample the ratio of 2-:3-:4-strand double exchanges was NOT 1:2:1. The component ratios were:-
(1) Compensating:non-compensating double exchanges NOT 1:1 -........... too many compensating double exchanges.
(2) 2-:4-strand double exchanges --n-n-n NOT 1:1
--------- too many 2 -strand double exchanges.
(3) 2-:3-strand double exchanges ------... NOT 1:2
--n----- too many $2-s t r a n d$ double exchanges.
(4) 4-:3-strand double exchanges --........- 1:2
--..-..--- N. B. Numbers very small.
Table 16 .
(pro1 bi1//pabaly ad8)
exchanges in Cross
auble
Strand relationships of
o
RECALCULATED
(i.e. CORRECTED)

Any two exchanges	$\begin{aligned} & 2-\operatorname{str}=9=.3462 \\ & 3-\operatorname{str}=12=.4615 \\ & 4-\operatorname{str}=5=.1923 \end{aligned}$	$7=.2692$	
Any adjacent exchanges in the interval pro1 to bil.	$\begin{aligned} & 2-\operatorname{str}=9=.3750 \\ & 3-\operatorname{str}=11=.4583 \\ & 4-\operatorname{str}=4=.1667 \end{aligned}$	$7=.2917$	$\begin{aligned} & 2-\operatorname{str}=12.9=.5393 \\ & 3-\operatorname{str}=6.5=.2691 \\ & 4-\operatorname{str}=4.6=.1916 * * * \end{aligned}$
Any adjacent exchanges in the interval prot to y.	$\begin{aligned} & 2-\operatorname{str}=4=.3636 \\ & 3-\operatorname{str}=5=.4545 \\ & 4-\operatorname{str}=2=.1819 \end{aligned}$	$3=.4545$	
Any adjacent exchanges in the interval paba1 to bil.	$\begin{aligned} & 2-\operatorname{str}=2=.2500 \\ & 3-\operatorname{str}=5=.6250 \\ & 4-\operatorname{str}=1=.1250 \end{aligned}$	$2=.2500$	

Table 17 continued.
$\begin{array}{ll}\text { OBSERVED } & \text { Classes } 5 \\ \text { (i.e. UNCORRECIED) } & \& 6:(n) .\end{array}$

RECALCULATED
(1.E. CORRECTED)
*** indicates a probability of less than .001 that the data agree with a ratio of $1: 2: 1$.
** indicates a probability of $.01-.001$ that the data agree with a ratio of $1: 2: 1$.

* indicates a probability of $.05-.01$ that the data agree with a ratio of $1: 2: 1$.
*** indicates a probability of less than .001 that the data agree with a ratio of $1: 2: 1$.
** indicates a probability of $.01-.001$ that the data agree with a ratio of $1: 2: 1$.
* indicates a probability of $.05-.01$ that the data agree with a ratio of $1: 2: 1$.
*** indicates a probability of less than .001 that the data agree with a ratio of $1: 2: 1$.
** indicates a probability of $.01-.001$ that the data agree with a ratio of $1: 2: 1$.
* indicates a probability of $.05-.01$ that the data agree with a ratio of $1: 2: 1$.
*** indicates a probability of less than .001 that the data agree with a ratio of $1: 2: 1$.
** indicates a probability of $.01-.001$ that the data agree with a ratio of $1: 2: 1$.
* indicates a probability of $.05-.01$ that the data agree with a ratio of $1: 2: 1$.
*** indicates a probability of less than .001 that the data agree with a ratio of $1: 2: 1$.
** indicates a probability of $.01-.001$ that the data agree with a ratio of $1: 2: 1$.
* indicates a probability of $.05-.01$ that the data agree with a ratio of $1: 2: 1$. Table 18.
exchanges in $\frac{\text { Cross } 4}{}$ (pro3 bi1//pro1 ad15 paba1 y).
(i.e. UNCORRECTED)

$2-$ str. $=11=.3056$
$3-$ str. $=16=.4444$
$4-$ str. $=9=.2500$
$2-$ str. $=5=.2381$
$3-\operatorname{str}=9=.4286$
$4-$ str. $=7=.3333$
$2-\operatorname{str}=5=.4545$
$3-\operatorname{str}=5=.4545$
$4-$ str. $=1=.0909$
ətqnop jo sdụ̧uotqeiəj purizs relationshipa of Strand relationships of. double

RECALCULATED strand relationships of double exchanges in Cross 2 (ribo adi4 paba1 y//an pro1 bil				
				(pyro4).
	$\begin{aligned} & 2-s t r: 3-s t r \\ & (\text { Column } 1) . \end{aligned}$	4-str:3-str. (Column 2).	$\begin{aligned} & \text { 2-atr:4-str. } \\ & (\text { Columin 3). } \end{aligned}$	Compensating: Noncompensating. (Column 4).
Any adjacent exchanges in	$60.7: 55.9 * * *$	$8.4: 55.9 * * *$	60.7: 8.4 ***	69.1:55.9.
in the interval ribo to bil.				
Any adjacent exchanges in the interval ribo to y.	48.8:49.4 $\% * *$	6.8:49.4 关关*	48.8: 6.8 ${ }^{*}$ *	.55.6:49.4
Any adjacent exchanges in the interval ribo to pabal.	31.2:35.0.**	5.8:35.0 $* *$	31.2: 5.8. $* * *$	$37.0: 35.0$
Any adjacent exchanges in the interval an to bil.	40.5:35.2***	3.3:35.2**	40.5: $3.3 * * *$	43.8:35.2
Any adjacent exchanges in the interval ribo to pro1.	19.3:26.8	4.9:26.8*	19.3: 4.9**	$24.2: 26.8$

$$
\text { Table } 20 \text { continued: }
$$

Compensating: Non
(5) Discussion of chromatid interference.
(a) The essential features to be noted in the data. (α) Cross 4. There were NO DIFFERENCES
between the corrected and the uncorrected samples involving the strand relations of adjacent exchanges in the chromosome lengths prol to bil and prol to y. Apparently all four chromatids participated at random in double and multiple exchanges.
(β) Cross 2. There were MANY DTFYERENCES between the corrected and the uncorrected samples involving the strand relations of adjacent exchanges in the chromosome lengths ribo to bil; ribo to y; ribo to paba1; ribo to proi; an to bi1; an to y; ad14 to bi1; ad14 to y and an to pabal. It will be noted that these chromosome lengths included the chromosome leng ths used in Crosses 1 and 4.

In the uncorrected data most of the samples suggested that the four chromatids participated at random in double and multiple exchanges. Where was a slight hint that this might not be corpect in so far as there were the two samples with more two than four strand doubles. The corrected samples brought this feature out quite clearly. In all nine corrected samples there were more 2 - than 4-strand doubles. The corrected samples also showed that the ratios of 2-:3-strand doubles were NOT 1:2 (with one
exception) ---- in fact, the frequencies of $2-$ and 3 -strand doubles agreed very well with a 1:1 ratio. The ratio of 2-: 3mstrand doubles in the exception which involved the strand relations of adjacent exchanges in the chromosome length ribo to pro1, could equally well have been 1:1 or 1:2. The exception was probably the result of sampling error.
(y) There were MANY DIFFERENCES between the uncorrected samples and the one corrected sample involving the strand relations of adjacent exchanges in the chromosome length prol to bil. The uncorrected samples suggested that the four chromatids participated at random in double and multiple exchanges. The corrected sample was entirely different. As in the corrected samples of Cross. 2 there were more 2 - than 4 -strand doubles and the ratio of 2-:3-strand doubles was NOT 1:2. However, in the corrected samples of Cross 2 the ratios of 2-:3-strand doubles were very close to 1:1. In the corrected sample of Cross 1 there were twice as many 2 -stirand as 3 -strand doubles (the probability of equality was, however, fairly high at .15). The ratio of 3-:4-strand doubles could not be determined with any reasonable accuracy owing to small numbers.
(b) Comparison of the results with those expected from some possible theoretical models of exchange. The
simplest model of exchange is that all four chromatids of the first meiotic division are involved at random in double ond multiple exchanges. In a large sample of double and multiple exchanges, the outcome of this model would be that 2-, 3- and 4-strand double exchanges occurred in a ratio of 1:2:1. In the present study the uncorrected data did not disagree with this ratio.

However, the uncorrected data were subject to errors caused by undetected double exchanges within intervals. Whitehouse (1956) has realized that if such undetected double exchanges occur at all frequently, they may constitute an important source of error and he has devised a method which corrects for them. The correction is based on the number of 4-strand double exchanges within either of a pair of intervals which occur together with a single exchange in the other interval. The logic is that if this type of triple exchange is occurring, then triple exchanges with either a 3-strand double or a 2-strand double within either of the intervals together with a single exchange in the other interval are also occurring. The tetrad type with a 3-strand double within one of the intervals: may cause an error.
A. B-strand double exchange within an interval is detected by tetrad analysis as a "single exchange".

Furthermore, the OBSERVED strand relations of this 3-strand double exchange within an interval to a single exchange in another interval are those of the single exchange and the furthest exchange of the 3 -strand double. These strand relationships will be different to those of the single exchange and the closest exchange of the 3-strand double and it is this latter relationship which is important. A 2-strand double exchange within an interval is not detected at all.

Although in the present study Whitehouse's correction formulae were used in the analysis of the strand relations between adjacent exchanges, there were two reasons for proceeding with caution. As stated above, his correction is based on the occurrence of 4 -strand double exchanges within intervals. Now, firstly, if these 4-strand double exchanges within intervals were caused by exchanges at the two strand stage of meiosis, then the use of the formulae was wrong. Secondly, his formulae assume that the proportions of 2-, 3- and 4-strand double exchanges were the same within and between intervals. If this assumption was not valid for the three crosses analysed in this study, then again the use of the formulae was wrong. Therefore, while ALWAYS bearing in mind that the use of Whitehouse's correction formulae may have been wrong,
the data from the three crosses were corrected. The question then was whether the corrected data remained in the ratio of 1:2:1. TO REPEAT, this was the ratio expected on the simplest hypothesis that all four chromatids of the first meiotic divis:ion were involved at random in double and multiple exchanges.
(α) Choss 4. In the two corrected samples involving the strand relations of adjacent exchanges in the chromosome lengths pro1 to bil and pro1 to y, the ratios of 2-:3-:4-strand doubles had remained at 1:2:1.
(β) Cross 2. In the nine corrected samples involving the strand relations of adjacent exchanges in the chromosome lengths ribo to bil; pibo to y; ribo to pabail; ribo to pro1; an to bi1; an to y; an to pabal; ad14 to bil and ad14 to y, the ratios of 2-:3-:4-strand double exchanges were no longer 1:2:1. 2- and 3-strand double exchanges were equally frequent in eight of the nine corrected samples and there were too few 4-strand double exchanges in ALI nine corrected samples. The exception with respect to the 2- and 3-strand double exchanges involved the strand relations of the adjacent exchanges in the chromosome length ribo to pro1. In this sample the ratio of 2-0:3-strand double exchanges could equally well have been 1:1 or 1:2. This exception was probably the consequence of sampling error.
(y) Cross 1. In the single corrected sample involving the strand relations of the adjacent exchanges in the chromosome length prod to bin, the ratio of 2m:3-: 4-strand double exchanges was also no longer 1:2:1. There were too many 2 -strand doubles and too few 4-strand doubles. In this case there were also twice as many 2-strand as 3-strand doubles but theetotal number of $2-+3$-strand doubles was low and the probability of a $1: 1$ ratio was high at . 15.

At first sight the three crosses seemed to be entirely inconsistent. However, considering only Crosses 1 and 2 for the moment, one salient point was apparent. This was that TWO OF THE STPRANDS WERE PREFERENTIALLY INVOLVED TN ADJACEnT EXCHANGES.

Therefore, this "simplest model" was rejected as inadequate since it was defined as "all four chromatids of the first meiotic division were involved at random in double and multiple exchanges".

The problem now was to find a model which woinld allow variation in the frequencies of $2-, 3$ - and 4-strand doubles from a point where most of the adjacent exchanges involved only two of the four strands to a point where the adjacent exchanges involved the four strands at random. A two phase model built up by several workers seemed most
attractive in the present study because a slight extension of the model allowed the required range of variation in the frequencies of the $2-, 3$ - and 4 -strand double exchanges to be obtained.

It was first postulated by Belling (1931) that exchanges occurred only between the two new chromatids during the process of their formation ("new strand." exchanges). Naturally if these were the only exchanges that occurred, then only 2 -strand double exchanges would be possible. This is obviously incorrect and Lindegren and Lindegren (193\%) and Schwarta (1953, 1954, 1955) then suggested that sister strand exchanges superimposed on Belling's system would g'ive the required 3 - and 4 -strand double exchanges. If sister strand exchanges occurred so often that even and odd numbers were equally frequent. in the mean distance between adjacent new strand exchanges, then the rabio of 2-:3-:4-strand double exchanges would be 1:2:1. That is, the ratio obtained would be the SAME as that obtained from the "simplest model". However, the ratio obtained by the two phase model (i.e. a combination of sister strand and new strand exchanges) would change if the mean frequencies of sister strand exchanges in the mean distance between adjacent new strand exchanges decreased to a point where even and odd numbers did not
occur in equal frequencies. (Since there is no general agreement on the occurrence of sister strand exchanges, the available evidence is presented in Appendix 1).

IMPORTANI NOTE. For the remainder of this discussion, the "frequency of sister strand exchanges" is understood to mean the "frequency of sister strand exchanges in the mean distance between adjacent new strand exchanges:" except where specifically stated to the contrary.

If there were no sister strand exchanges in the mean distance between adjacent new strand exchanges, a: 2-strand double would be the result; ie there was one sister strand exchange, then a 3-strand double would be the result; and if there were two sister strand exchanges, (one in each pair of sister chromatids) then a 4-strand double would be the result. It is immediately obvious that the ratios of 2-:3m:4-strand double exchanges would be determined by the MEAN "frequency of sister strand exchanges". The possible range would be from 1:0:0 (no sister strand exchanges) to 1:2:1 (even and odd numbers occurring with equal frequency).

Lindegren and Lindegren (1937) obtained an excess: of 2 -strand double exchanges in the "sex" chromosome of Neurospora crassa and explained their results by
postulating the two phase model of exchange. They proposed that sister strand exchanges in the mean distance between adjacent new strand exchanges were not sufficiently numerous to allow even and odd numbers to occur with equal frequency. Hence there was an excess of 2-streand double exchanges.

Now a possible extension of this two phase model is that the MEAN "EREQUENCY OF SISTER STRAND EXCHANGES" CANS BE VARIABLE. If this is so, the mean "frequency of sister strand exchanges" determines the proportions of 2-, 3- and 4-strand double exchanges recovered.

There are two variables: which may affect the mean "frequency of sister strand exchanges". If the mean distance between adjacent new strand exchanges is kept fixed, then an increase in the mean "frequency of sister strand exchanges" will shift the ratio of 2-:3-:4-strand double exchanges towards 1:2:1 while a decrease in the mean "frequency of sister strand exchanges:" will shift the ratio towards 1:0:0. On the eontwery, if the mean "frequency of sister strand exchanges" is kept fixed, then an increase of new strand exchanges will shift the ratios of $2 \mathrm{~m}: 3 \mathrm{~m}$: 4-strand exchanges towards 1:0:0 while a decrease of new strand exchanges will shift the ratios towards 1:2:1. Of course, all combinations of the two will be theoretically
possible.
However, the MAIN POINT is that the proportions of 2-, 3- and 4-strand double exchanges will be dependent on the mean "frequency of sister strand exchanges" no matter how that particular frequency arose.

It is on this frame of reference that the corrected data of Crosses 1,2 and 4 can be harmonized into one model. According to the extended two phase model postulated, Cross \& had the highest mean "frequency of sister strand exchanges"; Cross 2 had an intermediate frequency; and Cross 1 MAY have had the lowest frequency.

To be more precise, it is now postulated:-
(1) that the mean"frequency of sister strand exchanges" was sufficiently high in the samples from Cross: 4 that an even and an odd number occurred with equal frequency. The ratios of 2-:3-:4-strand double exchanges wete therefore 1:2:1.
(2) that in the samples from Cross 2, most of the tetrads had either no sister strand exchanges in the mean distance between adjacent new strand exchanges (giving the 2-strand doubles) or one sister strand exchange (giving the 3 -strand doubles). The small number of 4 -strand double exchanges would be given by a small number of tetrads with more than one sister strand exchange in the mean distance between adjacent new strand exchanges.
(3) that (assuming the difference betweencrosses 1. and 2 to be real) in the single sample from Cross 1, most of the tetrads had no sister strand exchanges in the mean distance between adjacent new strand exchanges (giving the 2 -strand doubles) while a small proportion had either one or more sister strand exchanges in the mean distance between adjacent new strand exchanges (giving the small number of 3- and 4-strand double exchanges.)
(c) Conclusions. IF it is accepted that the corrected data fitted the two phase model of exchange, the following conclusions are reached:-
(1) The proportions of 2-, 3- and 4-strand double exchanges were the same in the two corrected samples of Cross 4. These samples involved the adjacent exchanges in the chromosome lengths pro1 to y and pro1 to bi1. Since these two samples involved practically the same chromosome lengths, there was no point in drawing comparisons between them.
(2) The proportions of 2-, 3- and 4-strand double exchanges were the same in ejght of the nine corrected samples of Cross:2. These eightisamples involved the adjacent exchanges in the chromosome lengths ribo to bil; ribo to y; ribo to paba1; an to bil; an to y; an to pabai;
ad14 to bi1 and ad14 to Y. THEREFORE, by the two phase model, the mean frequency of sister strand exchanges found in the mean distance between adjacent new strand exchanges was constant in these chromosome lengths. The exceptional sample involved the adjacent exchanges in the chromosome length ribo to prol and was probably the result of sampling error.
(3) Nothing can be said about the constancy or otherwise of the mean frequency of sister strand exchanges in the mean distance between new strand exchanges in Cross 1 because only the sample of adjacent exchanges in the chromosome length pro1 to bil was corrected.
(4) The proportions of 2-, 3- and 4-strand double exchanges wete different between Crosses 1,2 and 4 , although the difference between Crosses 1 and 2 did NOT reach statistical significance. THEREFORE,by the two phase model of exchange, the mean frequency of sister strand exchanges in the mean distance between adjacent new strand exchanges was different in Crosses 1 and 4 and different in Crosses 2 and 4. It MAY also have been different in Crosses 1 and 2.

Before considering whether or not these conclusions were biologically reasonable, it must be emphasized that the data provided absolutely no direct evidence for or against the occurrence of sister strand exchanges. Also the
reader must CONSTANTLY bear in mind the possibility that the use of Whitehouse's correction formulae was wrong.

That there should have been a variation in the mean "frequency of sister strand exchanges" between crosses seemed reasonable. The strains used as parents for these three crosses came directly from number of other crosses and it was likely that there were many Cactors, both chromosomal and environmental, which could have affected the "mean"frequency of sister strand exchanges".

That there should have been a constant mean "frequency of sister strand exchanges" in the samples from the different chromosome leng ths within Crosis 2 was perhaps remarkable but the explanation may have lain in the method of analysis. There were insufficient numbers of double exchanges to allow the adjacent exchanges in any one pair of intervals to be analysed. The result was that the adjacent exchanges from a "combination of intervals" were invariably used in the analysis. The exchanges from each interval were used in more than one "combination of intervals" so any differences in the mean "frequency of sister strand exchanges" between one section of the chromosome and another may thus have been obscured.

FINATIY, it seemed that:-
(1) The variations in the mean "frequency of sister strand exchanges" between Crosses 1 and 4 and between

Crosses 2 and A were likely to be real.
(2) The variation in the mean "frequency of sister strand exchanges" between Crosses 1 and 2 may or may not have been real.
(3) On the contrary, the constancy of the mean "frequency of sister strand exchanges" within Crose 2 was probably the result of using the exchanges from each interval more than once in the "combinations; of intervals" used for malysis:
(6) Chiasma interference. The data obtained in the present study offered three ways of detecting the occurrence of chiasma interference.

The first way was by measuring the frequency with which an exchange occurred simultaneously in each of two genetically marked intervals. In the absence of chiasma interference, exchanges in the two intervals should have been independent. The present data showed that exchanges were independent, no matter which pair of intervals was considered. (Table 22). In the calculation of the theoretical number of double exchanges, a 4-strand double exchange within either of a pair of intervals was counted as a single exchange. This was done because interference must be calculated from the effect of two adjacent exchanges upon each other.

The second way was to follow the distribution of the exchanges among the tetrads. In the absence of chiasma interference this distribution should have been Poisson. As can be seen in Tables 12,13 and 15 , the observed distributions of the exchanges among the tetrads from Crosses 1, 2 and 4 were Poisson, again showing the absence of chiasma interference.

Finally, interference could have been detected by using the double exchanges within intervals. (Only one of the three types of double exchanges within intervals could be detected by tetrad analysis ---- i.e. the 4-strand

Table 22.
Number of double exchanges observed and expected from different pairs of intervals of Crosses 1, 2, and 4.

Cross 1 (pro1 bi1//pabal y ad8).

Pair of intervals	Observed	Ixpected
pro1 - pabal; pabal -y	14	14.2
pro1 - pabai; y- bi1	8	4.5
paba1-y;y-bil	10	10.5

Cross 2 (ribo ad14 paba1 y//an pro1 bil pyro4).

Pair of intervals	Observed	Expected
ribo - an; an - ad14	7	8.5
ribo - an; ad14 - pro1.	45	39.0
ribo - an; pro1-pabal	10	10.7
ribo - an; pabal - y	14	15.1
ribo - an; y - bil	5	7.5
an - ad14; ad14 - pro1	16	12.7
an - ad14; pro1-pabal	2	3.4
an - ad14; pabai - y	6	4.9
an - adit; y - bil	5	2.5
adi4. - prol; prol-pabai	19	16.0
ad14-pro1; pabai - y	22	22.5
ad14-pro1; y - bil	12.	11.3
pro1-pabal; pabal - y	8	6.1
pro1- pabal; y - bil	4	3.1
pabal - y ${ }^{\text {y }}$ - bil	6	4.4

Cross 4 (pro3 bil//prol ad15 pabal y).
Pair of intervals Observed Expected
pro1 - pabal; paba1-y 22 20.0
pro1-paba1; y-bil 9
7.1
paba1 - y; y-bi1 1212.2
double exchange type.) In the absence of interference, the exchanges within one interval should have been distributed among the tetrads in a Poisson distribution and the number of 4-strand doubles should have been $\frac{1}{4}$ of the total double exchanges (i.e. $\frac{1}{4}$ of the third term of the Poisson distribution). This $\frac{1}{4}$ of the double exchanges could be expressed in relation to the frequency of single exchange tetrads observed and so an estimate of the number of $4-s t r a n d$ double exchanges within any one interval was obtained (see: Section III - 2-c). This method showed that there was an excess of 4-strand double exchanges in one of the intervals of Cross 1 (the pro1 to pabal interval with a recombination frequency of $.07 \pm .010$) ; an excess of 4 -strand double exchanges in the total data of Cross 1 but not of Crosses; 2 and 4; and an excess of 4-strand double exchanges in the total pooled data of Crosses 1. 2 and 4. This excess of 4-strand double exchanges in the total pooled data was present regardless of whether or not the data from the interval ad14 to centromere to pro1 were included (Table 23). Excesses: of 4-strand double exchanges within intervals have previously been observed by Hemmons (1952) in Aspergillus nidulans and by Ebersola (1956) in Chlamydomonas reinhardi.

Table 23.
Expected and observed numbers of $4-s t r a n d$ double exchanges within intervals. The assumption of no chromatid interference has been made.

Cross 1 (pro1 bi1//paba1 y ad8).

Interval	Recombination fraction.	No. of 4-strand doubles Observed. Expected		Probability
pro1-pabal	. 07	6	. 69	<. 005
pabal - y	. 15	7	5.15	N.S.
y-bil	. 05	2	. 42	. $10-.05$
Total		15	6.26	$<.001$.

Cross 2 (ribo ad14 paba1 y//an pro1 bi.1 pyro4)

Interval	Recombination fraction.	No. of 4-strand doubles Observed Expected		Probabilitty	
ribo - an	. 16	4	4.28	T.S.	
an - ad14	.07	2	. 34	. 05	. 025
ad.14-prol.	. 25	13	8.91	NT.S.	
prol - pabal	. 06	-	. 61	N.S.	
pabal - y	. 09	1	1.26	IT.S.	
Y-bil	. 05	$\frac{1}{21}$	$\frac{.88}{15.68}$	N.S.	

