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Summary of a Ph.D. Thesis entitled
"The Numerical Solution of Certain Problems in Elastodynamics"

by J. M. Blair

The method of integral transforms can provide the solution of
a differential equation satisfying prescribed boundary conditions if
certain requirements involving the boundary conditions and the transforms
are met. The three requirements are stated explicitly in the thesis
for the differential equation L - .S on a finite domain R, where
L is a matrix and < and £ are columns. In general not all the
requirements can b: satisfied for the equations of elasticity. If one
particular requirement is relaxed, then the transform procedure may be
applied in such a way as to reproduce in R a formal series solution of
the above differential equation without reference to the boundary con-
ditions, and the solution is a gen-ral solution in that sense. when
the solution is applied to a particular set of boundary conditions there
results an infinite system of simultaneous linear equations in an infinite
number of unknowns, whose solution yields a solution of the differential
equations The infinite system is given formally in chapter I for the
equationa of elasticity.

Theoretical results pertaining to the solution of infinite
systems of equations and approximate methods of solution are known, and
chapter II is devoted to a statement and a discussion of these results
which are relevant to the problems of the thesis. A deficiency in the
existing theory is noted.

The application of the above approach to the solution of some

specific /
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specific vibration problems in elastodynamics is given in chapters III
and IV. A study of the vibrating elastic parallelepiped with clamped
edges provides an indication of the rate of convergence of the approximate
numerical solution for different dimensions, and allows some conclus-
ions to be drawn about the value of the method as a practical numerical
procedure. The numerical results are compared with those obtaiged by
another method due to V.V. Bolotin. The approximate solution of the
infinite system of equations is justified in terms of the theory in
chapter II.

Two problems of the axially symmetric vibrations of elastic
rods are investigated in chapter IV. The first rod nas all its bounding
surfaces stress-free, while the second rod has one of its plane ends
clamped and the remaining surfaces stress-free. Numerical results
are presented for both problems. Those for the first case are compared
with existing theoretical and experimental values, and they are shown
to be the most accurate yet available. No other results for the second
problem have been found in the literature. The infinite system of
equations is studied in both cases, the conclusionsbeing less satisfactory
than for the parallelepiped, as certain questions remain unanswered.

In chapter V we consider an initial-value problem in which
a stress pulse is suddenly applied to one end of an elastic rod. The
solution is expressed as an infinite sum over the solutions for the free-

free rod, using the method of eigenfunction expansions. The motion of

the free end of the rod is computed using the finite set of eigenfunctions

in /



in chapter IV, and the resulting solution is sufficiently accurate to
show the successive reflectivns of the initial pulse as it traverses
the rod. Some aspects of the solution are discussed by comparing it

with the solution of the analogous problem for an infinite slab.
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ii.
Preface

This thesis investigates the formal solutiom by
integral transforms of the equations of elastodynamics, and
uses it to compute new numerical solutions of some steady
state vibration problems. The method is developed in
chapters I eand II, and is applied to vibrating elastic

parallelepipeds and rods in chapters III and IV respectively.
Certain conclusions sbout the effectiveness of the method are
drawvn from the results. An application of the solution is
provided in chapter V, where a limited number of modes of
vibration of & rod are used to construct the solution of an
unsolved, initial-value problem.

I wish to express my thanks to my supervisor
Professor D. C. Gilles for suggesting these problems to me
and for his help throughout the course of the work. The
possibility of using integral transforms to reduce the elastic
rod problem to an infinite system of simultaneous linear
equations was demonstrated to me by Professor B. Hoble, who,
in collaboration with T. Boag, had used a similar approach in
investigating lap joints in beams. Professor Hoble's help
is gratefully acknowledged. The extension to the general
boundary-value problem and to the elastic boundasry-value
Problem in sections 3 - T resulted from a suggestion by Professor
D.S. Butler. The computations were done on the Deuce computer

at Glasgow University.
J.M.Blair
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1. Introducticn

The mathematical squations governing the infinitesimal dofocmations
of an elastic continuum have been siudied by many wor:iers since they wers
formulated by Cauchy in 1622, end tnere is a vast literature deveted o tho
subject. Because of the difficulty of cometructing a general solution of
the equatic®s capable of satiefying an arbitrary set of boundary conditicng,
a variety of special methods and special types of soluticn have been develorpad.
TR ODOREECU [1964] gives a survey of the different methods which have besn
applied to plane problems, and indicates those methods which axe cepable
of extension to more general three-dimensional problems,

In this thesis we concentrate our attention on certain dynemic
and steady-state vibration problems, some of which have previously bsen
solved by other methods and some which have not. Dynamic problema have
been studied much less in general than static problems, altaocugh they are
of considerable practical importance in the design of rescnators end mechon-
ical wave guides, and in other applications. The complete set of solubtions
of & steady-state vibration problem, as well as being of interest in iis
own right, might be exjected to provide a solution of certain associated
initial-value problems by ths method of eigenpunction expansions, end the
lagt chapter of the thesis uses this approach to predict the motion of =
circular rod when a pressure pulse is appliéd to one end.

The method of separation of variables was one of the eaxliest
mothods to be applied to the equationa of elasticity. A simple solutiocn
cbtained in this way does not satisfy all the boundary conditions im gonoval

and an infinite serles of simple scluticns, each satisfying some of ih



boundary conditions, must be taken. If a sufficient nmumber of arbitrary
constants is incorporated in the infinite.series. then we find that all the
boundary conditions can be satisfied, although to do so we must solve an
infinite system of simultaneous linear equations in an infinite number of
unknowns.

The process of constructing the solution as an_infinite series
can be formalised by the use of inteiral traunsforms, and the first chépter
of the thesis deals with the development of this technique and with the
choice of the appropriate transforms for a finite, three-dimensiona’ region.
It is customary when using integral transforms to insert ths transfiormed
boundary conditions into the transformed equations of motion befor: solv:
for the transformed veriables and inverting, but we snow ¥hal by‘ii'i*’“w
%o insert the boundary sondit ions ana introducing instead certmin ¢ elitraxy

congtants, o formal scluticn is obtained without weferenca to the loundery

conditions. This solution is 2 general solution of the eguations of moticn
in the sense that it may be used to solve a variety of sets of bourdary
conditions, although in each case it requires the solution of an infinite
system of linear equations.

The second chapter is devoted to the theory of solution of infinite
systems of equations. ' The xnown results for a particular class of infinite
systems known as regular systems are stated without proofs, and are extended
t0 deal with slightly more general systems called quaéi-regular systems.

An example of a system which does not belong to either category is given in
gection 16, and some properties of the solution are discussed. We shall
find later that the system of equations occurring in the mixed hourdary-

value problem in section 40 has features in common with the example, and %that



the theoretical gquesiions about the existence and unigueness of tihe solution
have not yet been settlead.

In chapter III we apply the theory of the first chapter to the
problem of the vibrating rectangular parallelepiped in plane strain.

The transforias turn out to be finite Fourier transforms and the formal
solution is a double Fourier series, which we reduce to a sum of eight
single series by summing certain series analytically. The resulting
solution is applied to a particular problem mentiocned in SCMMERIFELD lf_l95uj i
namely fhe problem of a parallelepiped with clamped edges. An investi-
gation of the resulting infinite system of equations shows that it is quasi
fully regular, and the subsequent numerical solution is theoretically
Justified. Numerical values of some of the lower modes of vibration for
three different rectangles are given, and a comparison of the observed
rates of convergence in the three cases leads us to some conclusions about
the effectiveness of the method.

This particular problem has been investigated by BOLOTIE [1961 b] ;
using an asymptotic method developed in BULOTIN @.961 a] for vibrating
plate and shsll problems. The assumption is that the solution may be
represented by two terms, a basic solution applying over the whole
region, and an edge =ffect whose influence is confined teo the neighbourhood
of the boundary. Bolotin takes a simple separation of wvariables solution
as the basic solution, and uses it to generate the edge effect, sc that
both terms are sclutions of the equations of motion. A different edge
effect is taken for each distinct part of the boundary and is used %o
satisfy the boundary conditions there. The solution is approximate because

each edge effect term, which is assumed to vanish on zll the boundaries



exeupt one, in fact cecays exponentially and 1s small butv finite on all
boundaries except one. The computed results in chapter III differ signif-
icantly from those given by the asymptotic method, and indicate that the
assumptions of the latter are not valid for the equations of elasticity.
A possible reason for this is given in section 27.

The axially symnetric vibrations of circular rods of finite length
and radius are studied in chapter IV, The trausforms for this region
are shown to be finite Fourier trausforms in the axial direction and finite
Hankel transforms in tne radial direction. By applying them in the way
described in chapter I, the formal solution is constructed as & double
series and reduced tc a2 sum of six single series as before. Two particular
problems are considered, in both of which the curved surface of the rod isg
gstress-free. In the first tne two ends are also stress-free, whilas in the
second one end is clamped and the other free. The corresponding infinite
system of equations is set up in both cases. The first system proves to
be quasi-regular, and hznce some properties of its solution are known.
However the uniqueness of the solution, which is the other property necessary
to Justify o numerical solution, has not yet been proved. For the second
problem the infinite system is not even quasi-regular, and we have not been
able to give any theoretical justification of its solution. Rumerical
results to both problems are presented for one value of the length-to-radi
ratio and one value of Poisson's ratio.

The lowest modes of vibration of a free-free elastic rod have
been determined in MCNEVEN and PERRY [1962] by a different method based on
the Pochhammer-Cnree theory. PCCHHAMMER [1676]and CHRZE [1889]were the

first to formulate the equations of vibration of an elastic rod, and they



5.
suggested a method of solution whereby a simple separation of varicbles
golution is used to satisfy all the boundary conditions on the curved

surface. The complete solutionfor a finite rod is then given by super-
position. The curved surface boundary conditions lead to e transcendental
equation, usually celled the Pochhammer frequency equaticn, relating the

wave number in the axial direction and the angular frequency of vikration,

end it hes been shown in OHOE, McHIVEW & MINDLIE [ 1962 ] thet for esch value
of the frequency this equaticn has some real roots end en infinite rmumber of
complex roots. The roots vary contimwusly as the fregucncy veriecs, and a
three-dimensional diagrem cen be coustructed giving the position of all the
roots for eaech frequency. The curves in this diagrem ere called the "broaches’
of the frequency equaticn. The real rcots correspord to simusoidal solutiocns
and the complex roots to exponentielly increasing and decreasing tezms.

Thus for a finite rod the solution for each frequency comsists of an infimite
sum over all the different branches. If this sum contalns enough crbitrary
constents, then the boundary conditions on the ends may be satisfied im
principle. Im practice, however, these conditioms are not easily dealt with,
since they involve series of Bessel functions of complex argument which lack
the orthogonality property desirable from & theoreticel and a computational
voint of view. To overcome these drawbacks Mindlin and his coworkers

have developed an approximate solution consisting of the first few terms

of en orthogonal function expansion. This solution is adjusted so as to
reproduce the first three branches of the Pochhemmer frequency equation et
low frequencies, and €0 it may be regerded as equivalent to the first three
terms of the Pochhammer solution. The details of the epproximate method

are given in McNIVEN & FERRY [ 1962]together with the numerical results,



whicih are cuipered in uection 32 wivh ke resulbs i seacion 33 and width
experimental values.

The results in section 46 for the clampad-free rod appear to be
new, &3 no references to published work on this problem have been found
in the literature.

In chapter V we consider an initial-value problem in which one
-end of g short circuler rod is acted upon by 2 pressure pulse applied
symnetricelly about the axis. Problems of this %yps arca importaat in the
practical design of mechanical wave-guides. we use th2 methodi of aigcnu
function expsnsions, vhere the eigenfunctions are the soluitiens fo the
free-free rod in secticu 38, This is a standard methol, and ia d:sexibed
in COURANT and HILBERT [1955]0 It is often criticisea as being wnsuitable
in prectice because ¢f the slow convergeance of the seriaes, but the':esulﬁp
in section 54 indicate that the expected features of tha selution e heing
reproduced neasonubly well by the comparatively amell number of sigsnfuncticns

used. The computed sclution predicts the arrival. of the pulss traveliing

a

with the diletational wuve speed at the free end of the wod, azd shows the
subsequent reflected pulses.

MIRLOWITZ [}9603 containe a historical survey of the literature
dealing with transiert pulses in roas. Evidently only a few of thz theoxr-
etical investigations use the exact eguations of elasticity, and those wnich
do base their approzch on the PochhammerChree theory.  Bacauszs of the
difficulties of satisfying the end conditions with this theoxry and fox
other reasons which we snall mention shortly, the resulting sol:%icn
applies only to saml .infinite rods, and deals only with the propagation of

& pulse away from the source. It cannot deal with the multiple raflecticns



ihich occcur iv & rod ¢f finlte lengih.

CUR!ISL 1960] typifies the general approach to these problems.
The displacement vector is expanded as a Fourier serieé in 9, & Fourier
integral in the frequency p, and an infinite series over the branches of
the Pochhammer fréquency spectrum. By relating the frequency and the
wave numbers in this way we ensure that the solution automatically satisfies
the curyed surfece boundary conditions. This form of the solution requires
that the frequency spectrum be known for each different term of the Fourier
series. 50 far the spectrum has been worked out in detail only for the
first two ferms. Curtis is able to satisfy end conditions »f "mixed"
type, in which either the normal component of displacement and the tangential
component of stress or the acrmal component of stress and the tangential
component of displacement are apecified, but not of "pure" type, ir. which
both components of eitner displacement or stress are given. "he evaluat-
ion of the soluticn involves, for each term in the Fourier series, = cur-
vilinear integration along each branch of the freguency spectrum. In
practice the integrals are obtained by asymptotic methods which are accurate
only al large distances from the end of the rod. Curtis uses only the
first two or three branches in the frequeacy spectrum. Since the higher
branches are most influential near the end of the rod, their omission should
have little effect far from the end, although the solution will. be inaceurate
near the source of the disturbance. The dispersion of e pulse ip = long
rod is predicted Sy Curtis, and his results give good quantitative cgreement
with expariment for large distances of travel.

Of the more recent publications KAUL and McCOv [1964] uses the

Mindlin approximation to the Pochhammer solution to include tne case, not



covered by Curtis' solution, of "pure" end conditions. ROSENFELD
and MIESLUNIS [1965] shows that the exact Pochhammer solutign can be
adapted to deal with "pure" end conditions, and also generalises the
theory to rods of arbitrary cross-section. B

Following a completely different line of approach LLNGNER [1965]
applies the method of finite differences to the motion of an elastic
rod of finite length when one end undergoes a step wave disghcement in
time. A rectangular grid is used to cover the region, and thz problem
is treated as an initial-value problem in the usual way. The !nown
solution at some instant t is used to compute the solution at some later
time t + At by solving a system of simultaneous linear equationsz.
Standard iterative methods are used to solve tge equations on =
somputer. The methodi applied to a variety of non-circular rods, and
some numerical results are given. However since the magniiide of the
various computational érrors is unknown, and since there are nc com-
parisons with other results or with experiment, the accuracy of the
solution is uncertain.

The eigenfunction expansion of chapter V may be applied with very
slight modifications to the analagous problem in viscoelasticity under
certain conditions given in HUNT:z« [196§] » and it is hoped to extend
the computations of chapter V to include this problem at some later
date.

The appendix contains some standard series which we use in

chapters III and IV. These series are taken from SNEDDON [1951] .
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v
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T g 5
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vhere d 1is the transpose of d, and f is the bhody force.
If the noraal components of stress in this coordinate sysbem zce
91v O3 end oj end the shear components ace Tsw sy and T,

we introduce the stress matrix T as

T o=y T, Ty
T2 9 Ty
G T (o
F13 Y23 3

Then it can also be shown that

| . . m"
T AMI + ulgs + 8 g )

. : T s
where A | the dilatetionis given by 4 = 48, and I is the unit matrix.

U

The asterisk on gr indicates that it post-multiplies s.
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3 The lMethod of Integral Transforms.

The method of integral transforms for solving a set of simultaneous
linear differential equations is a method whereby the differential equations
are reduced to simultansous linear algebraic equations. The domain of the
differential equations may be finite or infinite, and the details of the
method differ slightly in the two cases. Since the problems considexed in
this thesis are all concerned with finite domains, we describe the method
ee it appiiez to this case.

