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A bstract

High-speed unsteady spiked body flows were simulated and analysed by using Com­

putational Fluid Dynamics (CFD). The model geometry was a forward facing cylin­

der equipped with a protruding spike. Various spike lengths were considered between 

L/D =1.00 and 2.40 in both fixed spike and moving spike configurations. Axisym- 

metric, laminar flow conditions were considered at two freestreams of Mach 2.21 and 

Mach 6.00 and Reynolds’numbers based on the blunt body diam eter of 0.12 x 10® 

and 0.13 x 10®, respectively.

Structured, multiblock grids were generated and the PMB2D code was used as 

the numerical method to solve the time-dependent Navier-Stokes equations. Second 

order accuracy was achieved in both space and time. The numerical method was 

verified by grid dependence and real time step size dependence tests, which showed 

tha t medium resolution grids with maximum allowable time steps could be used in 

most of the cases. A validation of the results was provided in terms of the shock 

envelope histories and also the amplitude, frequency and characteristic shape of the 

pressure trace recorded at the cylinder face. The fixed spike length results were 

found in general good agreement with the experiment, whereas the range of the 

hysteresis phenomenon was overpredicted in the moving spike cases.

Two distinct flow modes, oscillation and pulsation, were identified and analysed 

in detail in order to reveal their driving mechanisms. It was confirmed that, in 

accordance with earlier literature, the oscillation flow mode was driven by the so- 

called “energetic shear layer hypothesis” , a viscous phenomenon in nature.

11



The pulsation flow mode, on the other hand, was found to be driven by an entirely 

new driving mechanism based on the pressure imbalance arising in the triple shock 

system. In contrast to the oscillation flow mode, this is an inviscid phenomenon in 

nature.

Finally, the hysteresis simulation results were used to provide an original descrip­

tion of the transitions between the two flow modes. The necessary conditions of these 

were also established and it was found tha t they were driven by the movement of 

the separation point along the spike.

Ill
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C hapter 1 

Introduction

1.1 L iterature survey

1.1.1 Spiked b o d y  applications

The family of spiked bodies, defined as those resembling the shape of a blunt body 

equipped with a forward protruding spike (Pig.IT), have appeared in many different 

areas of aerodynamics in the past fifty years. All spiked body applications share two 

main features. One is a high speed freestream (ranging from approximately Mach

2.00 upwards) and the other is tha t the desired state of the flow around them is 

steady from an operational point of view. Thus, the primary aim of almost all works 

with a new spiked body configuration has been to study steady state  flows, ffowever, 

at certain combinations of flow conditions and/or geometrical parameters serious 

flow instabilities have been observed, endangering the safe and reliable function of 

a vehicle. The present section provides a review of the aerodynamic applications 

dominated by unsteady spiked body flows.

The first report of a spiked body type instability was from Oswatitsch in 1944 

[1]. He found th a t the flow over axisymmetric je t inlets equipped with a conical 

centrebody (Fig. 1.1a) can become unsteady when the engine is working at subcrit- 

ical, off-design conditions. The observed phenomenon, termed as “buzz” , is known 

as a cause of serious combustion problems, engine surge and /or thrust loss and in



some cases can even lead to the destruction of the propulsion unit. Despite i t ’s long 

history and the numerous analytical models put forward in this field, “buzz” is still 

not properly understood. Although this is not entirely the same unsteadiness as 

th a t studied in the present work, it shows similarities in the main features of the 

instability observed around spiked bodies.

Increasing the effectiveness of ballistic missiles was of considerable interest in 

the early 50’s. Large nose radii were employed to avoid excessive heat transfer rates 

on the missile forebody, occurring during the re-entry to the atmosphere. However, 

this geometry resulted in too much drag for the ascent part of the trajectory. As 

a compromise, a slender rod protruding from the hemispherical nose was applied 

(Fig. 1.1b), leading to significant reductions of both the drag and the heat transfer 

rates, by up to 90 and 60 percent, respectively [3]. The m ajority of studies performed 

in this field aimed to understand or to improve the reduction mechanism associated 

with a steady flowfield. However, when examining the effect of the model geometry, 

highly unsteady flow occurred at certain spike lengths. This triggered the first 

pioneering works attem pting to map and understand the unsteady spiked body 

flows [2] [3] [4] [6]. Their findings will be discussed in detail in the next section.

A secondary use of spiked missile foreheads originated from Album [7] and 

W yborny [8], whose measurements on the aerodynamic characteristics of these bod­

ies showed that employing a spike as a control device was a promising way of im­

proving the stability.

In the early 1960’s, another new application appeared in aerodynamics, extend­

ing further the interest in spiked body flows. Use of parachutes was considered for 

stabilising pilot ejection capsules and for recovering expensive test vehicles, such as 

space probes and satellites. Roberts [9] and Maynard [10] observed tha t unstable 

flow similar to th a t experienced over spiked bodies was present for such devices. 

These two studies led to the pioneering work of Robinson [11], the first to measure



the frequencies and the amplitudes of the instability.

At the end of the same decade the problem of a future unmanned Mars landing 

mission was brought up. The search for possible shapes of a landing capsule made 

apparent tha t two main criteria had to be fulfilled. First, high drag characteristics 

were required to enable sufficient braking in the thin M artian atmosphere. Secondly, 

a lightweight structure capable of withstanding the large impulsive loads encountered 

during such a manoeuver had to be employed. As one of the suitable possibilities, 

concave tension shell shapes (Fig. 1.1c) were considered by Jones et al. [12] in 1967. 

The flow over this initial option displayed instabilities similar to spiked body flows.

Ablation phenomenology obtained considerable attention in the early 70’s. In­

vestigating the flow around ablative hemisperical nosetips, created at the high Reyn­

olds’ number portions of a re-entry showed that in this particular case the peak heat 

transfer does not occur at the stagnation point, but near the transition from a lam­

inar to turbulent boundary layer [13]. This resulted in the formation of a concave 

conical shape (Fig.1.Id), approximately resembling a spiked blunt body. Kenworthy 

and Richards [14] and Abbett et al. [15] demonstrated experimentally, tha t unstable 

flow similar to the spiked body instabilities is indeed present around such geometries.

The first space shuttle flights (Fig.1.2) in 1981 and 1982 experienced some new, 

unexpected aerodynamical phenomena also associated with spiked body flows. For 

example,the 3rd developmental flight (STS-3) showed problems during the ascent, 

associated with the initial formation of shock waves and the subsequent flow separa­

tion. This appeared in the vicinity of the Orbital Maneuvering System (QMS) pods 

and in the forward area of the astronauts cabin [16], and contributed to the loss of 

some of the Space Shuttle’s heat shield tiles. During the descent, asymmetric flow 

problems were encountered, caused by the sporadic occurrence of the separation 

bubble, along with persistent aerodynamic buzzing noises from the flow separation. 

These latter phenomena were initiated at a flight Mach number around 3.0 and
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Figure 1.1: The family of spiked bodies.

Figure 1.2: Launch of the Columbia Space Shuttle.



Reynolds’ number near the critical value. All these problems have been identified 

as spiked body flows in their fundamentals.

Finally, the most recent area of fluid dynamics exhibiting similar features involves 

the flow around double-cone and cylinder-flare geometries (F ig .l.lg ,f). These shapes 

were associated with some flow separation studies around possible flame-holders in 

future scramjet engines [17]. Test cases considering freestream Mach numbers as 

high as 10 may well exhibit flow patterns typical to the spiked body flows.

1.1.2 U n d erstan d in g  u n stead y  spiked b o d y  flow s

The work of Bogdonoff and Vas [3] could be regarded as the foundation- stone for 

studying unsteady spiked body flows. They were the first to identify two distinct 

forms of unsteadiness, termed as oscillation and pulsation. The basic description 

of these flows was also laid down, as follows. The oscillation mode is characterised 

by a change in the shape of the foreshock as it oscillates between a convex and a 

concave configuration as illustrated in Fig. 1.3a. The pulsation mode, on the other 

hand, exhibits a somewhat more dramatic excursion between two very different 

shock envelopes (Fig. 1.3b). One envelope consists of a conical foreshock emanating 

from the spike tip and intersecting the bow shock created by the blunt body (solid 

line) while the other is a single bow shock passing through the spike tip (dashed 

line). Although these instabilities were referred to by many differing adjectives in 

earlier works, the terms oscillation and pulsation became widely accepted later.

Figure 1.3: The oscillation (a) and pulsation (b) flow modes.
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The first observation of the pulsation mode predates the work of Bogdonoff 

and Vas, and originated from Mair in 1952 [2]. Mair investigated the flow over both 

spiked hemispheres, flat cylinders and their two-dimensional counterparts at a Mach 

number of 1.96 {Rep = 1.65 x 10^). Instability was observed to occur at L / D  < 1.5 

and = 90°, and the shock-history was reconstructed using randomly sequenced 

photographs. Based on this it was observed tha t as the expanded foreshock collapses, 

the blunt body is as though accelerated to a supersonic speed, causing the creation of 

a new bow wave in front of the afterbody’s face. This is characteristic of the pulsation 

mode [18]. However, as pointed out earlier, Mair actually used the term ’’oscillation” 

for this instability in his work, which could be explained by the relatively low Mach 

number he worked at. At lower speeds the pulsation mode alone is likely to occur [18] 

and therefore he could not be aware of the existence of another mode of unsteadiness, 

later termed as oscillation.

Figure 1.4: Pressure imbalance in pulsating flow according to Maull [4j.

Maull [4], working at a larger Mach number (6.8) and examining spiked hemi­

spheres with various shoulder radii, found the two different flow modes, but failed 

to distinguish between them and named both as ” oscillation” . However, he was the 

first to propose a driving mechanism for the pulsation mode by pointing out that 

the pressure imbalance behind the strong shock (region A in Fig. 1.4) and the weak 

shock (region B in Fig. 1.4) causes mass reversal into the separation region, which 

consequently becomes inflated. He substantiated this by demonstrating that a jet
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of air injected in front of a flat faced cylinder can produce a shock pattern similar 

to the one present in a spiked body flow.

A -  Unseparated flow 
B -  Face Reattaching Flow 
C -  Shoulder Reattaching 

Flow 
D -  Unstable Flow 
E -  Stable Flow (L<Xg)

4 - =10; Re  ̂= 0.05 x 10

UD

1 - -

30

Figure 1.5: Flow regions for spiked cones after Wood [5].

Wood [5] and later Holden [6], working at Mach 10.00 and 15.00, respectively, 

conducted studies to explore the entire spectrum of all possible flow modes occur- 

ing over spiked blunt bodies. Their results plotted in the spike length-afterbody 

cone angle plane exhibit some interesting features (Figs. 1.5,1.6). One was tha t the 

boundaries of all six regions were found to emanate from the point representing 

the freestream shock-detachment angle, 55.5° [19]. As will be seen later, the shock- 

detachment angle has an im portant role in establishing unsteadiness over a spiked 

body. They also considered the problems associated with capturing the oscillation 

mode. While Wood failed to distinguish it from pulsation and labelled all unstable 

flows as “oscillation” , Holden managed to locate it, but, surprisingly, to a small 

isolated region. This is most likely due to insufficient sampling of the chosen para­

meters. Holden also made an im portant statem ent regarding the oscillation mode, 

namely tha t it is associated not only with the inflation of the separation region but 

also with the movement of the separation point along the spike.

The most relevant findings from Robinson et al. [11] concerned the onset of
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Figure 1.6: Flow regions for spiked cones after Holden [6].

the instability. They believed th a t it occurs when the angle required to turn the 

separated flow parallel to the model face exceeds the freestream shock-detachment 

angle. They also attem pted to measure the pulsation upper boundary location, dur­

ing which they observed a hysteresis phenomenon, depending on whether the spike 

length was increased or decreased. For an outward moving spike the unsteadiness 

disappeared at a longer spike length, than the length at which the onset appeared 

at an inward moving spike.

Kabelitz [20] analysed the spiked body problem by applying the small perturb­

ation method for a simplified model of a stationary separated flow. This assumed a
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driving mechanism based on the shear layer entrainment and a consequent forward 

movement of the separation point. Although this matched the experimental obser­

vations up to a certain point, it did not deal entirely satisfactorily with either mode. 

Kabelitz also attem pted to categorise the results, which led to the identification of 

another flow mode, termed vibration (Fig. 1.7). Later this proved to be generated 

by essentially the same driving mechanism as oscillation [18].

Figure 1.7: Vibration flow mode.

All studies mentioned up to this point assumed, tha t the flowfield was axisym- 

metric. Although photographic evidence of asymmetric shock formations existed 

since the earliest investigations [2] [3] [4], they were believed to be caused by the 

likely disturbances present in the experimental setup. However, in 1976 Dernetriades 

conducted research on the asymmetry itself, first showing tha t this phenomenon may 

arise systematically [21]. He examined the flow over a blunted double-cone config­

uration exposed to a Mach 3.02 freestream (Fig. 1.8). Two diametrically opposite 

transducers were located on the circle representing the spike base, at which point 

the pressure histories were sirnultanously recorded. Their correlation showed, that 

the modulations (dashed line on Fig. 1.9) of the two harmonic waves were 180® out 

of phase, or anticorrelated (white stripes on Fig. 1.9). Further confirmation of this 

was given by comparison of the spectra from the individual transducers which led 

to a very im portant conclusion tha t three-dimensional effects could be present in 

an axisymmetric unsteady spiked body flow. Demetriades actually suggested that
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the protruding bulge rotates around the spike, completing one revolution for every 

two cycles of pulsation. The importance of this work lies in the detection of this 

three-dimensional phenomenon but the source of this remained unexplained.

u pper tran sd u ce r

lower tran sd u ce r

Figure 1.8: Demetriades’ model for examining shock asymmetries [21].
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Figure 1.9: Pressure histories recorded at two, diametrically opposite transducers 
located on the afterbody face by Demetriades [21].
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Understanding of the generator of the pulsation mechanism itself, however, was 

still not satisfactory a t this time. A major breakthrough in this field came from 

Panaras [23], whose original idea of finding the similarity between Edney’s type 

IV shock formation [24] and the flowfield created over a spiked body enabled the 

most complete explanation of this instability at the time. Edney analysed the com­

plex shock structures arising at a weak shock-strong shock interaction, consider­

ing their various m utual positions. The shock field termed as type IV (Fig. 1.10) 

yielded the appearance of a small supersonic jet (the supersonic feature was sup­

ported by analytical means). The jet was represented by a region of high-speed 

flow turned towards the separation region due to the large pressure behind the 

normal shock. Panaras’ idea was tha t the same shock pattern  is formed in the vi­

cinity of a foreshock-aftershock intersection occurring in a pulsating spiked body 

flow (Fig. 1.10). Thus, it supplies gas into the separation region, causing inflation. 

This led to the very im portant conclusion tha t the mass influx did not originate 

from the region behind the strong shock, as previously thought, but from the su­

personic region bounded by the conical foreshock and the shear layer. This was 

further substantiated by comparing the pressure on the afterbody face and behind 

the normal bow shock. The former one was found to be twice as high as the latter 

demonstrating tha t the lower pressure gas would indeed not be capable of breaking 

through the high pressure jet region. Supporting evidence was given by sublimation 

tests performed on the cylinder face.

Kenworthy’s extensive work [18], which aimed to investigate the unsteady flows 

over a wide range of spiked cones and cylinders at Mach 2.21 and Mach 6.00, already 

took this information into account, and expanded it further by attem pting to de­

termine the flow parameters in the individual regions. For this purpose Kenworthy 

constructed dynamic heart diagrams considering the actual shock collapse/growth 

speeds. These were determined by recording the shock position in a longitudinal
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Figure 1.10: Similarity between E dney’s type IV  shock form ation [24] (a) and the 
flowfield corresponding to the pulsation flow mode [23](b).
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mask created at the half afterbody radius. The heart diagram analysis showed that 

the je t was Indeed supersonic at both considered freestreams. He also built up a 

simplified analytical model to calculate the frequency of the event. The main con­

tribution of this study, however, was associated with understanding the oscillation 

flow mode. Kenworthy established the so-called “energetic shear layer hypothesis” , 

which essentially proved tha t the driving mechanisms of the two modes differ in 

their fundamentals. The pulsation mode is generated by a shock-shock interaction 

mechanism, which is inviscid in its nature, while the oscillation mode is fed through 

an ever-changing shoulder reattachm ent criterion of the shear layer, a viscous phe­

nomenon in its nature. These hypotheses will be revealed in more detail later in 

this thesis.

Calarese and Hankey’s research [25] from 1983 investigated the origin of the 

three-dimensional effects observed earlier by Demetriades [21]. The model geometry 

was a fiat faced conical afterbody equipped with a relatively thick (d/D=0.225) 

blunted spike, and exposed to a Mach 3.00 freestream. Employing a thick spike 

enabled the im plantation of transducers into the spike itself, thus providing inform­

ation about the flow from within the separation region. Three equally distributed 

kulite pressure transducers were located on the afterbody face (see Fig. 1.11). The 

power spectra obtained from the pressure histories at these pressure taps showed 

that two wave modes were present (Fig. 1.12). The primary mode (even) occurred 

at the frequency of 2800 Hz and corresponded to the axial shock motion, which is 

basically the shock collapse and growth due to the pulsation. The secondary wave 

(odd) mode was a t a frequency of 1400 Hz and was associated with the shock asym­

metry. The high-speed interferometry used (44,000 frames/s) enabled the recording 

of four consecutive cycles, exhibiting the occurrence of asymmetry in every second 

cycle only. This was believed to be caused by a secondary separation and as a 

consequence, by a sudden pressure burst on one side of the spike only.
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Figure 1.11: Calarese and Hankey^s model [25].
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Figure 1,12: Power spectra of the pressure at kulite F l, located on the face of the 
afterbody [25].

Examining the pressure histories from the transducers located on the spike itself 

showed that these were in phase on one side of the spike, but out of phase on the 

opposite. Thus, the odd mode disturbance (i.e. the secondary separation) asso­

ciated with the asymmetric shock splitting generated two distinct counter-rotating 

waves about the spike, proceeding downstream towards the afterbody face (Fig. 1.13). 

These then modulated the primary mode at the cylinder face slightly on one side, 

but more strongly on the other, leading to the asymmetric disturbance. This new 

theory contradicted Demetriades’ idea of having one rotational wave only, complet­

ing a revolution for every two cycles, and was substantiated by analysing the wave 

out of phase angles on the frustrum face. This should be 120^ according to De­

metriades hypothesis (having 3 transducers), but it appeared to be 180° instead, 

supporting the existence of two counter rotating waves. However, the explanation
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of the shock system flapping from one side of the frustrum  to the other could still 

not be justified.

Figure 1.13: The form ation of two counter-rotating waves according to Calarese and 
Hankey [25].

Among the other interesting findings of Calarese and Hankey is tha t the above 

shock-asymmetry phenomenon did not occur at the longer spike lengths, including 

the hysteresis range. At these configurations, very strong pulsation was experienced, 

but the shock system remained perfectly symmetric. This observation was accom­

plished at an outward moving spike, and as the measurements were recorded during 

the retraction as well, these authors became the first to record an entire hysteresis 

loop (Fig. 1.14). This im portant information will be exploited later in the present 

study.

OUTWARD
  — 1— 1- 1 1 I .. I i * i

INWARP MOTION- . ...
T%r 20 W

Figure 1.14: Rms pressure - spike length diagram by Calarese and Hankey [25] 
showing the hysteresis phenomenon.

The above work, representing the last significant experimental-analytical study 

from the field of spiked body flows, concludes the review of the commonly access-
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able literature. However, a number of relevant investigations could be found in the 

literature of the former Soviet Union as well, which remained almost completely un­

referenced and unrevealed among the previously listed authors. Thus, these studies 

could not be considered as a chronologically integral part of the above review and 

therefore will be dealt with separately in the following.

Antonov et al. [26] in 1976 experimentally investigated the unsteady flows over 

axisymmetric spiked cylinders at freestream Mach numbers ranging from 2.10 to 

6.00 (with the Reynolds’ number varying between 7 x 10  ̂ and 1.6 x 10®, respect­

ively). The optical technique used was capable of recording up to 625,000 frames/s, 

which allowed the capture of an entire unsteady cycle instead of constructing a 

typical one from the frames from different cycles [21] [18]. Similarly to Kenworthy 

[18], a longitudinal mask located at D /4 diameter was used to measure the shock 

collapse/growth speeds. Using this information, a method to estim ate the pulsa­

tion Strouhal number was established, which, despite the numerous simplifications 

involved, gave a reasonable agreement with measurements. Another new idea was 

introduced here. For the spike lengths larger than the blunt body diameter {L > D) 

it was suggested th a t the spike length was be used as a characteristic dimension 

in the Strouhal number calculations. Previously, this param eter was based on the 

cylinder diameter instead, which was retained for T <  D only. This formulation, but 

for the entire range of the spike lengths, was also suggested later by Ericcson [22]. A 

very good insight was given into the pulsation driving mechanism. Using standard 

shock relations Antonov showed tha t the pressure behind the normal bow shock {pf 

in region C, Fig.1.15) is smaller than the one arising in region B, p f \  This means, 

tha t the mass influx into the separation region cannot originate from region C, but 

from region A, from behind the conical foreshock. This paricular point is in ac­

cordance with Panaras’ finding from the same time [23]. Furthermore, the pressure 

behind the expanded foreshock near the spike tip could be calculated and, having
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the shock collapse speed already determined, the location of the new and collapsing 

shock waves’ merge was obtained. They also experimented with the parameters 

affecting the frequency of the event. It was concluded th a t the freestream Mach 

number and the spike tip cone-angle, influencing the state of the boundary layer, 

had a significant influence on the above characteristics.

o

Figure 1.15: Explanation of the pulsation mode according to Antonov et ai [26].

As a continuation of this latest task, another investigation originating from the 

same authors [27] was performed. An im portant result of this study was tha t using 

the dual Strouhal number choice yielded a constant value for almost any afterbody 

half-cone angle. It is noteworthy th a t the latter was ranging from 45° up to 120° (a 

concave, forward facing conical cavity in the blunt body’s face).

The last major experimental study was performed by Zapriagaev and Mironov in 

1989 [28], also examining spiked cylinders at Mach 2.04 and Re 2.4 x 10® freestream. 

Contrary to the previous investigators, they suggested using the shock triple point 

(the intersection of the foreshock and the aftershock) location as a reference for 

determining the shock collapse/growth speed. Obtaining this position would nor­

mally be difficult in an experiment, but because of their high-speed camera capable 

of recording up to 1,000,000 frames/s this could be achieved by locating the triple 

point directly from the photographs. This information served as an input for the
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Strouhal number calculations, exhibiting the interesting result th a t the above para­

meter appeared to be independent of the spike length at larger values, while it be­

came dependent on it a t smaller ones. The boundary of this dependence was found 

to be L /D —1.25, which partly justifies Antonov’s dual Strouhal number choice, but 

also develops it further by indicating th a t the shift should be introduced later, bey­

ond L/D=1.00. The driving mechanism of pulsation was described similarly, as by 

Antonov [26] and Panaras [23], while for the observed shock asymmetries Calarese 

and Hankey’s explanation [25] was adopted. The new quantitative estimate on the 

pressure amplitude, based on standard shock wave relations, was found to be in fair 

agreement with the experiment. Finally, they established a calculation procedure to 

determine the mass influx rate into the separation region by taking a cavity hollow 

as a model (Fig. 1.16).

%
%%

Figure 1.16: Cavity hollow model according to Zapraigaev and Mironov [28], serving 
as a basis for calculating the Strouhal numbers of unsteady spiked body flows.

Based on this result, the character of the driving mechanism could be judged, 

which they described either as acoustic oscillation (for ô < 0.1) or as a non-mass 

conserving pulsation (for 6 > 0.56, where ô = j ,  see Fig.1.16). This criterion, 

however, left plenty of space for regimes in between, termed as transient instabilities.

1.1.3 Spiked b od ies and C F D

The references cited above are based on experimental or analytical methods only. 

However, a number of numerical solutions have also been attem pted, which will be
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reviewed in the present section.

