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SUMMARY OF A THUSIS SUBMITTED FOR THE M.Se. IN COMPUTING

BY ALAN M. CHRISTIE

THF. INVESTIGATION OF A NON-LINEAR DIFFERENTIAL
EQUATION USING NUMFRICAL NMETIODS

The equation investigated was

y"+ay' + 100y = cy2
the parameters a and c¢ being varied. The boundary conditions im osed upor
the equation were

y(0) =0, y(t) =1

where tn was the position of the first meximum after the origin. It wes most
fully investigated for a 20, this being the region in which the solutions wez
exponentially decaying.

Although no analytic solution was discovered for the full equation,
solutions were found when @ = O, By suitable transformetions the solution foz
¢>0 was

y = (1-q) sn® (u(t=t ), k) + q
where M, to’ k and q were constants. For ¢<O the solution was

y=1- (=) sn® (u(t-t)), k)

These, &#s might be expected were peri.dic solutions. The ‘our numericel methc

used were

(1) Finite Difference (2) sStep-by=Step
(3) Picerds (4) Perturbation

The first two were purely numeric and the second two, semi-analytic.

The Finite Difference technigue was used to find the solution between the bour
ary values, and the Step-by-Step method then was used to integrate 2long the



curve until the value of y dropped to 0.0l. The initial conditioms for this
latter method were found from the Finite Difference solution. Picerd's Method
end Perturbation which were used over the whole region both gave solutions in

terms of exponential series. This series was of the form

y- g 'i A exp(-(s x + (r-s)(>)t

'
where the Ara 8 were constant coefficients and o{ and ewero the exponents of t

linear solution y = Am:mt

+ AOI: @t.

In all the methods except the Step-by-Step, the maximum hed to be iter-
ated onto by some means or another. In the Finite Difference method the secor
point wes 2djusted until this condition had been satisfied. In the two semi=-
analytic approaches, the coefficients were in effect, 2ltered to suit the con-
dition.

There was good agreement in results between the boundary conditions foa
all methods, but as might be expected for large values of ¢, the accuracy ouf
side this region wes not good, when the numericzl methods were compared with
the semi-analytic. This was due to the fact that the semi-snalytic solutions
were essentially solutions expenkd about a point. In compering the two numer:

solutions when the Finite Difference method was used over the whole region,

there was good agreement.,




In inveetigating thie problem, I would
like to then:, Lesides others, the staff
of the Computing Departwent, end, in
particulsr, Dr. Gilles, whose help has
been inveélustle to me. 1 would elso
thank hiz for the use of his AILTKINH 7
procedure which Iwed in one of my pro-

gramues .



CHAPTER 1
141
1.2

153
1.4

CHAPTER 2
2.1
2,2
2.3
2.4
2+5
2.6
2.7
2.8
CHAPTER 3
3.1
3.2
3.3

APPENDIX 1

CONTENTS
- Initial Investigation.
Introduction
The linear equatilon yiay#100y=o
An analytic solution to yﬂ100y=cy‘
Nature of solutions for different
values of c
- Numerilcal Methods.
Some preliminary methods investigated
The Madelung Transformation
Methods used for solution
Finlte Difference method
Step-by~-Step method
Graph plotter
Perturbation method
Picards method
- Analysis of results.
Methods of obtaining numerical results
Comparison of solutlons
Conclusion

- Numerical results.

APPENDIX 2 - References.

APPENDIX 3 - Programmes.

Page

14

18
21
22
25
31
33

43

29
76



THE INVESTIGATION OF 2 NON-LIN®AR DIFFERENTIAL

EQUATION USING KUMERICAL METHODS

& - 2 nve a8

1.1, Introduction
Protleas involving non-linesr dif{foerentiel equations heve been

studied for over 200 years now, principelly in connection with estronomy.
Over the last few decedes, however, interest in these squatione hes increas
rapidly due to the fact thet problems erising from, for exsmple, hydrodyn am
elasticity end mechaniocs often involve nonelinerr cquetione. The field hes
8ls0o geined impetus sinc: the war from the building of high-speed computers
whioch are sble to soclve numerically #ll clesses of difrerential equations.
It wae using the KIF 9, en nglish flectric-Leo<Mrrooni computer wit: 16,0)
words of storage, that the eguation below was investjpted. The cquation wé

f’g + "R . 0y -t (1)

the peremeters @ and ¢ being veried. The boundery conditions were :
y(0) =0 and y(t )=t (2)

t. being the value of the aboicsa at the i{irst wmexioum after the origin.
For values of & grester than 20, there wie only one meximum snd for O<ad.

the solution wee sinusoidel. lio snelytic solution wees found for the

complete nonelinesr equation, but vhen & wes sero, en enelytic solution



wag obtéined. This wee expressed, o8 in the solution of meny non-lineer
equations, in terms of elliptic functious.
The methode of finding solutions for the complete eguetion woere
as follows !
(e) Finite Difference (b) Step by Step
(e) Perturbztion (a) Priecard's
All four methode used the comiuter to a grerter or lesser extent.

The firet two mwethods were purely numerioel while the letter two were semi-

anelytic end produced & series spproximetion to the true solution.

1.2. The Lineer Fqustion y" v ay'+ X0 =0
Por velues of ¢ which meke the equation highly non-~linery, the

solutions do not differ recicelly in shepe from the solution of the lineer
equation (¢ = 0). It is therefore instr.ctive to have a look at this equet

ion. We have

& + ady + WOy =0 (3)
“2 dat

For 8> 20, the solution hes ‘he form

g Bt
y - ‘10 - 31. ® (4)
where - xand -3 8re the roots of the equetion
82 +a8x + 100 =0 (5)

For values of & tetween zero end twenty the sclution hes the form

y - .':“(Azain}'t - Bzocu ‘l') (6)



where § end "\ ere the imaginary perts of the eolution of (5) and =¥ is the real
(negetive) pert.
Combining (4) with the firet condition of (2) gives that

y(©O) = Jtl * Bl = 0 il.e, Bl - -

1
Frow the sccond ooudition of (2) we have,since t- is the position of a turne-

ing point,y'(t.) - 0
‘yu"‘) 4 [i-f g'(é“t“ épt)]t-t..\: - A, (“é“tﬁ‘ & é‘atm) =0

kB = exPl(x-@)t o)
Lot B in p) L

Substituting this value beck into the equation y(t-) 1 will give

Afexe[535 \n(lp)]- exp[22; 2SO

After souwe nlgebra this gives

- /{kh/(u-o_ h\/m-o} have Wk 5 (8)

In &8 similer way it cen be shown thet with the seme buoundery conditions, the

sinusoidel cese (0<a<20) Les the solution

Y = ﬂzéXtS\ﬁ wt where (9)

A= exb (fad' (R/R)/sin(tad' R) |, k=Y/w=Y¥3

The solutions of the two ceseco are therefore similer to figures 1 enu 2.

A

y=1 8%20 y=1 ¥ 0<a<20

Y
\

figure 1. i figure 2.




If «20 <8 <0, then-¥would be .ositive, end if a¢ =20, then-xand-p wiuld be
positive. Thereiore for all ceses & <. O there sre positive exponentials end
88 t >0, 80 will y. Therefo:e the csses 8< 0 were not investigated. The
cvefficient of y was given the value 1)) so that for large & i.e. of the orde
10Uy the initial grsdient would be substential (approximetely 100 for e =
100) end interesting questions of sgourzoy would srise. JFor smell values of
@ l.00 0<8< 20, » yepidly verying function of the type in figure 2 would
result, and similer questions of egouragy would have to be investigeted.

Of the methods used, only the numeriocel methods were sppliosble
for ell velues of 8, the semi-analytic uethods only being used for vslues of
87 20 btut tecsuse they involved considersbly more elgebra for their solution,

it wes ‘ecided only to toueck on them.

1.3. n Jnelytie ‘olution %o y" + 100y = oy
In order to obtain some idea of the solution t the non-linear

equetion it was decided to investipte, analyticelily, 28 much os possible of
it, and find out scmething of ite neature. Although little was found enaly-
ticelly sbout the full equetion, by meking & sero it wes found to have, et
least for some veluce of c, &n snalytic solution. For a=0 in the lincer case
the solution did not die a&wvay i.e. there wes no 'friction2l' term in the
oquitton. and by mnitigatins the nonelinesr equetion with a=0, it looked
ee though this was 2lso the cese. This osn be seen by en investi ction of th

phese ocurves i.e. = ;raph of y mgeinat dy/dt.



5 -

If we let v = dy/dt then we have

e dgve g (v)gy=vay=_g (i)
dtz dat dy dt dy dy

%L

*100:--;3(1'3)0100:-072

-o-'l%l,’ -%y’ + oonstant

QH

12 -1’3 = 10:‘;),2 + oonstent
3

Since v = dy/dt = O when ywl, we heve

constant = 100 « 2¢/3

v - '§" (y°=1) = 100(y2=1) (10)

An insight osn be geined into the solutions by plotting the phese
curves for different values of g. Figure } shows these curves. In all cases
the dotted circles represent the lineer cese. In sotusl fect, these are
ellipsep but the sceles heve bomn eltered for donvenience.

Pigure 4 shows the curve for 0L g (10U. Ae g gets larger, the
etable part of the curve, which starts off es en ¢ lipse at g=l, becomes
dietorted, end the unetable part of the curve (on the right hend side) app-
soeghes the value y=l on the y-exis. The values of the i(unction lying bee
tween y=1 and the unstable purve were found to be cumplex s#nd hence there
was reel solution in tnis region. OUn integreting the function to give the
full solution, the stable curves were found to be functions of the eliiptic

ein. No solutions, neither analytic nor numeriocal, were found for the unstab
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regions due to the lack ol knowledge cbout their boundary conditions. For
these curves, ve inow their ainimum y values but we require enother boundery
concition to define them uniquely. As this wes not forth ocoming from the
elliptio sin solution, there ies & goud chence that these unztedble ~urvee do
not heve any reel existence in the fully integreted equstion,

Figure B shows the intermediete case of ¢=100. This is the only
cese for ¢) O where the two curves join. 8ince whi'n the gradient is positive
f.0 dy/dt>0, y must be increteing, the directione of this curve, as with
the others, cen only be @s shown.

For values of ¢ between 100 and 150, the stable loup contracts
until &t the value of 150, it disappears st the origin. The unstable part,
however, for ¢) liU, remeins end alweys goee through the point (1,0). For
e 215, the total integr:l curve consists solely of this line.

For negetive values of o, phese curves similsr to those for ¢) 0,
enoxrge except thet they are in the reverse direction and the stsble loops
enclose the elliipse rether then being enclosed by it. 4As cen be seen, for
0 = =50, the two distinot curves Jjoin, but unlike the csse for ¢> WU, they
do not seperate egain, but open out to Jorm &n unstable path. The total
phaee :uaau; is shown in grsph 1.

