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Summary

Ligation of the B cell receptor (BCR) on B lymphocytes results in differential 

biological outcomes depending on the maturation state of the cell. Thus, mature 

B lymphocytes become activated and proliferate (clonal expansion) in response 

to BCR crosslinking, whilst Immature B cells either become unresponsive, alter 

the specificity of their BCR, or undergo apoptosis (clonal deletion). Furthermore, 

mature B cells can be induced to undergo growth arrest and apoptosis following 

coligation of the BCR and FcyRllb by immune complexes during negative 

feedback of B cell responses. The precise molecular events downstream of 

BCR signalling that are responsible for these distinct outcomes remain to be 

established. This study has focused upon identifying the important signalling 

mechanisms linking BCR ligation with regulation of the cell cycle and induction 

of apoptosis in immature and mature B lymphocytes.

The murine B cell line WEHI 231 is widely used as a model for clonal deletion of 

immature B lymphocytes. This is because it has the cell surface phenotype of 

an immature B lymphocyte, and as such responds to BCR ligation by 

undergoing growth arrest and apoptosis. Moreover, WEHI 231 cells can be 

rescued from BCR-mediated apoptosis by co-engagement of CD40, mimicking 

T cell help. Such BCR-mediated apoptosis has previously been associated with 

both mitochondrial translocation and activation of PLA2 and a loss of 

mitochondrial membrane integrity. This study extended these findings by 

identifying that the product of PLA2 , arachldonic acid, acts as the causal 

metabolite in the initiation of such BCR-mediated apoptosis. Furthermore, it 

demonstrated that the metabolism of arachidonic acid can provide a dynamic 

switch from apoptotic to proliferative signalling. For example, ligation of the BCR 

leads to the build up of arachidonic acid which leads to disruption of the 

mitochondrial membrane potential (MMP) and hence apoptosis. Whereas, in 

contrast to this, co-engagement of CD40 leads to the induction of C0X2 and 

hence the metabolism of arachidonic acid to prostaglandin E2 (PGE2 ) which 

promotes proliferative signalling. Therefore arachidonic acid metabolism acts as 

a dynamic, molecular switch from apoptotic to proliferative signalling.

11



This study also demonstrated that upregulatlon of B c IX l (as induced by CD40) 

acts to protect from arachidonic acid-mediated loss of mitochondrial membrane 

integrity and apoptosis. Furthermore, co-engagement of CD40 was found to 

increase the association of Bak with B c IX l indicating that B c IX l may act to 

sequester the pro-apoptotic Bak and hence inhibit the opening of the 

mitochondrial permeability pore. These data suggest that modulation of Bcl-2 

family member induction and function is integral to such BCR-mediated 

apoptosis and T cell-derived rescue. In addition, it has been demonstrated that 

upregulation of B c IX l can additionally function to downmodulate BCR-induced 

calcium signals providing an additional mechanism for the downregulation of 

mPLA2 activation and hence consequent apoptotic signalling.

Previous work in this laboratory had highlighted the importance of dynamic ERK 

signalling in both proliferation and apoptosis of immature B cells. Thus, during 

BCR-mediated growth arrest and apoptosis the sustained ERK signalling, found 

in proliferating WEHI 231 cells, is abrogated. Therefore a causal role for such 

sustained ERK signalling in immature B cell proliferation was investigated by 

manipulating endogenous ERK activation by expressing constitutively active 

RasV12 constructs in WEHI 231 cells. Such RasV12 expressing WEHI 231 

cells were refractory to both BCR-mediated growth arrest and apoptosis for up 

to 24 h emphasising the importance of the uncoupling of ERK signalling in BCR- 

mediated cell cycle arrest and apoptosis. In an attempt to identify key regulatory 

elements involved, the role of SHIP and Dok in targeting the ERKMAPK 

pathway was explored by expressing dominant negative constructs. However, 

these constructs did not provide release from BCR-mediated apoptosis.

Finally, as BCR-stimulated PKC activity is widely established to be suppressed 

in immature relative to mature B cells and pharmacological activation of PKC 

can rescue BCR-mediated apoptosis of WEHI 231 cells, it was decided to 

investigate the effects of expressing constitutively active and kinase dead 

constructs of various PKC isoforms on BCR-mediated apoptosis and CD40- 

mediated rescue of WEHI 231 cells. Rather disappointingly, although 

expression of such constructs afforded some protection against BCR-mediated 

growth arrest and apoptosis, all of the constitutively active and kinase dead
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forms of PKC a, 6, e and Ç provided similar responses. However the fact that 

these constructs could rescue WEHI 231 cells from BCR-mediated apoptosis 

may imply that regulation of PKC activity may be involved in BCR-mediated 

growth arrest and apoptosis.

By contrast to immature B cells, ligation of the BCR on mature B cells results in 

growth and proliferation. Previous studies had indicated that ERKMAPK and Pl- 

3 kinase cascades are associated with early BCR-mediated proliferative 

signals. This study has now demonstrated that such ERK and PI-3 kinase 

signals are maintained for up to 48 h post BCR-ligation and are important for 

both survival and proliferation. Moreover, it has shown that PI-3 kinase provides 

a pro-survival signal by activation of AKT and hence maintenance of a phospho- 

Bad signal which acts to sustain mitochondrial homeostasis. By contrast, ERK 

signalling appears to act at least in part, by suppressing p53 induction and 

hence, growth arrest and apoptosis.

The data in this thesis have also demonstrated that negative feedback 

inhibition, by immune complex coligation of the BCR and FcyRllb, not only 

induces cell cycle arrest but also induces an apoptotic phenotype. This is the 

only study to date that has attempted to characterise this form of apoptosis. It 

has been demonstrated that the dissipation of MMP, and hence the breakdown 

of mitochondrial membrane integrity is essential for such FcyRllb-mediated 

apoptosis. This appears to involve FcyRllb acting to inhibit PI-3 kinase 

signalling, resulting in the sequestration of the anti-apoptotic B c IX l by Bad, 

allowing for the opening of the permeability transition pore. Furthermore, 

caspase 8 activation is central to this form of apoptosis. Caspase 8 acts 

upstream of the loss of mitochondrial membrane integrity and is proximal to the 

activation of executioner proteases including caspase 3, cathepsin B and 

calpains. Caspase 8 is also likely to be involved in the activation of Bid which is 

shown to be upregulated by FcyRllb signalling, although no clear evidence is 

presented that this represents the active truncated form, tBid. Finally, the 

transcription factor p53 is also activated by FcyRllb coligation and this involves 

the inhibition of ERKMAPK which appears to act, at least in part, to suppress 

p53 induction. p53 is known to act like a pro-apoptotic Bcl-2 family member or
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may mediate its effects via the upregulation of Bid, Bak or Bax expression. 

Collectively, the interaction of these pro-apoptotic signalling elements induced 

by FcyRllb results in cytochrome c release due to the loss of mitochondrial 

membrane integrity, activation of executioner proteases and commitment of the 

cell to apoptosis.
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“Life is the shape it is for a reason and when you see how things 

really are, all the waste falls away, and what you are left with is

beauty.”

Rosalind Elsie Franklin 
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Chapter 1 ; Introduction

1.1 The Humoral Immune System

The immune system has evolved to protect the host from pathogens such as 

parasites, bacteria or viruses. The cells and molecules that comprise the immune 

system, through a finely balanced network of interactions, enable the host to 

detect the presence of a foreign agent, co-ordinate a specific attack, and finally, 

once the agent has been successfully removed, quench that specific response.

The innate immune response is the first line of defence a host has against 

infection, and as such is non-specific in nature as it functions regardless of the 

foreign substance or pathogen. The innate response is mainly driven by 

phagocytes, cells that engulf microorganisms before exposing them to an array of 

killing mechanisms. In contrast, adaptive immunity relies upon the ability of 

lymphocytes to recognise antigens (Ag) and respond in a highly specific manner, 

as each lymphocyte recognises a unique Ag. Moreover, the adaptive immune 

system also has memory for agents that have been successfully cleared in the 

past, allowing a more rapid and effective response upon subsequent encounter.

B cells generate and secrete antibodies (Ab), molecules that are specific for each 

unique Ag, and are important for combating infection by extracellular pathogens. 

These Abs circulate in the bloodstream and permeate other body fluids. When an 

Ab molecule encounters its Ag and binds to it, it protects the host via one of three 

key processes, neutralisation, opsonisation or complement activation. 

Neutralisation is the process by which Ag-Ab complexes prevent antigen binding to 

receptors on host cells and causing pathology, for instance by preventing entry of 

viral particles or bacterial toxins into cells. Opsonisation is the process by which 

the Ab coating allows the antigen to be recognised as foreign by phagocytic cells, 

leading to its ingestion and destruction. The third mechanism involves the 

recruitment of a system of plasma proteins known as complement by Ag-Ab 

complexes, particularly when Abs coat a bacterial cell. The Abs form a receptor for 

the C1 component of complement, leading to activation of the system, which 

enhances opsonisation of the Ag, or can even lead to direct lysis of some bacteria.
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These Ab are secreted by mature B cells following ligation of the BCR and 

therefore the development and function of mature B cells has become a major 

research topic. One area that has received much interest, yet has still to yield 

much more information, is the elucidation of the molecular and biochemical 

mechanisms underlying B cell development and differentiation, and the differential 

responses that depend on maturation status. The B cell Ag receptor (BCR) is 

responsible for the transduction of Ag encounter throughout B cell development, 

yet the biological response varies depending on the developmental stage. For 

example, at the immature stage ligation of the BCR leads to growth arrest and 

apoptosis whereas at the mature B cell stage ligation of the BCR mediates 

proliferation and enhanced Ab production. The study of these differential 

responses will further our understanding not only of normal B cell development, 

but also the role of B lymphocyte dysfunction in a number of disease states. 

Prevention of dysregulated proliferation may help provide treatments for leukaemia 

as well as autoimmune disorders such as SLE and arthritis. Furthermore, a proper 

and complete understanding of B cell development will provide information for the 

production of better vaccines.

1.2 B Cell Development

1.2.1 B cell development
As stated above, B cells are the principal cellular mediators of the specific humoral 

response to infection by bacteria, viruses and parasites as they produce antigen- 

specific antibodies. The processes controlling development of B cells are tightly 

regulated to ensure a constant supply of B cells expressing antigen receptors of 

distinct specificity, enabling identification of any encountered antigen, yet at the 

same time avoiding generation of autoreactive B cells that recognise ‘self 

antigens. This complex process involves the integration of numerous signals at a 

number of stages, including antigen, soluble mediators and accessory cells.

In mammals, B cell development begins with the commitment of haematopoietic 

stem cells (HSCs) to the B cell lineage, a process that occurs in the foetal liver, 

then after birth and into adult life in the bone marrow (Figure 1.1). Commitment of
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HSCs to the B cell lineage is dependent on the expression of the paired box 

transcription factor Pax5 (1). Pax5 acts to promote the expression of B cell lineage 

genes whilst suppressing those genes responsible for T cell, erythrold or myeloid 

cell development. Once committed, the precursor B cells pass through a number 

of developmental stages marked by a series of changes in location and in the 

expression of genes, intracellular signalling proteins and cell surface markers. The 

stages of B cell development can be broadly divided into two quite distinct phases; 

antigen-independent and antigen-dependent (2). The antigen-independent phase 

is completed in the bone marrow, and involves the production of a repertoire of 

immature B cells bearing functional Ag receptors. Encounter with Ag in the bone 

marrow during the process of receptor editing, however, leads to death by 

apoptosis, or anergy, a process by which the B cell becomes unresponsive to 

future encounters with its particular antigen. The B cells that emerge into the 

periphery are termed immature B cells, and these migrate to the secondary 

lymphoid organs, such as the spleen and lymph nodes. It is here, in association 

with specialised antigen-presenting cells and stromal cells, that B cell recognition 

of antigen can lead to one of several developmental pathways in the production of 

mature B cells from transitional B cells: (1) anergy and/or apoptosis, (2) activation, 

proliferation and differentiation into high rate antibody secreting plasma cells, or (3) 

differentiation into memory B cells (3).

1.2.2 Pro-B and Pre-B cells

The production of a functional BCR relies on the completion of a complex pattern 

of immunoglobulin gene rearrangements to produce one functional heavy chain, 

followed by one functional light chain (4). This rearrangement is under the control 

of the protein products of the recombination-activating genes, RAG-1 and RAG-2, 

which are highly expressed at the pro- and pre-B cell stages of differentiation and 

are essential for rearrangement (5). The immunoglobulin heavy chain variable 

region is encoded by V (variable) and J (joining) gene segments, with additional 

diversity provided by the D (diversity) gene segment. Rearrangement of the heavy 

chain gene begins in the early pro-B stage with the joining of Dh to Jh. Cells are 

allowed to progress to the next stage provided a productive rearrangement is 

achieved. Progression to the late pro-B cell stage is accompanied by the joining of



a V h gene to the pre-formed D J h complex. Although no functional immunoglobulin 

is expressed in late pro-B cells, recent studies have shown the expression of 

components of the mature BCR on their surface, namely the accessory Ig-a/lg- 

|3 heterodimers in association with calnexin (6). These accessory molecules have 

been shown to be essential for the continuing development of the pro-B cells to the 

pre-B cell stage (7, 8). Indeed, it has been shown that mice deficient in Ig-p exhibit 

a complete block in B cell development before Vh to DhJh rearrangement. It has 

therefore been suggested that signalling through the Ig-a/lg-p-calnexin receptor on 

pro-B cells may be required for successful initiation of Vh to DhJh gene 

rearrangement (6). However, it has recently been shown that Vh to DhJh 

recombination can still take place in pro-B cells from mice lacking either Iga or Igp 

(9).

A successful first rearrangement of VhDhJh genes results in the production and 

transient expression of intact p, heavy chains in an immunoglobulin-like “pre-BCR" 

complex with the surrogate light chains, k5 and VpreB (10). X5 bears close 

similarity to the known constant (0) X light-chain domains, whilst VpreB resembles 

a variable (V) domain but bears an extra N-terminal protein sequence. If this first 

VrDhJh rearrangement is unsuccessful, a second rearrangement is undertaken. 

Pro-B cells in which both rearrangements of VhDhJh genes are unsuccessful are 

unable to produce a pre-B cell receptor. Surface expression of a pre-BCR is 

known to be important for instructing the cell to stop further Vh gene 

rearrangements (11) by inhibiting recombination at the heavy chain locus, a 

process described as allelic exclusion (12). Pre-B cell receptor expression also 

drives the transition to the large pre-B cell stage and induces proliferation in 

addition to signalling to the cell that gene rearrangements of the immunoglobulin 

light chain should begin.

1.2.3 Immature B ceils

Maturation of pre-B cells to immature B cells involves the rearrangement of 

immunoglobulin light chain genes to generate a conventional light chain (k  or X),



with appropriate constant and variable regions. Once a light chain gene has been 

rearranged successfully, a BCR consisting of p heavy chain, conventional light 

chains and accessory Ig-a/lg-p molecules is expressed by the immature B cells. 

This intact surface IgM is the first BCR to exhibit antigen specificity (13) and thus 

the B cell enters the antigen-dependent stage of development. It has been 

estimated that about 10® B lineage precursors are generated every day in the 

murine bone marrow, which in turn give rise to about 2x10^  BCR-expressing 

immature B cells (14). Thus, it is clear that the majority of B cells (80%) maturing in 

the bone marrow undergo a process of negative selection. Indeed, ligation of the 

antigen receptors on the vast majority of immature B cells leads ultimately to 

anergy, a state of non-responsiveness to antigen (15) or deletion via apoptosis 

(programmed cell death) (16, 17, 18). The inactivation of self-reactive B cell clones 

by deletion or inactivation (anergy) is important for the maintenance of self­

tolerance by the immune system. Immature B cells that are capable of recognising 

self-antigens are eliminated or inactivated, preventing them from developing 

further and secreting antibodies that bind to host cells or tissues.

Self-reactive immature B cells may be rescued from deletion by undergoing 

receptor editing, where the autoreactive receptor is replaced with the product of a 

further rearrangement event (19). Immature B cells isolated from the bone marrow 

undergo apoptosis when cultured in vitro in the presence of anti-lg antibodies. It is 

important to note that these cells are purified, and therefore not in their 

physiological context (20). In contrast, when immature B cells are cocultured with 

whole syngeneic bone marrow they respond to anti-lg by re-expressing RAG-2, 

permitting receptor editing (21). These studies suggest that the consequences of 

an immature B cell recognising its Ag are dictated by the site of Ag encounter, with 

the bone marrow microenvironment providing signals that promote receptor 

editing. By contrast, if the immature B cell first encounters its Ag in the periphery, 

the absence of these signals results in commitment to apoptosis.

By maintaining high-level expression of IgM BCR, transitional-immature (T1) B

cells entering the periphery remain sensitive to antigen deletion for a number of

days (22). This is especially important for the development of tolerance, since not
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all self-antigens are expressed within the bone marrow (21, 23). To promote their 

survival and migration to the spleen, these cells require T cell-dependent help. 

Typically, of the 2x10^  BCR^ B cells that develop daily in murine bone marrow 

only 10% will reach the spleen and only 1 to 3% will survive and develop to the 

next stage of maturation (22) The development into a transitional (T2) B cell is 

accompanied by the surface expression of IgD and requires constant BCR-derived 

signals for progression, resulting in a IgM^' IgD '̂ phenotype (11, 23, 24). In 

addition, stimulation via cytokines or co-receptor ligation is thought to help shape 

the BCR repertoire and signalling thresholds (25). As the B cells migrate into the 

primary follicles of the spleen they are finally regarded as “mature” lgM'° IgD*̂ ' B2 

follicular cells.

1.2.4 Mature B cells

In stark contrast to the immature B cell, Ag-receptor ligation leads to the activation 

of mature B cells. The activated mature B cell can then further develop into an IgM 

antibody-secreting plasma cell. Alternatively, the mature B cell can undergo 

isotype switching and V region somatic mutation to become a memory B cell, in 

the presence of the correct T cell-derived cytokines and cell-cell contacts (26). 

Following re-exposure to the same Ag and affinity maturation, whereby the affinity 

of the cell for its particular Ag improves by a process of somatic hypermutation, the 

memory B cell can evolve into an IgG secreting plasma cell. The formation of 

memory is critical for mounting a rapid, specific secondary immune response. 

Moreover, the ability of the immune system to generate these memory B cells 

forms the basis of effective vaccination.

The generation of memory B cells occurs in germinal centres (GCs), which are 

formed during primary immune responses to T cell-dependent antigens in 

lymphoid follicles (Figure 1.2). B cells activated by T cell-dependent antigens enter 

the primary lymphoid follicles where they undergo proliferation in areas rich in 

follicular dendritic cells (FDCs), which fix unprocessed antigen on their surface for 

presentation to newly formed B cells. Following their expansion, the B cell blast 

population migrates from the centre of the follicle to form the dark zone of the GC,
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where they continue to proliferate and lose sIgM expression, becoming 

centroblasts. Centroblasts undergo somatic mutation of the immunoglobulin 

variable region genes and subsequently migrate to the light zone of the GC, which 

is rich in FDCs, and are now termed centrocytes, which express the mutated 

antigen receptors. In the light zone, centrocytes with the highest affinity antigen 

receptors are selected and return to the dark zone for further rounds of mutation 

and selection, whilst those with lower affinities undergo apoptosis. As centrocytes 

are intrinsically programmed to undergo apoptosis unless they are actively 

rescued, the level of B cell apoptosis in the light zone is very high. Rescue of 

centrocytes from apoptosis is driven by two signals. The first is generated by FDC- 

displayed antigen resulting in ligation of the high-affinity surface immunoglobulin, 

the second by CD40 ligation on the surface of centrocytes, suggesting a role for 

helper T cell interactions in promoting centrocyte survival (25). This process 

results in the selection of high affinity B cell clones whilst low affinity receptors are 

selected against by neglect. Positively selected centrocytes then go on to establish 

the memory B cell pool in the apical light zone, providing the precursors for plasma 

cells that will produce antibodies of high affinity.

1.3 B Cell Signalling

1.3.1 Initiation of BCR Signalling

The BCR has a complex structure and is a member of the Immunoglobulin (Ig) 

superfamily (Figure 1.3). The membrane bound BCR is associated with two other 

polypeptides on the B cell, Iga and Igp that act as signal transducing molecules. 

Their intracellular tails contain immunoreceptor tyrosine based activation motifs 

(ITAMS.) Tyrosine residues of the ITAM sequence become reversibly 

phosphorylated following crosslinking, and hence aggregation, of the BCR. The 

BCR has no intrinsic kinase activity and it is the recruitment and activation of 

cytosolic PTKs that is responsible for the initiation of intracellular signalling.

The Src-family of non-receptor tyrosine kinases are the primary effectors of BCR- 

ITAM phosphorylation (27, 28). These kinases are associated with the BCR in an
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inactive conformation and become activated following BCR ligation. Thus during 

BCR signalling, CD45, a transmembrane tyrosine phosphatase, mediates the 

dephosphorylation of the C-terminal inhibitory tyrosine residue of the Src family 

kinases leading to the activation of one such PTK, Lyn (29). Once activated Lyn is 

recruited to the ITAMS of the Iga/p chains where it phosphorylates the tyrosine 

residues (30). This enables the ITAM sequences to bind SH2 domain containing 

proteins including additional Lyn molecules and other Src-family kinases. Syk, a 

related non-receptor tyrosine kinase, can then act to further phosphorylate the 

tyrosine residues of ITAMs leading to further recruitment and activation of Syk and 

other tyrosine kinases like the Tec-family kinase Btk. (Figure 1.4) (31) (32). It has 

been demonstrated that all three types of PTKs (Src family kinases, Syk and Tec 

family kinases) are necessary for functional BCR signalling (33).

Ligation of the BCR complex and recruitment and activation of multiple PTKs 

provides docking sites for essential adaptor SH2 domain containing proteins. 

These adaptor proteins are critical for stimulating downstream signalling pathways. 

For example BLNK (also known as SLP-65) is phosphorylated by Syk, which 

creates multiple phospho-tyrosine residues that can recruit other signalling 

molecules via their SH2 domains. These include Btk and PLCy allowing for Btk to 

phosphorylate, and therefore activate, PLCy (34). Moreover, bringing PLCy close 

to the plasma membrane increases the proximity of PLCy to its substrate PI-(4,5)- 

P2 . The phospho-tyrosine residues on BLNK also act to recruit signalling 

molecules such as Vav (a guanine nucleotide exchange factor of Rho-family G 

proteins) which is required for the activation of both the p38 and JNK kinase 

systems (35). BLNK is also capable of activating the ERKMAPKinase pathway by 

recruiting the adaptor protein Grb2 that in turn recruits SOS to the membrane 

complex to activate Ras and eventually ERK (reviewed in (36)). The PLCy and Pl- 

3 kinase signalling cascades can also be activated by parallel activatory 

mechanisms (Figure 1.5). Thus, ligation of the BCR can lead to amplification of the 

signal and the activation of multiple cell signalling pathways through a complicated 

series of recruitment of both non-receptor tyrosine kinases and adaptor proteins.



1.3.2 Cell signalling cascades activated by the BCR

BCR signalling can activate multiple signalling cascades which allows B cells to 

respond to BCR stimulation in many disparate ways. The appropriate response to 

BCR ligation may be differentiation, proliferation, anergy apoptosis or survival 

depending on the maturation stage of the B cell and other signals received. The 

early events in BCR signalling such as activation of PTKs, Phospholipase C y 

(PLCy), phosphoinositide-3-kinase (PI-3 kinase), protein kinase C (PKC) and the 

RasMAPK (mitogen activating protein kinase) cascades are observed throughout 

B cell maturation. However there are differences in the functional responses 

initiated by BCR-mediated signals during B cell maturation. The mechanistic 

reasons for these differential responses have not all been fully resolved however 

they are dependent on parameters including signal strength and duration, 

maturation-specific expression of effector molecules, subcellular localization of the 

signal and modulation of the signal by co-receptors (reviewed in (37).

In mature B cells the 3 major signalling pathways activated by BCR signalling are 

the PI-3 kinase, PLCy and MAP kinase pathways (26).

1.3.2.1 The PI-3 kinase Pathway

PI-3 kinases phosphorylate inositol phospholipids on the 3 position of the inositol 

ring (38-40). This results in the production of phospholipids that are present at very 

low levels prior to receptor engagement. The major substrate of PI-3 kinase is Pl-

(4,5)-P2 which is phosphorylated to produce PI-(3,4,5)-p3.Both of these molecules 

can act as second messengers by acting as ligands for pleckstrin homology (PH) 

domains found in a large number of cytosolic proteins. This enables the co­

localisation of PH domain containing proteins as well as recruitment to the plasma 

membrane. PI-3 kinase is also known to produce the phosphoinosltides PI-(3)-P 

and PI-(3,4)-P2 which along with Pl(3,4,5)-Psare known to govern events such as 

cell survival, growth, cytoskeletal remodelling and the trafficking of intracellular 

organelles (41).

The PI-3 kinase family is made up of four different classes of protein: lA, IB, II and

III on the basis of structural characteristics and substrate specificity (40) (Figure
9



1.6). Each protein contains a C2 domain, which acts to bind phospholipids in a 

calcium-dependent manner, and a catalytic domain. Classes II and I also contain a 

Ras binding domain (RBD) at the N terminal (42). Class lA family members are 

heterodimers consisting of a regulatory subunit, encoded by at least 3 genes; 

p85a, p55a and p50a, and a catalytic subunit, encoded by 3 genes p110a, p110p, 

p110ô (38). Among distinct regulatory subunits, p85a is the most abundantly 

expressed subunit in a wide range of cell types (43). By contrast, Class IB has 

only one catalytic member p110y that interacts with a p101 regulatory subunit. This 

family is generally activated via G protein coupled receptors where the Gpy subunit 

activates p110y (42). Class II has three members, PI-3 kinases C2a and C2p, 

which are ubiquitously expressed, and C2y that is found exclusively in 

hepatocytes. This family is primarily activated downstream of polypeptide growth 

factor receptors, chemoklne receptors and integrins (39). Finally class III has only 

one member and is a mammalian ortholog of a Saccharomyces cerevisae protein 

Vsp34p. This PI-3 kinase has not been well characterised but exclusively 

generates PIP and is involved in the localisation of proteins to the lysosome (39).

PI-3 kinase has been shown to be essential for normal B cell function. Impaired Pl- 

3 kinase signalling leads to immunodeficiency whereas unrestrained PI-3 kinase 

signalling leads to autoimmunity and leukaemia (44). Activation of PI-3 kinase is 

one of the earliest events following BCR ligation (45, 46) and it acts as a crucial 

signal for initiating the recruitment of PH domain containing molecules, such as Btk 

and AKT, to the membrane via the generation of PI-(3,4)-P2 and PI-(3,4,5)-P3 (47- 

52). PI-3 kinase is thus also required for the full activation of PLCy (34, 53, 54).

A major downstream target of the PI-3 kinase pathway that can modulate cell fate 

decisions such as survival, apoptosis and proliferation is AKT (PKB). The AKT 

protein family consists of three isoforms AKT 1, AKT2 and AKT3 which are all 

regulated by similar PI-3 kinase and phosphorylation dependent-mechanisms.

AKT enzymes contain a PH domain (with a higher affinity for PI-(3,4)-P2 than Pl-

(3,4,5)-Ps) that acts to recruit AKT to the plasma membrane where it undergoes 

dimérisation and a consequent conformational change. This conformational
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change allows AKT to be phosphorylated by serine/threonine kinases such as 

PDK1. PDK1, 3-Phosphoinositide-dependent protein kinase 1, plays an important 

role in activating the AGC family of kinases. In particular, PDK1 plays a central role 

in the regulation of AKT by phosphorylating AKT on threonine 308. For example, 

human AKT is phosphorylated on threonine 308 by PDK1 and serine 473 by an as 

yet unidentified kinase (55). Once AKT has been phosphorylated, it translocates to 

the cytosol and nucleus where it has multiple pro-survival actions targeting both 

mitochondrial and caspase-dependent apoptotic events (56). For example, AKT 

acts to neutralise the pro-apoptotic function of the Bcl-2 family member Bad.

Under some apoptotic conditions. Bad interacts with the pro-survival Bcl-2 family 

member B c IX l via its BH3 domain. This prevents BclXu from protecting the 

mitochondrial membrane integrity and hence stimulates apoptosis. However, 

phosphorylation of Bad by AKT leads to the dissociation of Bad from B c IX l and its 

sequestration by cytoplasmic 14-3-3 proteins (57). Sequestration protects Bad 

from dephosphorylation and prevents Bad from interacting with pro-survival 

mitochondrial targets (Figure 1.7) In addition, AKT can also phosphorylate 

caspase 9 and hence prevent its cytochrome c-dependent proteolytic activation 

which is required for the subsequent activation of the canonical effector caspase 3 

cascade (58). Moreover, AKT1 and 2 can disrupt death receptor signalling by 

translocating to the nucleus where they suppress Fas ligand expression by 

phosphorylating forkhead transcription factors and causing them to exit the 

nucleus (59). Furthermore, in addition to promoting growth, AKT promotes 

proliferation by activating NF-kB via E2F, a transcription factor necessary for G1 to 

S phase transition (60, 61). Therefore PI-3 kinase activation of AKT can be both a 

pro-survival and pro-proliferative signal.

The first evidence for a role for PI-3 kinases in the immune system came from

studies in which rats were exposed to wortmannin in vivo. Wortmannin, and the

structurally unrelated inhibitor LY294002, have high selectivity for PI-3 kinases (62,

63). These studies indicated that wortmannin might act as a potent immune

suppressor. However, wortmanin was found to be highly toxic (64), possibly

because neither wortmannin nor LY294002 discriminate between the different

isoforms of PI-3 kinase. Nevertheless, there has recently been some genetic
11



analysis using mice and cell lines that are deficient in different class I subunits that 

have suggested specific roles for particular PI-3 kinases in the immune system.

For instance, consistent with the wortmannin data, knock out mice generated 

lacking p110cx or p110p die in utero whereas mice with the genotypes p85a'^' 

,p55a'''' or p50a'^’ all die after birth (65, 66). This suggests that all these subunits 

play an essential role in development. Indeed, both p85a^^" and p110ô‘''‘ 

lymphocytes have impaired B cell development at the pro to pre-B cell transition 

(65-68). In addition, proliferation of mature B cells ex vivo in response to either 

LPS or crosslinking of the BCR is also impaired in these cells. This data suggests 

that p110 or p85 are required for normal B cell development and function. 

Consistent with this, in p1100'^'mice, marginal zone B cell development and 

germinal centre formation is blocked and aberrant mature B cells that are unable 

to produce normal amounts of Ab are produced (69). It was also noted that mice 

lacking class lA ô PI-3 kinases had the same phenotype as mice lacking BLK, Btk, 

PKCp, PLCy2 and Vav 1/2 (67). It has therefore been postulated that all of these 

proteins function within the same signalling cascade or may act together in a 

signalosome. In contrast to this, class IB deficiency did not affect the B cell 

compartment suggesting that class IB PI-3 kinases are of less importance In B 

cells than class 1A PI-3 kinases.

1.3.2.2 The RasMAPKinase pathway

The mitogen-activated protein (MAP) kinases are a family of serine-threonine

protein kinases that have been widely conserved throughout the evolution of

eukaryotic cells. They are activated by a wide range of extracellular stimuli and are

able to mediate a wide range of cellular functions ranging from proliferation and

activation to growth arrest and cell death. The MAP kinase family is subdivided

into three groups; the classical extracellular signal-regulated kinases

(ERKMAPKinase), the c-Jun N-terminal kinases, also known as the stress

activated protein kinases (JNK/SAPK) and the p38 MAPKInases (reviewed in

(70)). Activation of each group is determined by distinct upstream MAP kinase

kinases (MEKs) and MAP kinase kinase kinases (MEKK) (Figure 1.8). MAPKs are

activated by dual phosphorylation on tyrosine and threonine residues, located in a

T-X-Y motif, where X is different in each sub-class of kinase. Following MAP
12



kinase activation, activation of a number of downstream transcription factors 

occurs: for example, ERKMAPKinase activates Elk-1 and c-myc, JNK activates c- 

Jun and ATF-2 and p38 MAPKinase activates ATF-2 and MAX. The 

phosphorylation and activation of these transcriptional regulators enables the MAP 

kinase families to regulate gene expression and hence, cellular responses.

1.3.2.3 The ERK 1/2 Module

This signalling system can operate via the MAPKKKs, A Raf, B Raf and Raf 1, the 

MAPKKs MEK1 and MEK 2 and the MAP kinases ERK 1 and 2. (Figure 1.8). The 

MAPKKK, Raf is activated by the small GTPase Ras. The activation of Ras is 

achieved by recruitment of SOS, a Ras activating guanine nucleotide exchange 

factor. SOS stimulates the conversion of RasGDP to RasGTP and allows 

interaction with downstream effector proteins including Raf (71) (Figure 1.9). 

Activated Ras functions as an adapter that binds to Raf kinases with high affinity 

and causes their translocation to the cell membrane, where full activation of Raf 

takes place. The exact mechanism for this is not known however it requires Ras 

binding and multiple phosphorylations including autophosphorylation at threonine 

372 in the conserved region 2 domain (72). Activated Raf then binds and 

phosphorylates the dual specificity kinases, MEK1/2 which in turn phosphorylate 

ERK 1/2 on the conserved TEY motif in their activation loop.

Amplification in this system is very efficient as evidenced by estimates that 

activation of just 5% of Ras leads to full activation of ERK 1/2 (73). ERK 1/2 can 

target cytoplasmic proteins, membrane proteins, cytoskeletal proteins and nuclear 

proteins (74). One subset of ERK 1/2 targets are protein kinases including Rsk 1- 

3, Mnki and Mnk2 which have been implicated in the promotion of protein 

synthesis (75-78). In addition to enhancing gene expression by intermediary 

kinases, ERK 1/2 can also directly phosphorylate transcription factors, such as 

Elk-1, cFos and cJun, and hence increase transcription of pro-proliferative genes 

(79-81). ERK 1/2 can also phosphorylate membrane protein substrates such as 

phospholipase A2 (PLA2 ) and the epidermal growth factor receptor (82, 83). 

Differential utilisation of these pathways by the ERK module is implicated in many
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diverse downstream cellular responses including proliferation, survival and 

apoptosis.

1.3.2.4 The p38 Module

This signalling system operates via the MAPKKKs, MEKK 1,2 3,4 (amongst many 

others), the MAPKKs MEK 3 and MEK 6 and the p38 MAP kinase isoforms a, (3, y 

and Ô (Figure 1.8). MEK 3 and 6 have a high degree of specificity for p38a and 

p38|3 and MEK 6 is able to activate all the p38 isoforms (reviewed in (84)). All of 

the isoforms of p38 are activated by phosphorylation of a conserved TGY motif.

The role of p38 seems to be cell and context specific, as with the other MAP 

kinases. Similarly to ERK 1/2, p38 can activate many cellular substrates including 

cytoskeletal and cytosolic proteins, for example the microtubule associated protein 

(tau) at physiologically relevant sites (85). p38 has also been implicated in the 

early phosphorylation of PLA2 in platelets (86). In addition, the p38 module has 

been associated with signalling for apoptosis via the classical executioners of 

apoptosis, the caspases. It is thought that p38 can activate both the caspase 8 and 

canonical effector caspase 9 cascades (87). Nuclear targets of p38 include p53 

and by mediating N terminal phosphorylation of p53, p38 can transduce p53- 

dependent apoptosis in response to UV radiation (88). In contrast, p38 has also 

been implicated in promotion of cell proliferation as p38 activation is necessary for 

progression through G1 (89) and G2/M phases of the cell cycle (90) under certain 

circumstances. Consistent with this, there are also a number of pro-proliferative 

nuclear targets of p38 including AP-1, ATF-1 and NF-kB (91 ).

1.3.2.5 The JNK Module

The MAP kinases JNK 1, 2 and 3 exist In 10 or more differentially spliced forms 

that are ubiquitously expressed (reviewed in (84) (Figure 5.3D) and require dual 

phosphorylation of tyrosine and threonine residues in a conserved TPY motif. This 

signalling system operates via the MAPKKKs, MEKK 1, 2,3 and 4, MLK 2 and 3 

and Tpl 2, the MAPKKs MEK4 and MEK 7 (Figure 1.8). Following activation, JNK 

is also relocalised from the cytosol to the nucleus, like p38 and ERK 1/2 (92). The

14



major substrate of the JNK pathway is c-Jun which is phosphorylated on serine 63 

and serine 73 to increase c-Jun transcription (93). However JNK can also affect 

other transcription factors including ATF-2, NF-ATc1, HSF-1 and STAT3. The JNK 

pathway is well known to be a stress activated pathway and has been reported to 

activate genes that increase caspase-mediated apoptosis including Apaf 1 and 

caspase 9 (94).

1.3.2.6 The PLC pathway

1.3.2.6.1 PLC generates the second messengers DAG and IP3

PLC acts to generate the second messengers diacylglyceroi (DAG) and inositol- 

1,4,5-trisphosphate, (IPs) from the hydrolysis of the membrane phospholipid Pl-

(4,5)-P2. d a g  can act to activate both novel and conventional PKC isoforms and 

IP3 binds to IP3 R in the endoplasmic reticulum (ER) to stimulate intracellular 

calcium release. The PLC family contains 3 homologous groups of enzymes (PLC 

(3 , Y and Ô) all containing PH domains. The PLCyl isoform is expressed In all 

tissues whereas the PLCy2 isoform is expressed exclusively in cells of a 

haematopoietic origin (95). Genetic evidence suggests that the functions of these 

2 isoenzymes may not overlap. Targeted disruption of PKCyl results in embryonic 

death in mice (96). However PLCY2-deficient mice develop B cell abnormalities 

with severe immunodeficiency and dysfunction of the platelets and mast cells (97). 

PLCy2 has been particularly well studied as a component of the BCR signalosome 

and can be phosphorylated by all 3 PTK families, Src, Syk and Tec in vitro, 

although it is not ciear which PTK is utilised in vivo (98). In addition to the PH 

domain, which allows docking to the inner plasma membrane. PLCy2 also contains 

two SH2 domains, which allow for recruitment by Btk and Syk and a SH3 domain 

(27).

1.3.2.6.2 The Protein Kinase 0  (PKC) Family

DAG, one product of PLC, is a known activator of both novel and conventional 

PKC isoforms. In B cells PKCs can mediate a plethora of functional responses 

which are discussed further in chapter 3. PKC was initially identified and
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characterised as a proteolytically activated kinase and named protein kinase M in 

the late 1970s (99, 100). In fact PKC activity comprises of a family of 11 

mammalian isoenzymes of serine/ threonine kinases which exhibit a wide tissue 

distribution and differential cellular localization (101). All members contain 

conserved structural features including a kinase domain, a regulatory domain and 

a basic pseudosubstrate prototype. PKCs can be further grouped into 3 categories 

according to the presence or absence of motifs that dictate cofactor requirements 

for optimal catalytic activity (Figure 1.10). The conventional (sometimes known as 

classical) PKCs (cPKCs; a, (3|, Pn, y) are Ca^^-dependent and are activated by 

diacylglyceroi (DAG); the novel PKCs (nPKCs; ô, 8, ri, 9) are Ca^^-independent but 

are also activated by DAG and the atypical PKCs (aPKCs; X/i -  X being the 

murine isoform, ithe  human isoform) are calcium-independent and are not 

activated by DAG.

1.3.2.6 3 Isoform specific activators of PKC

The current model for activation of PKC isoforms has been established using 

fibroblasts as a model system (reviewed In (102)). PKC enzymes first undergo 

auto-phosphorylation which renders them competent for activation. In the case of 

conventional and novel PKCs these primed enzymes bind, via their C l domain, to 

DAG at the plasma membrane and this induces a conformational change that 

allows phosphorylation at two additional sites in the activation loop and C terminal 

hydrophobic site.

Whilst, activation of cPKCs depends primarily on activation of the phospholipase C 

(PLC) pathway, and the consequent generation of DAG and IP3- dependent 

increases in cytoplasmic Ca "̂" concentrations, the nPKCs can also be activated by 

PLC-dependent DAG. However, PKCs can also be activated by other pathways 

that produce DAG including phosphatidylcholine-specific PLD hydrolysis and the 

dephosphorylation of phosphatidic acid to DAG. Nevertheless, the full activation of 

nPKC isoforms however also requires phosphorylation by other kinases such as 

PDK1 and PKC^ which are downstream targets of PI-3 kinase. Likewise, aPKCs 

are downstream targets of PI-3 kinase signalling, therefore, as BCR ligation leads
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to the activation of both the PLC and PI-3 kinase pathway, it seems highly likely 

that multiple PKC isoforms participate In BCR signalling (27).

1.3.2.6.4 The Generation of Calcium

As stated above, PLC also generates IP3 which acts to open IP3 R Câ "̂  channels 

and hence stimulate Ca^^ release from intracellular stores. Ca^"' represents another 

cell signalling molecule that may be important in both apoptotic and proliferative 

signalling. IP3 evoked Câ "̂  release produces localized rises in Ca^^ and under 

some conditions these localized responses can summate to produce a global 

increase in Ca^^ (103). The mechanism Involved In the switch between local and 

global signalling is not clear. However, the Ca^^ puff represents a quantal release 

of Ca^^ by a small autonomous cluster, probably a few tens, of IP3 receptors in the 

ER. Puffs stimulate a localized, transient and asynchronous rise in Ca^^(104). As 

the IP3 levels are Increased the puffs become synchronous In multiple clusters and 

the Ca^^ rise occurs successively to produce a wave. Following this IP3 mediated 

release of calcium from Intracellular stores, there is a lower but sustained rise in 

intracellular calcium by influx of extracellular calcium via L type channels (105). 

Localised Ca^^ responses can affect the localisation of molecules such as Bcl-2 

family members (106) as well the activation of signalling proteins such as PLA2 

(107) and calpain (108, 109). By contrast, globalised Ca^^ responses are 

associated with changes In transcription factor activation such as NF-AT (110) and 

a prolonged global Ca^^ increase Is associated with the commitment of the cell to 

apoptosis (111).

IP3 R are important in BCR-induced Ca^^ mobilization as mice deficient in all 3 IP3 R 

isoforms abolish BCR-Induced Ca^^ mobilization (112). However BCR-driven Câ "̂  

mobilization can be maintained in mice in which individual IP3R isoforms are 

knocked out (112), albeit that the detailed signalling patterns differ among the 3 

IP3 R knock outs. For example, DT40 B cells lacking type 2 IP3 R have a regular 

and robust BCR induced Ca^^ oscillation whereas mice deficient in either type 1 or 

3 IP3R respond to BCR ligation with a monophasic Ca^^transient or rapidly 

dampened Ca^^ oscillations. However the functional outcomes of altering IP3 R 

prolfiles have not yet been elucidated (113). Ca^^ rises result In the activation of
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calmodulin dependent protein kinase II and the calmodulin activated serine/ 

threonine phosphatase calcineurin (114). The transcription factor NF-ATc is 

translocated to the nucleus following dephosphorylation by calcineurin (115, 116).

In addition, BCR induced apoptosis in WEHI 231 cells and proliferation in splenic B 

cells is inhibited by cyclosporin A indicating the importance of calcineurin for these 

responses (115, 117).

1.3.2.7 p53

p53 is a tumour suppressor with a crucial role in preventing the onset of cancer. 

The best evidence for this comes from a naturally occurring p53 mutation In 

humans which causes Li-Fraumeni syndrome. Individuals with this syndrome have 

a lower than normal level of p53 expression which renders individuals highly prone 

to diverse cancers at a young age (118). The transcription factor p53, forms a 

homo-tetramer than can act to transcribe p53-regulated genes which can be 

divided into five categories depending on the process that they regulate; 

apoptosis, cell cycle arrest, genome stability, cellular senescence and 

angiogenesis (Figure 1.11) (119). p53 levels are generally low in normal cells due 

to rapid turnover controlled by a negative feedback loop involving interaction with 

MDM2 and consequent ubiquitination and degradation (Figure 1.11). p53 has been 

demonstrated to be of particular importance in thymocyte biology as T cells that 

are deficient in p53 are resistant to both DNA damaging drugs and y radiation 

suggesting p53 plays an important role in induction of apoptosis in thymocytes 

(120-122).

The best-studied target of p53 is the cyclin dependent kinase inhibitor, p21 which 

has been shown to be critical for cell cycle arrest function (123). However, another 

important cell cycle regulator, PTEN is also upregulated by p53. This protein can 

antagonise both the PI-3 kinase (124) and RasMAPKinase cascades (125) and 

hence inhibit uncontrolled proliferation. There are also multiple apoptotic genes 

that are under the control of p53 that are involved in both the intrinsic and extrinsic 

pathways to celi death. For example, members of the classical caspase-dependent 

extrinsic pathway, Apaf 1 and caspase 9 are both upregulated by p53 (126). 

Furthermore, components of the mitochondrial pathway to apoptosis including pro-
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apoptotic BH3 only Bcl-2 proteins can be upregulated by p53 action including Bax, 

Bid, PUMA and NOXA (127, 128). In addition to this, p53 has recently been 

demonstrated to have a transcription-independent, pro-apoptotic function. It has 

been postulated that p53 translocates to the mitochondria following exposure to 

apoptosis-inducing stimuli where it can interact directly with Bax and open the 

mitochondrial transition pore and hence stimulate apoptosis (129, 130).

1.3.2.8 NF-kB Signalling

The NF-kB family of transcription factors, also known as the Rel family, comprise 

either homo or heterodimers of the following five NF-kB subunits: RelA (p65),

RelB, cRel, p50 and p52 (131). All of these subunits are related with a sequence of 

approximately 300 amino acids at the N terminal known as the Rel homology 

domain. This domain is required for DNA binding, dimérisation, nuclear localisation 

and inhibitor (IKB) binding. However the C terminal transactivation domains are 

not highly conserved suggesting diverse systems of NF-kB regulation have 

evolved.

The primary level of regulation of NF-kB is by IkB, which binds to the NF-kB dimer 

complex and sequesters it in the cytoplasm. This prevents NF-kB from accessing 

the nucleus and hence inhibits DNA binding. However activators, such as the MAP 

kinase cascade, stimulate IkB kinase complex (IKK) which phosphorylates IkB. 

This phosphorylated form of IkB is preferentially ubiquitinated and hence degraded 

in the proteosome, allowing free NF-kB to translocate to the nucleus and bind to 

DNA (132).

NF-kB transcription factors are highly constitutively activated in most cell types 

however in B cells this family appears to be under much tighter regulation (133). In 

fact amplification of NF-kB genes is very common in a number of B cell 

lymphomas including diffuse large B cell lymphoma, Follicular B cell lymphoma 

and Hodgkin's lymphoma (133,134). Consistent with this, NF-kB is known to 

control the regulation of genes that signal for diverse cellular responses including 

growth, proliferation and survival depending on the subunits utilised (Figure 1.12).
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For example, N F - k B signalling is known to upregulate anti-apoptotic genes 

including Bcl-2 family members Bcl-2 and B c IX l as well as cell cycle proteins such 

as cyclin D2, E2F3a and IL-ip (135-139) in order to promote cell survival and 

proliferation.

1.4 Cell Cycle and apoptosis

1.4.1 The cell cycle

The cell cycle ensures DNA is replicated and the cellular mass is doubled prior to 

cell division. There are four basic stages to the cell cycle (Figure 1.13 A). Initially 

cells undergo a period of growth (G1 phase) before replicating their DNA (S 

phase). DNA replication is followed by a second growth phase (G2) that generally 

passes more quickly than the G1 phase, since by G2 phase the cell has more 

ribosomes allowing faster protein synthesis. The final stage of the cell cycle is 

mitosis (M phase) in which the cell divides to form two daughter cells.

The cell cycle is a very tightly regulated process with two major checkpoints 

(Figure 1.13 B). Firstly at the G1-S boundary where cells commit to DNA synthesis 

and secondly at the G2-M transition where cells commit to mitotic cell division. 

Progression through these checkpoints is dependent upon the activity of cyclin­

dependent kinases (Cdks) and their regulators, the cycl ins (Figure 1.13 B). 

Progression through the early stages of the G1 phase of the cell cycle requires the 

activation of Cdk4 and Cdk6. These are cyclin D-dependant kinases and are 

activated by cyclin D1, D2 or D3. Cdk2 and its activator cyclin E are required 

during the late stages of G1 and for progression into S phase. The Cdk-cyclin 

complexes of G1 phase promote cell cycle progression by phosphorylating the 

retinoblastoma (Rb) pocket domain protein (140). Hypophosphorylated Rb binds to 

transcription factor III B and to an upstream binding factor and hence prevents 

transcription mediated by RNA polymerase III. RNA polymerase III activation is 

required for the generation of transfer RNA and the small ribosomal subunit and 

hence, protein synthesis and cell growth. Phosphorylation of Rb allows RNA 

polymerase Ill-mediated transcription and hence cellular growth. 

Hypophosphorylated Rb also binds to the transcription factor E2F and prevents it
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from forming dimers with DP transcription factors. Dimérisation with a DP family 

member is essential for E2F to activate transcription therefore Rb prevents E2F- 

dependent transcription. Phosphorylation of Rb by Cdks causes Rb to dissociate 

from E2F, allowing transcription to proceed. Activation of E2F is necessary for the 

G1-S phase transition since it regulates the expression of genes required for DNA 

synthesis and cell cycle progression including DNA polymerase alpha, thymidine 

synthetase, cyclin D3, cyclin E and cyclin A (140-142).

DNA is replicated during S phase of the cell cycle and this phase is sustained by 

the activation of cycl ins A and E and Cdk2 which enter the nucleus and facilitate 

DNA replication. On completion of DNA synthesis the cells enter the second period 

of growth, the G2 phase. During G2 the Cdk2-cyclin B complex accumulates (143) 

and Cdc25, a protein phosphatase that is only expressed once DNA replication is 

complete, can activate this complex. Phosphorylation of various target proteins by 

the active Cdk2-cyclin B complex then allows cells to enter mitosis. Cdk2-cyclin B 

can also phosphorylate and inhibit itself thus forming a negative feedback loop.

The ability of Cdk-cyclin complexes to allow cell cycle progression Is regulated by

two structurally distinct families of Cdk inhibitors (Figure 1.13 B): firstly the WAF1

family of proteins (p21, p27 and p57) and secondly the INK4 (inhibitor of Cdk4)

family (pi 5, p i 6, p i8 and p i9), The inhibitors p i5 and p i 6 are specific for cyclin

D-dependent kinases therefore they are particularly important regulators of Rb and

hence can suppress progression through G1 phase and entry into S phase of the

cell cycle. The inhibitor p27 suppresses Cdk2-cyclin E and hence prevents

completion of S phase (144). Several Cdk-cyclin complexes can be inhibited by

p21 including Cdk4-cyclin D1, Cdk2-cyclin E, Cdk2-cyclin A and Cdc2-cyclin A

(141). Thus, the activation of p21 can inhibit DNA synthesis and induce cell cycle

arrest at both G1 and G2 phases (145). As stated above, expression of the gene

encoding p21 can be stimulated by p53 (146) levels of which within a cell are

increased during cellular stress or damage and can be further enhanced by

p19'NK4̂  which stimulates the degradation of MDM2, an inhibitor of p53 (147, 148).

By stopping DNA synthesis and cell cycle progression, p53 is able to prevent the

replication of faulty DNA or a damaged cell. Following the activation of p53 and
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cell cycle arrest, proteins involved in DNA-repalr are induced and minor damage to 

DNA is repaired. The expression of MDM2 is regulated by p53, creating a negative 

feedback loop that enables cell cycle progression to proceed once DNA damage 

has been repaired.

1.4.2 Apoptosis: There are many routes to cell death

During the development of B cells, apoptosis plays an essential role in preventing 

autoimmunity. Earnshaw, Martins and Kaufmann (1999) defined Apoptosis as a 

“genetically programmed morphologically distinct form of cell death triggered by a 

variety of stimuli” (149). This process is widely used in development and normal 

organismal function, for example to delete interdigital webs during mammalian limb 

development. It is a complex process with a very characteristic morphology. Thus, 

cells undergoing apoptosis have their DNA fragmented into 200bp sections (and 

multiples thereof), condensed chromatin, dynamic plasma membrane blebbing, 

phosphatidlyserine exposure on the plasma membrane and cleavage of enzymes 

such as Poly (ADR ribose) Polymerase (PARP) (reviewed in (149)). Exposure of 

phosphatidylserine on the cell surface acts to label the dying cells for phagocytosis 

by macrophages. It has even been suggested that macrophages may act to 

simulate apoptosis in “healthy cells” such as initiating apoptosis in vascular 

endothelial cells during capillary regression (150).

The molecular mechanisms of apoptosis were first studied in the nematode worm 

C. elegans with the discovery of the CED 3 gene that Is a homologue of the 

mammalian caspase proteins (151), The caspases are defined by the MEROPS 

database (a protease classification system) as cysteine nucleophiles with their 

catalytic residues in the order His, Cys that cleave proteins after aspartic acid 

residues. Generally caspases are present in the cytosol as inactive zymogens 

often referred to as the pro-caspase form. Apoptotic stimuli mediate the processing 

of these pro-caspases into active caspases. The caspases are divided into two 

main groups- the initiator (caspases 2, 8, 9 and 10),which are processed first, and 

effector caspases (caspases 3, 6, 7), which can be activated by initiator caspases.
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There are 2 major pathways known to activate caspase-dependent apoptosis, the 

classical caspase and the mitochondrial pathways. The classical caspase, or 

extrinsic pathway, is initiated by the ligation of death receptors such as Fas/ CD95 

and Tumour necrosis factor receptor (TNFR) which in turn can recruit Fas 

associated protein with a death domain (FADD). FADD can activate procaspase 8 

to become caspase 8, which in turn activates the effector caspase, caspase 3. In 

contrast the mitochondrial, or intrinsic pathway. Involves both the opening of the 

mitochondrial transition pore and thus loss of mitochondrial membrane potential 

(MMP) and signalling by the Bcl-2 family of pro and anti-apoptotic proteins. Loss of 

mitochondrial membrane integrity allows the release of cytochrome c from the 

mitochondria via the opening of large protein channels sometimes referred to as 

the mitochondrial megachannel. Cytochrome c then binds to Apaf 1 which 

stimulates oligomerisation of Apaf 1 and recruits procaspase 9. Cytochrome c, 

Apaf 1 and procaspase 9 together are sometimes referred to as the apoptosome. 

This causes autoprocessing of procaspase 9 to caspase 9 which can then activate 

caspase 3 which acts as an effector caspase. There are a large number of Bcl-2 

family members that can either inhibit or aid signalling via the intrinsic pathway.

For example, B c IX l prevents cytochrome c release from the mitochondria by 

maintaining mitochondrial membrane integrity whereas Bax and Bak act to induce 

cytochrome c release by opening mitochondrial channels.

Both pathways are well described however the complex crosstalk between the two

is not. Indeed, recent publications describe these two pathways as two aspects of

an all-encompassing apoptotic pathway rather than 2 distinct mechanisms for

signalling apoptosis (150, 152, 153). Green and Kroemer (1998) thus describe

apoptosis as comprising of two major decisions, each decision being mediated by

temporaliy distinct signalling mechanisms. The first is the life/death decision i.e.

the decision to commit the cell to apoptosis that is “taken” by the mitochondrial

pathway. That is to say that once the mitochondrial permeability pore has opened,

the cell has committed itself to die. The second is the apoptosis/necrosis decision

i.e. the decision as to whether active death or passive swelling and bursting of the

cell will occur that is “taken" by the classical caspase pathway. Therefore the

default position, following commitment to ceil death, is to die by necrosis unless
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this is prevented through initiation of the caspase cascades. However it is not just 

the caspase cascades that can govern apoptosis as many recent studies have 

demonstrated that there are more executioner protease systems that are involved 

in apoptosis. Novel death inducing systems including lysozomal aspartic acid and 

cysteine proteases such as cathepsin B (154-156), the ubiquitin/ proteosome 

pathway (157) and a specialized granzyme B pathway in T helper (Th) cells (158). 

Therefore, we would modify the Green and Kroemer (1998) hypothesis to the 

apoptosis/ necrosis decision being “taken” by a superfamily of executioner 

proteases rather than just the caspase cascade.

1,4.2.1 Caspase-mediated apoptosis

Caspases are proteases that share a stringent specificity for cleaving their 

substrate after aspartic acid residues in target proteins. All caspases contain the 

active site pentapeptide QACXG where X is R, Q or G. In mammals at least 10 

members of the caspase family have been identified. Seven are involved in 

apoptosis, three in pro-inflammatory cytokine production and one in keratinocyte 

differentiation. Initiator caspases are identified by their ability to process 

executioner caspases via either a homeotypic caspase recruitment domain 

(CARD) or a death effector domain (DED) interaction at the N termini. There are 

two possible initiation pathways, one via death receptors which process pro­

caspase 8 to the active caspase 8 which results in the activation of the executioner 

caspase, caspase 3. The second is via the release of cytochrome c from 

mitochondria which leads to the formation of the apoptosome and hence 

generates active caspase 9. Additionally, it Is possible that both the caspase 8 and 

caspase 9 initiation pathways are activated at the same time as both converge on 

the activation of caspase 3. Executioner, or effector, caspases are simply defined 

by the absence of recognizable recruitment domains e.g. caspase 3 and 7. Once 

activated from their pro-enzyme form they cleave critical cellular substrates 

including poly (ADP-ribose) (PARR), polymerases and lamins. The caspases are 

the best-studied family of executioner proteases and have a well-documented role 

in apoptosis and other forms of programmed cell death
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1.4.2.2. Caspase 8

Caspase 8 (MACH/FLIGE) is the prototypical apoptosis initiator caspase 

downstream of the TNF superfamily of death receptors. Substrates for caspase 8 

include apoptosis-related effector caspases and pro-apoptotic Bcl-2 family 

members (159). For example, active caspase 8 cleaves Bid to produce the active 

pro-apoptotic form tBid (160) which then translocates to the mitochondrial 

membrane where it acts to trigger cytochrome c release and initiate the 

mitochondrial apoptotic pathway (Figure 1.14). Caspase 8 is recruited to Fas 

(Apol ) though the association of a duplicated N terminal motif death effector 

domain with a homologous motif in an adaptor protein MORTI/FADD. These two 

proteins form the DISC, or death inducing signalling complex, which can recruit 

many pro-caspase 8 molecules resulting in self-processing and formation of active 

caspase 8 enzymes (161). Consequently caspase 8 can induce apoptosis by the 

activation of downstream caspases 2, 3, 6 and 7.