Cross 4 (pro3 bil//pro1 ad15 paba1 y).

Table 23 continued. Total of Crosses 1,2 and 4 .
Interval No, of 4-strand doubles Probability Observed Expected
Total (excluding exchanges
in the interval ad14-pro1) 3420.48 <. 01
Total (including exchanges
in the interval ad14 - pro1) 47 29.39 . 001
++ The probabilities of finding 4-strand doubles in each interval in numbers equal to or greater than those observed are calculated by using Stevens' (1942) table of Binomial and Poisson distributions. The probabilities of finding totals of 4 -strand doubles in numbers equal to or greater than those observed are calculated by using the table for Normal distributions.
(7) Discussion of chiasma interference. The data bearing on chiasma interference did not give a consistent answer. As seen in Section III - 6, there were no signs of chiasma interference when:-
(a) the distributions of the exchanges among the tetrads were compared to a Poisson distribution;
(b) nor were there any signs of chiasma interference when the numbers of exchanges occurring simultaneously in each of two intervalis were considered.

On the other hand the frequency of 4-strand double exchanges within intervals was, in several instances, greater than the frequency expected if the exchanges WITHTN intervals had followed a Poisson distribution. To repeat, these instances were the pro1 to pabal interval of Cross 1, the total data from all the intervals of Cross 1 and the total data from all the intervals of Crosses 1,2 and 4 together (Table 23).

These excesses of 4-strand double exchanges within intervals could have been the result of positive chromatid interference, negative chjasma interference or of exchange at the two strand stage of meiosis. In view of the fact that the present study had demonstrated the occurrence of negative chromatid interference (subject to the reservations already mentioned on page 59), it seemed probable that the excess was the result of negative chiasma interference (if
exchanges occurred at the 4-stinand stage of meiosis). Since the excesses of 4-strand double exchanges within intervals occurred only in Cross 1 and in the pooled data of Crosses 1, 2 and 4, they may have been due to some: unexplained peculiarity of Cross 1 which was sufficiently strong to be apparent even in the pooled data. In the absence of uniformity between the three crosses, the evidence from the pooled data on chiasma interference was; open to suspicion.

However, it must be remembered that in the estimation of the expected frequency of the 4 -strand doubles within intervals, the assumption of no chromatid interference was made. In the present study this assumption has not been upheld, because the proportion of 4-strand doubles between intervals was show to be less than the . 25 expected in the absence of chromatid interference. It thus followed that when one assumed the proportions of 2-. 3- and $4-$ strand double exchanges to be the same between and within intervals, the estimate of the EXPECTED number of 4-strand doubles within intervials (see section III - 2-c) was an overestimate. The limitations of this method for detecting chiasma interference now became apparent. Since the OBSERVED numbers of 4-strand doubles within intervals were, in most cases, allready greater than the overestimates
of the expected frequencies (although in most cases not significantly so --n- see Table 23), a failure to demonstrate interference did not rule out the possibility of its occurrence.

The conclusion was that two of the methods available for the detection of chiasma interference showed that none was present whereas the third method gave indications of negative chiasma interference. There was, however, a possible explanation which would have resolved these conflicting results.

On the one hand chiasma interference was studied by comparing the distributions of the chiasmata among the tetrads to a Poisson distribution and by examining the frequency of simultaneous exchange in each of two intervals. No interference was Pound. The chromosome lengths involved in these calculations ranged from 11.9 units to 69.2 units (as measured by uncorrected recombination frequency)

On the other hand the frequency of exchange within intervals was generally too high (significantly so in some cases but not in others). The chromosome lengths used in these calculations ranged from 4.4 units to 25.4 units (again as measured by uncorrected recombination Prequency)

Now Pritchard (1955) has demonstrated the occurrence of strong negative interference in Aspergillus nidulans over recombination lengths of less than one unit. The mean
chromosome length used in the last method of analysis (i.e. using the frequency of s-strand double exchanges within intervals) was less than the mean chromosome Iength used in the other two methods of analysis. It was, thererore, just a possibility that the negative interference found by Pritchard was beginning to be detectable over these "within interval" chromosome lengths.
IV. SEGRIGATION RARIOS INCONSISTENT WITH THE HYPOTHESIS OF SINGZE GENE INHERITANCE.

1. Some causes of deviation from 1:1 segresation

ratios. According to Mendelian laws, in tetrads from a cross heteroaygous for a single pair of alleles, each allele should be represented twice among the four products of meiosis. A number of instances have been reported in which the allele ratios of tetrads did not, at first sight, conform to these laws. Closer examination of some of these instances subsequently showed that they could be explained by causes which did not contradict Mendelian laws while others still appeared to do so. Emerson (1956) has already reviewed some of the possible causes of deviation from 1:1 segregation ratios in tetrads of yeasts. Segregation ratios. other than 1:1 will be found as the results of the following causes:-
(a) Complementary genes. The expression of a character determined" by" complenentary gene action is dependent on the simultaneous presence of two or more particular alleles at more than one locus. Hawthorne (1956) working with yeast, found that phenotypic ratios of galactose fermentation : non-galactose fermentation other than 1:1.are the result of the interaction of dominant alleles at three separate loci. All three dominant alleles
must be present together for fermentation to proceed. It is therefore immediately obvious that if phenotypic ratios are confused with genotypic or allele ratios, then incorrect conclusions may be reached. (For the purposes of this thesis, an allele ratio is defined as the number of homologous alleles of each type present at the end of a single meiosis; a. genotypic ratio by the distribution of these alleles among the nuclei; and a phenotypic ratio by the numbers of each allele expressed).

Magni (1949) studied the accumulator/non-accumulator character in yeast and found that two pairs of complementary genes affected the expression of the character. The non-accumulator form is produced when the two dominant alleles occur together. If complementary gene action is analysed by tetrads, then phenotypic ratios of $2: 2,1: 3$ and 0:4 (complementary action : non-complementary action) will be recovered. These are analogous to the 9:7 F'2 ratios found in single strand analysis of diploid organisms. Lindegren and Lindegren (19, 7) found that the dominant allele of methionine dependence/independence plus the recessive allele of adenine dependence/independence must be present together for the production of pink pigment in the cultures. This situation is analogous to that giving 13:3 ratios in single strand analysis of diploid organisms. (b) Polymeric genes. If a cross is heterozygous:
for two or more genes affecting the expression of the same character, phenotypic ratios other than 1:1 will be recovered from the tetrads while the ratios of each pair of alleles are 1:1 as expected. Winge and Roberts (1948, 1950a, 1953 1955) showed that there are four genes affecting the fermentation of maltose in yeast. The presence of the dominant allele of any one of these genes will cause the fermentation of maltose. In the analysis of tetrads these authors obtained 4:0, 3:1 and 2:2 ratios of fermenters: non-Fermenters.
(c) Unusual nuciear behaviour. Winge and Roberts (1950b) interpreted asci of yeast with more than four spores to have arisen as the result of an extra mitotic division. If the spores in excess of four degenerated, the allele ratios may not be 1:1. (fundkur (1950) showed that this hypowhesis was inadequate to explain the allele ratios obtained by him in one of his tetrads and also in one of Lindegren's tetrads (cited by Mundkur (1950) from Lindegren (1949)) because deduction of the missing spores could not be done without raising the number of genotypes to more than four. However, Lindegren and Lindegren (1953c) concluded that asci with more than four spores usually arose by fusion of neighbouring diploid cells before reduction or by fusion of asci after reduction. This could account for the
number of genotypes in excess of four (Mundkur 1950) if the spores in excess of four degenerated at random. The same explanation could account for the seven different genotypes in a 7 -spored ascus of yeast found by Pomper, Danieis and McKee (1954). Winge and Roberts (1954)
furthermore showed that an extra mitotic division could be followed by heterokaryosis. Nuclear fusions in these heterokaryons could then give rise to diploids with the result that the phenotypic ratios in the tetrads could differ from 1:1.
(d) Polyploidy and polysomy. Roman and Sands (1953) found that crosses between two strains of yeast obtained from C.C. Lindegren gave, with rare exceptions, 2:2 segregations. Further investigation to account for the rare exceptions showed that diploids had appeared spontaneously in the haploid cultures. It is evident that if crosses of these cultures were to be made by the mass mating method of Lindegren (1949), matings of haploid//diploid, diploid// diploid, etc. might produce phenotypic ratios different from 1:1. Roman, Hawthorne and Douglas (1951), Leupold and H ottinguer (1954) and, Roman, Phillip and Sands (1955) have demonstrated tetraploid inheritance in yeast while Pomper, Daniels and McKee (1954) have show thee results of triploid inheritance in yeast. Winge and Roberts (1949) have also demonstrated the presence of a gene D in Saccharomyces
chevalieri which causes diploidization of the strains in which it occurs. Some of the phenotypic ratios obtained in this thesis (see section VII) have been shown to be the result of tetraploid segregation of a small piece of the BI chromosome (Pritchard 1956).
(e) Somatic crossing over. This phenomenon has been extensively studied in Aspergillus nidulans by Pontecorvo (1954, 1955), Pontecorvo, Gloor and Forbes (1954), Pontecorvo and Kafer (1956), Roper and Pritchard (1955) and Pritchard (1955) and in Drosophila by Stern (1936). If somatic crossing over occurred during vegetative growth and the recombinant strands passed to different daughter nuclei, these nuclei would become homozygous for all markers distal to the crossover. If these nuclei subsequently participated in the formation of an ascus, allele ratios of 4:0 and 0:4 would be found.
(f) Mutation. If mutation occurred prior to meiosis, then allele ratios of $4: 0$ and $0: 4$ would be recovered. If mutation occurred after the duplication of the chromosomes in meiosis, then $3: 1$ and 1:3 allele ratios would be recovered. (g) Double duplication. If a piece of one of a pair of homologous chromosomes is duplicated twice while the same piece of the other homologous chromosome does not duplicate at all, then $3: 1$ and $1: 3$ allele ratios will be found.

Nitchell (1955a) suggested that this could be the explanation for the aberrant recombinations of pyridoxine mutants in Neurospora. Later, Mitchell (1956) decided that it was "simpler" to suppose that an unknown property of the heterozygous diploid condition in the ascus increases the frequency of mutations to wild". Some support for the "double duplication" hypothesis has been obtained from an ascus found in the present study (see Section IV - 2. Ascus No. 14.).
(h) Unequal crossing over. If thee two products of unequal crossing over give rise to new genotypes, then genotypic ratios different from 1:1 will be recovered from tetrad analysis. The phenotypic ratios will be decided by the expression of these new genotypes. The classical example of unequal crossing over is the Bar locus of Drosophila (Sturtevant 1925, 1928).
(i) Gene conversion. According to Lindegren (1955)
"gene conversion is the interaction, occurring at meiosis, between the dominant and the recessive allele in a heterozygote, resulting in the transformation of one or more dominant alleles into the corresponding recessive allele or vice versa. Gene conversion is essentially a directed mutation occurring at meiosis as a result of the effect of homologous alleles upon each other; it does not
occur (or it is not apparent) at the meio'sis of homozygous: diploids".

As pointed out by Emersion (1956), the proofs generally offered for gene conversion are that other causes of abnormal allele ratios could not account for the observed results. All possible ratios $4: 0,3: 1,1: 3$ and $0: 4$ have been attributed to gene conversion by Lindegren (1949, 1953a, b), Lindegren and Lindegren (1952, 1956) and Lindegren et al (1956). Emerson (1956) criticizes the published accounts of gene conversion in Saccharomyces on the grounds that the range of effects expected from polysomy were not fully evaluated and thet also that polysomy is strongly indicated by some of the observations. Lindegren (1953b) showed gene conversion in the pedigree of families inwhich polyploidy had earlier been demonstrated (Iindegren and Lindegren 1951).

Other examples of abnormal allele ratios in tetrads which could perhaps be attributed to gene conversion have been found in Bombardia (Zickler 1934) and Salpiglossis (Reimann-Phillipps 1955).

Hemmons (1952) found eight asci with abnormal allele ratios in 136 crossed asci of Aspergillus nidulans. Hemmons concluded that these abnormalities had two main causes:- "(1) Mutation during the first meiotic division (3/136). (2) Supernumerary divisions in the ascus (2/136), plus a possible 3 more.".
2. Discussion of experimental observations. Among the asci dissected, there were a few which did not give the usual allele ratios of 1:1. All these asci could have been caused by contamination but the probability of this explanation varies for each ascus. If the ratios can be rendered normal by the rejection of a single ascospore which has a genotype occurring with a high frequency in the cross, then contamination is more probable. On the other hand, if the ratio cannot be rendered normal by the rejection of a single ascospore whimh has a genotype occurring with a high frequency, then contamination is less probable. For the purposes of this thesis, if the ascospore has a genotype which occurs with a frequency of 1 in 20 or Iess, then the explanation of contamination is rejected.

A ripe ascus of Aspergillus nidulans usually broke either on taking it through the surface of thee Tween 80 drop or during the transfer to the agar square. On reaching the agar square, the ascospores were usaally already separated so if a number other than eight was found, it was impossible to say whether the ascus contained an abnormal number of spores or whether the spores had been accidentally gained or lost. In a few instances asci with other than eight spores were dissected but where this was done, it has been stated in the description of the ascus. IN AIL OTHRR CASES IT WAS A STRICTLY OBSERVED RULIT THAT ONEY ASCI WITH BIGHT SPORES

WERE DIGSECTIED.

The asci which appeared to have allele ratios other than 1:1 are show in Table 24 where they are numbered from 1 to 18. These numbers also arrange the asci in chronological order. It will be noted that with the passing of time (i.e. with increasing skill) the incidence of these asci decreased (Table 25). Furthemore, the abnormal asci. found in the e earlier work were mostly easily explainable by contamination whereas those found later were mostly not explainable by contamination. Possible explanations of how these asci arose are:-

Ascus 1. In this ascus the four genotypes found were consistent with normal Mendelian segregation. However, in an ascus with four genotypes, only one or two spores of each genotype should be found while in this case three spores were of the genotype bil sd. The extra spore could have been the result of a second mitotic division accompanied by the degeneration of one of the other ascospores (Winge and Roberts 1950a). Alternatively since the spores of the genotype bil sd had a frequency of roughly 1 in 13 in this cross, the extra spore could quite easily have been a: contaminant.

Ascus 2. Five genotypes were recovered from this ascus. Although it is possible to obtain more than four genotypes in an ascus as the result of a mutation occurring during ascus development, contamination is the more probable

$$
\text { Table } 24 \text { continued. }
$$

explanation. Nutation is extremely improbable in this ascus as it would require simultaneous mutation of more than one of the markers. It is quite possible that on rare occasions either a single spore, attached to an ascus, passed un-noticed or that a group of spores had stuck together and was mistaken for an ascus.

Another explanation is that two zygotes underwent meiosis normally but were included in the same ascus (Iindegren and Lindegren 19530). If this had happened, presumably eight of the spores in the "double ascus" had died.

Ascus 3. Six genotypes were recovered from this ascus and the same explanations as given for Ascus 2 above will probably be applicable.

Ascus 4. In this ascus, there were 3 prototrophs : 1 auxotroph with respect to pyro4. There were, however, only five spores growing and either the spore of the genotype y adi or the spore of the wild genotype could have. been contaminants. The former spores had a frequency of 1 in 28 and the latter spores had a frequency of 1 in 12.

Ascus 5 and Ascus 6. There were more than four genotypes in both these asci and again the explanations given for Ascus 2 above are the most probable ones.

Ascus: 7. In this case all of the five germinating spores required biotin for growth. There were three spores
with the genotype pro1 bil so there may have been an extra mitotic division or one of the three could have been a contaminant. Spores of the genotype proti bil had a frequency of 1 in 3 in this cross. An alternative explanation in this ascus is that an unusual event occurred at the locus of the biotin marker either before or during meiosis.

Ascus 8. This ascus had a ratio of 3 prototrophs : 1 auxotroph with respect to the bil locus and provided more convincing evidence of abnormalities of meiosis. In this instance all eight spores had grown. The 3:1 ratio could be explained by assuming that the two prol spores were contaminants. This is unlikely, however, since the frequency of spores with this genotype was roughly 1 in 60. The other four markers in the cross segregated in a ratio of 1:1.

Ascus 9. Here again a ratio of 3 prototrophs: 1 auxotroph with respect to the bil marker was found. Only six of the eight spores germinated but spores of both parental types were present in duplicate and the other two spores carried genotypes which were the products of an exchange with respect to the pro1-pabai interval. The 3:1 ratio could be explained if the green prototroph spore was either a contaminant or a diploid. However, since it was a haploid and this type of spore had a frequency of roughly 1 in 660 in the total population of ascospores,
it was probably not a contaminant. The other four markers in the cross segregated in a ratio of 1:1.

Ascus 10. Only four spores germinated in this ascus and they all required riboflavin for growth. There were three spores with the genotype ribo an prol bil so there may have been an extra mitotic division or one of the three may have been a contaminant. However, as spores carrying this genotype had a frequency of 1 in 40 in the cross, contamination is unlikely. Another possibility is that an unusual event occurred at the locus of the ribo marker either before or during meiosis.

Ascus 11. This is another instance of a ratio of 3 prototrophs : 1 auxotroph with respect to the bil marker. The ascus is a 4-strand double exchagge within the ad14 - pro1 interval and both products were present in both exchanges. Again the $3: 1$ ratio could be explained if the two spores with the genotype ribo ad14 prol pyro4 were contaminants. However, as the frequency of spores carrying this genotype was about 1 in 350 , this is unlikely. There are various ways in which these $3: 1$ ratios might be explained. Ascus 8 could have been obtained by extra mitoses of the pabal y ad8 nuclei accompanied by the degeneration of the pabal y adB bil product of an exchange in the y - bil interval. Similarly Ascus 11 could have been
obtained by extra mitoses of the an paba1 y nuclei accompanied by degeneration of the an pabai y bil naclai products of an exchange in the $y-b i 1$ interval. This explanation could not account for the abnormality found in Ascus 9. The probability of obtaining an ascus with eight spores after these two events would be increased if there were some mechanism which made this the optimum number. An easy explanation is mutation, but the rate would have had to be extremely high to account for all the 3:1 ratios

Further possibilities are gene conversion (Lindegren 1949, 1953a, b, 1955) and exchange within the region determining biotin synthesis. If it were necessary to have a certain number of mutated sites before the synthesis of biotin failed, then an exchange which split this critical number might give 3 prototrophs : 1 auxotroph.

Ascus 12. Hemmons (1952) found that in 6 out of 136 crossed asci, two nuclei, representing two different products of meiosis, were included in the same ascospore. This type of abnormality was not found among the 8 -spored asci in the present study. However, Ascus 12 was found to contain seven normal spores and a shrivelled fragment. This fragment did not germinate but among the seven normal spores which did germinate, there was one which contained
two nuclei and gave rise to a mixed green and yellow colony. The two genotypes found in this single colony were the mirror images of the genotypes of two of the other colonies.

Ascus 13. In this ascus there were ratios other than 1:1 for all the markers in the cross and the evidence is therefore in favour of extra mitotic divisions of one of the ribo adl4 pabal bil nuclei and also of one of the an pro1 bil pyro4 nuclei. The former genotype had a frequency of 1 in 100 and the latter had a frequency of 1 in 8 in a: random sample of ascospores from this cross.

Ascus 14. This ascus was found to have a $3: 1$ ratio for both the prol and ad17 loci. In the case of prol there were 3 prototrophs : 1 auxotroph while there were 3 auxotrophs : 1 prototroph of adir. The pabal, y and bil loci segregated 1:1. There was an exchange in the pabal - y interval from which both products were recovered. The spore with the genotype ad17 paba1 y could have been a contaminant but as the frequency of such spores was roughly 3 in 1000, this is unlikely. The pro1 and adir/were in repulsion and the simplest explanation is that a section of the adir bil parent chromosome covering at least the interval pro1-a.dir had been duplicated twice. Double duplication of a small piece of chromosone which is only marked once, is, of course,
another way in which a $3: 1$ allele ratio of a single locus might arise.

Ascus 15. This is probably an instance of an extra mitotic division of one of the pro1 pabal bil nuclei. Spores of this genotype had a frequency of about 1 in 20 in this cross and would arise as the result of an exchange in the paba1 - y interval. The other product of such an exchange (namely adir y) was recovered in duplicate from this ascus.

Ascus 16. This was almost certainly a case of contamination. All the genotypes that were recovered were: the result of crossing over and there were no complementary products. It is possible that there was an abnormal ratio at the \mathbb{Z} locus. However, since only four of the spores germinated, the evidence for an abnormal ratio is un-convincing.

Ascus 1^{17} and Ascus 18. Both these asci can be explained by either the occurrence of an extra mitotic division (the former in one of the pro3 bil nuclei and the latter in one of the proi ad15 pabal y nuclei) or by contamination. In Ascus 17 there had been an exchange in the paba1 - y interval and in Ascus 18 there had been an exchange in the y-bil interval. In both caser the products of these exchanges: were recovered. On the other hand both the pro3 bil and thee pro1 ad15 paba1 y/had a frequency of
about 1 in 3 among the ascospores of this cross. The extra spore of each of these genotypes could, therefore easily have been contaminants.

It was a curious point that no diploids were found throughout the work al though they are known to occur with a variable frequency (from 1 in 1000 ascospores to 1 in 100 ascospores) in Aspergillus nidulans (Pritchard 1953). The most probable explanation is that diploids are found in asci with less than eight spores so the selection of asci with eight spores would have discriminated against them.

During this study 1916 asci were dissected. These asci have been classified into various classes as shown in Table 25. For only 7 of the 17 abnormal asci, contamination is too unlikely to be seriously considered as an explanation. These 7 asci are Asci $8,9,10,11,13,14$ and 15 of Table 24. Ascus 12 with two nuclei included in one spore is a special case as it arose from an ascuss with only seven spores and a fragment.

The frequencies of the various abnormalities described above have been summarized. These frequencies can be calculated by using the fully classifiable asci but this assumes that the fourth product of meiosis was normal in those asci where only three of the four products were recovered. Therefore, a more stringent estimate of the frequencies of the various abnormalities may be obtained by the use of
those asci where the four products of meiosis were actually recovered. Furthermore, the frequencies of the abnormalities can be estimated on the assumption that 10 of the asci were the result of contamination or on the assumption that contamination did not occur. These four alternatives are tabulated in Table 26. Assuming that contamination occurs, the most frequent causes of abnormalities are unusual events at the bil locus and extra mitotic divisions. The frequencies with which abnormalities occurred at each particular locus are given in Table 27. It can be seen that there are large variations in frequency from one locus to another.
Assuming that contamination occurred.

(C) Amongst the fully classifiable asci- Assuming that No contamination occurred. meiosis were recovered

V. ABNORMAL AND "TWIN" PERITHECIA.

(1). Abnormal perithecium. Perithecium 9 (Table G) from the cross prol bil//pabal y ad8 contained a semi-lethal with a viability of 7.8%. This has been named "dwarf" (dw) as the colonies which carried it and survived were, very small. Most of the 62 asci dissected did not give germination of more than four spores. Where more than four spores survived, they invariably carried the semi-lethal indicating the segregation of a chromosomal character.

Since it is known that pro1 is 18 units from
its centromere, it was possible to test the semi-lethal
for centromere linkage. Ditype asci with respect to dwarf (dw) and proi are:-

```
dw pro1 (or absent)
+ +
+ +
```

and

It is not possible to distinguish parental
ditypes from non-parental ditypes as it is not known in which parental line the dwarf character arose. Tetratype asci are:-

```
+ pro1
+ +
dw pro1 (or absent)
```

There were 8 ditypes : 33 tetratypes and this has: a probability of . $10-.05$ when compared with a Null hypothesis of 1 ditype : 2 tetratypes. There is, therefore, no evidence of linkage of the dw character to its centromere.

A cross was then made of paba1 y ad8 dw//an bil. pyro4 sd wn and the analysis was carried out by random strands. The $d w$ character showed no evidence of linkage to any of these markers and had a viability of 8.0%.
(2) "Twin" perithecia. In a number of perithecia "twins" were found. These are perithecia with a mixture of selfed asci of both parents or selfed asci of one parent and hybrids. Mixed perithecia were previously found by Hemmons (1952). In common with Hemmons, no perithecia were found to contain a triple mixture i.e. hybrid asci with selfed asci from both parents. Examples of twin perithecia were found in the following crosses:-
(a) $y s d / b i 1$ pyros. (Table A).

