

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

Enlighten: Theses <u>https://theses.gla.ac.uk/</u> research-enlighten@glasgow.ac.uk

STRUCTURAL AND PREPARATIVE

STUDIES OF SOME PHENYL

DERIVATIVES OF GROUP IV A ELEMENTS

۰. ۱

A_THESIS

submitted to

THE UNIVERSITY OF GLASGOW

in fulfilment of the

requirement for the

DEGREE OF DOCTOR OF PHILOSOPHY

by

Ali Nohemuad

Department of Chemistry

University of Strathclyde

formerly

The Royal College of Science and Technology Glasgow.

November, 1964.

ProQuest Number: 10656410

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10656410

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 – 1346

<u>ACKNOWLEDGENENTS</u>

The author wishes to express his sincere thanks to Dr. D.W.A. Sharp for his guidance and encouragement throughout the course of this work. He is also indebted to Dr. D.H. Brown for his helpful suggestions. Thanks are also due to Professor P.L. Pauson for providing the opportunity to carry out this research.

The author would like to thank for the assistance kindly given by Dr. P. Bladon for the use of the infrared spectrophotometer, Dr. R.H. Nuttall for his help in recording far infrared spectra, Mr. T. Boyle for measuring ultraviolet spectra and members of the Microanalytical Department.

The award of a maintenance grant from the U.S. Department of Army for the period 1961-1964 is gratefully acknowledged.

<u>C.C.N.T.E.N.T.S</u>

Abstract	00	00	00	00	00	00	00	00	00	90	00	00	
Chapter I	The	Infre	ared	and	Far	In?	rære	d Spe	etre	o î			
	Orge	enotia	ı Cor	npour	ıds	00	ନ୍ତ	00	0 9	00	ດ່ວ	ð 0	3
	Expe)rimei	ntal	00	00	00	00	0 ¢	00	00	00	00	63
Chapter II	The	Infre	ared	Spec	rtra	ol	Somo	Pher	ylle	ead			
	Comp	pounds	3 0 0	00	00	ġ o	ý G	00	00	0 0	00	00	75
	Expe	rimei	ntal	00	9 V	oo	90	40	00	00	00	00	98
Chaptor III	The	Far :	Infr	ared	Spe	etra	oî	Some	Phon	ıyl			,
	Dori	lvativ	ves (of Gi	roup	IVA	d VA	÷ VI	l and	I VIJ	[A		
	El en	ients	ទទ	00	00	0.0	a è	00	00	90	00	© 0	104
	Expe	erimer	ıtal	00	00	op	00	00	00	Q Q	00	00	113
Chapter IV	Spec	tros	copi) Str	ldie	s on	Tri	arylo	er do	ni.un	a Ic	m	
	Comp	pound	s and	1 the	eir (Comp	lexe	8					
	Α.	Gene	ral :	Intro	oduc	tion	లైచి	00	00	00	00	0 6	116
	B.	Spect	tral	Inve	esti,	gati	ons	on Ti	riary	rlcai	rodr	ii um	
		Ion 1	Dyesi	cuff	e an	d th	air	Compl	loxos	s in	Aqu	ieoua	2
		Solu	tion	00	00	ØĢ	٥٫٥	0,0	00	00	00	00	155
		Expe	rimen	ntal	00	, 0 0	õ o	00	00	00	00	00	128
	C.	Solid	d Cai	cbon:	i um	Ion	Salt	s of	Dyes	eturi	r Ö		
		Comp	ound	3	00	00	ê ô	0.4	00	00	00	00	75d
		Expe	rine	ntal	00	00	σų	00	00	00	00	00	192
	Д.	Prepa	erat:	ion (of S	ome	Cova	lent	Deri	ivati	lves	కి ంక్	
		Carbo	oniu	n Ior	n Dy	ostu	llø	00	00	ల్ల	0 0	0 × 0	139

Experimental

00

00

00 00

00

0 e

pagè

· 0: 142

	E	Dyestı	iff C	omple	exes	eroc:	ipite	ut ed	l fr	OM		·	
		Concei	ıtrat	ed Ry	ydrocl	alor:	le ac	eid	00	00	00	00	145
		Exper:	lmont	alo o	00	6 O	00	00	ço	00	00	00	150
	Po	Proper	ratio	n of	some	Low:	lo ac	eid•	-Dyo	stul	ſ		
		Comple	excs	00	00	όò	ÓO	00	٥٥	00	00	00	153
		Exper	iment	el	0 _, o	00	Ŏ O	00	00	00	00	00	159
References) a	> 00	0 0	00	00	00	00	00	00	00	00	00	162

,

ABSTRACT

The infrared spectra of a number of aryl tin and aryl lea compounds have been examined in the 2-50 µ. region. The infrared spectra (2-15 µ.) of these derivatives are the spect: of mono-substituted benzene derivatives. The spectra in the far infrared region (15-50 µ.) have been found to be distinct: and can be used for the qualitative identification of these compounds. Frequency assignments are made and the spectra at discussed in terms of structural features of the organometall: derivatives. There seems to be no evidence to support the possible existence of Ph_xSn⁺ and Ph_xPb⁺ cations in any of the derivatives examined. The derivatives with strong electronegative groups, i.e. fluorides, fluoroborates, perchlorates, hexafluoroarsenates, hexafluoroantimonates, nitrates are considered as predominently covalent in character with polyme structures involving five co-ordinate tin or lead atoms. number of new compounds have been prepared during the course of this work.

Conductivity measurements have been made on nitromethane solutions of hexaphenylditin and hexaphenyldilead at varying temperatures. It has been conclusively shown that there is n heterolytic dissociation of these compounds.

The far infrared spectra (15-50 µ.) of a range of aryl compounds of Group IVA, VA, VIA and VIIA elements have been studied. Frequency assignments are made for the stronger ban Most of the vibrational frequencies occurring in this region sensitive to the substituent atom attached to the benzene rin. Some new salts of the triphenylmethyl carbonium ion have been prepared and their infrared spectra examined.

The carbonium ion dyestuffs (malachite green, brillant green and crystal violet) form ionic derivatives with fluoroborate, perchlorate and heteropoly acid anions. The solution spectra of these derivatives have been examined in the visibl region (400-700 m.u.) and the spectra are discussed in terms of aggregation of the dyestuff cations in solution. Many new crystalline compounds have been prepared with fluoroborat perchlorate and heteropoly acid anions and the infrared and reflectance spectra discussed.

The cyanide, cyanates, thiocyanate, metaborate and sulph derivatives of the dyestuffs have been found to be covalent with a true tetrahedral arrangement about the central carbon atom.

The dyestuffs give orange-red solutions in strong acids. The colour is due to the formation of new species by protonat of the nitrogen atoms of the dyestuff cations. Many new salt containing these protonated species with anions derived from heteropoly and Lewis acids have been prepared and examined spectroscopically.

The dyestuffs also form complexes with Lewis acids (SnCl₄, SbCl₅) in non-aqueous solvents. The successive addiof of SbCl₅ has been studied and a number of new complexes have been prepared with crystal violet.

CHAPER I

THE INFRARED AND FAR INFRARED SPECTRA OF

ORGANOTIN COMPOUNDS

Introduction

1

Many of the observed properties of the organometallic compounds of the Group IVA elements are similar. All these elements have four valency electrons with a s^2p^2 configuration The two electrons in the subshell in their ground states. have coupled spins and in this state only two unpaired p electrons should be available for bonding. In the more usual four covalent state, one of the s electrons is promoted to a higher energy level and tetrahedral sp³ hybridisation Because of the sp³ hybridisation and the presence occurs. of an octet of electrons, all the organometallic compounds in their four covalency state are relatively stable and possess relatively low chemical activity. The marked stability of $R_A Sn$ (R = alkyl or aryl) compounds over $R_p Sn$ type of compounds demonstrates the effect of increased hybridisation and also inert gas electronic structure. However, among these elements there are also differences which in some cases lead to the rather widely different chemical properties of their organometallic compounds. There is a considerable difference in electronegativity values of carbon and the other elements of Group IVA elements. The Pauling electronegativity values are given in Table I.

TABLE I

Element	Pauling's scale of electronegativities
C	2 ه ٢
Si	1.8
Ge	1.07
Sn	1. <i>7</i>
Рь	(march)

From the decrease in electronegativities, the metal-carbon bonds are expected to have some ionic character. (Luijten and Van Der Kerk¹). In compounds of the type R₃MX (R = alkyl, M = metal, X = halogen) the percentage of ionic character for the M-X bonds derived from differences in electronegativity are shown below.

TABLE 2.

Bond	Difference in electronegativity	% ionie
C-01	0.5	6
S1-Cl	1.2	30
Ge-Cl	1.3	35
Sn-Cl	1.3	35
PD-Cl	Care of	feed a
K-C]	2.2	70

With decreasing electronegativities (Table I), an increase in the polar character of the M-X bonds is evident as illustrated by Table 2.

The carbon atom is in a special situation within the Since it is a second-period element it cannot expand group. the valency shell beyond eight electrons. For silicon and other elements in the higher periods such expansion is not forbidden and may account for some of the differences between the chemistry of these elements and that of carbon. Although the elements of this group, with the exception of carbon. show no tendency to form double bonds of the ethylenic type 1.e. $p_{\mathcal{M}} - p_{\mathcal{M}}$, there is strong evidence that the d-orbitals of the elements other than carbon are used for $d_{n'} - p_{n'}$ bonding. Chatt and Williams² have studied the thermodynamic dissociation constants of four acids of the type $p-R_3MC_6H_4COOH$ where M represents carbon, silicon, germanium or tin. Carbon is the most electronegative of the four elements and it should enhance the acid strength to the greatest extent. Actually the carbon compound shows the lowest acid strength and this is taken to indicate that $d_{17} - p_{17}$ bonding is operative in the other three compounds. A schematic representation of the orbitals forming the $d_{n'} - p_{n'}$ bonding of the M-C_{arvl} bond for a silicon compound shown in Figure I. This type of bonding compensates for is the increasing inductive effect in going from silicon to lead. The infrared and ultraviolet spectra of phenyltin compounds have been interpreted (Griffiths and Derwish³) on the basis of the Sn-Carvl bond having some double bond character. These findings

Figure I. *71-bonding between silicon and an aromatic ring system.* Chatt and Williams²,

are further discussed by a theoretical predication made by Craig, Maccoll, Nyholm, Orgel and Sutton⁴. Several other examples of this type of multiple bonding involving d-orbitals are listed in a survey in which the behaviour of silicon is examined in detail. (Stone and Seyferth⁵).

Among the elements of this group there are some properties that are characteristic of one element only. The most unusual property of the organotin compounds is the ionisation of the R_3SnX and R_2SnX_2 type of compounds. They are not ionised as R_3Sn^+ or R_2Sn^{2+} but co-ordinated with water as $R_3Sn(OR_2)^+$ or $R_2Sn(OR_2)^{2+}_{n}$. The dissociation of the organotin halides R_3SnCl (where R=alkyl or aryl) in the presence of an electron donor compound has been generalised^{6,7}.

 $R_3SnX + : X \iff R_3SnY^+ + X^-$ The R_3SnY^+ species may or may not undergo subsequent reaction₃ e.g. proton transfer if Y is H₂O:

 $R_3 Sn(OH_2)^+ + H_2 O \implies R_3 SnOH + H_3 O^+$

The extent of this type of reaction depends on the nature of both the R and the H group. Similarly, dimethyltin dichloride dissociates almost completely in water^{8,9}.

 $(CH_3)_2 \operatorname{SnCl}_2 + \operatorname{nH}_2 O \longrightarrow (CH_3)_2 \operatorname{Sn}(OH_2)_n^{++} + 201^-$

The resulting solutions are acidic due to further hydrolysis of the cationic species formed in the above reaction.

 $(CH_3)_2 Sn(OH_2)_n^{2+} + H_2^0 \rightleftharpoons (CH_3)_2 Sn(OH_2)_{n-1}^{0H^+} + H_3^{0^+}$

The degree of hydrolysis depends on the concentration of the solution.

In all the above reactions of dissociation and hydrolysis, it is considered that the tin atom is present in penta or higher co-ordination state in the organotin cationic species formed in solution. This characteristic feature of penta or hexa co-ordinate tin atom has been shown in several previous reports¹⁰⁻¹⁴.

Conductivity measurements on alkyltin halides have shown that these compounds are not true electrolytes in the solid state, but when dissolved in methyl or ethyl alcohol, water, pyridine, or acetone they are relatively good conductors; whilst in benzene, ethyl ether, nitrobenzene or nitromethane they are poor conductors (6,10,15-18). These compounds have ordinarily b.en looked upon as salts as they exhibit the above properties which are similar to those of salt-like

ĺ

substances.

Early workers placed more emphasis on synthetic methods than on physical-chemical studies of these compounds. This is reflected by the absence of any detailed information on the infrared spectra of organotin compounds, the only exception being tetramethyltin 19-23 and tetraphenyltin 24-26. Within the last few years, however, spectra have been reported for a fairly wide range of alkyl and aryl tin derivatives 27,28,30. The main reason for studying the infrared spectra of the organotin compounds is to obtain information regarding the structural features of these compounds. Although Ph₃M⁺(M=C, Si, Ge, Sn, Pb) derivatives are well known for M=C. (See chapter on Carbonium Ions); there have been doubts about the existence of Ph_3Si^+ , Ph_3Ge^+ , Ph_3Sn^+ or Ph_3Pb^+ ions. The compound R₃S1Cl reacts with silver perchlorate to give trialkyl or triaryl silicon perchlorates but the evidence on the bonding in these compounds is not complete. They react in solvolytic reactions as if they were ionic but their infrared spectra are not definitely in favour of either a covalent or an ionic structure for these products. However, PhzSi⁺ has recently been reported in the salt Ph3SiSbF6, but it could be covalent as found by Clark and O'Brien²⁹ for Me₃SnSbF₆. As regards the tin compounds contradictory statements 52~55 have been made about the probable existence of Me_3Sn^+ or Ph_3Sn^+ ions.

The present work was undertaken to investigate by infrared

L

spectroscopy the probable existence of Ph₃Sn⁺ ions in the aryltin compounds. After the completion of the major part of this work, a number of workers^{27,28,30} reported infrared investigations on the structure of phenyltin derivatives. Although some of the compounds studied by these workers were different from those studied here, their results are in complete agreement with those of the present work, and they have reached the same conclusions. The examination of the infrared spectra of these compounds supports the recent view 29,53-55,89,91 that the organotin derivatives are covalent rather than ionic compounds. There is little evidence for the existence of Ph_3Sn^+ or Me_3Sn^+ cations in any of the known organotin compounds. The present work includes infrared studies on a wide range of phenyltin compounds, and some alkyltin derivatives. A few of these compounds are new materials and others were prepared by standard published The infrared and far infrared spectra of the procedures compounds have been examined over the range 5000-200cm (2-50µ.). The absorptions are discussed and assignments are made for the infrared vibrations involving the tin atom in combination with other atoms. The structures of phenyltin 'halides, tetrafluoroborate, perchlorate, hydroxide, oxides and acetates are discussed in detail.

The infrared spectra of aryltin compounds

All the phenyltin compounds show quite similar infrared spectra in the sodium chloride region $(2-15\mu)$ but beyond 15 µ. they are characteristic and this region is particularly useful for the qualitative identification of these compounds.

In considering the spectra of these compounds, there are two possible approaches. The molecule can be considered as a whole and this would lead to a very complex description. Alternatively, the spectra can be split into bands which result from the organic part of the molecule and those which result from vibrations of the central organometallic skeleton.

The most complete previous treatment being that of Kriegsmann and Geissler³⁰ who have used the latter approach to explain the spectra of some alkyl and aryl tin derivatives.

For a compound of the type R₃MX, (R=akyl or aryl group, M=Si, Sn or Pb, X=anionic group). Kriegsmann and Geissler³⁰ divide the vibrational modes into these two types as above and this device will be followed here. These modes are.=

(i) <u>Vibrations of R (Benzene ring</u>):- In the case of phenyl derivatives, the vibrations are those of mono-substituted phenyl derivatives.

(ii) <u>Skeletal vibrations of the group $R_3-M-X:$ </u> Since R is alkyl or aryl group, these vibrations are formally of the groups C_3-M-X and there are corresponding groups

C₂MX₂ and CMX₃ for di- and mono-phenyl derivatives respectively. The M-X vibrations normally occur in the far infrared region below 400 cm⁻¹. The assignements for these modes are made by analogy with previously reported M-X vibrations for the tin compounds.

The Ring Vibrations:- The most comprehensive survey of the infrared and Raman spectra of mono-substituted phenyl derivatives is by Whiffen³¹.

A mono-substituted benzene ring is of C_{2v} symmetry and would have thirty fundamental vibrations i.e. 11 of symmetry A_1 , $10B_1$, $3A_2$, and $6B_2$.

It is more convenient to discuss these frequencies in terms of the approximate description of the normal modes rather than to take each symmetry class respectively. Three of the fundamental frequencies are of species A_2 type and hence are forbidden in the infrared spectrum. The remaining twenty-seven are infrared active. Of the thirty vibrations mentioned above, only six appear to be sensitive to the nature of the substituent atom. Five of the fundamental vibrations of a simple mono-substituted benzene occur in the far infrared region (650-200 cm⁻¹). Although the phenyltin compounds are not of overall G_{2V} symmetry, the departure of a phenyl ring system from G_{2V} symmetry is not great. Therefore, Whiffen's²¹ arsignments for the mono-substituted benzene ring system are accepted and his nomenclature will be followed in the following discussion. The approximate mode diagrams (Randle and Whiffen³²) for the vibrations of a mone-substituted benzene group are shown in Figure 2. The assignments for the fundamental vibrational frequencies of $C_{6}H_{5}X$ (where X = substituent) are made in Tables (3-6) for all the phenyltin derivatives studied in the present work. In the first column of each Table is given Whiffen's notation for the modes of vibrations of a mono-substituted benzene group. A complete frequency assignment analysis of phenyl group vibrations is shown in Figure 3 for tetraphenyltin which could be considered as a representative member of all the phenyltin derivatives studied in the present work.

db (5

Fig. 2

Fundamental vibrations of C_6H_5X (Whiffen³¹)

The 3070-1650 cm⁻¹ region:- There are essentially five C-H stretching modes for each compound whose frequencies must lie in the range 2950-3120 cm⁻¹ by analogy with other aromatic C-H frequencies (Bellamy³⁵). Kriegsmann and Geissler³⁰ have observed these modes in the 3070-3010 cm⁻¹ region in the study of some phenyltin compounds. In all the phenyltin derivatives, a weak to medium band is observed around 3040 cm⁻¹ which is identified with Whiffen's 'z' band for a stretching vibration. In general the spectra are not well resolved in this region as a spectrophotometer with high resolving power would be needed to get a good resolution. The overtones and combination bands of the C-C normal modes occur in the 200-1650 cm⁻¹ region as four to five weak intensity absorption bands.

The region below 1650 cm⁻¹:-

The band near 1475 cm⁻¹:- This band has been assigned to a C-C stretching mode by Griffiths and Derwish³⁴ for their four phenyltin compounds. In the purely organic compounds studied by Katritzky and Lagowski³⁵ the range 1511-1477 cm⁻¹ was found for this band and it was noted that with heavier substituents in the benzene ring, the 1475 cm⁻¹ band was found at the lower frequency end of the range. Amster and Colthup³⁶ have observed a band at 1480 cm⁻¹ in phenyl phosphine derivatives and they have attributed this absorption to a C-C normal mode and assigned it as Whiffen's 'm' band of the mono-substituted phenyl group vibrations. A similar absorption within the range

1480-1468 cm⁻¹ was recorded by Poller²⁷ for a number of phenyltin derivatives and has been assigned to a C-C stretching mode. In the present work, a medium to strong intensity band within the range 1478-1471 cm⁻¹ was shown by all the phenyltin compounds. This band is assigned as Whiffen's 'm' band for the mono-substituted benzene group vibrations. The band near 1425 cm⁻¹ (Whiffen's 'n' band). A very sharp intensity band is recorded in the range 1430-1425 cm⁻¹. With the exception of the C-H out-of-plane vibrations (at 750-670om this band is the most intense of the benzene ring bands. The band is assigned to another C-C stretching mode by Griffiths and Derwish³⁴ wno have assigned the corresponding absorption at 1435-1434 cm⁻¹ to this vibration. Katritzky and Lagowski³⁵ have given the range 1447-1446 cm⁻¹ for mono-substituted benzenes with a heavy atom substituent. This absorption was originally recorded at 1429 cm⁻¹ by Young et.al.³⁷ for phenyl silicon compounds and it has been shown to occur (Henry and Noltes³⁸) at the same frequency in the corresponding phenyl germanium and lead compounds. In the present work this band is assigned, as Whiffen's 'n' band, to a C-C stretching mode. The band near 1370 cm⁻¹:- A weak intensity band is observed in the range 1376-1370 cm⁻¹ in all the compounds except in the phenyltin agetates (where it is masked). An absorption has been reported at 1374 cm⁻¹ for Chlorobenzene and it was assigned to be a summation frequency (i+y) by Whiffen³¹. The range of this summation frequency has been quoted at 1381-1377cm² by

Herzfeld, Ingold, and Poole³⁹. By comparison with the above

'n	Ç,	Q.	ନ	(ŝ)		Ø	Ø		Ħ		63	Thilffer 'S Notation		Teble 3	7 G .
Az ring	H-O GLF	H-0 औ र	B-0 dIE	H-0 614		H-O G'E	0-0 A 2		50 6 6	0-0 K ^T F	H-0 & ^L V	Bobeription	120 a.C	Funde	
997m	1021a	<u>1070vs.1058ah</u> .	114977	11767	12530	12992	13387	13767	1425Ta	11,75a	Johom	Tes that	¥1.01.	mentel Vibrational fr	
9978	1020m	<u>1070va.1058ah</u> .	ख6तादा	13857	12527	1295#	1326#	13700	luzsva	1473a	30 40m	PhySu-SaPhy	ational frequency of	Examples of 02RyE	
亚 内66	101.5m	1064m	1 15 6a	ŷ	12500	12924	- 32r 9	1370w	14258	9 ti 12 8	3035e	ud-us-ud	C6E5X (cm ⁻¹)		

.

•

•

(continued)	<u>Pundan</u>	ental Vibrationa	1 frequencies of Colfred	Ď
Hoad			Vibrational frequency of	Conza (cm-1)
Thiffen 's Notation	nottictasso	as ^h uá	Ph ₃ Sn-SnPh ₃	L-US-UL
டூ	B2 C-H	985 a	Ð	ŋ
₽£	₩ · · · · · · · · · · · · · · · · · · ·	9low	a628° a606	31
₽₽		728vs	728vs	7218
ଞ୍ଚ	0-0 <i>B</i> 4	8977B	87069	6938
69	0-0-0 1	- - 	Į	.}
.	B ₂ X sens .	155va-Miger	uszan. Wuzve	<u>hhosp.</u> h
с¢	A X zena.	263va	260b	277a

7

.

-absorptions not observed or obscured.

2

,

7

選	0 Â B		W1brational	frequency of	C6H5K(em	L L
Whilffon 's notation	Dæzeri pil on	Puzsur	Lous ^c ud	Ph2SnO12	PhSnCl ₃	PhzSnBr
8	er Andra and and a state of the state of th	moriol	3035 B	30458	3050m	30 30m
ji ji	E-D A TV	14750	HJ 33	14758	14710	14728
IJ	0-0 (<u>1</u>	14298	1429a	1430~8	34254g	1426va
		1370w	2.2 1 2 2 1 2 2	1376m	1370W	1372w
٥	B1) C-C	1332w	1.330m	L3328	13260	13308
0)	H-D d ^T R	1.300w	1.300m	12998	12002 1	1299m
		1255#	1 2 7 8	Û	0	1.256a
ĝ	and And C-M	Q	llust	7700 I	llbon	1108w
ଜ	R-D o ^T T	114.9w	1722 19	1162¤	11558	a Ly I
(ÔL)	हि-0 है	1076a	1073a	107078	10703	1071 V3
ទ្រាំ	ALD C-H	1021 <i>w</i>	1018m	1018s	1019m	10188

٠

Pundamental Vibrational frequencies of Conga

<u>reble h</u>

<u>Fable L</u> (continued)		<u>Fundamental V</u>	nosz: (szottaza)	encies of Oct	N. 4	
Ш	ତ ୍ର ଶିତ୍ତ ତ		V1 brational	frequencies	02 C I J.	
Whiffen 'S Notation	Description	PhySng	PhySnCL	2 LDuS ² ud	LDuSua	r i oribr
ਾਰ	Burl Ty	997m	5465	99 5a	995 a	9 1 66
£>	BN C-H	Ø	970 4	205 6	0	\$0,16
دلير	BY C-H	91 /w	91 <i>7</i> 77	AOT6	BE 76	919 8
£~€	B C C E	<u>132ve.125eh</u> .	728ve	726ve	73088	<u> 133eb.726ve</u>
ଙ୍କ	0-0 1 2 2	87998	694V9	800g	<u>691.e. 672</u> e	e169
69	B_ ~ C-C-C	0	ſ	ĝ	D	Û
જ્ય	B ₂ X sons.	<u>1529. Milen</u> o	<u>uns un sonn</u>	atista	4350	<u>4388.4232h</u> 2
S.	AzX sens.	2788	2680.	278m	270a	267b (Sn-Br)

lŞ

ß	O	ß		<i>(</i> i)}	O		3	IN	63	Whiffen ¹ m notation) 15 15	Table 5
By CO-H	B C-H	H-OG LA		H-03 La	0-0 (^T g		D-DA La	2-0 (TT	Al VC-H	Description	0 de e	Frequency
1075a	11497	1183#	125d#	1292w	ようでようでき	13708	lizzs	1477m	3030m	Physnoff 3610t (Vg0H) ^z	Absorption frequent	loustury of Lugungissa
540701 5407	177A	1183w	1250g	ようのと言	1320W	1371w	14253	ws24t	3045m	PhySn-O-SnPhz	ries cm	o ² (us ^t uk) pub E

	Ļ	r F
	Absorption frequencies	Cm ⇒1
Description	Ph _J SnOH 3610w (VgOH)*	Physn-O-as ^f ud
r-os Ly	1020m	1020m
en tr Sutr S	995m	\$90 8
H-D } 2g	979w ₈ 963 w	Q
R=0 1 2g	909m	<u>9180.9120</u>
	\$\$68 (\$0H)	774ve()) ₂₃ Sn-0-Sn) ^{;‡;}
В2 У О−Н	<u> 730an. 720va</u>	<u>129vs.7230b</u>
0-0% ² £	84069	<u>aat 69° y 5669</u>
D-D-OX TR	615w	-9 -9
B ₂ X sens.	[#] (کی Sulfus, b. (کی Sulfus), [#]	455en, Wile. b. () ²² SnPh
A ₁ K sens.	270b,	268b.
	A Be C-C-C Be C-H Be C-H Be C-C-H Be C-C-H Be C-C-C Be C-	Description frequencies Absorption frequencies A_{1} Such $B_{1}SnOH$ A_{2} Fing B_{2} (C-H $1020m$ B_{2} (C-H $1020m$ B_{2} (C-H $1020m$ B_{2} (C-H $1020m$ B_{3} (C-C-C 1020m 1020

.`

.