The very first computational work from the field of unsteady spiked body flows 

originated from Shang and Hankey [29], who took Calarese and Hankey’s exper­

imental test case [25] as a basis. The 3-D Navier-Stokes equations were solved 

through an explicit, finite difference method. McCormack’s predictor-corrector 

scheme was employed with 2nd order accuracy in space and time. The numer­

ical evaluations were performed on a STAR 100 computer with a vectorised code 

and the results were found to be in a reasonable agreement with the experiment, 

both in terms of the pressure amplitude and the pulsation frequency. However, no 

further information about the flowfield was obtained from these solutions.

Another early work, from Yoshikawa in 1982 [16], represents probably the best 

exploitation of the opportunities offered by a numerical approach so far. He modelled 

the transient phenomena occurring at an impulsively started spiked body, corres­

ponding for example to a space shuttle launch. First, based on Sears et al.’s earlier 

work on the separation zones near moving walls [30], Yoshikawa built up the four 

possible streamline patterns, which could take place in a separated flow involving 

the upstream / downstream movement of the separation point (Fig.1.17).

The characteristic points of the flowfield, such as the separation point (S), reat­

tachment point (R), inflation point (I) and a je t injection point (J) were located in 

these figures. Then, the same points were found in the numerical results as well, 

identified on the basis of the zero body vorticity (Fig. 1.18). The computations were 

achieved by applying an explicit, time-dependent method to resolve the compress­

ible, Reynolds’ averaged Navier-Stokes equations, which were discretised by second 

order accuracy in space and time.

These solutions showed, tha t a secondary separation is indeed present at an 

upstream moving separation bubble (Fig.l.lSe), corresponding to flow type I ’ in 

Fig. 1.17. This is a very im portant finding as it supports Calarese and Hankey’s
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Figure 1.17: Streamline patterns of separated flows [16]. Flow from left to right. 
I  - fixed separation point, I I  - upstream moving separation point, I I I  - downstream 
moving separation point, F  - upstream moving separation point generated by a jet 
injection at point J.

hypothesis on the origin of 3-D effects, associated with the existence of second­

ary separation. The wall pressure diagrams, used alongside the vorticity diagrams 

and the density contour plots enabled the identification of the je t formation at the 

foreshock-aftershock intersection, which Yoshikawa referred to as a lambda shock 

structure. Thus, the numerically simulated transient flow appeared to feature the 

same key elements as the unsteady pulsating flow arising over spiked bodies.

Mikhail’s primary aim was to investigate the drag reduction mechanism over
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Figure 1.18: Density contours, wall-pressures and body-vorticities by Yoshikawa [16].

a spike-nosed projectile equipped with a vortex ring [31] a t Mach numbers ran­

ging between 1.90 and 3.50. The method used incorporated the solution of the 

compressible, Navier-Stokes equations involving a Baldwin-Lomax turbulent model. 

A time-dependent McCormack’s scheme was used for discretisation, and the cal­

culations were performed on a CRAY X-M P/48 supercomputer. As a secondary 

observation of this work, unsteady flows were reported to occur in the Mach 1.90 

freestream case. Although Mikhail termed this unsteadiness as ’’buzz” and determ­

ined its frequency as 5333 Hz, the instability appears to be an oscillation, of which 

no further explanation is given in tha t reference.

Another computational solution on Calarese and Hankey’s case [25] was per­

formed by Ingram et al. in 1993 [32]. They employed a time accurate, explicit 

multi-stage Runge K utta  method to solve the full Navier-Stokes equations in an 

axisymmetric manner. A modified Advective Upwind Split Method (AUSM) scheme
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was used to express the inviscid flux vectors, with higher order accuracy being ob­

tained through MUSCL extrapolation. Second order accuracy was achieved in both 

space and time. The main aim of this study was, however, to test a new solution- 

adaptive grid algorithm, extended to multi-block domains. The results exhibited 

excellent shock-resolution, showing Panaras’ je t formation as well as the existence 

of the secondary separation during the upstream movement of the separation point 

(Fig. 1.19). This further supported the theories of Calarese and Hankey as well as of 

Yoshikawa. However, apart from a brief description of the flow unsteadiness, these 

excellent results remained unexplored.

Block
Boundaries

Figure 1.19; Ingram ’s computation of a pulsating flow based on a solution-adaptive 
grid alghoritm [32].

Yamauchi et al. [33] investigated numerically the drag reduction mechanism 

on spiked hemispheres. The thin layer compressible Navier-Stokes equations were 

resolved by an LU-ADI time integration scheme in both axisymmetric and three 

dimensional manner. This latter case enabled the analysis of the spike’s efleet on 

the drag reduction at incidence. The freestream Mach numbers varied between 2.05 

and 6.80 (Re=0.14 x 10®), and despite performing steady calculations, instabilities
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occurred for L /D =0,5 at all speeds. Again, as this was not the prim ary aim of this 

study, no further analysis or description was given on this phenomenon.

The few numerical studies available from the former Soviet literature will again 

be discussed separately.

Myshenkov [34] performed computations of spiked cylinders exposed to a range 

of Mach numbers up to Mach 3.00 with spike lengths varying from 1.00 to 7.00.

A finite difference method was used to discretise the axisymmetric Navier-Stokes 

equations, applied to structured meshes consisting of 2500 points. The study aimed 

to investigate the drag reduction effects, during which oscillations were found at 

spike lengths between 2 and 3, without any detailed description.

Paskenov et al. [35] were also interested in investigating the drag reduction 

mechanism, considering freestream Mach numbers of 2.00 and 6.00 at fairly low 

Reynolds’ numbers (100 and 500, respectively). Contrary to the experiments, they 

found steady flow to occur at the given geometries, which they attem pted to explain 

by the extremely low Reynold numbers used. From a numerical point of view, a 

similar method to the one in [34] was used, with multi-block extensions.

Finally, Karlowarski et al. [39] simulated Calarese and Hankey’s experiment 

[25], with the intention of dealing with the drag reductions only. The axisymmetric 

unsteady Euler equations were resolved by McCormack’s predictor-corrector method 

employing so-called “monotonisators” , representing numerical viscosity. The freestream 

Mach number varied between 3.00 and 8.00 while the spike length ranged from 0.25 

to 1.00. It was observed, tha t in the absence of the “monotonisators” unsteady 

flow occurred in the separation region, indicating tha t numerical damping may 

significantly influence the solutions. Again, the unsteady flow features remained 

unexplored.
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1.2 A im s and objectives

It is apparent from the above review th a t despite the considerable number of invest­

igations unsteady spiked body flows are not entirely understood. Hypotheses were 

built up on the driving mechanisms of pulsation and oscillation modes, but their 

satisfactory demonstration has not been accomplished. Also, shock asymmetry was 

observed to occur in axisymmetric flow conditions, and an explanation on their oc­

currence and origin was suggested. However, it is not readily apparent whether this 

eflfect is caused by the likely imperfect axisymmetry in the experiment or is indeed 

a natural physical element of the flow behaviour. The hysteresis phenomenon in the 

onset of the different flow modes was also reported, but remained unexplained. The 

transition from one flow mode to another is believed to happen abruptly, but this 

has not been observed thus far.

The reasons for the uncertainities lie primarily in the inherent limitations of the 

experimental techniques, yielding difficulties in providing detailed information from 

inside such a complex, time-dependent flowfield. Thus, the main flow features, on 

which the various hypotheses are based, were obtained by an indirect deduction 

from the visual images, offering qualitative information only, and also from the data 

recorded on the model surface. Analytical methods have also been attem pted, but 

they involved considerable simplification and therefore might be inadequate.

Computational Fluid Dynamics (CFD), on the other hand, can offer detailed 

insight into any part of the flowfield without interfering with the physics of the flow. 

It can also offer an arbitrary number of frames from within one cycle, which is an 

indisputable advantage at these high-frequency instabilities. The literature survey 

showed tha t although there were a limited number of CFD approaches performed in 

the past, the opportunities provided by a numerical solution remained unexploited.

Therefore, the purpose of the present study is to apply Com putational Fluid Dy­
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namics as a tool to enhance the understanding of the physics of unsteady spiked body 

flows. This will be accomplished by generating numerical results for a selected num­

ber of test cases, which will then be used to examine the existing hypotheses as well 

as for highlighting phenomena not observed from experiment. The numerical model­

ling will be restricted to axisymmetric flow conditions only, so no three-dimensional 

phenomena will be investigated in the present work.

In the following chapter the numerical method is described and verified. In 

Chapter 3, the CFD results are compared with the experimental data  both qualitat­

ively and quantitatively. Extensive validation allows then to proceed to the detailed 

analysis of the numerical results, which is provided in Chapter 4. This consists of 

three main parts; in the first one, the oscillation driving mechanism is investigated, 

in the second one, the driving mechanism of the pulsation mode is analysed, and in 

the third one the results of the hysteresis simulation are exploited to enhance the 

understanding of this phenomenon. Finally, conclusions are drawn in Chapter 5.



C hapter 2 

N um erical approach

2.1 Test cases

The cases examined in the present work were selected from those studied in the 

measurements of Kenworthy [18], which were carried out at the von Karman Insti­

tu te  for Fluid Dynamics in Belgium between 1974 and 1977. The results of these 

measurements are available for a series of spiked cones and spiked cylinders in Mach 

2.21 and Mach 6.00 flows. The present work will consider only a selection from these, 

listed in Table 2.1. The main intention behind this choice is to provide numerical 

results for the configurations well suited for a detailed analysis of the phenomenon of 

interest. Thus, instead of aiming to cover a wide range of geometries and flow condi­

tions, only the test cases describing best the oscillation, pulsation and the hysteresis 

phenomenon were selected.

Case L/D Mach number R&D
oscillation 2.0 6.00 0.13 million
pulsation 1.0 2.21 0.12 million

1.0 6.00 0.13 million
hysteresis 1.25-2.40 2.21 0.12 million

Table 2.1: Test cases.

The model geometry in each case was a spiked forward facing cylinder, as illus­

trated  in Fig. 2.1. The afterbody diameter in the experiment was 46 [mm], and this 

parameter will be used as the length scale in the numerical approach. The spike’s

26
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diameter is 6.5 % of this value and is ended in a 30° angle cone. The spike length 

could be continuously changed in the experiment at a speed of 10[mm/s]. The model 

setup for these calculations is shown in Fig. 2.1. A discussion on the spike speeds 

chosen for the numerical method as well as on the range of spike lengths for the 

hysteresis simulation will be given in Chapter 3.

Pressure probe point

D/2------

L minimum

Figure 2.1: Setup for the simulation of the hysteresis phenomenon.

There were two pressure transducers placed at a diameter of D /2 on the face of 

the afterbody and the pressure was recorded at these points. To enable comparison 

with the experiments, the pressure history is monitored at one of these points in the 

numerical calculations.

Finally, in accordance with the experiment, the flow is modelled as axisymmetric, 

at zero angle of incidence. The pulsation flow mode will be simulated at both 

freestream Mach numbers of 2.21 and 6.00. Since the oscillation is typical of high 

Mach number freestreams, this flow mode is examined at Mach 6.00 freestream 

only. The hysteresis phenomenon is simulated at the Mach number of 2.21. The 

flow conditions are shown in Table 2.1, with the Reynolds’ numbers based on the 

blunt body diameter.

2.2 Grid generation

Two-dimensional, structured, multiblock grids were generated for the selected test 

cases (Table 2.1). Because of the axisymmetry of the problem, it was sufficient to
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model one half of the body only. The main features of the grids used are given in 

Table 2.2, while the grid topologies are shown in Figs. 2.4a-e.

Grid L/D [1] No. of 
blocks

No. of 
cells

First spacing 
at the wall [1]

Application

01 2.0 7 140,000 0.00005 Oscillation at M—6.00
PI 1.0 5 62,667 0.00100 Pulsation at M~2.21,6.00
P2 1.0 9 160,000 0.00015 Pulsation at M=2.21
HI 1.25 7 140,000 0.00050 Hysteresis lower boundary
H2 2.40 7 140,000 0.00050 Hysteresis upper boundary

Table 2.2: The basic grid parameters.

Starting with the simplest grid, P I (Fig. 2.4) was created to simulate pulsation 

at both Mach 2.21 and Mach 6.00 freestreams. The mesh was structured into five 

blocks as shown in Fig. 2.2, from which block 1 is a relatively short one (with 

the horizontal dimension of O .IL/D ), incorporating 21 cells in the x direction, and 

block 2 covers the entire spike length. Although this grid proved to be well suited for 

constant spike length calculations, it had to be altered for a hysteresis simulation.

Figure 2.2: Block structure fo r grid PI.

For these calculations, the singularity problem arising at the spike tip appeared 

to be an im portant issue. In order to overcome this problem, a longer (horizontal 

dimension of 0.3L/D ) and more dense (50 cells in the x  direction, clustered heavily 

near the spike tip) block 1 was employed in grids HI and H2 (Figs. 2.4d,e), intended 

for moving spike calculations. Furthermore, the previous block 2 was split into
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two separate blocks, 2 and 3 (Fig. 2.3), to enable the modelling of a continuously 

changing spike length. If this was not done, then the grid around the spike cone 

would also change during the deforming mesh calculation (described in section A.7). 

Additionally, the newly created block 3 covering the spike (Fig. 2.3) was designed to 

accommodate more cells in the x direction, enabling a good grid resolution at both 

the minimum [ L / D — 1.25) and maximum ( L / D  =  2.40) spike lengths, representing 

the endpoints of the hysteresis loop. This means, th a t the blocks of HI and H2 are 

identical, apart from regions 3 and 6, which were created from the shorter version 

by a proportional stretching to the appropriate length.

Grid 01  (Figs. 2.4a) is analogous to HI and H2. Finally, a special fine grid, P2 

(Fig. 2.4c) was generated to enable a detailed analysis of the pulsation flow mode. 

The unique feature of this grid is the introduction of a fine resolution block in the 

region just upstream  of the afterbody face (the dashed line in Fig. 2.3), where the 

most im portant elements of the pulsation flow mode are expected to occur. Hence, 

a locally refined grid is used in the region of interest.
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Figure 2.3: Block structure for grids 01, HI, H2 and P2.
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Figure 2.4: Grid topologies,  showing every  second gr id l ine  only.



31

2
1.8

16
14
12

1

08

0 6

04

0 2

0

m c) GRID P2

1.5 -

0.5 -

-2
x[1]

m
d)GRIDH1

2 -,

1.5 m
e) GRID H2

Figure 2.4: (cont . )  Grid  topologies,  showing ev ery  second gr id l ine  only.
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2.3 N um erical m ethod

The PMB2D code was used for the numerical calculations. This is a generic CFD 

code developed at the University of Glasgow and has been used successfully to model 

steady and unsteady flows for a range of aerodynamic problems, such as aerofoils, 

cavities, nozzles and jets at both subsonic, transonic and supersonic speeds. A full 

description of the method is provided in Appendix A, while the most im portant 

features will be highlighted below.

The PMB2D code employs a cell-centered, finite volume discretisation for the 

solution of the Navier-Stokes equations. The convective terms are discretised using 

Osher’s or Roe’s scheme. All calculations in the present work were achieved by using 

Roe’s scheme since this proved to be better suited for hypersonic freestreams. A 

modification to this method was introduced by applying Marten’s entropy fix [50] to 

avoid the occurrence of non-physical expansion shocks. MUSGL variable extrapola­

tion is used to achieve 2nd order spatial accuracy. The diffusive terms are discretised 

by central differencing. 2nd order time-accuracy is obtained by employing an im­

plicit unfactored dual-time method. The linear system arising at each implicit time 

step is solved by a Generalised Conjugate Gradient method, using BILU factorisa­

tion as a preconditioner. An im portant feature of the code is the use of approximate 

Jacobian matrices for the left hand side of the linear system. The k — u) model is 

also implemented, although not used in the present work U The code employs a 

structured, multi-block system. A deforming mesh algorithm is used to treat the 

simulation of moving geometry problems. This feature was specifically modified to 

facilitate moving spike configurations.

 ̂An explanation of this choice will be given later, in section 2.4
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2.4 Verification o f th e  num erical m eth od

The purpose of the verification is to ensure tha t the CFD results used for the valid­

ation and analysis are the correct solutions of the Navier-Stokes equations, i.e. they 

are independent of the quantitative parameters of the spatial and temporal discret­

isations. The spatial discretisation is tested in a grid dependence analysis whereas 

the temporal one in a real time step size dependence analysis. The parameter to 

be compared in these tests is the pressure history a t the probe point. The length 

of the calculations was chosen to cover at least one properly developed cycle of the 

particular flow mode.

In the case of the hysteresis calculations, the tests were carried out for the min­

imum and maximum spike lengths only. It was assumed, th a t if these end-point 

cases of the hysteresis loop yield converged solutions, then any intermediate spike 

length should also.

Finally, all results presented were achieved by solving the Navier-Stokes equa­

tions, i.e. only laminar flow was assumed. This choice was supported by a number 

of arguments. First, the pulsation driving mechanism is expected to be inviscid in 

nature [18]. Hence, the simulation of this flow mode should be independent of the 

consideration of turbulence. Secondly, although the mechanism of the oscillation 

mode is expected to be viscous in nature [18], it is likely to be dominated by the 

shear layer’s movement. As will be seen later, in Chapter 4.2, the shear layer will 

emanate almost always from the vicinity of the spike tip, where the boundary layer 

is most likely to be laminar. Thus, the shear layer should also be laminar at least 

in its upstream part [18]. Thirdly, the Reynolds’ numbers considered in the present 

work appear to be middle range values, at which turbulence should not appear as a 

dominant feature. Thus, considering laminar simulations for the spiked body flows 

of the present study seem to be an acceptable approach.
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2.4.1 G rid d ep en d en ce te s ts

Three levels of grid density were considered in the grid dependence tests. A medium 

and a coarse grid were extracted from the original fine meshes (Table 2.2) by taking 

every second and every fourth point in each direction, respectively. Because of the 

different transients experienced on the various grid levels, the fine and the coarse 

grid histories were shifted along the time abscissa to allow easy comparison between 

the curves.

The results for the six test cases are shown in Fig.2.5 in term s of non-dimensionalised 

pressure p[l] against non-dimensional time t[l] (see section A. 1.1 for the definition of 

the non-dimensional terms). It can be seen, that in the pulsation cases (Fig.2.5b,c,d) 

the three grid levels yield comparable time periods and pressure amplitudes. How­

ever, the coarse grids miss some im portant features, such as the existence of a 

pressure plateau (Fig.2.5b), the sharp pressure minima (Fig.2.5b,d) and secondary 

peaks on the ascending and descending parts of the curves (Fig.2.5c). The medium 

and the fine grid results show quite good similarity in these terms and thus the 

medium grids appear as sufficient for the further evaluations.

The pressure histories obtained on grid 01 (Fig.2.5a) exhibit a different situation. 

Firstly, the medium grid history settles to a periodic behaviour (beyond time t —60) 

after a substantial initial transient. Thus, only the last four cycles of this curve 

will be considered for the comparisons. The time periods of all three traces appear 

to agree well, whereas the pressure amplitudes on the coarse grid are much smaller 

than on the medium and fine grids. These latter ones exhibit similarities in the 

graph shapes as well (characterised by a double peak at the pressure maxima), and 

thus the medium grid can be selected for further analysis.

Similar conclusions can be drawn for the HI grid (Fig.2.5e); the coarse grid 

underpredicts the pressure amplitude and the frequency whilst the medium grid 

again is sufficient for further use.



35

0.4
co arse  grid 

medium grid 
fine grid0.35

I 0.3

a. 0.25
■gI 0.2
.9
g 0.15

I 0.1
I

0.05

1000 50
n o n -d im en s io n a lised  tim e [1 )

a) Grid 01 at Mach 6.00

c o a rs e  grid 
m edium  grid 

line grid

0.8
2§ 0,6

I
■5 0.4

0.2

0 10 20
n o n -d im en s io n a lised  t im e [ l ]

d) Grid P2 at Mach 2.21

c o a rse  grid —  
m edium  grid ...........- c o a rs e  grid - 

m edium  grid -  
" a fine grid •

1,2

1

0.8
0.8

0.6
0.6

0.4 0.4

0.2 0.2

0
25 305 10 15 20 0 105 15 20

non-dim ensionalised time [1 ]

b) Grid P1 at Mach 2.21
n o n -d im en s io n a lised  tim e [1 j

e) Grid HI at Mach 2.21

non-d im ensionalised  lime [1]

c) Grid PI at Mach 6.00

2.5
c o a rse  grid 

m edium  grid 
fine grid

E
I

20 25 300 5 10 15

1.4
c o a rs e  grid 

m edium  grid 
line grid

£3
e

0.8

2
o  0 .6

I ...
g

0.2

0 5 10 15 20
n o n -d im en s io n a lised  tim e [1]

f) Grid H2 at Mach 2.21

Figure 2.5: Grid dependence tes t  results.



36

However, it should be noted th a t the HI grid results should be examined in 

conjuction with the H2 grid ones, since these end-point grids will appear within one 

single deforming mesh calculation. Thus, the resolution of HI and H2 are linked. 

The coarse grid for H2 predicts an almost steady flow (Fig.2.5f), the medium some 

small, irregular unsteadiness, whilst the fine one develops a clear unsteadiness char­

acterised by pressure amplitudes of the order of unity. Hence, grid H2 results are grid 

dependent, which is most likely due to the large stretching of the cells in the region 

above the spike (blocks 3 and 6 in Fig.2.3). Thus, the formerly medium classified 

resolution at grid HI becomes an effectively coarse resolution (in the longitudinal 

sense) at H2.

This problem could be avoided in two ways. The first is to use a finer grid for the 

entire simulation of the moving spike, which, however, would lead to unfeasibly costly 

calculations. The second option is to introduce a new deforming mesh technique, 

capable of dealing with very large grid stretchings. This would incorporate the 

addition of new gridlines during the calculation once a prescribed grid spacing is 

exceeded.

Since any successful CFD prediction of the hysteresis phenomenon would be a 

novel achievement in the field of spiked body flows, the present work will be restricted 

to only the qualitative prediction of the upper boundary of the hysteresis range by 

applying the medium grid for the entire range of the moving spike calculations. 

Thus, the lower boundary of this phenomenon (geometries in the vicinity of HI) are 

likely to be predicted correctly both qualitatively and quantitatively, whereas the 

upper boundary (geometries in the vicinity of H2) qualitatively only. It is believed, 

th a t these simulations can provide new and useful input into the investigation of 

hysteresis phenomenon.
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2.4 .2  R eal tim e step  size d ep en d en ce te s ts

Initially, the maximum values of the non-dimensional real time step producing result 

on the medium grids were between 0.004-0.05, depending on the particular case. 

These values were decreased by factors of 5 and 10 to examine the effect on the 

results. The comparison for the various time steps is apparent from Fig.2.6. It can 

be seen th a t the smallest time steps have the general effect of shifting the curves 

slightly forward along the time abscissa. However, the displacement is not significant 

and hence the largest allowable time steps can be considered for further analyses. 

The only exception is for the HI and H2 grids (Fig,2.6e,f), where the pressure 

amplitudes are reduced by using the largest time step size. Thus, in these two latter 

cases the middle time step (0.01) is used for the respective hysteresis simulations.

2.4 .3  Sum m ary

It has been shown via grid dependence and real time step size dependence tests, tha t 

the medium grid simulations achieved at the maximum allowable real time step can 

be used for further analyses. The only exception regards the hysteresis calculations 

(grids HI and H2), where the use of a finer time step proved to be necessary. It is 

argued, tha t despite the grid dependent solutions in these cases, the medium grid 

will be used for the moving spike simulations. This should allow qualitatively and 

quantitatively correct solutions near the lower boundary of the hysteresis range, and 

only a qualitatively correct one at the upper boundary.

Regarding the runtimes on medium grids, the Mach 2.21 calculations required 

typically 5-7 days on a Pentium Pro 200 MHz processor. The Mach 6.00 pulsation, 

performed on a less dense grid, needed only 2 days, while the longest computation 

of all, the Mach 6.00 oscillation case, required 20 days.
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C hapter 3 

R esu lts validation

Comparison of the numerical and experimental results will be provided in the present 

chapter. First, the fixed spike length cases will be examined in terms of pressure 

amplitude, Strouhal number, characteristic shape of the pressure trace and the shock 

envelope history. Then, the moving spike length results will be evaluated in terms 

of the resultant hysteresis range.