From equation (10) we heve

@)% « £ a1 - wor%)
- G085+ @100y + Ba)

= ,g% (y=1)(y=p)(y=q) (11)



C’n’qg‘;\ 1 |




where p énd q are the roots of the above quadratie ..e.

Pr Q= %[(‘?‘ -1) :‘3/(50”)(50-0/3)‘] (12)

Thue ¢ ie given by

' 'f;f[smsi-:w-m* B )

This integral c¢in only be eveluated ueidng elliptic functions except for two
epecial ceses when ¢ takes the values 100 and -5%0. In order to integrate
the above, some propertics of elliptie funoti ne have to be imown. The

elliptic integrel of the firet kind is defined as

by . dax L) (14)
FGuk) = f,\_(\ -x)(0- Ry I
Thies ie the only kind of elliptic integrsl involved in this probles

It is obvious that F(x,ek) = P(ex,k) » F(x,k).
If k » O then fyrom the above integral
P(xek) = F(x,0) = sin"ix
Generslising we have that
F(x,k) = -n'l(x.k) = u(sey).
Thus x = gn(u,k).
I1f ve sake the substitution x « sinf then (14) above becomes

¢ dd
FOR =| Treewraye (15)

From this we cen define the other elliptic funotions using their trigonometr:

counterparts

sn(u,k) » ain ¢, on(u,k) = cos ¢,



T

an(u,k) - (1-4? stn? §)¥,  em(uok) = ¢,

tn(u,k) = sn(u,k)/en(u,k) = ten ¥, (26)
Using suitable trensformetions, equetion (13) cen be trensformed into
equetion (14) and hence the elliptic type solutiom.
For ¢) O, we use the trensformatione
2’ = (y=0)/(2-)
K2 = (1-q)/(p=q) (a7)
¥ = o(p-q),6
From the stove we heve that 2s.ds = y/(l=q). Substituting (17) into (13)
gives

O/L*to

. dz_
t t”f[(\-z’)(\-h"z")]

where t° « gonstant.

e tym =] -= T e
From (14) snd (16) it cap be seen ttat the solution is thergiore
2 = en( Z M(t-t ),k) (19)
Substituting y into this equation gives
Y= (-q) s (=M(t-t,) k) +q
=1-q s (M(t-t),R)+q (20)

pince en(=x,k) = =gn(x,k).

To find the value of ¢  we have thet y(0) = O.
S o=(-q s (Mt, R) +9,
i Sn(Mto,k)= * /T—:Ef - tX(SQ‘;O (21)



ivom the feot that "(x,k) = ux'l(x.l), we heve
Ky - = F(xok) (22)

The smbiguity in cign cen be explained ifrom disgrean A of figure
3 The initiel conditions etipulate thet y(U) = O but they do not ssy if
the gradient at y(0) is positive or negetive f.e. if the ourve starts irom
the point X oxr 6 . If t’ is given & ne ative velue then the curve stexts
8t X end vice verse., Therefore t wes jiven the uigﬂin velue.

Since the trensforsatios (17) is omly epplicable for ,ositive ¢

we zust find the equivelent for c 0. For this cese

(‘ﬁ)II - -";" (1=y ) (y=p)(y=q) (23)
snd the trensformetion becomes

2 = (1ey)/(1))

k¥ = (1eq)/(2=p) [ (24)

¥ = 6/c (1-p)

/

In @ similer vay to 0> O we fiui thet un substituting (24) into (23) gives

the solution
y =1 = (1=q)en’(M(tet_),k) (25)
vhere x‘o - :f(l’k) sy X = / 'i'}" (”)

If we desire the grecient at the origin to be positive in this
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cage we mugt take the positive volue of to' The solutions for ¢ = =40,
0 and +7% ere show:: in graph 2.

The solutions for ¢ = 10U snd «5) were found enalyticelly without
using elliptic integrels end it was found, surprisingly, that in these cases,
the function took values greziey then 1. These values correspond to the
unstable arms of the phase disgram (greph 1) for the respective values of c.

For ¢ = 100 we have

(%)2 - (y=1) I_'%g' 72"‘(% - 100)y - (33' - 1005&

- 220-1)%(2-1) (27)

t = g‘ [ (y-l)%-l) + constant (28)

Integrtting with the boundery condition y(0) = 0 gives

o & ./ J2Ay+ | ~{3 /_-r\} (29)
W‘_‘*\/_ V3 -1

For ¢ = «50 we have

( ) - R - 1)) (%)

If we substitute g= -2y, then the above equation becomes the seme as for
e=100. Thus the solution of (27) is

£ W= (51)

\ =z 4314 \
Fquation (29) is shown in greph (4). The shepe of equation (31) cen be
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seen by substituting -2t for ¢ in graph (4)

1.4. 5o f S D alues

It 1s not possiblie to find solutiong for ell the inteygral curves
in graph 1. If p end ¢ sre plotted syainet ¢, (areph 3), it cen be seen
that for «50C e {150 » end q hove reel velues but otherwise tuey are cou-
plex.

Ap ¢ tends to sero, p tends to plus or winus infinity depending
upon the sign of _o_ md q tends to «1l. In this case k tends to sero and,
os would be expected fyom the linear equation, # sinusoidal solution results

Singe 0 Ck“ (1 we heve fyom (17)

0Ci1=q)/(p=q)<1
i.00 (leg)<(p=g) oxr p>1

sinee  p=%[(2°-) *%—j(so+cXSO—§)‘] 7\

we heve %_[smcxso-%) > 3-122= 2 (c-50)

for > 50, we have aiter squering woth sides

(50 + @)(%0 - ¢) (o - %)2

4% (e = 200) <0  fe00 el 1A (32)

It turmed out thet no sclution for ¢d> XN wes found. Frow the

neture of the solution no values of y ebove 1 or below q were ifound
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except for the exceptionel ceses ¢ = =5, 100. The shaded erea of greph
3 shows the region investigated wost fuliy. It wes found, however, when

the coefficient of y' was not zexo but relatively lerge that the eguation

y" + 1L + 10y = =100y (32)
yielded & numericel mlution. 4e wight Le expected irom the parsmeters on
the left hand eide of the equation, the solution was exponential in form
and the large deosy faotor probably changed the nature of the golution
sufficiently to make it real.

For ¢ = 150, # eolution whioh turned out to be complox, wes found.

Ve hove

@07 - ) 252 42 - sy B2 )
« 10y? (ye1)

The solution to this is
+ 2 m"‘(,-l.)* + constant (34)

t= -
Singe the condition y(0) » 0 ceunot Le satisfied in the ;'ul plane,
it would look se though this is not & real solution for the boundery oone
ditions being used.
The question of solution for the unsteble arss in the phase diagrem
sas beiefly disoussed ecriier on end on whet evidence there wes, there secmed

to be not complete solution for these curves.



CHAPTER 2 « NULERICAL NETHOIS

2.1, Pre Metho vestiga

In the initiel smalysis of the problem, several attempte at a
peries soluiion were tried. Attempts &t substituting verious forms of
infinite series with unknown coefficients were investigeted but, ~s shown
below, these ren into difficulties due meinly to the btoundory conditions
imprsed upon the equation

(1) The simplest form of solution tried wes

y- Z ot (35)

oQ

2 ; r-1
" = .rrt

The first condition y(0) = O is essily setisfied by equation (35), but

Differentiating gives

the second condition nemely y(t-) = 1 where ¢ is the position of the

first maximum is very awkward. Ior the maxioum we have that y'(t.) = 0,

X

y(t-) - IZ.‘; art: -]

. re
y(t.)- e, rt™ = 0

Squaring y gives

20 o0 el ~
< \ ~ S g
3 - =0 th SO Qs‘t =0 S=0 QSQT’St

Difforcntiatins y 81“.
' ;Z: | T 1
y - a rt

yn - Z .xr(r-l)tf‘z
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Substituting these into the equation gives

£1 o _9_91 - a0 ¥ -
=R ) _
i P )t Okzo\,‘-.‘f'.‘t +\>L ot —Z Zasafﬁt
=0 =0 =0 =0 570

XD « ﬁ‘ b i
L ;:.[ap;_(f»fzxﬁr\)#ma‘z?* \Da‘,__)'\', = L Z aso\(_stf

=0 %=
Equating powere of t gives

&
Ay (FyzXf+)) + Q, Ol (1) 4—bo\f = :L_:Qsﬂps
)

-‘ (Ar’,z = quof-s—q-Qr.rl(f*\)""qu (36)

(r+2)()

Since y(0) = 0, a"’ « 0., From the sbove we therefore have

2
‘2_0 -m!-rbao = _...1
2.1

It cen be se«n thet since each coeificient ie dependent on the two ¢o-
efficiente below it, 211 the coefficienta cen eventually be expressed in
terus of .1' Since we have 'mother two equetions from the initisl cone-
ditions involving t- end the coefficiunts, we cen in theory find e2qe
Analyticelly, this would be very involved, but using numerical techniques,
the value of 8y could be found bty iterstion.

It wes subsevuently decided not to elecborete on thies method, due
to the ‘act that for lerge vslues of t, the erve: inac u.ed isto the
corresponding y value would protebly be coneidersble. lYor the exponentiall]

decaying solution this would be especiclly unoticeable since the function



tende esymptoticelly to the t-axis.
(2) 7Por the csses with the parsmeter a > 20, the linear

equation hes on exponentially decaying solution (see figure 1). lue to

this fact, 2 solution of the form

o0
-rt
a
e Z“ r* (37)
was 2ttempted. Difficulties with the boundery conditions agein erose.

Ve have

20

y(0) -Z}, a8 =0

’(Q-) -Zgr.'ﬂm- , ’t(g-) = .{Z;?ar..r“ - 0

=0

and

Differentieting equation (37) twice, we get, equeting coeificients of .-rt
A
2
(= -ar+b)¢r-2 s “res (38)
S0
For r = Q.
u\ = n! @ mboroO
o o o

Since y tends to gero 28 t tends to infinity, the coefficient e must be

For r = 1 (1 -2+ Ip)al - 2a 8,

lo-(l-a+b)/2 or &, =0

In the first cese s, is non -gero #nd since & end b ere erbitrsry,

this is incompetible with the fact that a = Os If & is z'ro, the rest of
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the coefficient: in turn beocome zero end the solution y = O is incompetible
with the non-homogeneous boundoery conditions.
A generalisrction of the =bove might be tried i.e.

y -Z.r."“'t (39)

T=0

This would in theory wcrk, b.t becs.se of the number of unknowns to be evaluete

and the diificulty of itting the boundery oconditions namely,

[ 0
A o o
PRI Z:Qfdfe' -0 2,87 = (@)
' Tio .

f=0

this method wes sbondoned.