Perithecium 27. The asci dissected were 1 crossed and 1 selfed y sd.

Perithecium 38. The asci dissected were 1 crossed, 1 selfed y sd and 1 unclassifiable.
(b) ribo ad14 pabal $y / / a n$ pro1 bi1 pyro4 (Table H).

Perithecium 6. The asci dissected were 18 crossed and 1 selfed an pro1 bil pyro4.
(c) pro1 paba1 $y / / a d 17$ bil. (Table I).

Perithecium 3. The asci dissected were 26 crossed and 1 selfed pro1 paba1 y.

Perithecium 4. The asci dissected were 21 crossed, 5 selfed pro1 pabal y and 3 unclassifiable.

Perithecium 6. The asci dissected were 11 crossed, 1 selfed prol pabal y and 2 unclassifiable.

As discussed by Pontecorvo et al (1953) there are three ways in which these twin perithecia may arise. Firstly, two pairs of nuclei may have initiated the formation of one perithecium; one pair being genetivally identical and the other pair being genetically different. Secondly, the two initial nuclei may have had different survival values. If one nucleus of a conjugate pair had died, the other nucleus might have then divided and the resulting pair might have continued to multiply by conjugate division. This seems the most probable explanation in view of the fact that Hemmons (1952) found that the percentages of selfed and hybrid asci varied greatly from one peritheoium to another. The percentage of selfed asci would depend on the stage at which one nucleus had died and the other nucleus had continued to divide conjugately. In the crosses y sd//bi1 pyro4; ribo ad14 pabai y L/an prol bil pyro4 and pro1 pabal $y / / a d 1 r$ bil only selfed asci of one parental strain were found but this might have been due to the fact that the strains ribo ad14 paba1 y and adil bil were completely self-sterile while the strain bil pyro4

$$
-96-
$$

was only slightly self-fertile. Thirdly, "twin" perithecia might have arisen by fusion of separate perithecia: during development.
VI. RECOVERY OF BOTH PRODUCTS OF AN EXCHANGE IN A SHORT REGION. Mitchell (1955a), from a cross heterozygous in repulsion for two closely linked pyridoxine-less mutants of Neurodpora found that four asci out of 585 did not carry both products of exchange. It was thought that the same phenomenon might occur in Aspergillus nidulans and so one of the reasons for undertaking the analysis of the cross pro3 bil// prol adib pabal y was that it included two pairs of closely linkea markers. These are pro3-pro1 (recombination fraction $.003 \pm .0015$. Forbes 1956) and ad15-paba1 (recombination fraction $.002 \pm .0012$ Pritchard, unpublished and Calef 1956). There were two asci with exchanges between ad15 and pabol (Table J. Perithecia 5 and 6) and in both cases the two products of the exchanges were recovered. There were also three asci with exchanges between pro3 and prol (Table J. Perithecia 3 and 6) and again the two products of the exchanges were recovered from all of them. All the double mutants pro3 pro1 were tested by obtaining heterokaryons and also diploids with a known pro3 strain and a known pro1 strain. All the heterokaryons and all the diploids required proline for growth. The double mutant can also be recognized visually. The eight spores obtained from an ascus with an exchange between pro3 and pro1 are shown in Figure 6. These two pairs of mutants apparently do not behave in the same manner as the pyridoxine mutants of Neurospora, a conclusion

Figure 6. Colonies obtained from a dissected ascus of the cross pro3 bil//pro1 adi5 paba1 y after incubation for three days at 37° C. on minimal medium + adenine $+p$-amino benzoic acid + biotin. The colonies are therefore being tested for their proline requirements. The prol mutant determines a fair degree of growth; the pro3 mutant determines distinctly less growth; and the double mutant pro1 pro3 determines no growth at all. Therefore the genetic constitutions of the above colonies with respect to proline requirements are:Top row $+\quad+$ Second row + prol Third row pro3 + Fourth row pro3 pro1 (indicated by arrows)
which was expected from the vast amount of work carried out in this Department on Aspergillus (Roper 1950; Pontecorvo 1958a, b; Roper and Pritchard 1955; Pritchard 1955; see also theoretical discussion by Pontecorvo, 1952 to 1955).
VII. ANATYSTS OF A DUPLICATION OF A SEGMENT OF

THE BI CHROMOSONE. WBile investigating reversions of an adenine requiring strain to adenine independence, Pritchard (1956) obtained a duplication of a piece of the BI chromosome involving the \mathbb{Z}, adzo (adenine-less-20) and bil loci. Subsequently he found that this duplication was attached to the chromosome carrying wn and adi. A cross paba1 y ad8//y pyco4 dp (dp = duplication carrying ad20 bil) was analysed by tetrads in order to enquire further into the behaviour of the duplication. Twenty eight asci, from six peritheaia were dissected and among these eighteen were: fully classifiable. All six perithecia were selfed of the strain y prop $d p$ (adzo bi1). The cross investigated was therefore y pyro4 dp (adzo $b 11$)//y pyros $d p$ (adzo bi1). Thus the cross was homozygous pyro4 and the zygote was tetrasomic for the region covered by the diplication. If the duplication pairs with the BI chromosome, the X, ad8O and bil loci may segregate in various ways according to where exchanges take place. The segregations observed in the various asci can be most easily explained in the following ways. Asci 2. 24 and 27 (marked in Table K as "single exchange pa-y") could be the result of an exchange between the point of attachment (pa) and the y locus. Asci $7,11,18,21$ and 23 (marked in Table K as "single exchange adzo-bil") could be the result of an exchange between adzo and bil. The remainder
are best explained by multiple exchanges. Ascus 12 could best be described by the following. Each duplication has paired with a BI chromosome and this has been followed by exchanges between pa and y in both pairs. In both Asci 14 and 15 each duplication has paired with a BI chromosone. In Ascus 14 there has then been an exchange between pa and y in one of the pairs and an exchange between adzo and bil in the other pair. In Ascus 15 there has been a 3 -strand double exchange in the intervals pa-y; adzo - bil in one pair and an exchange between adzo and bi1 in the other pair. Ascus 22 has 6 yellow spores and 2 green spores and can best be explained by the loss of one of the duplications. The othen duplication has paired with a BI chromosome and there has been an exchange between pa and y.

APPENDIX I. Summany of the available evidence

 concerning the occurpence or otherwise of sister-strand exchanges. Weinstein (1936) has applied a mathematical treatment to some exchange data of Drosophila which he obtained from various sources and has concluded that no sister strand exchanges occur.The studies of attached-X chromosomes (Imerson and Beadle 193is; Beadle and Enerson 1935) gave homozygosis values greater than 16.7%. This is thee maximum value expected if the markers in question are segregating independently of the centromere, and all four strands participate at random in exchanges. These authors pointed out that their observations only ruled out sister strand exchanges which are equivalent to non-sister strand exchanges. Furthermore, Schwartz (1953) has pointed out that "ix the two crossover types" (sister strand and non-sister strand exchanges) "are independent, as has been proposed in this paper, arising by different mechanisms and occurring at different times in thee meiotio division, the maximuxn frequency of homozygosis expected from a combination of sister strand and non-sister strand crossing over would remain at 25% " which is the maximum value of homozygosis expected from non-sister strand exchanges alone.

Morgan (1933) found that the frequencies of the
various classes of progeny obtained from Drosophila females heterozvgous for a ring ghromosome were consistent with the assumption of no sister strand exchanges. Schweitzer and Kaliss (1935) used Drosophila females heterozygous for an inversion- X and a ring- X to come to the same conclusion.

The fact that unequal exchanges at the Bar locus of Drosophila, either at its normal position (Sturtevant 1925. 1928) or when translocated to the left end of the chromosome (Muller and Weinstein 1933) axe always accompanied by an exchangetotween the flanking markers is evidence against sister strand exchanges. Sturtevant (1925) did, however, obtain 4 exceptional reversions of Bay which could have been explained equally by sistex strand exchanges or by contamination. In a later work (Sturtevant 1928) on Bar, no exceptional flies vere found. This evidence from the Bar locus may be misleading as unequal exchanges are unusual. Laughnan (1952) has given some data from the A^{b} locus of Maize which, among other interpretations, could have been the result of sister strand exchanges.

From the number of single and double bridges occurring in anaphases I and II of a heterozygous inversion involving neanly the whole of chromosome 6 of Maize, Schwartz (1953) concluded that the frequencies observed.
were consistent with those expected on the hypothesis that sister strand exchanges occur. In a study of "twin spots" (caused by mitotic exchanges) by the use or attached?X chromosomes, Schwartz (1954) showed whether or not strands which were attached to a common centromere were involved in the same exchange. If exchanges are limjod to the new chromatids, no twin spots should be found. Schwartz found that the frequency of twin spots the attached-x material was very low as compared to the frequency of twin spots in free X chromosomes when the same maxkers were used. The few spots in the attached-X moterial could have been caused by exchanges between two strends not attached to a common centromere or by an exchange between two strands attached to the same centromere and accompanied by a sister strand exchange. If these few spots resulted from the latter cause, then any factor causing an increase in sisiter strand exchanges would be expected to increase the frequency of twin spots. Brown and Hannah (1952) found that there were few or no sister strand exchanges in somatic cells of Drosophila as shown by the stability of the ring chromosomes. Hovever the ring could be induced to become highly unstable in the offspring of females which had been aged as virgins. Schwartz (1954, 1955) suggested that this instability could be explained by an increase of sister strand exchanges. Schwartz (1954) Cound that females with attached-X chromosomes
which had been aged as virgins gave a nine-fold increase in twin spots among the offspring. Brown and Welshons (1955) repeated the experiment and did not find this increase in their material. They pointed out that their evidence did not disprove the two phase model of exchanges (Belling 193 4 ; Schwartz 1953. 1954, 1955) but suggested that the method chosen to demonstrate sister strand exchanges in Drosophila was not valid.

If dicentric ring formation is used as the criterion, then the evidence is in favour of sister strand exchanges in Maize where McGintock (1938, 1941) has shown that dicentric double sized rings arise from ring chromosomes. The simplest explanation of these dicentric double sized rings is by the occurrence of sister strand exchanges at mitosis.

BIBLIOGRAPHY.

1. Allen, C.T. (1926). The direct results of Mendelian segregation. Proc. nat. Acad. Sci., Wash. 12, 2-7.
2. Anderson, E.G. (1925). Crossing over in a case of attached-X chromosomes in Drosophila melanogaster. Genetics. 10, 403-417.
3. Anderson, E.G. and Rhoades, M.A. (1930). The distribution of interference in the X-chromosomes of Drosophila. Pap. Mich. Acad. Sci. 13, 227-239.
4. Aronescu, A. (1933). Further studies in Neurospora sitophila. Mycologia. 25, 43-54.
5. Beadle, G.W. and Imerson, S. (1935). Further studies on crossing over in atte:ched-X chromosomes of Drosophila melanogaster. Genetics. 20, 192-206.
6. Belling, J. (1931). Chiasmas in flowering plants. Univ. Calif. Pub. Bot. 16, 311-338.
7. Bevan, A.E. (1956). Investigations on the genetics of yeast (Saccharomyces cerevisiae.) Ph.D. Thesis. Univ. of Glasgow.
8. Bonnier, G. and Nordenskiold, M. (1937), Studies in Drosophila melanogaster with attached-X's. Hereditas, Lund. 23, 257-278.
9. Boone, D.M. (1951). Linkage groups in Venturia inaequalis. Phytopathology. 41, 4.
10. Brown, S.W. and Hannah, A. (1952). An induced maternal effect on the stability of the ring-X chromosome of Drosophila melanogaster. Proc, nat. Acad. Sci., Wash. 38, 687-693.
11. Brown, S.W. and Welshonse, W. (1955). Matemal aging and somatic crossing over of attached-X chromosomes. Proc. nat. Acad. Sci., Wash. 41, 209-215.
12. Calef, E. (In press) Effect on linkage maps of selection of crossovers between closely linked markers.
13. Carter, T.C. and Robertson, A. (1952). A mathematical treatment of genetical recombination using a four strand model. Proc. Roy. Soc. Ser. B. 139, 410-426.
14. Darlington, C.D. and Dark, S.O.s. (1932). The origin and behaviour of chiasmata. Cytologia, Tokyo. 3, 169-185.
15. Ebersold, W.T. (1956). Crossing over in Chlamydomonas reinhardi. Amer. J. Bot. 43, 408-410.
16. Emerson, S. and Beadle, G.W. (1933). Crossing over near the spindle fibre in attached-X chromosomes of Drosophila melanogasiter. Ztschr. indukt. Abstammungs- u. Vererb. 65, 129-140.
17. Emerson, S. (1956). Notes on the identification of different causes of aberrant tetrad ratios in Saccharomyces. C.R. Lab. Carlsberg. 26, 71-86.
18. Fincham, J.R.S. (1951). A comparative genetic study of the mating type chromosomes of two species of Neurospora. J. Genet. 50, 221-229.
19. Forbes, E. (1956). Recombination in the pro region in Aspergillus nidulans. Microb. Genet. Bull. 13, 9-11.
20. Frankel, 0.H. (1937). Inversions in Fritillaria. J. Genet. 34, 44 ${ }^{7}-462$.
21. Giles, $\mathbb{N} . \mathrm{H}_{\text {. (194 }}$ (1944). A pericentric inversion in Gasteria resulting in apparent iso-chromosomesi at meiosis. Proc. nat. Acad. Sci., Wash. 30, 1-5.
22. Graubard, M.A. (1934). Temperature effect on interference and crossing over. Genetics. 19, 83-94.
23. Harthhorne, J.N. (1953). A suppressor in Chlamydomonas reinhardi. Heredity, 7, 152.
24. Hawthorne, D.C. (1956). The genetics of galactose fermentation in Saccharomyces hybrids. C.R. Lab. Carlsberg. 26, 149-160.
25. Hearme, E.M. and Huskins, C. H. (1935). Chromosome pairing in Melanoplus femur-rubrum. Cytologia, Tokyo. 6, 123-147.
26. Hemmons, I.M.; Pontecorvo, G. and Bufton, A.w.J. (1953). Perithecium analysis and relative heterothallism. Adv. Genet. 5, 194-201.
27. Hemmons, I.M. (1952). Investigations on the genetics of the homothallic ascomycete Aspergillus nidulans (Iidam) Winter. Ph. D. Thesis. 153 pp . Univ. of Clasgow.
28. Houlahan, M.B.; Beadle, G.W. and Calhoun, H.G. (1949). Linkage studies with biochemical mutants of Neurodpora crassa. Genetics. 34, 493-507.
29. Howe, H. (1954). Crossing over in the first (sex) chromosome of Neurospora crassa. Genetics 39, 972.
30. Howe, H. (1956). Crossing over and nuclear passing in Neurospora crassa. Genetics. 41, 610-622.
31. Huskins, C.L. and Newoombe, H.B. (1941). An analysis of chiasma pairs showing chromatid interference in Trillium erectum. Genetics. 26, 101-12\%.
32. Keitt, G.W. (1952) Inheritance of pathogenicity in Venturia inaequalis. (Cke) Wint. Amer. Nat. 86, 373-390.
33. Knapp, E. (1936). Zur Genetik von Sphaerocarpus (Tetradenanalytische Untersuchungen). Ber. dtsch. bot. Ges. 54, 58-69.
34. Knapp, E. (193r). Crossing over und Chromosomenreduktion. Ztschr. indukt. Abstammungs- u. Verer"b. 73, 409-418.
35. Laughnan, J.R. (1952). The action of allelitiq forms of the gene A in Maize. IV. On the compound nature of A Genetics. 37, 375-395.
36. Leupold, U. and Hottinguer, H. (1954). Heredity, 8, 243-258. Some data on segregation in Saccharomyces.
37. Lewin, R.A. (1953). The genetics of Chlamydomonas moewusii Gerloff. J.Genet. 51, 543-560.
38. Lindegren, C.C. (1932). The genetics of Neurospora. II. Segregation of the sex factors in asci of N. crassa, \mathbb{N}. sitophila and N. tetrasperma. Bull. Torrey bot. C1. 59, 119.
39. Lindegren, C.C. (1933), The genetics of Neurospora. III. Pure bred stocks and opssing over in Neurospora crassa. Bull. Torrey bot. Cl. 60, 133-154.
40. Lindegren, C.C. (1936a). The structure of the sex chromosomes of Neurospora crassa. J. Hered. 27, 251-259.
41. Lindegren, C.C. (1936b). A six point map of the sex chromosome of Neurospora crassa. J. Genet. 32, 243-256.
42. Lindegren, C.C. (1949). The yeast cell. Its genetics and cytology. Educational Publishers, Ltd.
43. Lindegren, C.C. (1953a). Concepts of gene structure and gene action derived from tetrad analysis of Saccharomyces. Experientia 9, 75-80.
44. Jindegren, C.C. (1953b). Gene conversion in Saccharomyces. J. Genet. 51, 625-637.
45. Lindegren, C.C. (1955). Non-Mendelian segregation in a single tetrad of Saccharomyces: ascribed to gene conversion. Science. 121, 605-607.
46. Lindegren, C.C. and Lindegren, G. (1939). Non-random crossing over in the second chromosome of Neurospora crassa. Genetics, 24, 1-7.
47. Lindegren, C.C. and Lindegren, G. (1937). Non-random crossing over in Neurospora. J. Hered. 28, 105-113.
48. Lindegren, C.C. and Lindegren, G. (1942). Locally specific patterns of chromatid and chromosome interference in Neurospora. Genetics. 27, 1-24.
49. Lindegren, C.C. and Lindegren, G. (1947). Depletion mutation in Saccharomyces. Proc. nat. Acad. Sci., Vash. 33, 311-318.
50. Lindegren, C.C. and Lindegren, G. (1951). Tetraploid Saccharomyces. J. gen. Microbiol. 5, 885-
51. Lindegren, C.C. and Lindegren, G. (1952). Proximity of genes controlling the fermentation of similar carbohydrates in Saccharomyces. Nature, Lond. 170, 965-968.
52. Lindegren, C.C. and Lindegren, G. (1953c). Asci in Saccharomyees with more than four spores. Genetics 38 , 73 - 78.
53. Lindegren, C.C. and Lindegren, G. (1956). Effect of the local chromosomal environment upon the genotype. Nature, Iond. 178, .796-797.
54. Lindegren, C.C.; Lindegren, G.; Drysdale, R.B.; Hughes, J.P. and A. Brenes Pomales. (1956). Genetical analysis of the clones from a single tetrad of saccharomyces showing non-Mendelian segregation. Genetica. 28, 1-24.
55. Magni, G.E. (1949). A new genetic character in Yeast affected by complementary genes. C.R. Lab. Carlsberg. 24, 357-379.
56. Mather, K. (1938). Crossing over. Biol. Rev. 13, 252-292.
57. Mather, K. and Beale, G.H. (1942). The calculation and precision of linkage values from tetrad analysis. J. Genet. 43, 1-30.
58. MeClintock, B. (1938). The production of homozygous deficient tissue with mutant characteristics by means. of the aberrant behaviour of ring shaped chromosomes. Genetics. 23; 315-376.
59. McClintock, B. (1941). Spontaneous alterations in chromosome size and form in Zea mays. Cold Spr. Harb. Sym. quant. Biol. 9, 72-80.
60. Mitchell, M.B. (1955a). Aberrant recombination of pyridoxine mutants of Neurospora. Proc. nat. Acad. Sci., Wash. 41, 215-220.
61. Mitchell, M.B. (1955b). Further evidence on aberrant recombination in Neurospora. Proc. nat. Acad. Sci., Wash. 41, 935-937.
62. Mitchell, M.B. (1956). A consideration of aberrant recombination in Neurospora. C.R. Lab. Carlisberg. 26, 285-298.
63. Mitchell, M.B.; Mitchell, H.K. and Tissieres, A. (1953). Mendelian and non-Mendelian factors affecting the cytochrome system in Neurospora crassa. Proc. nat. Acad. Sci., Wash.: 39, 606-613.
64. Morgan, L.V. (1935). A closed-X chromosome in Drosophila: melanogaster. Genetics. 18; 250-283.
65. Muller, H.J. and Weinstein, A. (1933). Evidence against the occurrence of crossing over between sister chromatids. Amer. Nat. 67, 64-65.
66. Mundkur, B.D. (1950). Irregular segregations in yeast. hybrids. Gurr. Sci. 19, 84-85.

6\%. Papazian, H.P. (1951). The incompatibility factors and a related gene in Schizophyllum commune. Genetics. 36, 441-459.
68. Papazian, H.P. (1952). The analysis of tetrad data. Genetics. $3^{\text {r/ }}$, 175-188.
69. Perkins, D.D. (1949). Biochemical mutations of Ustilago maydis. Genetics. 34, 607-626.
70. Perkins, D.D. (1953). The detection of linkage in tetrad analysis. Genetics. 38, 187-197.

Y71. Perkins, D.D. (1955) Tetrads and crossing over. J. cell. comp. Pkysiol: 45, Suppl. 2. 119-149.
72. Pomper, S.; Daniels, K.M. and McKee, D.W. (1954). Genetic analysis of polyploid yeast. Genetias. 39, 343-355.
73. Pontecorvo, G. (1952a:) The genetical formulation of gene structure and action. Advanc. Enzymol. 13, 121-149.
74. Pontecorvo, G. (1952b). Genetical analysis of cell organization. Symp. Soc. exp. Biol. 6, 218-229.
75. Pontecorvo, G. (1953). The genetics of Aspergillus; nidulans. Adv. Genet. 5, 141-238.
76. Pontecorvo, G. (1954). Mitotic recombination in the genetic systems of filamentous fungi. Caryologia. 6. (suppl.), vol. vi, 192-200.
77. Pontecorvo, G. (1955a). The impact of genetics. J. gen. Microbiol. 12, 330-331.
78. Pontecorvo, G. (1955b). Gene structure and action jn relation to heterosis. Proc. Roy. Soc. Ser. B. 144, 171-177.
79. Pontecorvo, G.; Roper, J.A.; Hemmons, L.M. and Bufton, A. W.J. (1953). The genetics of Aspergillus nidulans. Adv. Genet. 5, 141-237.
80. Pontecorvo, G.; Gloor, E.T. and Forbes, E. (1954). Analysis of mitotic recombination in Aspergillus nidulans. J.Genet. 52, 226-237.
81. Pontecorvo, G. and Kafer, E. (1956). Mapping the chromosomes by means of mitotic recombination. Proc. R. phys. Soc. XXV, 16-20.
82. Pritchard, R.F. (1953). Ascospores with diploid nuclei in Aspergillus nidulans. Proc. 9th. Int. Cong. Genet. Page 1117; Paper No. 265.
83. Pritchard, R.H. (1955). The Iinear axrangement of a series of alleles of Aspergillus nidulans. Heredity. 9, 343-371.
84. Pritchard, R.H. (1956). A genetic investigation of some adenine requiring mutants of Aspergillus nidulans. Ph. D. Thesis. Univ. of Glasgow.
85. Reimann-Philipps, R. (1955). Genetische untersuchungen an den tetraden einer hbheren pflanze (Salpiglossis variabilis). Ztschr. indukt. Abstammungs-u Vererb. 87, 187-207.
86. Rizet, G̛. and Engelmann, C. (1949). Contribution à 1'etude genetique d'un Ascomycete tetraspore: Podospora anserina. (Ces) Rehm. Rev. cytol. et biol. vegetales. 11, 201-304.
87. Roman, H.; Hawthôrne, D.C. and Douglas, H.C. (1951). Polyploidy in yeast and its bearing on the occurrence of irregular genetic ratios. Proc. nat. Acad. Sci., Wash. 37, 79-84.
88. Roman, H. and Sands, S.M. (1953). Heterogeneity or clones of Saccharomyces derived from haploid ascospores. Proc. nat. Acad. Sci., Wash. 39, 171-179.
89. Roman, H.; Phillips, M.M. and Sands, S.M. (1955). Studies of polyploid Saccharomyces. I Tetraploid segregation. Genetics. 40, 546-561.
90. Roper, J.A. (1950). Seanch for linkage between genes determining a vitamin requirement. Nature, Lond. 166, 956-957.
91. Roper, J.A. and Pritchard, R.H. (1955). Recovery of the complementary products of mitotic crossing over. Nature, Lond. 175, 639.
92. Sager, R. (1954). Mendelian and non-Mendelian inheritance of streptomycin resistance in Chlamydomonas reinhardi. Proc. nat. Acad. Sci., Wash. 40, 356-363.
93. Schwartz, D. (1953), Stydies on the mechanism of crossing over. Genetics. 38, 689-690 (abstract).
94. Schwartz, D. (1954). Studies on the mechanism of crossing over. Genetics. 39, 692-700.
95. Schwartz, D. (1955). Studies on crossing over in Maize and Drosophila. J. cell. comp. Physiol. 45, 171-188. (suppl. 2).
96. Schweitzer, M.D. and Kaliss, N. (1935). Does sister strand crossing over occur in Drosophila melanogaster? Genetics. 20, 581-585.
97. Sharpe, H.S. (1956). Heterokaryosis and extra-nuclear inheritance in a wild, homothallic Ascomycete. Ph.D. Thesis. Univ. of Birmingham.
98. Smith, G.M. and Regnery, D.C. (1950). Inheritance of sexuality in Chlamydomonas reinhardi. Proc. nat. Acad. Sci., Wash. 36, 246-248.
99. Spiegelman, S. (1952). Mapping functions in tetrad and recombinant analysis. Science. 116, 510-512.
100. Stadler, D.R. (1955). Double crossing over in Neurospora. Science 122, 878-879.
101. Stadler, D.R. (1956). Double crossing over in Neurospora. Genetics. 41, 623-630.
102. Stern, C. (1936). Somatic crossing over and segregation in Drosophila melanogaster. Genetics 21, 625-730.
103. Stevens, w. T. (1936). The analysis of interference. J.Genet. 32, 51-64.
104. Stevens, W.I. (1942). Accuracy of matation rates. J. Genet. 43, 301-30\%.
105. Sturtevant, A.H. (1925). The effects of unequal crossing over at the Bar locus in Drosophila. Genetics. 10, 117-147.
106. Sturtevant, A.H. (1928). A further study of the so-called mutation at the Bar locus of Drosophila. Genetics. 13, 401-409.