Ve eonsider the finite region R bounded by the closed suxface b,
wvhere the sclution of the diiferential equation must sutisfy pwesc-ised
boundary conditions et all points of 5. We shall assums that the boundary
conditions are homogeneous and that the differential equations are non-
komosgeneous., The problem can always be put in this form by an appropriate
choice of the dependent variasbles.

Thus we wish to determine the solution q;of the differential

equation

L ¢ » £ - (1.3)
at all pointa of R, where @ muéi satisfy the condition

M@ =0 (1.4)

at all points of S. Here ¢ and.f are column vectors of functions, 8 is
the zero coclumn, and I end M are matrices of differential operators.

The first step in the method of integral transforms is to choose
e suitable diagonal metrix of faictions in’ to pre-multiply equation (1.3)

by -@P , and to integrete the resulting equation throughout R. Thia gives

2

5 " (1.5)

~y

‘ Le 67 = ¥ £ a
jain S .



The choice of the matyix will be discussed beleow. I? L is e linecor
opexstor, integration by parts may Dé used to express the lef: side of {1.5)

in the Torm

. ” )
JR-;E&L gd:a = J Enas 4;{! §'n1s g de ,

8
i
wheze b , Who differential operator adjoint %o L, operates on £ .

0 ~
is e function of ¢ » In and theilr derivatives, of the fora
& = BN ® ¢ o

for some matrices H_and kn. Thus the transformed differentisl cguation

~
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If cthe matyrix ﬁn is correctly chosean 1t will satisfy the following thwee

&”‘\
o
&
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lfS

condlvions
(1) {?iu} ie a compiete orthonormal set. It follows from this thet @ mey

be exprcessed as Z
n vn ®

wheve 23 is a column veetor of constants given by

(41) I Ue AT

.fkp being a squave matrix of constant terms.
(iii) The column vector Bn vanishes oa S.

Tpom cobdivion (11) we have
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.,JR 8 o g B=
the last part followiag from (i).

the surface integral is given by

fsgndSulfs(xnug«,

Equation (1.6) thus becomes

Aa’j £ dc
o ~0 R 2~

Hence <1 [

fn-An jﬂ §n£d$ g

ik,

d = A a
- 8 -0

Porecver from (1.%) end comditicn {113)

k) @8 =0

if ve assume that An is non-singuier.

Since En and fare knowa functions awmd An is a kpovn matrix, aﬂ ey be

determined for each value of n.

given by

Fence the solution of equaticm (1.3) is



4. The Modified Method .
In principie the methed of the last section may be used to provide

a solution of any boundary value problem of the type considered. In

practice, however, the problem of finding a function &n satisfying

conditions (i), (ii) and (iii) mey be comparable in difficulty with that

of solving the original cquations. In thgse circumstances it iz poseible

to modify the method by choosing the set {In} to Qatisfy conditions (i) amad
(ii), but not comdition (iii). The vector &, no longer vanishes on S,

and equation (1.6) bacomes

gn- f‘.’[:dt fgnd—s

ja *n

where Bn -J[ 8, dS 1ig obtained by straightforward inftegration of &,
without using the boundary conditions Me¢ = Q. Hencelyn is a columa vecter

of unknown constants. Then

<1 -l
A, .o - A,

and the soluition ¢ may bs expreased as

¢ Z : S Z_ o (A:‘L:E“ﬁ dt-A {r,) (1.7)
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Equation (1.7) is a formal expression for the solution of eguation
(1.3, for the region R, and is & general solution in the sense that it has
been constructed without reference to the boundary conditionao” It may thus
be used to satisfy different sets of boundary conditions of the form (1.4).

To satisfy the particular conditions

Mg = 0
we choose a complete orthonormal set {§n} » where §n is a diagonal
metrix, and use the faet that (1.4) will be patisfied if and only if
): £ MgdS =0

for all values of me Thus (1.4) will be satisfied if

L§“NZ Ih(/\:ﬁ[in ﬁ "‘f'"A: &M)AS =

for all m. If we assume that the series may be differentistedterm by term

this condition becomes

L[e.meas(alfagac-als) ¢
v s e

for all m. That is
Z ])*“ (A;\ﬂ[{“ﬁd‘c “A: &m) = Q

where Dnm = j §m M &n dS. If we assume further that the seriea are
8

absolutely convergent, the condition becomes

ZD Z -lf T fds
R

for &ll m. This is an infinite set of simultaneous linear equetioas for
the vnknowns :!3“ bzg Dgo oeo s of the form

Al b+ a7

=
nl ~1 L

3 -
D * ocooe = i & g
12 42 22+ Dy3 457 By T [ ac®
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-l -1 -l -1
DzlAl ’121 D22 fk2 32 -+ D25 5 B} *+ o000 = ZII DZD 0 JE) n

-1 o Af & &
Dyy Ky By + Dy Mgt By + D AT By 4 o m Z D”An:& I £as

If a solution {Pn} c;f this system can be found such that the sssumpticns
mede earlier are valid and such that (1.7) converges et all points of R,

then (1.7) is a solution of the problem.

5. Application of Integral Transforms to the Equations of Elasticity

Ve apply the method described in section 3 to the equations of
elasticity, and show that it is necessary 10 use the modified method in
general.

We showed in section 2 that the equations of elastodynamics have
the form

ngﬂ'f »

where @=5 represents the displacement, - £ is the external body force

-~

per unit mess, and LD is given by

»
z (X-t?-p)ge! -luCC -l 3)1,

ipt

For steady state vibrations 8 1s of the form q e » P being the

angular frequency of vibration and q a function of the space variables only.
The corresponding equations of motion are

Loy » Pe Rt

v i }3 9 (1.8)

where ¢=q amd L ;(X«»zr\)jéT— rlCC +(°f\2I ;

v



To apply integral transforms to the latter equations we must

integrate by parts the integral

f EL,,‘Q ds ,
R ~

where ¥ 1is a diagonal matrix. This can be done with the help of some
standard results in vector theory.

If X and é are any two vectors we have the following identity:

f-gred divx - %.grad div f = div (a div @ - gdiv ).
By integrating both sides throughout the region R and applying Geusa’
divergence theorem to the right side, we obtain a result which can be
interpreted in matrix form, and which leads to the relation

¥
L(IEQT‘C ~3grgle Jav = | (2ndly -Tam'y ) as.

~
~

In this result an asterisk on g and d indicates that the operator post-
multiplies the adjacent matrix ¥; the elements of n are the componenis of
the unit normal vector.

The other identity which we use is

v

B.curiocurl o - «. curl cw’ ﬁ z div [(curl x) x /_3_ - (curlfg_) x g_] .
Integrating as before throughout R and using Gauss' divergence theorem

on the right side leads to a second result which we convert to matrix

notation to give finally

I o ) T
(’ICCS?—ECC g)dt 'j(:?_\C(p—’IC ?“)45

R

Here ¢ - is the column matrix corresponding to the vector A given by

~

-+

$ = £xn, vhere n is the unit normal vector, and the rows P

-
of i?n are derived from the rows +~, of ¥ in a similar way by the

relation



G

'i/-ni. B

By combining these results together w» find that

L ?."vaf dvo =L ﬂsg dv

r fﬂ‘:‘_. i
. js L(“ 2 (md’y - 3ghn'y) - plELy -2 ¢ n>J o

T* T* T* 2
g

whereL*vE()\+2H)g* ~nC C + PPl

~

The transformed vibration equations are thus

f L du -J Z b ds
R = R’
ix

) )
'*L [f‘(ﬁncx -3 ) = (A+ 2 )(am &y 30 2 f)J =

If we can find a complete orthonormal set {-I'm} such that each ¥ 1is

~

an eigenfunction of L; , and such that the surface terms vanish when co
setisfies the prescribed boundary conditions, then the solution can be

found, by section 3.

o
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6. Discussion of the Transformed Equaticns

By considering the particular case cf the two-

dimensional vibrations of a rectangular parallelepiped, we

show that a set {§n} satisfying conditions (1), (ii) and (iii}

cannot be found in genersl.

o Y,

Oxy, such that the parallelfiped is bounded by x = o,

¥y = b.

[‘I’. o ]respectively.

end L has the form

‘“(ax +é_ I +(X+r)-.é:

-

a 2

x*
] > r
-~

ﬁ
iy
ﬂ

L2

Take a rectangular coordinate system

The column vectors 5 and g are then both given by| o

+ppl

For this problem ¢ and ¥ are the metrices @, end

X = asy=0

TS

>
o

The condition (1i) requiring that ¥ be an eigenfunction of L,

becomes in this case

Y

1
(o)

¥ 2 2
A2p 2. L pd ;
X an‘+ra~/‘ +PP

A+p) 9"
| 3 Xy
(v, o
o Y,

oy X
g Xay

¥ Jbxedpdd A
5 WAL, PP
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That is, equating term by term,

()\‘?Zi&)%:% 4_’4% +PP"V‘ = &, Y.

M) 2% - 2,y
: oX oy L

Oep) o way, v,
oOX 3y
P 3% +(A+2r) _3_’3;3 -o-f’Pz“Va =&, Y,
22
5-}’% dy
In practice the variables in these equations must be

separable if ¥, and 5 3 to be readily obtalneble. Hence

vl must be of the form

v, ™ cIX(X) Y(y),

where X = cos (§x+at), ¥ = cos { y+f ), and cl,éaz ,
oA 5 /5, are constants. & is then glven by

=c, 4R dY

where c = (-)‘*P )cI
2 @

By substituting these expressions for + . and s
in the surface integral in (1.9), we obtain the function
which must vanish on the rectangle x = 0, x = &, y = O,
¥y 5 B If we consider only the boundaries x = O and x = &

the relevant terms are



-

()\+zr)(§l:‘ + DQ:)XY —-()\+1rx)afx Y *+ r“(’zXY

~(ArAp) ?,x'Y“-r*("f’w—“’*)x Y - f*‘fzx v

e

vhich must vanish for all values of y in the range 0 £ y ¢ b, In the
natrix the prime on X and ¥ denctes diffewentiation.

If one of the boundary conditions on both x = Q0 and = = & is

Q= O

then the other boundary condition and the function X must be such that

(X*lr)(g‘f" + 3“’=))( Y +p XY

"P‘(sg L)X -p, X"

vanishes. The first entry is zero for each value of y only if X = Q,

since gx # 0 in general, in which case the second entry reguires

d

=3 , - mTx
that i 2 0. If we shoose xm sin

» Wwhere m is an integer,
{Xm} is a complete orthogonal set of functions, and each satiafies

the conditions xm(o) = X (a) = 0. Thus if ?1(0) =<el(a;) = 0 is oms

9,
ax

boundary condition, then the other boundary condition must be

for x = 0 and & = &, and X_must be the function ain -‘3‘-—%’-‘- . A similer

= 0

result is obtained for the boundaries y = 0 and y = D.

We conclude that the method of section 3 <wes not yield =
solution of the second fundemental boundary-value problem of elasticity,
in which the displacements vanish on S.

A gimilar argument shows that the first fundamental bhoundary-



value problem, in which the stress vaanishes on 8, is also not scoluble

by this methed. For the normal stress oy is of the form
?

o = Drap)ge ) 3.;&

and if we again consider the boundaries x = O and x = a, then o‘;

venishes if

'..)._‘e! = o é_f:.
?
N 63
where o=-— < A . The surface terms which must vanish are thus
'I'lr '
o -

2p %"X Y ~(+2pm) o X'Y + M. X Y

Iou t 0
L"()\*?.r‘)'ﬂx Y "r‘(g_;?u-g_‘:s)x Y'-p, X Yl

and it is not difficult to show that the other requirements eve

-, d 9%,
% * 0 and X' = 0. Consequently if ‘ny = O then 3san 5?; ’

and we canuot fird a function X which will ensure that both terms
vanish.

iy

This example of the vibrations of a rectangular parellelepiped

serves to illustrate the general result that the method of integral
transformz does not yild the selution of the equations of elasticity
except for special sets of boundary conditions.

We now indicate the form of the solution by the modified
method.

T. Formal Solution of the Equations of elasticity




i
24,

If % is en eigenfusetion of L , so thet

2L = A % ,
m v m m

then ¢ is represented in the form

fgzﬁmfm ’
H

% ¢dv . The transformed vibration equatlon becomes
R ~

where a
~1

from (1.9),

~t

3 Vs R R
- % - Ly o o
* Am JS [r(?{m,n Oy m ¢ c.;‘;.'n) (A+ 2,«)(-:« 1,1,93.,3 - = :}

Hence the solution of the equations is given by

g":zm;mgma

with the above expression for 8 We nota that this solution invoives

two unknowm functions, ¢ and the normal derivative _‘:§ > and. sc is

~ am

completely determined by specifying two boundary conditions on B.
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Chapter II: Infinite Systems of Simultaneous Linear Equations

A The Solution of Infinite Systems.

Infinite sets of equations were used as early as the 1Tth
century for solving differential eguations and other problems, bub
the theory of the solution was not studied until sbou: 1900. Since
then a great deal of literature has been published on the subject,
and a review of the most importaat results may be found in KANFCROVICH
& KRYLOV [1953] . It is remarked there that the subject is rol
yet in a completed form.

Most of the atitentior has been devoted to a particulaer class
of infinite systems known as regular systems. This cless ipcliudes
many of the systems arising in practice. Conditions for the existeunce
and uniqueness of the solution of a regular system are known. and
methods of computing approximate solutions together with upper and
lover boninds have been developed.

The theory of solution of vegular systems is based essentlally
on the theory of absolutely convergent series, and consequently does
not include certsin systems invoiving conditionally convergent sevies.
We shall give an example of an infinite system of equations which is
not regular and whose solutior exists and is obtainmsblebythe method
used for reguler systems. We shall find later that the mixed bouwndary-
value problem of section 4O gives rise to a non-regular system of
equations which is not covered by the existing theory, involving as
it does alternating series, snd that the resulting eomputed solution
cannot be justified theoretically.

9. Regular and Fully Reguler Systems




This section and the next four togethor provide a summary
of the known z;esulta concerning the solution @f regular and fully
regular systems, and aro based on the material in KANTOROVICH and
PRYLOV [1958] » The details of the proofs are given there.

An infinite system of equations is a system of the form

G ey ¢ My e
B By, wlop W % Mop ¥y e m N
‘31’1' +13? x, +.a”x} + oso = b3

The quanﬁ.t:leaxl > Ty » 13 coo are the unknowns, and’ol »
.bz, b3 s ecoo are the free terms. A sequence {xf} is =aid to be a
solution of the infinitc system if the left sides ave convergent

aerieamnx1=x:,,mdif
4

a = b

B W i

for 1 :1, 2, 3, ©oe

By rearranging each equation, the system may be put into the

form
o

xi = Z cik xk + bl P} ,- = 19 29 39 LR (201)
k=1

The latter aystem is defined to be regular if

oD

Z 'cikl < 1

k=l
for 4 =1, 2, 3, coo , and to be fully regular if there exists a number &
in the range 0< 9 < 1 such that
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Z leg, 162 - A
k=) X
for 4 » ), 2, 3, «s. In both cases we define fi %o be

<«
f T Z |c1k‘
i k== |
For a regular system it follows that {’ i> 0, and for a fully regalar

system f’i 29

The method of successive approximations for solving an infimite

o
s{stem (15 an iterative method in which a sequence of values xg_ ),
l) 2)
Xy s x1 o 18 calculated by taking
(o) .,
x4 0
(a+l) i (n)
and xi = e c:lkxk ’bi » i =}, 8 3 ise

n=0,1,2, ...
(n)
If the set { x, } converges to & solution of the equations as n ~ e

this solution is termed the principal solution of the system.



10. Existence of a Selution

The maizr result for regular and fully regular systems is the
following one.
E.1. I?f there exists a constant K such that
Myl s Kp,
for all values of i, then the regular system (2.1) has a bounded
solution x, such that

i

Ix =K, i 1.8, 8, .icn

g !
and this solution may be found by the method of successive approximat-

iomns.

3 Uaiqueness of a Solution

In practice we often have some knowledge of the ssympiotic
behaviour of the umknowns x, as i @e, from a consideration of
the original problem, and it is uswually the case that the solution
is either bounded or tends to zero. We can show by en example that
a regulay system can have more than one bounded solutionm, so that a
stronger condition than regularity is required for uniqueness. The
following results ere concerned with the problem of uniqueness.
U 1. A homogenecus regular system caunot have e solution tending

to zero and different from zero. i.e. if 1lim xi = 0, then x1 w= O,
B )

U 2. A regular system can have no more than one solution tending to
7.ex%0. If the coefficients and free terms are positive, them the

positive solutioa of it that tends to zero is its primecipel solution.
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U 3. A fully regular system always hes & unigque bounded solution
which is its primcipal solutioa.