The sclution, as it was sctuaslly found, took the form

00 Ll
Y =Z ;q,s exb b (sa+r-9)B)t] (41)
where x @nd [> were the roots of the equivalent linesr equation. The methods
used, howwer, did not tackle the protlem by straight forwird subestitution =ze
abovebut were derived from Picerd's Method and Ferturbation. In the sbove,
apart fioa the faet thet ’2 would be a gquadruple summation, the boundiiry cone

ditione ageain present difficulties.

2.2. The liadelung Transiormetion

Using the Ma! lung transiormetion, an attempt was mede to isolate

the emponentially decaying pert of the sinusoidally verying solution. For



this the function

y = 7)o [ 1 a(e)as] (42)

is sucstitu.t~d into the equation, the recl and imaginary parts being

equated. Thus
y'= (F* + ig) exp Iifs(t)dt]

y* = (P = g%+ i(g" + F'g)) cxv[ife(t)d;}
Substituting these into the cquation gives '
= CS) +1 (3’+F’3) + a(F/+ L%)-\— HLH¥ = C‘:ZQKP Bfg(t)&‘c]
ive. (F "—3-\'QF'~\ \;F) +(F ’3 +9 N aﬂ) =C F’é)@[\j‘aﬁ) d‘t] (43)
In the linear equations, the exponentiel cen be eliminated
throughout end two simultencous equations explicit in F and g obteined.

In this cese, however, on the right hand side, the exponential cannot

be eliminated although it could be expsnded in the form

expli [qt)dt) = %Ls nd g0t} - L cosy fq0) atf )
Equating real end imaginary pert of this would yield equations which are

probably herder to solve then the original cquation and therefore this ides

wag sbondoned.

2% ¥etho Used [ Sl*)

Of the four methods tried, two were numerical smd two were

semi-analytic. The numerical treatment involved & finite difference method



-23 -

and & step~by-step method. The first wae used in order to fix the sol-
ution et the boundery points, and the step-by-step wethod, being quicker
wag then epplied, using 29 ite initiel conditions two points found fryom
the finite difference methni, In figure (4) points A end B represant two
points produced ‘rem the finite difference method to be used by the step-

by-step method. \.“\

y=o.0l

figure 4.

It was decided thet » suitrble plige to stop the integration would be when
y wes 1% of ite meximum volue i.e. 0.0l. If the finite di' ference method
had been used to integrate the whole ocurve, & gre«t decl of mechine store
would have been used. This 18 duoc to the fact thet grest sgocurccy in the
region from zero to P was required becsuse o! the considerable gradiemt =t
this pert of the curve. This zecureoy necessitsted meny points in the
section. On the other hend, in the region fros 4 onwards, the credient was
in comperison increasingly gentle, snd for the ssme saoccurscy, the number of

points veguired per unit length wes much less. This difficulty oould perhep
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have been overcome by varying the interval between points, the interval
becoming larger for 1ngrea01ng ye /‘ltematively, the numericel method could
have been wmodified to suit the initiel conditions of A and B, This was
thought of, btut it eoon bLecame evident that without too mueh work, the procest
eould be speeded up considerably by chsenging it to & non-iterastive step-by~
step process. It not only has the sdventege of speed, but it takes oconsider-
ably less storage, DBecsuse the finite difference method represents the diffe
erential equation as a set of eimulteneous difference equetions, the number
of points must be known befor- _L¢ progremme is run. In this way, it would
be difficulty and certainly very inefficient to use this method in evaluating
exeotly up to y = 0,01. On the other hand, it is extremely easy to do this
using the s tep-by-step process, since each point, as it is evalueted, is
teated for the condition y = 0.01.

The two semi-snelytio methods based on Picsrd's Method smnd Per-
turbetion were methods in which solutions in terms of & series of exponentials
for values of a~$zu and in terms of exponentiels snd trigonometric functions
for a{ 2, ocould be obtained. In bo*h methods, the initiasl epproximetion
taken was the solution for the linesr case. The first nonelinesr approximetio
in both methods was found without muoh celoulstion, but ss might be expected,
esch suoceeding new 2pproximation demended en increese in work and gave a
diminishing retumn.

In the two methods, the higher coefficients were calculrted from
lower coefficients. In Perturbation this calculstion was done by hend, but

in Picsrd's method this waes asutomsted snd theoreticelly the solution could
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be given in terms of any number of exponentials. In the former cese, the

eoouracy wes only tast of the seoond non-lineer epproximstion.

2.4. Finite Difference Method

In this wethod, the oifferentiel equation is represented es a
finite diifference equation. For ¢ seoond order differentiel equetion there
will be two less difference eqguetions then points being calculated, the rest
of the information about the sclution being given by the boundsry conditions.
For the equation y" + ay + by = O, the finite difference equation was derived

as follows
%-%{--.{n't_lm : (44)

where ’!‘*i snd y red are two cuascoutive velues of the funeotion seperated by

an intervsal At = h,

R (U PR CE VAR S

-.-(\;\f‘_‘—z\"lf*-\jf—(\ ¥ a(ﬂf*t-j¢-4) *b\\\f = 0
n” 2h

Sy (\" k?)— 0\3\‘)4‘_\* (b\'\t‘z)jr *(\* ‘%\_O\) kj‘ﬁ\ =13 (46)

AN t Ay Y A3 Yy =0 (47)



where 11. .2' 05 are . iven frum the equetion ebove. For the none-linecr
aquation, the finite difference ej.etion therefure Lecomes

: 2. 2
'l’t-l"?’r"} ’ul."’t. (40)

As in most wethods of solving nonelines:r egquetions, the non-line r «lement
sust be linesrived. This can be done An severel ways. For exsmple, if the
non -linesr tere woee u.v vhore u eénd v 2lone sre linesr functioms, this could

be linesarised by writing
sved(uveaw)

where U end v are the previcus spproxisetions found from the equation.
Simdlerly ,2 cen be linearised by waking ,2 -y x ¥ where the seme comventior
bolde. Although thie ds probebly feuter than letting the epproximetion be
yaoixi. it wee not thought of ot the time the progreane was writtem, :nd
the letter approximation wes used.

Initislly & velue of J must be suveced. This wes not too diffe
foult to do se the noneline:r solutions were similer to the lincsr ones.
In sctusl fect, becsuse 4% wes strefshtforward end dteyetion omto the finsl
solution was generally good, @ strei ht line wes used 25 @ ‘irst epproxisati
to the purely ex onemtial cese. However, although this epproxiuetion wes
initislly used for the sinuscidal ceves, due %o instebilitiss in certein of
the egurtione, the solutiome of th- equivelent linesr equetions were sube-
sequently used. Now that we inow an epproximstion $0 y whother it be &

etraight line or otherwice, we substitute it into the right hind eside of
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the finite diiference equation. Ve thus obtain from ejustion (46)

- 2
8, ¥ vy, ¢ n,y’ - qgh
8, + .213 + n,,‘ - ci, ha
ey, + & +a - q' h2
'3 i‘ 3’5 4 (49)
- 2
.1’4 + Q!ys - '3’6 - qs'h

01:50a2y60.’y1 - 6 hi

The equetions osn be reyresented in matrix form ss

AY = X
where
- -
£ 8
1 2 “ 5
‘l az ‘,
.1 .2 l,
Aw 0 01 l, l,
a 14 “
_ . . ’ -

From the evove, énd the boundiry conditions, the new velues o, y cen be
worked out. £Each new set of velues of the 8 's are tested with the previow
va lues ;r and vhen (y - 'i) for all points is less thon sowe precetermined
velue, ewse 10”4 theu the results ere cuteined.

In most boundary problems, the value of the funetion is known
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at two points say, in the sbove exzmple ¥ and y - “liminsting these irom
the simultenecus equations results in five equstions in five unknowns. There
is therefore @& unigque value for easch point. GHinoce the boundery conditions
were not so simple, snother method of teckling the roblem hsd to befound.

In espenc , the seoond point ¥y vas varied until the Iirst peak pit .thc value

1. If we let the point b be x, then since we imow that , - .O, we have

4 | - ojg b’ - ax
Sy + 83, - cfg o . a,x
)y * 8y, * tyg = q': n?
.1’4 + 0275 * '3’6 - q.: hz
805 * 46 * Sy = ofg b°
Thus
V5] [ hag
Y, q'g b 8.x
2y [ R (50)
Vg cig hz
-2 2
IR

Inverting the metrix A will give the new vilues of y in terms of the old

valuee which sre known, end x whibh hes to be found.

e thus obtain



(51)

where thed's are the elements of the inverse of A times the cy-'zhz'a. The
particuler y whioh.fittod the mexisuam ocould be found iteratively, but for
rv&-oﬁ- of speed a dtttorint -oghod was used. FEsach Y in turm wes given the
value one until one such y wes found say yp such that when y, = 1, all other

y's were less then one. The. rest of the y's were of course caloculeted from

the¢ velue of x derived from ,P° We hove

B
- - L - J -
Yo = A =B x A N (Q-a) (52)

for all - 's.

To find the vslues of the A‘!a end Br 's, it wes not, in praectice,
necesecry to invert the matrix 4. As cen be seen !rom equetionms (50) and (51)

we cen derive the following 3
y,=(cYs h-a,x)/ay= A Byx
Y49 -ax) fag-a, y, fay
= (e h=ax)oy-a, (cgZh -a 1)/ a3

-7 _— fp
= c(gfg;. \5:)\_\_ B (&-gi)x

3 G Gz a3
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For the r equation

uj T o 3" Bl Qs\jrﬂ fi \1
M = (CYp R L maLy ) as
= [(erh=a,(A o Be.p)- (A, 8,201 /as
= (C.\ﬂ,,: o, QL —C\,_RY)/QJ?L (q.(ﬁf_;*-q,_%r)/a-s
L P (53)

(-\

‘5 and Bs can be found now in terus of A4. B‘ and A’, )5. Similsrly, esch new
oconstant cen be found iu terms of the two preceding ones.

Onoe the solution has been fourd to the required degree of agcurscy
in terms of previous approximstions, " still more agourate result can be schieved

by means of & difference correctiom. Using operators we huve 3
L (i, - (57— B34 & 5 )y,
\"‘jv =W Y= (uS— TmE3 oud= )y, (54)
were 8y = (Yoo Yo )/ b and m9r= £ (YeuatYorn)
The first term in esch expsneion gives respectively
iy W™ (‘jr- = XG. ‘jns)/
M8 M (YooY h = (§o-Yed 20 (55)

and these are the terus which heve previously been used to find the appropriste

gsolution. A better solution is therefore given by the equation

=T 3.oAs4 ) el Ll \u
o‘:‘jf«{'qz‘jv*o‘sﬂ\m a C‘ﬁ«\“*t(f"é +30 ‘>/MS 59 )(Jv(%)
The tebulsted velues of y are therefore differenced six times, the

difference correotion calculated from the above, and then added to the
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previous &, roximation of the right hend side.

Ian tha progrem, it was found thet for certain vilues of the inter-
val, 11 or .2 wight become zero, in which cese the progrem would fail. In
this cfge, the interval was sltered and the celculation restarted.