3.1 F ixed  spike length  configurations

3.1.1 D a ta  redu ction

Since the experimental results for the pressure amplitudes and the frequencies are 

presented in time averaged form in the reference work [18], the numerical pressure 

histories will also be reduced via this technique. The use of time-averaging in the 

experiment was necessitated by the irregular cycles of the pressure traces.

For the frequency, the time-averaging has been done by measuring the time 

required for a known number of cycles and dividing this time by the number of 

cycles:

N

T =  = ^  (3.1)
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Then, using this value, the Strouhal number of the event can be determined as:

I ' D  D
S

Ur T  • Ur
(3.2)

Since both the blunt body diameter {D) and the freestream velocity (uoo) are non- 

dimensionalised in the numerical method, the Strouhal number from the CFD results 

can be obtained directly as:

(3.3)

The amplitudes, on the other hand, were processed by measuring the vertical dis­

tance from the first discernible trough to the adjacent peak, then the vertical distance 

from the peak to the next trough and so on as illustrated in Fig. 3.1. These distances 

were summed and divided by the to tal number of measurements to obtain the mean 

value of the amplitude:

Ap

N
E A p *

N
(3.4)

Figure 3.1: Time-averaging data reduction.

3.1 .2  Q u alita tive  com parison

Although the subsequent cycles were not repeated identically in the experiment, a 

general characteristic cycle shape could be recognised for each configuration. Thus, a 

cycle representative of this characteristic shape will also be provided in the pressure 

traces to enable qualitative comparison.
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Furthermore, a set of shadowgraphs depicting the oscillation/ pulsation cycle was 

also available for the Mach 6.00 experiment [18]. Numerically obtained flow visu­

alisation frames will be correlated with these photographs to enable comprehensive 

validation of the CFD results. It has to be noted, however, th a t each of the pho­

tographs was taken from different cycles, since the frequency of the photographic 

equipment was not capable of matching the frequency of the unsteady events. The 

time of taking the photographs was recorded on a sample pressure history and using 

this information a typical sequence within a cycle was constructed [18]. CFD, on the 

other hand, allowed flow visualisation frames to be obtained within one particular 

cycle, which feature was utilised in the present work.

3.1 .3  O scilla tion  at M ach 6.00

The oscillation mode developed at this freestream was preceeded by a quite long 

initial transient (time 0-60 in Fig. 3.2). Therefore, only the last 4 cycles were 

considered for the time-averaging process, which, along with a representative cycle 

from the experiment, is shown in Fig. 3.3.

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
0 20 40 80 10060

non-dim ensional tim e t[1]

Figure 3.2: The entire pressure history at the cylinder face (d=D/2) for the Mach 
6.00 oscillation case (L/D=2.00).
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Figure 3.3; Detail of the pressure history at the cylinder face (d=D/2) for the Mach 
6.00 oscillation case (L/D=2.00). The non-dimensional value of pt2 is 0.9288 [1].

Table 3.1: Comparison of time averaged characteristics, oscillation at Mach 6.00 
freestream (L/D  =  2.00).

experim ent
[18] C FD

A p  [1 ] 0.0745 0.2693

S 'i l ] 0.1079 0.0983

It can be seen from this graph and also from Table 3.1, tha t although the pressure 

amplitude of the event is overpredicted by the simulation, it can be still found of the 

order of 0.1, which is typical of oscillation. The Strouhal numbers, on the other hand, 

appear to be in good agreement with the measured data. The characteristic feature 

of the pressure trace, the existence of a double peak, was also picked up by the CFD 

simulation. The magnitude of the discrepancy between the pressure amplitudes 

may question the validity of the numerical results. However, as recently revealed by 

Kenworthy [36], because of the possible errors in the experiment, the amplitude of 

the pressure fluctuations should be treated more qualitatively than  quantitatively. 

This was argued by the fact, th a t in the experiment the pressure transducers were 

held in a cavity, which was likely to cause resonance and amplitude modification. 

Thus, the correct prediction of the Strouhal numbers and capturing the char acte-
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Figure 3.4: Comparison of the shadowgraphs [18] and the density contour plots for 
the oscillation at the Mach 6.00 freestream (L/D=2.00).
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Figure 3.4: (cont.) Comparison of the shadowraphs [18] and the density contour 
plots for the oscillation at the Mach 6.00 freestream (L/D=2.00).

ristic shape of the pressure trace will appear to be far more im portant than the agree­

ment of the amplitudes. Another factor contributing to the disagreement could be 

the difficulty of m aintaining the axisymmetry at this long spike length in the exper­

iment. These arguments are further substantiated by comparing the experimental 

and the numerical shock envelope histories (Fig. 3.4), showing good agreement.

Note, th a t the CFD results are presented in terms of density isolines, since these 

offer the best comparison to the density gradients captured on the shadowgraphs. 

The time positioning of the CFD frames is illustrated in the pressure trace shown 

in Fig. 3.3.

As it is evident from these figures, the numerically obtained shock envelopes 

are in very good agreement with the experimental ones, indicating, tha t the CFD 

prediction appears to be indeed well representative.
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3 .1 .4  P u lsa tio n  at M ach 2.21

Results obtained on the P2 grid are considered. The pressure history for this case 

is shown in Fig. 3.5, and the evaluation of the time-averaged characteristics, consid­

ering the last three cycles only, is provided in Table 3.2. It can be seen from these 

results, th a t both  the pressure amplitude and the frequency of the event are well 

predicted by the numerical method. Also, the characteristic shape of the pressure 

trace, featuring a pressure plateau, compares well with the measured one.
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Figure 3.5: Pressure history at the cylinder face (d=D/2) for the Mach 2.21 pulsation 
case (L/D=1.00).

Table 3.2: Comparison of time averaged characteristics, pulsation at Mach 2.21 
freestream (L/D  =  1.00).

experim ent
[18] C FD

A p [1] 1.1909 1.1136
S [ l ] 0.1725 0.1727

A set of selected frames (the time-positioning is shown in Fig. 3.5) also exhibits 

the typical pulsation features (Fig. 3.6). These are the inflation of the foreshock to 

a bow wave and its consequent downstream convection along the full length of the 

spike. A comparison with the shadowgraphs is not available in this case.
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a) point A b) point B c) point C

d) point D e) point E f) point F

Figure 3.6: Pulsation at the Mach 2.21 freestream. Mach isolines for the frames 
selected from Fig. 3.5.

3.1 .5  P u lsa tio n  at M ach 6.00

The pressure history shown in Fig. 3.7 indicates, tha t the first three cycles can 

be considered as the initial transient, and were therefore excluded from the time- 

averaging. The results of this evaluation are shown in Fig. 3.3. It can be seen, that 

the pressure amplitudes are once again overpredicted by the numerical method, 

whereas the Strouhal number agrees very well with the experiment. Also, the shape 

of the pressure trace seems to feature the typical characteristic of the pulsation at 

this freestream, i.e. a sharp peak instead of the pressure plateau seen in the Mach 

2.21 case.

Table 3.3: Comparison of time averaged characteristics, pulsation at Mach 6.00 
freestream (L/D  =  1.00).

experim ent
[18] C FD

A p [1] 1.0378 1.6768
5 [1 ] 0.1722 0.1800
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Figure 3.7: Pressure history at the cylinder face (d=D/2) for the Mach 6,00 pulsation 
case (L/D=1.00).

The comparison of the experimental and numerical shock envelope histories 

(Fig. 3.8) show an excellent agreement between the two sets of results, indicat­

ing tha t despite the discrepancy in the pressure amplitudes (for which the same 

argument would be true as for the Mach 6.00 oscillation case) the CFD predictions 

are realistic.

Finally, a comment on the point-timing of the shadowgraphs is now made. It was 

observed, th a t in the experiment the minimum pressure was recorded when the col­

lapsing shock passed the half-spike length (Fig. 3.8h), whereas computation predicts 

this to happen slightly earlier, approximately at the quarter spike length. Also, the 

experiment reports the pressure maximum at the time instant when the separation 

point reaches the spike tip (Fig. 3.8c), while the computational results show this 

to happen earlier. Since the above processes take place very rapidly (the pulsation 

frequency at the Mach 6.00 freestream is around 7,600 Hz), the above deviations in 

timing could be caused by errors due to the complexity of synchronisation in the 

experiment.
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Figure 3.8: Comparison of the shadowgraphs [18] and the density contour plots for 
the pulsation at the Mach 6.00 freestream (L/D=1.00).
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Figure 3.8: (cont.) Comparison of the shadowgraphs [18] and the density contour 
plots for the pulsation at the Mach 6.00 freestream (L/D=1.00).

3.1 .6  Sum m ary

It has been shown by comparing the numerical and the experimental results tha t the 

fixed spike length results agreed well with the measurements. The frequency of the 

event, the characteristic shape of the pressure trace and the shock envelope histories 

were found in excellent agreement, whereas the pressure amplitudes appeared to 

be overpredicted in the Mach 6.00 cases. However, it was argued tha t due to the 

possible errors in the pressure measurement adm itted by the experiment, the correct 

prediction of the frequency of the event should be treated as far more im portant than 

the agreement of the amplitudes. Thus, the CFD results will be considered as valid 

simulations of the examined flows, and are judged as suited for further analyis.
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3.2 C ontinuously changing spike len gth  configur­
ations

3.2 .1  T h e exp erim en ta l resu lts

The results for the hysteresis phenomenon are usually expressed in graphs of pressure 

amplitude versus spike length. Such experimental results were reproduced in Fig. 3.9 

for the test case to be considered in the numerical simulations (Tab. 2.1). The graph 

was obtained at the continuous retraction of the spike with a speed of Vsp = 10[mm/s] 

[18]. (Note, th a t the pressure amplitudes are expressed in tim e averaged sense.)

0.5 1 1,5
Spike Length L/D [1]

Figure 3.9: Experimental time averaged non-dimensional pressure amplitudes plotted 
against spike length at continuous inward motion of the spike with the speed of
ŝp ■ 10[mm/s]. Spiked cylinder at freestream Mach number of 2.21. (Ref.[18]).

It can be seen from this graph, tha t the oscillation mode, characterised by pres­

sure amplitudes of the order of 0.1, changes abruptly to the pulsation mode at 

around L/D  == 1.29, displayed by amplitudes of order 1.0. This is basically half 

of the hysteresis loop, corresponding to the inward motion of the spike. Unfortu­

nately, there is no such graph available from the experiment for the outward moving 

part. It is mentioned only tha t the reverse change occurred a t an approximately 

10-15 % larger spike length than above [18]. This would correspond to an L /D  

around 1.42 ~  1,48. In order to assess this value more precisely, comparison with
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another experiment is made.

Calarese and Hankey [25], although using a different model geometry but com­

parable flow conditions (M  =  3.0, =  0.39 x 10^), did record the pressures

for the outward motion of the spike as well. They found the upper boundary of 

the hysteresis range ( P /0  transition), to be 19% larger than at the inward motion 

(see Fig. 1.14). This suggests, th a t the 15% spike length range from Kenworthy's 

measurement is a more likely value for the particular configuration, and hence in 

the following the value of L jD  =  1.48 will be referred to as the experimental P / 0  

boundary of the hysteresis phenomenon.

The two end-points of the numerical hysteresis loop (see Table 2.1) were selected 

on the basis of this information. The minimum spike length, LjDrain — 125, lies just 

below the experimental value 1.29. The maximum one, L/Dmax = 2.40, however, is 

well beyond the corresponding parameter from the measurement, 1.48. This choice 

was made following the resulting larger range of hysteresis in preliminary CFD 

simulations. An explanation for this might be connected with the imposed axial 

symmetry for the calculations, at which the pulsation can be maintained longer 

than in the experiment.

3.2 .2  Spike sp eed s

The choice of the spike speed in the numerical method is im portant. First, it is 

difficult to perform the same number of cycles as in the experiment during a desired 

spike length change. Given the 10[mm/s] spike speed in the experiment and the 

2000[Hz] frequency of the pulsation mode (the model diameter was D*—46[mm] in 

the experiment), there should be a to tal of 10,000 cycles performed for a spike length 

change between L/D=1.25 and 2.40. This would lead to a very long computation. 

Therefore a much faster motion of the spike needs to be imposed in the numerical 

simulation.
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Secondly, the movement of the spike in the measurement appears to be quasi­

steady when related to the flow unsteadiness. Only this im portant property has to 

be maintained in the numerical method to get a valid simulation of the experiment. 

In fact, it is suggested that the maximum spike speed, at which the transition and 

the hysteresis effect occur as a quasi-steady phenomenon is much higher than the 

one used in the measurements. The choice of this speed is believed not to be based 

on the criterion of quasi-steadiness, but rather on the limitations of the experimental 

equipment.

Therefore, two spike speeds will be considered and tested in the numerical 

method. The values are selected as 0.008 and 0.004, which are expressed as

A {L /D )
V s p -  ^ ■

Here A.{L/D) represents the dimensionless spike length change (1.15 in the present 

case) and t the non-dimensional real time used by the numerical method. Express­

ing the experimental 10[mm/s] spike speed in these terms gives ?/sp,ea;p=0.00001903, 

which means tha t the spike’s movement is approximately 400 and 200 times faster, 

respectively, in the simulation than in the experiment.

3.2 .3  In itia l con d itions

The hysteresis calculations were initiated from the flow modes occurring at the end 

points of the hysteresis range.

Pulsation at L /D = 1 .2 5 . The outward motion is started from a pulsating flow 

occurring at L /D  =  1.25. This flow mode was generated by performing an unsteady 

calculation on the corresponding fixed spike length, allowing 3 cycles of pulsation 

to develop. The pressure history corresponds to the medium grid curve in Fig. 2.5e. 

The dominant pressure amplitude and the Strouhal number (which is expressed as
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the reciprocal value of the time period) compared to the experiment shows excellent 

agreement (see Tab.3.4).

Table 3.4: Comparison of time averaged characteristics, pulsation at Mach 2.21 
freestream (L/D — 1.25).

experiment
[18] CFD

Ap [1] 1.25 1.20
S[l] 0.150 0.143

Oscillation at L /D = 2 .0 5 . In order to decrease the com putational cost, the inward 

moving spike calculations are initiated from a solution at L/D=2.05. This was 

the shortest spike length at which oscillation could be obtained from a calculation 

involving a fixed spike. The pressure history is shown in Fig.3.10. Unfortunately, 

there are no values available from the experiment for this case, but the trend of 

the time averaged pressure amplitudes in Fig.3.9 allows us to deduce that the value 

should remain of order 0.1, which would be in good agreement with the numerical 

results.

0.9

0.7 -

.12
2

0 5 10 15 20
non-dimensionalised lime 1[1]

Figure 3.10: Pressure history at the probe point for an L/D=2.05 spiked cylinder at 
Mach 2.21,

3 .2 .4  H ysteresis  loop at t?sp 0.008

The pressure histories (plotted against the spike length) are shown in Fig.3.11 for 

the inward and the outward motion, respectively.
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Figure 3.11: Hysteresis effect shown by the pressure histories at the probe point for 
two different spike speeds.

The inward motion was initiated from the oscillation solution at L/D=2.05 and 

it can be seen tha t this regime is clearly maintained for the spike lengths between 

2.05 and 1.43. Then, three transitional cycles follow, apparently as a consequence 

of the excitation started at L/D=1.70. The first one could be characterised as a 

very irregular cycle, with an obvious disturbance to the previously regular time 

periods. The frequency of the peak values becomes again regular afterwards. The 

first properly developed pulsation cycle starts at L/D=1.27, and the amplitude 

of this cycle is found to be in excellent agreement with the experiment (Fig.3.9). 

The 0 / P  boundary, defined by the first properly developed pulsation cycle in the 

present work, could be determined therefore as L/D=1.27, which is also in excellent
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agreement with the experimental value of L /D =1.29.

The outward motion, started from the pulsation solution for L/D=1.25, shows 

this flow mode to be preserved up to L/D=1.60 as the spike length is increased. This 

is a clear display of the hysteresis phenomenon - two different flow modes could be 

obtained for the same spike length, depending on the direction of approach. At 

L /D =1.60 four transitional cycles follow, gradually decreasing the amplitude from 

1.2 to 0.1. The P / 0  boundary defined by the first properly developed oscillation 

cycle (i.e with the first amplitude in the order of 0.1) appears at L/D=1.83. This 

means, tha t the upper boundary of the hysteresis range is overpredicted by the 

numerical approach.

3.2 .5  H ysteresis  loop  at Vsp =  0.004

This case was initiated from the same initial conditions as above. The pressure 

history results are shown in Fig.3.11, clearly displaying the hysteresis phenomenon 

again. However, the range of the dual flow mode region is much larger this time.

The inward motion history displays the 0 / P  boundary to occur at a slightly 

smaller spike length than before. The first properly developed pulsation cycle could 

be identified at L/D=1.20, which still agrees well with the experiment (L/D=1.29). 

The number of transitional cycles is 6 in this case, double of th a t observed earlier. 

The first one shows similarity to the above described “irregular” cycle, but appears 

later, at L/D=1.33 (previously 1.43).

The outward motion history represents more dram atic changes than its faster 

spike speed counterpart. Firstly, the 0 / P  boundary occurs much later, at L/D=2.29 

(to be discussed later, in a section on the P / 0  transition) and secondly, it happens 

abruptly, through a single transitional cycle only (there were four transitional cycles 

in the earlier case). Furthermore, it appears tha t there are some secondary harmonic 

waves present at the cycles’ declining portions, which are gradually amplified in time.
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A detail of the last few cycles, plotted against the tim e instead of the spike 

length, is provided in Fig.4.42. Note, th a t the time periods are almost doubled in 

comparison with the short spike lengths (see for example Fig. 2.5e), which indicates, 

th a t the speed of the shock wave collapse/growth remains unchanged regardless of 

the spike length.

3.2 .6  Sum m ary

The hysteresis phenomenon occurring over a spiked cylinder exposed to Mach 2.21 

freestream was simulated at two spike speeds. On both occasions, the hysteresis phe­

nomenon was predicted qualitatively. The lower boundary of the hysteresis range 

( 0 /P  boundary) was found to be in good agreement with the measured data. How­

ever, the upper limit of the hysteresis range ( P /0  boundary) was overpredicted by 

the numerical method at both spike speeds. Note th a t these results are not grid 

independent near the upper (P /0 )  boundary. An even larger hysteresis range is 

likely to be obtained if grid convergent solutions could be ensured at very long spike 

lengths. Regarding the effect of the spike speed, it appears th a t applying a faster 

spike decreases the hysteresis range, although a definitive conclusion on this should 

be drawn only after understanding the driving mechanisms of spiked body flows.

Nevertheless, as the slower, v^p = 0.004, spike speed results seem to represent 

a quasi-steady spike movement better, these results will be used for the further 

analysis of the hysteresis phenomenon.



C hapter 4 

T heoretical analysis and discussion

4.1 A nalysis m ethod  and flow visualisation

The high complexity of the flowfield associated with the oscillation and pulsation 

modes necessitates the use of a detailed approach in the analysis of the driving mech­

anism. This means, tha t if all the elements of the mechanism are to be revealed, 

then one might question whether in past analyses there have been sufficient data 

available for this purpose. A typical number of frames per cycle from experiments 

is around 10 [18] [23] [25]. In Kenworthy’s work [18], which serves as a comparison 

for the present study, the frames were obtained from different cycles because the 

photographic equipment was not capable of matching the high frequency of the flow 

modes, which ranges between 1000-7500 Hz, depending on the particular configura­

tion. In this la tter work, the snapshots taken from the subsequent cycles had been 

re-arranged to produce a so called ‘typical’ cycle. However, as it has been seen in 

the previous chapter, the measured pressure histories, which are related to the shock 

envelopes, were not repeatedly identical. This means th a t some im portant details 

of the flowfield might have been overlooked in past studies.

All these facts lead to the conclusion, tha t for the purpose of analysing the 

oscillation and pulsation driving mechanisms, the number of frames per cycle must 

be substantially larger than 10 and also tha t frames should preferably originate

57
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from the same cycle. Thirty frames for each case have been extracted from the CFD 

simulations for the analysis of the mechanisms. These are shown in Fig. 4.2 for the 

oscillation and in Figs. 4.12 and 4.31 for the pulsation flow modes, respectively.

Three different types of flow visualisation are presented simultaneously: the 

pressure isolines, enabling the identification of the presence of shock waves and 

vortices in the flowfield; the Mach number isolines, which can reveal shear layers 

and boundary layer separations; and an array of 7 (10 in the case of pulsation), 

instantaneous streamlines, which also represent the local instantaneous flow path 

directions, and which are shown superimposed on the Mach contour plots. Extra 

streamlines are introduced in the flowfield when this is useful to explain interesting 

phenomena. Detailed vector plots will also be used where necessary. It is sometimes 

difficult to identify the streamlines, but the animations given in the enclosed CD- 

ROM (see Appendix B) help in the interpretation of the flow.

4.2 T he oscillation m ode

4.2 .1  T h e shock  envelope h istory

A sequence of 28 frames, covering an entire cycle of oscillation is shown in Fig. 4.2. 

The non-dimensional time difference between each of the frames is A t  =  0.4[1] and 

the times shown are as indicated on the pressure history plot recorded at the probe 

point (Fig. 4.1), which was located at the D /2  diameter on the cylinder face.

Note, th a t this choice of the pressure trace was made since it provides a link 

with the experiment, in which this was the position where the sole pressure meas­

urement was taken. This, as will be seen later, is not necessarily the best position 

to characterise the oscillation behaviour. The numerical analysis, in contrast to the 

experimental data, can provide pressures at all points on the surface as well as in 

the flow field. This feature will be used extensively in the analysis of the oscillation 

flow mode.
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Figure 4.1: Detail of the pressure history at the cylinder face (d=D/2) for the Mach 
6.00 oscillation case.

Based on the frame sequence in Fig. 4.2, a description of an oscillation cycle 

can be constructed. However, before doing so it has to be noted, th a t the examined 

unsteady flow is not liable to quasi-steady analysis. According to East and Wilkinson 

[38], unsteady flows occurring over forward facing steps and possessing a Strouhal 

number (5 =  larger than 0.01 are not amenable to quasi-steady analysis. It 

has beeen seen in Chapter 3, tha t the Strouhal number of the considered oscillation 

flow mode is an order of magnitude larger and therefore strict attention need to be 

paid to the dynamics of the event. It will be seen soon, th a t the dynamics of the 

oscillation will indeed play its part in the analysis.

Starting with frames 1 and 2, the separation point has nearly reached its most 

upstream position as it is pushed forward by an upstream moving pressure gradient 

(evident from the pressure plots). All of the introduced streamlines appear to be 

positioned at their highest point over the afterbody shoulder, which implies tha t no 

flow originating from the freestream is reversed into the separation zone. The time 

delay of the particles in the streamlines is comparable to those in the freestream. 

