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ABSTRACT

A range of freshwater algae (Chlorella vulgaris 211/8K, Chlorella vulgaris 

211/11c, Ankistrodesmus antarcticus 202/25, Scenedesmus obliouus 276/3A, 

Cvanidium caldarium 1355/4), marine and brackish algae (Nannochloris atomus 

251/4B, Nannochloropsis oculata 849/1, Isochrvsis qalbana 927/1, Isochrvsis 

sp. 927/14) and cyanobacteria (Anabaena flos-aauae 1403/13A, Anabaena 

variabilis 1403/12, Svnechococcus so. 1479/5, Svnechococcus sp. POO 7943) 

were grown in batch culture at initial nitrogen levels of 5, 25, 50 and 500 mg 

NO3-N or NH4-N (0. caldarium only) at three growth temperatures. 

Cultures were harvested in exponential and stationary growth phases. Protein, 

carbohydrate, lipid and fatty acid contents were determined.

All the algae and cyanobacteria investigated exhibited changes in cellular 

content of protein, carbohydrate and lipid in relation to changes in temperature, 

nitrogen availability and growth phase. C. vulgaris 211 /8K, C. vulgaris 211/11 c, 

N. atomus. and the cyanobacteria all exhibited a major shift to carbohydrate 

accumulation at stationary phase and with decrease in growth temperature, with 

the exception of the cyanobacteria which did not exhibit a uniform response to 

temperature. Ank. antarcticus and S. obliouus exhibited major shifts to lipid 

accumulation with decrease in temperature and at stationary growth phase. 

Protein contents of the cyanobacteria increased at stationary phase in contrast 

to the decrease at stationary phase observed in the freshwater, marine and 

brackish algae. Carbohydrate, protein and lipid contents were all found to 

depend on previous nitrate availability in the cultures.

The marine and brackish species showed a much broader range of fatty acids 

(012 - 022) than the freshwater algae (predominantly 016 and 018) and 

cyanobacteria (predominantly 014, 016, 018). Quantitative changes in 

individual fatty acids rather than qualitative changes were found with 

temperature changes and growth phase. The degree of unsaturation 

decreased with decrease in temperature in the marine and brackish species in 

contrast to the increase in unsaturation observed with the freshwater algae and 

cyanobacteria.



Based on the results of the laboratory work, six algae and cyanobacteria - 

vulgaris 211/8K, S. obliouus. N. atomus, Isochrvsis so.. A. flos-aauae. 

Svnechococcus sp. PCC 7943 - were grown outdoors in a slurry based 

minipond system. All the species chosen grew successfully in algal treated 

slurry, with preferential uptake of ammonium-N before nitrite-N and nitrate-N. 

The algae behaved similarly outdoors in defined media and algal treated slurry 

to the laboratory based growth in relation to cellular content changes.

Manipulation of specific cell constituents in a slurry based system would 

improve the economics of algal wastewater treatment, the resultant biomass 

having economic potential. The interest in algal fatty acid content manipulation 

would probably only be in the aquaculture field, and not from medical or health 

food areas due to health hazards associated with sewage. Carbohydrate 

accumulating algae would also be of interest to the aquaculture field. The 

current high cost of production of algal feeds has spurred the search for 

alternative algae production, and it is suggested that growth in slurry with 

nitrogen depletion to optimise lipid, carbohydrate or specific component fatty 

acid production maybe an alternative.
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1. INTRODUCTION



1.1 ALGAL AND CYANOBACTERIAL FATTY ACIDS

Microalgae and cyanobacteria can contain significant quantities of lipids (Table 

1 ) which exhibit a wide range of constituent fatty acids (Table 2). This area has 

been the subject of a number of reviews, some concerned with all microalgal 

groups (Cobelas and Lechado, 1989; Borowitzka, 1986; Wood, 1974) and 

others with selected groups (Cyanophyceae, Nichols, 1973; marine algae, Pohl 

and Zurheide, 1979). Virtually all the acids found are straight chain molecules 

containing an even number of carbon atoms in the range Cl 4 - 022, saturated 

and polyunsaturated, nearly all in the cis configuration.

1.2 COMMERCIAL EXPLOITATION

Although a review of the literature shows microalgae to be a potentially new 

biological source of fatty acids, commercially they have remained relatively 

unexploited although interest has increased over the last decade. Occasional 

reports of commercial exploitation have appeared in the literature (Anon, 1986; 

Anon, 1988), mainly concerning Omega-3 fatty acids specifically ERA 

(Cyanotech Corporation, 1988). Patents have also appeared, again in relation 

to ERA (The Nisshin Oil Mills Ltd, 1986; Suntory Limited, 1988).

The interest in algal fatty acids comes from three main areas: medical, the food 

industry and the exploitation of mass cultured algae (aquaculture feeds and 

high value products).

The medical interest stems from observations that societies with diets 

containing a high fish oil content exhibit a low incidence of cardiovascular 

disease (Carroll, 1986). Much work has focused on the lipid portion of the diet 

because of earlier evidence that dietary fat can significantly influence serum 

cholesterol levels and artherosclerosis. Recent studies have homed in on 

polyunsaturated fatty acids in fish oils.
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Polyunsaturated fish oils are very effective at lowering serum triglyceride and 

serum cholesterol levels (Herold and Kinsella, 1986). In addition, inhibition 

effects on blood clotting (Dyerberg, 1982; Dyerberg, 1986; Herold and Kinsella, 

1986) reduce the risk of thrombosis, a major factor in heart attacks and strokes.

The reduction in serum triglycerides and cholesterol may be due to decreased 

production of very low density lipoproteins by the liver, possibly as a result of 

a decrease in triglyceride synthesis (Dyerberg, 1986; Norum & Drevon, 1986). 

The effects on blood clotting are most likely related to alterations in the 

production of different prostanoids from polyunsaturated fatty acids (Dyerberg, 

1986; Norum & Drevon, 1986; Bunting et al, 1983).