10\%. Thom, C. and Raper, K.B. (1945). A manual of the Aspergilli. Bailliere, Tindall and Cox. 373 pp.
108. Weinstein, A. (1918). Coincidence of crossing over in Drosophila melanogaster (ampelophila). Genetics. 3, 135-172.
109. Weinstein, A. (1936). The theory of multiple strand crossing over. Genetics. 21, 155-199.
110. Welshons, W.J. (1955). A comparative study of crossing over in attached-X chromosomes of Drosophila melanogaster. Genetics. 40, 918-936.
111. Wettstein, F. von (1923). Kreuzungsversuche mit multiploiden Moosrassen. Biol. Zentralbl. 43, 71-83.
112. Wheeler, H.E. (1953). Linkage groups in Glomerella cingulata. Phytopathology. 43, 489.
113. Whitehouse, H.I.K. (1942). Crossing over in Neurospora. New Phytol. 41, 23-62.
114. Whitehouse, H.I.K. (1949). Multiple allelomorph heterothallism in the fungi. New Phytol. 48, 212-244.
115. Whitehouse, H.I.K. (1950). Mapping chromosome centromeres by the analysis of unordered tetrads. Nature, Lond. 165, 893.
116. Whitehouse, H.I.K. (1956). The use of loosely linked genes to estimate chromatid interference by tetrad analysis. C.R. Lab. Carlsberg. 26, 407-422.
117. Wilcox, M. (1928). The sexuality and arrangement of the spores in the ascus of Neurospora sitophila. Mycologia. 20, 3-16.
118. Winge, \varnothing. (1935). On haplophase and diplophase in some Saccharomycetes. C.R. Lab. Carlsberg. 21, 77-111.
119. Winge, \varnothing and Roberts, C. (1948). Inheritance of enzymatic characters in yeasts, and the phenomenon of long term adaptation. C.R. Lab. Carlsberg. 24, 263-315.
120. Winge, \varnothing and Roberts, C. (1949). A gene for diploidization in yeasts. C.R. Lab. Carlsberg. 24, 341-346.
121. Winge, \varnothing and Roberts, C. (1950a). The polymeric genes for maltose fermentation in yeasts, and their mutability. C.R. Jab. Carlsberg. 25, 35-83.
122. Winge, \varnothing and Roberts, C. (19500). Non-Mendelian segregation from heterozygotic yeast asci. Nature, Lond. 165, 157.
123. Winge, \varnothing and Roberts, C. (1953). The genes for maltose and raffinose fermentation in Saccharomyces cerevisiae, strain yeast foam. C.R.Lab. Carlsberg. 25, 241-251.
124. Winge, \varnothing and Roberts, C. (1954). Causes of deviations from 2:2 segregations in the tetrads of monohybrid yeasts. E.R. Lab. Carlsberg. 25, 285-329.
125. Winge, \varnothing and Roberts, C. (1955). Identification of the maltase genes in some American haploid and European diploid yeasts. G.R. Lab. Carlsberg. 25, 331-339.
126. Wulker, H. (1935). Untersuchungen uber tetradenaufspaltung bei Neurospora sitophila Shear et Dodge. Ztschr. indukt. Abstammungs- u. Vererb. 69, 210 -248.
127. Upoott, M. (1937). The genetic structure of Tulipa. II. Structural hybridity. J. Genet. 34, 339-398.
128. Zickler, H. (1934). Genetische untersuchungen an einem heterothallischen Askomyzeten, Bombardia lunata nov. sp. Planta. 22, 573-613.

Table A./.

Cross y sd//bil pyro4. From streak inoculum on minimal medium. Prepared on the 24.11.53. Only the genotypes of the germinated spores are given. If there were only two spores of any one genotype, it was assumed that they were the result of the mitotic division.

Genotypes
Number of asci. Comments
Perithecium No. 1. Dissected 4.1.54.
y.sd 1 Selfed yellow
y sd
ysd
Perithecium No. 2. Dissected 4.1 .54.
y
y sd.
bil pyro4
bil pyro4 sd
Perithecium No. 3 . Dissected 5.1.54.
y sd (2 spores) 1 ABNORMAL
y pyro4 (1 spore)
bi1 sd (3 spores)
bi1 pyro4 (1 spore)
Perithecium No.4. Dissected 5.1.54.
y sd (1 spore) 1 ABNORMAL
y sd pyro4 (1 spore)
y pyro4 (1 spore)
bil sd (1 spore)
bi1 pyros sd (1 spore)
Perithecium No.5. Dissected 5.1.54.
y sd 1 Probably selfed yellow
$y \mathrm{sd}$
Perithecium No.6. Dissected 5.1.54.
y sd
y pyro4
bi1
bi1 pyroses sá
Perithecium No.7. Dissected 6.1.54.
$-\quad$ No growth
Perithecium No.8. Dissected 6.1.54.
y sd
1.
y pyro4 sd
bil
bil pyro4
Perithecium No.9. Dissected 6.1.54.
P- $\quad 1$ No growth
Perithecium No. 10 Dissected 8.1.54.
y pyro4
1.
bil sd
bi1 pyro4
Perithecium No.11. Dissected 8.1.54.
y sd 1 Selfed yellow
y sd
ysd

```
Table A/. cont*.
Genotypes Number of asci Comments.
Perithecium No.12. Dissected 8.1.54.
y sd pyro4 1
bi1
bi1 pyro4
Perithecium No.13. Dissected 9.1.54.
- 1 No growth
Perithecium No.14. Dissected 9.1.54.
y sd "... 1 Selfed yellow
y sc
y sd
y sa
Perithecium No.15 Dissected 9.1.54.
y pyro4 1
bi1 pyro4 sd
bi1 sd
Perithecium No.16. Dissected 10.1.54.
y sd
1
y pyro4
bi1 pyro4 sd
y pyro4 . 1
y sd
bi1. pyro4 sd
bil.
Perithecium No.\17. Dissected 11.1.54.
bi1 1
y
1
y sd
bi1 pyro4
y pyro4 . . 2
y pyro4
1
bi1 pyro4 sd
Perithecium NO.18. Disisected 12.1.54.
- N_ NO growth
Perithecium No.19. Dissected 13.1.54.
y pyro4 % 1
y bil sd Single exchange y - bi
bi1 pyro4 sd
pyro4
Perithecium No.20. Dissected 13.1.54.
y pyro4 : 1.
y pyro4 sd
bi1 sd
bis
```

Table $A /$. cont ${ }^{\text {d. }}$
Genotypes Number of asci Comments
Perithecium No.20. Dissected 13.1.54.
y sd1
y pyro4 sd
bil
bil pyro4
y pyro4 sd1
bil
bil
y sd 1
bi1
Perithecium No.21. Dissected 14.1.54.1
y pyro4 sd
bi1.
bil pyro4
y 1
y sd
bil pyro4
bil pyros sd
Perithecium No.22. Dissected 16.1.54.
y sd 4 Selfed yellow
y sdy sdy sd
y sd 1. Probably selfed yellow
y sd
Perithecium No.23. Disisected 16.1.54.
y1
y sd
bil pyro4:
bil pyro4 sd
Perithecium No.24. Dissected 17.1.54.
y 1.
y pyro4
bil sd
bil pyro4 sd
y sd 1
y sd
bi1pyro4
bil pyro4
bi sd 1
y 1
y pyro4 sd
bil
bil pyro4 sd

Table $A /$. cont ${ }^{\text {d. }}$

```
Genotypes Number of asci Comments
Perithecium No.24. Dissected 17.1.54.
y \ddots1
y pyro4 sd
bili pyro4 sd
Perithecium No.25. Dissected 18.1.54.
bi1 sd
    1
y sd
1
y pyro4
bi1 sa
bil pyro4
y sd % 1
bil pyro4
bi1 pyro4 sd
y pyro4 1
bil sd
Perithecium No.26. Dissected 19.1.54.
y 1
y
bil pyro4 sd
bil pyro4 sd
- 1. No growth
y sd
    1
bil
bil pyro4
y
    1
y pyro4 sd
bi1
bi1 pyrot sd
Perithecium No.2%. Dissected 21.1.54.
y sd ... 1 MIXED PERITHECIUM
y sd
y sd
y sd
y bil
pyro4
pyro4 sd
Perithecium No.28. Dissected 21.1.54.
y sd 1, Single exchange y - bi
bil pyro4
sd
y sd
bil pyro4
bil pyro4 sd
```

Table $A /$. cont ${ }^{\text {d. }}$
Genotypes Number of asci Comments
Perithecium No.29. Dissected 21.1.54.
y sd y. 2 Selfed yellow
y sd
y sd
Perithecium No.30. Dissected 21.1.54.
y sd
1
y pyro4 sd
bil
bil pyro4
y pyro4
1
y pyro4 sd
bi1
Perithecium No.31. Dissected 24.1.54.
y.sd 1 Selfed yellow
y sd
y sa
y sd
y sd 1 Probably selfed yellow
$=2$ No growth
Perithecium No.32. Dissected 24.1.54.
y
1
y sd
bil pyro4
bi1 pyro4 sd
Perithecium No.33. Dissected 24.1.54.
y sd
1 Selfed yellow
y sd
y sd
y sd
1 Probably selfed yellow
y sd

1. No growth

Perithecium No.34. Dissected $\frac{1}{26.1 .54 .}$
y pyro4 sd.
1
bil
Perithecium No.35. Dissected 26.1.54.
y
1.
y pyro4
bil sd
bi1 pyro4 sd
Perithecium No.36. Dissected 27.1.54.
y sd
1 Selfed yellow
y sd
y sd
y sd
1 Probably selfed yellow

Table $A / . c o n t^{d}$.
Genotypes Number of asci Comments

```
Perithecium No.37. Dissected 27.1.54.
y sd
y pyro4
bil
bil pyro4 sd
yipsd
y pyro4
bi1
bi1 sd
y pyro4 sd 1
bili
bi1
y pyro4 1
y pyros sd
bili
bil sd
Perithecium No.38. Dissected 27.1.54.
y sd
y sd
y sd
y bil pyro4
bil pyro4
sd.
\(y\) sid
y sd
1 Selfed yellow
y sd
```

Types of asci	SUMMARY								
	0	1	2	3	4	5	6	7	8
Classifiable									
Selfed yellow	-	-	-	-	-	4	4	4	2/14
Selfed green	-	-	-	-	-	-	-	-	
Hybrid	-	5	5	5	6	5	6	10	6/48
Non-classifiable									
Yellow	-	1	-	3	2	-	-	-	-/ 6
Green	-	-	-	-	-	-		-	
No germination	8	-	-	-	-	-	-	-	-/8
Abnormal	-	-	-	-	-	1	-	1	-/ 2
Grand total	8	6	5	8	8	10	10	15	8/78

Table B/.
Cross ad1//y sd pyro4. From streak inoculum on minimal medium. Prepared on the 5.2.54. Only the genotypes of the germinated spores are given. If there were only two spores of any one genotype, it was assumed that they were the result of the mitotic division.

Genotypes Number of asci "Comments.
Perithecium No.1. Disisected 2.3.54.
y sd : : 1
ad1 sd
y ad1 sd
1
y pyro4
ad1 sd
pyro4
Perithecium No. 2. Dissected 3.3 .54 .
y pyro4 sd
1
y ad1 pyro4
ad1
pyro4
1
y pyro4
1
y pyro4 sd
ad1 sd
ad1
y pyros sd
y ad1 pyro4 (1 spore)
y ad1 (1 spore)
y ad1 pyro4 sd (1 spore)
ad1 pyro4 sd (1 spore)
pyro4 (1 spore)
pyro4 sd (1 spore)
Perithecium No. 3. Dissected 4.3.54.
y pyro4 sd 1 Possibly a mixed perithecium
y pyro4 sd
y pyro4 1
y ad1 sd
ad1 pyro4
sd
Perithecium No.4. Dissected 4.3.54.
y pyro4
1
y ad1 pyro4 sd
ad1 sd
$t+++$
Perithecium Nó.5. Disisected 6.3.54.
y ad1 pyro4
1
y ad1 sd
$++++$
pyro4 sd.

Table $\mathrm{B} /$. cont ${ }^{\mathrm{d}}$.
Genotypes Number of asci Comments.
Perithecium No.5. Dissected.6.3.54.
y sd 1
y pyro4
adi sd
ad1 pyro4
y ad1 1
y pyro4 sid
ad1 pyro4
sd
y pyros sd
1
y sd
ad1
ad1 pyro4
Perithecium No.6. Dissected.7.3.54.
y 1.
ad1 pyro4 sd
Perithecium No.7. Dissected 8.3.54.
y 1
y ad1 pyro4
ad1 sd
pyro4 sd
Perithecium No.8. Dissected 9.3.54.
y ad1 sd
1
y ad1 pyro4
$+++$
pyro4 sd
Perithecium No.9. Dissected 9.3 .54 .
y ad1 sd
1
y ad1
pyro4
pyeot sd
Perithecium No. 10 Dissected 9.3 .54 .
y pyro4
1
y pyro4 sd
ad1
ad1 sd
y sd
1
ad1 pyro4:
ad1 sd
Perithecium No.11. Dissected 10.3.54.
y adi (1 spore) 1 ABNORMAL
y sd (2 spores)
++++ (Haploid) (1 spore)
ad1 pyro4 sd (1 spore)

Table B/. cont ${ }^{\text {d. }}$

Genotypes Number of asci Comments

```
Perithecium No.12. Dissected 10.3.54.
y pyro4 sd
    1
y ad1 sd
+ + + +
ad1 pyro4
Perithecium No.13 Dissected 10.3.54.
y
y ad1 pyro4
sd
ad1 pyro4 sd
Perithecium No.14. Dissected 10.3.54.
y ad1 pyro4 sd 1
sd
Perithecium No.15. Dissected 11.3.54.
y pyro4 sd .. 1 . Selfed yellow
y pyro4 sd
y pyro4 sd
Perithecium No.16. Dissected 12.3.54.
y sd 1
y ad1 pyro4 sd
+ + + +
ad1 pyro4
```

y
y ad1 pyro4 sd
sa
ad1 pyro4
Perithecium No.17. Dissected 15.3.54.
y
y ad1 pyro4 sd
$++++$
ad1 pyro4 sd
y ad1 pyro4 sd
1
ad1
++ + + (Haploi.d)
y
1
y ad1 pyros:
pyro4 sd
ad1 sd
y sd
1
y ad1 sd
pyro4
ad1 pyro4
y ad1 pyro4
1
pyrot sd
ad1 sd

Table B/. cont ${ }^{\text {d }}$.

Genotypes Number of asci Comments

Peritheciurn No.17. Dissected 15.3.54.
y ad1 pyro4
1.
+++ + (Haploid)
y pyro4 1
y pyro4
ad1 sd
ad1 sd
Perithecium No.18. Dissected 17.3.54.
y sd
y ad1 pyro4 sd
pyro4
y ad1 sd
1
y ad1
pyro4
pyro4 sd
y pyro4
1
y ad1 sd pyro4 sd
ad1.
SUMMARY
Types of asci Number of ascospores germinating.

| | 0 | \mathbf{D} | 2 | 3 | a | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Classifiable | | | | | | | 1 | | |
| Selfed yellow | - | - | - | - | - | - | 1 | - | $-/ 1$ |
| Selfed green | - | $\overline{1}$ | $\overline{3}$ | $\overline{1}$ | $\overline{3}$ | $\overline{4}$ | $\overline{6}$ | $\overline{8}$ | $\overline{-} / 32$ |
| Hybrid | | | | | | | | | |

Non-classifiable

Yellow	-	2	-	-	1	-	-	-	$-/ 3$
Green	-	-	-	-	-	-	-	-	
No germination	-	-	-	-	-	-			
Abnormal	-	-	-	-	-	1	1	-	$-/ 2$
Grand Total	-	3	3	1	4	5	8	8	$6 / 38$

Table C/.
Eross wn ad1 pro1 pabal y//y pyro4. From streak inoculum on
minimal medium. Prepared on the 13.2.54. Only the genotypesof the germinated spores are given. If there were only twospores of any one genotype, it was assumed that they werethe result of the mitotic division. \cdot
Genotypes Number of asci Comments
Perithecium No.1. Dissected 23.3.54.
wn adl pyros:1
wn prol pabal
y prol pabal
y ad1 pyro4
wn ad1 pro1 pabal pyro4 1.
wh prol pabal
yy ad1 pyro4
wn ad1 pyro4 1
wh ad1. pro1 pabal
y pro1 pabal pyrosy
wn ad1 pyro4 1
wn adl pyro4
y prol pabaly pro1 paba1
wn pyros 2
wn ad1 prol pabal
y pyros
wn adl prol pabal 1
wn prol pabal
y pyro4
y ad1 pyro4:
wn ad1 1
wn adl prol pabal pyro4
y pro1 paba1
y pyro4
wn 1
wn ad1 pro1 pabal
y ad1 prol pabal pyro4
y pyro4
wn prol pabal 1
y adl
y ad1 pyros
Y adi pro1 pebalpyro4 1

Table C/. cont ${ }^{\text {d. }}$
Genotypes Number of asci Comments
Perithecium No.2. Dissected 31.3.54.
wn prol pabal1
mn prol pabaly ad1 pyro4
y ad1wn adi pro1 pabal pyro42
wn
y pro1 paba1 pyro4
y 20.1
Perithecium No.3. Dissected 1.4.54.
wh ad1 prol pabal 1.
wn pyros:
y ad1 pyro4
y pro1 paba1
wn prol paba11
wn adl prol pabal pyro4
y ad1 pyro4:
y$\overline{\text { Perithecium No.4. Dissected } 3.4 .54 .}$
wn ad1 pyro41.
wn prol pabal
y adi prol pabal pyro4
ywn adi prol pabai2
wn pyrou
y ad1
y pro1 pabai pyro4
wn ad1 prol pabal pyro4 1.
wn prol pabal
y ad1 pyro4
y
wn ad1 prol pabal1.
wn prol pyro4
y pabal pyro4
y ad1
wn ad1 pyro4 1.
wn
y ad1 pro1 paba1
y prol pabal pyro4
wn pro1 pabal pyro41
wn ad1 pro1 pabail
y ad1
y pyro4

Table C/. cont ${ }^{\text {d. }}$
Genotypes Number of asci Comments
Perithecium No.4. Dissected 3.4.54.
wn pyro4
1
wn ad1.
y pro1 pabal
y ad1 pro1 pabal pyro4.
wn prol
wn prol pabal pyro4
1 Single exchange pro1 -
y ad1 pabal
y ad1 pyro4
wn adl prol pabal. 1
wn ad1 pyros
y pro1 pabal pyro4
y
wn ad1 proi pabal pyro4 1
wn
y pyro4
y ad1 pro1 pabal
Perithecium No.5. Dissected 6.4.54.
wn ad1 pyro4
1 Single exchange
pro1 -
wn pabal pyro4 pabal
y pro1
y ad1 pro1 pabal
wn adi
1.
wn adi prol pabal
y pro1 pabaly pyro4
y pyro4
wa ad1 pyro4 1
wn
y ad1 prol pabal pyros:
y prol pabal
wn adi 1
wn pro1 pabai pyro4
y ad 1 pyro4
wn prol pabal pyro4
1
wn adi prol pabal.
y pyro4
y ad.
wn ad1 prol pabal pyro4
1
wn
y prol pabal
y ad1 pyro4
Table $\mathrm{c} /$. cont $^{\mathrm{d}}$.
Genotypes Number of asci
Perithecium No.5. Dissected 6.4.54.wn ad11 Single exchange prol -
wn prol pyro4 paba1
y paba1
y ad1 prol pabal pyro4
wn pro1 paba1 (2 spores) 1 ABNORMAI
wn ad1 pyro4 (1 spore)
y ad1 prol paba1 pyro4y ad1 pyro4 (1 spore)
y (2 spores)
wn adl prol pabal
wn ad1 prol pyro4.1 Single exchange pro1-paba1
y pyro4
wn pyro41
wn ad1 prol pabal
y pro1 paba1
y adi pyro4
wn 1
wn pro1 pabal pyro4.
y ad1
y ad1 pro1 pabal pyro4
wn ad1 pyro4 1
wn ad1 prol pabal pyro4
y pro1 paba1y
wn pyro4 1
wn adl prol pabal.
y pro1 pabal pyro4
y ad1
wn pro1 pabal pyro4 1
wn prol pabal
y ad1
y adi pyro4
Perithecium No.6. Dissected 10.4.54.
y ad11
y
wn pyro4 2
wn ad1 pyro4.
y pro1 pabal.
y ad1 prol pabal

Table: $C /$. cont ${ }^{\text {d }}$.
Genotypes Number of asci Comments
Perithecium No.6. Dissected 10.4.54.
wn adi prol pabal 1
wn
y pro1 pabal pyro4
y ad1 pyros
wn pyrof 1
wn adl
y prol pabal pyro4
y ad1 prol pabal
wn ad1 pyro4 1
wn
y prol paba1
y adl pro1 pabal pyro4
wn pyro4 1
wn adl
y prol pabal
y ad1 prol pabal pyro4
wn pro1 pabal 1
wn ad1 prol pabal pyro4
y ad1 pyro4yPerithecium No.7. Dissected 10.4.54.
wn pro1 pabal pyro4 1
wn pro1 paba1y ad1 pyro4y ad1
wn ad1 pro1 paba1 1
wn pyro4
y ad1 pro1 paba1 pyro4y
wn pyro4 1
wn ad1 pyro4
y ad1 prol pabal
y prol pabal
wm ad1 prol pabal
wn prol pyro4
1
y paba. 1 pyro4
y ad1
Perithecium No.8. Dissected 14.4.54.
wn prol pyro4 1 Single exchange pro1-wn pro1 pabal
y ad1
y ad1 paba1 pyro4