These travel the length of the spike during {L/ D)  x S  portion of the cycle, i.e. it
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FRAME 1 o

FRAME 2

FRAME 3 O 0

FRAME 4

FRAME 5

Figure 4.2: O scil la t ion  at M ach 6.00, L /D = 2 .0 0 .  Shown are the M ach isolines
superim posed  with  instan taneous stream lines  (left column) and the pressure isolines
(right column).
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FRAME 6

FRAME 7

FRAME 8

FRAME 9

FRAME 10

Figure 4.2: (con t.)  O scilla tion  at M ach 6.00, L / D = 2 .0 0 .  Show n are the Mach
isolines superim posed  with instan taneous stream lines  (left colum n) and the pressure
isolines (right column).
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FRAME 11

FRAME 12

FRAME 13

FRAME 14

FRAME 15

Figure 4.2: (con t.)  O scilla tion  at M ach 6.00, L / D = 2 .0 0 .  Show n are the Mach
isolines superim posed  with instan taneous s tream lines (left co lum n) and the pressure
iso lines  (right column).
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FRAME 16

FRAME 17

FRAME 18

FRAME 19

FRAME 20

Figure 4.2: (con t.)  O scil la tion  at M ach  6.00, L / D = 2 .0 0 .  Show n  are the Mach
iso lines  super im posed  with ins tan taneous stream lines (left co lum n) and the pressure
iso lines  (right column).
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FRAME 16

FRAME 17

FRAME 18

FRAME 19

FRAME 20

Figure 4.2: (con t.)  O scilla tion  at M ach 6.00, L / D = 2 .0 0 .  S how n  are the M ach
iso lines  superim posed  with ins tan taneous stream lines  (left co lum n) an d  the pressure
isolines (right column).
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FRAME 21

FRAME 22

FRAME 23

FRAME 24

FRAME 25

Figure 4.2: (con t.)  O scilla tion  at M ach 6.00, L / D = 2 .0 0 .  Show n are the M ach
iso lines  superim posed  with instan taneous stream lines  (left colum n) and the pressure
iso lines  (right column).
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FRAME 26

FRAME 27 Q

FRAME 28
jCS_

Figure 4.2: (cont.) Oscillation at Mach 6.00, L/D=2.00. Shown are the Mach 
isolines superimposed with instantaneous streamlines (left column) and the pressure 
isolines (right column).

takes approximately 1/5 time period for a particle to travel from the spike tip to 

the corner. The high position of the streamlines also means, th a t mass is escaping 

from the separation region, since the flow bounded by the array of the introduced 

streamlines was entrained by the shear layer from the separated region. In frame 3, 

both the separation point and the region of the pressure gradient seem to complete 

their motion in the upstream direction. As a consequence, the pressure builds up in 

the vicinity of the spike tip shoulder and a waviness occurs in the shape of the shear 

layer as it is deformed due to the slight lateral expansion (frame 4). Then, the high 

pressure region starts to migrate downstream towards the cylinder face, dragging
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along the waviness in the shear layer (frames 5, 6, 7). Note, th a t the pressure wave 

is nearly perpendicular relative to the spike, which is caused by the zero pressure 

gradient across the shear layer =  0). The introduced streamlines now seem to 

take on a lower position around the afterbody shoulder and the lower two reattach 

on the cylinder face (frame 8), indicating tha t mass escape from the separation zone 

alters to a mass influx. However, the pressure at the cylinder face continues to drop 

(see the pressure history in Fig. 4.1), which phenomena is most likely a consequence 

of the dynamics of the event.

Frames 9-15 illustrate tha t the filling mechanism intensifies as the number of 

streamlines reattaching on the shoulder increases. An interesting feature, not ob­

served in the experiment, is tha t the lowest of these streamlines leaves the shear layer 

to enter the separation region. The location, where this happens coincides with the 

position of the downstream travelling pressure gradient. This effect is believed to 

occur due to the conflict between the flow coming from upstream  and tha t being 

reversed.

When the downstream convecting pressure gradient finally impacts on the cylin­

der face (frame 18), it is reflected from the wall, starting a new upstream  migration 

(see the pressure plots of frames 19 and 20). However, this upstream  movement 

seems to be generated this time by the flow reversal. When the mass influx stops 

(frame 21), the pressure wave has only reached the half-distance of the spike. How­

ever, frames 22-28 show its migration to continue to the spike tip. Hence, this effect 

must be supported by the continuing expansion of the gas already trapped in the 

separation region, which indicates the importance of the dynamics in the oscillation 

analysis.

Another interesting observation concerns the existence of the pressure gradient. 

The pressure plots of frames 21-23 show that as soon as the mass influx stops, a low 

pressure region appears behind the upstream travelling high pressure zone. Thus, a
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low pressure will exist both in front of and behind the pressure gradient, showing a 

pressure wave within the separation zone.

A final im portant note regarding the above description is th a t all the above 

phenomena are associated with the upstream /downstream  excursion of the separa­

tion point along the forward portion of the spike, which is in accordance with the 

experimental observations of Holden [6] and Kenworthy [18].

Summarising the above findings, the fundamental element of the oscillation flow 

mode is the shear layer’s ever-changing shoulder reattachm ent condition. This phe­

nomena is solely responsible for the mass influx or mass escape from the separation 

region. Mass influx occurs when the shear layer is a t its lowest position whereas 

mass escape takes place when the highest location is achieved. Because of the dy­

namics of the event, the subsequent expansion/contraction of the separation zone 

and the associated excursion of the separation point takes place with a certain time 

lag.

4 .2 .2  T h e pressure im balance at th e  rea ttach m en t

The most complete analysis attem pting to tackle the explanation of the driving 

mechanism of oscillation originates from Kenworthy [18], who constructed a working 

hypothesis on this phenomena, termed as the ’’energetic shear layer” hypothesis. 

As many elements of this concept seemed to match the description performed on 

the basis of the numerical results, this hypothesis will be taken as the basis for the 

further analysis. It will be reviewed in the light of the CFD results, with the primary 

aim of filling the gaps which could not be sufficiently supported by theoretical or 

experimental means.

According to Kenworthy [18], the key feature in the driving mechanism of the 

oscillation is the appearence of a pressure imbalance between the pressure supplied 

by the shear layer and tha t required by the afterbody. The former will be referred to
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as the potential reattachm ent pressure, Prpot, which can be defined as the pressure 

which would occur if the dividing steamline of the shear layer would be brought to 

rest on the afterbody shoulder. On the other hand, the latter one will be referred to 

as the required reattachm ent pressure, Prr, and represents the pressure corresponding 

to th a t experienced on the afterbody shoulder in a steady, shoulder reattaching 

separated flow.

Kenworthy proposed, tha t if

•  P r p o t  >  P r r ,  then the particles in the dividing streamline are able to overcome 

the pressure rise at the afterbody shoulder and will pass downstream. In this 

case, m ass e scap e  occurs.

•  P r p o t  <  P r r ,  the particles In the dividing streamline are not able to overcome 

the pressure rise at the afterbody shoulder and will be reversed into the sep­

aration zone, then m ass in flux  takes place.

The relationship of these two characteristics is constantly changing during a time- 

dependent, shoulder reattaching separation, such as oscillation. In order to under­

stand the behaviour of these two pressures, however, the steady separated flows have 

to be examined first.

4 .2 .3  S tead y  separated  flow
4.2 .3 .1 . T h e  re q u ire d  re a t ta c h m e n t p re ssu re

N o n -sh o u ld e r re a t ta c h in g  flows

Consider a steady separated flow occurring over a forward facing step exposed to 

a supersonic freestream (Fig. 4.3a). The shear layer emanates from the separation 

point (S), located at a distance Xi from the leading edge, and reattaches at the 

point of reattachm ent (R) on the afterbody face, which is assumed to be below the 

shoulder in the first instance.
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Figure 4.3: Scheme of a steady, face-reattaching separated flow (a) and the corres­
ponding surface pressure distribution (b).

At the point of reattachm ent (R), part of the flow in the shear layer will be reversed 

into the separation region and part of it will pass downstream. In order to satisfy 

the steady nature of the separation, the mass reversed at point R must equal the 

mass entrained by the shear layer from the separated region at point S [40] [18]. 

Thus, a dividing streamline is formed within the shear layer, which can be defined 

as the streamline dividing the mass in the separated region from th a t coming from 

upstream  of the separation point.

The dividing streamline must possess a pressure when brought to rest at the



70

reattachm ent point which is equal to the required reattachm ent pressure [41]:

Prpot Prr  ( d ' l )

In earlier works, such as Chapman [41], it was thought, tha t Prr is equal to the static 

pressure of the external inviscid flow,

Prr — P3 (4-2 )

However, later experimental observations [42] [43] showed th a t Prr is somewhat

smaller than this, in fact lying somewhere between p2 and pg, as illustrated in 

Fig. 4.3b.

Nash [42] proposed a reattachm ent parameter N , which relates the required 

reattachm ent pressure to the pressure rise

N  =  (4,3)
P3 - P 2

and concluded, th a t W is a nearly constant value for a wide range of Mach num­

bers. He determined N  as 0.35 for turbulent reattaching flows, whereas Sirieix 

[44] and Cooke [45] found N  to be 0.5 for the laminar counterparts. However, the 

above approximations do not fully stand for the oscillatory flows, since they feature 

shoulder-reattachment different from the situation depicted above.

Shoulder reattaching flows

Wood [5] and Kenworthy [18] concluded, tha t the necessary condition of the oscil­

lation flow mode is leading edge separation and shoulder reattachm ent. This point 

is emphasized in Figs. 1.5 and 1,6, in which the region of unstable flow (region D 

in Fig. 1.5 and region E in Fig. 1.6) is bounded by shoulder reattaching flow (apart 

from the unim portant region of the stable flow, in which the spike length is shorter 

than the shock detachment distance).
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Therefore, understanding the process of shoulder reattachm ent is of prime im­

portance in the investigation of oscillation.

Wood [5] argued, tha t although the dividing streamline itself impacts on the 

afterbody face in a shoulder reattaching flow, the part of the shear layer from above 

the dividing streamline may pass the blunt body shoulder (illustrated in Fig. 4.4a) 

instead of turning parallel to the face. Hence, the pressure on the afterbody shoulder 

will be considerably less than at a non-shoulder reattaching flow, because the low 

pressure occurring due to the expansion downstream of the shoulder will commu­

nicate upstream via the boundary layer.

EXPANSION
WAVESCOMPRESSION 

WAVES

S.TAGNAI1QM 
POINT

SEPARATED 
REGION

r

distance along 
surfaceSHOULDER

a) b)

Figure 4.4: Shoulder reattachment after Wood [5] (a) and the corresponding surface 
pressure distribution according to Kenworthy [18].

This situation is illustrated in Fig. 4.4b, showing the surface pressure distribution 

for a shoulder reattaching steady separation after Kenworthy [18]. Here, the dashed 

line marks the imaginary case of the flow being turned parallel to the face, while the 

solid line shows the assumed pressure distribution for the shoulder reattaching case. 

As there were no experimental or theoretical data available to Kenworthy on the 

maximum pressure in the vicinity of the shoulder, he used an approximation to 

determine this im portant characteristic of the energetic shear layer hypothesis [18].
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This information can be recovered from a CFD simulation of the steady separ­

ation case. The flow conditions of the Mach 6.00 oscillation case were chosen with 

L /D  = 2.75 spike length case. This spike length is the nearest geometrical configur­

ation to the examined L/D=2.00 case, which yields steady separation (see Fig. 4.5 

showing the shock envelope).

The flow in the vicinity of the shoulder as well as the corresponding detail of 

the surface pressure distribution are shown in Fig. 4.6. Comparing these figures to 

the original scotches of Wood and Kenworthy (Fig. 4.4) shows how well the sketches 

capture the essence of the shoulder reattachment process. In particular, the existence 

of the compression and expansion waves was well predicted. The compression waves 

appear because of the upstream propagation of the high stagnation pressure, and a 

small shock wave can be observed at the outer regions of the shear layer, where the 

particles already travel with supersonic velocity.

Figure 4.5: Mach number isolines for the L/D -2.75 spike length case. M  = 6.00, 
Reo  =  0.13 X lOF

The shape of the surface pressure distribution also matches very well the CFD 

results, although a small difference in the location of can be observed. Kenworthy
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Figure 4.6: CFD results of the shoulder reattachment (a) and the corresponding 
surface pressure distribution in the vicinity of the shoulder. M  ~  6 . 0 0 ,  R cd ~
0 . 1 3  X  1 0 ^  T v / D  =  2 . 7 5 .

predicts the peak pressure to occur just beyond the shoulder, whereas in the simu­

lation it occurs in front (Fig. 4.6b, where 0  marks the corner of the afterbody). It 

can be seen, th a t the value of the non-dimensional maximum pressure is p^ = 0.22, 

and since this can be understood as the upper limit of Prr [18], this value will be 

used for the required reattachment pressure.

P r r  — P x  —  0 . 2 2 (4.4)

4.2.3.2. The potential reattachm ent pressure

Chapman et ah [41] proposed, tha t the pressure supplied by the shear layer, p^pot 

is equal to th a t achieved by an isentropic compression of the dividing streamline if 

it would be brought to rest on the blunt body shoulder. Hence the term “potential 

reattachm ent pressure” . Although this appears to be a very simplified model, Bur- 

graf [46] showed by numerical techniques, tha t this is indeed a valid assumption. 

Thus [18],

/  y —  1 \  7 -  1
P r p o t  = Poj -  P2 1 +  —— M j (4.5)
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where poj is the to tal pressure on the dividing streamline, p2 is the static pressure 

above the shear layer (see Fig. 4.3) and Mj is the Mach number on the dividing 

streamline.

Kenworthy [18] performed an analysis of the variation of the length of the a t­

tached boundary layer Xi (Fig. 4.3), the velocity ratio on the dividing streamline, 

Zj — and the potential reattachm ent pressure, Prpot, depending on the spike 

length, L /D . These calculations were performed for the freestream conditions of 

the current case and involved axisymmetric and laminar considerations as well. The 

results of this analysis are shown in Fig. 4.7, from which Xi decreases as L /D  de­

creases and Zj and prpot increase with decreasing L /D . Use will be made of these 

information later in the explanation of the energetic shear layer hypothesis.

spike length in the numerical ca se

Figure 4.7: Results of the free interaction calculation by Kenworthy [18]. M  — 6.00, 
R eo ~  0.13 X 10  ̂ freestream considered.

4 .2 .4  U n stea d y  separated  flows
4.2.4.1. The bounding and escape stream lines

So far we have dealt with steady separation only. The term “dividing streamline” 

has been introduced, providing a valid description of the shear layer both in the
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vicinity of the separation point as well as the reattachm ent. However, in the case 

of the unsteady separations this definition will no longer stand since the shear layer 

is changing its position constantly, causing different streamlines to reattach on the 

blunt body face. This process has been demonstrated in section 4.2.1. Therefore, 

it seems useful to introduce two new terms to describe the shear layer separately in 

the vicinity of the separation point and the reattachment. These terms are identical 

to the ones used by Kenworthy [18] and East and Wilkinson [38].

The term “bounding streamline” will be used to describe the shear layer in the 

vicinity of the separation point. It will be defined as the streamline which bounds 

the flow entrained by the shear layer originating from the separation zone from that 

coming from upstream.

The term  “escape streamline” , on the other hand, serves to describe the situation 

in the vicinity of the reattachment point. The escape streamline will be defined as 

the highest streamline still impacting on the afterbody shoulder, i.e. reattaching.

The interpretation of these two new terms is clearly dem onstrated in Fig. 4.8. In 

the case of mass escape, the bounding streamline lies above the escape streamline 

(Fig. 4.8a), whereas a t mass influx, the opposite will be true (Fig. 4.8b). It is also 

clear from these definitions, th a t the bounding streamline and the escape stream ­

line coincide in the case of a steady separation, thus forming the classical dividing 

streamline.

4.2.4.2. The energetic shear layer hypothesis

Kenworthy’s energetic shear layer hypothesis [18] will be introduced in the present 

section, along with a direct comparison to the results obtained from the numerical 

simulation (see Fig. 4.2, M“ 6.00, L/D=2.00).

The core of the hypothesis is shown in Fig. 4.9, in which the first column of 

figures shows the original sketches of Kenworthy [18], which were prepared solely on
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►  Bounding streamline 

o  Escape streamline

b) M ass influxa) M ass e sca p e

Figure 4.8: Demonstration of the bounding and escape streamlines.

the basis of the experimental observations and the concepts of the hypothesis. They 

show the representative shape of the bounding streamline in five characteristic time 

instants. The magnitude of the streamline vectors indicate the magnitude of the 

local velocity.

The remaining columns show the results obtained from the present simulation. 

First, the numerically obtained bounding streamlines are presented. These were ob­

tained by launching a streamline from the separation point. Similar to Kenworthy’s 

illustration, the magnitude of the dashes indicate the local velocity on the bounding 

streamline.

Next, the distribution of the Mach number Mj along the bounding streamline is 

provided, obtained again from the CFD results. These can be compared with the 

results in the second column and also serve as one of the inputs for the calculation 

of P r p o t  •

Finally, the distribution of the potential reattachm ent pressure (prpot) along the 

bounding streamline is shown in the last column. These values were calculated by 

using equation 4.5, where p2 was substituted by the static pressure on the bounding 

streamline, Pj (since ^  =  0 across the shear layer). The stagnation pressure on the
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KEN WORTHY [17] CFD

Figure 4.9: Schematic of the energetic shear layer hypothesis applied to M —6.00, 
L/D = 2.00 case (Fig. 4'^)- First column shows Kenworthy’s original sketches [18], 
second column the corresponding bounding streamline obtained by CFD, while the 
third and the fourth columns show the Mach number and the potential reattachment 
pressure distributions along the bounding streamline.
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bounding streamline, poj, is determined as [19]:

Poj =  ^  (4.6)
7 - 1

(l + ^ )
It is noteworthy to emphasize here, th a t presenting the CFD results in the above 

fashion is new, enabling a direct quantitative evaluation of Prpot and p^r- This was 

not achievable earlier, since no data  could be collected directly from the bounding 

streamline.

The analysis begins with frame 2 (Fig. 4.2), which is shown schematically in 

Fig. 4.9a. According to Kenworthy’s sketch (first column), the velocity is fairly 

uniform and high along the bounding streamline . This is argued by the very small 

value of Xi, which implies a large Zj and prpot on the basis of Fig. 4.7.

It can be seen from the CFD results, tha t all these features are predicted by the 

numerical method. The velocity distribution along the bounding streamline is fairly 

uniform with M j reaching values as high as 4. The potential reattachm ent pressure 

is also high {prpot »  Prr), although not as uniform as the velocity. This is due to 

the apparent pressure gradient along the spike, shown in the pressure plot of frame 

2 (Fig. 4.2).

This configuration, i.e. the bounding streamline lying above the escape stream­

line, yields mass escape from the separation zone. Thus, according to Kenworthy, 

after an interval of time required for this to be felt upstream, the separation recedes 

towards the model face (Fig. 4.9b). As Xi increases, Zj and Prpot will decrease as 

shown in Fig. 4.7. However, as the particles on the bounding streamline travel with 

a finite velocity between the separation and the reattachm ent, this effect will not 

be felt uniformly along the entire bounding streamline, but with a certain time lag. 

This means, th a t while the upstream part of the bounding streamline accommodates 

to the new Prpot and M j, the downstream one remains unaffected.

Once again, the CFD results agree very well with this part of the hypothesis.
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It is clearly dem onstrated in the numerically obtained bounding streamline th a t a 

smaller velocity appears near the separation, whereas a still larger one is present over 

the afterbody shoulder. The distribution of Mj further substantiates this trend. As 

a consequence, a small is travelling downstream along the bounding streamline, 

while the value near the reattachm ent remains just high enough to maintain mass

e s c a p e  { p r p o t  >  P r r ) -

Returning to Kenworthy’s description, by Fig. 4.9c, the last of the over energetic 

fluid has passed downstream, and now the energy deficient fluid is beginning to 

arrive in the reattachm ent region and is being reversed into the separated region.

CFD shows a relatively small velocity present along the entire length of the 

bounding streamline (see the magnitude of the dashes in the second column of 

Fig. 4.9c and the Mj distribution), which agrees well with the hypothesis. Also, a 

small Prpot dominates the entire length of the streamline, with the value just in front 

of the cylinder face being approximately one fifth of th a t seen in the previous frame, 

which leads to  a mass influx { p r p o t  < P r r ) -

Up until this point, Kenworthy’s hypothesis and the CFD results were found in 

very good agreement. However, the first major difference could be observed in the 

comparison of Fig. 4.9d with the numerical results.

Kenworthy argued tha t after a certain time lag the separation point will react 

to the mass influx and be pushed forward towards the spike tip. By this, as Xi is 

decreased, Zj and Prpot will increase according to Fig. 4.7 and this will be felt first 

at the separation point, and later, after the particles have travelled downstream, 

a t the reattachm ent as well. This would mean, th a t the larger velocity magnitudes 

would propagate in the downstream direction, from the separation point towards 

the reattachm ent (see Fig. 4.9d).

However, the CFD results show this propagation to occur in the opposite sense, 

i.e. the larger velocity magnitudes appearing first at the reattachm ent and then
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propagating upstream  towards the separation point. This process is illustrated via 

two frames, Fig. 4.9dl and d2. The same trend can be observed in the corresponding 

M j and prpot plots. The larger Mach number values (of the order of Mach 3) and 

the high pressure propagate upstream  instead of downstream. The explanation of 

this phenomena lies in the behaviour of the upstream /downstream  travelling wave, 

which was described in section 4.2.1.

The pressure wave impacts on the cylinder face and the reflection starts to travel 

upstream (frames 19-22 in Fig. 4.2). However, this upstream movement cannot be 

realised without influencing the static pressure in the bounding streamline {pj), 

since the pressure gradient through the shear layer is zero ( | |  =  0). This sudden 

increase in pj will be responsible for the rapid growth of Mj  and Prpot̂  first near the 

reattachm ent and later at the separation, when the pressure wave reaches there.

The most im portant point is, however, tha t because of the increased Prpot at the 

reattachm ent, no mass influx can occur in Fig. 4.9d, but instead, mass escape will 

take place {prpot > Prr)-  This is in contrast to Kenworthy’s hypothesis.

Finally, when the upstream moving pressure wave reaches the separation point, 

this moves forward to the spike tip and a new cycle starts again (Fig. 4.9e).

4.2.4.3. The actual reattachm ent pressure

As a final part of the oscillation analysis, the actual reattachm ent pressure will be 

examined. The graph showing the variation of the reattachm ent pressure in time 

during the oscillation will be used for this purpose (Fig. 4.10). The time positioning 

of the flow visualisation frames (Fig. 4.2) is also provided.

Kenworthy proposed in his hypothesis [18], th a t when the bounding streamline 

does not coincide with the escape streamline, a lower (or higher) streamline of the 

shear layer will achieve prpot =  Prr, and will therefore stagnate on the afterbody face.
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Figure 4.10: History of the reattachment pressure (recorded at d =■ 0.99D on the 
cylinder face) occuring during the Mach 6.00 oscillation.

However, it can be seen from Fig. 4.10, that this is true for a certain period of the 

oscillation cycle only. Correlating the frame sequence of Fig. 4.2 with Fig. 4.10 shows, 

tha t the actual reattachm ent pressure equals Prr during the shear layer’s downward 

movement only (frames 2-16). (The required reattachm ent pressure Prr =  0.22 was 

recovered earlier, in Eq. 4.4, section 4.2.3). However, when the shear layer moves 

upward (frames 17-28), the actual reattachm ent pressure takes on much larger values 

than Prr = 0.22. This could be explained by the high pressure occurring behind the 

small bow wave, which is formed in front of the shoulder when the shear layer attains 

its lowest position. Thus, the outer portion of the afterbody becomes exposed to 

supersonic stream.

Inevitably, the intersection of the Prr =  0.22 line with the pressure history yields 

the highest and the lowest positions of the shear layer (frames 2 and 16).

This observation further substantiates, th a t the shear layer’s lateral movement 

is indeed related to the reattachm ent pressure of the actual escape streamline.
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4 .2 .5  Sum m ary

The results of the simulation largely confirm the energetic shear layer hypothesis of 

Kenworthy [18] apart from some minor modifications. According to this theory, the 

ever changing shoulder reattachm ent condition is driven by the m utual relationship 

of the pressure supplied by the shear layer, and th a t required by the afterbody, 

Prr- When Prpot > Prr  then the shear layer is lifted off from the afterbody shoulder 

and mass escape from the separation zone occurs, whereas in the opposite case 

the shear layer reattaches below the afterbody shoulder and mass influx into the 

separation zone takes place.

The conditions a t the separation point change as a reaction to this effect with 

a certain time lag, which leads to a non-uniform distribution of the velocity and 

potential reattachm ent pressure in the shear layer.

The first minor modification concerning Kenworthy’s concept is, tha t a high 

pressure (in terms of Prpot) and high velocity fluid can never precede a low pressure 

and low velocity fluid within the bounding streamline.

The second modification regards the value of the actual reattachm ent pressure: 

it was found to be substantially larger than the required reattachm ent pressure, 

when the shear layer was moving laterally upwards.
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4.3 T he pulsation  m ode

4.3 .1  M eth o d  o f analysis

The methodology described below refers primarily to the pulsation obtained at the 

Mach 2.21 freestream, since this case will be analysed first. The corresponding Mach 

6.00 results will be presented in a similar fashion separately later.

