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OF miFEBATUBES QH TBB
mmmATioMAi# pmcTiem T m m m s u m  scale

by
Mono M* Maaana#

8ur#mm

The work desorlbed In the thesis was imdertakeii as part of 
a pmgramam of aresearoh Into the themodynamlo and transport properties 
of eteam̂  and deals with two aspects of measurements of temperatures on 
the International Practical Temperature Scale.
1# In Section 1 the investigation deals with the reproducibility
of Platinum* XQ% Hhodium^Platinum themooouples at the freezing and 
melting points of silver. The experiments are carried out v?ith 
5 thermocouples, 2 from Johnson, Matthey & Co# htd* and 3 from Baker 
Industries Ltd. Using appropriate techniques the plateaus, with a 
duration varying from 30 Edaiutes to 45 minutes depending on the rate of 
freezing and melting, remain constant to wi'bhin t O$0%/wv (* O.OOT^C) 
during freezing and # 0.12 (t 0* 012% ) during meltiïig* The agreement 
between melts and freezes fall within ̂  0*05 ̂ V* The cooling curves 
show reasonably good flats and the melting curves show in most cases a 

steady rise of less than 0*01 /<"V/minute* The best thermocouple shows 
a reproducibility of the order of * 0*09 equivalent to ̂  0.009% 

over 4 fInezes and é o.Sa/̂ Vi equivalent to * 0*022% over 4 freezes and 
3 melts* The factors limiting reproducibility are considered to be the 

electrical measurements, temperature conditions in the furnace containing
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the Ingot and the homogeneity of the thennoooupXe wires. The presence 
of strain, original or required, appear to be the main cause of moertalnty, 

a. Section 2 deals with the calibration of a Platinum: 100 Rhodium-'
Plat'inum thermocouple by direct comparison with a standard platinuin 

resistance thermometer at or near 630.3%* The vacuum furnace specially 
designed for this purpose takes about 3 hours to attain the above 
temperature and this tomperattire is maintained stable vrithin ̂  0*1% 
during each run or experiment. The temperature distribution along the 
axis of the furnace is reasonably uniform at the centre (0.03% over 

length) where the sensing elements of the thermocouple and the 
resistance thermometer lie. The e.m.f. against the temperature curves 
show the same type of relationship for both the thermocouple and resistance 
thermometer* The calibrated e.m.f. values of the thermocouple fi^m two 

runs lie within * O.l/^Vi equivalent to ̂  0#01%, the same agreement 

being found from the resistance thermometer measurements.

Thesis submitted for the degree of M. 8c.

October, 1964.
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( i )

IMODUCïlOM
The work described in this thesis forms part of a programme 

of research on the properties of steaiïi. For the measurement of 
both thermodynamic and transport properties, the measurement of 

temperature is of great importance since many properties depend 
largely on temperature* Although temperature is an important 
factor in the determination of such transport properties as viscosity 

and thermal conductivity, the scale to which observed tempeî atures 
are actually referred, is not a critical factor* However, in the 
case of the determination of thermo dynamic properties there is a 
special need to be able to relate actual observations to the 
International Beale of Temperature and thence to the thermodynamic or 

absolute scale* The precise relation between these two scales is not 

internationally agreed, although, in due course, such agreement may 
be reached- At that time it will be possible to correct observations 
on the X.S.T. to the thermodynamic scale and in Hie case of precise 

and scientific work such a distinction may be important. Keenan (40) 
observes that it is not the difference between the two scales that 

is important but rather the ratio of the derivatives. Using 
Beattie's ineasiu'ed values he estimates the departure from unity of 
the ratio of derivatives as I/25OO in the range 0^0 to 400̂ 0. Since 

some of the best colorimetric measurements (M-B.S.) are estimated to 
have an accuracy of 1 part in %000 or better, the relationship between 
the two temperature scales could be important, especially at elevated 
temperatures (6pQ®G lOOO^O) where a large discrepancy could occur.
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Although it is not practical to make measurements directly 
on the thermodynamic scale, it is necessary to Overcome this difficulty 
by‘relating the measurements to another scale which is internationally 
reproducible from which follows the need to establish <&
scale» (in Glasgow) the I.P.B.T. The work described herein is 

associated with this endeavour and deals with two aspects of the 
programme, namely,

(1) The reproducibility of platinum $ 100 rhodium-platinum

thermocouples at the silver point*
(2) Calibration of platinum; ICÇC rhodium-platinum 
thermocouple against the standard %)latinim resistance 
thermometer in the vicinity of the antimony point (630*5^0)*
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1.1 m u m  OF LBWvATURE

The ThermodynamiQ Kelvin scale on which temperatures are 

designated as l̂i and denoted hy the symbol T is recognised as the 

fundamental scale to which all temperature measurements are deferred. 

The size of the degree Kelvin has been defined by fixing the
thermodynamic temperature of the triple point of water at exactly

‘ \ , .
275-16%. . (Tenth General Conference of Weights and Measures, 1954? 
Resolution 3)*

The experimental difficulties encomitered in the gas 
thermomëtrio measurements of temperatures on the thermodynamic scale 

led to the adoption in 1927, by the Seventh General Conference of 

Weights and Measures representing 31 nations, of a practical scale 
that could easily and rapidly be used to calibrato scientific and 

industrial instrujnents. Slight refinements were incorporated into 
the scale in a revision adopted in 1948* liiis scale was intended 
to be as nearly as possible identical v/itjh the thermodynamic scale.

The scale presented under the new title ''International 
Practical Scale of Temperature" adopted by the International Committee 

of Weights and Measures in May I96O* is only an amended edition of 
the 1948 scale, the numerical values of temperatures remaining the 

same as in 1948*
Temperatures on the International Practical Scale of 

Temperature of 1948 are expressed in degrees Celsius, designated
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by ^0 (int. 1948). The present I.P.S.T. is based on six

fixed and reproduoible temperatures to which numerical values are 
assigned? and on formulae establishing the relation between the 

temperature and the indications of instruments calibrated by means 
of the values assigned to the six fixed points* These fixed points - 
are defined by specified equilibrium states, under 1 standard 

atmospheric pressure, except for the triple point of water.
Basic fixed points of the International Practical

The pressure is 1 standard atmosphere except for the triple 

point of water.

Temperature 
°C (Inti 1948)

(a) Temperature of equilibrium between
liquid oxygen and its vapour
(Oxygen point) - 182.970

(b) Temperature of equilibrium between ice,
liquid water and its vapour (Triple
point of water) h 0.010

(o) Temperature of equilibrium between liquid-
water and its vapour (Steam point) 100.000

(d) Temperature of equilibrium between liquid-
sulphur and its vapour (Sulphur point)# 444*600

(e) Temperature of equilibrium between solid
and liquid silver (Silver point) 960*8

(f) Temperature of eauilibrium between solid
and liquid gold. (Gold point) IÜ63.O

%  riThe freeezing point of zinc 419*905^8 (int. 1948) being more 
reproducible than the boiling point of sulphur and being 
substantial independent of pressure is currently used in 
place of sulphur point*



The last decimal place givê i for each of the values of 

the primary fixed points represents the degree of reproduoihility 

of that fixed point.
The means available for interpolation divides the scale 

into four partss-
(a) From O^G to the freezing point of antimony (630#5̂ 0)

the platinum resistance thermometer is used and 

the temperature t is defined by the formula 
m  = Ro (1 -Î- At + Bt̂ )V O

relating resistance to temperature t, based on the 
ice point (Ô O), the steam point (lOÔ O) and the 

boiling point of sulphur #

(b) From the oxygen point to 0^0, the platinum resistance

thermometer is also used and the temperature t is

defined by

B|, - go [1 + At t Btf + 0 (t - 100)
The constant G is determined from value of Ht at

the oxygen point.
(0) From 650%  to 1063^G the interpolation instrument

is the Platinum, 100 Rhodium-Platinuni thermocouple

and the temperature t is defined by
2e “ a bt ^ ot 

relating e.m.f. to temperature t, based on the 
antimony point, the silver point and the gold point 
of the hot junction of the thermocouple^ cold 

junction being at the ice point



The International Temperature Seale Criteria for the 
platinum : 100 rhociium-platimim thermocouple are

10, 500 At? i 50 /'V*

\ u  - \ s  “ 1'183 7 + Q.159 - 103.0 /< V) Î 4 /“V
®Au " %30.5 " 4,766 r v  0.631 - 10,300/*?) + 8 /«?

 ̂ where snd'^S^'pre the e.m.f.'s in microvolts at the freezing

points ‘of gold, silver and antimony respectively,
(d) Above the gold point optical pyrometry is used and 

the temperature t is defined by

i i  exp ^
JAu r~ °2 ' "1

exp ^  AltTïoT^ J

where and JAu are the spectral concentrations at 

the temperature t and at the gold point tAu of the 
radiance of a blackbody at the wave-length ,

Cg the second radiation constant is 1*458 om* degrees| 
Tq the ice point temperature in is 273*15 degrees, 
^ is the wave length of the visible spectrum*

The most significant differences in the above scale compared 
with the 1927 scale are that the silver point is defined as 96O.8OO 

instead of 960*5%I the value of Og is defined as 1*438 instead of 
1,432 and the Planck Law of Radiation is used instead of the Wien 
Law, As a result of these differences the temperatures as defined 

by the 1948 scale are higher in the region between 630^0 and 1063^0
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than those of 1927 scale, maximum differences being 0,4^0 at 
about 850^0 and above 1065^0 they are lower* progressing from 0^0 

at 1063^0 to 1.6*0 at 1400*0 and 3.6*0 at 1700*0.