Table $\mathrm{c} /$. cont.
Genotypes Number of asci Comments

```
Perithecium No.8. Dissected 14.4.54.
wn adi pro1
y pabal pyro4
y pyro4
wh pro1 paba1 pyro4, \(\quad 1\)
wn ad1 pro1 paba1
y ad1 pyro4
\(y\)
```

wh ad1 prol pabal $\because 1 \quad$ Single exchange pro1 -
pabal
wn prol paba1 pyro4 :... 1
wn adl
y pro1 pabai pyro4
y adı
wn prol pabal pyro4
1
wh pro1 pabal
y adl pyro4
y ad1
wn adi
1
wn pyro4.
y ad1 pro1 pabal pyro4.
wa prol pabal
1.
wn adi pro1 pabai pyro4
y
wn pyro4
wn adi prol
y ad1 paba1
y pro1 pabal pyro4
wn ad1
1
wn pyro4
y prol pabal
y ad1 pro1 paba1 pyro4
wn ady prol pabal pyro4
1.
y
y ad1 pyro4
wn ad1 pro1 pabal
1
wn add pyro4
y
y prol pabal pyro4
wn
wn adi pyro4
y adi pro1 pabal pyro4
y pro1 pabai
Table $\mathrm{c} /$. cont $^{\mathrm{d}}$.
Genotypes Number of asci Comments
Perithecium No.8. Dissected 14.4.54.
wn adl prol pabal 1
wn
y ad1 pyro4
y pro1 paba1 pyro4
Perithecium No.9. Dissected 17.4.54.
wn ad1 prol pabal 1
wn ad1 pyro 4
y pro1 paibal pyro4y
$-$ 3 No growth
wn ad1 pyro4 1
y
wn pro1 pabal pyro4 1
wn adi pyro4
y ad1
y prol pabal.
wa pro1 pabal pyro4: 1.
wn ad1
y ad1 pro1 paba1
y pyro4
wn prot pabal pyro4 1
wn adi prol
Single exchange pro1 -
paba1
y
y ad1 paba: 1 pyro4
wn prol pabal. 11 Single exchange proi-paba1
wn ad1 pro1 pyro4
y ad1 pyro4
y paba1
wn ad1 1
Wn
y adi prol pabal pyro4
y prol pabal pyro4
wn ad1 1
y pro1 paba1 pyro4
y ad1 prol pabal pyro4 1
wn pyro4 1
y ad1 pyro4

Table C/. cont ${ }^{\text {d. }}$
Genotypes Number of asci Comments

Perithecium No.10. Dissected 26.4.54.
 wn pyro4
 1

wn ad1 prol pabal pyro4
y pro1 pabal
y ad1
wn prol pabal pyro4
2
wn ad1
y pro1 pabal pyro4
y ad1
wn prol pabal
1
wn adi prol pabal
y ad1 pyro4
y pyro4
wn ad1 pro1 pabal pyro4
1
wn
y ad1
y prol pabal pyro4
wn ad1 paball
1 Single exchange pro1-
wn prol pabal pyro4:
y ad1
y prol pyro4
wn pro1 pabal pyro4
wn adi pyro4
y ad1 proti
y pabal
wn prol pabal pyro4
1 Single exchange pro1paba1
wn prol pabai
y ad1
y ad1 pyro4
wn prol pabal
1
wn ad1 pyro4
y ad1 pro1. pabal
y pyros
wn ad1 prol pabal
1
wn ad1 pyro4
y prol pabal
y pyros
wn pro1 paba1 "A 1
y ad1 pyro4
Table C/. cont ${ }^{\text {d. }}$
Genotypes Number of asci Comments
Perithecium No.11.. Dissected.29.4.54.
wn adl pro1 pabal pyro4 1.
wh prol pabal.
y ad1
y pyro4
wn pyro4 1.
wn ad1 pyro4
y ad1 pro1 paba1y pro1 paba1
wn prol pabal pyro4 1
wn ad1
y pro1 pabal pyro4
y ad1
Perithecium No.12. Dissected 29.4.54.
wn proi pabai pyro4 1
wn pyro4
y adr
wn prol pabal pyro4 1
y ad1

y
wn prol pabal pyro4
wn ad1 pro11 Single exchange pro1-
y
y ad1 pabal pyro4
wn ad1 pyro4 1.
wn ad1 pro1 pabal pyro4
y pro1 pabal
y
wn prol pabal pyro4 1
y ad1 pro1 pabal pyro4y
wn ad1 pro1 pabal pyro4 1
y adı
wn pyro4 1
y ad1 prol paba1
Perithecium No.13. Dissected 6.5.54.
wn ad1 prol pabail pyro4 1
wn ad1
y pro1 pabal
y pyro4

```
Table C/. contd.
Genotypes Number of asci Comments
Perithecium No.13. Dissected 6.5.54.
wn ad1 prol pabal pyro4
wn ad1 pro1 pabal
y pyro4
y
wn pyro41
wn
y ad1 pro1 pabal pyro4 y ad1 pro1 paba1
wn pyro4
wn ad1 prol pabal
y proi pabal pyro4
y ad1
wn pro1 pabal
wn
y ad1 pro1 pyro4
y ad1 pabal pyro4.
wn ad1 prol pabal pyro4
wn
1. Single exchange pro1 paba1
y adi pabal
y prol pyro4
wn pro1 pabal pyro4 1
wn
y ad1 pyro4
y ad1 prol pabal
```

```
wn adi pro1 pabal pyro4
```

wn adi pro1 pabal pyro4
1
1
wn pyro4
wn pyro4
y ad1 pro1 paba1
y ad1 pro1 paba1
y
y
wn ad1 pyro41
wh
y ad1 prol pabal pyro4
y prol pabal.
wn prol pabal.
1
wn ad1 pyro4
y pro1 paba1 pyro4
y adi
Perithecium No.14. Dissected 13.5.54.
wn ad1 pro1 pabal pyro4 1
wn ad1
y prol pabal
y pyro4.

```

Table C/. cont \({ }^{\text {d. }}\)
Genotypes Number of asci Comments
wn pyro4
wn ad1
y pro1 pabal pyro4
y ad1 prol pabal
wn prol pabal pyro4
wn prol pyro4
y ad1 pabal
y adı
wn prol paibal 1
wn prol pabal pyro4
y ad1
y ad1 pyro4
wm paba 1 pyro4
wh
y ad1 prol.
y adi pro1 pabal pyro4:
wn pyro4 1
y adi prol pabal
y pro1 pabal
wn pro1 pabai
1
wn adi pyro4
y ad1 pro1 pabal pyro4 y
wm prol pabal. 1
wn ad1
y ad1 pro1 pabail pyro4
y pyro4
wn prol pabal pyro4 1 wn
7. ad1 pro1 pabal pyro4
y adi
wn adi pro1 pabail pyto4 1
y ad1 pro1 pabal
y pyro4

Table C/. cont \({ }^{\text {d. }}\)
SUMMARY.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Types of as & 0 & 1 & as & 3 & \({ }_{4}\) & 5 & 6 & 7 & 8 \\
\hline \multicolumn{10}{|l|}{Classifiable} \\
\hline Selfed white & - & - & - & - & - & - & - & - & - \\
\hline Selfed yellow & - & - & - & - & - & - & - & - & \\
\hline Hybrid & - & 2 & 6 & 2 & 3 & 5 & 20 & 34 & 44/116 \\
\hline \multicolumn{10}{|l|}{Non-classifiable} \\
\hline White & - & - & - & - & - & - & - & - & - \\
\hline Yellow & - & - & - & - & - & - & - & - & - \\
\hline No germination & 5 & - & - & - & - & - & - & - & -1. 5 \\
\hline Abnormal & - & - & - & - & -- & - & - & 1 & -/ 1 \\
\hline Grand Total & 5 & 2 & 6 & 2 & 3 & 5 & 20 & 35 & \(44 / 122\) \\
\hline
\end{tabular}

Table \(\mathrm{D} /\).
Cross: wn adi4//y sd. From streak inoculum on minimal medium. Prepared on the 25.5.54. Only the genotypes of the germinated spores are given. If there were only two spores of any one genotype, it was assumed that they were the result of the mitotic division.

Genotypes Number of asci Comments
Perithecium No.1. Dissected 26.7.54.
wa
1
y
y ad14 sd
Wn
1
wn sca
\(y\) adl. sd
y ad.li4
wn adi4
1
y ad14 sd
\(y \operatorname{sd}\)
wn sad
1
wn ad14
y ad. 14
y sd
wn sd
1
y ad14 sd
y ad14
wn ad14
2
wn adi4 sd
y
\(y \mathrm{sd}\)
wn ad. 4
2
wn sd
y ad14 sd.
y
wn adit
1
wn adi4
y sd
y sd
wn ad14 sd
1
wn
y ad1.4
y sd
wn
1
wh ad14 sd
y ad14 sd
y

Table D./. cont.
Genotypes Number of asci. Comments.

SUMHARY

Types of asci frmber of ascospores germinating.

```

Table E/.
Cross wn adl4 y//bil thi2. From streak inoculum on minimal
medium. Prepared on the 15.7.54. Only the genotypes of the
germinated spores are given. If there were only two spores
of any one genotype, it was assumed that they were the
result of the mitotic division.
Genotypes Nrumber of asci Comments
Perithecium No.1. Dissected 16.9.54.
wn
2
wn bil thiz
y ad14
ad14 bil thi2
wn thiz2

```
wn ad14 thi2
ad14 bil
bi1
wn ..... 1
wn adi4 bil thi2
\(+++\)
ad14 bi1 thi2
wn adiA bil thi2 ..... 1
wn ad14
bil thi2:
+ + + +
Perithecium No.2. Dissected 17.9.54.
```1
```

wn bil.

```y ad14ad14 bil thi2
```

```1
```

wn this
$y$ ad14 bil
wn ad14

```1
```

wh bil
y ad14 thi2
bil this
wn bil ..... 1
wn ad14 ..... thi2
$y$ adil4
bil thiz
wn thiz

```1
```

y ad14 bili
$y$ ad14

Table m. \% cont.

Types of asci	SURMARX.								
	0	1.	2.	3	4	5	6	7	8.
Classifiable									
Selfed white	--	-	-	."-	-	-	--	$\cdots$	$\cdots$
Selred green	$\cdots$	$\cdots$	$\cdots$	$\cdots$	$\cdots$	$\cdots$	-	$\cdots$	-
Hybrid	$\cdots$	--	-	-	-	1	3	4	$3 / 11$
Non-classifiable									
Yinite	-	$\cdots$	-	$\cdots$	-	$\cdots$	-	$\cdots$	$\cdots$
Green	-	$\cdots$	-	$\cdots$	$\cdots$	-	--	$=$	$\cdots$
No gemmination	1	-	$\cdots$	$\cdots$	$\cdots$	$\cdots$	$\cdots$	-	--/1
Grand Total	1	$\cdots$	-	$\cdots$	-	1	3	4	$3 / 12$

Table $\mathrm{F} /$.
Cross wh adi4 y// bil met1. From streak inoculum on minimal medium. Prepared on the 20.8.54. Only the genotypes of the germinated spores are given. If there were only two spores of any one genotype, it was assumed that they were the result of the mitotic division. The bilmarker was not used.

Genotypes Number of asci Comments.
Perithecium No.1. Dissected 25.10.54.
wn ad14.
wn ad14
met1
met1
wn
1
wn ad14
y ad14 met1
$y$ met1
wn ad14 meti
1
wn ad14
met1

+     +         +             + 

wn ad14 met1
1
wn ad14
y
$y$ met1
wn ad14
wn met1
y
y ad14 met1
wn
1
wn
y ad14 met1
y ad14 met1
wn
1
wn met1
y ad14
y adi4 met1
wn
1
wn ad14
y ad14 met1
wn met1
1
wn meti
y ad14
y ad14

Table Fo/e conto
Genotypes Cumber of asci. Comments.

```
perithecium no.1: Dissected 25.10.54
wn met1.
 1
wn ad14
y adl4
met1
wn
wn ad14 met1 ad14. met1
+ + +
```


## wan

1
WD.
ad14 met1
ad14 meti

```
wn ad14 met1
2
m ad14 metli
+ + +
t+t
```

wan metil 1 .
wh
y ad14 met1
ad14.
wn aol4 met1 1
wn met1
$+4+$
wn ad14 met1 1
y 2.214
met1
Perithecium no.2. Dissected 28.10.54.
win
1
wn met1
y ad14 met1
a.d14
wn ad141
wn ad14
met1
met1
wn ad141.
wn met1
y ad14
met1
wn ad14 meti
1
wn ad14

+     +         + 

metil

Table Fo/e cont。
Genotypes Number of asci. Comments.
Perithecium no.2. Dissected 28.10.54.
wo.
wn ad14 met1
y met1
y ad.14

```
wn ad14
wimet1
\(y\) ad14 met1
\(+++\)
``` 1 . ....
wn ad14
1.
wn ad14 met1
Y
wn
1
wo met1
ad14
ad14 met1
wo
2
wh ad14
y ad. 14 met1
met1
wn met1
1
wn ad14
\(y\) met 1
ad14
wn ad14
1
wn ad14 met1.
y met1
\(+++\)
wn ad14
1
wm ad14
y meti
y met1
wh ad14 met1 ( 2 spores)
1 ABNORMAI
wn met1 (1 spore)
wn ad14 (1 spore)
\(+++(1\) spoce) (Haploid)
ad14
met1 \(\left(\begin{array}{ll}1 & \text { spore } \\ 1 & \text { spore }\end{array}\right)\)
Wn ad14 met1
1
ad14 met1

Table Fo/e cont.
Genotypes Wumber of asci. Comments.
Perithecium mo.3. Dissected 1.11.54.1
wn adiu
y ac14 met 1
wn a.d14 met1 ..... 1
wn
\(+++\)
ad1.s met1.
wn ad14 met1. ..... 2
win
y
ad14 met1.
wna ad14 ..... 1wn met1
y ad14met1
wn ..... 1
wn ad14 met1
y met1
ad.14
wn ad14 met1 ..... 1
wn ad14 met1
\(+++\)
\(+++\)
wn ..... 1wn ad.14
y ad14 met1
met1
wn ad1s met1 ..... 1
wn adl4 met1

y
wn1
wh ad14
y met1
ad14 met1
wn ..... 1
wn ad14
y met1
y ad1.4 met1
wn met1 ..... 1
wn ad14 meti
y ad14
+ + +

Table Fo/ocont.
Genotypes Number of asci. Comments.
```

Perithecium no.3. Dissected 1.11.54.
wm ad14 met1
2
Y
+++
wM ad14
1
met1
ad14
wn met1
1
wn ad14 met1
a.d14

+ + +

wn met.11
y ad14
ad14
w ad14
1
wn met1
y ad14 met1 1
Wh r 1
Z ad14

```


Table G/.
Cross prol bil//pabal y ad8. From streak inoculum on minimial medium. Prepared on the 23.12.54. Only the genotypes of the germinated spores are given. If there were only two spores of any one genotype, it was assumed that they were the result of the mitotic division.

Genotypes Number of asci Comments
Perithecium No.1. Dissected 10.1.55.
pabal y ad8 11 No exchanges
paba1 y ad8
prol bil
pro1 bil
paba1 y ad8
5 No exchanges
pabal y ad8
prol bil
paba1 y ad8
3 No exchanges
pro1 bil
pro1 bill
paba1 y ad8
pro1 paba1 y ad8
3 bi1
prol bil
pabal y ad8
prol y ad8
pabal bil
prol bil
pabal y ad8
pro1 y ad8
prol bil
pabal y ad8
3 Single exchanges pabal y
pabal y ad8 bil
prol
pro1 bil
paba 1 y ad8
pabal y ad8 bil
pro1
y ad8
pro1 pabal y ad8
pabal bil
pro1 bil
paba1 y ad8 bil
y ad8
prol bil.

Table \(G /\). cont \({ }^{\text {d }}\).

\section*{Genotypes Number of asci Comments \\ Perithecium No.2. Diseected 17.1.55.}
pabal y ad8 12 No exchanges
paba1 y ad8 prol bil
prol bil
paba:1 y ad8
paba1 y ad8
pro1 bil.
pabal y ad8
proi bil
pro1 bil
paba1 y ad8
pro1 pabal y ad8 bil
pro1 bil
paba1 y ad8
pro1 pabal y ad8
prol bil
pabaly ad8
pro1 y ad8
pabal bil
prol bil
pro1 y ad8
pabal bil
prol bil
pabaly ad8
pro1 y ad8
pabal bil
paba1y ad8
pabal y ad8 bil pro1
pro1 bil
pro1 y ad8
pro1 y ad8 bil
paba1
paba1 bil.
pabaly ad8
prol bil
paba1 y ad8

2 No exchanges

3 No exchanges

3 Single exchanges pro1paba1

1 Single exchange pro1paba1.

2 Single exchanges paba1 y

1 Single exchange pabal- y

1 Single exchange pabal- y

2 Single exchanges y - bil
1. 4-sitrand double exchange within pabal - y; single exchange y - bil

3 Incomplete

1 Incomplete

Table \(G /\). cont \(^{d}\).
Genotypes Number of asci Comments
Perithecium No.2. Dissected 17.1.55.
paba1 y ad8 bil ( 2 spores) 1 ". ABNORMAL pro1 bi1 (3 spores)
Perithecium No.3. Dissected 21.1.55.
pabal y ad8 8 "No exchanges
pabal y ad8
pro1 bil
pro1 bil
pabal y ad8
paba1 y ad8
pro1 bil
pabal y ad8
pro1 pabal y ad8
bil
pro1 bil
pabal y ad8
pro1 y ad8
paba1 bil.
pabal y ad8
pro1 y ad8
pro1 bil
paba1 y ad8
pro1 y ad8
pabal bil
pro1 bil
paba1 y ad8
paba1 y ade bil
pro1
prol pabal y ad8
y ad8
bil
pro1 pabal y ad8
pabal y ad8 bil
pro1
bi1
paba1 y ad8
prol bil

5 No exchanges

1 single exchange pro1-paba1

4 Single exchanges paba1 y

2 Single exchanges pabal y

2 Single exchanges paba1 single exchanges y

1 Single exchange y - bil

1 4-strand double exchange within prol-pabal; single exchange pabal - y

1 4-strand double exchange pro1 - pabal; y - bil

2 Incomplete

1 No growth

Table \(G /\). cont \({ }^{d}\).
Genotypes Number of asci Comments
Perithecium No.4. Dissected 14.2.55.
paba1 y ad8
9 No exchanges paba1 y ad8 prol bil pro1 bil
paba1 y a.d8
paba1 y ad8 pro1 bil
pabal y ad8
prol bil
prol bil
pabal y ad8
1 Single exchange pro1-
pro1 pabail y ad8.
2 No exchanges
bil
prol bil
pabal y ad8
bil
1 Single exchange pro1paba1
pro1 bil
paba1 y ad8
prol y ad8
pabal bil
prol bil
pabal y ad8 \(\quad 1 \quad\) Single exchange pabal - y
pabai bi1
pro1 bi1
paba1 y ad8
paba1 y ad8. bi1
pro1.
pro1 bil
Perithecium No.5. Dissected 18.2.55.
paba1 y ad8
5 No exchanges
paba1 y ad8
prol bil
proi bil
paba1 y ad8
pabal y ad8
prol bil
paba1 y ad8
pro1 y ad8
pabal bi1
prol bil

Table G/. cont \({ }^{\text {d }}\).

\section*{Genotypes Number of asci Comments}

pro1 bil
Perithecium No.6. Dissected 24.2.55.
paba1 y ad8
7 No exchanges
paba1 y ad8
prol bil
prol bil
paba1 y ad8
4 No exchanges
paba1 y ad8
pro1 bil
pabal \(y\) ad8 ". No exchanges
prol bil
pro1 bil
pabal y ad8
1 Single exchange pro1 paba1
pro1 pabal y ad8
bi1
pro1 bil
pabal y ad8
1. Single exchenge pabal - y
pro1 y ad8
paba1 bil
pabal \(y\) ad8 1 Single exchange pabal - y
pabal bil
pro1 bil

Table \(G /\). cont \({ }^{\text {d. }}\)
Genotypes Number of asci. Comments
```

Perithecium No.6. Dissected 24.2.55.
pro1 y ad8 ... 1 Single exchange pabal - y
paba1 bil
pro1 bil

```
pabal \(y\) ad8 \(\quad 1\) Single exchange paba1 - y
pro1 y ad8
pabal bil
prol bil
pro1 y ad8
pro1 paba1 y ad8
bi1
paba1 bi1
pabal y ad8
pro1 y ad8
prol pabal bil
paba1 \(y\) ad8 1 2-strand double exchange
prol y ad8 bil
pro1 bil
paba1y ad8
prol bil
pabal y ad8
pro1 bil
\(\overline{\bar{P}}\) Perithecium No.7. Disisected \(\frac{1}{28.2 .55}\).
pabal \(y\) ads 5 No exchanges paba1 y ad8 pro1 bil
pro1 bil
paba1 y ad8
paba1 y ad8 pro1 bil
paba1 y ad8 pro1 bil
prol bil
paba1 y ad8
pro1 pabal y ad8 pro1 bil

Table \(G / T\) cont \({ }^{\text {d }}\).
Genotypes Number of asci Comments
```

Perithecium No.7. Disisected 28.2.55.
pabal y ad8. 7 Single exchanges pabal - y
pro1 y ad8
pabal bil
prol bil

```
paba1 y ad8
pro1 y ad8
2. Single exchanges pabal -
pabal bil
pro1 y ad8
2 4-strand double exchanges prol y ad8 within pabal - y
pabal bil
paba1 bi1
pabal y ad8
pabal y ad8 bil
prol
pabal y ad8
pabal y ad8 bi1
pro1 bil
paba1 y ad8
pro1 y ad8 bil
1 3-strand double exchange paba1 - y; y - bil
pabal bil
pro1
pro1 pabal y ad8
pro1 paba1 y ad8 bil
bi1
paba1 y ad8
pro1 bil
pabal y ad8
paba1 y ad8
1 Single exchange y - bil

Perithecium No.8. Dissected 2.3.55.
pabal y ad8
5 No exchanges
pabal y ad8
prol bil
pro1 bil
paba1 y ad8
5 No exchanges
pabal y ad8
pro1 bil
paba1 y ad8
4 No exchanges prol bil pro1. bil

Table G/. cont \({ }^{\text {d. }}\)
Genotypes Number of asci Comments
Perithecium No.8. Dissected 2.3 .55 . Single exchanges pro1 -
pabal y ad8
pro1 pabal \(y\) ad8 bil
prol bil
paba1 y ad8
7 Single exchanges pabal - y
pro1 y ad8
pabal bil
prol bil
pabal y ad8
2 Single exchanges pabal - y
pro1 y ad8
pro1 bil
pabal \(y\) ad8 \(\because 1\) Single exchange \(y-b i 1\)
pabal y ad8 bil
pro1
prol bil
pro1 y ad8
1 : 4-strand double exchange
pro1 paba1 y ad8 pro1-paba1; paba1-y
bi1
pabal bi1
prol bil
1 Incomplete
pabal bil
pabal y ad8 2 Incomplete prol bil

```

Table G/. cont d
Genotypes Number of asci Comments
Perithecium No.9. Dissected 4.3.55.
paba1 y ad8 2
bi1
pro1 y ad8 1
pro1 bi1
1
bi1
paba1 y ad8 1
prol pabal y ad8 bi1
pro1 1
pro1 paba1ad8 bil 1
pro1 y ad8
paba1 bi1
prol pabal y
paba1 y ad8
paba1 y ad8
2 dw = semi-lethal dwarf.
pro1 bil
pro1 bi1 dw
pabal y ad8 2
pabal y ad8
pro1 bi1 dw
paba1 y ad8 1
pro1 y ad8 dw
paba1 bil
paba1 y ad8 dw
1
pro1 y ad8
pro1 bil
pabal bil dw
paba1 y ad8 1
paba1 y ad8 dw
paba1 y ad8 dw
1
pro1 y ad8 bi1
paba1 dw
pro1 bil
paba1 y ad8
1
pro1 y ad8 bil
pabal dw
pabal bi1 dw
1

```

Table G/. cont \({ }^{\text {d. }}\)
Genotypes Number of asci Comments
Perithecium No.9. Dissected 4.3.55.
\(-\quad 6\) No growth
Perithecium No.10. Dissected 14.3.55.
pabal y ad8 \(\quad 15\) No exchanges pabal y ad8 pro1 bil
pro1 bil
paba1 y ad8
1 No exchange
paba1 y ad8
pro1 bil.
pabal \(y\) ad8 \(2 \because\) No exchanges
prol bil
prol bil
paba1 y ad8
2 Single exchanges pro1paba1
pro1 paba1 y ad8
bi1
proi bil
paba1 y ad8
pro1 y ad8
pabal bil
pro1 bil
prol y ad8
pro1 y ad8
pabal bil
paba1 y ad8
pabal y ad8 bi1
pro1
pro1 bil
pabal y ad8
prol y ad8 bil
pabal
pro1 bil
paba1 y ad8
pro1 pabal y ad8"bil
+ + + + +
prol bil.
paba1 y ad8
y ad8
pro1 pabai bil
prol bil
1. 2-strand double exchange

1 4-strand double exchange within pabail - y

1 Single exchange \(y\) - bil
1. "2-strand double exchange paba1 - y; y - bi1

1 2-strand double exchange pro1- pabal; y - bil pro1-paba1; paba1 - y

Table \(G /\). cont \({ }^{\text {d. }}\).

\section*{Genotypes Number of asci Comments}

\section*{Perithecium No.10. Dissected 14.3.55. \\ paba1 \(y\) ad8 1: Incomplete}
pro1 bil.
Perithecium No.11. Dissected 15.3.55.
Pabal y a.d8 7 No exchanges
pabal y ad8
prol bil
pro1 bil
pabal y ad8
paba1 y ad8
pro1 bi1
paba1 y ad8
pro1 bi1
pro1 bil
pabal y ad8
pro1 pabal y ad8
2 Single exchanges prol paba1
bil
prol bil
paba1 y ad8
pro1 pabal y ad8
prol bil
paba1 y ad8 pabal bil
prol bil.
pabal y ad8
prol y ad8
pabal bil
paba1 y ad8
prol y ad8
pro1 bil.

