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Sumoary o f a Ph.D. Thesis entitled 
"The Numerical Solution of Certain Problems in iClastodynainica"

by J. M. Blair

The method of integral transforms can provide the solution of

a differential equation satisfying prescribed boundary conditions if
certain requirements involving the boundary conditions and the transform
are met. The three requirements are stated explicitly in the thesis
for tne differential equation L - f on a finite domain d, wnere«%»
L is a matrix and ̂  and f are columns. In general not all the 

requirements can be satisfied for the equations of elasticity. If one 
particular requirement is relaxed, then the transform procedure may be 
applied in such a way as to reproduce in R a formal series solution of 
the above differential equation without reference to the boundary con­
ditions, and the solution is a general solution in that sense. When 

the solution is applied to a particular set of boundary conditions there 
results an infinite system of simultaneous linear equations in an infinite 
number of unknowns, whose solution yields a solution of the differential 
equation. The infinite system is given formally in chapter I for the 
equations of elasticity.

Theoretical results pertaining to the solution of infinite 
systems of equations and approximate methods of solution are known, and 
chapter II is devoted to a statement and a discussion of those results 
which are relevant to the problems of the thesis. A deficiency in the 
existing theory is noted.

The application of the above approach to the solution of some
specific /
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specifio vibration problems in elastodymunics is given in chapters III 
and IV. A study of the vibrating elastic parallelepiped with clamped 
edges provides an indication of the rate of convergence of the approximate 
numerical solution for different dimensions, and allows some conclus­
ions to be drawn about the value of the method as a practical numerical 
procedure. The numerical results Mxe compared with those obtaiiiec by 
another method due to V.V, Bolotin. The approximate solution o:‘ the 
infinite system of equations is justified in terms of the theory in 
chapter II.

Two problems of the axially symmetric vibrations of elastic 
rods are investigated in chapter IV. The first rod has all its bounding
surfaces stress-free, while the second rod has one of its plane ends 
clamped and the remaining surfaces stress-free. Numerical results 
are presented for both problems. Those for the first case are compared 
with existing theoretical and experimental values, and they are shown 
to be the most accurate yet available. No other results for the second 
problem have been found in the literature. The infinite system of 
equations is studied in both cases, the conclusions being less satisfactory 
than for the parallelepiped, as certain questions remain unanswered.

In chapter V we consider an initial-value problem in which 
a stress pulse is suddenly applied to one end of an elastic rod. The 
solution is expressed as an infinite sum over the solutions for the free- 
free rod, using the method of eigenfunction expansions* The motion of 

the free end of the rod is computed usin̂  the finite set of eigenfunctions 
in /
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in chapter IV, and the resulting solution is sufficiently accurate to 
show the successive reflections of the initial pulse as it traverses 
the rod. Some aspects of the solution are discussed by comparing it 
with the solution of the analogous problem for an infinite slab.
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11.
Preface

This thesis investigates the formal solution by 
integral transfoxms of the equations of elastodynamlcs, and 
uses It to compute new numerical solutions of some steady 
state vibration problems. The method is developed In 
chapters I and H ,  and Is applied to vibrating elastic 

parallelepipeds and rods in chapters H I  and Vf respectively. 
Certain conclusions about the effectiveness of the method are 
drawn from the results. An application of the solution Is 
provided In chapter V, where a limited number of modes of 
vibration of a rod are used to construct the solution of an 
unsolved# inltlal-value problem.

I wish to express my thanks to my supervisor 
Professor D. C« Gilles for suggesting these problems to me 
and fbr his help throughout the course of the work. The 
possibility of using integral transforms to reduce the elastic 
rod problem to an infinite system of simultaneous linear 
equations was demonstrated to me by Professor B. Boble# who# 
in collaboration with T. Boag# had used a similar approach in 
investigating lap joints in beams. Professor Noble's help 
is gratefully acknowledged. The extension to the general 
boundary-value problem and to the elastic boundsry-value 
problem In sections 3 * 7  resulted from a suggestion by Professor 
D.S. Alt 1er. The ccuqputatlons were done on the Deuce computer
at Glasgow University.
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Chapter I z A Solution of the liquations of Mlasticjty

1. Xntrodaction
The matheinatical equations governing the infim. teBimal doforiuationB 

of an elsLstio continuum have bean studied by many wor.iers since they ifere 

formulated by Cauchy in 1Ü22, and tnere is a vast literature devoted to tho 

subject. Because of the difficulty of constructing a general co3.ution of 

the equations capable of satisfying an arbitrary set of boundary conditicnc, 

a variety of special methods and spacial types of solution have been developQC 

TJ2010RESCU 1̂1964! gives a survey of the different methods which have besn 

applied to plane problems, and indicates those methods which are capable 

of extension to more general three-dimensional problems.
In this thesis we concentrate our attention on certa-ia dynmic 

and steady-state vibration problems, some of ivhich have previously bsan 

solved by other methods and some which have not. Dynamic problems have 

been studied much less in general than static problems, although they are 

of considerable practical importance in the design of resonators and mechan­

ical. wave guides, and in other applications. The complete set of solutions 

of a steady-state vibration problem, as well as being of interest in its 

own right, might bo expected to provide a solution of certain associated 
ini tial-value problems by the method of eigenfunction expansions, end the 

last chapter of the thesis uses this approach to predict the motion of a 
circular rod when a pressure pulse is applied to one end.

The method of separation of variables was one of the earliest 

methods to be applied to the equations of elasticity. A sjjnpla isoluticn 

obtained in this way does not satisfy all the boundary conditions in genoral 

and an in-finite series of simple solutions, each satisfying some of the



boundary conditions, must be taken. If a sufficient number of aj?bitrary 
constants is incorporated in the infinite series, then ve find that all the 
boundary conditions can be satisfied, although to do so we must solve an 
infinite system of simultaneous linear equations in an infinite number of 
unknowns*

The process of constructing the solution as an infinite series 
can be formalised by the use of integral transforms, and the first chapter 
of the thesis deals with the development of this technique and with the 
choice of the appropriate transforms for a finite, three-dimensional region. 
It is customary when using integral transforms to insert the transformed 
boundary conditions into the transformed equations of motion beforr sol vir r 
for the tr«?!X>.sform0d variables inverting^ but. we show that by ci ttting 
to insert the boundary conditions ana introducijtîv ixïsteod corti.vin i ;bitrnr% 
constants, a formal solution is obtained without reference to the iDundar-y 
conditions. This solution is a general solution of the equations of motion 
in the sense that it may be used to solve a variety of sets of bour lory 
conditions, although in each case it requires the solution of an irfinite 
system of linear equations*

The second chapter is devoted to the theory of solution of infinite 
systems of equations* The known results for a pcœticular class of infinite 
systems known as regular systems are stated without proofs, and are extended 
to deal with slightly more general systems called quasi-regular systems.
An example of a system which does not belong to either category is given in 
section 16, ^ d  some properties of the solution are discussed. We shall 
find later that the system of equations occurring in the alJied bouiwicry- 
value problem in section 40 has features in common with the example, and that



the theoretical questions about the existence and uniqueness of the solution 
have not yet been settled.

In chapter III we apply the theory of the first chapter to the 

problem of the vibrating rectangular parallelepiped in plane strain.

The transforms turn out to be finite Fourier transforms and the formal 
solution is a double Fourier series, which we reduce to a sum of eight 

single series by summing certain series analytically. The resulting 

solution is applied to a particular problem mentioned in SOMMERFELD #

namely the problem of a parallelepiped with clamped edges. An investi­

gation of the resulting infinite system of equations shows that it is quasi 

fully regular, and the subsequent numerical solution is theoretically 

justified. Numerical values of some of the lower inodes of vibration for 

three different rectangles are given, and a comparison of the observed 

rates of convergence in the three cases leads us to some conclusions about 
the effectiveness of the method.

This particular problem has been investigated by BOLOTIB |l96l bj , 

using an asymptotic method developed in BiLOTiN |l96l a] for vibrating 

plate and shell problems. The assumption is that the solution may be 

represented by two terras, a basic solution applying over the whole 

region, and an edge effect whose influence is confined to the neiglibourhood 

of the boundary. Bolotin takes a simple separation of variables solution 
as the basic solution, and uses it to generate the edge effect, so that 

both terms are solutions of the equations of motion. A different edge 

effect is taken for each distinct part of the boundary and is used to 

satisfy the boundary conditions there. The solution is approximate because 
each edge effect term, which is assumed to vanish on all the boundaries



except one, in fact dcoays exponentially aad is small bat finite o. all 

boundaries except one. The computed results in chapter III differ signif­

icantly from those given by the asymptotic method, and indicate that the 

assumptions of the latter are not valid for the equations of elasticity.

A possible reason for this is given in section 27*

The axially symi;ietric vibrations of circular rods of finite length 

and radius are studied in chapter IV, The transforms for this region 

are shown to be finite Fourier transforms in the axial direction and finite 

Hankel transforms in tne radial direction. By applying them in the way 
described in chapter I, the formal solution is constructed as double 

series and reduced to a sum of six single series as before. 'JSfO particular 

problems are considered, in both of which the curved surface of the rod is 

stress-free. In the first tne two ends are also stress-free, while in the 

second one end is clamped and the other free. The corresponding infinite 

system of equations is set up in both cases. The first systsm prcrres to

be quasi-regular, and hence some properties of its solution are known.

However the uniqueness of the solution, which is the other property necessary 

to justify a numerical solution, has not yet been proved. For the second 

problem the infini.te system is not even quasi-regular, ana we have not been 

able to give any theoretical justification of its solution. Numerical 

results to both problems are presented for one value of the length-to-rad: 

ratio and one value of Poisson*s ratio.

The lowest modes of vibration of a free-free elastic rod have 
been determined in MCNiVEN and PERRY [1962] by a different method based on 
the Poohhammer-Cnree theory. P̂ 'CRHAKMEP [lb76]and OHRSE ĵ l889]were the 

first to formulate the equations of vibration of an elastic rod, and they
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suggested a method of solution whereby a simple eeporation of varie:bles 
solution is used to satisfy all the boundary conditions on the curved 
surface. The complete sol\ztionfor a finite rod is then given by super­
position. The curved surface boundary conditions lead to a transcendental 
equation# usually called the Bochhammer frequency equation, relating the 
wave rnaaber in the axial direction and the angular frequency of vibration# 
and it has been shown in OHŒ# & KŒDLIN [ 1962 ] that for ecich value
of the frequency this equation has scrae real roots and an infinite ruiaher of 
ccanplex roots. Tlie roots vary continuously as the frequency varies# end a 
tbrcQ-dimcnsion&l dif^em can be constructed giving the position of all the 
roots for eech frequencĵ . The curves in this diagrcja are colled the breaches ' 
of the frequency equation. The real rooto correspond to sinueoidELl solutions 
and the complex roots to exponentially increasing and decreasing teims.
Thus for a finite rod the solution for each frequency ccnsiets of an infinite 
sum over all the different branches. If this m m  contains enough arbitrary 
constants# then the boundary conditions on the ends may be satisfied in 
principle* In practice# however# these conditions are not easily dealt with# 
since they involve series of Bessel functions of ccmplesc argument which lack 
the orthogonality property desirable from a theoretical and a computational 
point of view. To overcome these drawbacks Mindlin and his ccworkers 
have developed an approximate solution consisting of the first few terms 
of an orthogonal function expansion. This solution is adjusted so as to 
reproduce the first three branches of the Pochhommer frequency equation at 
low frequencies# end eo it may be regarded as equivalent to the first three 
terms of the Pochhommer solution. The details of the approximate method 
are given in KcBIVSH & FSHRY [ I962]together with the numerical results#



A'hioü are iu y o G u lo i i >9 ri j.i tha rezalts :üi ae )';> au
experimental values.

The résulté in section 46 for thé cleiapad-frse rod appear to be 
new, as no references to published work on this problem have been found 
in the literature.

In chapter V we consider an initial-yalue problem in which one 

•end of Q, short circu3.ar rod is acted upon by a pressure pulse applied 
symmetrically about the æfis. Problems of this type ece important in the 

practical design of nioehaiD.cal wave-guides. we use th^ method of eigen­

function expansions, it.ere the eigenfuncti.ons arc the solutions for 

free-free rod in sectic.u 38» Thin is a standard method, and is d<-: scribed 

in COURANT and StlBSR-f 11953jo It is of tea cribicisea as being u'nui table 
in practice because cf the slow convergence of the serie.C; but the result? 

in section 54 indicate that the expected features of the solution <ice boirg 

reproduced reasonably well by the comparatively small number o.f eigenfunctions 

used. The computed sclution predicts the arriva], of the pu3.s3 tra/elliny 

with the oile.tationaj. wave speed at the free end of the rad, and sliows the 
subsequent reflected pulses.

H IS S M IS Z  |l960j contains a historical survey of the literature 

dealing wi th transient pulses in rods. Evidently only a .few of the theor­
etical investigations use the exact equations of elasticity, and t'lose wnich

do base their approach on the PochhammerChree theoẑ .̂ Because of the 
difficulties of satisfying the end conditions with this theory and for 

other reasons which we shall mention shortly, the result;Lng solution 

applies only to S(#i infinite rods, and deals only with the propagation of

a pulse away from the source. It cannot deal with the multiple reflections



./hxQh ûccwc Ir «V rod t y  f x i i i i i e longw..
CUETISĵ  i960] typifies the general approach to these problems.

The displacement vector is expanded as a Fourier series in Q, a Fourier 

integral in the frequency p , and an infinite series over the branches of 
the Pochhammer frequency spectrum. By relating the frequency and the 

wave numbers in this way we ensure that the solution automatically satisfies 

the cufved surface boundary conditions. This form of the solution requires 
that the frequency spectrum be known for each different term of the Fourier 
series. do far the spectrum has been worked out in detai.l only fox* the 

first two terms. Curtis is able to satisfy end conditions of "mired" 

type, in which either the normal component of displacement and the tangential 

component of stress or the normal component of stress and the tangential 
component of displacement are specified, but not of "pu.re" typo, ir. which 

both components of eitner displacement or stress sre given. The €>valnat­

ion of the solution involves, for each term in the Fourier series, a cur­

vilinear integration along each branch of the frequency spectrum. In 

practice the integrals are obtained by asymptotic methods which are accurate 

only at large distances from the end of the rod. Curtis uses only the 

first two or three branches in the frequency spectrum. Since the iiigher 

branches are most influential near the end of the rod, their omission should 

have little effect far from the end, although the solution will be inaccurate 
near the source of the disturbance. The dispersion of a pulse i^ a long 

rod is predicted by Curtis, and hi.s results give good quantitative r.greament 
with experiment for large distances of travel.