The main polyunsaturated fatty acid in vegetable oil is linoleic acid (18:2(n-6)) 

which is converted to arachidonic acid (20:4(n-6)) in the body. Arachidonic acid 

is converted by blood platelets into thromboxane TXAg, which causes 

constriction of blood vessels and aggregation of platelets leading to blood 

clotting. Arachidonic acid is also converted in blood vessel walls to prostacyclin 

PGIg which relaxes blood vessels and prevents aggregation of platelets. 

Balanced formation of these substances is thought to permit clotting to occur 

following wounding but prevent clotting during normal physiological conditions 

(Bunting et al, 1983).

Fish oils contain little linoleic acid, the main PUPA’S are eicosapentaenoic acid 

(EPA; 20:5(n-3)) and docosahexaenoic acid (22: 6:(n-3)). EPA is similar in 

structure to arachidonic acid and is thus a potential substrate for conversion to 

thromboxane TXA3 and prostacyclin PGI3. Since TXA3 does not aggregate 

platelets as effectively as TXAg, but PGI3 is as effective as PGIg, it could alter 

blood clotting abilities. EPA, however, is not a good substrate for TXA3 

synthesis but may compete with arachidonic acid to decrease TXA^ synthesis 

whilst increasing or at least altering normal synthesis of prostacyclin (Dyerberg, 

1986; Norum & Drevon, 1986; Bunting et al, 1983).



PUPA'S also serve as substrates for the formation of leukotrienes. 

Leukotrienes derived from EPA differ in their biological properties to 

arachidonic acid derivatives and this may also explain some beneficial effects 

of fish oils (Dyerberg, 1986).

Polyunsaturated fish oils have also been investigated with respect to other 

chronic diseases including cancer, hypertension, multiple sclerosis and 

rheumatoid arthritis (Carroll, 1986). Recent reviews in this area include 

coronary heart disease (Ballard - Barbash and Callaway, 1987; Gurr, 1992), 

chronic diseases (Simopoulos, 1991) and medical importance of gamma- 

linolenic acid (Horrobin, 1992).

This research has also stimulated interest in the food industry for health foods 

and dietary supplements. Polyunsaturated fatty acids traditionally consumed 

as components of fish oil are not synthesised de novo but are acquired from 

consumed phytoplankton. Therefore, there is considerable interest in algal 

derived polyunsaturated fatty acids. Potential benefits include the absence of 

less desirable fatty acids, absence of fish odour and security of supply. Also, 

because algae can be grown under controlled conditions, it may be possible to 

achieve a more consistent formulation of the product than with fish oils which 

vary with season and the environment (Anon, 1988).

Microalgae especially marine species can contain appreciable amounts of 

essential fatty acids such as linoleic (18:2(n-6)), y - linolenic (18:3(n-6)), 

eicosapentaenoic (EPA, 20: 5(n-3)) and arachidonic (20: 4(n-6)) acids. These 

fatty acids are an essential component of the diet of humans and animals and 

are becoming important feed additives in aquaculture.

Mass culture of algae for biomass production has been very successful, 

however in the past the main focus was on single cell protein, but more recently 

many other potential applications have been advanced including waste water 

treatment, production of extractable products, and aquaculture feeds (Shelef 

and Boeder, 1980). Commercial exploitation of algal mass culture has been 

restricted to specific high value products eg p-carotene, specific algal species



eg Spirulina, Chlorella for the health food market and production of algae as 

aquaculture feed (Shelef and Boeder, 1980). Mass culture for waste treatment 

has also been successful, however the cost effectiveness of the system limits 

its use. However, the identification of high value products from algae would 

stimulate commercial interest in these waste treatment systems.

1.2.1 Algal Wastewater Treatment

The interest with respect to algal fatty acids and wastewater treatment arose 

from work carried out at The Bcottish Agriculture College, (Auchincruive, Ayr) 

on the aerobic and photosynthetic treatment of animal slurries (Fallowfield et 

al, 1992).

The introduction of more intensive livestock husbandry techniques has led to 

collection of animal faeces and urine in the form of liquid slurry which ideally 

would be returned to the land. However, its volume poses problems in storage 

and disposal specifically in certain areas of the United Kingdom and large areas 

of Europe, where slurry production exceeds land area available for optimum 

application (Williams, 1988). Animal slurries are strong effluents and chronic 

pollution can result from: (i) the high Biochemical Oxygen Demand (BOD) and 

Chemical Oxygen Demand (COD) of these slurries deoxygenating receiving 

waters (ii) run off and leaching of nitrogen and phosphorus from land leading 

to eutrophication of surface waters (iii) atmospheric pollution caused by odour 

from the storage, handling and land application of slurry.

Although, it is clear that legislation for environmental protection is moving 

towards controlling the release of nutrients into the environment, and this will 

have a profound effect on alternative wastewater treatment systems, the 

economics of the system will improve if suitable algal products are found.

The system at the Bcottish Agriculture College is shown schematically in Fig 1. 

Aerobic treatment is effective at removing high concentrations of the 

carbonaceous pollutants which comprise the BOD and COD of the waste and 

can control the final form of nitrogen within the treated animal slurry.
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Fig 1 : The Brickrow Farm Unit Piggery with integrated aerobic reactor and high rate 
algal ponds for the treatment of piggery wastes (after Fallowfield, 1992)
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The treated waste contains residual BOD, nitrogen and phosphorus. The solid 

phase is relatively immobile, it is the liquid phase that is most likely to cause 

pollution problems after land spreading.

The high rate algal pond cannot be used to treat animal slurries without some 

pretreatment because high BOD/COD levels exceed the oxygenation capacity 

of the ponds. However, the aerobically treated, low solids content, liquid phase 

is suitable. The controlled growth of microalgae exploits the residual BOD as 

carbon source and removes significant quantities of the major inorganic 

pollutants, phosphorus and nitrogen prior to discharge.

The potential uses for algal biomass have been extensively reviewed (Shelef 

and Boeder, 1980; Borowitzka and Borowitzka, 1988; Lembi and Waaland, 

1988; Cresswell, Reas and Shah, 1989). Product reclamation is a desirable 

objective for any treatment system, and although costs do enter into the 

equation, uses for the resultant algal biomass would eliminate the disposal 

problem.