The sequence of 30 flow visualisation frames is shown in Fig. 4.12. The non- 

dimensional time difference between each of the frames is A t =  0.2 [1] and the 

times from one cycle of the pressure history are shown in Fig. 4.11. Similar to 

the oscillation analysis, the pressure history was recorded at a probe point located 

at the D /2 diameter on the cylinder face. The following detailed description of 

the flowfield has been developed and thought to be accurate on the basis of the 

successful validation of the simulation given in Chapter 3.

0.8 -

a.
30'

100 20
non-dim ensional tim e t [1]

Figure 4.11; Pressure history at the cylinder face (d—D /2) for the Mach 2.21 pulsa­
tion case.
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FRAME 1

FRAME 2

FRAME 3

FRAME 4

XU

Figure 4.12: Pulsation at Mach 2.21, L/D=1.00. Shown are the Mach isolines
superimposed with instantaneous streamlines (left column) and the pressure isolines 
(right column).



85

FRAME 5

FRAME 6

FRAME 7

FRAME 8

Figure 4.12: (con t.)  Pu lsa tion  at M ach 2.21, L / D = 1 .0 0 .  Show n are the M ach
isolines super im posed  with ins tan taneous stream lines  (left co lum n) an d  the pressure
isolines (right column).



8 6

FRAME 9

FRAME 10

FRAME 11

FRAME 12

Figure 4.12: (con t.)  Pu lsa tion  at M ach 2.21, L / D = 1 .0 0 .  Show n are the M ach
isolines su per im posed  with instan taneous stream lines  (left co lum n) and the pressure
isolines (right column).
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FRAME 13

FRAME 14

FRAME 15

FRAME 16

Figure 4.12: (con t.)  Pu lsa tion  at M ach 2.21, L / D = 1 .0 0 .  Show n are the M ach
iso lines  su perim posed  with instan taneous stream lines  (left co lum n) and the pressure
iso lines  (right column).



FRAME 17

FRAME 18

FRAME 19

FRAME 20

Figure 4.12: (con t.)  P u lsa tion  at M ach 2.21, L / D = 1 .0 0 .  Show n are the M ach
isolines super im posed  with ins tan taneous stream lines  (left co lum n) and the pressure
iso lines  (right colum n).
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FRAME 21

FRAME 22

FRAME 24

FRAME 23

Figure 4.12: (con t.)  Pu lsa tion  at M ach 2.21, L / D = 1 . 0 0 .  Show n are the M ach
isolines superim posed  with instan taneous stream lines  (left colum n) and the pressure
isolines (right column).
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FRAME 25

FRAME 26

FRAME 27

FRAME 28

Figure 4.12: (con t.)  P u lsa tion  at M ach 2.21, L / D = 1 .0 0 .  Show n are the M ach
isolines super im posed  with instan taneous stream lines  (left co lum n) and the pressure
isolines (right column).
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FRAME 29

FRAME 30

Figure 4.12; (cont.) Pulsation at Mach 2.21, L/D=1.00. Shown are the Mach 
isolines superimposed with instantaneous streamlines (left column) and the pressure 
isolines (right column).

In order to identify the dominant movements of the complex shock system, a ref­

erence point relating to the shock envelope has been selected. Following Zapriagaev 

and Mironov [28] the triple point (corresponding to the foreshock - aftershock in­

tersection) was chosen for this purpose, as it incorporates both the longitudinal 

movement as well as the rate of the lateral expansion of the bow wave. The position 

of this reference point in time was tracked and plotted in Figs. 4.13, 4.14, 4.15. The 

origin of the co-ordinate system of these plots was set to the centre of the after­

body face and the triple point was monitored only while in the region of interest,

i.e. in front of the cylinder face. For some of the cycle there were two triple points 

present, one in the collapsing shock system and one in the growing one. After the 

two merged, the second triple point disappeared. Finally, the foreshock angle (at the 

point of the attachm ent to the triple shock system) was also recorded (Figs. 4.16).
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Figure 4.13: Location of the triple point in time, with the frame numbers indicated.
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Figure 4.14: X  position of the triple point in time.

Based on these graphs and the frame sequence, it was found appropriate to di­

vide the pulsation cycle into three main sections (the frame numbers are presented 

for the Mach 2.21 case, Fig. 4.12):

(i) the section of collapse (frames 1-9), during which the rapid horizontal move-
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Figure 4.15: Y  position of the triple point in time.
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Figure 4.16: Variation of foreshock angle in time.

ment of the reference point is dominant,

(ii) the section of inflation (frames 10-20), during which the fast lateral move­

ment of the foreshock-aftershock intersection is dominant, and

(iii) the section of withhold (frames 21-30), during which the expanded fore­
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shock is almost stationary and for the earlier part of this section detached from the 

spike tip.

The above sections of pulsation will be analysed in detail later.

4.3 .2  F low  con d ition s beh ind  u n stead y  shock  w aves

The knowledge of the flow conditions behind moving shocks is of particular im port­

ance to the explanation of pulsation in section 4.3.3, in which complex shock systems 

are created due to this effect. The following is an analysis of this type of flow.

l2A00

V,

Figure 4.17; Schematic of a moving normal shock wave.

Consider a flowfield characterised by a freestream Mach number of Mqo and 

involving a normal shock wave moving along the x  axis with the velocity of Ui 

(Fig. 4.17). Such a flow could be interpreted in a co-ordinate system with a speed 

of Vx and featuring a standing shock wave. Then, the shock wave will be exposed 

not to the freestream Mach number Mqo, but to an effective one, Mg, which can be 

determined as:

M g  =  M o o  =  M o o  — M x o o -
ôo

This means, tha t if the shock wave is moving downstream, then the flow Mach 

number upstream of the wave will be less than the freestream one. For an upstream 

motion of the shock wave, the opposite would be true. Using the standard shock 

relations [19], the Mach number behind the moving shock wave, M2 can be calculated 

from
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Note, th a t as this value was determined from Mg, it represents the Mach number 

behind the shock wave, relative to the shock wave. In order to obtain the absolute 

Mach number M2/1, which is relative to the stationary point A in Fig. 4.17, M 2 has 

to be increased by v^. However, because of the different speed of sound behind the 

normal wave, M ^ 2  will be different from M^oo:

M 2 A =  M 2 H =  M 2 +  Mx2i
tt2

where «2 could be obtained from the following relation [19] (note th a t &2 is based 

on the conditions corresponding to Mg and not Mqo):

« 2 "  ^  ( 7 M e ^  -  1 ) ( M /  +  5 )

a,2 36Me^

4 .3 .3  P u lsa tio n  at M ach 2.21

Because of the numerous flow features emerging and dispersing during the pulsa­

tion cycle, flow schematics helping their identification were produced during each 

section (Figs.4.18, 4.23, 4.25, 4.27). In these figures, shock waves are noted as ‘W ’, 

separated regions as T ’, shear layers as ‘L’ and vortical regions as ’V ’. They will be 

numbered in the order tha t they appear during the cycle.

The process of collapse: frames 1-9

In frame 1 (seen in Fig. 4.12) the bow wave (W2) has already accomplished its 

expansion and starts to migrate towards the afterbody. The minimum pressure on 

the cylinder face has just been passed (Fig. 4.11) and starts to rise as shock W 2 

approaches the afterbody. As it exposes the most forward portion of the spike to the 

supersonic freestream during the collapse, an oblique conical foreshock, W l, eman­

ates from the spike tip, intersecting W2. The angle of W l is 33" (Fig. 4.16), which
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is basically the value expected from the 15" cone semivertex angle of the spike tip 

[19]. The flow behind the oblique wave is supersonic, so it is decelerated yet again 

through another oblique shock wave (W3) emanating from the point of intersection, 

i.e. the triple point (T l). As this oblique wave interacts with the boundary layer 

on the spike, a separated region (P I) is formed. The first sign of this is visible in 

frame 1 and it is further developed in frame 2.

The speed of the collapsing bow wave is represented by the slope of curve 1-9 in 

Fig. 4.14 which appears to have an almost constant value for the whole section of 

collapse. Therefore, it can be determined as

Vx =  —-------   =  0.3335[1]
td — t\

According to section 4.3.2, Mxoo will be 0.737 and hence the effective Mach 

number, which acts on the shock, can be calculated as

M e  =  M o o  -  M x o o  = 2.21 -  0.737 =  1.473

Using the standard shock relations, M 2 (based on Mg) takes a value of M2 =  

0.711. This is the relative Mach number behind the shock wave. The absolute Mach 

number relative to the body can then be obtained as (see section 4.3.2)

M 2A =  M2 +  Mx2 = 0.711 4- 0.646 =  1.357

This agrees exactly with the value predicted by the numerical simulation and 

it means th a t although the afterbody is lying downstream of a normal shock, it is 

nevertheless still exposed to a supersonic stream. Hence, a new normal shock (W5) is 

created in front of the cylinder face, whose first signs are visible in frame 1 (Fig. 4.12). 

This new bow wave interacts with the boundary layer on the spike and creates 

another separation (P2). The first (i.e. lowest) shown streamline entering the shock 

system is seen to be reversed by the cylinder face and as a consequence separation
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Figure 4.18: Scheme of the shock system during collapse (based on frames 3/4)-

point P2 is induced forward (frame 2). The rest of the streamlines pass the afterbody 

shoulder helping the bow wave (W2) to continue its migration downstream.

By frame 2, separation region P I has grown downstream, tracking the collapsing 

bow wave. Separated region P2 on the other hand, has moved further forward ahead 

of the growing bow wave (W5), and a weak oblique shock (W4) is generated from 

it. The new W4 intersects the growing W5 and, similar to the flow field at the spike 

tip, another triple shock system is formed (T2, W 6). In frames 3 and 4, the two 

separated regions (P I, P2) gradually grow and move closer to each other and the 

secondary triple shock system becomes more clearly developed.

As a consequence of this, a shear layer (LI) is being formed, bounding separation 

zone P 2 from the supersonic region behind shock wave W4. Assuming a zero pressure 

gradient through the shear layer (i.e. =  0) then the pressures in these two regions

will be equal and of a relatively low value (pA — Pd , see Fig. 4.18b). However, 

the pressure behind shock W6 {pc) will be high because it will tend to equal the 

high pressure arising behind the normal wave W5 {ps — Pc)- Thus, the pressure 

imbalance between pc  and pn will lead to a strong favourable pressure gradient in the 

direction of the separation zone and thus, in an upstream  direction. This combined 

with the immediate flow reversal by the shear layer (LI) results in the appearance
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of a significant vortical region (VI) at the bottom  part of shock W 6. The vortical 

region can be clearly recognised in the pressure plot of frame 3, characterised by 

concentric, nearly circular isolines and a low pressure in the centre. Although the 

appearance of such vortical region seems obvious in the present shock system, it has 

not been identified in any previous work, although, as it will be seen shortly, has a 

vital role in the pulsation driving mechanism.

The primary effect of the vortical region VI is the flow reversal of the lowest 

streamlines, such as streamline 1, into the lower pressure separation zone, from 

where it reverses and re-enters the supersonic zone (behind foreshock W4) through 

shear layer LI. The filling effect intensifies with elapsing time as the next introduced 

streamline becomes involved in this process in frame 4. The introduced streamlines 

outside these, although being deflected downwards from their original direction, 

reach the face at an angle larger than zero and hence eventually flow outward.

yy/y//////inmmw.

Figure 4.19: Vector plot detail and pressure isolines for frame 3 from Fig. f.12, 
Mach 2.21 freestream (every second vector shown only).

Secondly, as a consequence of the pressure gradient created by VI the spike
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boundary layer becomes affected. On the downstream side of V I a favourable (re­

lative to the reversed flow) pressure gradient arises, causing the thinning of the 

boundary layer on th a t side (see the vector plot detail of frame 3, Fig. 4.19). On 

the other hand, the adverse pressure gradient (again relative to the reversed flow) 

present on the upstream  side of the vortex will result in a thickening effect and even­

tually the separation of the boundary layer there (Fig. 4.19). Thus, a new separated 

region (P3) of reverse direction to P I and P2 and embedded in the latter appears 

just in front of the vortical region and below P2. It will be shown later, that P3 will 

be maintained and grow for almost the entire pulsation cycle and, similar to VI, 

will have a crucial importance in the driving mechanism of pulsation.

As the primary shock system (W1-W2-W3) continues to collapse, the secondary 

one (W4-W5-W6) strengthens (frames 4 and 5). This leads to the growth of vortical 

region V I, causing the enlargement of separated region P3. Note, th a t the position 

of P3 remains stationary and connected to VI.

By frames 6 and 7 separation regions P I and P2 merge to form an enlarged 

region we will call P I  with a resultant merged shear layer L2 (Fig. 4.23). This event 

paves the way to an enlargened zone for the reversed high pressure flow to fill. The 

separation point of P I  will remain stationary during this period until frame 7. The 

induced flow field of the vortical region and associated pressure gradient is sufficient 

for the reversed flow to achieve supersonic speeds locally (around Mach 2).

Also during this period (frames 5,6,7) the angle of W l drops rapidly from 33° 

to 27° (Fig. 4.16). This is due to the expansion waves emanating from the spike 

tip shoulder weakening the foreshock. The shock wave angle of 27° is the smallest 

allowable for the Mach 2.21 freestream. The flow thus has zero deflection through 

this oblique shock which is further confirmed from the flow visualisation frames 

(frames 5,6,7).

By frame 8, the secondary foreshock (W4) has almost disappeared as the growing
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shock system starts to merge with the collapsing one. Although the vortical region 

remains active and continues to reverse the flow in the separation zone, this process 

no longer involves flow originating directly from the freestream.

This im portant finding means, th a t the whole of the forthcoming inflation of the 

separation zone is not due to a mass influx, but is in fact an expansion of the gas 

already trapped in this zone at high pressure (generally above pt2 - see Fig. 4.11). 

This is in contradiction to previous suggestions (Antonov [26], Panaras [23] Ken­

worthy [18]) of a continuous filling of the separation region from  the freestream, for 

example through the mechanism of Edney’s jet. Note, tha t the very first point of 

separation zone P I has still not advanced.

y ' y ' y y y / / / / /  t u n  / / / / //IIIIIIHlli 
y’ y '  y  y  y  y  X /  /  /  /  /  1111 tWWW 
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Figure 4.20: Vector plot detail and pressure isolines for frame 8 from Fig. 
Mach 2.21 freestream (every second vector shown only).

At this stage the reversed flow is impeded by the oncoming pressure wave asso­

ciated with the first triple shock region. However, by frame 9, the two bow waves 

merge. The position where they meet corresponds to the shock-detachment distance 

of the blunt body in the freestream. This is explained by the collapsing bow shock
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Figure 4.21: Vector plot detail and pressure isolines for frame 9 from Fig. 
Mach 2.21 freestream (every second vector shown only).

(W l) becoming sufficiently weak to have little effect on the flow held at this stage. 

Thus the growing bow shock (W5) is then fully exposed to freestream conditions.

The most im portant feature of frame 9 concerns the behaviour of the vortical 

region itself. The oncoming pressure wave passes through the region to leave a 

strong favourable upstream pressure gradient. This process can be closely observed 

in the vector plots, Figs. 4.20 and 4.21, showing also how the separation region P3 is 

affected by this. In the sudden lack of the adverse pressure gradient the flow within 

the boundary layer will now be accelerated in the upstream direction, slowing the 

flow reversal. Hence, instead of the term ‘separated region’ the term ‘thickened 

boundary layer’ would be more appropriate to this particular frame. However, the 

notation P3 will be kept, as this flow feature will later change back to a separated 

region.

Demonstrated in the x-t plot of the triple point movement (Fig. 4.14) is that the 

axial velocity of the point becomes suddenly very small at this moment (v^ =  0 and
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thus Ma;oo = Mx2 = 0). This leads to an instant drop of the Mach number behind 

the shock wave from supersonic (at M = 1.473) to a fully subsonic value. Another 

interpretation of this situation is, tha t the resulting normal shock adopts a position 

as though it was the growing bow wave.

Note, th a t by frame 9 the separation region P I has started  to move forward 

and reaches the spike tip shoulder. This is associated with the maximum pressure 

recorded at the cylinder face (Fig. 4.11), which maximises the flow escape to the 

separation zone which thus becomes deformed.

The process of inflation: frames 10-20

Frame 10 shows the beginning of the lateral expansion of the foreshock. The lowest 

part of shock W3 has just reached its most rearward position due to the dynamics 

of the collapse.

This unique shape means, th a t W3 will act as a weak oblique shock on the 

internal streamlines involved in the recirculation (see the sketch in Fig. 4.23), and 

thus a supersonic pocket (reaching Mach 1.2) appears behind shock W3 for a short 

period of time (frame 10 only). This zone was fully subsonic before. The pressure 

held of the residual of the vortical region starts to enlargen (and weaken) as the high 

pressure gas accumulated at the cylinder face (the pressure reaches its maximum in 

frames 9 and 10) escapes upstream with supersonic speeds. This is the only possible 

path of how as the direction of the pressure held does not allow any other solution. 

The growing region of pressure gradient will also cause the thickened boundary layer 

(P3) to move upstream, which seems to have large enough inertia to maintain its 

existence. It eventually causes the highly accelerated how (Mach 2) howing over 

it to be channelled causing a weak oblique shock (W7) to appear (see the pressure 

isolines of frame 10 and Fig. 4.23). This in turn interacts with the locally thickened 

boundary layer and separates it again (see the vector plot of frame 10, Fig. 4.22).
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This is an im portant feature because although P3 will play a role later, it could have 

disappeared without the re-vitalising effect of W7.

%%%%%%%%%%%;
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Figure 4.22; Vector plot detail and pressure isolines for frame 10 from Fig. f . l2 ,  
Mach 2.21 freestream (every second vector shown only).

As the recirculated gas re-enters the downstream going supersonic region (behind 

wave W l) through shear layer L2, it collides with the flow originating from the 

freestream. This results in the flow being recirculated again and re-energised by 

the outer flow. This effect is visualised in frame 12 by introducing an additional 

streamline originated near the bottom  part of shock W3.

This demonstrates that the expansion process is internally fed, rather than ori­

ginating from outside. It means tha t the resulting flow recirculation enables the 

high-pressure gas, accumulated at the cylinder face during the collapse to expand 

upstream into the separation zone. As a consequence of this, separation point P I 

advances from the spike shoulder towards the tip. The shear layer originating from 

it (L2) seems however to keep the same angle relative to the spike surface, so when 

the spike tip shoulder is passed (frame 11) a break in the shape of the shear layer
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appears.

An interesting feature appears when examining the angle of the foreshock at the 

triple point at this time instant. It takes on a value, 20°, which could not exist 

normally in a freestream of Mach 2.21 [19]. The weakest possible shock angle at 

this speed is 27°, which suggests th a t another factor has to be taken into account. 

Fig.4.16 further demonstrates this sudden drop from 27° to 20° a t frame 11, and 

the value is then preserved through the next four frames. These correspond to the 

period when the triple point starts to move laterally, which therefore has a bearing 

on this apparent anomaly concerning the foreshock angle.

Indeed, adding the lateral Mach number to th a t of the freestream flow, a new 

resultant Mach number could be obtained (see Fig. 4.15), i.e.

Me — +  Myoo  ̂ =  2.28

acting at an angle of o; =  14.1°. Now, the effective angle between the foreshock and 

the resultant flow will be

^  -I- a  =  20° 4-14.1° =  34.1°

These conditions (upstream Mach number 2.28, shock angle 34.1°) result in a 

Mach number behind the foreshock of 1.89 and a deflection of 10.2°, which are in 

very good agreement with the CFD results, which give 1.92 for the Mach number and 

10.1° for the deflection. (Note, tha t the deflection is measured from the freestream 

direction.) This analysis confirms Kenworthy’s suggestion [18], th a t shock systems 

during the pulsation mode should be considered as unsteady instead of quasi-steady.

By frame 11 and 12 the separation region at P I reaches the spike tip and expands 

laterally. The recirculated flow also moves forward. As a consequence of this, the 

cross-sectional area a t P3 will increase, leading to the disappearance of shock W7 

(frames 11 and 12). However, as the separation zone at P I continues to grow 

laterally, the foreshock (W l) angle near the spike tip also grows and strengthens
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(frames 13, 14). This results in an increase of the pressure behind the shock. The 

recirculated supersonic flow is thus decelerated to these conditions before re-entering 

shear layer L2, and hence an internal normal bow wave (W8) is created in the vicinity 

of the spike tip shoulder (frames 11,12 and also Fig. 4.23). As this shock interacts 

with the boundary layer, another separation region (P4) embedded in and of reverse 

direction to P I occurs.

W2

W3
W1

RESIDUAL O F 
V o r t i c a l  r e <

mW8

P3

Figure 4.23: Scheme of the shock system during the final phase of collapse and initial 
phase of inflation (based on frames 10/11).

Frame 13 marks the first occurrence of foreshock W l becoming normal near the 

centre line as it detaches from the tip. This means the creation of a sizeable high 

pressure region behind this bow wave portion, causing shear layer L2 to be lifted off 

from the spike tip. The first introduced streamline is thus able to penetrate more 

deeply below the separation zone, absorbing P4 and even reaching the location of the 

other internal separated region P3 (the resultant of the two will be called as P3) and 

creating another shear layer (L3) originating from it (frames 13-16 and Fig. 4.25). It 

is interesting to follow the path of this streamline: it enters the recirculation region 

via shear layer L3 to turn back to a direction opposite to the freestream (see the 

vector plot detail of frame 14, i.e. Fig. 4.24). Then it enters the supersonic flowfield 

behind the oblique part of W l through the internal normal wave (W8) and finally
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Figure 4.24: Vector plot detail and pressure isolines for frame I f  from Fig. 4-^^, 
Mach 2.21 freestream (every second vector shown only).

passes the afterbody shoulder via the triple shock system. Also note tha t as shear 

layer L2 moves away from the centre, the triple point is gradually displaced in the 

lateral direction.

W2

R E SID U A L  O F  
V O R TICA L R E G IO N  V I

W3W1

L2

RECIRC U LA TIN G  FLO W

W8
W9

PE N E T R A T IN G
FL O W W10

Figure 4.25: Scheme of the shock system during the late phase of inflation and initial 
phase of withhold (based on frames 18/19).

By frame 17, the second introduced streamline joins the first one in passing below 

the newly formed shear layer, L3. A high-pressure pocket can be observed at around
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the half spike length (or the location of the separation point of P3), which appears 

due to the collision of the penetrating and recirculating streams as they are almost 

brought to a standstill there. The first sign of the pocket actually appears 2 frames 

earlier, on frame 15, and it gradually grows until frame 22. Because it is created in 

a relatively low pressure environment, it will be surrounded by a curved shock wave 

W9 (frames 17,18,19 and Fig. 4.25). The collision of the flows is well illustrated in 

the vector plot detail of frame 19, Fig. 4.26.

Figure 4.26: Vector plot detail and pressure isolines for frame 19 from Fig. 4-^^, 
Mach 2.21 freestream (every second vector shown only).

Another interesting feature apparent from this figure is the effect of shock W8 

on the penetrating flow. Because shock W8 determines the direction of the pressure 

gradient locally (high to low in a downstream direction), the same gradient will 

act as an expansion ray on the penetrating flow as well. Hence, it will experience 

an expansion from high pressure to low pressure, strong enough to accelerate it to 

supersonic speed (Mach 1.8) before colliding with the recirculated flow (frame 19).

By frames 18-20 the number of the introduced streamlines participating in this
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penetration process increases to three, causing a continuing lift off of the shear layer 

L3. Shock W 8 moves downstream, rotates and also moves radially outward because 

of the high pressure behind the expanded foreshock W l and also because of the 

shifting shear layer L3. It also weakens with little evidence of it by frame 24.

For a short period of time (frames 19-21) an oblique wave (WIO) appears in 

front of the high pressure pocket, because separation region P3 has been so much 

enlargened th a t it will dictate large flow deflections.

The above observations are original. All previous publications (for example Ant­

onov [26], Panaras [23], Kenworthy [18]) believed th a t the streamlines through the 

bow wave will actually enter the separation zone, reach the afterbody face and then 

pass by the cylinder shoulder. Instead, as it has been shown, they all turn back 

against the freestream direction via the secondary shear layer (L3) and then enter 

the supersonic conical flow region. The more flow th a t become involved in this pro­

cess, the larger the normal portion of the foreshock becomes (frames 18-22). This 

enables the volume dominated by high pressure (generated by the normal shock) to 

greatly grow in the vicinity of the spike tip.