UL, 3If the primecipal solution x: of the equations

xi’% legu! X + X py

: »
is bounded below by a positive number, so that X

i
regular system (2.1) with bounded free terms has a unique bounded

g2 % >0, then the

solution which ig its prinecipal solutiom.
US5. If for any substitution of the form x, =K, 21(31 % 0), where
Hi"'co as i*e , in the regular system (2.1) the resulting system is

reguley, then the system (2.) has a unique bounded solution.

12. The Method of Reduction
The method of reduction is an algoritm for computing en epproximate
solution of the infinite system. It is an iterative methed at the Nth

stage of which the solution g of the equations

i
‘A X 48 X 4 o . o %8 =P
13 3 12 2 AN 1
' b
a b 4 4 8 X €& o o o +8 X o= 2
21 2 22 2 a2y M

x ° . .
a‘; 1 "’&Baxaf o s . #m !bn

is calculated. Successive approximations to x, are :]ii. 51. §i 2 ce+ 3

: §
obtained by solving one, two, three, ... equations respectively. He
have thelfolloving theoretical result.

R1. The princ;pal solution of the regular system (2.1), with free
teme satisfying the condition h)il <K Py » may be found by the

voihed of reduction.



13. Upper and lover Bounds for the Solution

Ie 15'possib1e to derive upper end lower bounds for the solution
computed ot say stage by the method of reduction, and the methods
ere deceribed im the above referemce. Since we have mot used these

techniques for the problems of the thesis, the detalls ave cmitted.

k. i-Re Systems

In this section we expand the treatment of quasi-regularity given
in Eantorovich and Krylov, as the systems arising from vibration
problems ere of this type.

An iafinite system of equatiome is qua si-reguler if all
equaticns of the system excopt a finite number satisfy the eormdition
of regularity. Thus the system (2.1) is quasi-regular if

o0

;1 ley 1<, 1 =Hsl, W2, ... (2.2)

and if

Z !c l < - » 1 L l. 2. ¢« o0 R
ik
k=i

Coneider now the system

H
X = Z [ + b, ¢ c » i=Ng, Ne2, ...
1 pemey XET 1 kzé. 1 -

obtained by rewriting the equations (2.1) from the (N «)th cuwards.
If we regard the unknowns as xlol’ ‘342' .0y and the free teimo

as b, + I ¢, X, then the system (23) is regular. We write
i iy ik

a9
£ = 1lex Je,!l » d=Ha, B2, ...
1 reml X » »
i /



L ¥ B
if Ubiﬂ'{. K p 4o then the system

Ll

A. = Z <. X+ b, .
L s kK ~ s A TN N2 ..

has e solutiocn x: , by El, which is unique if certein conditione are

satisfied. Moreover the system

x‘-Z ik X, Tty , £=N+|‘N+1,...;,€=t,z,.._ N
kx> N+l '

is regular, and the free terms satisfy

legol 4Py o
by (2.2), so the system has a solutica. If it is wnique, demote 1t

P
by By, - Then the sysiem

K; = Z C‘kx“ ¥ C;g )‘Q
K=M+t

®
has the unique solution x 2 Xq° Hence the system (2.3%) has the

unique solution

N
¥* Z *
Re =8+ £ KXo AENTLNS2, L L

= \
Thie solution is & solution of the origimal system (2.1) if 1t

satisfies the first N equations of that system i.e. i B8 auea x

}

satisfy the equations

™ ©0
#
X.-.:Z “‘ka +b& +Z C“(XK +§

K=1 = M1 2=

3
Xt XR) 5 A:42, .- N

L]
If each of the solutions x, end x: , is bounded, thea the serics

.- o2

R
c and Z C.. R . converge, siuce
k= Hel ﬂxk ke 41 Gl
Z BC;kl convergee. Thus the equation may be written in
K=t .
the form

2 o o0
. = % ;
: (C‘,“t < Z S )"1 BN b& + Z Cin Xy b I e—

=1 K=+ K=M+y
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Bach distinct solution of ¢this set of N equatioms gives rise o

a solution of the infinite system (2.1). In particulesr if the
system (2.1) is homogemeous, then its solution is determined by the

solutiocn of the finite homogeneous system

®
, ‘
"i'z(‘u*zcgu"uq)xl =0 , REERL L e, N

= Ken+y

i.e. the system

",:“Z dig% =0 , £20L,2, .., N
1=
where o0
dig = Sy "'Z Cik%xe
Kz +1
15. The Method of Reduction for a Quasi-Regular System.

We restrict cur attention to the homogenecus system, end
suppose that each coefficient in the infinite system is a function
R
of a parameter p, so that Cop™ °1k(P)' If we dencte by X the

solution of the finite system

+R
xg’i S Xy +Cq . [:N-H'..
k=N
»

. R
then the result Rl states that L~ X, =X, .

R=>00

Now consider the finite system

N+ R

N
i R :
A Cig ¥ Cinke J % = © r BEhdy sasy M

L=\ Ke Ny

i.e. the system



w
'8
xi-'Z d‘-lxl =0 ” ial,l,...,N’
L=

NaR
Ly R &
vherea-c + Z - Sinece x,, —» X as
1¢ 12 Rg K k? 1e iL
R-»e , then 5“-9111‘ as R-—»>oo
R
The coefficients d:l L and d.“ are functions of p. Thus

the infinite system has & solution provided the Tinite system

Xz "Z &&Q(P)"( o A=z .. .,N

=)

has a solution. That is, provided that
dx[1-Dp)] =0

vhere D is the matrix [dn] and I ie the unit matriz. Thet

7

is, provided that Ay(p)=0, where A, is a latent root of the
mtrix I - De
Let one such value of p be p*. so that
3
A1_(1’ )= O.
By the seme argument the system

$ s’-l,l,..-,N,

K

e
has a solution provided }R 1(P)' 0, where § 3 18 & latent root

of the matrix I - 5 3 B being the matrix [Q ] . It follows

10
from an earlier result that B—».D as R—>e

Ve now write

R R
D = D 4 B »
R (R R ,,
where E= | & 13 = DD, and suppose that R is sufficiently



B,
R
large that | EU] & & Porall i, J. Then it can be shown

(see, for cxample, WILKIHSOW [1965] , chapter 2) that
R

A =N tae +O0() ,
vhere A is a scalar whose value depends om the entries of D.

R
CoON(P) = AP +ap)e + O

Let the value of p for which the finite syctem has &
R

R
solution be p -pﬁ + Ap. Then we have

R % R
\1( P +Af) = O
R
. 3 )\:_(p**-lxr) -\-ox(;:"i-AF) ¢ + Ole) =0
How from Taylor's theovem, if ’\1 and o are twice differentiable,

)\I(P*-t- AF) +£q(p"+A;) .
= M) + eal) « P[0 + 4] + O(af )

R ' ' a
= E.O\(f*)-t-Ap[Xl(P*)i-t“(P’)J + Olbp ) ,

since )i(p* ) =0. Thus we have the result

R R 2 e “(P') 2
AF + O(AF ) IEE X{P’)'h'idl(':») € + O(ﬁ)
from which 1t follows that AB — O as R —w , since & — 0
R

as R—>e ., Hence p-’p. as R—=>> ,

A similsxr result in matrix perturbation theory involving the
, R
latent Yectors of a matrix mey be used to show that, if X, 0
i=1, 2, ..., H, is the solution obtained by the method of

©
as R—>»00 , yhere x, is the solution of the

R
reduction, x 1 x . 1

p |
infinite system.



w

f}.o
Thus the method of reduction gives e coavergent segucace of
approximations to the solution of a quasi-regular homogeneous

system.

6. Aan le of a Non-
We can show that the infinite system

3 5 ;

-
R R L R AT
@m, _en, . em, _@n, .... = °
e \""’(‘ﬂ"(rt“

5

(rr)" _(31r)x .,.(31r),‘ L‘r)"v s o 1D

has the soltition .

ﬁ-x’-xsll ——— I T

For the left side of each equation is the value of the function

' ) 5
. aS X & @ #
feo 1lx‘ 3!:(3 +?[x, _nx +

for x= g, 2%, 3 u, ..., and the system of equations implics
that 1(x) vanishes for x= n , 2% , 3%, cvo- Thus ore possible
function is
' £(x) = sin x,
giving the above solution.
This solution is not unique, since the wvalues
x, = 2, x3=2’. x5=25,...a
corresponding to £f(x) = sin 2x, also satisfy the eguations.



W
o6

Bowever the bounded soluticn of the system is unique, apart
from an ervitrary factor, and we can show that the me thod of
reduction converges to this solution.

For, if we solve the first n equations for the unknowvne
xl, X2 cte0 Xonaye setting all the other unknowns to zero, we
define a function fn( x) of the form N

-1
A x? X n=3 X

ﬁ‘“) ‘i-!-)&—s-!-)(’ +ﬂx5 - W e e +(_1) m!xm_z

vhich vanishes for x2 = na. (2« )2, coess (na)a. Heace

fn( x), apart from an arbitrary factor, must¢ de the function
KR
f@) = x']:g(l ~3=) |

Fow lim fn(x)- sin x, and s0 the method of reduction gives the
uniqﬁ:':mnded solution of the infinite system.

We now show that the system is not regular or quasi-
regulax. For, if we comsider the nth equation of the system,

the ratio which must be less than unity to ensure regularity is

_2Av-1 an=1
(nr) an-1)1 )
S (Zr=-n) —(;\nﬂ-’-)l)l S"L‘—;r,.)é = sinh nm . @n-)} _
r=1 » Q"ITI’) An-1
| ren ' (v

Va n
~noCooas n—,:»)w’.x»ere e>l,

Thus the system is not quasi-regulsr.
The feature of this example which distinguishes it freom
e regular system is the conditional convergence of the infinite

series involved. The theory of reguler systems applies only

when the series are absolutely convergent.
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iT. The Numerical Evaluation of Determinsnts

There ere two algorithms for determinant evaluvation which
are suitable for use on a high speed computer and which are
efficient in that they combine speed and accuracy. They both
involve the reduction of a matrix to triengular form.

In the m2thod of Gaussian elimination with interchanges,
the matrix A is successively reduced by eliminafing &ll the
entries except one in the first column, then elimivatiang =ll
except one of the resulting n - 1 entries in the second column,
and so on until the matrix is finally in triangular form.

The elimipation at each stage is done by selecting as the
pivotal row that particuler row which has the largest element
of those to be eliminated. Suitable multiples of the pivotal
rov are then subtracted from the other rows to effect the
elimination. The resulting matrix is an upper triongular
matrix, in which all the entries below the mein diasgonal are
Zero, with its rows interchanged. By the properties of
determinants the determinent of Ais equal to plus or minus

the determinant of the fimal matrix, which is simply the product

of the disgoaal terms.

In the methed of triangular decomposition the matrix A is
expressed as the product
A= LU,
vhere U is upper triangular end L is lower tricngvlar. That is
all the entries of I above the main diagomal are zero, and by



convention all the entries on the main disgonal are unity-
Such a decomposition can be carried out in general, and ls
described in the stamdard texts on numericel analysis. The
determinant of A is then given by the product of the diagonal
entries of U, since the determinant of L is unity .

The computational efficiency of the two mthods is exsmined
in WIIXINSON [196019 vhere it is shown that & process equivalent
to pivoting in Gaussian elimination must be incorporated into
the method of trianguler decomposition to comtrol the rounding-
off errors. By carrying out & detailed error analysis of each
of the processes it is alsc shown that tr iaasgular decomposition
le axn optimum method in the sense that the computational error
in the deteminant due %o the reduction process is no greater
then the mastimza error caused by rounding off the exact entriee
of A to working accuracy. The corresponding error in Gavssian
elimination is approximstely + n times the errcr in triangular
decomposition, where n is the order of the determinant, so that
the two methods are roughly comparable in accuracy for detezminaute
of order tenm. Both methods involve gpproximately the same
ancunt of aritimetic for unsymmetric matrices.

The high accuracy of the decomposition method is eschieved
only if a certain part of thelculation is carried out to
double=length accuracy, and some computers are designed to do
this part to double-length automatically. If the fecility is

not available on & particular computer, themn the two methods are



3.
exactly equivalent and heve the same theoretical error bounds.
It is always possible to obtain the facility by programaing,
but this may lengthen the computing time by & factor of Tour,
and the adventage of the method is somewhat offeet.

All the determinant evaluations in the thesis were done
by the method of Gaussian elimination with interchanges, as
it was the easier methed to programme for the Deuce coaputer.
Since the largest determinant involved is of fourteenth order,
there 1s very ll¢tle to be gained by using the more accurate
rethod, although for other problems requiring lerger determinsnts

it might be desirable to wvse trieaguler decomposition.
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Chapter IIX. The Naturel Modes of Vibration of a Rectanguler
Parallelepiped in Plane Strain

18. The Governing Bquetions of Motion.
We comsider a parallelepiped of rectengular cross-section,

end teke a two-dimensional rectanguler coordinate system with
“he origin O at one corner of the cross-section and the axes
Ox end Oy along asdjecent sides. The cross-section, of length
& end breadth b, is then bounded by the lines x = 0, x = g,
y= 0 andy = b.

Since we are congidering two-dimensional firee vibrations in
the plane of the cross-section, the equations of motion are the
equstions (1.8) with gw{_ 3] end h = 0. It ie convenient to
divide each equation by the quantity Z+ 2 o thus introdueing the

“
dixensionless constent ¢, = é

and the Preguency parsmeter

o g2 © ey
K=,
=—L£P.  ye also use k¥ = K . Sinee A end 4 ave
Ae 2 .
expressible in terms of Poisson's matic 9 , we can show that
e = -2y .
2 -2v

Thus we take the equations of motion im the form

2

RPS L TN . SR, N
1 e s - et - Ka =
X v *7 Ok Ay
bg) 3 VL5
.~C 4 2

1) G 2y + oV + Kv =0




19. The Function~®
By separating the variebles im the equetion
gh = A%
we find that a sulteble choice for ¥ 1s the matrix

sin mTx cos Qny 0
a b

cos mix sia Wy
O 8 i)

-

The expansion of u and v now involves

b

vhere m and n are integers.

8 double svmretion over m and n. Thues we define

a8 b
Wam) = [ sio B }f 0oL u(x, ¥)dydx,
0

ra
W(m,n)= j cos WMWX jo ssing%gv(zc,y)eiydx;
(- a

Thewn it is shown in SHEDDOE [ 1951 ] that

- oo
.
(e Reted nso

Qa0 e
o TH o2, AT (3.2)
€, Vlm,n) cos % san 2
o

(]

<

x

3

I!
%M&

where s nw = 0

m 2 , =m % O



20. The Formal Solution

i
With this choice of & and g;l‘ = [.%E }y—l s the trans=-

formed. equations are given by equation (2.9).

If we introduce

the perameters
b

Ag(n) =f u(é, )cos_"%r_'laly g

(=]

4
= [[2u sin MITX

b
Cem) =j @7‘:2“& sin MY dy

2
:D-,,('“) -:j V(K,vl) cos MITX dx
$ ©

) 9

then the transformed equations have the form
(K’;__ mt*xrz__. ‘;193}_}\,

] I
- (1~c,) @l B 1 (m,n)
a B / Y
P " r. 0 3 mz_“_l nz_.r2\ e
AL \n_,I n_’ X =G — ) N ]
. ] C‘..‘ 2 2 (A\ ‘1"'5.1" -Ef/ i‘,\ y( ,9&')
= mw "
—=

v ’u\ - o N
) €0 mT, ﬁ%a(‘ / %ﬂ , 'A'"o(h) —- &, COS AT, Bb( ) | c.-BO( )
o m o Y
(1<) 2T cos wir, Dfm) —(-c)) ramr D)

(1=<4) %T cos mT, Aln) —(1-¢,) o, An) = ¢, cos mw. C,(n)

+¢,.C) + ‘;E cos nt. Dm) — -‘—l:-r D)

where the right sides involve the @ight uanknown param’i’ers

Aa(n)’ Ao(m)n :ab(n)o Bo(m)a ca(u)a co(n)v nn\:m)b‘ DO(-)'

To find the solution ii“( x"y):l of the original equations we

v(x,y) B )
must solve the tramsiormed equations for ¥(m,n) s 8B4

substi tute the resulting expressions into the double saries

(3.1) and (3.2). The sumwende in the double series which we



b,
obtein are linear combinations of the eight paremeters asbove, and
we find that, by teking the parameter imto the outer series of
the double sum in each case, we obtain an inner series which can
be summed analytically. Hemce the sclution may be expressed as
a sum cf eight single series.