Therefore, one of the objectives of this research project was to investigate 

whether laboratory observations could be emulated outdoors in a slurry based 

system.

1.3 MANIPULATION OF ALGAL FATTY ACIDS

Developments in the exploitation of algal fatty acids are likely to be a result of 

manipulations of physiological conditions to maximise the production of 

commercially important fatty acids. Environmental factors which affect 

composition include temperature, light, autotrophy/heterotrophy, nutrient 

limitation, growth phase, salinity and OJOO  ̂environment (Table 3), (Cobelas, 

1989).

Sato and Mu rata (1980) concluded that temperature was one of the most 

important environmental factors influencing the fatty acid composition of algae. 

The degree of unsaturation is usually found to be inversely correlated with
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growth temperature ie lower growth temperatures favouring unsaturation 

(Ackman et al, 1968; Lynch and Thompson, 1984). Lynch and Thompson 

(1984) suggest that acclimation to low temperature enhances acyl chain 

desaturation as a means of modifying membrane properties in response to low 

temperature stress.

Increased irradiance has been shown to enhance the formation of 

polyunsaturated fatty acids in Euqlena gracilis and Chlorella vulgaris (Nichols, 

1965; Constantopoulos and Bloch, 1967).

Materassi et al (1980) stated that photo heterotrophic growth on glucose 

resulted in an increase in the unsaturation of lipids in Scenedesmus. Barg 

(1943; cited Borowitzka, 1988) reported an increase in 'fat' accumulation in a 

range of freshwater and marine diatoms when cultured on glucose enriched 

media.

Probably the most studied limiting nutrient affecting fatty acid composition has 

been nitrogen. Most microalgal cells grown under nitrogen limitation have 

enhanced lipid levels (Table 4), however cyanobacteria appear to be little or 

non-affected. Nitrogen deficiency does not however appear to affect the level 

of un saturation in a regular manner, different researchers reporting different 

responses (Cobelas, 1989). Other nutrient deficiencies may also lead to 

increased cell lipid content eg diatoms under silica limitation (Roessler, 1987; 

Shifrin and Chisholm, 1981).

Shaw (1966) stated that generally increasing culture age increased the 

saturated to unsaturated fatty acids ratio with some exceptions. However, it is 

often difficult to separate true ageing effects on microalgal lipids from nutrient 

deficiency effects since in batch cultures the age of a given culture is 

associated with nutrient conditions. However, interaction of growth conditions 

and culture age upon lipid content is best illustrated by the results of Piorreck 

and co-workers (Piorreck and Pohl, 1984; Piorreck et al, 1984) who found 

changes did occur amongst the green algae studied but not with the 

cyanobacteria investigated.

11



Table 4 : Effects of N-limitation on the level of lipids in a range of micro-algae (after Borowitzka, 
M A 1988) ------------ --------------------

Alga

Lipid content 
(% dry weight) Reference 

(refer to 
Borowitzka, 1988)+N -N

Cyanophyceae
Spirulina platens is 21.8 11.2 1
Anacystis nidulems 14 .8 14.3 1
Chlorophyceee
Ankistrodesmus sp. 18.3 40.3 2
Botryococcus braunii 44.5 54.2 2
Chlamydomonas applanata 18.2 32.8 12
Chlorella pyrenoidosa 13 .4 29.2 12

10.0 70.0 6
14.4 35.8 3
20.0 86.0 11

Chlorella vulgaris (NH,) 11. 8 52.8 1
C. vulgaris (NO,) 21.8 57.9 1

17.5 28.8 10
C. capsulatf-^ 11.7 11.4 10
Dunaliella primolectaj 23.1 16.6 5
D. salina (UTEX~^007 I (J 25.3 9.2 2
Nannochloris sp. 20.8 35.5 2

20.2 47.8 12
Oocystis polymorpha 12.6 34.7 3
Ourococcus sp. 27.0 49.5 12
Scenedesmus obliguus (NH,) 22.4 34.6 1
Tetraselmis suecica 23.4 14 .6 5
Bacillariophyaceae
Cyclotella cryptica 23.0 36.8 12
Nitzschia palea 22.2 39.5 3
Phaeodactylum tricomutum 20.0 24.0 4
Skeletonema cos ta turn 23.8 30.3 3
Thalassiosira weissflogii 22.2 24.0 12
Chryaophyceee
Isochrysis sp. (UTEX 2307) 7.1 26.0 2
Isochrysis galbana 23.0 23.1 10
Monallanthus salina 40.8 72 .2 3

Prymneaiopbyaceae
Hymenomonas carterae 20.0 14.3 12

Cryptophyceae
Cryptomonas rufescens 12.2 16.8 8

Euatigmatophyceae
Monodus subterraneus 20.0 40.0 9

Shodopbyceae
Porphyridium cruentum 98 176 7

12



Beach and Holz (1973) found a NaCI dependent inverse relationship between 

18:1 and 22:6(n-3) in the triacylglycerols of a marine dinoflagellate 

CrvDthecodinium cohnii. 18:1 fatty acid was high at high salinity (5.0% w/v 

NaCI) and 22:6(n-3) was high at low salinity (0.3% w/v NaCI). Seto et al (1984) 

also found fatty acid composition in Chlorella minutissima to be affected by 

salinity. As the concentration of salinity increased the percentage of 20:5(n-3) 

increased, whereas 16:0, 18:1(n-9) and 18:2(n-6) decreased.

Little work has been performed on the effects of Og/COg concentration. 

Hulanicka et al (1964) reported an increase in 18: 3(n-3) and 16:4 (n-3) under 

increased COg tension in Euqlena.

It was decided within this research project to investigate temperature, N- 

limitation and growth phase using a multifactorial approach, especially with 

respect to the outdoor slurry based experiments where light, heterotrophy, Og 

and COg would be too expensive to control, and the removal of nutrients 

priority.