The flow diagram, figure (5), shows how the  rogremme for the
finite difference method works. The figure n represents the number of diffe
ortnt.oquationa to be solved by verying the peremeters # end o. The diesgrem
follows more or less the theory thoh hss just been expleined. Initially
qQ =0, but when » sufficient degree of accureoy hes been attesined, the diife
erence correction is caloculated, snd q begomes l. With the new velues of
the right hend side of the diiference equations, the finel y velues are cale
culated and the values of y output. The test for x > 1 wes inserted because
it wes found thet for values of a2 close to zero, the solution diverged. liore

will be seid about this in the final chepter.

2.5 Ste - tep M

One ce the solution between the boundary conditions had been found
the rest of the y values were celoulated numericelly to y = 0.1 using the
step-by-step process. The protlem wes now essentially one of the ' initial
value type, the two initiel values being teken from the solution of the bounds
type problem. If the equation is

y" + ay' + by = oy°

then as before, the corresponding diiference equetion is

& +q - * “T
1%—\'4 L e o Az Yty ~ C\ﬂv
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Knowing Yy md Ype we o calculate 7’ sund by resubstitution
of c¢ech successive point snd the one previous into the equation, the next
point in turn cen be found. /. r the exponentisle-type solution, each new
velue wap tested until y = 0,01 was found. Fbr the sinusoidal solution, euch
wexisum wes fourd end the function value ot these points wes tested for V.01
Once found, the vilues of y were output. The flow disgrem for the celeculation
is shown in 1 igure (6).

As in the previous flow disgrem, n represents the number of sets
of perameters input. In the eotusl programme, the cmount of storsge used wes
mioh wore then wee eabsolutely essentisl. The reseon f or this wee that both
in this progromme snd the finite difference progreume, #n optionel greph
plotter in the form of & procedure wes used. This memnt thet y end t values
hed to be stored in two vector:s snd could not be output immelistely after the
y valee hed been ¢aloulsteds for the most economieal use of storsge, only
the two previous velues of y need bo kepte The yruoph plotter is desoribed

belowe

2.6 Ihe Greph Plottey

This greph plotter gave a scaled digitelised form of graph
guitable for ocutput on @ line . riater of flexowriter. It plotted out points,
but beocsuse these oould culy be priuted st integer vleces, it was not pere
ticulerly scourate. The points w- re scaled so that the difference between

the weximum end winisum point scoross the page wes 10U spsces. The length of
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the graph down the pege was left to be scaled by the usere The method wes os
follows.

If the coordinstes are represented by »n X veetor eceros: the page
end Y vector down the pege, then the mexizum end minisum veluee in the X
array ore found snd the X values are 211 soaled by 1)) over the difference of
these two. This,in effect, brought =11 the X velues within the bresdth of the
pege. A pimilar technicue sceled the Y arrsy down the pege by inputing the
number of carriage retumns desired. In order to meke all the X values positive,
the lowest nuumber in the X orrsy wes subtracted { rom all other X values. This
prevented ceeningless negretive spooea irum being celoulsted.

Since there cén only be an integer number of speces across the pe,e
snd cerrisge returns down the pe.e, the values of the sdjusted  oint: hed to
be rounded off to the neeregt whole number. The clements of the Y arrsy them
had to be arrenged in deoressing order of mrgnitude so thet es the pege moved
up, the highest velues in Y were st the top of the pege (see fijure (7)). The

correeponding X vilues were &t the scme time smen.ed in the seme order =g the

\hcveasmg
X valves o

new Y arrvey.

o 0060 00 pp0CcO0e®
Sanjen )
SB3Ap

Cwt

o 09O ©0 pg©® o¢cp © 00 ©0 0

figure 7.
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If it heppened thet two or wmore ‘integenbed' ¥ vealues were the scme, then
the corresponding X velues had to be rearranged in increseing order of mege
nitude. If it saleo heppened that two of these newly re:rranged X volues
were the same, then obvicusly one had to be eliminated. For this oese, o
oounter wes set up which, after the ,reph hed been drewn, output the number
of points ignored.

In the initial wversion of the prograume, the eppropriste co rdine
ates for X snd Y were output scross snd domm the page respectively, but sined
the grech was only rough, snd the sgourate .oints were being out . ut before
the curve, it wes decided to eliminste them. The flow diegrem for the pro-
grocue is shown in figure (8) snd an exsmple of the output is shown in groph

(21) 2t the end of the book.

Ze/e  Perturbetion betnod

Foxr this method, & general solution in the form of # series of real
or complex exponentiels with real or complex coefficients, was found. !owews
for a <20, the region in whioh complex oconsztents erise, it would be & long
end srduous tegk to extrcot the resl sinusoidal solution. It was therefore
decided to investipte the two ceses, 2 {2) snd &> 20, sepserately.

Yor the equation y" + ay' + by = "2. we epsume thet we con find
a series exprnsion 61’ the form

| Yoy, toy, 02:3 + e \57)

where y o' J1° ¥y eto. £re twice diifermticl functi ng of t to be determined
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Initislly it wes thought that the method would only apply for small values
of ¢ [ i.e. 0 less then unity 1), but it wese found in compering the results
of this method with the numerical methods, thet to the degree of sccuracy the
solution was te :n, rersoncbly estisiectory rerults were obteained et leesst
between the bound: ry conditions, for lerger values of ¢. This suggests that

the values of higher order y terms fall off quicker thon the coefficients in

¢ incorease.
Ve #lso let

beb +ob +ozb2+ (58)

1

where bo' bl. b2 eto. ere ulso to be determined. Since y(0) = O we let
3,(0) = ¥,(0) = y,(0) =0 (59)

For the gecond boundary condition we have y(t.) = 1, As it stands,
thie condition could not eegily be incorporsted into the caloculstion. We there
fore have to convert the problem into on initiel value one by edjusting the
grecient by iterstive meens until y(tn) hits the velue lo For this condition

we take

y20) = y'0)y ¥{(0) =y3(0) ® ses =0 (60)
By squering y, we have

gt e (Yor eyt gy ) = g+ <249 + 29,4, b g+
Uifferentiating and substituting into equation (1) we have
(\j:*’ ey + Sy + Q(tj‘b-t ey, ¢ty
+(b°* C..\')"\" CI b&‘ o )(SQ*C\j"t c}\ja.;.”) (‘1)
= ey < ayy) e Qyge ) e o



We then equate powers of o. This gzives the first approximation

i ..
Yo * g + P¥y = O

This is Just the linesr equation, the solution of which is imown i.e.

= A (édtérﬁ) (since y(0) = 0)

wore X, 3= (az/o- 4 ba )2
Yo ()= A (m-x)
For the second spproximetion, equating ¢ we have
\j\’ra\j"—rbo\g. T, K = s
‘j\”*aﬂ: ¥ ‘Do‘j\z_ \j:/ \ot\ﬂo
= (et et 285)-p A €L 27) (62)

If we let Ao = A then

Since e ~us snd o'(“ are both solutions of the complementiary iunction and this

equation is linear , it follows that bl must be mero. For the particuler
integral, we therefore let

= 2acX ~ t —2pt
g7 B € 24 SR L 26 (63)

Differentiating this twice, substituting it intd the left hend side of (62),
and equating coefficients of the exponentials gives

(i

Bl Aa® - Fma 251) =
c (G ®™- alxtp)vb) =-207
D.( a@ - 2ap *b,) = A

Thus Bo' Co’ and l)° can be found in terms of A’o. The full solution is thus

i

(64)

of the form

= e € — et = t °2ﬁt
ﬂ\: ﬂ‘edt“' B\eﬁ '\'Boe) + Coe(bg—ﬁ) t 3)08 )
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Since 11(0) = 0 we have

‘1 + Bl + Bo + Co + qo = 0

since yi(o) = 0 we have

- (x A, 4B, +2x B, * (dep) C,+2pD) =0

The only coefficients not imown in terms of A° are A, and B,. From the above

1l 1l
equations we therefore obtain

A, =- L(BR _+ Cot DB - 2B — COCow(s)"Z_Do(b—_\ [(B-=)
B, = Bt D) -2 —-Co(af{s)"Z"Do@] l (B-) (65)

For the third, and in this discuseion final, epproximation we have

by equating the coefficients of oz

’; + "5 + (bo ,2 + bl’l + bao) = b.’l (66)
\J';' *QH;' +\Oo\J’—= 2‘503\— b‘z\do swce b\‘ &

Using & similer argument, it cen be shown thst b2 will be zero. Hence

' ~at - BT - - “mt | (Pt . —2m€
\J';"ro*j;*-bo‘jzfzgecedt' ﬁxg\edt\"b\edki—%be *Coe B+D°e

Using the some method as in the second epproximation, we find thet the valucs of

the coefficients of the exponentials

) € y 5= = =

/ / )

e"’ﬂdf -(0(‘\’{5)# e—2/5t ,..'5#((‘ -(2«+ﬂ)f —(“'flﬁ)" e__sﬂt—



are respectively givem by the identitiee
Ho( ax™ - 2a« v )= 2AR,
O, (" —alaxp)  +15) = 20.(8,-9)
& 48 ~ @ *b) =-208.8,
0N A ~Bad th)= 24,8

Ez( (:zm(’a)L* aQoap) t l%) = 28,(Co-5,) o
Bl (x20)= alde2p) 1o, ) = 28, (De-Co)
GL 4™ - s Ty, )= -24.D,
Thus the totel solution will be
= 8 3€ “*—r 63é\3t*a 2é2"‘1'+ B,E(“m)t-f C,ézm—
(P, Pt g Bl RRT, o gHRE (68)

Again using the initiel ooncitions ya(o) = 0 and 72'(0) » O we con find the

viues of A, and E_ in termm of the other coefficients. These turn cut to be

j Ry
A= -[o(A B +C e D, tE, ¢F,4 G ) -2« A~ sp) B,

S ABCy~Pa D -(2x 4 B) B, — (6 128) Fom 3 B G, ) ()
B,= Lt (AL A B4 C ¢ DYEHE + &) — A (F,- (x4 B) B,

(69)
- 260, - 2D, ~(x 1) E, ~ (e 2B) 6 - 3p br, ) (- )

For this degree of spproximetion we find that the totel solution is given by
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\5.-.\&6-+c\j\+c‘ti,_
=@ (e** "M)fc(ﬂ R é"”—*% 22 g s T
4 p L _=2pt
D, e‘Z(’a (Q-g,e +% et +A.e 6 e(“ﬂs)n C,e =
-5t -
+D e’-PK N E ._.dd*\'(b)t' F (di‘Zﬁ’)t C\— —’5(‘5{—)

z

(Q*Cﬂ+cﬁ3)3 + Q.+ +c(3)e +c(6 +CA )eQKf

+e (Core i, )s® ™% elmadC e VD e

] ¢ - -
= < x+a) +CF S (ezp)t, o G -3pt (70)

Thus the non-linesr equetion is ecach time being reduced to a linear equatio
with the boundery conditions alweys being satisfied.