The withhold: frames 23-30

Frames 21 and 22 mark the most forward position of the bow wave (W l) and even 

when it starts to move downstream in frame 23, it continues to expand laterally 

(frames 23-25). This justifies the use of term “withold” for this section. By this 

process shock (W l), seen in frame 22 and consisting of a normal and an oblique 

part, becomes gradually transformed to a predominantly normal bow wave (frames 

25-30).

The withhold and the actual lateral expansion occurs because of the equilibrium

between the high-pressure zone behind the foreshock and the lower pressure sep­

aration region. In these frames (frames 23-25) therefore, it is as though a conflict
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between the two zones (separated by wave W9 which has now grown) takes place for 

supremacy. However, because of the lift off of the primary shear layer L2 currently 

in process, the prospects of the new high-pressure zone to prevail are better. Shear 

layer L2’s deformation leads to the growth of the size of the high-pressure subsonic 

region, until it becomes so large th a t it cannot be held back by the lower pressure 

recirculation zone (frame 25). Hence, the collapse starts again and continues until 

frame 30, which leads back to the beginning of the cycle (frame 30 is identical to 

frame 1). It is true, th a t for a short time (frames 25 and 26) the mass influx into the 

collapsing separation zone is renewed (happening in a region involving as many as 

four streamlines), but is able to delay the ongoing processes only. When this feature 

disappears, the collapse suddenly accelerates and a new cycle starts again.

W3

L2W1

RESIDUAL OF 
'VORTICAL REGION V1

W9
PENETRATING
FLOW

W11W12
RECIRCU­
LATING
FLOW

P3

Figure 4.27: Scheme of the shock system during the late phase of withold and initial 
phase of collapse (based on frames 24/26).

An interesting feature of the withhold section is th a t another triple shock sys­

tem, the third during a single pulsation cycle, appears inside the separation region. 

Its normal shock portion is formed from the originally curved W9 shock, which has 

been gradually opened as the number of penetrating streamlines increase. By this, 

the extent of the collision has also increased, which is well dem onstrated on the 

vector plot details of frames 22 and 24, i.e. Figs. 4.28, 4.29, where the deflection of
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the recirculated flow is nearly 90°. Such change in the flow direction is normally im­

possible through a shock wave, which further substantiates th a t wave WQ’s existence 

is induced by a need for a boundary between two very different flow states.

Figure 4.28; Vector plot detail and pressure isolines for frame 22 from Fig. 4-^2, 
Mach 2.21 freestream (every second vector shown only).

As the collapse starts in frames 23,24, the whole system (shocks W l, W9 and 

also P3) starts to move downstream. As separation point P3 is moving in the 

opposite direction to the local stream  (recirculation), an oblique shock wave (W ll) 

will emanate from it (see the pressure isolines of frames 23 and 24 and also Fig. 4.27). 

As a consequence of this, a shear layer (L4) and an oblique wave (W12) is being 

formed, which has the role of decelerating the supersonic flow behind W ll to the 

conditions corresponding to the collision. The collapse also means the displacement 

of shock W3, which strongly weakens the residual of the vortical region VI. As W3 

passes the cylinder shoulder, VI suddenly disperses resulting in the recirculation 

process terminating. Thus, the third triple shock system becomes strongly weakened 

even before reaching the afterbody face (frames 26,27).
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Figure 4.29: Vector plot detail and pressure isolines for frame 24 from Fig.
Mach 2.21 freestream (every second vector shown only).

It is also interesting to note tha t in frame 27 the pressure on the face reaches its 

lowest point and is then approximately equal to the freestream static pressure (see 

Fig. 4.11).

4 .3 .4  P u lsa tio n  at M ach 6.00

The pulsation appearing at the Mach 6.00 freestream was found to be driven by 

essentially the same mechanism as was revealed in the Mach 2.21 case. Thus, instead 

of providing a detailed description once again, only the differences arising from the 

hypersonic nature of the freestream will be discussed.

Similar to the previous section, a sequence of 28 frames covering an entire cycle 

of pulsation was selected for the purposes of the analysis (Fig. 4.31). The time- 

positioning of the frames is indicated from the pressure trace shown in Fig. 4.30. 

The non-dimensional time difference between each of the frames is again Ai =  0.2[1].

The start of the frame sequence was chosen to enable direct comparison with 

the supersonic case and was based on the longitudinal location of the collapsing
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Figure 4.30: Pressure history at the cylinder face (d=D/2) for the Mach 6.00 pulsa­
tion case.

foreshock. This means tha t the position of the expanded foreshock in frame 1 of the 

Mach 6.00 case (Fig. 4.31) is identical to the one seen in the corresponding frame 

in the Mach 2.21 case (Fig. 4.12).

Finally, the triple point’s location (Fig. 4.32, 4.33) was used again to identify the 

three characteristic sections of the pulsation mode. Interestingly, the length of the 

individual sections proved to be exactly the same as seen in the Mach 2.21 case, i.e.

(i) the section of collapse corresponds to frames 1-9,

(ii) the section of inflation, corresponds to frames 10-20, and

(iii) the section of withhold, corresponds to frames 21-28

This suggests th a t the fundamental processes of the pulsation take place at the same 

rate (relative to the time period of the cycle) as for the lower Mach number.

Starting with the examination of the discrepancies between the supersonic and 

the hypersonic freestream cases it can be seen, th a t the first difference occurs in 

the first frame. While in the Mach 2.21 case the new bow wave was already clearly 

developed by this time, it has just started to show its first sign in the present 

analysis, lying very near to the afterbody face. This means, th a t the new bow wave
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FRAME 1

FRAME 2

FRAME 3

FRAME 4

Figure 4.31: P u lsa tio n  at M ach 6.00, L /D = 1 .0 0 .  Shown are the M ach isolines
superim posed  w ith  instan taneous s tream lines (left column) and  the pressure isolines
(right column).
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FRAME 5

FRAME 6

FRAME 7

FRAME 8

Figure 4.31: (con t.)  P u lsa tion  at M ach 6.00, L / D = 1 . 0 0 .  Show n are the M ach
isolines super im posed  with ins tan taneous s tream lines (left co lum n) and  the pressure
isolines (right colum n).
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FRAME 9

FRAME 10

FRAME 11

FRAME 12

Figure 4.31: (con t.)  P u lsa tion  at M ach 6.00, L / D = 1 . 0 0 .  Show n are the M ach
isolines superim posed  with ins tan taneous  stream lines  (left co lum n) and the pressure
isolines (right column).
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FRAME 13

FRAME 14

FRAME 15

FRAME 16

Figure 4.31: (con t.)  Pu lsa tion  at M ach 6.00, L / D = 1 .0 0 .  Show n are the M ach
isolines super im posed  with instan taneous s tream lines  (left co lum n) and the pressure
isolines (right column).
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FRAME 17

FRAME 18

FRAME 19

FRAME 20

a

Figure 4.31: (con t .)  P u lsa tion  at M ach 6.00, L / D = 1 .0 0 .  Show n are the M ach
isolines super im posed  with ins tan taneous s tream lines  (left co lum n) and  the pressure
isolines (right colum n).
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FRAME 21

FRAME 22

FRAME 23

FRAME 24

Figure 4.31: (con t .)  Pu lsa tion  at M ach 6.00, L / D = 1 .0 0 .  Show n are the M ach
iso lines  super im posed  with instan taneous s tream lines (left colum n) and the pressure
isolines (right column).
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FRAME 25

FRAME 26

FRAME 27

FRAME 28

Figure 4.31: (con t.)  Pu lsa tion  at M ach  6.00, L / D = 1 .0 0 .  Show n are the M ach
isolines su per im posed  with instan taneous s tream lines  (left co lum n) and  the pressure
isolines (right colum n).
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Figure 4.32: Location of the triple point in time, pulsation at Mach 6.00 freestream.
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Figure 4.33: X  position of the triple point in time, pulsation at Mach 6.00 freestream.

starts its growth with a certain delay in comparison to the supersonic freestream 

case. Interestingly, however, the collapse itself does not appear to happen signific­

antly faster than before (to be discussed below), and thus the merging of the col-
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lapsing and growing bow waves will occur at a location well behind the freestream 

shock stand-off distance (frame 9). However, this effect becomes compensated as 

soon as the merged bow shock becomes pushed upstream to reach the shock stand-off 

position (frames 10-12). This was not observed in the Mach 2.21 case.

The speed of the collapse does not change significantly, even though the freestream 

Mach number becomes nearly three times larger than before. This is evident from 

Fig. 4.33, which shows the slope of the curve 1-9 to be =  0.4000[1], compared 

with value — 0.3335 from the previous section. Based on the calculation proced­

ure given in section 4.3.2, one can obtain M 2A = 1.738 for the value of the Mach 

number to which the afterbody is exposed behind the moving bow wave (with the 

intermediate results of M^oo — 2.40, Mg — 3.60 and Mg =  0.45). This is again not 

much larger than the Mg^ =  1.357 seen earlier, indicating, th a t the value of the 

freestream Mach number does not affect significantly either the conditions on the 

afterbody surface or the speed of the collapse.

Another difference implied by the high freestream nature is, th a t although the 

foreshock angle appears to be of the same order as in the Mach 2.21 case (compare 

Figs. 4.16 and 4.34), the foreshock itself will lie much closer to the shear layer. Thus, 

the triple point is kept in a lower position than before during the entire sections of 

inflation and withhold, having a dual effect on the evolution of the shock system. 

First, the expanded foreshock will appear as a more bell-like shape, with better 

pronounced curvature above the spike tip region (frame 16). Secondly, because of 

the closeness of the triple point to the afterbody, shock W3 (Fig. 4.23) interacts 

with the cylinder surface, leading to the appearance of complex shock structures as 

the triple point passes the shoulder (frames 17-20).

Finally, the Mach 2.21 and Mach 6.00 cases do not share the same trend regarding 

the foreshock angle (Figs. 4.16 and 4.34). While the former one is characterised by 

periods of constant values changing in discrete jumps, the latter one exhibits a rather
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Figure 4.34: Variation of foreshock angle in time, pulsation at Mach 6.00 freestream.

continuous variation. This is because of the different minimum allowable shock angle 

appearing at the particular freestream and also because of the different separation 

zone thickness during the collapse. In fact, the foreshock angle cannot reach its 

minimum allowable value (9.6° at the Mach 6.00 freestream [19]) as it was seen in 

the Mach 2.21 case, since the separation zone’s thickness is much larger due to the 

stronger normal shock causing the interaction. Thus, the angle of the foreshock will 

be guided by the shear layer angle. An increase in the shock angle occurs as the 

two bow waves merge (frames 10,11), which is the effect of the upstream  movement 

of the merged shock wave. Then, the continuation of the previous decreasing trend 

follows, which is disrupted by the triple point passing the afterbody shoulder. The 

appearance of complex shock structures in the vicinity of the triple shock (discussed 

above) will also alter temporarily the foreshock angle.

Apart from these deviations, the rest of the characteristic flow features, and 

indeed the major ones such as the existence of the vortical region responsible for the 

mass influx, or the lift off of the shear layer by the streamlines penetrating into the
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separation zone, takes place by exactly the same manner as described earlier in the 

Mach 2.21 case.

4.3 .5  T he driv ing m echanism  o f p u lsa tion

As a summary of the above analyses, the following picture of the driving mechanism 

of pulsation has been built up.

During the collapse of the expanded foreshock, a vortical region is generated 

within the growing triple shock system. This region feeds the separation zone with 

gas originating from the freestream for about the quarter time period of pulsation (7 

out of 28 frames). When the growing and collapsing bow waves merge, the pressure 

at the afterbody face reaches a maximum. Also, the pressure field of the vortical 

region interacts with the merged shock to leave a strong pressure gradient decreasing 

in the upstream direction. This forces gas to be reversed rapidly into the separation 

region, from which it re-enters the supersonic stream  behind the oblique foreshock 

via a shear layer. However, this recirculated flow is confined to the lower layers of 

the supersonic region by the flow coming from the freestream and hence will again 

be entrained by the vortex. This means a repeated recirculation of the flow and 

also th a t the mass of the gas trapped in the separation zone will be fairly constant. 

Thus, the original vortex and its residual pressure field have two different roles: the 

former one fills the separation zone with a certain amount of gas, whereas the latter 

one ensures tha t this gas does not escape.

The combination of these three factors: a nearly constant mass of gas in the 

separation zone, a recirculation driven by the residual pressure field and the high 

pressure accumulated at the cylinder face will drive the inflation/expansion process. 

The constant mass of gas increases its volume (the volume of the separation zone) 

as the high pressure near the cylinder face is relieved.

This leads to a lateral expansion of the foreshock and ultimately to its transform-
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ation to a bow wave. The high pressure arising at the bow wave will lift off the shear 

layer and will allow the flow to penetrate below the separation region. However, it 

does not possess enough energy to stop the recirculated flow, so after they collide 

it turns back in a direction opposite to the freestream flow to enter the supersonic 

region behind the oblique portion of the foreshock. As the shear layer is lifted off, 

more streamlines become involved in this process. Therefore, the size of the high 

pressure subsonic zone behind the expanded foreshock grows until it overwhelmes 

the recirculation zone’s resistance. Then, the whole shock system collapses again.

4.3 .6  R ev iew  o f form er p u lsation  con cep ts in  th e  light o f  
num erical resu lts

The described driving mechanism represents a new explanation of the pulsation phe­

nomenon. It has been enabled because of an im portant advantage of CFD in offering 

a detailed insight into all regions of the flowfleld. It has been seen, tha t at some 

frames, the analysis of as much as four physical features (pressure, Mach number, in­

stantaneous streamlines and velocity vectors) have been used to provide a ‘richness’ 

of information hardly achievable in the experiments. The previous explanations are 

now reviewed in light of the newly available data.

It had been recognised in the earliest investigations tha t the pulsation flow mode 

happens due to some sort of mass influx from the freestream into the separated 

region, which then inflates and collapses. All concepts, however, assumed that the 

mass influx takes place during the entire inflation process. In other words, tha t 

the pressure in the separation zone remains constant and th a t the volume change is 

caused by a mass added by some sort of flow reversal mechanism. (It has been seen 

from the CFD results, tha t the mass influx from the freestream does not operate 

for the entire process of inflation, i.e. the inflation is caused by a nearly constant 

mass of gas expanding into the forebody flow.) The major question was, however.
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how this mass influx is realised and from where the flow reversal originates? Three 

m ajor concepts on this were put forward.

The earliest theory on the mass influx was suggested by Maull [4] assuming tha t 

it appeared because of the pressure imbalance between the region behind the bow 

wave and the separation zone (regions 3 and 5 in Fig. 4.35).

It is interesting to see that how this very first and simple explanation captures 

the essence of the driving mechanism revealed in the present work. The pressure 

imbalance does play an im portant role in the creation of the vortex. However, the 

mass inflow does not originate from region 3, but instead from region 4. This concept 

did recognise th a t the pressure in the separation zone was indeed considerably lower 

than tha t of the region behind the normal wave because of the zero pressure gradi­

ent across the shear layer ( |^  =  0), dividing the supersonic region of the conical 

foreshock (region 2) and the separation zone itself (region 5 in Fig. 4.35).

slip line

sh ea r  layer  

separation  z o n e

Figure 4.35: Flow regions in pulsation.

Antonov [26], Panaras [23] and Kenworthy [18] all showed th a t the mass entering 

the separation zone cannot originate from the subsonic zone behind the bow wave 

(region 3), but instead from the supersonic one behind the conical foreshock (region 

2). Two different approaches appeared to substantiate this.

First, Antonov [26] claimed in his work, that the pressure in region 4 (Fig. 4.35)
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will actually be larger than in region 3, thus preventing the streamlines from this 

latter passing to the separation region (region 5). Although the latter conclusion 

itself proved to be true, the analysis of shock-shock interactions and CFD results 

show the pressures in regions 3 and 4 to be equal.

Secondly, Panaras [23] associated the shock system with Edney’s type IV shock 

pattern (Fig. 1.10), also suggesting tha t the reversed flow originates from region

2 and not from region 3. Panaras termed region 4 as a ‘supersonic annular je t’, 

which, according to Edney’s solution, is deflected and curved towards the body 

axis, thus inflating the separation zone (Fig. 1.10). In order to prove that region 

4 is supersonic, he constructed a shock hodograph, more commonly called a ‘heart 

diagram ’, to account for the behaviour in the vicinity of the foreshock-bow shock 

intersection (triple point [18]). As heart diagrams are normally suited to analyse only 

steady flows, Panaras assumed the pulsation to be a quasi-steady event. However, 

by considering region 4 to be supersonic, a slip-line will be formed between regions

3 and 4 (Fig. 4.35), along which the deflections (63 and ^4) and the pressures {p  ̂

and P4 ) should be the same. This is only true just downstream of the triple point, 

but not necessarily over the whole regions of 3 and 4.

Based on the foreshock angle /?, measured from the Schlieren pictures, Panaras 

was able to dem onstrate that supersonic flow existed in region 4 (and simultaneously 

subsonic in region 3) for the Mach 6.00 freestream case. This solution is reproduced 

in Fig. 4.36a. Here, the positive deflection angles (5) correspond to deflections away 

from the body axis, and thus any deflection of a left-running wave appears on the 

right-hand side of the heart diagram [37]. For example, the conical foreshock is a 

left-running wave, capable of causing positive deflections only (away from the body 

axis) and therefore, its heart diagram representation appears on the right-hand side 

of the shock hodograph. This means, tha t curve ”a” , corresponding to foreshock ” A” 

in Fig. 4.36b is correctly plotted. Curve ”c” is also correct, as shock ”C” represents
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a right running wave relative to streamline 1. However, curve ”b” appears on the 

left-hand side of the hodograph, meaning tha t if intersection ”X” is to be achieved, 

then streamline 2 should experience a right-running wave in shock ”B” (showed by a 

dashed line in Fig. 4.36b). Examining the numerical solutions or the shadowgraphs 

(Fig. 3.8) show th a t this is never the case. The bow wave is always left running (or 

normal at the worst) to the freestream. Therefore, a negative deflection in region 

4 (or intersection ”X” in Fig. 4.36) appears to be an unlikely representation of the 

flowfield taking place in pulsation. Examining the CED results (for example Frame 

9 in Fig. 4.12) shows also positive deflections in both regions near the triple point.

M =6.00
P = 1 6 °  (measured)

= 8.5 (obtained from P )

(Note: Pt2 is the pitot 
pressure corresponding 
to freestream conditions.

stream lin e  2

strea m lin e  1

-4 0 ■20
defiection angle, 5

b)a)

Figure 4.36: Panaras’ quasi-steady heart diagram for the Mach 6.00 pulsation.

Interestingly, if returning to the original idea of Panaras, which assumed that 

Edney’s type IV shock system takes place in region 4, the same trend can be ob­

served. A closer look on the shock pattern (Fig. 1.10) shows, th a t the strong shock 

(V-Q) is indeed left-running relative to the flow Pi, representing the freestream in
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our case. The flow behind this wave as well as in the jet region is initially deflected 

away from the freestream (or from the body axis in spiked body terms) and is turned 

back later, after experiencing a substantial number of reflections and curvature.

Another point related to this issue is tha t the previous effect occurs in a longit­

udinal distance almost twice as large as the length of the supersonic region P-Q-R 

(Fig. 1.10). As this la tter corresponds to the conical foreshock in the spiked body 

case, it can be seen th a t the curvature of the supersonic annular je t is quite unlikely 

to occur in the pulsation flow mode, simply because the distance between the triple 

point and the cylinder face is too short to realise this rapid turning at the jet region 

(see frame 10 in Fig. 4.12 for the Mach 2.21 freestream, where this distance is only 

around 30 % of the foreshock length). This is especially true for the Mach 6.00 case, 

where the collapsing and growing bow waves merge well behind the freestream shock 

detachment distance (frame 9 of Fig. 4.31). This means, th a t even if Edney’s type 

IV shock pattern  was formed in spiked body flows, it would most likely reattach to 

the afterbody face at an angle yielding rather an outflow than a mass reversal to 

the separation region.

Inspired by Panaras’ idea on the driving mechanism, Ken worthy [18] attem pted 

to show th a t the same annular je t concept drives the lower Mach number pulsa­

tion cases as well. However, when constructing a heart-diagram  for the Mach 2.21 

freestream, subsonic flow was obtained in the je t region (see intersection ‘X’ in 

Fig. 4.38a). As it was feared tha t Edney’s jet could not take place a t such condi­

tions, Kenworthy decided to re-examine the methodology of using heart-diagrams 

in the pulsation analysis.

Using East and W ilkinson’s findings [38] he argued tha t unsteady flows charac­

terised by Strouhal numbers larger than 0.01 should not be treated as quasi-steady. 

As the Strouhal number of the pulsation mode was found to be around 0.2 [18], he 

introduced ‘dynamic’ heart diagrams instead of Panaras’ steady ones, taking into
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account shock movement as well.

triple point
00

m a sk

Figure 4.37: Kenworthy’s [18] measurement of the shock growth/collapse speed.

In order to obtain the required shock movement speeds, Kenworthy recorded the 

foreshock’s position in time experimentally through a mask located at the diameter 

D /2 (Fig. 4.37). By adding the obtained speed to the freestream velocity an 

effective Mach number, acting on the foreshock, could be obtained:

IVL =
UciO 4” = Moo 4-

This value proved to be almost 30 % higher during the inflation than the freestream 

Mach number (Mach 2.80 instead of Mach 2.21). Thus, Kenworthy’s reconstructed 

heart-diagrams were similar to Panaras’ but with the difference, th a t his curve ‘a ’ 

(Fig. 4.38b), corresponding to foreshock A in Fig. 4.37) was not calculated from the 

freestream Mach number 2.21, but from the above calculated effective one, Mach 

2.80, instead. This yielded indeed a supersonic flow in region 4 (Fig. 4.35) even for 

the Mach 2.21 freestream (intersection ''X^yn in Fig. 4.38).

As it has been seen in the previous sections, the CFD results do not predict 

supersonic flow in region 4 for the Mach 2.21 freestream case. (In fact, a supersonic 

pocket did appear for a very short time only, but near the lower part of region 4, 

far from the triple point, close to which this analysis refers). So, Kenworthy’s first 

quasi-steady graph (Fig. 4.38a) seems actually to predict a better solution at least
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Figure 4.38: Heart diagrams for the Mach 2.21 pulsation mode according to K en­
worthy [18]. Quasi-steady (a) and ‘dynamic’ (b) solutions.

in terms of the Mach number. Although the deflections seem to be in the opposite 

direction than the CFD results show, this finding inspired the re-evaluation of the 

role of shock motions using this methodology.

In Kenworthy’s approach, the separation point moved rapidly forward, pulling 

along the foreshock. This was the reason for his assumption th a t the shock growth 

speed is im portant in the analysis. However, examination of the numerical and 

experimental results shows tha t at the moment when the two bow waves merge, i.e. 

when Edney’s je t is supposed to be created, the separation point has almost already 

reached the spike tip  shoulder and tha t for most of the je t’s suggested existence it 

is actually completely still (frames 9 and 11 in Fig. 4.12)

This means, th a t the movement of the separation point and the creation of the 

je t are events taking place subsequently rather than simultaneously and therefore
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it seems to be quite unlikely tha t there is a connection between the two. Hence, if 

unsteady motions are to be involved in the the heart diagram analysis, then another 

point of reference should be considered.

As it was pointed out earlier, heart diagrams are suitable for the description of 

the situation in the vicinity of shock-shock intersection only and therefore, recording 

the movement of the triple point seems to be a reasonable approach. Zapriagaev 

and Mironov [28] were the first to track the triple point’s position. However, they 

did not really exploit the information gained. The triple point has been used as a 

point of reference in the present work as well. The results showed (Figs. 4.14, 4.15 

and frames 10-16 in Fig. 4.12), th a t its position is longitudinally almost fixed dur­

ing the supposed je t creation, meaning that the very upper portion of the foreshock 

(the one closest to the triple point) will not experience any forward movement at 

all. Instead, the lateral movement appears to be more significant, which fact has 

already been exploited in the present work decribed earlier.