It was also very evident from the literature that different algal taxa responded 

differently to the various environmental factors. The fatty acid composition of 

green algae would seem to be more greatly affected by environmental changes 

than cyanobacteria. Therefore, green algae were chosen as an initial group for 

study, together with nitrogen-fixing and non-nitrogen fixing cyanobacteria and 

a range of brackish and marine species noted for their use in aquaculture.

1.4 OBJECTIVES

(i) T0 develop and utilise suitable growth systems for an investigation of the 

effects of environmental factors on algal growth.

(ii) To investigate and develop suitable methods for the analysis of algal 

growth.

(iii) To investigate the effects of nitrogen, temperature and phase of growth 

on the composition of algae from different algal taxa.

(iv) To utilise the results of the laboratory based investigation (iii) to

13



investigate outdoor algal growth utilising animal waste, specifically the 

formation of algal fatty acids as an alternative economic product for this 

system.

14



2. MATERIALS AND METHODS
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2.1 ALGAE AND CYANOBACTERIA

All cultures were obtained from the culture collection of Algae and Protozoa 

(The Ferry House, Ambleside, Cumbria) with the exception of Svnechococcus 

S2 PCC 7943 (supplied by Peter Rowell, Dept. Biological Sciences, University 

of Dundee) and Cvanidium caldarium CCAP 1355/4 (supplied by Tom Ford, 

Royal Holloway and Bedford New College, University of London).

Four freshwater green algae:

(i) Chlorella vulgaris CCAP 211/8K 

Sorokin’s high temperature strain.

(ii) Chlorella vulgaris CCAP 211/11c

Previously studied for use in piggery waste treatment.

(iii) Scenedesmus obliguus CCAP 276/3A

A colonial green algae, widely used in physiological studies.

(iv) Ankistrodesmus antarcticus CCAP 202/25 

An isolate of "green ice" in the Antarctic.

Four freshwater cyanobacteria:

(i) Anabaena flos-aouae CCAP 1403/13A

(ii) Anabaena variabilis CCAP 1403/12

(iii) Svnechococcus sp CCAP 1479/5

(iv) Svnechococcus so PCC 7943

Two nitrogen fixing cyanobacteria ((i) and (ii) above) and two non nitrogen 

fixers ((iii) and (iv) above).

One brackish green algae:

(i) Nannochloris atomus CCAP 251/4B
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Three marine chrysophytes:

(i) Nannochloropsis oculata CCAP 849/1

(ii) Isochrysis galbana CCAP 927/1

(iii) Isochrysis sp CCAP 927/14

The brackish and marine species were noted for their use in marine 

aquaculture.

Cvanidium caldarium CCAP 1355/4

A thermotolerant alga, which has been proposed as a "bridge alga" between 

Cyanophyta and Rhodophyta (Klein, 1970; Fredrick, 1976).

2.1.1 Algal and Cvanobacterial Stock Cultures

All strains were routinely subcultured on a monthly basis and incubated at room 

temperature on an orbital shaker (120 r.p.m.) at an irradiance of 70pmol m'^s'\

All freshwater species were grown in ASM (Gorham et al, 1964):

ASM

ASM Stock Solutions

No. 1 K2HPO4...................... ....  1.74

No. 2 FeClg   0.032

Ethylene diamine tetra acetic acid (or sodium salt) (EDTA).

0.74

N0.3 MgClg..............................  1.9

MgS04.7Hg0 ....  4.9

CaCl2.2HgO ....  1.47

NaCI ....  5.85

Nitrate stock. NaNOg ....  30.35 X
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Trace elements stock.
at!

NaM04.2Hg0

CoCIg.GHgO

ZnS04.1 0 Hg0

MnCl2.4HgO

0.504

0.08

0.088

0.72

10ml. No. 1, 10 ml. No. 2, 10 ml. No. 3, 10 ml. Nitrate stock and 1 ml. Trace 

elements stock were mixed and made up to 1 litre with distilled water. pH was 

adjusted to 7.5 if necessary with dilute HCI or dilute NaOH. The media was 

then autoclaved for 15 mins at 121°C.

Marine and brackish species in F/2 (Thompson et al, 1988):

F/2

F/2 Stock Solutions 

NaNOg

NaHgP04.7H20 

trace elements 

vitamin mix 

synthetic sea salt

a ll
0.075

0.00565

1 ml stock solution 

1 ml stock solution 

33.6

Trace elements stock solution

a ll
NagEDTA 4.36

FeCl3.6H20 3.15

CUSO4.5H2O 0.01

ZnS04.7H20 0.022

C0CI2.6H2O 0.01

MnCl2.4H20 0.18

Na2Mo04.2H2O 0.006
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vitamin mix stock solution

mg r'*

vitamin 6̂ 2 0.5

vitamin (thiamine HC1) 100

biotin 0.5

The media was made up to 1 litre with distilled water, pH adjusted to 8.0 and 

autoclaved at 121°C/15 mins.

C. caldarium was grown in a specific media:

Culture Medium for C. caldarium

Stock Solutions

grl

1. (NH4)2S04 150

2. KH2PO4 30

3. MgS04.7H20 30

4. CaCl2.2H20 2

5. T.E.S. - Cyanidium 1.0ml

6. 'Fe-EDTA 0.5ml

7. 'H2SO4 - concentrated 1.0ml

Fe-EDTA

gr!
Ethylene diamine tetra-acetic acid 33.4

FeS04.7H20 24.9

Heat to dissolve EDTA then add FeS04. 

Aerate 1-2 hours.

19



T.E.S. - Cvanidium

a!:!
H3BO3 0.5

MnCl2.4H20 0.43

ZnS04.7H20 0.05

CUSO4.5H2O 0.02

(NH4)6MoA4-4H20 0.009

C0CI2.6H2O 0.008

NH4VO3 0.0045

Mix 10ml Soin. No. 1,2,3,4 and make up to 1 litre with distilled water. Add soln.

5, soln 6, soln 7 in volumes stated per litre. Final pH after autoclaving should 

be = pH 1.8.