The sbove solution is the  eneral one discussed previously. or
exponential-type solutions, it etends es it is, but for sinusoidel solutioni
it must be broien down into its resl end imaginary parts. For calculeting
the real perts of the appropriate constants on a computer with complex
facility, this might be a reszsonaeble proposition, but by hend the broblen
would be rether involvud. It was also found to be a much more time oon-
sum problog to work out &« reesonably sccurate solution for the sinusoida.
y= “-tt sinot. ‘Sines this ves s1se Whe oses for o other seni-snalytic
.uthod investigated, .and &8 in neither method was there & significent diffe
erence in the theory it.was decided to investigete the purely exponentiel
’oolnnonu only, énd lesve the sinusoidal.

Now that we lknow the solution in terms of "o which is 2 function
of the gradient, we can work out iteratively its value, First of =11, an
initiel guess was obtainod for ‘o bty using its lineer value. Using thid
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the maximum value of y was found end if this wes grecter them unit,, the

gredient wes proportionately reduced.

Wiy SO il

Ymax p- — — =

|
|
|
|
|
|
|

:6m
figure 9.

i

The reverse was done if the meximun wes greater. This is shown in figure (9).
In effect, the gredient was changed by (1 - diff) where 'diff' was the diif-
erence between the meximum and one.

The progremme wes such that for each iterz=tion, only those points
up to and including the maximum were calculeted. This means that sll points
efter the maximum were ignored until the required degree of accursey had been
reached when every point wes celculated with the final value of the coefficien
The flow disgrsm is shown in figure (10).

2.8, Fioaxd's Method

This method is similaer to Perturbation in that it produces en ex-
ponential series, but each successive spproximation gives a greeter number
of terms to the expension themn in Perturbation. Tssentielly, an approximate
solution was found from the linesy equstion, say fo(t). This solution is

substituted into the non-line:r part of the equetion giving

yr+ey'+by = of:(t)
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Figuwe (O
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This equation is & better linesr spproxipation to the non-li:eer eguation
being investigated, snd we solve it with the bouncary conditions to find

the new solution f,(t). Thie is cubstituted into the equation as before end
the process is repested until the required degree of epproximation is reeched.

Ve have that the solution of the linecr equation

. ' —at @t
Y '+a3’\- by =0 is W= A, 4 A.e"

Squaring this send substituting it into the right hand side of the equation

gives

\J +aﬂ 4-103 = C(ﬂ e?nd’ 2” Qo.é(dfﬁ)tﬁ- Qo. -Iﬂf) (11)

For the particular integrel, we let the solution be

-—-(m—ﬁ)‘f "2-‘51'

& 2 f
Y= A, e +R,e t Q.S (72)
where 80 Au and AOR ére to be determined. As can be seen, the suiiices

of the coefficients correspond to the appropriate powers in X and 3. Diff-
erentiating equation (72) twice and substituting the resultemnt values of y"
end y' into the left hemd side of equetion (71) gives, by equating the co-

efficients of the exponentials, the values of A_ ., A,, nd A terms of
A Onoe these héve been found, we have that the &u solution to

Ay, end 01"

the first approximete equation is

- - ( » -2at
4= A.6% 4 A,ePan,e R T L - (73)

Aioo + Adl ¢e being the solution of the complementery functionme
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From the boundery conditions AI.O and A(.)l cenn be found. From the eondition

’(0) « 0, we have

\d * w
Ao + A% + Ay ¢4y +4)n =0 (74)
Thus AJ, con be found in terms of Al . The other condition, y(t-) -1

uniquely determines the value of Aio. but as in the previous method, A

can only be found with reletive ease using *n iterstive teo:nigue.

p (4]

Unee this approximete solution has been found, we start off sgein
imowiny the coeffieimts irow Al to A, snd squere equation (73). The seme
process is repeat d and the coefficients of the exponenticls {rom 3‘“ to :2@
are re-evalusted and the coefijeients of o" = to 0"(5' are eveluted.

This can be repeated to give the solution to »1y number of expone-
entisls. The problem of itersti n for the seeond bound:ry condition turned
ocut to be more dAiificult them in Perturbation, Initielly, the same wmethod
wes uged, i.c. if the meximum volue of ¥y tumed out to be below 1 for a pere
tioulsr set of coefficients, the gredient wee inoressed, the caffioients
ro~evalucted am¢ the meximum velue of y egain found. This wes done, #8 jre-
vicusly, through modifying the gredient by (lediff), 'diff' being the diife
erence between and 1. If worked qQuite satisfactotly for uvositive values
nf the non-linesr goefficient to the order of T%, but {.r values cbout =40,
the process did not ecnverge. In gemeral it wes found thet it took longer
to find the solution for ne ative values of ¢ than for their equivalent
positive veluea, This maybe duc $o the following. For the value of y &t
t-. y' = 0, and spproximetely

y" = =(100 - ay)y (y~1) (75)
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When ¢ is negative, the coefiicient of y is wuch larger than when ¢ hes the
equivalent positive value. Thus the value of y at the maximum is much more
rapidly varying for this cese, and @c-urecy will consequently be more difficult
to achieve. This fact can be seen from the shepe of eny greph with ¢ = =40,
The peak for this is much sharper than for positive ¢. For the occses with
negetive ¢ which did work, it was found that it took more iterations then was
thought necessery (sometimes more then 20). It was found, for values of ¢
about =40, that although the solution did not converge, neither did it diverge
rapidly. The meximum value of y seemed to fluctuate between 0.73 end 1.2 for
@ lerge number of iteretions. 7To reduce the amount of 'feedbeck' from the
difference to the gredient, verious functions similer to ten™' (diff) we tried.
This, 1n effect, would reduce the magnitude of the gradiemt correcting fector
for large values of diif, but leeve smaller velues relatively unchanged
(san"? x ~ x for x<«1).

Ultinately an empiricel formule was found which geve the solution
for ¢ = =40, but the number of iterations required made the wmethod very in-
precticeble., Hence another method of iteration wes looked for. Using Aitken's

inverse interpoletion, the process was found to converge much faster.

AITKFRROOT FProcedure
Interpolation wes cerried out between d iff and the coefficient of the

first exponential ‘10 end the value of A, . was found such that diff wes close

10
enough to zero end thet the boundsry condition y(0) = O wes setisfied. This
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did not involve cslculeting the gracient for each itersiion ee was done in

Ferturbation. vhen diff wee less then gzero, the value of the coefficient wes
!
inoreeged by &8s meny increments 88 weés necessery to mske diff positive. Uhen

the sign chenge ocourred, Aitken's interpoletion wes used to find the value of
‘10 such that diif~ 0, I! diff wee originelly grester then wero, A1° was de-
creased. In figure (11) 8, represents toe velue of di‘i for e perticulsr velue

of A enough, eventuelly dif: will go negsti

10° If we deoresse the velue of “10

AR,

. | I
a, Zfigure 11. M€

Inte:polating lineerly between those two points gives @ more securate velue to

o D
1a

A ¥ith this new value, is receloulated and ‘01 y with the rest of th

Ww"* ‘0
ternme of the series, gives the new value of difl correspogding to the new ‘10'

This diff now corresponds tc the point e Linearly interpolsting between 3

5.

and -5 gives u‘. snd epplying the same to -5 and s‘ produces, in stable cesecs,

the most ascourate approximetion so fer -05. Generelly, if the interpoletion is

ill-beheved, eny instabilities which occur, will do s whon the point a5 is

being caleoulated. Although in this method, interpolation is always being cerri

out just between tw> points, in effect, n'" order interpoletion is schieved by

successive interpolation between the correct points.



Thus finding 05 is equivelent to first degree interpoleti n and finding l5

is equivalent to second degree. In figure (12), the logical sequence of

events &8s it is programmed, is showm

Current Value Derivation
o!" Ao (z¢)
fl wthal valve
fz./fza-tu f12 from flﬂz
L
f,.f’l-tus-fz’ fu from fl-if’
rz, from fzﬁ‘,
/ fu from fl-l'f‘
fl'f4.-‘14 tu from fz-tf‘
f4a-lu.f4a-t-“ f” from 25444
i
£
figure 12
From the two points £, end f, (= a, and -2) @ third point f,, (= a,). is
calculeted. This is the new t2 ana it replaces the old value of fz. It is

2lso the Zirst spproximeation to the calculation ol f’. The second approximet

to t, is calculeted from fl and f,. This new value f

3 to vtecome the next approximetion. Interpolation between this and the

13 replaces the old velue
of £

point !2 sives t” which in tumn becomes the finel f). Using this as a first

s the sewe sejuence of events is cerried out to find the

A
.’\

approximation to f 4



the most accurste to 4th degree inter.oletion. This is continued until two

successive approximations tr- and fr are close enouizh such that the error

1
between them can be neglected. Thus the final value of A].O is found end the
soluticn to the required degree of seocursey is obteined.

Since only current values of tl. onwérds &re stored, intermedicte
points being overwritten by new approximations, the cmount of storsge for this
application of Aitken's interpolation is smell comparcd iith more conventionel

approeches.

gloulatior of Coefi

In Picard's Method, it was decided to celculate the coefficients
ingide @ procedure rather then by hond es is Perturbation. The proocedure
(CONST) evalusted the coefficients for 'he new terms and re-cslculated the old
occefficients .rom Am up to the start of the new terms.

For the iirst non-linear approximation, and ‘02 were cal-

b2 411
culazted from AIO and ‘01' 3ince each new epproxiwetion is found by squering
the previous solution, the number of terms rises very rapidly. ror the first,

second end third epproximetione we have respectively 5, 14 end 44 terms in the

series.
From the first agproximetion, we have, squering equation (73)
2 -t ¢ o8t -3xt w(a+p)t,, =20t\2
¥y - (Al(; e R + A0 + Ano +A0202C’ )
(7¢)
¥hen multiplied out this gives exponentizl terms {rom 0'2“ through 211 ver=

iations up to o"ﬁ’t. For the right bhend side of the equation we substitute
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-2t -4t

y=ad @ *eees Alge (77)

Differentisting twice mnd substituting the value of y%, y' and
Yy into the left hand side of tho equetion will give &n exponentinl series
frou 0'2“ te o"(“ with reepective coefficients ‘rom A,‘go to ‘(;4' Pqueting
coefficients will give Ab to 45‘ in terms of ‘1'0 to ‘0! end o end O . The
main pert of the procedure scueres the series which was the previous approxe
ivotion (see equetion (76)) If we have that o term of the new series of

equation (77) ie A"'d#“” ¢t then for thie we hove that

y* ey + by - A {((ro+ u(:,)a - a(ro+ sp) +b)3(r°" Lt A

Thus to find the new coeffigiunt l"_.. wve must divide the coefficient of
e ® 2

o( o ()t from equation (76) by((rx+ @ [5)2 ~a(rx+sp ) +b)/e. The
latter port of the procedure does this. The dimgrem Lelow shows how the

progess wag progreoumed.