```

Table G/. cont .
Genotypes Number of asci Comments
Perithecium No.11. Dissected 15.3.55.
pro1 pabal y ad8 1. 3-strand double exchange
y ad8 \therefore.... pro1 - paba1; paba1 - y
paba1 bi1
pro1 bi1

```
paba1 y ad8
y ad8
prol bil
pabal y ad8 prol bil
pabal y ad8
paba. 1 y ad8

1 2-strand double exchange pro1 - pabal; pabal - y

```

Perithecium No.12. Dissected 16.3.55.

```
paba1 y ad8
paba1 y ad8
prol bil
pro1 bil
paba1 y ad8
pro1 bil
pro1 bil
paba1 y ad8 pro1 paba1 y ad8 bi1
prol bil
paba1 y ad8 prol y ad8 pabal bil prol bil
paba1 y ad8
pabal bil
pro1 bil
pro1 y ad8
pro1 y ad8
pabal bil
pabai bil
pro1 paba1 y ad8
pro1 paba1 y:ad8
bil
bi1

2 Single exchanges pro1-
1 No exchange paba1

Single exchanges pabai - y

1 4-strand double exchange within paba1-y
1. 4-strand double exchange within pro1 - pabal
14. No exchanges

1 Incomplete

Table \(G /\). cont \({ }^{d}\).

pabail y ad8
paba1 y ad8 pro1 bil

4 No exchanges:
pabal y ad8 pro1 bil pro1 bil
paba1 y ad8
pro1 pabal y ad8
bil
pro1 bi」
paba1 y ad8
pro1. y ad8
paba1 bil
pro1 bil
paba1 y ad8
pro1 y ad8
pro1 bil
pro1 y ad8
pro1 y ad8
paba1 bil
pabali bil
paba1 y ad8
pro1 paba1 y ad8 bi1
pro1
bi1

Table G/. cont \({ }^{\text {d. }}\)
Genotypes Tumber of asci Comments
Perithecium No.13. Dissected 17.3.55.
pro1 y ad8 bill 1 3-strand double exchange paba1 y ad8 paba1 - y; y - bil pro1
pabal bil
pro1 pabal y ad8
y ad8 bil
pro1
paba1 bi1
paba1 y ad8
prol bil

1 3-strand double exchanges pro1-paba1; paba1-y and pabal - y; y - bil. 4-strand double exchange pro1 - pabai: y - bil

1 Incomplete
-11 No growth
Perithecium No.14. Dissected 18.3.55.
pabal y ad8 6 Now exchanges:
pabal y ad8
pro1. bil
prol bil
pabal y ad8 2 No exchanges
prol bil.
proi bil
pabal y ad8
1 Single exchange y - bil
paba1 y ad8 bi1
pro1
pro1 bil
pabal y ad8 bil :. 1 4-strand double exchange
pro1 y ad8
prol
paba1 bi1
paba1 y ad8 1 Incomplete
Perithecium \(\mathbb{N o . 1 5 . ~ D i s s e c t e d ~} 18.3 .55\).
pabal y ad8
No exchanges
paba1 y ad8
prol bil.
prol bil
pabal y ad8
pabal y ad8
prol bil
pabal y ad8
3 No exchanges
pro1 bil
pro1 bil

Table \(G /\). cont \({ }^{\text {a }}\).
Genotypes Number of asci Comments

\section*{Perithecium No.15. Dissected 183.55.}
paba1 y ad8
3 Single exchanges pabal - y
pro1 y ad8
pabal bi1
pro1 bil
paba1 y ad8
1 . 2-sitrand double exchange
pabal y
y - ad8; ad8 - bi1
prol bil
pabal \(y\) ad8 2 Incomplete
pro1 bil
pabal y ad8 .. 1 Incomplete
paba1 y ad8 (4 spores) 1 ABNORMAL
pro1 bil (2 spores)
pro1 (2 spores)
Perithecium No.16. Dissected 28.3.55.
paba1 y ad8 7 No exchanges
pabal y ad8
prol bil
pro1 bil
pabal y ad8
3 No exchanges
paba1 y ad8
prol bil
pabal y ad8
6 No exchanges.
prol bil
prol bil
pabal y ad8
pro1 paba1 y ad8
2 Single exchanges prol-
bi1.
pro1 bil
paba:1 y ad8
2 Single exchanges pabal - y
pro1 y ad8
pabal bil
pabal y ad8
pabal bil
prol bil
pabal \(y\) ad8 7 Single exchanges pabai - y
pro1 y ad8
paba1 bil
pro1 bil

Table \(G /\). cont \({ }^{\text {d. }}\)
Genotypes Number of asci Comments
Perithecium No.16. Dissected 28.3.55.
paba1 y ad8 1 Single exchange y - bil pro1
prol bil
```

pro1 paba1 y ad8

1. 3-strand double exchange pro1 - pabal; pabal - y
y ad8
pabal bi1
pro1 bil
```
\(\overline{\text { Perithecium No.17. 29.3.55. Dissected growth }}\)
paba1 y ad8
6 No exchanges
paba1 y ad8
prol bil
proi bil
paba1 y ad8
6 No exchanges
pabal y ad8
prol bil
pabal y ad8
1 Single exchange pabal - y
pabal bil
prol bil
pabal y ad8
5 Single exchanges paba1 - y
pro1 y ad8
paba1 bil
prol bil
pabal y ad8
paba1 y ad8 bil
pro1
prol bil
pabal y ad8
1. 3-strand double exchange
pro1 y ad8 bil
paba1 bi1 pabal - y; y - bil
pro1 pabal y ad8
1 4-strand double exchange
pro1 pabal y ad8 bi1
bil
+ + + + +
pabal y ad8
pro1 pabal \(y\) ad8 bi1
1 2-strand double exchange prol - paba1; y - bi1
\(+++++\)
pro1 bil
2 Incomplete

Tlable \(G /\). cont \({ }^{\text {d. }}\)


Table \(G /\). cont \({ }^{d}\)


Table H/.
Cross ribo adi4 pabai \(y / / a n\) pro1 bil pyro4. From streak inoculum on minimal medium. Prepared on the 9.7.55. Only the genotypes of the germinated spores are given. If there were only two spores of any one genotype, it was assumed that they were the result of the mitotic division.

Genotypes Number of asci Comments
Perithecium No.1. Dissected 9.9.55.
ribo ad14 paba1 y pyro4 2 No exchanges
ribo ad14 pabal. y
an prol bil pyro4
an prol bil
ribo ad14 pabal y
1 No exchange
an prol bil pyro4
an prol bil pyro4
ribo ad14 pabal. y
ribo an pro1 bil pyro4
ad14 pabal y
an prol bil pyro4
ribo ad14 pabal y
an pabal y pyro4
ribo adly prol bil pyro4
an pro1 bil
ribo ad14 paba1 y
ribo ad14 pro1 bil pyro4
an pabal y
an pro1 bi. 1 pyro4
ribo ad14 paba1 y pyro4
ribo ad14 pro1 bil pyro4
an pabal y
an prol bil
ribo ad14 pabal y pyro4
ribo adlit pro1:bil
an pabal y
an prol bil pyro4
ribo ad14 paba1 y pyro4
ribo ad14 prol bil pyro4
an pabal y
ribo ad14 prol bil pyros
an pabal y
an prol bil
ribo ad14 pro1 bil pyro4:
ribo ad14 prol bil pyro4
an pabal y

Table \(\mathrm{H} /\) : cont \({ }^{\mathrm{d}}\).
Genotypes Number of asci Comments
Perithecium No.1. Dissected:9.9.55.
ribo ad14 pabal y
ribo ad14 bil pyro4
an prol paba1 y.
ribo ad14 pabal bil pyro4
an prol y
an prol bil
ribo prol bil pyro4 ribo ad14 pro1 bil pyro4 an pabal y an ad14 pabal y
ribo pro1 bil pyro4 ribo ad14 pro1.bil an pabal y pyro4 an ad14 pabal y
ribo an pro1 y
ad14 pabal y pyro4 an prol bil pyro4.
ribo ad 14 pabal y ribo prol bil
an ad14 bil pyro4.
an pro1 pabal y pyro4
ribo ad14 y pyro4
ribo ad14 pabal bil pyro4.
an prol bil
ribo ad14 prol y pyro4:
an pabal bil.
an prol bil pyro4
ribo ad14 pabal y pyro4 an pabal bili pyro4
an prol bil.
ribo ad14 pabal y
an prol y bil pyros
an prol bill
ribo ad14 y pyro4 :1
ribo ad14"pabal bil
an prol \(y\)
an pro1 pabal bil pyro4:

1 Single exchange pabal - y
1. 4-strand double exchange an - ad14; ad14 - pro1

1 4-strand double exchange an - ad14; ad14 - pro1
1. "3-strand double exchange ribo - an; pabal - y

1 3-strand double exchange an - ad14; pro1 - pabal
1. 3-strand double exchange pro1 - pabal; paba1 - \(y\)

1 2-strand double exchange ad14-pro1; pabal-y
1.2-strand double exchange ad14 - pro1; paba1 - y

1 -strand double exchange pabal - y; y - bi1
1. 4-strand double exchange within pabal-y; single exchange pro1 - pabal

Table \(\mathbb{F} /\). cont \({ }^{\text {d. }}\)
Genotypes Number of asci
Perithecium No.1. Dissected 9.9.55.
ribo pro1 bil
ribo an ad14 pabal y pyro4 an pabal y pyro4: ad14. pro1 bi1
ribo an pabal y
an pabal y pyro4
adi4 pro1 bil pyro4
ribo ad14 pabal y pyro4 an adi4 paba1 y
ribo ad14 pabal y pyro4
an prol bil
an pabal y pyro4
an prol bil
Perithecium No.2. Dissected 11.9.55.
ribo ad14 pabal y
ribo ad14 pabail y pyro4.
an prol bil
an pro1 bil pyro4
ribo ad14 pabal y pyro4 ribo ad14 pabal y pyro4
an prol bil.
an prol bil
ribo ad14 pabal y pyro4
an prol bil pyros
an prol bil
ribo adi4 pabal y pyro4
ribo an pro1 bili.
ad14 pabal y pyro4.
an proi bil
ribo adil pabal \(y\) Single exchange an - ad14 ribo prol bil pyro4: an prol bil pyro4.
ribo ad14 pabal y pyro4 1 Single exchange ad14-pro1 ribo adi4 pro1 bil pyro4
an pabal y
an prol bil
ribo ad14 paba1 y pyro4 1 Single exchange ad14 - pro1
1 No exchange:

2 No exchanges
1. Single exchange ribo - an
an pabal y
an proi bil pyros
-
C.igle exchange ribo an
1. 3-strand double exchanges ribo - an; an - ad14 and ribo - an; ad14 - pro1. 4-strand double exchange: an - ad14; ad14 - pro1
1. 4-strand double exchange within ad14-pro1; single exchange ribo - an

1 Incomplete

3 Incomplete

2 Incomplete

2 No exchanges

Table H/. cont \({ }^{\text {d }}\).
Genotypes Number of asci Comments
```

Perithecium No.2. Dissected 11.9.55.
ribo adl4 pabal y pyro4 1. Single exchange adl4 - pro1
ribo ad14 pro1 bil
an pabal y pyro4
an prol bil
ribo ad14 pabal y
ribo ad14 prol bil
an pabal y pyro4
an pro1 bil pyro4
ribo ad14 pabal y pyro4 1 Single exchange pabal - y
ribo ad14 paba1 bil.
an pro1 y
an pro1 bil pyro4
ribo ad14 paba1 y pyro4
ribo ad14 pabal bi1 pyro4
an pro1 y
an prol bil
ribo ad14 paba1 y
ribo an pabal y
ad14 pro1 bil pyro4
an prol bil pyro4
ribo ad14 pro1 bil pyro4
ribo an prol bil pyros
ad14 pabal y
an paba1 y
ribo ad14 bil
ribo an prol pabal y
ad14 paba1 y pyro4
an prol bil pyro4
ribo ad14 paba1 y bi1 pyro4
ribo an prol pyro4
ad14 paba1 y
an pro1 bil
ribo ad14 paba1 y pyro4
ribo ad14 prol bil
an bil pyros:
an prol pabal y
ribo ad14 pabal y pyro4
ribo ad14 pro1.y
an pabal bil pyro4
an prol bil

```

Table H/ cont \({ }^{\text {a }}\).
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Genotypes Number of asci Comments}} \\
\hline & & \\
\hline ribo adi4 pabal y pyro4 & \multirow[t]{4}{*}{1} & 3-strand double exchanges \\
\hline ribo an prol bil pyros & & ribo - an; an - adit and \\
\hline pabal y & & ribo - an; adit - pro1. \\
\hline an adil pro1 bid & & 2-strand double exchange \\
\hline & \multirow[t]{5}{*}{1} & \multirow[t]{5}{*}{3-strand double exchanges ribo - an; pabal - y and ad14-pro1; paba1 - y. 4-strand double exchange ribo - an; ad14 - pro1.} \\
\hline ribo an proi y
ribo adi
proi bil & & \\
\hline an pabal bil pyro4 & & \\
\hline & & \\
\hline & & \\
\hline \multirow[t]{9}{*}{```
ribo ad14 pro1 y pyro4
ribo an bil.
ad14 paba1 y
an pro1 paba1 bi1 pyro4
```} & \multirow[t]{9}{*}{1} & 3 -strand double exchanges \\
\hline & & ribo- an; adi4-prol and \\
\hline & & ribo - an; pabal - y and \\
\hline & & adi4 - proi; pro1-pabal \\
\hline & & and pro1-pabai; pabal - y. \\
\hline & & 4-strand double exchange \\
\hline & & ribo - an; prol - pabal. \\
\hline & & 2-strand double exchange \\
\hline & & ad14 - pro1; paba1 - y. \\
\hline \multirow[t]{7}{*}{```
ribo an ad14 pro1 bil pyro4
ribo an pro1 y
paba1 y
```} & \multirow[t]{7}{*}{1} & 4-strand double exchange \\
\hline & & within ribo - an. 2-strand \\
\hline & & double exchange an - adit; \\
\hline & & ad14-pro1. 4-strand \\
\hline & & double exchanges an - adis; \\
\hline & & paba1 - y and ad14-pro1; \\
\hline & & paba1 - y. \\
\hline
\end{tabular}
ribo ad14 pro1 pabal. y pyro4 1 Incomplete ribo an y pyro4
ad14 pabal y
an prol bil.
an paba1 y
1 Incomplete
an prol bil pyro4
an adi4 proi bil
1 Incomplete
an pabal y pyro4
ribo ad14 pro1 bil
1 Incomplete
an pabal y pyro4
ribo ad14 y. 1
an pro1 paba1 y

Table \(H /\). cont \({ }^{\text {d. }}\)
Genotypes Number of asci Comments
Perithecium No.3. Dissected 13.9.55.
ribo ad14 pabal y
1. No exchanges
ribo ad14 pabal y
an prol bil pyro4.
an pro1 bil pyro4
ribo adlit pabal y pyro4 ribo ad14 pabal y pyro4 an pro1 bil
an prol bil.
ribo ad14 pabal y
ribo ad14 pabal y pyro4
an prol bil
an pro1 bil. pyro4
ribo ad14 pabal y pyro4 ribo ad14 pabal y an prol bil
ribo ad14 pabal y pyro4 ribo ad14 paba1 y an prol bil pyro4.
ribo ad14 pabal y pyro4. an prol bil
an prol bil
ribo ad14 pabal y pyro4 ribo an prol bil pyro4 ad14. pabal y
an prol bil.
ribo ad14 pabal y pyro4
ribo an prol bil
ad14 pabal y
an pro1 bil pyro4
ribo ad14 pabal y
ribo an prol bil pyrot
ad14 pabal y
an prol bil pyro4
ribo adli4 paba1 y pyro4 ribo ad14 pro1 bil pyro4
an pabal y
an prol bil.
ribo ad14 pabal y
an pabal y pyro4
an pro1 bil.

1 No exchange

2 No exchanges

1 No exchange

2 No exchanges

1 No exchange

1 Single exchange ribo - an

1 Single exchange ribo - an

1 Single exchange ribo - an

1 Single exchange ad14 - pro1

1 Single exchange ad14 - pro1

Table \(H /\). cont \({ }^{\text {d. }}\)

\section*{Genotypes}

Number of asci
Perithecium No. 3 . Dissect
ribo ad14 pabal y pyro4
an pabal y pyro4
an pro1 bi1
ribo ad14 pabal y
ribo ad14 pabal bil pyro4
an pro1 y pyro4
an pro1 bil
ribo ad14 prol bil pyro4
ribo an pabal y pyro4
ad14 paba1 y
ribo ad14 pabal y pyro4
ribo an prol bil
ad14 pro1 bil pyro4:
an pabal y
ribo ad14 pabal y pyro4
ribo an prol bil pyro4 ad14 bil
an prol pabai \(y\)
ribo ad14 pabal y pyro4
ribo pro1 bil pyro4
an adi4 pabal bil
an prol \(y\)
ribo ad14 pro1 bil
ribo an pabal \(y\)
ad14 prol bil pyro4
an paba1 y pyro4
ribo adl4 proi bil pyro4
ribo an pabal y
ad14 prol bil.
an pabal y pyro4
ribo ad14 pabal y pyro4
ribo ad14 pro1 y
an pabal bili pyrot
an prol bil
ribo ad14 bil pyro4
ribo an proi bil.
ad14 pro1 pabal y
an pabal y pyro4

1 Single exch ange ad14pro1

1 Single exchange pabal - y
1. 3-strand double exchange ribo - an; ad14 - prol
1. 3-strand double exchange ribo - an; ad14 - pro1

1 3-strand double exchange ribo - an; pro1 - paba1

1 3-strand double exchange an - ad14; pabai - y

1 4-strand double exchange within ad14 - proi; single exchange ribo - an.

1 4-strand double exchange within adi4 - pro1; single exchange ribo - an

1 2-strand double exchange ad14-pro1; paba1 - y

1: 3-strand double exchanges ribo - an; ad14 - proi and ad14-prol; pro1 - paba1. 4-strand double exchange ribo - an; pro1 - paba1
```