2.1.2 Experimental Media

2.1.2.1 Nitrogen limitation experiments

The sodium nitrate content of ASM and F/2 basal medium was adjusted to give 

concentrations of 5, 25, 50 and 500 mg NO3-N \'\ The level of ammonium 

sulphate was altered similarly for the experiments with C. caldarium.

2.1.2.2 Outdoor minipond experiments.

The level of nitrogen for ASM and F/2 was adjusted to 25mg NO3-N \ ' \

The slurry based media was processed from the output from two high rate algal

ponds, one run in April 1989 and the other in October 1989, the latter only

being used for one experiment during October. The input and output values for 

BOD, COD, nitrogen and phosphate levels are given in Table 5.

Slurry supernatant from the ponds was allowed to sediment overnight. The V  

su pern ate nt was then centrifuged on a continuous centrifuge (Griffin Christ 

Junior 15000, 8,500 - 9,000 r.p.m.), once on maximum flow and then on
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restricted flow (12.5 I hr )̂ which removed 75% of particulate material 

determined by dry weight. The resulting slurry liquor was then autoclaved at 

5lbs/10 mins and stored at 2°C. I ^

The organic nitrogen (2.3.8), ammonia (2.3.7), nitrate and nitrite (2.3.6) levels 

of the slurry liquor were determined before each experiment to account for any 

loss during storage, specifically ammonia. Once the total nitrogen level was 

known, the nitrate-nitrogen level was spiked with sodium nitrate to give 25mg 

NO3-N in addition to any other nitrogen source available i.e. nitrite and 

ammonium. For marine and brackish species usually grown in F/2, 33.6 g 1'̂  

synthetica sea salt was added to the spiked slurry liquor in addition to 

antiforming agent.

2.1.3 Experimental Inoculum

2.1.3.1 Nitrogen limitation experiments

A range of inoculum levels (10  ̂ to 10̂  cells ml'̂ ) was investigated for the four 

green algae, using the Batch culture System (2.2.1).

The algae were cultured in ASM àt 50 mg NO3-N 1'̂  (stated recipe level) at^X 

30°C. The cultures were found to grow similarly irrespective of initial inoculum 

level (Fig 2). Therefore an inoculum level of lO'̂  cells mM was chosen for all 

experiments.
I

10 day stock cultures (2.1.1) were found to provide a suitable inoculum, usually 

1 ml, to give an initial cell number of 10"̂  cells ml '' (2.3.1).

2.1.3.2 Outdoor Minipond experiments

Algal species were cultured in 2 litre volumes of media (ASM or F/2) with 

stirring and sparging (200 ml min' )̂, at an average irradiance of 230pmol m’̂ s‘\  

at room temperature. 10-15 day cultures were usually found to contain 10̂  

cells ml  ̂ (2.3.1) and were used to inoculate the miniponds to give initial 

concentrations of 10̂  cells mM.
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2.2 ALGAL EXPERIMENTAL CULTURE SYSTEMS

2.2.1 Batch Culture System

This system was developed for the nitrogen limitation experiments (Section 4). 

Four systems were designed and constructed, each capable of culturing up to

7.2 litres (8 x 900ml) of algae under controlled temperature, light and aeration 

conditions.

2.2.1.1 System description and development

The Batch Culture System is shown in Plates 1-4.

The system consisted of a glass tank (Clearseal, 30" x 15" x 12") within which 

a series of eight one litre pyrex bottles (BDH, 215/0180/05) were placed in a 

staggered pattern (Plate 2). A suitable light regime was provided by two 

fluorescent tubes either side of each tank (30", 30W, Aquaglo), the light 

environment for algal growth being optimised by the staggered bottle pattern 

which gave minimum shading for maximum number of culture bottles. Bottle 

holders (Plate 2) and lead collars were used to maintain bottle positions in the 

tanks.

The light regime was measured as an average of eight readings for tank glass 

surface (a), bottle surface (b) and incident bottle surface (c) using a PAR 

Quantum sensor (Skye Instruments, SKP200 measuring unit and SKP 215 

Quantum sensor). This maintained light levels between 60 - 130 pmol m 'V \

Staggered bottle pattern showing position of quantum sensor (X)
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Plate 1: Batch Culture System: Front View
(a) pressure gauge (b) inlet air filter (c) water trap 
(d) humidifier (e) water trap (f) gravity water feeder 
(g) inlet air supply (h) culture vessel (i) outlet manifold 
(j) glasstank

Plate 2: Batch Culture System: Top View (Empty)
(a) temperature sensor (b) heater (c) mixer 
(d) staggered bottle holders
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1I

I
Plate 3: Batch Culture System: Top View (Ongoing Experiment)

(a) inlet capillary glass tube (b) inlet air filter (c) outlet manifold
(d) fluorescent light (e) surface spheres (f) gravity water feeder

Plate 4: Batch Culture System: Air Interrupt System
(a) air filter (b) eccentric cam (1 rev/30 mins) 
(c) microswitch (d) 3 part solenoid valve
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The surrounding water temperature was controlled by thermostatically controlled 

heaters (Nova-Uno Regal Toughened Glass 200W heater, Nova-Uno Solid 

State thermostat "Hi Range" model) to ± 0.5°C. Measurement of the 

temperature at various positions within the tank demonstrated that mixing 

provided (Aquaclear Powerhead 400 mixer) was sufficient to maintain constant 

temperatures throughout the tanks. 17°C was obtained using a cooled, heat 

exchanger (water condensers with tap water at approx. 14°C) running against 

the lowest heater setting, placed inside the tanks. Temperature was monitored 

by the use of a chart recorder with manual calibration.

Gravity water feeders (2 litre volumetric flasks, upside down) together with 

plastic spheres maintained water levels over a two to three day period reducing 

maintenance of the system (Plate 3).