40 41

let none=linecy coefiicients
2o M1 %02

d30 A5y 442 %63
Ay By Apg bys Hay

and nonelinesr goefficients

50 441 432 423 414 Y05

‘60 ‘Sl A 42 A” Au ‘15 ‘06 3rd non-lincar coefficients
1o 461 A52 443 434 "25 216 o7

Ago 71 A6 A5y Aaq 2 35 Ao6 A7 Roe

figure (13).
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The coefficients in, for example, the third group of the above are

caloulated solely from the first two groups end the coefficients ‘lu and ‘01.

For exemple A,, is found as below

34

Ayg = gy Aoy * gy Ay + Uy 4y + U0 Ay

Thue the coefficient As 4 is formed from elloombinations of coefficients whose
su:fices add up to 3 and 4 from the two previous groups. This process lends
itself quite well to Leing programmed.

Figure (14) shows the flow diegrem for the whole progremme.
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CHAPTER 3 - ANALYSIS OF RESULTS

5.1 Method of Obte rical u

Becauge of the boundery conditins, end the fact that the integ-
retion was to be cerried along until y wes less then 0.01, the programmes
were used in 2 definite order. 7o find the spproximste position of the
meximum so thet the Finite Difference programme could be used, & modification
wes made in the Perturbetion progrcn-o such thet it output the approximete
value of t- end nothing else. OUnce this position hed been found, the Finite
Difference progremme wee used to find the solution between the boundsyry
conditions. Next, the Step-by-Step progremze, with initial conditions givem
by the previous progremme, found the solution to the ;oint y = 0,01. &Leving
found the upper liait to the integration, the two semi-eénalytic methods were
used.

Due to the fact thet the gredient before the meximum wes much
greater then thet after it, it was decided in Picord's method and Perturbatior
to output & grester density of points for the {f iret part of the curve than
the second part. In both programmes » fagility wes sveiloble for outputing
every nth point (where n could be veried) after the maximum rather then every
point.

In order to compare the results of the numericesl methods with these
of the semi-znelytic, exponentisl sclutions were obteined for variations of
the parameters & end ¢. These are as below.

Values of a 3 25, 5, 75, 101

Values of ¢ ¢ -40, 0, 350, 75
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The parsmet r ¢ wes given the velue -20 sg well, but bLecsuse t.him»lutton

for =) wes rel tively oclose %o the lineer case, it wes not mnelyved fullye.

3.2, Comps f u

The results for & combinstion of the two numerical methode ere
shown on grephs 5 to 8. They sre srxranged s0 thet varistions in the volues
of ¢ eppesr for constent values of & on the stme yreph. “or negotive veluee
of ey the funetion rises quicker snd fells quicker then for the linesr ocase,
the opuosite being true for velues of ¢70. As might be expected from &
¢ mprrison of the linesr golutdione in which 3 is varied, the larger the value
of &y, the steeper the rise smd 1all of the funetion, DBecsuse of the very
fest rise of most of the sclusions, sany funetion values tunken from the graph
would be highly insoccurste.

It wes found, rether unfortunetely, thst the Finite Difference
@ od feiled for values of ¢ glose to gerw. This mesnt thet no direct com-
parison could be mede between the numericsl solutions end the anelytic.
Solutions were found for & grester then or approximetely equal to 5 for -ome
valuee of ¢ (me can be seen in the example of the greph plotter procedure,
greph (21), & = 5, ¢ = =40), but with this smount of damping, the solutiom
was eltered to such an extent thot it was [elt thet no sgcurate comp:rison
cculd be made between this und ;hc oquivelent undenped coge. lowever, both
in the snelytic solutions =nd the numericsl, tho order in which the mexiwme

oame for inerezsing ¢ values wag the same.
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The reason for the instsebility wes not found, slthough one poss-

ibility might be thet of higher frequency terms dominating the solution,

In the resgoncbly damped solutions these terme would probably be coupled

to large exponcntiels which would effectively eliminate them. JFor this theox
8 orude interval was tried but wit: no success. ! very smsll intervel was
also attempted, but with the same result,

To test the reletive securacy o. the two numericsl methods, solutic
using the Finite Diiierence method were rfound for tw> sets of purameters for
the whole length of the curve. These were compered with the sppropriate
solutions found from the Step-by-Step progreraome, #nd the difference between
the two wes never greeter than one point out in the 4th Decimel place. This
could be improved either by using a smaller intervel or by edding e differenc
correction to the Step process.

Becsuse the position of the points after the mexime in the numerics
methods, often di! not correspond to the position of the points for the othez
two methods, it wes difficult in ¢t is region to compsre er:ors. Une way of
solving the problem would heve been to iterate between the velues of the
semie-tnalytic m-thods. Nowever, it wes thought frster to write a short
progremme which evelueted the desired function velues by inputing the co-
efficients of the exponentials. The corresponding function vaelues from the
Step-by-Step process were #lso input eand the deviation and percentege
devietion between the numericesl methods agains both Picsrdd method end Pere

turbation were worked out.
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The deviation and peroantigo deviation were se below 1

Govistion = ¥ unerics) Y geni-enelytic

percentage dwvistion = y b :
( numericel I'El""ﬁllﬁlﬁ) x 200

Ynumerical Y yaomi-cnolytic

The errors obtained are shown in grephs 9 to 14, the grouping of
the parameters being the seme ¢s in results grephs. OGraphes 9, 11 end 13
show the percentage deviation after the meximum while grephs 10, 12 end 14
show the true deviation. Only the errors for 2 = 5) were shown for Pere
turbetion (the dotted curves in grephs 9 snd 10) but for erticuler velues
of ¢ the deviation end percenta e devistion in these ocfses were the worst
found. Beceuse FPerturbetion end Filcerd's method produce similer exponential
solutions, as cén be seen from . rephs 9 and 10,-0:0 not plotted. Since the
Perturbation solutions approximeted to the true solution with less exponenti
it might be expected thet ite solution is less sccurate. Assuming the nume
erical methods produeo the closest spproximetion, this eppeared to be the
cage for all perameters.

- Tn the curves of the solutions, it will Te semn that there ere
grophe for a8 = 25 but no error curves. It turned out thet in Picard's
¥ethod, one of the coefficients beceame infinite for this velue of & &nd
hence no solution e¢ould be found. For this perameter the vrlues of & andf,
are respectively 5 end 20. In the legt part of the procedure CONST of the
‘pexrtinent progremme we have that the coefficient

ALLIT:= BLLIxd /(ax (C -y )« €+ G-)xq)* (78)

o (=) 2 F (G -0%g) Y )
(f=« 9= (5, d=c, ¢z, bza a=1)
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The denominetor of this oéuation is zero when fe5, gw20), i=f and Jj=..
Thus, for this partiocular perameter end using this method, the solution can
only be worked out to the first non-linear epproximation (i.e. -ﬁcn i only
goes up to the value 2).

By looking at the percentage deviation curves it is obvious thet
in the region beyond the meximum, the numericsl end semi-anszlytic methods do
not agree. -Thil is presumably beceuse, as in all series solutions expended
about & point, the solution will only be asccuraie within & certain region.
Some idea of hpw the error beh:ves is found from en approximate enalytic
solution to the differentisl equation outside upper boundsry velue. If we

assume thet y" is sero for the ecxponential decay, we have

ay! + by = oy°
e, t= G,S dy & K.'— a \n C‘g‘b K}K':«;n.dwn*s
4(cy -b) b Ky
_bt _bt,
woye- %2 0-ge™) o)

Thus if y is to heve » valid exponentirl expsnsion

sbt/e (4 (0)

2

'S
K is a constent which, since we are desling with a region of the curve oute
side the boundary conditions, wet be found from elsewhere. In an spproxims
wayy the numerical solutions cen satisfy this vemend. Compering ¥ found

from various numericsl pointa, it is found that it steys ae constent s cen

be expected since y" = 0. See figure (14)
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t [ L5 | 275 | 3.5 m{ @ =
K | 47.22 | 47.64 | 48.14 c= P

figure (14)

Using #n @pproximete value of Kk, the inequality (&0) should determine the
minimum velue of t such thet the expsnsion is velid. The fact that this is
not the cese is probsbly becruse the expsnsion, @lthough of exponential form,
is not the came a. ves derived for the solution. There is, however, & quele
itetive egreement between the error found end size of o‘b'/i/k. If ¢ is
incressed, an increese in the eryor is found es would be expected in the
above. Similerly if ¢ is decressed, the error increcses. This is not ot
first sight obvious since in decrecsing &, the value of sbove exponential
decgreases, but it is found that K becomee smaller fast enough to swamp this
effect.

Because the percenta e devietions after the meximum were on aversge
several orders of meynitude greater then the errors between zero end the
maximuzm, the two regions could not be plotted on the ssme griph. The per-
centage devistions and deviestions for the region between the boundary con-
ditions are therefore shown on grephs (15) - (20). It is obvious comprring
the deviation beforc and after the maximum that in the former case there is
quite good sgreement betwecn the different technigues but not in the latter,
To find if there was snalytic besis for the errors found, the test for
convergence for Picerd's method was investigeted. The convergence condition

is ecesily found for the equation y" = f(t,y) emd it therefore had to be
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generalised for the equation y" = f(t,y,y'). The concition turned out to

be

where 2L 2L -
Mt N ‘%5“
Oy WYy =y n = number of approximetions

- firet epproximetion to the solution
Yy = the enalytic solution
R = upper limit - lower limit

Vhen y" is not 2 funetion of y', the coricition is vury easy to
epply, but no wey wses found of deriving any velue for the function del/dt.
The term 1/“\[; probably could however be ignored if n was large enough. If
the equation being invutigatcd%';', has the velue &. 8ince this must be
greater than 20, it is doubtful if the second term of the inequelity (81)
could be left out.

Since it would heve ta.en up & very large emount of spece to
include the numerical results for all the peram ters, it wes decided only
to include, for each method, one set of results. For all methods the pe:ae

meters included are for a=50, ce=-40. These are shown in Appendix 1.

3.3. Conglusion

Indealing with this problem, it hes become obvious that, in
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fitting an exponentiel series, such cs teken here, to the differentiel
equetion, the solution will ohly be eccurate within the boundsry values.
Sinee¢ the solution is still exponential in form it ie possible thet an
adaption of Collocation or lesst Squéres could give en exponential series
solution with different coefficients end exponents. This would probebly be
much more sgcurate outside the upper boundary condition.