We illustrate the procedure by considering the term in
A (n) in w(x,y), which is

rk "“"_ 3¢ "']'—'5‘-7 oS M
abz z (, Gy a', % A () sin MIX cog 2T
&k-._ﬁ n‘r)( mr__%,{l) a a b

T

> 2.2

2 ) g cosMIYAL) 2 Z i 3 e
b Z_ b a (:- W %7 (c, kz.. mi.'rz- “Ivi) P

U

By splitting the summand into partial fractionms we can write the

inner series as

N 2 vl

2 S -\ o by __2 oin MIX

Ry - = e . A - T cr—

a K- b M . W a
& L K" by + =

—_ At sinh ¥X ‘Sh sinh 8,
K B Smh 4,2 K swmh 5,2 O

where we have used series (AS5) im the appendix. gi and.&ﬁ are

defined below. Thus the double series becomes
a 2
2 § L [ sinh %X > sinh §x
v/ &¥ (‘5"' sinh v,z T T 52 cos ~X b -A, (n)

By applying this procedure to each of the eight double
series and using (A43), (Ak), (A5) and (A6) in the appendix,



we obtain the following solution ,

k wlx,y) =_2 £, @) cos 22X '“r AR 2 Z €, cp(a.—‘x)cos oy, A

-3.2-2 sm_".".lr’_‘ @,y) . Bm) a?: Z sin ___ Qz(b-—y).Bo(m)

Ly

T’;.Z_;L" Q()COS C(h)+ Z ?"' -x)c.os—-—l CLh)
n
.
~15 wa, sn T ) Qe + %Z iy, S0 X @, (5-y). D)

z

k v, )=_.3.2 2y, ") SEEE L A ) %Z%r -5 XY A gy
n

o

P

+

= Z% m‘ﬂ'x PxY)- BL(V“)—;- 2%— os"ﬂ’icq (b-y). Bm)
= ™

U’|N

3]

2 @, ) smm C ) 4 L 2 2 P, a-%) sIn %»Z -Co(h)

12)

+%Zemc ma_-"' ®,7). D(m)—rlZe cos = Q?,(b /)ID(m)?
™

L 2
2 a
where X, = _r_nég_r k
?
P > 2. >

and @) = nir- sinh y x _ 4> sinh 8.
: sinh §.a »



cosh qmy M'Lwl. cosh Pm]
G = TR R, b T I ek b

Qs(x).: S\nh %nx s S\ﬂh SBX
sinh ya sinh §,2 ?

_ cosha y cosh PamY
(Y= A sinh u, b~ B smhfub

In the functions @ s 50 ¢50 and¢), the quantities y , é,a
and n are associmted with the varisble x, anda, F, b and m with
Yo

The sebove solution iz a formal solution of the equations of
motion for a rectangular region. A particular solution is
obtained by chcosing the eight parsmeters to satisfy the pre-
sceribed boundary conditions.

21. Parallele:

iped with Clemped Poundaries

We consider the special case in which the boundaries
x =0, x =g, v =0Qandy = b eare rigidly clamped. This
problem is discussed in BOLOTIF { 1961b ] , where a different
method of solution is employed.

We shall find that the symmetry properties of the sclution
ensble us to reduce the number of arbitrary constants, and
hence to reduce the smount of computation im the sppreximate
solution of the infinite set of equations. By observing the

rate of convergence of successive approximations to the solution

for rectangles heving length-to-breadth ratios of 1, 2, and b,



we can draw certain conclusions about the effectiveness of the

method.
Thus we wish to cbtain a solution satisfying the boundary
conditions
w(0,y) = 0 = u(a,y),
v(0,y) = 0 = v(a,y),
uw(x,0) = 0 = u(x,d),
v(x,0) = 0 = vw(x,b).

The first and last pairs ere satisfied trivially by taking
Ao(n) =0 = Aa(n) o

D(m) =0 = n(m),

giving the solution

kS
k u@,y) = —%'. z sin m:x @iy)- Bm) 4 %.. z sin '_!‘a_‘".".!.‘ @,b-y). B,tm)
Ul ™

nTl 2 T Wy Cy
b} +— T cos TI - C.ﬂ“) + T)Z- 'JB.' s =%) cos—g?-' Coﬂ)

2
k vix,y)= 2 2 ol e og X P,(Y). Bim) 4+ 2 ﬂlrcos'_"ﬂ @, (b-y) Bm)
v

"%ZQQ&)SlnﬂE;Q-Cé“)—\-l > @la - x)sm—-?' Cm)
n

»
ol
3N\

Fow the symmetry of the body and of the boumndery conditions
implies that solutions must be either symmetricalor skew-symmetrical
gbout x = % ) and either symmetrical or skew-symmetrical about

- % - We consider only solutions having symmetry in both



directions, end we refer to such solutions as symmetricel

solutions.

22. Symmetricel Solutions .
The solution is symmetrical sbout x = & if w{x,y) is

2
symeetrical and w(x,y) skew-symmetricsal. If v(x,y) is symmetrical,
thea g*:‘? i8 skew-symmetrical. That is, for any value £ in the

range [0O,a],

(.2.:!, & % (ﬁz,

ot Xad - xX=RQ-§

Hence, fxom the definition of C g (=),
c () = - € (n)

for all integers n.

Moreover if u(x,y) is skew-symmetrical sbout x = 2 Py

2
then so is .%% » and «%% sin 5‘%‘ is elso skev-gymmetrical if m
is odd. Thus, if m is odd, we have
a
3 u

wsn; sin 2;& dx = O
)
Bo(n) =0, . ETE R
By & similar srgument we deduce that, for symmetry
b
about y = 3 ¢
Bb(") - "Bo(n) » m = 1, 2, 3, «o0 »
& cc(n) = 0 , B = 1, 3 5 Ts «co
On mekingthese substitutionsgnd replscing P and ?3

by the expressiom on page 42, we obtain the symmetrical solutions



-

o] cmcmhenli) oyt combpad=) | g
sinh %2 i Pen SR ?-'L"b e
3 Fmb

k u\(x 7):.-- l Sin

2 " S'Wh‘o'n“‘") sinh §,(%-x) cos B2 . C(n)
b sinh “ sinh §%._&- b » )

N even

kv(xa)’) _z ¥ eos ”‘W"" unha, ’~ YJ smh[im(‘g. ﬂl B (m)

et $M\h 5_!%_ pm
2 j cosh '(,,(A"' “ﬁrz cosh 8“(%'_-—)() -
® z sinh 1’ a _bf' sn sinh 3_"_3_ Sin Tz .Co(h)
W even A

2%. The Infinite Set of Equations

It now remeins to satisfy the boundary conditions
v(0,y) = 0 = v(a,y)
& u(x,0) = 0= u(x,b)e
For a symmetrical solution 1%t is sufficient to satiefy
v(0,y) =0
& w(x,0) =0,
and, by the completeness of the trigonmometric functions, these

conditions may be replaced by
b

fsing-bg vio,y)dy = 0 , e L, 2 B ses
o



a
& f siu%u(x,o)dx =0 , m= 1,2, 3 ...
Jo
respectively. The resulting infinite set of equatioms for

{Bo(n)} and {Co(n)} 14

N

%3 B
I 2 | cothBmE_mT | cobhfumb Z b .Ce)=0
e R e M R oy ey R
weven b )
M=1,‘Q,‘,,- s 9

2

mT
2 e B +—L b |y cothar a7
a Z(xh+_'%'gx5"+%) B +1(\-c\)k “WEH 5 ~S% -é..coth%: Lp)=o

n

ncz’é')c,l ® o

If we teke the unknowms in the order 30(2). 00(2).
Bo(la-), Co(h), .o« » then we have a homogeneous infinite system of

the type considered in chapter II.

2hk. Regulerity of the Infinite Set.

Since
a
Bo(m) = L(%)yﬂo siul-'-l;:E dx
a
e [2 cocmx (3 R msx
[m‘cos 5(33’ )y'O ]°+ mn[(%y )yﬂocosa ax ,
it follows that

o 3 1
%’Bo(m) = (3-5;') -(% )x_a + o3 , mow.

Xe=g
y=o0 y=0



Sinilarly

BEg (n) = (%,%)x_o - (%-‘E)m » 2, nve.

y=o y=o
Thus 1f we regard 51-‘; Bo(m) axd %C’o(m;) as the unkunowvs in the
infinite system, the solution we seek is bounded.

The infinite system now becomes

| a." a_b m" » - T hTrC )= 0
2L-<) ;ﬁ:‘[; sk gl _f}‘: {%m“th e }"\ BMH. Z +-IX'B +nw M
n AN

m =2 4,06,

' ¢

=S ) MWB( ) """‘"":l.'b ¥, coth ¥, ﬂ'__n'ﬂ'z_l_coths nir -
E(Vn-r"\"r‘X&‘., ™ 1(|.c‘)k h‘\T [ —ni- —br&" -i— b C(h) = R

W gVen

“32,‘1')b,

If we confine our attentlion to the first of the above

peir of equations, the diegonal term is the one involving Bo(n).
The condition for regularity is

a
) a
<
20~<) K m

b (d. +n P”' )

n=d 4.

form -2’ hp 6, oo e
Now for any velue of K, no matter how large, a: and pa

ere positive if m is sufficiently large, in which case



= > I cothamb _ 1 th Pmb i |
Vﬁ‘“ﬂ‘m" Pt -

where we have used the series (Al) in the appeandix. Ir u is large

we obtain the asymptotic form of this expression by putting

2 \b
mx (, _ k%a®

and expanding each term bincmislly. This gives 7|

3

.
%Zwm‘xx,s:n«@ =% tOm)

TN b

In the same way we obtaim the result



L thotad _ mir* | coth fub] _ (¥<) _a®
B %-%Fm“h%— = oy *O6m)

The ratic of these asymptotic expressions is

(L =-c¢)
b8 l)
(T ¢c) * 0(; )
b\
From the symmetry of the two equations forming the infinite
set we obtain exactly the same result for the second equation.
Now cl is positive for an elastic materizl. Thus
l-¢
— g 1.,
1+
|
Consequently the infinite system is quasi fully regular for each
value of K, and 20 hss a unique bounded solution for each value of
K, whic h is given by the method of reduction. Thus s&ll sol-
utions of the infinite system obtained by the method of reduction

correspond to solutions of the original problem.

25. Computational Details

The infinite system of equations may be written symbolic-

ally in the form
AK) x= 0 ,

vhere A(K) is the matrix of coefficients, x is the column vector of
unknowns, and O is the zero vector. The solution of the system

counsistes of the set of velues of K for which



det A(K) = O,
and the corresponding vectors x. We use the method of reduction,
in which the equat ions

Ao
are solved for successively increasing values of R, where f is the
leading R x R submatrix of A and%cv is the vector consisting of
the first R rows of X.
The computation is carried out in two stages, which we ill-

ustrate by flow diagrams. The ratio E is denoted by @ , and

the dimensi bnless frequency parameter is taken as % s

~—



stage 1

-
e
~

read ¢ , €

read R, Ki,AK, If

print cut R

clear matrix store

form A(K)

R
evaluate F(K)

yes




In the first stage the functiom @( E) = det ﬁ(x) is

tabulated for a fixed value of R and a range of values of K,
namely the range % -Ki(AI)Kf. This tebulstion is done for

R=2, 4, 6,8, ..., and the approximste locations of the zeros
of ?(K) are noted in each case. Apart from the determinant

evaluetion, which is discussed later, the bulk of the programming

in this stage 1s concerned with the formation of ﬁ(x), Only

the non-zero entries are inserted into the matrix, so the matrix

R
store myust be cleared initially before forming A(K), to emsure

that all unused stores are empty. For a fixed value of %
the quentities as 9m’ ¥ a and & n 08y be real or imaginary,.
and the programme must take account of this fact in the formation

of cothan b and other similar terms. A point worth moting is

2 R
that as R increases the diagonal terms of A(K) become less and

less accurate due to cancellation of sigalficant figures, which

was indicated in section 24 by the asymptotic form. For small
velues of R this loss is not sufficiently important to merit
special programming, but for larger matrices it should not be

ignored.



stage 2: ,%,

| read cvl, e, &

radg.‘:"
8
b § 2

gset r =2

inverse interpolate

for K
1’2' .--’r

8 % x1:23-°-sr 1220+ T=L|<ET

w S~ A

print out J set !“1 equal
R,K
’ 1:20°°°:r' mx%a..oo’r
R
o compute Frel
set Ry 1 j
s R
solve for x replace r
by ¢+l

—

R
search X, for term

of largest modulus
l !

R
divide X by this terml

] SR

i3
print out x "'

In stege 2 inverse interpolation is used to calculate to

R
a specified degree of accuracy the exact zero of WK, for each of

the approximations noted in stage 1. Klnnd !2 are two values of



R
%3 straddling & zero of %(I), and Fl and gz axe¢ the corresponding
R
values of F(K). & is the sccuracy required in the computed zero,
R
The computation of Fx- a in stage 2 is equivalent to the section

clear matrix
store

foxrm g(!)

evaluate %(K)

|

in stage 1, and the same piece of programme is used in both ceses.

Vhen the zero Il - rtas been obtained, the corresponding
s B9y

]
vector x is found by solving the first R - 1 of the equations
R R
= 0
A(xl.a’o '-’r) & 'ﬁ .

with X0 the fth component of x , set equul to umity. This is
done by a process of back-substitution in the reduced set of

equations arising from the reduction of ﬁ(}{) to triangular form,
l::ul yields th'e- entries of ; in the order Xgs Xp qs +-s¥peX, -
X, 1s then scaled to have its largest entry equal to unity.

The inverse interpolation is done by Aitken's iterative
method of interpolation with the independent and dependent variaebles
interchenged. The process is deecribed by the flow disgrsm on the

following page. Given the r pairs of numbers
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.2 K
K2
K.2,3

by b
» ©

Frrr KLe,...xa

Fx' ’ Ir »
the routine calculates ‘1,2,...,1-' Here L.I.,a,.‘.,r denotes
the approximation toc the zero of F(K) obtained by inmterpoleting
the r points (F,, xl), (F,, !2),..., (Fr,Kr), with an (r-1l)th
degree polynomial, and Kl,z,...,sd..r BKr when 8 =]1.

inverse interpolation:

i

setra =]

replace 53230-0’8"132. by

- 75 D icasl
F

- F

r 8

u #
replace s by s+ 1

F K

lj!,,a,. - 7%

is 8 = r?

= s

A special determinant evaluation routine was written

as & subroutine which could be incorporated into different

cogputer programmes. This subroutine is used in both secticons

1l and 2. A flow diagram for the routine, which uses the method



29
of Gaussian elimination with interchanges, is given below.

In the flow diegram a,, is used at each stage of the

1)

reduction to refer to the number currently occupying the store

R
originally containing the 1 -~ jth entry of A .

determinant evaluation:

f

set j =1

1
R
set sgn A = 1

search entries
8330 %340,3,%342,9°° "Ry
for one aiJ of largest modulus

is i= }?
no

Ll interchange j th and
i th rows of matrix

A k
replace sgn A R

by - sgn A
/

eliminate entries

aJ*loJ'aJ*2:J""'aRJ
using j th row

is j= R - 17
Y% N
form replace j by
111;‘11 3+l

form
R R
det A = ggn A:mltlj

f
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26. Results

The results in this section were obiailned with
% = 0¢35, which is one of the values taken by Bolotin.

The first set of results is for a square Ccross-
section, when the additional 'condition of symmetry ebout the
diagonals is imposed. For a sqﬁare we have e = 1, awd the
extra condition implies that

B (m) =C,(m) ,
Y L 4
Sn =Pn -
These relations simplify the form of the solution, and alsoc

reduce the infinite set of equatiocns to the form

m
L b Ecothﬁ.b..m‘r‘a coem,_b]w 2y b P
R M| 2 e ¥ SenT) © =0,
260k ™ B R 2 o m*—b‘;fj

m=2, b, 6, .