Teble 6		Frequency santant	ts of Phenyltin ac	9° (2 (2 (2 (2 (2 (2 (2 (2 (2 (2
				, ,
			•	•
Nodo		Åbso:	rption Irequencies	C I C
Whiffen's Essignment	Docorlotion	Em ₃ Szkoodoli	Ph3sn0000F3	Ph252 (0000F3) 2
63	À, VC-H	3035a	3050w	30 4,92
	l	- -	16568 (0-0)	1670sh(C-O)
			1645ve (0-0)	1645vB (0-0)
		З 565ей	, Lyósaia	
		15347a (0-0)		
TEL	2-0 L	1478m	IL77m	3th 75m
			luisw(c=0)	•
E S	0-0 6	ll30va	llizgve	11,29vs
		(0-0)usotut		
0		1340w	1333 0	1333
Ø	BJ PC-H	1300%	1299 <i>ta</i>	1299 w
ល័	AJ BC-H	LI 90W	1190vs (G=P)	8
		· · · · · · · · · · · · · · · · · · ·	1195vs(C-F)	1198vs (C-F)

. .

22

<u>Teble 6</u> (continued)	GTT	weilev eszt <i>sim</i> erte	<u>of Phanyltin acetat</u>	(iii)
MOG 0		A.beorpt:	lem frequeraies am	
Whiiren's assignment	Desoription	Physnoocong	Ph3Sn00CCF3	Ph ₂ Sa(000GF ₃) 2
			1163m(C-F)	
ġ	H-OG H	13.49 w	Ll.1,9m	9
63	B. 90-H	1075væ	3033	TOTHER
Ð,	R-DS LA	10205	1020m	1020a
Śłą	Salra es	998m	99Km	695 <i>a</i>
			346a	814 Ta
			801 <i>w</i>	8051
			792a	787m
ઈન્સ્	H-O Z C-H		822 x 3	<u>7325 b. 725 v.</u>
A	2-0, ² a	698va	697e	6940
÷	2-0-0 A	ę	27.9%	ŧ
ويتو	B, X BERBO	1.13 B . B .	<u>152.5.2. D. Wilden</u>	<u> 125e o ulto en la concerna de la c</u>
.ţ.î	Aj X semao	4.022	2670	278-2650

Frequency gestanments of Phanyltin acetates

values, this band is assigned as a summation frequency. The 1340-1250 region :- There are three weak to medium intensity bands which are observed in almost all cases in the 1340-1325, 1300-1292 and 1258-1250 cm² ranges. However, it is difficult to quote with certainty the corresponding ranges observed by Griffiths and Derwish³⁴ because they used a very high resolution intrument and they have also detected other weak bands in this region. The ranges for their compounds are probably 1337-1334. 1305-1304 and 1267-1262 cm⁻¹. No mention is made by Bellamy³³ or by Katritzky and Lagowski³⁵ of benzene ring absorptions in this region. Poller²⁷ has observed three bands, weak to medium intensity, around 1300 cm⁻¹ in the study of infrared spectra of phenyltin compounds. He has assigned these bands as benzene ring absorptions. In the present work the bands 1330 cm⁻¹ and at 1300 cm⁻¹ are assigned as Whiffen's at 'o' ()C-C) and 'e' (β C-H) bands of the phenyl groups. Lack of any strong evidence, however, prevents the assignment of the band at 1255 cm^{-1} to $\beta \mathrm{C-H}_{\circ}$

<u>The 1200-1100cm⁻¹ region:</u> There are two bands usually of weak intensity which occur in this region at 1190-1176cm⁻¹ and at 1162-1149 cm⁻¹. These bands are masked in phenyltin trifluoroacetates because of the C-F absorption bands. Of the compounds examined by Katritzky and Lagowski³⁵ generally only those compounds with electron donating substituents in the benzene ring absorbed in this region, and the ranges quoted are 1181-1070 cm⁻¹ and 1160-1150 cm⁻¹. Both of these bands are assigned to β C-H in-plane deformation modes by Randle and

Whiffen³². According to Amster and Colthup³⁶ for phenyl phosphine compounds, the absorptions at oa 1180 cm⁻¹ and at 1157 cm⁻¹ are assigned as Whiffen's 'a' and 'c' bands associated with β C-H vibrations. Thus by analogy, in the present work, the bands near 1185, 1155 cm⁻¹ are identified as β C-H vibrations and they are assigned as Whiffen's 'a' and 'c' bands respectively.

<u>The 1070 cm⁻¹ band</u>:- (Whiffen's 'd' band). This is a very sharp band occuring in the range 1076-1064 cm⁻¹ in all the compounds. This band has been observed in the spectra of monosubstituted benzenes by a number of workers^{32,34} and assigned to a pC-H in-plane deformation vibration. The absorption is much more intense when the substituent in the benzene ring is a metal atom. Henry and Noltes³⁸ have examined the spectra of some phenyl-, phenylallyl- and phenyl-vinyltin compounds and they have shown that a band at 1065 cm⁻¹ is characteristic for the phenyltin group and it undergoes displacement in the analogous silicon, germanium and lead compounds. These frequency shifts as recorded in the present work, are shown in table 7.

The band is believed to be a perturbed phenyl vibration, probably a C-H in-plane deformation vibration (Whiffen³¹) which shifts to lower frequency with the increasing atomic weight of the central atom. Thus, this band has been found to be of great value in recognising the phenyl derivatives of Group IV elements. The present work shows that substituents on the

Compound	Absorption frequency cm ⁻¹
Tetraphenylsilane	1100
Tetraphenylgermane	1080
Tetraphenyltin	1065
Hexaphenylditin	1065
Diphanyltin	1064
Tetraphenvl lead	1052

tin atom can also cause slight variations in the frequency of this band but overlapping with the phenylgermanium band (1080cm⁻¹) and the phenyllead band (1052 cm⁻¹) is not likely The characteristic phenyltin band (1065 cm⁻¹) shows to occur. a remarkable decrease in intensity in the case of the acetates and trifluoro-acetates and this could lead to difficulties in using the band to identify a phenyltin derivative. The 1025-900 cm⁻¹ region: Three or sometimes four bands, usually of weak or medium intensity, occur in this region. A73 the compounds show a medium intensity band in the range of 1025-1014 cm² which is assigned to a \$C-H in-plane deformation mode^{32,34}. Another strong to medium intensitity band is shown within a narrow range 999-996 cm⁻¹ by all the aryltin compounds. This band is assigned as Whiffen's 'p' band associated with the symmetric ring mode. It should be noted here that this absorption was not shown by all the compounds examined by Katritzky and Lagowski³⁵ and they have reported a much greater variation in the absorption frequency of this band (1007-990cm⁻¹) than is found in the present work.

The remaining two absorptions at ca 980 cm⁻¹ and at 910 cm⁻¹, which are relatively much weaker in intensity and sometimes are not observed in the spectra of some of these compounds, are assigned as Whiffen's 'j' and 'i' bands for YC-H modes of vibration. The assignments for the latter two absorptions are in agreement with the already reported values^{32,34} where these weak absorptions at 986-960 cm⁻¹ and at 925-900 cm⁻¹ (both bands often split) have been attributed to C-H out-of-plane deformation modes. The 750-670 region:- There are two very strong bands contred around 730 and 700 cm⁻¹. In a number of cases, splitting of one or other of these bands is observed and this together with smaller differences in the frequencies, intensity and shape of the absorption peaks could be used for distinguishing between different phenyltin derivatives. According to Sharp and Shoppard⁴⁰ these vibrations are C-H out-of-plane deformation modes. These authors have observed significant shifts (to ca 790 cm⁻¹, 704cm⁻¹) in the spectra of triphenylcarbonium ion compounds. These higher frequency shifts were consistent with the lower availablity of electrons in triphenyl carbonium cations. As there are no such changes to higher frequency in the out-of-plane C-H frequencies in the spectra of any of the phenyltin compounds, it is not likely that $Ph_{\pi}Sn^{+}$ cations are present or, if present they have a very different electronic structure than in the Ph_3C^+ cations. This conclusion is further supported by Poller²⁷ and Kriegsmann

and Geissler³⁰ who have likewise not observed any frequency shifts in these C-H out-of-plane frequencies.

The Band near 615 cm⁻¹ (Whiffen's 's' mode) This is a very weak absorption which is only observed in a few compounds. It is a B_{l} class in-plane ring deformation mode³¹. The vibration does not involve the substituent to any extent and it is not sensitive to the substituent. The absorption is assigned as Whiffen's 's' band whenever the phenyltin derivatives show absorption in this region. The 455-437 cm⁻¹ regions- (Whiffen's 'y' band). This is a B2 class "X-sensitive" vibration.Randle and Whiffen³² have described this vibration as an out-of-plane deformation mode and the frequency depends upon the mass of the substituent atom with a limiting value of 433 cm⁻¹ for an infinite mass. In the present work, this band has been observed over a wider range between 455-437 cm⁻¹ in the spectra of all the phenyltin compounds. The band is of very strong intensity and has often been found split.

<u>The 278-260 cm⁻¹ range</u>:- (Whiffen's 't' band). This is a substituent-sensitve vibration of symmetry A_1 and it occurs between 520-266 cm⁻¹ in the infrared spectra of halo-benzenes³¹. All the phenyltin compounds show a medium to strong intensity band in the region 280-260 cm⁻¹. The absorption is usually broad or diffuse in shape. The band has been found to be quite useful in identifying the Ph-X linkage as it involves appreciable C-X stretching and the frequency shows remarkable shift to lower frequency region with the increasing mass of
the substituent atom.

In addition to the benzene ring absorptions as discussed above, there are certain weak and broad bands of uncertain origin. Such absorptions are observed in the far infrared region and no assignments are made for these bands. Infrared spectra of specific compounds.

Spectra of Ph_SnOH, (Ph_Sn)_O and (n-Bu_Sn)_O.

friphenyltin hydroxide shows a very weak absorption at 3610 cm⁻¹ (see Table 5) which is assigned to an OH vibration by anology with the assignment of Kriegsmann and Geissler³⁰ who have observed a medium intensity band at 3620 cm⁻¹ in the spectrum of triphenyltin hydroxide. These workers have recorded the same band at 3636 cm⁻¹ in carbon disulphide solution and at 3650 cm⁻¹ in carbon tetrachloride solution and have assigned it as an OH stretch. Other workers (West and Baney⁴¹) have observed this band at 3647 cm⁻¹ in the spectrum of triphenyltin hydroxide which they have described as a free OH stretching frequency.

Triphenyltin hydroxide shows a strong doublet at 909 and 898 cm⁻¹ which is completely absent in bis-(triphenyltin) oxide. These bands appear to be from an O-H deformation frequencies and similar bands are observed by Kriegsmann and Geissler³⁰. <u>Bands associated with the Sn-O group</u>. To obtain an approximate value for the Sn-O stretching frequency an estimate of the force constant was made (Poller²⁷) using Gordy's rule⁴² and the calculations gave a stretching vibration of 570 cm⁻¹. Although this figure must be regarded as an approximation, it has been found to be in agreement with the range of absorption reported by Brown, Okawara and Rochow⁴³ who observed the absorption in the 643-580 cm⁻¹ region, for methyltin compounds containing the Sn-O-Sn group. However, Vyshenkii and Rudnevskii⁴⁴ examined the spectrum of bis-(triethyltin) oxide and assigned the frequency of an intense absorption band at $788cm^{-1}$ to the asymmetrical Sn-O-Sn stretching vibration in agreement with the work of Kriegsmann and Geissler³⁰ who observed a strong absorption at 775 cm⁻¹ in bis-(triphenyltin) oxide. The symmetric stretching of the Sn-O-Sn group is expected to be infrared inactive in the R_3Sn -O-SnR₃ compounds and this absorption has been recorded at 240 cm⁻¹ by Raman spectroscopy for bis-(triphenyltin) oxide³⁰.

In the present work, the spectra of bis-(triphenyltin) oxide and bis-(tri-n-butyltin)oxide show strong intensity bands at 774 cm⁻¹ and at 755 cm⁻¹ respectively and these bands are assigned to the Sn-O-Sn asymmetric stretch. In the case of analogous simple disiloxanes the asymmetric Si-O-Si stretching frequency has been found to occur in the lllo-l000cm⁻¹ range (Smith⁴⁵) and the results were interpreted in terms of $d_{\pi}-p_{\pi}$ bonding being present in organosiloxanes.

The infrared spectra of triphenyltin hydroxide and hexaphenyldistannoxane are quite distinctive and can easily be distinguished from one another by examination of the region below 1000 cm⁻¹. The existence of the characteristic strong intensity peaks at 744 cm⁻¹ for hexaphenyldista noxane and at

Transmittance(%)

909 and 898 cm⁻¹ for triphenyltin hydroxide are experimentally very useful (as shown in Figure 4) for identification purposes since these compounds have similar melting points and are readily interconvertable. In addition to the analytical data the absence of any absorption at 774 cm⁻¹ in the spectrum of triphenyltin hydroxide can be used to show that the material is free from the distannoxane. (cf. West, Baney and Powell⁵⁰ who concluded that their specimens of the hydroxide contained considerable quantities of hexaphenyldistannoxane).

<u>The halides:</u> The structure of organotin halides has been discussed by different workers who have each given conflicting statements regarding the nature (covalent or ionic) of these compounds. A large number of organotin compounds which could possibly contain alkyltin cations have been studied by various workers^{29,51-55}.

4

The high melting point and low volatility of trimethyltin fluoride (decomposes $\sim 360^{\circ}$ C without melting) is taken to indicate⁵⁵ a salt-like consitution (Me₃Sn⁺F⁻) for this compound. On the basis of infrared spectroscopic studies (Okawara, Webster and Roehow⁵¹), trimethyltinfluoride has been considered to be an ionic compound. The infrared and Raman spectra of the trimethyltin halides have been taken to indicate that only the fluoride has an ionic lattice and the other halides i.e. chloride, bromide and iodide were associated through halogen bridging (Kriegsmann and Pischtschan⁵²). The tin atoms probably are five co-ordinate.

Recently, the crystal structure of trimethyltin fluorids was studied by Clark, O'Brien and Trotter^{53,54} who showed the presence of bridging fluorine atoms similar to the structures postulated by Kriegsmann and Pischtschan⁵² for other halides. The two possible structures of trimethyltin fluoride are shown in Figure 5. They consist of chains of trimethyltin groups and fluorine atoms along an axis 'a' with only weak Van Der Waals forces between the chains.

Fig. 5 Possible structures of trimethylkfluoride (Clark, O'Brien and Trotter^{53,54}).

Ι

It has been concluded that the structure is not that of a purely ionic solid as the non-linear Sn ---F- Sn arrangement is a definite indication of covalent interaction. Moreover, each fluorine atom is not equidistant from the two tin atoms so that there is some tendency towards the formation of discrete molecules. The apparent lack of planarity of the trimethyltin group in structure I should have produced an infrared absorption at ca 500 cm⁻¹ due to the Sn-C symmetric stretching vibration. Although this had not been previously reported, it was observed by Clark et.al.⁵³ as a weak intensity band at 515 cm⁻¹ in the infrared spectrum of very concentrated Nujol mulls. However, this frequency could just be a forbidden transition of low intensity arising from a planar Me₃Sn group.

1 10

In the second structure II, the Me₃Sn groups are planar and are tilted alternatively with respect to the 'a' axis.

Triphenyltin fluoride shows properties which are similar to trimethyltin fluoride. In view of the properties of low solubility and infusability, triphenyltin fluoride was once described as an ionic compound, but Beattie and Gilson⁵⁶ have shown that, for trisubstituted tin fluorides, a polymeric structure containing five co-ordinate tin and bridging fluorine atoms may be preferred.

In the present work, the infrared spectrum of triphenyltin fluoride has been found to be quite similar to other phenyltin derivatives. This indicates that the symmetry of triphenyltin group has not been altered in the fluoride. (cf. infrared changes in the spectra of triphenylmethyl group and triphenylmethyl ion, ⁴⁰). Moreover, by analogy with the structure of trimethyltin fluoride (Fig.5), the structure of triphenyltin fluoride is suggested as polymeric with bridging fluorine atoms between the triphenyltin groups. The Sn-F band absorbs at 350 cm⁻¹ in the spectrum of triphenyltin fluoride.

On the basis of resemblance with the spectra of other phenyltin derivatives, triphenyltin chloride, bromide and diphenyltindichloride and phenyltin trichloride are concluded as covalent in nature with bridging halogen atoms similar to the structures postulated by Kriegsmann and Pischtschan⁵² for the analogous alkyl tin halides.

The tin-halogen group frequencies: The far infrared spectra (15-50A) of phenyltin halides and some of the alkyltin fluorides are recorded and the tin-halogen group vibrations, which occur below 400 cm⁻¹, may be assigned as follows. These absorptions are broad and diffuse in shape. From the values quoted in Table 8, it seems that the Sn-F and Sn-Cl absorption frequencies lie vory close to each other but in practice the absorption bands are characteristic and can easily be identified as shown in Figures 6-8.

<u>The Sn-F frequency</u>:- The spectrum of triphenyltin fluoride shows a broad band at ca 350 cm⁻¹ and all other bands are similar to those of tetraphenyltin (see Figure 6) and are assigned to vibrations of a mono-substituted benzone group

(%) constitueneri

(%) constituensi

Compound	tin-halogen	frequency	(cm ⁻¹
Ph ₃ SnF	-	350	
(C ₆ F ₅) ₃ SnF	3	328	
n–Bu ₃ SnF		330	
n-Pr2SnF2	-	330	
Ph ₃ SnCl	\sim	330	
Ph ₂ SnCl ₂	\sim	370-312	
PhSnCl	-	340	
Ph ₃ SnBr		267	

(see table 4). It is considered that this extra absorption band at 350 cm⁻¹ is from a Sn-F stretching mode. Similar bands are found in the spectra of tris-(pentafluorophenyl)tin fluoride (328 cm⁻¹), tris-(n-butyl)tin fluoride (330 cm⁻¹) and di-(n-propyl)tin difluoride (330 cm⁻¹). In the spectra of all these compounds (fluorides) there is no other assignment that can be made; except that these absorption bands are Sn-F vibrations. It is not possible to make a direct comparison with the frequencies of Sn-F bonds in other tin compounds, since there is no certainty that the same co-ordination arrangement about the tin atom is present in the compounds described in the present work. Kriegsmann and Kessler⁵⁷ report

)

the following values of Sn-F frequencies.

Table 9

Sn-F fre	quengies	(cm ^l)
$\operatorname{SnP}_6^{2-}$	564	යා
SnF3	4.78	552
SnF ₂	457	552

Sn-Cl valence vibrations ()sSn-Cl) have been reported for a variety of tin compounds. The literature frequencies are given below in Table 10. It can be seen that the Sn-Cl frequencies, for the phenyltin derivatives, examined in the present work, are in fair agreement with those in the literature. The absorption frequencies of phenyltin chlorides lie close to those of trimethyltin chloride and stannic chloride, suggesting a similar co-ordinate arrangement about the tin atom, in phenyltin chlorides. The assignment for the Sn-Br vibration in Ph₃SnBr is made on the basis that the compound shows a very strong intensity band at ca 265 cm⁻¹ and the other phenyltin halides do not absorb in this region. The perchlorates .- Trimethyltin perchlorate has been prepared in an anhydrous form by Clark and O'Brien⁵⁵. The perchlorate sublimed at low temperature and melted in a sealed tube at 125-127 G. These physical properties are not consistent with an ionic structure for this compound. The infrared spectrum of trimethyltin perchlorate has extensively

Compound	Sn-Cl frequency (cm ⁻¹)	Reference
SnCl _{l.}	368 366	58 59
SnCl ²	31.4	60
(NO) ₂ SnCl ₆	310	61
Crystal violet SnCl ₄ complex	317	62
Mø ₃ SnCl	331 336	52 14
Ph ₃ SnCl	328 330	30 present work
Ph ₂ SnCl ₂	~ 370=312b	present work
PhSncl 3	340	present work

been investigated by Clark and O'Brien⁵⁵. The infrared absorption for the perchlorate group was found to be in favour of a covalent structure as postulated by Ross⁶³ and Hathaway and Underhill⁶⁴. Thus on the infrared evidence, it

۱,

has been concluded that trimethyltin perchlorate is composed of planar trimethyltin groups bridged by partially covalent perchlorate groups to form chains as shown in Structure (III)

In the present work, it was proposed that if there is any possibility of obtaining an o'nium salt, that could contain a triphenyltin cation, it would contain an anionic group derived from a very strong acid. Thus in order to gain further information on the structure of triorganutin compounds, trinhenyltin perchlorate was obtained by reacting triphenyltin chloride with anhydrous silver perchlorate in other under completely unhydrous conditions. The infrared spectrum is the same as observed for other phenyltin derivatives and is definitely not in favour of a new Ph₃Sm^{*} entity. The perchlorate group absorbs in the 910-1200 cm⁻¹ region. The peaks are split, are of high intensity and are similar to the bands reported for trimethyltin perchlorate (Clark and O'Brien 55) being explicable by the perculorate group acting as a ' bidentate bridge of symmetry C_{2v}. By analogy with the suggested structure of trimethyltin perchlorate, it is suggested that the structure of triphenyltin perchlorate

involves planar triphenyltin groups bridged by perchlorate groups and that the tin atom is penta co-ordinate, most likely with a trigonal bipyramidal structure as in trimethyltin fluoride (Clark,0'Brien and Trotter^{53,54}) and in Ms₃SnClpy (Beattie, McQuillan and Hulme¹⁴).

The present picture of the structure of triphenyltin perchlorate is in agreement with Clark's most recent private communication. He has also prepared this compound and his infrared studies have been found to support the same conclusion as derived above.

The fluoroborates: Trimethyltin tetrafluoroborate has recently been prepared (Hathaway and Webster⁶⁶) by the reaction of trimethyltin chloride with silver tetrafluoroborate in methyl cyanide solution. This compound has been reported (Eurg and Spielmann⁶⁵) as a white amorphous hygroscopic solid and it has melting point d0°C. Mathaway and Webster⁶⁶ have interpreted, the infrared spectrum of trimethyltin tetrafluoroborate, by assuming a covalent structure with bridging through two of the fluorine atoms of the tetrafluoroborate group. In the previous literature⁶⁷ the tetrafluoroborate ion has generally been considered to be a non-complexing anion as the required co-ordination, for complexing, of two for the fluorine atom is rare.

The BF_{μ} ion has Td symmetry and there are nine vibrational degrees of freedom distributed between four normal modes of

vibration of which only two $\langle \gamma_3 \text{ and } \gamma_4 \rangle$ are infrared active (Greenwood⁶⁸). In the infrared spectrum of trimethyltin tetrafluoroborate, the γ_3 vibration has been found split into three componenets, (Mathaway and Underhill⁰⁴) and this splitting is taken to indicate a lowering of symmetry of the anion because two of the fluorine atoms are acting as bridging between the two organotin groups. On this evidence, the structure of trimethyltin tetrafluoroborate has been formulated as a chain structure with tetrafluoroborate groups forming bridges between separate trimethyltin groups.