It is unfortunate that the numericel method wes unstable when a
was close to zero, &s the two results would heve agted »s o check on eech
other. An investigation of the difference between the enalytic lineer sol-
'utiom #nd the programmed wmcthods would, however, give some idez of the ab-
solute error involved in computing those leter results. Although this was
not analysed, in oelculeting a few points rnalytically, the exponentisl sol-
utions in the linear ceses seewed to W slightly more accurete then the purely
numericel soluti ns (for the region before the meximun)

Une of themain difficulties in solving this problew hes certainly
been fitting the upperboundery condition. Both in the numericel and eemie
enalytic approaches, the condition y(t-) = ] hed to be iteret d onto anu,
because of this, the solutions took longer to compute then they would have

taken under more normal conditions.
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G’Vae\\ Plot of Eq} 3 8
H“’f‘:‘)g\—\-\oo o iee .
‘ y=-40\y", from Proced
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APPENDIX 1
Numerical Results for Equation y“+50y'+100yn-40yz

for Methods:
(1) Finite Difference
(2) Step-by-Step
(3) Picard

(4) Perturbation
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APPENDIX 3 - PROGRAMMES

(1) Finite Difference
(2) Step=-by~-Step

(3) Perturbation

(4) Picard



INPUT PARAMETERS FOR FINITE DIFFERENCE PROGRAMME

asb,cy,d: coefficients of y:y;y and y*respectively
h: interval between points
m: number of polnts to be calculated
if graph plot is required then t:=1 else 0O
f: number of carriage returns required for

graph plotter
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B:write text(10,[.]);
end else e
begim mnew line(10,m); if X[1]>1 then space(10,X[1]-1)3
write text To..ﬂlqvm

end;
A:end3™
new Iine(10,2);
write «oﬂ«?c.ﬁ c] Number*of*points*ignored*=]);
write (10, forma¥([-nddd;cec]),N);
end; -

begin real h,x,e,a,b,c,d,f,g,t,v,a1,a2,23,k1,k2,W;

Integer 1i,m,n,k,p,q,r,J;
%15@43“ open(20); n:=read(20);
for p:=1 gtep 1 until n do
Begin m"lu.omm 2073 D:=read m.owm ¢:=read mowmn"nmomﬁmovw h:=read(20);
m:=read(20); t:=read(20); f:=read(20);
write text(10,[input*parameters *&\na.ﬁé*ma*psgzmﬂﬂozw 3
S.ZoMS.nS.smn +nddd.d;]),b); write(10,format([sss+nddd.d;T),d);
write(10,format(Tsss+d.ddddjcce]),h);
begin real arr >.m.:.§#l:&.2:qz:..:_.x.ﬁ:.i:w
1.! 3

T: T=0; X[
if b=0 then begin w:i=sqrt(ec/a); for 1 :=2 step 1 until m+1 do
e begin T=X[1-1]+h; S

T=sin(wxX[1]); end;
end else G
W-d?ﬂoAc «50:? 1)/
egin k1:={2XaxXsqro(4xaxe-bxb))/b;
=2 k2:=exp(arctan(k1 W\E )/sin(arctan(k1));
wi=sqrt(ixaxe-bxb)/(2xa); k1:=-b/(2xa);
.mm u“lw u«ov_ﬂd until m+1 do
egin X[1Ti=X[1-T]¥h;
== Y[1] :=mk2xexp(k1xX[1])xsin(wxX[1]);
end ;
end else
Tor T:= 2 step 1 until m+1 do
q.m»: Y[1]7=0,13 XTITs=X[1-TT+h;

3
for 1:= 1 step 1 until m-1 do
ZTY] :=Y [ 1+TIRY [ 142TRARNXd 3 qr=03
al:=a-bXh/2; a2:=mexhxh-2xa; a3:=a+bxh/2;
k1:=a1/a3; k2:=a2/a3;

P:A[1 "lNTw\mum B[1]:=k2;
A[2]:=Z[2]/a3-k2xA[1]; B[2]:=k1-k2XB[1];
Molu. H."lw step JE-«E. -Tm Wﬂu _” :

egin A[rT:=Z[r]7a3-k2xA[r=T]-ki1xA[r-2];
== w?_ulnmxmxwmul 1+k1»@[r-2]);
end ;



Qiri=p+13J:i=r;
if abs w?w >u-4 then
Xr=(A[r]-1)/B[r] €Is€ begin h:=10xh/9 ; write text(10,[interval*altered[ccc]]); goto T;
end;
R:jimj+15  1f A[J]-B[J]XEST then goto Q;
ir j7m-1 Then goto R; g

5Ein W{1TTSRT1 1B Tpa; .
in 1=A(1]- 4
<"lmcmAtH»H|«H»+mgvm if v>e then e:=v;

end;

T q=1 then begin r:=0; goto exiti; end;

for 1:=T step n untl Ew_mmo g

.-lolm:. Y[4F2Tr=W [TIT 2(1] : =¥ 1+1 ]XY[1+1 ]xhxhxd 3

]
I abs(x)>1 then begin write text(10,[equation*unstable[ccc]]); goto exit2; end;
I ed>p-4 thell goto P else -~ =i
Tor 1:=1 Step . until ®FT do D[1,1]:=¥[1];
T5=0; k:=T; -
S:il:=i+23

for jJ:=1/2 step 1 until m-1/2+1 do
DTT,J]:=D[1=T,J+1]=DT1=1,J];
ki=k+23
for j:=(k+1)/2 step 1 until m-(k-3)/2 do
DTK,J ] :=D[k-1,3T= =-153-17;
if k<6 then goto S;
Tor 1:="7 step | until m-2 do
begin D[1,T] = cmﬂﬂﬂuﬂ +U*kﬂw~w\mm

D[2,1 :.Mu 6,1-1]+D[6,1])/2;

end;
Tor i:=l step 1 until m-2 do
Z1T):=2Z[1 (1,T1¥D15,1]1/2-0(2,1]/6-D[7,11/15)/6;
q:=13 goto P 3
exitl:write text(10,[X*and*Y*values([cl]);
for 1:=1 step 1"until m+1 do ~— —
Pegin zﬁjﬂo.ﬂmm*mia?&n& 1),X[1]);
write(10,format(Tsss+d.ddddsdddd; ]),¥{1]);
r:=r+1; if r/3=efitier(r/3) then new 1line(10,1);
end; new 1ine(70,5); if t=1 then"begin for i:=! step 1 until m+1 do X[1]:=-X[1]; GP(Y,X,m+1,f); end;
end; — e - i

exit2e:
end; close(10);close(20);

3
ena>




INPUT PARAMETERS FOR STEP=-BY~-STEP PROGRAMME

asbycyd: coefficients of yﬁy;y and yLrespectively
h: 1Interval between polnts
t: 1f graph plot 1s requlired then t:=1 else O
Pl,p2: initial function values from Finite
Difference results
f: number of carrisge returns required for
graph plotter

w: 1initial t value corresponding to pl
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EMe2de LA EN 2R N CRZR B¢ P oq Ry TEoa UTDeq

f(og)peea=:q {(0OZ)pesa=:J
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" INPUT PARAMETERS TOR PICARD PROGRAMVE

P h , .
asbycyd: coefficients of y,y,y and y respectively
L1: wupper limit of integration

q: Interval between points

l: degree of appoximation required
sp: the ammount by which the point density

after the maximum has to be decreased i.e.

if every 10th point 1s required then sp=10



begin library A0,A6,A12;
vu.oommﬁ.o >Hexmzxndiu..u.<.oum )3

value eps;

real array X,¥y;
Teal qmﬁm 3 ;
Tnteger r;

MMMHmIHW«omon 1;
0. A.

ph Nﬁﬁulc then x[0]:= 0

_‘4

else if r=1 then begin y[2]:= y[1]+y[0];

ri= 2
end

else if r=2 and sTgn(x[2])= sign(x[1]) then begin N

= NWWM
i= Y0113y (0]

im
Q.a

else begin in for 1:= 1 step 1 E:u.w r-1 do

yirl:= (y[ITTX[r]=

if abs(y[rl-y(r-1]

end;
end AITKENROOT; e

procedure CONST(const,f,g,n,a,b,c,d,A,B); value f,g,n,a,b,c,d;
Teal const,f,g,a,b,c,d; integer n; real arr array A,B;
$egIn integer u.L.Px.«‘.|+uam sum;
Tor m.lm step 1 untIl n do
Pegin sumT=03 w.ﬂmﬂﬂ:«»oiubﬁvbimv-o 0000001) )3
for u.la step 1 until i-1 do
begin 1f1=J3T and JIT then
Sum:=sum¥A[J, TIXATI=3,1];

end; B[1,1]:=sum;

end;

Tor k:=2 step 1 until n do

begin "..milsﬁa?vuﬂimv 0. 0000001) )3

r 1:=2 step 2 until k+1 do

in sumt=0;

for .L_.! step 1 until 1/2 do

Tor p:=1 step 1 until k-i+J do

vlmb.. if k-pltand p<t then ~—
mﬁ.lmcsﬂn?uv.pdﬂ:é?.:xm.

end; Bl[k,1]:=sum;

|'§'

end;

x[1]77(x[r]-x[1]);
Aavm then x[0]:= 0
else begin %T.i ]:= y[r];

r+1
end



for 1:=3 step 2 until k+1 do

begin sumi=0; ~— -

—  for J:=1 step 1 until (1-1)/2 do
Tor p:=1 Step 1! until k=-1i+j do
begin if K-p<lt and p<lt then ~—

Sum: =sUm+A[ K-p, i-JF 1 IXA[p, ] Ix2;

m:a.
Hdﬂ?uﬁ-;\mm«%4§S§-?-;\mao
Pegin if k-p<t and p<t then P
Sum: =sum+A[p, (T+1772TxA[k-p, (1+1)/2];
end; Blk,1] :=sum;

end;
end; const:=0j
Tor 1:=2 step 1 until n do
Tor j:=1 Step 1 Until 1+T do
Begin A[17T+ 531/ (axXTT1-3+1 )x0+(3-1)xg) 12-bx( (1-3+1)xf+(J=1)xg)+e) 5
consti:=const+A[1,]];
end;
end; ~

begin real a,b,c,d,f,g,q,L1,YM,AOQ,M,eps,const,k;

Integer m,n,p,r,s,N,1,u,i,j,w,sp,inc,h;

ovosmaavm owm:ﬁmcwm vnlummnﬂmcvm

for r:=1 step 1 until p do

Pegin a:=Fead(20); D:=read(20); c:=read(20); d:=read(20);
TTi=read(20); q:=read(20); H"l&omnAmcvmmv"ldomn%mcvm
write ﬂax«A_c~mmcoommmH<o*=:Bdou¢o&*Hnoamnpo=mH H
musulcxdn:meow N:=entier(L1/q); s:=2000; N:=03 ~

f:=(b=- h 2Xa); g:= 2Xa);
x"IWmeanMIAVA%MAWNNdmxv wmwNﬂWMMMW“Mvmmmvuulﬂumw %"lmawm
b Tem, 1em+1 |,X,Y[1:2000),x,y[0:30]3
KPP, T 17200 AT o] 1= AD} .