Of the more recent publications KAJJt and WcC<IY [1964I uses the 
Mindlin approximation to the Pochhammer solution to include tno caeo, not



covered by Curtis* solution, of "pure" end conditions. ROSMFSI45 

and [1965] shows that the exact Pochhammer solution can be
adapted to deal with "pure" end conditions, and also generalises the 

theory to rods of arbitrary cross-section.

Following a completely different line of approach LAHGNEF [1965 

applies the method of finite differences to the motion of an elastic 

rod of finite length when one end undergoes a step wave disffecement jji 

time. A rectangular grid is used to cover the region, and the problem 

is treated as an initial-value problem in the usual way a The known 

solution at some instant t is used to compute the solution at some later 
time t + A t by solving a system of simultaneous linear equations . 

Standard iterative methods are used to solve the equations on a 

computer. The methodt applied to a variety of non-circular rods, and 

some numerical results are giveno However since the magni ade of the 
various computational errors is unknown, and since there are no com­

parisons with other results or with experiment, the accuracy of the 

solution is uncertain.

The eigenfunction expansion of chapter V may be applied with very 

slight modifications to the analagous problem in viscoelasticity under 

certain conditions given in HUNT&i , and it is hoped to extend

the computations of chapter V to include this problem at some later 

date.
The appendix contains some standard series which we use in 

chapters III and IV. These series are taken from SNEDDON [l951̂  »
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Gog SCKCdiEIlCOF?' jj.956̂  r ar.d ax® expressible in terms u.f the CQ;i>pon3.nts of 
displacamient t m  theii' corivativQSo If we use vector rotation end denote 

the flieplacsaent vector by then it is abown in V/EAT‘HEiiBUM 1̂924] that 
the equations have the form

( \-i- 3 .-A ) grad dir r -faourl c\irl s >= (® ÿ + fI -■ I ' Ai: <- (1.1) /A.

ÙZ

vheriv A and are tic- Le.ce elastic constants, ^ is th 3 donp.ity of the 

material. •*• f is the erternal force per unit mass, and t is the tjjno 

variable. Let have components (u, v, w) in the reis'’̂ Jj.40 coordinate
system.

In rectæ;.gu3 ex cextesian coordinates (x, y, s) v/e Iiavj

3u c V
c liv  _£ -3 «S*

àx c- y
ond fxsd u aid curl 3 are the veotozro iflth component» ' x" ’ -c ) end.— 'ox oy 0% ^

èa èw àv * ôu v ,. ,,:m ■' :g - «* » ^  - 3? ) -a««psct.imly.
To (îxpreBS tbeae vectors ija a ourvilinQar orthogonal syetom of 

ooorclcAtes (q.j_, qu,, g%)« writ,® z « z(q^« q ^ , q,) « y « y(q̂ <, q,, q̂ ) aad 

3 = f(q,s q̂ j q,)t and. dsfina a3

(ài-)2 + ( ^ ) 2 „  ( ^ ) 2
è< % ■oq.

for i. c 1; 3 and 3. Ihan it la ahown in WEATHElüBtJEN |l)24l that

sü.ir 3 1
•h_ fe.2 3

i  (hj ty u)  ̂ (hj h^v)  ̂è_ (h,hgw)
(Do,V)

, , . _ , . /I ôu 1 àu 1 6uvand Tha ; graa u anc ourl s have conponenus T X* - r anc.-  ÜLdq; b dq," h CqJJ.  ̂ P y



L S 3 Ci 5 1
l c"::2  ̂ oq& - J ’ hl’h ■ |ôqj "'r i. 'I “:? OC! ,5 hjhg i '-:-  zl Voç.-i 2

j 1
6q,̂ j ) respectivelyo These resul ts enable us to express equation 

(loi) in the coordinate system (q̂ , q̂ s q̂ )*

J.T particular for cylindrical polar coordinates (r, 0, z ) we

Thus

r cos 0g y -
h.j »= [cos

r 2ÎV r i£ L
ĥ fo ■>

y
1civ s ar — -r 1

h

2 2 r* cos 6 + 0

1
i]' =

1 èv ôw
r ô9 oz

grad u has components ( ~ ̂  p , and curl c has comucr.ents ̂ L .r d0 Os
/I ôw à v  ou àw 1 3 1 èu \
r̂ 09 Orc. Oîi Or ' rOr r cO

It will be convenient fer our subsequent treatment of. equeition

(lol) to rewrite it in matrix form. To do this we introduce matrices of

differential operators dp g, and C to represent the divergence, gradient

end CLU:1 raspejctj.valy, ;uid we denote by s the column matrix u
V
vr

In the coordinate system (q_, Cg, q.) d , g , and C are defined by

\

/ w .

!t " h.,h_ĥ  !>
*̂2 S

oq. h. h.

 ̂Oq.. . ^2 
J

"l _L "? S  ^ dq
!

1

1 h
csq̂
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and C 0 a
1 a h.0^2 I

Equation (l.l) then has tha form
T

oq^
0

.2

 ,
•̂2̂-5 ^^2

o

0
2

( X + 2 m ) g d ’̂ s - u C C s  - /> — + f ~ - I 3t (li?j
where d is the transpose of d, and f is the body force.

If the normal components of stress in this coordinate system are 

p cT̂ and (T^ and tha shear components are ^ ^ and 'C

we introduce the stress matrix T as

T ^12 S 3
^2)

> 5 ^25

be shown that

XAI + ^ (g Ts
*

where A  p the dilatation is given by à = d. ŝ  and I is the unit matrix,
TThe asterisk on g indicates that it post-multiplies s.



Tlie Method of Integral Transforms.
The method of integral transforms for solving a set of simultaneous 

linear differential equations is a method whereby the differential equations 

are reduced to simultaneous linear algebraic equations. The domain of the 

differential equations may be finite or infinite, and the details of the 

method differ slightly in the two cases. Since the problems considered in 
this thesis are all concerned with finite domains, we describe the method 
as it to this case.

VJe corxBidor the finite region H bounded by the closed surface b, 

where the solution of the differential equation must satisfy fre.? 

boundary condj.tiens at all points of S. We shall assume that the boundary 

conditions are homogeneous and that the differential equations are non- 

homogeneous. The problem can always be put in this form by an appropriate 
choice of the dependent variables.

Thus ve wish to determine the solution <9 of the differential
équation

L a> f (1.3)
at. a?„l v'oints of fij, where ĉ> must satisfy the condition

M m  «F: 0 (led)
at all points of IS. Here and f are column vectors of functions, 0 is
the zero coluirn, and I, and M are matrices of differential operators.

The first step in the method of integral transforms is to choose 

a suj.table diagonal matrix of faictions Î , to pr,!; multiply equation (l.$) 

by *5̂  , and to integrate the resulting equation throughout R. This gives

I ij- e-5 = [i f d-5 . (1.5)
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The choice of the siatTi]: S will ho diucuGsed 'oeleiz. If L io e. linearn
orxsrator# iutcgratlon by parts may hé used to express the left side of (1-5) 
ira the fora

ra

=31 g dS 4-1 # I* <ÿ d'G #^ R" D. S2

where I* » tho differential operator adjoint to L# operates on n
is a friction of # I and their derivatives# of the form

«%? ^
&  “ " !n

for sGsio matrices E and k • Thus the transformed differential eqnaticrn
hocQmes

G dS •> I % h <p dn :={ ^ f dt; 
,g 5a Ja “ A  °

ir/»*’"- ' X & ®
If the matrl!î ^ is correctly chosen it will satisfy the following tkvee n

conditions
(i) ^ complete orthonormal set. It follows from this that (g mâ *
be expressed as ' —

S “ l \ 2 n  'Q
where a is a column vector of constants given by

" X
?ii)

A being a square matrix of constant terms.
(iii) The eoluan vector !i vanishes on S.

Frcû'ü condition (ii) we havé



f  « f
A  \  A  &  '

the last part f'olXowiag frcm (l). Moreover fxtna (1.4) and coRditioa (lii) 

the surface integral is given by

f a. ÔLS « r (1 Uw^r k ) dS *0
Js

Equation (1.6) thus becomes
A a » I ^  f  d t  .
a ^  Jb ® “

Hence *1 f
a ® A j 5 f dv ,n L a -

if ve assume that is aon-siagu..ar.
Sine© S and. faa»e known functions and A is a kacvn matrix# a i/iay be n -V n ^

determined t o r  each value of a. Eencc the solution o f eq\?atioa (1.$) is 

given by
2.

<»r* 7 i  a = 2  32 A I 1' fd-c
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4o The Modified Method
In principle the method of the last section may be used to provide

a solution of any boundary value problem of the type considered. In

practice, however, the problem of finding a function 3/̂ satisfying

conditions (i), (ii) and (iii) be comparable in difficulty with that

of solving the original equations. In those circumstances it is possible
to modify the method by choosing the set to satisfy conditions (i) ar*d
(ii), but not condition (iii). The vector ^  no longer vanishes on S,

and equation (l*6) becomes

*»*■> ■

■ /a*”

rdt - dS

f dt - b^ —'H

where b * j dS ig obtained by straightforward integration of
Js

without using the boundary conditions M ” 5® Hence b^ is a column vector 
of urknown constants* Then

s. " Î '
and the solution ̂  be expressed as

<e - 2  - 2  f^-6 ) (1.7)
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Equation (i»7) 1® a formai expression for the solution of equation 
(lo); for the region fî, and is a general solution in the sense that it has 

been constructed without reference to the boundary conditions. It thus 

be used to setig iQf different sets of boundary conditions of the form (I.4)» 

To satisfy the particular conditions 

M » 0

we choose a complete orthonormal set 1 , where § is a diagonal% nj n
matrix, and use the fact that (I.4) will be satisfied if and only if

= o
for all values of m. Thus (I.4) will be satisfied if

for all mo If we assume that the series may be differ en tî iedfcerm by term 

this condition becomes

'5
for all ra. That is

where D « § M 5 dSo If we assume further that the series aremn m nJ  8
absolutely convergent, the condition becomes

f d z

n nn n
for all m« This is an infinite sot of simultaneous linear equations for

the unknowns b» b̂ » b,, , of the form

°1| h ~1 + ®12 ^2 -2 + ^12 Aj 5) + °°° “ Z ®ln r ®n £n
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9„,Ar̂ ' t, -Î- A~^ + J)„, A”*' b, + - 7 D_ a"^ f I f di;* -—» ^73 Ty ( ^211 -1 22 “2 32 “23 g 33 i- Zn n L n

^31 *1 5l * ^32 ^2 ~2 ®33 ^3 -3 * ” Z_ ®3a \  ~

If a solution |b̂ | of this system can be found such that the assusiption? 

made earlier are valid and such that (1.7) converges at all points of R, 

then (lo7) is a solution of the problem»

5c Application of Integral Transforms to the Equations of Elasticity

V/e apply the method described in section 3 to the equations of 

elasticity, and show that it is necessary to use the modified method in 
general.

V/e showed in section 2 that the equations of elastodynamics have
the form

f ,
where % = 5 represents the displacement, - f is the external body force 

per unit mass, and is given by

at

For steady state vibrations s is of the form q e^^^, p being the 

angular frequency of vibration and q a function of the space variables only, 
The corresponding equations of motion are

“ 5 ® ^ p (ic8)
where ^ ouxJL zlX + zrOj ff/l .



l6 o

To apply integral transforms to the latter equations we must 

integrate by parts the integral
f

^ L./ ̂  d-c g
Jr ~

where I is a diagonal matrix. This can be done with the help of some

standard results in vector theory»
If « &nd ^ are any two vectors we have the following identityi

l̂ .grad div ̂  « ̂ L* div ̂  s div ( g div ̂  ^ div .
By integrating both sides throughout the region H and applying Gauss® 
divergence theorem to the right side, we obtain a result which can be
interpreted in matrix form, and which leads to the relation 

r rm rn rp
(l g d ^ - I d* g ) dr «= (I n d - I d"%n ^ ) dSc

In this result an asterisk on g and d indicates that the operator post- 
multiplies the adjacent matrix *1; the elements of n are the components of 

the unit normal vector.

The other identity which we use is 
g.curl curl ^ - «» curl curl ^ = div ĵ (curl x 3̂ - (c u r l x  «

Integrating as before throughout R and using Gauss® divergence theorem 

on the right side leads to a second result which wa convert to matrix 

notation to give finally

-'s
Here cp̂  is the column matrix corresponding to the vector given by

rY y) X n p where n is the unit normal vector, and the rows 

of are derived from the rows of I in a similar way by the
relation
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By ooiaMning these results together find that
r

M JR
IL* Y

r r

S JdS,
rn.{f m.%. m* p

whore L*,̂  = ( X  + 2^)d*g C + p p I o
The transformed vibration equations are thus

“ I h dr
'R ~ JR . ~

r r T* T T-f I ^ T  "" Y ““ ( X + 2 ̂  ) (3n d y** Id* u y ) &
JS L '

If wa can find a complete orthonormal set j such that each is 

an eigenfunction of L* , and such that the surface terras vanish when cf 

satisfies the prescribed boundary conditions, then the solution cai be 

found, by section 3®
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6 o Discussion of the Transformed Egmatioas
By considering the particular case of the two- 

dimensional vibrations of a rectanguliar parallelepiped, we 
show that a set satisfying conditions (i), (ii) and (ill
cannot be found in general.

%  o

For this problem (j> and ̂  are the matrices

respectively. Take a rectangû wor coordinate system

and

Oxy, such that the parallel^ped is bounded by x = Of x = a,y = o 
aLhl y b. The column vectors d and g are then both given by

and has the form
&k

+ PP

The condition (ii) requiring that # be an eigenfunction of 
becomes In this case

r 1o

o tz

-1
"Y. O

O 'Yz



21

That isj, equating term by tern.

iXi-p) _ÈH_ « &-,! Yz AxAy
(X-f-p.) Aj±a_ ** Y, 

èKèy

M +(X + 2.^)i!^ - p̂P^Ya = ̂ %2 Y% .3y
Is2 practice the variables in these equations mist he

separable if y and y are to be readily obtainable. Hence 
X * 2

Y must be of the form

Y ® c X(x)i 1

where X « cos ( ̂  x ), Y = cos y  )& and ĉ , *

01 , are constants. Y  then given by

, __ ( P' )cwhere c ~2

By substituting these expressions for y  ̂  süid Y ̂  
in the surface integral in (1.9),we obtain the function 

which must vanish on the rectangle x = 0, x = a, y : 0,

y : b. If we consider only the boundaries x =3 0 and x « a 
the relevant terms are
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(X-tzpi) j )( Y  - (X+2.|m.) Y  *f2 Y  Y

- ( . A t i p )  Y / X  Y  “ p'- ^ -* X  Y  —  ^  Y i X  Y

which must vanish for all values of y in the range 0 ^ y ̂  h» In tho 

matrix the prime on X and Y denotes differentiation*
If one of the boundary»’ conditions on both x « 0 and z a a is

then the other boundary condition and the function X must be such that

■*■ ^  +  r  Y . A Y '

vanishese The first entry is zero for each vedue of y only if X « 0,

since 0 in general, in which case the second entry requires

that
ax,

)x. 0« If we shoose « sin miTs
a , where m is an .integer,

then is a complete orthogonal set of functions, and each satisfies

the conditions X^(0) « (a) « 0. Thus if ° ® 0 is one
boundary condition, then the other boundary condition must bo

miT%for X m 0 and lÈ a, and X must be the function sinm a
result is obtained for the boundaries y ® 0 and y = b.