Triphenyltin tetrafluoroborate has not been reported previously. The first preparation of this compound W83 attempted (Sharp and Winfield⁶⁹) by reacting boron trifluoride with tetraphenyltin at 140°C by analogy with the tetramethyl tin reaction (Burg and Spielman⁶⁵). A product that decomposed at 90°C, on attempted sublimation, was formulated as triphenyltin fluoroborate. In the present work PhySnBF was prepared by reacting triphenyltin chloride with an equivalent quantity of silver fluoroborate in ethereal or benzene solution. Silver chloride precipitated out and the removal of the solvent gave an oily or gummy material. The compound showed a very strong interaction with the solvent and it was impossible to remove final traces of solvent from the reaction product. Because of the extremely bygroscopic nature of

Ph₃SnBF₄, it has not proven possible to obtain a crystalline sample for analysis.

The infrared spectrum of Ph_3SnBF_{h} shows bands characteristic of a monosubstituted benzene group (similar to other phenyltin derivatives) and a broad absorption split into two bands at 1072 and 1020 cm⁻¹ in the B-F absorption region. The splitting of the γ_3 frequency into two or three componenets indicates lowering of symmetry of the tetrafluoroborate ion. The lowering of symmetry most probably arises from a strong interaction of fluorine atoms with triphenyltin groups. Thus by analogy with the suggested structure of trimethyltin fluoroborate (Hathaway and Webster⁶⁶), it seems most likely that triphenyltin fluoroborate has a covalent structure with bridging tetrafluoroborate groups, and the tin atom is present in a five co-ordinate state.

Structure of some other related organotin compounds:-

On the basis of infrared spectrum, trimethyltin nitrate has been postulated (Clark and O'Brien⁵⁵) to contain unidentate nitrato group linked to a non-planar trimethyltin group. Similarly, more recent work (Addison, Simpson and Walker⁷⁰) on the infrared spectrum of dimethyltin dinitrate, has shown that the compound contains unidentate nitrate groups (-ONO₂) attached covalently to the alkyltin group.

Even the compounds containing the strongest electronegative anions (e.g. MF₆ type) show strong interaction with the organo-tin groups. The infrared spectra of trinethyltin hexafluoroarsenate and hexafluoroantimonate (Clark and O'Brien²⁹) show splitting of the hexafluoroarsenate and hexafluoroantimonate group absorptions whereas the free ions should show (Peacock and Sharp⁷¹) only a single absorption band in the regions studied. This splitting indicated a lowering of symmetry of the hexafluoro anions and has been taken to indicate that these derivatives are polymeric in structure, similar to the organotin perchlorate and fluoroborate as described in the present work.

It has not been possible to obtain any R_3SnX compound in which there existed a free R_3Sn^+ ion. In all cases the tin atom is essentially five co-ordinate.

<u>Miscellaneous Topics</u>: During the course of the work a number of reactions were attempted with phenyltin derivatives. These are not conveniently classified eleswhere and are dealt with here.

Reaction of triphenyltin fluoride with boron trifluoride

Ň

Triphenyltin fluoride was reacted with boron trifluoride in a bomb, liquid sulphur dioxide being used as a solvent. It was expected that a reaction would occur and the \mathscr{G}_3 SnBF₄ would be the reaction product. The infrared spectrum of the resultant product was found to be identical with the spectrum of triphenyltin fluoride and there was no absorption in the B-F region. In another attempt triphenyltin fluoride was reacted with boron trifluoride in benzene solution but the reaction product isolated was again characterised as Ph₃SnF. From these experiments it is concluded that triphenyltin fluoride does not react with boron trifluoride. This lack of reactivity of triphenyltin fluoride is attributed to the high lattic energy of the compound. This unreactivity of organotin fluorides has also been reported by Clark⁹⁴ who has attempted the preparation of E₃SnFF₆ by reacting R₃SnF compounds with PF₅. The products isolated were identified as R₃SnF and not as hexafluorophosphates.

<u>Reaction of triphenvitin fluoride with CF₃C = CCF₃</u>

The unreactive nature of triphenyltin fluoride was further substantiated by the attempted reaction with hexafluorobut-2-yne, when a simple addition product $CF_3(Ph_3Sn)C=$ $CFCF_3$ or $CF_3(Ph_3Sn)CF-CF(PH_3Sn)CF_3$ was expected. Triphenyltim fluoride was recovered unchanged from the reaction mixture. Such addition reactions are shown by other organotin derivatives. For instance, the addition reactions of organotin hydrides to olefines and acetylenes have been studied by Kerk and Noltes⁷².

(i)
$$Ph_3SnH + HC \equiv CR' \longrightarrow Ph_3SnCH=CHR'$$

 $Ph_3SnCH=CHR' + Ph_3SnH \longrightarrow Ph_3SnCH_2-CHR' SnPh_3$

(11)
$$(C_{\mu}H_{9})_{2}SnH_{2} + 2CF_{2} = CF_{2} \longrightarrow (C_{\mu}H_{9})_{2}Sn(CF_{2}-CF_{2}H)_{2}$$

It has been suggested that organotin radicals or cations may be present as reactive intermediates in these reactions. The Acetates; - The preparation of Ph3SnOOCH3, Ph3SnOOCCF3 and $Ph_2Sn(OOCCF_3)_2$ has been carried out by reacting the corresponding organotin chlorides or bromides with equivalent proportions of silver acetate or trifluoroacetate in anhydrous ether, while shaking the reaction mixtures This is a new procedure for preparing these overnight. $Ph_3SnOOCCF_3$ and $Ph_2Sn(OOCCF_3)_2$ are new derivatives. The preparation of these phenyltin acetates has compounds. also been attempted by the procedure described by Anderson 73 who reported dealkylation of tetralkyltins by refluxing with metallic acetates or trifluoroacetates. Triphenyltin acetate was prepared by refluxing equivalent proportions of tetraphenyltin and silver acetate in toluene. Attempts were made to prepare Ph2Sn(000CH3), by using two equivalents of silver acetate but the reaction product was found to be $Ph_3Sn(OOCCH_3)$. Even the use of an excess of silver acetate yielded only the mono-acetate.

The cleavage of the Sn-C bond by electrophillic reagents has been discussed by many authors $^{73-81}$. In the present work, it seems that the cleavage of the C_{aryl} Sn bond depends upon the electronegativity of the attacking acid anion as the attempts to prepare $Ph_2Sn(OOCCH_3)_2$ from tetraphenyltin gave only a mono-acetate whereas $Ph_2Sn(OOCCF_3)_2$ was obtained without any difficulty. It could, however, also be due to the different solubility of diphenyltin diacetate or the different effect of the acetate group when one acetate group is substituted to form a mono-acetate.

From infrared studies (Freeman⁸²; Okawara, Webster and Rochow⁵¹; Okawara and Sate⁸³) of methyltin esters, it was inferred that the carboxylate group was ionic and the dimethyltin and trimethyltin groups existed as cations. Similarly from a consideration of infrared spectra (Olah⁸⁴) of the compounds. Me₃SiOOCCH₃, Me₂Si(OOCCH₃)₂, MeSi(OOCCH₃)₃, Si(OOCCH₃)₄, Me₃SnOOCCH₃, Me₃SnOOCH, Me₃Sn chloroacetates, Me₃SnOOCC₂H₅, Me₃Sn halides, Me₂Sn(OOCCH₃)₂, Me₂Sn(OOCCH₂)₂, Me₂Sn dihalides, MeSn trihalides it has been concluded that the silicon derivatives are covalent but that the tin compounds contain methyltin cations. However, Beattie and Gilson⁸⁵ and Van Der Kerk and co-workers^{86,87} have proposed that the spectroscopic evidence on acetate groupings may equally well be interpreted in terms of either bridging or chelated acetate groups, or simple acetate ions. If the former is the true picture, Me₃SnOOCH₃ would contain planar Me₃Sn groups linked by bridging acetate groups as described by Van Der Kerk, Luijten and Janssen ⁸⁶. The tin atom would be penta-co-ordinate as postulated for other organotin compounds.

Triphenyltin acetate and triphenyltin trifluoroacetate have relatively low melting points and are soluble in ether and other organic solvents. These properties favour covalent rather than ionic structures for these compounds, and the infrared spectra are in agreement with this as discussed below.

The significance of the degree of separation of the two C-O stretching modes ($\hat{\gamma}_{j}$ sym. and $\hat{\gamma}_{2}$ asym.) in phenyl carboxylates and in other related compounds has been discussed by various workers^{27,51,91-93}. According to Nakamoto, Fujita. Tanaka and Kobayashi⁹² the separation of the two C-O stretching frequencies has been found to increase when the metal-oxygen bond becomes stronger and the two C-O bonds of the acetate ion become uneven as shown below.

On the other hand Okawara, Webster and Rochow⁵¹ have associated the band separation with the strength of the carboxylic acid. A plot of the C-O band separations taken from Okawara's paper against p^{K} values for the carboxylic acids gave a straight line for all the compounds except trimethyltin formate (Poller²⁷)

We have now studied (Table 11) the C-O band separations $(\gamma_2 - \gamma_1)^{-1}$ in triphenyltin acetate and the phenyltin trifluoroacetates. The absorptions for triphenylacetate are similar to those obtained by Okawara et.al ⁵¹ for a number of alkyltin acetates. It is clear that the differences between the asymmetric and symmetric C-O stretching modes for alkyltin acetates and halogenated acetates are of the same order as those between the corresponding sodium salts of the carboxylin acids. The band separation $(\gamma_2 - \gamma_1)^{-1}$ increases with the increasing acidic strength of the carboxylate group.

Before the completion of the present work Clark⁹⁴; Janssen. Luijten, and Van Der Kerk⁹⁰ and Cummins and Dunn⁹¹ reported infrared studies on some other trialkyltin acetates, the conclusions are similar to those reported here.

The spectral changes with changes of temperature⁹¹ and with increasing concentration of organotin acetates⁹⁴ have been taken to indicate that the acetates are present in monomeric ester-like covalent form in molten state and in dilute solutions. In the solid state and in concentrated

Compound	Sym。stretch V 1	Asyn。stratch V2	Band Separation V2= V1	Reference
د cus) snoodcar	2433	72 ST		г . ГЛ
n-Bu ₃ Sn000cH ₃	lil 7	1570	153	26
NaOOCCH3	1 Mio	1576	136 	61
Ph3Sn0000H3	1425 1430	7330	105 205	62 64
Ph3Sn00CC6H5	1335	1620	285	27
(CH ₃) ₃ Snooccc1 ₃ n-Bu ₃ Snooccc1 ₃	1352 1340	1656 1646	304. 306	
Neooccc13	1352	3672	320	16
Agoocorg		1640		A
Ph3Sn00CCF3	64	1656an,1645		ρį
Ph2Sn000CF3	94	1670ah,1645		Q.
	p present work	z absorption	ns masked by Nujol	or other peaks.

C-O Stretching Irequencies in cm⁻¹

Table 11

.

solutions (>30%) the acetates exist as chelated covalent compounds with symmetrical acetate groups bridging between two organotin groups. Thus from the available evidence, it is concluded that alkyl and aryl tin carboxylates or halogenated acetates are predominately covalent compounds and their structures, as deduced from infrared spectroscopy, are shown below

(a)

$$\begin{array}{c}
R & O \\
R & Sn = O \cdot C = CH_{3} \\
\dot{R} & CH_{3} \\
\dot{R} & CH_{3} \\
\dot{R} & CH_{3} \\
\dot{R} & O \\
\dot{R}$$

R = alkyl or aryl.

- (a) Monomeric covalent structure of triorganotin acetates present in dilute solution or in the molten state
- (b) Polymeric chelated covalent structure of organotin carboxylates in concentrated solution or in solid state.

<u>The C-F vibrations</u>:- The C-F frequency assignments for the phenyltin trifluoroacetates are made after Randle and Whiffen⁹⁵ who have studied the characteristic C-F stretching vibrations of the CF₃ group. They have assigned these modes near 1180 cm^{-1} and near 1140 cm⁻¹.

In the present work, the corresponding C-F assignments for the trifluoroacetates are shown below:

Table 12

Compound	C-F Vibrations or	-		
Agoocop ₃	1198VS	11.50s.	855a.	800s.735s
Ph ₃ Sn00CCF ₃	<u>1195sh, 1190vs, 1163s</u> ,	11498,	843m.	801w,793m
$Ph_2Sn(0)COP_3)_2$	1198ve	1149g.,	84°m.	805m, 787a

These assignments are in fair agreement with those values as reported by Randle and Whiffen93

Infrared spectrum of tetrakis-pentafluoropheny: the $(\mathbb{C}_{6}\mathbb{P}_{5,2}/2)$ According to Birchall and Haszeldine⁹⁷ the C-F vebrations in perfluorobenzene derivatives, occur near 100000 in the present work, the infrared spectrum of $(\mathbb{C}_{6}\mathbb{F}_{5})_{4}$ Sr scowe absorption bands at 1087, 1076 and 962 on⁻¹² which are assigned to C-F stretching modes by comparison with the values reported by Birchall and Haszaldine⁹⁷ for other perfluorobenzene derivatives. Similarly the absorption bands at 1513 and 1471cm⁻¹ are assigned as ring vibrations by analogy with the work already reported⁹⁷.

The Structure of diphenyltin: - The compounds of Sn II are usually colourless but diphenyltin is reported (Kuivila et.al ⁹⁸) with various colours, to be monomeric or polymeric, to be highly air sensitive or air stable and to have a range of solubilities. The molecular weights have been found to be variable. Magnetic susceptibility measurements on this compound have shown (Krause and Pohland⁹⁹) that diphenyltin is not present as a radical and the low dipole moment of the monomeric and polymeric forms indicate (Jensen and Clauson-Kaas¹⁰⁰) that the compound is not polar.

The two covalent state of Group IVA elements has been described 101,102 as arising from s^2p^2 (³p in the Russel-Saunders notation), ground state of the atom structure VI or VII and

the expected bond angle would be approximately 90° for for e^2p^2 bonding. Electron diffraction measurements (Lister and Sutton¹⁰³) on SnII chloride in the vapour phase have shown that the molecule is angular. As the central tin atom in structures VI or VII has only six valency electrons, polymerisation is expected to occur in order to obtain a stable octet configuration. Ingham, Sanders, Rosenberg and Gilman¹⁰⁴ have suggested the polymerisation of diphenyltin as follows:-

Such polymerisation will make the tin atom four co-ordinate and the structure is in agreement with the infrared data reported by Neumann and Konig¹⁰⁵,

In the present work the infrared spectrum of diphenyltin was compared with those of the Sn(IV) compounds and was found to be almost identical with the spectrum of tetraphenyltin. From this evidence it is suggested that diphenyltin and tetraphenyltin have a very similar arrangement for the co-ordination about the tin atom. A structure for diphenyltin in which a phenyl group is acting as a bridge between tin atoms would show a different infrared spectrum and hence this structure can be ruled out.

Dissociation of compounds of the type Ph_M-MPh_

An investigation was made of the dissociation of derivatives of the type Ph_3M-MPh_3 (where M=Sn, Pb). The data on the dissociation of the compounds are scattered throughout the literature and far from complete. The extent to which these phenyl derivatives dissociate has been the subject of several conflicting statements.

It has long been known that hexaphenylethane dissociates homolytically in solution to form triphenylmethyl radicals (Gomberg¹¹²). Subsequently, it was found that a triphenylmethyl radical can either lose or gain one electron to give

a charged triphenylmethylcation $(Ph_3C)^*$ or an anion $(Ph_3C)^*$. In hexaphenylethane the steric repulsion energy of the two halves is estimated to be about 36 kcal/mole and the enthalpy of dissociation is about 16.5 kcal/mole (Pauling⁹⁶⁸). This explains the easy dissociation of hexaphenylethene. However, it has been pointed out (40,96b,113) that there would be steric hinderance in the triphenylmethyl cation or radical and that the resulting strain is triphenylmethyl entity could be relieved by rotation of the phenyl groups.

The abnormal stability of the triphenyl radicals on ions see been attributed (Pauling and Whelens¹¹³) to resonance, so that the odd unpaired electron or charge becomes associated with a relatively large number of canonical forms

The hexaphenylässilanes do not appear to be dissociated is solution and no free radicals can be detected (Sidgmick¹¹⁵; Petro and Smyth¹¹⁶). It is, however, postulated that Ph₃Si radicals are present as reactive intermediates in radical induced reactions of Ph₃SiH. From ebullioscopic measurements, Morgan and Drew¹¹⁷ have concluded that hexaphenyldigermane does not show a recognisable tendency to dissociation in dilute benzens solution. Hexaphenylditin is a colourless substance. Böeseken and Rutgers¹¹⁸ have carried out molecular weight determinations on solutions of several distannanes and they have shown that these compounds in concentrations of a few per cent have normal molecular weights, whereas in concentrations of a few tenths of a per cent, they appeared almost completely dissociated. For example hexaphenylditin showed 50% dissociation in 0.87% benzene solution at 5°C. However, these observations are not in agreement with the magnetic susceptibility studies on hexaphenylditin by Morris, Byerly and Selwood¹¹⁹ who have ruled out the presence of free radicals. The only other possiblity for dissociation of such compounds is the heterolytic dissociation.

 $Ph_{3}Sn - SnPh_{3} \rightleftharpoons Ph_{3}Sn^{2} \diamond Ph_{3}Sn^{2}$

This has been questioned (Coates¹²⁰) on the basis that Ph_3Sn^4 cation would be expected to be coloured by analogy with the colour of Ph_3C^4 cation, but this reasoning does not seem to be valid as the orbitals which would be used in forming the Ph_3Sn^4 cation would be very different from those used in forming the Ph_3C^4 cation. The solvation of the cation should also cause a loss of colour. It may be suggested that hexaphenylditin derivatives are solvated by a charge transfer mechanism between solvent benzene and the phenyl groups. Such solvation would explain the anomolous molecular weights of these compounds.

Hexaphenyldilead is yellowish in colour and it shows changes in colour with change in temperature in benzene or nitromethane solution. The cryoscopic measurements on this compound in

benzene solution showed the same degree of dissociation as in the case of the corresponding distannanes (Krause and Reiszaus 121). However, the molecular weight determinations (Malatesta 124) have shown that hexaphenyldileed did not dissociate in melting naphthalene. Similarly from magnetic measurements on hexaphenyldileed(112,123), it was concluded that there was no recognisable dissocation of this compound.

In view of this contradictory situation, it was proposed to examine the conductivities of hexaphenylditin and hexaphenyldilead. The results of conductivity measurements are shown in the following Table. The measurements were carried out in nitromethane solution.

The results of the conductivity measurements show that hexaphenylditin and diphenyldilead do not dissociate heterolytically and the extent of their dissociation is not detectable and is cortainly less than 1%.

It seems that in considering the dissociation of $R_3^{M-MR_3}$ compounds, resonance, steric hinderance and the metal-metal bond strength all play an important part. The easy dissociation of hexaphenylethane is probably due to the first two of the above factors and it seems contain that the distannanes and diplumbanes do not dissociate because of the stronger metal-metal bonds.

Table 13

Solution	Conduct at diff	ivity in mill erent tempers	in milli 'mhos ' temperatures	
o.0156M	1.8°C	30° (C	40° C	
Nexphenylditin		.000491	.00 051 6	
· OIN	⋨⋬⋻⋺⋠⋚⋽⋶⋻⋩⋛⋜⋵⋧⋽⋽⋍⋇⋽⋽⋛⋟⋳∱⋻⋎⋖⋹⋹⋺∊⋳⋺⋪⋍⋹⋽⋺⋪⋎⋳⋳⋺⋹⋇⋺	╼╾╾╺┶╾╍╍╍╱┰┍ᢓᡵᡕ᠘ᡘᡵᡄᡭᢂ᠆ᡣᠬᡊᠶᠴᡘᠬᢗᡘᠶᡱᡘᠬᢗᠺ᠉᠆	Ċ ĸĸĊ Ŷ ŦĬĔ ĬĊŔĊĊĊŎŎĊĊŎĊĊĊŎŎŎĊĊŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎŎ	
Hexaphenyldilead	ور 000 °	. 00034.	₀000 <u>3</u> 6	
.016M	⋬⋺⋼⋹⋑⋈⋑⋶⋽∊⋑⋠⋽⋍⋍⋪⋠⋉⋑⋌⋔⋺⋠⋎⋸⋗⋽⋧⋐∊⋹⋛⋳⋽⋽⋨⋗⋹⋖	₩₩₩₩₽₽₽₽₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	مانتش <mark>ل برج میرین بار است. می</mark> ند باریند است. می با ایند میشند می با	
Sodium iodide		.035		
ປາ ເອີ້າເປັດຫາການຜູ້ແລະການການການການແລະແລະແລະແລະແລະແລະແລະແລະແລະແລະແລະແລະແລະແ		ر من	ŢĨĸŎŢŢĨŦŢĸŢĸĸĊĸĨŎĸĸĸĸŎŢŢĸĬŎġĸĸĊĔŢĨŦĬĬŎŢĸ	

er:

Note: - Hexaphenyldilead did not give a clear solution.

•

Experimental.

Preparation of silver tetrafluoroborate:-

This compound was prepared using the following two methods:-

(i) By reacting dry silver borate with bromine trifluoride in a silica tube (Sharpe¹²⁵).

(ii) Silver fluoride was prepared by reacting silver carbonate with aqueous hydrofluoric acid in a platinum dish (Anderson, Bak and Hillbert¹²⁷). Then silver tetrafluoroborate was obtained by reacting silver fluoride with boron trifluoride using sulphur dioxide as the solvent. (Russell and Sharp¹²⁶).

From the two methods used for the preparation of silver fluoroborate, the first method is convenient when smaller quantities of the material are required and the second procedure is useful for obtaining larger quantities of silver tetrafluoroborate.

<u>Purification of silver perchlorate</u>:- The compound was recrystallised from anhydrous ether. The recrystallised compound was dried <u>in vacuo</u> and stored over phosphorous pentoxide in a desiccator.

<u>Preparation of silver trifluoroacetate</u>:- Silver carbonate was dissolved in trifluoroacetic acid, the solution filtered off and silver trifluoroacetate was obtained by evaporating the filtrate. The compound was recrystallised from anhydrous ether. The final product was dried in vacuo and kept over phosphorous pentoxide in a desiccator. The absence of moisture was confirmed by its infrared spectrum. <u>Preparation of organo-tin compounds</u>:- All the known compounds were prepared by standard procedures. The reactions were carried out under strictly anhydrous conditions wherever necessary. The compounds were characterised by carbon and hydrogen analysis and the melting points found were in agreement with the previously reported values. The details of analysis are given in Table 14.

<u>Tetraphenyltin (Ph₄Sn)</u> was of the commercial grade (from Pure Chemicals Ltd.) and was recrystallied from benzene. This compound was used as a starting material for the preparation of most of the other aryltin derivatives.

<u>Triphenyltin hydroxide</u> (Ph₃SnOH) was prepared according to the method of Kraus and Pohland¹¹⁰.

Bis-(triphenyltin) oxide (Ph_Sn-O-SnPh_3

Triphenyltinhydroxide was heated at $90-100^{\circ}$ C for four hours <u>in vacuo</u>. The product was recrystallised from acetonitrile. The infrared spectrum of the product did not show a strong absorption at <u>909m</u>, <u>898s</u> cm⁻¹ which is characteristic for triphenyltin hydroxide. The disappearence of this absorption and appearence of an other strong intensity band at 774 cm⁻¹ (Sn-O-Sn) confirmed the complete convertion of the hydroxide into the oxide.

Attempts were also made to prepare bis-(triphenyltin) oxide by the method described by Kushlefsky, Simmons and Ross¹²⁸ but the method gave only tetraphenyltin.

<u>Bis-(tri-n-butyltin) oxide (Bu₃Sn)₂O</u> was prepared by shaking an ethereal solution of tri-n-butyltin chloride with aqueous potassium hydroxide (Luijten and Van Der Kerk¹²⁹). After evaporating off the ether, an oily liquid was obtained which was heated at 80-90°C for about eight hours <u>in vacuo</u> to give bis-(tri-n-butyltin) oxide.

Triphenyltin fluoride (Ph3SnF).

As compared with other phenyltin halides, the fluoride has a very low solubility (Coates¹²⁰). It was prepared by adding aqueous hydrofluoric acid to a hot alcoholic solution of triphenyltin chloride in a polythene container. The fluoride precipitated out. The precipitate was washed with alcohol and dried under vacuum.

Triphenyltin chloride (PhzSnCl)

(Kozeschkow, Nadj, and Alexandrow¹³⁰).

A mixture of .445 mole tetraphenyltin and .148 mole stannic chloride was heated at 205-215°C in an oil bath for three hours and subsequently at 180-190°C for three hours. The reaction product was recrystallised from anhydrous ether. Triphenyltin tetrafluoroborste (Ph_3SnBF_4).

Triphenyltin chloride was reacted with an equivalent proportion of silver fluoroborate in ethereal or benzene solution. On mixing the two solutions, silver chloride was precipitated and was filtered off in a dry box. The removal of the solwent gave an oily or gummy material which showed absorptions in the B-F region. The infrared spectrum also showed characteristic absorptions for mono-substituted phenyl groups as do all phenyltin derivatives. Thus it is certain that the product is Ph_3SnBF_4 , but it has not been possible to obtain a crystalline sample for analysis as the product showed a very strong interaction with the solvent or moisture and it was impossible to remove final traces of the solvent from this compound.