The system of operation consisted of a main inlet air filter, pressure gauge and 

humidifier leading to a split air line between two tanks (Plate 1). The incoming 

air supply was humidified to reduce water loss from the cultures which may 

result from a dry air stream. Capillary glass tubing (Plate 3(a)) was used on 

the inlet to each bottle to give a high constant back pressure to each bottle to 

improve and equalise sparging between bottles. An autoclavable glass fibre 

filter (Plate 3(b)) was also placed before each bottle. Glass spargers were 

replaced with open glass tubing to provide better mixing within the bottles and 

reduce sedimentation. Individual outlet filters which became wet and reduced 

gas flow were replaced by an autoclavable outlet manifold (Plates 1 & 3) 

designed to enable condensate to be drained to a common water trap before 

the outlet filter. However, the air outlet tubes directly above the bottles were 

not being cleared of condensate by air pressure alone causing cessation of 

sparging. An AIR INTERRUPT SYSTEM (AIS, Plate 4) positioned on the air 

line from the compressor was developed to overcome this problem. The AIS 

stopped the air supply for approximately two minutes every thirty minutes to 

allow condensate in the outlet to drain back into the respective culture bottle. 

This had two advantages in that sparging was maintained throughout the 

experimental period and the loss of water from the bottles was reduced from 

a mean of 3.3 ml day^ to 1.9 ml day'̂  following its introduction. 2 ml day'  ̂ of
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sterile distilled water was added to each culture bottle during experimental work 

to maintain constant volumes in relation to ODggo and dry weight. Incorporation 

of the AIS did not affect algal growth when compared to the growth before its 

introduction (Figs 3 and 4).

2.2.2 Outdoor Minipond System

This system was developed for the outdoor algal growth experiments (Section 

5) and was designed to allow growth under natural outdoor conditions of 

temperature and light, the only controllable factor being nitrogen level. Four 

miniponds were constructed, each capable of culturing 16 litres of algae.

2.2.2.1 System description

Each minipond consisted of a Nalgene tray (43 x 51 x 12 cm, BDH 

406/0355/02) covered with a raised clear perspex lid (92 x 61 cm) attached by 

six screws and angled to allow rainwater to run off (Plate 5). Mixing was 

provided by an aquarium mixer (Aquaclear Powerhead 201).

The system was incubated under ambient light and temperature conditions.

2.2.3 Continuous Culture System

The development of fatty acid methodology (Section 3) required the production 

of a large quantity of "standard" algal biomass and this was obtained by the use 

of a continuous culture system.

2.2.3.1 System description

The continuous culture system consisted of a 15 litre glass culture vessel, with 

a top plate containing entry ports for media, air, heater, acid/alkali, stirrer, pH 

probe, and condenser, and a bottom plate with an overflow port, sample port 

and air inlet sparger (Plates 6 & 7). pH, temperature, mixing, aeration, light and 

dilution rate could all be controlled (Plate 6).
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FIG 4 GROWTH CURVES FOR C.vulQarls
211/llc AT lO'* INOCULUM
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a *

Plate 5: Outdoor Mlnlponds:
(a) polypropylene tray (b) perspex lid (c) bolt (d) mixer
(e) mixer control (f) temperature probe
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2.2.3 2 Chemostatic culture production of algal biomass

The culture vessel was autoclaved empty with all ports sealed with cotton wool 

bungs (121°C/15mins), and associated inlet and outlet equipment eg feed inlet, 

overflow vessel were also autoclaved where required. Media (20 litres) was 

autoclaved for 121®C/30 mins.

The system was assembled aseptically, and the culture vessel was filled with 

sterile media (ASM) and allowed to equilibriate overnight at a controlled 

temperature (30°C), with continuous stirring (132 rpm) and sparging with air (2 

litre min' )̂. Following equilibration, the media was inoculated with 100ml of a 

10 day stock culture (2.1.1). The algae were then cultured for 7-10 days at 

30°C and an irradiance of 200 îmol.m V^ without an applied dilution rate. The 

pH was monitored continuously and pH 7.5 maintained by the automatic 

addition of IN  HCI or NaOH.

Once the culture had grown to a suitable cell density for harvesting, a dilution 

rate was applied by the constant addition of fresh sterile ASM growth media. 

The rate of addition was controlled by a peristaltic pump. Constant culture 

volume was maintained by an upright overflow pipe within the vessel. The 

spent media was collected aseptically In a darkened, chilled (5®G) vessel. The 

dilution rate was measured daily by calculation from the rate of culture overflow 

using the equation:-

( f ,  -

OD560 (2.3.2) was monitored daily and once the culture had attained steady 

state the algae in the overflow vessel was harvested every 3-4 days eg 

vulgaris 211/11c cultured at a dilution rate of 0.2d \  reached steady state at an 

approx. OD560 0.75-0.86 and was maintained for a period of 28 days during 

which 13.4g dry weight was harvested (Fig 5). Similar yields were obtained for 

three other strains of green algae - 0. vulgaris 211/8K, S. obliouus 276/3A, 

Ank. antarcticus 202/25 - used for the development of analytical methods for 

fatty acid determination.
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Table 6: Continuous Culture of four green algae used for development of

fatty acid methodology.

Algae OU560 Average Harvest
Range dilution (g)
(steady state) rate (d'̂ )

C. vulaaris 0.72- 0.21 10.64
211/8K 0.78

C. vulaaris 0.75- 0.20 13.4
211 /llc 0.86

S. obliouus 0.46- 0.18 13.65
276/3A 0.66

A. antarcticus 0.52- 0.25 4.74
202/25 0.66

?
/

The algal material was freeze dried (2.3.9) and stored under nitrogen at -20°C. 

2.3 STANDARD ANALYTICAL METHODS

2.3.1 Cell Numbers

Cell counts were performed using an Improved Neubauer counting chamber at 

40x. magnification on a Leitz Microscope.

2.3.2 Optical Density

Optical density at 560nm (ODgso) was measured on duplicate samples using a 

Pye Unicam SP 1800 Spectrophotometer, read against a distilled water blank 

for greens and cyanobacteria and F/2 media blank for brackish and marine 

species.

2.3.3 Dry Weight

Duplicate samples of known volume (5ml) were filtered through pre dried (105®, 

12 hours) weighed Whatman GF/C filters (2.5cm). The filters were dried
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overnight at 105°C, allowed to cool in a des^icator, weighed and dry weight 

calculated by difference. ^

2.3.4 Ash Free dry weight

Duplicate samples of freeze dried algae were weighed into predried, 

preweighed crucibles and heated at 550°C for two hours. Crucibles were then 

transferred to a dessicator, cooled and reweighed. The residue weight was ^ 

divided by initial dry weight, and multiplied by 100 to give %age ash of algal 

material.