'<̂x 
A similsr

We conclude that the method of section 3 dQ88 not yield a 

solution of the second fondemental boundary-value problem of elasticity, 

in which the displaooiaents vanish on S.

A srlmilar argument shows that the first fundamental boundar̂ r-



value problem, in which the stress vanishes on S, is also not soluble 
by this method. For the normal stress o“ is of the fo rm

<r » (X + t A ,

and if we again consider the boundaries x = 0 and x = a, then c r  

vanishes if

Ax

Where o( = - The surface terms which must vanish are thus

V “(A+ 2/̂ ) f, X Y +1^ <fiX Y 

-(X + 3.f*)H’,X y" - -  l^ijx'Y'-f“ fiX"Y

and it is not difficult to show that the other requironents are

“ 0 and X* = 0. Consequently if =- 0 then ,
and we cannot find a function % which will ensure that both terns 
vanish.

This example of the vibrations of a rectangular parallelepiped 
serves to illustrate the general result that the method of integral 
transforms does not yfeld the solution of the equations of elasticity 
except for special sets of boundary conditions.

We now indicate the form of the solution by the modified

method.

?. Formal Solution of the Equations of elasticity
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X f is an eigenfunetion of , so that

then <f is represented, in the form

I '
r3 I £' Y * The transformed vibration equation becomes
Js

where a •̂ m
(1.9)

d-C

«?
- n (X+ 2m) ($ nd^" 2 d" i/« ) dS

.’.a = A. I S h dt>m m

-t A""
r

3

ta
\  2rX\aâ5

di;

Sence the solution of the equations is given by

j . y
SI

with the above expression for â . We note that this solution involires
two unknown functions, «y and the normal derivative ^  , and so Is^ â'vx,

completely determined by specifying two botuidarjr conditions on Sc



Chapter XI ; Infinite Systems of Simultaneous Linear E-qiiations

6 The Solution of Infinite Systems.
Infinite sets of equations were used as early as the 17th 

century for solving differential equations and other problems, but 

the theory of the solution was not studied until aboui I9OO. Since 

then a great deal of literature has been published on the subject, 
and a review of the most important results may be found in KAHTOHOVXCH 
& KHYLCV [195Ô] . It is remarked there that the subject is not 
yet in a completed fom.

Most of the attention has been devoted to a particular class 
of infinite systems known as regular systems. This class Includes 
many of the systems arising in practice. Conditions for the existence 
and uniqueness of the solution of a regular system are known, end 

methods of computing approximate solutions together with upper and 

lower bounds hâ Te been developed.

The theory of solution of regular syst«aas is based essentially 
on the theory of absolutely convergent series, and consequently does 
not Include certain systems involving conditionally convergent series. 
We shall give an example of an infinite system of equations which ie 
not regular and whose solution exists and is obtainableby the method 
used for regular systems. We shall find later that the mixed boundary* 
value problem of section kO gives rise to a non-regular systen of 
equations which is not covered by the existing theory, involving as 
it does alternating series, and that the resulting eoaputed solution 

cannot be justified theoretically.
9. Regular and Fully Regular Systems
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This «ectioîi and tho nost four togethor prsvida a suBmary 

of tho knofsn results concerning the solution ®f regular and fully 
regular systoBffî  and are based on the material In KÂRTCHOFICH and 
ITJdWV [1958J io The details of the proofs are given there o

An infinite system of equations is a system of the form

*X1 \ + «12 ^ ^ a^^ z^ + 000 =
®21 *1 ♦ *22 ^  ̂ a^^ 3Ĉ  + 000 = >̂2

*31 *1 ♦ »32 ^2 a^ 9 Z— + 0 9 0
The quantities @ p 0*0 are the unknownsand f, 

bgp b^ , 000 are the free terms <, A sequence j is ©aid to bo a 
solution of the infinite system if tiie left sides are convergent 
series when s  ̂and if

i7i
for i aelj) 2y 3ÿ 000

By rearranging each equation, tho system may be put into tho
form

oO
3^ s ^ik  ̂ ^ 3|> oo* (Zol)

kzrl
The latter system Is defined to be regular if

2 I-1.I < "
for i = 1, 2p 3^ 000 g and to be fully regular if there ezlota a number 
in the range 0 < ̂  < 1 such that
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%  kjk 1 - ̂
for 1 ^ 1, 2, ), ... In both cases we define to be 

f> -I - 2  î ik* •
km(

For a regular system it follows that 0, and for a fully regular
system P  ̂ ^ •

The method of successive approximations for solving an infinite
( o|system is an iterative method in which a sequence of values x. ,

(1) (2)
x^ , x^ is calculated by taking 

=• 0
1) ^  (®)

and *= Z-. x^ ♦ b^ , i =1, 2, ), .
** * n * 0, 1, 2, ...

r (*)iIf the set s Xĵ f converges to a solution of the equations as n «>, 
this solution is termed the principal solution of the system.



10. Existence of a Solution
The main result for regular and fully regular systems ie the 

following one.
E.I. If there exists a constant K such that 

1*1! S K
for all val^s of i, then the regular system (2.1) has a hounded 
solution such that

|x^ I —  K  , i ®  1, 2, 3» • • • »
and this solution may be found by the method of successive approximat­
ions.

11. Uaiqueoese of a Solution
In practice ve often hare seme knowledge of the asymptotic

behaviour of the unknowns as i «5 , from a consideration of
the original problem, and it is usu&ll)̂  the case that the solution
is either bounded or tends to zero. We can show by an example that
a regular system can have more than one bounded solution, so that a
stronger condition than regularity is required for uniqueness. The
following results are concerned with the problem of uniqueness
til 1. A homogeneous regular system cannot have a solution tending
to zero and different from zero. i.e. if 11m x • 0, then x « 0.

i-eo  ̂ ^

Ü 2. A regular system can have no more than one solution tending to
zero. If the coefficients and free terms are positive, then the
positive solution of it that tends to zero is its principal solution.
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n 3. A fully regular system always has a unique bounded solution 
which is its principal solution.
^ k. It the principal solution X* of the equations

X. = A  Ic.̂  I X._ 4. X ̂ ̂
«k  -  -

is bounded below by a positive number, so that X^ k % > 0, then the 
regular system (2.1) with bounded free terms has a unique bounded 
solution which is its. principal solution.
B $. If for any substitution of the form 0), where

«D as i-* «0 , In the regular system (2.1) the resulting system is 
regular, then the system (2.1) has a unique bounded solution.

12. The Method of deduction
The method of reduction is an algorithm for computing an approximate 

solution of the infinite system. It is an iterative method at the Nth 
stage of which the solution of the equations

a X ♦ a X 4.IX X xa 2
a X 4* a X ❖ax X 22 2• 0 • *

is calculated. Successive approximations to x^ are x̂ , 5^̂, 2  ̂, • • • , 
obtained by solving one, two, three, ... equations respectively. We 
have the following theoretical result.
R 1. The principal solution of the regular system (2.1), with free 
terms satisfying the condition fb̂ f - ̂  » may be found by the
lîilrhod of reduction.



13. Upper &sA lÜÆwey Emmds for the Solution 
It is possible to derive upper sod lower bounds for the solutlCRi 

computed at acy stage by the method of redsiction, and the methods 
©re deocrlbed In the catove reference. Since we have not used these 
techniques for the problems of the thesis, the details are emitted. 

In this section we expand the treatment of qu&si^regularity given 
in Eentorovich a&d Krylov, as the systeas arlslog from vibration 
problms are of this type. 

An infinite system of equatloBB is qua sl-reguler if all 
equations of the system except a finite wmtoer satisfy the condition 
of regularity. Ttnm the system (2.1) is quasi-regular if

OO
y  |c.. |<1 , i H <2, ... (2.2)
t-L “

and if
oo

Z  le.̂ l < "  , 1 “ 1, 2, ... R
k4 . **

Consider now the aysten
y  \Z * L, C..X 4- b -f. 2. C..3L , i - H43L, N<*2p ...

k«t (2.3)
obtained by rewriting the equations (2.1) frtm the (Hf ^)th ©nwajfda. 
If we regard the unkzx̂ wna ^  ̂ 3,̂ <• 2  ̂ , and the free tesms
as b. 4- E o.. XL , then the system (2.3) is regular, We write

If /
n « 1 - E  |c..| , K>2, ...
 ̂ k® % 1  ^
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If |b. j < K ^ , them the system

oo

. -( = W + '. H+4. • . .

has a solution , by EL, which is tmiqus if certain conditions e

satisfied. Moreover the system
M

^ 2 t  ̂ Â = N+l̂  N f 1, . . . ; ̂  2̂  . . . Nk*Wtl
is regular, sad the free terms satisfy 

Iĉ l̂ 4 f >
by (2.2), so the system has a solution. If it is unique, denote it 

«by Si^ . Then the syavem 

= Z + C,g AgK=MvS
has the unique solution x^ x̂ .̂ Hence the system (2.3) has the

unique solution
* T *

( . 1

This solution is a solution of the original system (2.1) if it 
satisfies the first H equations of that system i.e. if x̂ , .,

satisfy the equations
N OO

x;=/^ + k  + 2  c'hAr ■»■ 2  V  ̂  )K* % V. « n JK- • - ' ■'* V  ' ^ = ^ •

If each of the solutions x. and îl _ Is bounded, then the series

/  c . X. and / c^a. . converge, since
k" iB+i “  *

2  |c<k| coavoFgee. Thus the eqœatlcismay he wittes la

the form

 ̂ Z. + Z . . . , N(«I k*N+-V K«Nt\
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Each distinct solution of this set of N equations gives rise to 

a solution of the infinite system (2.1). Im particular if the 
system (2.1) is homogeneous, then its solution is determined by the 
solution of the finite homogeneous system

- 2  («it + Z  }\ =X;,
fsi k'M+i

i.e. the system

1-1

Where ao

N

"* J ^ . 1,2,. . , N—  2 <1 -  o

*
k~k*k:N + l

15, The Method of Réduction for a Quasi-Eegular System.
We restrict our attention to the homogeneous systen, and 

suppose that each coefficient in the infinite system is a function 
of a parameter p, so that denote by x^^the
solution of the finite system

^ 2. > xT = N-V» ̂ . N + Rk»W-M
R *then the result R1 states that A , = % . .R-^co

Hew consider the finite system
V / N+A

Xi - 2 r < )  "^2 i ---.N
1-' K»n-¥|

i.e. the systmn
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where
K r  ®i* ♦ Ak»N& kî Glnce %T. 88il

R-5-e» , then îje"̂ îi
The coefficients and are functions of p. Thus 

the infinite system has a solution provided the finite systea

N
1*1

has a solution. That is, provided that
cUX [ 1 - ]>(p) ] = o ,

where D is the matrix d^^ j and I is the unit matriri. That
is, provided that p) = 0, where Xĵ  is a latent root of the
matrix I - D.

Let one such value of p he p^, so that
\(p* )“ 0.

By the same argument the system 
% ^^<.“ Z  “ O  , 1,2,. . N ,

has a solution provided g_(p) ® 0, where a 
of the matrix I - B , B being the matrix 
from an earlier result that B -».D as •»

We now write

is a latent root
It fo'llcnys

R
D «

R
where B«

R
Ij « D • D , and suppose that R is sufficiently
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Dloîfge that I g j  I < i for ail i, j. Them it can be Ghowu 
(see, for exemple, WHOHSCM £1965] , chapter 2) that

a
^ \  ir okt -»-OU ) ,

where <% is a scalar whose value depends on the entries of D.
R. \(p) = \(p) -t- <x(p) £ + 0 (e*) .

Let the value of p for which the finite system has a
R « ®solution be p ® p 4. A p. Then we have

X^( p*+ dp) ^ O  

• ' - t - A p )  i + O(î ) « 0  ,

Sow from Taylor ®s theorem, if and a  are twice differentiablej
\ ( p ^  +  A p )  t  i oc(p^4r A p )

= \ ( ? * )  +  t c i ( p )  t  Ap[)^(p’'} t to i'( f> * ) j 4.0(6p ;

= £oi(p5+ û p  + OCûp )

since X(p* ) *« 0. Thus we have the result

Zip + o(Ap"} = -  xpïfi-(p>) ^

from which it follows that —j*» 0 as , since é — 0
as . Hence p-j* p as R — .
A similar result in matrix perturbation theory involving the

R
latent vectors of a matrix may be used to show that, if x^,
1= 1, 2, . H, is the solution obtained by the method of

R <e> <&>reduction, x̂ -» x^ as R — , where x̂  ̂is the solution of the
infinite system.
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Ttoo the Ê ethod of reduction gives a convergent sequence of 
approximations to the solution of a quaoi-regulor hosBOgencoue 
system.

16. An SxcTOl® of a Non-Regular System 
We can show that the infinite system

071

has the solution
*1 “ *5 * *5 * “ 1 .
For the left side of each equation is the value of the function

Î s 7
f w  = ^  -t- ̂  Xj - ^  + • . .

for x« n» 2 n ff 3 a, ..., and the system of equstioas impllos
that l(x) vanishes for x*= « , 2 n , 3% , .... Thus one possible 
function is

f(x) *= sin X| 
giving the above solution.

This solution is not unique, since the values
X^ 55 2, Xj 2^ , X^ —5 2® , ... ,

corresponding to f(x) * sin 2x, also satisfy the equations.



However the bounded solution of the system is unique, apart

from am arbitrary factor, sad we can show that the æ  thod cf

reduction converges to this solution.
For, if we solve the first n equations for the unknoims

X , X , ..., x_ setting all the other unknowns to zero, we 1 3 2n-x
define a function f (x) of the formn ^

" ' • • +("1) 
which vanishes for x^ ® 3t (2« )̂ , •••-a (n«)^. Hence 
f^(x), apart from am arbitrary factor, must be the function

Row 11m f ( x) » sin x, and so the method of reduction gives the nn-9M*o
unique bounded solution of the infinite system.

We gaow show that the system is not regular or quasi- 

regular. For, if we ccmsider the nth equation of the syotem, 
the ratio which must be less than unity to ensure regularity is

r * i
r-tvi

- a.n-1
(n tt) Inir)

(in-1)1 7 '~ 'àlk = sinh nTT . ( in -l)6 -,

Thfâs the system is not quasi-regular.