Attempted preparation of triphenyltin fluoroborate by reacting triphenyltin fluoride with boron trifluoride. This reaction was carried out in a stainless steel bomb (from Baskerville and Lindsay Ltd.) of 25 ml. capacity. Triphenyltin fluoride (about 1 gm.) was placed in the bomb which was evacuated and about 3-4 ml. of sulphur dioxide was condensed into the bomb, followed by an excess of boron trifluoride. The charging of sulphur dioxide and boron trifluoride was carried out on a vacuum line. The bomb was rocked overnight at room temperature. The excess sulphur dioxide and boron trifluoride were allowed to escape and the product left in the bomb was pumped on for about two hours, the bomb was opened in the dry box and the infrared spectrum of the solid product was found to be identical with the starting material.
In another attempt triphenyltin fluoride was reacted with boron trifluoride in benzene, but the attempt to prepare triphenyltin tetrafluoroborate was again unsuccessful and triphenyltin fluoride was isolated.

Raction of triphenyltin fluoride with hexafluorobut-2-yne

Hexafluorobut-2-yne was prepared by reacting 1,1,1,4,4,4, hexafluoro-2,2,3,3-tetrachlorobutane with gine dust in acetic anhydride (Krespan, Harder and Drysdale¹⁴⁰).

About one gram of triphenyltin fluoride was reacted with an excess of hexafluorobut-2-yne in a stainless steel bomb. The bomb was heated at about 100°C for 12 hours. After pumping out the unreacted gas, the reaction product was handled in a dry box. The infrared spectrum did not show absorption in the C-F region and the spectrum was identical with the infrared spectrum of triphenyltin fluoride.

<u>Triphenvltin perchlorate ($Ph_3 gnClO_h$ </u>) was prepared by the same procedure as used for $Ph_3 SnBF_h$. The product was gummy and the infrared spectrum showed the characteristic absorption for the perchlorate group as well as for the monosubstituted phenyl groups. This evidence indicates the formation of this compound but analytical results could not be obtained as the attempts to prepare a crystalline sample were not successful. <u>Diphenvltin dichloride (Ph_2SnCl_2 </u>) was prepared according to the method of Kozeschkow¹³¹. Equivalent quantities of tetraphenyltin

and stannic chloride were heated at 220°C for 1g hours. The reaction product was recrystallised from light petroleum.

<u>Phenyltin trichloride (PhSnCl</u>) was prepared by reacting tetraphenyltin with stannic chloride according to the method of Kozeschkow¹³¹. 0.05 mole of tetraphenyltin and 0.15 mole of stannic chloride were heated at 210-220°C for two hours. The reaction was carried out under completely anhydrous conditions. The reaction product was an oily liquid. Phenyltin trichloride was fractionated under vacuum. The infrared spectrum confirmed the absence of moisture and of hydrolysis products.

Found b.p. 140-143°C

Lit. b.p. 142-143°C

<u>Tripehnyltin bromide (Ph₃SnBr</u>). This compound was prepared by mild bromination of tetraphenyltin by the pyridine-bromine addition compound at -48°C (Kraus¹³²). The product was recrystallised from anhydrous ether.

Triphenvltin acetate (Ph SnOOCCH)

The preparation of this compound has been reported 133,134 by the reaction of triphenyltin hydroxide with glacial acetic acid. In the present work, two new methods of preparation for this compound have been developed.

(1) Equivalent proportions of triphenyltin chloride and silver acctate were reacted in anhydrous other solution. The reaction mixture was shaken overnight. Silver chloride precipitated out and was filtered off in a dry box. The crude product obtained from the ether solution was recrystallised from petroleum ether. The infrared spectrumof this product showed the expected C=O absorptions and bands for monosubstituted benzene groups.

(ii) In another experiment, triphenyltin acetate was prepared by refluxing equivalent quantities of tetraphenyltin and silver acetate in toluene for eight hours. Metallic silver separated out and the acetate was isolated from the toluene solution. The reaction product was recrystallised from ether. This procedure was followed from Anderson's method⁷³ for the preparation of a variety of alkyltin derivatives by the reaction of metallic acetates with tetraorganotins. It was found that the cleavage of the first C-Sn bond was easy, following which there was no subsequent cleavage of the C-Sn bonds. Attempts were made to prepare diphenyltin diacetate using an excess of silver acetate but the product obtained was the mono-acetate.

Analysis	Found	Calc. for Ph3Sn00CCH3
	C = 60.18	58.72
	H == 4.66	4。41

<u>Triphenyltin trifluoroacetate (Ph₃SnOOCCF₃)</u> was prepared by reacting triphenyltin chloride with an equivalent quantity of silver trifluoroacetate in anhydrous ether. The reaction mixture was shaken for 24 hours, silver chloride precipitated out and was filtered off in a dry box. The filtrate was evaporated on a vacuum line and the crude product was purified by recrystallisation from ether.

Diphenyltin bis-(trifluoroacetate, Ph_Sn(OOCCF_)) was

prepared by refluxing .442 gm. tetraphenyltin and .442 gm. silver trifluoroacctate in toluene. The reaction mixture was heated for eight hours. Metallic silver separated out and the trifluoroacctate was isolated from the toluene solution. The product was recrystallised from anhydrous ether.

Diphenyltin. (Ph-Sn-Ph) (Kraus and Becker¹³⁶)

Phenylmagnesium bromide was prepared by reacting 2.5 gm. of magnesium turnings with 15.7 gm. bromobenzene in anhydrous ether (for details see Gatterman¹³⁷).

Stannous chloride was made anhydrous by heating it at 100°C in vacuo for four hours. 9.5 gm. of the anhydrous stannous chloride was added in small portions into the phenylmagnesium bromide solution with continuous stirring. The colour of the reaction mixture changed to yellow and dimhenyltin separated out. The yellow product was filtered and extracted with anhydrous benzene and the solution was dried over anhydrous sodium sulphate. The solution was poured into an excess of absolute alcohol when diphenyltin precipitated out as yellow crystalline product. The compound was filtered under an atmosphere of nitrogen and dried in vacuo.

Found	ш _о р.	~ 300 °C	décomposed
Lit.	m.p.	~ 205-6°0	décomposed

<u>Hexaphenylditin (Ph₃Sn-SnPh₃)</u> was prepared according to the method of Kraus and Becker¹³⁶ by reacting triphenyltin chloride in xylene with sodium metal suspended in boiling xylene. The reaction was carried out in an atmosphere of nitrogen and under completely anhydrous conditions. Hexaphenylditin was recrystallised from anhydrous ether.

<u>Conductivity measurements</u> were carried out using a Wayne-Kerr Universal conductivity bridge. The solutions of hexephenylditin and hexaphenyldilead were made up in nitromethane and measurements were made at different temperatures.

<u>Tris(pentafluorophenvltin)fluoride.</u> $(C_6F_5)_3$ SnF (Sharp and Winfield¹³⁸, <u>tri-m-butyltin fluoride</u>, Bu₃SnF (Sharp and Kemmitt¹³⁹) and <u>di-m-propyltin difluoride</u> Pr_2 SnF₂, (Sharp and Winfield¹³⁸) were prepared by reacting sulphur tetrafluoride with tetrakispentafluørophenyltin at 120°C, tetra-m-butyltin at room temperature and tetra-m-propyltin at foom temperature respectively. All the reactions were carried out in a stainless steel bomb. <u>Tetrakis-pentafluorophenyltin</u> $(C_6F_5)_h$ Sn was a gift from Dr. R.D. Peacock of the University of Birmingham.

<u>rable 14 Welting Points and</u>	Analvels Reeu	ilto for Phe	a <u>vltin C</u>	Spunoaud		
Compound	Pound 	1160 1160 1100	HOUI Wour	là Trư	087	ن م
මා ලේ හිදු දේ ගින හා දේ සි		aoro C Maria A	ר קו ע ג	ia C V	0 - 2 2 3	ri/ 1. 60
terrand and a start of the second		н 1 1 0		2000	♪to 10	A O o in
Hezzphenyldítia	236-7	12 2 2 2 2 2 2 2 2 2 2 2	62,58	ly . 6lt	61°77	k.30
Tetrahispentafluorophenyltin	214	1 1 1 1 1	35°90		36°61	
Tris-(penterluorophenyl) tim fluoride	dec. ~ 30-57	deo. 345-57	33。21	F=47。10 Sn=19,39	33。81	F=4,7°59 Sm=18.58
Triphenyltin Ilucride	dec. ~ 350	decomp. 357	57.42	4° 35	м 9 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1°02
Tri-m-butyltin Lluoride	Ũ	1)	146 ° 85	Q . 99	li6 . 65	0° 75
Bis-(n-propyltin)äifluorids	0	0	28°58 23°56 33°04 23°04	onn Soci	29°66	л С
Triphenyltin Crlorico	103-2	106-107	SN. M	3.90	56.07	3.92
Diphenyltin dichloride	41-Ly	142 LAZ		C1=20.58		01=20°65
Triphenyltin Ercaldo	119-120	120.5-122	51.02	4022	50°27	3.49
Triphanyltin kyározlác	118-9	118-120	57°46	ly . 72	58°90	4. 36
Bis-(triphenyltin)oride	122-123	10°51 111 111 111 111	61.30	4.16 Sn=33.22	60°39	. 4.19 Sr=33.18

Melting Points and Analveis Results for Phenylin Compounds

Melting Points and Analysis Results for Phenyltin Compounds <u>Table lb</u> (continued)

Compound	Found	31 & o	б _н	arad	Cald	o Ph
	M.P. CC	No olom	C &	est.	6%	田
Bia-(tri-n-butyltin)ozide			50°. 50°. 50°.	s N N	48°38	9°07
Triphenyltin acetate	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		58°16	4°75	58°72	し、山口
RTiphenyltin trifluoroscetate	118-120		52.01	3°63	51。87	3°24
^z Diphenyltin big~trifluorosoctate	dec. 250		30°57	2.38	38°50	2°07

.

- Compounds decomposed without melting.

x Compounds have not been described previously.

Infrared measurements: The spectra in the sodium chloride region (2-15 µ) were recorded using a Perkin-Elmer Infracord or a Grubb Parsons Type S4 spectrophotometer. The spectra were obtained in Nujol and hexachlorobutadiene mulls, except for phenyltin trichloride and tetra-n-butyltin which were examined as liquid films. Spectra were taken between sodium chloride plates. Mulls were prepared under rigid 'drybox' conditions.

The range 650-200 cm⁻¹ was recorded as Nujol mulls on a Grubb Parsons Model DM2 spectrophotometer fitted with caesium iodide optics. The samples were held between caesium iodide or polythene plates.

All figures are in cm⁻¹ and letters have their usual significance.

CHAPTER II

THE INFRARED SPECTRA OF SOME PHENYLLEAD COMPOUNDS.

The work discussed in this chapter is a continuation of the work described in the preceding chapter. The organolead compounds prepared in the course of the present work are analogous with the corresponding organotin derivatives. The electronic configuration of lead is similar to that of tin. Both these elements form organometallic compounds with covalencies of two and four; the latter being more frequent than the former. Because of these similarities tin and lead form similar alkyl and aryl compounds. The organolead compounds are, however, more reactive than the organotim compounds and are thermally less stable as is expected from the increasing weakness and polarity of the Pb-C bond. The Pauling electronegativities of the Group IVA elements are given in Chapter I and Pb-C and Pb-halogen bonds are expected to have some ionic character.

The purpose of the present investigations was to try to establish the existence of aryl or alkyl lead cations.

In compounds of the type R₄Pb, the lead has a tetrahedral arrangement. The structure of these compounds has been confirmed by physico-chemical data. Electron diffraction investigations (Brockway and Jenkins¹⁴¹) have shown that the tetramethyl derivatives of lead possess a tetrahedral symmetry. Other workers¹⁴²⁻¹⁴⁴ have determined the crystalline structure of tetraphenyllead by means of X-ray diffraction. In each of these cases the results agree with the tetrahedral configuration and the bond distances correspond to covalent bonds. Electron diffraction measurements (Skinner and Sutton¹⁴⁵) on liquid $(CH_3)_3Pb-Pb(CH_3)_3$ agree with the following parameters:-Pb-Pb = 2.88 Å; Pb-C = 2.25 Å; $\angle C-Pb-Pb = 109.5^{\circ}$ These calculations give probably the most accurate value for the covalent radius of lead. From the above discussion it is concluded that the organo-lead compounds are typically covalent compounds with a true tetrahedral configuration round the lead atom.

Organolead compounds, in which lead forms a bond with a highly electronegative or electropositive element or group are reported¹⁰¹, in the previous literature, to be ionic salts. For example, the lead atom has been thought to be either in the cationic or in an anionic form in the following compounds: (C₂H₅)₃PbCl⁻, (C₆H₅)₃Pb⁻Li⁺. The compounds containing Ph₃Pb⁻ anions have not been isolated in crystalline forms, although they may be present as reaction intermediates in solution. However, there are many compounds which are reported to contain For instance, dipole moment measurements of $R_{x}Pb^{+}$ cations. the organolead halides have been found in the region expected 'for inorganic salts-e.g. NaI, 4.9;(C2H5)3PbBr,4.88; Ph3PbCl, 4.3; Ph3PbC2H5,0.81 - indicating that the halogen-lead bonds are largely ionic in nature. (Malatesta, and Pizzotti¹⁴⁷). More recently, Barbieri et.al. 148 have postulated the existence of $(C_{2}H_{5})_{3}Pb^{4}$ and $(C_{2}H_{5})_{2}Pb^{+2}$ cations in chloro complexes.

These workers have interpreted the ultraviolet spectrum of Ph₃Pb (oxinate) in terms of a salt-like structure containing Ph₃Pb⁺ cations. However, the present work has shown that the phenyl lead compounds are covalent in nature. If the organolead cations did exist in some of the organolead derivatives, a planar configuration would be expected about the lead atom. It would be expected that the infrared spectrum would show some noteworthy changes, when a covalent organolead compound with a tetrahedral structure is converted into an organolead cation having a planar configuration. (cf. the spectral changes between Ph_AC and Ph_3C^+ cation⁴⁰). In the course of the present work a variety of phenyllead derivatives have been prepared and their spectra examined. The infrared spectra of all these compounds are quite similar and are the characteristic spectra of a mono-substituted benzene group. The spectra of the phenyllead compounds are very similar to those of the analogous tin compounds and the spectra will be discussed in terms of separate phenyl and C₃MX or C₂MX₂ groups. The Pb-X vibrations occur in the very far infrared region and such vibrations have only been recorded in the spectrum of diphenyllead difluoride. Frequency assignments of the mono-substituted benzene groups are made according to Whiffen³¹ and the results are shown in Tables 1-4. A complete analysis for the abosrption frequencies of the infrared spectrum of a representative member (tetraphenyllead) is shown in Figure I. The bands derived from the

reble I	Frequency	r <u>assiznnents of</u>	Later and Ph.Ph2
Mode		Absorption	frequencies (cm ⁻¹)
Whiffon's notation	Description	Dut Pa	Eugod-ogenz
	A. YO-H	304.02	3040m
23	D-O T	1563a	1563m
æ	Al Vo-O	11,70s	1 Li68s
a	B1 70-0	JUZSVB	11;25va
		1370w	1370w
o	ມີ ງ ດ−ເ	1319 ^w	1319w
٩	H-D4 E	1298m	129 ^{4a}
		1252w	1253m
ល	A_ BC-H	1163 a	1170w
C	B] pc=H	1143 0	1149w
rø	B] BC-H	1055a	LOSZm
٩	Al BC-H	10168	10128
۵.	Al ring	99ks	995a
(I**3)	B2 Co-H	970w	970w

78

•

•

Table I	<u>Frequen</u>	oy <u>essignments of</u>	hip and Phe Phe
(continued)			_ *
Node		Absorption frequ	aencies (cm ²¹)
Whiffen "& notetion	Description	ીર. હાર્યું જ	ย _{ักร} ри-กรณา
4g≕[]	B2 10-H	90 7w	2006
60	A2 YC-H	851 . 0	851w
€;\$	B2 YC-H	727¥a	725vr
A	B2 Ø0-0	697vs	695a
50	ອງ ຂີ່	615w	ß
4	B ₂ X sens.	<u>hlgah.hlova</u>	<u>lutésh, lutova</u>
42	A _] X sens.	222-b	222-b

-

•	helides	
	phenvilead	-
	ments of	
	V assign	
	Frequenc	

Teble 2

Mode		frost	ption frequencies	9 (Cm - 7)		
Whiffen's notation	Description	Ph2PbF2	Phol	2 LDOY SHA	2 Fogs	Lagens
đ	А. ЧС-Н	3C 3Z &	304,0m	3035 n	Ĵ035 a	304.07
<u>بم</u>	A_ VO-C	1563m	15638	1560m	1563 и	1563m
E	A. NC-H	24728	14718	structure	14668	1466s
C,	B_ 70-0	lizgre	1429vs	J129vs	1425va	1420Vs
		ljjin	13700	1370w	1 370w	1370~
0	B_) C=C	1325 a	1318m	1319m	1318w	1316w
0	B ₁ Po-H	1295 w	1295 m	1291,12	1295w	1294w
c	B_ BC-H	1155w	11 52w	1150w	1149w	Q
Ø	B_ BC~H	1056m	losse	10568	1055m	JOUNB
Q	A_ BC-H	lolés	SOLOL	10128	1012m	TOLOT
Q	A ₁ ring	99lipa	9 90 e	990s	995a	990e
4 <u></u> 9	B2 % C-H	961w	Q	ß	-	966w

.

<u>Table'2</u> (continued)		Frequency 23212	mmente of phenyl	lead halides		
Mode		Absorption fr	equencies (cm ^l)			
Whiffen's notation	Deacription	Dh2 ^D h2 ² nd	Page 1	Ph2Pb012	FhyPoBr	Fugend
nj an j	B2 YC-H	90 Ja	905w	909 w	8	. (t
50	A2 YO-H	вцот	ß	8lµ0w	8140w	84,8w
Q3	B2 Yo-H	<u>729 . 71975</u>	7345.7268.77678	725.718vs	729a.719ve	725va
Â	B2 ØC-0	686s	685 B	690s	6908	පරිස
20	B _Z X sens.	433vs	11376	<u>lı 35vs . h2hsh</u>	h37va	LU12VS
		350-320b(Pb-#)				
49	Alk conc.	230-220b	229w	č	220-b	P

<u>Table 3</u>	Frequency	y <u>essignments</u> (f phanyllead acet	cates and trifl	uoroacetates
Mod @		Absorption	i frequencies (cm		
Whiffen's notation	Description	EHDDOOGAE ua	Ph2Pb(0000H3)2	ERD000042 ERA	Ph2Pb(000CF3)2
ଝଷ	H=O€ [™]	30458	3035tr	3049w	3035a
				1667ah(C-0)	1656ah(C-O)
				1635vs(C-O)	1615 ₇₈₈ (0-0)
м	AJ VC-C	1563en	туусан	1563m	1563w
		1536v¤ (0-0)	(0-0) #2712T		
題	A1 VC-C]t, 72m	ILTE	utlit	lurim
R	B1)0-0	1429ve	1433s	14316	14310
		11408a	lhoés		
0	ວ-ວ¢ີ້ອ	1335 a	1333m	1325 a	1323 a
()	B ₁ po-H	0		12998°, 1274m	1299w
				1192a(C-F)	1190vs(C-F)
ល	A ₁ pc-H	1169 ^w	Llim	Q	0
Ó	B ₁ βC-H	J	1151 @ (C-F)	1155a(c-f)	11608 °111485 (C=F)
rđ	B_ BC-H	1058w	louis	lose	logsw

•

<u>Table 3</u> (continued)	Frequency ass	ignments of phe	<u>enylleed acetatea</u>	and trifluoro	acetatos
Mode	•	Absorpt	iion fraquancies	(cm ⁻)	
Whiffen's notation	Description	Engooodeng	Ph2Pb(0000H3)2	EaooooqaEuz	Ph2Pb(00ccF3)2
e,	A, & C-H	1010m	10228	1022m	lolom
Q i	Al ring	992m	995a	995m	990a
જુની	н-оу Е	906w	943m,927w		Ð
60	AZ YC-H	84 <i>7</i> w	0	84,8w	851sh,844m
		D	Q	800w , 79ltw	79km
,	·	us till	Q	(Q
(ju)	В₂ ४С⊸Н	732 <u>84,725</u> ve	2304a	725vs	7338h.721 vB
Æ	B2 &c-c	6928	685s	687e	680 <i>8</i>
Ø	B] ac-c-c	61 ltv	0	0	Q
وروا	B ₂ X sens	1466ve	asuti	141,08	Liltva
			· .		

83

. • •

.

Table L

•

Frequency assignments of PhyroH

*

Absorption fraquencies en	eription Phyton	т. т. 3035т. С-Я	∂ C=C 156 300) c-c Iliotem) c-c	1370m	yc-c 1325w	BC=H 1290a	BC-H ITH 300	30-н	BC-H JOIEm	ring 995a	йс-н 910т	
	Descriptio	R-OK IN	A1 9C=C	A J C-C	B1 V C-C		BJ 70-0	H-DG E	H-09 g	H-08 E	Al pc-H	Å ring	B2 YC-H	•
Mode	Whi lsen °o rotetioz	8	14	. 102	e		Ø	0	C۵	C ³	D,	R	গন	

HOALERA	Absorption frequencies on	HOdzent	<u>72948,7228h</u>	69ha	Bezeza
Froquency assignments of		Description	H-O,, ^Z E	B2 Ø0-C	B ₂ X sens
<u>Table U</u> (continued)	Mode	Whiffon 10 notation	لإسيا	•	Ð

•

.

85

,

(%) constinensaT

phenyl groups are discussed below:-

The vibrational frequencies of a mono-substituted benzene group are discussed in the introductory part of the preceding chapter. A weak to medium intensity band is observed near 3040 cm⁻¹ in the spectra of all the compounds and is identified with Whiffen's 'z' band for a C-H stretching mode. The overtones and combination bands of the normal C-C modes are observed as four to five weak intensity bands in the 2000-1650 cm⁻¹ region. The absorption bands near 1563, 1470, 1425 and 1320 cm⁻¹ are identified as Whiffen's 'k', 'm', 'n' and 'o' vibrations arising from C-C vibrations of the phenyl groups. There are relatively stronger bands near 1295, 1170, 1150, 1055, 1016 cm⁻¹ which are assigned to C-H vibrations and Whiffen's 'e', 'a', 'c','d' and 'b' modes.

The band near 1055 cm⁻¹ has been reported¹⁴⁶ to be characteristic of phenyllead derivatives. We have noticed that the position of the band is little affected by different substituents on the lead atom. However, the intensity of this band decreases markedly in the spectra of the phenyllead acetates and trifluoroacetates. The corresponding band near 1070 cm⁻¹ in the spectra of phenyltin acetates and trifluoroacetates showed a similar behaviour. The above observations are in agreement with the results obtained by Henry¹⁴⁹, who has reported a similar decrease in the intensity of this band in the spectra of aryllead acetates, aryllead arsonates and aryltin arsonates. From the above observations, it can be

said that, in general, a decrease in the intensity of the band is noticed where there are Pb-O or Sn-O bonds in organometallic compounds.

The symmetric ring vibration (Whiffen's 'p' mode) is readily assigned near 995 cm⁻¹. The absorption band is sharp in intensity and is shown by all the phenyllead derivatives. The strong intensity bands around 730 and 700 cm⁻¹ are assigned to the out-of-plane C-H deformation modes (Whiffen's 'f' and 'v' bands). Splitting of one or other of these bands has been observed in the spectra of some of the aryllead compounds. (cf. the spectra of aryltin compounds). The shape of these absorption peaks may be used for distinguishing between different phenyllead derivatives. The splitting of these bands in the spectra of solid derivatives is probably due to crystal effect; either the situation of the molecule on the lattice sites of low symmetry, or the interaction of the molecule in the unit cell.

The band near 615 cm⁻¹ is assigned as Whiffen's 's' band and is an in-plane ring deformation mode. The vibration does not involve the substituent to any large extent. The abosrption is usually of a very weak intensity and is only observed when the spectra are recorded in concentrated mulls.

Whiffen has recorded four substituent-sensitive vibrations (t,y,u,x) in the far infrared spectra of the halobenzenes. The assignments for these frequencies in the spectra of phenyllead compounds are made on the basis of comparison with the assignments for the halobenzenes. The 't' and 'y' vibrations occur near 500 cm⁻¹ when the substituents are lighter elements. The 't' band has been observed as a broad diffuse absorption near 220 cm⁻¹; the band was not observed in some cases where the band has shifted to slightly lower frequency because of the effect of electronegative groups attached to the lead atom and is out of the range of the spectrophotometer used in the present work.

The 'y' band was observed as a strong band near 440cm⁻¹ in all the phenyllead derivatives. The band was often split, or had a shoulder and resembled the spectra of other aryllead derivatives studied by Harrah et.al.²⁸.