As a summary of this section it can be concluded, tha t all previous concepts in­

volved elements which appeared in the driving mechanism revealed by the current 

results. These include the pressure imbalance first recognised by Maull [4], the fact 

th a t the flow originates from the supersonic region from behind the oblique foreshock 

by Antonov [26], Panaras [23] and Kenworthy [18], the importance of the unsteady 

shock motions by Kenworthy [18] and the need for taking the triple point as a point 

of reference by Zapriagaev and Mironov [28].

However, the assumption of continuous filling from the freestream during the 

entire process of inflation and the concept of Edney’s type IV shock system as the 

source of flow reversal proved to be incorrect in the light of the numerical results. 

The main evidence regarding the la tter issue is the lack of supersonic flow behind 

the triple shock system at the lower Mach number case, in which conditions the
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existence of Edney’s je t seems to be doubtful.

Nevertheless, in the light of the information available from the experimental data 

all these hypotheses represented reasonable concepts based on the available data. 

They also offered a rich background and inspiration for the present research.
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4.4  T he hysteresis phenom enon

The numerical results of the hysteresis phenomenon are analysed in the present 

section. There are two principal aims of the analysis: to provide a description of the 

transition processes from one flow mode to another and to establish the necessary 

conditions for the onset of a new flow mode. The Vsp = 0.004 spike speed results 

will be used for this purpose, which appear to correspond better to a quasi-steady 

spike movement.

4.4 .1  T h e o sc illa tio n /p u lsa tio n  tran sition  (O /P )

It has already been shown in the previous sections, how a single oscillation and

pulsation cycle work. The basic concepts of these mechanisms are expected to re­

main unchanged even in the case of a continuously changing spike length. However, 

slight cycle to cycle deviations in the mechanism are anticipated to occur as the 

spike length increases/decreases, leading ultimately to the transform ation to an­

other mode. In order to illustrate these changes, a comparative approach has been 

chosen. This means, tha t frames corresponding to the same phase (for example, the 

ones representing the minimum and the maximum pressures) of the cycles will be 

visualised and compared. The subsequent cycles are marked as A-K and the points 

selected from them as 1-3.

The pressure history detailing the cycles of transition is shown in Fig. 4.39. The 

flow visualisation frames corresponding to these points are shown in Fig. 4.41. Mach 

number contours superimposed with seven, originally equally distributed instantan­

eous streamlines will be used for the purposes of the analysis.

The first obvious sign of the O /P  transition is a rapid, almost exponential growth 

of the pressure amplitudes in the pressure history, starting a t around L /D  — 1.33 

(Fig. 3.11). Although a slight growth of this param eter has also been displayed 

earlier, at longer spike lengths, it is not readily apparent what triggers the rapid
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Figure 4.39: Pressure history detail of the O /P  transition for a continuously de­
creasing spike length. Freestream Mach number 2.21, spike speed Vgp =  0.004.
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Figure 4.40: Schematic of the oscillation mechanism.
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FRAME A1 FRAME C1

FRAME A2 FRAME C2

FRAME B1 FRAME D1

FRAME B2 FRAME D2

Figure 4.41: The O / P  transit ion  occurring at a con tinuously  decreasing spike length.
Spike speed Vgp =  0.004, freestream  M ach num ber 2.21. M ach  num ber  isolines and
ins tan taneous s tream lines  shown f o r  the fram es fro m  Fig. 4-39.
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FRAME E1 FRAME F2

FRAME E2 FRAME F3

FRAME E3 FRAME G1

FRAME F1 FRAME G2

Figure 4.41: (con t.)  The O / P  transit ion  occurring at a con tinuously  decreasing
spike length. Spike speed Vgp =  0.004, freestream  M ach  num ber  2 .21. M ach num ber
iso lines  and instan taneous s tream lines  shown fo r  the fra m es  f r o m  Fig. 4-39.
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FRAME G3 FRAME J1

FRAME H1 FRAME J2

FRAME H2

FRAME H3

FRAME J3

FRAME K1

Figure 4.41: (con t.)  The O / P  transit ion  occurring at a con tinuously  decreasing
spike length. Spike speed Vgp =  0.004, freestream  M ach  num ber  2.21. M ach num ber
isolines and instan taneous  stream lines  shown fo r  the fra m es  f r o m  Fig. 4-39.
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growth and why it appears exactly at this spike length? The answer could be found 

in the nature of the oscillation mode. As it has been shown previously (section 4.2), 

the oscillation mode is driven by an ever-changing shoulder reattachm ent condition 

of the shear layer. As the la tter swings radially near the afterbody shoulder, it is 

either lifted to allow the gas to escape from the separation zone (Fig. 4.40b), or it 

is reattached to the cylinder face so th a t most of the shear layer flow is reversed, 

causing influx into the separation region (Fig. 4.40c). It has also been pointed out, 

th a t the separation point reacts to this mechanism with a certain delay, i.e. it moves 

downstream during the filling and is pushed upstream  during the flow escape from 

the separation zone. This anomaly can be explained by the fact, th a t the filling can 

only take place when the shear layer reaches its lowest position (angle). In such a 

situation, a low pressure is present in the separated zone, meaning tha t the separ­

ation point will be forced downstream (suction effect). As the filling stops, the gas 

trapped in the separation zone starts to expand, forcing the separation point forward.

The delay in the timing of the separation point appears to play a crucial role in 

the growth of the pressure amplitude during the changing spike length. In fact, 

the amount of gas supplied into the separation zone depends on the geometrical 

conditions present at the instant when the shear layer is at its lowest position. A 

mass influx arising at this point would be sufficient to m aintain a self sustained 

oscillation if the spike length was constant. However, by the time the information 

about the quantity of the mass influx reaches the separation point, the spike tip has 

already moved downstream, closer to the afterbody, by a small portion. Thus, the 

separation point is pushed more forward relative to the spike, than in the earlier 

cycle, because the amount of gas producing this effect proves to be more than re­

quired. For the same reason, the shear layer’s lateral expansion will also be larger, 

allowing more gas to escape from the separation zone as the shear layer waviness
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propagates downstream. Therefore, the pressure loss appears to be more substantial 

than would be necessary to m aintain a regular, self-sustained oscillation, and the 

shear layer will deflect down to a much lower position than  before. This effect is 

well illustrated by frames A1-A2, B1-B2, C1-C2, showing the lowest and the highest 

positions of the shear layer in three consecutive cycles. Note, th a t since the outer 

portion of the cylinder face will no longer be exposed to a subsonic flow, an annular 

bow wave appears in front of it. This grows gradually in the subsequent cycles as 

the minimum angle of the shear layer decreases. The lower down the face tha t the 

shear layer reattaches, the more streamlines are reversed into the separation zone, 

intensifying the filling mechanism and pushing the separation point further forward.

In the next cycle, the separation point passes the spike tip  shoulder for the flrst 

time (frame D l). However, as the shear layer emerging from the separation point 

aims to maintain its relative angle to the spike tip  surface, a sudden break appears 

in its shape. This becomes more apparent later, when the waviness in the shear 

layer, caused by passing the spike tip shoulder, propagates downstream (frame D2). 

The evidence of the shear layer disintegrating is well dem onstrated by the first three 

streamlines introduced, leaving it at around the half-distance of the spike. This is 

the first ‘pulsation-like’ feature of the flow, at which the lift-off of the shear layer 

was accomplished also by the streamlines penetrating into the separation zone.

Frame E l shows the number of introduced streamlines participating in the filling 

mechanism to be increased to four in contrast to the two seen in the flrst cycle 

(frames A1-A2). The separation point reaches further upstream  in the subsequent 

cycle (frame E2) and the break of the shear layer takes place in a more violent 

manner (frame E3).

These features are gradually enhanced in the next three cycles (frames F1-F3,
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G1-G3 and H1-H3). By the last one of them (H), the five lowest introduced stream ­

lines are involved in the flow reversal (frame HI) and the separation point nearly 

reaches the spike tip (frame H2). The shear layer’s second half almost completely 

disappears at this time, and because there is nothing to guide the streamlines emer­

ging from it, they impact on the cylinder face as though in a random fashion (frame 

H3).

W ith the convection of the shock system downstream, a straight shear layer is 

re-established (frame J l) ,  intersecting the annular bow wave. This has now become 

fairly large. Then, the separation point reaches the spike tip  for the first time, 

detaches from it and a small bow wave is formed as a consequence of tha t (frame 

J 2). This is the first clear sign of the pulsation mechanism.

As it has been shown earlier, in section 4.3.3, the streamlines penetrating through 

the initial bow wave will eventually lift off the shear layer from the spike and expand 

the previously oblique foreshock to a bow wave. As this is being convected down­

stream  (frame J3), it is as though the afterbody accelerated to a supersonic speed, 

leading to the appearance of an entirely new bow wave in front of it (frame K l). 

This implies the creation of a triple shock system with the vortical region inside it, 

which starts the full pulsation mechanism.

4.4 .2  T he n ecessary  con d ition  o f th e  O /P  tran sition

Based on the above description, the necessary condition of the O /P  transition can 

be established. The oscillation mode will transform to the pulsation only when 

the separation point reaches the spike tip. This transform ation is proceeded by 

a transitional process characterised by a rapid growth of the pressure amplitude, 

triggered by the separation point passing the spike tip shoulder for the first time.

This finding implies an interesting conclusion, namely, th a t different spike tip 

functions (for example, Calarese and Hankey [25] used a hemisphere spike ending)
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could exhibit different transitional processes in terms of their duration,

4 .4 .3  T h e p u lsa tio n /o sc illa tio n  (P /O )  tra n sitio n

The P / 0  transition exhibits a rather different behaviour in its pressure history than 

the previously seen O /P  one. The two main differences are the following.

Firstly, the transition takes place abruptly (see Fig. 3.11), with no sign of prior 

“preparation” as it has been seen in the case of the O /P  transition case. Secondly, 

the last twelve cycles exhibit somewhat larger pressure am plitudes than those of 

the preceeding ones. This latter observation was found to be in accordance with 

the available experimental hysteresis data  of Calarese and Hankey [25], where the 

pulsation amplitudes were measured to be approximately 15 % higher just before 

the P / 0  transition than those outside the hysteresis region (see Fig. 1.14). In the 

numerical method, the last cycles differ by 18% from the preceeding ones, confirming 

th a t the com putational solution is likely to be qualitatively correct. This is an 

im portant feature as it means, th a t despite the overprediction of the P / 0  transition 

value, the description of the transformation itself should be valid.

The detail of the pressure history is provided in Fig. 4.42. Note, tha t the graph 

in this instance is given not in terms of spike length but in time instead. This en­

ables to illustrate later the increase of the time periods. Flow visualisation frames 

of the selected points are shown in Fig. 4.43.

First, let us examine the pulsation mode operating at this extremely large spike 

length. Frame A l shows the time at the instant of the collapse. However, along 

with the two triple shock systems seen at the short spike length pulsation (the col­

lapsing and the growing bow wave, section 4.3.3), a third triple shock system could 

also be observed (illustrated by the pressure isolines plot in frame A l of Fig. 4.44). 

It appears at approximately the half-distance between the two waves and by consid­
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Figure 4.42: Pressure history detail of the P / 0  transition for a continuously increas­
ing spike length. Freestream Mach number 2.21, spike speed v^p =  0.004.

ering the direction of its movement it is collapsing. This triple shock system could 

not be observed earlier since it is created by shock wave W9 overtaking separation 

region P3 (see Fig. 4.16) during the convection downstream. This process could not 

take place a t shorter spike lengths, because W9 strikes the wall much sooner.

As this central shock system merges with the growing triple shock, the vor­

tical region already formed in the la tter one transforms to a residual (frame Â2 in 

Figs. 4.43 and 4.44). This is another difference from the shorter L /D  case, where 

the residual of vortical region appeared because of the merger with the collapsing 

bow wave.

As this feature contributes to the filling and expansion processes, the separation 

point is pushed upstream  along the spike (frames A3, A4) until it eventually reaches 

the spike tip. Then, the foreshock expands to a small bow wave, allowing the 

streamlines to lift off the shear layer (frame A5). Note, th a t a small annular bow 

wave remains present a t the afterbody shoulder, keeping the vortical region residual, 

and thus the flow recirculation in the separation zone operational.
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FRAME A1 FRAME A5

FRAME A2 FRAME B1

FRAME A3 FRAME B2

FRAME A4 FRAME B3

Figure 4.43: The P / 0  transit ion  occurring at a continuously  increasing spike length.
Spike speed Vgp =  0.004, freestream  M ach  num ber 2.21. M ach  num ber  isolines and
instan taneous  s tream lines  shown f o r  the fra m es  fro m  Fig. 4-42.
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FRAME B4 FRAME C3

FRAME B5 FRAME Dl

FRAME C1 FRAME 02

FRAME C2 FRAME 03

(cont.) The P / 0  transition occurring at a continuously increasing 
Spike speed Vgp = 0.004, freestream Mach number 2.21. Mach number

Figure 4.43: 
spike length.
isolines and instantaneous streamlines shown for the frames from  Fig. 4-42.
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FRAME E1

Figure 4.43: (cont.) The P / 0  transition occurring at a continuously increasing 
spike length. Spike speed Vsp = 0.004, freestream Mach number 2.21. Mach number 
isolines and instantaneous streamlines shown for frames from  Fig. 4-42-

The same processes take place in the next cycle (frames B l, B2, B3), however, 

this time with the difference tha t the bow wave cannot be formed at the spike tip 

(frame B4). This is due to the increased spike length, meaning, th a t although the 

separation point can still reach the spike tip, there is not enough energy left in the 

flow to accomplish the lateral expansion fully. Hence, the shear layer remains a t­

tached to the spike tip, not allowing the streamlines to penetrate into the separation 

zone immediately. However, most likely due to the dynamics of the event, the shear 

layer is torn apart once again causing the streamlines to leave it and to enter below 

the secondary shear layer within the separation zone (frame B5). During the col­

lapse, the recirculation zone is squeezed for the last time in a pulsation like manner 

(frame C l). Meanwhile, the downstream convection causes the attached shear layer 

to be lengthened, creating a shallow but long separation zone. This does not allow 

the growing triple shock system’s lower part to be properly developed, causing a 

lack of the vortical region inside it (frame 02 and also Fig. 4.44). W ithout this 

generator of pulsation, the separation zone cannot be filled to its full extent and the 

separation point looses its ability to reach the spike tip. This is further enhanced 

by the increased spike length (frame 03).
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FRAME A1 FRAME A2 FRAME C2

Figure 4.44: Pressure contour plots for frames A l , A2 and C l from Fig. 4-4^- 
P / 0  transition at a continuously increasing spike length, spike speed Vsp = 0.004, 
freestream Mach number 2.21.

Due to the poor expansion, the angle of the foreshock will be smaller than in 

the previous cycle (compare frames C3 and B4), meaning less pressure behind it. 

Thus, the streamlines emerging from this region will not possess enough energy to 

lift the secondary shear layer off (frames D l, D2) and as the collapse is completed, 

the entire cylinder face will lie in the wake of a subsonic separation zone (frame D3). 

As no bow wave can be formed in front of the afterbody, the pulsation generator 

vortical region will be missing in this cycle.

Hence, in the subsequent cycle, the separation point will be unable to reach the 

spike tip shoulder, and the flow soon becomes steady (frame E l).

4 .4 .4  T he necessary con d ition  o f th e  P /O  tran sition

Summarising the above findings it can be stated, tha t the P /O  transition occurs at 

the spike length at which the separation point cannot reach the spike tip. This also 

implies the conclusion, that from the numerous elements of the pulsation mechanism 

revealed in the earlier sections, the most crucial one is the lift off of the primary 

shear layer. If this element cannot be realised, the pulsation transforms abruptly to 

oscillation/ steady flow.



C hapter 5 

C onclusions

The primary aim of the present work has been to investigate the driving mechanisms 

of high-speed unsteady spiked body flows by using Com putational Fluid Dynam­

ics as a tool. Three main issues were addressed: the oscillation and pulsation flow 

modes and the hysteresis phenomenon. Conceptually, the numerical results were 

first verified and extensively validated before proceeding to their analyses.

The numerical method was described and verified in Chapter 2. Axisymmetric, 

laminar modelling was chosen as an acceptable description of the examined prob­

lems. It should be acknowledged, however, tha t the role of turbulence effects cannot 

be entirely neglected in spiked body flows. The large vortical regions appearing in 

the pulsation flow mode are likèly to provoke turbulent flow/large eddies within the 

separated region. Also, it is uncertain whether the shear layer remains fully laminar 

during the oscillation mode or it undergoes transition to a turbulent one, which 

would enhance the mixing. These issues could not be addressed in this thesis since 

the k — LÜ model available in the used numerical method exhibited robustness prob­

lems during the preliminary calculations. Thus, future com putational work should 

aim to provide turbulent simulations in order to assess the effect of the turbulence 

on the results. Such simulations will possibly necessitate the use of a Large Eddy 

Simulation (LES) method tailored for high-speed applications.
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The main findings of the verification of the numerical m ethod can be summarised 

as follows:

For the fixed spike length cases

•  medium grids yielded grid convergent solutions,

•  the use of maximum time step was possible.

For the moving spike cases

• medium grid yielded grid convergent solution at the lower (O /P) boundary of 

the hysteresis range,

• finer resolution grid would be required at the upper (P /O ) boundary of the 

hysteresis range,

•  the use of reduced time steps was necessitated

In order to keep the computational costs of the moving spike calculations at an 

acceptable level, the medium grid was applied for the entire range of the hysteresis 

phenomenon. This means, tha t the numerical results should be treated as both qual­

itatively and quantitatively correct at the lower boundary of the hysteresis range 

only, and only qualitatively correct a t the upper one. This deficiency of the nu­

merical simulation was compensated to a certain extent by the originality of such 

results and hence a qualitative evaluation was still considered valuable. If a fully 

grid convergent solution was achieved, then this would lead to further increase of 

the hysteresis range. The most promising way of achieving grid convergence near 

the P /O  boundary appears to be the development of a special deforming mesh tech­

nique capable of maintaining optimal grid resolution (for example by introducing 

extra gridlines in a suitable manner).
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In Chapter 3, the numerical results were validated. A comprehensive comparison 

with the experiment was provided and the main results are:

• in accordance with the experiment, the pulsation flow mode is characterised 

by pressure amplitudes of the order of the pitot pressure

•  oscillation is found to exhibit pressures an order of magnitude smaller than 

those in pulsation, which agrees with the experiment;

•  the frequency, the characteristic shape of the pressure trace and the shock 

envelope history were found in very good agreement with the measurements;

•  the pressure amplitudes agreed in the Mach 2.21 cases only, but were over­

predicted in the Mach 6.00 cases

• the hysteresis phenomenon was qualitatively successfully predicted;

•  quantitatively, the lower boundary of the hysteresis range was found in good 

agreement with the experiment, but the upper one was well overpredicted.

The disagreement of the pressure amplitudes is most likely due to the suggested er­

rors in the measurement. The small scale of the model [D* = 20[mm]) could mean 

difficulties in m aintaining perfect axisymmetry, while the use of cavity-like pressure 

transducers and the high frequency of the event were likely to yield resonance and 

pressure amplification. The latter argument was supported by the fact, that larger 

frequencies yielded larger deviations from the experiment (Mach 6.00 cases). Thus, 

the agreement of the pressure amplitudes proved to be less im portant than the cor­

rect prediction of the frequencies and the other characteristics of the flow modes [18]. 

The high frequency of the instabilities was also responsible for the most striking dif­

ference between the CFD simulation and the experiment: measurements capture a 

large number of cycles which could hardly provide data  from one particular period
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(hence the shock envelopes were constructed from frames obtained from different 

cycles), whereas CFD is advantageous for simulating few cycles only. These are 

ideal for detailed analysis but not well suited for comprehensive time-averaged or 

power spectra evaluations. Therefore, if the observations of a CFD analysis should 

be confirmed experimentally, then advanced measurement techniques, such as the 

capability of recording as much as 10̂  frames/s and taking pressure measurements 

from more locations on the model surface, would be required.

The significant disagreement of the upper boundary of the hysteresis range was not 

fully understood but it is most probably caused by some other features as well as 

the possible axisymmetry issue. From the two spike speeds considered the lower one 

seemed to correspond better to a quasi-steady phenomena and hence was judged as 

qualitatively realistic. Although the set of available results does not allow a strong 

conclusion on this, it appears th a t the hysteresis range can be significantly reduced 

by applying a very fast spike speed.

The runtimes for fixed spike length calculations were of the order of days (consid­

ering a Pentium Pro 200 MHz processor) which times are likely to be reduced to 

order of hours by the rapid development of computational facilities. Thus, CFD 

simulations of spiked body flows appear attractive for engineering purposes as well, 

offering quick response to the designer. The runtimes for the hysteresis calculations 

were of the order of weeks, which are also likely to be reduced to order of days.

Following the verification and the validation, the numerical results were used to 

investigate the driving mechanisms of oscillation, pulsation and the hysteresis phe­

nomenon in Chapter 4.

The main results from the oscillation analyses are:

•  the oscillation was found to be driven by the shear layer’s ever changing 

shoulder reattachm ent condition, a viscous phenomena in nature
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•  unique results were revealed from the CFD simulations for:

- the required reattachm ent pressure ^-nd

- the potential reattachm ent pressure {prpot), 

showing very good agreement with the theory

•  based on these results, Kenworthy’s “energetic shear layer hypothesis” was 

confirmed as the driving mechanism of the oscillation flow mode

• the value of the actual reattachm ent pressure (experienced on the afterbody) 

was found to be linked to the direction of the shear layers lateral movement.

The capability of CFD to gain quantitative information from any part of the flow- 

held was exploited in this analysis and provided the main input to the understanding 

of the oscillation flow mode. Data, such as the Mach number distribution and the 

pressure distribution along the bounding streamline of the shear layer (which is 

moreover unsteady) are virtually inaccessible by measurement and thus it seems 

th a t without a CFD analysis the hypothesis could never be confirmed. It is remark­

able, however, how well the theoretical and experimental researchers were able to 

capture the essence of the oscillation driving mechanism, with their concepts based 

on the limited data  available from the measurements.

In contrast to the oscillation, an entirely new driving mechanism was revealed for 

the pulsation flow mode. The mechanism is based on a number of new elements, 

not observed in any previous work. These are:

• the existence of a vortical region in the growing triple-shock system, causing 

flow reversal into the separation zone,

• the duration of the filling mechanism being only one fourth of the time period.
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•  the inflation and expansion of the separation zone continuing even after the 

fllling has stopped,

•  the appearance of supersonic flow and shock waves within the separated region,

•  the detachment of the expanded bow wave from the spike tip,

•  the lift off of the shear layer,

•  the flow penetrating through the expanded bow wave being reversed instead 

of impacting on the afterbody face.

Since the fllling mechanism is realised through a vortical region generated by the 

pressure imbalance in the triple-shock system, the pulsation mechanism could be 

regarded as inviscid in nature. This is another striking difference between the oscil­

lation and pulsation flow modes. In accordance with previous researchers ([16] [25], 

multiple separated zones were observed along the spike. These are believed to be 

the source for the shock asymmetry in the experiments. Since 3-D effects could not 

be investigated by the present axisymmetric simulation, future numerical studies 

should aim to tackle this problem. The majority of spiked body experiments were 

conducted more than two decades ago. Hence, new techniques th a t have emerged 

during this period, such as Particle Image Velocimetry (PIV), could be utilised to 

confirm the observations of the CFD analysis.

A final note on the fixed spike length calculations regards the irregularity of the 

pressure traces. These have been observed in both the experiment and the present 

numerical simulation. However, while in the former one it was believed to occur 

because of the 3-D effects or the measurement inaccuracies, this could certainly not 

be the case in the latter one. Thus, it is suggested th a t the irregular CFD cycles 

appear due to the relatively small number of cycles performed, which were thus still 

afl’ected by the initial transient. This raises the question of whether a very large



153

number of cycles would result in a perfectly periodic pressure history.