The feature of this example which distinguishes it frcm 

a regular system is the conditional convergence of the infinite 

series involved. The theory of regular systems applies only 
when the series are absolutely convergent.
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XT. The Rimerlcal Evaluation of Determlxmnts

There are two algorithms for determinant evaluation which 
are suitable for use on a high speed computer and which are 

efficient in that they combine speed and accuracy. They both 

involve the reduction of a matrix to triangular form.
Im the method of Gaussian elimination with interchanges, 

the matrix A is successively reduced by eliminating all the 

entries except one in the first column, then eliminating all 
except one of the resulting n - 1 entries in the second column, 
and so on until the matrix is finally in triangular form.
The elimination at each stage is done by selecting as the 
pivotal row that particular row which has the largest element 

of those to be eliminated. Suitable multiples of the pivotal 

row are then subtracted from the other rows to effect the 

elimination. The resulting matrix is an upper triangular 
matrix, in which all the entries below the main diagona}̂  are 
zero, with its rows interchanged. By the properties of 

deteminants the determinant of A is equal to plus or minus 

the determinant of the final matrix, which is simply the product 
of the diagonal terns.

In the method of triangular deccooposition the matrix A is 
expressed as the product

A ** L HI,

where U Is upper triangular and L is lower triangular- 'That is 
a]'JL the entries of L above the main diagonal are zero, and by
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eomvemtlom all the entries o n the malm diagonal are unity »
Smch a decesaposition can be carried out in genesral, and is 
d@8c%rlbed in the standard texts on numerical analysis. The 
determinant of A is then given by the product of the diagonal 

entries of Ü, since the determinant of L is unli^ .
The comprutatlonal efficiency of the two lathods is examined 

in WTLKIMSOH where it is shown that a process equiîralent

to pivoting in Oaussiaa elimination mmst be incorporated into 
the method of triangular decŒ&pos ition to control the rounding» 

off eiîTore. By carrying out a detailed error analysis of each 
of the processes it is also shown that tr i%gular decceapo>sition 

is ®n optimum method in the sense that the computational error 

in the deteminant due to the reduction process is no greater 

thi.m the maxing error caused by rounding off the exact entries 
of A to workiiiâg accuracy. The correspondimg error in Gamesian 
elimination is apprsxtostely V  n times the error in triangular 

decomposition, «here n is the order of the determinant, so that 
the two methods are roughly comparable in accuracy for detê m̂inaats 

of order ten. Both methods Involve approximately the s*me 

amount of arithmetic for %&nsymmetrie matrices.

The high accuracy of the decomposition method is achieved 
onJiy if a certain part of the calculation is carried out tC' 

double -length accuracy, and some computers are designed to dĉ 
this part to double-length outcasatically. If the facility is 
not available on a particular computer, then the two methods are
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exactly equivalent and the same theoretical error bounds.
It is always possible to obtain the facility by peogragmiag ̂ 

hut this may lengthem the computing time by a factor of four, 
and the advantage of the method is somewhat of feet.

All the determinant evaluations in the thesis were done 
by the method of Gmmsion éliminât ion with Interchanges, as 
it was the easier methad to programme for the Deuce computer. 

Since the Imgest determinant involved is of fourteenth order, 

there is very little to be gained by using the mere accurate 
method, although for other problems reqgairing larger determinants 

it might be desirable to use triangü̂ Olar doœmpositinn.



Chapter 11%. The latural fedes of Vibration of e. Bectangjaî r 

Parallelepiped in PXane Strain 

iB. The Governing Equations of Motion.
We consider a p€S*allelepiped of rectangular cross-section, 

and take a two-dlmenslozml rectangular coordinate systea with 
the origin 0 at one comer of the cross-section and the axes 
Ox and Oy along adjacent sides. The cross-section, of length 

a end breadth b, is then bounded by the lines x 0, x ® a,
y a* 0 and y « b.

Since we sere considering two-dimensional free vibrations in
the p3;.m&e of the cross-section, the equations of motion are the

equations (1.8) with
J

and h » 0. It is convenient to

divide each equation by the quantity , thus 5jatrodneing the
dir̂ en .ilonless constant c e3-=-~^ and 'the freqû ency parcarieter

X-9.au
S®sa £n® g K® V7^°^ • W@ also ase &r ^ — . Siœee a «lod u  asp®

Xt-Zu >
expressible in terms of Poisson ®ij ratio "0 , we can show that

e .
 ̂ 2 - 2Ü

Tlmo m ) ta&e the equations of motion in the f©m

'h S’ -̂4%. -t* K = O
àp/ à"x è y

à x o y
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19* The
By the variables In the equation

we find that a suTWble choice for # is the matrix

sin mir% cos cnQr 
a b

0

0

COS mfcX Sim mg 
a b

where m and n are integers. The esqpansion of u and v now involves 
a double swiration over m and a. Thus we define

nv iaa,!.) = sin r cgos®^ u(x,y)dydXj

o
ra

vus.mjtK cos mm: sin v(3c,y)dyd%
o

Then It is shown in 1951] that

C O  _9C>

•= A- > "2 sin COS , (3.1)

ea oo
3.2)

where



20. The Solution
With this choice of S' aiad d j » the tr<#s-

fomed eqmtions ax*e gives by equation (1.9)" Xf ne int^duce 

the p®2*ameters

- f <̂oS 2IHI oly

B^(m)
4

/ ^ ]  s in  
wy/y-'̂ g

mTT/

^  f lËl̂i  ̂ ’

mTTX

then the transformed equations have the^fom ^
' K"-:ÿrL "

a a
I4 (m,n)

7  irii)

^ c o s  M1Î. Âfr.) - A »  - S COS OT.B^W) +c,.B>->)
4.(!-c,)^cos oT.Pb's’-'̂î -(i-c,) ar]%M)

[J-c,) !gr C05, vtoT, Â rt) -(I-C,)^. Ajn) - C, COS mr. Q(n)
"t c , . Cjêi) ^  51" COS nTT. *̂ ' (hn)

where the right sides involve the cgiglit unteown garamsters
A

fb flEd t?ae solution

C (n):, C a D (m) ̂a ^ o 10> o
«Cx»y) of the original equations we 

ufm^n) 
v(mj,n)

v(x,y)
must solve the transformed equations for 
smbsti tute the resulting expressions into the double series 
(5.1) and (5-2). The smmands in the double series which
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obtain are linear combinations of the eight pareazeters above, and 
we find that, by taking the parameter into the outer series of 
the double sum in each case, we obtain an inner series which can 
be summed analytically* Hence the solution may be expressed as 
a sum of eight single series.

We illustrate the p2POcedure by considering the tern in 
A (n) in u(x,y), which is

il *.»-?-?

By sp21ttiî3g the snmmamd into partial fractions we can write the 
inner series Rs

èi
r-*

cos mtr cos Mir sin. I Z J  __________  Ify, ___

_ I nr'' sink siwK L;<
1? ?  iinh - T  Tinr i^k ^

where we ĥ ve used series (A$) in the appendix. and^ are
defined below» Thus the double series becomes

n

By applying this procedure to each of the eight double 
series and using (A3), (Ak)̂  (A$) and (A6) in the appendix.
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we obtain the following solution .

k a 1 ̂  cos 2 ^  . A ^r\) t ~ ̂  6̂ <p̂ (a.-A)cos 2^ • / \ i ^ )

~ r 2  + A  ^  sin!^ <ç,(b~y;.B„(«i)
m

kv^.y; = _ i  2  f  • A^n) + | ̂  ^  ' Ajn)
Wi "îfîl

2 "?#' &b()̂ ) + 1 y ̂c o s . ^  %lb-y). %(m)
A—

Z X mTTx& / 0L

èl'*QO "t" —  ^  ŝ (&— S>j!n ' Ĉ (rs)

mlTx a.

w here ‘m  - -gr - k
1 i i* ^

= IHJ_ Km &T

2. z z nr

ZLn

1* 1/

«.fx-, _  n V " ^  s m h  y „ A  s m h  S„x
“  T  T'Bh T i ü T T E



cosh cosh 0^y
“iT p%"sWTj^h

zc 1̂1̂ h '̂lÂ $mh 6̂  A
sink Y a. &mh S^i

»jy)= _^fillSüL- _ "rfüL & ï .
«^smhoi^b ^wS.inh^,«b

la the fuactloas «̂ g, aad^l^, the quantities y , 6 , a 
and n are associated with the variable x, and d , ̂ , b and m with

y-
The above solution is a formal solution of the equations of 

motion for a rectangular region. A particular solution is 

ob‘5jained by choosing the eight paresaeters to satisfy the pre­
scribed boundary conditions.

21- A Parallelepiped with Clamped Boundaries

We consider the special case in which the boundaries 
X s»0, X sa a, y «®0 and y » b are rigidly clamped. This
problon is discussed in BOMfl® f 1961b J , where a different 
method of solution is employed.

We shall find that the symmetry properties of the solution 

enable us to reduce the number of arbitrary constants, and 
hence to reduce the amount of computation in the approximate 

solution of the infinite set of equations. observing the
rate of convergence of successive approsdiaations to the solution 

for rectangles having length-to-breadth ratios of 1, 2, and U,



we can draw certain conclusions about the effectiveness of the 
method.

Thus we Wish to obtain a solution satisfying the boundary
conditions

u(0,y) » 0 »» uCa.y).
v(0,y) » 0 » v(a,y).
u(x,0) » 0 *8 «C *.■*>)»
v((x,0) » 0 « ▼(x,b).

The first and last pairs are satisfied trivially by taking
A (n) » 0 M Ao a
® (m) w 0 « D^(m) , 

giving the solution

k W(x,7) = -i 2  s m Y : ( y ) ■ + 1 2  ^  <Palb-y).
rA m

^ ^  COS 21^ . ^ ̂  ̂
n n

k'v(x.y) = 1 - 2  r  + £ 2
vn vn

n

W m the symmetry of the body end of the boundary conditions

implies that solutions must be either symmetrical or skew-syimetrlc&l

about X » ^ Î aud either symmetrical or skew-symmetrical about 
by “ 2 • We consider only solutions having symmetry in both



directions, ©nd we refer to such solutions as symmetrical 

solutions.

22. Symmetrical Solutions .
The solution is symmetrical about x « ^ if v(x,y) is 

syaaetrleal and ufx,y) skew-sysmetrleal. If v(x,y) is syam̂ trica?-,, 

then ^  is skew-syBsmetrieal. That is, for any value i  in the
range C 0,a 9

X»l \

Hence, fmaa the definition of C« (@),

a
for all integers n.

Moreover if u((x,y) is skew^syzmetricaZ, about x g ; 
thê a so is “ B  ̂©md sin is also skew-syametrical if a
is odd. Thus, if m is odd, we have 

a/ sin dx *31 0 d y a

B (m) «0 , m =* 1, 5, 5, 7 *@
By a simiDLar arg&ment we deduce that, for symmetry

about y - o ^b 
2
* » B (m) , m ** 1, 2, 5, .o. ,@

& C (n) * 0 , n » 1, 5, 5, 7, ..* .o
On makiESglhese ŝ sbstituticnŝ d replacing m̂d 

by the express lorn on page U2, we obtain the symmetrical solutions



mirx

m
smh 5 ^

. B (^)

2 b
ŷfSTi

simk — X
sinh "4^2

U l - x
sinh S ^

co$ lï? . c C«)
b -

%
k v K/'-&Z™  COS & &

«w <?V€«

Stnh<Â (̂ -y) SinK/3ŷ (̂ ~)j 
smh X sink

Z

. h M )

il
et!

^ J f Ë L i Æ É  _  n V  c o s h  s „ ( | - x )
&ink Yĝ  % b 8„ Sihk sm ̂ . C

23o The Infinite Set ©f Equations
It m m  remains to satisfy the boundary conditions 

v(0,y) « 0 a v(a,y)
& u(x,0) a 0 * u(x,h) «>

For a synmetrical solution it is sufficient to satisfy 

v ( 0,y) « 0 

& ia(x,0) «0,
and, by the completeness of the trigonometric functisins, these
conditions may be replaced by 

bIsin o,y)dy « 0



/''->0
sin u(x,o)dx » 0 X, 2, 3, • • •

respectively. The resulting infinite set of equations for 
•|3̂ (aii)j“ and -|̂ Ĉ (n)|- is

*1 ^  ^

Viftvesi b b /
C (sfî) =0

-1,4 ,(.,•

2.a.
V- ^i-WWWW)% mumiA w  /

&\ -Bjlm) 4-- J— T —
z(i-cOk hir

m «VÇA

Z 1_r^ J_ coth ̂ .Cjfi)=rD ^

If we take the unknowns in the order B^(2), C^(2),
B ^ ( k )  p O j , k ) p  ... , then we have a homogeneous infinite system of 

the type considered in chapter II.

2 k . Regularity of the Infinite Set.

Since

B [m) ^  J "  i )

y *0
It follows that

AT  = (|-f - C f  + 0(j) . m-.».
y=o y®^



Similarly

b sa is .

ThuB if we regard

3P=0
y=o

m ir  ,

& 0(")
3S«©
y ^
mf

a -©^“  ̂ "¥ -o
infinite system, the solution we seek is bounded.

as the unknowns in the

The infinite system now becomes

inr>V a coth îcè „ WJ 1 cothi IF p, zm
4-̂X \____ J______ .52FCw) = 0, ̂ O 7

l i  ,1 ,, . . .

a.m (9V«v\
•ÿ̂ coth-ï̂ 11T j cot-h 8_%

? & :  in ,ï2rC(Srt)=0 ,

If we confine our attention to the first of the above

pair of eqimtions, the diagonal, tern is the one involving B̂ (sa). 

The condition for regularity is

X < X2L
* ■" b*

for m «2, 4, 6, ...

c5.̂ coth?vn̂  J.cotk/^
A ^  X

Bow for amy value of K, no matter how large, a and 0m uL
are positive if m is sufficiently large, in which case



z
F-K"' 2 r : * ÿ

*mb
«oth °̂ iwb _ _! (@tk P«Â  _ v[_l _l

m

where we have used the series (#) Im the appemcllx. If ̂  Is large 
we ohtaia the asysxptotle form of this expression by putting

P a \ w r  n

m d  expanding each tern ̂ iBcaaially. This gives ' I

Im the same way we obtain the result



k tr coth<^ _ m g .± coth Z Z

The ratio of these asymptotic expressions is

(1 - c )
rrrsp" *

From the symmetry of the two equations forming the infinite 
set we obtain exactly the seme result for the second equation.

Bow c^ is positive for an elastic material. Thus
1 - c  ̂< 1 .

Consequently the infinite system is quasi fully regular for each 
value of K, and so has a unique bounded solution for each value of 
K, whic h is given by the method of reduction. Thus all sol­
utions of the infinite system obtained by the method of reduction 
correspond to solutions of the original problem.