For this system the = thod of reduction uses R =1, 2, 3, &,
successively, instesd of R =2, k, 6, 8, ..., tae sequence for
the previous system.

Successive approximations to the lowest frequeancy of
this type of vibration and the corresponding coefieients

Bo(a)’ B (k), B (6), ... are given in table 3.1.



e & B(2) | B(W | B(6)| B(8) waﬁswdsv B (1%)| B (16)| B (18)
1 2.0u642 | 1.00000
2 2:06385 | 98066 | 1.00000
3 206462 | -9642k | 1200000 | .26847
b 2.06485 | .95918 | 1.00000 | 27703 | -16788
5 206494 | 95706 | 1.00000 | -28122 | =17326 | -120863
6 2:06498 | 095602 [ 1500000 | <28349Q | -176k1 | 1217 | -09286
g 2006501 | <95543 | 1200000 | 28480 | <1783k | -12647 | 209533 | -07468
8 2006502 | +95507 | 1:00000 | -28562 | °1T7958 | 212801 | <09705 | 07648 | 06104
g 2:06505 | °95485 | 1-00000 | 228615 | -1804%1 | <12907 | 209827 | 07780 |<06330 |.05256
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As @ check on the cemputations the residual displacement
u(x,0) was calculated for each approximaticn, and the curves ln

figure 3.1 illustrate the results cbtained

2 verms
wx,9y¢% 00000 e e emeamm - - 3 a
Y "

p]>

Figuve 5.1
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The maximum residusl displacement is given as a percentage of

the maximum displacement over the whole cross-section in table

5.2,
Table 3.2
ordexr of
determinant 1 e 3 4 p 6 & 8 9
max u(x,0 i ° ) a
ma.xu(x,yx:l‘oo 21 5.2 | 3¢1 | 2¢1 | 16 | 13 | 10| 0-88| 0-7¢

Table 3.3 gives successive approximations to the first,
fourth, seventh and tenth lowest natural frequencies, and
ia figure 3.2 the lower end of the computed spectrum of frequencies
for motion symmetrical about the diagonals is indicated. Figure

3.3 has the corresponding spectrum predicted by Bolotin.

o 1 2 3 & 5
b

Kt—f' Figure 3.2

L ) A A i

o - 4 2 3 + §

{% Figure 3.3



Table 3.3

aﬁiﬁ?&ﬁﬁm (%‘)1 (%')h (%')7 (%)10

1 2.04642 | (3.5450C) | (4.31932)

2 2406385 | 3-53628 | hk-31189
3 2-06462 | 356645 | 431329 | k-9hTS1
b 2:06485 | 3.57122 | 436395 | 506370
5 2.0649% | 357146 | Le36402 | 5-06464
6 206498 | 3.57152 | Le36405 | 506465
7 2-06501 | 357155 | Ue36409 | 5:06465
8 206502 | 3-57156 | h<36412 | 506465
9 2:06503 | 357157 | L-36413 | 5-06466

It is pot possible to say whether the bracketed
frequencies in table 3.3 are the lowest approximations to the
frequencies in the table or to neighbouring frequencies.
The blank speaces in the column of (%?) indicate that no

10
approximation was found near this frequency.

In the cecond set of results symmetrical solutions
were cbtained for three different rectangles having e = 1, 2 and &

respectively. The lowest frequency and the corresponding

coefficients are given for the three cases in tables 3.k,
3.5 and 3.6, and the frequency spectra are given in figures

3.4, 3.5 and 3.6 respectively.
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Table 3.k
UmMMM”Mn”Mw n..% qumv akoV wot; ooA5 uo;v aeAm wohmv noﬁmv uooov oom s
2 162762 | =1+00000|1¢00000 )
b 163428 | =299999(100000| 24111 [-24111
6 163457 | 1.00000|=.99996| .23755| .23756 |--06887 | 06888
8 1063462 | 1900000| =120 | =223686 | 23686 [«<06762 | «06T762| =202923 | «02923
10 1.63462 | 1s00000| =2500000| ~+23668 | 023668 |=206722 | 206722| =<02871 | 202871 |-01484 | -0148L
Table 3.5 .
uommunw.u“ma % uoﬁmv noamv uo:; naé: uo?v a%& uoﬁs ooamv uooS ouﬁov
2 103865 | 1:00000 | <98426
e 1:03962 | 96131 | 1200000| 3802l | -08872
6 103989 | <9WTT3 [ 100000| <382:5| 10716 | °26198 | 0501
8 1003998 94343 | 1400000 ¢38355| 11723 | 26408 | <05876 | 18042 | 03545
10 106002 | 94165 | 1000000| <38415| 12268 | 26526 | «0642T | <18200| 203996 | 13133 | . 02712
12 10600k | -94OT9 | 1200000| -38450| 12576 | .26597 | 06789 | 18297 | -Oh325 | «13246 | <02987




Table 3.6

mmwmmhzum Lﬂ. uoﬁmv aoamv uo?v aoAZ uo?v ooﬂmv quS ooAS uoC.S ooﬁov
2 .67120 | 1.00000 | =07908
b 67114 | 1500000 | <08078 | 01416 | <01403
6 *67118 100000 | <08238 | «0ikkL9 | ~01470 | -02082 | 9062k
8 o67i20 | 1000000 | -08366 | <014T3 | -01549 | <02119 | «00666 (02207 | .00371
10 067122 | 1000000 | «08462 | 01492 | 0162k | <02148 | 00711 (002238 | -00K00 | <02085 | -00256
12 67125 | 1000000 | <0852k | 0150k | 01688 | <02167 | -0075k |<02260 | 00428 | <022.07 | <00275
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27. Discussion

Table 3.1 indicates that the sequence of approximations
to the frequency is converging rapidly, and the extrapolated
value obtained by Aitken's &2 process is 2-06505. Thus
the ninth approximation is probably accurate to within one
unit of the fourth decimal place.

Figure 3.1 shows that the residual displacement on
Yy =0 is oscillating more and more rapidly and with decreasing
amplitude as R increases. The percentage error in table 3.2
is a measure of the accuracy of the computed eigenfunction for
each value of R.

Since the eigenfunctions corresponding to the higher
frequencies vary more rapidly over the region than those
corresponding to the lower frequencies, we expect the computed
values of the lower frequencies and eigenfunctions to be more
accurate than those for the higher modes, for a fixed value of
R. Table 3.3 illustrates that this is the case.

Bolotin's asymptotic method of solving vibrational
problems is described in BOLOTIN [1961 a ], where it isused
successfully to compute the natural frequencies of plates and
shells. It is applied to the problem of this chapter in
BOLOTIN (1961 b ] , from which the results in figure 3.3 were
obtained. This method assumes that the solution of the problem
consists of two distinct parts, the generating solution and the

edge effect. The edge effect 1s small except mear the
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boundaries of the region, while the generating solution is

significant over the whole region, and comnstitutes the major
part of the solution in the interior. We find in the plane
strain problem that the generating solution corresponds to
motion which is either purely dilatational or purely rotational,
and that the edge effect exists for the latter case but not for
the former. That is, when the generating solution is of
dilatational type, & sclution effective only at the boundaries
cannot be found, and the edge effect is termed degenerate. Thus
all the frequencies in figure 3.3 correspond to rotational
motion. Now we can show, as KOLSKY (1953 ] does for a
traction-free surface, that a plane dilatational or rotational
wave incident on the clamped surface of a semi-infinite elastic
slab generates on reflection both a dilatational and a
rotational wave, except for special angles of incidence. This
result suggests the unlikelihood of finding, in a medium
bounded by clamped surfaces, standing waves of either dilatational
or rotational type alane. Thus the initial assumption of the
asymptotic method may not be valid for this particular problem,
and this fact would explain why the method fails to predict
fully the spectrum of frequencies. A disadvantage of the
method is that there is no way of improving the approximate
solution without altering the character of the method, and there

is no error estimate.

Tables 3.4, 3.5 and 3.6 show that the successive



.
approximations converge more and more slowly as e increases
above the value 1. The same effect would occur--if e were
decreased below unity. The reason is that, when ¢ is large,
the solution given by integral transforms contains functions

vhich vary slowly with x, typically sin —‘? » and other functions

2 2
which very rapidly, typically sinhsn(% - x) =sinh (n: - Ia)%-% -X)
b
» and the boundary conditions are satisfied by expanding

the second function in & series of the form £ e sin m—-a“— )

The greater the value of e the more rapidly sinh Sn(-g‘- - x)

varies relative to sin 5;—“— ;, and the more terms of the expansion
are required to approximate sinh Sn (-;- - x) to a given degree of
accuracy.

Thus the method gives optimum convergence when e=1.
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Chepter IV. The NHatural Modes of Vibration of Circulsr Rods.

28. The Coverning Equatl ons for Axially-Symmetric Motion.

In this chapter we study the steady state vibrations
of a homogeneous, isotropic, elastic rod of length ¢ and
having a uniform, circular, cross-section of radius a, ac

shown in figure 4.1.

| w

- e e e e e e e W wm wm e e W we ww . ew .

Figure 4.1

Take a system of cylindrical cocordinates (r,0 ,z )
with the origin at the centre of one of the circular ends, and
the 27 -axis along the axis of the rod. For simplicity we
consider motion which is symmetrical about the axis of the rod,
although the method may be extended to non-axially-symmetric
motion. The components of displacement are then independent of

6 , and there is no angular component of displacement. If the
radial and axial components are denoted by u(r,z ) and wir,z )
respectively, then the vector 2 is given by I = [:] .

g, g€ and CC are the matrices

~



F.l..é,,,. 9.
rar » & 9
g, R
% oz
- = L -

i
2

and | --22
3z% adrd

LA v id

rordz r 8r

respectively, and the equations of free vibration are

..L B du —c) OW r
Serartvurasy tUCr +Kuwo
T radg i+ +Kw =0 |

2 2
I =24 * PP *
where C.—A_'_zr =2_14 } K --‘c—— ? k —-‘-K

The Function ¥

The metrix ¥

= |V
1

must be chosen so that -y,

a Y2
and y, belong to complete sets of functions, emnd so that
*
¥FL = A%
Lad # il 3 il
P _9 g3 X
Now C C Fye raﬁ;&r 5 80 that
Yo i
| 9rds r gi"rgi‘
% B 3. 2 2 2
L= |0 *"l";‘f'{-";} +r§2. +PP ()\+r~)il_:_rr3r ¥
. _r2 . 3
(A + 1) s M ST vhrapld pp

and the condition

= AE
$L, =

becomes, on dividing through by )\ + 2 p and equating the

matrices term by term,




L o P | 4.1
%x'_g;l‘%-i-qs-i!ﬁ + Kv =a, y (&.1)
2
(1-epk-ferry = o v (.2)
az
(1 - cl) ar“‘?‘z - L W, (&.3)
LTI+ P + Ky =2 (k.14)
On separating the variables in (4.1) and (L4.4) we

find

= A C
Y, Jl(alr) cos(hlz + 1)

v = BJ (a r) cos(hz +C),
2 o 2 2 2

and for these to satisfy (4.2) and (k.3) we must have « g e

'g - 01 & hx = ha.
For the expansions in complete sets of functioms of

the above forms we use double series expansions consisting of

Fourier series in z and Fourier-Bessel and Dini series in r.

The theory of the latter two expansions is given in WATSON [i922] ,

where the basic theorems are derived. SNEDDON [1951]

usegs them to define finite Hankel transforms, and formulates the



expansion theorems in these temms. For the sake of completeness
we state the two relevant theorems.

Theorem 4.1

If ?(r) satisfies Dirichlet's conditions in the intervsal

[0, &] ., and if its finite Hankel trensform is defined to be

Bg,) = [ 0 g0 &

where & 4 1s @ root of the transcendental equation

I (£48) =0 (4.5)
then at any point of [0,a ] at which the function f(r) is continuous
fr =% ) Flg) &0 ,
3 [J}(é 1)]

where the sum i taken over all the positive roots of (4.5).

Theorem 4.2

If #(r) satisfies Dirichlet's conditions in the closed interval

[n,a] and if its finite Hankel transform is defined to be

fie) = [rfo Jgndr

in which é 1 is a root of the transcendental equation

L&) + hT&e) =o . (4.6)



L

then, at each point of the interval at which £(r) is continuous,

£ F@) &)
=52 Fe-E e

where the sum is taken over all the non-negative roots of (L.6).
We see from the theorems that the expansions in r of

u and w must be of the forms Z, aiJl(éir) and ; b1J°(§ 1r)

respectively, where the parameters §1 and H are chosen so that the

two equati ons
J J(( £ 1a) =0
S19x(¢;2) + B (g,a) =0
are satisfied simultanecusly for either J = Oand k = 1 or
J = 1and k = O.
For the first case, since xJ;(x) = xJo(x) - Jl(x),
the equations are
Jo( {ia) = 0
5489 (£.8) +(E-1)T(£,a) = 0,
and hence the requirements are that H = 1 and éz 2 0k s o
2’3
satisfy the equation
Jo( & &) = O
The equations in the second case are, since J")(x) =
- J (x),
Jl( & 13) = 0

- éiaJl( éia) + Uo(gia) = 0,



which eve both satisfied only if B = Oend £ , ¢, & »
are the roots of the equation

J 1( ¢ 18‘) = 0

These two cases thus give rise to two different
complete sets of functions which are eigenfunctions € L’ .
In the subsequent analysis we shall use the second of the two
gsets, as it enables usto satisfy automatically one of the
curved surface boundary conditions in the problems studied later
in this chapter, namely the condition that the shear stress
vanishes. The first set does not satisfy the condition that the
normel component of stress vanishes, although it may be more
convenient for some boundary conditions.

Thus we choose ¥ to be the matrix

m xz.
Jl( b3 1r)c:os : 0

0 Jo(€ j.z') sin 2:-5

e

where é’o =0 and gl,ga.ga, ... are the positive roots of
Jl( A 13.) = 0
in increasing order of magnitude. For the expansion of u and

w we define
a L
E(ism)" f [ mx
o J ofI (§,;7) cos =Fu(r,2) ar az ,

L
wi,m) = j:/; xJ (& ,r) sin ;‘;"!Mr,z )ar dz .

Then we have



L = = — J1( § 17) mgz (4.7)
wr,z) = — u(i,m) — =22
A 12 mZ R ¢ TR

o ~ J( )
M(r.z ) = ‘“l!"‘ Z ‘ -G((i’m) -&i"—r;_ sin %43 ) (h"e)

l, m#0

30. The Formal Solution

We mtroduce the parameters

A (n) j ule,z)cos = -—— de,

B(m)= (Bw) mi‘-‘é-‘fd:.,
reg

c (1) = fo (g ), o,

i)= - .
D, (1) jo rJ (&,7) w(r,§) ar

The transformed equations, obtained by inserting the
metrices g., g, C and ¥ of the last two sections into equations
(1.9), end integrating over the three surfaces z=0, r = a

and z=L are

— — -

K1 & é: - c‘-"-:;} —(|—c.‘)§i!"_!' au’m)
2

~(-c)g;f (K-c.gi-w_ig) W (i,m)




1}

£2 T,6:2). Agm) - ¢, cos mI.Cf) +c,Cfid +(i=c)scosmr- D) ~(-c)&; 20 |

(-)mE® T(g;3). Al - <, TE,2) By + 2 cos mr. 36) - 2.

e e

These equations involve the six parsmeters Aa(m), Ba(m)' Cl( 1),
Co(i), Dl(i) and Do(:l.), correspoﬁding to the six boundary
conditions required to determine a solution.