Consistent with this, caspase 8' '̂ cells are resistant to death receptor mediated 

apoptosis both in vitro and in vivo (162). Interestingly, caspase 8" '̂B and T cells 

are not capable of repopulating lymphoid organs from sub-lethally irradiated mice 

suggesting an additional important non-apoptotic role for caspase 8 in immune cell 

function (163). Consistent with this, the Cre/LoxP system was used to create mice 

that are both viable and have a caspase 8 deficiency specific to the T cell lineage. 

These mice display deficiencies in T cell expansion and activation suggesting that 

caspase 8 is necessary for proper T cell function, homeostasis and preventing 

immunodeficiencies (164).

1.4.2.3 Caspase 9

Caspase 9 is synthesized as 46 kDa precursor protein containing an inactivating 

pro-domain. Caspase 9 becomes active after association with Apaf 1 (a 

homologue of another C. elegans death protein CED 4) through its N-terminal pro­

domain (165). The amino terminal sequences of Caspase 9 and Apaf 1 both 

contain a caspase recruitment domain (CARD) motif which is indispensable for 

their interaction (166). After association, Caspase 9 is thought to be auto­

processed and become an active p20/p20/p10//p10 tetramer (167). Human
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Caspase 9 activation is negatively regulated by phosphorylation by AKT, a 

serine-threonine kinase previously implicated in suppressing apoptosis. AKT 

phosphorylates caspase 9 on serine 96 and inhibits its cleavage and hence 

protease activity (168).

Apoptotic stimuli such as hypoxic stress, growth factor withdrawal, 

chemotherapeutic agents or irradiation induce the loss of mitochondrial membrane 

integrity and facilitate release of cytochrome c to the cytosol. Cytochrome c binds 

to Apaf 1 and results in a change of conformation of Apaf 1. Subsequently 

caspase 9 is recruited to this complex and activated by auto-processing that 

facilitates the cleavage of downstream caspases including caspase 3. Thus, 

cytochrome c-mediated caspase activation through caspase 9 serves as an 

amplification mechanism during apoptosis as one apoptosome can mediate the 

processing of many pro-caspase 3 molecules (169).

The physiological function of caspase 9 has been investigated by analysis of 

knockout mice. Casapse 9 homozygous knock out mice generally die perinatally 

with a markedly enlarged cerebrum caused by a reduction of apoptosis at an 

earlier stage of brain development (170). In contrast, the loss of caspase 9 does 

not affect morphological developments of the spinal cord and other non-neural 

tissues. Interestingly, despite normal development of the thymus, isolated 

thymocytes are nevertheless resistant to a subset of apoptotic stimuli (etoposide, 

dexamethasone, radiation and treatment with anti-CD3 and CD28 Abs) and exhibit 

delayed DNA fragmentation (171). However Fas-mediated apoptosis is not 

affected in caspase 9-deficient thymocytes demonstrating that such apoptosis can 

occur in a completely caspase 9-independent fashion via the extrinsic pathway 

(171).

1.4.3. The Bcl-2 family

The Bcl-2 proteins comprise of a family of small proteins between 18 kDa and 

26kDa in size. Individual members can be sub-divided into 3 categories as shown 

in Figure 1.15. The anti-apoptotic family members, such as Bcl-2, and Mcl 1, 

contain 4 Bcl-2 homology (BH) regions. The pro-apoptotic members e.g. Bak and
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Bax are structurally very similar to the anti-apoptotic proteins but do not contain a 

BH4 domain. Finally, there are the BH3 only proteins such as Bim, Bad, and Bid, 

which are pro-apoptotic. All of the Bcl-2 family members appear to be able to bind 

to membranes both in the ER and the mitochondria as well as being present in the 

cytosol (172). The original doctrine was that the pro-survival Bcl-2 proteins act by 

binding to the mitochondrial membrane and preventing the release of cytochrome 

c and hence inhibiting the activation of caspase 9. By contrast, the pro-apoptotic 

Bcl-2 family members, such as Bax, were proposed to sequester Bcl-2 and hence 

stimulate apoptosis. However the actions and interactions of Bcl-2 family members 

appear to be far more complicated than first anticipated (173, 174). A recent 

review by Christoph Borner (2003) suggested that there are at least 4 possible 

modes of action for Bcl-2 family members. Furthermore he suggested that it is 

likely that different Bcl-2 family members use combinations of these methods and 

the precise method employed may be signal and cell type specific (172).

1.4.3.1 Bcl-2 family members can form channels in Intracellular membranes

Protein crystallography has revealed that many Bcl-2, family members, such as 

Bax and B c IX l, have strong homology to bacterial pore-forming toxins (175). 

Therefore it was suggested that the pro-apoptotic Bcl-2 proteins could insert into 

the mitochondrial membrane and hence stimulate release of Smac, a pro-apoptotic 

mitochondrial protein, and cytochrome c (176). It has been demonstrated that 

purified, recombinant Bax can induce channels that allow for cytochrome c 

release. Indeed, it is possible that such channels are formed by interaction with 

existing mitochondrial channels such as the voltage dependent anion channel 

(VDAC) rather than direct insertion into the mitochondrial membrane (177). In 

contrast, it has been proposed that anti-apoptotic Bcl-2 family members, such as 

B c IX l , can oppose this by binding to VDAC and stimulating closure of the pore 

(178). There is still much controversy over which method of Bcl-2-induced channel 

formation is employed in vivo.

1.4.3.2. Bcl-2 family members can interact and sequester other Bcl-2 family 

members

27



As would be predicted by the nature of their closely related structures Bcl-2 

proteins can interact closely and bind to each other. The functional outcome of 

these interactions depends on the specific Bcl-2 family members involved. For 

example, homodimerisation of B c IX l molecules has anti-apoptotic functions in 

protecting mitochondrial membrane integrity (179) whereas sequestration of B c IX l 

by dimérisation with Bad prevents such protective functions and allows for opening 

of the permeability transition pore (180). Similarly, Fluorescence Resonance 

Energy Transfer (FRET) demonstrated that Bax can interact with many other Bax 

molecules (181) and such Bax oligomerisation results in loss of MMP and 

commitment of the cell to apoptosis (182).

1.4.3.3 Bcl-2 family members may interact with other cell signalling proteins

The yeast 2-hybrid system demonstrated potential interactions between Bcl-2 and 

B c IX l and many other signalling proteins such as Bap 31, 53BP-2, ANT, R-Ras 

and calcineurin (reviewed in (183)). However, these signalling elements did not 

interact with Bak or Bax and it was therefore postulated that the binding of Bcl-2 

and B c IX l to these proteins had a cytoprotective function. For example, pro­

survival Bcl-2 family proteins might prevent the Induction of p53, and hence pro- 

apoptotic genes, by sequestering the p53-binding protein 53BP-2. Similarly, pro­

survival Bcl-2 family proteins might prevent exposure to mitochondrial poisons by 

binding to the mitochondrial channel ANT. However there is little causal evidence 

to support a cytoprotective function of Bcl-2/ B c IX l in binding to non-Bcl-2 family 

members.

1.4.3.4. Bcl-2 family members have anti-oxidant properties

Production of reactive oxygen species (ROS) by damaged mitochondria has been

shown to induce apoptosis and has been implicated as the major apoptotic signal

in some disease states, such as cell death following cardiac ischemia (184).

Hockenberry et al showed that the anti-apoptotic Bcl-2 protein could counteract the

damage done by some reactive oxygen species (185) and postulated that the

molecular structure of Bcl-2 allows for quenching of ROS. Furthermore, Bcl-2 can

also promote maintenance of mitochondrial membrane integrity and thus prevent

the amplification of the apoptotic signal by inhibiting the further release of
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cytochrome c (186, 187). There is no formal evidence to confirm that anti-apoptotic 

Bcl-2 family members do have this ROS quenching capacity.

Consistent with the idea that more than one of these mechanisms may be required 

for apoptosis, recent reviews have suggested that there are three "ingredients" 

necessary to produce a dissipation of the MMP during apoptosis mediated by Bcl- 

2 family members. These are the simultaneous presence of: (i) truncated Bid 

(cleaved by caspase 8) (ii) oligomerised Bax or oligomerised Bax and Bak 

complexes (<200Kda) (iii) a specific lipid environment including cardiolipin which is 

localised at the inner membrane/ outer membrane (im/om) contact sites.

1.4.3.5 Activation of Bax and Bak

Treatment of chronic lymphocytic leukaemia B cells with chemotherapeutic drugs, 

such as dexamethasone, has been found to increase the number of cells 

undergoing Bax/Bak dependent apoptosis and this activation of Bax and Bak is 

independent of upstream caspase activation (188). However, use of the pan- 

caspase inhibitor Z-VAD-FMK could rescue the cells from apoptosis and prevent 

some of the hallmarks of apoptosis including caspase 3 activation, exposure of cell 

surface phosphatidylserine residues and even partially reverse the dissipation of 

the MMP. However, there is no change in the conformation of Bax or Bak and both 

remained active. This indicates that activation of the Bax/Bak is an early apoptotic 

event occurring prior to caspase activation and thus, induction of apoptotic 

morphology.

To investigate the mode of Bak/Bax action, Capano and Crompton (2002) used a 

Bax-GFP fusion protein which was transfected into cultures of cardiomyocytes 

(182). These cells were treated with staurosporine to induce apoptosis and Bax- 

GFP action imaged using a confocal microscope. At early time points, and also in 

the control cells, there is a dispersed distribution of Bax throughout the cytosol and 

this pattern can be seen for up to 3 hours after drug treatment. However, after 4 

hours there is a punctate distribution of Bax, which is found in large aggregates in 

close proximity to the mitochondria. They termed these two phases the pre and 

post-Bax aggregation phases and suggested that the start of the post-Bax
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aggregation phase signals the time point of initiation of the apoptotic process 

resulting in dissipation of the MMP and cytochrome c release. Previous work (189, 

190) had suggested that the VDAC could provide the structure that makes the 

mitochondria permeable to cytochrome c. Moreover, it had been postulated that 

Bax would act to open the pore whilst B c IX l could protect MMP by promoting 

closure of the VDAC pore (189, 190). Capano and Crompton have now extended 

this theory by suggesting that, during the pre-Bax aggregation phase, the VDAC 

interacts with Bax and leads to the formation of large Bax aggregates and the 

release of cytochrome c. Moreover, it was suggested that during the post-Bax 

aggregation phase Bax interacts with the adenine dependent anion channel (ANT) 

to further increase mitochondrial permeability (182). It is still not clear if Bax is the 

only pro-apoptotic Bcl-2 family member responsible for this. However, it has 

recently been suggested that the Bcl-2 family members can actually change the 

physical structures within the mitochondria. For example, in wild type mice 

apoptosis is associated with an increase in mitochondrial contact sites, where the 

inner and outer mitochondrial membranes meet and pro-apoptotic Bcl-2 family 

members are postulated to act (191). However, in B c IX l overexpressing mice, 

mitochondria maintain a normal appearance in the presence of apoptosis inducing 

stimuli (191). This study showed that the presence of B c IX l stops the increase in 

mitochondrial contact sites and implies that Bcl-2 family members are capable of 

making a permanent change to subcellular morphology of the mitochondria.

1.4.3.6. The BH3-only members of the Bcl-2 family modulate apoptosis

The BH3-only proteins had originally been considered to be “messengers” of 

apoptosis by acting to trigger Bax/Bak oligomerisation. However this now seems to 

be an over-simplification of the actions of this family of proteins. Indeed, the BH3- 

only proteins represent a set of proteins that have distinct and diverse cellular 

functions. Consistent with this, whilst all the BH3-only proteins share the BH3 

domain, they otherwise appear structurally unrelated. The BH3 domain functions 

as an important death domain for these proteins that is essential for both pro- 

apoptotic activity and ability to bind to the multi-domain Bcl-2 family members. 

However, the BH3-only family can now be further subdivided into two groups:
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“activators" e.g. Bid which can act to directly bind and activate mitochondrially 

localised Bax and Bak and the “enablers" e.g. Bad which sensitise cells to 

apoptosis by binding anti-apoptotic Bcl-2 family members (Figure 1.16). (192).

I.4.3.6.1. The BH3 only activator Bid

Although Bid is often described as being activated by the caspase 8 family it can in 

fact be cleaved by multiple protease systems including granzyme B, lysozomal 

enzymes and calpains. It is a 195 residue, 22 KDa protein which has been 

demonstrated, by NMR, to have remarkably similar structural elements to both Bcl- 

2 and B c IX l (2  central hydrophobic a  helices surrounded by 6 amphipathic helices) 

which may suggest an anti-apoptotic function (reviewed in (176)). By contrast, 

truncated Bid is an important activator of the caspase 9 cascade as tBid induces 

Bax/Bak oligomerisation and hence stimulates their activation of the VDAC and 

ANT. This opens the mitochondrial permeability pore and results in dissipation of 

the MMP, release of cytochrome c and hence caspase 9 activation (193). After 

cleavage tBid remains associated with the amino terminal fragment of Bid, nBid. 

Only after dissociation from nBid can tBid translocate to the mitochondria where it 

can induce the oligomerisation of Bax/Bak (194). It is thought that this dissociation 

is mediated by cardiolipin, a mitochondrial-specific phospholipid, which has a 

higher affinity for tBid than nBid (195). It has been shown that the presence of 

cardiolipin or monolysocardiolpin (a metabolite of cardiolipin that increases during 

apoptosis) are sufficient for the dissociation of nBid from tBid (194). Kuwana et al 

also demonstrated that cardiolipin is essential for the formation of the supra- 

molecular complex that contains tBid and Bax (196). Cardiolipin is found in high 

concentrations in the inner mitochondrial membrane, including the contact sites 

where the inner and outer mitochondrial membranes interact following induction of 

apoptotic signalling. Truncated Bid has been shown to be associated with these 

contact sites where it can induce a conformational change in the N terminal 

domain of Bax (193). This change in Bax combined with a change in mitochondrial 

cristae structure is thought to activate the release of cytochrome c (197).

The exact mechanism by which Bid is abie to trigger cytochrome c release is still 

under debate. Bid is thought to have some intrinsic activity as a protein channel
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due to its structural homology to bacterial porin molecules, however this activity 

has not been demonstrated in vivo (198). In addition to this, tBid is able to trigger 

integration of Bax into the mitochondrial membrane (199). This may allow Bax to 

act as a protein channel itself or may stimulate opening of the permeability 

transition pore through interaction with the voltage dependent anion channel (177). 

Regardless of the mechanism, this would lead to swelling of the mitochondria, 

rupture of the mitochondrial membrane and release of cytochrome c. However to 

add a further layer of complexity, some forms of apoptosis, where the 

mitochondrial pathway has been implicated, have reported shrinkage of the 

mitochondria suggesting there may be other factors involved in the opening of the 

permeability transition pore (200-202). Finally, Bid can act to sensitize the cells to 

apoptosis by binding to, and sequestering, anti-apoptotic Bcl-2 family member 

B c IX l (203).

I.4.3.6.2. The BH3 only enabier Bad

Bad is the best-characterised pro-apoptotic BH3-only family member. Indeed, it 

was the first BH3 only molecule that was shown to be connected to proximal signal 

transduction through a phosphorylation response (204, 205). Thus, when Bad is in 

its non-phosphorylated state it is able to bind, and sequester, the anti-apoptotic 

Bcl-2 family members Bcl-2 and B c IX l. This prevents Bcl-2 and B c IX l from 

protecting the mitochondrial membrane integrity and hence allows for 

mitochondrial permeability pore transition and initiation of apoptosis. However if 

Bad is phosphorylated, for example by AKT, this allows for binding of Bad with the 

cytosolic 14-3-3 proteins. This prevents Bad from being translocated to the 

mitochondria and therefore such sequestration of Bad acts as a pro-survival signal 

(206, 207) (Figure 1.7). Interestingly, Bad is unable to directly interact with either 

Bak or Bax and so is not thought to directly stimulate their oligomerisation, and 

opening of the permeability transition pore (208).

As indicated above, protein- protein interactions between Bcl-2 family members 

constitutes an important regulatory mechanism governing cell fate as the ratio 

between pro-apoptotic and anti-apoptotic Bcl-2 family dimers can be the primary
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determining factor in the commitment to life or death. For example, Bad has been 

demonstrated to be able to bind both Bcl-2 and B c IX l via its BH3 domain. However 

Bad can bind B c IX l far more strongly than Bcl-2 can bind B c IX l suggesting that 

Bad can displace B c IX l from B c IX l -Bcl-2 dimers (204, 209). In addition to this.

Bad can interact more strongly with B c IX l than either Bak or Bax and would 

therefore displace B c IX l from Bax/ Bak complexes. This increase in free Bax and 

Bak would promote Bax/Bax oligomerisation and therefore apoptosis (210). 

Moreover, overexpression of Bad in the absence of B c IX l has also be shown to 

produce an acceleration of the apoptotic response suggesting that Bad may also 

be able to mediate apoptosis by other mechanisms (211).

Surprisingly, Bad has also been shown to act as a pro-survival factor in some cell 

types. In fact it has been suggested that pro-apoptotic Bcl-2 family members are 

not only latent death factors but may also carry out important functions in healthy 

cells. For example, Bax and Bak have been postulated to function as anti-death 

factors in some neurones and mouse models however the mechanisms involved 

remain elusive (212, 213). By contrast, Bad has been shown to regulate cellular 

metabolism and facilitate the utilisation of the glycolytic pathway. Glucose can 

actually induce the phosphorylation of Bad and such phosphorylated Bad was 

found in a large mitochondrial complex including glucokinase, a member of the 

hexokinase family where it is thought to enhance glucose production (214). 

Consistent with this, knock out mice that are deficient in Bad exhibit characteristics 

of diabetes (214). This suggests that Bad can act as a sentinel to monitor 

glycolysis such that if there are abnormalities in glucose metabolism, Bad can 

trigger apoptosis in pancreatic and liver cells and hence integrate the apoptotic 

and metabolic pathways.

One possible mechanism for distinguishing the pro and anti-apoptotic effects of

Bad is presented by a report suggesting that full length Bad had a solely anti-

apoptotic function in neurones, and protected against apoptosis in response to

non-viral death stimuli (215). The exact mechanism for this protection is not

known. By contrast, the cleavage product of Bad (N terminally truncated. Bads) is

generated by members of the caspase family. Indeed, Bad was shown to act as a
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potent inhibitor of cell death in this system prior to conversion to the pro-death 

stimulus Bads by cleavage at aspartate 61 by recombinant casapse 3.

Further evidence for pro and anti-apoptotic functions of Bad have been provided 

by mice deficient in Bad, which were viable with a reduced lifespan (216). 

Investigation of the B and T lymphocytes subsets in such mice found them to be 

present and normal. Moreover, the Bad-deficient thymocytes apoptosed normally 

in response to serum withdrawal although they exhibited a modest, but consistent, 

deiay In apoptosis following y irradiation suggesting apoptosis can be Bad- 

independent in these cells. Interestingly, Bad-deficient B cells were found to exhibit 

a reduced proliferative response to anti-IgM and anti-CD40 (but demonstrated a 

normal response to LPS). Consistent with this, whilst Bad B cells also displayed 

a normal production of IgM, they showed a decreased production of IgG. Further 

characterisation of such lymphocytes revealed that these differences were not due 

to cell death or subset differentiation suggesting that Bad may be essential for anti- 

CD40 and anti-IgM induced proliferation and differentiation of mature B cells. 

Nevertheless, the decreased lifespan resulted from the Bad mice developing a 

large B cell type lymphoma in both the spleen and lymph nodes which was found 

to be of a B220 positive mature B cell phenotype of germinal centre origin (216). 

This also therefore implicates Bad in normal mature B cell apoptosis. Therefore 

Bad has been implicated in both proliferative and apoptotic responses In mature B 

cells.

1.5 Alternative executioner proteases

1.5.1 Cathepsins

In addition to the canonical caspase cascades described above, there are other 

executioner protease systems that can be induced by pro-apoptotic stimuli to 

mediate apoptosis. The cathepsins are another family of cysteine proteases that 

are lysosomal thiol proteases. The murine cathepsin family has 15 known 

members that are involved in bulk protein turnover, protein processing, Ag 

presentation, tumour formation and apoptosis. Cathepsins B, H and L are 

expressed ubiquitously however the other cathepsins have tissue specific
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expression (217). They are active during acidic conditions, such as within the 

iysosome, however they are unstable in neutral or alkaline conditions. These 

proteases are regulated by the binding of endogenous protein inhibitors called 

cystatins.

Lysosomes have traditionally been seen as “suicide bags” due to their ability to 

degrade proteins, carbohydrates and lipids. However many forms of apoptosis 

have now been shown to involve moderate rupture of the lysosomes referred to as 

small scale lysosomal leakage (ssLL) (218, 219). This allows release of cathepsins 

into the cytosol and hence degradation of cellular proteins. Enzymes termed 

lysoapoptases, which can convert inactive pro-caspase zymogens into their active 

forms, are also released which have been demonstrated to activate pro-caspase 3

(220). However there is no evidence for direct activation of caspases by 

cathepsins. The molecular identity of many of the mediators of cathepsin-activated 

apoptosis have yet to be identified. However there in strong evidence for the 

involvement of cathepsins in both caspase-dependent and independent apoptosis

(221).

There has been resistance to the Idea that apoptosis can be mediated by 

cathepsins due to two lines of evidence. Firstly, as has already been mentioned, 

cathepsins have optimal activity in acidic conditions and so were thought to act 

only within the lysosomes. Secondly cathepsin mice were generated which 

were found to have an overtly normal phenotype (222). However it is important to 

note that knock out animals defective in Bid, Bax, Caspases 1 ,2 ,6 , 11 and 12 

also had overtly normal phenotypes. Animals defective in caspase 3, 7 and 9 also 

had phenotypes of differing severity depending on the strain used to produce the 

animals suggesting that defects are tissue and strain specific (reviewed (223)). 

New evidence has now shown specific phenotypes in cathepsin B' '̂ animals. For 

example, treatment of hepatocytes from these animals with TNFa did not result in 

apoptosis, cytochrome c release and caspase 3 and 9 activation as is observed in 

wild type animals suggesting that cathepsins are activated in a stimulus and cell 

type specific manner (224).
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In some systems cathepsins can act in a caspase-independent manner to induce 

apoptosis. For example, astrocytes, cultured from rat cerebral cortices, undergo 

apoptosis in response to H2O2 exposure in a caspase-independent manner and 

the death-inducing properties were found to be regulated by cathepsins B and D 

(225). Furthermore, anti-thymocyte globulins induce a rapid, dose-dependent T 

cell depletion in peripheral lymphoid tissues which is caspase-independent and 

associated with the activation of cathepsin B (226). Moreover, work conducted in 

our own laboratory has also implicated cathepsins in the caspase-independent 

apoptosis of the immature B cell line WEHI 231 (156). Such apoptosis, triggered 

by ligation of the BCR, results in translocation of PLA2 from the cytosol to the 

mitochondria, reduction in ATP levels and disruption of the MMP. However, there 

are none of the hallmarks of classical caspase-mediated cell death such as 

cytochrome c release, PARP cleavage or activation of caspase 3. By contrast, 

there was a strong increase in the activation of cathepsin B. Perhaps consistent 

with all of the above, there is also evidence to suggest that cathepsin B can cleave 

the pro-apoptotic Bcl-2 family member Bid to the active form tBid (218).

1.5.2 Calpains

The calpains represent another family of cysteine thiol proteases that have been 

implicated in cellular responses as diverse as cell death and proliferation. They are 

expressed in ubiquitous forms (calpains m and |i) and tissue specific forms (n 

calpains). Calpain n1 is found exclusively in skeletal muscle whereas calpains n2 

and n2' are found in the stomach (reviewed in (227)). Calpains are regulated by 

calcium flux, intracellular inhibitors and membrane targeting and are under tight 

regulation as calpain is abundant in the cytosol and is thus capable of cleaving 

many intracellular signalling and structural proteins. Calpains have been implicated 

in the regulation of proliferation and normal cellular function. For example, in the 

immature B cell line WEHI 231, calpain is implicated in the degradation of IkB and 

hence activation of NF-kB resulting in cell growth. Moreover, knock out mice that 

lack the large calpain regulatory subunit die during embryonic development due to 

defects in vascular development (228). Furthermore, one form of human muscular 

dystrophy Is associated with defects in the muscle-specific calpain 3 gene (229).
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Collectively these data suggest that correct expression and regulation of calpains 

is necessary for normal cell function.

Consistent with reports that calpains have been implicated in cell death there is 

evidence that the cellular targets for calpain and caspase proteolysis are very 

similar. For example, caspase 3 and calpain share many substrates including Tau, 

keratins, PLC, PKCa, |3, y, Bcl-2 and Bax and indeed, many of the resulting 

fragments produced by cleavage are similar or identical regardless of which of 

these executioner proteases are utilised (230). As calpains are regulated by 

calcium influx they tend to become activated in extreme pathological conditions, 

for example necrosis and apoptosis are associated with a sustained rise in 

Intracellular calcium levels. The exact mechanism of calpain involvement and 

integration with the caspase pathway has not yet been elucidated. It has, however, 

been demonstrated that activated caspase 3 cleaves cytoskeletal proteins which 

can increase membrane permeability and hence, calcium influx resulting in 

activation of calpain. Additionally, caspases are able to degrade the endogenous 

inhibitor of calpain, calpastatin, and so activate calpains suggesting calpains may 

act downstream of caspases. However, calpains can act to cleave caspase 3. The 

consequence of this is unknown, however some groups report that this may inhibit 

caspase 3 activation by producing a fragment that is resistant to subsequent 

activation (reviewed in (230))(Figure 1.17). Further research in this area will 

hopefully resolve this issue soon

Another important question still remains as to whether calpains act to initiate and

effect apoptosis on their own, without utiiising caspase cascades. For example, it

is known in UV treated cortical neurones that both caspase 3 and calpains are

activated. Furthermore, it has been demonstrated that it is the calpains that act to

produce the hallmarks of apoptosis, as apoptosis occurs in this system even when

ail initiator and effector caspases are inhibited (231). Similarly, it has also been

shown that in human breast cancer cells, the active form of vitamin D3 acts to

increase intracellular calcium levels and induce \i calpain-dependent apoptosis.

This also occurs in the absence of any effector caspase activation (109). However,

investigation of other systems reveals that the type of calpain-dependent apoptosis
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induced appears to be stimulus specific. For example, using a neuronal cell line, 

addition of either staurosporine or a neurotoxin produces calpain activation which 

is either caspase-dependent or independent in the same cells depending on the 

stimuli (232). Taken together these data suggest that caspase-independent and 

calpain-dependent apoptosis can occur, however the phenotype of apoptosis is 

both cell type and stimuli specific. Nevertheless, calpain-dependent and caspase- 

independent apoptosis has now been demonstrated in many systems including 

dexamethasone treated thymocytes, (108), staurosporine treated neuroblastoma 

cells, growth factor derived PCI 2 cells and UV treated rat neurones (233).

Interestingly, it has been demonstrated that in chronic lymphocytic leukaemia a 

decrease in apoptosis and prolonged survival of B cells is associated with impaired 

calpain function, indeed, the ubiquitously expressed \x calpain is found to be 

transcriptionally downregulated three fold in this system (234). Consistent with a 

key role in B cell apoptosis calpain was found to specifically trigger the activation 

and processing of caspase 7 following ligation of the BCR, a pro-apoptotic signal 

in the immature B cell line WEHI 231. Interestingly, CD40 ligation, which is a pro- 

survivai signal in these cells was associated with an increase in the expression of 

the calpain inhibitor calpastatin (235). Taken together this suggests that calpain 

may be critical for B cell deletion during lymphocyte development and function.

1.6. Negative Feedback Inhibition in mature B cells

1.6.1 Negative Feedback Inhibition is mediated by FcRs

Once an infection has been cleared it is important that the B cell response is 

properly switched off. This invoives a homeostatic process called negative 

feedback inhibition (236). This restores B cell numbers to their original pre­

infection levels by preventing further proliferation and hence prevents the aberrant 

overproduction of Abs. This process is mediated by coligation of both the BCR and 

FcyRllb by Ag-Ab immune complexes (Figure 1.18).

Fc receptors (FcRs) provide a critical link between the humoral and cellular arms 

of the immune system by binding the Fc domain of antibodies. Separate FcRs
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exist for each of the five classes of immunoglobulin: FcaR (IgA), FcôR (IgD), FceR 

(IgE), FcyR (IgG), and FcfxR (IgM) (236). The FcyRs are specific for the Fc domain 

of IgG, and comprise a family of structurally homologous, yet distinct, receptors 

that were first discovered over 35 years ago. Four classes of FcyR exist, FcyRI, 

FcyRII, FcyRIII and FcyRIV. These 4 classes are defined by their cellular 

distribution, structure and affinity for the IgG subclasses (237). For example, FcyRI 

is a high affinity receptor, which is capable of binding monomeric IgG at 

physiological concentration (238). In contrast, FcyRII and FcyRIII are low affinity 

receptors that can only bind IgG that is complexed to multivalent soluble antigen 

as immune complexes (237). The binding properties of IgG Abs was found to be 

independent of the F(Ab)2* fragment and only the Fc portion was required for 

interaction with the receptor.

The only FcyR found on B cells is the FcyRllb receptor (CD32), and as stated 

above, this receptor inhibits signalling through the BCR upon coligation of the BCR 

and FcyRllb by IgG containing immune complexes. FcyRllb is a single chain 

glycoprotein that binds to IgG with a low affinity. Signalling is initiated courtesy of a 

13 amino acid inhibitory immuno-tyrosine inhibitory motif (ITIM) motif on the 

cytoplasmic domain of FcyRllb (239). The ITIM sequence has been shown to be 

necessary and sufficient to inhibit BCR generated calcium mobilisation and cellular 

proliferation (240). Phosphorylation of the tyrosine residue of the ITIM by the PTK 

Lyn occurs upon coligation of the BCR with FcyRllb. This generates a SH2 

recognition domain that can bind the SH2-containing inositol phosphatase SHIP 

and possibly the tyrosine phosphatases SHP1 and SHP2 (241, 242).

FcyRllb signalling is proposed to have different functions depending on the context 

of the signal. Thus, homo-aggregation of FcyRllb by non-cognate Immune 

complexes, i.e. without coligation of the BCR, is thought to provide a pro-apoptotic 

signal (Figure 1.19) (243). Although the exact nature and function of this signal has 

not been elucidated it is thought to maintain peripheral tolerance to potentially 

cross-reactive auto antigens (244). The main evidence for this proposal comes 

from FcyRllb deficient mice that die at 8 months due to the development of auto­

antibodies and an autoimmune glomerulonephritis which closely models the
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human autoimmune disease Goodpasture’s Syndrome. Furthermore, such FcyRllb 

mice develop autoimmune diseases, such as arthritis, with increased severity 

compared to wild type mice. In contrast, coligation of the BCR and FcRllb leads to 

inhibition of the extracellular Ca^^ influx (245), reduction of cell proliferation (246) 

and blockage of blastogenesis (247).

1.6.2 Signalling mechanisms underlying FcRllb-mediated growth arrest and 

apoptosis

1.6.2.1 SHP1/2

As stated above, once the ITIM of FcyRllb has been phosphorylated it is has the 

potential to recruit a number of SH2 domain containing phosphatases. Early 

studies had implicated key roles for the tyrosine phosphatases SHP1 and SHP2, 

which are capable of dephosphorylating ITAMs and other signalling molecules and 

hence antagonising the action of tyrosine kinases (248). SHP1 is a 64-kDa protein, 

which is expressed predominantly in haematopoietic cells. Whereas the 68-kDa, 

SHP2 protein is ubiquitously expressed. Both phosphatases have been 

functionally implicated in the regulation of signaling in haematopoietic cells using 

transgenic mice (249). The overall structure of these 2 phosphatases is similar, 

with two SH2 domains in their amino terminal half, a phosphatase domain in the 

carboxy-terminal half of the protein and a C-terminal tail region, important for 

regulation of phosphatase activity.

A naturally occurring strain of mice, Motheaten, does not express SHP1 and a 

variant, motheaten viable, expresses catalyticaily inactive SHP1. Both of these 

mutations cause premature death of the mice reflecting the phenotype of these 

mice which includes systemic autoimmunity, severe inflammation and 

dysregulation of multiple immune cell lineages including B and T cells, 

macrophages and natural killer cells. Evidence for a role for this signalling element 

in negative regulation of B cells came from the exaggerated signalling via the BCR 

in motheaten mice and the resultant hyper-reactive B cells which produced auto- 

Abs. This hyperactivity of such B cells reflected increased tyrosine 

phosphorylation, calcium mobilisation, and proliferation and decreased threshoid
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for BCR signalling (249, 250). Likewise, SHP2 has been implicated in the 

regulation of similar pathways including the dephosphorylation of Grb2 associated 

binder (Gab1) adaptor protein. SHP2 disrupts the PI-3 kinase/ Gab1 interaction 

and inhibits PI-3 kinase-mediated downstream signals which would downmodulate 

proliferation (Figure 1.20) (251).

However more recent studies have been unable to find physical interactions 

between FcyRllb and SHP1. Indeed work in this laboratory has been able to show 

a physical interaction between FcyRllb and SHP2 and SHIP but not SHP1 (124). 

Studies in human B cell lines have also yielded similar results demonstrating a 

physical link between FcyRllb and Lyn, PKC, SHIP and SHP2 but not SHP1 (252). 

Furthermore, FcyRllb-mediated inhibitory signalling has been shown to be normal 

in motheaten mast cells (253) and BCR-induced calcium flux can still be inhibited 

by FcyRllb signalling in SHPT^' deficient DT40 cells (254). Taken together this data 

suggests that SHP1 is dispensable for FcyRllb-mediated negative feedback. By 

contrast, numerous studies have suggested that 5' inositol phosphatase SHIP 

selectively binds to phosphorylated FcyRllb in vivo and is responsible for the 

FcyRllb mediated negative regulation of B cell activation (255, 256).

1.6.2.2. SH2 domain-containing lnositol-5-Phosphatase (SHIP)

SHIP1 is a 145KDa protein with an N terminal SH2 domain and a C terminal 

phosphatase domain (257, 258). SHIP is able to negatively regulate calcium flux, 

activation of the ERK signalling cascade and activation of AKT (259). There are 

three splice variants of SHIP, all of which are found only in the leukocyte lineage.

In contrast, SHIP2, the product of a distinct gene from SHIP, is ubiquitously 

expressed (260).

SHIP knock out mice have been generated and they are viable but show a 

markedly decreased life span reflecting splenomegaly, increased B cell numbers, 

and an increase in both basal serum Ab levels and elevated Ab production upon 

challenge. SHIP'^'B cells are hypersensitive to both constitutive and Ag induced 

signals and show increased survival and activation suggesting that SHIP'^'B cells
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have abrogated FcyRllb-mediated negative feedback inhibition (261). Furthermore, 

crossing SHIP'^'and FcyRllb"^'mice on a B57B1/6 background produces animals 

that spontaneously develop a lupus like autoimmunity. This suggests a pivotal role 

for both FcyRllb and SHIP in regulation of peripheral tolerance (262).

SHIP has been suggested to negatively regulate BCR-mediated B cell activation 

by 3 distinct mechanisms. Firstly, SHIP can act to reduce calcium flux by 

converting PI-(3,4,5)-Ps to PI-(3,4)-P2 and thus reducing the docking sites for PH 

domain proteins including Btk and PLCy. By impairing the membrane translocation 

of these proteins SHIP inhibits the production of second messengers (IP3 and 

DAG) that mediate both calcium mobilisation and PKC activation (263). Secondly, 

reduction of PI-(3,4,5)-P3 levels has been demonstrated to suppress the 

recruitment of the anti-apoptotic element AKT (264). However there is some 

controversy in this field as the product of SHIP, P1-(3,4)P2 has also been 

postulated to recruit and activate AKT (265). However, some of the confusion 

relating to the roles of SHlP-derived PI-(3,4)-P2 may be resolved by the recent 

finding that the 3’ inositol phosphatase PTEN is also recruited by FcyRllb to 

antagonise the action of PI-3 kinase (124). Inhibition of the PI-3 kinase pathway 

also potentially inhibits the ERKMAPKinase cascade and suppresses cell 

proliferation (266). PTEN activation is slower than SHIP activation and may 

therefore sequentially terminate ongoing PI-3 kinase activity. This would ensure a 

strong desensitization of AKT and hence induce both growth arrest and apoptosis 

(124). Finally, SHIP is able to act as an adaptor binding to both She and p62Dok 

and hence inhibiting the RasMAPKinase pathway. For example, SHIP is thought to 

be able to displace the Grb:SOS complex from She and so inhibit BCR-mediated 

recruitment of Ras and its downstream effectors (267, 268). Moreover, SHIP can 

bind to, and recruit, p62Dok via its PTB domain resulting in the phosphorylation of 

Dok which in turn recruits RasGAP (269). RasGAP stimulates the conversion of 

RasGTP to RasGDP and hence inhibits both Ras and ERK activation. Consistent 

with this, recruitment of SHIP to FcyRllb is known to prevent cells from entering the 

cell cycle by abrogation of cyclin induction (270).
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Finally, previous work in this laboratory has demonstrated that ligation of FcyRllb 

also leads to a rapid association of ERK and the ERKMAP kinase phosphatase 

P ad  (124). P ad is a dual specificity tyrosine/threonine phosphatase that is 

expressed predominantly in haematopoietic cells was discovered by virtue of its 

specific inactivation of ERK in T cells (271, 272). Pad acts to dephosphorylate the 

activatory motif of ERK directly and hence allows for rapid and direct termination of 

the ongoing ERK signals. Indeed, the induction of Pad seems to represent a 

universal mechanism for inhibition of ongoing ERK signals leading to proliferation 

in B cells (271,273, 274).
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1.7 Aims and Objectives of the thesis

The nature of the signal produced by the BCR is both context and maturation 

stage specific. Thus, BCR signalling displays a dichotomy in as much as ligation of 

the BCR at the immature B cell stage generates an apoptotic signal that can be 

rescued by co-engagement of CD40, whereas in mature B cells, BCR ligation 

results in survival, proliferation and Ab production. However, in mature B cells, 

simultaneous coligation of the BCR with FcyRllb results in cell cycle arrest and 

apoptosis. This project aimed to characterise the role of the differential signals 

involved in such proliferative and apoptotic pathways in Immature and mature B 

cells

For this study, the lymphoma cell line WEHI 231 has been utilised as a model for 

the immature B cell stage. In these cells it has been previously shown in this 

laboratory that ligation of the BCR induces an early, strong and transient peak in 

phospho-ERK activity which is associated with the induction of apoptosis (275). A 

key feature of this form of apoptosis is the ERK-dependent mitochondrial 

translocation and activation of PLA2 (156) which results in the loss of 

mitochondrial membrane integrity, depletion of ATP and activation of the 

executioner protease, cathepsin B (156). By contrast, there is an essential role for 

sustained yet cyclic ERKMAP kinase signalling in CD40-mediated rescue from 

BCR-mediated apoptosis in WEHI 231 cells (275). Moreover, this increased cell 

survival has been shown to be associated with an increase in the expression of 

B c IX l which is known to act to maintain mitochondrial integrity (191, 276, 277).

The specific objectives were therefore to further delineate the precise molecular 

mechanisms regulating the ERK-dependent, cPLA2-mediated apoptotic pathway of 

immature B cell deletion and its rescue by CD40 signals Involving sustained, yet 

cycling ERK activation, and B c IX l upregulation (see 3 .2  Aims and Objectives).

By contrast and as stated above, previous work in our laboratory and others has 

demonstrated that ligation of the BCR in mature B cells results in ERKMAPK-
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dependent proliferation and Ab production (124, 275, 278-280).However, negative 

feedback inhibition of B cell activation by Ag-lg immune complexes induces 

simultaneous coligation of the BCR and FcyRllb and results in inhibition of growth 

and a reduction in antibody production (124, 281-283). We have also recently 

demonstrated that such coligation of BCR and FcyRllb eventually results in 

apoptosis. The specific aims of the present study were therefore to fully 

characterise the phenotype of growth arrest and apoptosis resulting from coligation 

of the BCR and FcyRllb in mature B cells and to define the signalling elements 

involved (see 4.2 Aims and Objectives).

45



Figure 1.1: Summary of the Development of conventional B2 cells

The various stages of B cell development are marked by a series of 

changes in location and in the expression of immunoglobulin heavy and 

light genes, intracellular proteins, and surface markers. B cell 

development starts in the bone marrow (or foetal liver) with the 

commitment of haematopoietic stem cells (HSCs) to the B cell lineage. 

Rearrangement of the heavy chain locus genes begins in the early pro- 

B stage. Cells are allowed to progress to the next stage if a productive 

rearrangement has been achieved. Although no functional 

immunoglobulin is expressed in late pro-B cells there is surface 

expression of accessory Iga/lgp heterodimers. Ag-independent 

development continues within the bone marrow, where pre-B cells 

express a pre-BCR consisting of cytoplasmic \i chain in combination 

with a surrogate light chain, Vpres and X5. Successful light-chain gene 

rearrangements result in the surface expression of a functional IgM 

molecule at the immature B cell stage. Immature B cells then undergo 

the Ag-dependent stage of B cell development where recognition of 

self-Ag can lead to clonal deletion (apoptosis), receptor editing or clonal 

inactivation (anergy). Once in the periphery, the mature B cells migrate 

to the lymphoid follicles and following further selection stages, enter the 

mature B cell pool until they encounter antigen. Upon interacting with 

their specific antigen in conjunction with co-stimulatory signals from Th 

cells, the B cell is activated. Depending on the nature of the signals, the 

mature B cell gives rise to antibody generating plasma cells or long- 

lived memory cells which contribute to lasting protective immunity 

(Adapted from Alt, 1997).
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Figure 1.2: B cell activation and selection in germinal centres

Following T cell dependent activation (1) B cells migrate from the 

follicular mantle into the primary lymphoid follicles and form germinal 

centres. Here, B cells undergo proliferation (2) and differentiate into 

centroblasts (3) where they form the dark zone of the germinal centre. 

The rapidly dividing centroblasts undergo somatic hypermutation of their 

immunoglobulin variable-domaln genes before differentiating into 

centrocytes (4). Within the light zone of the germinal centre, the small, 

non-dividing centrocytes are programmed to die unless they interact 

with follicular dendritic cells (FDC) that display complexed antigen on 

their cell surface. Positive selection of centrocytes is dependent on the 

affinity of their mutated antigen receptors. Centrocytes with low affinity 

or autoreactive antigen receptors undergo spontaneous apoptosis. The 

positively selected centrocytes move to the outer edge of the light zone 

and interact with CD40 ligand expressing T cells (5). Here the 

centrocytes may undergo GD40-mediated isotype switching, become 

protected from Fas-induced apoptosis and finally differentiate into either 

memory 8 cells (6) or plasma cells (7).
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Figure 1.3: The structure of the B cell receptor (BCR)

The B cell receptor for antigen (BCR) is functionally divided into the 

immunoglobulin molecule (sig), which is responsible for ligand binding, 

and the Iga (CD79a) and Igp (CD79b) accessory molecule 

heterodimers, which are responsible for signal transduction. Conserved 

immunoreceptor tyrosine-based activation motifs (ITAMs), present in 

the cytoplasmic domains of the accessory molecules are tyrosine 

phosphorylated following BCR engagement and essential for the signal 

transducing capacity of the receptor.
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Figure 1.4: Ligation of the BCR results in the activation of PTKs

Binding of Ag to the BCR promotes the activation of several protein 

tyrosine kinases (PTK) that alter the homeostasis of reversible tyrosine 

phosphorylation in the resting B cell. The effect is a transient increase in 

protein tyrosine phosphorylation that facilitates the phosphotyrosine- 

dependent formation of a scaffold of effector protein complexes. Studies 

have demonstrated that Src family PTKs, particularly Lyn, are activated 

initially and serve to phosphorylate the ITAMs of Iga and Igp thereby 

creating phosphotyrosine motifs that recruit downstream signalling 

proteins. In particular, phosphorylation of the BCR complex leads to the 

recruitment and activation of the PTK Syk, which in turn promotes the 

recruitment and phosphorylation of downstream effectors such as PLCy, 

She and Vav ( see Figure 1.5).
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Figure 1.5: Syk is able to recruit adaptor proteins that can activate 

the three major cell signalling cascades

A schematic representation of the parallel, yet interacting, cascades 

initiated following ligation of the B cell receptor (BCR) on mature B cells. 

The tyrosine phosphorylation of conserved ITAMs, present in the 

cytoplasmic domains of the BCR accessory molecules Iga and lg|3, 

results in the recruitment of BCR associated PTKs. These include the 

Src-PTK family (BIk, Fyn, Lck, and Lyn). Syk, and the Tec-kinase Btk. 

Following activation of these kinases, three parallel, but potentially 

cross-regulatory, pathways are recruited to the activated BCR complex. 

The phospholipase C y (PLCy) pathway results in the hydrolysis of 

phosphatidylinositol 4,5 bisphosphate (PIP2 ), to produce diacylglycerol 

(DAG) and inositol 1,4,5-triphosphate (IP3 ). The phosphatidylinositol 3- 

kinase (PI-3 kinase) pathway generates phosphatidylinositol 3,4,5 

triphosphate (PIP3 ) whilst the classical RasMAPKinase cascade leads 

to the activation of ERKMAPKinase. These pathways converge on the 

level of the nucleus to initiate gene expression resulting in a cellular 

response.
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Figure 1.6: The PI-3 kinase superfamily

PI-3 kinase comprises of a family of structurally related enzymes, with 

differing PI substrate requirements and modes of regulation allowing for 

the reported diversity of function. PCR cloning strategies and data 

mining of genome sequencing projects have identified 8 distinct PI-3 

kinase catalytic subunits that are capable of phosphorylating inositol 

lipids. These eight isoforms have been divided into three functional 

classes on the basis of their protein domain structure, lipid substrate 

specificity and associated regulatory subunits: namely, the class I 

enzymes, p110a, p IlO p and p110ô; the class II enzymes, PI3K C2a, 

PI3K C2p and PI3K C2p; and the sole class III enzyme, Vps34. All PI-3 

kinase classes contain the C2 domain which acts to mediate 

interactions with lipids or other proteins in either a calcium-dependent or 

independent manner, a helical domain and a catalytic domain that 

mediates the kinase action of the enzyme. Further to this, class I and II 

PI-3 kinases contain a putative Ras binding domain (RBD).
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Figure 1.7: The phosphorylation status of Bad is critical for 

differentiating between a pro-apoptotic and anti-apoptotic signal

The phosphorylation status of Bad is under the control of AKT and 

hence the PI-3 kinase pathway. AKT mediates the phosphorylation of 

Bad upon which it binds to the cytoskeletal scaffold proteins 14-3-3 and 

is therefore sequestered in the cytoplasm and unable to deliver pro- 

apoptotic signals at the mitochondrial membrane. In contrast, when Bad 

is not phosphorylated it is able to bind the anti-apoptotic Bcl-2 family 

member B c IX l . preventing B c IX l from having a protective effect on the 

maintenance of mitochondrial membrane integrity.
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Figure 1.8: Mitogen-activated protein kinase (MAP kinase) 
signalling pathways

The mitogen-activated protein (MAP) kinases are a family of serine- 

threonine protein kinases that have been widely conserved throughout 

evolution. They are activated by a wide range of extracellular stimuli 

and are able to mediate a wide range of cellular functions ranging from 

proliferation and activation to growth arrest and cell death. The MAP 

kinase family is subdivided into three groups; the classical extracellular 

signal-regulated kinases (ERKMAPKinase), the c-Jun N-terminal 

kinases, also known as the stress activated protein kinases 

(JNK/SAPK) and the p38 MAP kinases. Activation of each group is 

determined by distinct upstream MAP kinase kinases (MEKs) and MAP 

kinase kinase kinases (MEKK). MAP kinases are activated by dual 

phosphorylation on tyrosine and threonine residues, located in a T-X-Y 

motif, where X is different in each group. Following MAP kinase 

activation, activation of a number of downstream transcription factors 

occurs; ERKMAPKinase activates Elk-1 and c-myc, JNK activates c-Jun 

and ATF-2 and p38 MAP kinase activates ATF-2 and MAX. The 

phosphorylation and activation of these transcriptional regulators 

enables the MAP kinase families to regulate gene expression and 

hence, cellular responses.
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Figure 1.9: The BCR is able to activate the RasMAPKinase pathway 

via SOS

Phosphorylation of ITAMS on Iga and lg(3 create binding sites for 

proteins with SH2 (phosphotyrosine binding) domains such as the 

adaptor proteins Grb2 and BLNK. Recruitment of Grb2 or BLNK allows 

binding and activation of 80S  which catalyses the exchange of GDP for 

GTP on Ras and hence causes a change in Ras conformation.

Activated Ras binds Rafi and recruits it from the cytosol to the cell 

membrane, where Raf activation takes place. Raf1 is then activated by 

a multistep process involving dephosphorylation of inhibitory sites by 

protein phosphatase 2A (PP2A), phosphorylation of activating sites by 

p21 activated kinase (PAK), Src family kinases and the PKC family. 

Activated Raf1 phosphorylates and activates MEK which in turn 

activates the ERK cascade.
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Figure 1.10: Protein structure of the PKC family members

PKC proteins have two well-defined domains: an amino terminal 

regulatory domain and a carboxy terminal catalytic domain. All isoforms 

contain highly conserved regions (regions 01 to 04) as well as variable 

regions unique to the specific enzyme. The 01 region contains an auto 

inhibitory pseudosubstrate domain that binds to the catalytic domain 

and maintains the enzyme in an inactive state in the absence of 

activators. The 01 domain also contains a cysteine rich domain that is a 

binding site for the second messenger DAG (or phorbol esters) in 

cPKOs and nPKOs. In addition cPKOs also contain a conserved 02 

region involved in calcium binding.
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Figure 1.11: Activation of p53 results in a variety of cellular 
responses

In response to certain stress signals p53 is activated through a number 

of post-translational modifications, such as phosphorylation and 

acétylation, which increase that stability of the p53 protein. In healthy 

cells, MDM2 is bound to p53 and this stimulates p53 ubiquitination and 

hence degradation. By contrast, when cells are stressed, MDM2-p53 

associations are downregulated resulting in an increase in free p53. 

Once p53 is activated, it can bind to response elements in p53 target 

genes, and increase or repress, their expression. The products of these 

genes carry out various p53 effector functions, including apoptosis, cell 

cycle arrest, cellular senescence and differentiation. MDM2 is itself 

encoded by a p53 target gene.
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Figure 1.12: The transcription factor, NF-kB can direct a variety of 

cellular responses depending on the subunits that are utilised

In mature, resting B cells NF-kB complexes are predominantly held 

inactive in the cytoplasm until the receipt of extracellular signals such as 

Ag through the BCR, CD40 ligand via CD40, bacterial cell wall products 

through the Toll Like Receptors or apoptosis-inducing stimuli through 

death receptor 6  (DR6 ). The NF-kB family of transcription factors are 

involved mainly in stress-induced, immune, and inflammatory 

responses. In addition, these molecules play important roles during the 

development of certain hematopoietic cells, kératinocytes, and lymphoid 

organ structures. N F -k B is also an important regulator in cell fate 

decisions, such as programmed cell death and proliferation control, and 

is critical in tumorigenesis. NF-kB is composed of homo- and 

heterodimers of five members of the Rel family including p50, p52, RelA 

(p65), RelB, and c-Rel (Rel). Hetero and Homo-dimerisation of NF-kB 

proteins which exhibit differential binding specificities include; pSO/RelA, 

p50/c-Rel, p52/c-Rel, p65/c-Rel, RelA/RelA, p50/p50, p52/p52,

RelB/p50 and RelB/p52. The specific NF-kB dimers formed determine 

the genes which are transcribed.
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Figure 1.13: The cell cycle

(A) The cell cycle represents a co-ordinated series of events 

required for cell growth and division. There are four main stages 

of the cycle, during which a cell must duplicate its contents and 

divide. G 1 is characterised by gene expression and protein 

synthesis, resulting In an increase In cell size and production of 

all the proteins required for DNA synthesis. DNA duplication 

occurs In the S phase (synthesis). After chromosome replication 

a second growth period, G2, allows the cell to monitor DNA 

integrity and cell growth prior to M phase (mitosis) when the cell 

finally divides. The resulting daughter cells either immediately 

enter G1 to go through the full cycle again, or alternatively stop 

cycling temporarily and enter the GO phase (quiescence).

(B) The cell cycle is carefully regulated with distinct checkpoints at 

the end of each growth phase. Progression through the cell cycle 

Is regulated as indicated by the appropriate cyclln-Cdk 

complexes and by regulators of these complexes Including Rb, 

p15, p16, p21, p27, p53 and p19.
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Figure 1.14; Caspase 8 can be activated by TNFR1 type receptors 

to initiate apoptosis.

Binding of ligands such as CD95L/FasL and TNF leads to the 

recruitment of the adaptor molecules FADD and TRADD, which can 

process pro-caspase 8  into the active caspase 8 . This in turn activates 

the effector caspase, caspase 7. In some cases this occurs in a 

mitochondrial-independent fashion, however the cleavage of Bid to tBid 

by caspase 8  can act to induce mitochondrial-dependent/ intrinsic 

apoptosis. Truncated Bid stimulates the opening of the permeability 

transition pore and hence mediates cytochrome c release. This is a 

component of the apoptosome and leads to caspase 3 activation and 

hence apoptosis.
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Figure 1.15: The Bcl-2 family of apoptosis regulators

The Bcl-2 family of apoptosis regulators is comprised of over a dozen 

proteins, which have been classified into three functional groups. Bcl-2 

family members are recognised due to the presence of one or more 

conserved Bcl-2 homology (BH) domains. Group I members all possess 

anti-apoptotic activity, thus protect cells from death, and contain all 4 

BH domains, as well as a transmembrane domain allowing their 

insertion into the mitochondrial membrane. Members of group II and III 

promote cell death, hence are known as pro-apoptotic Bcl-2 family 

members. Pro-apoptotic Bcl-2 family members have fewer BH domains, 

indeed some contain only a single BH3 domain. Many family members 

can homodimerise, but more importantly, pro- and anti-apoptotic 

members can form heterodimers to either promote or inhibit apoptosis. 

For example, pro-apoptotic Bax can heterodimerise with the anti- 

apoptotic protein, Bcl-2, which blocks the anti-apoptotic capabilities of 

Bcl-2.