2$. Computational Details
The infinite system of equations may be written symbolic­

ally in the form
M .% ) X = 0 ,

where A(K) is the matrix of coefficients, x is the column vector of 
unknowns, and 0 is the zero vector. The solution of the system 
consists of the set of values of K for which



det A(i:) = 0,
and the corresponding vectors x. We use the method of reduction, 
in which the equat ions

k R A (K) X = 0
are solved for successively increasing values of R, where A the

Hleading R x R submatrix of A and ̂  is the vector consisting of 
the first R rows of x.

The computation is carried out in two stages, which we ill­
ustrate by flow diagrams. The ratio ~ is denoted by e , and

^  Kbthe dimensi onless frequency parameter is taken as ~  .



stage 1:

reaa

set as

clear matrix store

fo:

evaluate

priât out

Kbreplace 
, Kb

Kbis

yes



In the first stage the function f{K) « det 1(1) is 
tabulated for a fixed value of B aad a range of values of K, 
namely the range —  'fhis tabulation is done forÎÎ 1 X
R « 2, 6, 8, and the approximate locations of the zeros
of f(Kj are noted in each case. Apart from the determinant
evaluation, which is discussed later, the hulk of the prograxmning
in this stage Is concerned with the formation of A{K). Only
the non»zero entries are inserted into the matrix, so the matrix

R
store B^st he cleared initially before forming A(K), to ensure 
that all unused stores are empty. For a fixed value of —

K

the quantities a , p , Y « 6 _ may he real or imaginary,XQ 55 u Xfi
and the programme must take account of this fact in the formation
of coth a h and other similar terms. A point worth noting is
that as K Increases the diagonal terms of A(k ) become less and
less accurate due to cancellation of slgalfl;3@nt figures, which

was indicated in section ^  by the asymptotic form. For small 
values of H this loss Is not sufficiently important to merit 
special programming, but for larger matrices It should not be 
ignored.



stage 2:
read c

set r *= 2

Inverse interpolate 
for K ^

Is

noyes
set equal
to K _

print out

set X
solve for x replace r 

by r ̂  1
search x^for term 
of largest modulus

divide X by this term
 ___%_______________

print out ^

In stage 2 inverse interpolation is used to calculate to
Ra specified degree of accuracy the exact zero of f(k ) for each of 

the Qpproxixaations noted in stage 1. K^aad are two veüLues of



E H H™  straddling a ze^m of F(%) cuad F m.ô. F €tx€? the corresponding.îï _ î. 2
values of F(K). t is the accuracy required in the computed zero.

RThe computation of in stage 2 is equivalent to the section

clear matrix 
store

in stags 1, and the same piece of programme is used in "both cases.
Mhen the zero S has been obtained, the corresponding

X» gjt • • • j»rRvector is found by solving the first H - 1 of the equations 
R R

With K , the ^ h  component of ^  » set equal to unity. Ibis is
done by a process of back-substltution in the reduced set of

R
equations arising from the reduction of A(K) to trlanguies form,

E
aod yields the entries of ̂  in the order x^, 3̂
Ê  is then scaled to have its largest entry equal to unity.

The inverse interpolation is done by Aitken's iterative 
method of interpolation with the independent and dependent variable^ 
interchanged. The process is described by the flow diagram on the 
following page. Given the r pairs of numbers
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^1* *1

Fg' *l.g

f,' *1.2,5

^r-1' *l,g.
Er

r«l

the routine calculates o Mere K, ^ _ demotesf 3T
the approximation to the zero of f(K) obtained by interpolating 
the r points (F̂ g Eg)^... r vith an fr-l)th
degree polynomial, and g S“1 r ^ vhen S 1. 
inverse interpolation:

sat 8 =* 1

replace s-l,r by
‘̂ ,g . . . . , 8  ~^S^i

replace s by s .&• 1

is 8

noyes

A special det eminent evaluation routine was written 
as a subroutine which could be incorporated into different 
computer programmes. This subroutine is used in both sections 
1 and 2. A flow diagram for the routine, which uses the method
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of Gaussian elimination with interchanges, is given below.
In the flow diagram is used at each stage of the

reduction to refer to the number currently occupying the store
Roriginally containing the i - Jth entry of A . 

determinant evaluation:

set j = 1

set sgn A 3 1

search entries 

for one a^^ of largest modulus

is i®=

yes interchange j th and 
i th rows of matrix

replace sgn A ^ 
by - sgn A

eliminate entries
' '*RJ

using j th row

I is j= R - 1?

replace j by 
j

formR R _det A " sgn *jr.
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26. Besults

The results in this section were obtained with 

as 0»55j, which is one of the values taken by Bolotin.

The first set of results is for a square cross- 
section, when the additional condition of symmetry about the 
diagonals is imposed. For a square we have e •» 1, a»d the 

extra condition implies that 
B^(a) "C^Ch ) ,

Y m  - « m  '
- P m  •

These relations simplify the form of the solution, and also 
reduce the infinite set of equations to the form

For this system the m thod of reduction uses B « 1, 2, 

successively, instead of R «2, 6, 8, .., the sequence for
the previous system.

Successive approximations to the lowest frequency of 

this type of vibration and the corresponding coeyieients 
B^(2), B^(6), ... are given in table ).l.
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Â3 a check ©a the cossputatioas the residual dlsplacesseac 

wao c&lcmlated f o r  each approxlimtioa, aad the c w ^ e s  in 

figure 3.1 illwstz'&te the results obtained

Z tisrm s

&
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The maximum residual displacement is given as a percentage of 
the maximom displacement over the whole cross-section in table 
3.2.

Table 3-2

order of 
determinant 1 2 5 k 5 6 7 8 9

niax u | x ^  ̂  100 
max u(x,y) 21 5.2 3-1 2*1 1 .6 1-3 1«0 0.88 0"7f

Table 33 gives successive approximations to the first, 
fourth, seventh and tenth lowest natural frequencies, and 
in figure 3*2 the lower end of the computed spectrum of frequencies 
for motion symmetrical about the diagonals is indicated. Figure 
3*3 has the corresponding spectrum predicted by Bolotin.

I—o
IT Figure 5.2.

o
KJ?tT
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Table 3-5

order of 
determinant cf)i C K )l|. ( 11 )y ' IT ̂ 10

1 2>Ch6h2 (5. 5450c ) (4.51932)
2 2*06585 5*53628 4.51189

3 2*061j62 5*56645 4.31529 4*94751

k 2*06485 5.57122 4.56595 5*06570

5 2*06494 5*57146 4*56402 5*06464
6 2*06498 5*57152 4*56405 5*06465
7 2*06501 3*57155 4*36409 5*06465
8 2*06502 3*57156 4*56412 5*06465
9 2*06505 3*57157 4*56415 5*06466

It ±8 not possible to say whether the bracketed

frequencies in table 3-3 are the lowest approximations to the

frequencies in the table or to neighbouring frequencies.
KbThe blank spaces in the column of (“ ) indicate that no

10
approximation was found near this frequency.

Im the Gecof^ set of results symmetrical solutions 
were obtained for three different rectangles having e « 1, 2 and k  

respectively- The lowest frequency and the corresponding 

coefficients are given for the three cases in tables 3-̂ #
3-5 and 5-6, and the frequency spectra are given in figures 
3"k, 3*5 aud 3*6 respectively.
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L
o

Figure 5 4

4-o¥ Figure 5.5

o
BCb
TT

1 2 
Figure 3.6
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27- Discussion

Table ).l Indicates that the sequence of approximations 

to the frequency is converging rapidly, and the extrapolated 

value obtained by Altken's 6^ process Is 2»06$0$. Thus 

the ninth approximation Is probably accurate to within one 
unit of the fourth decimal place.

Figure 3*1 shows that the residual displacement on 

y "0 Is oscillating more and more rapidly and with decreasing 

amplitude as H Increases. The percentage error In table 3.2 
Is a measure of the accuracy of the computed eigenfunction for 
each value of B.

Since the eigenfunctions corresponding to the higher 

frequencies vary more rapidly over the region than those 

corresponding to the lower frequencies, we expect the computed 

values of the lower frequencies and eigenfunctions to be more 

accurate than those for the higher modes, for a fixed value of 

H . Table 3*3 Illustrates that this is the case.

Bolotin's asymptotic method of solving vibrations], 
problems is described In BOLCnW [ I96I a ], where It Is used 
successfully to compute the natural frequencies of plates and 

shells. It Is applied to the problem of this chapter in 

BOIOTIH p.961 b ] , from which the results in figure 3 3 were 

obtained. This method assumes that the solution of the problem 

consists of two distinct parts, the generating solution and the 

edge effect. The edge effect Is small except near the
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boundaries of the region, while the generating solution is 

significant over the whole region, aind constitutes the major 

part of the solution in the interior. We find in the plane 

strain problem that the generating solution corresponds to 
motion which is either purely dilatational or purely rotationeLL, 
and that the edge effect exists for the latter ceise but not for 

the former. That is, when the generating solution is of 

dilatational type, a solution effective only at the boundaries 

cannot be found, and the edge effect is termed degenerate. Thus 

all the frequencies in figure 5*5 correspond to rotational 

motion. Now we can show, as KOLSKY p.953 ] does for a 
traction-free surface, that a plane dilatational or rotational 

wave incident on the clamped surface of a semi-infinite elastic 

slab generates on reflection both a dilatational emd a 

rotationeü, wave, except for special angles of Incidence. This 

result suggests the unlikelihood of finding. In a medium 

bounded by clamped surfaces, standing waves of either dilatational 
or rotational type alone. Thus the initial assumption of the 
asymptotic method may not be valid for this particular problem, 

and this fact would explain why the method fails to predict 

fully the spectrum of frequencies. A disadvantage of the 

method is that there is no way of Improving the approximate 

solution without altering the character of the method, and there 

is no error estimate.

Tables 3*3 and 3*6 show that the successive



10.

approximations converge more and more slowly as e increases
above the value 1. The same effect would occur if e were
decreased below unity. The reason is that, when e is large,
the solution given by Integral transforms contains functions
which vary slowly with x, typically sin , and other functions

2 2 1which vary rapidly, typically slnh8 (% - x) s slnh --n c ^2 *

, and the boundary conditions are satisfied by expanding
the second function In a series of the form £ a sin .m m  a
The greater the value of e the more rapidly slnh - x) 
varies relative to sin , and the more terms of the expansion 
are required to approximate slnh^(^ - x) to a given degree of 
accuracy.

Thus the method gives optimum convergence when e= 1.
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Olîaaÿrfeei? Wo The Natural lîodes of Vibration of Circulai:' Hods. 
28. The Governing BquaUons for Axlally-Synmietrlc Motion.

In this chapter we study the steady state vibrations 

of a homogeneous. Isotropic, elastic rod of length t and 

having a uniform, circular, cross-section of radius a, as 

shown in figure 4.1.

Figure 4.1

Take a system of cylindrical coordinates ( r, 0 , & ) 

with the origin at the centre of one of the circular ends, and 

the 2: -axis along the axis of the rod. For simplicity we 
consider motion which Is symmetrical about the axis of the rod, 

althoû gi the method may be extended to non-axlally-sysmetric 

motion. The components of displacement are then Independent of 

9 , and there Is no angular component of displacement. If the 

radial and axial components are denoted by u(r, % ) and w( r, 2 ) 
respectively, then the vector v Is given by w = 
d, g and CC are the matrices

u
w



1 6 ,
T h r ^ » i L& 9 and 6^

èz®

2

d rdz.

a&
d
èz. ? èrèzT -  ;  &; fj»;

respectively, and the equations of free vibration are

^  K  M - o
b x 3%

where S I “2.-%

w  — O 
%

Xi-2̂  "
29* The Function S

K - ^  ' k - A - K

The matrix ®
[pand ̂  belong to complete sets of

X +1 |A.

must be chosen so that 
functions, and so that

»T T Now C C ® _  3 
a?

è xè &

so that

»

+CB

T r  +rr
and the condition

V A S
becomes, on dividing through by A -t- 2 j\ and equating the 
matrices term by tern.



n -

‘"’r (k.4)

On separating the variables In (4.1) and (4.4) we
find

-\D « A J ( a r) cos(h % +C )1 1  1 1
^ « BJ ( a r) cos(h % +C ) ,2 0 2 2 2

and for these to satisfy (4-2) and (4.5) we must have a * a *1 2
* = IT 4- C & h *»h.2 ^ 1 1  2

For the expansions In complete sets of functions of 
the above forms we use double series expansions consisting of 
Fourier series In z and Fourier-Bessel and Dlnl series In r.
The theory of the latter two expansions Is given In WATSOH p.922] ,
where the basic theorems are derived. SNEDDON [l95l]
uses them to define finite Eankel transforms, and formulates the



expansion theorems in these terms. For the sake of completeness 

we state the two relevant theorems.

Theorem 4.1
If f(r) satisfies Dlrichlet's conditions in the Interval 

[o, a] , and if its finite Eankel transform is defined to be
&

where  ̂is a root of the transcendental equation

« 0  , (4.5)
then at any point of |0,a ] at which the function f(r) is continuous

where the sum i taken over all the positive roots of (4.5). 

Theorem 4.2

If f(r) satisfies Dlrlchlet's conditions In the closed Interval 

|a,aj and If its finite Eankel transform la defined to be
&

In which ^ ̂  Is a root of the transcendenteil equation

-t- » (4.6)



then, at each point of the interval at which f(r) is continuous.

where the sum is taken over all the non-negative roots of (4.6).

We see from the theorems that the expansions in r of 

u and w must be of the forms ^  a^J^(^^r) and ^  b^^J^(^r) 

respectively, where the paurameters and H are chosen so that the 
two equati ons

=0

are satisfied simultaneously for either j = 0 and k = 1 or
J = 1 and k = 0.

For the first case, since xJ'(x) = xJ (x) - J (x),1 o 1
the equations are

= 0
4iaJ^(4ia) +(H - 1)T (4 ̂ a) = 0,

and hence the requirements are that H = 1 and A 3^  s • • •1 ^2 >3
satisfy the equation

J ( 4 ,a) = 0-Q 1
The equations In the second case are, since J^(x) =

- J (x),1
4ĵ a) = 0



which are both satisfied only i f  H = 0 and I  ,  > ,  I  , ...•'1  ̂2 3
are the roots of the equation

Ĵ ( = 0
These two cases thus give rise to two different

ft
complete sets of functions which are eigenfunctions cf L .

In the subsequent analysis we shall use the second of the two

sets, as It enables us to satisfy automatically one of the
curved surface boundary conditions in the problems studied later

in this chapter, namely the condition that the shear stress
vanishes. The first set does not satisfy the condition that the

normal component of stress vanishes, although It may be more

convenient for some boundary conditions.
Thus we choose 5 to be the matrix

J ( 4 ,r)cos 01 1

0 J,( 4 i') «in

where I  =0 and / »é $ are the positive roots of O ^ 1 2  3
J ( i-a) = 0 1 1

In Incresislng order of magnitude. For the expansion of u and 

w we define

Jn a p  t

Q j g T Ĵ ( COS 2.^u(jp,z ) dr da ,

w(l,m) = J ' rĴ C ̂  ̂ r) sin )dr da .