1.2  Thermocouples

The study of thermoelectric phenomena began in 1821 with 
the discovery of Seebock that an electric current flows continuously 
in a closed circuit of two dissimilar metals when the junctions of 
the metals are maintained at different temperatures. Further, in 
that same period, Peltier (42) and Thomson (43) showed the 
reversible relation that exists between heat absoprtion and current 
flow in the circuit. Much later, however, these discoveries wore 

applied to the measurement of temperature.
As a result of a large number of investigat^ions of ik* 

thermoelectric circuit in which accurate measurements were made of the 
e.m.f.ÿ current and resistance, the three laws have been formulated.

(1) The law of the homogeneous circuits- An electric current 

Ofuinot be sustained in a circuit of a single homogeneous metal, 
however varied in section, by the application of heat|alone.
(2) The law of intermediate metalss- The algebraic sum

of the thermoelectric forces in a circuit composed of any number 
of dissimilar metals is zero? if all of the circuit is o,t 
uniform temperature.
(3) The law of successive or intermediate temperatures 

The thermal e.m.f. developed by any thermocouple of

homogeneous metals with its junctions at any two temperatures
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at and is the algehraio 8im of the of the
thermocoixpXe.; With one jimotion at and the other at,/ any 
other temperature I'g and the e*m.f. of the same thermocouple with 
its junction at 1'̂ end Considering the thermocouple as a
reversible heat engine and applying the laws of thermodynamics 
to the circuitj the following relation is derived 31? p.186).

B * J S dT

from which it follows that
rT Æ

E ^ s as -I- r  ̂s à%'
Ï,

This law is frequently invoked in the calibration of thermocouples 
and in the use of thermocouples for measuring temperatures, M  
alternative treatment may be used [%emansl<y (3 9 3 applying the methods 
of irreversible thermodynamios to establish the same equation.

In the laboratory the thermocouple is connected to the 
instrument by means of a copper lead as shown in Figure 1 below.

INSTRU MENT
COPPER LEADS

MsmL e>

REFERENCE 0-UNCT'ONSMEASURING; JUNCTION

FIG. 1
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The reference junctions 0 and 0 are maintained at the 
same temperature usually at 0^0, the e.m.f, developed hy the 

thermocouple is determined as a function of the temperature of the 
measuring junction. If the junctions G and Ĝ  are not maintained 
at the same temperaturej the resultant thermal e.m.f, in the circuit 
will not only depend upon thermocouple materials and the temperature 
of the measuring junction5 hut also upon the temperature of these 
junctions and the thermoelectric properties of copper against each 

of the individual wires, Suoh a condition should be avoided.
Thermocouples provide many advantages as a means of measuring 

high temperatures* Tiiey take up little space and can be installed in 

restricted locations, They are easy to assemble and maintain and? 
because of their light-weight construction? offer distinct advantages 
in airborne applications* If the thermoelectric output is a 

non reversing e.m.f? it is readily subject to instrumentation.
Further? in compatible atmosphere the thermal e.m.f# is a direct 
measure of the temperature and is not affected by environmental 
conditions. Barring contamination of the thermocouple metals? the 
expected error of a temperature reading can be stated with assurance.

On the other hand? for an ideal thermocouple wire the 
following features must be considered (l) high thermal e#m*f;
(2) chemical and physical stability in the medium under measurement;

(3) linearity in the relationship between temperature and e.m.f*;
(4) negligible cold junction correction over the ambient temperature 
range encountered in service; (3) reproducibility of the e.m.f, 

characteristic from batch to batch; (6) ease of fabrication.
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1.2(a) Platinum# Hhodlum*>Platinuin Thermocouples
Platinum against rhodiixm-*platihum alloys Is a combination 

for thermocouples which has been in use for many years as standard 
practice, for the* aocurate measurement of high temperatures. 
Platinum and its alloys' are particularly suitable for this purpose 
because they have high melting points? are extremely resistant to 

oxidation at high temperatures and to chemical attack? and because 
they can be refined to a state of high purity# Other possible 
combinations of platinum metal end alloys generate thermal e#m*f# 

appreciably higher than that given by the platinumf-rhodium-platinum 
thermocouple? but no other couple has been found to give equal 

eto,bility and length of life over e, wide range of temperature#
The two types in general use are those comprising pure 

platinum against either a 10 per cent or a 13 per cent rhodium- 
platinuQx alloy# The latter combination generates a slightly higher 
e.m.f* than the 10 per cent a.lloy* The physical properties of 
pure platinum snd of the two rhodium-platinum alloys used for 

thermocouples are given below#
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i#n' "I'li.ifci
Thermo
pure

™j9laaaHSL_
10^

Rhodium-
15#

Hhodium- 
. platlMuni .

Resistivity at 0̂ 0? micro otes 
centimeters 9.81 18.4 19.0

Resistance In ohms per yard 
(0.20 inch dia.) at 0 0 0.445 0.829 0.857

Mean temperature coefficient 
of resistance per 0^0
(0 - 10000) 0.00392 0.00166 0.00156

Thermal conductivity 0,0.8# 
1units 0.17 0.090 0.088
Ultimate tensile strength 
tons per eq. in. (annealed) 9 21 23

Elongation (annealed) per cent 40 30 30
Melting point 1769 1850

(Solidus)
I860
(Solidus)

Specific gravity 21.4 20.2 19.4
________ ____ _

For continuous service a temperature of is considered aa a

maximum but for intermittent work platinum# rhodiurn-platinufa couples 

may be used up to l600^d#
The reproducibility of the temperature - e.m.f* relationship 

of thermocouples depends upon the purity of the metals employed 
and the homogeneity of the alloy wire. Platinum? in respect of 

its thermoelectric characteristic, is extremely sensitive to the 
slightest amouîit of impurity and therefore a special grade Imovm as 
Thermopure" platinum is employed. The purity of this metal is 

measured by its temperature coefficient of resistance from Q^O to
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lÔO^Oj that is by the ratio
%100 - Ho

100 X Ho
it being required that the value should be greater than 0*00392*
For rhodium Sioo - Eo

— ^ — T"—  should be 0*00436*
100 X Ho

Further muQh more serious errors oan arise throu^ contamination of 
thermocouples from outside sources and careful consideration should 
be given to tlae choice of sheath and its installation in order to 
prevent either errors in calibration or embrittlement of the wires* 
The useful life of a couple is in fact largely determined by the 
efficiency of its sheathing* Alumina sheaths have been found 
very satisfactory in service up to 1500^0*

1.2(b) Behaviour of Platinum PIatinum-Hhodlum

The effect ofhigh temperatures on platinums rhodium-

platinum thermocuplea was studied by McQuillan (l) in 1949I and it
has been found that in air platinum and rhodium are lost by oxidation

%
and volatalieation. To establish the amount of̂  losses platinum- 
rhodium wires were heated electrically for long periods in air at a 
temperature of lOOO^G* Lossas were estimated by changes in weight 

and resistance measurements before and after heating. During 
22 hours of heating in air the wires produced a thick black powder 
deposit and showed a weight loss of lO.g^L From the black powder
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depositJ examined speotrographioally? an appréciable quantity of 
rhodium was detected but the material was mainly platinum* It 
has been further observed by Jaiin (2) that platinum oxidises twice 

as rapidly as rhodium in air and hence the loss of rhodium is also 
important^to be considered.

Further it has been observed by McQuillan (l) that at any 
temperature the thermal e.m.f* developed by these thermocouples 
usually decrease after heating in air for a long time * This decrease 

in e*m*f. is considered to be due to the combined effect of loss 
of rhodium from the platinum-rhodium element and by diffusion of 
rhodium into the platinum wire* The therBial e*m*f* is also affected 
by the taking up or removal of impurities particularly in the 
platinuti wire? the effect whether positive or negative depends on 

the nature of the impurities concerned* Since the rhodium content 
of the wire at the hot junction tends to increase as a result of 

oxidation? the observed decrease in tliermal e.m.f. on prolonged 
heating must be due to the diffusion effect and the effect of 
impurities which together overcome the expected inox*ea,se in thermal 
e*m*f'* due to the increased rhodium content at the hot junction*

One thermocouple heated for 35 days at 800^0 showed a 
decrease in e.m.f. of 26 V at 1200^0 and after heating at 1450^0 
the thermal e.m.f* of the couple was restored within 4/^*7 of its 
original value* It is a,ssumed to be due to the formation of rhodium 

oxide on the surface of the wire at its subsequent dissociation
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on heating at 1430^0? and the consequent restoration of the wire 

to its original composition. Hence one is led to the conclusion 
that the decrease in thermal e.m.f, after prolonged heating at a 

low temperature is due to the diffusion of rhodium from the platinum- 

rhodium element at the junction or due to the effect of impurities 

and that the recovery which occurs on heating is due to preferred 
oxidation of platinum? causing the rhodium concentration at the 

Junction to increase and thus producing an opposite effect which 
restores the resultant thermal effect*

Alumina? heryllia and carbon have been found by the above 
worker to have no contamination effect and could be used for the 
insulators of the thermocouples.

1.2 (c)

The effects of inhomogcneity of thermocouples and the state 

of strain in wires were observed by Belincourt (3)« The lack of 
homogeneity in a thermocouple wire gives rise to a paraoatic e.m.f., 

if associated with a temperature gradient; the effect being important 
in the region of the steep gradient leading to the hot junction.