60



BH4A

Dimérisation
r

Pore formation
(  \

Membrane 
BH3 BH1 BH2 attachment

Pro-survival 
( Bcl-2, BclXJ

Pro-apoptotic 
(Bax, Bak)

BHnU Pro-apoptotic 
(Bid, Bik)



Figure 1.16: Apoptosis in under the control of a diverse family of 
BH domain containing Bcl-2 proteins

Cell death signals can engage two distinct classes of BH3-only proteins 

termed the activators, (e.g. Bid and Bim) and the enablers (e.g. Bad and 

Bik). In the absence of either enabler or activator BH3-only proteins 

Bax/Bak are not stimulated to oligomerise and hence apoptosis is not 

stimulated (i). Activators can directly bind and activate mitochondrially 

localised Bak and Bax triggering oligomerization of Bax/Bak and hence 

initiating apoptosis (ii). Anti-apoptotic regulators, such as Bcl-2, can 

sequester BH3-only activators preventing their interaction with Bax/Bak 

and hence inhibiting apoptosis (iii). By contrast, enablers can sensitize 

cells to apoptosis by binding anti-apoptotic Bcl-2 regulators and thus 

preventing the Bcl-2/ BclXu-mediated sequestration of BH3-only 

activators such as Bid (iv). It is therefore the ratio and complex status of 

Bcl-2 family proteins, rather than expression of any one member, that is 

likely to regulate apoptosis. Consistent with this proposal, 

overexpression of Bcl-2 proteins in cancer cells results in the 

sequestration both classes of BH3-only proteins by mutli-domain 

regulators such as Bcl-2 which inhibits the pro-apoptotic effects of the 

Bcl-2 family members and hence blocks apoptosis (v).
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Figure 1.17: The roles of calpain and caspase in protein 

degradation and apoptosis

Pro-apoptotic signalling, via the either the extrinsic or extrinsic 

pathways, can lead to processing and activation of caspase 3. The 

action of caspase 3 on cytoskeletal or plasma membrane integral 

proteins compromises the membrane permeability to calcium, leading to 

elevated intracellular calcium. Caspase 3 also degrades calpastatin 

which facilitates calpain activation. Activated caspase 3 and calpains 

can degrade important cytosolic, cytoskeletal and nuclear substrates 

resulting in functional and structural destruction of the cell and hence 

apoptosis.
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Figure 1.18: FcyRIIb coligatlon inhibits BCR-mediated proliferative 

cell signalling

FcyRllb (CD32) is a single chain, low affinity receptor for the Fc domain 

of IgG molecules, and as such can only interact with IgG in the form of 

immune complexes. It is the only Fey receptor found on B cells, and 

contains a 13 amino acid inhibitory ITIM motif in its cytoplasmic domain 

that is responsible for its inhibitory effects on BCR signalling. Coligation 

of the BCR and FcyRllb by cognate antigen-antibody complexes leads 

to tyrosine phosphorylation of the ITIM by the Src-family kinase Lyn, 

and subsequent recruitment of the protein phosphatases SHP-1, SHP-2 

and the inositol phosphatase SHIP. The overall outcome of the 

recruitment of these molecules is the abrogation of the 3 key signalling 

pathways activated upon BCR ligation, the ERKMAPK, PI-3 kinase and 

PKC pathways.
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Figure 1.19: Coligation and BCR and FcyRllb by cognate Ag-Ab 

complexes induces cell cycle arrest whereas homo-aggregation of 

FcyRlib by non-cognate Ab induces apoptotic signalling

As stated in figure 1.18, coligation of the BCR and FcyRlib results in the 

inhibition of both the MAP kinase and PI-3 kinase pathways and hence 

cell cycle arrest. This coligation occurs via the binding of localised BCR 

and FcyRlib within the same lipid raft by cognate Ag-Ab complexes. In 

contrast, FcyRlib can be homo-aggregated by non-cognate Ab 

complexes. This results in an apoptotic signal however the mechanism 

for this has yet to be elucidated.
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Figure 1.20: Simultaneous coligation of the BCR and FcyRlib 

recruits Gabi which can inhibit the PI-3 kinase pathway

Grb2“associated binder 1 docking protein (Gab1) is a docking protein 

that forms part of the multi-protein complex assembled by the BCR 

upon ligation. Gabi is predominantly found in the membrane enriched 

fractions of activated B cells and contains a plekstrin homology domain 

(PH domain), tyrosine phosphorylation sites and proline rich sequences. 

Once tyrosine phosphorylated It recruits other SH2 domain containing 

proteins, such as the p85 subunit of PI-3 kinase and She, to the cell 

membrane where their substrates reside. On co-clustering with FcyRlib 

Gabi becomes dephosphorylated by SHP2 which leads to disruption of 

the PI-3 kinase mediated downstream pathway.
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Chapter 2: Materials and Methods

2.1 Cell culture, Antibodies and Inhibitors

All cell culture reagents were purchased from Invitrogen Life Technologies. All 

other reagents were obtained from Sigma-Aldrich unless otherwise stated (see 

2.17 for supplier’s addresses). For experiments using WEHI 231 celis, monoclonal 

Ab (mAb) B7.6. anti-IgM and mAb anti-CD40 were used at a final concentration of 

10 jig/ml. For FACS experiments and proliferation assays with mature B cells, 

F(Ab' ) 2  fragments of goat anti-mouse IgM Abs (Jackson Immunoresearch 

laboratories) were used at 50 p.g/ml to ligate the BCR. Intact rabbit anti-mouse 

anti-IgM at 75 pig/ml (Jackson Immunoresearch laboratories) was used to coligate 

the BCR with FcyRlib. However for Western Blotting, FACE and TransAM assays 

using mature B cells the following antibodies were used: B7.6 anti-IgM to ligate the 

BCR (50 ^g/ml), 24G.2 IgG to ligate FcyRlib (50 |mg/ml) and 75 p,g/ml Donkey anti- 

Rat IgG (Jackson Immunoresearch laboratories) to crosslink the B7.6 and 24G.2 

Abs and hence coligate the BCR and FcyRlib. For a full list of antibodies used, 

see table 2.2. Unless specified, celi signalling inhibitors were used at the following 

concentrations 10 |iM PD98059 (Calbiochem), 1 LY294002 (Promega), 5 |xM

SB203500 (Alexis biochemicals) and 1 ^M U0126 (Promega). N- 

benzyloxycarbonyl-Val-Ala-Asp(Ome)- fluoromethylketone (Z-VAD-FMK), (25,35) 

frans-epoxysuccinyl-L-leucylamido-3-methylbutane ethyl ester (EST) and Mu-Val- 

HPh-FMK (Calpain Inhibitor V) were used at 10 |iM (all supplied by Calbiochem). 

The paniipoxygenase inhibitor ethyl 3,4- dihydroxybenzlidenecyanoacetate 

(EDBC, Alexis Biochemicals) was used at 10 jxM and the Cox2 inhibitor N-(2- 

Cyclohexyloxy-4-nitrophenyl)methanesulphonamide (NS 398 Alexis Biochemicals) 

was used at 10 \jlM .  T w o  different PLA2 inhibitors were used; 

Arachidonyltrifluoromethyl Ketone (AAC0CF3) and Methyl Arachidonyl 

Fluorophosphonate (MAFP) both at 20 jaM. These inhibitors are non-hydrolysable 

forms of arachidonic acid and were supplied by Calbiochem.
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2.2 Animals

Male Balb/c mice aged between 6  and 10 weeks were used to isolate primary 

splenic B cells. These mice were maintained at the Central Research Facility 

(CRF), University of Glasgow. All mice were purchased from Harlan UK Ltd and 

were quarantined for at least 7 days prior to starting an experiment. Lpr-/- mice 

(SLE model mice) were kept at the Animal Research Facility at the Royal 

Infirmary, Glasgow, UK. The model was administered by Dr. A. Grade (University 

of Glasgow).

2.3 Purification of murine splenic B ceiis

Primary B cells were prepared from murine spleens using the CD43-magnetic 

bead negative-selection method of Miltenyi Biotec (274). The CD43 antigen is 

expressed on nearly all leukocytes, except for immature and mature naive B cells. 

By using anti-CD43 coated MicroBeads, all CD43 expressing cells are 

magnetically labeled and removed by negative selection column, whereas the 

naive B cell subset can be collected in the column elutant. All procedures were 

performed at 4 °C. Briefly; a single celi suspension was prepared by mashing the 

spleens through wire mesh, in RPMI-1640 media. The resultant suspension was 

centrifuged (450 g, 7 min, 4 °C) and the pellet resuspended in 9 ml of red blood 

cell removal buffer (0.168 M NH4CI, pH 7.2). The suspension was carefully layered 

over 1 ml heat-inactivated foetai calf serum (PCS) and incubated on ice for 7 min 

to permit red blood cell lysis and lipid precipitation. The supernatant was removed, 

carefully layered over 1 ml FCS in a fresh tube and centrifuged again (450 g, 7 

min, 4 °C). The resulting cell pellet was resuspended in 9 ml dead cell removal 

buffer (HEPES-buffered, mouse tonicity, balanced salt solution (BBS) 

supplemented with 0.12 M Sorbitol and 20 mM Glucose) (284, 285). The 

suspension was immediately filtered through two prepared dead cell removal 

columns (absorbent cotton wool plugged, short-form, glass pipettes, wetted with 1 

ml RPMI/5% FCS). Cells were recovered from the column into 1 ml RPMI/5%

FCS. The cells were centrifuged (450 g, 7 min, 4 °C) and resuspended in 50 ml 

ice-cold MACS buffer (phosphate buffered saline (PBS), 0.5% BSA, 2 mM EDTA) 

counted by Trypan blue exclusion, and pelleted by centrifugation (450 g, 7 min, 4
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°C). The cells were then resuspended in ice-cold MACS buffer (2x10® cells/ml) 

and passed through gauze, to produce a single cell suspension for labelling. Cells 

were incubated for 25 min at 4 °C with anti-CD43 (Ly-48) beads (100 \i\ anti- 

CD43+ beads/ 2x10® cells). Labelled cells were passed through gauze again and 

applied to a CS-type negative selection magnetic column (Miltenyi Biotec) in a 

strong magnetic field. Purified mature B cells (CD43-) were eluted from the column 

by washing with 50 ml ice-cold MACS buffer. The cells were centrifuged (400 X g,

7 min, 4 °C), resuspended In RPMI-1640 medium supplemented with 5% FCS, 100 

U/ml penicillin, 100 fxg/ml streptomycin, and 2 mM glutamine, and live B cells 

counted by trypan blue exclusion.

2.4 Cell Lines

2.4.1 WEHI 231 Immature B cell line

The murine B cell lymphoma, WEHI 231 (obtained from ECACC) was cultured in 

RPMI-1640 medium supplemented with 5% FCS, 100 U/ml penicillin, 100 [ng/ml 

streptomycin, 50 p,M mercaptoethanol and 2 mM Glutamine at 37°C in a 5% (v/v) 

CO2 atmosphere at 95% humidity. All ceil culture reagents were of the highest 

quality available.

2.4.2 B c IX l WEHI 231 cells

WEHI 231.7 JM cells were transfected by electroporation with the pSFFV-Neo 

piasmid containing either the human bcl-xu gene (B c IX l WEHI 231 ) or no insert as 

control (Neo WEHI 231). Stable transfectants were selected for the acquisition of 

neomycin resistance by growth in the presence of the antibiotic G418 (500 fxg/ml) 

(286, 287) and were a kind gift from Dr. C. B. Thompson (University of 

Pennsylvania). Overexpression of B c IX l was confirmed by Western Blotting using 

an anti-BclXus antibody. Stable transfectants were cultured in RPMI 1640 media 

supplemented with 5% FCS, 100 U/ml penicillin, 100 pig/ml streptomycin, 50 |aM 

mercaptoethanol, 2  mM Glutamine and 500 |Lig/ml G418 at 37°C in a 5% (v/v) CO2 

atmosphere at 95% humidity.
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2.4.3 Retroviral transfection of WEHI 231 cells with SHIP and Dok constructs

Retroviral constructs were generated by subcloning the gene of interest into the 

retroviral vector pMXI-egfp, 5’ to the internal ribosomal entry site and green 

fluorescence protein (GFP) was encoded 3’ to this site. Amphotropic phoenix cells 

were used as packaging cells for the retroviral transfection system. Pheonix cells 

were transfected using the effectine transfection reagent as per manufacturers 

instructions (Qiagen) with pMXI-egfp vectors containing no construct (empty vector 

control, pMXI-egfp), SHIP Cl construct, SHIP SH2 construct or Dok PH/PTB 

construct (see Table 2.2 for details of constructs). Two days after transfection, the 

supernatants were collected, filtered (0.22 pm) and polybrene was added to a final 

concentration of 4 pg/ml. WEHI 231 B cells (5x10® cells/ml) were centrifuged in 

12 well plates to promote adherence. Viral supernatants were added to adherent 

cells followed by centrifugation at 1,000 g for 2 h at 32°C. Cells were then 

Incubated at 32°C overnight before transferring them Into 25 cm® flasks for 

expansion. Following expansion, cells were sorted for GFP-expression (Mo-Flo, 

Cytomation, Fort Collins, CO). Successful transfectants were a kind gift from Dr. S. 

B. Gauld (National Jewish Medical and Research Center, Denver, CO).

2.4.4 Generation of PKC, Ras and AMEKK 3 WEHI 231 mutant cells

WEHI 231 cells (5x10® cells) undergoing logarithmic growth were washed and

resuspended (2x10^ cells/ml) in electroporation media (RPMI-1640 with 20%

FCS). Linearised DNA (5 pg), recovered from an agarose gel, was chilled on ice

for 5 min in an electroporation cuvette. WEHI 231 cells (5 x 10®) were added to the

cuvette, gently mixed and chilled for 10 min on ice. Ceils were electroporated at

960 pFarads at 220 Volts and were then chilled on ice for a further 10 min. Cells

were then removed from the cuvette and were grown In RPMI complete medium

for 48 h at 37°C in 5% (v/v) CO2 atmosphere at 95% humidity before selecting for

successful transfectants using the antibiotic G418 (500 pg/ml). Electroporation of

WEHI 231 B cells was used to generate several mutant WEHI 231 cell types

including an empty vector control, pcDNA3.1. Transfection of WEHI 231 cells by

electroporation was performed by Derek Blair in this laboratory. Stable

transfectants were cultured in RPMI 1640 media supplemented with 5% FCS, 100

U/mi penicillin, 100 pg/ml streptomycin, 50 pM mercaptoethanol, 2 mM Glutamine
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and 500 pg/ml G418 at 37°C in a 5% (v/v) GO2 atmosphere at 95% humidity.

2.5 Purification of antibodies from hybridoma cell lines

Anti-CD40 was purified from the FGK 45 hybridoma, anti-IgM from the B7.6 

hybridoma and anti-FcyRM from 2.4G2 hybridoma as has previously been 

described (288, 289). Cells were cultured in RPMI complete medium and the 

antibody-rich tissue culture supernatant was collected. Ab was purified using a 

protein G-sepharose column. The column of 1 ml protein G-sepharose beads 

(immunoglobulin capacity >20 pg/ml) was washed with binding buffer (0.2 M 

NaH2 P0 4 -2 H2 0 , 0.2 M Na2 HP0 4 .2 H2 0 , pH 7.0) then tissue culture supernatant 

was run through the column at 4°C. The column was washed with binding buffer 

then the immunoglobulin was eluted in 1 ml fractions using elution buffer (0.1 M 

glycine, pH 2.7). The protein concentration of each 1 ml fraction was determined 

using spectrophotometry to measure the absorbance at 280 nm (an optical density 

of 1.4 was approximately equivalent to 1 mg/ml of protein). The most protein-rich 

fractions were pooled and dialysed exhaustively in PBS. The resultant purified Abs 

were filter sterilised and stored at -20°C.

2.6. DNA Synthesis Assay

For measurement of DNA synthesis, cells (WEHI 231 cells: 10^ cells/ well, Mature 

B cells: 5x10® cells/ well) were cultured in triplicate in round bottom microtitre 

plates in RPMI 1640 media supplemented with 2 mM glutamine, 1 mM sodium 

pyruvate, 1% nonessential amino acids, 50 pM 2 mercaptoethanol, 100 U/ml 

penicillin, 100 pg/ml streptomycin, 5% FCS (and G418 if appropriate) in the 

presence of the appropriate agonist in a total volume of 200 pi. For WEHI 231 

cells, B7.6. anti-IgM and anti-CD40 Abs were used at 10 pg/ml unless otherwise 

stated. For mature B cells, F(Ab' ) 2  fragments of Anti-IgM Abs were used at 50 

pg/ml and Intact Rabbit Anti-mouse anti-IgM at 75 pg/ml. Cells were cultured at 

37°C in a 5% (v/v) CO2 atmosphere at 95% humidity for 48 h. [®H] Thymidine (0.5 

pCi/ well, Amersham) was added 4 h before cell harvesting with an automated cell 

harvester (Molecular Devices) (288, 289). Incorporated label was estimated by 

liquid scintiilation counting and is represented as cpm +/- SEM.
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2.7 Flow Cytometry

2.7.1 Flow Cytometric Analysis of cell cycle stage by DNA content
Cells (5x10® cells/well for WEHI 231 and 1x10® cells/well for mature B cells) 

were cultured in RPMI complete medium in the presence of appropriate stimuli. 

Cells were cultured at 37°C in a 5% (v/v) CO2 atmosphere with 95% humidity for 

up to 120 h. Cells were harvested and washed twice In ice-cold FACS buffer (PBS 

with 1% BSA and 0.1% sodium azide). Cells were then resuspended in 200 pi 

propidium iodide (PI) stain (0.1% (w/v) sodium (tri) citrate, 0.1% (v/v) triton-X-100, 

50 pg/ml propidium iodide and 200 pg/ml RNase A) for 45 min on ice (288). After 

addition of a further 200 pi of FACS buffer, cells were passed through nitex and 

analysed for PI fluorescence on a FACScalibur™ (Becton Dickinson) (156) using 

CELLQuest™ software (Becton Dickinson).

Cell cycle analysis was used to determine the percentage of cells in the different 

phases of the cell cycle: sub-diploid (apoptotic), G0/G1, S phase or G2/M (figure 

1.6). PI is able to intercalate DNA in a stochiometric fashion and so enables 

assessment of the DNA content of cells. PI fluorescence was measured using both 

FL3 (linear scale) and FL2 (logarithmic scale) channels. Cell counts for either 5 or 

10 seconds, depending on cell density, were also recorded. When using FL3, the 

voltage was adjusted until the large G0/G1 peak was at 200-300 units. This 

voltage was kept constant whilst the data from any one experiment was acquired. 

Data was analysed by setting gates (Figure 2.1). The G0/G1 peak represents 2N 

DNA. The centre of this peak was identified and a gate was set to include all cells 

in this peak. The 2N DNA peak was doubled (representing 4N DNA) and markers 

were set either side of this point to form the G2/M gate. The S phase gate 

represents the cells between G0/G1 and G2/M phases. Cells located at lower 

fluorescence than the G0/G1 peak are the sub-diploid (apoptotic) cells.

2.7.2 Cell Cytometric analysis of mitochondrial membrane potential (MMP)

2.7.2.I. DIOCe

Cells (5x10® cells/well for WEHI 231 and 1x10® cells/well for mature B cells)

were cultured in RPMI complete medium in the presence of appropriate stimuii.
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Cells were cultured at 37°C in a 5% (v/v) CO2 atmosphere with 95% humidity for 

up to 120 h. Cells were harvested and washed in ice-cold FACS buffer (PBS with 

1% BSA and 0.1% sodium azide). Cells were then resuspended in 1 ml of DiOCe 

stain (2.5 DiOCe in FACS buffer) for 30 min at room temperature. Cells were 

then washed twice in 3 ml FACS buffer, resuspended in 200 \x\ of FACS buffer and 

passed through nitex. At least 10"̂  cells were collected and analysed for FL1 

fluorescence on a FACScalibur™ (Becton Dickinson) using CELLQuest™ software 

(Becton Dickinson) (156).

Incorporation of cationic lipophilic dye DiOCe (Molecular Probes) into mitochondria 

is proportionai to the mitochondrial transmembrane potential, AWm (156). The 

histogram produced can be divided into cells with high or low MMP (Figure 2.2) 

depending on their DiOCe fluorescence on the FL1 axis relative to fresh 

unstimulated cells.

2.7.2.2. JO 1

Cells (5x10® cells/well for WEHI 231 and 1x10® cells/well for mature B cells) 

were cultured in RPMI complete medium in the presence of appropriate stimuli. 

Cells were cultured at 37°C in a 5% (v/v) CO2 atmosphere with 95% humidity for 

up to 120 h. Cells were harvested and washed twice in ice-cold FACS buffer (PBS 

with 1% BSA and 0.1% sodium azide). Cells were then resuspended in 200pl of 

JC 1 stain (1 |iM 5,5’,6,6’-tetrachloro-1,T,3,3’-tetraethylbenzaidazolylcarbocyanine 

iodide in FACS buffer, Molecular Probes) for 15 min at room temperature (290). 

Cells were then washed twice in FACS buffer and resuspended in 200 yd of FACS 

buffer cells. Cells were then passed through nitex and analysed for FL1 and FL2 

fluorescence on a FACScalibur™ (Becton Dickinson) using CELLQuest™ software 

(Becton Dickinson). The cationic dye JC 1 is used to signal the loss of MMP. In 

healthy cells the mitochondria are stained red (FL2) however when MMP is 

dissipated JC 1 is visualised as a green fluorescent, monomeric dye that can be 

monitored in FL1 (290).

2.7.3. Cell Cytometric analysis of Caspase Activation
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Cells were plated out at 1 x 10® cells/well with the appropriate treatments and 

incubated for up to 48 h. CaspACE™ FITC-VAD-FMK in situ marker (Promega) 

was added to a final concentration per well of 10 [xM. The plates were incubated 

for 20 mins at 37°C in the dark and then washed twice with PBS. At least 10"̂  cells/ 

sample were used for FACS analysis (Becton Dickson FACScan™). CaspACE™ 

FITC-VAD-FMK is a FITC conjugated version of the cell permeable, irreversible 

pan caspase inhibitor Z-VAD-FMK. As it binds to cleaved caspases, it can be used 

to monitor the amount of activated caspases present in the cell by measuring 

fluorescence in the FL1 channei.

2.7.4 Flow Cytometric Analysis of cell proliferation by CFSE staining

The number of cell divisions was determined according to procedures previously 

described (291). Briefly cells (1 x 10® cells/well mature B cells and 5x10® 

cells/well WEHI 231 cells) were suspended in FACS buffer and incubated with 1 

p.M CFSE (Promega) for 1 min at 5°C in the dark followed by 2 washes. These 

cells were then plated out and cultured at 37°C in a 5% (v/v) CO2 atmosphere at 

95% humidity for the appropriate time period. The cells were then washed twice in 

FACS buffer and resuspended in 200 yd of FACS buffer. At least 10"̂  cells/ sample 

were analysed (Becton Dickson FACScan™) (292).

CFSE is a dye that fluoresces in the FL1 channel and binds to proteins within the 

cell. As the cells divide each daughter population has half the original amount of 

CFSE present. Therefore It is possible to monitor cell division by the shift in FL1 

brightness.

2.8 Western Blotting

2.8.1.Cell Stimulation and Whole Cell Lysate Preparation

Either Mature B cells or WEHl-231 cells (10^ cells/ stimulation) were stimulated as 

indicated. The cells were then washed in PBS and the reactions were terminated 

by the addition of 100 |xl of ice-cold modified RIPA lysis buffer (50 mM Tris buffer, 

pH 7.4 containing 150 mM sodium chloride, 2% (v/v) NP 40, 0.25% (w/v) sodium 

deoxycholate, 1 mM EGTA, 10 mM sodium orthovanadate, 0.5 mM
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phenylmethylsulfonylfluoride, chymostatin (10 p.g/ml), leupeptin (10 p,g/ml), 

antipain (10 jig/ml), and pepstatin A (10 p,g/ml)). After vortexing the cells were 

solubilised for 30 minutes on ice before centrifugation of lysates at 450 g for 15 

minutes. The resulting supernatants (whole cell lysate) were stored at -20°C before 

being used for Western Blot analysis.

2.8.2 immunoprécipitation

Whole cell lysates were pre-cleared with 10 p.1 of protein G bead slurry and 

incubated for 1 hour at 4 °C on orbital rotator. Samples were centrifuged to remove 

beads (19,800 g, 30 min, at 4 °C) and the supernatant was decanted. Samples 

were diluted to 1 mg/ml with lysis buffer and incubated with Ab (1.5 \ig per 10® 

cells) overnight at 4 °C on an orbital rotator. Protein G slurry (25 p.1) was added 

and incubated for 4 hours at 4 ‘’0. The bead pellet contains the immune 

complexes. The beads are washed four times, at 19,800 g for 30 min at 4 '’G, with 

1 ml of ice cold lysis buffer and 2 X loading buffer (60 (xl) was added. Before use, 

the samples were boiled for 5 min to separate immune complexes from the beads. 

The samples were centrifuged for 2 min at 13,000 g and the supernatant used for 

gel electrophoresis and Western Blotting.

2.8.3 Gel Electrophoresis

Equal protein loadings of whole cell lysates (30 jxg protein per lane) determined by 

BSA protein assay (Pierce) or cell equivalents of immunoprecipitated samples 

were resolved on the XCell S u re Lock M\n\-CeW kit with NuPAGE Novex high- 

performance pre-cast Bis-Tris gels and NuPAGE buffers and reagents (all supplied 

by Invitrogen). Lysates were diluted in lysis buffer to a constant final volume and 

the appropriate volume of 4 x NuPAGE LDS sample buffer and 10 x NuPAGE 

reducing agent were added prior to heating samples to 70°C for 10 min. Samples 

were resolved using NuPAGE Bis-Tris gels (10%) with NuPAGE MOPS running 

buffer (supplemented with NuPAGE antioxidant) at 200 V for 50 min following the 

manufacturers instructions. The gel was then transferred onto nitrocellulose
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membrane (Amersham) using NuPAGE transfer buffer with 20% (v/v) methanol at 

30V for at least 1 h.

2.8.4 Western blot analysis

Following transfer, nitrocellulose membranes were washed once in Tris buffered 

saline (TBS) (0.5 M NaCI and 20 mM Tris pH7.5) with 0.1% (v/v) Tween-20 

(TBS/Tween) and blocked for 1 h in TBS/Tween with 5% non-fat milk when 

antibodies generated in rabbit or mouse were being used. Alternatively, blots that 

were to be probed with an antibody generated in a goat were blocked for 1 h in a 1 

in 4 dilution of a non-animal blocking reagent, Chemiblocker (Chemicon 

International). Membranes were then incubated with the appropriate primary 

detection antibody overnight at 4°C. All antibodies were diluted in TBS/Tween with 

either 5% non-fat milk or 1 in 4 dilution of ChemiBlocker. Following incubation with 

primary antibody nitrocellulose membranes were washed ( 6 x 5  min) with 

TBS/Tween and incubated in the appropriate horse radish peroxidase (HRP)- 

conjugated secondary antibody for 1 h at room temperature. Nitrocellulose 

membranes were then washed (10x10 min) with TBS/Tween and protein bands 

were visualised using the ECL detection system. Nitrocellulose membranes were 

incubated in a mixture of equal volumes of ECL solution A (2.5 mM luminol, 0.4 

mM p-coumaric acid and 100 mM Tris pH8.5) and ECL solution B (0.002% 

hydrogen peroxide and 100 mM Tris pH8.5) for 1 min before exposing membranes 

to Kodak X-Ray film.

2.8.5 Stripping Western Blots

Nitrocellulose membranes were sometimes stripped and re-probed with an 

alternative primary antibody. Membranes were stripped at room temperature for 1 

h in stripping buffer (100 mM 2-mercaptoethanol, 2% SDS and 62.5 mM Tris 

pH6.7). Nitrocellulose membranes were washed thoroughly in TBS/Tween and 

checked for residual signal before re-starting the Western Blotting protocol.

2.9 DNA analysis of cells using DAP I staining

Mature B cells were plated out at 1 x 10® cells/well with appropriate stimulations 

and incubated at 37°C in a 5% (v/v) CO2 atmosphere at 95% humidity for 48 h.
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Cells were then washed once In FACS buffer and resuspended in 200 |xl of FACS 

buffer which was dropped onto a microscope slide and then allowed to air dry for 1 

hour. Slides were then treated with 8% formaldehyde for 10 min then tapped and 

allowed to air dry again. After this a drop of Vectashield containing DAPI (Vector 

Labs) was dropped onto the slide and a cover placed on top. The cover was 

attached using clear nail varnish and the slides were stored in the dark until 

needed for image analysis.

2.10 Fast Activated Cell Based ELISA (FACE)

2.10.1 Plating out for the cell based assay

FACE was developed to provide a fast and easy way to identify the 

phosphorylation and expression levels of intracellular proteins. The cells are 

permeablised and then treated with a protocol very like an ELISA to provide 

information on the status of cell signalling proteins. The kits we used were 

purchased from Active Motif, Rixensart, Belgium and developed using a protocol 

from Versteeg et al (293). Firstly, 200 |xl of Poly-L-lysine 0.01% (w/v) in sterile 

water is added per well to allow for cell attachment to the plate as B cells are non 

adherent. The Poly-L-lysine solution is incubated at 37°C for 30 min. The wells are 

then washed 3 times for 5 min with sterile PBS. Cells are added (5x10® cells/well 

for mature B cells and 2x10"^ cells/well for WEHI 231 cells) with the appropriate 

stimulations and cultured at 37°C in a 5% (v/v) CO2 atmosphere at 95% humidity 

for the time period desired. For FACE assays of AKT, cells were cultured in the 

presence and absence of 1 fxM microcystin (Biomol). Microcystin is a protein 

phosphatase inhibitor that allows for assessment of AKT phosphorylation 

accumulated over a given period. Following culture, 200 |l l 1 of 8 % formaldehyde 

was added to each well. This could either be incubated for 20 min or the plate 

could be sealed and stored in the fridge for up to 2 weeks before further analysis.

2.10.2 Addition of Primary and Secondary Antibodies

Following fixation, wells were washed ( 3 x 5  min) with 200 pi TBS/Tween and then 

treated with 100 pi of quenching buffer (1% H2O2 , 0.1% Sodium Azide in 

TBS/Tween) for 20 min. Wells were washed twice more followed by addition of
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100 pi of blocking buffer (TBS/Tween with 5% non-fat milk) for 1 . Following 2 

further washes wells were treated with 40 pi of primary antibody (1 in 1000 dilution 

in TBS/Tween with 5% non-fat milk) and the plate sealed and left overnight in the 

fridge. Wells were then washed twice and treated with 100 pi of HRP conjugated 

secondary antibody (1 in 1000 dilution in TBS/Tween with 5% non-fat milk) for 1 h. 

The wells were the washed twice with wash buffer and a further 3 times with PBS.

2.10.3 Colorimetric reaction

After drying the plate on a paper towel, 100 pi of 3,3',5,5' tetramethylbenzidine 

(TMB, Pierce) was added and allowed to develop until there was a medium dark 

blue colour (2 to 20 min). TMB is a chromagen that yields a blue color when 

oxidized with hydrogen peroxide (catalyzed by HRP). 100 pi of 0.1% HOI was then 

added, to stop the reaction, and the plate absorbance read at 450 nm followed by 

statistical analysis.

2.11 TransAM Nuclear Transcription Factor ELISAs

These assays were purchased from Active Motif and 2 different kits were used: the 

p53 TransAM and the NF kB TransAM.

2.11.1 Nuclear Extraction

Cells were plated out at 1 x 10^ cells/well and incubated with appropriate 

stimulations at 3 T C  in a 5% (v/v) CO2 atmosphere at 95% humidity. An Active 

Motif nuclear extraction kit was used to produce nuclear and cytosolic fractions as 

per the manufacturers instructions. Briefly, samples were washed with 5 ml of PBS 

containing phosphatase inhibitors which terminate any cellular reactions, and then 

centrifuged for 5 min at 400 X g. The pellets were resuspended in 500 pi of 

hypotonic buffer by pipetting and then incubated on ice for 15 min. Following this, 

25 pi of detergent was added and the samples were vortexed on the highest 

setting for 10 s. Samples were then centrifuged at 14,000g for 30 s and the 

supernatant removed. This supernatant is the cytosolic fraction and can be stored 

at -80 °C for further use. The pellet was then resuspended in 50 pi of complete 

lysis buffer (containing DTT and protease inhibitor cocktail) and vortexed for 10 s.
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The samples were then left on ice for 30 mln and after a further vortexing 

centrifuged at 14,000 g for 10 mln. The resultant supernatant is the nuclear 

fraction and is stored at -80  °C.

2.11.2 TransAM ELISA assay

The TransAM ELISA kit provides 96 well plates on which oligonucleotides 

containing the transcription factor consensus binding site have been immobilised. 

The transcription factor in the nuclear extract then binds to this and can then be 

detected using an antibody which recognises the transcription factor in its DNA- 

bound conformation. Manufacturers instructions were followed. Briefly, 40 \i\ of 

complete binding buffer (containing DTT and Poly [d(l-C)]) was added to each well. 

For each sample well 2 pg of nuclear extract, as determined by Bradford assay, 

was added to each well diluted in 10 pil of complete lysis buffer. For the “positive 

control", 5 pg of provided sample was added diluted in 10 pi of complete lysis 

buffer and for the “blank" wells 10 pt of complete lysis buffer alone was added. All 

wells were plated out in duplicate unless otherwise stated. Samples were then 

incubated at room temperature for 1 h with mild agitation, washed 3 times with 200 

pi of wash buffer followed by a 1 h incubation with 100 pi of primary antibody. After 

an additional 3 washes, the wells were incubated with 100 pi of HRP conjugated 

secondary antibody. The plate was then washed 4 times and allowed to dry for 5 

min on a paper towel. After drying the plate 100 pi of developing solution was 

added and allowed to develop until there was a medium dark blue colour (2 to 20 

min). 100 pi of stop solution was then added and the plate absorbance read at 

450nm within 5 min of the reaction being stopped. The mean values of the 

duplicates were then calculated.

2.12 Cytochrome 0  Function ELISA

2.12.1 Preparation of cytosolic and mitochondrial fractions

The mitochondrial extraction kit was obtained from Active Motif and was completed 

as per the manufacturers instructions but with the modifications listed below 

(Figure 2.3). Cells were cultured (5x10^ cells/sample) at 37°C in a 5% (v/v) CO2 

atmosphere at 95% humidity for the time period desired. Cells were then taken
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from the well and washed with 2ml of ice cold PBS. The pellet was resuspended in 

1 ml of ice cold cytosolic buffer and transferred to microtubes on ice for 15 min.

The samples were then transferred to homogenising pestles on ice and treated 

with 50 strokes before being transferred to a fresh tube. Samples were then 

centrifuged at 400 g for 20 min, the supernatant transferred to a fresh tube and the 

centrifuged pellet discarded. The supernatant contained the cells that had been 

broken following homogenisation whereas the pellet contained residual intact cells. 

This supernatant was centrifuged again at 800 g for 10 min and the resulting 

supernatant transferred to a fresh tube. The pellet, which contained intact nuclei, 

was treated with 100 pi of complete mitochondrial lysis buffer on Ice for 15 min to 

produce the nuclear fraction, whereas the supernatant which contained the cytosol 

and mitochondria was centrifuged again at 10,000 g for 20 min. The resulting 

supernatant was transferred to a fresh tube, this being the cytosolic fraction. The 

pellet, which contained the mitochondria, was treated with 100 pi of complete 

mitochondrial lysis buffer on ice for 15 min to produce the mitochondrial fraction.

All fractions were stored at -80  °C.

2.12.2 Cytochrome c ELISA Procedure

This kit was supplied by Active Motif and completed as suggested in the 

manufacturers instructions. Briefly, cell equivalents of mitochondrial and cytosolic 

fractions were prepared in the manufacturer’s blocking buffer (total 100 pi). The 

blank wells contained only 100 pi of blocking buffer. The wells were then left for 2 

h at room temperature. Wells were then washed 3 times with 250 pi of wash buffer 

and incubated with 100 pi of anti cytochrome c Ab (1 in 1000 dilution in blocking 

buffer) for 1 h. The wells were then washed again 3 times and 100 pi of HRP 

conjugated secondary antibody added (1 in 1000 dilution in blocking buffer) for 1 h. 

Wells were washed 4 times and the plate allowed to air dry for 1 min before the 

addition of 100 pi of developing solution. This was allowed to develop until there 

was a medium dark blue colour (2 to 20 min). 50 pi of stop solution was then 

added and the plate absorbance read at 450nm within 5 min of the reaction being 

stopped. The mean values of the triplicates were then calculated.

79



2.13 Calcium Imaging and Measurements
2.13.1 Ca^* Measurements of single WEHi 231 cells using Real Time image 

Recording

WEHI 231 cells (1 x 10®) in 0.5 ml of S-MEM medium lacking Ca "̂" were placed in 

a 2 ml glass vial. The vial was then covered with aluminium foil and 5 pM Fluo 3 

(Molecular Probes) added and incubated for 30 min. Cells were observed using a 

microscope (Nikon) with an oil immersion lens and a wide field digital imaging 

system. The cells were illuminated at 488 nm and the emitted light from Fluo 3 

(535 nm) was transferred to a CCD camera operating in virtual chip mode. Full 

frame images (160 x 160 pixels), with a pixel size of 532 nm at the cell, were 

acquired at 100 frames A puffer pipette was placed adjacent to the cell using a 

Micromanipulator (Burleigh) and a Picospritzer (General Valve Corporation) used 

to apply anti-IgM (10 pg/ml) directly to the cell to stimulate a Ca "̂" signal. Data was 

recorded on a PC and synchronised with the timing of anti-IgM application using 

Clampex 8.0 software and an analogue output from a CCD camera reporting its 

readout status (294). The real time recordings were analysed using Metamorph 

Imaging software (Figure 2.4).

2.13.2 Measurement of Cytosolic Calcium in WEHI 231 populations

Cytosolic calcium was measured in cell populations at 37 °C using a Cairn

Research Spectrophotometer as described previously (295). Cells were loaded

with Fura2 (Molecular Probes) in Câ "" free HBS. After dilution and centrifugation to

remove excess dye, the cells were resuspended in a small volume of HBS

containing 1 mM Ca^^ to give a final density of 10® cells/100 pi. From this, cells

were added to stirred cuvettes containing 1.4 ml of nominally Ca^^ -free HBS (at

37 “C) in a Cairn Spectrophotometer system (Cairn Research Ltd.). Excitation

wavelengths of 340, 360, and 380 nm were provided by a filter wheel rotating at

35 Hz in the light path. Emitted light was filtered by a 485-nm-long pass filter, and

samples were averaged to give a data point every 500 ms. The background-

corrected 340/380 ratio was calibrated using the method of Grynkiewicz et al

(296). Following each experiment, cells were lysed by the addition of 50 pM

digltonin in the presence of external 2 mM Ca^^ to give an Rmax value. Rmin was

subsequently determined by the addition of 20 mM EGTA (pH 7.4) in the presence
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of an equimolar concentration of Tris base. Thapsigargin, a cell-permeable tumor 

promoter that promotes the discharge of Ca^^ from intracellular stores by 

specifically inhibiting endoplasmic reticulum (E.R) Ca "̂" ATPase, was also added to 

cell samples to determine whether cell types have equivalent amounts of E.R 

stored Ca^^.
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2.14 Suppliers addresses 

Active Motif

104 Avenue Franklin Roosevelt 

Box 25

B-1330 Rixensart 

Belgium

Alexis Biochemicals

c/o AXXORA (UK) Ltd.

P.O. Box 6757 Bingham 

Nottingham NG13 8LS

Calbiochem

c/o CN Biosciences

Boulevard Industrial Park 

Padge Road 

Beeston

Nottingham NG9 2JR

Cell Signalling Technology 

New England Biolabs (UK) Ltd

73 Knowl Piece, Wilbury Way 

Hitch in

Hertfordshire SG4 OTY

Amersham Pharmacia Biotech

Amersham Place 

Little Chalfont 

Buckinghamshire HP7 9NA

BD Biosciences

21 Between Towns Road 

Cowley

Oxford 0X4 3LY 

Burleigh

C/o EXPO Europe s.a.r.l.

Le Dynasteur 10-12, rue Andras 

Beck

92366 Meudon La Forêt Cedex 

FRANCE

CHEMICON Europe, Ltd.

The Science Centre 

Eagle Close 

Chandlers Ford 

Hampshire S053 4NF

Harlan UK Ltd

Shaw’s Farm, Blackthorne 

Bicester

Oxon 0X25 1TP

Invitrogen Life Technologies

3 Fountain Drive 

Inchinnan Business Park 

Paisley
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Jackson Immunoresearch

Laboratories

c/o Stratech Scientific

61-63 Dudley Street 

Luton

Bedfordshire LU2 ONP

Kodak Ltd

Kodak House 

Station Road 

Hemel Hempstead 

Hertfordshire HP1 1JU

Miltenyi Biotec

Almac House 

Church Lane 

Bisley

Surrey GU24 9DR

Molecular Devices Ltd

135 Wharfedale Road 

Winnersh Triangle 

Winnersh, Wokingham 

RG41 5RB

Molecular Probes

c/o Cambridge Bioscience

24-25 Signet Court 

Newmarket Road 

Cambridge CB5 8LA

Nikon UK Limited

Nikon House 

380 Richmond Road 

Kingston upon Thames 

Surrey KT2 5PR

Pierce
C/o Perbio Science UK Ltd.

Unit 9, Atley Way 

North Nelson Industrial Estate 

Cramlington, Northumberland 

NE231WA

Promega

Delta House 

Chilworth Science Park 

Southampton S O I6 7NS

Sigma-Aldrich Company Ltd

Fancy Road 

Poole

Dorset BH12 4QH

Vector Laboratories Ltd

3 Accent Park 

Bakewell Road 

Orton Southgate 

Peterborough PE2 6XS
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Table 2.1 Antibodies
Specificity of 
Antibody

Host Use Manufacturer

A1 Goat Western Blot Santa Cruz

AKT Rabbit FACE Active Motif

Bad Rabbit FACE Active Motif

Bad C20 Goat Western Blot Santa Cruz

Bad pSer112 Rabbit IP and western 

Blot

New England 

Biolabs

Bad pSer136 Rabbit IP and western 

Blot

New England 

Biolabs

Bak Mouse IP and western 

Blot

Pharmigen

Bcl-2 Mouse Western Blot Pharmigen

BclX Rabbit IP and western 

Blot

Transduction

Laboratories

BcIXl Rabbit IP and western 

Blot

Santa Cruz

Bid D19 Goat Western Blot Santa Cruz

Bim/ BOD Rabbit Western Blot Bioquote Ltd

CD40 FGK45

Hybridoma

Stimulation In house

CD43 on 

magnetic beads

Rat Purification Miltenyi Biotech

Cytochrome C Rabbit ELISA Active Motif

Fas Mouse Stimulation Transduction

Laboratories

FcyRlib 24G.2

Hybridoma

Stimulation In house

Goat IgG HRP Various Western Blot Jackson

Immunoresearch
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Intact Rabbit 

anti mouse IgM

Rabbit Stimulation

Labs

Jackson

Immunoresearch

Labs

JNK Rabbit FACE Active Motif

Mcl-1 Mouse IP and western 

Blot

Transduction

Laboratories

Mouse IgM {\x 

chain) F(Ab)2

Goat Stimulation Jackson

Immunoresearch

Labs

NF-KB subunits Rabbit TransAM assay Active Motif

P44/42

ERKMAPK

Rabbit Western Blot 

FACE

Cell signalling 

Technology

p38 Rabbit FACE Active Motif

p53 Rabbit TransAM assay Active Motif

Phospho Akt Rabbit FACE Active Motif

Phospho Bad Rabbit FACE Active Motif

Phospho JNK Rabbit FACE Active Motif

Phospho p38 Rabbit FACE Active Motif

Phospho p44/42 

ErkMAPK

Rabbit Western Blot 

FACE

Cell signalling 

Technology

Rabbit IgG HRP Various Western Blot Cell Signalling 

Technology
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A Constructs used in retroviral transfection of WEHI-231 cells

Activity Mutation/ Coding 

Sequence

SHIP-CI phosphatase inactive

SHIP-SH2 prevents SHIP-plTlM 

association

residues 1-114

Dok-PH/PTB lacks pro/tyr-rich region residues 1-258

B Constructs used in transfection by electroporation of WEHI-231 cells

Activity Mutation/ Coding 

Sequence

PKC aKR kinase inactive residues 2-672 (K^““R)

PKC aCAT constitutively active residues 326-674

PKC ÔKR kinase inactive residues 2-674 (K̂ '"®R)

PKC ÔCAT constitutively active residues 334-674

PKC 8KR kinase inactive residues 2-732 (K'^'^R)

PKC eCAT constitutively active residues 395-737

PKC ^KR kinase inactive residues 2-592 (K^®^M)

PKC ^CAT constitutively active residues 239-592

RasV^ constitutively active, 

interacts with all Ras effectors

V""

RasV^^S''*’ constitutively active, 

only interacts with Raf-1

RasV^C'"" constitutively active, 

only interacts with PI-3-K

yl^c^U

AMEKK3 constitutively active residues 340-626



Figure 2.1: FACS histogram of DNA content analysis

Histogram markers determine the percentage of cells in each stage of the cell 

cycle. The G1 peak (2N DNA) is set around 300 fluorescence units on the FL-3 

x-axis, here around 340, and the G2/IVI peak (4N DNA) calculated accordingly 

(680). Cells exhibiting subdiploid DNA content (representing apoptotic cells) are 

marked as those below the 2N peak, whilst cells in 8 phase are determined as 

those between the 2N and 4N peaks.
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Figure 2.2: Analysis of the mitochondrial membrane potential of cells 

using DiOCe stain

Histograms show cells stained with the cationic lipophilic dye DiOCe (2.5 piM) for 

analysis of mitochondria! membrane potential. Histogram markers determine 

the proportion of cells with low or high DiOCe fluorescence on the FL-1 x-axis. 

Cells with low DiOCe fluorescence are adjudged to represent the population that 

are committed to apoptosis, having dissipated their mitochondrial membrane 

potential (MMP). The untreated cells show the majority of cells with a high, 

healthy MMP, whereas coligation of both the BCR and FcyRllb induces 

apoptosis in mature B cells, therefore the histogram displays a far greater 

proportion of cells with low mitochondrial membrane potential.
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Figure 2.3: Flow diagram to show how cytoslic, mitochondrial and nuclear 
fractions were generated from mature B cells

Mature B cells (5x10^ cells/sample) were homogenised and then transferred 

to a fresh tube. Samples were then centrifuged at 400 g for 20 min, the 

supernatant transferred to a fresh tube and the centrifuged pellet discarded.

The supernatant contained the cells that had been broken following 

homogenisation whereas the pellet contained intact cells. This supernatant was 

centrifuged again at 800 g for 10 mln and the resulting supernatant transferred 

to a fresh tube. The pellet, which contained Intact nuclei, was treated with 100 

\i\ of complete mitochondrial lysis buffer on ice for 15 min to produce the 

nuclear fraction. By contrast the supernatant, which contained the cytosol and 

mitochondria, was centrifuged again at 10,000 g for 20 min. The resulting 

supernatant was transferred to a fresh tube, this being the cytosolic fraction. 

The pellet, which contained the mitochondria, was treated with 100 p,l of 

complete mitochondrial lysis buffer on ice for 15 min to produce the 

mitochondrial fraction.
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Figure 2.4: Measurement of Ca^  ̂levels in WEHI 231 cells

(A) Bright field image to show multiple WEHI 231 cells within the field of vision 

of the microscope.

(B) We then used metamorph software colour the image according to the 

relative Ca^^ levels. Furthermore, we could identify three separate regions of 

interest (ROI) within the cells where Câ '*' levels could be individually monitored. 

The 3 distinct ROI were decided arbitrarily by 3 equidistant measurements 

across the cell. A puffer pipette was used to apply 10 pig/ml of anti-IgM directly 

onto the ceil and a recording of 25 seconds was made.
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Chapter 3: Dissection of the signailing mechanisms involved in 

BCR induced growth arrest and apoptosis and CD40 mediated 

rescue in the immature B cell line WEHI 231

3.1 Introduction

3.1.1 WEHI 231; a model for immature B cells

WEHI 231 is a murine B cell lymphoma cell line that has been used extensively 

as a model for the induction of tolerance following ligation of the BCR at the 

immature B cell stage. This cell line has the phenotype of immature B cells and 

expresses sIgM, CD5, and FcR gamma, but lacks the B cell-specific isoform of 

CD45 (B220), Fas and sIgD. Crosslinking of the BCR with anti-lg results in 

growth arrest and apoptosis which models anergy and clonal deletion of 

immature B cells following ligation of the BCR with self-Ag during clonal 

selection (17, 297). In addition LPS, which drives immature B cells to a more 

mature phenotype, can overcome this BCR mediated growth arrest in WEHI 

231 cells (298-301). Furthermore, co-engagement of CD40 also results in both 

survival and proliferation and has hence been used as a model for T cell 

derived help which rescues immature B cells from apoptosis (276, 302, 303). 

Unlike mature B cells, immature B lymphocytes usually undergo anergy and/or 

apoptosis rather than proliferation upon triggering of the BCR (304, 305). This 

response is the foundation of negative selection, a process that ensures the 

generation of a self tolerant repertoire during lymphocyte development (306).

3.1.2 ERKMAP kinase acts as an essential regulator of both proliferation 

and apoptosis in the WEHI 231 cell line

Previous work in this laboratory has investigated the role of ERKMAP kinase in 

both BCR-mediated apoptosis and CD40-mediated rescue in WEHI 231 cells. 

Ligation of the BCR couples to an early ERKMAP kinase signal (less than 2 

hours post stimulation) which activates a PLA2 apoptotic pathway (275). This 

results in an upregulation of PLA2 expression and translocation to the 

mitochondrial membrane (156) and the consequent generation of arachidonic 

acid by PLA2 correlates with the dissipation of the MMP and loss of ATP (156). 

All the classical hallmarks of apoptosis are seen such as mitochondrial
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dysfunction, Annexin V staining, induction of a subdiploid population and DNA 

fragmentation (156). However there is no evidence of activation of the canonical 

effector caspase cascade although there was activation of the executioner 

protease, cathepsin B (156) (Figure 3.1).

The ability of CD40 to rescue both immature B lymphocytes from BCR- 

mediated apoptosis and prevent the spontaneous death of mature B cells is well 

documented (23, 276). Indeed, loss of MMP, depletion of ATP and apoptosis 

can be prevented by rescue signals via CD40 (156). However, the signalling 

mechanisms utilised by CD40 to achieve these outcomes are only just coming 

to light, particularly the downstream events. The initial signalling mechanisms, 

however, have been partially elucidated in recent years. For example, it has 

been shown that CD40 ligation results in the activation of the ERK, JNK, and 

p38 MAP kinases. However the precise complement of signals depends on the 

maturation stage of the cell, making dissection of the signalling mechanisms 

downstream of CD40 complicated (307, 308).

The CD40 receptor is a 48-kDa transmembrane glycoprotein (309) (Figure 3.2) 

comprising of a 193 amino-acid extracellular domain, a 22 amino-acid 

transmembrane domain and a 62 amino-acid cytoplasmic domain. The 

extracellular domain consists of four homologous, repeating, cysteine-rich 

extracellular domains characteristic of TNFR family motifs (310). It has been 

shown that murine CD40 shares approximately 60% homology to human CD40, 

with the greatest homology (78%) to the human form in the cytoplasmic domain 

(311). This cytoplasmic domain contains no sequence of known protein tyrosine 

kinase activity. Indeed, the cytoplasmic tail of human CD40 contains no tyrosine 

residues, whilst only one exists in the murine form. Nevertheless, the 

cytoplasmic domain of CD40 is constitutively phosphoryiated and threonine 234 

has been shown to be crucial for signal transduction (311). Like both the p55 

and p70 isoforms of the TNF receptor, CD40 has no intracellular kinase domain 

and no consensus sequence for binding kinases (309). However, CD40 ligation 

is known to rapidly activate the protein tyrosine kinases Lyn and Syk (312), 

whilst also inducing the tyrosine phosphorylation of PI-3 kinase and PLCy2 

(313) and activating serine/threonine kinases (314). However, like ail signalling 

mechanisms, it is important to be careful when comparing data from different
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cell types. Consequently, studies highlight quite distinct differences in proximal 

CD40 signalling events in B cells depending on whether the cells used were 

resting, activated or EBV-transformed (312). In addition, some studies suggest 

that instead of phosphorylating and activating a number of protein tyrosine 

kinases, GD40 engagement dephosphorylates the Src family PTKs or Syk (25). 

CD40 is expressed on B cells and can modulate BCR signalling (309, 315).

CD40 acts to block BCR stimulated apoptosis in both normal B cells and the 

WEHI 231 cell line (316-318). CD40 ligand (CD40L) is expressed on activated T 

celis and therefore Ag stimulated B cells require interaction with T helper cells 

for survival and activation. Self reactive B ceils are suggested to be unable to 

achieve this requirement and so undergo apoptosis, resulting in the 

maintenance of self tolerance (316, 319). Nevertheless, we have previously 

shown that engagement of CD40 results in desensitization of the early ERK 

signal in WEHI 231 cells resulting in the uncoupling of the BCR from PLA2 

mediated apoptosis (156, 320). CD40 has also been demonstrated to induce 

the anti-apoptotic Bcl-2 family members A1 and B c IX l (277, 321, 322), which 

correlate with maintenance of the mitochondrial membrane integrity and 

survival. Furthermore, both proliferating and anti-CD40 treated WEHI 231 cells 

exhibit a sustained and cycling pattern of ERK activation which correlates with 

cell cycle progression, growth and proliferation (320) suggesting that CD40 

mediates rescue from BCR-induced growth arrest by restoring the sustained 

ERK activation.

3.1.3 Ras acts to modulate both the ERKMAP kinase and PI-3 kinase 

pathways

Ras proteins provide critical regulatory crossroads in cellular signalling 

pathways. The ras genes code for 4 different 21 KDa proteins: H-Ras, N-Ras, 

K-Ras4A and K-Ras4B. These proteins function as GDP/GTP regulatory 

switches for cellular proliferation. Ras possesses an intrinsic GTPase activity 

however this is too low to account for the rapid, transient GDP/GTP cycling 

which is seen. A complete model for Ras activation/ deactivation includes 2 

other families of proteins: Guanine nucleotide exchange factors (GEFs) e.g.
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SOS that acts to activate Ras and GTPase activating proteins (GAPs) e.g. p120 

GAP that acts to deactivate Ras (Figure 3.3) (reviewed in (323)).

The best characterised Ras effector is Raf which is a serine/ threonine kinase 

(324). Ras/ Raf association leads to translocation of Raf to the plasma 

membrane that results in the activation of its kinase function. The 

phosphorylation of Raf leads to activation of MEKK1/2 and hence the ERKMAP 

kinase cascade. In addition, Ras can act to stimulate PI-3 kinase activity as the 

p110 subunit of PI-3 kinase (through amino acids 133 to 314) interacts with 

RasGTP (325). Ras acts to regulate cell growth in all eukaryotic cells through 

modulation of these 2 pathways. Thus, when serum-starved NIH-3T3 

(fibroblast) cells that are arrested in GO/Gl are exposed to serum, they undergo 

a period of intense signalling lasting 30-60 minutes, and this starts to decline as 

receptors are internalised and degraded. Serum or growth factors are then 

required for a further 8-10 hours if the cells are to enter the cell cycle (326, 327). 

In cells continuously exposed to such growth factors Ras signalling is required 

in at least two phases of the GO to 8  phase transition (328-330). This biphasic 

pattern of Ras activation appears to elicit different efffector molecules (Figure 

3.4). Thus, ERK is activated in the early stages of Ras activation, but its activity 

is not detected at later stages of G1 progression, even though Ras is still active. 

By contrast, PI-3 kinase is active during the G0/G1 transition and in mid to late 

G1 phase and is associated with phosphorylation of AKT and the induction of 

cyclin D1 expression (331).

Whilst an early strong burst of ERK activation is associated with apoptosis, the 

sustained, yet cycling, activation of ERK appears to be essential for proliferation 

in WEHI 231 cells. By contrast, short-term inhibition of PI-3 kinase activity in 

WEHI 231 cells had no effect on spontaneous proliferation, anti-lg induced 

growth arrest or apoptosis or CD40-mediated rescue. However, prolonged 

inhibition (up to 30 hours) of PI-3 kinase results in growth inhibition of 

unstimulated cells, suggesting that PI-3 kinase activity may be important for the 

basal proliferation of WEHI 231 cells. Prolonged inhibition also abrogated 

CD40-mediated rescue of anti-lg induced growth arrest, but this may be due to 

the fact that PI-3 kinase inhibition blocks basal proliferation of these cells (320).
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In order to dissect the role of Ras signalling via the ERKMAP kinase and Pl-3 

kinase pathways several constitutively active Ras mutants have been 

generated. RasV12 is a constitutively active form of Ras, the consequence of a 

point mutation that results in the substitution of valine for glycine at position 1 2 . 

This mutation disables the intrinsic GTPase activity of Ras, therefore once Ras 

binds GTP and becomes active it is unable to deactivate itself by hydrolysing 

GTP to GDP. RasVI2 S35 contains a further point mutation in the effector 

domain of the protein, resulting in the substitution of serine for threonine. This 

mutation prevents Ras from binding the p i 10ct subunit of PI-3 kinase, an 

interaction that is known to lead to the activation of PI-3 kinase (325, 332, 333). 

By contrast, RasV12 C40 contains a point mutation in the effector domain 

resulting in the substitution of cysteine for tyrosine. This mutation abrogates the 

interaction between Ras and Raf, preventing Ras from activating the ERKMAP 

kinase pathway. Figure 3.5 summarises the action of these Ras mutants.

3.1.4 Dok

The Dok proteins are a family of adaptor proteins that are phosphoryiated by a 

wide range of protein tyrosine kinases. The first Dok protein to be isolated was 

p62 Dok, originally identified as a 62 kDa tyrosine-phosphorylated protein 

associated with the negative regulator of Ras, Ras-GAP (334-336). p62 Dok is 

rapidly tyrosine phosphoryiated in response to a wide range of stimuli, including 

ligation of the BCR (337) and FcyRllbl ligation (338), and once phosphoryiated 

interacts with a number of signalling molecules including Ras-GAP (334, 335), 

Nek (339), and Osk (338) via their SH2 domains. In addition to SH2 domain- 

binding sites, p62 Dok also contains a pleckstrin homology (PH) domain, a 

phosphotyrosine binding (PTB) domain, and potential SH3 domain-binding 

sites.

Initially, p62 Dok was suspected of playing a positive role in mitogenic signalling 

as it was first identified as a substrate for the p210 bcr/AbI oncoprotein (334), as 

well as a target of v-AbI in v-AbI transformed B cells (335). However, evidence 

has accumulated to suggest that p62 Dok actually plays a negative role in 

ERKMAPkinase activation and proliferation. For example, cells from mice 

deficient in p62 Dok demonstrate increased proliferation in response to growth 

factors, and these ceils exhibit prolonged Ras and ERKMAPkinase activation in
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response to growth factors (340). Moreover, inactivation of p62 Dok also 

enhances the transforming ability of p210 bcr/AbI, accelerating the onset of the 

chronic myelogenous leukaemia (CML)-like disease triggered by expression of 

the chimeric protein (340). Réintroduction of p62 Dok into mouse embryo 

fibroblast (MEF) cells from p62 Dok deficient mice results in a return to a normal 

level of proliferation in response to PDGF, rather than the enhanced 

proliferative response normally seen in p62 Dok deficient MEFs (341). Indeed, 

p62 Dok has been shown to negatively regulate ERKMAP kinase activation and 

cell proliferation mediated by the BCR, by abrogating Ras activation (342).