Table H/. cont(t.
Genotypes Number of esci Comments
Perithecium No.3. Dissected 13.9.55.
ribo paba1 y pyro4 1 2-strand double exchange
ribo an prol bil
ad14 pabal y
ribo ad14 y pyro4.
1 2-strand double exchange
pro1 - paba1; paba1 - y.
ribo ad14 pro1 pabal bil
an paba1 y pyros
an prol bil
ribo ad14 bi1
ribo ad14 pro1 paba1 y bil
an paba1 y pyro4
an prol pyro4
ribo an pabal y
1 Incomplete
ad14 pro1 bil pyro4
ribo adl4 paba1 y pyro4
1 Incomplete
an pro1 bil
-
ribo ad14 pabal y pyro4 (1 spore) 1 ABNORMAL
ribo an pro1 bil (3 spores)
an pabal y (4 spores)
1 3-strand double exchanges
ad14 - pro1; pro1 - pabal
and pro1 - paba1; y - bi1.
4-strand double exchange
ad14 - pro1; y - bil.
1 No growth
ribo ad14 pabal y pyrot (1 spore) 1 ABNORMAL ribo an pro1 bil (3 spores)
an pabal y (4 spores) 1 ABNORMAL
ribo adl4 pro1 bil pyro4 (2 spores)
ribo ad14 pro1 pyro4 (2 sporesi)
Perithecium No.4. Dissected 15.9.55.
ribo ad14 pabal y pyro4 5 No exchanges
ribo ad14 pabal y
an pro1 bil pyro4
an prol bil
ribo ad14 pabal y 1: No exchange
an prol bil pyro4
an pro1 bil

```
ribo adlu pabal y pyro4 ribo an prol bil pyro4 ad14 pabal y
an prol bil
ribo ad14 pabal \(y\) ribo an prol bil pyro4
ad14 pabal y an prol bil pyro4

Table H/ . cont \({ }^{\text {d }}\).
Genotypes Number of asci Comments
Perithecium No.4. Dissected 15.9.55.
ribo ad14 pabal y
ribo an prol bil
ad14 pabal y pyro4
an pro1 bil pyeo4
ribo ad14 pabal y ribo an prol bil on pro1 bil pyro4
ribo ad14 pabal y pyros
ribo pro1 bil pyro4
an adit pabal y
an prol bil
ribo ad14 pabal y pyro4
ribo ad14 pro1 bil
an pabal y pyro4
an prol bil
ribo ad14 paba1 y ribo ad14 prol bil pyro4
an pabal y pyro4
an prol bil.
ribo ad14 pabal y pyro4 ribo ad14 pro1 bil
an pabal y
an pro1 bil pyro4
ribo ad14 paba1 y pyro4 ribo ad14 bil
an prol pabal y pyros:
an prol bil
ribo ad14 pabal y
ribo ad14 pabal bil pyro4
an pro1 y
an pro1 bil pyro4
ribo ad14 pabal y bil pyro4 ribo ad14 pro1.
an pabal y
an prol bil pyro4
ribo ad14 pabal
ribo adi4 pabal y bil pyro4 an pro1 y pyro4
an prol bil.
1. Single exchange ribo - an
1. Single exchange an - ad14

1 Single exchange ad14-pro1 \(\because\)
1. Single exchange ad14 - prol

1 Single exchange ad14 - pro1

1 Single exchange pro1 - paba1

1 Single exchange paba1 - y

1 3-strand double exchange ad14 - pro1: y - bil

1 3-strand double exchange pabal - y; y - bil

Table H/. cont \({ }^{\text {d. }}\)

Genotypes
Perithecium No.4. Dissected 15.9.55.
ribo ad14 pabal y pyro4
ribo an pabal \(y\)
ad14 pro1 bil pyro4
an prol bil
ribo ad14 pro1 bil
ribo ad14 proi bil pyro4
an pabal y
an pabal y pyro4
ribo ad14 pro1 pabal y pyro4
ribo an pabal \(y\)
ad14 bil
an prol bil pyro4
ribo ad14 prol y pyros
ribo an prol bil
an pabal y pyro4
ribo pro1 y
ribo an pro1 bil.
ad14 paba1 y pyro4
an ad14 pabal bil pyro4
ribo ad14 paba1 y
ribo an pabal bil
ad14 pro1 bi.1 pyro4
an prol y pyro4
ribo ad14 pabal y ribo prol bil pyro4. an adi4 pro1 pyro4.
an pabal y bil.
xibo ad14 prol y
ribo ad14 pro1 bil
an pabal y pyro4.
an pabal bi1 pyro4.
ribo ad14 pro1 pyro4
ribo an pabal y
ad14 pabal y bil
an prol bil pyro4.
1. 2-strand double exchange ribo - an; ad14 - pro1

1 4-strand double exchange. within ad14 - pro1

1 2-strand double exchange ribo - an; pro1 - pabal. 3-strand double exchanges ribo - an; ad14-pro1 and ad14 - pro1; pro1 - paba1.

1 3-strand double exchanges ribo - an; pabal - y and ad14-pro1; pabal-y. 4-strand double exchange ribo - an; ad14 - pro1.
1. 2-strand double exchange: an - ad14; paba1 - y. 4-strand double exchanges ribo - an; an - ad14 and ribo - an; pabal - y.

1 2-strand double exchange ribo - an; ad14 - pro1. 3-strand double exchanges ribo - an; pabal - y and ad14 - pro1; paba1 - y.
1. 2-strand double exchange ad14 - pro1; y - bil. 3 -strand double exchanges an - ad14; ad14 - pro1 and an - adi4; y - bil.

1 4-strand double exchange within ad14 - pro1; single exchange pabal - y.
1. 2-strand double exchange ribo - an; y - bil.
3-strand double exchanges ribo - an; ad14 - pro1 and ad14-pro1; y-bi1.

Table \(H /\), cont \({ }^{\text {d }}\).
Genotypes Number of asci Comments
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Perithecium No.4. Dissected 15.9.55.} \\
\hline pibo adi4 pabal bil & \multirow[t]{3}{*}{1} & 3-strand 0 \\
\hline ribo pro1 y & & an - ad14; ad14 - pro1 and \\
\hline an ad14 pro1 bil pyro4 & & \begin{tabular}{l}
an - ad14; \\
4-strand
\end{tabular} \\
\hline & & \\
\hline ribo ad14 pabal y pyro4 & 2 & Incomplete \\
\hline an prol bil & & \\
\hline an prol bil & 1 & Incomplete \\
\hline an pabal y pyro4 & 1 & Incomplete \\
\hline an prol bil & & \\
\hline
\end{tabular}

Perithecium No.5. Dissected 17.9.55. ribo ad14 pabal y pyro4 1. No exchange. ribo ad14 pabai. y an prol bil pyro4
\(x\) ibo ad14 pabal y
1 No exchange
an pro1 bil pyro4
an prol bil pyro4
ribo ad14 pabal y pyro4 " il No exchange ribo ad14 pabal y an prol bil
an proll bil pyro4
ribo ad14 paba1 \(y\)
ribo an proi bi1
adlu pabal y pyros
an pro1 bil pyro4
ribo ad14 pabal y
1 Single exchange adi4 - prol ribo ad14 pro1 bil pyro4
an pabal y pyro4
an prol bil
ribo ad14 paba1 y
an pabal y
an prol bil pyro4
ribo ad14 pabal y pyro4 \(\mathrm{i}^{\prime \prime}\) Single exchange ad14 - pro1
ribo ad14 pro1 bil
an pabal y
an pro1 bil pyro4.
ribo ad14 pabal y
1 Single exchange ad14-pro1 ribo ad14 prol bil pyro4 an pabal y pyro4

Table \(\mathrm{F} /\). cont \({ }^{\text {d. }}\)
Genotypes Number of asci Comments
Perithecium No.5. Dissected 17.9.55.
ribo ad14 pabal y
ribo ad14 prol bil pyros
an pabal y
an prol bil pyro4
ribo ad14 pabal y
ribo ad14 bil.
an pro1 pabal y pyro4.
an prol bil pyros
ribo ad14 pabal y
ribo ad14 paba1 bil pyro4
an prol y pyro4
an prol bil
ribo ad14 pabal y pyro4 ribo ad14 pabal bil pyro4 an prol y
an pro1 bil
ribo ad14 pabal y pyro4 ribo ad14 pro1 bil an pro1 y
an pabai bil pyros
ribo ad14 pabal y pyro4
ribo an proz bil
an prol
ad14 pabal y bil pyro4
ribo ad14 pabal y
ribo an prol bil pyro4
ad14 prol bil pyro4
an pabal. y
ribo ad14 pro1 paba1 y pyro4 an pabal y
an pro1 bil
ribo ad14 prol bili pyro4.
ribo an prol bil.
ad14 pabal y pyro4
an pabal. y...
ribo ad14 pabal bil pyro4 ribo an prol y pyros
ad14 paba1. y
an prol bil

1 Single exchange pro1 - paba1
1. Single exchange pabal - y

1 Single exch \({ }^{\text {ªnge }}\) pabal - y

1 " 3 -strand double exchange ad14-proif pabai - y

1 3-strand double exchange ribo - an; y - bil

1 3-strand double exchange: ribo - an; ad14 - pro1

1 3-strand double exchange. ad14-pro1; pro1 - paba1

1 4-strand double exchange ribo - an; ad14 - pro1.

1 ! 3-strand double exchange ribo - an; pabal - \(y\).

Table \(\mathrm{H} /\). cont \({ }^{\text {d }}\).
Genotypes Number of asci Comments
Perithecium No.5. Dissected 17.9.55.
ribo an prol pyro4
ribo an prol bil pyro4.
adi4 paba1 y bi1
ad14 paba1 y
ribo ad14 pro1 y pyro4 ribo ad14 paba1. y bil pyro4 an prol
an paba1 bil
ribo ad14 pabal bil ribo an proi bil pyro4 an pabal y
ribo an prol bil
ad14 bil pyro4
an pabal y
ribo ad14 pro1 pabal y ribo an proi bil pyro4 an \(y\)

1 4-strand double exchange within ribo - an. Single exchange y - bil

1 2-strand double exchange ad14-pro1; paba1 - y. 4 -strand double exchanges ad14-pro1; y - bil and paba1 - y; y - bil.

1 3-strand double exchanges ribo - an; ad14 - pro1 and ad14-pro1; paba1-y. s-strand double exchange ribo - an; paba1 - y.

1 3-strand double exchanges ribo - an; pro1 - pabal and ad14 - pro1; pro1 - pabai. 4-strand double exchange ribo - an; ad14 - pro1.
1. 2-strand double exchange ad14 - pro1; pro1 - paba1. 3-strand double exchanges ribo - an; pabal - y and ad14 - pro1; pabal - y and pro1 - paba1; paba1-y. 4-strand double exchanges ribo - an; ad14-pro1 and ribo - an; pro1 - paba1.
an pro1 bil pyro4:
an pro1 bil 2 Incomplete
Perithecium No.6. Dissected 15.11.55.
ribo ad14 pabal y pyro4 2 No exchanges
ribo adl4 pabal y pyro4
an pro1 bil.
an prol bil.
\begin{tabular}{|c|c|c|}
\hline ribo adi4 pabal y & \multirow[t]{3}{*}{1} & \multirow[t]{2}{*}{No exchange} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{ribo adi4 pabal y an prol bil pyro4}} & \\
\hline & & \\
\hline ribo ad14 pabal y pyro4 & \multirow[t]{3}{*}{2} & \multirow[t]{4}{*}{No exchanges} \\
\hline ribo ad14 pabal y & & \\
\hline an prol bil: & & \\
\hline an prol bil pyrou & & \\
\hline
\end{tabular}

Ta:ble H/. cont \({ }^{\text {d. }}\)
```

Genotypes Number of asci Comments
Perithecium No.6. Dissected 15:11.55.
ribo ad14 pabal y pyro4 1 Single exchange ribo - an
ribo an prol bil
ad14 paba1 y pyro4
an prol bil
ribo ad14 pabal y
ribo an prol bil
ad14 paba1 y pyro4
an pro1 bil pyro4
ribo ad14 pabal y
ribo prol bil pyro4.
an ad14 pabal y
an prol bil pyro4
ribo a.d14: paba1 y
ribo ad14 pro1 bil pyro4
an pabal y
an pro1 bi1 pyro4
ribo ad14 pabal y pyro4
ribo ad14 pro1 bil.
an pabal y
an prol bil pyro4
ribo ad14 pabal y
ribo adi4 pabal y bil pyro4
an prol.
an pro1 bil pyroA
ribo ad14 pabal y pyro4
ribo adl4 pabal y bil
an prol pyro4
an prol bil
ribo ad.14 paba1 y pyro4
ribo an paba1 y
ad14 prol bil pyro4
an prol bil
ribo ad14 pabal. bil
ribo ad14 pro1 y pyro4
an pabal y
an pro1 bil pyro4
ribo ad14 paba1 bil pyro4
ribo ad.14 y
an prol pabal y pyro4:
an prol bil

```

Table H/. cont \({ }^{\text {d }}\).
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Genotypes Number of asci Comments} \\
\hline \multicolumn{2}{|l|}{Perithecium No.6. Dissected 15.11.55.} \\
\hline ribo an pro1 bil pyro4 '1 & 4-strand double exchange \\
\hline ribo an pabal y & within ribo - an; single \\
\hline adit pro1 bil pyro4 & exchange ad14-prol. \\
\hline adi4 pabal y & \\
\hline ribo prol pabal y pyro4 1 & 2-strand double exchange \\
\hline ribo ad14 prol bil pyro4 & an - adit; pro1-pabal. \\
\hline an pabal y & 4-strand double exchanges \\
\hline an adit bil & an - ad14; ad14 - pro1 and ad14 - pro1; pro1 - paba1. \\
\hline ribo ad14 pro1 bil pyro4 1 & Incomplete \\
\hline a.d14 pabal y & \\
\hline \multicolumn{2}{|l|}{an prol bil pyro4 (8 spores) 1 Selfed green ascus} \\
\hline \multicolumn{2}{|l|}{Perithecium No.7. Dissected 16.11.55.} \\
\hline ribo ad14 pabal y 1. & No exchange \\
\hline \multicolumn{2}{|l|}{ribo ad14 pabal y} \\
\hline \multicolumn{2}{|l|}{an prol bil pyro4} \\
\hline \multicolumn{2}{|l|}{an prol bil pyro4.} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{ribo ad14 pabal y pyro4 3 , No exchanges}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{an proi bii pyro4} \\
\hline \multicolumn{2}{|l|}{an prol bil} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{ribo adi4
ribo adit paba1
y}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{an prol bil} \\
\hline \multicolumn{2}{|l|}{an proi bil} \\
\hline ribo adl4 pabail y (2 spores) 1 & Ascus contained 7 normal \\
\hline ribo ad14 pabal y pyro4 (1 spore) & spores and a fragment. \\
\hline \multicolumn{2}{|l|}{an pro1 bil pyro4 (2 spores) No exchanges} \\
\hline \multicolumn{2}{|l|}{an pro1 bi1} \\
\hline \multicolumn{2}{|l|}{ribo adl4 pabal y pyro4 1 Single exchange ribo - on} \\
\hline \multicolumn{2}{|l|}{ribo an prol bil} \\
\hline \multicolumn{2}{|l|}{ad14 pabal y pyro4} \\
\hline \multicolumn{2}{|l|}{an prol bil} \\
\hline \multicolumn{2}{|l|}{ribo adi4 pabal y pyro4 1 Single exchange adit - pro1} \\
\hline \multicolumn{2}{|l|}{ribo ad14 prol bil \(\because\).} \\
\hline \multicolumn{2}{|l|}{an pabal y pyro4} \\
\hline \multicolumn{2}{|l|}{an prol bil} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{ribo adi4 pabal y 1 Single exchange pabal - y}} \\
\hline & ribo ad14 paba1 bil \\
\hline \multicolumn{2}{|l|}{an prol y pyrot} \\
\hline an prol bil pyro4 & \\
\hline
\end{tabular}

Table H/ . cont \({ }^{d}\).

\section*{Genotypes Number of asci Comments}

Perithecium No. 7. Dissected 16.11.55.
ribo ad14 pabai y pyro4 1 3-strand double exchange
ribo an prol bil
an pabal y
ad14 pro1 bil pyro4
ribo ad14 pro1 pabal pyro4
ribo ad14 bil
an pabal y
an pro1 bil pyro4
ribo ad14 pro1 bil pyro4
ribo an pabal y pyro4
an pabal y
ad14 pro1 bil
ribo ad14 pabal. y
ribo an pro1 bil.
ad14 pro1 pabal y pyro4
an bil pyro4

1 3-strand double exchange ad14 - pro1; pro1 - paba1

1 4-strand double exchange within ad14 - pro1; single exchange ribo - an.
1. 2-strand double exchange ad14-pro1; pro1 - paba1. 3-strand double exchanges ribo - an; ad14-pro1 and ribo - an; pro1 - paba1.

Perithecium No.8. Dissected 17.11.55.
ribo ad14 pabal y pyro4 2 No exchanges
ribo ad14 paba1 y
an prol bil pyro4
an prol bil
ribo ad14 pabal y
1 No exchange
ribo ad14 pabal y
an prol bil pyro4
an prol bil pyro4
ribo ad14 pabal y pyro4
ribo an pro1 bil.
ad14 paba1 y pyro4
an prol bil.
ribo ad14 pabal y 1 Single exchange ad14 - pro1
ribo ad14 proli bil
an pabal y pyro4
an prol bil pyro4
ribo prol bil
1. 4-strand double exchange
ribo pro1 bil
an ad14 paba1 y pyro4
an ad14 pabal. y pyro4
ribo ad14 pabal y pyro4
1 Single exchange ribo - an
ribo ad14 pyro4
1 2-strand double exchange pro1-paba1; y - bi1
an prol bil

Table \(\mathrm{H} /\). cont \({ }^{\mathrm{a}}\).
Genotypes Numbers or asici Comments.
Perithecium No.8. Disisected 17.11.55.
ribo ad14 paba1 y . 1. 3-strand double exchange ribo pro1 bil pyro4. an - ad14; y - bil
an ad14 pabal y bil pyro4
an prol
ribo ad14 pabal y bil
an pabal y bil
an prol pyro4
ribo ad14 pabal bil
ribo an prol bil pyro4
ad14 pro1 y
an pabal y pyro4
1. 4-strand double exchange within y - bil; single exchange ad14-pro1.
1. 3-strand double exchanges ribo - an; ad14 - prol and ad14-pro1; paba1 - y. 4-strand double exchange ribo - an; pabal-y.

Perithecium No.9. Dissected 18.11.55.
ribo adl4 pabal y pyro4 3 No exchanges
ribo ad14 pabal:y
an prol bil pyros
an prol bil
ribo ad14 pabal y
3 No exchanges
ribo ad14 pabal. y
an proi bil pyro4
an prol bil pyro4
ribo ad14 pabal y pyro4
ribo an prol bil
ad14 pabal y
an pro1 bil pyro4
ribo ad14 paba1 y
ribo an pro1 bil pyro4
ad14 pabal y
an prol bil pyro4
ribo ad14 pabal y pyro4
ribo an prol bil pyrot
ad14 pabal y
an prol bil.
ribo adl4 pabal y
ribo an prol bil pyro4
ad14 pabai y pyro4
an prol bili
ribo ad14 pabal y . 1 Single exchange ribo - an
ribo an prol bil pyro4
an pro1 bil pyro4

1 Single exchange ribo - an

1 Single exchange ribo - an

2 Single exchanges ribo - an

2 Single exchanges ribo - an

Table \(H /\). cont \({ }^{\text {d. }}\)
Genotypes Number of asci Comments
Perithecium No.9. Disspected 18.11.55.
ribo ad14 pabal y pyro4
ribo ad14 pro1 bil
an pabal y pyro4
an pro1 bil.
ribo ad14 pabal y pyro4 ribo ad14 pro1 bil pyro4.
an pabal y
an prol bil
ribo ad14 pabail y pyro4.
ribo ad14 prol bil
an pabal y
an prol bil pyro4.
ribo ad14 pabal y ribo ad14 pro1 pabal y pyros en bil.
an prol bil pyro4
ribo pro1 bil pyro4
an ad14 prol bi1
an pabal y
ribo ad14. pabal y pyro4
ribo an pabal y
ad14 prol bi1
an prol bil pyros
ribo ad14 prol bil pyro4 ribo ad14 pro1 bil an pabal y
an pabal y pyros
ribo ad14 prol bil
ribo an paba1 y pyro4
ad14 pro1 bi. 1
an pabal y pyro4
ribo ad14 pro1 pyro4
ribo prol bil pyro4
an pabal y bil
ribo ad14 pro1 bil pyro4:
ribo an bil pyros
ad14 pabal y.
an prol paball y
1. Single exchange ad14 - prol
1. Single exchange ad14 - pro1

1 Single exchange ad14 - pro1

1 2-strand double exchange ad14 - pro1; pro1-pabal
1. 3-strand double exchange an - ad14; ad14 - pro1

1 2-strand double exchange ribo - an; adit - pro1

1 4-strend double exchange within ad14-pro1

1 4-strand double exchange within ad14-pro1; single exchange ribo - an

2-strand double exchange ad14-pro1: y - bi1. 4-strand double exchanges. an - ad14; ad14-pro1 and an - ad14; y - bil.
1. B-strand double exchanges ribo - an; ad14 - prol and ad14- pro1; pro1 - paba1. \(4-\) strand double exchange ribo - an; pro1 - paba1.
```

Table H/. cont .
Genotypes Number of asci Comments
Perithecium No.9. Dissected 18.11.55.
ribo prol bil pyros
1 4-strand double exchange
ribo paba1 y bil within an - ad14. 2-strand
an ad14 pro1.. double exchange ad14 - pro1;
an ad14 paba1 y pyro4 y - bi1.
Perithecium No.10. Dissected 19.11.55. to 20.11.55.
ribo ad14 pabal y pyro4 3 No exchanges
ribo ad14 pabal y pyro4
an prol bil
an prol bil
ribo ad14 pabal y pyro4
11* No exchanges
ribo ad14 pabal y
an prol bil pyro4
an prol bil
ribo adl4 pabal:y
ribo adl4 paba1 y
an pro1 bil pyro4
an pro1 bil pyro4:
ribo ad14: pabal y pyro4
1 No exchange.
an pro1 bil.
an pro1 bil pyro4
ribo ad14 pabal y
ribo adl4 pabal y
an prol bil pyro4
ribo ad14 pabal y pyro4
5...No exchanges
1 No exchange
ribo ad14 pabal y
an proi bil
ribo ad14 pabal y
ribo an pro1 bil pyro4
ad14 paba1 y
an prol bil pyro4
ribo ad14. paba1 y pyro4
ribo an prol bil
ad14 pabal y pyro4
an prol bil
ribo ad14 pabal y pyro4 : 1 Single exchange ribo - an
ribo an prol bil
ad14 paba1 y
an pro1 bil pyro4
ribo ad14 pabal y ...1 Single exchange an -ad14
ribo prol bil
an ad14 pabal y pyro4
an proi bil pyro4

```

Table \(\mathrm{H} /\). cont \({ }^{\text {d. }}\)

\section*{Genotypes Number of asci Comments}

Perithecium No.10. Dissected 19.11.55. to 20.11.55.
ribo ad14 pabal y pyro4 1 '. Single exchange ad14 - pro1.
ribo ad14 prol bil pyro4
an pabal y
an pro1 bil.
ribo ad14 pabal y
ribo ad14 prol bil pyro4
an pabal y
an pro1 bil pyro4
ribo ad14 pabal y
ribo ad14 proi bil
an pabal y pyro4
an pro1 bil pyro4
ribo ad14 paba1 y pyro4 2 Single exchanges ad14 - pro1
ribo ad14 pro1 bil
an pabal y
an pro1 bil pyro4
ribo ad14 pabal y pyro4
1 Single exchange ad14 - pro1
ribo ad14 prol bil
an pabal y pyro4
an pro1 bil
ribo ad14 pabal y
ribo ad14 pro1 bil pyro4
an pabal y pyro4
an pro1 bil.
ribo ad14 paba1 y pyro4
ribo ad14 bil pyro4
an pro1 pabal y
an proi bil.
ribo ad14.bil
an prol pabal y pyro4
an pro1 bil pyro4
ribo ad14 paba1 y pyro4
ribo ad14 pabal bil
an pro1 y
an pro1 bid pyro4
ribo ad14 pabal y 1 Single exchange paba1 - y
ribo ad14 paba1 bill pyro4
an prol y
an prol bil pyro4

Table \(\mathrm{H} /\). . cont \(^{\mathrm{d}}\).
Genotypes Number of asci Comments
Perithecium No.10. Dissected 19.11.55. to 20.11.55.
ribo ad14 pabal y pyro4 \(\quad 1\) Single exchange pabal - y ribo ad14 pabal bil
an pro1 y pyro4
an prol bil
ribo ad14 pabal y
an prol
an prol bil pyro4:
ribo ad14 paba1 y pyro4.
xibo ad14 pro1 y
an pabal bil pyro4
an pro1 bil
ribo ad14 pro1 bil pyro4: ribo ad14 bill pyro4 an pabal y
ribo ad14 pabal y
ribo prol bil pyro4
an prol y
an ad14 paba1 bil pyro4
ribo ad14 pro1 pabal y ribo ad14 bil.
an pabal pyro4 y
an prol bil pyro4
ribo an prol bil pyro4
ribo ad14 pro1 bil.
an pabal y pyro4
ad14 pabal y
ribo an proi bil
ribo ad14 pabal bil pyro4.
an prol y pyro4
ad14 pabal y
ribo ad14 paba1 bill ribo prol bil
an adi4 pabal y pyro4.
an prol bil pyro4
ribo ad14 pabal y
ribo ad14 pabal pyro4
an prol y bill.
an prol bil pyro4
ribo ad14 pabal y bilı
ribo ad14 pro1 pyro4.
an pabal y
an pro1 bil pyro4

1 Single exchange y - bil

1 : 2-strand double exchange ad14 - pro1; paba1 - y

1 4-strand double exchange ad14 - pro1; pro1 - paba1

1 : 3-strand double exchange an - ad14; paba1 - y

1 3-strand double exchange ad14 - pro1; pro1 - paba1

1 4-strand double exchange ribo - an; ad14 - pro1.

1 4-strand double exchange ribo - an; pabal - y

1 3-strand double exchange an -ad14; pabal - y.

1 2-strand double exchange. pabal - y; y - bil
1. B-strand double exchange ad14 - pro1; y - bil

Table H/. cont \({ }^{\text {d. }}\).
Genotypes. Number of asci Comments
Perithecium No.10. Dissected 19.11.55. to 20.11.55.
ribo adi4 pabal y pyro4 1 . 3-strand double exchange ribo ad14 pro1 bil ad14 - pro1; pabal - y
an prol y
an pabal bil pyro4
ribo ad14 pabal y
ribo an pabal y
ad14 prol bil pyro4
an prol bil pyro4.
ribo adil4 pabal y ribo ad14 prol pabal y
an bil pyro4
an prol bil pyro4
ribo ad14 pabal y pyro4
ribo an prol bill
an pabal y
ad14 prol bil pyro4:
ribo pabal y pyro4
ribo adl4 prol bil pyro4
an ad14: pabal y
an prol. bil.
ribo ad14 pabal y
ribo an prol bil pyro4 an paba1 y
ad14 pro1 bil pyro4
ribo an pabal y
ad14 prol bil pyro4
an pro1 bil pyro4
ribo ad14 paba1 y
ribo an prol y
ad14 pabal bil pyro4
an prol bil pyro4
ribo an proll bil pyro4
ribo ad14 bil
ad14 pabal y
an prol pabal y pyro4
ribo ad14 pro1 bil
ribo an pabal y pyro4
ad14 pabal y pyro4.
an prol bil

1 2-strand double exchange
1 2-strand double exchange ribo - an; ad14 - prol ad14-pro1; pro1 - paba1

1 3-strand double exchange ribo - an; ad14 - pro1

1 3-s.trand double exchange: an - ad14; ad14 - pro1
1. 3-strand double exchange ribo - an; ad14 - pro1

1 2-strand double exchange ribo - an; ad14 - pro1
1. 2-strand double exchange ribo - an; paba1 - y
1. 4-strand double exchange ribo - an; pro1 - paba1

1 3-strand double exchange ribo - an; ad14 - pro1

Table \(\mathrm{H} /\). cont \({ }^{\mathrm{d}}\).

ribo ad14 pro1 bil pyro4
ribo an pabal y
an pabail y pyro4
ad14 pro1 bil
ribo ad14 prol bil.
ribo an pabal y pyro4
an pabal y pyro4
ad14 prol bil
ribo adi4 prol bil pyro4.
ribo an prol bil pyro4 paba1 y
an ad14 paba1 y
ribo ad14 pro1 y pyro4 ribo a:d14 bil
an prol pabal bil pyro4
an pabal y
ribo ad14 pabal y
ribo pabal y bil pyro4
an ad14 prol
an pro1 bil pyro4
ribo ad14 pabal y
ribo an pro1 bil pyro4:
pabal y pyro4
an ad14 pro1 bil
1 4-strand double exchange. within ribo - an.

1 3-strand double exchanges pro1-paba1; y - bil and paba1-y; y-bi1. 4-strand double exchange pro1 - paba1; paba1 - y.

1 4-strand double exchange within ad14 - pro1; single exchange ribo - an.

1 4-strand double exchange: within ad14 - pro1; single exchange ribo - an
1. 3-strand double exchanges ribo - an; an - ad14 and an - ad14; ad14 - pro1. 4-strand double exchange ribo - an; ad14 - proi.

1 3-strand double exchanges ad14 - pro1; pabal - y and pro1 - paba1; paba1 - y. 4-strand double exchange ad14 - pro1; pro1 - paba1.

1 2-strand double exchanges an - ad14; ad14 - pro1 and ad14 - pro1; y - bil and an - ad14; y - bi1.

1 2-strand double exchange an - ad14; ad14 - pro1. 3-strand double exchanges ribo - an; an - ad14 and ribo - an; ad14 - pro1.

Table H/. cont \({ }^{\text {a }}\).

\section*{Genotypes Number of asci Comments}

Perithecium No. 10 Dissected 19.11.55. to 20.11.55.
ribo ad14 pabal bi1 1 2-strand double exchange
ribo an pabal y
an prol y bil pyro4
ad14 pro1 pyro4:
ribo ad14 prol pabal y bil
ribo ad14 prol bil
an pabal y pyro4
an pyro4
ribo an ad14 pro1 bil ad14 prol bil
ribo an prol pabal y
ribo ad14 pabal bi1 (3 spores) 1 ABNORMAL ribo ad14 pabal y (2 spores) an prot bil pyro4 (3 spores) y - bi1.

1 Incomplete

1 Incomplete
```