A wire exhibiting a uniform strain should have a good reproducibility 
in addition to showing no variation of e.m.f. when moved in a uniform 
temperature sone of the furnace; since the additional e.m.f. due to 

the strained condition of the vdre would depend only on the temperature 

of the hot and cold junctions and so would forjii a constant addition 
to the total e.m.f, of the couple. Reannealing, when the strain 

removed partially or entirely would affect the total e.m.f. but
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would not alter the reproducibility miless it introduced 
inhomogeneities into the wire • These were observed by muving 

the hot junction along the axis of the furnace, A wire exhibiting 

a non-uniform strain showed a poor reproducibility? since the 
parasatio e,m,f's arising in the non-uniform parts of the wire 

will depend on the temperature conditions in the neighbourhood? 

which may vary throughp̂ tho experiment as well as between different 
experiments under different conditions, Eeannealing will affect 

the total parasatio ewn.f* by a general modification of the state 
of strain and in addition the magnitude of the parasatio e.m.f*s 

due to the inhomogeneities will be reduced and hence reproducibility 
will be improved.
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1.3 Electrical Hesistance Thermometers

The resistance thermometer as an instrument for the 

precise measurement of temperature had its beginning with the 

publication in I887 of H.Ii. OallGndar*s paper on the "Practical 

Measuremont of Temperature". In I887 G.W. Siemens (33) had 
outlined a method of temperature measurement by means of the 
platinum resistance thermometer or pyrometer. The basic principle 
is the change in electrical resistance of a conductor due to 
temperature. The conductor generally used is platinum. Since it? 

being a noble metal is more or less indifferent to its environment, 
is easily worked, and csn be refined to hrve very little variation 
in temperature coefficient from batch to batch. An outstanding 

reason for the choice of platinum is, however, that the relation 
between resistance and temperature is a simple one, which holds over 

a very large range of temperature.
Resistance Temperature Formulae

For the temperature range between 0^0 and 630*3^0 as given 
in the definition of International Temperature Scale,

Rt = Ro (l At + Bt®) 
may be written in the Oallendar form

. 1 / R t , \ .  f / t   ̂\ t
 ̂ ( 5  - ^  ̂" t ^  - ÏÔO

where
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The relations between the coefficients ares

A «  ̂( 1 « A 4* B t-
^100

of ^ r ® hoc
hoo A ^ B

For the range 0^0 to the boiling point of oxygen as given 
in the definition of the scale#

Kt = Ro £i ■:■ At •}• Bt® + 0 (t - 100) t£j
The relations between A, B and cf , S are the same as 

given above and the other relations are?

cf (30 m and S m mm. 4  ' A t B t.,_(.
^ 1 0 0

In the thermometer the platinum is generally used in the 

form of wire of 0#1 mm. in diameter adjusted to have a resistance 

at O^G Of about 23.0 ohms so that the resistance changes by about 

0.1 ohm per degree Centigrade#
All resistance theremometers for accurate work are provided 

with four leads. They may take either of two forms* The original
design of Callander has two leads to the bulb and a dummy pair of 
leads laid along side them. Measurements are made with Wheatstone 

Bridge with equal ratio arms and the dummy leads are placed in the 
opposite arm to the bulb coil. In this way, the errors due to 

changes in resistance of the leads are automatically compensated.

The other type of thermometer? and generally for the most accurate
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work, has two leads to each end of the bulb* The resistance may be 

measured by three methodss comparison with a standard resistance 

using a potentiometer; measurement either with a modified Wheatstone 
Bridge and commutator for the elimination of lead resistance or with 
a modified Kelvin double bridge *

Resistance thermometers are suitable for the measurement 
of temperature from - 240^0 to. lOOO^C with an accuracy of l Ĝ# But 

for Science and Industrial use they are not recommended for temperatures 
above 630*5^0. It is known that the accuracy of reproduction of

the temperature scale by means of a standard resistance thermometer
in the range O^C - 6 5 0 . varies between 0.005^0 and 0.04^0 in 
different sections of ttie scale* Above 630*5^0 prolonged heating of

platinum causes it to vaporise. With the very small diameter of

platinum wire normally used for winding the sensitive element of a 

thermometer? the vaporisa,tion leads to a quite appreciable change in 

its cross-section and thus interfered with the stability of the 

thermometer*8 characteristics. Further Strelkov (41) showed the 
vaporisation gradually covers the body of the sensitive element 

with a conducting film which by-passes the windings of the coil, 
and thus alters the calibration of tkio thermometer at high temperatures.

In spite of these difficulties, the met##rological advantage 
of the resistance thermometer over tlie thermocouples has led to its 

use for temperature measurements in the "thermo-electric" section of 
the scale (63O - 1063^C) using an instrument of special design.
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PREPAGB

The first section gives the results of an investigation into 

the reproducibility of platintun, lOfo rhodium-platinmi thermocouples 
at the freezing and melting points of silver. îiie accuracy of the 

measurements for reproducibility is considered to be limited by
(l) the thermo-eleotrio homogeneity and stâ bility of materials 
forming the thermocouple, (s) the temperature distribution in the 
furnace containing the ingot and (5) the accuracy of the electrical 
measurements* 9?he state of strain and contamination of the 
thermocouple vâres v/ere found to be the main sources of errors 

and it was difficult to attain a temperature distribution along the 

axis of the ingot better tlum 0*1 V/cm* (0*01°C/om)* ïhe aocuracy 
of the electrical measurement was of the order of - 0.01 V (0*001^C)* 
Considering all these factors the expected reproducibility from 

the freezes is of the order of 0.1 V (- O.Ol^C)
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GlttPÏÏBH 2

KESÜXjIB Off EARLIER WORïOBîRiî Oîi 811,V m  POIHÏ

2;I Several investigations on the gold and silver points were
made in the early period of development of the gas thermometry. The 
most precise ones are those hy Hplhorn and Day (4) in I9OI; and Day 
and Sosman (5) in 19IO. The gold and silver points were shown by 

llolborn and Day to be 1065*5^^ and 96l#9°C respectively ?jith;̂ accuracy
« 0*8^0# The Values in the measurements by Day and Sosmon were 
1062,4^0 and 960.0^0 respectively with an accuracy the same as that 
of Holborn mid Dey*
2*2 Selincourt (5) investigated in 1939 that reproducibility
of Platinwiu lOjC rhodium-platinum thermocouples at the freezing 
points of gold, silver and antimony. The observations using an ingot
showed that with gold^ during freezing and melting, the readings 

remained constant to - 0*1 V end the agreement between melts and 
freezes also fell within this limit. With silver, the cooling 

curves did not show good "flats" and in particular the metis were 
not reliable, in which case there was a steady rise of about 0.1 V 
per minute. In the ease of antimony, it was not possible to obtain 

a melting curve vdth â slov/er than about 0,9/̂ V/min. and the 
calibrations were confined to freezing points. Ihirther, owing to 
the very large undercool exhibited by this metal, the flat portion 

of the cooling curves after the imderoool were in general very short.
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The best thermocouples selected from a large number 

calibrated, gave reproducibilities of the order of - 0.0 5 /^V 
(5m, 2F) for gold, 0.1 / V (4?) for silver and t 0.1/V (4'F) 
for antimonys in brackets, the number of metis and freezes are 

taken into account. Other inferior thermocouples showed a continuous 
fall of 4#0 / V in the case of 12 successive calibrations a,t the 
silver point. One couple which had first shoim at the silver point 

a high constancy (agreeing to ^ 0.1 / V over 2 freezes), developed 
later variations (agreeing to -l 0.2 / ¥  over 4 freezes but with a 

mean value 2.0 / ¥  below the former value).

2.3 C.E. M r  her (6) published in 1950 the results of his e.m.f
temperature calibration of 12 platinums ICÇo rhodium-platinum 

thermocouples, six from each of two manufacturers, over the range 
from 0^0 to IT^O^C. At the freezing point of silver, using a 
silver ingot, observation was made on each of 12 thermocouples in 
turn. The reporducibility of the e.m.f. of the thermocouples from 
one freeze of silver to another was within 1 microvolt, equivalent 
to bettor than O.l^C. The uniform temperature condition along the 
axis of the ingot was given to be 0.2 microvolts/s cm. The departures 

in e.m.f, of the couples of each make from their own means was shown 

to be within - 0.5 /  ¥ at the silver point and the accuracy of the 
measurements was estimated to be ^ O.l^G up to 1063^0.

The results of interpolated values obtained by using the
2quadratic equation e = a bt -i- ct , and based on the e.m.f. values 

at the freezing points of antimony, silver and gold, were compared
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with those found by measuring vdth platinums lOJb rhodium-platinum 
thermocouple at the same temperatures. It was ohown that at the 

temperatures of 750^0, 800^0 and 850^0 the interpolated values were 

in GBceao of the values obtained by measuring vdth the thermocouple 

by only 1.1 and 2 / V respectively* Thus Barber showed that 
plo,tinum3 lOff? rhodium-platinitm thtjrmocouple is a suitable standard 
instrument for realising the international temperature scale over 

the range 650^0 to 1063^8•
2,4 On the Thermodynaraic Temperature Scale, Oishi, Awano ojad

Moohizuki (?) determined, in 1955 using gas themometer in conjunction 
with platinums lOĵ  rhodiuüî platinvji thermocouple, the temperature of 

gold and silver points* For a constant volume gas thermometer enclosing 

a definite mass of gas, the temperature T on the Kelvin scale is 

determined from the relation

^  1 + V  lY -j = 0.76 , ^”Vï'vn'<S « î„ —  V 'Opj P n'.l / " vn

1 /"(Po- 0-7^) ^ V  p = °*76 f„3, %  A'to

The derivation of this equation is explained in the paper of the 

above authors.