From the comparison with the results of Raman spectroscopy, Whiffen's 'x' and 'u' bands are exjected to occur below '200 cm^{-I} for the phenyl derivatives of the heavier elements. Hence these vibration were not detected in the region exemined for the phenyllead compounds.

Apart from the strong bands that have been identified, the compounds showed a number of weak intensity bands whose origin is unknown. These absorptions are presumably derived from combination modes of the monosubstituted benzene ring vibrations or of the C-Pb skeletal modes.

÷.,

Structure of Specific Compounds:-

Hexaphenyldilead, Ph3Pb-PbPh3:-

The reactivity of R3Pb-PbR3 type of compounds is well Hexaphenyldilead adds¹⁵⁰ to the double bond in known. maleic anhydride to form an addition compound. Similarly, hexaphenyldilead is easily cleaved by phenyl lithium in ether to produce 151 PhzPbId. The halogens and hydrogen halides react with organolead compounds containing Pb-Pb bonds and form R₃PbX, R₂PbX₂ and PbX₂ products. The auto-oxidation of hexacyclohexyldilead has been found¹⁵² to occur photochemically under the influence of U.V. light. These properties show that Pb-Pb bond is relatively weaker than the Pb-C bond and the behaviour of this type of compound is similar to those of the J solutions of triphenylmethyls. In view of these properties it was proposed 153 that R₆Pb₂ type of compounds were highly dissociated in dilute solutions to form free radicals of the type R₃Pb. However, magnetic susceptibility measurements made on various compounds of this type did not show 122,123 According to Malatesta²⁴, organolead compounds; paramagnetism. showed no indication of dissociation in high melting solvents.

In order to confirm the heterolytic dissociation of hexaphenyldilead, it was advisable to carry out conductivity measurements on this compound. In the present work, the measurements were carried out in nitromethane solution at varying temperatures. The conductivity results are shown in the preceding chapter. It is concluded that the compound did not show any measurable heterolytic dissociation into ions.

The infrared spectrum of solid hexaphenyldilead is identical with that of tetraphenyllead. This indicates that hexaphenyldilead is a covalent compound and the pale yellow colour of the compound may be due to the presence of slight impurity of diphenyllead which may have been formed as a result of a disproportionation process.

The halides:-

The aryllead halides possess similar properties as the analogous tin compounds. For instance, the fluorides behave as ionic salts as they possess relatively low solubility and high melting points and some decompose without melting. The other halides are soluble in non-polar solvents and appear to be covalent in character.

In the present work, the infrared spectra of diphenyllead difluoride, triphenyllead chloride, diphenyllead dichloride, triphenyllead bromide and triphenyllead iodide have been examined. The spectra are similar to the spectrum of tetraphenyllead and are characteristic for the monosubstituted benzene ring vibrations. While discussing the infrared spectrum and crystal structure⁵⁴ of trimethyltin fluoride, in Chapter I, it was concluded that the spectra are in favour of a covalent model in which the three methyl groups lie in a single plane and are tilted with respect to Sn-F-Sn axis.

The tin atoms are five coordinate in this polymeric chain structure. From the similarities between the infrared spectra of organotin and organole d fluorides, it is suggested that the organolead fluorides also possess a predominently covalent structure and the structure involves five co-ordinate lead atoms. As regards the structure of the other halides, the spectra do not show any remarkable changes and are similar to that of the fluoride. Thus polymeric structures involving five co-ordinate lead atoms are preferred for the organolead chlorides, bromide and iodide.

<u>The Pb-X vibrations</u>:- These absorptions are expected to occur in the far infrared region. In the case of diphenyllead difluoride, a broad band is observed at 350-320 cm⁻¹. The absorption is assigned to a Pb-F vibration as no absorption in this regionis observed in all the other phenyl lead halides. There has been no previous report of a Pb-F absorption in organolead compounds.

No extra absorption bands were observed in the spectra of the compounds containing Pb-Cl, Pb-Br and Pb-I groups. Such vibrations would presumably occur below 200 cm⁻¹ outside the range of the present spectrophotometer. <u>Triphenyllead perchlorate</u>:- This is a new compound and was obtained by reacting triphenyllead bromide with silver perchlorate in benzene solution. It was considered that since the perchlorate group is a very strong electronegative, there would be a good chance of the formation of PhyPoions in this derivative. The product showed a strong interaction with the solvent or moisture and was not obtained in a crystalline form. The infrared spectrum showed absorptions characteristic of triphenyllead group and strong bands at 1200-910 cm⁻¹ for the perchlorate group. The absorptions of the perchlorate group are in favour of a bridging covalent structure, rather than an ionic structure similar to the organotin perchlorates. Triphenyllead hydroxide: - The organolead hydroxides are frequently soluble both in organic solvents and in water. Trialkyllead hydroxides are fairly strongly basic in aqueous solution and such solutions are sufficiently alkaline to absorb carbon dioxide from air to form carbonates. Triethyllead hydroxide has been reported¹⁰¹ as an ionic compound containing (C2H5)3Pb⁺ cations. Triphenyllead hydroxide is not water-soluble and is less basic in nature. If the hydroxide is ionic or Ph3Pb* cations are formed by hydrolysis there should be changes in the spectrum as compared with the spectra of covalent aryllead compounds. In the present work, the infrared spectrum of triphenyllead hydroxide has been found similar to that of tetraphenyllead, and triphenyllead hydroxide is considered to be a covalent in the solid state. The spectrum of the hydroxide did not, however, show any absorption for an OH group. This is in agreement¹⁵⁴ with the absence of OH stretching vibrations in the hydroxides of the

heavier elements of Group IVA elements. The spectrum shows absorption at about 330 cm⁻¹ which is not observed in other phenyllead derivatives and is assigned to a Pb-O vibration. <u>The acetates:</u> Phenyllead acetates and trifluoroacetates are soluble in organic solvents which probably indicates that the compounds are covalent in character. The C-O absorptions of the acetates are similar to those of the corresponding aryltin acetates. As discussed in the previous chapter, the C-O frequencies are expected to be similar to that of an ionic acetate e.g. sodium acetate when a C-O group is present as a bridge between two organometallic groups. The C-O absorption frequencies, as recorded in the present work, are shown in Table 5.

<u> Table 5</u>	C-O stretching frequencies cm ⁻¹ .		
Compound	Asym. stretch	Sym. stretch	
PhzPb00CCHz	1563sh, 1536vs	1408s	
Ph2Pb(OOCCH3)2	1575sh, 1545vs	14068	
Ag000CP3	1640s	-39 -	
Ph3Pb00CCF3	1667sh, 1635vo	4	
Ph ₂ Pb(00CCF ₃) ₂	1656sh, 1615vs	-33	

" absorption masked by Nujol or other bands.

In the trifluoroacetates, the C-O stretching frequencies are similar to those of silver trifluoroacetate which is a covalent bridged¹⁵⁵ com ound. Thus from infrared evidence, the structures of phenyllead acetates and trifluoroacetates are

Reserview elements of Group IVA elements. The spectrum entrop shoor often at about 350 cm⁻¹ which is not observed in ethen phony liest derivatives and is assigned to a 26-2 where ich <u>Sho spectros</u>. Phony liest sectors and infilit of a observed and soluble in organic solvents which probably indicates the compounds are novalert in character. The 3-0 about phone of the sectores are similar to those of the convergenting any line coefficies are expected in the previous obsphere, the C-0 trequencies are expected to be similar to the of the convergentia coefficies are expected to be similar to the option of solver trequencies are expected to be similar to the of the convergentia coefficies are expected to be similar to the of a second solver trequencies are expected to be similar to the convergence trends to organometatic groups. The C-0 shore of the second to be the previous of the second form the second to the previous of the second form of the second to be the previous of the second form of the second to the second to the second form of the trends of the second to the second form of the second form the second to the previous of the second form of the trends of the second of the second to the second form of the trends of the second of the second form of the second form of the trends of the second of the second form of the second form of the trends of the second of the second form of the second form of the trends of the second of the second form of the second form of the trends of the second of the second form of the second of the second form of the second form of the trends of the second of the second of the second form of the second form of the second form of the second form of the second of the second of the second form of the second form of the second form of the second of the second

	a-0_rize schlar frea	is an bei yes
Ser oque0	ver en aver	बहर हा तेने न्याप्रह
e HINOCOAT _e AD	156%ah, 1536va	AROA)
e (Egonoo Aasaa	1575sh, 1545va	\$6 0 \$}
Ag0000 P3	<u>6 (40 a</u>	st.
ED. PRO OCCES	1667ah, 16357a	>
EL EL OCCOP	1656ab, 1615va	- 1-

-eit: redr to fojsM vd befeam activizeda "

in the trifluorocetates, the 0-0 strotching frequencies are similar to these of silver trifluorococtate witch is a covalent bridget 195 com cont. The first fidential of the structures of phenylless costaves and writtluorococtors are suggested as similar to those of the analogous phenyltin derivatives. The compounds are covalent in nature and carboxylate groups are probably present as bridges. <u>The C-F vibrations:</u> The assignments for the C-F vibrations of the phenyllead trifluoroacetates are made according to Randle and Whiffen⁹⁵ who have studied the characteristic C-F stretching modes of the CF₃ group. They have observed the C-F absorptions near 1180 cm⁻¹ and near 1140 cm⁻¹. The corresponding C-F absorptions for the trifluoroacetates prepared in the present work are shown in Table 6.

Table 6

C-F stretching frequencies om 1.

Compound

AgooccF ₃	1198vs,	1150s,	8550,	8 00s ,	735s,
Ph3Pb00CCF3	11925,	1155s,	848w,	800w。	794w,
Ph ₂ Pb(OOCCF ₃) ₂	1190vs	<u>1160s,</u>	<u>1148s</u> ,	, 844m,	794m,

<u>Miscellaneous reactions</u>:-<u>Reaction of triphenyllead bromide with aqueous Hydrofluoric</u> acid or sodium fluoride.

The organometallic fluorides are relatively less soluble than the other halides. As described in the previous chapter, triphenyltin fluoride was easily obtained by reacting triphenyltin chloride with aqueous hydrofluoric acid. The preparation of triphenyllead fluoride was attempted by reacting aqueous hydrofluoric acid with triphenyllead bromide in an alcoholic solution, but the reaction product was characterised as diphenyllead difluoride and not as the expected triphenyllead fluoride. In a further attempt, triphenyllead bromide was reacted with sodium fluoride in ethanol solution, but the product obtained was again characterised as diphenyllead difluoride.

The formation of the difluoride could result from a disproportionation reaction of the mono-fluoride formed in the course of the reaction or as a result of further attack of hydrofluoric acid on triphenyllead fluoride.

Reactions of Phenyllead halides with silver acetate or trifluoroacetate.

In the course of present work, a new technique has been developed for the preparation of phenyllead acetates and trifluoroacetates by working in non-aqueous solvents. The aryllead halides (other than the fluorides) react with the silver acetate or trifluoroacetate and the organolead acetates and trifluoroacetates are obtained in good yields. Triphenyllead trifluoroacetate and diphenyllead bis-trifluoroacetate are new compounds. The compounds were characterised by infrared spectroscopy and analysis.

Experimental

All the previously known compounds were prepared by the literature methods. The reactions were carried out under anhydrous conditions wherever necessary. The compounds were characterised by carbon and hydrogen analysis and by melting point determinations. Tetraphenyllead was used as a starting material for most of the phenyllead derivatives and was obtained from Light and Co. Ltd. and was recrystallised from benzene before use.

<u>Hexaphonyldilead. $Ph_3Pb-PbPh_3$ </u> was prepared according to the method of Gilman and Baillie¹⁵⁶ by reacting triphenyllead iodide with sodium. The product was recrystallised from benzene and dried <u>in vacuo</u>. Found m.p. the compound decomposed at about 150°C without melting.

Analvaic

•	·)	Pound	Calc for Ph ₆ Pb ₂
C	8	48.43%	49.27%
H	23	3.68%	3.42%

Conductivity measurements on Hexaphenyldilead were made as described in the preceding chapter.

<u>Triphenyllead chloride. PhyPbCl</u> was prepared by reacting tetraphenyllead with hydrogen chloride gas in chloroform (Gilman and Robinson¹⁵⁷).

> Found m.p. 204-206°C Lit. m.p. 206¢

Analysis.

	Found		Calc. for	Ph ₃ PbCl
C	35	46.35	45.60	
H		3.25	3.16	

Diphenvilead dichloride, Ph. PbCl,

This compound was prepared by the same method as described for triphenyllead chloride.

Found m.p. decomposed without melting.

Lit. m.p. decomposes at 284-286°C without melting. Analysis.

F	ound	and Calc. for Ph21		
C as	33.29	. 33a	,41	
H 📾	2.66	2.	, 33	

<u>Triphenyllead bromide, Ph₃PbBr</u>:- was prepared by slow addition of bromine in pyridine to tetraphenyllead suspended in pyridine, both reagents being cooled to -50°C (Gruttner¹⁵⁸) The product was recrystallised from benzene.

Found	Calc. for Ph ₃ PbBr
C = 42.10	41.69
H = 3.27	3.00

<u>Triphenvllead iodide. Ph3PbI</u> was prepared by reacting tetraphenyllead with iodine (Gilman and Baillie¹⁵⁶). The compound was recrystallised from benzenes

Pound	ш.р.	135–137°C
見えた。	m.p.	138-139°C

Analysis

	FC	ound	Cale.		Ph ₃ PbI
Ç	8	38.26	38.	23	
H	13	3.02	2.	57	

<u>Diphenyllead difluoride, Ph2PbF2</u>:- Triphenyllead bromide was dissolved in warm alcohol and an excess of aqueous hydrofluoric acid was added to the alcoholic solution. On keeping the solution overnight a crystalline product was obtained which analysed to diphenyllead difluoride.

In another attempt, triphenyllead iodide was reacted with sodium fluoride in alcoholic solution. The insoluble product obtained was identified as diphenyllead difluoride.

m.p. The compound decomposed before melting. Analysis

Found	Calc for Ph ₂ PbF ₂
C = 37.11	36.07
H = 2.52	2.51

Triphenyllead perchlorate Ph. PbClOA

Triphenyllead bromide was reacted with an equivalent proportion of anhydrous silver perchlorate in benzene solution. Silver chloride precipitated out and was filtered off in a dry box. The filtrate was evaporated under vacuum and an oily product was obtained. The compound was not obtained in a compatibility form and was not characterized by analysis. <u>Triphenvillend hydroxide Ph₃PhOM</u> was obtained by hydrolysis of triphonyllend chloride with potassium hydroxide, (Bähr¹⁵⁹). The product was recrystallised from alcohol and dried under Vacuum.

Analysis

;

	F	ound	Cale. for (Cyn ₅) ₃ PDOH
C	613 613	47.83	4701.3
Ħ	513 513	3.93	3.52

Prenavation of irinhenvileed eastate (C.H.) POOCCH :-

The preparation of this compound has been reported (Austin ¹³⁵) by the reaction of acetic acid on triphenyllead hydroxide. In the present work, equivalent proportions of triphenyllead bromide and silver acetate were reacted in an alcoholic solution. The solution was shaken overnight. Silver chloride precipitated out and was filtered off and the solution evaporated to obtain the acetate which was recrystallised from ethanol. Found m.p. 205-207°C, Lit. m.p. 206-207°C.

Found	Cale: for Ph ₃ Pb00CCH ₃
c = 48.01	48.27
H = 3.86	3.65

Diphonviload digeotate Ph2Ph(OOCCH3)2

The compound was prepared using a similar method as used for the preparation of triphonyllesd acetate.

4:32 gm. of diphenyllead dichloride was reacted with 3.34 gm. of silver acctate in ethanol solution. The reaction solution was shaken for 12 hours. Silver chloride was separated out which was filtered off and the discetate was
obtained by evaporating the filtrate. The product was recrystallised from ether.

Found m.p. 195°C Lit. m.p. 200-201°C

Analysis

	Fe	ound	Calc. for	$Ph_2Pb(OOCCH_3)_2$
С		40. 3 9	40.08	
н	3	3.57	3.37	

<u>Triphenyllead trifluoroacetate Ph3Pb000CF3:-</u>

.474 gm. of triphenyllead chloride was reacted with .221gm. of silver trifluoroacetate in ether solution. The reaction mixture was shaken overnight and then the insoluble silver chloride was filtered off. The filtrate was evaporated under vacuum and the orude product was recrystallised from ether. The compound decomposed before melting.

Analysis

	Fc	ound	Calc. for Ph ₃ Pb00CCF ₃	
C	8	44.53	43.55	
H	8	2.75	2.72	

Diphenyllead bis-(trifluoroacetate), Ph2Pb(00CCF3)2

4.31 g. (.0043 mole) diphenyllead dichloride and 4.42g. (.0088 mole) silver trifluoroacetate were reacted in ether solution while the reaction mixture was shaken overnight. Silver chloride separated out and the trifluoroacetate was isolated from the ether solution. The product was recrystallised by dissolving in ether and adding an excess of petroleum ether. The compound was dried <u>in vacuo</u>. <u>Analysis</u>:-

	Fc	ound	Gale. for $Ph_2Pb(00CCF_3)_2$
C	88	32.68	32.69
Ħ	1	1.66	1.70

Infrared measurements:- The infrared spectra were recorded as described in the preceding chapter.

!

CHAPTER III

THE FAR INFRARED SPECTRA OF SOME PHENYL DERIVATIVES OF GROUP IVA. VA. VIA AND VIIA ELEMENTS.

The vibrational spectra of mono-substituted phenyl derivatives have been extensively investigated ^{28,31,160,161} but little has been reported on the far infrared (650 to 200 cm⁻¹) spectra of these compounds. In the present work, more complete spectral data on a series of phenyl derivatives of groups IVA to VIIA elements are presented. The spectra are interpreted in detail and complete assignments are made for the stronger bands.

Phylex¹⁶⁰ has suggested that there should be eight theoretically possible modes of vibrations for a monosubstituted benzene ring, which would be expected to give absorptions in the region 650-150 cm⁻¹. He recorded the infrared spectra of a number of halobenzenes and alkyl substituted benzenes in the 15-40 µ region. The maximum number of absorption bands, observed in the spectra of these compounds, was five and some of these absorption bands were Raman active. Some other workers^{28,31,161} have also observed that the number of observed absorption bands for a monosubstituted benzene group in the far infrared region is much lower than expected from simple theory. The total number of observed infrared bands should depend on the complexity and overall symmetry of the molecule¹⁶²⁻¹⁶⁴. The most comprehensive study of the infrared and Raman spectra of monosubstituted benzene derivatives is by Whiffen³¹. He has described various modes of vibration for a monosubstituted benzene group and his nomenclature is followed in discussing the results obtained in the present work. The infrared spectra of most of the compounds reported in this work, have apparently been recorded by Harrah et.al. ²⁸, but they have only published the results graphically and detailed frequency assignments are not given.

Exequency assignments are made according to Whiffen³¹ and the position of bands are recorded according to vibrational assignments in the Tables 1-5. The compounds are designated by the symbol of the atom attached to the benzene rings.

Tabl	<u>9 I</u>	Whiff	en's 's' vi	lbration	
	β,	Cl.	Br	Ĩ	
	610	614	614	618	
	0	S	Se		
	617	606	610		
	N	Р	As	Sb	B1
	615	615	617	617	621
	Q	S1	Ge	Sn	Pk
	625	618	618	61.8	615

Table 2	Whifi	fen's 't' v	ibration	
P	C1	Br	4.74 6-28	
518	417	312	[266R]	
0	S	Se		
562	406	321		
N	ď.	As	Sb	Bi
512 shoulder	429,418	311,305	272,267	232,220
C	Sı	Ge	Sn	Pb
521	431	325	256	222
<u>Table 3</u>	Whif	fen's 'y' j	<u>ylbration</u>	
Ĩį,	C1	Br	I	
495	467	455	448	
0	S	Se		
495,476	518,465	479,454		
N	þ	As	Sb	B 1
500	510,494	470	451	450,437
C	Si	Ge	Sn	Pb
490	510	460	455,448	448

<u>Table 4</u>	<u>Whiffen's 'u'</u>	vibration		
F	Cl	Br	I	
404	302,295	244	219	
0	8	Se		
394	260(very broad)	244(very broad)		
.D.	Ъ	Ав	ៜ៦	Bi
431,405	249,242	c.o	<u>دت</u>	
С		Ge	Sn	Pb
412	268,235,216	269,222	ere:	*22

<u>Table 5</u> <u>Whiften's 'x' vibration</u>

Ŀ,	Cl	Br		
243	[196R]	[1818]	متت	
0	S	Se		
244	5.2. 4	52) 5		
N	p	Ав	Sb	Bi
241	çin	13	ح ت	شە
C	S1	Ge	Sn	РЪ
240,233	۲ta	C	డు	120

All frequency values are in cm⁻¹ and are those recorded in the present investigation except those values placed within parenthesis. In these latter cases absorption bands are not observed, and the values reported in this work are from Whiffen³¹. The frequencies, recorded for halobenzenes, are in complete agreement with those collected by Whiffen³¹. In the present work, for the phenyl derivatives other than halobenzenes, vibrational assignments are made for all the observed bands by comparison with the spectra of halobenzenes; that is, treating all the compounds as derivatives of monosubstituted benzene rings and neglecting the vibrations due to the contral skeleton of the molecule. Descon and Green¹⁶⁵ have also reached the same conclusion from a detailed study of the infrared and Raman spectra of the phenyl derivatives of Group VA elements.

In the region studied, except for a possible complication in the spectra of diphenyl oxide and triphenylamine, there is a straightforward one to one correlation between the bands observed in the infrared spectra of the halobenzenes and the bands observed in the infrared spectra of the other phenyl derivatives of Groups IVA, VA and VIA elements. To explain the anamolous features in the spectra of diphenyloxide and triphenylamine, it is suggested that vibrational coupling between the different phenyl groups attached to the "central" atom is most likely to occur when the 'central' atom is light and there is conjugation between the phenyl groups across the 'central' atom. Such conjugation involves a lone pair of electrons on the 'central' atom and the 77-electron systems of the benzene rings and is postulated ^{162-164,166,167} for diphenyloxide and triphenylamine. The effects of this type of conjugation are reflected in the far infrared spectra of diphenyloxide and triphenylamine as they show slightly anomolous features. Such conjugation results in a frequency shift or band intensity change as described in the following discussion.

There should be five fundamental vibrations in the far infrared region (650-200 cm²) of a simple monosubstituted benzene (Whiffen³¹). The highest frequency occurs at about 620 cm⁻¹ (Whiffen's 's' band) and is a B₁ class in-plane ring deformation mode (Whiffen's symmetry classifications refer to idealised mono-phenyl derivatives). This absorption varies in intensity in the spectra of different compounds. In lighter elements the absorption sharp or medium intensity while the phenyl derivatives 18 of heavier elements normally show a weak intensity band and in some cases the band is only observed in a concentrated mull. The vibration does not involve the substituent to any extent and the frequency of this absorption is not at all sensitive to the substituent.

Whiffen records a substituent-sensitive vibration of symmetry \mathbb{A}_1 to occur between 520 and 266 cm⁻¹ in the infrared spectra of the halobenzenes (vibration 't'). Following these assignments the corresponding vibrations may be identified in the spectra of the other phenyl derivatives as shown in Table 2. For the lighter elements both the 't' and 'y' vibrations occur with frequencies near to 500 cm⁻¹. In the spectra of the halobenzenes the intensity of the 't' vibration is much less than that of the 'y' vibration and hence the assignments have been made on the basis of intensity. This assignment gives an unexpectedly high frequency for the 't' vibration (observed at 562 cm⁻¹) in diphenyl oxide and this may be associated with the interaction between the lone pair of electrons on the oxygen atom and the π' -electron system of the phenyl rings 162-164,166,167. In the case of triphenylamine there is also a strong interaction between the lone pair of electrons on the nitrogen atom and the π -electron systems of the phenyl groups but the position of band (at 512 cm^{-1}) is as expected for other compounds.

The assignment of other bands observed in the infrared spectra is quite straightforward and has been made on the basis of comparison with the spectra and assignments of the halobenzenes. Whiffen's 'y' band occurs between 500 and

437 cm⁻¹ and is from a B₂ class vibration. This band is often split and the spread of values follows closely the graph of Harrah et.al.²⁸. Whiffen's 'u' vibration of class B_{η} occurs between 430 and 200 cm^{-1} . The band is often split and broadened and could not always be identified in the spectra of derivatives of the heavier elements. Whiffen's 'x' vibration of class B2 was observed for the carbon, nitrogen, oxygen and fluorine derivatives at 240, 241, 244 and 243 ${\rm cm}^{-1}$ respectively. The absorption at 241 cm⁻¹ in the case of triphenylamine is of exceptionally strong intensity as compared to those of other compounds. The anomolous behaviour of triphenylamine may be explained on the basis of a strong interaction between the lone pair of electrons on nitrogen and M'-electrons of the phenyl groups. Chlorobenzene and bromobenzene were found to show 'x' vibrations at 196 and 181 cm⁻¹ as Raman active bands. Thus by comparison with the results from Raman spectroscopy, this vibration would be expected to occur below 200 cm⁻¹ for the phenyl derivatives of heavier elements.