O

```
```

O

```
```

O

```
ribo - an; ad14 - pro1.
3 -strand double exchanges
ribo - an; y - bil and ad14
- proi; y - bil and pabal -
y; y - bil. 4-strand double
exchanges ribo - an; pabal
- y and ad14 - pro1; paba1
- y

1 4-strand double exchange within ad14 - pro1. 2-strand double exchange pro1 - paba1;

SUTMMARY.

Table I/.Cross pro1 pabal y//ad17 bil. From streak inoculum on minimalmedium. Prepared on the 1.11.55. Only the genotypes of thegerminated spores are given. If there were only two sporesof any one genotype, it was assumed that they were theresult of the mitotic division.
Genotypes Number of asci Comments
Perithecium No1. Dissected 3.1.56. pro1 pabal y 34 No exchanges
ad1r bil
ad1\% bilpro1 pabal y4 No exchanges
pro1 pabal yad17 bilpro1 pabal y3 No exchanges
ad17 bilad17 bilpro1 pabal y5 Single exchanges prol -prol ad17 bilpabal y
ad17 bilprol ad17 bil1 4-strand double exchange
pro1 ad1r bil.
pabal y
paba1 y
pro1 pabal y 4 Single exchanges paba1 - y
pro1 pabal bil.ad17 yad17 bil
pro1 ad17 bil
prol pabal bil
ad17 y
pabal y
prol pabal y bil
adir y
ad17 bil.1 4-strand double exchangepro1 - ad17; paba1 - y.
pro1 pabal bilad17pabai \(\ddagger\)
1. 3-strand double exchange paba1 - y; y - bi1.
pro1 paba1 y
```

Table I/. cont.
Genotypes Number of asci Comments
Perithecium No.1. Dissected 3.1.56. Incomplete
ad17 bil
prol pabal bil (1 spore) 1 ABNORMAL Single exchange
ad1r y (2 spores)
ad17 paba1 y (1 spore)
ad1% bi1 (2 spores)
Perithecium No.2. Dissected 5.1.56.
pro1 pabal y. 1 No exchanges
pro1 paba1 y
ad17 bil
ad17 bil
pro1 paba1 y 1 No exchanges
ad17 bill
a.d17 bil
prol pabal bil
prol pabal bil
a.d17 y
adyy y
Perithecium No.3. Dissected 7.1.56.
pro1 paba1 y _12 No exchanges
prol pabali y
ad17 bil
adl% bil
pro1 paba1 y No exchanges
adl7 bil.
ad17 bi1
pro1 pabail y
4 Single exchanges pro1 -
pro1 adil bil
pabal y
ad17 bil
pro1 paba1 y
1. Single exchange pro1 - adi7
pro1 a.dir bil
ad17 bil
pro1 pabal y
1 Single exchange pabal - y
pro1 pabal bili
ad17 y
a:d17 bi1
pro1 pabai y 1 Single exchange y - bil
pro1 paba1 y bil
ad.17
ad1r bil

```

Table I/. cont \({ }^{\text {d. }}\)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Genotypes Number of asci} & Comments \\
\hline \multicolumn{3}{|l|}{Perithecium No.3. Dissected 7.1.56.} \\
\hline prol pabal y & 1 & 2-strend double exchange \\
\hline \multicolumn{3}{|l|}{proi adit y : pro1 - adir; pabal - y} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{pabal bil}} \\
\hline & & \\
\hline prol pabal y & 1 & 2-strand double exchange \\
\hline prol adir & & proi - adit; y - bi1 \\
\hline \multicolumn{3}{|l|}{pabal y bil} \\
\hline \multicolumn{3}{|l|}{ad1r bil.} \\
\hline prol adir bil & 1 & 4-strand double exchange \\
\hline prol pabal bill & & pro1 - adit; pabal f y. \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{pabal y}} \\
\hline & & \\
\hline pro1 pabal y & 1 & 2-strand double exchange \\
\hline \multicolumn{3}{|l|}{pro1 pabai \({ }^{\text {a }}\) ( pabai - y; y - bil} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
adir y bil \\
ad17 bil
\end{tabular}}} \\
\hline & & \\
\hline pro1 pabal y (8 spores) & 1 & Selfed yellow ascus: MIXED PERITHECIUM. \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Perithecium No.4. Dissected 8.1.56. pro1 paba1. y \(\because \quad 5 \quad\) No exchanges}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{prol pabal y} \\
\hline \multicolumn{3}{|l|}{ad17 bil} \\
\hline \multicolumn{3}{|l|}{ad17 bil} \\
\hline \multicolumn{3}{|l|}{pro1 paba1 y . : 1 No exch ange.} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{ad17 bil}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{pro1 pabal y ad17 bi1}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \multicolumn{2}{|l|}{pro1 ad17 bil. adi7} \\
\hline \multicolumn{3}{|l|}{\multirow[b]{2}{*}{adir bil}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{pro1 pabal y \({ }^{\text {pro1 }}\) pabal bil \({ }^{\text {a }}\), Single exchanges pabal - y}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{adir y} \\
\hline \multicolumn{3}{|l|}{ad17 bil} \\
\hline proi pabai y & 2 & Single exchanges y - bil \\
\hline prol pabai y bil. & & \\
\hline ad17 bil & & \\
\hline
\end{tabular}

```

Table I/. cont'.
Genotypes

```
\(\qquad\)
```

Number of asci Comments:
Perithecium No.5. Dissected 9.1.56.
pro1 pabal y

1. Single exchange pabal - y
ad17 y
ad17 bil
```
prol pabail y
prol pabal y bil
ad17
ad. 17 bil
prol pabai y bil
pro1 adir bil.
ad17
paba1 y
prol pabal y
pro1 pabai bil
ad17
adir y bil
pro1 pabal y
prol adi7 bil
ad. 17 y
pabal bil.
prol pabal y
pro1 adir y
pabal bil
adil bil
pro1 pabal bil
prol pabal bil
ad17 y
ad17 y
proi pabal y
pro1 pabal y ad17 bi1.
Perithecium No.6. Dissected.12.1.56.
pro1 pabal \(y\)
pro1 pabal y
ad17 bil
ad17 bi1
pro1 pabal y 3 No exchanges
ad17 bi1
ad17 bi1
pro1 pabal y
1 No exchange:
```

ad17 bil

```
```

Table I/ cont.
Genotypes Number of asci Comments

```
```

Perithecium No.6. Dissected 12.1.56.

```
Perithecium No.6. Dissected 12.1.56.
pro1 pabal y * 1 Single exchwange pabal - y
pro1 pabal y * 1 Single exchwange pabal - y
ad17 y
ad17 y
ad17 bil
ad17 bil
pro1 paba1 y 1 . Incomplete.
pro1 paba1 y 1 . Incomplete.
ad1% bil
ad1% bil
ad17 bil
ad17 bil
1 Incomplete
1 Incomplete
prol pabal y:(8 spores) 1 Selfed yellow ascus.
prol pabal y:(8 spores) 1 Selfed yellow ascus.
    MIXED PERITHECIUM
    MIXED PERITHECIUM
Perithecium No.7. Dissected 12.1.56.
Perithecium No.7. Dissected 12.1.56.
pro1 pabal y 2 Single exchanges pabal - y
pro1 pabal y 2 Single exchanges pabal - y
pro1 pabal bil
pro1 pabal bil
ad17 y
ad17 y
ad17 bil
ad17 bil
pro1 pabal y 1 Incomplete
pro1 pabal y 1 Incomplete
ad17 bil
ad17 bil
Perithecium No.8. Dissected 14.1.56.
pro1 pabal y 3 No exchanges
pro1 paba1 y
ad17 bil
ad1% bil
Perithecium No.9. Dissected 14.1.56.
prol pabal y
pro1 paba1 y
ad17 bil
ad17 bil.
pro1 paba1 y
1. No exchahge.
prol pabal y
ad17 bil
pro1 pabal y
2 Single exchanges pro1 - ad17
pro1 adl7 bil
paba1 y
ad17 bil
prol pabal. y
1 Single exchange y - bil
pro1 paba1 y bil
ad.17
ad17 bil
pro1 pabal y bil
1 3-strand double exchange
pro1 - ad17; y - bi1.
```

prol pabal y
pro1 pabal bil
ad17

1 3-strand double exchange:
paba1 - y; y - bi1

Table I/. cont ${ }^{\text {d. }}$

Table J/.
Cross pro3 bil//prol ad15 pabal y. From streak inoculum on minimal medium. Prepared on the 17.1.56. Only the genotypes of the germinated spores are given. If there were only two spores of any one genotype, it was assumed that they were the result of the mitotic division.

```
Genotypes Number of asci Comments:
Perithecium No.1. Dissected 2.4.56.
pro3 bi1 : 10 No exchanges
pro3 bi1
pro1 ad15 paba1 y
pro1 ad15 paba1 y
pro3 bil
pro3 bil
pro1 ad15 paba1 y
pro3 bil 1 No exch ange
pro1 adi5 paba1 y
pro1 ad15 paba1 y
pro3 bil
pro3 ad15 pabal y
prol bil
pro1 ad15 paba1 y
```

pro3 bil
pro3 y
pro1 adi5 paba1 bil
pro1 ad15 pabal y
pro3 bil
1 Single exchange y - bil
pro1 ad15 pabal y bil
pro1 ad15 pabel y
pro3 bil 3 Incomplete
pro1 ad15 pabal y
pro1 ad15 paball y 1 Incomplete
pro1 ad15 paba1 y
pro1 ad15 pabal y 1 Incomplete
Perithecium No.2. Dissected 3.4.56.
pro3 bi1 5 No exchanges
pro3 bil
pro1 ad15 pabal y
pro1 ad15 pabal y
pro3 bil $\therefore \quad 4$ No exchanges
pro3 bil
pro1 ad15 pabal y

Table J/. cont ${ }^{d}$.

Genotypes Number of asci Comments		
Perithecium No.2. Dissected 3.4.56.		
pro3 bil	1	Single exchange pro1 - ad15
pro3 ad15 pabal y		
proi bil		
pro1 adi5 pabal y		
pro3 bil	3	Single exchanges pabal - y
pro3 y prol adis pabal bil		
prol adis pabal bil pro1 ad15 pabal y		
pro3 bil	1	Single exchange pabal - y
pro3 y		
pro1 adis pabal y		
pro3 y	2	Single exchanges pabal - y
pro1 adil pabal bil		
proi adis pabal y		
pro3 bil	1	Incomplete
pro3 bil	1	Incomplete
pro1 adi5 pabal y,		
```Perithecium NNo.3. Dissected 4.4.56. to 6.4.56. pro3 bil 32 No exchanges pro3 bil```		
prol adis pabal y		
pro1 adis pabal y		
pro3 bil	13	No exchanges
pro3 bil		
pro1 ad15 pabal y		
pro3 bil	9	No exchanges
prol adis pabal y		
pro1 adis pabal y		
prot bil	1	Single exchange pro3-prol
pro3 pro1 ad15 pabal at .		
pro3 bil.	6	Single exchanges prol - adis
pro3 adis pabal y		
prol bil.		
pro1 adis pabal y		
pro3 bil	2	Single exchanges pro1-
pro1 bil		ad15
pro1 adis pabal y		

Table J/. cont ${ }^{\text {a }}$.
Genotypes $\quad$ Number of asci Comments

Perithecium No.3. Dissected 4.4.56. to 6.4.56.		
pro3 adis pabal y	1	Single exchange pro1-ad15
prol bil   pro1 adis pabal y		
pro3 bil	1	Single exchange pro1 - adi5
pro3 adis pabal y		
proi bil		
pro3 bil	1	Single exchange pro1- ad15
pro3 adis pabal y		
proi adis pabai y		
pro3 bil	10	Single exchanges pabal - y
pro3 y		
prol adis pabal bi1		
pro1 adis pabal y		
pro3 y	2.	Single exchanges pabal - y
prol adis pabal bil		
prol ad15 pabal y		
pro3 bil	1.	Single exchange pabal - y
pro1 ad15 pabal bil		
pro1 adis pabal y		
pro3 bil	1.	Single exchange pabal - y
pro3 y		
prol ad15 pabal y		
pro3 bil	3	Single exchanges y - bil
pro3		
prol adis pabal y bil		
prol adis pabal y		
pro3 bil	1	Single exchange $y$ - bil
prol ad15 pabal y bil		
proi adis pabal y		
pro3 ad15 pabal y	1	3-strend double exchange
prol adis pabal bil		pro1 - adis; pabal - y.
pro1 y		
pro3 y	1	3-strand double exchange
pro3 ad15 pabal bil pro1-ad15; pabal - y		
prol bil		
pro1 ad15 pabal y		
pro3 bil	1	3-strand double exchange
pro3 ad15 pabal y		pro1-ad15; paba1 - y
prol adis pabal bil		

Table J/. cont ${ }^{\text {d. }}$
Genotypes Number of asci Comments


Table J/. cont ${ }^{\text {a }}$.
Genotypes Number of asci Comments.


Table J/. cont ${ }^{d}$.

pro3 bil
pro1 ad15 pabal bili. pro1 adi5 paba1. $y$.
pro3 y
prol ad15 pabal bil
prol ad15 pabal y
pro3 y
pro3 y
pro1 ad15 pabal bil
pro1. adif pabal bil
pro3 bil
pro3 paba1 y
pro1 ad15 bil.
pro1 ad15 pabal y

Table J/. cont ${ }^{\text {d. }}$
Genotypes Number of asci Comments
Perithecium No.5. Dissected 16.4.56. to 20.4.56.
pro3 bil 1 Single exchange y - bil pro3
pro1 ad15 paba1 y bi1
pro1 ad15 pabal y
pro3 bil
pro3 ad15 pabal y
pro1 ad15 pabal bi1
pro1 y
pro3 y
pro3 ad15 pabal y
prol bil
pro1 ad15 pabal bil
pro 3
prol bil
pro1 ad15 pabal y
pro3 bil
pro3 y bil
prol adis pabal
pro1 ad1.5 pabal y
pro3 ad15 paba1 bil
pro3
prol y
pro1 ad15 pabali y bil
pro3 ad15 paba1
pro3 y
pro1 bil
pro1 ad15 paba1" y bil

1 3-strand double exchange pro1 - ad15; paba1 - y

1. 4-strand double exchange pro1 - ad15; pabal - y

1 3-strand double exchange pro1 - ad15; y - bil

1 2-strand double exchange pabal - y; y - bil

1 2-strand double exchange pro1-ad15; paba1 - y. 4-strand double exchanges pro1 - adi5; y - bil and pabal - y; y - bil.

1 3-strand double exchanges: pro1 - ad15; paba1 - y and paba1 - y; y - bil. 4-strand double exchange pro1-ad15; y - bi1.

3 Incomplete
pro3 bil
pro1 ad15 paba1 y
Perithecium No.6. Dissected 23.4.56. to 27.4.56.
pro3 bil 93 No exchanges
pro3 bil.
pro1 ad15 pabal y
pro1 ad15 pabal y
pro3 bil
4 No exchanges
pro3 bil
pro1 ad15 pabal y
pro3 bil.
10. No exchanges
pro1 adi5 pabal y
pro1 ad15 paba1 y

Genotypes Number of asci Comments		
Perithecium No.6. Dissected 23.4.56. to 27.4.56.		
pro3. bil	1	Single exchange pro3- prol
```pro3 proli adl5 pabal y bi1. pro1 ad15 pabal y```		
pro3 prol adis paba1 ybilpro1 ad15 pabal y.		
proz bill	14	Single exchanges pro1-
pro3 ad15 pabal y	-	ad15.
prol bil.		
pro3 ad15 paba1 y	1	4-strand double exchange
pro3 ad15 pabai y		within prol - adia
proi bi1 pabl ${ }^{\text {b }}$		
prol bil		
pro3 bil.	23	Single exchanges pabal - y
pro3 y		
pro1 adis pabal bil		
prol ad15 pabal y		
pro3 y	1.	Single exchange pabal - y
pro1 adit pabal bil		
pro1 adis pabai y		
pro3 bil	1	Single exchange pabal - y
pro1 ad15 pabal bil		
proi ad15 pabal y		
pro3 y	2	4-strand double exchanges.
pro3 y		within pabal - y
prol adis pabal bil		
prol adi5 pabal bil		
pro3 bil	1	Single exchange ad15 - pabai
pro3 pabal y		
prol adit bil		
pro1 adis pabal y		
pro3 bil	9	Single exchanges y - bil
pro3		
prol adis pabal y bil		
pro1 adis pabai y		
pro3 bi1	2	2-strand double exchanges
pro3 adis pabal bil		pro1-adit; pabal-y.
prod y		
pro1 ad15 pabal y		

Table J/. cont ${ }^{\text {d }}$

Genotypes: Number of asci Comments		
Perithecium No.6. Dissected 23.4.56. to 27.4.56.		
pro3 bil	1	3-strand double exchange
pro3 ad15 pabai y prot - adis; pabal - y		
pro1 y		
pro3 y	1	3-strand double exchange
prol bil		pro1- - adis; paba1 - y
proi adi5 paba1 y		
pro3 bil	1	2-strand double exchange
pro1 adis pabai y pabal - y; y -bil		
pro3 bil	2	2-strand double exchanges
pro1 adi5 pabal. pabal - y; y - bil		
pro1 adis pabal y		
pro3 ad15 patoa y bil	1	4-strand double exchange
pro3 adit pabail y		within pro1- adi5; single
prol.		exchange y - bil.
proi bill		
pro3 bil (3 spores:)	1	ABNORMAL. Single exchange
pro1 adis pabal bil (1 spore) pabal - y		
pro3 bil (2 spores)	1	ABNORMAL. Single exchange
pro3 (1 spore)		y - bil.
pro1 ad15 pabail y bi1 (1 spore) pro1 adi5 pabal y (3 spores)		
proz bil.	1	Incomplete
pro1 ad15 pabal y		
pro3 bi	1	Incomplete
pro3 ad15 pabal y		
pro3 y	1	Incomplete
pro3 ad15 pabal y		
pro3	1.	Incomplete:
	1	No growth
Perithecium No.\%. Dissected 30.4.56. to 4.5.56.		
pro3 bil 60 No exchanges		
pro1 ad1.5 pabal y		
prol adis pabal y		

Table J/e cont

Qenotypes Number of asci		Comments
Perithecium No.7. Đissected 30.4.56. to 4.5.56.		
pro3 bil	16	No exchanges
pro3 bil		
pro1 adi5 paba1 y		
pro3 bil	10	No exchanges
pro1 adi5 pabal y.		
pro1 adi5 pabal y		
pro3 bid	9	Single exchanges pro1 -
pro3 adi5 pabai y adi5.		
pro1 bil		
pro1 adi.5 pabad y		
pro3 bil	1	Single exchange pro1-ad15
pro3 adib paba1 y		
pro1 ad15 pabal y		
pro3 bil	8	Single exchanges prot -
pro3 adi5 paba1 y adis.		
pro1 bil		
pro3 adis pabal y	1	4-strand double exchange
pro3 ad15 pabal y		within pro1 - adi5.
pro1 bil		
prol bil		
pro3 adis pabal y	1	4-strand double exchange
prob adi5 pabal y		within pro1-ad15.
pro1 bil		
pro3 bi1	30	Single exchanges paba1- y
pro3 y		
pro1 adi5 pabal bid		
pro1 adi5 pabal y		
pro3 bil	1.	Single exchange pabal - y
pro3 y		
prol adit pabal y		
pro3 bil	9	Single exchanges $y-\mathrm{bil}$
pro3i		
pro1 adis pabal y bid		
pro1 adis pabal y		
pro3	1	Single exchange y - bil
proi adis pabail y bil.		
prol ad15 pabal. ${ }^{\text {d }}$		
pro3 bid	2	2-strand double exchanges
pro3 adi5 pabal bil		pro1 - adit; pabal - y
prod y		
pro1 ad15 pabal y		

Taible J/. cont ${ }^{\text {d }}$.

notypes Number of asci Comments				
Perithecium No.7. Dissected 30.4.56 to 4.5.56.				
pro3 bil	1	3-strand double exchangepro1- ad15; pabal - y		
pro3 adis pabal y proi - adis; pabal - y				
prol y pro1 ad15 pabal bil				
pro3 bil	1	3-strand double exchange proi - ad15; y - bil		
pro3 adis pabal y				
pro1 adit pabal y bil.				
pro1				
pro3 bil	1	3-streand double exchange paba1 - y; y - bi1		
pro3 y				
prol ad15 pabal				
prol adis pabal y bil				
pro3 y bil	1	3-strand double exchange paba1 - y; y - bi1		
pro3.				
pro1 adis pabal bil				
pro1 adis pabal y				
pro3	1	4-strand double exchange within y - bil. Single exchange pro1 - ad15.		
pro3 ad15 pabal y bil				
prol ad15 pabal y bil				
proi.				
pro3 bil.	4	Incomplete		
prol ad15 pabal.y				
prol adis pabal bil	1.	Incomplete		
pro3 adis pabai y				
pro3 y	1	Incomplete		
proi adis pabal bil				
pro3 ad15 pabal bi1	1	Incomplete		

> SUMMARY:

Non-classifiable

Green	-	1	-	-	-	-	-	-	$-/$	1
Yellow	-	-	2	2	-	-	-	-	$-/$	4
No germination	1	-	-	-	-	-	-	-	$-/$	1
Abnormal	-	-	-	-	-	-	-	2	$-/$	2
Grand Total	$\mathbf{1}$	3	11	14	33	71	136	166	$176 / 611$	

Table K.
Cross pabal y ad8//y pyro4 dp (dp = duplication carrying ad20 bi1). Prom streak inoculum on minimal medium. Prepared on the 15.3.54. pa = point of attachment of the duplication to the "white" chromosome. adZOx2 indicates that two ad20 mutants are present.

Table $K /$. cont ${ }^{\text {a }}$.
Genotypes Ascus number
Comments.
Perithecium No. 4. Dissected 30.5.54. bil pyro4 (4 spores:) 15 adzox2 pyro4 (2 spores) y pyro4 (2 spores)
pyro4 (8 spores) 16
17
pyro4 (5 spores)
18
pyro4 (4 spores)bil pyro4 (1 spore)pyro4 (7 spores)19pyro4 (7 spores) 2020
pyro4 (6 spores) 21
bil pyro4 (1 spore)
y pyro4 (6 spores) 22ad20x2 bil pyro4 (2 spores)-
Perithecium No.6. Dissected pyro4 (6 spores) 23bi1 pyro4 (2 spores)
pyro4 (2 spores) 24
ad.20x2 bil pyro4 (2 spores)y pyro4 (1 spore)

| - | 25 |
| :--- | :--- | :--- |
| - | 26 |

pyro4 (4 spores) (apore 27
ad20x2 bil pyro4 (2 spores)
y pyro4 (1 spore)
pyro4 (8 spores) 28No growthNo growth3-strand double exchangepa - y; adzo - bil.
Single exchange ad20 -bil in the other pair
No exchanges
No exchangess
Single exchange ad20 - bil.
No exchanges
Perithecium No.5. Dissected 2.6.54.No exchanges
Single exchange adzo -bil.
Loss of one duplication.Single exchange pa - ySingle exchange ad20 -bil.
Single exchange pa-y
Single exchange pa - y.

\qquad