Difference of temperatures in the neighbourhood of the gold
or silver point was determined by a standard theroiocouple, for which
the temporature-G.m.fo relation is expressed by the equation

20 « a h bt t ot
when the characteristic of a thermocouple the following relations

are derived
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oi’ - % = t&g - t “ ( % _  ^ '̂ •®̂ 76

for a temperature near the gold or silver point respectively. Where 

Âg* e.m.f. *8 at the gold point t̂ ^̂ , the silver
point t^^ and a teraperatuxe t near t^^ or respectively, t being 

in 0̂. Therefore or on the Tiiermodynavaic Temperature Scale 
can be determined from the gas thermometric measureraents at 

temperature T near the gold and silver points respectively.
The result of measurements taken over g months showed the 

mean value of to be 1234*430^% (961.280^0) with standard mean 
deviation of 0.038°0 and that of 1’ to be 1336.056‘̂K (1063.680°G) 

with the standard mean deviation of 0.036 0. Further, using a silver

ingot the reproducibility of thermocouples at the silver point was 
shown to be 0.5 microvolts from the cooling curves.

2*5 l^wther gas thermometric determination of the temperature

of gold and silver points was carried out by Moser, Otto and Thomas (8) 

in 195# and the values wez'e shown to be 1064*7&^G and 962.16^0 
respectively.
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3.1(a) Design of the Furnace

The furnace used is essentially similar In design to that 

used by De Belincourt (3)5 but with # m  seme modifications as 

detailed in Figure 1. It is a vertical cylindrical furnace with 
the heater wound uniformly on a high thermal shock resistant 1ÔA 
material tube whose conductivity is much higher than that of the 

insulation (almiina powder) used in the body of the fumaoe. To 

increase the uniform temperature zone, the central portion of the 

furnace tube is occupied by a heavy Kickel block (lO|-"h x 4^/l^” o.d. x 
3 /O" i$d,). The nickel block, though of low conductivity, has 

the advantage that it deteriorates by oxidation and a hard crust of 

oxide is formed wliioh protects the remainder of the metal# The 

ends of the tube were fitted with blocks of low conductivity 
refractory material, e#g# fire-bricks to prevent direct heat loss 

from the ingot to the atmosphere# The bottom of tho furnace tube 
was closed to prevent the natural conveotional flow of air. For 
such a furnace the distribution of temperature along the axis as 

described by Alieva (9) is shovai in the graph below*
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It is soen frojsi the graph that imiforiiî teüipeicature sono 

extends more towards the bottom and that the maximum heat lose 

occurs at the top* In tlie finally assembled etate the silver ingot 

was 5** av/ay from the bottom and 11" from the top of the furnace of 
20" total length, so that tho whole length of the ingot would be in 

the more uniform temperature sone*

3*l(b) Heatere
A Mici'ome ribbon l/8" width x 0*0X42" tliick (I’ophet A) 

was used for the main heater and two supplementary windings 

26 s*w*g* ( Brightray C) threaded througii alumina bead insulators 
were provided at each md of #e nickel block to compensate the heat 

losses at either ends of the furnace tube. Two thermocouples
T^and measure the temperatures at theme two ends of the ingot 

and the power supplied to the two supplementary windings oould be 

adjusted to malce and Tg as nearly equal as possible. In view 

of the poorer insulating properties of the refractories at high 
temperature there might be considerable leakage froci the mains to
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any earth available in the thermocouple eirouit, and to reduce 

this alternating current was used for heating the furnace.

3.1(c) The silver ingot was 4'̂ long, 1-|-" in outer dlajiieter and 
in inner diameter allowing an immersion of the thermocouple well 

of The ingot was contained in a graphite crucible and as

silver absorbs oxygen in the molten condition emd then shows a 
considerable depression of tho freezing point, the surface of the 

ingot was covered with graphite powder to a depth of to avoid 

oxidation. The thermocouple wall was a thin graphite sheath made as 
an integral part of the graphite cruèible lid serving to protect the 

thermocouple from being contaminated by the silver. Temperature 

distribution over the length of the ingot was also improved by the 
use of a substantial block of graphite for the crucible* The 

crucible was formed by boring an axial hole of 1-|-" diameter in a 

cylinder about 2.75** diameter and 5Ï’* long, the details being 
shown in Figure 1. The crucible was contained in a high thermal 

shock resistant alumina (lOA material) tube which extends 2" above 

the top of the furnace, thus providing a means for removing the 

crucible from the furnace* Alinnina powder insulation filled this 
tube from the to%) of the crucible to the level of the top of this 

tube « An outer silica tube (a) was used so that no alumina powder 

could fall into the thermocouple wall. To indicate the correct 
position of the thermocouple hot junction and also to measuâ e the 

temperature gradient along the axis of the ingot a gear drive was set 

up, as shown ! in Figtare 4» in order to per̂ nit the thermocouple sheath 

to be moved vertically.
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Two thermoGouples niade of $0 o.v/.g. wire and 6 ft. in 

length supplied by Johïî ,Matthey & Co. ltd. and throe others of the 

same gauge supplied by Baker Industries ltd. were used to measure 
the xeproduoibili 1y. They were threaded through tv/in-bore alumina 

insulators, 60 cm. long, 4 mm. in diameter and with 1 mm. bore.
The remainder of the wire to the cold junction \ms insulated with 
P.T.O. sheaths, and to prevent the formation of an inductive looj?, 

the two arms were bqnded together. During the threading of long 

lengths of wires through the nnarrow holes in tho insulators it was 
quite possible to produce strains on the wires. To get rid of the 
strain as far as possible all the couples were annealed eloctrioally 
for l'|~ hours at a temperature of about 1350^0 after they were 
threaded in their Insulators*

The leads from the thermocouple to the measuring potentiometer 

were 24 luw.g. copper wires insulated with P.V.C. sheaths. This would 

not produce any parasatic e.m.f, between the thermocouple junction 

and the measuring potentiometer and also hea.(t conduction would not 

be enough to affect the temperature of the cold junction.

5 • a jMElâJMpJLSâUâ
For very accurate determination of the reproducibility of 

the thermocouples it is necessary that the cold junctions are always 
at a constant temperature. It is found by other investigators that 

tho temperature of the triple^polnt of water , the temperature at 
which pure ice, liquid water a?id water vapour are in equilibrium,
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can be realised more readily and acourately tlian can the ice«*point.

The difference is considered to he due to the effect of pressure 

and the effect of dissolved gases. The temperature of the triple« 
point of water is realised in sealed glass cells containing only 
water of high purity. These colla have an axial re-entrant tube for 

the thermometer. In such cells the triple point temperature is 

obtained whenever the ice is in equilibrium with a liquid«vapour 
surface. At a depth h below the liquid-vapour surface, the 
equilibrium temperatui»e, t, between ice and liquid water is given by 

the formula

t « O.Ol^C - (0.7 % 10***̂ deg/m.’m) h,
With a good triple-point cell, the triple-point temperature 

of water, O.Ol^C, can be reproduced with little difficulty to within 

^ 0*0001^0. Therefore the cold junctions of the thermocouples were 
kept at the triple^point of water*
Preparation and Üse of the Cells

Two triple-point cells have been made by the author in this 

laboratory* The same method as used at h*P*b. was followed for the 
construction of the "pyrex" cells, (The details are shown in Fig, 2) 
for cleaning, filling with double distilled water and sealing under 

vacuum* Api^roximately 10 litres of water was distilled through each 
column before they were used to steam and charge the cells* But the 

sealing at this upper joint was followed sligîitly differently thon it 

was suggested by ‘.tî.P.li* The suction was applied through the joint 
at A with the cell held vertical and the cell was then warmed over 

the whole surface by waving a luminous bunsen flame for the removal
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of air from water and the glass walls, \Vhen tho water level in the 
cell W0,s lowered by about 1" due to evaporation, the tap between the 

cell and the pump was closed, but the vaouum pwnp was still kept 

running in oase there was a%iy leakage of air through the joint at A, 

After 5 minutes, when there was no more boiling of water and v/ater 
inside the cell was steady, the cell was sealed off by collapsing 

the constriction with a very fine torch or bun sen flame and then 

drawing off. After cooling down to room temperature the cell was 

found on inverting to give a good "water hammer" effect.

Cell Mo* 1 v/as cleaned and filled with double distilled 

water, but 5 days later during the formation of an ice sheath/for 

the second time, leakage of air was found through the joint of the 

wall with the main body of the cell. This might be due to the fact that 
stress relief of the joint made by the glass blower was not perfect. 

However Cell Mo, 2 was first cleaned with demineralised water for 
14 hours and with double-distilled water for the last 4 hours, but 

v/as filled completely with double distilled water,
The Cell Mo* 2 was compared with a standard cell obtained 

from the Chemistry Department of the University. The two cells wore 
first of all cooled for an hour in two large Bev/er flasks containing 

melting ice. A sheath of ice several millimeters thick was formed 

round the thez'mometer wall by the circulation of cold methanol from 

a methdnol/solid CO^ freezing mixture passing through it. Here the 

gas liberated from the sviblim&ziy COg v/as not allowed to excape freely 
into the atmosphere and the pressure consequently built up was used to
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force the methanol through the apparatus* The wall v/as then 

emptied and water at room temperature was added to melt a thin 

layer of the ice nearest to the well. When the ice-sheath was free 

from the well, ice-cold water v/as added taking care that no particles 
of ico found their xmy into the well, since a particle of ice would 
take a considerable time to melt due to the small difference of 
temperature 0,01^0 ‘between the ice and triple point temperature.

Fvery day the cells were covered up> to the top with ice 
in a Dewar Flask and with the top carefully protected it v/as possible 

to hold the triple-point teraperature for about 8 days.

The tv/o cells were compared by measuring the resistances 
of a Barber design resistance thermometer held inside the wells,

(about 1" away from the bottom of the well), using a Smith Bridge and 

galvanometer photocell amplifier unit. A fine thermostat added to 

the bath heater circuit of the bridge helped to keep the bath 

permanently at t 0*5^0.