In addition, p62 Dok and is phosphoryiated in response to BCR and FcyRllb 

coligation, enhancing its binding of Ras-GAP and implicating p62 Dok as a key 

mediator of FcyRllb inhibition of BCR-mediated Ras activation (269). The 

phosphorylation of p62 Dok, and subsequent association with Ras-GAP, is 

dependent on phosphorylation of the ITIM of FcyRllb, and the concomitant 

recruitment of SHIP to the ITIM, as p62 Dok does not interact directly with the 

ITIM but rather has been shown to interact with FcyRllb via SHIP (269). This 

brings p62 Dok into close proximity with tyrosine kinases and the C-terminal 

region of p62 Dok becomes phosphoryiated. Phosphorylation of p62 Dok 

increases its association with RasGAP and p62 Dok can then regulate the 

activity of RasGAP. RasGAP enhances the intrinsic GTPase activity of Ras 

leading to the inhibition of Ras and the downstream effectors of Ras including 

ERK and PI-3 kinase (269) (Figure 3.6).

3.1.5 SHIP

SHIP is a highly conserved cytosolic phosphatase that can be activated 

downstream of FcyRllb in mature B lymphocytes where it functions as a 

negative regulator of BCR signalling (343, 344). More recently SHIP has also 

been shown to be an important mediator of negative signalling via FcyRllb on B 

cells (345). SHIP can remove the 5’ phosphate from PIP3 resulting in the 

depletion of lipids that serve as anchors for PH domain-containing proteins. 

SHIP therefore antagonises the function of PI-3 kinase and can suppress the 

activation of AKT (282, 346) (Figure 3.6).
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SHIP is also a regulator of the ERKMAP kinase pathway. For example, SHIP 

binds to She using the same phospho-tyrosine residues as are required for the 

formation of the Grb2-Shc complexes and hence prevents the recruitment and 

activation of SOS and the classical MAP kinase cascade (346) (Figure 3.6). 

However, this mechanism is controversial as more recent reports have also 

suggested that tyrosine phosphorylation of She downstream of the BCR is 

SHIP-dependent and the formation of SHIP-Shc-Grb-2 complexes are 

necessary for mitogenic BCR signalling (347). Nevertheless, SHIP can 

negatively influence the ERKMAPK cascade as tyrosine phosphoryiated SHIP 

can bind to the adaptor protein p62 Dok via the phospho-tyrosine-binding 

domain of p62 Dok as has been discussed previously.

3.1.6 The Protein Kinase C (PKC) family

3.1.6.1 The Importance of the PKC family in B lymphocyte development 

and function

PKC a, (3, Ô, 8, Y] and 0 isoforms are all expressed in mature B lymphocytes 

(348, 349) and PKCs are proposed to mediate many cellular responses as 

diverse as proliferation and apoptosis in B lymphocytes. BCR ligation leads to 

an increase in PKC activity (350, 351) resulting from activation of Btk/ Tec, Syk 

and Src-family PTKs, molecules which activate PLC to generate both DAG and 

cytoplasmic Ca^^ second messengers that can act to activate certain members 

of the PKC family. In B lymphocytes PKCs have been implicated in NF kB, API, 

ERKMAPkinase, JNK, p38 and p70®® activation (352-356). In addition, PKCs 

have been reported to mediate chemokine driven B cell migration (357), induce 

proteins that protect from Fas-dependent apoptosis (358) and regulate integrin- 

mediated adhesion (359). Recent knock out studies, which will be discussed 

below highlight non-redundant roles for PKC isoforms in B lymphocytes. 

Previous studies within our laboratory have shown that both BCR and CD40 

signalling in immature B cells can regulate the expression of multiple PKC 

isoforms. In particular, PKC a, PKC 6 , PKC s and PKC ^ were identified as 

potential regulators of CD40-dependent rescue from BCR-induced growth arrest 

(Harnett, unpublished).
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3.1.6.2 PKC a

PKC a  was the first member of the PKC family to be identified and cloned, 

being isolated from a brain cDNA library over 15 years ago (360). It has since 

been found to have a wide tissue distribution, and as such has been implicated 

in the control of a number of major cellular functions, including proliferation, 

differentiation, apoptosis and cellular mobility. Indeed, in some cell types, 

overexpression of PKC a is sufficient to induce proliferation, and it has recently 

been shown that expression of constitutively active PKC a in NIH-3T3 cells 

results in increased expression of cyclins D1 and E which are required for cell 

cycle progression, and increased proliferation rates (361). As well as promoting 

proliferation, accumulating evidence suggests a role for PKC a  in the inhibition 

of apoptosis. Thus, reducing the level of PKC a  results in apoptosis in a number 

of cell types, including U937 cells (362) and glioma cells (363). Moreover, PKC 

ot has also been shown to phosphorylate the survival promoting protein Bcl-2 on 

a site that enhances the anti-apoptotic properties of Bcl-2 (364, 365). 

Furthermore, the induction of apoptosis by ceramide appears to involve the 

inhibition of PKC a  (366).

However there is very little known about the role of PKC a in B lymphocyte 

functional responses. Nevertheless, it has been demonstrated that selective 

inhibitors of classical PKCs (a, (3 and y) induce both growth arrest and apoptosis 

in a dose dependent manner in the human cell line Ramos-BL (367). This cell 

line has the surface phenotype of germinal centre B cells and responds to 

ligation of the BCR with cell death in a similar fashion to WEHI 231 cells. 

Reduction in levels of PKC a in Ramos-BL cells using antisense DNA, 

produced levels of cell death similar to that induced by ligation of the BCR 

(367). Moreover, prolonged treatment with anti-IgM results in a reduction in 

expression levels of PKC a  (367). This suggests that PKC a  is essential for B 

cell survival and expression of PKC a is reduced by ligation of the BCR in these 

cells.

3.1.6.3 PKC p

PKC |3 has been implicated as an important mediator of mature B cell activation 

since PKC (3'̂ ' mice have reduced humoral immune responses and their B
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lymphocytes display impaired activation downstream of the BCR (368). More 

specifically, mature B lymphocytes from PKC(3‘ “̂ mice are less able to activate 

B c IX l and Bcl-2 and hence are prone to apoptosis (54, 368). Indeed, treatment 

of primary splenic immature B cells or WEHl 231 cells with phorbol ester can 

prevent BCR-driven apoptosis suggesting the diminished BCR-coupled 

activation of cPKC and nPKC isoforms in immature B cells contributes to their 

cell death (369, 370). Consistent with this, activation of PKC further promotes 

survival of mature B cells by inducing NF-kB since NF-kB can regulate the 

transcription of c-Myc, and the anti-apoptotic Bcl-2 family members B c IX l and 

Bcl-2 (54, 352, 371). Thus, the inability of BCR signalling in immature B cells to 

sustain NF-kB activation may due to the defective stimulation of PKC in these 

cells. Such ablation of NF-kB signalling is likely to contribute to cell death since 

NF-kB signalling is enhanced under conditions that favour cell survival, 

including CD40 co-stimulation (372, 373).

3.1.6.4. PKC a

PKC Ô has also been demonstrated to be a direct target of BCR signalling (374, 

375). PKC Ô has the unusual property of being tyrosine phosphorylated after 

BCR engagement and in the WEHl 231 immature cell line it is tyrosine 

phosphorylated very rapidly after ligation of the BCR (375). Furthermore, there 

is translocation of PKC from soluble to membrane fractions after treatment with 

anti-IgM (375), a process which brings PKC ô into direct contact both with its 

substrates and its activators. Indeed, it has been shown that in order for PKC ô 

to be properly activated both membrane translocation and phosphorylation 

events must occur (375). PKC ô is phosphorylated on Tyr®  ̂and Tyr'*®̂  in the 

amino terminal of the protein (376, 377) and it has been postulated that the 

tyrosine kinase responsible for this may be Lyn or Btk. The role of this tyrosine 

phosphorylation is still under some debate but some groups report that it can 

reduce phorbol ester dependent catalytic activity whilst others show that activity 

can be increased in some cell types (376, 378-380). This phosphorylation event 

is thought to alter substrate specificity and may act to create a binding domain 

for SH2 containing proteins.

PKC Ô has been reputed to have diverse roles depending of the cell type and

maturation stage used. For example In fibroblasts, PKC ô activates the R afi/
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MEK/ ERK pathway which leads to the activation of the AP1 transcription factor 

that is normally associated with proliferation (381). However, in other cell types 

PKC Ô activation can suppress proliferation and in fact in human U937 cells, 

caspases cleave PKC ô creating a constitutively active form of PKC ô which is 

associated with the induction of apoptosis (382). This, combined with other 

data, has lead to the hypothesis that cleaved PKC ô products can induce 

apoptosis (reviewed in (383)). However, in murine splenic B lymphocytes 

induction of apoptosis by various agents has been shown to induce 

translocation of either full length PKC ô (PKC ôFL) or the caspase 3 mediated 

cleavage product (PKC ô-CF) to the nucleus (384). In addition, caspase 

inhibitors could not prevent nuclear translocation and there were no significant 

differences in the resulting induction of pro/ anti- apoptotic molecules 

suggesting caspases are not essential for PKC ô induced apoptosis. Potentially 

PKC Ô may modulate a novel apoptotic cell signalling mechanism in B 

lymphocytes which may involve the phosphorylation of histone H2B at serine 14 

by PKC Ô (384).

PKC ô‘ “̂ knock out mice were created simultaneously by two separate 

laboratories (385, 386). The gross phenotypes of the PKC mice were 

reported to be the same by both groups. Thus, these mice had both 

splenomegaly and lymphadenopathy with a massive increase in peripheral B 

lymphocytes, reflecting both increased numbers of naïve and activated follicular 

mature B cells and increased numbers of germinal centres as a result of 

increased proliferation. However, PKC 5"̂ ' knock out mice were viable up to 12 

months with no pre-disposition to cancer. By contrast, mice developed severe 

lupus like autoimmune disease, produced auto-Abs to their own DNA and died 

from glomerulonephritis. This points to PKC ô having an important role in 

maintenance of B cell tolerance to self-Ag.

Consistent with this, Mecklenbrauker et al found that mature B cells produced 

abnormal responses to anti-IgM and hence suggested that loss of PKC ô results 

in a defect in the induction of anergy (385). However, Miyamoto et al found both 

an increase in response to mitogenic stimuli including IPS and anti-CD40 and 

an increase in the expression of IL6, which stimulates B cell maturation and
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proliferation. Miyamoto et al therefore suggested that loss of PKC ô results in 

increased and unchecked proliferation in B cells (386).

3.1.6.5. PKC 8

PKC 8 is generally considered to be a positive regulator of cell survival and 

proliferation. For example, PKC e has been shown to activate the Raf-1/ERK 

pathway (387), thus promoting the activation of the two key survival factors NF 

k B and AKT (388). Indeed, expression of a catalytically inactive form of PKC e 

has been shown to inhibit the activation of AKT by insulin (389).

Indeed, PKC 8 also can be activated in response to a variety of mitogens (390, 

391) and in certain cell types, overexpression of PKC e results in transformation 

as a consequence of PKC8 inducing the phosphorylation of Raf1 and resulting 

in sustained activation of the ERKMAPK signalling pathway (392-394). More 

recently, it has also been shown that expression of a constitutively active form 

of PKC 8 in NIH3T3 cells activates the cyclin D1 promoter resulting in entry into 

the proliferative phases of the cell cycle (361). However in contrast to this, 

overexpression of PKC 8 in NIH3T3 cells increases radiation-induced cell death, 

also as a result of increased ERK1/2 activation (395). Whilst such 

overexpression of a constitutively active PKC 8 caused an even greater 

increase in radiation-induced cell death, overexpression of a dominant negative 

PKC 8 returned cell death to control levels. Interestingly, strong early ERK 

signals are also associated with the apoptosis induced by BCR ligation in WEHl 

231 cells (275).

The role of PKC e in BCR signalling remains to be elucidated, however, as 

stated above in other cell types activation of PKCs has been strongly linked to 

cell survival and proliferation. PKC8 activation inhibits both TNF- and TRAIL- 

induced apoptosis in the monocytic cell line U937 and fibroblast COS cells (388, 

396), so it would seem likely that PKC8 activation might contribute to survival 

signals. The CD40-induced survival signal is thought to involve, at least in part, 

NF-kB, and it has been shown that PKC8 promotes the activation of NF-kB in 

fibroblasts (388). PKC 8 is highly expressed in mature B lineage cells, and
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ligation of the BCR in A20 murine B cells induces PKC e translocation from the 

cytoplasm to cellular membranes. Additionally, this translocation coincides with 

PI-3 kinase-dependent phosphorylation of PKC e which is required for maximal 

activation of PKC (397). Further support for the idea that PKC e activation could 

be involved in B cell proliferation comes from the fact that PKC e was found to 

be constitutively phosphorylated in a number of B lymphoma cell lines.

However, such phosphorylation was only induced in mature splenic B cells by 

BCR ligation (397).

3.1.6.6. PKC t

PKC ^ also plays an important role in B lymphocytes. PKC knock out mice 

have been produced with a generally well preserved splenic structure and 

normal percentages of B cell populations. However these mice have reduced 

absolute numbers of B cells due to severely increased spontaneous apoptosis. 

Additionally, PKC ^“''"transgenic mice display impaired segregation between B 

and T cell zones and a temporal delay in the development of secondary 

lymphoid organs such as the Peyer’s patches (398). PKC cells have 

impaired activation of the ERKMAPkinase pathway following ligation of the BCR 

even though JNK and p38 activation appears to be normal. There is also a 

severe inhibition of IkB transcription and decrease in both IL6 and BcIXl 

transcription following BCR ligation in PKC B lymphocytes (399). The fact 

that the PKC mutation does not cause embryonic lethality may be due to 

compensation by the other atypical, and ubiquitously expressed, PKC K.

In addition PKC ^has also be implicated as playing an important role in the 

transduction of survival signals. Nerve Growth Factor (NGF) Is a well 

characterised neurotropic protein that has been demonstrated to act as a 

survival factor for memory B cells and enhance mature B cell proliferation (400, 

401 ). It has also been shown to share structural homology to CD40 (402, 403) 

and can inhibit IgM mediated apoptosis in the Ramos cell line in a PKCÇ 

dependent manner (404). After induction of apoptosis PKCÇ is translocated from 

the cytosol to the nucleus this is prevented by treatment with NGF (404). Taken
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together this data implicates PKC Ç as an Important regulator of rescue signals 

in B cells.

3.2 Aims and Objectives

Previous work in this laboratory has highlighted an essential role for sustained 

yet cyclic ERKMAP kinase signalling in WEHl 231 immature B cell survival, 

growth and proliferation (275). By contrast, ligation of the BCR, resulting in 

growth arrest and apoptosis, induces an early, strong peak in ERK activity and 

abrogation of the sustained phospho-ERK signal. Recent data has suggested 

that B c IX l overexpression can overcome such BCR-mediated apoptosis. 

Investigation of signalling in B c IX l overexpressing WEHl 231 cells reveals that 

that B c IX l overexpression is not capable of rescuing the sustained cyclic ERK 

activation, suggesting that whilst B c IX l is essential for survival, the ERK signal 

may be necessary for proliferation in WEHl 231 cells (405). Moreover, it 

suggests that CD40 signalling provides signals other than B c IX l that rescue 

BCR- mediated growth arrest.

It was therefore the aim of this chapter to further characterise the role of the 

BCR-CPLA2 pathway in regulating immature B cell fate. In particular it was 

planned to investigate the mechanism(s) underlying B c IX l- mediated rescue of 

cell survival and to identify the signals involved in CD40-mediated restoration of 

cell growth.

In particular it was planned to address:

• Whether the product of PLA2 activation, arachidonic acid, or an 

eicosanoid metabolite, played a direct role in determining immature B cell 

fate

• Whether, by use of a B c IX l expressing WEHl 231 mutant cell line, B c IX l 

is sufficient for CD40-mediated rescue from BCR-mediated apoptosis 

and growth arrest or if additional signals are required

• Whether B c IX l expression stabilises mitochondrial integrity by blocking 

PLA2-mediated MMP dissipation

• Whether expressing constitutively active mutants of Ras in WEHl 231 

cells blocked BCR-mediated growth arrest and apoptosis
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Which the potential upstream signals e.g. PI-3 kinase or PKC (by use of 

mutant WEHl 231 cells lines), lead to the ERK activation which is 

uncoupled in BCR stimulated cells and restored following signalling via 

CD40
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3.3 Results

3. 3.1 Crosslinking of the BCR on WEHi 231 cells leads to growth arrest 

and apoptosis

Unlike mature B cells, immature B lymphocytes usually undergo apoptosis, 

rather than proliferation, upon strong triggering of the BCR (304, 305). This 

response is the foundation of negative selection, a process that ensures the 

generation of a self tolerant repertoire during lymphocyte development (306). 

The murine WEHl 231 immature B lymphoma cell line has been widely used as 

an in vitro model system to study both negative signalling and BCR induced 

apoptosis (406, 407). Treatment of WEHl 231 cells with anti-IgM induces growth 

arrest followed by cell death by apoptosis which occurs in a mitochondrial- 

dependent but effector caspase-independent manner (156, 408).

Ligation of the BCR by anti-lg leads to growth arrest as indicated by both a 

profound reduction in DNA synthesis (Figure 3.7 A) and a reduction in the 

number of cell divisions undertaken (Figure 3.7 B). Indeed, there was a 

complete cessation in proliferation in a large number of cells, as 24% of cells 

did not undergo cell division (Figure 3.7 B). By contrast, the mode number of 

cell divisions was 3 for unstimulated groups and 6 for CD40-rescued cells 

(Figure 3.7 B).

Following this identification of growth arrest in BCR-ligated WEHl 231 cells it

was necessary to investigate whether this reflected growth arrest and/or

apoptosis. Thus, cell cycle status and apoptosis was assessed by the

Propidium Iodide (PI) that fluoresces on intercalating DNA and thus indicates

the amount of DNA within a cell. Following treatment of WEHl 231 cells, with

anti-lg there is decrease in the number of live cells entering mitogenic phases of

the cell cycle from 51% in unstimulated cells to 30% in anti-lg treated cells

(Figure 3.8). This is associated with a concomitant large increase in the

subdiploid population from 20% in unstimulated cells to 76% in anti-lg treated

cells (Figure 3.8 A). Collectively, these data indicate that BCR signalling

induces reduced proliferation both by growth arrest and apoptosis.
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Furthermore, we investigated whether loss of MMP was involved in this form of 

apoptosis using the FACS dye DiOCe which binds to cells proportionally to their 

MMP (156, 409). It is well documented that cells undergoing apoptosis enter the 

“mitochondrial permeability transition" which leads to a breakdown of 

mitochondrial membrane integrity, dissipation of the MMP and the cytosolic 

translocation of pro-apoptotic molecules such as Smac and cytochrome c (152, 

173, 410-415). Importantly, dissipation of the MMP is known to be one of the 

earliest steps in commitment of the cell to the apoptotic programme (410). 

Therefore by using DiOCe we can probe the MMP of cells and assess the 

percentage of cells with a high, and therefore healthy, MMP and the percentage 

with a low, dissipated MMP. Ligation of the BCR using anti-lg lead to a 

dissipation of the MMP with only 17% of cells maintaining a high, healthy MMP 

after 48 hours as compared to 69% in unstimulated cells (Figure 3.9). This 

demonstrates that loss of mitochondrial membrane integrity is a good marker of 

commitment of WEHl 231 cells to apoptosis.

3.3.2 Ligation of the BCR and CD40 simultaneously leads to increased 

survival and proliferation

It is well established that CD40 signalling acts as a rescue signal to promote 

survival of BCR-stimulated WEHl 231 cells (316-318). Consistent with this 

mitochondrial membrane integrity is protected and the number of cells with a 

high MMP in anti-CD40 treated groups is maintained at 65%, as compared with 

17% in the anti-lg treatment group (Figure 3.9). The number of subdiploid cells 

is also vastly reduced from 76% in anti-lg treated groups to 14% in anti-lg and 

anti-CD40 treated groups (Figure 3.8). In addition to reduction in apoptosis, 

there is also a release from the growth arrest induced by anti-lg treatment. DNA 

synthesis is increased by 400% in anti-lg and anti-CD40 treated cells as 

compared to cells treated with anti-lg alone (Figure 3.7 A). Furthermore, anti- 

CD40 treatment stimulates proliferation with the mode generation number at 6 

as compared to generation number 3 in the unstimulated cells (Figure 3.7 B).
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3.3.3 Bcl-2 family members are essential regulators of both anti-lg- 
induced apoptosis and anti-CD40-mediated rescue

There have been recent reports that the anti-apoptotic Bcl-2 family members 

such as A1 and Mcl-1 may play a role in anti-CD40 mediated rescue of BCR- 

mediated apoptosis (322, 416-420). Therefore I investigated the expression of 

Bcl-2 family members both following ligation of the BCR and during anti-CD40 

mediated rescue. Ligation of the BCR with anti-lg induces expression of the pro- 

apoptotic Bcl-2 family members Bad, Bak and Bax however, expression of Bid 

was not detected (Figure 3.10 and data not shown). Both Bad and Bak 

expression is induced 8 h following BCR ligation and maintained up to 48 h 

(Figure 3.10 A and B). Interestingly, ligation of both the BCR and CD40 also 

induced Bad and Bak expression between 8 and 48 h, however ligation of CD40 

alone does not induce either of these pro-apoptotic family members. Bax 

expression follows a different pattern with an increase 8 h post CD40 

engagement (Figure 3.10 C). However, at 24 hours there is a strong induction 

of Bax following ligation of the BCR or addition of endogenous arachidonic acid, 

according to data shown previously this would correlate with the loss of MMP. 

Surprisingly at 48 h, Bax expression is maintained at this high level only when 

both the BCR and CD40 are ligated.

By contrast, ligation of the BCR using anti-lg induced a downregulation of the 

anti-apoptotic family members Bcl-2, B c IX l and Mcl-1 within 24 hours (Figure

3.11 A). However, B c IX l was upregulated in response to treatment with both 

anti-lg and anti-CD40 (Figure 3.11 A and B) and this suggests that B c IX l has a 

pivotal role in mediating CD40-maintenance of the MMP and rescuing cells from 

BCR-stimulated apoptosis. Furthermore, it may Imply that sequestration of Bax 

by CD40-mediated induction of expression of B c IX l may provide a mechanism 

for preventing BCR-mediated apoptosis in CD40 rescued cells.

Nevertheless, the mere presence of Bcl-2 family members is not definitive proof 

that they are integral to the induction of either survival or apoptosis. All Bcl-2 

family members are characterised by the presence of a conserved sequence 

motif called the Bcl-2 homology (BH) domain. The BH domains 1 to 3 in anti- 

apoptotic proteins such as Bcl-2 and B c IX l form an elongated hydrophobic 

groove which acts as a docking site for the BH3 domains of pro-apoptotic
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binding partners such as Bax and Bad (175, 421). Binding of pro and anti- 

apoptotic members in dimers prevents pro-apoptotic effects. In addition to these 

heterodimers, members can also form homodimers. For example Bax-Bax 

homodimers are thought to be sufficient and essential for induction of apoptosis 

(188, 193, 422, 423) and B c IX l-  B c IX l homodimers bind to the mitochondrial 

membrane to maintain integrity and inhibit the release of pro-apoptotic 

molecules such as Smac, Omi and cytochrome c (191, 424). Therefore it is the 

ratio of promoters and inhibitors of apoptosis that determines the cell response 

to diverse signals. With this in mind I investigated the binding partners of 

various Bcl-2 family members.

Firstly, the binding partners for the anti-apoptotic Bcl-2 family member B c IX l as 

indicated by the Bcl-2 family members that were found in BclXL-containing 

immune complexes were investigated. I first investigated the association of Mcl- 

1 with B c IX l but was unable to find any association of Mcl-1 with BclXL over 48 

hours regardless of the stimulation used (Figure 3.12 B). By contrast, when the 

association of B c IX l with Bak, a potent inducer of apoptosis, was investigated. 

An increased association of B c IX l with Bak in groups treated with both anti-lg 

and anti-CD40 at all time points was found (Figure 3.12 C). This may suggest 

that B c IX l can sequester Bak following CD40 engagement in order to prevent 

loss of mitochondrial membrane integrity and induction of apoptosis. This 

corroborates the previous Western Blot data that implicates Bak as important in 

anti-lg mediated apoptosis. Interestingly, there is no induction of B c IX l 

associated Bak following treatment with anti-CD40 alone (Figure 3.12 C). This 

suggests that B c IX l association with Bak is an anti-apoptotic rather than pro­

survival signal and in addition supports that Bak expression may be specifically 

upregulated in response to anti-lg.

To corroborate the potential for B c IX l- Bak complexes Bak immunoprecipitates 

were probed for BclX expression. These studies demonstrated that Bak 

associated BclX is greatly upregulated by treatment with both anti-lg and anti- 

CD40 at 48 h (Figure 3.12 D). This suggests that upregulated Bak is 

sequestered by BclX to prevent dissipation of the MMP and hence inhibit the 

pro-apoptotic signal. Furthermore, I looked for an association between Bak and 

Mcl-1. There seems to be equal expression of Bak associated Mcl-1 at all time
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points regardless of the stimulation (Figure 3.12 E), suggesting that Mcl-1 

Interactions with Bak are not important in anti-CD40 mediated rescue from anti- 

lg induced apoptosis.

Finally, the role of Bad in WEHl 231 cells was investigated. Bad is known to 

function in both pro and anti-apoptotic signalling depending on its cleavage and 

phosphorylation status. When unphosphorylated, Bad sequesters BclXu and 

acts as a pro-apoptotic signal. However, once Bad is phosphorylated on either, 

or a combination of, serines 112, 115 or 136 it is sequestered by 14-3-3 

proteins. This prevents Bad from interacting with other Bcl-2 family members 

and hence is a pro-survival signal. Furthermore, whereas the cleavage product 

of Bad, Bads, is a potent inducer of apoptosis, some groups have reported that 

full length Bad has an anti-apoptotic function (215). These data reveal an 

upregulation of total Bad associations following both treatment with anti-lg or 

the combination of anti-lg and anti-CD40 (Figure 3.12 F). Interestingly, the 

majority of Bad present seems to be in the cleaved, and hence pro-apoptotic 

form. By contrast, there is a downregulation of total Bad expression following 

treatment with anti-CD40, as would be expected as CD40 ligation provides a 

pro-survival signal. Interpretation of the Bad phospho-Bad status is more 

difficult. Nevertheless, consideration of the anti-lg and arachidonic acid treated 

cells demonstrates that there is a reduction in both phospho-serinel36-Bad and 

phospho-serinel 12-Bad compared to the control cells, cultured in media alone 

(Figure 3.12 G and H). It is initially puzzling to see that the phospho-Bad 

complexed with Bad is reduced in anti-CD40 treated cells as compared to anti- 

lg or arachidonic acid treated cells. However, taken together with the fact that 

there is far less Bad expression in anti-GD40 treated groups these data actually 

demonstrate that Bad is highly phosphorylated on serine 136 following anti- 

CD40 treatment. This suggests that whilst cleaved and non-phosphorylated, 

and thus pro-apoptotic. Bad is upregulated following anti-lg and arachidonic 

acid treatment in WEHl 231 cells there is a reduction in Bad expression 

following CD40-medlated rescue. Furthermore, the Bad found in CD40-rescued 

cells is highly phosphorylated on serine 136 and hence active in pro-survival 

signalling.
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3. 3. 4 Overexpression of BcIXl can protect from either anti-lg or 
arachidonic acid induced apoptosis however it cannot overcome growth 

arrest induced by these stimuli

Previous work in this laboratory and others has indicated that CD40-mediated 

upregulation of the anti-apoptotic Bcl-2 family member B c IX l plays a  key role in 

the prevention of BCR induced apoptosis (210, 276, 321). In addition, figures

3.11 and 12 indicate that B c IX l is pivotal to CD40-mediated rescue of WEHl 

231 cells. Therefore it was decided to utilise the WEHl 231 B c IX l cell line, which 

expresses B c IX l to levels seen post CD40 engagement (Figure 3.11 B), in order 

to dissect the specific role of this protein in CD40-mediated rescue of BCR- 

driven apoptosis. Apoptosis can be induced in WEHl 231 Neo (empty vector 

control WEHl 231 cells) following either anti-lg treatment or the addition of 

exogenous arachidonic acid, as indicated by the subdiploid population being 

increased from 20% when cells are left unstimulated to 45% and 34% of WEHl 

231 Neo cells following addition of anti-lg or arachidonic acid respectively 

(Figure 3.13). By contrast, in WEHl 231 B c IX l cells neither of these stimuli can 

increase the apoptotic population above 25% suggesting that B c IX l provides 

protection from anti-lg/ arachidonic acid mediated apoptosis (Figure 3.13). 

However, anti-CD40 treatment can further reduce apoptosis following either 

anti-lg/ arachidonic acid treatment in B c IX l cells perhaps suggesting CD40 

ligation provides survival signals over and above those generated by 

overexpression of B c IX l alone (Figure 3.13).

Induction of growth arrest post anti-lg and arachidonic acid treatment in WEHl 

231 cells can also be clearly seen in Figure 3.14 A which shows that 

incorporation of ^[H] thymidine is reduced from 120,000 cpm in unstimulated 

cells to essentially zero after addition of 50 |iM of arachidonic acid. Interestingly, 

arachidonic acid and BCR-induced growth arrest are both observed in WEHl 

231 Neo (empty vector control WEHl 231 cells) and B c IX l cells (Figure 3.14 A 

and B), suggesting that whilst expression of B c IX l can overcome anti-lg or 

arachidonic acid induced apoptosis, it cannot prevent the growth arrest 

response to either stimulus. By contrast, anti-CD40 treatment prevents, at least 

partially, both apoptosis and growth arrest resulting from culture with either anti- 

lg or arachidonic acid (Figure 3.14 and 3.15). Therefore ligation of CD40 not 

only promotes survival by the induction of B c IX l expression but also must
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provide additional signals which stimulate proliferation. For example, previous 

work in our laboratory has demonstrated that CD40 engagement is associated 

with a sustained cycling ERK signal which is responsible for maintenance of 

proliferation in WEHl 231 cells (275).

3.3.5 Is BCR-stimulated apoptosis in WEHl 231 cells dependent on the 

activation of PLA2?

The finding that exogenous arachidonic acid induces apoptosis, together with 

previous work in this laboratory that demonstrated that anti-lg induced 

mitochondrial translocation and activation of PLA2 . led us to postulate that 

activation of PLA2 and hence generation of arachidonic acid may be responsible 

for the loss of mitochondrial membrane integrity and consequential loss of 

MMP. In order to investigate a possible causal role for PLA2 in BCR stimulated 

apoptosis 2 different classes of PLA2 inhibitor: Methyl Arachidonyl 

Fluorophosphonate (MAFP) and Arachidonyltrifluoromethyl Ketone (AACOCF3) 

were used. Both of these inhibitors are non-metabollsable analogues of 

arachidonic acid which bind to PLA2 and prevent enzymatic activity (Figure 

3.16).

Rather suprisingly, these PLA2 inhibitors increased the subdiploid population 

from 11% in untreated cells to 25% and 38% by treatment with MAPF and 

AAG0CF3 respectively (Figure 3.17 A). Moreover, addition of anti-CD40 failed 

to reduce apoptosis in AAG0CF3 treated cells (Data not shown). Consistent 

with this, GD40 ligation also failed to reinstate proliferation in AAG0GF3 treated 

cells with the percentage of cells in mitogenic phases of the cell cycle less than 

5% with or without anti-GD40 treatment (Figure 3.14 B and results not shown). 

Furthermore, treatment with AAG0GF3 induces a profound dissipation of the 

MMP with less than 2% of cells exhibiting a high MMP even in the absence of 

anti-lg treatment (Figure 3.17 G). This suggests that AAG0GF3 is a potent 

inducer of apoptosis and this is associated with a profound loss of MMP and cell 

cycle arrest that cannot be reinstated by anti-GD40 treatment.

As has been discussed previously PLA2 is upregulated by anti-lg treatment and 

translocated to the mitochondria. Therefore one would expect that activation of 

PLA2 is a crucial stage in the activation of the apoptotic programme and that
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inhibition of PLA2 would act to inhibit apoptosis. However consideration of the 

effects of these inhibitors in fact suggests that they enhance apoptosis. Given 

that addition of arachidonic acid to WEHl 231 cells produces a dose dependent 

profound growth arrest, loss of the MMP and apoptosis ((Figures 3.13 to 15) 

and (156)), these results are likely to simply reflect that such non-metabolisable 

arachidonic acid analogues have a similar effect to addition of arachidonic acid, 

and therefore induce apoptosis. However this makes it impossible to 

demonstrate the role of PLA2 directly by using specific PLA2 inhibitors.

3.3.6 Anti-lg stimulated growth arrest and apoptosis in WEHl 231 cells is 

dependent on the generation of arachidonic acid

It was decided therefore to investigate the role of PLA2.derived arachidonic acid 

by assessing whether endogenously produced arachidonic acid can act as the 

active metabolite. In order to do this, inhibitors of enzymes that metabolise 

arachidonic acid to ecosinoids were utilised. Cycloxygenase 2 (C0X2) and 

lipoxygenase (LOX) are enzymes that act to convert arachidonic acid to 

prostaglandins and leukotrienes respectively (Figure 3.18). Use of these 

specific inhibitors results in an accumulation of the product of PLA2 , arachidonic 

acid, within cells.

Use of either the C0X2 inhibitor N- (2- Cyclohexloxyl- 4- nitrophenyl) 

methansulfonamide (NS398), the pan- LOX inhibitor EDBC or culture with both 

inhibitors induces growth arrest in a dose dependent manner (Figure 3.19 A and 

B). Furthermore, treatment of cells with these inhibitors reduces the threshold 

for BCR-mediated growth arrest and apoptosis and also actually results in a 

superinduction of BCR-mediated apoptosis (Figure 3.18 A to D and results not 

shown). In agreement with this, treatment with these inhibitors alone or in 

combination enhances the dissipation of the MMP causes by ligation of the 

BCR (Figure 3.18 D). Indeed, the percentage of cells with a low MMP is 

increased from 40% in cells treated with anti-lg alone to 80% In cells treated 

with anti-lg in combination with EDBC and NS398 (Figure 3.18 D). These 

results suggest that BCR-coupled generation of arachidonic acid has a causal 

role in the engagement of the apoptotic pathway. Interestingly, simply 

expressing B c IX l in WEHl 231 cells appears to be sufficient to prevent such 

arachidonic acid-induced apoptosis (Figure 3.18 C).

112



3.3.7 Overexpression of BcIXl protects the cells from arachidonic acid- 

induced dissipation of the MMP and resultant apoptosis

To determine how B c IX l was acting, 1 decided to investigate whether the 

overexpression of B c IX l , a known mitochondrial membrane stabilising protein, 

couid prevent the dissipation of the MMP induced by PLA2 . In order to do this I 

used the B c IX l WEHl 231 cell line that expresses B c IX l at levels equivalent to 

those following ligation of CD40. As stated above, anti-lg induced growth arrest 

is observed in both Neo and B c IX l WEHl 231 cells and consistent with a role for 

arachidonic acid in BCR-mediated growth arrest and apoptosis, DNA synthesis 

was reduced by addition either NS398 or EDBC alone or combination in both 

cell types (Figure 3.20 A and B). Treatment with anti-CD40 rescues both the 

Neo and B c IX l expressing cells from BCR-induced growth arrest, however the 

growth arrest induced by treatment with NS298 and EDBC can only be partially 

rescued (Figure 3.20 A and B). By contrast, apoptosis in response to anti-lg and 

its superinduction by NS398/ EDBC is reduced in B c IX l WEHl 231 cells (Figure 

3.19 C) and consideration of the MMP shows that B c IX l cells are also protected 

from dissipation of the MMP (Figure 3.20 B). Addition of anti-lg reduces the 

population with a high MMP to 14% in wild type cells whereas, MMP is 

maintained in the B c IX l cells with 60% of the population exhibiting a high MMP 

(Figure 3.20 B). Similarly, addition of NS398 or EDBC alone or in combination 

induces loss of MMP in wild type cells, with the percentage of cells exhibiting a 

high MMP decreasing to between 47% and 13% depending on inhibitor 

treatment (Figure 3.20 B). However the B c IX l expressing cells do not 

demonstrate this loss of MMP in response to inhibitor treatments (Figure 3.20 

B). Indeed, B c IX l cells even maintain mitochondrial membrane integrity 

following treatment with anti-lg in the presence of the inhibitors (Figure 3.20 B).

3.3.8 BCR-induced release Is decreased in WEHl 231 BcIXl cells as 

compared to wild type WEHl 231 cells

CD40 signalling can overcome PLA2/ arachidonic acid induced apoptosis and 

B c IX l is a key molecule in protecting WEHl 231 from induction of apoptosis and 

the consequent arachidonic acid-induced disruption of mitochondrial membrane 

integrity. It was therefore decided to investigate the effect of B c IX l and CD40 on 

the key signals that activate PLA2 . Indeed, we have previously shown that CD40 

and B c IX l signalling inhibit BCR coupling to the mitochondrial CPLA2-
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arachidonic acid pathway. For example, both ERK phosphorylation and Ca^^ 

regulate PLA2 activation and I have previously shown that CD40 acts to 

downmodulate the ERK signals responsible for PLA2 activation, however this is 

not mimicked by the overexpression of B c IX l (320, 425). Therefore it was now 

decided to investigate how Ca^^ flux is affected by B c IX l overexpression.

Ligation of the BCR using anti-lg in WEHl 231 Neo cells increased Ca^^ levels 

from approximately 100 nM to 400 nM (Figure 3.21). This is not surprising as 

Ca^ ’̂ flux is a well-known regulator of apoptosis. Ca^^ can act to activate the 

caspase 8 pathway as well as modulate the localisation of Bcl-2 family 

members (180, 426, 427). Furthermore, Ca^^ activates PLA2 and this may be 

responsible for the translocation and activation of PLA2 followed by arachidonic 

acid generation and apoptosis. Indeed, there is a recent precedent for apoptosis 

in epithelial cells lines that is Ca^’*'-dependent, mitochondrial pathway-activated 

and triggered by arachidonic acid released by PLA2 (428). Interestingly, BCR- 

mediated Ca^^ levels after CD40 engagement also resulted in a Ca^^ increase 

which peaked at a slightly higher level (450 nM, Figure 3.21). We have 

established that CD40 engagement results in a decrease In PLA2 activation.

The fact that Ca^^ levels are unaffected by anti-CD40 treatment suggests that 

the early Ca^^ signal is not modulated by CD40 to suppress PLA2 activation.

However, when the calcium fluxes following anti-lg and anti-CD40 treatment in 

B c IX l cells were investigated it was clear that in WEHl 231 B c IX l cells there is a 

massive reduction in the Ca^^ release stimulated by either of these treatments 

relative to that observed with Neo WEHl 231 cells (Figures 3.21 B). Thus, B c IX l 

WEHl 231 cells exhibit just 27% of the Ca^^ increase observed in Neo WEHl 

231 cells after anti-lg treatment (Figure 3.21). There is an even greater 

difference in Ca^'*'release levels after treatment with both anti-lg and anti-CD40, 

with B c IX l cells exhibiting only 21% of the Ca^^ release observed with Neo 

WEHl 231 ceils (Figure 3.21 A). Interestingly, when the cells are treated with 

thapsigargin to induce complete release of all Ca^^ from E.R stores there is an 

essentially equal amount of Ca^^ release from both cells types (Figure 3.21 B). 

This suggests that there are no fundamental differences between the two cell 

types in their ability to take up and store Ca^^and hence, that the reduction in 

anti Ig-mediated Ca^^ release is reiated to the overexpression of B c IX l . There is 

some evidence to suggest that Bcl-2 can prevent Ca^^ release from the E.R and
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arachidonic acid pathway. For example, both ERK phosphorylation and Ca^^ 

regulate PLAz activation and I have previously shown that CD40 acts to 

downmodulate the ERK signals responsible for PLA2 activation, however this is 

not mimicked by the overexpression of B c IX l (320, 425). Therefore it was now 

decided to investigate how Ca^^ flux is affected by B c IX l overexpression.

Ligation of the BCR using anti-lg in WEHl 231 Neo cells increased Ca^^ levels 

from approximately 100 nM to 400 nM (Figure 3.21). This is not surprising as 

Ca^^flux is a well-known regulator of apoptosis. Ca^^can act to activate the 

caspase 8 pathway as well as modulate the localisation of Bcl-2 family 

members (180, 426, 427). Furthermore, Ca^^ activates PLA2 and this may be 

responsible for the translocation and activation of PLA2 followed by arachidonic 

acid generation and apoptosis. Indeed, there is a recent precedent for apoptosis 

in epithelial cells lines that is Ca^^ -dependent, mitochondrial pathway-activated 

and triggered by arachidonic acid released by PLA2 (428). Interestingly, BCR- 

mediated Ca^^ levels after CD40 engagement also resulted in a Ca^^ increase 

which peaked at a slightly higher level (450 nM, Figure 3.21). We have 

established that CD40 engagement results in a decrease in PLA2 activation.

The fact that Ca^^ levels are unaffected by anti-CD40 treatment suggests that 

the early Ca^^ signal is not modulated by CD40 to suppress PLA2 activation.

However, when the calcium fluxes following anti-lg and anti-CD40 treatment in 

B c IX l cells were investigated it was clear that in WEHl 231 B c IX l cells there is a 

massive reduction in the Ca^^ release stimulated by either of these treatments 

relative to that observed with Neo WEHl 231 cells (Figures 3.21 B). Thus, B c IX l 

WEHl 231 cells exhibit just 27% of the Ca^^ increase observed in Neo WEHl 

231 cells after anti-lg treatment (Figure 3.21). There is an even greater 

difference in Ca^^ release levels after treatment with both anti-lg and anti-CD40, 

with B c IX l cells exhibiting only 21% of the Ca^"” release observed with Neo 

WEHl 231 cells (Figure 3.21 A). Interestingly, when the cells are treated with 

thapsigargin to induce complete release of all Ca^^ from E.R stores there is an 

essentially equal amount of Ca^^ release from both cells types (Figure 3.21 B). 

This suggests that there are no fundamental differences between the two cell 

types in their ability to take up and store Ca^^ and hence, that the reduction in 

anti Ig-mediated Ca^^ release is related to the overexpression of B c IX l. There is 

some evidence to suggest that Bcl-2 can prevent Ca "̂" release from the E.R and
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hence protect against apoptosis (reviewed in ( 4 2 6 ) )  and It is possible that B c IX l 

may play a similar role in preventing the initiation of cell death. These data may 

therefore go some way to explaining the ability of B c IX l WEHl 2 3 1  cells to 

reduce BCR-coupled mPLA2 activation. However the above data did not provide 

any information relating to the localisation of the Ca^^ signal as it simply 

measured total intracellular Ca^^. It was therefore decided to investigate the 

localisation of this Ca^^ signal in single WEHl 2 31  cells.

3.3.9 Ligation of the BCR on WEHl 231 cells induces cellular calcium 

oscillation

Further to investigating Ca^^ signals in populations of WEHl 231 cells, I decided 

to investigate the subcellular Ca^^ signals in individual WEHl 231 cells in 

response to ligation of the BCR. In order visualise the Ca^^ signals single WEHl 

231 cells were imaged in real time and the Ca^^ signals measured using the 

fluorescent dye Fluo 3. During analysis each cell was divided into 3 roughly 

equidistant regions of interest (ROI, Figure 3.22 B) and Ca "̂" levels were 

separately analysed in each ROI to identify whether the Ca^^ signals were 

generated globally or followed individual patterns in localised areas. After the 

initial addition of anti-lg, there is a spike of increased Ca^^ which then seems to 

return to near basal Ca^^ levels. A smaller and slower Ca^^ peak then follows 

this (Figure 3.22 C). In each responsive cell observed there was an increase in 

Ca "̂" signal following ligation of the BCR. The most dominant pattern observed 

is a Ca^^oscillation pattern in all ROI, as has been described (Figure 3.22 a). 

This pattern is found in all ROI within each individual cell. Ca^^ cycling has been 

postulated, along with dissipation of the MMP, to be a hallmark of apoptosis 

following cellular ATP depletion (111).

However this approach did not provide us with definitive information as to where 

the Câ "̂  signal was being produced. The microscope used for these 

experiments was only capable of identifying the WEHl 231 nucleus with a small 

layer of cytoplasm surrounding it suggesting that peak Ca^^ signals were 

located in the nuclear/ perinuclear region. Attempts to use differential dye 

loadings to identify Ca^^ signalling in the nucleus, mitochondria and E.R 

unfortunately proved unsuccessful.
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3.3.10 Expression of constitutively active Ras mutations rescue cells from 

growth arrest at 24 hours

The cyclic phospho-ERK signal has already been discussed as being important 

in the maintenance of survival and proliferation. The suppression of this ERK 

signalling by ligation of the BCR stimulates both growth arrest and apoptosis 

(275). Although overexpression of BcIXl is able to provide relief from anti-lg 

mediated apoptosis, engagement of CD40 is required to reinstate this cycling 

ERK signal and hence restore proliferation (425).

As shown previously, proliferating wild type WEHl 231 cells display cyclic ERK 

activation as indicated by an increase in dually phosphorylated ERK 1 and ERK 

2 (Figure 3.23 A). This can be quantified by FACE assay which allows 

determination of the ratio of phospho-ERK to total ERK expression. In wild type 

WEHl 231 cells after 48 h there are typically phospho-ERK/ERK ratios of 

around 0.5 (Figure 3.23 B), the ratio being at its lowest when the cells are 

treated with anti-lg, as would be predicted, and at its highest when the cells 

were treated with anti-CD40, as would also be predicted (Figures 3.22 B). By 

contrast, cells expressing RasV12 have an extremely large phospho-ERK/ERK 

ratio in untreated cells, 105 as compared to just 0.4 in wild type cells (Figure 

3.23 B). However, BCR signalling is incredibly effective at shutting off this ERK 

signal as even though in RasV12 cells there is massively increased ERK 

signalling (phospho-ERK/ERK ratio = 105) it induces a 24-fold decrease in 

activated ERK (Figure 3.23 B).

To determine whether constitutively activated Ras, and hence sustained cycling 

ERK, is sufficient to restore growth, I investigated DNA synthesis post BCR 

engagement in WEHl 231 cells stably expressing various Ras constructs. 

Consideration of WEHl 231 RasV12 cells 24 hours post anti-lg treatment 

demonstrates that expression of the RasV12 construct results in the rescue of 

WEHl 231 cells from anti-lg induced growth arrest (Figure 3.24 A). This is most 

effective after addition of 10 |ig/ml anti-lg when RasV12 cells have 2.5 times 

greater [^H] thymidine incorporation than empty vector cells (Figure 3.24 A). 

Consistent with this, whilst treatment of wild type WEHl 231 cells with anti-lg 

leads to a reduction in the cycling phospho-ERK signal proposed to promote 

proliferation in these cells (275), in WEHl 231 RasV12 cells this late phospho-
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ERK signal is maintained regardless of anti-lg signal (Figure 3.24 B). This 

suggests that the late cycling ERK signal may be sufficient for rescue from 

growth arrest and that the Ras pathway is the important apical activator of ERK 

signalling in WEHl 231 cells. Moreover, it suggests that sustained deactivation 

of the RasMAPKinase pathway is pivotal to BCR induced growth arrest. 

Interestingly, consideration of ERK activation over a 48 h time course 

demonstrates that the RasV12 mediated activation of ERK is still cyclical in 

nature in contrast to anti-lg induced cells (Figures 3.23 and 3.24 B). This 

suggests that even though ERK activation is upregulated the regulatory 

elements that control ERK phosphorylation are still fully functional. For example, 

the ERKMAP kinase phosphatase Pad has already been demonstrated to be 

important in the dephosphorylation of ERK in immature B cells (320).

In addition to signalling via Raf, MEK and ERK, Ras has a number of effector 

pathways involved in an array of biological outcomes including the PI-3 kinase 

pathway. To address the relative roles of the PI-3 kinase and Raf/MEK/ERK 

pathways in the regulation of proliferation versus growth arrest, stable WEHl 

231 cell lines expressing the RasVI2 S35 and RasVI2 C40 mutant constructs 

were utilised.

To determine the effect that Raf/MEK/ERK signalling (RasVI2 S35) has on the 

response of WEHl 231 cells to anti-lg and anti-CD40 stimulation, transfected 

cells were stimulated as before and their biological responses assessed. As 

with the previous RasV12 WEHl 231 expressing cells, RasV12 S35 cells have a 

reduced growth arrest response to anti-lg as compared to empty vector WEHl 

231 cells (Figure 3.25 A). CD40-mediated rescue from anti-lg induced growth 

arrest is slightly enhanced by RasV12 S35, as these cells exhibit a more robust 

proliferative response upon stimulation by anti-lg and anti-CD40 (Figure 3.25 

A). However, this enhancement is not significantly different to the advantage 

afforded by the RasV12 WEHl 231 cells.

Cells that have been transfected with the RasV12 040 construct behaved 

similarly and demonstrated a low level of growth arrest in response to a wide 

range of concentrations of anti-lg, from 0.1 to 10 p,g/ml (Figure 3.25 B). This 

strongly suggests that RasV12 040 also affords some level of protection
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against anti-lg induced growth arrest in WEHl 231 cells, as cells expressing 

RasV12 C40 display around 80% of the proliferation of untreated cells when 

stimulated with 10 p.g/ml anti-lg. Cells transfected with the empty vector alone 

on the other hand, display only around 40% of the proliferation of untreated 

cells when stimulated with anti-lg, ruling out the vector as a possible 

explanation for this observation (Figure 3,25 B). Costimulation of cells 

expressing RasV12 C40 with anti-lg and anti-CD40 results in proliferation levels 

higher than untreated cells, but as the growth arrest was much less in response 

to anti-lg, this is a less than surprising observation (Figure 3.25 B). Indeed, the 

levels of proliferation of RasV12 C40 expressing cells appear to be greater than 

those of cells containing the empty vector by a consistent amount when cells 

are stimulated with anti-lg alone or in combination with anti-CD40. This strongly 

implicates the abrogation of PI-3 kinase pathway may also be pivotal to BCR 

mediated growth arrest.

3.3.11 The RasV12 mutation increases apoptosis 48 h post BCR iigation

Further studies revealed that at time points subsequent to 24 hours (48 and 72 

h ) there was no rescue from BCR-induced growth arrest associated with the 

expression of RasVI2 (Figure 3.24 C and 26). In order to investigate this 

further, the number of cellular divisions undergone was assessed. In agreement 

with this, CFSE analysis of empty vector (pcDNA3.1) and RasVI2 cells post 

anti-lg treatment shows a cessation of proliferation by 72 h (Figure 3.26). This 

would suggest that the huge increase in ERK activation at early time points 

benefits the WEHl 231 cells as they are protected from BCR-induced growth 

arrest. However, at the beginning of this chapter I demonstrated that 24 h 

following BCR ligation WEHl 231 cells dissipate their MMP and hence become 

committed to apoptosis. In terms of ERK signalling, apoptosis is associated with 

a strong, early ERK signal. The massive ERK signal generated in RasV12 

WEHl 231 cells may protect from BCR-induced growth arrest before 24 h, 

however it also seems to superinduce apoptosis after 48 h. The percentage of 

subdiploid cells following BCR ligation is increased from 26% in pcDNA3.1 

WEHl 231 cells to 46% in RasV12 WEHl 231 cells (Figure 3.24 C).

118



3.3.12 Constitutively active Ras mutants have a protective effect on BCR- 
induced dissipation of the MMP in WEHl 231 cells

To investigate the mechanism utilised by RasV12 mutants, to rescue WEHl 231 

cells from BCR-induced growth arrest and apoptosis prior to 24 h I monitored 

MMP over 48 h. At 0 h of culture, as would be expected, the expression of 

constitutively active Ras constructs had very little effect on the MMP of the cells 

(Figure 3.27). Even after 24 h of culture, there were no major differences 

between the mutant cell lines when left unstimulated (Figure 3.28 A). By 

contrast, anti-lg treatment for 24 h induced a reduction in the number of empty 

vector (pcDNA3.1) cells with a high MMP to 81%, whereas those expressing 

Ras constructs maintained mitochondrial integrity with between 93% and 96% 

of the cells exhibiting a high MMP (Figure 3. 28 A). This suggests that the 

constitutively active Ras mutants offer some protection from anti-lg induced 

dissipation of the MMP after 24 h of culture. By 48 h, the empty vector cells are 

following the pattern of wild type WEHl 231 cells with the number of cells with a 

high MMP following anti-lg treatment falling to 58% (Figures 3.27 and 28). 

Moreover, treatment with the combination of anti-lg and anti-CD40 provides 

rescue with 91% of the cells maintaining a high MMP. As with the 24 h time 

point, expression of any of the Ras mutation constructs seems to provide some 

protection from the dissipation of the MMP. Thus, the RasV12 and the RasV12 

S35 mutations increase the number of cells with a high MMP to 68% as 

compared to 58% in empty vector cells (Figure 3.28 A). The RasV12 C40 

mutation seems to provide even more protection with 73% of cells maintaining a 

high MMP (Figure 3.28 B). There are also an increased number of cells 

expressing Ras constructs with a high MMP in the combination treatment group 

(Ras V I2 98%, Ras V I2 S35 98%, Ras V I2 C40 77%) as compared to the 

empty vector cells, 67% (Figure 3.28 A). Taken together this data suggests that 

constitutively active Ras signalling either through the MAP kinase pathway or 

the PI-3 Kinase pathway can provide some protection from the dissipation of the 

MMP in response to ligation of the BCR. Interestingly, this maintenance of MMP 

is not reflected by a commensurate reduction in either BCR-induced growth 

arrest or apoptosis after 48 hours in culture.
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3.3.13 The MEKK3 mutant increases growth arrest in response to anti-lg

Previous work undertaken in this laboratory has demonstrated that 

normal proliferating or anti-CD40-treated WEHl 231 cells exhibited strong 

cycling dual phosphorylation of ERK, but not JNK or p38, between 8 and 48 h, 

whereas protein levels of ERK, JNK, and p38 expression remained constant 

(275). Furthermore, anti-lg treatment did not affect the JNK or p38 levels 

whereas it led to a strong, early induction of phospho-ERK (275). In order to 

further investigate the roles of JNK and p38 and their crosstalk in ERKMAPK 

signalling I utilized the MEKK3 mutant which can activate several different types 

of MAP kinase simultaneously. MEKK3 can stimulate p38 via MKK3/6, JNK via 

MKK4/7 as well as ERK via MEK1/2.

Expression of the MEKK3 construct causes a decrease in the number of 

subdiploid cells after anti-lg treatment, 8% compared to 41% in wild type cells 

(Figure 3.29 A). This construct may provide protection from apoptosis however 

it does not provide release from growth arrest. The number of cells in G0/G1 

increases from 10% in empty vector cells to 41% in MEKK3 cells (Figure 3.29

A) suggesting that although cells are rescued from apoptosis there are arrested 

in G0/G1. Interestingly this rescue from BCR-induced apoptosis is reflected by 

the maintenance of MMP following ligation of the BCR (Figures 3.29 B). MEKK3 

mutants also have a defective proliferative response to combined anti-lg and 

anti-CD40 treatment. The G0/G1 population is increased to 41% as compared 

to 29% in empty vector cells (Figure 3.29 A). In agreement with the cell cycle 

data, CFSE data collected for WEHl 231 cells expressing the MEKK3 construct 

show that these cells have a reduced proliferation rate regardless of the 

stimulation used. The vast majority of the cells have not divided even after 

treatment with anti-CD40 (Figure 3.30). In fact there does not seem to be any 

proliferation, except in the unstimulated cells where there appears to be a small 

peak of cells in generation 5 (Figure 3.30). This suggests that constitutive 

signalling by all MAP kinase pathways simultaneously can prevent normal 

proliferation.

In order to investigate the impact of activation of JNK, p38 and ERK on BCR- 

mediated suppression of ERK we investigated both ERK expression and 

phosphorylation status in the MEKK3 expressing cells using the FACE ELISA
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method. Interestingly In the MEKK3 expressing cells there is only a modest 

increase in phospho-ERK/ERK ratio in response to anti-lg treatment, from 0.4 to 

0.705 (Figure 3.31) as compared to that seen in RasV12 expressing cells 

(Figure 3.23 B). This modest increase in ERK may explain the fact that although 

MEKK3 expressing WEHl 231 cells are rescued from BCR-mediated apoptosis 

there is very little rescue of proliferation. Indeed, when the cells are left 

unstimulated the ratio in the MEKK3 expressing cells is actually lower than in 

the wild type cells (Data not shown). Moreover, ERK activation does not appear 

to be increased in MEKK3 cells as compared to empty vector WEHl 231 cells 

following anti-CD40 treatment (Figure 3.31).