In most cases, the infrared bands show the marked splitting which has also been observed by previous workers. The splitting of bands occur in the spectra of solid derivatives and it is concluded that it arises from the orystal effects, either the situation of the molecules on lattice sites of low symmetry or interaction of the molecules in the unit cell. Apart from the strong bands that have been identified as originating from fundamental vibrations, each spectrum contained a number of minor peaks, that appear to be derived from combination modes. No assignments have been attempted for these bands.

EXPERIMENTAL.

Most of the compounds were obtained from commercial courses and were recrystallised or redistilled before study. <u>Fluorobenzene ($C_{6}H_{5}F$)</u> was obtained by thermal decomposition of bonzone diazonium fluoroborate which was prepared according to the method of Nuttall and Sharp¹⁶⁸.

15 g. of freshly distilled aniline was dissolved in 15 ml. concentrated sulphuric acid. The solution was cooled by ice and a slurry was obtained. A solution of 11 g. sodium nitrite in 50 ml. water was added to the above slurry with continueous stirring. To avoid diazo-amine coupling the reaction flask was cooled to $O^{\circ}C$ and cracked ice was added to the slurry. After diazotization, the amine went into solution. The fluoroborate was obtained by adding the diazotised solution, in sulphuric acid, to 40% aqueous fluoroboric acid. The fluoroborate was precipitated and was filtered and dried. The fluoroborate was decomposed by heating it in a glass tube fitted with a U trep. Elurobenzene, formed as a decomposition product of the fluoroborate, was collected in the trap cooled by solid carbon dioxide and acctone mixture. Fluorobonzone was further purified by distillation under vacuum. Tetraphonylmethane, (PhaC) was prepared according to the mothod of Comberg and Cone¹⁶⁹ by reacting phenylmagnesium bromide with triphenylchloromethane. The reaction product was a mixture of triphenylmethene, triphenylcarbinol, triphenylmethyl peroxide and tetraphenylmethane. The first

113

two compounds are soluble in other while the peroxide and tetraphenylmethane separated out as insoluble products. The crystalline product was filtered off and tetraphenylmethane was extracted with benzene. The yield of the producobtained was as low as 5% because of the side reactions and also the steric factors involved in the preparation of this compound.

Found	m.p.	282-284°C.
Lit.	m.p.	285°C。

Analysis

	P(ound	Theory for	Ph_4^{0}
C	12	92.95	9375	
H		6.42	6.25	

Tetraphenylgermane (Ph₄Ge) was kindly donated by Organisch Chemisch Institut T.N.O., Utrecht, Holland. The compound was recrystallised from benzene before use.

> Found m.p. 233°C Lit. m.p. 233.4°C.

Tetraphenylsilane (Ph₄Si) was kindly donated by Nobel Division of Imperial Chemical Industries Ltd. The compound was recrystallised from benzene and dried <u>in vacuo</u>.

Found	m。p。	235-236 [°] C
113	mop.	235-237 0

Analysis

)	Poi	und	Calc. for	Ph.S:
C	82	85.01	85.65	4.
Ħ	5	6.16	5.95	

The far infrared measurements were carried out as described

in Chapter I.

CHAPTER IV

SPECTROSCOPIC STUDIES ON TRIARVL CARBONIUM ION COMPOUNDS AND THEIR COMPLEXES

A. General Introduction

The existence of triarylcarbonium ions in solution as well as in solid salts is at present a firmly established fact. One method⁴⁰ of preparing such compounds is through the reaction:

where X is an anion of a very strong acid. The factors which influence the ionisation of an Ar₃CX entity are as follows. The process is

$$\operatorname{Ar}_{3} \operatorname{Cax} \longrightarrow \operatorname{Ar}_{3} \operatorname{C}^{*} * \operatorname{K}^{*}$$

The reaction will be favoured if the C-X bond is weak. Thus ionisation will occur more readily in iodides (C-T bond strength 57.4 k.cals) than in fluorides (C-F bond strength 105.4 k.cals). Pauling⁹⁶(a). The value of the C-X bond strength is greatly dependent¹⁷⁰ upon the presence of electron attracting or electron repelling groups subsituted into the aryl rings. Hence the ionic or covalent nature of the Ar₃CX molecule will depend upon the substituents present in the ring system. The effect of substituents is also allied to the stability of the triarylcarbonium ions; in general, electron releasing substituents, e.g. slk_2 N groups, tend to stabilise the carbonium ions as in the case of triphenylcarbonium ion dyestuffs. The presence of an electron withdrawing substituent is expected to stabilise

the covalent model. The anion will also effect the ionisation of the Ar_RCK molecule through its basicity. Anions derived from strong acids will favour the ionisation whereas anions from weak acids will favour a more covalent structure. The final decision as to whether triphenylmethyl derivatives are covalent or ionic is a balance of all the factors discussed Triphenylchloromethane is covalent but on successive above. substitutions of electron-releasing p-methoxy groups in the rings, the compound becomes ionic on the substitution of the fourth methoxy group (Lund¹⁷¹). Tri-p-methoxy phenylchloromethano is covalent but if the basicity of the anion is slightly decreased by the formation of HCl2 ion, an ionic derivative is formed¹⁷², The present work was designed to provide further evidence on the actual factors which determine the boundry between ionic and covalent compounds.

<u>Structure of triarylearbonium ion</u>: - Organic compounds with a four co-ordinate carbon atom have the tetrahedral arrangement of valencies associated with sp³ hybridisation. Carbonium ions can be regarded as derivatives of a carbon atom which has given up one of the valency electrons and the remaining electrons are present as hybrids of the sp² type with a planar trigonal disposition of the bonds attached to the 'central' carbon atom. The most stable carbonium ions are obtained where the π -orbitals of the organic groups attached to the 'central' carbon atom form an overlap with the vacant p-orbital on the carbon atom. Examples of such ions with an increasing order of stability are $(CH_2 = CH = CH_2)^+ < PhCH_2^+ < Ph_2CH^+$ and $< Ph_3C^+$ (Bethell and Gold¹³⁸).

The triarylcarbonium ions can be visualised to exist in a number of resonance forms in which the "central" carbon atom becomes doubly bonded.

The mesomeric stabilisation of a conjugated system is most effected when all the π -bonds lie in the same plane (Dewar¹⁷³). All of the benzene rings are, therefore, required to be coplanar in order to get the maximum resonance stabilisation. The molecular orbital approximation makes the same prediction (Leffler^{17b}). The vacant p-orbital of the 'central' carbon atom is perpendicular to the plane of the the three sp² bonding orbitals and all the benzene rings have to be coplanar if the 'central' p-orbital is to overlap' to the maximum extent with the π -orbitals of the adjacent rings. Calculations based on known bond lengths and Vand Der Waal radii indicate that in a planar configuration of the triphenylcarbonium ion, steric interference would occur between the ortho-hydrogen atoms on adjacent phenyl groups. The structure of crystal violet cation is shown below.

III

The atomic distances are approximately to scale. Because of the steric interference of the ortho-hydrogens, Lewis, Magel and Lipkin¹⁷⁵ proposed a structure in which each of the benzene ring is twisted out of the plane which contains the three bonds to the 'central' corbon atom. Deno, Jaruzelski and Schrieshein¹⁷⁶ have estimated the angle of twist required by this model as high as about 50° . It is possible that the ion exists in two isomeric forms, one corresponding to a symmetrical propeller and the other to a propeller in which one of the benzene rings has been tilted the wrong Such isomerism was predicted by Lewis, Magel and way. Lipkin¹⁷⁵ who interpreted the absorption spectrum of crystal violet ion in terms of these two structures. It was found¹⁷⁷ however, that there was no evidence for such isomerism in the spectrum of triphenylmethyl free radical. The infrared studies (Sharp and Sheppard⁴⁰) of crystalline triphenylcarbonium complexes have provided a strong support for a propeller-like structure of Ph₃C⁺ ion. The authors have

ruled out the unsymmetrical structure of the cation and the confirmed picture of the triphonylmothyl carbonium ion is chown in Structure IV in which all the three phonyl groups are twisted in a symmetrical fashion.

150

Simple molecular orbital calculations on the γ -electron energies of triphenylcarbonium ion have demonstrated ¹⁷⁸ that the resonance involves all rings and twisting of the rings does not reduce the resonance energy to a large extent. The above conclusion is also consistent with the ionisation measurements of compounds of the type shown in Structure V. in which two of the phenyl groups are constrained to approximate coplanarity (Bartlett¹⁷⁹) and in which the resonance energy of the carbonium ion could be higher than in a propeller shaped ion.

V

The present work includes a study of three carbonium ion dyestuff compounds.

Malachite green, phenyl bis-p-N-dimethylaminophenylmethyl; Brilliant green, phenyl bis-p-N-ethylaminophenylmethyl;

Crystal violet, tris-p-N-dimethylaminophenylmethyl. These dyestuffs are normally obtained in the form of their chlorides which are highly coloured and contain triphenylcarbonium ions. The crystal violet cation is symmetrical in shape (See structure III) while the malachite green and brillMant green cations are unsymmetrical and are shown below.

lCL

B. Spectral investigations on triarylcarbonium ion dyestuffs and their complexes in aqueous solution.

The relationship between colour and constituion of triphenylmethyl carbonium ion dyes has been discussed by various workers^{175,180-182}. According to Lewis and Calvin¹⁸¹, the absorption spectrum of a substance with a planar or almost planar molecule should consist of bands corresponding to electronic oscillations along three perpendicular axes of the molecule. The shorter the axis, the shorter the wavelength of its absorption. This suggestion was supported by Lewis and Bigeleisen¹⁸³ by studies on several basic dyes. In the ion of crystal violet (Structure III) which has a centre of symmetry, polarizability is the same in all directions of the plane, so that the 'x' and 'y' bands coincide and only one absorption band is observed at λ_{\max} 598 m. m. in the visible region. No band is observed for the "z" axis. On the other hand, malachite green and brilliant green cations (structures VI and VII) are unsymmetrical and there are two well defined bands in the visible region at λ_{\max} 430, 620 m. and λ_{\max} 433, 628 m. u. respectively. If it is assumed that the major band in the crystal violet cation is due to an electronic oscillation in one direction, it may be stated that roughly $\frac{2}{3}$ of the positive charge will be available for the uniaxial oscillation, while greater charge will be available for the corresponding oscillations in the malachite green and brilliant green cations. This explains the absorption spectra of triphenylcarbonium

dyestuffs in general.

The major absorption bands in the spectra of these dyes show remarkable changes with the changes in concentration or temperature. This has been explained¹⁸⁴⁻¹⁸⁷ on the basis of aggregation of the dye cations in solution. In the visible spectra of these salt-like dyestuffs, the major band is associated with a shoulder which has been attributed to the presence of associated aggregates. Schubert and Levine¹⁸⁵ have polstulated a qualitative theory of metachromacy and the dye solutions are suggested to be a set of equilibria of several cationic species, e.g.

 $D^{+} \Longrightarrow D_{2}^{+++} \Longrightarrow D_{3}^{++++} \longrightarrow etc.$

The proportions of different polymeric forms depend upon the dye concentration. However, the monomeric species is predominantly present in dilute solutions and with the increase of concentration, the dimeric species is formed. It has been suggested that the dye cations are packed face-to-face with a layer of water molecules between each pair. This phenomenon of aggregation of the dye cations has recently been shown¹⁸⁸ to exist even in solvents of low polarity.

The nature of forces that are responsible for the association of the charged dye cations of the same sign has not been finally elucidated. According to some authors 184,189, the association is brought about by forces of Van Der Waals type while other workers^{190,191} consider that hydrogen bonding brings about the aggregation. It seems more likely, however, that polymerisation involves the T -electrons of the combining dye cations, imposing constraints such that the energy difference between the ground state and the first excited state is successively greater for the dimeric species and for each polymeric form. The heteropoly acids of tungsten and molybdenum form complexes with the dyes and the spectra are changed and it appears that aggregation or another process producing a similar electronic effect has become much more important in the dyestuff salts of the heteropoly acids. The following heteropoly acid anions were used in the present work: $\left[PM_{12}O_{40}\right]^{3-}$, $\left[PW_{12}O_{40}\right]^{3-}$, $\left[S1W_{12}O_{40}\right]^{4-}$, $\left[FeW_{12}O_{40}\right]^{5-}$ and [ZnW12040]⁶⁻. The octahedral groups MoO6 or WO6 are linked together by sharing oxygen atoms to form a polyhedral closed basket like structure¹⁹² and the four triply shared oxygen atoms are placed at the corners of a central tetrahedron. The hetero atom sits in the centre of this tetrahedron in the heteropoly lons.

Attempts to study the stoichiometry of the dye-heteropoly acid complexes were made spectrophotometrically in dilute solutions using Job's method of continueous variations. The complexes precipitated out when the dyestuff and the acid were mixed in proportions of the charges of the heteropoly acid anions and the dye cation.

The solution spectra of the dyestuff-heteropoly acid complexes are almost of the same pattern as those of the

dyes in concentrated solutions. The absorption peaks are much broader and are of much lower intensity as compared with those of the parent dyestuff solutions. The details of the solution spectre of these dyes and their comploxes are shown in Table I. One significant feature of the spectra of crystal violet complexes is the shift of the major peak from the phosphomolybdate complex to the tungstozincate complex i.e. the greater the charge on the counter anion, the shorter the wavelength and the greater the energy difference between the ground and first excited level. The spectra of crystalviolet-heteropolyacid complexes are shown in Figure I. Since, the heteropoly anions are of large size and carry negative charges (-3 to -6), it seems likely that the dyestuff cations will tend to lie along the surface of the anions. Thus a progressive increase in charge density on the surface of the axion will have an increased effect on the M-bonding system of the dyestuff cations which would result in the progressive shifting of \geq_{max} absorption. Such shifts are not observed in the spectra of malachite green and brilliant green complexes. Most probably these shifts may be masked, as the absorption peaks are diffuse and much broader in shape.

Spactra of	the dyes and their o	omplexes in aqueous solutions (4	$(\pi \pi 001 - 00$
Dyestrif?	Malachite greed	Brilliant groon	Crystal violet
chlorida dilute solution	430°575sh.620	433 ° 580an ° 628	560eh, <u>598</u>
ohloride cono e solutiom	430 <u>,600</u> ,630eh	430 ° 600 ° 640sh	5 <u>50</u> ,600sh
Fluoroborate dilute aclution	425°5758N° <u>620</u>	\$33 \$580eh \$ <u>530</u>	570sh.620
Fluoroborata cone a solution	425 <u>, 200</u> 9630sh	complex precipitates out	D
Fros promoly dia to	440,5 <u>90</u> ,640°h	440 <u>605</u> 6405h	<u>560</u> ,630ah
Phos photungs to to	435°590°640sh	440 <u>,605</u> ,640sh	<u>330</u> ,610en
silieo tudgatato	440 <u>,585</u> ,640sh	440 <u>,605</u> ,640ah	3 <u>7</u> 2 "620eh
Tungs toferrate	440, <u>522</u> ,610sh	440 <u>, 605</u> , 645 ch	335 °620an
Tungstozincete	440°535° =	440 <u>,605</u> ,645ah	<u>520</u> ,620sh

Tadle I

Major peaks are underlined.

LCU

-

Fig. 1. Absorption spectra of Crystal violet-heteropoly acid Complexes in aqueous solutions.

Experimental

<u>Purification of dyestuffs</u>:- The dyes were obtained from commercial sources and were recrystallised three times from $\frac{7}{2}$ v/v ethanol-water mixture; after two recrystallisations the apparent molar extinction coefficients did not increase, and this was taken to indicate complete removal of impurities. <u>Heteropolyacids</u>:- Phosphomolybdic acid, phosphotungstic acid and silico tungstic acid were obtained as commercial products in a pure form and tungstofermic acid and tungstozincic acid were prepared by Dr. D.H. Brown. The latter two acids were recrystallised from water before use.

<u>Spectrophotometric measurements</u> were carried out using an Optica or Hilger spectrophotometer. The solutions were made in distilled water. The spectra of the dyes were recorded in different known concentrations and the spectra of the dyestuff derivatives were obtained by mixing 3 ml 10⁻⁴M dye solution with 9 ml or excess of 10⁻⁴M KBF₄ or heteropoly acid solution. For Job's plot determinations, mixtures were made with variable compositions and pH was adjusted to be the same for each composition.

C. Solid carbonium ion salts of dyestuff compounds.

When concentrated solutions of the dyestuffs are mixed with concentrated solutions of sodium or potessium fluoroborate, perchlorate or heteropoly acids, sparingly soluble salts of the dyestuff cations separate out. A series of insoluble salts of malachite green, brilliant green and crystal violet have been prepared with anions of different charges. The stoichiometry of the dyestuff complexes precipitated from aqueous solutions was determined by analysis. The details of the analysis of these products are given in Table 3. The composition of the heteropoly acid complexes does not correspond to that of the complexes studied in dilute solutions. The stoichiometry of the solid complexes seems to depend on the size and charge of the heteropoly anions. Some water of crystallisation has always been found associated with these compounds. The solid derivatives are sparingly soluble in acetone and contain the parent dyestuff cations as determined by spectroscopic measurements of these solutions. The reflectance spectra of the solid derivatives are recorded in the visible region (400 - 700mu)

The spectra of the fluoroborates and perchlorate are similar to t ose of the parent dyestuffs. In heteropoly acid complexes the absorption peaks are broader and it is often difficult to discriminate between the major peak and the shoulder. The spectra seem to be determined by the stoichiometry. From Table 3, it can be seen that the Teble 2

<u>Reflectance Spectra 400 - 700 m µ 。</u>

.

Strongest peaks are underlined

Dyestuir	Malachite green	Brilliant green	Crystal violet
Chloride ⁻¹	430, <u>500</u> ,650sh	430 »585en <u>•635</u>	600
Fluoroborate ⁼¹	430,580sh, <u>640</u>	440,590sh, <u>640</u>	620
Perchlorate ⁻¹	433°600sh. <u>635</u>	435 °600sh <u>,640</u>	<u>600</u> ,660sh
Phosphemolybdate ^{_8}	440,590sh. <u>630</u>	460 ° 500sh , <u>640</u>	432 <u>600</u> 655eh
Fnosphotungs ta te ^{-s}	440,590sh. <u>640</u>	445°590sh° <u>645</u>	595 bread
S111cotungstate ^{®®}	440,590sh <u>640</u>	445°605ah, <u>638</u>	440°6152h° <u>660</u>
Tungstoferrete	440,585sh, <u>640</u>	440,610sh <u>,645</u>	<u>600</u> broad
Tunga tozinca te ^{= \$}	440,590ah, <u>640</u>	445 °590sh <u>643</u>	610 broad

130

heteropoly acid complexes do not conform to a uniform pattern of composition. In the case of phosphomolybdates all three dyestuffs form 3:1 complexes and the reflectance spectra resemble those of the parent dyes and their fluoroborates or perchlorates, where complexes are formed with different compositions, some spectral changes are recorded (See Table 2).

The infrared spectra of all the dyestuff derivatives show a very close resemblance to the spectra of the parent dyestuffs, the spectra being characteristic of the dye cations. Thus the ionic nature of these compounds has been demonstrated. The details of the spectra are given below and the bands originating from the anions are written within brackets.

Experimental

The compounds were prepared by mixing the concentrated solutions of the dyestuffs and the complexing agents in aqueous solution. On mixing the two solutions, highly coloured products separated out, and these were filtered and dried under vacuum.

<u>Reflectance spectra</u> were recorded on a Hilger spectrophotometer fitted with a reflectance attachment. The compounds were diluted by grinding them with anhydrous magnesium oxide or potassium chloride.

Estimation of non-volatile components A known weight of the complex was ignited in a weighed crucible. The residue

131

again. The phosphomolybdates were decomposed at 500-550°C in a mulfle furnace.

The infrared spectra were recorded in Nujol and hexachlorobutadiene mulls using a Grubb Parsons spectrophotometer.

:

;

20	M	. 6° = 113.	<u>Complexes</u> Lachite Gre	<u>Precipi</u> t	ated Fr = Bril	om Aquec liant Gr	ue Solu reen Co	<u>tion</u> V. = Crye	tal Violes
Comp	ex	Non-vol. Gømpo: Found%	atile neni Theory%	Found Cz	E	Theo1 C%	ALL ALL	Oharge on Anion	Stoichiometry Dye : Anion
MoGo	Fluoroborate			65°29	6.32	66.37	6 °01	~ 1	لیسی 00 ایسیا
B.G.	Fluoroborate			65 .୧୬	6°69	65°69	6° 79	r=1	(77) 00 1971
ດູ້	Fluoroborate			62,38	7°09	62°92	6. 7	r-1	ୁଅ ୧୦ ୁେ
พ. С .	Perchlorate			64°93	6 。014	64°30	5 °83	r=1	പ്പം ംം പ്പ
B°G°	Perchlorate			ଡ଼ୄ୵ୄ୳ୄ୵	6.85	65°65	6°88	ы	60 80 1722]
C.V.	Perchlorate			62°74	6°29	62.43	୦ ମ୍ୟୁ	e~1	60 [편]
ы, До	Phosphomolybdate	56.11	56.10	21,36	2°24	21.16	2:37	ŝ	بستا ٥٠ ۲۷
B,G,	Phosphomolybdate	6t°59	64.38	23°54	3.03	24.13	2.86	ŝ	بی ۲
CoV,	Phosphomolydate	67°9h	67.92	22°96	2°74	22°89	2°52	m	2.7
MoGo	Phosphotungstate	69°23	69°31	18,21	2.01	13.67	у М	. M	
B° G °	Phosphotungstate	70°35	69°00	21 °29	2°7]	21.13	2°46	ന	
CoV.	Phosphotungstate	69°00	69°05	2lt.66	2° 89	22。33	2°33	6 ~)	, c. L s
N.G.	Tungstos111cate	74.07	73.60	20.20	8 2	20.12	ດ ເກິ	<u>.</u>	J.°L
B °G °	Tungstosil icate	73°09	72 °59	20°51	ທູ ກິ	21°77	ଌୢୢ୵ଡ଼	ŧ	ም የ ን
°Λ°Ο	Tungstosilicate	76°49	76.60	13° 35	N. 23	14.32	2°95	4	2:1
Sec se	Tungstoferrate Tungstoferrate Tungstoferrate Tungstozincate Tungstozincate	72.02 58.55 68.99 70.29 70.28	66896 6886 6986 6986 6986 6986 6986 698	21°22 29°22 22°32 22°32 22°32	นู่ และ เมื่อ เปล้ เม้ เปล้ เม้ เปล้ เม้ เปล้ เปล้ เปล้ เปล้ เมื่อ เมื่ เป เปล้ เป เ เม้ เป เป เป เป เป เป เป เป เป เป เ เ เ เ	22.02 22.02	๚๛๛๚๛ ๛๛๛๛๛ ๛๛๛๛๛	៷៷៷៰៰	പ്പപ്പപ്പം എപ്പപ്പം ഡെസ്സ്സ്സ്
C₀V₀	Tungstozincate	63°91	64.01	23。38	ନ ଜୁନ୍ତି ଜୁନ	24.62	м М	Q	r T S

Infrared spectra of malachite green and its derivatives :-

Absorptions due to traces of moisture

Compound	Absorption frequencies cm ² .
Dyestuff	3448 ^w , 1724 ^w , 1587 ^w , 1485 ^w , 1450 ^w ,
(Ohloride)	1380s, 1220w, 1170m, 940m, 900w, 830w,
	750w, 725s, 700w.
Pluorobozate	1616sh, 1585s, 1470w, 1440w, 1355s,
	1220w, $1170s$, $1055-1030b$ (BF _A), 940m,
	902w, 830w, 750w, 730s, 700w.
Perchlorate	1616sh, 1583s, 1475w, 1445w, 1360s,
	$1.220w$, $1.170s$, $1188b$ ($C10_{4}^{-}$), $943w$,
	905w, 835w, 750w, 725m, 699w.
Phosphomolybdate	1610sh, 1590m, 1470w, 1445w, 1365m,
	1170m, 1055m, 950m, 885bw, 800w,720m,
Sillcotungstate	3509 ^w , 1615sh, 1585w, 1440w, 1335s,
-	1330w, 1170s, 1010m, 968s, 920vs,
	880w, 795vs, 725m, 700w,
Phosphotungs tate	1610sh, 1580vs, 1471w, 1441w, 1366vs,
	1212w, 1168s, 1075s, 975s, 938w,
	893s, 812sb, 725m, 699w,

Infrared spectra of malachite green and its derivatives:-

⁶Absorptions due to traces of moisture.