3*5
iiie ecp,tipiaent for electrical measurement and control and 

the furnace was situated in a temperature controlled (i 1*5^0) 
laboratory. Tho electrical circuit diagram is shown in Figure 3*

The measuring instrument used is a very high precision type 

5203-A/Auto ciirrent controller potentiometer supplied by H. Tinsley 

& Go* ïitd, This potentiometer is designed to be nearly free from 
parasatic thermal e.m.f* A galvanometer of adequate sensitivity 

(Tinsley type 52I4 photocell galvanometer amplifier with typo M8*2*45*33
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gilvanometer ami type 5S14A thermal compensator) v/as coniieoted to
the galvanometer terminals, The thermal compensator is provided

with a "Galvanometer Series Eesistmioe" control. The circuits of
which voltages are to he measured, were connected to the pairs of

terminals "1", "2", "3" or "4*‘*
The controller driving a d.o, current control system

consists of a high gain d#o. amplifier* fegThe e.m.f, of a standard

cell is compared with the voltage drop across a resistance in the

current or standardising circuit, the difference, or error, is fed
into the d,c, amplifier which causes the current to change in the

direction which reduces tho error, This error under steady state
6conditions will he less than 1 part in 10 *

During switching the small amount of energy absorbed by 
the galvouometar produces a small variation of e*m#f. of the order of 

10 parts in 10̂ , but it reduces to one or two parts within few 
minutes, Fluctuations in voltage supply for the lamps cause 
transients in the stabilised current supply which gives rise to errors. 

Vibrations also produce a similar effect, The drifting mf the 

stabilised current is usually caused by the thermal e,m,f*s in the 

standardising circuit or standard cell circuit, The temperature 

coefficient of standard cell being 4G parts in lO^/^O, it iras 
necessary with high precision measurements to control the temperature 

of the standard cell to close limits and in the temperature controlled 

laboratory the temperature of the cell 5512A type Y/a,s controlled v/ithin 

0,05^0.
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The electrical measurements were found quite satisfactory 
to well within the limits required, being limited by the galvanometer? 

sensitivity which gives a deflection of 1 cin/O.l/" V .
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CIIAFM A

The aocuraoy to which the reprodiici'billty of the 
thermocouples can he realised depends mainly on ixio factors?

(a) the freezing point of the actual specimen of silver 
employed, and 

(h) the precision with which the calibration of the 
thermocouples oan be reproduced.

The impurity of a silver ingot supplied by Johnson,
Matthey & Co* Ltd. is claimed to be 10 p.p.m* and the following 

procedures in the method of Ccilibration are recommended in the 
specification of the interiaational Temperature Scales

(1) The th ermocouple should be immersed in the specimen

through a hole in the centre of the crucible cover 
and during freezing the metal should bo cooled slowly 

from a temperature a fov/ degrees above its melting 

point.
(2) Ihe couple should be mounted in a twin-bore alumina tube

thus separating the two mres*

(3) The immersion of the couple inside the specimen should
be such that during "Uie period of freezing and melting 

the couple can be lowered or raised about 1 cm. from 

its normal position and the e.m.f, indicated by the 

thermocouple should not alter more than lA'V (o.l̂ C).



- 32 -

(4) During melting and freezing the e.m.f. should remain 
constant within 0.1/̂  V (O.l^O) for a period of at 

least 5 minutes.
(3) Melting and freezing should not differ by more than 

3/if (0.2^0)

Before putting it inside the furnace the surface of the 

silver ingot was cleaned and the metal was handled carefully to 

minimise contamination. IVork was carried out v/ith the metal 
contained in a graphite crucible, the top surface being covered with 

graphite powder. Though solid silver does not oxidise readily it is 

necessary to protect it from oxygen during a freezing point 

determination. Bince it absorbes oxygen in the molten condition and 
then shows a marked depression of the freezing point due to emission 

of oxygen during solidification. But absorption of oxygen from the 
air does not take place until 30  ̂above the melting point, so care 

was taken not to heat the metal more than it was necessary*

Thermal analysis was carried out under a certain cooling and heating 
rates. Temperature changes in the melt before transformation was 

during melting about 1.5 AV/min (0.15^0/min) and during freezing 

about 0.6/ V/min (0.08^c/min). With the melt held a few degrees 

from the transformation temperature, the furnace power was adjusted 

to give a desired rate of cooling or heating.
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5*1 DISOBSSIOM OF BXPFRIMENTAX. HSB0LTS

5•X(a) Triple Point Cel1

The results of the comparison hetv/een c ell Ho. 2 and the 

Ohemiotry Department cell obtained over a period of 9 days are shovm 
in the Tables 1 and 2 and the graph plotted is shown in graph Mo* 1.

It may be seen that in the first day the temperature of both cells 

rose by amounts corresponding to 4 ^ 10“  ̂ohms, which is approximately 
4 X The pronounced lowering of the tonperature by 2 x 10"^OG

on the second day was preswmbly due to an Increase in strains which 
would occur with relatively rapid freezing. Later on the slow rise 

in temperature is believed to be associated with the crystal grov/th 

and release of strains in the ice. The tv/o cells, however, agreed 

with each other to within ^ 2 dc The reproducibility of cell

Ho. 2 was found to be better than that of the Chemistry Department 

and lies v/ithin - 1 x 10**̂  ohms which is approximately - 1 x 10"^^C. 

The overall small ohaaiges in the readings of the two cells under 
comparison might be accounted for by actual changes in the temperature 

of the cells, by changes in the resistance of thermometer or by 

changes in the measuring; bridge.



-54"

5.1(b)
The metéing and freezing curves obtained with 

5 thermocouples, reannealed after threading through their insulators are 

shov/n in graphs Hos* 2,39495 aud 6* An upward displacement of the 
thermocouple along the axis during melting or freezing produced no 
greater change than 0.1 / V/cm of movement.

Oooling oin?ves show the rise from supercool (recalescence) to 
a plateau and an alloy slope. During the period of recalescence^ 
nucléation and growth of the solid occurs at such a low rate that tho 

amount of latent heat of fusion released is insufficient to balance 

the heat lost to the rest of the furnace. Afterwards tho growth rate 

becomes great enough to overcome this loss and the temperature of 
the melt steadily increases. Eventually the melt tempex̂ ature 

becomes constant. The last section of a freezing cuive is a long alloy 

slope of decreasing temperature which persists until all the metal 
is solid. The rounding at the end of a freezing curve is due to 

both a rapidly increasing concentration of dissolved solute in the newly 
frozen solid and to the increasing rate of heat loss from the melt 

as the furnace block drops well below the melt temperature.

The melting curves show the rounding at the end a fev; 

minutes prior to the liquid break. This may be due to convection 
currents in the crucible when the bulk of the sample is liquid and 

only a small fraction of the change is still solid.

The ideal range of alloy transfox-mation temperatures is 

the difference in tho temperatures at which melting or fa/eezing
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begins and ends in a completely homogenised alloy or, in other 

words the difference in the temperatures of the solidus and 

11quidus for the alloy on the equilibrium diagram® In practice 
groat obstacles exist in realising ideal melting ranges bocause 

it is difficult to attain complete homogeneltation of a samplej 
tViis is a consequence of the differences in the solubilities of 

the Impurities in the solid and liquid alloys and of low rate of 
diffusion of the solute in the solid.

In general, the observation showed that the plateaus, 

with a duration varying from $0 minutes to 43 minutes depending on 

the rate of freezing and melting remained constant to v/ithin ^ 0.07/T 
during freezing and - 0.12 /V during melting. The agreement between 

melts and freezes fell within^0.05/V. The oooling curves, as 
seen from the specimen curves, show quite ĝood flats. On the melting

1Vfc
curves the plateaus are not as constant in temperature as^freezing 

plateaus but show in most cases a steady rise of less than 0.01/V/min., 

and hence the melts show a reproducibility some tenfold better 

than that obtained by the earlier workers.

The calibration figures obtained for 5 thermocouples 
are set out in Tables 4j3?^9? and 8* The couples Mo. 1 and Mo. 2 
were supplied by Johnson, Mat they & Go. Ltd* Tbe couple Mo. 1 

first gave 2 melts (Table 4A) agreeing to ^ 0.15/ F and 2 freezes 

agreeing to 0.08/ V, the overall agreement of 2 freezes and 
2 melts being ̂  0.l6 ¥. %en the thermocouple was replaced inside

the furnace after several days during which the voltage stabiliser
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was not working properly, ‘Biis time the couple showed a 

continuous fall of 0*3/F in the course of 3 freezes and the 

agreamentMween one freeze and its previous melt was 0.5AF,

This poor result is to he attributed mainly to small strains which 

may develop in the wire due to normal handling during replaoement.

After 1 month, during which the work was carried out with other 
thermocouples, the couple was reannealed when the agreement ajwong 

2 freezes and 1 melt was found (Table 4o) to be t 0.10/V, but wi th 
a mean value as much as 2.0 /V below the former value. Further 

before and after reannealing the reproducibility of each melt or 

freeze was found to be tho same and therefore showed that the wires 
exhibited a uniform strain which changed only the total e.m.f. 
of tho couple after reannoaling.