Than we have



00 oo
u(r,z) * “ 2  2 .  cos2 ^

*' i*= o m= o J|( I ĵa)

^ l"") __ mv(r,z ) = 2  %  w(i.iii)
a P l 1=0 m=o ^ ̂ a)

sin (4.8)

where, as before.

m 1 , m ?bO

30. The Formal Solution
We Introduce the parameters

i

A (m )

B (m) =

Ĉ (l)

10
f

u(a,a)cos da,>

*»r
mtra „ sin d& ,

r * a

D.(l) = f ̂  rJ Ci.r) w(r,^ ) dr.
Jo ®

The transformed equations, obtained by Inserting the 

matrices d, g, G and 2 of the last two sections Into equations

(1.9), and Integrating over the three surfaces n*0, r = a 
and z » Jt are

(k  “ ij -(I-si4  Y üQ,m)

— _
w(i,tti)
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-c .cos mTT.qü +c,Q i> +(i-c,')|j^coiinir.l>j(i)

(I' %i»). A - saj;(iia.).B̂ >n) +!^cosmr.;̂ ü.) -

These equations Involve the six parameters A (m), B (m),C(i)& a &
C^(l), D̂ ( 1) and D^(l), corresponding to the six boundary 
conditions required to detemlne a solution.

We proceed as before to solve the equations for 
u(l,m) . On substituting the resulting expressions Into
^Irm)

the double series (4.7) and (4.8), splitting up each expansion 
Into six sepcurate series, and reducing each double series to 
a single series by rearranging If necessary the order of 
summation and summing the Inner series analytically, we 
eventually obtain the solution

k«lr,ï) *  A 2  ̂ T,(ri*.iTf -, + f  3  V,(r;z.) <

+  ̂^T^(r;z;->;4 ;̂co»li-,sinli ï).CjCi)

(t.9)



T9.

^ 2  ; ' ; "4i i t). ĉ tt) 2  %(r; (-& ; t ; -î  ; sIti K;sink i ).C,(i)

t^^Tlria-.l/.-v^isinh-sinhO-^i) +^^'P;^(ri.l!-a;|,;-v^-,sink-,un}i A)3,W

Where

coS Ynir%

É M  .̂p L
a w

" T M  * P ' T l x ^
si»! mirg

i

f.(riz. i p, ; p, ,f ;g(̂ ) ) *

% %
=.’■m k - mv

Y  '
1 11 

K.-21J ,
Y



X  ^  X
%  "  -k ,

X X X
^ - ( - K

Series (A 1) • (A 6 ) in the appendix have been used in the 
reduction from double to single series.

The expressions (4.9) and (4.10) constitute an axially 
symmetric solution of the equations of elasticity for the 
cylindrical region O g  r 5  a, 0 ^ O g  2 % 0 ,
and will be used as the basic solution for solving the problems 
in subsequent sections.

51. The Components of Stress
The stress compor^ts with which we are concerned are

the normeü. stresses a and c , k the shear stress t . Theyr s»* rz
are given in terms of the derivatives of the displacement and 
the elastic constants by the stress-straln relations on page 11 

which are for axlally-symmetrlc deformation.

— * ^  ® (I -2c ^  ru i" ^
A +2^ ^ da

± Z  ^  ^  ^
SA ^  da d x
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To obtain the stresascorresponding to the formal 

solution given by (4.9) and (4.10) we differentiate the infinite 

series term by term. The resulting expressions are valid 

only at points where the Infinite series converge. Since 

we shall have occasion later on to use these expressions to 

satisfy the boundary conditions and to compute the stress 
field, they enre given In detail below.

X

— i  c(r,z)

^ m * V  ^ ^

J. 3-

I
•s   «îOr.z.) 
+2f*)

tn vri

1. a.

-t- Ç 2 _  2 2 ;)4iü



âs.

i «r A TU ^

+ ̂ 2  + ^ 2  Jlj CCO

+ ?2  ):̂ sink;5inĥ ).:̂ (i) +

>wKere
ffCcii.ipiiPx;m )

«

feastïîi-: 1

n(rv2;p.-.p»;f ;é(«1)) =  -  p, X,(r) ^ p̂  x^W

X.(r)= § , ^ )  _ jL j;U..r)

XjU) 5 M  _  | i # f l  
% % )  r JÀîi»)

P.ST 5mÜ22üL>
< J.(<V.A) 2 je

COS

p..Pxiî ;«(<?)) = 
Y U T )

4- Pa( | - ' C ) Ü ^

- i. _  ü u r’ lJ Ü S ^  ^  p , «T sim mira
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52. A rod with Traction-free Surfaces

The solution In sections 50 and 51 la now used to 
determine the natural frequencies of axlally-symmetrlc 
vlhratl on of a rod whose ends Z » 0 and % = t and 
curved surface r = a are stress-free. Such a situation is 
an ideal one, which is approximated in practice by a rod standing 
on end on a horizontal surface, since the gravitational forces 
on the rod eure negligible compared with the stresses in the 
material.

This problem is discussed in LOVE [ 1944 ] page 289, 
where an approximate solution is derived. Detailed numerical 
results, obtained using the Mlndlln approximation to the 
Pochhammer solution, are given in McNIVEN and PERRY [1962 ] 
for steel rods of various dimensions. NddAHDH [l964] has 
an experimental study of this and related problems, and gives 
experimentally determined frequencies for steel and aluminium 
rods.

The boundary conditions of the problem are 

“ 0 , r » a ,  O s s s e  ,r r&
GL = t « 0 , 0 g r  ̂a, z * 0  emd z « t .® T%

53' The Transformed Boundary Conditions.
Some simplification of the formal solution (4.9) and

(4.10) may be obtained by transforming certain of these
conditions. Thus the condition z » 0 givesrso



|£ 4 |ï = 0 r .a.èz èr

Multiplying by sin and Integrating with respect to % jfelds
t

for r * a,

F  Bin da =» ^F 'iv sin da
4> è r ^ Jq  ^

- û sin u cos da
o

n  ̂ mscn^ m% / u cos •" T4> "
B^(m) = Y A j m )  . (k.ll)

By similar arguments the conditions ’c i T , 0 )  =0 and "c (r,t ) *0rk ra
lead to the relations

c ( 1) = I  .D ( i )  (4.12)O 1 o
Cj(l) (4.15)

If we transform the other conditions Involving the normal 

components of stress we obtain relations between the parameters 

already defined and new parameters which we have to Introduce, 

and the resulting solution still contains undetermined parameters. 

Consequently we postpone the normal stress conditions, and 
satisfy them at a later stage.

A solution of the equations satisfying three of the 

Imposed boundary conditions and containing only three sets of 

parameters follows by replacing B^(m), 0(1) and C^(l) by the



forms given above.

34. Symmetrical and Skew-Symmetrical Solutions
From the uniformity of the rod and the symmetry of the

boundary conditions It fo) lows that the normal modes must be

either symmetrical or skew-symmetrical about the plane ^ 2 *
When these requirements are stated explicitly In terms of u and

w they give rise to additional relations between the parameters

In the solution.
For symmetrical solutions u, a and a are symmetricalr “

about Z" ̂  , while w and are skew-symmetrical. Hence we 

have u(r, t -z) « u(r, z ) and w(r, t-&) « - w(r,t ), and 

In particular

u(a, t -z) =u(a,z) , 
w(r,l ) * -w(r,0).

It follows from the last two relations that
A (m) » Ü , m odd ^
® \ (4.14)
D (1) = - D (1) JC o

The corresponding conditions for skew-symmetrlca?. 

solutions are that u, a ̂  and 0̂  are skew-symmetrical and w and 

symnetrl cal about . These Imply that

u(r,t-a ) = - u(r, & ) 
w(r, t-a) » w(r,fi ) 

leading to the conditions

V “) “ ° ' « even . J (^.15)
D (1) » D (i) 
t Q
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If equations (4.11), (4.12), (4.13) and either

(4.l4) or (4.15) are applied to the solution (4.9) and (4 .10),
the result Is a solution of the equations Involving only
A (m) and D (l), which will be a solution of the problem If a o
A (m) and D (1) are-closen so that the conditions or (a, n ) = 0 a o r
and o^(r, 0) « 0 are satisfied.

The details of this solution are given below, since 
they are required for t he computer programmes on which the 
computations are based.

2

i  w(r. a), _  ; y  •. =(k _ ù ;J;

I  U ^

k ç c r . f . )  = 2  I  - ^



J* 2 r  /

i l ' ' - . H W

JL x(r,z)
V  ~

. A (s)&

i

where w p .. .,4» are the functions defined earlier. For *1 'lo
symmetrlcEÜL solutions f(x) « slnh x, g(x) s cosh x, and s 

takes the values 0, 2, 4, 6, .., while for skew-symmetrical 

solutions f(x) B cosh x, g(x) » slnh x , and $ takes the values 

Ip 5p 5p T> • • • •

35- The remaining Boundary Conditions.

The solution of the last section Is a solution of the
0, <5(r,o)=o

andor(r, t ) * 0.m

the last condition Is redundant.

problem If It satisfies the boundary condlt ions a a, z ) *

From the symmetry and skew-symmetry of ,



m .

Now the sets of functions { cos ~^^Jand { J
are complete sets, so that the relevant boundary conditions are 
equivalent to the conditions 

I

, n = o, 1, 2, 5> • • • p/ c" (a, z)<os jajTjt « o

A
J r3;(^r)q;(r,o)ir-o , 1 “ o, 1, 2, 3P *

Substituting the series for a and a and Integrating termr %

by term produces the Infinite set of equations given below.

4l6)

(4.17)
The first equation applies for all relevant values of s and the
second for 1 » 0, 1, 2, 3, ... . The functions s) and
f ( s ) are defined by 12

<P(S) = 'll
A")

sV^



36. Regularity of the Infinite System
Before Investigating the infinite system in detail we

fJ (A a)l
note that B (m) “ 0 (~) as m-* w , and C (l) = 0 —  -— - I ̂  I" 
Hence A (m) = 0 { ) and D (l) « 0 ■■

^ ° ^ il ^

The main result which must be established Is that the 
method of reduction for the system (4.16) and (4.17) converges 
to the solution given above. This result follows If the system 
is quas 1-regular with bounded free terms, and If the solution 
above is the principal solution. The last part Is true if the 
system has a unique bounded solution.

To prove the regularity take the equations in the form

' 4 '"(2

wkere Xjs«lX Â (&) y - ]̂ (i) .



By bhe asymptotic expressions given above the solution of the 

latter system, coxrŝ espondi-ng to the solution of the pĥ rsical 

probleL'a is bounded.

Consider the second equation of the latoer system, 
since it is slightly easier bo deal ir.lth than the first. We 

must ahow that the ratio

2 &k /  Ê. tî
£ 4 i s TT
I» V ?8

is less than unity for i sufficiently laige.

It is clear that, for a filled valueo? k‘“, (s) ̂12
is îîltlBie.tely positive as o « pr«r/ided ^ is sufficient]^ 

large. Thus

I % (s) ! = t (b )
^ 12 12

for s > N{|^), say. This fact is used to w^lte

<7̂ r— .1 %
/  " s A  f.C') = /  - V  k - L .

/L_ 3 V S TT ^  S ITs s ^

where the second series contains only positive terms. The 
first series may he summed analytically by expressing the summand 

in partial fractions and summing each part separately using 
standard series.

An asymptotic form of the result can now he derived for 
large i by elementary methods. If we assume that the first N 

terms ere omitted from the above series, since ear® concerned



only with quas 1 -regularity, the result we obtain, after some 

algebra, is

4
The asymptotic form of the denominator can also be 

obtained without difficulty, and is

To compare the numerator and the denominator we must 
multiply the Latter by — . When this is done the regularity 
ratio is

I'ii = 0(t) <
.5.

When both sides of the second equation are divided by 

the coefficient of y^ eaid the resulting equation put into non- 

homogeneous form, the free terms are 0( ~ ). Thus the free
teiTfls are Ixjurided by ^

The fiî’st equE.tion is deaJ.t with in a similar way.
In this case we meZie use of the asj.'mptotic expressions for the 

modified Bessel functiens I^(x) and I (x) to produce the series
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The algebra is a little more complicated, but it can be shown 

eventually, with the same assumptions as before, that the 

asymptotic forms of the numerator and denominator are

^ sir ^ s V  xl^ry

2 sir 2 a, s V  I  ŝ TT /

respectively. Since 0 ^ c ^ t , then 3(1 - c )> c «
3. 3. 1

Heice, after multiplying the numerator by the ratio is

1 - 0 (i) ,
which is less than uni'jy. It follows that

fs = 0 ( ir )'
and the free te.ias are bounded, by the argument used previously.

Thus the infinite system of equations is qussi-reĝ ilar

and has bounded free terms. It follows by S 1 ths.t a solution

exists, and the method of reduction converges to the principal
solution, by R 1.

The question of the uniqueness of the solution of the

system has not been settled. If we transform the unlœowns

by the transformation x ® a/ , y. = ^,y^ , then thes V s 1 3.
second of the resulting equations satisfies the condition of 

regularity, but the first does not. The transfbmaticn
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2

X = , y *= #? produces two equations, neitherS ^ £ S  i ' ^ 1 2 .

of which satisfies the condition. Other transfomations which 
attempt to establish the result by Ü 5 give rise to systems which 

are more difficult to test for regularity.

The other approach to this question suggested in the 
literature is to use the result in U 4. This involves a study 

of the solutions geneiated by the method of successive approx­

imations, and requires an estimate of the way in which the 

solutions tend to their limiting value. An attempt has been 
msde alon<5 these lines, but so far without success.

In the absence of a complete mathematical justification 

we rely on the fact that the corresponding physical problem has 

a unique solution in general, for each frequency, to justify 

the computed sc lut ion.

37 • Coigputati ona}. de tails.

The ccmputatioaaL problan is essentially the one

described in section 25j» and involves the solution of singular

systems of simulteneous equations. The only difference is in
the details cf the coefficients in the simultaneous equations.

To compute the -Sessel functions J , J , X , and I occurring0 1 o 1
in the di agonal terms frm: the first equation, a special computer 

routine was written using Chebyshev series expansions over part 

of the range of the ar^^ment and asymptotic series over the 
remainder. The procedure is described in CIÆ SSEM [ Si62 j ,



from which the coefficients in the expansions were obtained.
The coriputation of the frequencies and coefficients is

done in two stages, as before, and consists of a tabulation

fo3-lowed by an itérâticn. The same determinant evaluation

routine is used. The dimension less frequency is taken as “  
and the data for the tabulation are the same as before, with
e =3 ~ .

t

Biffcî'-’fe at ccmiuter programmes are used to deal with
syirmetric and sleif-symaetri : solutions, although only alnor

differences su’e Involved. The unknowns are tslei in the c?der
A (s), D (0), A {s-fr’ 2 ), B !; I)., . with s ^ 0 & 1 for syimetricfû a o e. o
oCru 11 voly, and
th&û the tern l,i mirty.