3.3.14 The mechanism of RasV12 and IVIEKK3 rescue from BCR-induced 

apoptosis may involve AKT activation

As has already been demonstrated earlier in this chapter, the RasV12 and 

MEKK3 expressing cells can provide some protection from BCR-mediated 

dissipation of the MMP at 24 and 48 h (Figures 3.28 to 29). Furthermore, 

expression of the RasV12 constructs provides protection from anti-lg induced 

growth arrest and apoptosis at 24 h (Figure 3.24 A). I have also demonstrated 

that expression of either the RasVI2 or MEKK3 construct can mediate these 

effects, at least in part, via restoration of ERK signalling in BCR ligated cells. In 

order to further investigate some of the downstream targets that mediate these 

pro-survival and pro-proliferation signals, I decided to investigate the role of 

AKT in the generation of survival signals, particularly the phosphorylation of 

AKT that leads to phosphorylation of Bad. When non-phosphorylated, Bad can 

form Bad-BclXi dimers which remove B c IX l from its mitochondrial membrane 

position and hence enhance the opening of the permeability transition pore 

stimulating apoptosis (207, 429). However, when phosphorylated by AKT, Bad 

is sequestered by cytoplasmic 14-3-3 proteins leading to maintenance of the 

mitochondrial membrane integrity. The phospho-AKT/AKT ratios observed in 

both the MEKK3 and RasV12 cells are comparable to the levels observed in the 

empty vector cells when unstimulated (Figure 3.32). Interestingly, whilst addition 

of anti-lg to empty vector WEHl 231 cells induces a decrease in the phospho- 

AKT/AKT ratio from 0.6 to 0.2 at 24 hours (Figure 3.32) there is no reduction 

observed in RasV12 or MEKK3 expressing cells. These data suggest that such 

reduction in AKT levels, mediated by a BCR-induced switching off of the PI-3
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kinase cascade, may play an important role in the mechanism utilised to induce 

mitochondrial dependent apoptosis via the pro-apoptotic Bcl-2 family member 

Bad in anti-lg treated wild type WEHl 231 cells. This corroborates previous data 

that has demonstrated BCR-mediated upregulation of pro-apoptotic Bcl-2 family 

members including Bad (Figure 3.10). Moreover, it suggests that in the RasV12 

and MEKK3 expressing cells the abrogation of the PI-3 kinase cascade does 

not occur and this contributes to the maintenance of survival of these cells 

following BCR ligation.

3.3.15 Expression of the Dok PH/PTB domain does not protect WEHl 231 

ceiis from anti-lg-induced growth arrest

To complement the above studies, I decided to use WEHl 231 cells expressing 

the amino terminal portion of Dok, which contains pleckstrin homology (PH) and 

phosphotyrosine binding domains (PTB). This protein also contained a GFP tag 

that was utilised to select for Dok PH/PTB positive mutants using flow 

cytometry. These portions of the protein should not be able to abrogate Ras, 

and concomitant ERKMAPKinase activation, as these domains are not involved 

in Ras-GAP binding and therefore will not be able to induce the GTPase activity 

of Ras. These first 258 amino acids of Dok (Dok-PH/PTB) therefore act as a 

dominant negative mutant and were used to determine the role Dok plays, if 

any, in the anti-lg mediated suppression of ERK and PI-3 kinase leading to 

growth arrest and apoptosis in WEHl 231 cells.

To investigate the effects of this Dok construct on anti-lg induced growth arrest, 

cells expressing this domain were stimulated with anti-lg and proliferation 

assessed after 24, 48 and 72 h by the [^H] thymidine incorporation assay. WEHl 

231 cells expressing high levels of Dok PH/PTB exhibit no significant difference 

in growth arrest induced by anti-lg, or in anti-CD40-mediated rescue when 

compared to cells transfected with the empty vector alone (Figures 3.33). 

Initially, this Is not what was anticipated, as cells lacking Dok have been 

reported to exhibit sustained Ras activation (340). However, recent studies in 

our laboratory have suggested that rather than abrogating Ras activity, BCR 

ligation in WEHl 231 cells increases the association of the ERKMAP kinase 

specific phosphatase, P a d , with ERKMAPKinase (320) to terminate ERK 

activation downstream from Ras and MEK. Therefore this mutant cell line
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provides further support for this mode of action of BCR-mediated suppression of 

cycling ERK.

3.3.16 Expression of the catalytically inactive SHIP (SHIP Cl) or the SHIP 

SH2 construct does not rescue WEHI 231 cells from anti-lg mediated 

growth arrest

A parallel study in this laboratory has recently shown that the RasV12 040 

construct which activates PI-3 kinase, but not Raf signalling, actually led to ERK 

activation in WEHI 231 cells at analogous levels to that seen in cells expressing 

either the RasV12 or RasV12 835 constructs which activate MAP kinase 

signalling directly via Raf (405). Therefore to further investigate the role of PI-3 

kinase signalling independently of ERK activation, we decided to use cells 

expressing mutant versions of the 5' inositol phosphatase SHIP, a negative 

regulator of PI-3 kinase signalling. SHIP antagonises the functions of PI-3 

kinase by dephosphorylating the 5’ position of PIP3 , a product of PI-3 kinase 

that is important for the membrane localisation of many PH domain-containing 

proteins. WEHI 231 cells retrovirally infected to overexpress either a 

catalytically inactive mutant of SHIP (SHIP Cl) or the SH2 domain alone (SHIP 

SH2) were used to determine the role SHIP plays in the anti-lg mediated growth 

arrest in WEHI 231 cells. Overexpression of these mutant constructs should 

elicit a dominant negative effect, by antagonising endogenous SHIP activity and 

preventing endogenous SHIP interacting with its target proteins respectively. To 

investigate the effects of expression of these SHIP mutant constructs on anti-lg 

induced growth arrest in WEHI 231 cells, WEHI 231 SHIP 01 and WEHI 231 

SHIP SH2 cells were stimulated with anti-lg, either alone or in combination with 

anti-CD40, and their proliferation relative to empty vector controls assessed 

after 24, 48 and 72 h by the [^H] thymidine incorporation assay.

WEHI 231 cells expressing these SHIP mutant constructs do not appear to 

exhibit any significant difference in anti-lg induced growth arrest when 

compared to cells containing the empty vector (Figures 3.33). CD40-mediated 

rescue does not appear to be affected by expression of either of these SHIP 

mutants either, as cells transfected with these mutants display similar levels of 

proliferation in response to anti-lg and anti-CD40 as cells containing the empty 

vector (Figure 3.34). These data suggest that BCR signalling does not use
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SHIP to modulate the activation of the PI-3 kinase pathway during induction of 

growth arrest and apoptosis.

3.3.17 Downregulation of active SHIP results in alteration of the caspase 3 

activation profiles

Following our data showing that BCR-signalling acts to downregulate AKT and 

Bad phosphorylation, we also investigated caspase 3 activation as another pro- 

apoptotic signal that may be a mediator of BCR-induced apoptosis. Moreover, I 

decided to utilise the SHIP and Dok expressing cells to investigate the relative 

contribution of the PI-3 kinase and Ras pathways respectively. Rather 

surprisingly, there was a high level of caspase 3 activation at 48 h in empty 

vector cells in the absence of any stimulus (Figures 3.35). This presumably 

reflects the role of this effector caspase in normal apoptosis in this cell line. The 

caspase 8 activating anti-Fas Ab and mitochondrial pathway activator Bax both 

produced caspase 3 activation profiles very similar to the unstimulated cells in 

empty vector WEHI 231 cells (Data not shown). This suggests that caspase 3 is 

not increased above basal levels either by engagement of the mitochondrial 

pathway or Fas engagement in these cells . However, stimulation with anti-lg, 

anti-CD40 or both also resulted in a very similar caspase 3 activation profile to 

unstimulated cells (Figure 3.35). This is unsurprising as anti-lg stimulated 

apoptosis in WEHI 231 cells is thought to occur in the absence of caspase 3 

activation (156), hence we would not expect elevated caspase 3 activation.

Consideration of WEHI 231 cells expressing Dok PH/PTB caspase 3 activation 

profiles show that they are very similar to empty vector WEHI 231 profiles for 

each given stimulation (Figures 3.35). This suggests that caspase 3 activation is 

not altered in these cells which reflects the fact that the Dok mutant does not 

seem to display altered growth or apoptotic responses. However the SHIP 01 

and SHIP SH2 expressing cells do display significantly different caspase 3 

activation profiles as compared to the empty vector WEHI 231 cells (Figure 

3.35). For every stimulus the SHIP mutants have a biphasic caspase 3 profile 

with a higher level of caspase 3 activation than either empty vector or Dok 

PH/PTB WEHI 231 cells (Figure 3.35). The exact role of caspase 3 in WEHI 

231 mediated growth arrest, apoptosis and proliferation is not yet known. These 

data are very interesting as they imply that switching off SHIP provides a pro-
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apoptotic signal. Although this may appear contradictory to what might have 

been expected, this fits in with data which describe a positive role for SHIP in 

promoting the tyrosine phosphorylation of She and therefore enhancing the Grb- 

2 mediated binding of She to Sos and SHIP resulting in enhanced 

RasERKMAPK signalling (347). The dominant negative SHIP mutants may 

prevent this signalling via RasERKMAPK and hence stimulate caspase 3- 

dependent apoptosis.

3.3.18 Transfection of WEHI 231 cells with PKC mutants

PKC a, |3, Ô, s, T] and 0 isoforms are ali expressed in mature B lymphocytes 

(348, 349). However Immature B ceils have diminished PKC signalling 

compared to mature B lymphocytes suggesting PKC may contribute to the 

differential response of distinct developmental stages of B cells to ligation of the 

BCR. For example, ligation of the BCR on mature B cells leads to PIP2 

hydrolysis, Ca^^ mobilisation and stimulation of PKC. In contrast, ligation of the 

BCR on immature B cells can mobilise calcium but PIP2 hydrolysis and 

subsequent PKC activation are significantly reduced. Previous work in this 

laboratory has demonstrated that PKCs a, ô, e and ^ are all expressed in the 

immature B cell line WEHI 231. Considering that previous studies have 

suggested a non-redundant role for PKC isoforms in B lymphocytes we decided 

to investigate the role of PKCs a, ô, b and Ç in proliferation, growth arrest and 

apoptosis in WEHI 231 cells.

To investigate the roles of the four PKC family members PKCa, PKCÔ, PKCe, 

and PKCÇ, two mutant constructs of each were expressed in WEHI 231 cells 

using the pcDNA 3.1 vector (Figure 3.36 A). The mutant forms used were either 

constitutively active catalytic domain (CAT) or full-length kinase dead (as the 

result of a lysine -  arginine substitution, KR) constructs (Figure 3.36 B). All 8 

mutants were transfected into WEHI 231 cells by electroporation (as described 

in Materials and Methods) to generate stably expressing PKC CAT or PKC KR 

WEHI 231 lines.
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3.3.19 Effect of PKCa expression and activation on anti-lg mediated 

growth arrest in WEHI 231 cells

Wild type WEHI 231 cells exhibit a pronounced growth arrest in G1 phase of the 

cell cycle in response to anti-lg, as shown in Figure 3.7. To investigate the 

effects of expression of a constitutively active PKCa (PKCa CAT) or a kinase 

dead form of PKCa (PKCa KR) on anti-lg mediated growth arrest in WEHI 231 

cells, transfected cells were stimulated with various concentrations of anti-lg, 

and DNA synthesis assessed by the [^H] thymidine uptake assay at 24 and 48 h 

(Figure 3.37). Cells transfected with the empty vector were used as a control.

Even at 24 hours, WEHI 231 cells transfected with the empty pc DNA3.1 vector 

exhibit a pronounced growth arrest in response to anti-lg, with pH] thymidine 

uptake levels approximately only 60% of those of unstimulated cells in response 

to 1 p,g/ml anti-lg, and only about 50% in response to 10 |u,g/ml anti-lg (Figure 

3.37 A). By 48 hours, both concentrations of anti-lg have reduced levels of 

thymidine uptake to around 40% of those of the unstimulated cells (Figure 3.37

B). In contrast to this, cells transfected with the PKCa mutant constructs do not 

show signs of growth inhibition even in response to 10 p,g/ml anti-lg at 24 h 

(Figure 3.37 A). If anything, PKCa KR cells actually exhibit slightly increased 

levels of proliferation after 24 h stimulation with anti-lg, particularly 0.1 jxg/ml 

and 10 pg/mt (Figure 3.37 A). After 48 h treatment, cells expressing either 

PKCa mutant construct demonstrate growth arrest in response to anti-lg at 1 or 

10 [ig/ml, but not to the same extent as cells containing the empty vector alone 

(Figure 3.37 B). Surprisingly, both mutants confer the same properties upon 

WEHI 231 cells, despite the fact that whilst PKCa CAT is constitutively active, 

PKCa KR would be predicted to act as a dominant negative enzyme and hence 

antagonise the actions of endogenous PKCa.

3.3.20 Effect of PKCa CAT and KR expression on anti-lg mediated 

apoptosis and CD40-mediated rescue in WEHI 231 cells

Although not statistically significant, unstimulated PKCa CAT and PKCa KR 

WEHI 231 cells demonstrate an increase in the percentage of cells in the 

mitogenic phases of the cell cycle as compared to empty vector WEHI 231 cells 

(38 and 32% respectively as compared to 23%, Figure 3.38). This is
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complimented by a decrease in the percentage of subdiploid and therefore 

apoptotic cells from 9% in empty vector cells to 3% in both PKCa CAT and 

PKCa KR cell lines (Figure 3.38). This suggests that both PKCa CAT and 

PKCa KR expression provides a release from the basal level of apoptosis by 

stimulating entry into the cell cycle. Interestingly, consideration of the CFSE 

data demonstrates that in the unstimulated cells there is only a very slight 

enhancement of proliferation in either PKCa CAT or PKCa KR mutants which 

may suggest that whilst cells enter both S and G2/M phases of the cell cycle 

they may be arrested in these stages (Figure 3.39).

In agreement with figure 3.37 B that shows enhanced DNA synthesis in both 

PKCa CAT and PKCa KR mutants at 48 h in response to anti-lg treatment, cell 

cycle analysis indicates a decrease in the number of subdiploid cells at 48 h 

following anti-lg treatment (Figure 3.38). Although the results are not statistically 

significant, in the empty vector cells 67% of cells are in the subdiploid 

population following anti-lg treatment whereas in PKCa CAT cells this is 

reduced to 31% and in PKCa KR cells it is reduced to 40%. This reduction in 

the subdiploid popuiation is accompanied by siight increases in cells in all other 

phases of the cell cycle as compared to empty vector cells. Conversely, 

assessment of the CFSE data suggests that anti-lg induced growth arrest is 

actually increased by 72 h following stimulation. In empty vector cells anti-lg 

treatment results in an average of 3 daughter generations whereas both PKCa 

CAT and PKCa KR WEHI 231 cells do not appear to undergo cell divisions 

(Figure 3.39). This suggests that although such cells are rescued from anti-lg 

induced apoptosis, cessation of DNA synthesis and can enter later mitogenic 

phases of the cell cycle there is still a block on cellular proliferation. It is 

surprising that both constructs would have the same effect in rescuing WEHI 

231 cells from anti-lg induced apoptosis. Collectively this data strongly suggests 

that PKCa expression and activity can rescue BCR-stimulated apoptosis but not 

fully rescue growth arrest.

When empty vector cells were treated with a combination of both anti-lg and 

anti-CD40 there was a decrease in the number of subdiploid cells to 6% and a 

corresponding increase to 37% in the number of cells arrested in G0/G1 (Figure
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3.38). Neither PKCa CAT nor PKCa KR WEHI 231 cells showed a statistically 

significant difference in cell cycle profile in response to anti-lg and anti-CD40 

treatment (Figure 3.38). However, CFSE data suggests that even though there 

may have been no inhibition of entry to later phases of the cell cycle there was 

actually a decrease in proliferation of these ceils in response to anti-lg and anti- 

CD40 (Figure 3.39). For example, the average number of daughter populations 

following combined anti-lg and anti-CD40 treatment in empty vector cells is 6  

however this is reduced to 4 in both PKCa CAT and PKCa KR cell lines (Figure

3.39).

3.3.21 PKCa CAT and PKCa KR expression provides protection from anti- 

lg induced dissipation of the MMP

As the data suggested that either PKCa CAT or PKCa KR expression provides 

protection from anti-lg induced apoptosis, we investigated whether this 

mechanism was initiated up or downstream of the opening of the mitochondrial 

permeability pore. As shown extensively above, treatment with anti-lg 

decreases the number of ceils with a high MMP (to 52% in empty vector cells in 

this experiment), however in both PKCa CAT and PKCa KR cell lines this high 

MMP is maintained in 80% of cells (Figure 3.40 and 41). However at 96 h the 

MMP in BCR-stimulated empty vector, PKCa CAT and PKCa KR WEHI 231 

cells is reduced (Figure 3.41 B), suggesting that dissipation of the MMP still 

occurs in both PKCa CAT and PKCa KR mutants although the kinetics of the 

opening of the permeability transition pore is delayed. There are generally little 

or no differences in MMP when cells are left unstimulated, treated with anti- 

CD40 or given combination treatment amongst the 3 cell lines (Figure 3.40 and 

41).

3.3.22 Effect of PKCô CAT and KR expression on anti-lg mediated growth 

arrest and apoptosis in WEHI 231 ceils

As described for the PKCa expressing WEHI 231 cells, after 24 h of stimulation 

with anti-lg, WEHI 231 cells expressing either PKCô CAT or PKCô KR show no 

growth arrest, even at the maximum concentration of anti-lg, whereas cells 

containing the empty vector exhibit only 50% of the [^H] thymidine uptake of 

control cells (Figure 3.42 A). However, by 48 h in both PKCô CAT and PKCô KR
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WEHI 231 cells, 10 p,g/ml of anti-lg induced growth arrest of a similar magnitude 

to that assessed in WEHI 231 cells containing the empty vector (Figure 3.42 B).

Interestingly, given reports that cleaved PKCô can transduce apoptosis in a 

number of cell types (382, 383, 430), PKCô CAT cells have a higher basal rate 

of apoptosis than empty vector cells- 24% as compared to 16% in unstimulated 

cells (Figure 3.43). Moreover, PKCô KR WEHI 231 cells exhibit a reduced basal 

rate of apoptosis-1 1 % as compared to 16% in empty vector containing cells 

(Figure 3.43). However, this pattern is not observed following anti-lg treatment 

as whilst ligation of the BCR induces a large increase in the subdiploid 

population in empty vector cells (84%) there is a profound rescue of PKCô CAT 

ceils from anti-lg induced apoptosis and a corresponding increase in cells in 

G0/G1 (Figure 3.43). The subdiploid population is reduced from 84% in empty 

vector WEHI 231 cells to 11% in PKCô CAT WEHI 231 cells. Similarly, in PKCô 

KR cells there is decrease in the subdiploid population from 84% in the empty 

vector WEHI 231 cells to 65% in the PKCô KR WEHI 231 cells.

Surprisingly, when PKCô CAT and KR expressing WEHI 231 cells are treated 

with a combination of both anti-CD40 and anti-lg there was an increase in 

apoptotic populations with a corresponding decrease in the cells growth 

arrested in G0/G1 (Figure 3.43). In empty vector cells there are 49% of cells in 

G0/G1 however in PKCô CAT cells there are only 36%, and in PKCô KR cells 

this is further reduced to 30% (Figure 3.43). This suggests that PKCô may be 

important for CD40-mediated rescue and cell cycle entry.

3.3.23 PKCô CAT and PKCÔ KR WEHI 231 cells are rescued from anti-lg 

induced dissipation of the MMP

Following the assertion that PKCô CAT and to a lesser extent PKCô KR

expression provides protection from anti-lg induced apoptosis, it was

investigated whether this mechanism was initiated up or downstream of the

opening of the mitochondria! permeability pore. Treatment with anti-lg

decreases the number of cells with a high MMP to 48% in empty vector cells

however in PKCô CAT and PKCô KR mutants this is maintained at 83% and

70% respectively (Figure 3.40 and 44). This increased MMP in response to anti-

lg treatment is effectively lost by 96 h, particularly in PKCô KR ceiis (Data not
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shown) indicating that dissipation of the MMP still occurs in both PKCÔ CAT and 

PKCÔ KR mutants aibeit with a delay in the opening of the permeability 

transition pore. There are no alterations In MMP as compared to empty vector 

cells when cells are left unstimulated, treated with anti-CD40 or given 

combination treatment over this period (Figure 3.44 and Results not shown).

3.3.24 Effect of PKCe CAT and KR expression on anti-lg mediated growth 

arrest and apoptosis in WEHI 231 cells

WEHI 231 PKCe CAT cells appear to increase their proliferation upon 

stimulation with anti-lg for 24 h, in a dose-dependent manner, exhibiting 150% 

of the DNA synthesis seen in control cells after addition of 10 ing/ml anti-lg 

(Figure 3.45 A). WEHI 231 PKCe KR cells do not undergo growth arrest in 

response to anti-lg after 24 h, but nor do they increase their proliferation (Figure 

3.45 A). In contrast, by 48 h, however, anti-lg (1 and 10 ng/ml) has induced 

growth arrest in both these cell types, to the same level as the empty vector 

control (Figure 3.45 B). This is corroborated by CFSE data which shown similar 

number of cellular divisions undertaken in both empty vector and PKCe CAT 

cells following anti-lg treatment at 72 h, both have a mode generation number of 

4 (Figure 3.46). By contrast, when cells are left unstimulated there is increased 

cell division in PKCe CAT ceils (mode generation = 6 ) as compared to empty 

vector WEHI 231 cells (mode generation = 5, Figure 3.46).

When PKCe CAT and PKCe KR cells are left unstimulated there is a slightly 

decreased level of basal apoptosis as compared to empty vector cells- 6  and 

8 % subdiploid respectively as compared to 16% subdiploid in empty vector cells 

(Figure 3.47). This is associated with an increase in the percentage of cells in 

G2/M phase, 4% in PKCe CAT cells and 16% in PKCe KR cells as compared to 

1% in empty vector cells (Figure 3.47). However the DNA synthesis data does 

not demonstrate that either of these mutations provides a growth advantage 

after 24 h (Figure 3.45 B) therefore these cells may be growth arrested in G2/M 

phase of the cell cycle.

When cells are treated with anti-lg to ligate the BCR there is a decreased level 

of apoptosis in both PKCe CAT and PKCe KR cells as compared to empty
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vector cells at 48 h- just 35% and 42% subdiploid respectively as compared to 

84% subdiploid in empty vector cells (Figure 3.47). Interestingly, this is not 

strongly associated with a decrease in cells with a dissipated MMP (Figure 3.40 

and 3.48). In fact at 48 h both PKCe mutants have a slightly increased number 

of cells with a high MMP (PKCe CAT: 58% and PKCe KR: 63%) as compared to 

empty vector cells (48%, Figure 3.48).

By contrast, when PKCe CAT and PKCe KR ceils were treated with both anti-lg 

and anti-CD40 there was an increase in the percentage of cells entering the 

proliferative phases of the cell cycle (Figure 3.47). For example, there are 33% 

of PKCe CAT cells and 31% of PKCe KR cells in S phase following anti-lg and 

anti-CD40 treatment as compared to 24% in empty vector WEHI 231 cells, this 

corresponds with a decrease in cells in G0/G1 in PKCe expressing cell lines. 

However the CFSE data, for 72 h post-stimulation, shows that there is no 

increase in proliferation in PKCe CAT following anti-lg and anti-CD40 

suggesting that although there may be an increase in cells entering mitogenic 

phases, they are blocked at this point and increased cellular division does not 

follow, at least by 72 h (Figure 3.46).

3.3.25 Effect of PKCÇ CAT and KR expression on anti-lg mediated growth 

arrest and apoptosis in WEHI 231 cells

After 24 h stimulation with 0.1 [iig/ml anti-lg, WEHI 231 cells expressing either 

PKC^ construct display a decrease in proliferation compared to the empty 

vector, but when stimulated with 1 or 10 p,g/ml anti-lg WEHI 231 cells 

expressing these constructs exhibit a minimal decrease in proliferation (Figure 

3.49 A). In fact at 24 h post 10 fxg/ml anti-lg, PKC^ CAT and PKC^ KR WEHI 

231 cells exhibit 100% and 90% of the DNA synthesis observed in control cells, 

as compared to just 50% in empty vector WEHI 231 cells. By contrast, after 48 

h stimulation, there is no great difference in the growth arrest induced by 1 0  

(xg/ml anti-lg upon WEHI 231 cells expressing either PKCÇ mutant construct 

compared to cells containing the empty vector (Figure 3.49 B). Puzzlingly, 

CFSE data demonstrate that PKC^ CAT WEHI 231 cells have reduced 

proliferation, in response to all stimuli, at 72 h (Figure 3.50).
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At 48 h there are only negligible differences between PKC^ CAT and empty 

vector cells when left unstimulated or treated with a combination of anti-lg and 

anti-CD40 in terms of cell cycle status (Figure 3.51). However when PKC^ CAT 

cells are treated with anti-lg there is a decreased level of apoptosis (48% 

subdiploid) as compared to empty vector cells (84% subdiploid, Figure 3.51). 

Furthermore, there is a concomitant increase in celis entering the mitogenic 

phases of the cell cycle. However, as stated above, this is not associated with 

increase celiular proliferation which suggests that cells are growth arrested in 

mitogenic phases of the cell cycle. Moreover, this is not associated with the 

maintenance of the MMP as empty vector, PKC^ CAT and PKC^ KR cells have 

similar levels of cells with a high MMP over 96 h (Figure 3.40 and 52). This 

would suggest that any protective effects that PKC^ may mediated are induced 

downstream of the opening of the mitochondrial transition pore.

3.3.26 Differential expression and activation of PKCs leads to altered 

expression of pro-apoptotic Bcl-2 family members

As PKCô CAT and PKCô KR cell lines exhibited differential sensitivity to 

induction of apoptosis relative to empty vector WEHI 231 cells, we investigated 

whether there had been any alteration in expression of pro-apoptotic Bci-2 

family members in response to PKCô expression. Firstly we assessed Bad 

expression in empty vector cells. Bad is upregulated from 5 min post stimulation 

by anti-lg and this is partially reversed by coligation with anti-CD40 (Figure 

3.53). By contrast, there is an upregulation of Bad in unstimulated cells 

commensurate with induction of spontaneous apoptosis due to media 

exhaustion (Figure 3.53). Interestingly, in PKCô CAT cells Bad is downregulated 

under all conditions tested apart from a strong induction of Bad expression 48 h 

following anti-lg (Figure 3.53). This suggests although pro-apoptotic Bcl-2 family 

members are induced, there is a substantial delay in their expression which 

provides a rationale for previous data that demonstrated that PKCô CAT WEHI 

231 cells are rescued from anti-lg induced apoptosis (Figure 3.43). Similarly, 

this also corroborates the MMP data which also suggested that PKCô CAT 

induced an increased lag time between BCR ligation and the induction of 

apoptosis (Figure 3.44). Additionally, the pro-apoptotic Bcl-2 family member 

Bad is also upregulated at 48 h in PKCÇ KR cells by all stimulations as
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compared to the empty vector WEHI 231 cells (Figure 3.53). The greatest 

expression of Bad occurs 48 h post anti-lg stimulation (Figure 3.53).

The empty vector WEHI 231 cells have virtually no visible expression of the pro- 

apoptotic Bci-2 family member Bid (Figure 3.53). Even though the expression 

shown in PKC ÇCAT cells does not look very impressive it does represent a real 

upregulation of Bid expression relative to wild type cells (Figure 3.53). Added to 

this, Bid may only need to be present in very small amounts in order to exert its 

pro-apoptotic action, as seen in mature B cells. There is no visible Bid present 

in the PKC ÇCAT lysates prepared 5 min post stimulation regardless of the 

stimulation used (Figure 3.53). However in both unstimulated and anti-lg treated 

groups there is an upregulation of Bid both at 24 and 48 h. The greatest 

expression of Bid can been seen in the anti-lg treated groups at 48 h 

suggesting that not only is Bid expression increased by ligation of the BCR but 

also increases over time in these cells (Figure 3.53). Moreover, the pro- 

apoptotic Bcl-2 family member Bid is upregulated with all stimulations in PKCÇ 

KR cells as compared to the empty vector WEHI 231 cells (Figure 3.53). There 

is an increase in Bid expression over time with the greatest Bid expression at 48 

h post anti-lg stimulation (Figure 3.53).

3.4 Discussion

The data presented in this chapter has provided information on the signalling 

mechanisms employed during BCR-mediated apoptosis. I have demonstrated 

that BCR ligation results in the generation of apoptosis-inducing arachidonic 

acid by PLA2 , consequent loss of mitochondrial membrane integrity and 

induction of the pro-apoptotic Bcl-2 family members Bak, Bax and Bad. 

Moreover, coligation of CD40 antagonises all of these effects by reinstating 

sustained, cyclical ERK activation and expression B c IX l . BclXthas dual effects 

as it can form homo-dimers which may protect from arachidonic acid-induced 

loss of mitochondrial membrane integrity. In addition, it may form hetero-dimers 

with Bak and hence inhibit Bak/Bax oligomer-induced apoptosis.
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3.4.1 BcIXl mediates WEHI 231 rescue from BCR-stimulated PLA2- 
mediated apoptosis and dissipation of the MMP

Immature B cells generally respond to self Ag by Induction of anergy or 

apoptosis however in vivo the presence of other extrinsic signals can lead to 

alternative fates. For example engagement of CD40 by T cells can prevent 

apoptosis and reinstate proliferation. Previous work in our laboratory and others 

has established that CD40 ligation acts to rescue BCR-mediated apoptosis and 

growth arrest by upregulation of anti-apoptotic Bcl-2 family members such as 

B c IX l and also maintenance of sustained cycling ERK signals associated with 

proliferation (156, 210, 275, 276, 308, 321, 322, 416, 431). To assess the role 

of B c IX l in CD40-mediated rescue from BCR induced-growth arrest, dissipation 

of the MMP and apoptosis WEHI 231 cells expressing elevated levels of B c IX l 

were utilised. It has now been demonstrated that anti-lg induced apoptosis and 

dissipation of the MMP can both be prevented in WEHI 231 cells by 

overexpression of B c IX l (Figures 3.13 to 15, 3.19 C and D and 3.20). These 

findings corroborate data that suggest B c IX l protects from BCR-mediated 

apoptosis by protecting the mitochondrial membrane integrity (179, 209, 276, 

321,432,433).

Previous work in this laboratory has implicated PLA2 as an important signalling 

molecule in anti-lg mediated apoptosis. For example, cytosolic PLA2 was found 

to translocate to both the nucleus and mitochondria within 3 hours of anti-lg 

treatment and in addition, levels of PLA2 mRNA and protein were both 

upregulated by such treatment (156). Moreover, treatment with anti-CD40 could 

prevent this upregulation of PLA2 activity and expression (156). Furthermore, 

addition of exogenous arachidonic acid resulted in dose dependent growth 

arrest and apoptosis mimicking ligation of the BCR by anti-lg (289). Arachidonic 

acid has been previously implicated in the loss of integrity of the inner 

mitochondrial membrane (434-436) an event which can result in both the 

dissipation of MMP and loss of ATP seen in anti-lg treated immature B cells 

(156). Taken together these data suggest a key role for PLA2 in the induction of 

BCR-mediated apoptosis and collapse of the MMP. Therefore, it was decided to 

further investigate the role of PLA2 by using specific inhibitors of this enzyme 

that are non-metabolisable analogues of arachidonic acid (Figure 3.16). 

However it was not possible to demonstrate a causal role for PLA2 using these
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inhibitors as they mimicked arachidonic acid and so induced both a dissipation 

of the MMP and apoptosis in WEHI 231 cells (Figures 3.17). To resolve this 

probiem inhibitors of cycloxygenase 2 (COX2) and iipoxygenase (LOX) were 

utilised. These enzymes convert arachidonic acid to prostaglandins and 

leukotrienes respectively (Figure 3.18), resulting in a cellular decrease in 

arachidonic acid. Therefore, COX and LOX inhibitors induce an intracellular 

accumulation of arachidonic acid that allows investigation of the action of PLA2 

without using specific inhibitors of this enzyme. As predicted, inhibitors of both 

C0X2 (NS398) and LOX (EDBC) resulted in dissipation of the MMP, growth 

arrest and apoptosis and when used in conjunction with anti-lg resulted in a 

superinduction of apoptosis (Figures 3.19). This apoptosis is most potent when 

both inhibitors are used in combination (Figure 3.19 C) but can be partially 

reversed by coligation of CD40 (Figure 3.20 A). Interestingly, overexpression of 

B c IX l could prevent C0X2/L0X mediated disruption of the MMP, superinduction 

of anti-lg induced apoptosis and growth arrest (Figures 3.20 A and B).

Taken together these data suggest that B c IX l is sufficient to overcome the 

effects of BCR-induced dissipation of the MMP and induction of apoptosis. 

However parallel studies in this laboratory have demonstrated that B c IX l is 

unable to reverse the anti-lg mediated desensitization of ERK activation and 

reverse growth arrest (405) suggesting that CD40 engagement provides 

additional signals that can restore ERK cycling and therefore reinstate 

proliferation. Since anti-CD40, but not B c IX l , can convert arachidonic acid to 

prostaglandin E2 (425), one candidate for the additional signal required for ERK 

activation is the conversion of arachidonic acid to prostaglandins/leukotrienes 

by C0X2/L0X action. Indeed, parallel studies have demonstrated that culture 

with these inhibitors blocks the sustained, cycling ERK activation that Is 

necessary for proliferation (425). This would suggest that COX2/LOX 

metabolites such as prostaglandin E2 (PGE2) are able to act as anti-apoptotic/ 

pro-mitogenic signals and hence these enzymes provide a dynamic switch 

mechanism for the regulating the commitment and rescue of a cell from 

apoptosis. PGE2 is a product of arachidonic acid and its action is antagonistic to 

arachidonic acid and so the balance of these 2  signals regulates the functional 

outcome. For example arachidonic acid down regulates the ERK signal and
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induces apoptosis whereas conversion to PGE2 removes apoptotic arachidonic 

acid and promotes mitogenic ERK signalling (Figure 3.54).

3.4.2 signalling  m ay be used to  induce PLA2 activation  during BCR- 

m ediated apoptosis and is dow nregulated fo llow ing B c IXl expression

It was found that simply overexpressing B c IX l in WEHI 2 3 1  cells is sufficient to 

antagonise BCR-coupled mitochondrial PLA2 activation. The mechanisms 

underlying this have not yet been delineated but it is clear that such B c IX l 

expression does not suppress the early BCR-coupled ERK activation that is 

necessary for CPLA2 activation (2 7 5 ) .  However, it is well established that CPLA2 

translocation and activation is also dependent on rises in intracellular Ca^^

(107). Furthermore, since Bcl-2 family members have been implicated in Ca "̂" 

homeostasis (111, 426, 437-441) it was decided to investigate whether B c IX l 

mediated its effects, at least in part, via suppression of BCR-elicited Ca^^ 

mobilisation. As widely established, treatment with anti-lg resulted in a increase 

In calcium release by a population of wild type WEHI 231 cells (Figure 3.21). 

Simultaneous coligation of CD40 did not prevent the induction of this 

intracellular Ca^^ rise. However these Ca^^ measurements did not provide any 

information on the specific Ca^^ levels in each individual cell or indeed in each 

organelle/localised subcellular area of the cell and thus, it is possible that CD40 

engagement may stimulate the formation of specific “micro-domains” of low 

Ca^^ concentration, for example close to the mitochondrial membranes. 

Interestingly and, by contrast, in B c IX l WEHI 231 cells the BCR-mediated Ca^^ 

release is severely reduced as compared to Neo WEHI 231 cells (Figure 3.21). 

Previous work in this laboratory has demonstrated that translocation of cPLAato 

either the nucleus or mitochondria occurs 3 h post BCR ligation (156) and 

expression of B c IX l is fully upregulated within 4 h post CD40 ligation (425). 

Therefore, B c IX l may mediate longer-term inhibition of Ca^^ release and hence 

prevent induction of apoptosis, however it is not likely to prevent cPLA# 

activation immediately after BCR ligation.

Further to identifying global BCR-mediated Ca^^'rise in WEHI 231 populations, I 

decided to try to identify the localised Ca^^ patterns in single WEHI 231 cells. 

Although no definitive answers to the spatial pattern of these Ca^^ increases 

following BCR ligation were obtained, the dominant pattern appeared to be Câ ""
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oscillations (Figure 3.22). Each of the cells viewed appeared to have an 

individual profile of Ca^^ increase following ligation of the BCR, with differing 

intensities of Ca^^ signal with some cells even being unresponsive to anti-lg 

treatment. However, it is important to note that I did not synchronise the cells 

and so the strength of Ca "̂" signal produced may be related to the cell cycle 

stage of the cells. In order to assess whether the oscillation is the predominant 

Ca^^ signature it would be necessary to use a different system where the anti-lg 

is perfused into the media and many synchronised cells can be imaged at one 

time.

In addition, it may be necessary to further change the expérimentai design as 

poly-L-lysine was used to adhere the cells to the slides. This may have 

produced signalling via additional receptors and hence potentially depleting the 

Ca^^ stores prior to ligation of the BCR. Furthermore, although we failed to 

detect differential pools of Câ "̂  by imaging, it would be extremely interesting to 

further investigate the subceilular locaiisation of these Ca^^ fluxes using 

differential dye loading of organelles or specifically localising calcium by 

monitoring GFP-FRET pairs in specific localisations.

Interestingly, it is possible that the calcium release observed following anti-lg 

treatment may be transduced and modulated by expression of Bcl-2 family 

members (442). For example, and consistent with our data in B c IX l cells, it has 

been demonstrated that overexpression of the anti-apoptotic protein Bcl-2 

decreases the ER Ca^^ load and protects cells from death (440, 443). 

Conversely, Bax /Bak overexpression favours the transfer of Ca^^ from E.R to 

mitochondria and induces cell death (437, 441). How Bax, Bak, and Bcl-2 

interfere with the E.R Ca^^ load is uncertain, but clearly this interference 

depends on the movement of Ca^^ from the E.R to the mitochondria. 

Interestingly, whilst Bcl-2 is known to protect from death when targeted to the 

E.R, it is found to induce apoptosis when directed to mitochondria (444). 

Furthermore, such E.R-targeted Bcl-2 can protect from death induced by 

mitochondria-targeted Bax (445), suggesting that the E.R exerts a dominant 

role in its coupling to mitochondria. This data suggests that Identification of Ca^"' 

concentrations in the subcellular organelles and visualisation of Bcl-2 family 

member localisation would be essential to assess how these molecules
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modulate apoptosis. This approach may also resolve much of the confusion 

surrounding the lack of correlation between Bcl-2 family member expression 

and functional outcome.

3.4.3 Ligation of the BCR induces the expression of pro-apoptotic Bci-2 

family members whereas CD40 engagement induces the expression of 

anti-apoptotic Bci-2 family members and sequestration of pro-apoptotic 

Bci-2 famiiy members

As a first approach to addressing this problem, I investigated the binding 

partners of B c IX l as it was clear from previous work (276, 321, 425) and the 

results of this thesis that B c IX l played a key role in the regulation of BCR- 

mediated apoptosis. Indeed, it is already well documented that Bcl-2 family 

members can form hetero/homo dimers or oligomers (446) and that these Bcl-2 

complexes can either act in a pro-apoptotic or pro-survival manner. For 

example, Bak/Bax oligomers promote apoptosis (177, 182, 193, 422, 423, 447) 

whereas Bad/BclX dimers prevent pro-apoptotic actions (204). Therefore it was 

decided to look not only at the absolute levels of Bcl-2 family member 

expression but also investigate possible binding associations.

Consistent with BCR-signalling inducing apoptosis, it was found that anti-lg 

treatment suppresses Bcl-2 and B c IX l expression but generally acted to 

maintain Bad, Bak and Bax expression, although Bax expression was 

decreased below the levels seen in unstimulated cells at 8  h (Figure 3.10 and 

11). By contrast, anti-CD40 treatment was found to maintain or increase the 

expression of all anti-apoptotic Bcl-2 family members (Bcl-2, B c IX l , A1, Mcl-1, 

Figure 3.10) tested whereas although this also occurred for Bak ( 8  and 24 h) 

and Bax ( 8  h) expression at the early time points, by 48 h their expression was 

suppressed (Figure 3.10). Bad expression was profoundly reduced by anti- 

CD40 treatment at all time points examined (Figure 3.10). Interestingly, under 

conditions of CD40-mediated rescue of BCR-driven apoptosis, B c IX l (but not 

Bcl-2, A1 and Mcl-1) expression was restored and Bad, Bak and Bax 

suppressed suggesting these elements played a role in regulating BCR- 

mediated apoptosis and CD40-rescue (Figure 3.10 and 11). Moreover, following 

CD40 engagement there is an increase in BclXL/Bak (Figure 3.12 C) as well as 

BclX/Bak complexes (Figure 3.12 D). This suggests that the pro-apoptotic
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molecule Bak may be sequestered by B c IX l and hence prevents the formation 

of pro-apoptotic Bax/Bak oligomers following coligation of CD40.

3.4.4. Constitutive activation of the Ras pathway can provide protection 

from BCR-induced growth arrest and apoptosis at 24 h

A pivotal role for the sustained, cycling ERK signal in the control of both 

proliferation and apoptosis in WEHI 231 cells has been reported by this 

laboratory (275). One of the key upstream regulators of ERK activity is the small 

GTPase, Ras, which regulates growth in all eukaryotic cells. The mechanisms 

involved in regulating such sustained ERK activity and its role in proliferating 

WEHI 231 cells was further explored utilising WEHI 231 cells expressing 

constitutively active Ras mutant constructs (Figure 3.5). Figure 3.23 A shows 

the large increase in basal ERK activation resulting in WEHI 231 cells 

expressing the RasV12 mutant as compared to that observed in wild type WEHI 

231 cells and this demonstrates successful functional expression of Ras in this 

mutant cell line. The effect of such Ras activation on anti-lg induced apoptosis 

and growth arrest was investigated. At 24 h there is no growth arrest or 

apoptosis in the RasV12 WEHI 231 cells in response to anti-lg treatment 

(Figure 3.24 A). This ability of the expression of RasVI2 to overcome anti-lg 

mediated apoptosis and growth arrest in not surprising as this mutation has 

been shown to result in transformation in a number of cell types and Ras has 

been shown to be important in positive proliferative signalling (323). Perhaps 

more surprisingly however, expression of RasV12 does not reflect constitutive 

ERK activation. Rather expression of RasV12 construct maintains the late 

cycling activation of ERK regardless of anti-lg treatment providing an 

explanation for the lack of growth arrest (Figure 3.24 B). This demonstrates that 

regulatory elements capable of dephosphorylating and inactivating ERK, such 

as P a d , are still induced in this mutant cell line and perhaps act to limit 

proliferation. Indeed this data suggests that Pad is likely to be Induced in a 

ERK-dependent manner. Interestingly, the RasV12 C40 cells, which direct Ras 

signals via the PI-3 kinase pathway, affords an enhanced level of protection 

against anti-lg induced growth arrest over and above the protection seen in 

RasV12 cells (Figure 3.26 B). Costimuiation of cells expressing RasV12 C40 

with anti-lg and anti-CD40 results in proliferation levels higher than untreated
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cells. However, RasV12 S35 cells, in which Ras transduces signals only via the 

MAP kinase pathway, does not have significantly different BCR or CD40- 

mediated responses when compared to the RasV12 mutant cell line (Figure

3.26 A). Interestingly, parallel studies in this laboratory have shown that 

expression of RasV12 040 also results in cycling ERK activation suggesting 

that PI-3 kinase activation can result in ERK signalling possibly via AKT or PKC 

intermediates (405).

Further to this rescue from growth arrest, there is also protection from 

dissipation of the MMP 24 h following anti-lg treatment (Figures 3.27 and 28). 

All RasV12 expressing cells, as well as MEKK3 expressing cells, provided 

some protection from anti-lg induced dissipation of the MMP (Figures 3.27, 28 

and 29 C). The mechanism for maintenance of the MMP, at least in RasV12, 

RasV12 C40 and MEKK3 mutants, may involve the activation of AKT, which 

when activated (phosphorylated) acts to phosphoryiate Bad and hence prevent 

pro-apoptotic Bad signalling. In wild type cells anti-lg treatment is associated 

with reduction in active AKT levels (Figure 3.32) however both the RasV12 and 

MEKK3 mutants do not display reduced AKT signalling at 24 h (Figure 3.32) 

suggesting that AKT regulation of Bad may, at least in part, act to prevent the 

dissipation of the MMP.

To further investigate the role of PI-3 kinase, we utilised mutant forms of an 

antagonist of PI-3 kinase activity, SHIP (Figure 3.6). SHIP antagonises the 

functions of PI-3 kinase by dephosphorylating the 5' position of PIP3 , a product 

of PI-3 kinase that is important for the membrane localisation of many PH 

domain containing proteins. However, our results using two distinct mutant 

forms of SHIP which interfere with SHIP activity, by either competing for SH2 

domain interactions (SHIP SH2) or competing for SH2 interactions as well as 

substrate binding (SHIP Cl), suggest that SHIP does not play a significant role 

in the regulation of anti-lg induced growth arrest or apoptosis in WEHI 231 cells 

(Figure 3.23). By contrast, in mature B cells SHIP has been shown to play a 

major role in the FcyRllb mediated inhibition of BCR induced proliferative 

signalling (256). A role for the 3’-inositol phosphatase, PTEN, in FcyRllb 

mediated inhibition of BCR induced proliferative signalling has recently been 

demonstrated in this laboratory, suggesting that B cells are capable of
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antagonising PI-3 kinase activity via the recruitment of both 3’- and 5’-inositol 

phosphatases (124). Therefore, perhaps in WEHI 231 cells, inhibition of SHIP 

by the overexpression of a catalytically inactive mutant or its SH2 domain does 

not lead to an observable effect as the levels of PIP3 can still be reduced by the 

3’-inositol phosphatase activity of PTEN. It would be very interesting to assess 

the activity of PTEN in WEHI 231 cells under different conditions, by expressing 

various mutant constructs, to determine whether or not it plays a role in 

regulating responses in WEHI 231 cells. An alternative possibility is that the 

action of SHIP may be compensated for by SHIP2, therefore it would be 

interesting to produce double SHIP/SHIP2 knock outs to assess the relative 

contribution of both of these proteins to BCR-induced growth arrest and 

apoptosis of WEHI 231 cells.

3.4.5. Constitutive activation of the RasERKMAPK pathway can enhance 

BCR-induced growth arrest and/or apoptosis at 48 hours

Although expression of all 3 RasV12 constructs protected against BCR- 

mediated growth arrest at 24 h there is no longer any protection from anti-lg 

induced growth arrest and apoptosis, in fact there is enhanced apoptosis in 

response to ligation of the BCR in RasV12 cells by 48 h (Figure 3.23). 

Furthermore, at 72 h the RasV12 mutant does not display any enhanced 

proliferation as compared to empty vector cells regardless of the stimulation 

used (Figure 3.24 C). This is very surprising, as ERK activation has been 

demonstrated to be a pivotal consideration in the maintenance of survival and 

proliferation in WEHI 231 cells and Ras activation would, in turn, activate ERK. 

Consistent with this, at 48 h the MMP is maintained in RasV12, RasV12 S35, 

RasVI2 C40 and MEKK 3 cells following BCR ligation (Figures 3.27, 28 and 29 

C). Additionally, when the cells are left unstimulated the basal levels of 

apoptosis in both the RasV12 and MEKK3 cells are lower than empty vector 

cells (Figure 3.24 C and 3.29 A).

However, under conditions of anti-lg stimulation increased levels of ERK would 

also be capable of activation of PLA2 and there have been recent reports that 

PLA2 can downreguiate c-Myc expression by interacting with the nuclear 

transcription factor B-Myb (448). The interaction of CPLA2 and B-Myb in the
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cytoplasm facilitates translocation and activation of PLA2 in the nucleus and 

these nuclear complexes inhibit B-Myb- dependent transcriptional upregulation 

of c-Myc (448). Furthermore, ATP-depletion, as seen in WEHI 231 cells 

following BCR- mediated apoptosis (156), can actually facilitate nuclear 

translocation of PLA2 (449) and Tip60, an acteyltransferase which forms 

complexes with CPLA2 . that has been demonstrated to induce apoptosis (450). 

Taken together with the fact that we have demonstrated CPLA2 translocation to 

the nucleus 3 h post BCR stimulation in WEHI 231 cells (156) this suggests that 

nuclear PLA2 downmodulation of c-Myc may contribute to BCR-mediated 

growth arrest and apoptosis. Constitutively active Ras signalling may enhance 

anti-lg mediated ERK and thus PLA2 signalling resulting in strong inhibition of c- 

Myc transcription. This may result In the superinduction of BCR-driven 

apoptosis seen in RasV12 cells and the rescue of growth arrest at 24 h may 

simply reflect the induction of apoptosis in WEHI 231 cells is slow, requiring 24- 

48 h to take effect.

Furthermore, we have not ruled out the possibility that Ras activation may 

activate pro-apoptotic signalling systems at later time points. Ras activation has 

been implicated in induction of apoptosis in both the phaechromocytoma cell 

line PCI 2 and in T cells following IL-2 deprivation depending on the context of 

the Ras signalling (451-453). Interestingly, although apoptosis is increased at 

48 hours there is still protection of the MMP. This suggests that anti-lg mediated 

apoptosis in RasVI2 mutants may be occurring via a different apoptotic 

pathway to that of wild type cells or that expression of the RasVI2 construct 

slows the kinetics of the loss of mitochondrial integrity. Therefore it would be 

very interesting to investigate the caspase activation profile as well as effects of 

caspase, calpain and cathepsin inhibitors on these mutants.

Having ascertained that the constitutive activation of Ras does not necessarily 

lead to the constitutive activation of the downstream signalling components, 

such as ERK, Dok was investigated as a possible important regulator of Ras 

signalling in BCR-stimulated WEHI 231 cells. Dok is a well characterised 

negative regulator of Ras and in B cells has been shown to negatively regulate 

ERK activation by the BCR by abrogating Ras activation (342) (Figure 3.6). it 

might therefore be predicted that WEHI 231 cells expressing the Dok PH/PTB
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dominant negative mutant construct could respond in much the same way as 

those expressing the RasV12 mutant construct due to a sustained activation of 

Ras. However there was no evidence for a release from anti-lg induced growth 

arrest at 24 h (Figure 3.33) and also no observable differences anti-CD40 

mediated rescue (Figure 3.34). This would suggest that signalling events 

downstream of Ras/Dok signalling are key to mediating ERK-driven growth and 

proliferation in WEHI 231 cells.

Similarly, WEHI 231 cells expressing the MEKK3 mutant are also susceptible to 

anti-lg induced growth arrest at 48 h, although unlike the RasV12 WEHI 231 

cells these cells are protected from anti-lg induced apoptosis (Figure 3.29 A). 

However, there is greatly reduced proliferation in MEKK3 WEHI 231 cells 

following anti-lg treatment relative to the RasV12 WEHI 231 cells (Figure 3.29 

A) even when cells are left unstimulated or treated with anti-CD40 (Figure 3.30). 

This suggests that the enhancement of the p38, JNK and ERK pathways 

simultaneously does not result in enhanced proliferation or survival. Indeed, 

both JNK and p38 are generally implicated as pro-apoptotic signailing cascades 

however all of the MAP kinases have been reported to be activated following 

BCR and/ or CD40 ligation in immature B ceils (307, 454, 455). Nevertheless, 

although ERK activation has been associated with both survival and 

proliferation in WEHI 231 cells (275) there was no evidence from this laboratory 

to suggest activation of either JNK or p38 pathways (320). However recent 

reports have suggested that BCR and CD40 ligation may lead to different 

patterns of the type or kinetics of MAP kinase family activation depending on 

the maturation state of the cell (307, 454). Therefore this suggests that it is the 

overall balance of MAP kinase activation that determines B cells fate and the 

aberrant activation of ali the MAP kinase pathways in the MEKK3 mutant cell 

line, perhaps not surprisingly, appears to prevent normal proliferative 

responses.

3.4.6. Potential roles for the PKC family in both BCR-induced growth 

arrest and apoptosis and CD40-mediated rescue

3.4.6.1 PKC a

PKC a is a classical PKC that has been implicated in maintenance of cell

survival and proliferation. Both PKCa CAT and PKCa KR mutants resulted in
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the partial rescue from both BCR mediated-growth arrest (Figures 3.37). 

Moreover, cell cycle analysis at 48 h revealed a reduction in apoptosis in both 

PKCa CAT and PKCa KR cells associated with an increase in the percentage 

of cells in mitogenic phases of the cell cycle (Figures 3.38). Additionally both 

PKCa CAT and PKCa KR expressing WEHi 231 cells provided protection from 

dissipation of the MMP in response to BCR ligation (Figures 3.41). Interestingly, 

WEHI 231 cells expressing PKCa mutant constructs appear to be growth 

arrested in G2/M phase rather than proliferating, as there is no increased cell 

division induced by BCR ligation (Figure 3.39). WEHI 231 cells expressing 

PKCa mutant constructs also exhibited decreased proliferation in response to 

anti-CD40 suggesting a role for PKC a  in the regulation of anti-CD40 mediated 

rescue (Figure 3.39).

Surprisingly, PKCa CAT and PKCa KR WEHI 231 cells demonstrated very 

similar effects. These results were initially surprising as PKC a has been 

implicated as an essential factor for Ramos-BL B cell survival (367). Therefore it 

may have expected that, whilst use of the PKC aCAT construct may have been 

protective, use of the kinase dead PKC a mutant would have stimulated both 

growth arrest and apoptosis. Whilst a reduction in proliferation was observed at 

72 h (Figure 3.39), there was a decrease in apoptosis at 48 h (Figure 3.38). 

Moreover, in a similar fashion to PKC aCAT, PKC aKR WEHI 231 cells 

displayed enhanced proliferation following BCR ligation at 24 h relative to wild 

type controls (Figures 3.37 A) although they were unable to rescue at later time 

points (Figures 3.37 to 39).

Nevertheless, although the Ramos-BL cell line seems to use PKCa signalling to 

maintain survival, it is clear that PKCa produces cell type specific effects. For 

example the activation of PKCa can induce apoptosis of celis by inhibiting AKT 

in LNCaP prostate cancer cells. Indeed, induction of PKCa leads to the 

activation of PP2A, which can dephosphorylate and inhibit AKT (430). By 

contrast, PKCa can also mediate its effects by promoting the activation of Ras. 

For example, in mast cells, ligation of FceRI leads to the induction of Syk, which 

can phosphoryiate Tyr®®® of PKCa and Tyr®®̂  of PKCpI. The resultant phospho- 

tyrosine residues can interact with the SH2 domain of Grb-2 and hence promote
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the formation of the Grb-2/SOS complex, leading to the induction of Ras and 

downstream effectors including ERKMAPK which can promote proliferation 

(456). Therefore PKCa may produce different effects depending on the period 

of stimulation and cell type used.

However, more puzzling is the fact that both constitutively active and kinase 

dead forms of PKC a seems to have the same effects on WEHI 231 cells. The 

PKCa CAT mutant consists of a constitutively active catalytic domain whereas 

the PKCa KR mutant is the full length PKC enzyme with a point mutation 

inactivating the kinase domain. The observation that both mutants produce the 

same biological outcome suggests that in WEHI 231 cells the catalytic activity of 

PKCa may not always be essential for PKCa mediated functions. This is not an 

isolated example of PKCa signalling that is independent of kinase activity. For 

example, in IFNy-primed U937 cells, PKCa assists the activation of PLD1 

following ligation of FcyRI by directly binding to PLD1 in a PKCa kinase- 

independent manner. Indeed, inhibition of PKCa kinase activity does not 

prevent FcyRI-mediated induction of PLD1 whereas downregulation of PKC a 

levels does impair PLD1 activation. FcyRI-dependent induction of PLD1 thus 

requires the recruitment of PKCa but PKCa kinase activity Is not necessary 

indicating PKCa can perform important signalling functions independently of its 

kinase activity (457).

Interestingly, although the biological responses are similar in both the PKCa 

CAT and PKCa KR expressing cells it has recently emerged that there are 

differences in the mechanisms used to produce these responses suggesting 

that not all PKCa effects are independent of the PKCa kinase domain. For 

example, parallel studies in this laboratory revealed that the PKCa CAT WEHI 

231 cells were able to maintain sustained, cycling ERK activity following BCR 

ligation whilst the PKCa KR WEHI 231 cells were not (405) and this correlates 

with the data displaying enhanced DNA synthesis following BCR ligation 

(Figure 3.37). By contrast, there was enhanced B c IX l expression in cells 

expressing either PKCa mutant construct (405) which may explain the 

decreased levels of subdiploid populations following BCR ligation.
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3.4.6.2 PKC Ô

Similar effects were found in WEHI 231 cells expressing constitutively active 

and kinase dead forms of PKC ô. In WEHI 231 cells, PKCô CAT acts to protect 

cells from apoptosis in response to ligation of the BCR and prevent BCR- 

mediated growth arrest (Figures 3.42 and 43) and dissipation of the MMP 

(Figure 3.44). In addition, PKCô CAT expression delays the expression of the 

pro-apoptotic Bcl-2 family member Bad (Figure 3.53). This suggests that PKC ô 

is involved in the maintenance of cell survival. Puzzlingly, PKCô KR expressing 

cells also display reduced growth arrest at 24 h, reduction in anti-lg induced 

apoptosis (although this is much less impressive than the rescue observed in 

PKCô CAT WEHI 231 cells) and a delay in dissipation of the MMP in response 

to BCR ligation (Figures 3.42 to 44).