Couple Mo. 2 gave (Table gA) 4 freezes agreeing ar;ong 
themselves to 0.0 9/T and 3 feel to agreeing to ^ 0.12 /V, the overall 

agreement among 4 freezes and 3 melts coming within - 0.22/V.
The departure in the mean e.m.f. of couple Mo. 2 from that of 

couple Mo. 1 is 0*52/ V. After one month, during which the silver 
ingot m m  melted and solidified about 20 times, the couple Ho. 2 v/as 

tested again and gave (Table 5A) 2 freezes and 2 melts coming within 
^ 0.1 5/V with the mean value only 0.14/V below the former value 
and hence shows that during this period the silver point has not 

changed considerably.
Couple Ho. 3? Ho. 4 Ho. 5 wore supplied by Baker Platinum 

Ltd. Those three couples behaved nearly the same in showing their
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oiumgos in e.m.f® values from one freeze to another freeze arid 

also from one melt to another melt, the twerage agreement between 
one freeze and its previous melt being 0.8/ V. Oouples Ko. 3,

Ho. 4 und Ho. 5 gave (Tables 6,7 and 8) 4 freezes and 3 melts 
agreeing to - 0.23/7, ^ 0.28/V and i* 0.28 /V respectively.

The departures in mean e.m.f» of couple Ho. 3 from that of couple 

Ho. 4 and oouple Ho. 5 are 5*92 /IT and - 1.68/V respectively.
In general, it is seen from the results that each 

thermocouple has a tendency to show a continuous fall of its reading 

in the course of successive calibrations. This decrease in thermal 
e.m.f. on prolonged heating might be affected by the diffusion of 

rhodium from the platinum-rhodium element at the hot junction, 
or by the taking up or removal of impurities in the thermocouple 

wire. Also this decrease might be affected by the small strains 

due to slight movement of the element wires of a couple relative to 
the insulators imd to %e differential expmision of the wires and 

the insulators, #ien they are placed in the furnace. Since the 
space available is restricted, this movement gives rise to friction 

between the thermocouple wires and the v/alls of the insulator and 

also if the wires become jammed at miy point, to tension or bending, 
according to the direction of the relative movement* Buch strains 

undergo reannealing on prolonged immersion in the furnace and may 

thus give rise to gradual modification of calibration.
As all these results were obtained with the same fumaoe the

different reproducibility shown by the couples of different make is
to be attributed to different purity or in-homogeneity of the element 
wirec.
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5 * 2 GonojAiBions
The above experlmeaits suggest that using higki grade 

equipment the practical limit in the precision reproducibility 

determination 0 f a platimm^lO^ rhodium-platinujn thermocouple is 

of the order of ^ 0*09/ F equivalent to *1' 0.009^0 (4F) 

and ^ 0.22/T equivalent to ^ 0*022^0 (4Fg . the symbols in 

brackets refer to the number of freezes and melts taken into 
account* Furthex', the molts are quite reliable^to be taken into 

a,ccount, i.e. there is^an increase in the aocureicy^obtained by earlier 

workers. The above calibration figure is for the couple selected 

as being the best of all couples tested by the author in this 
laboratory* The main difficulty in attaining the above accura,cy 

lies in getting sufficiently homogeneous and pure wire for the 

thermocouple. The presence of strain, original or acquired accidently 

by normal handling of the thermocouples in course of measurement, and 

gradual contamination of the wires during heating are believed to be 
the main causes of uncertainties.

The limitations placed on the repvuduoibilily measurement by 
the potentiometer, the triple point cell and the thermocouples combine 
to form a formidable barrier to any further improvement in the 

precision.
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PART II

PHimOE

This section dosoribeO the calibration of a platinum*

10;̂  rhodium-platinum thermocouple by direct comparison with a standard

platinum resistance thermometer in the vicinity of the antimony
point (650.5̂ 8). Tills temperature is the transition from resistance

thermometrio mea,surements to thermocouple measm'ements on the

For calibration a bath of stirred liquid is usually used
to attain a temperature ranging from -80^0 to 650*5^8 within the

a
limits of accuracy of the test® But such baths take/long time' to attain 

an elevated temperature near 630*5^0 and. the purpose of using a 

Vacuum furnace is to get the temperature in much quicker time and 
stable within the limits of accuracy of the test. The furno-ce 

specially designed for this purpose takes about 3 hours to attain 
a temperature near 630.5̂ G.| and this temperature is maintained 
stable v/ithin - Ü.l^C during each run on exiperiment. The calibrated 

e.m.f. value of the thermocouple at 630.53̂ > ^ 0.0157°G, based on 
resistance thermometric measurement is 5543*1 - 0.1 / T.
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CHAPTER 6

6.Ï. APmiATUS
The dG0ig;îi of tho appmratuo is Bhûxm in detail in

Flguro 5* It io a vortiool oyllndrloal fumuioe maintained at a
vacuum bj oonnodting a gas hallaut rotary hl#i vaoimm pump through- 
joint A, cylindrical oopx>er radiation ohleldo v/oro uood rathor
than pov/doreâ thovftîal insulation to minimiao dogafislng. The .Cttmaoe 
body was ourroundod hy a utoma jaekot to maintain a aonetaiit 
tomperaturu at the outside and also to roduoo heavy heat looeen from 
the lucide® The eteaiii used in the jaokat m m  paoeod through a 
condenser and the water condensed was fed back to the elGoto)thermal 
boiler (Figure 6B),

windxngo made of licbroao ribbon tv6ro need for the 
heater and theoo wore wound tmiformly round six alimina rode, Tho
voltage supplied to all the three vjindinge oould bo separately
controlled by variable rhoootatu* The supply- ie from Borenaen 

voltage regulator which utaMlisea tho input voltage to tho furnace 
to v/it.Viin 0.%L To increase tl.ta uniform tmnjiomxtxr̂ o aono of tho 
fumiace, the contral pox’tion of the fus?naoo was oecupiod by a

Hie3/f" long GoppoT rod of 1" cliarotox' so as to aqualise^ temperaturo 
by conduction® ^

Two oenteil toloe were drilled into tho copper rod iĥ om 
oither end, the top one was for tho thermocoiiplo pocket and the 

bottom one wao for the roslutanco thermometer pocket* The pockets 
W0XV5 raacle of stainless steel tubes with ono oncl closed and tho open 

ends were oilver eoMered to the end flanges of the furnace.
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Six Çyrotenax thermoeloctrio cables (niohel ohroniixmi/ 

nickel aluminium thermocouples) were used for meaenring the 

temperature» Those v/oro placed x/ith a régulas? spacing of 2|'" 
along the length of the copper block such that when the apparatus 

was assembled the ends of the thermocouple and resistance 
thermometer pockets lay in the centre of 2|r" length covered by 
the thexmooouples Tjond Tlie thermocouples v/ere also silver 

soldered to the end f l a n g e d u e i n g  this period the thermocouples 

Ho. 2 and Ho. 3 wore burnt out and thex'o were only four thermocouples 

left to determine the vertical temperature gradient along the heating 

zone of the fumaoe. By âiarying; the power supplied to the coils it 
v/as possible to achieve a temperature distribution of better tîian 

2 ? (0.05^0) over the centre 2̂ -" of the furnace at temperature 
630.536^0. The maximum vacuum obtained inside the furnace is of 
the order of O.9 mm. of Hg* va>ctium mi^t be due

to #ie degassing from the cement used for covering the windings 

and from the wall of the furnace body.

6.2 Electri cal Measuremeiits
For measurement of the e.m.f* of the thermocouple, 

resistance thermometer and standard resistance, the type S205A 

potentiometer was used. The circuit connections are the same 

as shown in the ĵ revious experiment, Figure 3. The circuit diagram 

for measuring the resistance of the thermometer and comparing with 
the standard resistance is shown in Figure 7. A 1000 o W  resistance 

type I659 i8 connected in series with the resistance thermometer and 

the st&mdard resistance to allow a 1 m.A. current in this circuit.



tJaing the cirrrent controller the current #ould remain stable in 

this circuit under steady state conditions within 1 in 10̂ *
A standard platinum resistance thermometerg type 

v/aB used for comparison^ and the thermocouple used for calibration 
was supplied, by F.P,h, The standard resistance was a four terminal 

class 5̂  typo 2504 manufactured specially by H, Tinsley & Oo.* 
having a resistance of 23 ohm at 20^0.

e.m.f. across Res. Tîierm.at triple point temperature

« e.m.f# across standard resistance

m

5=

V a
S

■SSI

S3

R S
B

•Ï1C*

relation

Resistance of standard resistance.

At ̂triple point temperature p is measured from the

V’' i n  p

llhp. _ ^ ̂  0
o

and at temperature t, R^ is measured from the relation

Vt
R. “ X R mean

where R̂ , p mean is the mean value of p measured before and after 

using the resistance thermometer at temperature t.
Further) for the resistance thermometer the following values 

were supplied by N*P.b, for the constants in the formula

" ^0 ! , t V t
*1* jQ f I u *M!ta3«wsarrt»

B q  100 100
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1

Constant
|û. ■■JL jU<WHWte>

Value

0.00392672

' é 1.4920

K 24*7148 ohm0<rW*MW jypfgf.-ft.<sdiWwav’PÂteR*g*iis>*a.rt«a>«q!SJtcraiL»n»fŵ

When p can be calculated from

„ „  ■ 24'7148 , 0.01 ,V 0.01U# 01 « ^ 1*4920 \ • 1/ ---
0.00398672 100

or
BT.P.calculated

24.715704 ohm

and reolGtancé H ,.̂ G is calculated from630.5

®630.5°® “ 24.7148 

0.00392672
-i- 1.4920 ( ^2^  _ 1) 0*®100

^630.5^G calculated 81.0605 ohm..

Aesuming that 1 m.A* current remains constant in tiie resistance 
thermometer circuit

o,
•5 calo.

^630*5  ̂ calc.

“3.P. oalo
T,B* measured

" 24.715688 ^

» 8257505 /V
)

For calibration o f the thermocouple the temperature inside the 
furnace was adjusted to get V4 stable near about 82575 /'V
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G M P M  7

7.1 DISGÏÏSSIOrî OF FXPmiMmTAL îd’iBULTS

The 5205A type potentiometer could measure^e.m.f. of the 
•*7order of 10* /f V, and with 1 .«i.A. current passing through the 

thermometer^ its resistance could he measured to 10*^ ohm. At 

the thermometer sensitivity of 0*1 ohm per degree^0*5 it was thus 
possible to measure^temperature with a precision of 1 % loT^ Ĝ.