Compound	Absorption frequencies cm ⁻¹
Forri tungstate	3448w, <u>1613sh, 1577s</u> , 1471w, 1441w,
	1364s, 1212w, 1165s, 950m, 877s, 770sb,
	725m,
2incitungstate	3430w, 2899w, 1610sh, 1577s, 1471w,
	1433w, 1361vs, 1215w, 1166m, 940m,
	877s, 752b, 725w.
Brilliant green an Compound	<u>d its derivatives</u> Absorption frequencies cm ⁻¹ .
Dyestuss	1620sh,1570s, 1430s, 1400s, 1352s,
chloride	1265s, 1180s, 1150s, 1065m, 996m, 920m,
	885m, 840s, 798w, 765w, 750w, 700s,
Fluorob Prate	1590sh, 1570s, 1476m, 1400w, 1350m,
	1260m, 1212w, 1186s, 1150s, 1065-1025b
	(BF ₄), 990m, 960w, 920m, 885m, 840m,
	826w, 798m, 765w, 750w, 700s,

Brillient green and its derivatives

يتقيدك كافار كالنستيلة والاستشارة الحرك بحاسب

Componnd	Absorption frequencies cm ² .
Porchlorato	1587s, 1480w, 1370s, 1351m, 1275m,
	(C10), $1000w$, $935w$, $909w$, $890w$, $840w$,
	800w, 725w,
Phosphomolybdate	3448 ^w , 1615w, 1563m, 1460m, 1408w,
	1389w, 1337m, 1266w, 1220m, 1180m,
	1150m, 1050s, 954s, 872m, 798s, 715w,
Phosphotungstate	1709w, 1618w, 1585va, 1449w, 1412s,
	1389m, 1342s, 1269s, 1220w, 1190vs,
	1163s, 1082vs, 980vs, 900s, 820b, 750 w,
	715m, 704w,
Silicotungstate	3520 [°] , 3020 [°] , 1600w, 1560m, 1430w,
	1400w, 1372w, 1330m, 1255w, 1205w,
	1178m, 1150w, 1065w, 1005m, 965s,
	915vg , 885w, 795b,
Ferri tungstete	3448 [#] , 3030w, 2703w, 1613m, 1610s,
	1471w, 1429m, 1390w, 1350m, 1282m,
	1220w, 1190s, 1155s, 1075m, 1010m,
	952vs, 877vs, 770b, 720w,

Brilliant green and its derivatives

Contraction of the second second second

Compound	Absorption frequencies cm ⁻¹ .
Zinci tungstate	3 44 8 ^{¹/₀ 2994w, 1613w, 1587s, 1449w,}
	1408w, 1389w, 1342w, 1275w, 1220w,
	1190m, 1150m, 1075w, 1015w, 943s,
	877s, 758b, 704w,
Crystal violet and its	derivatives
Compound	Absorption frequencies cm ⁻¹ .
Dyesturr	1577m, 1470w, 1351m, 1273w, 1219w,
(chloride)	1162m, 1000b, 938m, 909w, 830w, 719m,
	695w,
Fluoroborate	1587s, 1485w, 1362s, 1278w, 1221w,
	1169s, 1052b (BF ₄), 938m, 909m, 833m,
	757w, 740w, 719m, 695w.
Perchlorata	2865w, 1582s, 1471w, 1355s, 1290w,
	1220w, 1176m, 1087m, 940w, 908w, 833w,
	719`。
Crystal violet and its derivatives

Compound	Absorption frequencies cm ⁻¹ .
Rhosphom olybd ato	3448 [‡] , 1585m, 1470w, 1351m, 1220w, 1173m, 1062m, 956s, 881m, 787b, 721w,
anteresti a	2899w, 1695w, 1536vs, 1506w, 1471m, 1344vs, 1282s, 1220w, 1156vs, 1070m, 971s, 935m, 890s, 826s, 806vs, 741w, 719s,
silicotungetate	3440w, 1612w, 1579m, 1470w, 1370m, 1220w, 1165m, 1010m, 917s, 881sh, 806-790b, 720w,
Ferri tungstate	2940w, 1695w, 1587vs, 1470w, 1360s, 1290w, 1220w, 1175s, 1060w, 943s, 910m, 870s, 830w, 794s, 740w, 719m,
Zinci tungstate	1700w, 1563vs, 1515w, 1471w, 1351s, 1282m, 1220w, 1163vs, 940m, 909w, 877m 830w, 793m, 755b, 719m,

D. <u>Preparation of some covalent derivatives of carbonium</u> ion dyestuffs.

It has already been mentioned at the beginning of this chapter, that the nature of triphenylmethyl derivatives depends upon the substituents in the phenyl groups and the basicity of the anions. Triphenylmethyl chloride is a colourless compound and is covalent, while the triphenylmethyl dyestuff chlorides are ionic because of the electronreleasing N-alkyl substituents. The dyestuff derivatives (as described in section C) of the heteropoly acid anions and other anions derived from strong acids, have b en shown to be salt-like compounds and contain tri henylmethyl cations. The anions of weaker acids have a tendency to form covalent compounds. According to Leffler¹⁷⁴, the order of ionic character for a given carbonium ion is as follows:

hydroxide, alkoxide, and carboxylate <_ cyanide <<

tiocyanate < ferrocy-nide < azide < chloride <

bromide <sulphate and perchlorate. According to the kinetic and equilibrium studies of Cigen et.al.¹⁹³⁻¹⁹⁵ the carbonium ion dyestuff cations are represented by a set of equilibria between colourless and coloured forms. The addition of an appropriate anion may change the equilibrium towards colourless or coloured species. For example, an aqueous solution of malachite green is rapidly decolourised when it is mixed with a borate solution. The decolourisation of the dye solution is due to the complex formation, and the

triphemylmethyl cation is changed into a covalent structure. Crystal violet and malachite green derivatives with cyanide, borate and sulphide anions have been reported¹⁷⁵ to be covalent in character and to contain pyramidal structures. From the above examples, it was proposed to prepare a series of covalent derivatives with anions of weaker acids and to confirm their structure by comparing their infrared spectra with these of the leuce bases of the carbonium ion dyestuffs. These are covalent compounds having a true tetrahedral arrangement of phenyl groups about the "central" carbon etom.

Cyanides, cyanate, thiocyanate, azide, metaborate, and sulphide derivatives were prepared and their infrared spectra sxamined.

The Infrared anegtra of all these dyestuff derivatives with anions of weak acids show close resemblance to the spectra of the leuco bases of these dyestuffs. The compounds particularly resembled at ea 2900 and 2800 cm⁻¹ and the observed bands are from C-M vibrations of the N-alkyl groups. From infrared evidence, it is concluded that the derivatives are covalent with a totrehedral arrangement about the "centrel" carbon atom. The dotails of infrared data are given as follows.

1

Details of infrared spectra

M.G. = Malachite green.

B.C. - Brilliant green.

C.V. = Crystal violet.

a = Absorptions due to moisture.

Split peaks are underlined.

M.G. Leuco base: - 28758, 27958, 1880w, 1610vs, 1515vs,

1473w, 1443m, 1345vs, 1295w, 1250w, 1220s, 1200w,

1185w, 1165w, 1125w, 1058m, 1025w, 945s, 860w, 820w, 814vs, 780w, 758w, 740m, 715m, 700s.

<u>M.G. cvanide</u>:- <u>2875s, 2795s</u>, 2245w(C-N str.), 1890w, 1610vs, 1560w, 1515vs, 1485m, 1445s, 1351vs, 1325sh, 1299w, 1220m, 1205m, 1179w, 1165m, 1124w, 1058m, 1029w, 945s, 895w, 814vs, 764m, 758m, 740s, 725w, 699vs.

<u>M.G. eyanate:</u> 3448¹, <u>2865m</u>, <u>2793m</u>, <u>1606s</u>, <u>1575s</u>, 1515s, 1472w, 1445m, 1350s, 1215w, <u>1162m</u>, <u>1124sh</u>, 1055w, 1010w, 942w, **812s**, 763m, 720m, 697m.

<u>M.G. thiocyanate</u>: - 3280[†], <u>2890s, 2793s</u>, 2273w, 1895w, <u>1610s, 1580sh</u>, 1514s, 1473w, 1445s, 1350vs, 1215-1225m, 1056m, 1015w, 1010w, 985w, 943m, 812vs, 762s, 735m, 721m, 695s.

<u>M.G. ezides-</u> <u>2880m, 2793m</u>, 1905w, <u>1610s, 1582s</u>, 1513s, 1475w, 1445m, 1350s, <u>1215w</u>, <u>1163s</u>, <u>1125w</u>, 1053w, 1010w, 943m, 813s, 763m, <u>738sh</u>, <u>723m</u>, 698m,

<u>M.G. metaborato:</u> <u>2865m, 2793m</u>, 2041w, 1953w, <u>1600s</u>, <u>1575sh</u>, 1513vs, 1475w, 1440m, 1350s, 1312w, 1466m, 1225s, 1125, 1005s, 971m, 943m, 930w, 913w, 810s, 790w, 763w, 731m, 719w, 694m. <u>M.G. sulphide</u>: - 3390[%], <u>2872m, 2793m, 1600s, 1575s</u>, 1511s, 1470w, 1439m, <u>1351s, 1214w, 1043s, 1121w</u>, 1053w, 1030w, 940s, 900w; 812m, 797m, 761w, 748w, 722m, 697m.

<u>B.G. leugo base</u>:- <u>2905s.</u> 2825m, 1916w, 1610vs, 1563w, 1513vs, 1485s, 1460w, 1435w, 1389m, 1355m, 1340m, 1266s, 1194m, 1155w, 1428w, 1384m, 1352w, 1336w, 1263m, 1193w, 1154m, 1080m, 1010w, 816m, 759m, 725m, 699m.

<u>B.G. cyanide:</u> 2900vs, 2820s, 2240w (C-N str.), 1850w, 1615vs, 1565w, 1520vs, 1490vs, 1450w, 1425m, 1380s, 1350m, 1335m, 1260s, 1192m, 1154m, 1078m, 1010w, 980w, 815s, 759m 724m, 700m.

<u>C.V. leucobase</u>:- <u>2905s, 2793m</u>, 1595m, 1515s, 1473w, 1441w, 1345s, 1280w, 1220m, 1220w, 1160m, 1090w, 1054w, 1018w, 965w, 935w, 812m, 699m.

<u>C.V. cyanide</u>: - 2898s, 2793m, 2260w (C-N str.), 1590m, 1508s, 1474w, 1445w, 1351s, 1282w, 1225w, 1204w, 1156m, 1092w, 1055w, 1020w, 963w, 938w, 809m, 715m.

Experimental

Preparation of leuco bases.

<u>Malachite green leuco base</u> $C_{6}H_{5}CH(C_{6}H_{4}NMe_{2})_{2}$, was obtained according to the method of Gatterman¹³⁷ by fusing together zino chloride, dimethylaniline and benzaldehyde on a water bath. The leuco base was crystallised from alcohol. <u>Brilliant green leuco base</u> $C_{6}H_{5}CH(C_{6}H_{4}NEt_{2})_{2}$, was prepared by a procedure similar to that described for the preparation of malachite green leuco base. The proportional amounts of diethylamine and benzaldehyde were reacted at 100°C in the presence of 2nCl₂ or conc. HCl. The product was recrystallised from alcohol.

Crystal violet leuco-base, CH(C6HANMe2)3.

(Gattermann and Schnitzspahn¹⁹⁷). Sesquichlorohydrate of hydrocyanic acid (2HCN+3HCl) was obtained by passing dry HCl gas through hydrogen cyanide cooled at -15 C. HCN was prepared by reacting sodium cyanide with conc. sulphuric acid. On reacting with HCl, a crystalline product was separated out and was dried, and was heated with dimethylaniline at 120-130°C. The product was crystallised from aqueous alcohol.

<u>Preparation of dyestuff derivatives</u>:- The carbonium ion dyestuffs were dissolved in water and mixed with sodium or potassium salts of anions of the weakly basic acids. On mixing the two solutions almost colourless products were separated out, and these were filtered off and dried under vacuum. In a few cases gummy materials were obtained and it was found difficult to obtain these products in colourless and srystalline forms. The cyanide derivatives were obtained in colourless forms by repeated recrystallisations as described by Calvert and Rechen¹⁹⁶. The C and H analyses are shown in the following table.

<u>Teble 4</u>

,

.

Analysis results

.

Comp	ound	Found		Calcula	ated	Dye cation/ anion
		сŢ	HZ	С%	Н %	
M.G.	leuco base	84.49	7.46	83.64	6.66	
M.G.	eyanide	81.28	6.82	81.13	7.04	1 %].
n.G.	cyanato	(77.35 78.61 77.10	6.71 8.97 6.90	76.88	6.96	<u>ل</u> ر ۵ ا
N.C.	metaborate	76.5	7.15	74.23	6.72	181
B.C.	cyanide	80.28	7.47	81.75	8.02	1:1
€.∀.	leuco base	77.19	9.32	76.72	8,50	
C.V.	cyanide	77.08	7.96	78.19	7.53	<u>l :)</u>

E. <u>Dvestuff complexés precipitated from concentrated</u> hydrochloric acid.

Malachite green, brilliant green and crystal violet give orange-red solutions in conc. HCl and it has been concluded 183,198 from ultraviolet and visible absorption spectra that carbonium dyestuffs are protonated in acid solutions. The changes in colour can be explained by successive protonation of the N-alkyl groups of the dye cations, this protonation ties down the lone pair of electrons on the nitrogen atoms. For example the crystal violet solution changes to green with the addition of a few drops of hydrochloric acid. The green colour is due to the protonation of one of the N-Me, groups and the cation becomes similar to malachite green cation (Structure VI). When protonated a second time the crystal violet cation becomes orange coloured. The successive protonation has tied down the lone pair of electrons on two nitrogen atoms giving a structure analogous to the malachite green cation and to the orange cation of formula.

VIII

Fusehsendimethylimmonium ion

An attempt was made to isolate complexes of these protonated dye cations. Such complexes are precipitated as orange-red products from conc. HCl solutions. In some cases, the colour of these compounds has been observed to change to brown and ultimately to dark green on keeping the dried complexes for a long time. We attribute these changes to loss of hydrogen chloride. The complexes are decomposed by moisture, acetone and alcohol.

Attempts to prepare protonated dye chlorides, by reacting the dyestuff with anhydrous HCl on a vacuum line, were not successful. The dyestuff partially dissolved in liquid hydrogen chloride giving an orange solution but on removal of excess of hydrogen chloride the starting dyestuff was obtained. The unstability of the protonated dyestuff chlorides is possibly because of the anion (HCl_2^-) being not of strongly acidic character. Two types of the dyestuff complexes were prepared in the course of the present work.

(1) Heteropoly acid complexes

(ii) Lewis acid complexes.

(i) Meteropoly acid complexes were obtained as orangered proclipitates by mixing the solutions of the dyestuffs and heteropoly acids in about 6N hydrochloric acid. The products gave a negligible test for chlorine. The determinations of non-volatile residue (See Table 7) in the

146

heteropoly acid complexes show that all of these compounds contain 2:1 ratio of protonated dye cation to heteropoly anion. However, as the products were rapidly decomposed by moisture, reliable carbon and hydrogen analysis could not be obtained to confirm the stoichiometric composition of these compounds.

<u>Reflectence spectas</u> The absorption spectra of carbonium ions in acid colutions has previously been studied by Lewis and Bigeleisen¹⁰³ and other workers¹⁸¹, ¹⁹⁹. The crystal violet ion absorbs at λ max. 590 m.u. in the visible region and on gradual addition of an acid the chief absorption (when one of the NMe₂ group is protonated) first moves towards the red(λ max. 630 m.u.) and then (when second NMe₂ is protonated) towards the violet part of the spectrum. In the presence of excess of acid, the carbonium ion dyestuffs show^{181,183} a broad absorption band at shorter wavelength. For example, doubly protonated crystal violet cation absorbs at 470 m.m. (of. structure VIII).

The reflectance spectra of the solid heteropoly acid complexes precipitated from concentrated hydrochloric acid are shown in Table 5.

(ii) <u>Lewis acid complexes</u>:- Triphenyl carbonium ion complexes of a series of complex halo-anions have been studied²⁰⁰ in aceto-nitrile solutions. New derivatives of malachite green, brilliant green and crystal violet have been found, in the present work, to be formed by reaction between the dyestuff chloride and Lewis acid in concentrated hydrochloric acid. Orange-yellow products were obtained with SnCl_A, SbCl₅, PbCl_A and FeCl₃. These compounds are almost insoluble in concentrated hydrochloric acid but are apparently soluble in the presence of excess of complex halo From the infrared and visible absorption spectra, scide. it is concluded that all these salts contain protonated dye cations, similar to the heteropoly acid complexes precipitated from concentrated hydrochloric acid, and complex haloanions of the type $SnCl_6^2$, $SbCl_6^2$, $PbCl_6^2$, $FeCl_4^2$. The complexes give a blue solution in acctone which is probably due to a reversible species formed due to partial solvation of the multicharged dye cations, as the evaporation of the solvent again gave yellow coloured products. Attempts were made to prepare the dyestuff salts with AlCl3, HgCl2, TiCl4 and ZrCl_A but no complex was precipitated out from acid solutions probably due to the more easily hydrolysable nature of the complex halo-anions.

<u>Reflectance spectras</u>. The reflectance spectra of the protonated dyo extion with the complex halo-anion are characteristic for protonated dyestuff cations. (cf. reflectance spectra of heteropolyacid complexes) The details of the spectra are given in Table 6.

148

Table 5 Ref	<u>lectance spec</u>	tra of hetero	poly acid complexes
prec	<u>ipitated</u> from	cone. HCl.	
Protonated	Malachite	Brilliant	Crystal
Dyestuff	Green	Green	violet
Silicotungstete	<u>4750</u> ,640	<u>470b</u> ,640	<u>475b</u> ,655
Porritungstate	<u>470b</u> , 645	<u>4750</u> ,645	<u>460b</u> ,660
Zincltungstate	<u>475b</u> , 640	<u>4756</u> ,640	<u>465b</u> ,655

Major peaks are underlined.

Table 6 Re	<u>flectance spect</u>	<u>a (400-700 m.)</u>	2 o)
Protonated	Malachite	Brilliant	Crystal
Dyestuff	Green	Green	violet
SnCl ₄ complex	<u>460b</u> , 640	<u>465b</u> ,645	<u>450b</u> ,645
SbCl ₅ complex	<u>480b</u> ,630	<u>4740</u> ,650	<u>490b</u> ,640
FeCl ₃ complex	440,620		

Infrared spectra of the complexes precipitated from concentrated hydrochloric acid.

The operate of the protonated dyestuff complexes with heteropoly and and complex haloanions are similar to the spectra of unprotonated carbonium ion dyestuffs except for mimor changes, due to protonation of the nitrogen atoms of the dyestuff cation. From the infrared evidence, it is concluded that protonation does not change the overall symmetry of the dye cations.

Experimental

Lead tetrachloride was prepared by dissolving lead dioxide in ice cold hydrochloric acid. The solution was filtered and used as such for further reactions. The yellow solution containing $PbCl_6^{-2}$ ions.

Other chemicals used were laboratory reagents and were used without any further purification. <u>Proparation of Complexes</u>:- The carbonium dyestuffs and hateropoly acids or the other metallic chlorides were dissolved in concentrated hydrochloric acid and the solutions were mixed after filtration. On mixing the two solutions, orange-yellow or orange-red products separated out and were filtered off and dried under vacuum. <u>Estimation of non-volatile components</u> was carried out by ignition as described in section C of this chapter. <u>Estimation of Chlorine</u>:- The dyestuff salts of complex hale-enions were decomposed by boiling with sodium hydroxide solution. The solution was filtered and chlorine was cartinet.

The earbon and hydrogen analyses and percentage of non-volatile components are given in Table 7 for the protonated dyestuff complexes with heteropoly acids. For

1

Dye Complexes:
Carbonium
Protonated
Results of
Anelyeis

.

fable 7

		Non-vola Combo	tile Tent					
ф А Д	onated dye complex	Nound S	Theory	Found	i 1976	Theory C%	7 126	Dye ; Anion
U M	Tungstosilicate	80 ° 62	80 ° k 1	15°02	6 1 1 1	۲ %	79° T	r 0
en Bo	<i>Pungatosilicate</i>	74. 524	74.63	18.43	2°08	17077	J 。86	ຕູ ເ
Nº C	1° 5	78°91	78 °51	13.08	1.72	16°55	J. 76	ц С
с. С.	Tungstoferrate	76.97	76.83	1.4° 21.	2°02	1 5.18	ມ ກັບ	-
ಲಿಂದಿ	٠. ٢	76 °03	76°02	2102	2°07	12,61	г. 6° г	еч «Ч
ŝ	8 B	78.08	78°05	17.48	80° 200° 200°	16°43	Ч К	гі N
M.G.	Tungstozinesto	78°94	LL. 67	т С	ч 0 1	17°98	1°97	Ň
ອ°ອ	۲. ج	74.01	716074	16°91	2,13	- 16.89	2°29	г (V
3° Å'	£ £	78°25	79 ° 84	J J .02	1。86	36°39	1. 74	Ň

the complex halo-anion complexes, the chlorine analysis was carried out immediately after preparing the complexes and the stoichiometrics derived from these results are given in Table 8.

<u>Infrared spectra</u> were recorded in Nujol and hexachlorobutadiene mulls.

Table 8

Protonated Dyestuff Complex	Found ClZ	Cale. Cly	Dyecationsanion
M.G. SDC1 ₅	40.98 40.38	40.55	7:5
B.G. SDC1 ₅	39.96 -39.40 38.52	38.32	1:2
G.V. SDGL ₅	43.63 43.73 40.65	43.51	i 8 3

٤

F. Preparation of some Lewis acid-dyestuff complexes.

en e 1 el

The phonomenon of the addition of Lewis acids (similar to Bronotod acids) to basic dyestuffs has been known since Mayor^{20]} showed that basic dyestuffs give the same 1008. absorption opectra when dissolved in concentrated sulphuric and or in a solution of stannic chloride in chloroform. In the first case Ht is added to the basic group of the gyestuff and in the second case a SnCl₄ molecule is added to the dyestuff. Later Lewis and Bigeleisen¹⁸³ studied the absorption spectra of methylene blue in a methyl cyanide solution of 0.1M stannic chloride and in 3M sulphuric acid. In both cases, the spectra were found to be the same. They attributed this similarity to the formation of $D_1(SnCl_d)^+$ and $D_{1}(H^{+})^{+}$ cations. The formation of $D_{1}(SnCl_{4})^{+}$ was not proven, as a slight hydrolysis of SnCl₄ will produce HCl and the observed spectra may be due to the formation of $D_{\eta}(H^{\psi})^{\psi}$ cations instead of $D_{\eta}(SnCl_{d})^{\psi}$ ions (cf. formation of $D_{\eta}(M^{\dagger})$ cations in cone. sulphuric acid). It was later found¹⁸³ that even if the greater part of stannic chloride had been converted into hydrochloric acid, there would not be chough of the latter to change D^+ into $D_{\gamma}(H^+)^+$, as it required as least IN hydrochloric acid in methyl cyanide solution to climinate the D^+ band and to form the $D_1(H^+)^+$ cation.

More recently, Gutmann²⁰² has shown that the absorption

spectra of crystal violet in POCl₃are the same in the présence of SnCl₄ or SbCl₅. The colour changes with addition of Lewis acids were attributed to the successive addition of the accepter chloride molecules to -NMe₂ groups. The first addition gives a green colour and the second addition produces an orange yellow solution (cf. Colour changes of crystal violet in hydrochloric acid).

In the present work it was proposed to prepare a new series of the dyestuff derivatives with $SnCl_4$ and $SbCl_5$ by working in a non aqueous medium. Malachite green, brilliant green and crystal violet react with Lewis acids ($SnCl_4$ and $SbCl_5$) in anhydrous methylene chloride and orange red adducts are precipitated out. These products give blue or green solutions in acctone which give orange red products on removal of the solvent and are slowly decomposed by moisture. Some of the products are slightly soluble in methylene chloride and solution spectra were recorded. The details of the absorption date are as follows in Table 9.

The solution spectra show that the absorption bands are similar to those of the reflectance spectra of the dyestuff complexes propared in concentrated hydrochloric acid (see Table 5). This close similarity indicates complex formation at the mitrogen atom.

The analysis results were inconsistent and it is

٠.

15L

<u>Teble 9</u> Solution spectra of Lewis acid complexes in methylene chloride (400-700 m.m.).

Dyestuff	Malachite green	Brilliant green	Crystal. violet
SnCl ₄ complox	<u>4.68</u> b	au .	insoluble
sbCl ₉ complex	<u>465</u> ,622	6450,630	insoluble

apparent that there are differing amounts of Lewis acid co-ordination and these products are mixtures of different species. Lewis and Bigeleisen¹⁸³ have determined the ratios of different protonated species formed with hydrochlorle acid and stannic chloride in methyl cyanide solutions. The ratios are

$$\frac{D(H^{+})^{+}}{D(2H^{+})^{+}} = .033$$

$$(D = Capri Blue)$$

$$\frac{D(SnOl_{4})^{+}}{D(2SnOl_{4})^{+}} = .13$$

It is clear that in the latter case the ratio is much larger and the propertion of the lower species formed in the case of Lavis cald is greater than in the protonated complexes.

NA VIEW Of these difficulties it was proposed to prepare compounds with different stoichiometric compositions by reacting equivalent proportions of Lewis acids and the dyestuffs in methylene chloride solution in order to isolate discrete adducts. Crystal violet complexes with different quantities of antimony pentachloride were prepared and the reflectance spectra were recorded as shown in Table 10.

Table 10

Reflectance spectra of crystal violet-antimony

pentachloride complexes. (400-700 m. p.)