PKCô^ knock out mice have both increased numbers of naïve and activated B 

lymphocytes and increased B cell expansion (385, 386). In addition these mice 

exhibit a severe lupus like autoimmune disease. This suggests, that in mature B 

cells, PKC Ô is essential for keeping B lymphocyte proliferation within normal 

levels and regulating B cell tolerance. However these data for WEHI 231 cells 

suggest that PKC ô can have an anti-apoptotic, positive regulatory rather than 

anti-proliferative, negative regulatory role in immature B cells. In agreement with 

this, parallel studies in this laboratory demonstrated that the PKCô CAT 

expressing cells exhibited enhanced expression of B c IX l and maintained a 

sustained cycling ERK signal following BCR ligation (405) which would be 

associated with both increased survival and proliferation. Consistent with this, 

PKCÔ CAT celis also failed to induce p27 is response to BCR ligation (458) a 

response which is opposite to the response seen in empty vector WEHI 231 

cells. Such an increase in p27, a cyclin dependent kinase inhibitor, is 

associated with growth arrest and this loss of p27 induction may represent one 

mechanism used to rescue PKCô CAT cells from apoptosis and growth arrest.

3.4.6.3 PKC E

WEHI 231 PKCe CAT and PKC e KR cells were similarly found to be rescued 

from apoptosis and growth arrest induced by BCR ligation prior to 48 h (Figures
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3.45-47) and this was also associated with maintenance of the MMP following 

ligation of the BCR (Figure 3.48).

The current literature suggests that PKCe generally acts as a positive regulator 

of cell survival and proliferation. For example, PKCe has been shown to activate 

the Raf-1/ERK pathway (387), thus promoting the activation of the key survival 

factor NF-kB (388). PKCe may also promote cell survival by contributing to the 

activation of AKT, a protein kinase that mediates PI-3-kinase survival signals 

(389). PKCe appears to play a role in cell proliferation also, as it is activated in 

response to a variety of mitogens (390, 391). This would suggest that PKCe is 

an essential molecule for the transduction of cell survival and proliferative 

signals in WEHI 231 cells. In agreement with this a parallel study in this 

laboratory found that PKCe CAT, but not PKCe KR, cells maintained their 

sustained cycling ERK activation following ligation of the BCR (405). However 

this is at odds with my data that demonstrates enhanced survival but not 

proliferation in PKCe CAT WEHI 231 cells at 48 and 72 h.

S.4.6.4 PKC Ç

PKCÇ has been implicated in BCR signalling and B cells derived from mice 

defective in PKC^ have decreased activation of both ERK and NF-kB resulting 

in defective activation, reduced proliferation and spontaneous apoptosis (368, 

398, 399). However the data from the WEHI 231 cells expressing PKC^ CAT 

and PKC^ KR are confusing. For example, constitutive activation of PKCÇ 

results in both a partial protection from BCR-induced apoptosis and a reduction 

CD40-stimulated proliferation (Figures 4.49 to 51). Moreover, the pro-apoptotic 

Bcl-2 family member Bid is also expressed suggesting that PKCÇ can mediate 

pro-apoptotic signals (Figure 4.53). Again the kinase dead mutant PKCÇ KR 

induces similar effects to those of PKCÇ CAT expressing cells suggesting that 

cataiytic activity may not be essential for some PKC§ mediated functions. 

Indeed, PKCÇ KR also results in protection from BCR-induced growth arrest at 

24 h (Figure 3.49). These latter data seem to partially agree with the current 

literature, as it might have been predicted that both apoptosis and a reduction in 

proliferation would result from use of the kinase dead mutant. We do see a

147



reduction in proliferation in response to anti-CD40 and an increase in pro- 

apoptotic Bcl-2 family members. However, BCR ligation results in a reduction in 

apoptosis in both PKC^ CAT and PKC^ KR expressing cells.

Collectively, these data using CAT and KR forms of PKC isoforms suggests that 

PKCs a, Ô, 8 and t, may have some activities which are independent of their 

catalytic action. However, although the functional responses of cells expressing 

the CAT and KR constructs are similar, in parallel studies we have obtained 

some evidence to suggest that the CAT and KR mutants have differential 

effects on downstream effector molecules such as ERK. Another possible 

explanation comes from the structure of these mutants in relation to the 

structure of native PKCs. For example, the regulatory domains of PKCs are 

responsible for the binding of receptors for activated C kinases (RACKs), a 

famiiy of anchoring proteins that determine the ultimate sub-cellular locations of 

PKCs after activation (459). The CAT mutants used in this study lack their 

regulatory domains, therefore it is possible that they are not targeted to their 

correct sub-cellular locations. This could result in lack of phosphorylation of the 

appropriate targets, or even phosphorylation of inappropriate targets, as the 

constructs are not able to interact with the correct substrates, or are not 

targeted to the same area within the cell as their intended substrates. If the 

appropriate substrates are not phosphorylated, this may go some way to 

explaining the surprising similarity of the effects of both PKC CAT and KR 

mutant constructs.

This study has highlighted an unexpected problem associated with the 

investigation of the action of a given protein by simply overexpressing mutant 

forms of the signalling element. In order to elucidate fully the actions of different 

PKC isoforms we could use specific inhibitors of PKC isoforms however this 

would still provide problems as there are not specific inhibitors available for 

most isoforms. Perhaps in future studies we could utilise anti-sense DNA 

technology to reduce PKC activity without the attendant problems of 

overexpression of the proteins. In addition this study has also emphasised the 

importance of time courses to investigate cellular functions. Some of the effects 

seen in this study were only occurring at defined time points and simple 

experiments only investigating responses at 24 or 48 h would have missed
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these effects completely. I set out to use both CAT and KR PKC isoform 

constructs to corroborate each other, as we expected one form to be a stimulant 

and the other to antagonise cellular function. However, this study has ultimately 

provided more questions than answers to the role of PKC isoforms in BCR- 

mediated growth arrest and apoptosis in WEHI 231 cells and its rescue by 

CD40 signalling.

3.4.7 Concluding Remarks

In conclusion, the key findings of this chapter are that BCR-mediated apoptosis 

is dependent on the generation of arachidonic acid, abrogation of the sustained 

ERK signal and induction of Bcl-2 pro-apoptotic family members. Moreover, 

CD40-mediated rescue of BCR-induced apoptosis and growth arrest can 

reverse each of these processes.

The results in this chapter demonstrate that anti-lg initiated apoptosis is 

mediated by the generation of arachidonic acid by PLAg. In addition, the CD40- 

mediated generation of prostaglandins/leukotreines by C0X2 and LOX, and 

hence degradation of arachidonic acid, provides a dynamic switch mechanism 

for switching on/off the cycling ERK signal that mediates proliferation in WEHI 

231 cells (Figure 3.54). Moreover, there is a BCR-driven upregulation of pro- 

apoptotic Bcl-2 family members such as Bak and Bax and a downregulation of 

anti-apoptotic Bcl-2 family members such as Bcl-2 and BclXu. Rescue by CD40 

engagement involves the upregulation of B c IX l, which has a two-fold protective 

mechanism. Firstly it acts to protect from arachidonic acid-mediated loss of 

mitochondrial membrane integrity presumably by forming homo-dimers at the 

mitochondrial membrane, and secondly by sequestering Bak and hence, 

preventing Bak from stimulating the opening of the mitochondrial transition pore.

Consistent with the proposal that sustained, cycling ERK is required for 

proliferation, constitutive activation of Ras, and hence ERK, can provide relief 

from both anti-lg induced growth arrest and apoptosis within the first 24 h. 

Further investigation has revealed that neither SHIP nor Dok appear to affect 

such Ras-dependent BCR signalling in a non-redundant manner. However after 

24 hours there is a superinduction of apoptosis in cells expressing the RasV12 

mutant construct. This may reflect that ERK signalling may result in induction of
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nuclear translocation of both Tip60 and PLA2 which form pro-apoptotic 

complexes (450).

Finally, studies involving mutant forms of PKC constructs have not provided any 

definitive answers as to which PKCs are involved in BCR-mediated apoptosis or 

CD40-mediated rescue. However, they do suggest that PKCs a, ô, e and Ç merit 

further Investigation.
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Figure 3.1 : BCR mediated apoptosis correlates with arachidonic acid 

mediated loss of mitochondrial membrane integrity.

In WEHI 231 cells ligation of the BCR leads to a strong, early ERK signal which 

mediates activation and translocation of PLA2 to the mitochondria and nucleus. 

PLA2 generates arachidonic acid that correlates with dissipation of the MMP, 

depletion of ATP and activation of the executioner protease cathepsin B. 

Coligation of the BCR and CD40 leads to the upregulation of B c IX l expression 

which can protect the mitochondrial membrane integrity and prevent apoptosis.
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Figure 3.2: CD40 structure and signalling

The CD40 receptor is a 48-kDa transmembrane glycoprotein which is a member 

of the TNF receptor (TNFR) superfamily. CD40 consists of a 193 amino-acid 

extracellular domain, a 22 amino-acid transmembrane domain and a 62 amino- 

acid cytoplasmic domain. The extracellular domain consists of four homologous, 

repeating, cysteine-rich extracellular domains characteristic of TNFR famiiy 

motifs. CD40 is known to associate with intracellular proteins termed TNF 

receptor-associated proteins (TRAFs). TRAF2, TRAF3 and TRAF 5 are known 

to associate with a specific region in the cytoplasmic domain of CD40 and 

stimulate transcription factors such as NF-kB to initiate transcription of pro- 

survivai and pro-proliferation genes.
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Figure 3.3: Schematic view of Ras regulatory factors

Ras proteins cycle between the active GTP- bound form and the inactive GDP- 

bound state. Guanine exchange factors (GEFs) such as GRP and 80S  catalyse 

Ras activation by facilitating the dissociation of bound GDP. Free radicals such 

as nitric oxide can also promote Ras-GTP formation. Ras then remains active 

until it hydrolyses bound GTP to GDP. This process is accelerated by GTPase 

activating proteins such as p 120 GAP.
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Figure 3.4; In fibroblasts, Ras follows a biphasic pattern of activation 

following stimulation with mitogen, each phase corresponding to 

activation of different effector molecules

Ras is required for both G1 entry and progression. Upon mitogen stimulation of 

quiescent cells there are 2 peaks of Ras activation. The first occurs immediately 

on entry into G1 and is associated with the activation of the Raf/MEK/ERK 

pathway. The second occurs at mId-GI and corresponds to the activation of the 

PI-3 kinase/ AKT effector pathway. Ras activation is essential for mitogen 

stimulated upregulation of cyclin D1 and p21 '̂^^ and downregulation of p27"̂ '̂  ̂

protein expression.
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Figure 3.5: Use of the RasV12, RasV12 S35 and RasV12 C40 mutants 

allows for dissection of the Ras signais important in proliferation and 

apoptosis in WEHI 231 cells

In order to dissect the role of Ras signalling via the ERKMAP kinase and PI-3 

kinase pathways we utilised several constitutively active Ras mutants. RasV12 

is a constitutively active form of Ras, the consequence of a point mutation that 

results in the substitution of valine for glycine at position 12. This mutation 

disables the intrinsic GTPase activity of Ras, therefore once Ras binds GTP 

and becomes active it is unable to deactivate itself by hydrolysing GTP to GDP. 

RasV12 S35 contains a further point mutation in the effector domain of the 

protein, resulting in the substitution of serine for threonine. This mutation 

prevents Ras from binding the p i 10a subunit of PI-3 kinase, an interaction that 

is known to lead to the activation of PI-3 kinase. By contrast, RasVI2 C40 

contains a point mutation in the effector domain resulting in the substitution of 

cysteine for tyrosine. This mutation abrogates the interaction between Ras and 

Raf, preventing Ras from activating the ERKMAP kinase pathway.
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Figure 3.6; Dominant negative SHIP and Dok mutations allow for further 

dissection of the contributions of the MAP kinase and PI-3 kinase 

pathways

Dok acts to negatively regulate Ras in WEHI 231 cells. The Dok PH/PTB 

mutant lacks the proline rich regions of Dok and hence prevents normal protein 

interactions allowing us to assess the contribution of Ras in BCR mediated 

apoptosis and CD40 mediated rescue. SHIP has multiple actions including 

antagonizing the action of PI-3 kinase by degradation of PIP3 and 

downregulation of the RasMAP kinase pathway by Inhibition of SOS action. We 

utilised 2 SHIP mutants a catalyticaiiy inactive form of SHIP, SHIP 01, and a 

dominant negative form of SHIP, SHIP SH2, to assess the contribution of PI-3 

kinase in BCR mediated apoptosis and CD40 mediated rescue.
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Figure 3.7: In WEHI 231 cells ligation of the BCR with anti-lg leads to 

growth arrest whereas coligatlon of both the BCR and CD40 results in 

proliferation

(A) All cells were cultured for 48 h and then DNA synthesis was assessed by 

pH] thymidine uptake. Cells were either treated with media alone 

(unstimulated), 10 \xglm\ anti-lg (alg), or 10 pg/ml anti-lg in combination with 

anti-CD40 (alg & aCD40). These data are the mean of three separate wells ± 

SD. These data are from a single experiment, representative of five separate 

experiments.

(B) All cells were stained with 1 |llM CFSE and then left in culture for 72 h with 

appropriate stimulations. Cells were either treated with media alone (No 

stimulation), 10 pg/ml anti-lg (alg), 10 fxg/ml anti-CD40 (aCD40) or 10 [xg/ml 

anti-lg in combination with anti-CD40 (alg & aCD40). Proliferation was 

assessed by an estimate of the percentage of cells in each cell generation. This 

calculation was done with the FlowJo proliferation data analysis programme. 

The data was then displayed as the mode generation for each stimulation i.e. 

the generation number containing the highest percentage of cells. The 

percentage of cells in the mode generation is displayed above the column. 

These data are from a single experiment, representative of three separate 

experiments.
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Figure 3.8: Ligation of the BCR induces apoptosis whereas engagement of 

CD40 drives cells to enter the mitogenic phases of the cell cycle in WEHI 

231 cells

(A) All cells were stained with 50 pg/ml PI after being in culture for 48 h with 

appropriate stimuiations. Cells were either treated with media alone (None), 10 

pg/ml anti-lg (alg), 10 |xg/ml anti-CD40 (aCD40) or 10 pg/ml anti-lg in 

combination with anti-CD40 (alg & aCD40). FACS analysis was used to 

calculate the number of cells in G0/G1, 8 phase, G2/M phase and subdiploid 

cells. The data is displayed as the percentage of living cells in each live phase 

of the cell cycle and the percentage of subdiploid cells. These data are from a 

single experiment which is representative of 11 experiments.

(B) Cells were treated as described above. The data is displayed as a 

histogram of PI fluorescence (FL2). This data set is separate from the data 

shown in panel A.
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Figure 3.9: Ligation of the BCR results in dissipation of MMP whereas
coligation of CD40 prevents the loss of mitochondrial membrane integrity

(A) Cells were left in culture for 48 h with appropriate stimulations and then 

stained with 2.5 \M  DiOCe. Cells were either treated with media alone (None), 

10 i îg/ml anti-lg (alg), 10 pg/ml anti-CD40 (aCD40) or 10 pg/ml anti-lg in 

combination with anti-CD40 (alg & aCD40). Dissipation of MMP can been seen 

as a reduction in DiOCe brightness (FL1 fluorescence). Dissipation of the MMP 

was assessed by dividing the cells into two populations. The right hand peak 

having a high healthy MMP and the second having a low apoptotic MMP. The 

data was then displayed as the percentage of cells with a high MMP. These 

data are from a single experiment, representative of 4 experiments.

(B) Cells were treated as described above. The data is displayed as a 

histogram of DiOCe fluorescence (FL1 ). This data set is separate from the data 

shown in panel A.
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Figure 3.10: Ligation of the BCR induces the expression of the pro- 

apoptotic Bcl-2 famiiy members Bad, Bak and Bax in WEHI 231 cells

Wild type WEHI 231 cells (10^ cells/lane) were cultured with medium alone, 

anti-lg 10 fxg/ml, anti-CD40 10 |ig/ml, a combination of anti-lg 10 p,g/ml and anti- 

CD40 10 fig/ml or arachidonic acid 100 \xM for up to 48 h. Cell lysates were 

then prepared and analysed using gel electrophoresis and western blotting 

using Bad (A), Bak (B) and Bax (0) specific Abs. Experimental conditions were 

as follows: lane 1, medium 0 h, lane 2, anti-lg 8 h, lane 3, anti-CD40 8 h, lane 4, 

anti-lg plus anti-CD40 8 h, lane 5, arachidonic acid 8 h, lane 6, anti-lg 24 h, lane 

7, anti-CD40 24 h, lane 8 anti-lg plus anti-CD40 24 h, lane 9, arachidonic acid 

24 h, lane 10, anti-lg 48 h, lane 11, anti-CD40 48 h, lane 12, anti-lg plus anti- 

CD40 48 h, lane 13, arachidonic acid 48 h and lane 14, medium 48 h .
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Figure 3.11 : Ligation of the BCR down regulates expression of Bcl-2, BcIXl 

and Mcl-1 whereas coligation of CD40 alone rescues the expression of 
BcIXl only

(A) Wild type WEHI 231 cells (10^ cells/lane) were cultured with medium, anti-lg 

5 p,g/ml or a combination of anti-lg 5 fxg/ml and anti-CD40 10 lag/ml for up to 48 

h. Cell lysates were then prepared and analysed using gel electrophoresis and 

western blotting using A1, Bcl-2, B c IX l and Mcl-1 Abs. Experimental conditions 

were as follows; lane 1, medium 0 h (CO), lane 2, anti-lg 8 h, lane 3, anti-CD40 

8 h, lane 4, anti-lg plus anti-CD40 8 h, lane 5, anti-lg 24 h, lane 6, anti-CD40 24 

h, lane 7, anti-lg plus anti-CD40 24 h, lane 8, anti-lg 48 h, lane 9, anti-CD40 48 

h, lane 10, anti-lg plus anti-CD40 48 h, lane 11, medium 48 h (C48). Data are 

representative of a least 3 independent experiments.

(B) Wild type WEHI 231 cells were stimulated with anti-CD40 (10 fxg/ml) for up 

to 4 8  h, cell lysates were prepared and western blotting of B c IX l expression 

performed. Expression of B c IX l in anti-CD40 treated wild type WEHI 231 cells 

was compared with that of unstimulated Neo cells or B c IX l cells. The blot was 

stripped and probed fro ERK1/2 expression as a loading control. Data are 

representative of a least 3 independent experiments.
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Figure 3.12: Potential complexing of BclXu and Bak and under conditions 

of CD40-medlated rescue of BCR-coupled apoptosis

Wild type WEHI 231 cells (10^ ceils/lane) were cultured with medium, anti-lg 10 

l^g/ml, anti-CD40 10 pg/ml, a combination of anti-lg 10 jxg/ml and anti-CD40 10 

jig/ml, arachidonic acid or arachidonic acid and 10 p,g/ml anti-CD40 for up to 48 

h. Cell lysates were then prepared and used to make immunoprecipitates (IPs) 

with BclXu(A), Bak (B) and Bad (C) specific Abs. These IPs were then used for 

gel electrophoresis and western blotting using BclX, Mcl-1, Bak, Bad, phospho- 

serinel 12-Bad or phospho-serinel 36-Bad specific Abs. The experimental 

conditions for BcIXl (A) and Bak (B) IPs were as follows: lane 1, medium 0 h, 

lane 2, anti-lg 8 h, lane 3, anti-CD40 8 h, lane 4, anti-lg plus anti-GD40 8 h, lane 

5, anti-lg 48 h, lane 6, anti-CD40 48 h, lane 7, anti-lg plus anti-CD40 48 h and 

lane 8, medium 48 h. The experimental conditions for Bad (0) IPs were as 

follows: lane 1, medium alone 48 h, lane 2, anti-CD40 48 h, lane 3, anti-lg 48 h, 

lane 4, arachidonic acid 48 h, lane 5, anti-lg and anti-CD40 48 h and lane 6, 

arachidonic acid and anti-CD40 48 h.
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F igure 3.13: O verexpression o f Bc IXl provides protection from  both anti-lg  

and arachidonic acid induced apoptosis

Neo and B c IX l WEHI 231 cells were stained with 50 jjg/ml PI after being in 

culture for 48 h with appropriate stimulations. Cells were either treated with 

media alone (unstimulated), 10 pg/ml anti-lg (alg), 10 pg/ml anti-CD40 (aCD40), 

10 fxg/ml anti-lg in combination with anti-CD40 (alg & aCD40), 100 p-M 

arachidonic acid (AA) or 100 pM arachidonic acid in combination with 10 pg/ml 

anti-CD40 (AA & aCD40). FACS analysis was used to calculate the percentage 

of subdiploid cells. The data is displayed as the mean percentage of subdiploid 

cells from 13 independent experiments ± SEM.
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Figure 3.14; Overexpression of BcIXl does not provide protection from 

either arachidonic acid or anti-lg induced growth arrest

Neo and BcIXl WEHI 231 cells were cultured for 48 h and then DMA synthesis 

was assessed by [^H] thymidine uptake. In panel A, cells were treated with 

arachidonic acid (0 to 100 pM) or 10 pg/ml anti-lg (alg). In panel B cells were 

treated with anti-lg (0 to 100 pg/ml) or 10 pg/ml anti-lg in combination with 10 

pg/ml aCD40 (alg & aCD40). Data are expressed as means ± SD (n=3). These 

data are from single experiments, representative of at least three separate, 

independent experiments.
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Figure 3.15: Treatment with anti-CD40 can rescue cells from arachidonic 

acid mediated growth arrest

WEHI 231 cells were cultured for 48 h and then DNA synthesis was assessed 

by [^H] thymidine uptake. Cells were treated with arachidonic acid (0 to 100 pM) 

either alone, In combination with 1 pg/ml anti-CD40 or 10 pg/ml aCD40. Data 

are expressed as means ± SD (n=3). These data are from a single experiment, 

representative of three separate experiments.
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Figure 3.16: The PLA2 inhibitors used were non-metabolisable forms of 
arachidonic acid

Arachidonyltrifluoromethyl Ketone (AAC0CF3) is a cell-permeable 

trifluoromethyl ketone analog of arachidonic acid. It is both a potent and 

selective slow-binding Inhibitor of cPLAz. Methyl Arachidonyl 

Fluorophosphonate (MAFP) is a selective, active site-directed, irreversible 

inhibitor of both calcium-dependent and calcium-independent CPLA2 but not of 

secretory PLA2 .
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Figure 3.17: Treatment with PLAz inhibitors induces apoptosis

(A) WEHI 231 cells were stained with 50 pg/ml PI after being in culture for 48 h 

with media alone. PLA2 inhibitors were used at the following concentrations: 

MAFP 20 pM and AAC0CF3 20 pM. FACS analysis was used to calculate the 

number of cells in each phase of the cell cycle. The data is displayed as the 

percentage of subdiploid cells.

(B) WEHI 231 cells were stained with 50 pg/ml PI after being in culture for 48 h 

with either media alone (No Stimulation) or 10 pg/ml anti-lg in combination with 

10 pg/ml anti-CD40 (alg & aCD40). The PLA2 inhibitor AAC0CF3 was used at 

20 pM. FACS analysis was used to calculate the number of cells in each phase 

of the cell cycle. The data is displayed as the percentage of cells in S and 

G2/M phases combined i.e. mitogenic phases of the cell cycle.

(C) Cells were cultured for 48 h with either media alone (None) or 20 pM 

AAC0CF3 and then stained with 2.5 pM DiOCe. Dissipation of MMP can been 

seen as a reduction in DiOCe brightness (FL1 fluorescence). Dissipation of the 

MMP was assessed by dividing the cells into two populations. The right hand 

peak having a high healthy MMP and the second having a low apoptotic MMP. 

The data was then displayed as the percentage of cells with a high MMP.
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Figure 3.18: COX and LOX are responsible for the generation of 

prostaglandins and leukotrienes, respectively, during arachidonic acid 

metabolism

Arachidonic acid, a 20-carbon polyunsaturated fatty acid is liberated from 

cellular membrane phospholipids, phosphatidylcholine and phosphatidyl 

inositol, in response to enzymatic signaling from a phospholipase. Once 

liberated into the cytoplasm, cyclooxygenase (COX) or lipoxygenase (LOX) 

catalyzes the formation of downstream metabolites as prostaglandins and 

leukotrienes, respectively. The hydroperoxy fatty acids (e.g 5-HPETE) act as 

pro-inflammatory molecules as well as autocrine regulators. Conversion of 

HPETE by leukotriene synthesizing enzymes results in leukotriene molecules 

which are extremely bronchoconstrictive, vasodilatory or chemotactic. 

Prostaglandin (PG) molecules are formed in similar fashion by the action of 

COX on arachidonic acid. This results In the parent PGG2 which, when acted 

upon by a peroxidase, generates PGH2 , from which all other PGs result. These 

PG molecules have many physiological actions such as vasodilation, inhibition 

of platelet aggregation, stimulation of renin secretion and induction of calcium 

release from bones.
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Figure 3.19: Treatment with COX2 or pan-LOX inhibitors alone or in 

combination enhances anti-lg-induced growth arrest and apoptosis

(A) WEHI 231 ceils were stimulated with anti-lg (0 to 10 p,g/ml) in the absence 

or presence of 4 jxM or 10 |jiM NS398 (COX2 inhibitor) for 48 h. DNA synthesis 

was then assessed by [^H] thymidine uptake. Data are expressed as means ± 

SD (n=3). These data are from a single experiment, representative of three 

separate experiments.

(B) WEHI 231 cells were stimulated with anti-lg (0 to 10 p.g/ml) in the absence 

or presence of 1 p.M or 10 |aM EDBC (pan-LOX inhibitor) for 48 h. DNA 

synthesis was then assessed by pH] thymidine uptake. Data are expressed as 

means ± SD (n=3). These data are from a single experiment, representative of 

three separate experiments.

(C) Neo and B c IX l WEHI 231 cells were stimulated with 10 pig/ml anti-lg in the 

presence and absence of 10 jjiM NS398 plus 10 jxM EDBC for 48 h. Cells were 

then stained with 50 pg/ml PI and FACS analysis was used to calculate the 

number of cells in each phase of the cell cycle. The data is displayed as the 

percentage of subdiploid and therefore apoptotic cells. These data are from a 

single experiment, representative of 3 experiments.

(D) Cells were cultured for 48 h with 10 pg/ml anti-lg and in the presence or 

absence of 10 pM NS398 and 10 pM EDBC and then stained with 2.5 pM 

DiOCe. Dissipation of MMP can been seen as a reduction in DiOC6 brightness 

(FL1 fluorescence). Dissipation of the MMP was assessed by dividing the cells 

into two populations. The right hand peak having a high healthy MMP and the 

second having a low apoptotic MMP. The data was then displayed as the 

percentage of cells with a low MMP. These data are from a single experiment, 

representative of 3 experiments.
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Figure 3.20: BcIXl overexpression antagonises BCR mediated disruption 

of the MMP however it cannot overcome anti-lg induced growth arrest

(A) Neo and B c IX l WEHI 231 cells were stimulated with media alone (none), 10 

fxg/ml anti-lg (alg), 10 jig/ml anti-CD40 (aCD40) or a combination of 10 fxg/ml 

anti-lg and 10 \xg/m\ anti-CD40 (alg & aCD40) in the absence or presence 10 

\M  NS398 plus 10 |xM EDBC for 48 h. DNA synthesis was then assessed by 

[^H] thymidine uptake. Data are expressed as means ± SD (n=3). These data 

are from a single experiment, representative of three separate experiments.

(B) Wild type and B c IX l WEHI 231 cells were cultured for 48 h with anti-lg (10 

^g/ml) and in the presence or absence of 10 ptM NS398 and 10 piM EDBC and 

then stained with 2.5 pilVI DiOCe. Dissipation of MMP can been seen as a 

reduction in DiOCe brightness (FL1 fluorescence). Dissipation of the MMP was 

assessed by dividing the cel is into two populations. The right hand peak having 

a high healthy MMP and the second having a low apoptotic MMP. The data was 

then displayed as the percentage of cells with a high MMP.

170



WEHI 231 Neo WEHI 231 BclX,

^  40000

I
oT 30000

&
3
0 c
=6
1 >*

20000

10000

D

T
r "

r~i

I Î
11

20000

15000

10000

5000 I
BE

N one a lg  aCD40 a lg  & 
aCD40

N one a lg  aCD40 a lg  & 
aCD40

B

N one 

I I N S 3 9 8 & E D B C

O wild Type 
■  B d X L

a lg  a lo n e a l g »  EDBC a lg  &  N S 3 « 8  a lg  EDBC »  I



Figure 3.21; BCR-induced calcium release is reduced in BcIXl WEHI 231 

cells as compared to Neo WEHI 231 cells

(A) Neo and B c IX l WEHI 231 cells were loaded with FURA2 and placed in 

stirred cuvettes. Cytosolic calcium was measured in cell populations using a 

spectrophotometer foilowing addition of 10 p,g/ml of anti-lg or 10 gig/ml of anti- 

CD40. The data is displayed as Ca^^ rise (nM). The data is representative of 

cellular Ca^^ rise in 5 different cuvettes.

(B) Neo and B c IX l WEHI 231 cells were loaded with FURA2 and placed in 

stirred cuvettes. Cytosoiic calcium was measured in cell populations using a 

spectrophotometer following addition of either 10 pig/ml of anti-lg, 10 fxg/ml of 

anti-CD40 or 50 |ilVi thapsigargin. The data is displayed as mean peak Ca '̂" rise 

(nM) and expressed as the mean value ± SD. The data is representative of 

cellular Ca^^ rise in 5 different cuvettes.

171



Anti-lg

Time

B

g

+
CM
(D
o

Anti-lg & antl-CD40
600 n

600 ■

E
E 400 -

300 -

$
200 -

CM

O

100

0 30 60 90 120 150 180 210 240 270 300

600 • 

600 * 

Æ  400 ■

<0 300 "

^  200 -
CM
(0  100 -

0 30 60 90 120 160 180 210 240 270 300

Time
WEHI 231 Neo 

WEHI 231 BoIX̂

E 600 -

w  400 -

CM 200

alg alg & aCD40 Thapsagargin

WEHI 231 Neo 

WEHI 231 BcIXl



Figure 3.22: Addition of anti-lg results in a calcium oscillation in WEHI 231 

cells

(A) Wild type WEHI 231 cells were loaded with 5\xM Fluo3 and illuminated at 

488nm to visualise cellular calcium levels. A puffer pipette was placed adjacent 

to the cell and used to apply anti-lg 10 img/ml directly to stimulate a Ca^^ signal. 

The real time recordings were analysed using Metamorph Imaging software. 

The images shown here are for one frame every 5 sec of a 20 sec recording. 

The images are representative of 6 different fields.

(B) Fluorescence image to demonstrate that each cell was divided into 3 

roughly equidistant regions of interest (ROI).

(C) The real time recordings were analysed using Metamorph Imaging software 

to assess the calcium levels in each region of interest over 20 sec. The data is 

displayed as the calcium rise measured against time (sec) for each of 3 ROI. 

The data is representative of 4 cells.
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Figure 3.23: WEHI 231 cells undergo sustained, cyclical ERK activation 

when unstimulated or treated with antl-CD40, whereas ligation of the BCR 

abrogates this sustained ERK activation. WEHI 231 ceils expressing the 

RasV12 construct have enhanced ERK activation compared to empty 

vector cells

(A) Neo (empty vector) WEHI 231 cells (10^ cells/iane) were cultured with 

medium alone (None), anti-lg 10 pg/ml (alg) ora  combination of anti-lg 10 pg/ml 

and anti-CD40 10 pg/ml (alg & aCD40) for up to 48 h. Cell lysates were then 

prepared and analysed using gel electrophoresis and western blotting using 

total ERK 1/2 (wERK1/2) or phospho-ERK 1/2 (pERK1/2). Data are 

representative of a least 13 independent experiments.

(B) RasV12 and wild type WEHI 231 cells were incubated for 24 h with 

appropriate stimulations prior to fixation, permeablisation and assessment of 

ERK levels. Cells were either cultured with media alone (No Stimulation), 10 pg/ 

ml anti-lg (alg) or a combination of 10 pg/ml anti-lg and 10 pg/ml anti-CD40 (alg 

& aCD40). The modified ELISA method- FACE- was used to assess the levels 

of ERK and phospho-ERK. Results are displayed as the ratio of the phospho- 

ERK signal to ERK signals. All ERK levels were calculated as the mean of three 

wells ± SD,
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Figure 3.24: Expression of the RasV12 construct enhances sustained, 

cycling ERK activation which provides protection from BCR-induced 

growth arrest at 24 h but not at 48 h in WEHI 231 cells

(A) Empty Vector and RasV12 WEHI 231 cells were cultured with anti-lg (0 to 

10 pg/ml) for 24 h and then DNA synthesis was assessed by [^H] thymidine 

uptake. These data are the mean of three separate wells ± the SEM. These 

data are from a single experiment, representative of five separate experiments.

(B) RasV12 WEHI 231 cells (10^ cells/lane) were cultured with either medium 

alone (None) or anti-lg 10 pg/ml (anti-lg) for the time periods shown. Cell 

lysates were then prepared and analysed using gel electrophoresis and western 

blotting using total p42/44 ERK or dual phosphorylated p42/44 ERK. This was 

compared to a total p42/44 ERK positive control (w) and dual phosphorylated 

p42/44 ERK positive control (p).

(C) Empty vector (pcDNA3.1) and RasV12 WEHI 231 cells were stained with 50 

pg/ml PI after being in culture for 48 h with appropriate stimulations. Cells were 

either treated with media alone (none), 10 pg/ml anti-lg (alg) or 10 pg/ml anti-lg 

in combination with anti-CD40 (alg & aCD40). FACS analysis was used to 

calculate the percentage of subdiploid cells. The data is displayed as the mean 

percentage of subdiploid cells from 5 independent experiments ± SEM.
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Figure 3,25: Both RasV12 S35 and Ras V12 C40 mutations provide 

protection from BCR-mediated growth arrest

(A) WEHI 231 ceils (1 xIO^ cells/well) containing the empty pcDNAS.I vector, 

RasV12, or RasV12 S35 vectors were cultured, in triplicate, in the presence of 

increasing concentrations of anti-lg (0, 0.01, 0.1, 1, 10 ^g/ml), or a combination 

of anti-lg (10 jjig/ml) and anti-CD40 (10 (ig/ml), for 24 h. Culture wells were 

pulsed with [^H] thymidine (0.5 |iCi/well) 4 hours prior to harvesting and [^H] 

incorporation was assessed by liquid scintillation counting. Data from individuai 

experiments were normalised by expressing the mean pH] thymidine uptake 

values of anti-lg treated cells as a percentage of those obtained with control, 

unstimulated cell cultures for each cell line. The normalised values from 4 

independent experiments were then pooled and expressed as means ± SEM.

(B) WEHI 231 cells (1 xIO^ cells/well) containing the empty pcDNA3.1 vector, 

RasV12, or RasV12C40 vectors were cultured and proliferation assessed as in

(A). Data from Individual experiments were normalised by expressing the mean 

pH] thymidine uptake values of treated cells as a percentage of those obtained 

with control cell cultures as described below. The normalised values from 4 

independent experiments were then pooled and expressed as means ± SEM.
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Figure 3.26; RasV12 does not significantly alter cell division in response 

to anti-lg at 72 h

Empty Vector (pcDNAS.I) and RasV12 WEHI 231 cells were stained with 1 \M  

CFSE and then left in culture for 72 hours with media alone (No Stimulation), 10 

ixg/ml anti-lg (alg), 10 (ig/ml anti-CD40 (aCD40) or a combination of 10 jxg/ml 

anti-lg and 10 pig/ml anti-CD40 (alg & aCD40). Proliferation was assessed by 

an estimate of the percentage of cells in each generation. This calculation was 

done with the FlowJo proliferation data analysis programme. These data are 

from a single experiment, representative of 2 separate experiments.

176



s s K *

1-
K

s g

8 8 8 K 8

il



Figure 3.27: Constitutive activation of Ras provides protection from anti-lg 

induced dissipation of the MMP

Empty Vector (pcDNA3.1), RasV12, RasV12 S35 and RasV12 040 WEHI 231 

ceils were left in culture for either 0 h with media alone (control), 48 h with 10 

pg/ml anti-lg (alg) or 46 h with 10 pg/ml anti-lg in combination with 10 pg/ml 

antl-CD40 (alg & aCD40). Cells were then stained with 2.5 pM DiOCeand used 

for FACS analysis. Dissipation of MMP can been seen as a reduction in DiOCe 

brightness (FL1 fluorescence). These plots are from a single experiment, 

representative of 4 experiments.
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Figure 3.28: Constitutive activation of Ras provides protection from anti-lg 

induced dissipation of the MMP at 24 and 48 hours

(A) Empty Vector (pcDNAS.I), RasV12, RasV12 S35 and RasV12 040 WEHI 

231 cells were cultured with either media alone (No Stimulation), 10 pg/ml anti- 

lg (alg) or 10 p,g/ml anti-lg In combination with 10 (ig/ml anti-CD40 (alg & 

aCD40) for 24 h. Cells were then stained with 2.5 \M  DiOCe and used for FACS 

analysis. Dissipation of MMP can been seen as a reduction in DiOCe brightness 

(FL1 fluorescence). Dissipation of the MMP was assessed by dividing the cells 

into two populations. The right hand peak having a high healthy MMP and the 

second having a low apoptotic MMP. The data was then displayed as the 

percentage of cells with a high MMP. These data are from a single experiment, 

representative of 3 experiments. The data set shown here is separate from 

figure 3.27.

(B) Empty Vector (pcDNA3.1), RasV12, RasV12 S35 and RasV12 C40 WEHI 

231 cells were cultured with either media alone (No Stimulation), 10 pg/ml anti- 

lg (alg) or 10 pg/ml anti-lg in combination with 10 pg/ml anti-CD40 (alg & 

aCD40) for 48 h. Cells were then stained with 2.5 |uiM DiOCe and used for FACS 

analysis. Dissipation of MMP can been seen as a reduction in DiOCe brightness 

(FL1 fluorescence). Dissipation of the MMP was assessed by dividing the cells 

into two populations. The right hand peak having a high healthy MMP and the 

second having a low apoptotic MMP. The data was then displayed as the 

percentage of cells with a high MMP. These data are from a single experiment, 

representative of 3 experiments. The data set shown here is separate from 

figure 3.27.
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Figure 3.29: Expression of the MEKK3 construct rescues cells from BCR- 

induced dissipation of the MMP and apoptosis

(A) Empty Vector (pcDNA3.1) and MEKK3 WEHI 231 cells were cultured with 

media alone (No Stimulation), 10 pg/ml anti-lg (alg), 10 pg/ml anti-CD40 

(aCD40) or a combination of 10 pg/ml anti-lg and 10 |ig/ml anti-CD40 (alg & 

aCD40) for 48 h and then stained with 50 pg/ml PI. FACS analysis was used to 

calculate the number of cells in each phase of the cell cycle. The data is 

displayed as the percentage of cells in each phase. These data are from a 

single experiment, representative of 4 experiments.

(B) Empty Vector (pcDNA3.1) and MEKK3 WEHI 231 cells were cultured with 

10 }xg/ml anti-lg for 48 h. Cells were then stained with 2.5 \M  DiOCeand used 

for FACS analysis. Dissipation of MMP can been seen as a reduction in DiOCe 

brightness (FL1 fluorescence). Dissipation of the MMP was assessed by 

dividing the cells into two populations. The right hand peak having a high 

healthy MMP and the second having a low apoptotic MMP. The data was then 

displayed as the percentage of cells with a high MMP. These data are from a 

single experiment, representative of 3 experiments.
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Figure 3.30; Expression of the MEKK3 construct reduces cell division in 

response to all stimuli

Empty Vector (pcDNA3.1) and MEKK3 WEHI 231 cells were stained with 1 p,M 

CFSE and then left in culture for 72 h with media alone (No Stimulation), 10 

[.ig/ml anti-lg (alg), 10 pg/ml anti-CD40 (aCD40) or a combination of 10 pg/ml 

anti-lg and 10 pg/ml anti-CD40 (alg & aCD40). Proliferation was assessed by 

an estimate of the percentage of cells in each generation. This calculation was 

done with the FlowJo proliferation data analysis programme. These data are 

from a single experiment, representative of 2 separate experiments.
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Figure 3.31 : Expression of constitutîvely active MEKK3 Induces ERK 

activation that is elevated compared to wild type WEHI 231 cells following 

BCR ligation

MEKK3 and wild type WEHI 231 cells were incubated for 48 h with appropriate 

stimulations prior to fixation, permeablisation and assessment of ERK levels. 

Cells were either cultured with 10 pg/ml anti-lg (alg) or a combination of 10 

pg/ml anti-lg and 10 pg/ml anti-CD40 (alg & aCD40). The modified ELISA 

method- FACE- was used to assess the levels of ERK and phospho-ERK. 

Results are displayed as the ratio of the phospho-ERK signal to ERK signals. 

All ERK levels were calculated as the mean of triplicate cultures ± SEM.
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Figure 3.32: Treatment with anti-lg results in the reduction of AKT 

activation in empty vector WEHI 231 cells but not RasV12 and IVIEKK3 

mutant cell lines

Empty vector, RasV12 and MEKK3 WEHI 231 cells were incubated for 1 or 24 h 

with appropriate stimulations prior to fixation, permeablisation and assessment 

of phospho-AKT levels. Cells were either cultured with media alone (None) or 

50 pg/ml anti-lg. The modified ELISA method- FACE- was used to assess the 

levels of AKT and phospho-AKT. Results are displayed as the ratio of the 

phospho-AKT signal to AKT signals. All AKT levels were calculated as the 

mean of triplicate values and results are for a single, representative experiment.
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Figure 3.33: SHIP SH2, SHIP Cl and Dok PH/PTB mutants do not provide 

any protection from anti-lg mediated growth arrest

Empty Vector, SHIP SH2, SHIP 01 and Dok PH/PB WEHI 231 cells were 

cultured as indicated for 24, 48 or 72 h and then DNA synthesis was assessed 

by pH] thymidine uptake. Cells were treated with anti-lg (0 to 10 pg/ml). Data 

from individual experiments were normalised by expressing the mean pH] 

thymidine uptake values of anti-lg treated cells as a percentage of those 

obtained with control, unstimulated cell cultures. These data are the mean of 5 

separate experiments ± SEM.
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Figure 3.34: SHIP SH2, SHIP Cl and Dok PH/PTB mutants do not affect 
anti-CD40 mediated rescue of anti-lg stimulated growth arrest

Empty Vector, SHIP SH2, SHIP Cl and Dok PH/PB WEHI 231 cells were 

cultured for 48 h with appropriate stimulations and then DNA synthesis was 

assessed by [^H] thymidine uptake. Cells were treated with either media alone 

(None), 10 pg/ml anti-lg (alg) or a combination of 10 pg/ml anti-lg plus 10 pg/ml 

anti-CD40 (alg & aCD40). Data from individual experiments were normalised by 

expressing the mean [^H] thymidine uptake values of each treatment group as a 

percentage of those obtained with the control, unstimulated cell cultures. These 

data are the mean of 5 separate experiments ± SEM.

184



150

2 100

O

D Empty Vector 

I  Dok

□  SHIP SH

□  SHIP Cl

None alg alg & aCD40



Figure 3.35: SHIP SH2 and SHIP Cl mutants display a biphasic caspase 3 

activation profile whereas Empty Vector and Dok PH/PTB mutants do not

Empty Vector, SHIP SH2, SHIP 01 and Dok PH/PTB cells were cultured for 48 

h, with appropriate stimulations, and then stained with 10 pM CaspACE™ FITC- 

VAD-FMK. This acts as a FITC conjugated version of the cell permeable, 

irreversible pan caspase inhibitor Z-VAD-FMK. Therefore it can be used to 

monitor the amount of activated caspase 3 present in the cell by measuring 

fluorescence in the FL1 channel. Stimulations used were: media alone (No 

Stim), 10 pg/ml anti-lg (alg), 10 pg/ml anti-CD40 (aCD40) and 10 pg/ml anti-lg 

plus 10 pg/ml anti-CD40 (alg & aCD4G). The results are displayed as 

histograms of the amount of caspase 3 activation (FL1 fluorescence).
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Figure 3.36: Constructs utilised to generate PKC mutants

(A) Map of the pcDNA3.1 vector. The pcDNAS.I (+) vector (Invitrogen Life 

Technologies) was used to introduce a variety of mutant PKC isotypes into the 

WEHI231 cell line.

Ampicillin; ampicillin resistance gene (bla)

Pcm- cytomegalovirus promoter 

BGH pA: BGH polyadenylation sequence 

f1 ori: origin of replication from the f1 phage 

SV40 ori; SV40 early promoter and origin 

Neomycin: neomycin resistance gene 

SV40 pA: SV40 polyadenylation sequence 

pUG ori: pUC origin

(B) Schematic diagrams of structures of PKC mutants. PKC CAT constructs 

encode a truncated protein in which the catalytic domain is expressed but the 

entire regulatory domain has been deleted. PKC KR constructs encode a full- 

length PKC with a point mutation that abolishes ATP binding ability.
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Figure 3.37: Effect of expression of PKCa constructs on anti-lg induced 

growth arrest In WEHl 231 cells

(A) WEHl 231 cells (1 x10^ cells/well) containing the pcDNA3.1 vector (empty 

vector), PKCa CAT or PKCa KR were cultured, in triplicate, in the presence of 

increasing concentrations of anti-lg antibodies (0, 0.1, 1, 10 pg/ml). Culture 

wells were pulsed with [^H] thymidine (0.5 p,Ci/well) for 4 h prior to harvesting at 

24 h and pH] incorporation was assessed by liquid scintillation counting. Data 

from individual experiments were normalised by expressing the mean pH] 

thymidine uptake values of anti-lg treated cells as a percentage of those 

obtained with control, unstimulated cell cultures. The normalised values from 3 

independent experiments were then pooled and expressed as means ± SEM.

(B) Cells were treated as described above in (A), except that cells were cultured 

for 48 h.

187



pcDNA

PKCaCAT

PKCaKR

0 0.1 1

Anti-lg (mg/mi)

B
0
1

120

0
g-
g 100- 
.5
1
2  80 -

60 -X
pcDNA

PKCaCAT

PKCaKR

0.001 0.1 1
Anti-lg (mg/ml)



Figure 3.38: Effect of expression of PKCa constructs on anti-lg induced 

apoptosis and CD40-mediated rescue in WEHl 231 cells

WEHl 231 ceils (5x10® cells/ml) containing the pcDNAS.I vector (empty 

vector) or expressing PKCa CAT or PKCa KR were cultured in the presence of 

media alone (No stimulation), 10 |ig/ml anti-lg (anti-lg) or a combination of 10 

pg/ml anti-lg and 10 p.g/ml anti-CD40 (anti-lg & anti-CD40) for 48 h. Levels of 

apoptosis and the proportion of cells in each cell cycle phase were determined 

by staining with 50 pg/ml PI staining followed by FACS analysis to assess DMA 

content as described in Materials and Methods. Data are displayed as the 

percentage of cells in each phase of the cell cycle. These data are the mean of 

3 independent experiments + SEM.

188



■»cOflA3.1
■A CAT
DAKR

CO/Gl SpiMM G2/N SmW#W

■nti-Ig

100

90

80

70

i :
#  40 

30 

20 

10 

0:j é L ^

■pcONA3.1
■A CAT□AKR

GO/Gl Sphwe G2/M Subdiploid

(iH-Ig AaitKDAO

■PC0NA3.1 
■A CAT

GO/Gl S pbtM G2/H SuhdiploU



Figure 3.39: The effect of expression of PKCa constructs in WEHl 231 

cells on cellular division at 72 h

WEHl 231 pcDNA3.1 (empty vector) or cells expressing PKCa CAT or PKCa 

KR were stained with 1 |ixM CFSE and then left in culture for 72 h with 

appropriate stimulations. Cells were either treated with media alone (control), 10 

\xglm\ anti-lg (alg), 10 p.g/ml anti-CD40 (aCD40) or 10 (xg/ml anti-lg in 

combination with anti-CD40 (alg & aCD40). Proliferation was assessed by an 

estimate of the percentage of cells in each generation. This calculation was 

done with the Flow Jo proliferation data analysis programme. These data are 

from a single experiment, representative of 2 separate experiments.
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Figure 3.40: Effects of PKC isoform expression on the MMP following BCR 

ligation

WEHl 231 pcDNAS.I (empty vector), PKCa CAT, PKCa KR, PKCÔ CAT, PKCÔ 

KR, PKCe c a t , PKCe KR, PKCÇ CAT and PKCÇ KR cells (5x10® cells/ml) 

were cultured in the presence of 10 p,g/ml anti-lg (anti-lg) or a combination of 10 

(ig/ml anti-lg and 10 fxg/ml anti-CD40 (anti-lg & anti-CD40) for 48 h prior to 

staining with 2.5 f.tM DiOCe. Dissipation of the MMP can been seen as a 

reduction in DiOCe brightness (FL1 fluorescence). The data are displayed as 

histograms of DiOCe brightness (FL1 fluorescence). These data are from a 

single experiment, representative of 3 experiments.
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Figure 3.41 : PKCa expression and activity protects from BCR-stimulated 

dissipation of the MMP

(A) WEHl 231 cells (5x10® cells/ml) containing the pcDNAS.I vector (empty 

vector) or expressing PKCa CAT or PKCa KR were cultured in the presence of 

media alone (No stimulation), 10 p,g/ml anti-lg (alg), 10 fxg/ml anti-CD40 

(aCD40) or a combination of 10 \iQ/m\ anti-lg and 10 p,g/ml anti-CD40 (alg & 

aCD40) for 48 h prior to staining with 2.5 |aM DiOCe. Dissipation of the MMP 

can been seen as a reduction in DiOCe brightness (FL1 fluorescence and was 

assessed by dividing the cells into two populations, high MMP (M2) and low 

apoptotic MMP (M l). The data was then displayed as the percentage of cells 

with a high MMP. These data are the mean values of 3 experiments ± SEM.

(B) Cells were treated as described as above and cultured for 0 to 96 hours 

prior to DiOC6 staining and FACS analysis. The data is from one, 

representative experiment.
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Figure 3.42: Effects of expression of PKCô constructs on anti-lg induced 

growth arrest in WEHl 231 cells
(A) WEHl 231 cells (1 x10^ cells/well) containing the pcDNAS.I vector (empty 

vector) or expressing PKCô CAT or PKCô KR were cultured, in triplicate, in the 

presence of increasing concentrations of anti-lg antibodies (0, 0.1, 1, 10 p,g/ml). 

Culture wells were pulsed with [^H] thymidine (0.5 [iCi/well) for 4 h prior to 

harvesting at 24 h and f  H] incorporation was assessed by liquid scintillation 

counting. Data from individual experiments were normalised by expressing the 

mean [^H] thymidine uptake values of anti-lg treated cells as a percentage of 

those obtained with control, unstimulated cell cultures. The normalised values 

from 3 Independent experiments were then pooled and expressed as means ± 

SEM.

(B) Cells were treated as described above, except cultured for 48 h prior to 

harvesting.
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Figure 3.43: Effects of expression of PKCô constructs on anti-lg induced 

apoptosis and CD40-mediated rescue in WEHl 231 cells

WEHl 231 cells (5x10^ cells/ml) containing the pcDNAS.I vector (empty 

vector) or expressing PKCô CAT or PKCô KR were cultured in the presence of 

media alone (No stimulation), 10 \ig/m\ anti-lg (anti-lg) or a combination of 10 

(ig/ml anti-lg and 10 jjig/ml anti-CD40 (anti-lg & anti-CD40) for 48 h. Levels of 

apoptosis and the proportion of cells in each cell cycle phase were determined 

by staining with 50 pg/ml PI staining followed by FACS analysis to assess DNA 

content as described in Materials and Methods. Data are displayed as the 

percentage of cells in each phase of the cell cycle. These data are the mean of 

3 independent experiments ± SEM.
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Figure 3.44: Expression and activity of PKCÔ protects from BCR- 

stimulated dissipation of the MMP

WEHl 231 cells (5x10^ cells/ml) containing the pcDNA3.1 vector (empty 

vector) or expressing PKCô CAT or PKCô KR were cultured in the presence of 

media alone (No stimulation), 10 pg/ml anti-lg (alg), 10 pg/ml anti-CD40 

(aCD40) or a combination of 10 pg/ml anti-lg and 10 pg/ml anti-CD40 (alg & 

aCD40) for 48 h prior to staining with 2.5 pM DiOCe. Dissipation of the MMP 

can been seen as a reduction in DiOCe brightness (FL1 fluorescence). 

Dissipation of the MMP was assessed by dividing the ceils into two populations. 

The right hand peak having a high healthy MMP and the second having a low 

apoptotic MMP. The data was then displayed as the percentage of cells with a 

high MMP. These data are the mean of 3 independent experiments ± SEM.
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Figure 3.45: Effects of expression of PKCe constructs on anti-lg induced 

growth arrest in WEHl 231 cells

(A) WEHl 231 cells (1 xIO^ cells/well) containing the pcDNA3.1 vector (empty 

vector) or expressing PKCe CAT or PKCe KR were cultured, in triplicate, in the 

presence of increasing concentrations of anti-lg antibodies (0, 0.1, 1, 10 pg/ml). 

Culture wells were pulsed with [^H] thymidine (0.5 pCi/well) for 4 h prior to 

harvesting at 24 h and [^H] incorporation was assessed by liquid scintillation 

counting. Data from Individual experiments were normalised by expressing the 

mean pH] thymidine uptake values of anti-lg treated cells as a percentage of 

those obtained with control cell cultures. The normalised values from 3 

independent experiments were then pooled and expressed as means ± SEM.

(B) Cells were treated as described above, except cells were cultured for 48 h 

prior to harvesting.
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Figure 3.46: The effect of expression of PKCe CAT construct in WEHl 231 

cells on cellular division at 72 h

WEHl 231 pcDNAS.I (empty vector) or cells expressing PKCe CAT were 

stained with 1 p,M CFSE and then left in culture for 72 h with appropriate 

stimulations. Cells were either treated with media alone (control), 10 p,g/ml anti- 

lg (alg), 10 ixg/m! anti-CD40 (aCD40) or 10 jxg/ml anti-lg in combination with 

anti-CD40 (alg & aCD40). Proliferation was assessed by an estimate of the 

percentage of cells in each generation. This calculation was done with the 

FlowJo proliferation data analysis programme. These data are from a single 

experiment, representative of 2 separate experiments.
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Figure 3.47: Effects of expression of PKCe mutants on anti-lg induced 

apoptosis and CD40-mediated rescue in WEHl 231 ceils

WEHl 231 cells (5x10® cells/ml) containing the pcDNAS.I vector (empty 

vector) or expressing PKCe CAT or PKCe KR were cultured in the presence of 

media alone (No stimulation), 10 pig/ml anti-lg (anti-lg) or a combination of 10 

{ig/ml anti-lg and 10 |ig/ml anti-CD40 (anti-lg & anti-CD40) for 48 h. Levels of 

apoptosis and the proportion of cells in each cell cycle phase were determined 

by staining with 50 pg/ml PI staining followed by FACS analysis to assess DNA 

content as described in Materials and Methods. Data are displayed as the 

percentage of cells in each phase of the cell cycle. These data are the mean 

values of 3 Independent experiments ± SEM.
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Figure 3.48: Expression of PKCe constructs may only partially rescue 

WEHl 231 cells from BCR-stimulated dissipation of the MMP

(A) WEHl 231 cells (5x10® cells/ml) containing the pcDNAS.I vector (empty 

vector) or expressing PKCe CAT or PKCe KR were cultured in the presence of 

media alone (No stimulation), 10 pg/ml anti-lg (alg), 10 pg/ml anti-CD40 

(aCD40) or a combination of 10 pg/ml anti-lg and 10 pg/ml anti-CD40 (alg & 

aCD40) for 48 h prior to staining with 2.5 pM DiOCe. Dissipation of the MMP 

can been seen as a reduction in DiOCe brightness (FL1 fluorescence) and was 

assessed by dividing the cells into two populations having a high MMP (M2) or 

a low apoptotic MMP (M l). The data was then displayed as the percentage of 

cells with a high MMP. These data are the mean values of 3 independent 

experiments ± SEM.
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Figure 3.49: Effects of expression of PKCÇ constructs on anti-lg induced 

growth arrest in WEHl 231 cells

(A) WEHl 231 cells (1 x lC^  cells/well) containing the pcDNA3.1 vector (empty 

vector) or expressing PKC^ CAT or PKC^ KR were cultured, in triplicate, in the 

presence of increasing concentrations of anti-lg antibodies (0, 0.1, 1, 10 pg/ml). 

Culture wells were pulsed with [®H] thymidine (0.5 pCi/well) for 4 h prior to 

harvesting at 24 h and [®H] incorporation was assessed by liquid scintillation 

counting. Data from individual experiments were normalised by expressing the 

mean [®H] thymidine uptake values of anti-lg treated cells as a percentage of 

those obtained with control cell cultures. The normalised values from 3 

independent experiments were then pooled and expressed as means ± SEM.