2.3.5 fiH

pH of the cultures was measured using a Gallenkamp pH stick.

2.3.6 Nitrate/Nitrite determination

Culture nitrate levels were determined from culture filtrate obtained from filtering 

through GF/C Whatman filters (2.5cm). The range of nitrate levels necessitated 

the use of two analytical methods. A nitrate specific electrode (Model 92-07, 

ORION) was used for determining high concentrations (lO-IOOmg NO3-N M), 

but a nitrate reduction method (nitrate analysed as nitrite following reduction 

with spongy cadmium in the presence of borax and ammonium chloride) was 

used for lower NO3-N levels (APHA, 1975; modified for a 5ml sample volume). 

Due to the presence of salt in the F/2 media all analysis for marine and 

brackish species was carried out using the nitrate reduction method only, as the 

nitrate probe could not be used. Duplicate samples were analysed.

2.3.7 Ammonia determination

Two methods for ammonia determination were used. For samples resulting 

from growth of C. caldarium, and samples from outdoor minipond culture, 

ammonia determination was carried out using a Urea nitrogen kit (Sigma 

Diagnostics Urea Nitrogen Procedure No 640). The method utilized part of the
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procedure relating to the reaction of ammonia with alkaline hypochlorite and 

phenol in the presence of a catalyst (sodium nitroprusside) to form indophenol. 

The concentration of ammonia is directly proportional to the absorbance of 

indophenol, measured spectrophotometrically at 570nm. Ammonium sulphate 

at 150mg/100ml was used for the generation of a calibration curve in the range 

0-75mg NH^-N \'\ Duplicate samples were analysed.

For slurry samples, determination of ammonia was carried out by steam 

distillation using a semi-micro method, a modification of the American Public 

Health Association Method (1971).

2.3.8 Organic Nitrogen

Duplicate samples were analysed using the Kjeldahl method for the 

determination of organic nitrogen using Zirconium dioxide and cupric sulphate 

as catalyst (Glowa, (1974)).

2.3.9 Harvesting and freeze drying

Algae were harvested by continuous centrifugation using a G riff in-Christ 

centrifuge (Junior 15000,7,000 r.p.m.). This was found to remove at least 98%

of biomass. The supernatant remaining in the rotor was emptied carefully and  ̂

the residue scrapped into universal bottles with distilled water washings or F/2 

media depending on the culture harvested, and centrifuged in an MSE 

benchtop chilspin (4,000 r.p.m./5 mins). The supernatent was discarded and 

the remaining biomass pellet freeze dried (Virtis consol 12 freeze drier). The 

freeze dried algae were placed under a nitrogen atmosphere, sealed and stored 

at -20®C.

2.3.10 Carbohydrate Determination

Carbohydrate analysis of the freeze dried algal material was carried out using

the Anthrone Method (Herbert et al, 1971) using a glucose standard (0-80pg 
carbohydrate). Four replicates per sample were analysed.
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2.3.11 Protein Determination

Protein analysis of the freeze dried algal material was carried out using the

Coomassie Blue Dye binding method (Bradford, 1976), using a bovine serum

albumin standard (0 - lOOpg protein). Four replicates per sample were 
analysed.

2.3.12 Chiorophvii Determination

Duplicate 5ml samples were filtered through Whatman G/FC filters (2.5cm) and 

the filters placed in McCartney bottles containing 5ml 3:1 DMSO (Dimethyl 

sulfoxide) : 90% acetone. The bottles were stored at 2°C overnight in the dark. 

Each sample was then pipetted into a fresh McCartney bottle and made up to 

5ml with 3:1 DMSO : 90% Acetone. Samples were then centrifuged (4,000 

r.p.m./5 mins) and the optical density determined at 630, 647 and 664nm 

(Unicam SP1800 UV spectrophotometer). Chlorophyll a, b and c levels were 

calculated using the trichromatic equations of Jeffrey and Humphrey (1975) for 

90% acetone.

2.3.13 Photosvnthetic/Dark Respiration Rates

These were determined as oxygen evolution or consumption (Plates 8 and 9)

using a Clark type polarographic oxygen electrode as described by Dubinsky 

et al (1987).

The oxygen electrode system encloses the electrode in a flat sided chamber 

giving a well defined light climate for measurement of the rate of change of 

concentration of dissolved oxygen under controlled temperature conditions. 

The electrode was calibrated at zero oxygen (using a saturated solution of 

sodium sulphite) and 100% oxygen (distilled water, sparged) and then the rate 

of change in concentration of dissolved oxygen with photosynthesis or dark 

respiration of an algal culture present in the chamber was recorded on a chart 

recorder. Photosynthetic and dark respiration rates were calculated using the 

zero oxygen and 100% oxygen readings and the solubility of oxygen at the 

experimental temperature.
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Plate 8: Oxygen Electrode Bench Experimental Set Up:
(a) oxygen electrode assembly with ear muffs
(b) optical bench (c) Og Amplifier (OTELA)
(d) chart recorder (e) slide projector light source
(f) neutral density filters (g) temperature regulated water bath
(h) inlet/outlet water supply

/

%
Plate 9: Oxygen Electrode Assembly:

(a) measurement chamber (cuvette)
(b) oxygen electrode port (c) magnetic flea 
(d) magnetic stirrer (e) inlet/outlet water jacket 
(f) filler cap (g) blanking plug
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2.4 STATISTICAL ANALYSIS

Carbohydrate, Protein, Lipid and unsaturated fatty acid percentage totals data 

for all experiments was analysed using standard analysis of variance 

procedures in G EN STAT. In some cases, the data design was not orthogonal 

due to missing values. Only 'main effects’ and first order interactions’ were 

fitted, all other interaction terms were pooled with the residual error term. 