36. Results

jca]. results have been obtained fcr a steal red,

taking '-A whose length and radius are equal. Frcm the

previous experience wit a th.î r̂ ethod we expect tbasa relative

dimensions to give the best rate of convergence.

The first eight syLünetrical and the first eight skew-
symwcrj.vca}, mcdes her/e been computed, and the coabinec. frequency

K1spectrum of values of I s  pïresented in figure .2. Figures 
and give the lîcde shapes and the lines of aero 

displacement for the first ibui*teen modes. "The lines rmd
das led lines s ho v the undeformeid (md defomed cross* scotioufî
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9$.
respect ive]y, •-he dotted l :.nes are the liissj of sero and the 

»Saslied and dot ed lines aie the lines of zero v. Table  ̂.1 
consists of th(̂  s accès sive apprcxiioetions to the frequency and 

coefficients for the first syzmetrical mode.
i\s a check or the computations the residual stresses 

have been ccap.t ad. on the surface cf the rod. Since the 

infinite series for the stresses are divergent when r « a and 
"̂ ■5 0, thuy e: hit It he ( hbi phencmencL it tlii points srd 

we eemnot use ' he naximui alue of the residua], stress over the 
who.l€i surface! i,b a: estim# ,e of the error. Instead we use, 

fcr s;)irret):'ic(4l. solutions., the residual nozmr̂ l stresses at the 

centre of the r?o sired aces r and ^ « 0, nasely the stresses 

) eai* (0., 0)̂  ’ince the points (a, "'j ) assd (0,01 

are the ai&tinoi ee for the uceesslve approximations. Tebie 

givtfs vailles? o i '"±e two r  'sid?ial normal stresses for the 
s?;.ce€'ss.lve c»x:iB&tiDni3 o the first syïametrîcal mode.
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Table ko2 XOO,

--
order of 

determinant

r --- ■ ■ ■

2 4 6 8 10

1er ( a,|') 1 

»ax|(T̂ (r,z) 1
4.1 2.9 1.9 1.4 1.2

KCo.o) 1
— — — X 100
majclô (r,s) !

51 24 20 IT 15

Table 4.)

computed 
■ frequency

experimental
value

Poc’ihananer
value

l.k$ 1.48 1.62
,1

2. ox 2.02 1.98
2.88 2.88 (2.95) 2.27

Xîoi table U.5 a comparison is given for the lowest three 

frequencies of vibration obtained by different methods. The 

first column has the values taken from figure k.2, those in 

the second colianm are taken from McMAH0»H[l9̂  4].» ard those in the 
third column ff'om & PEHBT [I962 ]. The quantity tabulated

in table $ is not “ but , where p is the angu]frequency 

and e is the speed of sound in the rod. For a material of 

density ̂  we have c p where E is Young®s modulus. Hence
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( ̂  ) ** »
Xf wa use the fact that E = 2^(1 i- S ) where ̂  is the shear

modulus and.ii is Poissions ratio, then

^2 p, 1 -
Taking 0.29, the value for steel, gives

e " ÎÎ
The third exper3mental value in table 4.5 is an estimate 

obtained by extrapolating an experimental curve, and is of 

uneerrb&in accur'acy. The adjacent figus’e in brackets is the 

cerrespondiKig value for an aluminium rod, and we observe that 

frequencies for steel are generally lower than those for 

GiLuminium.

59- Piscussion
Table 4.1 indicates that the sequence of approximate 

frequencies is converging rapidly, and we would aocept the 

last value quoted as being correct to within one or two units 
of the fouT’th decimal place. The accuracy of the coefficients 

is not so certain, but the discrepancies are not likely to be 

more than ore or two units in the third decimal place for the 

A’a find the fou:rth for the D®s.

'The values o f the residual stresses in table 4.2 show 

that these stresses aie decreasing monotonically, and so confirm 

the numerical solution as being an approximate solution of the



problem. The two sequenc es in table 4.2 appear to be converging 
at approximately the same rate. Although the rate of convergence 

is rather slow, it is reasonable to assume that the residual 

stress would be arbitrarily small by taking a sufficient 

number of terms in the solution.
The experimental frequencies in table 4.5 are in 

agreement with the computed values. There is no indication 

given of the magnitude of the experimental error, but it is 

unlikely to be less than 2 per cent. If we accept this figure, 

then the twc lowest pairs of frequencies agree to within the 
experimental error. We cannot properly compare the third 

pair, because of the uncertainty in the experimental vaJue.

If we assume that the computed frequencies are correct, 

then the errrors in the Pochhammer values are 12, 1.5 and 21 

per cent respectively. Such errors are not altogether unexpected, 

in view of the fact that the Pochhammer solution has been obtained 

by truncating the eigenfunction series expansion after the first 

thires terms and approximating the resulting solution by a simpler 

expression. Very little is known about the rate of convergence 
of the eigenfunction expansion, as no systematic computations 

using it have been cairried out. However the results in 

J0EN80N & HCfDCaS jl965j , where a similar eigenfunction expansion 

is used to solve a static problem for the semi-lnfinite elastic 

strip, show that the boundary conditions are satisfied to 
within 65 per cent with ten branches of the frequency spectrum



and to within 21 percent with twenty branches. These percentage 

errors are obtained by dividing the maximum difference between 

the true boundary condition and the computed boundary condition 

by the maximum value of the true boundary condition, and multiply­

ing the ratio by 100 percent .
The sketches in figures 4.3, 4.4, and 4.5 give some 

information about the various modes of vibration, but it is 

necessary to refer to the computed displacement field in crdex 

to identify the type of motion involved in each case.
It is clear that mode (2) is almost purely dilatationed, 

characterised by the fact that along a normal to any surface the 
normal component of displacement varies trigonometrically while 

the tangential component is constant. We find that the computed 

displacements satisfy these criteria to a good degree of approx­

imation.

It is known that Rayleigh surface waves can travel 

along the surface cf a semi-infinite elastic region, and we 

expect them to exist â lso in a finite region. For such waves 

the amplitude of the motion decays with depth. In partieu].ar 
the normal component of displacement increases to a maximum 
and then decreases exponentially, while the tangential ccmiponent 

decreases and changes sign before passing through a turning 

point and tending to zero. A graph of the displacements for 

steel is given on page 22 of KOÎSIY [l95ü] • We see there that 

the tangential component changes sign at a depth d =  0.2 A.,



Where A. is the wavelength of the plane surface wave.

A closer inspection of the displacements in mode (2) 

indicates that the main dilatation wave is coupled with a 

surface wave, and the resultant motion is a superposition of the 

two.
Mode (5) has the typical features of a surface wsve , 

and we observe that parallel to each surface is a surface at 

which the tangential displacement changes sign. The wave length 

in the radial direction appeaœs to he 2a which, for a single 
wave, gives the depth d = 0.4a. Since however there are 
surface waves on each end, there is interaction between the two, 

and we can show that the depth d is modified to approximately 

.25a, agreeing with the diagram.

The other symmetrical modes, namely (5), (7), (9),
(12) and (13) are predominantly dilatational in character, 

although in each cause the dilatation wave is coupled with a 

surface wave and with a distortion wave. It is difficult to 

separate out the various effects for the higher modes, but the 

dilatation wave in modes (2) and (5) is estimated to have wavelengths 
4a azüd 2v. respectively in the radial direction and 2a in both 

cases in the axial direction.

An inspection of the displacesie?ats for the skew- 

symmetrical modes leads to the conclusion that they are predominaatly 

distortion modes. This is most clearly seen for mode (1) where 

the sheas* surface occurs at a depth of .25a approximately.
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We find also in modes (4), (8) as;d (10) that the displacement 

of the surfaces is mainly tangential, and that the distorted 

cross-section is almost identical with the undistorted section, 

the areas being very nearly equal. Again the distortion 

waves €ure coupled with surface waves and with dilatation waves, 

and an esti mate of their wave length is not easy. Modes (1) 

and (4) seem to have wavelengths 4a and ̂  respectively radially.

An interesting question arises in comiection with the 

node patterns in figures 4.3, 4.4 and 4.5* We find that, for 

simpler eigenvalue problems which can be solved explicitly, 

the node patterns consist of intersecting families of nodes, 

with each family associated with a certain direction in space.

For example the rectangular membrane has one family paraJlel 
to each side of the rectangle. In such cases, where the 

p3X)bXem is solvable explicitly, the variables are separable, 

and z h e question arises as to whether the node pattern will be 

of the same type when the variables are not separable. In 

our present problem we can detect a family of lines of z e ro  

w paj'allel to the curved surface, but there is no indication of 
such a fa&ily parallel to the ends, apart from the single line 

in the symmetrical modes. The same is true for lines of aero 

u. Indeed for the higher modes the lines appear to join together 

t c ' form a single family of contons rather than distinct 

Intersecting families. Thus the evidence seems to point to



the conclusion that sy stems of intersecting families of nodes 

occur only in separable problems. However in one of the 

higher modes which we have computed, but which is not presented 

here because of doubts about its accuracy, there are indications 

of the presence of lines of zero w parallel to the ends of the 
cross-section . Thus the answer to our question m^st await 

a more extensive evaluation of the eigensystem.

40. A Mixed Boundary-value JProblem

As a second example of the use of the basic solution 

for a cylindrical region, we consider a rod with a free curved 

surface, one of whose ends is free and the other rigidly 

fixed ("encastré”). This problem differs from those studied 

previously in that the displuacements are specified over a part 

of the bomda^ry and the stresses over the other peurt. As 

far as the writer is aware no previous estimates of the natural 

frequencies of vibration of this system have been obtained, 

either experimentally or theoretically, €Û.though VAI Of [1962J 

has considered the static deflection of a rod under similar 

boundary conditions.

We take the boundary conditions to be
0 s » 0 ,  r * a ,  0 g z g t ,r rz,
u w aB 0 , O g r g a ,  Z &  0 ,

Q- a a: 0, O g T ^ a ,  t  ." rz»
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4l. Transformed Boundary Conditions

By the argument of section 3 3 the conditions 
T7̂ (̂a, z ) w(r,0) » 0 and  ̂) * 0 are transformed

into the relat ions

B (m) a

D (1) 0

c^(l) = (1)

(k.l8)

(k.l9)

(%.20)

respectively. The other three boundary conditions are 
ineffective when transformed, and so they are ignored at this 

stage.

42. The Solution
If we eliminate B (m), D (i) and C (i) from thea o K

basic solution in sections 30 and 31 using (4.l8), (4.19) 

and (4.20), we obtain a solution of the equations of motion 

satisfying the three boundary conditions stated above. This 

solution is gi ven by

k v*(r.z)=â2

oo

riz;mr;k -injL ;m
Z z V

is-o 1
CO

. ; cosh ", sink i . D M . )

I ;cosK;sink il.C (i)
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r; ü-z; 1 ;-̂  ; sink •, sink H . C W

_Jl  r (r .z ) r.z;zik\k-ak'.m
r  2 X

. A^(w)

i»o L
}* 1 sî hk ̂; coih ; sir^

oo

2 i
1'%

r ; < -z ; -1 ; ; tosh -, sLnh A
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c a )
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1=0 L -

. J)Ci) 4
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Z
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2
i?

^  r> i-vf r  ,A-Z' I %  ̂ \ sinli ,sink I  . C (i)
Z .  ^  i  i
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45. The Remaining Boundary Conditions
The remaining bou ndciry conditions a r e  satisfied by 

imposing on the above solutions the conditions

&) cos dît» 0 ,

r r J ( ̂  r)u(r,0)dr » 0 ,

m ** 0, 1, 2, 3, • • • f

i, ** 1, 2, 3, • • • ,

1 » 0, 1, 2, 3,

which lead to the infinite set of equations

a. ; o •. >r\ T • k, _ Tjvjr • m
' 2 r  '

__ Z cos Tnir y

i»o

«P F c i - Z c j k  _ ( i -c . , )2 2 jr  ' ( t - 2 c , ) k  ( m V *‘H  r 4^7" Vj

' i l l  Ti»i 1 . J

TY\

A(̂ ) i- op
' i  »

a.;o ; I ; cosh ; sink I

2 1 .
 ̂4“ ; - —  ̂& ; cosh ; sink 4
t  If-C

. Ĉ (i) =0  ̂ (4.22)



3. ,x .-h
CoS wiTT. A^(Tn)

n o .

.3(i)

cosh*, sink (4 23)

where <p'l3 (p.l2 + p.)________L

11
a-k (p.^ -pQ
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44 o The Imfi mite System

If we choose as the unknowns the quantities

I

ii
C^i-)

t

c ( 1) ,

then equations (4.21) and (4.25) are of the same form as the 

equations in section 56, and satisfy the same conditions. 
Equation (4.22), however, is of an altogether different form, 

and we find t hat the ratio which must he less than unity for 

regularity has the asymptotic form

I atk^ i- -0- 0( i )
4L 4!

11 4- C ) -  - r  -8- 0( “  )

This ratio tends to infinity as i *♦<*>

The feature which distinguishes equation (4.22) from 

all the other equations studied so far is that it involves 

an alternating series, whereeis the other series are ultimately 

positive or negative. The example in section I6 illustrates
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that such a system of equations need not satisfy the condition 
of regularity in order to be soluble by the method of reduction.

Thus the infinite set of equations is not included 
in the existing theory of solution, and we cannot give a mathe­
matical justification of the numerical solution in section 46. 
However the existence and uniqueness of the solution of the 
physical problem, and the completeness properties of the original 
expansions of the solution provide some justification that the 
computed solution is a valid solution of the problem.
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4) Computationa], Details

The computational problem is the same as before,
except that the determinant of coefficients is different. The
unknown constants Iti the equations are introduced in the order
A (0), DjO), C (1), A (1), n (1), C (2), A (2), D/2), a ^ o a * '  © a c
and successive determinants of orders 5, 8, 11, l4, .. are used
in applying the method of reduction.

46. Results and Discussion.
Results have been obtained for i » 0*29 and e a 1.

Table 4.4 has the successive approximations to the first mode 
of vibration, and figure 4.6 has the first seven frequencies in 
the spectrum.

Fewer modes were computed for this problem because of 
the slower rate of convergence of the infinite series. In the 
previous problem symmetry properties enabled us to reduce the 
number of infinite sets of unknowns to two, and successive approx­
imations to the solution, using each time an additional unknown 
from each set, involved determinants of orders 2, 4, 6, 8, 10, ... 
For the clamped-free rod there are three sets of unknowns, and 
successive determinants have orders 2, 5,,8, 11, ..., so that, 
for a fixed number of terms, the solution for the free-free rod 
is more accurate than that for the clamped-free rod. The 
successive frequencies in table 4.4 converge more slowly than the 
corresponding values in table 4.1, and the coefficients also decay
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less rapidly.