(B) Cells were treated as described above, except cultured for 48 h prior to 

harvesting.
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Figure 3.50: The effect of expression of the PKCÇ CAT construct In WEHl 

231 cells on cellular division at 72 h

WEHl 231 pcDNAS.I (empty vector) or cells expressing PKCÇ CAT were 

stained with 1 yM CFSE and then left in culture for 72 h with appropriate 

stimulations. Cells were either treated with media alone (control), 10 p,g/ml anti- 

lg (alg), 10 (xg/ml anti-CD40 (aCD40) or 10 pg/ml anti-lg in combination with 

anti-CD40 (alg & aCD40). Proliferation was assessed by an estimate of the 

percentage of cells in each generation. This calculation was done with the 

Flow Jo proliferation data analysis programme. These data are from a single 

experiment, representative of 2 separate experiments.
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Figure 3.51 : Effects of expression of the PKCÇ CAT construct on anti-lg 

induced apoptosis and CD40-mediated rescue in WEHl 231 cells

WEHl 231 cells (5x10^ cells/ml) containing the pcDNA3.1 vector (empty 

vector) or expressing PKC^ CAT or PKC^ KR were cultured in the presence of 

media alone (No stimulation), 10 ^g/ml anti-lg (anti-lg) or a combination of 10 

pig/ml anti-lg and 10 |ig/ml anti-CD40 (anti-lg & anti-CD40) for 48 h. Levels of 

apoptosis and the proportion of cells in each cell cycle phase were determined 

by staining with 50 pg/ml PI staining followed by FACS analysis to assess DMA 

content as described in Materials and Methods. Data are displayed as the 

percentage of cells in each phase of the cell cycle. These data are the mean 

values of 3 independent experiments ± SEM.
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Figure 3.52: Expression of PKCÇ constructs protects from BCR- 

stimulated dissipation of the WIMP

(A) WEHl 231 cells (5x10® cells/ml) containing the pcDNAS.I vector (empty 

vector) or expressing PKCÇ CAT or PKC^ KR were cultured in the presence of 

media alone (No stimulation), 10 [xg/ml anti-lg (alg), 10 p,g/ml anti-CD40 

(aCD40) or a combination of 10 gig/ml anti-lg and 10 [xg/ml anti-GD40 (alg & 

aCD40) for 48 h prior to staining with 2.5 pilVI DiOCe. Dissipation of the MMP 

can been seen as a reduction in DiOCe brightness (FL1 fluorescence) and was 

assessed by dividing the cells into two populations having a high MMP (M2) or 

a low apoptotic MMP (M l). The data was then displayed as the percentage of 

cells with a high MMP. These data are the mean values of 3 independent 

experiments + SEM.

(B) Cells were treated as described above but cultured for up to 96 h prior to 

DiOCe staining and FACS analysis.
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Figure 3.53: Pro-apoptotic Bcl-2 family members are differentially 

regulated In PKC mutants

WEHl 231 pcDNAS.I (empty vector), PKCÔ CAT, PKC% CAT and PKCÇ KR 

cells (10^ cells/lane) were cultured for 5 minutes with (1) medium (no 

stimulation), (2) 10 p,g/ml anti-lg or (3) 10 p,g/ml of anti-lg and 10 jxg/ml of anti- 

CD40 or 24 h with (4) medium (no stimulation), (5) 10 p.g/ml anti-lg or (6) 10 

f-tg/ml of anti-lg and 10 p,g/ml of anti-CD40 p,g/ml or 48 h with (7) medium (no 

stimulation), (8) 10 |ig/ml anti-lg or (9) 10 p,g/ml of anti-lg and 10 iJig/ml of anti- 

CD40 before preparing whole cell lysates. Whole cell lysates (50 pg/lane) were 

analysed by Western blotting, using the NuPAGE system of gel electrophoresis. 

Levels of total Bad and Bid were determined by Western blotting.
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Figure 3.54: Dynamic switch model for conversion of BCR stimulated 

arachidonic acid apoptosis signal to a CD40 stimulated PGEz mitogenic 

signal

Ligation of the BCR induces early ERK signals that contribute to the activation 

of PLA2 and arachidonic acid production. The accumulation of arachidonic acid 

leads to a loss of mitochondrial membrane potential and commitment of the cell 

to apoptosis. Ligation of CD40 prevents BCR-driven apoptosis via the induction 

of B c IX l . B c IX l is a key mediator of CD40-dependent survival and it does so by 

protecting the mitochondria from arachidonic acid dependent disruption. The 

induction of B c IX l by CD40 therefore impairs BCR driven activation of cathepsin 

B and subsequent apoptosis. However, expression of B c IX l cannot protect 

WEHl 231 cells from consequent BCR-driven growth arrest. The precise 

mechanism of CD40 restoration of proliferation is incompletely understood but it 

involves the induction of sustained and cyclic ERK signals. The induction of 

C0X2 and subsequent production of PGE2 downstream of CD40 appears to 

contribute to the activation of sustained ERK signals and hence proliferation. 

However, CD40 may also induce the production of additional eicosanolds to 

further promote proliferation of WEHl 231 cells.
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Chapter 4; Signalling mechanisms underlying PcyRIlb-mediated 

growth arrest and apoptosis during negative feedback 

inhibition of B cell activation 

4.1 Introduction

4.1.1 FcyRlib signalling negatively regulates BCR signalling in mature B 

lymphocytes

It is well documented that in splenic B cells with a mature phenotype (lgM'°, 

IgD '̂, CDS") ligation of the BCR signals for survival, growth, proliferation and Ab 

production. Lipid rafts, which are one type of membrane microdomain enriched 

in glycosphingolipids and cholesterol, are important in transducing this positive 

BCR signalling. Upon BCR stimulation, lipid rafts build up spatially 

compartmentalised signalling clusters in which signalling molecules such as 

adaptor proteins and kinases/ phosphatases can be recruited to the BCR. In the 

later stages of the immune response, FcyRlib, the low affinity receptor for the 

Fc portion of IgG, is recruited to BCR-containing lipid rafts enabling immune 

complexes to coligate the BCR and FcyRlib. Coligation of FcyRlib suppresses 

BCR-mediated signalling including calcium mobilisation, AKT and MARK 

activation (Figure 1.20). FcyRlib thus inhibits BCR-driven proliferation ensuring 

the activation of B lymphocytes is a carefully regulated process (346, 460).

The co-aggregation of the BCR and FcyRlib within lipid rafts induces the 

tyrosine phosphorylation of a single ITIM located in the cytoplasmic tail of 

FcyRlib (282, 461). Lyn is required for phosphorylation of FcyRlib and B cells 

from Lyn-deficient mice display enhanced BCR-mediated induction of MARK 

and proliferation reflecting the importance of Lyn in the negative regulation of 

BCR signalling (462). It has been demonstrated that the phosphorylated ITIM 

(p-ITIM) can bind the phosphatases SHIR, SHR1 and SHR2 however the 

functional substrates and mechanism of inhibition have not been fully resolved 

(248, 254, 255). The main protein to be recruited to the p-ITIM of FcyRlib in 

mice, is the inositol phosphatase SHIR, which has been demonstrated to be 

indispensable for FcyRlib mediated negative feedback inhibition (463, 464). As 

has been previously described, this inositol phosphatase can antagonise RI-3
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kinase activation by degradation of Pl-(3,4,5)-P3. In the murine mast cell model, 

FcyRlib signalling has been shown to both Inhibit DMA synthesis and block cell 

cycle entry at G0/G1. This is done by the recruitment of SHIP which inhibits the 

activation of ERK, JNK, p38 and AKT and also by blocking the increase in 

expression of cyclins D2, D3 and A which is normally observed following 

stimulation of the Kit receptor (270). This suggests that FcyRlib can inhibit 

multiple cell signalling cascades simultaneously. In contrast, in human B 

lymphocytes, both SHIP and SHP2 have been demonstrated to be important for 

negative signalling (465). Binding of SHP2 to FcyRlib increases the 

phosphatase activity of SHP2 by 2 to 3 fold and acts to dissociate both SHIP 

and She from the multimeric protein complex suggesting that in SHP2 is the 

dominant phosphatase (465). Moreover, both She and SHIP are thought to be 

substrates for SHP2 and the dephosphorylation of She will result in inhibition of 

both the RasMAPkinase and PI-3 kinase pathways. The actions of SHP2 are 

now also thought to be of importance in the murine model (252).

Although SHIP, SHP2 and SHP1 are recruited to the p-ITIM of FcyRlib following 

coligation of the BCR and FcyRlib on mature B lymphocytes, there is no 

definitive mechanistic pathway defined for how negative feedback inhibition 

converts the pro-proliferative BCR signal to a growth arrest signal. However 

there have been steps forward in defining some elements of this pathway.

4.1.2 FcyRlib signalling antagonises the action of PI-3 kinase

Recruitment of SHIP acts to antagonise the action of PI-3 kinase, and hence 

BCR-mediated positive signalling, by the degradation of Pi-(3,4,5)-P3. the 

product of PI-3 kinase, to PI-(3,4)-P2 (466). PI-(3,4)-p2 has been shown to 

inhibit both AKT and Btk thus promoting apoptosis (346, 467). Indeed, the 

activity of AKT is enhanced in bone marrow-derived mast cells from SHfF^' 

mice (344). However, AKT is known to bind both PI-(3,4,5)-Pa and PI-(3,4)-p2 

via its PH domain and such binding acts to localise AKT to the cell membrane 

(468). Although activation of AKT requires phosphorylation by PDK1, 

membrane localisation appears to be the most potent factor in activation of AKT 

(59, 265). Thus in contrast to the proposal that to PI-(3,4)-P2can inhibit AKT, 

these translocation studies suggest that AKT can aiso be stimulated by PI-
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(3.4)-p2, the product of SHIP-mediated dephosphorylation of PI-(3,4,5)-p3 and 

therefore SHIP could potentially activate AKT under conditions in which Pl-

(3.4)-p2 is allowed to accumulate (282). One might predict that therefore 

FcyRlib signalling could have an activatory effect on AKT. Nonetheless, FcyRlib 

signalling is generally reported to be inhibitory of AKT (346, 467). Perhaps 

consistent with this, recent work in this laboratory has demonstrated that ligation 

of FcyRlib in mature B cells can also induce PTEN resulting in a depletion of 3’- 

phosphorylated phosphatidylinositol lipids such as to PI-(3,4)-P2 and hence an 

antagonism of PI-3 kinase and AKT signalling (124). Thus FcyRlib signalling 

may alter membrane localisation of AKT. Indeed, GFP tagged AKT and time 

lapse confocal microscopy of live cells has shown that coligation of FcyRlib 

abolishes membrane localisation of AKT (56).

4.1.3 FcyRlib can reduce BCR-stimulated calcium mobilisation

Following ligation of the BCR there is an increase in intracellular calcium (112), 

which is attenuated by FcyRlib coligation (469). However, the same experiment 

carried out in SHIP deficient cells resulted in sustained calcium mobilisation 

reflecting long lasting calcium oscillations (469). The precise pattern and 

localisation of calcium increases can affect the complement of proteins that are 

activated such that downstream effector molecules can decode the information 

contained in the duration and amplitude of the calcium signal providing a 

mechanism where calcium can achieve specificity in signalling to the nucleus. 

For example, NF-kB and JNK are activated by a large transient calcium rise 

whereas a low sustained calcium plateau activates NF-AT (470). Therefore, 

differential calcium signals may provide the transcriptional specificity used to 

modulate B cell activation states.

The exact mechanism for reduction in calcium levels is not known. However it 

has been demonstrated that in addition to removal of the 5’ phosphate residue 

from PI-(3,4,5)-P3, SHIP can also act to degrade inositol-1, 3, 4, 5- 

tetraphosphate (IP4 ) to the inactive inositol-1,3,4- triphosphate. IP4 is an 

activator of an endothelial membrane Câ "̂  channel therefore the degradation of 

IP4 by SHIP may reduce the intracellular calcium flux using these channels 

(282, 346). The degradation of PI-(3,4,5)-P3 by SHIP also impairs the ability of 

the BCR to recruit and activate PH domain-containing proteins. SHIP can thus
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decrease the calcium flux further by impairing the recruitment of Btk and the 

activation of PLCy that normally generates inositol-1,4, 5-triphosphate and 

hence acts to increase intracellular calcium levels. (346).

4.1.4 FcyRlib signalling downmodulates activation of the 

RasERKMAPkinase pathway

FcyRlib signalling can also inhibit the ERKMAPK cascade since SHIP and Grb2 

directly compete for the binding of phospho-tyrosine residues on She (Figure 

4.1). Consequently, SHIP impairs the formation of Grb-2/SOS complexes, 

resulting in suppression of Ras and hence, the MAPK cascade (267, 268, 471). 

Furthermore, FcyRlib and SHIP can suppress the MAPK cascade via the 

recruitment and activation of p62 Dok (62 kD protein downstream of tyrosine 

kinase, also known as Dok1). The N-terminal region of Doki has a PH domain 

to allow phospholipid/membrane-binding. Doki also has a phospho-tyrosine- 

binding (PTB) domain and a C-terminal proline/ tyrosine-rich region that 

regulates the repertoire of proteins that can associate with D ok i. Co­

aggregation of FcyRlib and the BCR increases the tyrosine phosphorylation of 

SHIP enabling Doki to bind to SHIP using its PTB domain. At the plasma 

membrane, Doki becomes tyrosine phosphorylated allowing it to interact with 

and activate RasGAP (Ras GTPase activating protein). RasGAP enhances the 

intrinsic GTPase activity of Ras leading to the inhibition of Ras and its 

downstream effectors including ERK (269) (Figure 4.1). In accordance with this, 

Dok' '̂ mice do not exhibit FcyRllb-mediated suppression of B cell proliferation 

(342). FcyRlib can also suppress BCR-mediated activation of ERK via the 

induction of the MAPK phosphatase Pad leading to dephosphorylation and 

inhibition of ongoing ERK activation (124).

4.1.5 FcyRlib can induce apoptosis

FcyRlib signalling is proposed to have different functions depending on the 

context of the signal. Homo-aggregation of FcyRlib without coligation of the 

BCR is thought to provide a pro-apoptotic signal (243)(Figure 1.21). Although 

the exact nature and function of this signal has not been elucidated it is thought 

to maintain peripheral tolerance to potentially cross-reactive autoantigens (244).
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The main evidence comes from FcyRlib deficient mice that die at 8 months due 

to the development of autoantibodies and autoimmune glomerulonephritis that 

closely models the human autoimmune disease Goodpasture’s Syndrome. In 

addition, these mice develop autoimmune diseases, such as arthritis, with 

increased severity as compared to wild type mice (244).

Simultaneous coligation of both the BCR and FcyRlib is thought to be 

responsible for negative feedback inhibition of the BCR proliferative and Ab 

production response (236). This prevents B cells from overproducing Ab and 

switches off the immune response once the Ag has been cleared. This 

homeostatic mechanism restores the number of activated B cells to the levels 

seen pre-infection and prevents aberrant Ab production. Malfunction of negative 

feedback inhibition can cause pathology as seen in arthritis, SLE and 

Goodpasture’s Syndrome. Previously groups have reported that coligation of 

FcyRlib results in the prevention of DNA synthesis, reduction in cell proliferation 

and a block in the cell cycle at G0/G1. However, in this chapter, I will 

demonstrate that coligation of BCR and FcyRlib can induce not only growth 

arrest but also apoptosis.

4.2 Aims and Objectives

Previous work in our laboratory and others has demonstrated that ligation of the 

BCR results in ERKMAPK-dependent proliferation in mature B cells (124, 275, 

278-280). However, simultaneous coligation of the BCR and FcyRlib results in 

inhibition of growth and a reduction in antibody production (124, 281-283). Work 

in this laboratory has recently demonstrated that coligation of BCR and FcyRlib 

also results in apoptosis. This chapter aims to dissect the signalling 

mechanisms employed to mediate both BCR-stimulated proliferation and 

FcyRllb-mediated growth arrest and apoptosis.

The specific aims of this chapter are to:

• Demonstrate that ligation of the BCR results in proliferation mediated by 

the ERKMAPK and PI-3 kinase pathways

• Demonstrate and that simultaneous coligation of the BCR and FcyRlib 

results in both growth arrest and apoptosis
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Dissect whether FcyRllb-mediated growth arrest and apoptosis are as a 

result of abrogation of the pro-proliferative signalling induced by BCR 

ligation (e.g. ERKMAPK and PI-3 kinase)

Investigate whether coligation of FcyRlib prevents proliferative signalling 

by downmodulating the expression and activation of pro-survival/ pro- 

proliferative NF-k B subunits

Investigate whether loss of MMP and expression/ activation of the pro- 

apoptotic Bcl-2 family members Bid and Bad contribute to FcyRllb- 

mediated apoptosis

Identify which executioner proteases families are activated by FcyRlib 

and whether this activation occurs up or downstream of the loss of 

mitochondrial membrane integrity. In particular it is planned to ascertain 

whether the canonical caspase 3 or the caspase 8 pathway are utilised 

to mediate the apoptotic phenotype

Investigate whether FcyRlib coligation can upregulate p53 and hence 

activate pro-apoptotic genes such as Apaf 1, Bid and Bax
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4.3 Results

4.3.1 Ligation of the BCR results in proliferation whereas coligation of 

FcyRlib mediates growth arrest

To investigate the key signals for growth, proliferation and apoptosis in negative 

feedback inhibition of mature splenic B cells we used 3 culture conditions 

throughout this chapter. Culture the B cells with media alone (No stimulation); 

addition of F(Ab’ )2  fragments of anti-IgM were used mitogenically stimulate the 

BCR (BCR) and finally a combination of F(Ab’ )2 fragments of anti-IgM and intact 

anti-IgM which act to simultaneously coligate both the BCR and FcyRlib (BCR & 

FcyRlib) to induce growth arrest and apoptosis (124).

Incubating the cells with media alone (No Stimulation) results in no DNA 

synthesis (Figure 4.2 A). Furthermore, cell counts show that after 48 hours 

there has been no significant increase in cell numbers (Figure 4.2 B), and CFSE 

staining shows that there has been no cell division (Figures 4.2 C and D).By 

contrast, ligation of the BCR results in an increase in DNA synthesis as 

measured by [^H] Thymidine uptake (Figure 4.2 A). This is also corroborated by 

the CFSE data (Figure 4.2 C and D), the decrease in fluorescence 

demonstrating that cell division is occurring from 24 hours post BCR ligation. 

Moreover, the actual number of cells has increased by more than 2 fold within 

48 h post-BCR ligation (Figure 4.2 B). Furthermore, statistical analysis of the 

CFSE data indicated that the mode number of divisions after ligation of the BCR 

was generation 2 (with 37% of cells) as compared to none (with 40%) of the 

cells when cells are unstimulated (Figure 4.2 D).

In contrast, treatment to coligate both the BCR and FcyRlib resulted in a lack of 

proliferation as assessed by DNA synthesis assay (Figure 4.2 A). In 

corroboration, statistical analysis of CFSE data shows that the majority of cells 

have undergone one or less rounds of division, again reiterating that these cells 

are not proliferating (Figure 4.2 D). Furthermore, the number of cells recorded 

was actually slightly reduced over 48 hours following coligation of both the BCR 

and FcyRlib (Figure 4.2 B) and this was corroborated by the finding that the

211



number of CFSE-stained cells recovered was reduced under conditions of 

coligation of the BCR and FcyRlib (Figure 4.2 C).

4.3.2 Coligation of the BCR and FcyRlib results in apoptosis

The finding that there is a reduction in the number of cells recovered from 

culture in which the BCR and FcyRlib are colligated suggested that such cells 

are dying. Indeed, coligation of the BCR and FcyRlib results both in a block of 

cells in GO/Gl and an increase in the number of subdiploid, and therefore 

apoptotic, cells as compared to unstimulated or BCR-ligated cells (Figures 4.3 A 

and B). The percentage of subdiploid cells increases from 11% in unstimulated 

cells to 28% in BCR and FcyRlib coligated cells (Figure 4.3 B). There is a small 

decrease in the percentage of cells in GO/Gl after coligation of the BCR and 

FcyRlib as compared to ligation of the BCR alone (Figure 4.3 B). However the 

greatest difference is in the shift from cells in the mitogenic phases of the cell 

cycle, 30% after ligation of the BCR compared to just 3% following coligation of 

the BCR and FcyRlib (Figure 4.3 B). This demonstrates, again, that ligation of 

the BCR induces proliferation that can be inhibited by coligation of FcyRlib. In 

fact there is a 15 fold increase in BCR ligated cells entering mitogenic phases of 

the cell cycle as compared to unstimulated cells (Figure 4.3 B).

To further confirm that cell death was occurring by apoptosis we investigated 

FcyRllb-coligated cells using fluorescence microscopy to assess DNA 

condensation. By using the DAP! stain It possible to Identify chromatin 

condensation, a distinct feature of apoptosis. When cells are left untreated the 

DNA staining is diffuse within the nuclei (Figure 4.4) however using 

dexamethasone to stimulate apoptosis you can observe brightly staining areas 

within the nuclei (Figure 4.4). This chromatin condensation is a classical 

hallmark of apoptosis. Consideration of FcyRlib colligated cells reveals brightly 

staining nuclei (Figure 4.4) suggesting that an active process of apoptosis 

rather than necrosis is occurring.

4.3.3. Simultaneous coligation of the BCR and FcyRlib results in 

mitochondrial-dependent apoptosis

To further analyse the mechanism utilised to mediate FcyRllb-mediated 

apoptosis we investigated whether the mitochondrial apoptotic pathway was
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involved. Coligation of the BCR and FcyRlib resulted In the full loss of MMP by 

120 h as indicated by the decrease in DiOCe staining (Figures 4.5 A and 4.6 A 

and B). By contrast, at 96 h BCR-stimulated cells have a normal MMP 

distribution and appear to be single population with a reasonably homogeneous 

MMP (Figure 4.5 A). However, at 120 h the cells fall into two populations: one 

with a high “healthy” MMP and one with a low, “apoptotic” MMP suggesting that 

only some of those cells may be beginning to die. Furthermore, the percentage 

of cells with a high MMP is decreased from 85% in cells treated to ligate the 

BCR alone to 51% following coligation of the BCR and FcyRlib after 48 h 

(Figure 4.6 A) and the percentage of cells which have dissipated their MMP 

further increases over time following coligation of both the BCR and FcyRlib 

(Figure 4.6 B). Figure 4.6 B shows that the percentage of cells with a high MMP 

following coligation of the BCR and FcyRlib Is reduced from 74% at 24 h to 36% 

at 96 h. Consideration of another marker of MMP, JC1, also demonstrates a 

reduction in the percentage of cells with a high MMP following coligation of 

FcyRlib (Figure 4.5 B). Both types of analysis also indicate that unstimulated 

mature B cells die by apoptosis following disruption of their MMP between 48 

and 120 h.

FcyRllb-mediated loss of MMP is associated with another classical marker of 

apoptosis, translocation of cytochrome c from the mitochondria to the cytosol. 

Thus, following coligation of FcyRlib the sub-cellular distribution of cytochrome 

c is altered, with an increase in the ratio of cytochrome c in the cytosol relative 

to the mitochondria. This increases from 0.4 following BCR to ligation to 5.4 

following BCR and FcyRlib coligation (Figure 4.6 C). Cytochrome c release from 

the mitochondria Is a hallmark of apoptosis and in the cytosol it Is known to 

induce both caspase-dependent and independent apoptosis. Furthermore, it is 

also an indication of mitochondrial permeability transition which allows 

molecules such as Smac to be released from the mitochondria, dissipates the 

MMP and irreversibly commits the cells to apoptosis (153, 173, 410, 412).

It is important to note, that the no stimulation treatment induces both a

dissipation of the MMP (Figures 4.5 B and 4.6 B) and an increase in the

subdiploid population (Figure 4.3) albeit at a much reduced rate to coligation of

BCR and FcyRlib or dexamethasone. However, this does mean that the no
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stimulation condition does not provide a good survival control for coligation of 

BCR and FcyRlib, as apoptosis is still occurring. Therefore in many of the 

experiments we have used murine IL4 which prevents apoptosis in mature B 

cells as a survival control. IL4 does indeed induce cell survival as demonstrated 

by the lack of apoptotic population (Figure 4.3) and can also act as a control for 

BCR-driven proliferation as it does not induce cell proliferation (Figure 4.2 D).

4.3.4. BCR-mediated proliferative signalling is mediated by the ERKMAPK 

cascade and can be abrogated by coligation of FcyRlib

Previous work in this laboratory demonstrated a role for ERKMAPkinase 

signalling in proliferation following ligation of the BCR (124), however this 

focussed on early signalling events generated prior to 30 min post-BCR 

engagement (27, 124, 472). Therefore we decided to investigate the nature and 

kinetics of later ERK signals and the potential role in BCR-induced proliferation 

in mature B cells.

As is widely established, ligation of the BCR on mature B cells induces a strong 

phospho-ERK signal that is initiated within sec and peaks at 5 min and returns 

to basal levels within 30 to 60 min (Figure 4.7 A, and B (275)). Interestingly, this 

ERK signal may be cyclical in mature B cells, as ligation of the BCR induces a 

peak in phospho-ERK/ ERK ratio at 24 h and again after 48 h (Figure 4.7 B and 

Data not shown). Both the early and late phospho-ERK signals, stimulated by 

ligation of the BCR, are completely abrogated when both the BCR and FcyRlib 

are coligated (Figure 4.7 A and B).

To determine the role of such ERK signalling we used a combination of 2 MEK 

inhibitors- PD98059 and U0126, to block MEK1/2 i.e. the upstream signalling 

pathway to ERK. This resulted in a reduction of the DNA synthesis response to 

ligation of the BCR, to 15% of the DNA synthesis observed following ligation of 

the BCR alone (Figure 4.8 A). Furthermore, analysis of cell cycle status reveals 

that the percentage of cells in both GO/Gl and subdiploid populations were 

increased by MEK inhibition combined with a concomitant decrease in cells in 

the mitogenic phases of the cell cycle from 52% without the inhibitor to 40% 

following MEK inhibition (Figure 4.8 B). Interestingly, MEK inhibition does not 

affect dissipation of the MMP following ligation of the BCR (Figure 4.8 C). This
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suggests that the U0126-dependent increase In apoptotic cells is stimulated 

independently of or alternatively downstream of the opening of the 

mitochondrial permeability transition pore.

Taken together these data demonstrate that the RasERKMAPK pathway is 

required for proliferation following ligation of the BCR and abrogation of this 

signal, as seen by coligation of FcyRlib, results in increased growth arrest and 

to a small extent, apoptosis. Moreover, they suggest that coligation of FcyRlib 

can mediate the recruitment of signalling molecules which act to downmodulate 

the ERKMAPK pathway.

4.3.5. FcyRllb-mediated apoptosis requires abrogation of the PI-3 kinase 

signal

The low level of apoptosis observed in the presence of MEK inhibitors 

suggested that suppression of ERK was sufficient to mimic apoptosis resulting 

from coligation of FcyRlib. It was therefore decided to investigate the role of 

BCR-stimulated PI-3 kinase in BCR-mediated survival and proliferation as AKT 

transduces survival in B cells and FcyRlib triggers PI-3 kinase-dependent 

pathways. We investigated the role of the PI-3 kinase pathway by using the 

specific inhibitor LY294002. The DNA synthesis response normally induced by 

ligation of the BCR was completely abrogated in cells treated with LY294002 at 

concentrations previously shown to be non-toxic in B cells (Figure 4.9 A and 

data not shown). To investigate whether this was due to growth arrest or 

apoptosis cell cycle status of this population was assessed. LY294002 treated 

cells were predominantly found in G0/G1 phase and there was also an Increase 

in cell death relative to BCR control cells (Figure 4.8 B). Thus, the subdiploid 

population increases from just 10% in BCR-stimulated cells to 44% in such cells 

treated with LY294002 (Figure 4.8 B). That this is not simply a toxicity response 

to the PI-3 kinase inhibitor, is corroborated by the finding that cells unstimulated 

show only a small increase in subdiploid population in the presence of this 

inhibitor (Data not shown). Interestingly, consistent with an increase in apoptotic 

population there is also an enhanced loss of MMP (Figure 4.8 C). This suggests 

that LY294002-dependent apoptosis is stimulated upstream of the opening of 

the mitochondrial permeability transition pore.
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One of the key downstream effectors of the PI-3 kinase survival pathway is the 

kinase AKT. This molecule is known to provide a mechanism whereby cells can 

modulate the activation and localisation of the pro-apoptotic Bcl-2 family 

member, Bad (Figure 1.7). Phosphorylation of AKT leads to phosphorylation of 

Bad and so sequestration of Bad by cytosolic 14-3-3 proteins, this prevents Bad 

from interacting with the mitochondria and hence prevents and pro-apoptotic 

action of Bad. However, when Bad remains unphosphorylated it can bind B c IX l 

which sequesters B c IX l , preventing B c IX l from protecting the mitochondrial 

membrane integrity. This allows opening of the mitochondrial permeability pore 

and initiates pro-apoptotic signalling. Therefore the implication is that PI-3 

kinase has a pro-survival function by activating AKT and hence Bad. We would 

postulate that the PI-3 kinase inhibitor LY294002 might stimulate apoptosis by 

preventing AKT activation and hence initiating pro-apoptotic Bad signalling.

To further dissect such a role for PI-3 kinase in mature B cells we utilised the 

protein phosphatase inhibitor microcystin and the FACE method to analyse AKT 

activation. Microcystin, extracted from cyanobacteria, acts to inhibit both protein 

phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) and hence can be 

used to monitor cumulative AKT phosphorylation over time. Cells not treated 

with microcystin provide a snapshot indication of AKT phosphorylation at a 

given point in time. In the absence of microcystin, BCR-stimulated cells 

demonstrate basal levels of AKT phosphorylation (Figure 4.10). In contrast in 

the presence of microcystin, indicates that BCR-stimulated cells show a strong 

yet dynamic phospho-AKT signal (Figure 4.10). Thus, the fact that the there are 

only small differences between the unstimulated and BCR ligated groups in the 

absence of microcystin treatment suggests that there is rapid cycling of AKT 

phosphorylation and dephosphorylation.

In the presence of microcystin, FcyRlib coligation results in a phospho-AKT 

signal very similar to basal levels in unstimulated cells (Figure 4.10). 

Interestingly, in the absence of microcystin, we can observe that coligation of 

the BCR and FcyRlib results in a phospho-AKT signal that is 8 times lower than 

the basal level in unstimulated cells (Figure 4.10). This suggests that coligation 

of FcyRlib not only inhibits BCR-mediated activation of AKT but in addition 

enhances the dephosphorylation of AKT to below the basal levels presumably
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via the activation of PP1 and/or PP2A. It is interesting to note that, in the 

absence of microcystin, BCR-stimulated and FcyRllb-stimulated AKT signals 

appear to be the same. However, consideration of the dynamics of activation of 

AKT reveals that there is an alteration in the kinetics of AKT phosphorylation/ 

dephosphorylation. These data taken together suggest that coligation of 

FcyRlib promotes apoptosis using mechanisms that result in both the inhibition 

of PI-3 kinase/AKT activation and also deactivation of ongoing AKT signals.

4.3.6. Neither JNK or p38 MARK are involved in BCR-mediated 

proliferative signalling or FcyRilb-mediated apoptotic signalling

Another MAP kinase, p38, has been implicated in both the initiation of apoptosis 

and in mediating proliferation depending on cell context (70, 91, 473). Therefore 

it was decided to investigate whether this kinase could be recruited by the BCR 

to mediate proliferation or by FcyRlib to mediate apoptosis. In order to 

investigate the role of the p38 MAP kinase pathway, the p38 inhibitor 

SB203500, at concentrations previously found to be effective but not toxic in B 

cells (Data not shown), was tested for its effects on DNA synthesis, cell cycle 

and MMP status in response to BCR/ FcyRlib signalling in mature B cells. The 

levels of BCR-mediated DNA synthesis, the distribution of such cells throughout 

the cell cycle and their MMP were not affected by SB203500 (Figures 4.11). In 

addition, inhibition of p38MAPK did not prevent FcyRllb-mediated growth arrest 

and apoptosis. These data suggesting that p38 does not play a key role in 

either BCR or BCR/FcyRllb-mediated responses is supported by the finding that 

p38 activity appears to be suppressed below basal levels at 48 h irrespective of 

B cell receiving survival (IL4), proliferative (BCR) or growth arrest/apoptotic 

(BCR/FcyRllb) signals (Figure 4.12 A).

Similarly, the alternate SAPK, JNK which has also been associated with pro- 

apoptotic signalling (94, 474-476) and hence provided a good candidate for 

recruitment by FcyRlib was also suppressed by all 3 types of signal (Figure 4.12 

B). Collectively, these data therefore suggest that neither p38 or JNK MAP 

kinases play key roles in BCR-mediated proliferation or FcyRlib- mediated 

apoptosis of mature B cells.
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4.3.7 FcyRllb-mediated apoptosis is not likely to be caspase 3-dependent

Having ascertained that during FcyRllb-mediated apoptosis there is a 

dissipation of MMP we decided to investigate the role of the key effector 

molecules known to be involved in the mitochondrial apoptotic programme. 

Firstly, we investigated caspase 3, the canonical executioner protease that is 

associated with apoptotic morphology. The caspase 3 activating drugs, 

dexamethasone and ceramide, produced a caspase 3 activation profile with a 

large FL1 peak around 1500 units (Figure 4.13). This was used a positive 

control to demonstrate a high caspase activation profile. Un stimulated cells 

demonstrated a low caspase activation profile however there was some basal 

caspase 3 activation perhaps consistent with previous data that suggests that 

unstimulated cells undergo some degree of spontaneous apoptosis by 48 h 

(Figures 4.13). However, cells treated to ligate the BCR, which is both a pro­

survival and pro-proliferative signal resulted in a caspase 3 activation profile 

which is reduced as compared to the unstimulated cells, as would be predicted 

(Figure 4.13). Interestingly, there is still a basal level of caspase 3 activation 

even in these proliferating cells. This may reflect evidence that caspase 3 has 

been implicated in the entry of B lymphocytes into the cell cycle (411, 477, 478). 

As an additional control we used a cell permeable Bax protein to stimulate 

mitochondrial dependent apoptosis (Figure 4.13 A). Interestingly, this did not 

induce a caspase 3 activation profile activation profile over basal levels. This 

suggests that apoptosis mediated by the mitochondrial pathway in mature B 

lymphocytes can be caspase-3 independent.

Interestingly, coligation of FcyRlib produces a caspase activation profile that is 

only slightly enhanced above the basal level seen in unstimulated cells. These 

data suggest that FcyRllb-mediated apoptosis may utilise alternative 

executioner proteins to induce an apoptotic morphology. Furthermore, it 

demonstrated that Bax activation of the mitochondrial pathway does not seem 

to activate caspase 3 in mature B cells. This might suggest that the 

mitochondrial pathway activated by FcyRlib ligation may involve Bax and non- 

canonical executioner proteases.
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4.3.8 Simultaneous caspase, cathepsin B and calpain Inhibition rescues 

mature B cells from FcyRllb-mediated apoptosis

Having ascertained that FcyRllb-mediated apoptosis is uniikely to be caspase 

3-dependent it was decided to identify other executioner proteases that may be 

involved in this form of apoptosis. Thus, inhibitors of alternative executioner 

proteases were assessed for their effects on the growth arrest, apoptosis and 

dissipation of the MMP induced by the coligation of the BCR and FcyRllb. Dose- 

responses were completed to make sure I utilised a non-toxic, effective 

concentration of these inhibitors (Data not shown). Firstly we assessed DNA 

synthesis by [^H] Thymidine assay which revealed that neither Z-VAD-FMK 

(inhibitor of caspases 1 ,3,4 and 7), EST (cathepsin B inhibitor) or the calpain 

inhibitor, either alone or in combination, provided rescue from FcyRllb-mediated 

inhibition of DNA synthesis (Figure 4.14). However interestingly, these inhibitors 

did impact on BCR-mediated DNA synthesis (Figure 4.14). The pan-caspase 

inhibitor Z-VAD-FMK was inhibitory to BCR-mediated DNA synthesis (Figure 

4.14). Use of some executioner proteases in combination also resulted in a 

reduction in BCR-mediated DNA synthesis and dose-response studies did not 

provide any relief from growth arrest (Figure 4.14 and Data not shown). 

However, this is not simply a toxicity effect as unstimulated cells treated with 

executioner proteases did not reduce their DNA synthesis levels (Figure 4.14). 

This points to a role of caspases and other executioner proteases in pro- 

proliferative signalling in mature B lymphocytes and is consistent with the 

finding that BCR-treated cells exhibit caspase 3 activation. (411, 477, 478).

Consistent with the finding that FcyRllb did not substantially stimulate caspase 

3 activity, use of the inhibitors singiy did not block the FcyRllb-mediated 

increase in apoptosis (Figure 4.15 A). However, used in combination these 

inhibitors reduce the number of subdipioid cells in response to coligation of the 

BCR and FcyRllb, from 28% when no inhibitors are used, to around 12% when 

2 inhibitors are used together or 14% when all 3 are used together (Figure 4.15

A). In addition to confirming that these reagents are not toxic, these data 

therefore suggest that these executioner protease systems are able to 

compensate for each other and only when multiple of the pathways are blocked 

can we observe inhibition of FcyRllb-mediated apoptosis. Consistent with this,
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cell counts reveal that recoveries following BCR and FcyRllb coligation can be 

increased by 143% to 243% by treatment with any 2 executioner proteases in 

combination with each other (Figure 4.15 B). This would suggest that blocking 

multiple executioner protease families promotes survival of a larger population 

of mature B cells and may imply that blocking certain combinations of 

executioner pathways can not only reduce apoptosis but also reinstate 

proliferation. However, when all 3 Inhibitors are used together the cell count 

drops to levels almost exactly the same as those when no inhibitors are used 

(Figure 4.15 B).

Analysis of the cell cycle status of cells after treatment to coligate both BCR and 

FcyRllb shows that a high percentage of cells are in G0/G1(57%, Figure 4.16 A) 

presumably reflecting FcyRllb-mediated growth arrest. This percentage of cells 

in G0/G1 stays at roughly the same level, between 54 and 57%, regardless of 

the use of caspase, cathepsin and calpain inhibitors on their own or in 

combination with each other (Figure 4.16 A). The exception is the use of the 

calpain inhibitor alone which decreases the cells in G0/G1 to 36% (Figure 4.16

A), this is due to a corresponding increase in the subdiploid population, as there 

is also a reduction in the number of cells in both S phase and G 2/M phase 

(Figure 4.16 B). Consistent with the cell count data, the combination treatments 

resulted in an increase in the mitogenic population from 10% when the cells are 

not treated with inhibitors to between 26 and 28% depending on the 

combinations used (Figure 4.16 B), An increase in both the percentage of cells 

entering mitogenic phases of the cell cycle and number of cells following the 

addition of any 2 inhibitors in combination suggests that cell proliferation is 

occurring (Figures 4.15 B and 4.16 B). As there is no increase in DNA synthesis 

(Figure 4.14) this presumably reflects that the proteases may be targeting the S 

to G2/M transition or even mitosis itself.

Having established that inhibitors of executioner proteases used in combination 

can rescue cells from FcyRllb-mediated apoptosis, we wanted to investigate if 

this rescue occurs up or downstream of the loss of mitochondrial membrane 

integrity. In order to do this we monitored whether use of the inhibitors could 

prevent dissipation of MMP induced by FcyRllb. Use of Z-VAD-FMK (inhibitor 

of caspases 1,3 ,4  and 7), EST (cathepsin B inhibitor) or calpain inhibitor alone
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did not prevent the dissipation of the MMP (Figures 4.17 A and B). This is 

consistent with the finding that none of these inhibitors used alone can prevent 

FcyRllb-mediated apoptosis. Interestingly, consideration of the effect of Z-VAD- 

FMK on the MMP suggests that this inhibitor may actually be able to increase 

dissipation of the MMP resulting from coligation of the BCR and FcyRllb 

(Figures 4.17 A and B). When cells are treated to coligate the BCR and FcyRllb 

combined with Z-VAD-FMK there is a very large increase in the population with 

a low MMP. However this is not simply due to a toxic effect as Z-VAD-FMK 

treated cells left unstimulated or treated to crosslink the BCR do not display this 

heightened apoptotic population (Figure 4.17 B and data not shown). This 

finding may reflect that whilst Z-VAD-FMK did not increase the percentage of 

subdiploid cells, it resulted in the recovery of slightly less viable cell numbers 

(Figure 4.15).

Use of dual combinations of either Z-VAD-FMK, EST or the calpain inhibitor or 

all three inhibitors together was also unable to prevent the dissipation of the 

MMP in response to coligation of the BCR and FcyRllb over 48 h (Figure 4.17

B). Indeed, treatment with all inhibitors alone (apart from Z-VAD-FMK) or in 

combination results in a percentage of cells with a high MMP ranging from 55% 

to 57%, only deviating slightly from cells not treated with any inhibitor (57%, 

Figure 4.17 B). Thus, none of the inhibitors, even when used in combination, 

can protect the cells from FcyRllb-mediated dissipation of the MMP. This 

suggests that the caspase, calpain and cathepsin pathways do not act 

upstream of dissipation of the MMP resulting from coligation of the BCR and 

FcyRllb.

4.2.9. A Potential role for caspase 8 in FcyRllb-mediated apoptosis

Having ascertained that combinations of caspase, cathepsin B and calpain 

inhibitors could rescue cells from FcyRllb-mediated apoptosis it was decided to 

investigate whether an apical, initiator apoptosis-signailing molecule, such as 

the non-canonical caspase, caspase 8, could activate all of these executioner 

protease families. The data presented so far has suggested that dissipation of 

the MMP is an important step in initiation and commitment of cells to FcyRllb- 

mediated apoptosis. Given that the caspase 8 cascade is known to involve 

various proteins released from the mitochondria after the permeability pore
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transition (162, 198, 479) it was decided to investigate the role of caspase 8 in 

this form of apoptosis. I utilised this inhibitor alone and in combination with other 

executioner protease inhibitors to investigate the impact of caspase 8 inhibition 

on DNA synthesis, cell cycle phase distribution, MMP and induction of 

apoptosis.

Consideration of the DNA synthesis data shows that coiigation of the BCR and 

FcyRllb results in a profound growth arrest regardless of caspase 8 inhibitor 

treatment (Figure 4.18). This is not in agreement with cell cycle analysis data 

which demonstrates that caspase 8 inhibition appears to rescue cells from 

FcyRllb-mediated growth arrest (Figure 4.19 A). In that it restores the levels of 

cells in both G0/G1 and mitogenic phases approximately to those seen 

following ligation of the BCR alone (Figure 4.19 A and B). The slight reduction in 

proliferation induced by caspase 8 inhibition following ligation of the BCR alone 

is however reflected by an increase in the percentage of those cells in G0/G1 

(Figure 4.19 A). This suggests that caspase 8 inhibition may result in partial 

growth arrest following BCR-stimulation in mature B cells. As has been 

discussed previously, this may be due to caspase activation being necessary 

for cell cycle entry and progression (411, 477, 478). The discrepancy between 

the DNA synthesis response and cell cycle status of FcyRllb ligated cells 

treated with caspase 8 inhibitors may therefore suggest that these cells are 

arrested in S phase.

As expected, treatment of the cells to coligate both the BCR and FcyRllb 

increased the number of subdiploid cells from 23%, in unstimulated cells, to 

45% (Figure 4.19 C). In the presence of the caspase 8 inhibitor however, this is 

decreased to 12%, a four-fold reduction compared to the no inhibitor treatment 

(Figure 4.19 C). As described above, the percentage of subdiploid cells can be 

reduced when multiple executioner protease pathways are inhibited together 

and consider with this, the greatest reduction in percentage of subdiploid cells is 

observed when the caspase 8 inhibitor, EST, Z-VAD-FMK and the calpain 

inhibitors are all used together, the subdiploid population being reduced to only 

3% (Figure 4.19 C). Collectively these data suggest that caspase 8 is essential 

for FcyRllb-mediated apoptosis.
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To determine where caspase 8 may be acting, the effect of caspase 8 inhibition 

on FcyRllb-mediated dissipation of the MMP was investigated. This 

demonstrated that addition of the caspase 8 inhibitor can protect MMP 

dissipation, 53% of cells treated with the caspase 8 inhibitor versus 35% 

exhibiting a high MMP (Figure 4.20). This corroborates the above data 

suggesting caspase 8 inhibition can prevent FcyRllb-mediated apoptosis and 

furthermore suggests that caspase 8 can act upstream of the opening of the 

mitochondrial permeability transition pore and hence may occur upstream of 

caspase 3, 1/7, cathepsin B and calpain activation.

4.3.10 The murine SLE model is unable to undergo FcyRllb-mediated 

growth arrest or apoptosis

Having established a role for caspase 8 in FcyRllb-mediated apoptosis we 

wanted to investigate whether other well documented components of the 

caspase 8 cascade were involved. Fas is the best characterised membrane 

receptor that can activate apoptosis via the caspase 8 pathway. Lpr^' mice 

model the human disease SLE and produce B cells that generate anti-self DNA 

Abs and a lupus like nephritis (480-482). Lpr^' mice express Fas at only 2 to 

4% of levels seen in wild type mice and this deficiency has been established as 

the cause for defective apoptosis of self reactive lymphocytes in this model. It 

was therefore decided to investigate whether deletion of Fas, a component of 

the caspase 8 cascade, could prevent FcyRllb-mediated apoptosis in a similar 

manner to caspase 8 inhibition. Interestingly, mature B cells isolated from the 

Ipr^' mice with established disease do not undergo growth arrest in response to 

coligation of the BCR and FcyRllb (Figure 4.21). Rather, the response is very 

similar to the that seen following mitogenic stimulation of the BCR. This would 

suggest that FcyRllb signalling is defective or cannot occur and supports the 

idea of a pivotal role for the caspase 8 cascade in FcyRllb-mediated apoptosis.

4.3.11 The pro-apoptotic Bcl-2 family members Bid and Bad are 

upregulated during FcyRllb-mediated apoptosis

Having established an important role for both dissipation of the MMP and 

cytochrome c release in FcyRllb-mediated apoptosis we decided to investigate
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other proteins that act at the mitochondria. Considering that we have identified 

PI-3 kinase/AKT inhibition and caspase 8 activation as features of FcyRllb- 

mediated apoptosis, the Bcl-2 family members were good candidates for 

signalling molecules that may be recruited by FcyRllb signalling. Firstly we 

investigated the expression of the pro-apoptotic family members Bid, Bad and 

Bim. When cells are left unstimulated there is no detection of Bim, Bid or Bad. 

However, ligation of the BCR or coiigation BCR and FcyRllb results in an 

upregulation of both Bid and Bad (Figure 4.22 A). However Bim is not 

expressed following either ligation of the BCR or coiigation of FcyRllb (Data not 

shown). Interestingly, although coiigation of FcyRllb induces a greater 

expression of Bid and Bad than that of ligation of the BCR alone mitogenic 

signalling via the BCR clearly upregulates substantial levels of Bid/Bad.

At first sight, this might suggest that ligation of the BCR produces an apoptotic 

signal as well as a proliferative signal. However as has been discussed. Bad 

expression does not necessarily signal for apoptosis (Figure 1.7). The 

phosphorylation status of Bad as well as absolute expression levels determines 

whether Bad induces apoptosis. The phosphorylation status of Bad was 

therefore assessed by using the modified ELISA technique- FACE (Figure 4.22

B). At 24 h the BCR ligated cells were found to have a higher phospho-Bad 

pro-survival signal relative to that observed in cells with the BCR and FcyRllb 

coligated. Perhaps surprisingly, the phospho-Bad signal in FcyRllb stimulated 

cells is well above those in unstimulated/ IL4 treated cells. However it is also 

important to note that FcyRllb induces a massive increase in expression of 

Bad, with up to a 10 fold increase in Bad expression above basal levels in 

unstimulated cells (Figure 4.23 A and C). It is possible that with this large 

increase in Bad expression Bad can also act to bind to other pro-apoptotic Bcl-2 

family members and induce oligomerization of Bak/ Bax. This may commit the 

cells to apoptosis and override the pro-survival phospho-Bad signal. 

Furthermore, addition of executioner protease inhibitors, either alone or in 

combination with each other, does not appear to have any effect on Bad 

expression (Figure 4.23 A). This corroborates previous data to suggest that 

these executioner proteases act downstream loss of MMP and hence the 

initiation of mitochondrial signalling.
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4.3.12 Inhibition of the PI-3 kinase and MAP kinase cascades inhibits Bad 

activation

Inhibitors of the PI-3 Kinase pathway (LY294002) and the MAP kinase pathway 

(U0126) appear to reduce the phospho-Bad signal that is produced in response 

to either ligation of the BCR or coiigation of FcyRllb (Figure 4.23 B). This is 

most pronounced when the cells are treated to ligate the BCR. Ligation of the 

BCR alone results in a phospho-Bad: Bad ratio of 1.43 whereas treatment to 

inhibit PI-3 kinase or MAP kinase reduces this ratio to 0.54 and 0.46 

respectively. This corroborates data previously described that implicated PI-3 

kinase, AKT and ERKMAPK in BCR-mediated survival and proliferation 

(Figures 4.7 to 4.10). Interestingly, the changes in ratio of phospho-Bad to Bad 

ratio following cell signalling inhibitor treatments seem to target the 

phosphorylation status rather than expression of Bad. Firstly, it is clear that 

coiigation of the BCR and FcyRllb induces a large increase in Bad expression 

(Figure 4.23 C). However, there is a reduction in phospho-Bad following 

coiigation of FcyRllb combined with either PI-3 kinase or ERKMAPkinase 

inhibition as compared to no inhibitor treatment (Figure 4.23 B). These data 

suggest that the suppression of ERK and PI-3 kinase resulting from coiigation of 

FcyRllb results in an upregulation Bad in its unphosphorylated form which can 

sequester BcIXl. Furthermore, such inhibition of PI-3 kinase and MAP kinase 

pathways prevents the BCR-mediated upregulation of phospho-Bad which 

prevents the opening of the mitochondrial permeability transition pore and 

hence prevents apoptotic signalling. Therefore, this implicates PI-3 kinase and 

ERK-mediated upregulation of phospho-Bad as integral to BCR-mediated 

survival.

4.3.13. Coiigation of the BCR and FcyRllb upregulates the activation of p53

The transcription factor p53 acts to transcribe p53-regulated genes which can 

regulate many diverse processes Including; apoptosis, cell cycle arrest, genome 

stability, cellular senescence and angiogenesis (Figure 1.11) (119). This 

transcription factor is important for the regulation of cell cycle related genes 

such as the cyclin dependent kinase inhibitor p21 which has been shown to be 

critical for cell cycle arrest function (123) and an important cell cycle regulator, 

PTEN (125). There are also multiple apoptotic genes that are under the control 

of p53 that are involved in both the intrinsic and extrinsic pathways to cell death
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including Apaf 1 and caspase 9 (126) and numerous pro-apoptotic Bcl-2 family 

members (127, 128). In addition, p53 is thought to have a transcription- 

independent pro-apoptotic function and been postulated to function as a BH3- 

only protein (129, 130). Considering that both the recruitment of the PI-3 kinase 

antagonist PTEN (124) and the activation of the pro-apoptotic Bcl-2 family 

members have been implicated in FcyRllb-mediated apoptosis of B cells this 

may suggest that activation of p53 may account for these cellular responses. It 

was therefore decided to investigate the potential activation of p53 in FcyRllb- 

mediated negative feedback of mature B cells using the Trans AM modified 

ELISA technique.

After 24 h there is little difference in p53 activation between cells mitogenically 

stimulated via the BCR and those undergoing FcyRllb-mediated negative 

feedback. However, after 48 h there is a strong induction of p53 activity in the 

FcyRllb coligated group that is not observed in other treatment groups (Figure 

4.24 A). This may suggest that the mitochondrial apoptosis pathway is executed 

via FcyRIlb-driven p53-activated transcription of genes including Bid. There are 

many other p53-dependent pro-apoptotic genes that may be upregulated and 

p53 may even function to induce apoptosis in a transcription-independent 

manner. Interestingly, addition of EST or the calpain inhibitor appeared to 

reduce p53 activation following coiigation of the BCR and FcyRllb as compared 

to cells without inhibitor treatments (Figure 4.24 B). This suggests that even 

though biological readouts, like DNA synthesis, proliferation and MMP, are 

unaffected by addition of the inhibitors of executioner proteases when used 

singly, cell signalling events may still have been altered. Furthermore, whilst 

addition of the ERKMAPK inhibitor increased BCR/FcyRIlb-driven p53 activation 

the PI-3 kinase inhibitor did not have a significant effect on p53 activation 

(Figure 4.24 C). These latter data suggest that whilst PI-3 kinase and ERK both 

modulate phospho-Bad status, only ERK regulates p53 activation.

4.3.14. Coiigation of the BCR and FcyRllb upregulates the activation of NF- 

kB

The NF-kB family of transcription factors, also known as the Rel family, 

comprise either homo or heterodimers of the following five NF-kB subunits:
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Re IA (p65), RelB, cRel, p50 and p52 (131). We were able to investigate the 

activation of each of these subunits separately using the TransAM modified 

ELISA technique. NF-kB is known to control the regulation of genes that signal 

for diverse cellular responses including growth, proliferation and survival 

depending on the subunits utilised (Figure 1.12). NF-kB is known to regulate 

anti-apoptotic genes including Bcl-2 family members Bcl-2 and BcIXl as well as 

cell cycle regulators such as cyclin D2, E2F3a and IL-1 (135-139). Therefore, it 

was postulated that coiigation of FcyRllb may result in a modulation of 

activation levels of NF-kB subunits and it was therefore decided to investigate 

the relative activation levels of each of the NF-kB subunits in response to 

negative feedback inhibition signals via FcyRllb.

The first subunit investigated was cRel which is upregulated at 24 h when the 

BCR and FcyRllb are coligated however this increase appears to be 

downregulated again after 48 h (Figure 4.25 A). The same pattern is also 

followed by the p52 and RelB subunits (Figure 4.25 B and C). However, 

investigation of the p50 and p65 subunits revealed that the activation levels of 

all treatment groups were the same after 24 h (Figure 4.26). In contrast, after 48 

h, coiigation of the BCR and FcyRllb strongly induced p50 and p65 activation 

(Figure 4.26).
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4.4 Discussion

4.4.1 BCR ligation results in ERKMAPK/ PI-3 kinase dependent- 
proliferation

It has been well documented that ligation of the BCR results in survival and 

proliferation in mature B cells resulting in the differentiation to Ab secreting 

plasma cells (Figures 4.2 and 3), yet the exact mechanism of BCR-induced 

proliferation has not yet been elucidated. There is however evidence that both 

the PI-3 kinase and MAP kinase cascades are involved (124, 278, 483-485). In 

this chapter we have demonstrated that BCR-induced proliferation is 

ERKMAPK-dependent (Figures 4.7 and 8). For example, inhibition of MEK 1/2 

and ERK 1/2 resulted in an increase in both cell cycle arrest and apoptosis 

(Figure 4.8). The mechanism for cell cycle arrest has not been fully elucidated 

however complementary evidence demonstrates that cyclin D2, which plays an 

essential role in G1 to S phase transition, is downregulated at both mRNA and 

protein levels by use of the MAP kinase inhibitor U0126 (483). Consistent with 

this, parallel studies in this laboratory have demonstrated that BCR ligation 

increases the expression of cyclin D2 (458). In addition, inhibition of the Rafl- 

dependent MEK1/2 cascade has been demonstrated to uncouple BCR 

signalling from proliferation (485) again suggesting that the ERKMAPK cascade 

is essential for proliferation.

Similarly, BCR-induced proliferation is also under the control of the PI-3 kinase 

pathway. Inhibition of the PI-3 kinase pathway using LY294002 resulted in 

increased growth arrest and apoptosis in mature B cells (Figures 4.9). 

Transgenic mice deficient in the p85a subunit of PI-3 kinase have a reduced 

number of mature B cells in the spleen, decreased Ab production and reduced 

proliferation in response to both LPS and anti-IgM demonstrating that the p85a 

subunit of PI-3 kinase plays an essential and non-redundant role in normal 

mature B cell function (68, 486). PI-3 kinase has also been demonstrated to 

have an obligatory role for Btk regulation after BCR ligation (487, 488). 

Involvement of this pathway is also corroborated by the fact that ligation of the 

BCR results in a strong induction of the major downstream effector of the PI-3
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kinase pathway, AKT (Figure 4.10). Furthermore, there is a growing body of 

evidence to suggest that the activation of the PI-3 kinase cascade can act to 

phosphorylate and hence activate ERK1/2 (266, 489-491). This study has not 

addressed whether the activation of ERK is dependent on PI-3 kinase however 

this provides an attractive possible mechanism for fine tuning of the BCR- 

stimulated proliferative response.

4.4.2 FcyRllb-mediated growth arrest can be mimicked by abrogation of 

both the BCR-stimulated ERKMAPK and PI-3 kinase signals

It is well documented that simultaneous coiigation of the BCR and FcyRllb 

results in growth arrest and this is corroborated by my data (Figures 4.2 and 

4.3) (124, 252, 460). Consistent with a role for ERK in BCR-induced survival 

and proliferation there is a clear switching off of the ERK signal in response to 

co-ligation of FcyRllb which occurs within 5 min and is still observable 48 h post 

FcyRllb coiigation (Figure 4.7). Parallel studies in this laboratory have 

demonstrated that abrogation of the BCR-ERK signal is maintained up to 96 h 

post FcyRllb coiigation (458). Similarly, previous studies in this, and other, 

laboratories suggest that PI-3 kinase is antagonised during FcyRllb-mediated 

apoptosis (124). To corroborate this I have demonstrated downregulation of 

AKT activation, a major downstream effector of PI-3 kinase, following FcyRllb 

ligation (Figure 4.10). Taken together these data suggest that whilst BCR 

engagement induces an upregulation of both PI-3 kinase and ERKMAPK 

signals which induce survival and proliferation, coiigation of FcyRllb abrogates 

these kinases and thus induces growth arrest. The mechanisms employed for 

switching off these pro-proliferative signals have not been addressed in this 

study but have been elucidated in parallel studies in this laboratory and hence, 

are summarised in figure 4.27.