The results (Tables 10, 12) show.that the resistance p 

increases by about O.OOO7 ohm (0.007^0) after using it at̂ n̂ear 
630^0. 'Biis change duo to long term heating at the above elevated 

temperature is presumably caused by extension or volatalisation of 
platinum wire* Further the change In the value of E^ p from every 
day .-'Uia io might be due to work hardening of the platinum caused 

by the normal handling of the thermometer. The mean value of 
Rfn p measured before and after using the resistance thermometer ati # JL .
temperature t v/as used to calibrate in each run*

From the Hier ^ HiA6 thermocouple readings (Tables 10, 12) 

it is seen that the thermocouples Tg at the bottom and at the top 

of the furnace give temperatures about lO^G and 5^0 respectively 

below the temperature at the centre. This could be due to the 
considerable amount of heat loss by conduction from either ends of 
the furnace. The calibrations v/ere made, by adjusting power to the 

heaters—when the thermocouples T., and i\ agreed each other within 
2/VV (0.05^0) and the standard resistance thermometer readings were 

controlled at 82570/^^ within ^ 10/^¥ (graph 0) over a considerable
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période This e.m.f* value gives equivalent resistance for the 

thermometer 81*0641 ohm (Table 15)9 which is 0.005 6 ohm high ex' than 

the resistance calculated at 650*5^0? and thus the actual temperature 

at which the calibration was made is about 0*036^0 higher than 
63O.5OG, l,e, is at 630.556 ^ 0.0157^0*

The cold junctions of all thermocouples were at the 
ice point O^G* The e.m.f. against the temperature curves 

(graphs 7, 6) show the same type of relationship for both the 

thermocouplo and resistance thermometer. During each rim the

thermocouple readings remained stable at 5545/^V within * 1 ?
(graph 7) and slight adjustment of heaters was required to maintain 
this stability over considerable periods# The overall calibrated 
values from tivo runs lie v/ithin ^ 0.1 which show the same 

consistency and reliability of the therraocoixple as of Uie resistance 

thermometer as the means of measuring temperature near 630*5^0*

7*2 Conclusions
* Wiw>rTiniPW i.y h wawffa

The considerable loss of heat at the bottom and top ends 

of the furnace can be reduced by putting some radiation shields at 

either end# and fux’ther̂  usings steam jacket at the top end* Despite 

this loss of heat at the ends, the temperature distribution's 

reasonably uniform at the centre (0.05^0 over 2^" length) where the 
sensing elements of the thermocouple mid the resistance thermometer lie 
Gonsidoring the courcos of errors from normal handling of the 

thermocouple and resistance thermometer, the temperature of the triple
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point cell, the precision of the electrical measurements, the 
stability of the A,U. voltage supply (O.gjQ to the heaters, the 

value of the thermocouple e,m*f. calibrated at 650*556^0 is 

5545*1 with accuracy of 1 0*1
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The works described in this thesis form part of a 

Programme of research into the theimodynemic and transport 
properties of steam supported by the Central Fleotrioity Generating 

Board and is being carried out at the Mechanical Engineering Research 

iUmexe, the University of Glasgow*

The author is indebted to Professor James Small, the 

javttôs Watt Processor of Mechanical Engineering, in whose department 

he has been privileged to cany out the research, and also wishes 

to aolmowledge the helpful advioe received from Dr. E,A* Bruges and 

his others'.colleagues at the Research Amexe.
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TABLE 1 

ÏB1P.TÆ POIHÏ OKLL Ho. 2
■m WVWT*A-w#̂ww*#

Time Bridge Room Battery Bridge Headings
Temp. Temp. Ouxo’ent
00 OC amp olim

l#È#MWU' iwrii:*vimM iifrmpAwM»:A*i'üa-wew*f
10.2.64

4*30 p.m. 25*5 20.5 1 22.831 881
6 .50 p.m. 85.5 19 1 83
8,00 p.m. 25.5 19 I 85

25.5 19 1 85
11.2,64

10.35 &.m 25.5 19 1 65
4 .3 0 p.m 25.5 20.0 1 75
7.00 p.m 25.5 ■ 20.8 1 80__ „8.QP p.m 25.5r>‘<iiir~tif.'. ̂Tvvrirr'i r-i-*<f ‘i‘~r7̂inrL'‘̂î̂ 20.8 1 - .....  81

12.2.64
9.13 a.m. 25.5 19 1 82
1.35 p.m. 25.5 20 1 82
3.00 p.m. 85.5 20 1 83

_____ 6s.iaji,«^ 25.5 20*W%%*«rrw. jTjrt T.t« 1 03
13.2.64

9.10 a.m. 25 19 1 80
1.20 p.m. 24,5 19 1 78
4.00 p.m. 25,5 19 I 80

. 5a30 25.5 19 1 80...
14.2.64

9 .30 p.m. 25.2 19 .2 1 82
12.45 P»m. 25.2 19 .2 1 80

25,2 19.2 1<fc«4yts5Wia4irrv.i|Éewiïitetiue«e%wiç)»6ai» 80
15.2.64

10,30 a.m. 23,2 19.5 1 82
12 noon 19.54M n* n. .arAgorwwfm» 1i^.t>11111 pjiiLLx̂.-ttv'yu'.'.i #r ______82

17,2,64
10.30 a.m. 23.2 19 1 83
12 noonT**.WMtn##.'M, 1M.111#. liî'Ji.t'Wi'n'ifci~ ̂i~',a jiî. 20 ____ _____1_„___ 82 .... .

18.2.64
12 nooa 25.5 20 1 83

&.wjtaeTr«.îr.v <?

g&LLf Aim;
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'I’ABM! 2

CHEM iam  DEPARTMMT CELL

iwoîcsn«<togÆt T^inrA gow »m f».viff»\rttttt,^ .*g^£m y

Time
Wk »  K3MA#U'4 i.'

Bridge
WLqawteKwiiHM» mwp

Room
mittawTj wrmxTv t
Battery

(K#m4w±#40F%drwK'=ïWf4,d M ras*w w t.*

Bridge
Temp. temp. Current Heading
6C 00 amp ohm

10.2.64
5 .20 p.m. 25.5 20.5 1 22.831881
7 .1 0 p.m. 25.5 19 1 83
8.30 p.m. 25.5

Wr.#l5wiHmii iP*VSF*iF**yt* • 19 ̂.i)w'.''Kr4w ' T'FV'̂t
11.2.64

11.40 p.m. 23.5 :9 1 63
5.10 p.m. 25.3 m-.,. 1 75
7 .3 0 P.m. 23.3 2Û.8 1 .

Wi'Mw ■W inM ir.ywÆ troT^waprsj»
80

12*2.64
9 .40 a.m. 23.5 19 1 80
3*30 p.m. 25.5 20 1 77
5.35 p.m.iiMy.li i.i iu ff i .t  m ‘<wi|i*<h iticiv. 83.3 20

»e<r*jw<e«Bw*w>44*»Miyr»*u7Xi*ae«ir4e 1 ,___ 81üw LM»Mnrw«A=wÆe%3i#!PMMO#i$»mw*
13.2.64
9*50 a.m. 25 19.5 1 77
2 .30 p.m. 25.5 19 1 . 80
5.00 p.m. 23*3 ._19_ ____ 1 _____________ %8

19.2.64
10.00 a.m. 23.2 19.2 1 77

2.30 p.m.
fTTxCarg**##^ IM? n^^f-deiMTWgaa «--5irw n'Sf»iû ?ts 25.2 19,5 1

.1 ,A\ U ■
..... 80......

15.2.64
il.00 a.m. 25.2

T i i  »*i. I’M» ■ sm i l ^ T - *  5 ■ , 78
17.2,64

12 nrton 25.5 20 1 80
r tw rtg » ‘ifcXMt^*w*«-NftmftA*’ri fiyp rAwmww». .MMftilfJgP jy g j M  KK :m v n iA iw W fiw * ? ,# . . w * # i, 'iTir. myi.’Tr'i’i'tfi ■ ‘u ir,
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tABias 3 

CAMBHAtlOH OF tHEIiMOOOtJPLES
«iwwnwï' 1) i m g J i g J i a v f l 1 1 # " # lUi

T.G. Ho. 1 (Detailed Hesults of Emi Ho.

Bate
'. ^  r.>eaaeeai.i»5*RMo

Time in M'ELTXHCt
1 ;:|j, W# 1 f  r , 1 ?i"MI '*> kA#

FEBEEim
minutes thermocouple Thermocouple

« * W * ’ ktit3iKt'iâ24eBe*fwrrpii>e3Uï$yL'swr**'iwm
e.m.f. in M V

27.2.64 0 9150.12 9150.03
2 .29 .14
4 .34 .27
6 .40 .42
8 .44 .52
10 .40 .56
12 .51 .58
14 .53 • 59
16 .5 4 .58
18 .56 *59
20 .56 .58
22 •57 *57
24 .57 .56
a6 .57 .56
28 .50 .54
50 .60 .55
32 .62 .54
54 .64 .53
56 .66 .52
38 • 69 .52
40 .71 • 51
42 •73 *51
44 .75 .50
46 .82 .45
48 .97 .46
50
52
54
36

51.50 .42
.37
.22

P  iV *f# t, m «amc*- 4»gWt,^,,LL»dW%keAv«rwmp*nf.'7#n3m' 'er»e*M«*Hhiw>*W'eî6!éïitT«*WlBwr«iersAS:k-WfWJ^TH»
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TABLE 4

T.C. Ho. 1
WmrnaayioiK&M

ïflüM'IMG _
;viiri»»r4iir>3iiAfiit*vTrttia»6wy*WKyeTWiPjtow*rtNirt<*iiifc*3ÿi5LKi

*M«5*5#Ée6Lî3üti.-*Yitieter<eT*i'ï*

26.2.64
27.2.64

Hun
Ho.