We proceed as before to solve the equations for

u(i,m)| . On substituting the resulting expressions into
.‘-’(i:m)

the double series (4.7) and (4.8), splitting up each expansion
into six separate series, and reducing each double series to
a single series by rearranging if necessary the order of
sumation and summing the imnner series analytically, we

eventually obtain the solution
l:u(.r.z) = %‘-Z €. 9(r5%; @il o, m).Afm) -t%Z €, B(T;2; 15 -'!"1—‘-r 3m).Bm)
xS .;:12_ B3 zi=13& ; coshsinh 2).C(0) - _:‘Z ®, (3 8-23-1 & cosh; sinh2).C )
~2) R {553 ;-4 cosh; sinh £). D) 4 %Z“’t("’"" ;& 3-¥, scosh; sivh £). D)
i i

(&.9)



r,,

W=- ‘i'; (752535~ sm). Alm) _a}_ @325 15 7, m). Bfm)
5 {;2 @, (¥3%;1;-&;;sinh; simh ), C) +§Z @(Ts85315-4; s sinhssinh £).C.)
i 1

+ i‘z ‘P~(r i3 §i;-‘(: :sinh; sInh R)-Il(i) +i;Z v,'(r ;R-z;gi;-)’:-’ sinh;sinh 2) D)
(4.10)

where

P3P, 5P, sm) = pmrJ'(“ D p LD | cos mua
T(#d) * T (Pad) £

T;%;pP, o F: = I £(%z) § £(5;2)
C?:.( P Pa 8('7)) I@ ) [:ang(xﬂ) Pa &5(8‘)

£ ym a, LD o mT L(BuT) | s
el ﬁb "Teea) T J'(ﬁ..a)} e

wi iy
£

s 2 1“':

PM=K-—L%‘£ ’
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Series (A 1) - (A 6) in the appendix have been used in the
reduction from double to single series.

The expressions (4.9) and (4.10) constitute an axially
symnmetric solution of the equations of elasticlity for the
cylindrical region O s r s a, 0 s @ § 2q O sgst ,
and will be used as the basic solution for solving the problems

in subsequent sections.

31. The Components of Stress

The stress componstite with which we are concerned are
the normal stresses o, and o, & the shear stress v . They
are given in terms of the derivatives of the displacement and
the elastic constants by the stress-strain relations on page 11
vhich are for axially-symmetric deformation,

| o \
X*Zr& - T

O ru ~2c M 4 (1-2c ) OV
e u T +( 21('.,)an 5

—l ¢ =(-2c)Ldru + ¥
A'f'z,A % ( |rar +aﬁ

'C=§L‘+.aﬂ
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To obtain the stressscorresponding to the formal

solution given by (L4.9) and (4.10) we differentiate the infinite
series term by term. The resulting expressions are valid

only at points where the infinite series converge. Since

we shall have occasion later on to use these expressions to
satisfy the boundary conditions and to compute the stress

field, they are given in detail below.

2

k
2¢,(A +2r4) a;(r' =

1 . r-,z.-,m:‘!t; z;m A (m) _Z-_Z I;z;__!’-_mA’;M.B('“)
sz R o m) A+ 2 ) ndrinigtionsim). B
.|-a%. Z ?G(I',Z; l;&i-’coshsain'\ 2).C1(~U_ _é‘ Z ?‘(I; -5 l;{i;cosh-’sinh 2), Co(j-)

i i

b

* ;2[!2 BLx;2; &5y, seonh; sink .!).ZD‘(J'.) _i‘z ?o(r;x-z;%;xi‘;cosk;unh 2). D)
1

2
.-
2ea2p) ©

a
=%z g, xf,'(r-,z.;_".ilr;o(“ ym). A m) _%Z £, €, (T8 l;'_'iI;m).B‘(m)
w wm
+§‘Z (e |-,§i;cosh;sinh 2).C!(i) _%}Z ¢, (r; 2-2;1;&; iconh; sinh £).C40)
1. LS

& %."2 Va(r',t.;gi;xi scosh; sinh 2).1?1(1)_ f‘z ces(r;ﬂ-r,;é;]‘:;cos}\;sinh E)..'Do(i.)
i i



js_t: (x )
'A

?..(r'm;'lf;—«;;'")ﬁ,f'")f%Z L XCR AN '—233'")'3&(’“)
™

i)

+.Z-‘Z (22,154, sinh; sinh X)C(i) .,,%Zcp (z;4-n; s sinh;sinh R)CQJ

...%}Z e, (28, *it,’sinlm;sinh R):%u) e _:_:‘Z 7“(;--,1-:.;§i-,x:;sink;sinh . |
A 1

wl\ete
LGP P ) = ’ A ) P Ty “ L (L)
o h i J@nﬂ} P{} (P.H xi((,i,, }}v

‘Pg(r;Z;pg';p‘;f;g(q)) =—p X @ LWL o x () £(8W
&(x%9) 8, &(%4)

X(e) = & RED 1 3@
f (€a) T g

Xz(r) - l;. +(~2¢, )k] J,(&.r) ; J(¢.0)

Iii‘ 3 @,})
PG PLM) = [P @ () -2c, Y L(AaE)  lcos mrz
Pk pus puim) [}{% B{(\ 2 )% .,.g},; F:JI(P..\Q]" s

%, (5:2; P £8(q) = T3 ¥ §xe) K & )4z
e Eé‘g(w -4 5 8(49) :l

':':.';',—cz_m (e, r) 3 (B.%)
?q(r %P Pam) E(‘} -R-J)}TEI)— + Pa T?_(%':)]sln mg_

(5% P psFig(q) = Pk - &) B | p 2 £(42)
%o f) [( )«w M‘sf(w]
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32. A rod with Traction-free Surfaces

The solution in sections 30 and 31 is now used to
determine the natural frequencies of axially-symmetric
vibrati on of a rod whose ends 2 =0 and 2z = ¢ and
curved surface r = g are stress-free. Such a situation is
an ideal one, which is approximated in practice by a rod standing
on end on a horizontal surface, since the gravitational forces
on the rod are negligible compared with the stresses in the
material.

This problem is discussed in LOVE [ 194k ] page 289,
where an approximate solution is derived. Detailed numerical
results, obtained using the Mindlin approximation to the
Pochhammer solution, are given in McRIVEN and PERRY (1962 ]
for steel rods of various dimensions. McMAHOE [196&] hes
an experimental study of this and related problems, and gives
experimentally determined frequencies for steel and aluminium
rods.

The boundary conditions of the problem are

G’r"tr&' Oa r = a, Oszst )

g - tnn Q 5 Ogr sa, 2=0 and =g .

35 The Transformed Conditions.
Some simplificetion of the formal solution (4.9) and

(4.10) may be obtained by transforming certein of these

conditions. Thus the condition Se ¥ 0 gives



ou . ov

L L
3w sin 2*2 3p n:[g-gsmmdm

i.e. o

Ba(m) = -;:—An(m) ' (4.11)
By similar arguments the conditions 'crgr,O) =0 and r.u(r,z) =0
lead to the relations

¢ (1) = £,D (1) (4.12)

c,(1) =§,3(1) (4.13)

If we transform the other conditions involving the normsl
components of stress we obtain relations between the parameters
already defined and new parameters which we have to introduce,
and the resulting solution still contains undetermined paremeters.
Consequently we postpone the normal stress conditions, and
satisfy them at a later stage.

A solution of the equations satisfying three of the
imposed boundary conditions and containing only three sets of
parameters follows by replacing B (m), C (1) and G, (1) by the



forms given above.

34. Symmetricsl and Skew-Symmetrical Solutions

From the uniformity of the rod and the symmetry of the
boundary conditions it follows that the normal modes must be
elther symmetrical or skew-symmetrical about the plane Z x-é- .
When these requirements are stated explicitly in terms of w and
v they give rise to additional relations between the parameters
in the solution.

For symmetrical solutions u, ¢ » and o, 8are symeetrical
about z--zi’ , while w and ‘B" are skew-gsymmetrical. Hence we
have w(r, ¢ -z) = u(r,z ) and w(r,¢ -2 ) = - wir,s ), and
in particular

we,t ~-z2) =ula,z) ,
wir,t )  =-w(r,0).
It follows from the last two relations that
Aa(.) = 0, modd |,
. } (b.14)
D,(1) = - Do(i)

The corresponding conditions for skew-symmetrical

solutions are that u, o . and o, are skew-symmetrical and w and
L

'cn symmetri cal about 'o"z « These imply that

u(r,i-2) = - u(r,z)

"(r: t-z) = wr,z )
leading to the conditions

Aa(n) = 0, m even } (%.15)

Dl(i) s D@(i)



1f equations (k.11), (4.12), (4.13) and either
(4.14) or (4.15) are applied to the solution (4.9) and (4.10),
the result is a solution of the equations involving only
Aa(n) and Do(i), vhich will be a solution of the problem if
A (m) and Do(i)- are-chosen s0 that the conditionso (8,5 ) = 0
and g (r, 0) = O are satisfied.

The details of this solution are given below, since
they are required for t he computer programmes on which the
computations are based.



where ¢ » ..., @re the functions defined earlier. For

1 10
symmetrical solutions f(x) ® sinh x, g(x) ® cosh x, and =
takes the values 0, 2, 4, 6, ..., while for skew-symmetrical
solutions £(x) ® cosh x, g(x) = sinh x, and ; takes the values

1, 3 55 Ts soe o

35. The remaining Boundary Conditioms.
The solution of the last section is a solution of the

problem if it satisfies the boundary conditionss (&,z) = 0, Gre=o
anda&(r,& ) = 0. From the symmetry and skew-symmetry of Oy, *

the last condition is redundant.



FKow the sets of functions { cos Ez&g-}and (J o( é ir) )
are complete sets, so that the relevant boundary conditions are

equivalent to the conditions

2
j";(l.i)msni“lib-c omm gy L8 By ves 0

a

frJ;(glr)a;(r,o)tlr-o , 1w 9; 1,2 3 wss

o

Substituting the series for o . and o, and integrating term

by term produces the infinite set of equations given below.
S)A(S)..._l.,kZ?(s)ID(z)-o (416)

vg(&;O;&;{ k- o

2 2
2 akzé,“? (6).AfS) — ‘?al}'"%.'*f,;;*(%-éi)m;f(%)].:bju =0 (&.17)
The first equation applies for all relevant values of s and the

second for 1 = 0, 1, 2, 3, ... . The functions ¢ (8) and
vm(s) are defined by

— ,; Zc.).r ~(-<c)8 ]5-(. zc,)kq‘ l
' (&~ X - A) T

0a) @cw - (1-2¢ >{~]S"' e
(- X+ 5F)




36. Regularity of the Infinite System

Before investigating the infinite system in detail we

Jo(éia)] 1 —>ad
notethatB(m)B 0(-—)asm-0¢o ,andc(i)= 0 as 2
&2 J (éia) €4
Hence A (m) = 0( ) and.D(:l) = 0[ ] :
a 2y 2 §i

The main result which must be established is that the
method of reduction for the system (4.16) and (4.17) converges
to the solution given above. This result follows if the system
is quasi-regular with bounded free terms, and if the solution
above is the principal solution. The last part is true if the

syetem has a unique bounded solution.

To prove the regularity take the equations in the form

A o259 ”’ ‘2 ; 1.5)"‘5 +%k2—$§é)?(9;{ =0

ST

where xsaé_’]fi_z ASs)  and  y o §: D,(1)
. T OL(Ea)



By the ssymptotic expressions given above the solution of the
latser system corresponding Lo the solutica of the physicel
problem is bounded.

Consider the seacond equation of the latier systen,
since it ies slightly easier to deal with than the first. We

aust ghow that the ratio

2
1\—_ 2 R
2ak ) ¢, F |ta®
2 A 551“. 3

¥ 3 J(¢;2) ?Ba

is legs than uaity for i sufficientiy large.
It is clear thst, for & fixed velueo?® k%, ¢ - (s)
is nltimetely pogitive a8 s e , provided §i is sufficiently

large. Thus

!fqla(s)i = ‘(’la(s)

for s > N(¢& i)’ say. This fact is used to write
L]

2 2 2
Z t’s“g-i l?.;("‘)| = Z E‘szit €als) — 2‘2 tr!r‘: .als)
ST = ST 3

s
S

where the second series contains only positive terms. The
first series may be summed snalyticelly by expressing the summend
in partisl fractions and summing each part separately using
standerd series.

An asymptotic form of the result can now be derived for
large i by elementary methods. If we assume that the first I

Terms ave omitted from the sbove series, since we are concerned



only with quasi-regularity, the result we obtain, alier some

algebra, is
z 1
Fl s R - o)

The asymptotic form of the denominator can also be

obtained without difficulty, and is

1 _ L
(l-cl)aj §1 0( 3?).

To compare the mumerstor end the denominator we must
multiply the latter by -g- . When this is done the regularicy

ratio is

Woen both sides of the second equation are divided by

the coefficient of vy end the resulting equation put into non-
1

]

homogeneous form, the free terms are Of ). Thus the free

terms are bounded by Th
The first equetion is dealt with in a similar way.
In this case we meke use of the asymptotic expressions for the

medified Bessel functicns Iot(x) and Il(x) to producz the series

LW o bk, 4.3 S+ O,
ff;)- ~ T Tk T Ge)
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The algebrs is a little more complicated, but it can be showa
eventually, with the same assumptions as before, that the

asymptotic forms of the numerator and denominator are

2 2 2 3
-e )k £ _ 3G-<)k 4 O/ 4
; a st a7 T (s’rr’)
d )kl l k:. xz O 25
an (I-C| S N o [
2 s EL; R ¥ (W)

respectively. Since 0 = cls 1 , then 3(1 - c1)> #
Heace, after multiplying the mumerator by fgp he retio is
1-0(3),
which is less than unity. It follows that
PR % o

and the free te'ms are bounded, by the srgiment used previcusliy.

Thus the infinlte system of equations is guasi-regular
and has bounded free terms. I% follows by E 1 thet a solution
exists, and the method of reduction comverges to the principal
solution, by R L.

The question of the uniqueness of the solution of the
system has not been settled. If we tramsform the unkuowns
by the transformation x = ZX x ,y = £y , then the
second of the resulting equations satisfies the condition of

regularity, but the first does not. The transformaticn
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_ &2

xs
L 2

2 s 2 . J1 . 28 .
X V- gi.yli produces two equetions, neither

of which satisfies the condition. Other transformations which
attempt to establish the result by U § give rise to systeus which
are more difficult to test for regularity.

The other approech to this question suggested in the
literature is to use the result in U 4. This involves a study
of the solutions generated by the method of successive approx-
ivmations, and vequires an estimate of the way in which the
solutions tend to thelr limiting velue. An attempt hes been
mede along thece lines, but so far without success.

‘n the absence of a complete mathematical justificstion
we rely on the fact that the corresponding pvhysical prebler has
& uanique sgolution in general, for each freguency, to Jjustify

the compuied sclution.

37- Computaticnal details.

The computational problem is essentially the one
described in section 25. and involves the solution of singuler
systems of simultaneous equations. The only di7ference is in
the detaills cf the coefficients in the simultansous equations.

To compute the Bessel Punciions Jo’ Jl, l‘f.o, and I:. occurring -

in the di agonsal texms from the first equation, a special computer
routine was written using Chebyshev seriesc expansions over part
of the range of the argument snd asymptotic series over the

remeinder. The procedure ls described in CLERSEAW [ [49621],



from which the coefficiente in the expensions werc cbtalned.
The compuiaticn of the fregquencies and ceefficlents is

done in two stages,; as before, and consists of & tebulation

followed by an iteraticn. The same determinant evaluation

routine is used. The dimensionlegg frequency is tsken &s Ia

:

and the data for the tabulation are the ssme as before, with
a
e = =

L

Different computer programmes are used to deal with
symmetric and skew-symmetri: solutions, slthougk only minor
differences are involved. The unknowns arve tekea in the order
A(s), D(0), A(s+ 2), DiL), cc., with 8 = 0 & 1 for syametrical

e o =2 o
D" eize'c:.}ﬁ».:..r’zel foilwtione IaspeCSively, and GIC vCaasi: =0

tias the loggeat term i3 unity.

28. Results

Fumerical results have been obialned for a ste3l rod,
teking v = 020, whose length and redius are equal. From the
Previous experience wita thi: method w2 expect thesz relative
dimensions to give the best rate of convergence.

The first eight synmetricel and the first eight sked-
symaetrical modes have seen computed, and the coanbined fregizney
spectrum of valuss of % ! 4. presented in figure Lh.2. Figures
b.3, h.k and 4.5 give the ncde shapes end the lines of zero
dispiacement for the first lourteen modes. The full lines apd

dasaed lines show the madelormed and deformed cross-secticno
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respectively, he dotted il.nes are the lims of zero u, and the
daghed snd dotied lines axe the lines of gero w. Teble k.1
consigte of the saccessive spproximetions to the freguency and
coefTicients forr the first symmetricsal mode.