4.4.3. FcyRllb-mediated apoptosis can be mimicked by the abrogation PI-3 

kinase signalling

There have been reports that homo-aggregation of FcyRllb generates an 

apoptotic signal (243). However the data presented in this chapter also 

suggests that an apoptotic signal can be generated by coiigation of both the 

BCR and FcyRllb (Figures 4.3 to 6). Such apoptosis occurs between 48 and 96
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h post FcyRllb coiigation. It is accompanied by translocation of cytochrome c 

from the mitochondria to the cytosol, dissipation of the MMP, an increase in 

numbers of subdiploid cells and chromatin condensation. Consistent with the 

downregulation of PI-3 kinase following FcyRllb coiigation, I have identified a 

mechanism whereby a reduction in phospho-AKT levels (Figure 4.10) 

contributes to the reduction in phospho-Bad levels as compared to ligation of 

the BCR (Figure 4.22 B). This may act to enhance the sequestration of BcIXl 

from the mitochondria resulting in the loss of mitochondrial membrane integrity 

and commitment of the cell to apoptosis (Figure 1.7).

4.4.4. FcyRllb-mediated apoptosis is caspase 8-dependent may involve 

multiple executioner protease families

Having identified an apoptotic phenotype, it was decided to investigate the 

effector molecules utilised by FcyRllb in transducing such apoptosis during 

negative feedback inhibition of B cells. Initial consideration of the upregulation 

of the Bcl-2 pro-apoptotic BH3-only domain containing proteins, release of 

cytochrome c and dissipation of the MMP would suggest that the intrinsic, 

mitochondrial pathway would be the main execution programme utilised 

(Figures 4.6 and 4.22 B). However, although this pathway is described as 

culminating in the activation of the canonical caspase 3 cascade it was 

established that caspase 3 is barely activated above basai leveis following 

coiigation of FcyRllb and the BCR (Figure 4.13). Therefore the role of other 

potential executioner proteases that could be activated by mitochondrial 

pathways was investigated. This demonstrated that any combination of 

caspase, cathepsin B or calpain inhibitors were all able to reduce FcyRllb- 

mediated apoptosis (Figures 4.15 A). The most potent reduction of apoptosis 

was observed when ali 3 of these inhibitors were used in combination (Figure 

4.15 A). This suggests that there is a high level of redundancy in FcyRllb- 

mediated apoptosis. In addition to this it is important to note that whilst addition 

of these executioner protease inhibitors was able to prevent apoptosis as 

assessed by the percentage of subdiploid cells, they were not able to prevent 

the dissipation of the MMP (Figure 4.17 B). Therefore these inhibitors act to 

suppress apoptosis downstream of the opening of the mitochondrial 

permeability transition pore.
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Consistent with the above data providing evidence for non-canonical pathways, 

the pan-caspase inhibitor Z-VAD-FMK actually appears to potentate loss of 

MMP rather than suppressing it (Figures 4.17) Interestingly, other groups have 

found evidence for Z-VAD-FMK sensitizing for apoptosis rather than protecting 

against it when caspase-independent mechanisms are utilised in cell death 

(492). It has been suggested, that in these systems, caspases act as a 

surveillance system that can recognise and remove damaged mitochondria that 

are overproducing reactive oxygen species (ROS) (493, 494). It is thought that 

the caspase substrate PLA2 may be essential for removal of damaged 

mitochondria within these cells. Therefore inhibition of caspases enhances ROS 

production and hence, apoptosis. Cawels et al (2003) demonstrated that Z- 

VAD-FMK sensitized cells to apoptosis, however this could be reversed by 

PLA2 inhibition. In addition, they found that inhibition of caspase 8 had a specific 

protective role (492). This is extremely interesting as we have demonstrated 

that, in the immature WEHI 231 cell line, PLA2 activation and loss of MMP are 

essential for BCR-mediated apoptosis (156). It would be Interesting to 

investigate whether PLA2 activation in mature germinal centre B cells 

contributes to the loss of MMP and commitment of the cells to apoptosis.

In line with this mechanism, my data demonstrates a specific role for caspase 8 

in FcyRllb-mediated apoptosis. In fact, caspase 8 inhibition can prevent FcyRllb 

mediated apoptosis more potently than the cumulative action of inhibitors of 

either caspases 1, 2, 3, 7, cathepsin B and calpain (Figures 4.19). Interestingly, 

caspase 8 inhibition results in a partial rescue from the dissipation of the MMP 

in response to coiigation of FcyRllb (Figure 4.20). This suggests that caspase 8 

is the initiator caspase activated upstream of the opening of the mitochondrial 

permeability pore and hence is apical to the executioner proteases involved. In 

agreement with a role for caspase 8 in FcyRllb-mediated apoptosis we found 

that the /pr mouse, which lacks Fas, is unable to undergo FcyRllb mediated- 

growth arrest (Figure 4.21). Fas is a receptor known to initiate caspase 8- 

dependent apoptosis and hence a defective FcyRllb response in this animal 

reinforces the idea that caspase 8 is pivotal to FcyRllb-mediated apoptosis.
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4.4.5. FcyRllb-mediated apoptosis is mediated by pro-apoptotic members

of the Bcl-2 family

We have shown that both Bid and Bad, but not Bim, are upregulated by the 

coiigation of the BCR and FcyRllb on B cells (Figures 4.22). The truncated form 

of Bid is known to process and activate pro-caspase 8, however we have not 

provided evidence to suggest that tBid is the predominant form found in mature 

B cells undergoing FcyRllb-mediated negative feedback inhibition. Bad Is 

known to be able to induce the oiigermerisation of Bax/Bak and hence open the 

permeability transition pore in mitochondria (160, 412). Expression of both Bid 

and Bad is upregulated within 5 min of coiigation of the BCR and FcyRllb 

(Figures 4.22 A). Given that dissipation of the MMP occurs between 24 and 48 

h (Figure 4.6) these data suggest that upregulation of expression of both Bid 

and Bad precedes loss of mitochondrial membrane integrity.

Although it has not yet been established whether FcyRllb signalling induces the 

truncated, pro-apoptotic form of Bid the phosphorylation status of Bad, and 

hence its functional outcome, has been assessed at various time points after 

FcyRllb coiigation. Ligation of the BCR produced a high ratio of phospho-Bad to 

Bad expression and this would be expected as the BCR transduces pro-survival 

signals (Figure 4.22 B). By contrast, coiigation of the BCR and FcyRllb 

produced a strongly reduced ratio of phospho-Bad/Bad expression, with a 

resultant increase in functionally pro-apoptotic Bad. It will be important to 

investigate the other Bcl-2 proteins that are expressed and their complex status 

over this time period as it has Is well established that it is the ratio of pro- 

apoptotic and anti-apoptotic Bcl-2 family members that governs the decision to 

commit a cell to apoptosis rather than the absolute levels of any one protein 

(reviewed in (192)). Moreover, it is also known, for example, that Bad can bind 

the anti-apoptotic molecule BcIXl (206, 207) and hence the particular 

combinations of Bcl-2 proteins are likely to have vastly different effects. 

Therefore it is also necessary to investigate the expression levels of other Bcl-2 

family members and elucidate which BH domain containing proteins are 

capable of interaction with Bad.
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4.4.6. FcyRllb-mediated apoptosis invoives the upregulation of p53

interestingly, expression of active p53 is strongly upregulated within 48 h 

following co-ligation of FcyRllb (Figure 4.24 A). This transcription factor controls 

genes involved in both the classical caspase and mitochondria! pathways of 

apoptosis (119, 495, 496). Interestingly, p53 is known to control the 

transcription of Bid which is upregulated by FcyRllb signalling (127, 128). In 

addition, it has recently been proposed that p53 can itself act as a pro-apoptotic 

BH3 only Bcl-2 family member to directly initiate apoptosis by acting in concert 

with Bak and Bax (129, 130). It would be interesting to track the localisation of 

p53 before and after coiigation of FcyRllb, as translocation to the mitochondria 

rather than nucleus may suggest that p53 apoptotic signalling is transcription- 

independent. The effects of inhibitors of ERKMAP kinase and PI-3 kinase on 

p53 activation were tested and the results show that activation of p53 was 

increased by the ERKMAPK Inhibitor in response to either ligation of the BCR or 

coiigation of the BCR and FcyRllb (Figure 4.24 C). These latter data 

corroborate the cell cycle analysis which demonstrates an increase growth 

arrest and in apoptosis is response to ERKMAP kinase inhibition further 

supporting a key role for this signal in BCR-mediated proliferation. By contrast, 

PI-3 kinase inhibitors did not enhance nuclear p53 activity suggesting that PI-3 

kinase promotes survival and growth by alternative mediators.

4.4.7 FcyRllb-mediated apoptosis involves the differential of upregulation 

of NF-kB subunits

NF-kB is known to control the regulation of genes that signal for diverse cellular 

responses including growth, proliferation and survival depending on the 

subunits utilised. NF-kB is known to regulate anti-apoptotic genes including Bci- 

2 family members Bcl-2 and BcIXl as well as cell cycle proteins such as cyclin 

D2, E2F3a and IL-1|3 9 (135-139). It was found that following coiigation of both 

the BCR and FcyRllb there is increased activation of cRel, Rel B and p52 after 

24 h which returns to basal levels by 48 h (Figure 4.43). However the p50 and 

Rel A subunits show increased activation at 48 h and no changes from basal 

levels at 24 hours (Figure 4.44). It is not surprising that the various NF-kB 

transcription factor family subunits are regulated differently as they have been

documented to have essential, and non-overlapping functions in B lymphocytes.
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NF-kB consists of dimeric proteins of any of the 5 NF-kB subunits, either as 

homo or heterodimers. Transgenic knock out studies in mice have revealed that 

NF-KB in involved in the inflammatory response, control of the cell cycle, 

apoptosis, growth, proliferation and lymphocyte maturation (497, 498).

Knock-out mice generated for each of the NF-KB subunits have individual 

phenotypes. For example, Rel A deficient mice are embryonic lethal dying 

before embryonic day 15 with massive hepatocyte apoptosis. Furthermore B 

cells defective in Rel A have reduced proliferative responses and impaired 

production of both IgA and IgGI (138). Similarly, cRel deficient mice develop 

normally but show defects in lymphocyte proliferation and are unable to respond 

to most mitogenic stimuli (499). Likewise, mice deficient in p52 have impaired B 

cell functions and fail to produce Abs in response to T cell dependent Ag. In 

addition, p52‘ '̂ mice lack B cell follicles, follicular dendritic cell networks and 

have an inability to form germinal centres (500). Although mice deficient in p50 

show no developmental abnormalities they also have defects in B lymphocyte 

function. Thus, mature p50"̂ “B lymphocytes do not proliferate in response to 

LPS and are defective in both basal and specific Ab production (501). By 

contrast, Rel-B“̂ ‘ mice have myeloid hyperplasia and splenomegaly combined 

with mixed inflammatory cell infiltration of several organs and a dysregulated 

immune system (502). This suggests that Rel-B is necessary both peripheral 

tolerance and B cell apoptosis.

In these studies, negative feedback signalling mediated via FcyRllb led to 

upregulated cRel, p52 and Rel B at 24 h. This was surprising as both cRel and 

p52 have been implicated in proliferation and Ab production. However Rel B 

has been suggested to be of importance in both apoptosis and the maintenance 

of tolerance and cRel and p52 may possibly be utilised as dimers with Rel B in 

order to fulfil this functional outcome. By 48 h cRel, p52 and Rel-B activation 

has returned to basal levels but p50 and RelA have become activated. Again 

this is surprising, as both subunits are also associated with B lymphocyte 

proliferation. However there has not been characterisation of all genes 

regulated by NF-kB and there may be many, as yet unidentified, apoptotic 

genes. In addition, we have not provided any information on the dimers formed 

and activated or the full kinetics of BCR and BGR/FcyRllb signalling. In order to
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investigate this fully it would be useful to use siRNA constructs to knock down 

multiple NF-kB subunits simultaneously to elucidate which dimers are essential 

and the level of redundancy in this system.

4.4.8 Concluding Remarks

In conclusion, it has been demonstrated that BCR ligation results in PI-3 kinase 

and ERKMAPK dependent proliferation (Figure 4.27) as abrogation of these 

signalling systems results in both growth arrest and apoptosis. Moreover, since 

these inhibitors mimic the effects of coiigation of the BCR and FcyRllb these 

studies further support the proposal that abrogation of these activities by 

FcyRllb signalling plays a key role in negative feedback inhibition. Furthermore, 

this study has clearly demonstrated coiigation of both the BCR and FcyRllb 

results in not only growth arrest but also apoptosis. Such apoptosis utilises non- 

canonical executioner pathways to induce the apoptotic phenotype. 

Nevertheless, inhibition of the PI-3 kinase pathway results in the inhibition of 

AKT which in turn reduces the proportion of phospho-Bad. This presumably 

leads to the sequestration of BcIXl and contributes to the loss of MMP. 

Furthermore, upregulation of pro-apoptotic elements such as Bid may be 

transduced by p53 which is suppressed by mitogenic BCR-signalling in an 

ERKMAPK-dependent manner and by contrast, upregulated by FcyRllb 

signalling. Caspase 8 also acts upstream of the opening of the mitochondrial 

permeability pore and is apical to the activation of multipie executioner 

proteases. Thus, following loss of MMP, cytochrome c is released from the 

mitochondria and cathepsin B, caspases and calpains are activated. These 

executioner proteases appear to act in a redundant fashion to effect apoptosis. 

This model for FcyRllb-mediated apoptosis is summarised in figure 4.28.
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Figure 4.1: inhibition of BCR signalling by FcyRllb

FcyRllb is a low affinity receptor for the Fc component of IgG therefore it can 

recognise immune complexes. Ligation of FcyRllb causes Lyn to phosphorylate 

the single ITIM of the cytoplasmic region of FcyRllb. The phospho-ITIM can 

recruit and activate the phosphatase SHIP. SHIP removes the 5’ phosphate 

from PI-(3,4)-P3 leading to impaired recruitment and activation of PH domain- 

containing proteins. Furthermore, SHIP suppresses the BCR mediated 

activation of MAPK by disrupting the association of She and Grb2 and by 

recruiting and activating RasGAP via Dokl. FcyRllb can also impair the ongoing 

activation of ERK via the induction of P ad . Moreover, FcyRllb enhances the 

activity of the phosphatase PTEN to further impair PI-3 kinase signalling. PTEN 

acts to antagonize the activity of PI-3 kinase by dephosphorylation of Pl-lipids at 

the 3’ position. FcyRllb therefore suppresses the PI-3 kinase pathway and the 

ERKMAPK cascade.
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Figure 4.2: Ligation of the BCR results In proliferation whereas

simultaneous coiigation of the BCR and FcyRllb results In growth arrest

(A) Cells were cultured for 48 h and then DNA synthesis was assessed by [̂ H] 

thymidine uptake. Cells were either treated with media alone (No stimulation),

50 |.ig/ml F(Ab)2 ’ fragments of anti-IgM (BCR) or 50 jxg/ml F(Ab)2 ’ fragments of 

anti-IgM combined with 75 p,g/ml of intact anti-IgM (BCR & FcyRllb). These data 

are the mean of triplicate determinations ± SEM. These data are from a single 

experiment, representative of 12 separate experiments.

(B) Cells were either treated with media alone (No stimulation), 56 pg/ml murine 

IL4 (IL4), 50 p,g/ml F(Ab)2 ’ fragments of anti-IgM (BCR) or 50 [Jig/ml F(Ab)2 ’ 

fragments of anti-IgM combined with 75 |Lig/ml of intact anti-IgM (BCR &

FcyRllb) for 48 h. Additionally, a count of the number of cells per well at 0 h was 

taken for comparison. The number of cells counted in 5 s was recorded by flow 

cytometry. These data are from a single experiment, which is representative of 

4 experiments.

(C) Cells were stained with 1 p,M CFSE and then cultured for 72 h with 

appropriate stimulations. Cells were either treated with media alone (No 

stimulation), 50 [xg/ml F(Ab)2 ' fragments of anti-IgM (BCR) or 50 p,g/ml F(Ab)2 ’ 

fragments of anti-IgM combined with 75 fxg/ml of intact anti-IgM (BCR & 

FcyRllb). Proliferation was assessed by a shift in CFSE brightness (FL1 

fluorescence) from the right hand side to the left hand side of the FACS plots. 

These data are from a single experiment, representative of 3 separate 

experiments.

(D) Cells were treated as described for (A) for 72 h. Proliferation was assessed 

by an estimate of the percentage of cells in each generation. This calculation 

was done with the FiowJo proliferation data analysis programme. The data was 

then displayed as the percentage of cells in each generation. These data are 

from a single experiment, representative of 3 separate experiments. This is a 

different data set than shown in panel (C).

237



A
I
c

!
2 mooo

I* “
I

B

IE: I

11111
No Stfimiatton KftftFcRIIb 0 hour* No SOmulotton XL 4 NCR NCR ft KRXlfe

No Stimulation BCR BCR & FcyRlib

Time

24 u u u
96

120

i  i’ Vi*

" T T :

35

O
25

20

15

10

2

-N« StimulNtien 
OCR
SCRIxPcRIXb

6«n«rN tioN M *m b#r



Figure 4.3: Coiigation of the BCR and FcyRllb induces apoptosis

(A) Cells were stained with 50 pg/ml PI after culture for 48 h with appropriate 

stimulations. Ceils were either treated with media alone (No stimulation), 56 

pg/ml murine IL4 (IL4), 50 pg/ml F(Ab)2 ’ fragments of anti-IgM (BCR) or 50 

pg/ml F(Ab)2 ’ fragments of anti-IgM combined with 75 pg/ml of intact anti-IgM 

(BCR & FcyRllb). FACS analysis was used to calculate the percentage of cells 

in G0/G1, 8 phase, G2/M phase and subdiploid cells. The data is displayed as a 

histogram of PI fluorescence (FL2). These data are from a single experiment, 

representative of 11 experiments.

(B) Cells were treated as described above. The data is displayed as the 

percentage of cells in each phase of the cell cycle. This data set is separate 

from the data shown in panel (A). These data are from a single experiment, 

representative of 11 experiments.
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Figure 4.4: Simultaneous coiigation of BCR and PcyRIIb results In 

chromatin condensation, a hallmark of apoptosis

Cell were incubated with either media alone (No Stimulation), 100 nm 

dexamethasone, as a positive control for caspase-dependent apoptosis, or a 

combination of 50 fxg/ml F(Ab)2 ’ fragments of anti-IgM and 75 ^xg/ml of intact 

anti-IgM (BCR & FcyRllb) for 48 h. Culture was followed by fixation, DAP I 

staining and fluorescence microscope analysis. Brightly staining areas highlight 

areas of chromatin condensation which Is a hallmark of apoptosis. Whereas 

cells with diffuse chromatin straining in their nuclei have healthy nuclei with a 

normal chromatin distribution.
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Figure 4.5: Simultaneous coligatlon of the BCR and FcyRiib results in 

dissipation of MMP

(A) Cells were incubated with media alone (No stimulation), 50 \ig/m\ F(Ab)2 ’ 

fragments of anti-IgM (BCR) or 50 |mg/ml F(Ab)2 ’ fragments of anti-IgM 

combined with 75 p,g/mi of intact anti-IgM (BCR & FcyRllb) for 96 or 120 h. 

Following this cells were stained with 2.5 l̂M DiOCe- Dissipation of MMP can 

been seen as a reduction in DiOCe brightness (FL1 fluorescence). These data 

are from a single experiment, representative of 10 experiments.

(B) Cells were incubated as described in panel (A) for 48 h and then stained 

with JC1. JC1 acts by switching from a red aggregate when MMP is high (FL2 

fluorescence) to a green monomer once MMP has been dissipated (FL1 

fluorescence). The histograms show FL2 and so the monomeric, red, form of 

the dye which is present in healthy cells with a high MMP.
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Figure 4.6: Simultaneous coligation of the BCR and FcyRllb induces

mitochondrial- dependent apoptosis

(A) Cells were incubated with media alone (No stimulation), 50 jxg/ml F(Ab)2 ’ 

fragments of anti-IgM (BCR) or 50 pig/ml F(Ab)2 ' fragments of anti-IgM 

combined with 75 fxg/ml of intact anti-IgM (BCR & FcyRllb) for 48 h. Following 

this cells were stained with 2.5 ^M DiOCe. Dissipation of MMP can been seen 

as a reduction in DiOCe brightness (FL1 fluorescence) and can be assessed by 

dividing the cells into two populations. The right hand peak having a high, 

healthy MMP and the second having a low apoptotic MMP. The data was then 

displayed as the percentage of ceils with a high MMP. These data are from a 

single experiment, representative of 10 experiments. The data set is different 

from that shown in figure 4.6.

(B) Cells were incubated as described in panel (A) and incubated for 24, 48 or 

96 h prior to DiOCe staining. The data was then displayed as the percentage of 

cells with a high MMP for each time point. These data are from a single 

experiment, representative of 3 experiments. The data set is different from that 

shown in figure 4.6 and panel (A).

(C) Cells were incubated as described in panel (A) for 48 h. Cells were then 

used to make both mitochondrial and cytosolic extracts which were assessed 

for their cytochrome c content by ELISA. The translocation of cytochrome c 

from the mitochondria to the cytosol is indicative of apoptosis and demonstrates 

that the cells have opened the mitochondrial permeability transition pore. 

Results are displayed as a ratio of cytochrome c levels (optical density at 

450nm) in the cytosol as compared to the mitochondria. The data is a mean of 

three wells ± SD.
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Figure 4.7: Ligation of the BCR produces a strong phospho-ERK signal

whereas coligation of the BCR and FcyRllb abrogates this signal.

(A) Cells were cultured with media alone (A), 50 pig/ml F(Ab)2 ’ fragments of anti- 

IgM (B) or 50 H'O/ml F(Ab)2 ’ fragments of anti-IgM combined with 75 jxg/ml of 

intact anti-IgM (0) for 5 min and used to make whole cell lysates. Lysates were 

then analysed by Western Blotting using the NuPAGE system with anti- 

phospho-ERK 1/2 antibodies. Lane (D) shows the positive control for this 

experiment, recombinant pERK2 protein. These data are from a single 

experiment, representative of 3 experiments.

(B) Cells were incubated for 48 h with appropriate stimulations prior to fixation, 

permeblisation and assessment of ERK and phospho-ERK levels by FACE 

assay. Cells were cultured with media alone (unstimulated), 56 pg/ml of murine 

IL4 (IL4), 50 jig/ml F(Ab)2 ’ fragments of anti-IgM (BCR) or 50 ^ig/ml F(Ab)2 ' 

fragments of anti-IgM combined with 75 p.g/ml of intact anti-IgM (BCR & 

FcyRllb). The modified ELISA method- FACE- was used to assess ERK and 

phospho-ERK. Results are displayed as the ratio of the phospho-ERK signal to 

ERK signals. All ERK levels were calculated as the mean of three wells ± SD. 

These data are from a single experiment, representative of two experiments.
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Figure 4.8: Inhibitors of the MAP kinase pathway can inhibit BCR- 
mediated proliferation

(A) Cells were cultured for 48 h and then DNA synthesis was assessed by [^H] 

thymidine uptake. Cells were either treated with media alone (No stimulation),

50 |ig/ml F(Ab)2 ’ fragments of anti-IgM (BCR) or 50 p,g/ml F(Ab)2 ’ fragments of 

anti-IgM combined with 75 p,g/ml of intact anti-IgM (BCR & FcyRllb) in the 

presence or absence of 10 [liM PD98059 and 1 p.M U0126. These data are the 

mean of three replicate wells ± SD. These data are from a single experiment, 

representative of 4 experiments.

(B) Cells were stained with 50 pg/ml PI after culture for 48 h with 50 p,g/ml 

F(Ab)2 ’ fragments of anti-IgM (BCR) in the presence or absence of 1 fxM U0126. 

FACS analysis was used to calculate the number of cells in G0/G1, mitogenic 

and subdiploid phases of the cell cycle. Data was then displayed as the 

percentage of cells in each phase of the cell cycle. Data are from a single 

experiment, representative of 4 experiments.

(C) Cells were incubated as described in panel (A) for 48 h and then stained 

with 2.5 fxM DiOCe. Dissipation of the MMP was assessed by dividing the cells 

into two populations. The right hand peak having a high, healthy MMP and the 

second having a low, apoptotic MMP. The data was then displayed as the 

percentage of cells with a high MMP. Data are from a single experiment, 

representative of 4 experiments.
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Figure 4.9: PI-3 kinase Inhibition results in growth arrest and apoptosis

(A) Cells were cultured for 48 h and then DNA synthesis was assessed by [^H] 

thymidine uptake. Cells were either treated with media alone (No stimulation),

50 pg/ml F(Ab)2 ’ fragments of anti-IgM (BCR) or 50 pg/ml F(Ab)2 ’ fragments of 

anti-IgM combined with 75 pg/ml of intact anti-IgM (BCR & FcyRllb) in the 

presence or absence of 1 pM LY294002. These data are the mean of three 

separate wells ± SD. These data are from a single experiment, representative of 

4 separate experiments.

(B) Cells were stained with 50 pg/ml PI after culture for 48 h with 50 pg/ml 

F(Ab)2 ’ fragments of anti-IgM (BCR) in the presence or absence of 1 pM 

LY294002. FACS analysis was used to calculate the number of cells in G0/G1, 

mitogenic and subdiploid phases of the cell cycle. Data was then displayed as 

the percentage of cells in each phase of the cell cycle. Data are from a single 

experiment, representative of 4 experiments.

(C) Cells were incubated as described in panel (A) for 48 h and then stained 

with 2.5 pM DiOCe. Dissipation of the MMP was assessed by dividing the cells 

into two populations. The right hand peak having a high, healthy MMP and the 

second having a low, apoptotic MMP. The data were then displayed as the 

percentage of cells with a high MMP. Data are from a single experiment, 

representative of 4 experiments.
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Figure 4.10: Ligation of the BCR induces a strong phospho-AKT signal

which can be abrogated by simultaneous coligation of FcyRiib

Cells were cultured for 48 h in the presence or absence of the protein 

phosphatase inhibitor microcystin and appropriate stimulations. Cells were 

cultured with media alone (No stimulation), 56 pg/ml of murine IL4 (IL4), 50 

pg/ml F(Ab)2 ’ fragments of anti-IgM (BCR) or 50 pg/ml F(Ab)2 ’ fragments of anti- 

IgM combined with 75 pg/ml of intact anti-IgM (BCR & FcyRllb). Cells treated 

with microcystin assessed the cumulative AKT phosphorylation over 48 h 

whereas cells without microcystin were used to assess the phospho-AKT levels 

at a single point in time. After 48 h AKT/ phospho-AKT was elucidated using the 

FACE ELISA method. Results were calculated as mean AKT signal (optical 

density at 450 nm) of three wells. The data is displayed as a ratio of the 

phospho-AKT to AKT signal.
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Figure 4.11 ; Inhibition of the p38 pathway does not have any effect on 

either BCR- induced proliferation or FcyRllb- induced apoptosis

(A) Cells were cultured for 48 h and then DNA synthesis was assessed by [^H] 

thymidine uptake. Cells were either treated with media alone (No stimulation),

50 pg/ml F(Ab)2 ’ fragments of anti-IgM (BCR) or 50 pg/ml F(Ab)2 ’ fragments of 

anti-IgM combined with 75 pg/ml of intact anti-IgM (BCR & FcyRllb) in the 

presence or absence of 1 pM SB203500. These data are the mean of three 

separate wells ± SD. These data are from a single experiment, representative of 

4 separate experiments.

(B) Cells were stained with 50 pg/ml PI after culture for 48 h with 50 pg/ml 

F(Ab)2 ’ fragments of anti-IgM (BCR) in the presence or absence of 1 pM 

SB203500. FACS analysis was used to calculate the number of cells in GO/Gl, 

mitogenic and subdiploid phases of the cell cycle. Data was then displayed as 

the percentage of cells in each phase of the cell cycle. Data are from a single 

experiment, representative of 4 experiments.

(C) Cells were incubated as described in panel (A) for 48 h and then stained 

with 2.5 pM DiOCe- Dissipation of the MMP was assessed by dividing the cells 

into two populations. The right hand peak having a high, healthy MMP and the 

second having a low, apoptotic MMP. The data were then displayed as the 

percentage of cells with a high MMP. Data are from a single experiment, 

representative of 4 experiments.
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Figure 4.12: Ligation of the BCR or coligation of the BCR and FcyRllb does

not stimulate either JNK or p38 activation

(A) Cells were cultured for 24 h prior to fixation, permeblisation and assessment 

of p38 activation with media alone (No stimulation), 56 pg/ml murine IL4 (IL4),

50 jxg/ml F(Ab)z' fragments of anti-IgM (BCR) or 50 pg/ml F(Ab)2  fragments of 

anti-IgM combined with 75 pg/ml of intact anti-IgM (BCR & FcyRllb). After the 

stated time period phospho-p38/p38 levels were elucidated using the FACE 

ELISA method. Results were calculated as mean p38 signal (optical density at 

450 nm) of three wells ± SD. These data are displayed as a ratio of the 

phospho-p38 to p38 signal.

(B) Cells were treated as described above and at the stated time period 

phospho-JNK/JNK levels were elucidated using the FACE ELISA method. 

Results were calculated as mean JNK signal (optical density at 450 nm) of three 

wells ± SD. These data are displayed as a ratio of the phospho-JNK to JNK 

signal.
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Figure 4.13: FcvRIib-mediated apoptosis is caspase 3 - independent

Cells were cultured for 48 h with media alone (No stimulation), 50 pg/ml F(Ab)2 ’ 

fragments of anti-IgM (BCR) or 50 pg/ml F(Ab)2 ’ fragments of anti-IgM 

combined with 75 pg/ml of intact anti-IgM (BCR & FcyRllb) and then stained 

with 10 pM CaspACE™ FITC-VAD-FMK. This acts as a FITC conjugated 

version of the cell permeable, irreversible pan caspase inhibitor Z-VAD-FMK. 

Therefore it can be used to monitor the amount of activated caspase 3 present 

in the cell by measuring fluorescence in the FL1 channel. Ceramide (3 pM) and 

dexamethasone (100 nM) were used as positive controls for caspase 3 

activation. Treatment with cell permeable Bax (50 pM) was used in an attempt 

to show caspase activation in response to initiation of the mitochondrial 

apoptotic cascade. The results are displayed as histograms of the amount of 

caspase activation (FL1 fluorescence).
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Figure 4.14: Executioner protease inhibitors do not prevent FcyRilb-

mediated growth arrest

Cells (2X10^ cells/ well) were incubated with either media alone (No 

stimulation), 50 fxg/ml F(Ab)2 ’ fragments of anti-IgM (BCR) or 50 fxg/ml F(Ab)2 ' 

fragments of anti-IgM combined with 75 |ig/ml of intact anti-IgM (BCR & 

FcyRllb) in the presence or absence of executioner protease inhibitors (1 jxM) 

for 48 h prior to assessment of DNA synthesis by [^H] thymidine uptake. The 

data shown is the mean of three replicate wells ± SD. These data are from a 

single experiment, representative of three separate experiments.
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Figure 4.15: Executioner protease inhibitors used in combination can 

provide partiai rescue from FcyRilb-mediated apoptosis

(A) Cells were Incubated with 50 [ig/ml F(Ab)2 ’ fragments of anti-IgM combined 

with 75 |ig/ml of intact anti-IgM in the presence or absence of executioner 

protease inhibitors (1 |liM) for 48 h. Following this, cells were stained with 50 

pg/mi PI. Treatment with 56 pg/ml of murine IL4 was used as a control for cell 

survival. F(Ab)2 ’ fragments of anti-IgM (50 pg/ml), was used as a proliferation 

control. FACS analysis was used to calculate the percentage of cells in GO/Gl, 

8 phase, G2/M phase and apoptosis (subdiploid cells). Data are from a single 

experiment, representative of 3 experiments.

(B) Cells were treated as described above. Data displayed are the number of 

cells counted in 5 s from each sample. Data are from a single experiment, 

representative of 3 experiments.
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Figure 4.16: Executioner protease inhibitors used in combination can 

increase the proportion of FcyRllb-treated cells in mitogenic phases of the 

cell cycle

Cells were Incubated with 50 pg/ml F(Ab)2 ’ fragments of anti-IgM combined with 

75 pg/mi of intact anti-IgM in the presence or absence of executioner protease 

inhibitors (1 pM) for 48 hours. Following this, cells were stained with 50 pg/ml 

PI. Treatment with 56 pg/mi of murine IL4 was used as a survival control and 50 

pg/ml F(Ab)2 ’ fragments of anti-IgM was used as a proliferation control. FACS 

analysis was used to calculate the percentage of cells in G0/G1, S phase, G2/M 

phase and subdiploid cells. Data are displayed as the percentage of ceils in 

GO/Gl phase (Panel A) or mitogenic phases of the cell cycle (Panel B). Data 

are from a single experiment, representative of 3 experiments.
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Figure 4.17: Treatment with executioner protease inhibitors does not 

prevent FcyRllb mediated-dissipation of the MMP

(A) Cells were incubated with 50 pg/ml F(Ab)2 ’ fragments of anti-IgM combined 

with 75 pg/ml of intact anti-IgM in the presence or absence of executioner 

protease inhibitors (1 pM) for 48 h. Following this ceils were stained with 2.5 pM 

DiOCe. Dissipation of MMP can been seen as a reduction in DiOCe brightness 

(FL1 fluorescence). Data are displayed as a histogram of DiOCe brightness 

(FL1 fluorescence). These data are from a single experiment, representative of 

10 experiments.

(B) Cells were incubated with 50 pg/mi F(Ab)2 ’ fragments of anti-IgM (BCR) or 

50 pg/ml F(Ab)2 ’ fragments of anti-IgM combined with 75 pg/ml of intact anti- 

IgM (BCR & FcyRllb) in the presence or absence of executioner protease 

inhibitors (1 pM) for 48 h. Following this cells were stained with 2.5 pM DiOCe. 

Dissipation of MMP can been seen as a reduction in DiOCe brightness (FL1 

fluorescence) and can be assessed by dividing the ceils into two populations. 

The right hand peak having a high, healthy MMP and the second having a low 

apoptotic MMP. The data was then displayed as the percentage of cells with a 

high MMP. These data are from a single experiment, representative of 10 

experiments.
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Figure 4.18: Caspase 8 inhibition does not prevent FcvRIlb-mediated

growth arrest

Cells (2X10^ cells/ well) were incubated with either media alone (No 

Stimulation), 50 jig/ml F(Ab)2 ’ fragments of anti-IgM (BCR) or 50 jxg/ml F(Ab)2 ’ 

fragments of anti-IgM combined with 75 ^ig/ml of intact anti-IgM (BCR & 

FcyRllb) in the presence or absence of executioner protease inhibitors (1 |xM) 

for 48 h prior to assessment of DNA synthesis by [^H] thymidine uptake. The 

data shown are the mean values of three separate wells ± SD.
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Figure 4.19: Caspase 8 inhibition prevents FcvRIib-mediated apoptosis

Cells were incubated with media alone (No Stimulation), 50 p,g/ml of F(Ab)2 ’ 

fragments of anti-IgM (BCR) or a combination of 50 pg/ml F(Ab)2 ’ fragments of 

anti-IgM and 75 fjig/ml of intact anti-IgM (BCR & FcyRllb) in the presence or 

absence of executioner protease inhibitors (1 \M )  for 48 h. Following this cells 

were stained with 50 pg/ml PI and FACS analysis was used to calculate the 

number of cells in G0/G1 phase, S phase, G2/M phase and subdiploid cells.

(A) Data was then displayed as the percentage of cells in G0/G1 phase

(B) Data was then displayed as the percentage of cells in mitogenic phases.

(C) Data was then displayed as the percentage of cells in subdiploid cells.
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Figure 4.20: Caspase 8 inhibition provides a partial rescue from FcyRllb- 

mediated dissipation of the MMP

Cells were incubated with media alone (No Stimulation), 50 [ig/ml F(Ab)z' 

fragments of anti-IgM (BCR) or 50 jxg/ml F(Ab)2 ’ fragments of anti-IgM 

combined with 75 fxg/ml of intact anti-IgM (BCR & FcyRllb) in the presence or 

absence of caspase 8 inhibitor (1 |jlM) for 48 h. Following this cells were stained 

with 2.5 pM DiOCe. Dissipation of MMP can been seen as a reduction in DiOCe 

brightness (FL1 fluorescence) and can be assessed by dividing the cells into 

two populations. The right hand peak having a high, healthy MMP and the 

second having a low apoptotic MMP. The data was then displayed as the 

percentage of cells with a high MMP.
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Figure 4.21: Coligation of BCR and FcyRllb in mature splenic B cells 

derived from Ip r mice does not induce growth arrest

Mature B cells from lpr/lpr^~ mice (2X10® cells/ well) were Incubated for 48 h 

with the appropriate stimulations prior to assessment of DNA synthesis by H] 

thymidine uptake. Cells were cultured with either media alone (No Stimulation), 

50 ng/ml F(Ab)2 ’ fragments of anti-IgM (BCR) or 50 p,g/ml F(Ab)2 ’ fragments of 

anti-IgM and 75 p,g/ml of intact IgM Ab (BCR & FcyRllb). The data shown are 

the mean values of three separate wells ± SD.
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Figure 4.22; Ligation of the BCR and FcyRllb induces the expression of

pro-apoptotic Bel-2 family members, Bid and Bad

(A) Mature B cells were cultured for 24 h with either 50 (xg/ml F(Ab)2 ’ fragments 

of anti-IgM (BCR) or 50 p,g/ml F(Ab)2 ' fragments of anti-IgM and 75 p,g/ml of 

intact anti-IgM (BCR & FcyRllb) before making whole cell lysates. Lysates were 

then analysed by Western Blotting using the NuPAGE system with whole anti- 

Bad and whole anti-Bid antibodies

(B) Cells were cultured for 1 h or 24 h prior to fixation, permeablisation and 

assessment of Bad signal. Cells were incubated with either media alone (No 

Stimulation), 56 pg/ml murine IL4 (IL4), 50 jxg/ml F(Ab)2 ’ fragments of anti-IgM 

(BCR) or 50 p.g/ml F(Ab)2 ’ fragments of anti-IgM and 75 fxg/ml of intact IgM Ab 

(BCR & FcyRllb). The Bad/ phospho-Bad levels were elucidated using the 

FACE ELISA method. Results were calculated as mean Bad signal (optical 

density at 450 nm) of three wells. The data is displayed as a ratio of the 

phospho-Bad to Bad signal. These data are from a single experiment, 

representative of 2 experiments.
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Figure 4.23: Bad activation is downregulated by both MAP kinase and PI-3 

kinase inhibition

(A) Cells were cultured for 48 h prior to fixation, permeablisation and 

assessment of Bad signal. Cells were incubated with either media alone (No 

Stimulation), 50 pg/ml F(Ab)2 ’ fragments of anti-IgM (BCR) or 50 pg/ml F(Ab)2  

fragments of anti-IgM and 75 pg/ml of intact IgM Ab (BCR & FcyRllb) in the 

presence and absence of executioner protease inhibitors (1 pM). The Bad 

levels were elucidated using the FACE ELISA method. Data is displayed as the 

mean Bad signal (optical density at 450 nm) of three wells ±SEM.

(B) Cells were cultured for 48 h prior to fixation, permeablisation and 

assessment of Bad signal. Cells were incubated with either media alone (No 

Stimulation), 50 pg/ml F(Ab)2 ’ fragments of anti-IgM (BCR) or 50 pg/ml F(Ab)2 ' 

fragments of anti-IgM and 75 pg/ml of intact IgM Ab (BCR & FcyRllb) in the 

presence and absence of 1 pM LY294002 and 1 pM U0126. The Bad/ phospho- 

Bad levels were elucidated using the FACE ELISA method. Results were 

calculated as mean Bad signal (optical density at 450 nm) of three wells ± SEM. 

The data is displayed as a ratio of the phospho-Bad to Bad signal.

(0) Cells were cultured for 48 h prior to fixation, permeablisation and 

assessment of Bad signal. Cells were incubated with either media alone (No 

Stimulation), 50 pg/ml F(Ab)2 ’ fragments of anti-IgM (BCR) or 50 pg/ml F(Ab)2 ' 

fragments of anti-IgM and 75 pg/ml of intact IgM Ab (BCR & FcyRllb) in the 

presence and absence of 1 pM LY294002 and 1 pM U0126. The Bad levels 

were elucidated using the FACE ELISA method. Data is displayed as the mean 

Bad signal (optical density at 450 nm) of three wells ±SEM.

258



Z V A D * CSTACMp

0#CA&MU%#

B

,2 OJÊO

BCR& WUI&

*### lablMtor

No SMmoWWo*



Figure 4.24: Coligatlon of the BCR and FcyRllb upregulates the activation

of p53

(A) Cells were incubated for 24 or 48 h with either media alone (No 

Stimulation), 56 pg/ml murine IL4 (IL4), 50 jjig/ml F(Ab)2  fragments of anti-IgM 

(BCR) or 50 |iig/ml F(Ab)z' fragments of anti-IgM and 75 pg/ml of intact IgM Ab 

(BCR & FcyRllb) prior to making nuclear extracts. The nuclear extracts were 

then used to assess active p53 by a modified ELISA method. The data is 

displayed as the level of active p53 (optical density at 450 nm) mean value of 

three wells ± SEM. This data is from a single experiment, representative of 3 

experiments.

(B) Cells were incubated for 48 h with 50 pg/ml F(Ab)2 ’ fragments of anti-IgM 

and 75 pg/ml of intact IgM Ab (BCR & FcyRllb) in the presence or absence of 

executioner protease inhibitors (1 pM) prior to making nuclear extracts. The 

nuclear extracts were then used to assess active p53 by a modified ELISA 

method. The data is displayed as the level of active p53 (optical density at 450 

nm) mean value of three wells ± SEM.

(C) Cells were incubated for 48 h 50 pg/ml F(Ab)2 ’ fragments of anti-IgM and 75 

pg/ml of Intact IgM Ab (BCR & FcyRllb) in the presence or absence of 1 pM

D0126 or 1 pM LY294002 prior to making nuclear extracts. The nuclear 

extracts were then used to assess active p53 by a modified ELISA method. The 

data is displayed as the level of active p53 (optical density at 450 nm) mean 

value of three wells ± SEM.
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Figure 4.25: Coligatlon of the BCR and FcyRllb differentially modulates 

individual members of the NF-KB family: cR el, p52 and Rel B have 

upregulated activation levels at 24 h but not 48 h.

Cells were incubated for 24 or 48 h with either media alone (No Stimulation), 56 

pg/ml murine IL4 (IL4), 50 pg/ml F(Ab)2 ’ fragments of anti-IgM (BCR) or 50

pg/ml F(Ab)2 ' fragments of anti-IgM and 75 pg/ml of intact IgM Ab (BCR &

FcyRllb) prior to making nuclear extracts. The nuclear extracts were then used 

to measure the activation of the various NF-KB family subunits by a modified 

ELISA method. The data is displayed as the level of activated NF-KB family 

member (optical density at 450 nm) mean value of three wells ± SD.

(A) Activation levels of cRel at 24 and 48 hours

(B) Activation levels of p52 at 24 and 48 hours

(C) Activation levels of Rel B at 24 and 48 hours
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Figure 4.26: Coligatlon of the BCR and FcyRllb differentially modulates the 

activation of individual members of the NF-KB family: Both p50 and p65 

have upregulated activation levels at 48 h but not 24 h.

Cells were incubated for 24 or 48 h with either media alone (No Stimulation), 56 

pg/ml murine IL4 (IL4), 50 pg/ml F(Ab)2 ’ fragments of anti-IgM (BCR) or 50 

pg/ml F(Ab)2 ’ fragments of anti-IgM and 75 pg/ml of intact IgM Ab (BCR & 

FcyRllb) prior to making nuclear extracts. The nuclear extracts were then used 

to measure the activation of the various NF-KB family subunits by a modified 

ELISA method. The data is displayed as the level of activated NF-KB family 

member (optical density at 450 nm) mean value of three wells ± SD.

(A) Activation levels of p50 at 24 and 48 hours

(B) Activation levels of p65 at 24 and 48 hours
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Figure 4.27: Current working model for the signals involved in FcyRllb-

medlated growth arrest

BCR mediated proliferation is under the control of both the MAP kinase and Pl- 

3 kinase pathways. Coligation of FcyRllb Induces the activation of the PI-3 

kinase antagonist PTEN. FcyRllb also recruits SHIP which can inhibit both the 

PI-3 kinase and ERKMAPK pathways. The expression of P ad  is also induced 

which acts to switch off the ongoing ERK signalling. Recruitment of these 3 

signalling molecules by FcyRllb results in the abrogation of both PI-3 kinase 

and ERKMAPK signalling and prevents and proliferation.
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Figure 4.28: Current working model for FcyRilb-mediated apoptosis

We have demonstrated that the dissipation of MMP and hence the breakdown 

of mitochondrial membrane integrity is essential for FcyRllb mediated 

apoptosis. As was discussed in figure 4.28, FcyRllb acts to inhibit PI-3 kinase 

and AKT signalling presumably resulting in the sequestration of B c IX l by Bad. 

This prevents B c IX l homo-dimers from protecting the mitochondrial membrane 

integrity and hence allows for the opening of the permeability transition pore. 

Furthermore, caspase 8 Is involved in this form of apoptosis. Caspase 8 acts 

upstream of the loss of mitochondrial membrane Integrity and is proximal to the 

activation of cathepsin B and calpains. We have also demonstrated that the pro- 

apoptotic Bcl-2 family member Bid is upregulated however we have not 

provided clear evidence that It is in the active, truncated form. Therefore we 

cannot comment on the interaction between caspase 8 and Bid. The 

transcription factor p53 Is also activated by FcyRllb coligation. This molecule is 

known to act as a pro-apoptotic Bcl-2 family member or may mediate its effects 

via upregulation of Bax/Bak expression. The loss of mitochondrial membrane 

integrity is signalled by cytochrome c release, loss of MMP and commitment of 

the cell to apoptosis.
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Chapter 5: General Discussion

During B cell development there is a dichotomy in BCR signalling. As has been 

described in chapter 3, ligation of the BCR on immature B cells results in cell 

cycle arrest and apoptosis whereas BCR ligation in mature B cells, as described 

in chapter 4, results in growth and proliferation. Furthermore, coligation of the 

BCR and FcyRllb in mature B cells mediates negative feedback inhibition, 

which can induce cell cycle arrest and apoptosis. This dichotomy of BCR 

signalling is a central question that must be resolved in order to properly 

understand mammalian B cell development. A full understanding of this process 

will lead to better vaccine development and an appreciation of how defects in 

these processes can contribute to diseases, such as leukaemia, and 

autoimmune syndromes, such as SLE. Moreover, information on apoptotic and 

proliferative signalling in a central tenet for many areas of biomedical science 

and is of general scientific interest. Therefore this study aimed to ascertain the 

main proliferative and apoptotic signalling cascades utilised by BCR signalling 

during B cell maturation.

5.1 Immature B cell signalling

Firstly, the signalling systems employed by the BCR in the murine lymphoma 

cell line WEHI 231 were addressed as this cell line provides a model for 

negative selection of immature B lymphocyte in the bone marrow (20, 406). 

Previous work in this laboratory, and others, has demonstrated that such BCR 

ligation results in cell cycle arrest and apoptosis, and that this is used 

physiologically to prevent the generation of self-reactive B cells (300, 503). The 

mechanism underlying this form of apoptosis involves loss of mitochondrial 

membrane integrity and the activation of PLA2 and translocation of PLA2 to both 

mitochondria and the nucleus (156). This study has extended these findings by 

identifying that the active metabolite during BCR-mediated apoptosis is actually 

arachidonic acid, generated by PLA2 action rather than an eicosanoid 

metabolite (425). Indeed, it has been demonstrated that further metabolism of 

arachidonic acid to the ecosinoid prostaglandin E2 (PGE2 ) by C0X2/ LOX 

results in anti-apoptotic signalling (425). Therefore arachidonic acid provides an
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essential dynamic molecular switch from apoptotic signalling initiated by the 

BCR (arachidonic acid) to anti-apoptotic signalling mediated by CD40 

engagement (conversion of arachidonic acid to PGE2 ).

Previous work in this laboratory had also highlighted the importance of dynamic 

ERK signalling In both proliferation and apoptosis in immature B cells (275). 

Thus, during BCR-mediated signalling the sustained ERK signalling, found in 

proliferating WEHI 231 cells, is abrogated (275). A causal role for such ERK 

signalling in proliferating WEHI 231 cells was therefore investigated in this 

thesis by manipulating activation of the ERK pathway by expressing Ras mutant 

constructs in WEHI 231 cells. Interestingly, following expression of constitutively 

active Ras constructs, although the ERK signal was maintained it continued to 

be cyclical indicating that the negative regulatory elements that interact with this 

pathway remained active. The expression of RasV12 did provide rescue from 

both BCR-mediated growth arrest and apoptosis of WEHI 231 cells for 24 h 

highlighting the importance of such ERK signalling. However, this capacity was 

not maintained beyond 24 h, suggesting that there is a complex interplay of 

many cascades that must be simultaneously activated or inactivated to regulate 

BCR-stimulated apoptosis. In an attempt to identify these regulatory elements 

we investigated the BCR response in WEHI 231 cells expressing dominant 

negative constructs of both SHIP and Dok which have been reported to 

negativelt regulate Ras/ERK signalling, however these constructs did not 

provide release from BCR-mediated apoptosis.

Rescue of immature B cells from BCR-mediated growth arrest and apoptosis 

using anti-CD40 also provides a model for T cell help and such rescue has 

been associated with both upregulation of the anti-apoptotic Bcl-2 family 

members B c IX l and A1 as well as a maintenance of the sustained, cycling ERK 

activation (275, 277, 416, 425). This study demonstrated that upregulation of 

B c IX l is sufficient to protect from arachidonic acid-mediated loss of 

mitochondrial membrane integrity and apoptosis. Furthermore, we identified that 

co-engagement of CD40 increases the association of Bak with B c IX l indicating 

that B c IX l may act to sequester the pro-apoptotic Bak to inhibit the opening of 

the mitochondrial permeability pore. In addition, we have identified that 

upregulation of B c IX l can downmodulate calcium signals providing an additional
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mechanism for the downregulation of BCR-coupled mPLA2 activation and 

hence a reduction in apoptotic signalling.

Another major area of investigation of in this thesis was the investigation of the 

role of PKC isoforms in immature B cell apoptosis, survival and proliferation. 

PKC a, (3, Ô, e, ri and 0 isoforms are all expressed in B lymphocytes (348, 

349). However immature B ceils have diminished PKC signalling compared to 

mature B lymphocytes suggesting PKC may contribute to the differential 

response of distinct developmental stages of B cells to ligation of the BCR. For 

example, ligation of the BCR on mature B cells leads to PI-(3,4)-p2 hydrolysis, 

Ca '̂" mobilisation and stimulation of PKC. In contrast, ligation of the BCR on 

immature B cells can mobilise calcium but PI-(3,4)-P2 hydrolysis and 

subsequent PKC activation are significantly reduced. Previous work in this 

laboratory had demonstrated that PKCs a, Ô, e and Ç are all expressed in the 

Immature B cell line WEHI 231. Considering that previous studies have 

suggested a non-redundant role for PKC isoforms In B lymphocytes it was 

therefore decided to investigate the role of PKCs a, ô, e and ^ in proliferation, 

growth arrest and apoptosis in WEHI 231 cells. However, these results were 

disappointing as expression of both constitutively active and kinase dead forms 

of the PKC isoforms in WEHI 231 B cells induced essentially Identical functional 

responses, suggesting that there may be problems In functionality and 

localization of the PKC constructs in these WEHI 231 cells . However, the PKC 

family will still provide an interesting area of study as the PKC mutants 

generated did provide at least partial rescue from BCR-mediated apoptosis and 

loss of MMP indicating that PKC signalling may be Important in these 

processes.

There are still many Interesting potential areas of follow up study within BCR- 

mediated signalling of immature cells. For example. It would be very interesting 

to further Investigate which Bcl-2 family members are present, how they are 

activated and their potential binding partners. Furthermore, It would be 

extremely interesting to relate the calcium signals generated by ligation of the 

BCR to the localisation and activation of such Bcl-2 family members. Indeed, 

there have been reports that Bcl-2 family members can themselves acts as 

calcium channels and that they regulate the relative E.R, mitochondrial and
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cytosolic calcium levels (106, 191, 426, 437-441). It would therefore be 

interesting to investigate the relative calcium levels in these subcellular 

organelles by utilising differential dye loading and tagging of GFP-FRET pairs to 

localise them to specific organelles. Pairing this with a study to identify which 

organelles are the sites for clustering of Bcl-2 family members would be very 

informative regarding the key mechanism underlying calcium signalling and 

mitochondrial homeostasis In immature B cell survival and clonal deletion.

5.2 Mature B cell signalling

In contrast to the situation with immature B cells, ligation of the BCR in mature 

B cells results In growth and proliferation. Previous studies had concentrated on 

the early signals (within 30 min) associated with BCR signalling focussing on 

the ERK and PI-3 kinase cascades which are established to be associated with 

early BCR-mediated proliferative signals (278, 458). This study has extended 

such findings by indicating mitogenic BCR-mediated ERK and PI-3 kinase 

signalling are maintained for up to 48 h post BCR-llgatlon. Moreover, these data 

suggest that PI-3 kinase maintains a pro-survlval signal by activation of AKT 

and hence maintenance of phospho-Bad signals. Coligation of FcyRllb results 

in the inhibition both ERK and PI-3 kinase cascades and induces cell cycle 

arrest. Parallel studies in this laboratory have Indicated that the abrogation of 

the ERK signal reflects induction of the ERKMAPKinase phosphatase Pad 

(124). Similarly, PI-3 kinase responses are abrogated by both the recruitment of 

SHIP and the induction of PTEN both of which can antagonize the production of 

PI-(3,4,5)-P3 (124. 346, 464, 466).

This present study has also demonstrated that negative feedback inhibition, by 

coligation of the BCR and FcyRllb, not only induces cell cycle arrest but also 

induces an apoptotic phenotype. This is the only study to date that has 

attempted to characterise this form of apoptosis. It has demonstrated that the 

dissipation of MMP, and hence the breakdown of mitochondrial membrane 

integrity, is essential for FcyRIlb-mediated apoptosis. To do this FcyRllb acts to 

inhibit PI-3 kinase signalling presumably resulting in the sequestration of 

B c IX l/B c I-2  by Bad. This would prevent B c 1Xl/B c I-2  dimers from protecting the 

mitochondrial membrane integrity and hence allow for the opening of the
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permeability transition pore. Furthermore, caspase 8 has been shown to be 

involved in this form of apoptosis. Caspase 8 acts upstream of the loss of 

mitochondrial membrane integrity and is proximal to the activation of 

executioner proteases such as caspase 3, cathepsin B and calpains. In 

addition, the pro-apoptotic Bcl-2 family member Bid is likely to be upregulated, 

however there is no clear evidence that the active, truncated form is induced. 

Therefore it is not yet possible to comment on the potential interaction between 

caspase 8 and Bid. Finally, the transcription factor p53 is also activated by 

FcyRllb coligation and consistent with this, p53 is known to act like a pro- 

apoptotic Bcl-2 family member or alternatively may mediate Its effects via 

upregulation of Bid, Bax or Bak expression. Collectively these signals result in 

the loss of mitochondrial membrane integrity which is signalled by cytochrome c 

release and commitment of the cell to apoptosis via the induction of executioner 

proteases.

There is obviously much more work to be done to elucidate the exact 

mechanism and complex interplay of the above components during FcyRllb 

mediated-apoptosis. For example, it would be Interesting to further Investigate 

the activation status and binding partners of the Bcl-2 family members involved 

as the activation of p53 Implies that the pro-apoptotic Bcl-2 family members 

may be particularly Important. Thus, It would be interesting to investigate which 

p53 controlled genes are actively transcribed and furthermore assessment of 

the localization of p53 would identify whether p53 had transcription-independent 

functions In this form of apoptosis. Moreover, it would be interesting to identify 

the intermediate targets of caspase 8 and to ascertain whether other non- 

redundant executioner proteases are involved.

5.3 Concluding Remarks

The finding that two novel mechanisms of apoptosis have been Identified at 

distinct stages of B lymphocyte maturation Is not surprising as these cells 

regularly utilise apoptosis to ensure not only that non-autoreactlve and 

functional BCR are formed but also as part of homeostatic regulation of the 

immune system. B cells may therefore have evolved different apoptotic 

mechanisms for use at different differentiation states, as the correct regulation
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of B cell function is essential to prevent disease. The BCR-mediated PLA2- 

dependent apoptosis utilised in negative selection of immature B cells and 

FcyRllb-mediated caspase 8-dependent mechanism observed during negative 

feedback inhibition of mature B cells both provide interesting areas for further 

research as dissection of the key regulatory events may provide useful 

therapeutic targets in health (vaccines) and disease (autolmmunity/cancer).
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