In the final part of Chapter 4, the hysteresis phenomenon was examined. The 

main findings can be summarised as:

•  the 0 / P  transition takes place gradually through a finite number of cycles and 

is triggered by the separation point passing the spike tip  shoulder,

• the P / 0  transition takes place abruptly through a single cycle, and occurs a t 

the spike length at which the separation point is not capable to reach the spike 

tip.

The hysteresis phenomenon is an area which requires further numerical and exper­

imental investigations. Experimental results are needed for the outward moving 

spike portion of the hysteresis loop and it would be useful if the pressure history 

instead of the time-averaged amplitudes would be available in the vicinity of the 

transitions. Although the exact source of the hysteresis phenomenon is yet to be 

fully understood, the description of the transitions and the establishment of the 

necessary conditions for their occurrences could be interpreted as a step in the right 

direction towards this goal.



A p p en d ix  A  

T he P M B 2D  code

A detailed description of the PMB2D code is given here, focussing particularly on 

the features employed in the spiked body calculations. Some of the descriptions are 

adopted from [47] [53] [54] and [55].

A .l  G overning equations  

A . 1.1 T w o-d im ensional form

The two-dimensional, compressible Navier-Stokes equations w ritten in a Cartesian 

frame are given by

aw ap' ao' i /ap" acr\
+  T c- +  -T5:- =  - F î r h i r  +  ^  (A-i)dt dx dy Re \  dx dy 

Here, the vector W  is the vector of conserved variables:

/  \

(A.2)pu 
pv

\ P ^  J

where p denotes the density, u, v are the two components of the Cartesian velocity 

vector and E  is the total energy per unit mass.

The flux vectors P  and G are decomposed into an inviscid, or convective, contri­

bution denoted by (̂ ) and a viscous, or diffusive, conribution denoted by ('") W ritten
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in full these are:

G*

/  pU \
puU P p  

pvU
\  U{pE + p)  +  Xtp )
f  pV \

puV  
pvV P p  

\  y (pE  +  p) +  ytp )

(A.3)
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(A.4)

\  '^'^xy A '^'^yy Qy /

In the above expressions, U and V  are the contravariant velocities, defined as

U = u ~  xt V  = v -  y t (A.5)

where Xt and yt are the components of the grid speed in a Cartesian sense. The 

components of the stress tensor and of the heat flux vector are modelled in the 

following way:

Trr

yy

a% 2  f  du d v \
^  dx  3 \  ay y

an 2  f  du dv

'̂ xy —

Qx =  -

Qy ~  ~

du dv
' ' I  +

1 /i dT
(7 — 1)M ^ P r  dx  

1 (J. dT
(7 -  1)M ^ P r  dy

(A.6)

(A.7)
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Here, 7 is the specific heat ratio, equal to 1.4 for air, P r  is the laminar Prandtl 

number set to 0.72, T  is the static tem perature and and Re  are the freestream 

Mach number and Reynolds number, respectively. Furthermore, the various flow 

quantities are related to each other by the perfect gas relations:

E  — e +  ”  (u^ +  (A.8)

p = (7 -  1) pe 

P _  _ T _
P

Finally, the laminar viscosity is evaluated using Sutherland’s law:

ji / T  y /^ T i)  +  110
M o  \ % J  T + 1 1 0

where po — 1.7894 x 10”^ [ ^ ]  and Tq =  288.16[iF] represent the reference viscosity 

and tem perature, respectively. All terms used in the numerical method are non- 

dimensionalised as follows:

X* y" t*
^ ~  T I  ’ y  ~  T 7  ’ ^ ~

U V pL

T . ’ -
n *  ’ ^  O* y * 2 ’ J '*  ’ ^  y * 2roo roo 0 0  0 0  0 0

where * denotes dimensional quantities and 00 denotes free-stream values.

A . 1.2 A x isym m etric  form

Spiked body flows are modelled in the current work in an axisymmetric fashion. 

The modelling equations for such case are the Navier-Stokes equations rewritten 

in cylindrical coordinates with the symmetry in the azimuthal direction. These 

equations written in Reynolds’ averaged and non-dimensional form are given as:
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Mass continuity

(A.IO)

M om entum
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In the above equations, subscripts (^) and (j.) represent the tangential and the ra­

dial components of the velocity, respectively, whereas subscripts (r) indicate values 

corresponding to turbulent flows. Et is the total energy per unit volume. The above 

equations are treated analogously to the planar equations in the rest of the code. 

For more details see [47].
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A .2 Spatial d iscretisation

The Navier-Stokes equations are discretised using a cell-centered finite volume method, 

which transforms the partial differential equations into a set of ordinary differential 

equations which can be w ritten as

^  =  - R i J  (A. 13)

and where represents the discrete approximation of the convective and diffusive 

flux integrals. Subscripts (z,j) are the coordinates of the control volume in the 

generalised coordinate system.

The control volumes are obtained by dividing the com putational domain into 

a finite number of non-overlapping cells, to which the Navier-Stokes equations are 

applied in turn. The PMB2D code employs a structured multiblock approach, which 

means tha t each cell is represented by four edges and tha t the cells could be organised 

into a finite number of non-overlapping blocks, assembling the entire computational 

domain.

A .2.1 G eneral curvilinear form

Since the method is based on using body-conforming grids of arbitrary density and 

orientation, the Navier-Stokes equations are first rewritten into a curvilinear co­

ordinate system (^,y). This is achieved by performing a space transformation from 

the Cartesian coordinate system {x, y) to the local coordinate system (^,y)

C =

ri = rj{x,y) 

t = t

The Jacobian m atrix of the transformation is given by

r _  9{Ç, ri)
d(x, y)
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The equations (A .l) can then be w ritten as

a w  a r  a c '  1 /  ôF^ d c A
+  +  —— (A.14)

dt  a^ drj Re I dp

where

W
w
T
1

F ' =  j ( & F '  +  („G ')

G ' =  j { n , F ’ + n„G') (A. 15)

F ” =  J  (G F ” +  Ç„G”)

G" =  I f e F - T ^ G * - )

A .2.2 D iscretisa tion  o f th e  convective term s

The convective terms are discretised by either Roe’s or Osher’s upwind scheme. 

Since numerical experiments showed Roe’s scheme to be more robust for high-speed 

applications than Osher’s, the calculations of the present work were obtained using 

this method.

A .2.3 R o e ’s schem e

Roe’s scheme [48] serves to determine the numerical flux at a cell interface if an 

upwind discretisation is used. This is accomplished by solving the Riemann problem 

(shock wave propagation in a tube [49]) in an approximate manner at each cell 

interface.

The upwind numerical fluxes can be generally w ritten as:

F ( U i ,  U r ) = i  (F (U i)  +  F(Ufl) -  d(UL. U /j)) (A.16)

where \J l and are the left hand side and right hand side state  variables, respect­

ively, F (U l)  and F(U/^) are the fluxes at the left and right states and ^ (U l, V r ) is a
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diffusion term  arising a t the interface. The difference between the various Riemann 

solvers lies in the solution of this last term  only.

The method proposed by Roe [48] is a flux difference splitting approach for the 

solution of fi(UL, Ui?) and it was suggested tha t the interaction between the left and 

right states in the Riemann problem can be replaced by an average shock. According 

to Roe, the diffusion term can be expressed as:

U r ) -  I A(Uz., U ^)1(U ^ -  U r ) (A.17)

where m atrix A is the mean Jacobian m atrix defined to satisfy the following prop­

erties:

(i) A ( U ,U ) = A ( U )

(ii) for any Uy^, A (U l, U r ) { U r  -  U l )  = F r ~ F r  and

(iii) the eigenvectors of A are linearly independent.

Condition (i) guarantees consistency, (ii) ensures a conservative algorithm and (ii) 

alongside (iii) guarantees, that the shock waves are captured with the correct speed, 

i.e. the Rankine-Hugoniot jum p conditions are satisfied.

M atrix |A (U l ,U h)| is then defined as:

|A | =  R |A |R " ' (A.18)

where R  is the m atrix of the right eigenvectors of A, A is the diagonal m atrix of 

absolute values of the corresponding eigenvalues and R~^ is the m atrix of the left 

eigenvectors. These matrices are expressed as:

(A.19)

|A|

/ 1 1 1 0 \

R  = u  — crix u u  +  crix - U y
V — criy V V +  CUy rix

I H - U n C | ( % 2  4-t,2) H - ^ U n C Vt /

/  \Un - c +  1 0 0 0
0 \UtlE  Ut 1 0 0
0 0 \Un P  C 71t\ 0

V 0 0 0 \Un +

(A.20)
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( | ( b i  +  P \ { —h2U — H.
2 \

1  _ 1  — 6 1 6 2  n - 6 2

-  P ^{ — h2U P \ { —h2V P h
2

I -V t -U y rix 0 J

(A.21)

In matrices A.19, A.20, A .21 iit is the corresponding component of the grid speed 

in the (^, p) plane, and Un and Vt are the normal and tangential components to a 

side of the velocity. These are defined as:

U„ uux P v n Vt ■uriy P  vn^ (A.22)

with n(nx,riy) denoting the outward unit vector normal to a side. Furthermore, in 

m atrix A.19, H  is the total enthalpy, defined as

P
(A.23)

and in equation A .21

7 -  1 P
(A.24)

In order to satisfy the conditions stated for m atrix |A |, the flow variables in ex­

pressions A.19-A.24 are replaced by an average value weighted by the square root 

of the densities. These particular averages, termed as the Roe averages, are defined 

by setting

R  = P r (A.25)V P l

P = \ / P r Pl (A.26)

u = y/pL^L P  \ / P r R R  _  '̂ L P  R u R  

y/Ph P y/pR I p  R
(A.27)

V —
y/PLVL P  y/pRXR _  VL P  R x r  

y/Ph  +  y/^R  1 +  i ?
(A.28)

H  =
y f^ H R  +  ^ H r  _  H r  P  R H n  

y /  PL p  y/pR 1 P  R
(A.29)
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while the corresponding (average) speed of sound will be

c ^ = . ( 7 - l ) f i 7 - ^ ^ ^ l  (A.30)

Finally, the numerical fluxes F (U l ) and F(Ui?) used in equation A. 16 are:

F ( U J  =

/  P l U l  ^ 
Pl UlUu +  Pl^ x 
Pl ' l̂ Uji PPh'^y

\  P l U u H r  —  p R U t  J

/  P r U r  \  

PrRr Uh +  Pr 'R'x 
P r V r U u  a  p R U y

\  P r U u H r  —  P R P l t  J

A .2.4 T he entropy correction

An undesired property of Roe’s scheme is that it cannot see a sonic point in the 

interval (U l ,U /j). In this case, an eigenvalue of matrix A will vanish and the 

flux function (equation A.16) will lead to a non-physical expansion shock instead 

of a physically correct expansion fan. This characteristic of the Roe solver violates 

the second principle of thermodynamics, which states tha t in any physically realis­

able adiabatic evolution the entropy can only increase during the transformation of 

the system. Hence, only compression shocks should be retained whereas expansion 

shocks, corresponding to a negative entropy variation, should be excluded [49].

A common technique for avoiding expansion shocks consists of introducing a 

local expansion fan when an expansion is detected through a sonic point. This 

could be realised through a so-called entropy fix, which modifies the modulus of 

the diagonal elements of matrix |A|. There are a number of different entropy fixes 

available for Roe’s scheme, from which H arten’s [50] proved to be the most suitable 

for the calculations of the present work. This entropy fix is specially suited for
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problems involving hypersonic freestream, and is defined as:

lAI =  I A,I i/lA ,| >  2£, (A.31)

lA'P
- ^ - P ^ r  %/|A^| < 26r

Here, Sr is in the range (0.1 to 0.4), with the larger values used when strong normal 

shocks are present in the fiowfield. Since this is the case at the spiked body flows, 

the value of Sr was set to 0.4 in all calculations presented in this study.

A .2.5 H igher-order sp atia l accuracy

A MUSCL extrapolation method is used to improve the formal accuracy to second- 

order in the numerical scheme. Additionally, von A lbada’s lim iter is employed to 

ensure monotonie solutions around shock waves.

A .3 D iscretisation  o f the diffusive term s

Regardless of the convective discretisation, the viscous terms are always centrally 

discretised. This requires the knowledge of the velocity components and their de­

rivatives, as well as the derivatives of the static tem perature, a t the edges of each

cell. Cell-edge values of the velocity components are approximated by the average 

of the two adjacent cell-centre values, for example:

^i+^,j — 2 (A.32)

Cell-edge values of the derivatives are obtained using Green’s formula applied to an

auxiliary cell surrounding the considered edge, for example:

du 1 .
udy

u d x  (A.33)

d x  h(inx J ÇI

du —1
dy hnux Jq
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where haux is the area of the auxiliary cell. The values at the four points o, 6, c, d 

are obtained using the neighbouring cell-centre values (see Fig.A .l):

Un. ~  U.

Ufj
Uij^l +  Uij +  +  Ui^ij

Re — Ri+l,j
_  Rij A Rij+i A Ri+i,j A Ui+ij+i 

Rd — 1

(A.34)

The choice of the auxiliary cell is guided by the need to avoid odd-even point decoup­

ling and to minimise the amount of numerical viscosity introduced in the discretised 

equations.

!, i+1
X

i+1,j+1
X

t i )
1

( a
1

1
c)

>
(i+1 i

1

X
i . H

F

X
i+1, j-1

computational cell

  auxiliary cell

X  cell-centre 

#  auxiliary ceii-edge

Figure A .l: Typical auxiliary cell for viscous flux evaluation.

A .4  B oundary conditions

The boundary conditions are set by using ghost cells on the exterior of the computa­

tional domain. In the far field, ghost cell values are set at the freestream conditions. 

At solid boundaries, ghost values are extrapolated from the interior, ensuring tha t 

the normal component of the velocity on the solid wall is zero.



A P P E N D IX  A  165

A .5 T im e-m arching schem e

A .5.1 S tead y  sta te  solver

A steady state solution is obtained by integrating equation A. 13 in time using an 

implicit time marching scheme:

(a .35)

where n  is the current time level, n  +  1 is the new time level, and subscripts (i,J) are 

neglected for clarity. The above equation represents a system of non-linear algebraic 

equations and to simplify the solution procedure, the flux residual is linearised 

in time as follows:

R"+‘ =  R" + +  O(Ai^)

^  R "  + I ^ A T V  (A.36)

where A W  — W"'*'^ — W ” . Equation (A.35) now becomes the following linear 

system;

Equation A.37 can now be rewritten in terms of the vector of primitive variables P :

‘ ™ '  + S  +  S ‘' | a P . - R -  (A.38)
A t  dP  dP  dP  ^

where the terms and denote the flux Jacobians associated with the discret­

ised flux in the ^ and p direction, respectively.

The above linear system is solved by using a Generalised Conjugate Gradient 

method (GSG) [51], preconditioned by a Block Incomplete Lower-Upper Factorisa­

tion (BILU).
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In the present work, steady state solutions obtained by the above implicit method 

were used to start an unsteady calculation. However, as implicit schemes require 

particular treatm ent during the early stages of the iterative procedure, the following 

approach has been employed. First, the initial flow was smoothed out by performing 

some explicit iterations (a typical number of explicit steps was around 1000) to 

switch then to the implicit algorithm to obtain fast convergence.

A .5.2 U n stea d y  flow solver

Unsteady solutions of equation A. 13 are obtained by employing an implicit dual-time 

approach as proposed by Jameson [52]. This has the advantage, th a t the resulting 

linear system can be solved by the same implicit method as used for steady state 

problems.

Considering equation A. 13 again, according to Jameson [52] the time derivative 

can be approximated by a second order backward difference discretisation as 

3 W " + ^  -  4 W " .  +
— ^ =  0 (A.39)

The entire left hand side of this equation can be defined as a new, unsteady residual 

R U

-  4 W ” ■ +
R* ,(W "+ ') = -^ ^ ------------ a -  +  =  0 (A.40)

This new equation can be seen as the solution of a steady state problem which can

be solved with a time-marching method by introducing a derivative with respect to

a fictitious pseudo-time, C,

hJ +  R * /W ^ + ')  =  0 (A.41)
dP

Using an implicit time discretisation on the pseudo time U, equation A.41 becomes: 

AW - ■
=  ' A i -  (A.42)
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where the superscript m +1 denotes the time level (m + 1) At* in pseudo-time. Similar

to the steady state case, the term  is linearised with respect to the time

variable t*:

dR* dW  
-  R * ( W '" )  +  ^ — A i*

»  R*(W”*) +  ̂ A T V  (A.43)

The term could be obtained by calculating the derivative of equation A.40:

3R-(W"H-1) 3 m ( W " + ')
a w " + i 2A i a w +1  ̂  ̂ ^

Substituting the above formula into equation A.43 and then the resulting expression 

into equation A.42 gives:

At* 2A tJ  dW
A W = - R * ( W ^ )  (A.45)

Then, equation A.45 can be rewritten again in terms of the vector of primitive 

variables P  and the flux residual components R^ and R̂  ̂ to obtain:

Since the linear system of equation A.46 is similar to the one of equation A.38, it 

can be solved by the same method as tha t used for the steady state  solver.

The rate of convergence between two consecutive time steps is monitored via a 

so-called pseudo-time tolerance, which is defined as

1 1 ^ 7 7 + 1 ,m+1 _  w n + l , m | |
 ----------------------------- — (A 471||^R+l,m +l _  W |̂|2  ̂ ^

Based on previous experiences [53], [54] this value was set on 0.001 for all the results 

presented in this thesis.
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A .6 A pproxim ate Jacobians

An im portant feature of the PMB2D code is the use of approximate Jacobians. 

The idea of using an approximate approach instead of an exact one emerged from 

the following observation. The use of the MUSCL extrapolation for the higher 

order spatial accuracy means tha t the left and right states near a cell interface are 

extrapolated according to the following relations:

(A.48)

As a result, the flux residual for cell {i,j)  is a function of nine points (see Fig.A.2):

P l i j  — R  W i j ,  W i + i j ,  W ^ + 2 j ,  j + i ,  W î j 4 - 2 )

i I 1 +

Figure A.2: Flux residual dependency for exact/approximate derivation of the invis­
cid terms.

Thus, when the Jacobian m atrix has to be worked out for eqs.A.37 and A.45, 

then there will be nine non-zero entries per row in this matrix. However, an approx­

imation to the exact Jacobian, gained by neglecting the influence of the MUSCL 

interpolation, could lead to significant reductions in terms of the memory, CPU time 

and also the ease of solving the matrix, since it will be more diagonally dominant
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[55]. Because of the approximation, the left and right states are reduced to

(A.49)

SO the flux residual becomes a function of only five points (the dashed area in 

Fig. A.2):

= R ' w,-,-+i) (A.50)

This approximation, which is applied only for the derivation of the Jacobian terms, 

reduces memory requirements and matrix-vector multiplication operation counts 

to 5/9 of the values using the exact Jacobians. The same idea was used for the

I 1,1+2 :
I +  :

i—1 ,j+1 i+1 ,j+1

flux residual dependency for an exact 
derivation of the viscous terms

celis kept for the derivation 
of approximate Jacobians

Figure A.3: Flux residual dependency for exact/approximate derivation of the viscous 
terms.

reduction of the Jacobians arising from the viscous fluxes. Because of using an 

auxiliary cell for these terms (see section A.3) a viscous flux residual will be the 

function of nine points (see Fig. A.3):

W ij+ i and An exact derivation of the inviscid and
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viscous Jacobians together would involve four more terms in addition to the nine 

above: W j+2j ,  W ^ j_2 and W ^j+2 (the cells shown in Fig. A.3).

The approximation facilitated in the PMB2D code takes into account only the 

influence of the two cells situated on the either side of the considered edge for 

the derivation of the Jacobians. For example, in the case shown in Fig. A .l the 

contributions of W ^j+i, W i+ ij_ i and W i^ i j+ i  are neglected and only the

term s arising from and are kept. This yields savings of 8/13 in terms

of the memory and the CPU time. The cells considered during the derivation of the 

approximate Jacobians are shown by the dashed area in Fig. A.3.

The above approximations were extensively tested and proved to be successful 

for a wide range of applications [55].

A .7  D eform ing m esh algorithm

In order to enable the numerical simulation of the hysteresis phenomenon, which 

involves a moving spike, an algorithm of a continuous mesh deformation has to be 

applied. The method employed in the PMB2D code is a transfinite interpolation 

algorithm (TFI), based on the grid displacements. It consists of three main steps.

First, the details of the desired grid movements are read in from a separate file 

containing the type and direction of the motion for the four corners of each block. 

There are currently three types motion types facilitated in the code: pitch/plunge, 

rotational and translational motions. Once the corresponding motion type is iden­

tified, the block corner displacements are calculated (see Fig. A.4a,b).

Then, as a second step, the displacements of the four block corners are used 

to interpolate the displacement of all points along the block boundary. This is 

accomplished by employing a weighted formula as

dx =  11(l  -  -  -  j  dxj
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where dx is the displacement of a selected point (P) on the block boundary, dx^ 

and dxg are the displacements of the endpoints (block corners) of the edge on which 

P lies, and a = ||A P ||, b — \\B^P\\ and c = \\AB\\ (see Fig. A.4c). If both endpoints 

are fixed, then the whole boundary face remains fixed. Finally, in the third step, the

c) d)

Figure A.4: The TF I algorithm of grid deformation.

new location of the interior points is calculated. Following the original formulation 

of the TFI algorithm described by Gordon and Hall [56], the general transfinite 

interpolation method results in a recursive algorithm which is here applied to the 

grid point displacements :

d x (G  7y) = f i ( G ^ )  +  </>î(^) - f i ( G O ) ]

Mx(,3(0 - f i ( ^ ,  1)]
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where

fi{ ,̂7]) = /̂̂ ?(C)dxf,4(ï?) + ipU0d b̂2{r])

and dx6i,dx62,dxt3,and dx{,4 are the interpolated displacements along the four block 

faces. The functions ij) and 0 are the blending functions in the ^ and 7] directions 

respectively. These functions are given by the grid point distributions along each 

block face as

=  1 -  giK)

V'zK) =  ^3(0

^ l iv )  = 1 -  S4 {r])

=  «2(77)

where Si(^) is the stretching function on the block face rj = 0 , 52(77) on the block 

face ^ =  1, S3(^) on the block face 77 — 1 and 54(7/) on the block face — 0. The 

coordinates of the new grid points are then simply obtained by

x (G t7} =xo((,T7)Tdx((,77)

where dx is the interpolated displacement and xq is the vector position for the initial 

undisturbed grid.

As a last note, a Geometric Conservation Law (GGL) is also implemented in the 

PMB2D code [54], which calculates the cell volume changes according to the area 

swept by the cell boundary.
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A nim ations C D -R O M

A CD-ROM containing the animations of the analysed spiked body flows has been 

enclosed to aid the undersatnding of the flow features. Two movies are provided 

for each case: one shows the Mach contours overlapped by the streamlines (Mach 

regions only for the hysteresis cases) and the other the pressure regions. Each 

animation is provided in both .mv and .mov formats to enable their visualisation in 

either the Movieplayer (UNIX) or the Quicktime (WINDOWS) softwares. Further 

instructions are given in the ‘Readme’ file. The full contents of the CD-ROM is 

given in Table B .l.

Case M ach con tours/reg ions 
movie filenam e

P ressu re  regions 
m ovie filename

O scillation  a t M =6.00 oscJyi6„m ach.m v
osc_M6_mach.mov

osc_M6_press.mv
osc_M6_press.mov

P u lsa tio n  a t  M —2.21 puls JM 2 _mach. mv 
puls_M 2_mach.mov

pulsJVf2„press.mv 
p uls _M 2 _press. mov

P u lsa tio n  a t M =6.00 pulsJVI6_mach.mv 
puls JVI6 _mach. mov

puls JM 6-press. mv 
puls_M 6_press.mov

H ysteresis inw ard m oving spike h y s tjn a c h Jn w .m v hyst-press-inw .m v
V - s p  =  0.004[1], M =2.21 hyst_mach_inw.mov hyst-p ressJnw .m ov

H ysteresis ou tw ard  m oving spike hyst n n a c h m u t. mv h yst-p ress _out. mv
v ^ s p  -  0.004[1], M -2 .2 1 hyst_m ach„out.m ov hyst-press-O ut. mov

Table B .l: Contents of the CD-ROM of animations.
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