Am aspect of this problem which has not been investigated 
here is the stress singularity at the edge of the clomped end. 
Sternberg refers to the existence of such a singularity in his 
review of YADOV ÎX962 1 and points out that a different f of 
the solution must be developed in the neighbourhood of the 
singularity. A similar situation is investigated in KABP
& KARAG) [ 1962 ] , 11964 ] , where the nature of the static

1solution a^omers in elastic media is considered. The form 
of the solution taken there may be adaptable to the present 
problem.

More w»rk remains to be ds>ne on this problem, in 
particular to extend the spectrum of elgenvGÜLues and to assess 
the accuracy of those given in figure 4.), to study the theoretical 
problem of the convergence of the method of reduction &r 
alternating series, and to investigate the solution in the 
neighbourhood <#f the singularity.
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Chapter V: Au I®itia3,“Valme Prehlem

47. The Problem
The pr̂ hlem which is the subject of this chapter is 

illustrated in figure 5-1

Figure 5-1

A circular rod of radius a and length i., at rest 
initieûJy in an unstressed state, is set in motion by a normal 
axiaHy-symmetric, pressure pulse

CÇ « X (r ,t)

applied suddenly t© the end 2 ® 0. The other surfaces are 
assumed to remain stress-free, and there is no body force. We 
derive a formal solution of the problem as an eigenfunction 
expansion when X is an arbitrary function of r and t, and compute 
some values for a particular case.

This investigation is motivated by an experiment carried 
out by KOÏ-SXY [1954 ] , in which a small piece of lead ̂ Æide is
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detoBiatcd at the centre of one face of a steel rod̂  the motion of 
the other end being measwed by a condenser microphone. The 
rod is cm. long and has a radios ©f J°6 caî the mic:fophc>ne
is 1 cm in diameter. The detonatWĝ  time is estimated at 2 - 5 
psec* and X(rgt) has the approximate form

where P is a constant, S(r) is the Dirac delta fonction, H(t) 
is the Heaviside fonction, and T is the detonation timeo Kolsky 
gives a qualitative interpretation of the experimented, results on 
the basis of the optical ray theory, but mo accurate quantitative 
solution has been obtained.

It can be shown that the above form of the function 
X(r,t) corresponds to a very slowly convergent series of eigen­
functions, in which a large number of accurately known eigenfunctions 
are necessary for an accurate calculation. Consequently we take 
a slightly simpler form to obtain better convergence, and we 
hope to be able to compute the solution of the more difficult 
problem when a fuULer set of eigenfunctions is available.

*48. The Governing Equations
The equations of motion have the form

L  s = p (5.1)
‘ à?
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in matrix cotation, where L = 4- I and is

defined in section 5, S is the displacement column vector, and p

is the density. For axial3ly symmetric motion we have s = u
w

airii

L. 3r3z.

r 3r dz> ' r d r  ar dz

Since the initial disturbance of the rod is axially-symmetric, 

then the subsequent motion is axially-symmetric.

The boundary conditions are

CT" =  'C =  0r rz

(T = X (r ,t )  and z = 0  oiriéa. z * o2i r& > »

for al]. time t > 0, and the initial conditions at t =  0 are

u

for 0 ^ r £ a and 0 ̂  a ̂

** W  Of es =f Oat ot ’
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The System of Eigenfunctions

We take as the eigenfunctions the solutions of the 

problem of the free-free vibrating rod in chapter IV, i.e. the 
set I ŝ j satisfying the equation

L-,5i = -rpiSi C5.2)

and the boundary conditions
or = 1C — 0 , r * a ,r rs
0-S3-C « 0 ,  O J r é a ,  & « 0,& TSu

(T ssrt; «  0, O ^ r é a ,% r%
In this set s denotes the eigenfunction with p == 0. It 

corresponds to a rigid displacement of the rod, for which = 
where C is a constant.

It can be shown that the eigenfunctions are orthogonaJ 
in the sense that

I s[s i-c =. o
R •’

if i j. For we have

0
C

and

r » 1 T
= - rPi

from which it follows, by comb ining these results together and 

integrating, that

r( Pi - Pi) j  ~ 1 “  J ( â l  K  ij "  L.Sj
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Asa argument eimilar t© the one used in section 5 gives the 

result

y -j ~~i
K *
= /  - S. C V j -

and if we substitute the boundary conditions on s, and 5, we^i
find that the surface integral vanishes. Hence

if 1 76 j, and the eigenfunctions are orthogonal.

To obtain an orthcnormalsysten each eigenfunction^^ must 

be scaled by a constant ĉ  so that

J_ f 5 . «1-C =. I ,

Hence c^ is given by
= r S . S . At

The eigenfunctions in chapter IV are in the form of

infinite series, and the formal expression for in terms of these

series is given in detail below, since it is used in constructing 

a computer progranme to calculate . However in computing 

only a finite number of terms of the series is ueed, since only 

a finite number of coefficients is known for each approximation.
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For symnetric modes s =* o, 2, 4, 6, . . f(x) = sinh x, 
g(x) =# coth X, and the upper sign is taken with H , and for 

skew-symmetric modes s « 1, 5p , f(x) *• cosh x, g(x) =* tanh x̂

and the lower sign applies.

is obtained for each eigenfunction by evaluating

e O

It is not di fficult to show that the normalised

eigenfunction s is given by "̂o
[ 0 ,1
L v i ë j

50. The Eigenfunction Expansion
Let 8 be the solution of the initial value problem 

and the orthooorael set of eigenfunctions. That is, the

^  are assumed to be scaled so that

I s At . s. (5.5)y
Ve expand s in terms of the ^  and write

s-^a./t)s. (5-4)
where s is a function of the space variables and time, while s. 

is a function of the space variables only. Strictly speaking 

such an expansi on should be justi fied by proving that the 

system (ŝ j is complete, but we shall assume that this is so. 

From (5-5) and ($.4) we have
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By operating with . . At

on equation ($.1) we obtain

123.

5̂
""a?

^5 it

C5.5)

How

I
-s]# 22)-f^(Sj„Câ“SjC jJj^S (5.6)

and from equation ($.2) we have
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The boundary conditions on s and are now used to eliminate

certain terms in the surface integral in equation (5*6). When

this is done the integral becomes 
&

-^JrWj(r,o)X(r,t)Ar ,

Where w^(r,z) is the axial component of 
Thus equation (5-5) becomes

jo — jjJrWĵ (r»o)X(r,t)Ar

i.e.
At"

&
where P(t) \ f̂ rW£(r.o)X(r>t)Ar

When the function X ( r, t ) is given, then F( t)ls a known function , 

and equation ($.1) has been reduced to a non-homogeneous linear 

differential, equation for â .

The initial conditions on $ become

I

from which it follows, by using condition (5.3), that

0L • a « o  
TE
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at t = 0.

The solution of the differential equation satisfying 

these conditions may he found by the method described in 

CODDZHOrcn & IÆVINSOH D.955 ] page 7̂ ,̂ and Is
t j ,

a.lt) = Fit ) sin p̂ lt -t* )At

-  \

I

I , trw^Cr.o)X(r,t*)sin p^Ct-t'WrAt

for i ^  0. The zero frequency term is found in the same way 

and can be shown to be
t

J Ï T
a ^ l t )  r % ( r , o ) X l r , t )  ( t - t ) A r A t

If X(r,t) is a known function then a^ is known, at least 

in principle, and we have thus obtained a solution of the initial- 

value problem.

51* A Particular Case - Step_Pùtiction Loaélgg
If the applied pressure is in the form of a step-wave 

in time applied over a circle of radius R, thenX(r,t) has the 
form

This gives, for j # 0%
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r

sin ̂  rv^tr.oUr
■> z

æ 2P \ I sinin £jt Ĵ J"rŵ (r,o)Ar

where K is the frequency parameter corresi>oiiding to p..j j
From the infinite series for w(r,%) in section 5̂  we

obtain

-R QO

|rWj<r,o)lr =/&\ , j ̂  <5,
-6

where D .(i) are the constants in the series for &.» He see oj "'j
Rfrom this expression that the smaXl.er the ratio ^ beecsiies the 

more accurate the evaluation of the infinite series must be, in 

order to maintain accuracy in the result. Thus any finite 
computation using a fixed number of terms of the series gives the 
best accuracy when R = a.
When j = 0,

, . .  .14
where =• I ) is the diiatetioaalI P /wave speed.

Forihe special case of R =» a and a*»/ the expressions
are
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K
r
I rWj(r,o)Ar « ,
o

s V i a t f j -  . C5.7)

*£,* %j(o) . j > o  . (5-8)

52o The Solution for an Infinite Slab.
When the initial pressure front arrives from the source 

we expect the centre region of the free end of the rod to behave 

like the surface of an infinite slab, at least for a short time, 

and we have consequently derived the solution for the infinite 

slab, as a check on the computed solution.
For a 8Jab bounded by the planes Z=*0 and n » X 

subjected to a step-wave pressure puJae applied uniformly at 

time t a» 0 to the face & = 0, the subsequent motion is given 

by

W  I?. ,t) ? î at) . 2,^ ^ f I —  cos cos DiTr&
zT I Jl / g
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where w(&,t) is the displacesBent ie the 2 “dirfstioa. 3m partie'fer 

at a “ X there results

ip

Sit
I

z W .
I

_ 2 i < c j t ^ S ’£ ,

The graph of this displacement is given in fig;are 5»2

7iSJl to

Figiiare 5»2
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The interpretation of this solution is that the vave
front propagates into the slab vith the dilatational wave speed

c_ . The surface s-i is motionless until the front arrives, a
whereupon it moves with uniform speed» The front is reflected 

and travels back into the material^ experiencing another 
reflection at z *• 0. After the second reflection the front 
reinforces the external pressure* doubling its magnitude* and the 

cycle is repeated» At the beginning of each cycle the current 
magnitude of the pressure front is incremented by the extemaJ 

pressure at ^ 0* and results in an increase of the speed of

the surface X. . This incrementation of the speed is 

illustrated in figure 5*2 by an increase in the slope of the 
curve.

53“ Computational Details
The first part of the computation is to normâ llse each 

of the eigenfunctions* and a computer programme is written to 

calculate o ̂  * given ~  and the approximate coefficients, 
using the expressions in section 49. The scaled coefficients are 
printed out, and are used as data for the second programme, which 
computes the displacement at any point (r, a ) in the rod for that 
mode.

Detailed computations are done for a steel rod of 
length and radius 10«4 cm. and for the pressure pulse of section 

51 with R « a. KOLSIY[ 1955 ] gives the following material 
constants for steel:



X =5 Ho 2 X 10^® newtons/m^ 
r = 8oi X 10^® " ”

p  *  7 o8  X  1 0 ^  k g m /m ®  «

The circular frequency p h&s the dimensions of T and for the 

above constants it is given in terms of K by the relation 

p = .056989 Ka Cps)*^ ,
where ps denotes ”micpo-second"»

A farther programie uses as data the displacements for 
the different modes, and calculates the displacement of a specified 
point in the rod for a range of values of t using the expansion 

(5*4) and the coefficients (5.7) and (5.8)0 The quantity 
2 ? ) is a multiplicative constant in the solution, and is 
set equal to unity.

54» Results and Discussion

CasQmtations have been done for the case of R ^ a.

The first sixteen terms of the eigenfunction expansion are used, 

since only th ese ones are known to any accuracy» With this 

solution the axial displacanent of the free end has been calculated 
over an interval of time covering several reflections of the 

initial front, and the results are given below.
Figure 5»3 gives the computed dispMcesaent of three 

different points on the end as the ii^ial front arrives.

The infinite slab displacement is given for comparison. Figure
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3.4 gives the displacement of the point (o* ̂  ) together with 

the infinite slab displacement* for a longer interval of time 

covering four reflections. Finally figure 5»5 gives the shape 

of the end section at a particular instant in time^t = 27p s, 

after the pressure front has arrived.

In figure 3.3 we can take as a measure of the error in 

eew:h of the computed displacements the maximum deviation from 

gero of the appropriate curve between t « 0 and t » — „

The error defined in this way is more or less uniform in magnitude 

over the cross-section from r * 0 to r = a, and varies from
t

0.08 units at r =* 0 to - O.O7 units at r a. After t ** -

the curve for r • 0 tends towards the straight line* and eventually 
becomes approximately parallel to it* displaced vertically upwards 

by about 0.02 units. This deviation is well within the error 

bound noted above. The other curves also becoao 

parallel to the straight line* but their deviations* both of 

approximately O.I5 units vertically downwards, are outwith the 

computational error bounds* and represent genuine differences* 
which are Illustrated in a different way in figure 5* 5»

On the smaller scale of figure 3*4 we see that the 

displacement w( 0* £ ) follows closely the displacement of the 

infinite slab over a comparatively long period of time* and that 

the rod displacement oscillates about the infinite slab displace­

ment. This oscillation is not entirely due to the computation^
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error g altho^h a proper interpretation ©f it CBSHsot be made

mit il more accmrate manier ical results are available»

As the pressure front travels along the rod it produces

a distortion of the material, and the points in the rod are free

to move in both the axial and radial directions, in contrast to

the situation in the slab where the motion is confined to the

direction of propagation» The curved surface undergoes the
greatest radia], displacement, while the displacement O? peints

near the axis is predominantly axial. Figure 5»5 illustrates

this, and shows that the axial motion of the free end diminishes

with distance from the axis. The end is no longer plane after
the pressure front arrives, but develops a ’’bulge” at the centre.
Another difference between the motion of the roâ . and the infinite

slab is due to the ŝ irface wave which propagates along the cum^ed

surfaoe after the initial impcwst» This wave is reflected

inwards by the corners and travels along the free end, converging

on the centre, where it reinforces the displacement caused by the

dilatational front. This reinforc^nent can be seen in figure
5.4, occurring at time t = 60 o Since the surface wave speed

**dfor steel is approximately -g , we expect the reinforcement to

%
occur at t =

In theory the results obtained for this probl«n can 
be used to give the solution when the applied pressure pu2i.se 
has the form



I.e. when the pulse is applied for a finite time To However for 

a pulse of very short duration the mmerical inaccuracies render 
the resulti ng solution meaningless. This is seen by considering

the coefficients a^(t) in the eigenfunction expansion. They

contain the factor 
r

Pi/&in p. (t-t

which starts to decrease with i only when p^T > T  , and which 

is small to some order of magnitude if p^T . For T =

the condition is 

Ka

1 X 1
00057 5

! 6

It is clear from this condition that a system of eigen»

functions for which the greatest value of ̂  is I.9 cannot
F

provide an accurate solution, and that a much more extensive 

system is necessary for short ̂duration pulses.
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