Accuracy 
over 2M

Overall

Thermocouple data
M»ww#%m̂&±K.ywmapt»&w*̂!ÈP ###.,

.wiAWCWiMev.p-'.M.W-TTatti'̂ vefitrair

9150.6g 
9150.64

* 1.15
± 0.14

# *K$a4c\% ' *K' ##"  W*.' k i ru <

Mean e.m.f. 
of 2M

. m*<ii**̂wt>wWgx3Ttap ô 'n)iaf w j. .■ri(.’m>iin*sim.f'VTa*

9150.62/'V 

0,15 />V

<ncmc«flbc«isv̂

38

&̂̂'af3R3f.$̂ae3nig4A<»p%kPM?aMk'a*.'t*Mc«ij#u mt m i Fjm»KM*Aimrr#m«nKwW)Ma

Hun 
Ho

1
2

FHEB8IHG
ry#r«p;ww,*f,mwMKK#Mpp%M#Thermocouple data

4&*$UN*âUl JuJf. I* . PTA.#7Ka'.MMTP*1 h yî piTfp

9150.55RC.53

Mean e.m.f. 
of 21!'

Accuracy 
over 21'

Mean e.m.f. of gMj 2F 

Accuracy over 2M, 2'F

Z 0.07 
t 0.07

9150.54 /-V
% *%m .*'#*## 11% V, Ï in iiwmg.**

i; 0.08/"V

■50.61/-V

± 0.16/ V
iiirffw-î in*hi II .'...Ml

At
min

Ŵ̂Wty.KW&:mL?ATwf#*W»C*&

42
41

BWy>iW3e?̂*TîiàM*ir>»«kUv**' »4W±̂WMW* * n»ie*«*̂  AMMNb**»ilnwrii.11,(1 impWfT rwAT.fm:*;TCT:âggy?g
9.3.64 3 9149.88 i 0.16 46 3 9149.36 ± 0.06 48

10.3.64 4 9149.89 ± 0.12 41 4 9149.28 . f 0.09 36
11.3.64

«4n» n*Mir r,iii'.niii

5 9149.69 i 0.16 49 5 9149.07
»sjKi'W*',iii,ii *«.wiMn*er*WNir

± 0.09 35

G Keaimealed at about 1250^0 for l-g* hours

23.4.64
24.4.64 0.11 I 43

.#f*̂ -K'#̂#ni,iTpa. L 4 f  iltf W»PT.MJ I-,',■ .i*iaiyWUP«̂ iY»l>lWl|i>wJ4Wji'«**#»

9147.75

Mean e.m.f. 2F, IM.
II * r<L.4;<Jk*

Acouraov over H*'# IM

6
7

9147.61
9147.02

9147.73 /'V 
± 0.13/'V

± 0.06 
± 0.07

42
41
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ÏABLB 8r, J t;.vîi£*

SK:c:AFiieaæMiKT*?3*s

Date
MELÏim

H m  _ & ® a i S o o ^ ^ û S a.
Ho /̂ v) 4e( /u¥) mla

15,4*64 
16*4*64 
16*4*64 
17.4.64

1
2
5

9147.16
9147.11
9146.92

0.15
it 0.13
^ 0.14

Mean e,m.f. of  ̂

Accuraoy over 3M
«5*miiiW9k, x»W«waHini*‘a

Overall

9147.0 4 /-Y

^ 0.26/*V

46
40
57

Mean e*m*f* of 
5M, 0

AQonvLwy over 
3M, 4F

Rini
No.

mimzim
ffihermoGounle data

1 9147.10 i- 0.08
2 9147.07 ± 0.07
3 9146.94 ± 0.06
4 9146.80 i 0.07

WMI#W iumjpyf %m.kf^4o( yMV)

Merm e.m.f. of 4F 

Accuracy over 4F

9147.02 /<?
Af ak%%&sa5e*ajü&B3w*w*W*#"̂#A*'n'-f:Wv ' ■

± 0.29 yv

4t
iniïi

36
37 
39
41

9146.96/* y 

0.25 rv
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ÏAB3US 9

Platimmi therniocouple amirist standard resistance thermometer
* » * * iw iw e « iro K V M v<*4t%#«#.ietia***:«B*fto*ti±<s*ei*«siE-A»ji!efc--iW'W-W6B**e « * ##  i w m m  :' jwu *  ET :#T#;'# )### *fL#r j Jt« mm MJtmm

HwiM.-»^rpçttK*x j.v.'VtM v v  t£ £ itiW w a F ttr ite r*re^ iicw i A«i2« w  w ;:*a

ïime in Resistance thermometer IHiex'mo couple
rnin * e .m .f. in j^V e .m .f. inhV'

0 . 82549.75 5541.65
2 51.55 41.50
4 54.15 41.72
6 58.25 42.00
g | 01.45 43.32

10 64.75 42.55
12 68.25 45.00
14 71.80 43.30
16 74.90 43.60
18 77.75 44.05
20 79.70 44.35
22 80.25 44.62
241 85.00 44.90
26 03.25 45.10
28 75.25 44.50
30 69.25 43.45
32 67.00 42.75
34 66.80 42.60
56 68.00 42.70
38 69.30 42.85
40 70.75 43.05
42 72.40 43.34
44 7 3#5 43.69
46 77.75 43.75
48 80.25 44.18
50 85.55 44.85
52
54

« t iw # #  »WtW WKstm ĵapa-mttr^m* m#' w,,W'^f«wü.aw^k*#'#4=r»Mw#4pq*s.*W#p##faa\a|&
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®«-su£
Platinum
*W4pœi*%

oalihr^ion of N*P»L* Platlnma« lO^Ehodium*
,e aAainat standard resistance thermometer

Time Beeistance Thermo­ Time Eeeistance Thermocouple
in Thermometer couple in Thermometer e*m*f* in
min* e.m.f* iîi^Y e*m*f. in 

/T
min* e*m*fe in /f?

'4L**W »4!g t#&#AAO*

D' 82567.50
#ww#wt* #1 koÈ.

5542.50 26 83568.10 5543.00
X 70.80 43.00 27 69.50 43.00
2 74 .90 43.35 28 69.75 43.18
3 74*50 43.55 89 71.50 43.20
4 72.90 43.40 30 72.90 43.25
5 71.75 43.28 31 73.00 45.206 70.10 43.15 32 74.00 43.30
7 71.50 43.10 35 74.10 43.350 71.25 43.10 34 73.25 43.37
î> 71.10 43.00 35 73.00 43.3.9
10 70.30 42.95 56 74.50 45.5711 68.90 42.70 37 75.50 43.70
12 67.00 42.64 38 76.00 45.75
13 66.65 42.57 39 76.90 43.80
14 65.10 42.40 40 77.10 43.05
15 65.10 42.32 41 77.70 42.86
16 64.60 42.24 42 78.60 43.95
17 64.70 42.25 43 79.00 43.90
18 65.00 42,00 44 79.25 43.99
19 63.50 42 .10 45 89.90 44.09
20 61.00 42.00 46 82.65 44.18
21 62.50 42.25 47 83.10 44.32 -
22 63.90 42.52 48 89.75 44.40
23 64.25 42.65 49 87.50 44.59 ■
24 65.75 42.83 50
25 67.20

........
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Calculations for

Hun Ho* 1

Hun Ho. 2

Tt Ê̂t sjeewt?ie**Y=ra?5=a»55saf<Tyis,"£a %r
• V r .  ..«. »•"■• «•“

®Ï,P. mean " 24*716108 ohm

\'.P. mean “ 24*71501 olm

(Table 10 )
■̂ Ï.P. mean = 25175*97 /- V

ta 82571 ^ V (Orapli Ho. 8)

“  §^75797 ^  24*716108

» 81.06262 ohm

(I’ahle 12)
"̂ ï.P. mean = 25175.61

- 82570 r V (Graph Mo. 8)

= f ^ ^ 6 l  24.71501

» «1.06577 ohm
®t'mean 8I.O6419 ± 0.00157 ohra
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J t A L U H iK A  F O W b t f t  4  C A P FOR N i  i

•  G R A P H IT E  H  5  C R U C IB LE HOLDER

1 TWIM BORE in s u la to r  FORT.C C> CAP FORM» Î

2  IH N E R S IU C A  T U B E  7  TD P U IO  FO R  FU R nA C ETVIB C

3ftirER H 11 3 BOTTOM LID 1" " 1

9  f u r n a c e  t u b e

10 f i r e b r i c k  R iw a s

11 ) )  B L O C K S

12 TOPHET A h e a t in g  RIBBON

12) 14 a n n u l a r  e n d  H E A T E R S

15 n i c k e l  BLOCK

16 g r a p h it e  c r u c ib l e  

(7  S il v e r  in g o t

FURNACE ASSEMBLY
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FIGURE 4
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TO

CQNQËNSER-

ELECTROTHERMAL BOILER

TO F»#èa
VACUUM PUMP

1 a l u m in a  r o ds
2. THERMOCOUPLE POCKET
3 COPPER BLOCK
4  COPPER SLEEVE

J radiation SHIELDS’ 
6  RES.THERM. POCKET

7 STEAM JACKET
8 STAINLESS STEEL SPACER
9 'a lu m in a  beads

10 >} TUBE

VACUUM FURNACE FIG 5
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