xﬂduulcw for h:=2 step 1 until s do X[h]:=X[h=1]+q;
for inc:=T step 1 Until 17do
Pegin wi=13"u:=2; F[11:=A[T,;1]; M:=2tinec;
— R:CONST(const,f,g,M,a,b,c,d,A,B);
Q:A[1,2]:==A[1,1]-const; N:=N+13;
for h:=1 step 1 until 3 do
Pegin Y[hT:=0; -
for 1:=1 step 1 until M do
Tor jJ:=1 step 1 until 1+T do
. YTR] :=Y [WTFATL, JTRexp (= ( (1=T+1)xr+(J=1)xg)xX[h]);
end;

TOF h:=3,h+1 while Y[h-2]<¥[h-1] and Y[h]>¥[h-1] do




end;

ena->

begin Y[h+1]:=0;
for 1:=1 step 1 until M do
Tor j:=1 step 1 until 1+T do
u._..mtruﬁmuf

end; YM:=Y[h-1]; s:=hj

X[wW ] :=YM-13

if u=2 then begin if YM-1>0 then y[0]:==A[1,1]/(5%inc)
= +o= L

ATTKENROOT(w3X,y,eps); Al1,1]:=y[w];
if x[0]#0 then goto Q3
write(10,forma a_ [Sss-ndd; ]),N=-1);
end; G &
Tor h:=1 step 1 until n+1 do Y[h]:=03
Tor h:=1 Step 1 Until n+1 do
Pegin for Tt=1 sTep T untilMdo
Tor j:=1 Step 1 Until 1F1 do

YTR] ;=Y [hTFATL, JTXexp (- ((1=T+1 )xf+(J-1)xg)xX[h]);

end; new line(10,3);

+ATT, TTxexp(=T(1-3+1)xf+(3-1)xg)xX[h+1]);

else y[0]:=A[1,1]/(5%inec); u:=1;

write text(10,[input*parameters*dy/dt,yXy,upper*limit, interval*and*approximation(c]]);

write(10,format(Tsss+d.dddd;]
write(10,format{[sss-ndd;cecc

fori:=1 step ! untTl 271 do ~

for j:=1step ' Until i+ do

“Pegin write(10;Tormat([s38+d.ddddp+nd;]),Al1,31);
if j=1+1 then new line(10,1); ~

end; new line(10,37;

write text(10,[X*and*Y*values[c]]);

for m :=1 step” | until s+9 do  ~

Fegin .a.:..mM,_d.moEm [6s+d7dddd; ]) ,X[m])3
write(10,format ux.u&%mwauL. ,¥[m]);
if m/3=entier(m/3) then new 1ine(10,1);

o=3|

new 1line(10,2); h:=0;

for m:=s+10 step sp until n+1 do

Pegin write(T0,Torma m...a.nnmﬂm:.ﬁ!w:
write(10,format(T3s+d.ddddsdddd;]),¥[m]);

hi=h+1; 1f h/3=efitier(h/3) then fiew 1line(10,1)3

end; new Hgoﬁ.__d..uwm e

@nd; end; close(10); close(20);

tﬁ.nomio.ﬂoﬂgdmrann.nw3..5 3 :n.u.«oAJc.wogml.ﬂummm.rsnna.nm:.uw. -
L1); tuw«lAc.wodsmﬁhmmma.nmdn.lw a);
w.w ; write text(10,[cCefficients a.ljm



INPUT PARAMETERS IFOR PERTURBATION PROGRAMME

a,b,c,d:
L1:
q-

sp:

coefficients of fty;y and f'respectively
upper limlt of integration

interval between polnts

the ammount by which the point density
after the maximum has to be decreased 1i.e.

if every 1 'th point is required then sp=10



eg rary A0,A6,A12;
begin 1ib AO,A6,A12
umcommcuo CONST(a,b,c,d,f,g,A0,Z); value a,b,c,d,f,g,A0;

MMMHlmwmmw.nmm.n.>om real array Zj
begIn ] :=A03
N*m_ul>oam\ amemamamxwxn+owm
Nmm :=A012/ (UxaxgT2-2XbXg+e )}
11] :=m=2xA012/ (ax( £+ vamuvx~w+mw+ovm
Nﬁm."u anN*m_+NHm +Nwdd_ -2XIXZ m_-mxmeﬁmw-Mn+mwaHdd W\Mn-mww
6]:=(rx(z mu+NMmu+Nﬂd4_ -2xrxZ[5]-2xgxZ2[9]-(f+g)xz[11])/(g-1);
1=2%AOXZ [ 2]/ (Uxaxf 12-2XBXT+e ) 3
Z[7] :=-2%A0XZ[ M\ﬁcxmx T2=-2XbXgtc )
Z[10] :=2xa0x(Z[ H-NﬁmHW\AmxAn+mv4m-uxan+mv+ovm
Z[12] :=2x20xZ[ 5]/ (9xaxt 12-3XbxX ¢ ) 3

7z Am 1==2XACXZ [ 9]/ (9xaxg 12-3XbXg+e ) §
Z 1=2xA0X(Z[9]=2[11])/(ax(£+2xg ) T2-bx(f+2xg)+c) 3
Z[15] :=m2xa0x(Z[11]1-Z[5])/(ax(2xf+g ) T2-bX(2xf+g )+c ) ;
7[4]:=(gx(2Z wu+mﬁq_+mﬁdo_+Nﬂdm_+Nwd 14214142 15] )=extxZ[3 ]1-2xgxZ[T]
-ﬂwm XZ[10]=-3xfXxZ[ 12 |-3XZ[ 13 ]xg~{r+2xg )<z [ 14]-(2xr+g)x2[15])/(f-g)3
Nﬂm_"nawaquu+NH<_+N_Am_+aﬁ_ou+aﬂdw_+w 14]42 _m_v-mxwxmﬁww-mxmeHqu
(14]-(2xr+g)xz[15])/(g-1);

.-An+xNﬁao-uxwaAm_nuxmxwﬂdwu- n+mxmwa
Na_"..mjméﬁwaxea ﬁ.
Z[17]) :=m=Z{1]4+dXZ[6 ) +dxdxZ{ um

Z[ 18] :max Nﬁm¢+me w*ww

N*dm.nlnx Z[9]+dxZ[T]):

Z[20] :=dx NHAJH+¢XNHdowvm

z[21] :=dxdxZ[12]
Z[22] :=dxdxZ[ 13]
Nmmm. maxaxz{ 14]
Z[24] :=maxdxZ{15]

\ee e ae \ae

end;

begin real a,b,c,d,f,g,j,k,q,diff,L1,YM,AD;

Tnteger n,sp,p,r,s,t,h,N;

mmmma4dvm open{20); p:=read(20);

for r:=1 gstep 1 untll p do

begin a:=Tead(20)7 br=read(20); ci=read(20); d:=read(20);
L1:mread(20); q:=read(20): sp:=read(20);

k:=bXb-liXaXe; ni=entier Hd\pww st=n+1; Nim=1; t:=m0;

begin real array Z[1:25],X,Y dumoooWw

ﬁma.mnmmﬂd%*g: g2 (brsgrifi) )/ (2xa);

kimf/g; AO:m1/(k7(k/{1-k))-k1(1/(12k)) )} Z[{25]:=n0x(g-£);

X{1]:=0; for h:=2 step 1 until & do X vw =X[h=1]+q;

R:CONST(a,bjC,d,f,g,A0,2); Ni=NF1; —




end;
end>

for h:=1 step 1 until 3 do

begin u“li. @

wﬁsu"nNﬁdexmxvm-wxuv+Nmdq_xo (~gx3)+2[18]xexp -mxmx*v
+Z[ 19 ]xexp |mxmxhw+w.wmc xQGMu &+mva +Z[21 |xexp(=3x£x3 )
+2[22 Jxexp(~3xgxJ3 )+Z[23 [xexp(=(f+2xg)x] )+Z[ 24 Ixexp (=~ (2xL+g)x]);

osnm

TOr h:=3,h+1 while Y[h-2]<¥[h-1] and Y[h]>Y[h~1] do

Pegin J:=X[h+TI3 —
<H=+_H”uNmdm_xmuvﬁuwx“v+aﬁdﬂuxuuv -gxJ )+2[ 18]xexp (=2xfx] )

+Z[ 19]xexp -mxnxhw+NHmo xonvM-Mn+n xwv+NHmAHXova- XEXJ )

+Z[22 ]xexp(-3xgxJ }4+Z[23 |xexp (=~ (£+2xg)xJ )+Z[24 ]xexp (=~ (2xFf+g)x]) 3
end ;
YMi=Y[h-1]; s:=h;
Aiff:=¥YM-1}
Z[25):=7[25]x(1=-d1ff);

1
AO:=Z[25]/(g-£);
if abs(diff)>n-5 then goto R;

TOor h:=1 step 1 until n¥' do
begin J:=YTR]; ==
«Hsuunmﬂdm_xoxv ~£'%3)+Z[ 17 Ixexp (=gxJ )+Z[ 18 Ixexp -mxnx*v
+Z[ 19 ]xexp (-2xgxJ +mwmc xexp (= w+mvxw +Z[21 xexp(=3x£x3)
+Z[22 ]xexp (=3xgx] }+Z[23 ]xexp (= (f+2xg )x] )+Z[24 Ixexp (= (2xf+g)x] ) :
o:nm

tlu.d..«o«88?0.::uza*vmu.mso«ou.m:&\ad2.¢vcou.*w§:.»:«ouémw*msam»noumano:mhohvm
write(10,format +=nna.nwuv.cwm write (10, format([sss+nddd.d;]),d);
write(10,format mmm+n.aamm.w sL1)3 write(10 noumwaAHmmma.gnmmm+. q);
write(10,format mmugn.oaoa ,N); write aounTc._oooﬂnuauoﬂ«m o|r
for _.:lqm step 1TTuntil? - -
begin :a»aMA4a.nommmm4Hmmmu¢.aanas+snm*y.Nﬁsuvm
if h/2#entier(h/Z) then new 1ineT10,1);
end; néw line(10,3);
write text(10,[X*and*Y*values[c]]);
for h :=1 step™ 1 until s+9 do~ ~—
Pegin write( 0, format((6s+d-dddd; ] v.xngm
write(10,format HWm+n.aaaammwanm*..<Hs_vm
if h/3=entier(h/3) then new 1ine(10,1);
end; new line(10,2); t:=03
TOr h:=s+10 step sp until n+1 do
Pegin tn.:dea.u.oam s+d.ddddas ] v.x?wﬁ
write(10,format(T3s+d.ddddsdddd;]),¥[h]);
timt+1; If t/3menitier(t/3) then hew line(10,1);
end; new line(TU,6); e

end; close(10); close(20);