As a check or the computations the residusl stresses
have been conpus 2d on the surface of the rod. Since the
infinite serier for the stresses are dlvergent when v = a and

%2 0, theyr e hinsit the ¢ bHhl phenomencn et thls poict, ard
we canoot use The maximuwr ‘alue of the residual stress over the
whole surface 18 au estins .e of the error. Tvstead ve use,
Tor symretricel. solutions, the residual normal stresses a* the
ceniie of the 1vwo surfaces r =3 and 2 =0, pamely the stresses

¢

) anc.J, (0, 0), ince the points (&, ';z ) and (0,01

7

4 3 f &,

o

o les

ere the antinodes for the uecessive approximations. Teble %.2
glves wvalues ©f The two v sidual zormal stresses for the

suecegsive gpp oximations o the first symmetrical mede.
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Table &4..
! A

3 (. (0)Y D(O)| A (¢ D{1) A () A D A
owmmw of mm .pm& ) %v mﬁmv A8 h..; ccmmv %3 omuv .-Amv uo?v
v new | 14

2 _m.ﬂn_w ) 28537

A - 56015 ! <28%61 F0GOBY |r04298

(4 55888 | | - 26384 ._!oﬂwo.w *0LATE 01097 |- 00772

8 ' 558463 | 228390 {~07Y63 | 04545 =+ 01351 [~'00BLO |~'C0454 | 00300

0 558221 | +28403 |--08228 ['04585 |- 01478 [-COBLS [~-00533 |-¢cC3i5 |--00248 |~-00152

12 s58lol ‘28407 [~08370 |-08604 |—0157] 00859 00591 |- 00223 |--00284 |-+00!58

14 558041 1 128409 [OBASE |-04619 |- 0163} [~'0CB86T 100634 |-00329 {~'00312 |-'00i162
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Teble b.2

order of
detemminant

4
!G-r( 5!"5’) l

x 100 | 4.1 | 2.9 | 1.9 |1.% | 1.2
maxla;(r.Z)l

laz(0,0) |

x 100 51 oh | 20 | 27| 15
max oy (=,z) |

Table 4.3
ﬁ“
5 computed experimental Pochhammer
; frequency value value
1.45 1.48 1.62
2.01 2.02 1.98
2.88 2.88 (2.95) 2.27

In teble 4.3 a comparison is given for the lowest three
frequencies of vibration obtained by different methods. The
first column has the values taken from figure 4.2, those in
the second column are taken from McMAHON[1944], and those inm the
third column from McNIVEN & PERKY (1962 ]  The quarfity tebulated
in table 4.3 is not % but 3:‘ » where p iz the angular frequency
and ¢ is the speed of sound in the rod. For e meterial of

densityf we have ¢ = Fo» vhere E 1s Young's modulus. Hence
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2
( 28) = l\_,tﬁ_g&= (Ea)? .

e
If we use the fact that E = 2 (1 +%) where jpis the shear

modulus and ¥ is Poissicds ratic, then

N2 L -9y
Taking V= 0.29, the value for steel, gives

E_ _(1L+91-23)

B~y eoln -
o i

The third experimental value in table 4.3 is en estimate
obtained by extrapolating sn experimental curve, and is of
uncertain accwracy. The adjacent Tfigure in brackefs 1s the
cerresponding value for an aluminium rod, and we observe that

frecuencies for steel are generally lower than those for

aluninium.
39. Discussion

Table 4.1 indicates that the sequence of approximate
frequencies 13 coaverging rapidly, and we would accept the
last velue quoted as being correct to within one or two units
of the fourth decimal plece. The accuracy of the coefficients
is vot so certain, but the discrepancies are not likely to be
more than ore or two units in the third decimal place for the
A's and the fourth for the D's.

The values of the residual stresses in table 4.2 show
that thes: siresses are decreasing monotonically, and so confiym

the numericel. solution as being an epproximste solution of the
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problem. The two sequenc es in teble k.2 appear to be converging
at epproximately the same rate. Although the rate of convergence
is rather slow, it is reasonable to assume that the residual
etress would be arbitrarily small by taking a sufficilent

number of terms in the solution.

The experimental frequencies in teble 4.3 are in
egreement with the computed values. There is no indication
given of the magnitude of the experimental error, but it is
unlikely to be less than 2 per cent. If we accept this figure,
then the two lowest pairs of frequencies agree to within the
experimental error. We cannot properly compsre the third
pair, because of the uncertalnty in the experimental vaiue.

If we assume that the computed frequencies are ccrrect,
then the errcrs in the Pochhammer values are 12, 1.5 and 21
per cent respectively. Such errors are not altogether unexpected,
in view of the fact that the Pochhammer solution has been cbtained
by truncsting the eigenfunction series expansion after the first
three terms and spproximating the resulting solution by a simpler
~ expressiocn. Very little is known about the rate of convergence
of the eigenfunction expansion, as no systematic computations
using it have been carried out. Howeveir the results in
JOENSON & LITTLE [1965] » where a similar eigenfunction expansion
is used to solve a static problem for the semi-infinite elastic
strip, show thet the boundary comnditions are satisfled to

within 63 per cent with ten branches of the frequency spectrum
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and to within 21 percent with twenty branches. These percentege
errors are obtalned by dividing the maximum difference between
the true boundary comdition and the computed boundary condition
by the maximum value of the true boundary condition, and multiply-
ing the ratioc by 100 percent .

The sketches in figures 4.3, 4.4, and L.5 give zcme
information ebout the various modes of vibration, but it is
necessary to refer to the computed displacement field in order
to identify the type of motion involved in each case.

It is clear that mode (2) is almost purely dilatationsl,
characterised by the fact that along & normal to any surface the
normal component of displacement varies trigonometrically while
the tangential component is comnstant. We find that the computed
displacements satisfy these criteria to a good degree of approx-
imation.

It 1s known that Rayleigh surface waves can travel
along the surface « a semi-infinite elastic region, and we
expect them to exist also in a finite region. For such waves
the amplitude of the motion decsys with depth. In particular
the normal component of displacement increases to & maximum
and then decreases exponentially, while the tangential compounent
decreases and changes sign before passing through & turning
Point and tending to zero. A graph of the displacements for
steel is given on page 22 of KOLSKY [1953] § We see there that

the tangential component changes sign at a depth d = 0.2/\,
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where /\. is the wavelength of the plane surface wave.

A closger inspection of the displacements in mode (2)
indicates that the main dilatation wave is coupled with e
surface wave, and tha resultant motion is a superposition of the
two.

Mode (3) has the typical features of a surface wave |
and we obsexrve that parallel to each surface is a surface at
which the tangential displacement changes sign. The wave length
in the radisl direction appears to be 2a which, for a single
wave, gives the depth d = O.ha. Since however there are
surface waves on each end, there is interaction between the two,
end we can show that the depth d is modified to approximately
.25a, agreeing with the diagram.

The other symmetrical modes, namely (5), (7), (9),

(12) and (13) ere predominantly dilatational in character,

although in each case the dilatation wave is coupled with a

surface wave and with a distortion wave. It i3 difficult to
separate out the various effects for the higher mcdes, but the
dilatation wave in modes (2) and (5) is estimeted to have wavelengths
ba and 28 respectively inm the radial direction and 2a im both

cases in the exial direction.

An inspection of the displacements for the skew-
symuetrical modes lesds to the conclusion that they are predominantly
distorticn modes. This is most clearly seen for mode (1) where

the shear surface occurs at a depth of .25a approximately.
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We find alsc in modes (U4), (8) and (10) that the displacement

of the surfaces is mainly tangential, and that the distorted
cross-section is almost identical with the undistorted section,
the areas being very nearly equal. Again the distortion

waves are coupled with surface waves and with dilatation waves,
and an esti mate of their wave length is not easy. Modes (1)
and (4) seem to have wavelengths la and.%a respectively radielly,
ead 2a :-:oevect— @ly Goeazldy.

An interesting question arises in commection with the
node patterns in figures 4.3, 4.4 and 4.5. We find that, for
simpler eigenvalue problems which can be solved explicitly,
the node patterns consist of intersecting families of nodes,
with each family assoclated with a certain direction in space.
For example the rectanguler membrene has one family parallel
to each side of the rectangle. In such cases, where the
Problem is solvable explicitly, the variables are separable,
and the question arises as to whether the node pattern will be
of the same type when the variables are not separsble. 1In
oux present problem we can detect a family of lines of zero
w parallel to the curved surface, but there is no indication of
such a fanily parallel to the ends, apart from the single line
in the symmetrical modes. The same is true for lines of zero
u. Indeed for the higher modes the lines appear to join together
to form a single famlly of conto.rs rather than distinct

intersecting families. Thus the evidence seems to point to
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the conclusion that sy stems of intexsecting families ¢f nodes
occur only in separable problems. However in one of the
higher modes which we have computed, but which is not presented
here because of doubts about its accuracy, there eare indications
of the presence of lines of zero w parallel to the eands of the
cross-gection . Thus the answer to our question must await

a more extensive evaluation of the eigensystem.

40. A Mixed Boundary-value Problem

As a second exsmple of the use of the dbasic solution
for a cylindrical region, we consider a rod with a free curved
surface, one of whose ends is free and the other rigldly
fixed {"encastré"). This problem differs from those studied
previously in that the displacements are specified over & part
of the boundary and the stresses over the other part. As
far as the writer is aware no previous estimates of the natural
frequencies of vibration of this system have been cobtained,
either experimentally or theoretically, although VALOV [1962]
hes considered the static deflection of a rod under similar
boundary conditions.

We take the boundary conditions to Dbe

c-rﬁ-trzw 0, T = 8, Osfg2s? ’
us= w= 0, Os rs a, Z= 0,
o, =T = 0, O sr< a, z=\

(< rz
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4i. Transformed Boundary Conditicms

By the argument of section 3> 5 the conditions
Erz(a’z ) =0, w(r,0) = O and‘crz(r,& ) = O are transformed

into the relat ions

m
Ba(m) = -E-!—Aa(m), (4.18)
D (1) = o , (%.19)
(o]
G (1) =§1I{(i) (L.20)

respectively. The other three boundary conditions are
ineffective when transformed, and so they are ignored at this

stage.

42. The Solution

If we eliminate Ba(m), Do(i) and C2 (1) from the
basic sclution in sections 30 and 31 using (4.18), (4.19)
and (4.20), we obtain a solution of the equations of motion
satisfying the three boundary conditions stated above. This

solution is gi ven by
2 s
u(r,z.—_Z._Z emcfl[rsz,h L“l{_;m:l.Aa(m)

.
%
AR

10

0
> _‘2_ [ r,X-z,; |;-§i;c055\',sin}1 1].Co(i)

o

F’J"’

?z[r;z.; §1_ ;5, - §:;cosh;sin|'l R]. :Dzﬁi)

P'JN
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%w(r,z)=—-_z& cp[rzm' %_ mz_g_),m].A&(m)

1 ™m
+§;} ?‘[I‘;Z;é;%_gi;sin}\; sinkl]_.‘l?q(i)
i=o

%)
.,.g‘ .5_. ‘?.[r? R-z; b= ) sinh: sinh R]. C

*» y X 2 3
Tk _mT -m].mm)
a ! a

o %.’Z ?‘I:r,z,-{ : j,f- _éi;cos}\;sin]\ L D)
iz=o0 J
+ z -'i ‘?bl:r',x-z;—-\;—si : cosh ;sinh £].C4Q)
a L
i i

2 b8 2
k o(re= _2_2 e ¢ lr;z,-mT .k _mT . ml Alm)
A S R T B

2 $ 3 Y - k‘ . LA ' 51
+5.‘Z ‘("[I.'l-,éi, (_2. _éi), os}a,slnh X:I,]%(i)

- %Z _‘Z. ‘ps[r;f-z; l;gi;cosh‘,siﬂ]\ 2}_C°U.)

k:- T (r.z.)c_Z_z £ £ mie . 1-"\;“_; T m .Alm)
e 1L Y g’ (ié 71"') .
™

b
%?z [r 7" é (k §) sinh; sinh 1] DWW
i=0
+é§% |[r A-z: ) é sinh:sinh l] C.(i)



43. The Remaining Boundary Conditionms
The remaining bou ndary conditions are satisfied by

imposing on the above solutions the conditions

L
f Ur(a'z) cos ;‘;I'-“dz- o » m = 0’ l’ 2, }. ese 9
o
a
frJ(gr)u(r,O)drso, i,= 1,2, 3, ... ,
2 i
Q
a
f rJO(gir)a‘ (r’&) dr 80 » i = Og 19 2;) 39 o5 o )
(0]

vhich lead to the infinite set of equations

L
<= ¥ 2 22 . T 2
_2 1=2epk - (1=¢)m T (1-2¢,)k (m¥ D
jomme v [craef - oaa ol g )] 3
1=0 -
i LAl ;
_%"i %’“’.; 1;(3-2c.)£!11_k].c,(1)-o , mM=O0,1.2.3,... (4.21)
-

%Z & ?M[(S'Ztu)',x:].Aém) + _é_ ¢, [a.;o;l ; &, cosh, sinh 1].1}(1)

i

£

.._‘_cf[&;ﬂ',é_.;- §-1 ;cos}\"slnhl],c‘,(:i.)-o CoL=0,2,3 ... (A22)
CED



2 2 N o %
%Z €, i [(l-c,) §x -(I-Z.c.)% ¢ —(\-Zc,)% (i -k )]cas m, A, (m)

+9 [a.; §1;-—(}_\; _.{) - cosh;sinh 1],]?'(1)

-k _(pg +P) |
(& -an)(&-pn) %D

where P, [p,;pz]

Tia [P';P‘] - ok

YRS

._!?‘ [a.;o;l;gi;wsh;sinh f],Co(iJ-o . 1=0,0,2,5 ...

110.

(4.23)
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4y, The Infi nite System

N

If we choose &s the unknowns the guantities

m°y 2 cos mx .Aa(m) i

2
L

2
1 oyn)
g (§49)

51 c (1),
J( §,8)
then equations (4.21) and (4.23) are of the same form as the
equations in section 36, and satisfy the same conditions.
Equation (4.22), however, is of an altogether different form,
and we find t hat the ratio which must be less than unity for

regularity has the asymptotic form

3
14 .
2

(1 +c1)-15-—-=5 + Of l‘;)
boogg §1

This ratic tends to infinity as 1 @

The feature which distinguishes equetion (4.22) from
all the other equations studied so far is that it involves
an alternating series, whereas the other series are ultimately

positive or negative. The example in section 16 illustrates
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that such a system of equations need not satisfy the condition
of regularity in order to be soluble by the method of reduction.

Thus the infinite set of equations is not included
in the existing theory of solution, and we cannot give a mathe-
matical justification of the numerical solution in section U6.
However the existence and uniqueness of the solution of the
physicel problem, and the completeness properties of the original
expansions of the solution provide some justification that the

computed solution is a valid solution of the problem.
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45 Computational Deteils.

The computational problem 1s the same as before,
except that the determinant of coefficients is different. The
unknown constants in the equations are introduced in the order
A_(0), p,(0), Co(l). A (1), g (1), 00(2), A (2), p(2), ..,
and successive determinants of orders 5, 8, 11, 14, .. are used

in applying the method of reduction.

46. Results end Discussion.

Results have been obtained for V= 0029 apnd e= 1.
Teble 4.4 has the successive approximations to the first mode
of vibration, and figure 4.6 has the first seven frequencies in
the spectrum.

Fewer modes were computed for this problem because of
the slowver rate of convergence of the infinite series. In the
Previous problem symmetry properties enabled us to reduce the
number of infinite sets of unknowns to two, and successive spprox-
imations to the solution, using each time an additionsal unknown
from each set, involved determinants of orders 2, 4, 6, 8, 10,
For the clamped-free rod there are three sets of unknowns, and
successive determinants have orders 2, 5,,8, 11, ..., 3o that,
for a fixed number of terms, the solution for the free-free rod
is more accurate than that for the clamped-free rod. The
successive frequencies in table L.l4 converge more slowly than the

corresponding values in table 4.1, and the coefficients also decay



114

94 sanBty

A

ey

i 2! ol 8.0 9.0 Y0 2.0 °
61200 | 26¢70-| 19121--| ¥b¥00.-| 21101 | €bs9l-| B¥YL00:| €ligo.! @IY0E ~ ! 76099~ lobsy-| W
o500 | 18120. | 0sZ¥I--| 0b500.~| 225bO:| Y058l | ¥200. | ¥OIfO.| OIS~ I 09¥99--| $98¢y- n
0R%00.-| 89190.| 25022.| 11900. ¢h8io.| 0ooss - | 88109.- s2lgY- 8

¥1300.-| ¥bsoo-| §L82ZY - [ bbSko--| 2b¥SY-| §

¥
1 B o 1 ® o L) o 2 )

(€)aj(€)v Rvom ()al@)v]()o @ &} %] () af (0)a| ()Y 9y  lepao

' ITQEL




115.
less rapidly.