<u>Compound</u>	Colour	Absorption bands in m.y.
Crystal violet chloride	viotel	<u>600</u> broad
C.V.:SDCl 1:1	violet	<u>600</u> broad
181.05	dark green	450, <u>595</u> broad
1:2	groen	440, <u>495</u> , 650
Complex precipitated in excess of SbCl ₅	orange red	<u>420</u> broad, 640

The absorption spectrum of the 1:1 complex is identical with that of the parent dyestuff. It seems that the first addition of SbCl₅ molecule forms a complex halo-anion. The reaction may be represented as follows.

$$\begin{bmatrix} (Me_2N \rightarrow)_3 C \end{bmatrix}^{\dagger} Cl^{-} + SbCl_5 \rightarrow \begin{bmatrix} Me_2N \rightarrow)_3 C \end{bmatrix}^{\dagger} SbCl_6$$
violet
violet
Mex 600 m.p.
violet
Max 600 m.p.

157

The formation of $SbCl_6^-$ ion has been confirmed by studying the far infrared spectra of the 1:1 adduct and other complexes. These compounds show a strong intensity band at 340 cm⁻¹ which has been attributed to $SbCl_6^-$ ion. [cf. NO⁴ SbCl_6^- absorbs at 345 cm⁻¹(61)]

The spectrum of 1:1.5 complex indicates the appearence of a weak band at 450 m.M. This shows that the crystal violet cation has been partially converted to the malachite green like structure as one of the -NMe₂ groups is co-ordinated with SbCl₅. In 1:2 complex the formation of the cation X is expected to be formed by a

Max. 430, 625m. u. 183

ک_{max}, 440, 495, 650m, مدر.

XI

simple reaction.

 $c.v.^{\circ}ci + 2SbCl_5 \longrightarrow c.v.(SbCl_5)^{\circ} SbCl_6$

The appearence of a new peak at 495 m.µ. in compound X suggests that another species is formed which probably involves co-ordination with the second NMe₂ group of the cation. The structures IX and XI are given for comparison of their absorption data with that of the Structure X.

The absorption band at 420 m. in the spectrum of the orange-red product prepared in an excess of $SbCl_5$ indicates the formation of C.V. $(SbCl_5)_3$ ⁺ cation, as the other cations with similar structures absorb in the same region.

158

XIV fully protonated crystal violet ion. > 204 max. 423m.g.

The presence of the weak band at $640m_{,\mu}$. indicates that other species containing a lesser number of SbCl₅molecules, for example species X, are also present in this product. These findings are in agreement with the recent work of Gutmann²⁰², who has described the formation of C.V.(SbCl₅)₃ * cation (structure XIII) by a reversible reaction in POCl₃ solution in presence of excess of the Lewis acid.

Experimental

Antimony pentachloride was freshly distilled before use and was handled in a dry box.

<u>Methylene chloride</u> was distilled over activated molecular seive and was stored under dry conditions.

The dwestuff complexes were prepared by mixing the proportional amounts of the dyestuff and antimoney pentachloride in methylene chloride solutions. The reactions were carried out in a dry box. After mixing the reactants, the solvent was removed on a vacuum line and chloride analysis were carried out immediately after preparing the complexes. The chlorine analysis are given below.

Complex

erystal	violet : SbCl ₅	Found C1%	Cale.C1%
	181	30.114	30.137
		36.85	35.23
] : 2	39.02	38.82

Infrared spectra. All the compounds with different proportions of dyestuff/SbCl₅ complexes show similar spectra in the 2-50 p. region. The spectra are characteristic of the crystal violet cation. With the increasing proportion of SbCl₅ in these complexes, the infrared spectra showed slight changes, especially in the complex precipitated in an excess of SbCl₅. These changes are attributed to the co-ordination of the Lewis acid to the - MMe_2 groups of the dye cation. From the close resemblances, shown by complexes of different ratios, it is concluded that the overall structure of the dyestuff cation remains the same. The absorption band at 340 cm^{-1} has been assigned to SbCl_6 ion. The spectra were recorded in Aujol and hexachlorobutadiene mulls. Details of the infrared data are shown below: Crystal violet:SbCla

Complex

15858,	, 1471 1	a, 135]	ls, 12	90w, 12	233w o
1190s)	a, 116	48, l l 2	24sh, 3	1064w,	9438,
917m,	833s 💡	800w,	763m,	746m,	729s,
613w,	555m,	5130,	420s,	340vs	ջ b օ
(SbCl	б).				

1 8 1.5 1 8 1.5 1587s, 1481m, 1351s, 1295w, 1232w, 1190sh, 1164vs, 1124sh, 1022w, 943s, 916s, 833s, 793w, 763w, 746w, 725s, 614w, 555w, 526w, 417s, 335vs.b. (SbCl₆).

1 : 2 1587s, 1481m, 1408w, 1360s, 1221w, 1190sh, 1175vs, 1136w, 1020w, 943m, 910s, 833s, 793w, 763w, 740sh, 722s. Complex precipitated 4348w, 1613s, 1572s, 1504w, 1453m,

in excess of SbCl₅

<u>1418w, 1370w, 1310w</u>, 1252w, 1212m, 1060w, <u>1136m, 1124m</u>, 1042m, 1010w, 970w, 940w, 885w, 840s, 787m, 769w, 735w, 720m.

References

- Luijten, Van Der Kerk, 'Investigations in the Field of Organotin Chemistry', Tin Research Institute, England, 1955, p. 67.
- 2. Chatt and Williams, J.Chem.Soc., 1954, 4403.
- 3. Griffiths, and Derwish, J.Mol.Spectroscopy, 1959, 3, 165; 1960, 5, 148.
- 4. Graig, Maccoll, Nyholm, Orgel and Sutton, J.Chem.Soc., 1954, 332.
- 5. Stone, and Seyferth, J.Inorg. and Nuclear Chem., 1955, <u>1</u>, 112.
- 6. Kraus and Callis, J.Amer.Chem.Soc., 1923, 45, 2624.
- 7. Prince, J.Chem.Soc., 1959, 1783.
- 8. Rochow and Seyferth, J.Amer.Chem., 1953, 75, 2877.
- 9. Rochow, Seyferth and Smith, J.Amer.Chem.Soc., 1953, <u>75</u>, 3099.
- 10. Kraus, and Greer, J.Amer.Chem.Soc., 1923, 45, 2946.
- 11. Hein, and Meininger, Z.Anorg.Chem., 1925, <u>145</u>, 95.
- 12. Johns et.al., J.Phys.Chem., 1930, 34, 2218.
- 13. Gingold, Rochow, Seyferth, Smith and West, J.Amer.Chem.Soc. 1952, 74, 6306.
- 14. Beattio, McQuillan and Hulme, Chem. and Ind., 1962, 1429.
- 15. Kraus, J.Amer.Chem.Soc., 1924, 46, 2196.
- 16. Shukoff, Ber., 1905, <u>38</u>, 2691.
- 17. Thomas and Rochow, J.Inorg. and Nuclear Chem., 1957, <u>4</u>, 205.

- 18. Zelinsky, and Krapwin, Z. Physik. Chem., 1896, 21, 35.
- 19. Siebert, Z.Anorg.Chem., 1950, <u>263</u>, 82.
- 20. Bdgell, and Ward, J.Amer. Chem. Soc., 1955, 77, 6486.
- 21. Nottoring and Sleator, Physics, 1933, 4, 39.
- 22. Pei, Proc. Roy. Soc., 1935, A149, 29.
- 23. Valters and Woodward, Proc. Roy. Soc., 1958, A246, 119.
- 24. Mross, Fassel and Margoshes, J.Amer.Chem.Soc., 1956, <u>78</u>, 1332.
- 25. Fassel and Margoshes, Spectrochim. Acta., 1955, 7, 14.
- 26. Rao, Ramachandran, Iah, Somasekhara and Rajakumer, Nature, London, 1959, <u>183</u>, 1475.
- 27. Poller, J.Inorg. and Nuclear Chem., 1962, 24, 593.
- 28. Harrah, Ryan and Tamborski, Spectrochim.Acta., 1962, <u>18.</u> 21.
- 29. Clark and O'Brien, Proc. Chem. Soc., 1963, 113.
- 30. Kriegsmann, and Geissler, Z.Anorg.Chem., 1963, 323,
- 31. Whiffen, J.Chem.Soc., 1956, 1350.
- 32. Randle and Whiffen, Molecular Spectroscopy, Conference held by the Institute of Petroleum, London, 1954.
- 33. Bellamy, 'The Infrared Spectra of Complex Molecules', Mothuen, London, 1954.
- 34. Griffithe, and Derwish, J.Mol. Spectroscopy, 1960, <u>5</u>, 148.
- 35. Katritzky, and Lagowski, J.Chem.Soc., 1958, 4155.

- 36. Amster, and Colthup, Spectrochim.Acta., 1963, <u>19</u>, 1849.
- 37. Young, Servais, Currie and Hunter, J.Amer.Chem.Soc., 1948, <u>70</u>, 3758.
- 38. Henry and Noltes, J.Amer.Chem.Soc., 1960, 82, 555.
- 39. Merzfeld, Ingold and Poole, J. Chem. Soc., 1946, 316.
- 40. Sharp and Sheppard, J.Chem.Soc., 1957, 674.
- 41. Wost, and Baney, J. Phys. Chem., 1960, 64, 822.
- 42. Gordy, J. Chem. Phys., 1946, 14, 305.
- 43. Brown, Okawara and Rochow, Spectrochim.Acta., 1960, <u>16</u>, 595.
- 44. Vyshenkii and Rudnevskii, Optics and Spectroscopy, 1961, 10, 412.
- 45. Smith, Spectrochim.Acta., 1960, 16, 101.
- 45. Schomaker and Stevenson, J.Amer.Chem.Soc., 1941, <u>63</u>, 37.
- 47. Yamasaki, Kotera, Yokoi, and Ueda, J.Chem.Phys., 1950, 18, 1414.
- 48. Flory, Mandelkern, Kinsinger and Schultz, J.Amer.Chem. Soc., 1952, <u>74</u>, 3364.
- 49. Freizer, Eagle and Speier, J.Amer.Chem.Soc., 1953, <u>75</u>, 2824.
- 50. Vest, Baney, and Powell, J.Amer.Chem.Soc., 1960, <u>82</u>, 6270.
- 51. Okawara, Webster and Rochow, J.Amer.Chem.Soc., 1960, 82, 3285, 3287.

- 52. Kriegsmann and Pischtschan, Z.Anorg.Chem., 1961, <u>308</u>, 212.
- 53. Clark, O'Brien and Trotter, Proc. Chem. Soc. 1963, 85.
- 54. Clark, O'Brien and Trotter, J.Chem.Soc., 1964, 2332.
- 55. Clark and O'Brien, Inorg. Chem., 1963, 2, 740.
- 56. Boattle and Gilson, J.Chem.Soc., 1961, 2585.
- 57. Kriegemann and Kessler, Z.Anorg.Chem., 1962, 318, 277.
- 58. Velsh, Crawford and Scott, J.Chem. Phys., 1948, 16, 97.
- 59. Long, Spencer, Waters and Woodward, Proc.Roy.Soc., 1957, A240, 499.
- 60. Siebert, Z.Anorg.Chem., 1953, 273, 173.
- 61. Sharp and Thorley, unpublished work.
- 52. Sharp and Ali Mohammed, unpublished work.
- 63. Ross, Spectrochim.Acta, 1962, 18, 225.
- 64. Hathaway and Underhill, J.Chem.Soc., 1961, 3091.
- 65. Burg and Spielman, J.Amer. Chem. Soc., 1961, 83, 2667.
- 66. Nathaway and Webster, Proc. Chem. Soc., 1963, 14.
- 67. Sharp, 'Advances in Fluorine Chemistry', Vol I, Butterworths Scietific Publns., London, 1960, p. 83.
- 68. Greenwood, J.Chem.Soc., 1959, 3811.
- 69. Sharp and Winfield, unpublished work.
- 70. Addison, Simpson and Walker, J. Chem. Soc., 1964, 2360.
- 71. Peacock and Sharp, J.Chem.Soc., 1959, 2762.
- 72. Kerk and Noltes, J.Appd.Chem., 1959, 9, 106.
- 73. Anderson, Inorg.Chem., 1962, 1, 647.

- 74. Ingham, Rosenberg and Gilman, Chem.Rev., 1960, 60, 459.
- 75. Seyferth, Naturwiss, 1957, 44, 34.
- 76. Resenberg, Depreczeni and Weinberg, J.Amer.Chem.Soc., 1959, 62, 1107, 9940.
- 77. Eaborn and Waters, J.Chem.Soc., 1961, 542.
- 78. Bott, Eaborn and Waters, J.Chem.Soc., 1963, 681.
- 79. Kaesz, Phillips and Stone, J.Amer.Chem.Soc., 1960, <u>82</u>, 6228.
- 80. Coulson, 'Valence', O.U.P., N.Y., 1952, p. 207.
- 81. Eaborn and Pande, J.Chem.Soc., 1960, 1566.
- 82. Freeman, J.Amer. Chem. Soc., 1958, 80, 5954.
- 83. Okawara, and Sato, J.Inorg.Nucl.Chem., 1961, 16, 204.
- 84. Olah, Private communication.
- 85. Beattie and Gilson, J. Chem. Soc., 1961, 2585.
- 86. Van Der Kerk, Luijten and Janssen, Chimia, 1962, 16, 10.
- 87. Luijten, Janssen and Van Der Kerk, Rec.Trav.Chim. Pays-Bas, 1962, <u>81</u>, 707.
- 88. Okawara, Hathaway and Webster, Proc. Chem. Soc., 1963, 13.
- 89. Hathaway and Webster, Proc. Chem. Soc., 1963, 14.
- 90. Janssen, Luijten and Van Der Kerk, Rec.Trav.Chim., Pays-Bas, 1963, 82, 90.
- 91. Curmine and Dunn, J.Aust.Chem., 1964, 17, 185.
- 92. Nakamoto, Fujita, Tanaka and Kobayashi, J.Amer.Chem. Soc., 1957, <u>79</u>, 4904.
- 93. Lewis and Wilkins, 'Modern Co-ordination Chemistry', p. 369, Interscience, New York, 1960.

- 94. Clark, Private communication.
- 95. Randle, and Whiffen, J.Chem.Soc., 1955, 1311.
- 96. (a) Pauling 'The Nature of the Chemical Bond', 3rd Ed., 1960.

(b) Adrian, J.Chem. Phys., 1958, 28, 608.

- 97. Birchall and Haszeldine, J.Chem.Soc., 1959, 13.
- 98. Kuivila, Sawyer and Armour, J.Org.Chem., 1961, 26, 1426.
- 99. Krause and Pohland, Ber., 1924, <u>57</u>, 532.
- 100. Jensen and Clauson-kaas, Z.Anorg.Chem., 1943, 250, 277.
- 101. Leeper, Summers and Gilman, Chem.Revs., 1954, 54, 101.
- 102. Rochow, Hurd and Lewis, 'The Chemistry of Organometallic Compounds', John Wiley and Sons, Inc., N.Y., 1957, pp. 25-34 and 182-90.
- 103. Lister and Sutton, Trans.Faraday Soc., 1941, 37, 406.
- 104. Ingham, Sanders, Rosenberg and Gilman, Chem. Revs., 1960, 60, 459.
- 105. Neumann, and König, Angew.Chem., 1962, 74, 215.
- 106. Kraus and Harada, J.Amer. Chem. Soc., 1925, 47, 2416.
- 107. Krause, and Becker, Ber., 1920, <u>53</u>, 173.
- 108. Chambers and Scherer, J.Amer.Chem.Soc., 1926, 48, 1054.

مر.

- 109. Kraus and Greer, J.Amer. Chem. Soc., 1925, 47, 2568.
- 110. Krause and Pohland, Ber., 1924, 57, 532.
- 111. Neumann and Pedain, Ann., 1964, 672, 34.
- 112. Gomberg, Ber., 1900, <u>33</u>, 3150.
- 113. Pauling and Wheland, J.Chem.Phys., 1933, 1, 362.

- 114. Marvel, J.Amer.Chem.Soc., 1939, <u>61</u>, 2009; 1941, <u>63</u>, 1892; 1942, <u>64</u>, 1824.
- 115. Sidgwick, 'The Chemical Elements and their Compounds'.
- 116. Petro, and Smyth, J.Amer.Chem.Soc., 1957, 79, 6147.
- 117. Morgan and Drew, J.Chem.Soc., 1925, 127, 1760.
- 118. Böcseken, and Rutgers, Rec. Trav. Chim., 1923, 42, 1017.
- 119. Morris, Byerly and Selwood, J.Amer.Chem.Soc., 1942, <u>64</u>, 1727.
- 120. Coates, 'Organometallic Compounds', John Wiley and Sons Inc., N.Y., 1956, pp 118-133.
- 121. Krause and Reiszaus, Ber., 1922, <u>55</u>, 896.
- 122. Preckel, and Selwood, J.Amer.Chem.Soc., 1940, 62, 2765.
- 123. Morris, and Selwood, J.Amer.Chem.Soc., 1941, 63, 2509.
- 124. Malatesta, Gazz.Chim. ital. 1943, <u>73</u>, 176; Chem. Abstracts, 1944, <u>38</u>, 5128.
- 125. Sharpe, J.Chem.Soc., 1952, 4538.
- 126. Russell and Sharp, J. Chem. Soc., 1961, 4689.
- 127. Anderson, Bak and Hillbert, Acta, Chem.Scand., 1953, <u>7</u>, 236.
- 128. Kushlefsky, Simmons and Ross, Inorg.Chem., 1963, 2, 187.
- 129. Luijten and Van Der Kerk, 'Investigations in the field of Organotin Chemistry', Tin Research Institute, England, 1955, p. 107.

- 130. Kozeschkow, Nadj and Alexandrow, Ber., 1934, <u>67</u>, 1348.
- 131. Kozeschkow, Ber., 1929, <u>62</u>, 996.
- 132. Kraus, Ber., 1918, <u>51</u>, 912.
- 133. Druce, J.Chem.Soc., 1922, <u>121</u>, 1859.
- 134. Luijten and Van Der Kerk, 'Investigations in the field of Organotin Chemistry'. Tin Research Institute, England, 1955, p. 112.
- 135. Austin, J.Amer.Chem.Soc., 1931, <u>53</u>, 3514.
- 136. Kraus and Becker, Ber., 1920, <u>53</u>, 173.
- 137. Gatterman, 'Laboratory methods of Organic Chemistry', Macmillan and Co. Ltd., London, 1957.
- 138. Bethell and Gold, Quart.Revs., 1958, 12, 173.
- 139. Sharp and Kemmitt, Ph.D. Thesis, University of London, 1962, p. 24.
- 140. Krespan, Harder and Drysdale, J.Amer.Chem.Soc., 1961, 83, 3424.
- 141. Brockway and Jenkins, J.Amer.Chem.Soc., 1936, 58, 2036.
- 142. George, Proc.Roy.Soc., (London) 1927, 113, 585.
- 143. Giacomello, Gazz.Chim. ital., 1938, <u>68</u>, 422; Chem. Abstracts, 1938, <u>32</u>, 9046.
- 144. Zhdanov and Ismailzade, J.Phys.Chem.U.S.S.R., 1950, <u>24</u>, 1495; Chem.Abstracts, 1951, <u>45</u>, 4112.
- 145. Skinner and Sutton, Trans.Faraday Soc., 1940, 36, 1209.
- 146. Noltes, Henry and Jenssen, Chem. and Ind., 1959, 298.
- 147. Malatesta and Pizzotti, Gazz.Chim.ital., 1943, <u>73</u>, 349.

- 148. Barbieri, Faraglia, Giustiniani and Roncucci, J.Inorg. and Nucl.Chem., 1964, <u>26</u>, 203.
- 149. Henry, Inorg.Chem., 1962, 1, 917.
- 150. Gilman and Leeper, J.Org.Chem., 1951, <u>16</u>, 466.
- 151. Bindschadler, and Gilman, Chem.Abstracts, 1942, <u>36</u>, 1595.
- 152. Hein, Nebe and Reimann, Z.Anorg.Chem., 1943, 251, 125.
- 153 Krause and Grosse, 'Die Chemi der metall-organischen Verbindunger', Borntraeger, Berlin, 1937, pp. 372-429.
- 154. Baney, 'Acid and Base Properties of some Group IV Organohydroxy Compounds', Ph.D., Thesis, University of Wisconsin, Jan., 1960.
- 155. Baillie, Brown, Moss and Sharp, Proc. 8th International Conference on Co-ordination Chemistry, Vienna, 1964, p. 322.
- 156. Gilman and Baillie, J.Amer.Chem.Soc., 1939, <u>61</u>, 731.
- 157. Gilman and Robinson, J.Amer.Chem.Soc., 1929, 51, 3112.
- 158. Grüttner, Ber., 1918, <u>51</u>, 1298.
- 159. Bähr, Z.Anorg.Chem., 1947, 253, 330.
- 160. Plyler, Discuss.Faraday Soc., 1950, 9, 100.
- 161. Smith, Ferguson, Hundson and Nielsen, J.Chem.Phys., 1953, <u>21</u>, 1475.
- 162. Robertson, Seriff and Matsen, J.Amer.Chem.Soc., 1950, 72, 1539.
- 163. Robertson and Matsen, J.Amer.Chem.Soc., 1950, 72, 5250,

- 164. Modena, Boll.Sci. fac.ind. Bologna, 1959, 17, 45.
- 165. Deacon and Green, Private communication.
- 166. Kemmitt, Nuttall and Sharp, J.Chem.Soc., 1960, 46.
- 167. Rao, Ramachandran and Balasbramanian, J.Canad.Chem., 1961, 39, 171.
- 168. Muttall and Sharp, Ph.D. Thesis, University of London, 1962, p. 38.
- 169. Gomberg and Cone, Ber., 1906, 39, 1461.
- 170. Blicke, J.Amer.Chem.Soc., 1924, 46, 1515.
- 171. Lund, J.Amer.Chem.Soc., 1927, 49, 1346.
- 172. Sharp, J.Chem.Soc., 1958, 2558.
- 173. Dewar, J.Amer.Chem.Soc., 1952, 74, 3345.
- 174. Leffler, 'The Reactive Intermediates of Organic Chemistry', Interscience Publ. inc. N.Y., 1956.
- 175. Lewis, Magel and Lipkin, J.Amer.Chem.Soc., 1942, <u>64</u>. 1774.
- 176. Deno, Jaruzelski and Schrieshein, J.Org.Chem., 1954, 12, 155.
- 177. Lewis, Lipkin and Magel, J.Amer.Chem.Soc., 1944, <u>66</u>, 1579.
- 178. Gold, J.Chem.Soc., 1956, 3944.
- 179. Bartlett, Bull.Soc.Chim.France, 1951, 18, C100.
- 180. Maccoll, Quart.Rev., 1947, 1, 16.
- 181. Lewis and Calvin, Chem. Rev., 1939, 25, 273.
- 182. Lewis, J.Amer.Chem.Soc., 1945, <u>67</u>, 770.

- 183. Lewis and Bigeleisen, J. Amer. Chem. Soc., 1943, 65, 1144.
- 184. Robinowitch, and Epstein, J.Amer. Chem. Soc., 1941, 63, 69.
- 185. Schubert and Levine, J. Amer. Chem. Soc., 1955, 77, 4197.
- 186. Levshin and Gorshkov, Optics and Spectroscopy, 1961,<u>10</u>, 401.
- 137. Giles, Rahaman and Smith, J.Chem.Soc., 1961, 1209.
- 188. Arvan, and Zaitreva, Optics and Spectroscopy, 1961, <u>11</u>, 338.
- 189. Forster, 'Fluoroeszenz Organischer Verbidungen', Gottingen, 1951.
- 190. Sheppard, Revs. Modern Phys., 1942, 14, 303.
- 191. Baranova, Levshin, Optics and Spectroscopy, 1961, <u>10</u>, 182.
- 192. Wells, Structural Inorganic Chemistry, Oxford 2nd Edn., 1950, p 350.
- 193. Cigen, and Ekstrom, Acta. Chemica. Scand., 1963, <u>17</u>, 1189, 1843, 2083.
- 194. Cigen, Acta Chemica. Scand., 1962, <u>16</u>, 192, 1271.
- 195. Cigen and Bengtsson, Acta Chemica.Scand., 1962, <u>16</u>, 1837, 2251, ibid., 1963, <u>17</u>, 2091.
- 196. Calvert and Rechen, J.Amer.Chem.Soc., 1952, 74, 2101.
- 197. Gattermann and Schnitzspahn, Ber., 1898, 31, 1770.

- 198. Lowis, Goldschmid, Magel and Bigeleisen, J.Amer.Chem. Soc., 1943, <u>65</u>, 1150.
- 199. Adam and Rosenstein, J.Amer.Chem.Soc., 1914, 36, 1452.
- 200. Beaz, Gutmann and Kunze, Mh.Chem., 1962, 93, 1142.
- 201. Meyer, Ber., 1908, <u>41</u>, 2568.
- 202. Gutmann, Proc.Chem.Soc., 1964, 207; Österr, chemiker. Zeit., 1964, <u>65</u>, 273.
- 203. Förster, Z.Electrochem., 1939, 45, 548.
- 204. Bröser, Z. Naturforsch., 1955, 10b, 350.