An aspect of this problem which bas not been investigated
here is the stress singularity at the edge of the clamped end.
Sternberg refers to the existence of such a singularity in his
review of VALOV (1962 | and points out that a different fomm of
the solution must be developed in the meighbourhood of the
singularity. A similisr situation is investigated in KARP
& KARAL [1962 ], [ 1964] , where the nature of the static
solution a%gorners in elastic media is considered. The form i/
of the solution taken there may be adaptable to the present
problem.

More werk remains to be done on this problem, in
particular to extend the spectrum of eigenvalues and to assess
the accuracy of those given in figure 4.3, to study the theoretical
Problem of the convergence of the method of reduction fr
alternating series, and to investigate the selution in the

neighbourhood ¢f the singularity.



Chepter V: An Initial-value Problem

k7. The Preblem

The preblem which is the subject of this chapter is

illustrated in figure 5.1

u;.sr;r&"—' (@]

s

d; ’trn =0

0;=X( ]
G.70

Y

Figure 5.1

A circular rod of radius a and length 2, at reast
initially in an unstressed state, is set in motion by & normal
axially-symmetric, pressure pulse

a; =X (x,t)

applied suddenly to the end 2 = 0. The other surfaces are
assumed to remain stress-free, and there is no body force. We
derive a formsl solution of the problem as an eigenfunctiocn
expansion when X is an arbitrary function of r and t, and compute
some values for a particular case.

This investigation is motivated by an experiment carried

out by KOISKXY [1954 ], in which a small piece of lead ozide is
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detonsted at the centre of one face of a steel rod, the moticn of
the other end being measured by & cendenser microphope. The
rod ie 104 em. long and has a radius of T<6 cm; +the microphone
is 1 em in diemeter. The detonstion time is estimated at 2 - 3

psec, and X(r,t) has the approximate form

X(r,t) = —Ps@ [HO-H(t-T)]

where P 18 a comstant, §(r) is the Dirac delta fumcticn, H{:)
is the Heaviside function, and T is the detonmation time. Kolsky
gives a qualitative interpretation of the experimentel results on
the basis of the vptical ray theory, but mo accurate quastitative
solution has been obtained.

It can be shown that the above form of the function
X(r,t) corresponds to a very slowly convergent series of eigen-
functions, in which a large number of accurately known eigenfunctions
are necessary for an accurate calculation. Consequently we take
a slightly simpler form to obtain better convergence, and we
hope to be able to compute the solution of the more difficult

problem when a fuller set of eigenfunctions is available.

48. The Governing Equations

The equations of motion have the form

L. & =r.§'_ {5.1)
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2

netrix o
) - i, + -_T‘ om—afe an 7.
in metrix notation, where Fl jLD p I 5§ a is

defined in section 5, § is the displecement column vector, and P

is the density. For axially symmetric motion we have ¢ —--[ u}
W

and
» X ]
= |O+2Wd 1L 21 2 A+p) 2
L' " f‘ TTOoT +r§?‘ F drdz
by 1o ro. 19 1o (\+2 )3
( +F)r3€~raz. Fr i 2 oz*
L o

Since the initial disturbance of the rod is axislly-symmetric,
then the subsequent motion is axially-symmetric.

The boundary conditions are

g =T SO’ r =8, 0§Z§I.’
r rz

o =X(r,t) and T =0 osrsa  z=o0
A re > ]

=T _=0, ofrsa, z=d

for all time t > O, and the initial conditions at t = O are

= = 0, a“ ..a._-
u W $=5
for 0SS r< a and 05z5 4

=0,
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The System of Eigenfunctions

We teke as the eigenfunctiouns the solutions of the

Problem of the free-free vibrating rod in chapter IV, i.e. the

set { éi}' satisfying the equation

(5.2)
and the boundary conditions
. =T = 0, r=a, 05231,
T re
o = T = 0, 0SS r% a, %2 =0,
4 re
0‘;=Crz-0, 0% rS a, z =42,
In this set 3@ denotes the elgenfunction with p = O. It
corresponds to a rigid displacement of the rod, for which 5ﬁ= [0]
o) C
where C is a constant.

It can be shown that the eigenfuncfions are orthogonal
in the sense that

#
j§i§jdc =Q
R

if 1 # j. For we have

s l: A0
= ==
~i fPivsi
and

FA
L'l-.s;J =—rng é.D

from which it follows, by comb ining these results together and
integrating, that

2 - o B T
-p(R-H)| 43 ‘1(51 Lg5= s, Ligy) 4o,
R
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An argument eimilar to the one used in section 5 glves the

result

J{(st”s_-—sf L,s.)de
~i |~J ~ 31 IwJ
R

¥
1 y if T 0 A T RT
=f [I“(émcéj “5, 3,5 “*-Zr)(éiméj—éiénéj)]&s,
S

and if we substitute the bourdary conditions on $ 1 and. S Ve

J
find that the surface integral vanishes. Henice

jsfs,dt = O
dlavJ

R
if 1 # J, and the eigenfunctions are orthogonal.

To obtain an orthonormel system each eigeanfunction Sy must

be scaled by a constant c, so that

Hence c 1 is given by

The eigenfunctions § 1 in chapter IV are in the form of

infinite series, and the formal expression for c"; in terms of these

series is given in detail below, since it is used in comstructing

2
1 Ld
only a finite mumber of terms of the series is ueed, since only

2

a computer programme to calculate ¢ 1

Bowever in computing c

a finite number of coefficients is known for each approximation.
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For symmetric modes s=o0, 2, &, 6, ..., £(x) = sinh x,

g(x) = coth x, and the upper sign is taken with £ , and for
skew~-symmetric modes s = 1, 3, 5, ..., £(x) = cosh x, g(x)= tanh x,
and. the lower sign applies.

c-i is obtained for each eigenfunction by evaluating

& f
j J rlu*rwhdrdz

It is not di fficult to show that the aormalisecd

elgenfunction 50 is given by
[ o]

" aval

s
P) where e'f °

50. The Eigenfunction Expansion

Let 5 be the solution of the initial value problem
aend { 51} the orthoocemel set of eigenfunctions. That is, the

51 are assumed to be scaled so that

=
_[.s.i-é] dt = 81'3' (5'5)
Ve expand s in terms of the 5 and write
é IZ a.i(t)§‘1 (5-!‘)
where s is a function of the space variables and time, while _§1

is a function of the space variables only. Strictly spesking
such an expansi on should be Jjusti fied by proving that the
system {si} is complete, but we shall assume that this 1s so.

From (5.3) and (5.4) we have



aét)-Jrézéax .

R

By operating with _fs
R
on equetion (5.1) we obtain

LSA" = S 33 dv

R

and from equation (5.2) we have

J $'L,5,4T = - pp; j sTs,de
R

R

-~ PP

T
i

.. dt

(5.5)

(5.6)

123.
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The boundary conditions on § and §1 are now used to eliminate
certain terms in the surface integral in equation (5.6). When

this is done the integral becomes

_éj:-wi(r,o)X(r,t)&r :

vhere wi( r,z) is the axial component of 8¢

Thus equation (5.5) becomes

a
f&_:"ix =—p f’: o~ rw; 0 X(r,t)dr

2

2
l.e. i—:'!i e Pl ti = F(t) ’

a

where Ft) a- rwir,o)X(rt)ar

=y

©
When the function X(r,t) is given, then F(t)is a known function ,
and equation (5.1) has been reduced to a non-homogenecus linear
differential equation for a 1°
The initial conditions on s become

2%31’9 '
Ay 5.=0,
a -

from which it follows, ‘by using condition (5.3), that

-adli = O
TR
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at © 0.
The solution of the differential equation satisfying
these conditions may be found by the method described in

CODDINGTON & LEVINSON [1955] page Th, and is

4 .
8it) = L F(t)sin p(t-t)ds
i

t a i
o 5 \ erwiu-.o)x.(r,t')ain pi(t—t')dr&.t
Y @
° “o

for i # 0. The zaro frequency term is found in the same way

and can be shown to be

t a 1 [] L]
a,(t) ....P_la’_ j jrwo(r,o)X(r,t) (t-t)drdt
o "0

If X(r,t) is a known function then &, is known, at least
in principle, and we have thus obtained a solution of the initial-

value problem.

51. A Particular Case - Ster Functiocn loeding

If the applied pressure is in the form of a step-wave
in time spplied over a circle of radius R, then X(r,t) has the

form

X (e, t) = =P [H) = Hz-R)HiE)

This gives, for j # O,



-

B
a,(t) o 28 sin _gg’;rvﬁ(r 0T
(~]

R
sm pit L [rwieddr,

where X 3 is the frequency parsmeter corresponding ©to p 3

From the infinite series for wir,z) in section 3h we

obtain
R
jr wj(.r,o)lr ( ) Oj(‘o) 4+ 2 Blz \Tl(s(lgr)) Doj(l} J == C?‘,
° 3%l é

where Do 3(1) are the constmnts in the series for e He see
from this expression thet the smaller the ratio % becames the
more accurate the evaluation of the infinite series must be, in
order to maintain accuracy in the result. Thus any finite

computation using a fixed number of terms of the series gives the

best sccuracy when R = a.

When j =

&(t)a > 2*,6- G t ZJE

Y FY;y -()\1-234)( ) (ﬁa‘%—) Wz
where G (A; ?-g) is the dilatetional
wave speed.

For the special case of R = a and a=/{ +the expressions



R
r

J rwj(r,o)dr = D@
o

a (t) .(.Z.E.)(F&) o (5.7)

.(t).(z.r_ L sin Pi¥ Doilo) : (5.8
aJ Ailfl)(K_.a,_)"un%i— % N JfO . (5.8)

52. The Solution for an Infinite Slab.

When the initial pressure front arrives fram the source
we expect the centre region of the free end of the rod to behave
like the surface of an infinite slab, at least for a short time,
and we have consequently derived the solution for the infinite
slab, as a check on the computed solution.

For e slab bounded by the planes Z=0 and z = £
subjected to a step-wave pressure pulse applied uniformly at
time t = O to the face 2 = 0, the subsequent motion is given

by

2 2
wi,t)=_P_ |(qt) .Z.? 2 (1 =cos "7 Veos nys |
A+2p LZL[ +,Q“_!“-‘i ( “ 2 : {
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where w(z,t) is the displacement in the 2z -diretion. In partic lar

at 2 = 1 there results

()\1-2}4. wilt) = o ETIATS
2P 2
‘C_‘E =] | : 1<C‘t <51 .
) £

2.(:??_-’,_2,) ’52<C4t452 y

3(&&_3) ,52<<¢t< T2 ,
L

The graph of this displacement is given in figure 5.2

o X 3L 2 7L ¢
4 <y <4 €4

Figure 5.2
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The interpretation of this solution 1s that the wave
front propagates into the slab with the dilatational wave speed
e - The surface s=£ is motionless until the front arrives,
whereupon it moves with uniform speed. The front is. reflected
and travels back into the material, experiencing another
reflection at Z=0. After the second reflection the front
reinforces the external pressure, doubling its magnitude, and the
cycle is repeated. At the begloning of each cycle the current
megnitude of the pressure front is incremented by the external
pressure at Z =0, and results in an increase of the speed of
the surface z=A . This incrementation of the speed is
illustrated in figure 5.2 by an increase in the slope of the

curve.

53, tional Details

The first part of the computation is to normalige each
of the eigenfunctions, and a computer programme is written to
calculate c: » given % and the approximate coeffieients,
using the expressions in section 49. The scaled coefficients ere
Printed out, and are used as data for the second progrsmme, which
computes the displacement at any point (r,z ) in the rod for that
mode.

Detailed computations are done for a steel rod of
length and radius 10<4 cm. and for the pressure pulse of section
51 with R = a. KOLSLY([ 1955 ] gives the following material

constants for steel:
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A =11.2 x 10 pewtons/n®

rl
p= 7.8 x 10° kgn/m° .

(i}

8.1 x 10'*° " "

The circular frequency p has the dimensions of T *, and for the
above constants it is given in terms of K by the relation

p = .056989 Ka (us)™*,
where Mg denotes "micro-second”.

A further programme uses as date the displecements for
the different modes, and calculates the displacement of & specified
point in the rod for a range of values of ¢ using the expansion

(5.4) and the coefficients (5.7) and (5.8). The quantity

( ""‘““i_z? ) is a multiplicative constant in the solution, and is
set equal to unity.

54. Results and Discussion

Computations have been done forthe case of B = a.
The first sixteen terms of the eigenfunction expansion are used,
since only th ese cnes are known to any accuracy. With this
solution the axisl displacement of the free end has beem calculated
over an interval of time covering several reflectioms of the
initial front, and the results are given below.

Figure 5.3 gives the computed displacement of three
different points on the end z =4£ as the inkial front errives.

The infinite slab displacement is given for comperison. Figure
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5.4 gives the displacement of the point (o, £ ) together with
the infinite slab displacement, for a longer interval of <time
covering four reflections. Finally figure 5.5 gives the shape
of the end section z={ at a particular instant in time,t = 27w s,
after the pressure front has arrived.

In figure 5.3 we can take as a measure of the error in

each of the computed displacements the maximum deviation from

zero of the appropriate curve between t = O and ¢ = =~£

Ca
The error defined in this way is more or less uniform in magnitude
over the cross-section from r = 0O to r = a, and varies from

0.08 units at r = O to - 0.07 units at r = a. Afcer t = ,é,;
d

the curve for r = O tends towards the straight line, and eventually
becomes approximately parallel to it, displaced vertically upwards
by about 0.02 units. This deviation is well within the error
bound. noted ebove. The other curves also become szorosimetely
parallel to the straight line, but their deviations, both of
approximately 0.15 units vertically downwards, are outwith the
computational error bounds, and represent genuine differences,

which areillustrated in a different way in figure 5.5.

On the smaller scale of figure 5.4 we see that the
displacement w( 0, ) follows closely the displacement of the
infinite slab over a comparatively long period of time, and that
the rod displacement oscillates about the infinite slab displace-

ment. This oscillation is not entirely due to the computational
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error, although a proper interpretatior of it cannot be made
until more accurate mmerical results are available.

As the pressure front travels along the rod it produces
a distortion of the material, and the pointe in the rod are free
to move in both the axial and radial directions, in contrast to
the situation in the slab where the motion is confined tc the
direction of propegation. The curved surface undergoes the
greatest radial displecement, while the displacement o points
near the axis is predominantly axieal. Figure 5.5 illustrates
this, and shows that the axisl motion of the free end diminishes
with distance from the axis. The end is no longer pleane after
the pressure front arrives, but develops a "bulge” at the centre.
Another difference between the motion of the rod amnd the infinite
slab is due to the surface wave which propagates along the curved
surface after the initial impact. This wave iz reflected
inwards by the corners and travels along the free end, converging
on the centre, where it reinforces the displacement ceused by the
dilstational front. This reinforcement can be seen in figure
5.4, oceurring st time t = 60ps. Since the surface wsve speed
for steel is approximately % » We expect the reinforceasnt to
cccur at t= % = TOps .

In theory the results obtained for this problem can
be used to give the solution when the applied pressure pulse

hasthe form

X(r.t) = ~P [z -t -a)][ nie)-ne-1)
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i.e. when the pulse is epplied for a finite time T. However for
& pulse of very short duration the numerical inazcuracles render

the resulti ng solution mesningless. This is seen bycomsidering
the coefficients a.i(t) in the eigenfunction expansion. They

contain the factor

r L]
f.sin p(t-t)ae

Q
which starts to decrease with i only vhen PiT >T » and which
iz small to some order of magnitude if piT 2> . ForT = 3ps
the condition is
Ka L o B
™ 0057 Twi?

1 x1
? 5057 3

= 6

It is clear from this condition that a system of eigen-

functions for which the greatest value of Xa is 1.9 caunnot
m

provide an accurate solution, and that a much more extensive

system is necessary for short-durstion pulses.
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