Where ‘main effects’ temperature, algae, phase, nitrogen - were significant 

(0.1% or p < 0.001 and 1% or p <0.01 only), means were calculated and 

comparisons made. Calculation of means eg temperature means for 

carbohydrate - mean carbohydrate for all algae under analysis over all nitrogen 

levels in all phases at the three temperatures, 17°C, 30°C and 40°C.
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3. FATTY ACID METHODOLOGY
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3.1 INVESTIGATION OF FATTY ACID EXTRACTION/METHYLATION 

METHODS

A survey of the published literature available (Table 7) concluded that two 

extraction methods were predominantly applied to algae. These are the 

methods of Folch et al (1957) and Bligh and Dyer (1959). The méthylation 

methods were, however, numerous with no universal method applied to 

algae.

The extraction method of Folch et al (1957) appeared to be most applicable 

to algal biomass, with the modification of Ways and Hanahon (1964) (Fig 

6), due to the small sample size which might be expected as a result of 

some of the experimental treatments.

An initial investigation of extraction (sample ground with sharp sand and 

lipids extracted in 40°C/60®C Bpt petroleum ether) and méthylation (Fig 7) 

used by the company sponsoring the work (Croda Universal Ltd) for seed 

oils was found to give very low levels of algal lipid (0. vulaaris 211/8K, 2-4% 

cellular lipid). Direct méthylation alone of the algal material gave a higher 

lipid level (= 8%) which appeared to be more comparable to previously 
published values. The lower values initially found suggested the extraction

method may not have been disrupting the cells sufficiently giving incomplete 

extraction.

The ‘croda’ méthylation (Fig 7) was considered to be too severe for algae 

(Christie, pens, comm, 1987) and an alternative using 1% HgSO  ̂ in 

methanol (Fig 8) was suggested (Christie, pers. comm, 1987; Christie, 

(1989a)). It was also noted that direct méthylation was becoming more 

popular when applied to plant material and it had become more commonly 

reported in the literature (eg Browse et al 1986).

Therefore, it was decided to compare the extraction and méthylation 

methods given in relation to estimated lipid contents of algal material.
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Fig 6: Folch extraction

(Ref: Folch et al (1957), with modification of Ways and Hanahan (1964) 

from Christie (1982))

weighed sample of freeze dried algae (up to 1g) + weighed Internal standard

i
+ 10ml Methanol

Homogenise/1 min

+ 20ml Chloroform

Homogenise/2 min

Volume Measured

Filtered

FiltrateSolid Residue

+30ml 2:1 Chloroform: Methanol

Homogenise/3 min

Filtered

Filtrate

Solid Residue

+ 30ml 2:1 Chloroform: Methanol

Filtered

Filtrate

Solid Residue

(disposal)

+ Vi volume measured of 

total filtrate of 0.88% KCI/H,0

Shake and allow to settle

i
remove upper layer by aspiration

I
+ % volume of lower layer 

layer of H%0 : methanol (1:1)

Shake and allow to settlei
remove upper layer by aspiration

I
lower layer contains lipid

filtered

solvent removed 

under nitrogen

\L
lipid determined by weight

■V

%  lipid by calculation from 

algal dry weight

(Amount lipid x 100%) 

Amount algae
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Fig 7: ‘CRODA’ Méthylation

Crude Lipid extract ( Croda ) 

(sand/pet ether)

OR

lipid extract (Folch Extraction)

OR

Weighed sample of freeze fried algae 

+ weighed Internal Standard 

(direct méthylation)

+ 25mls KOH (45g/900mls Methanol)

AIR CONDENSER/SAND BATH 

BOIL/30 MINS

+ 25mIs H2SO4 (50ml conc/900mls methanol) 

AIR CONDENSER/SAND BATH 

BOIL/30 MINS

•y
+ 1 0 ml n-heptane

+ Fill flask with saturated salt solutioni
Remove "mush" layer into a centrifuge tube

I
Centrifuge 5 mins

Remove upper layer to clean vial

i
IfU sample on GC
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Fig 8: ‘Christie’ Méthylation

(Christie, pers comm (1987); Christie (1989a))

Lipid extract (Folch extraction) 

up to 50mg 

OR

weighed sample of freeze dried algae 

(up to 0.5g) + weighed Internal 

Standard (direct méthylation)

'V
+ 2ml 1% HjSO^ in Methanol 

+ 1ml toluene

screw capped test tube

50*C/overnight

+ 5ml 5% NaCI in H ,0

shake

+ 2 X 5ml hexane

V
transfer to Universal centrifuge 

remove upper layers to clean test tube

i
+ 4ml 2% Potassium bicarbonate

shake

y
remove upper layer

shake

y
+ anhydrous sodium sulphate 

filter using Whatman No. 1

J.
solvent removed under N%

Ipl injection/GC
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3.1.1 Comparison of Methodologies

The ‘standard’ algal biomass of the four freshwater green algae grown 

under continuous culture (2.2.3.2) was utilised. A comparison was made of 

estimated lipid contents determined:

i) g ravi metrically using the Folch extraction procedure (Fig 6)

ii) that calculated from the sum of the methyl esters, prepared from the 

extracted lipids, methylated using either the 'Croda' (Fig 7) or 

‘Christie’ (Fig 8) methods.

iii) direct méthylation of the algal material by both méthylation methods 

(‘Croda’ and ‘Christie’).

The percentage conversion of cod liver oil and algal lipid to fatty acid methyl 

esters by both méthylation methods was also determined. Fatty acid 

analysis was carried out by GC using a WCOT Fused Silica CP-Sil 66 

column (50m - 0.25mm ID) with a 5M deactivated fused silica precolumn 

(Chrompack Cat No. 7466).

GC: United Technologies Packard Model 439 with Hewlett-Packard 3390A 

Integrator

56



{

GC Conditions: Maximum column temperature 226°C

Detector temperature 300°C 

Injector temperature 240°C 

Oven - initial 160°C

- final 225°C

- rise (°C/min) 5 

Time initial (min) 2 

Time final (min) 25 

Stability time (min) 1 

He Carrier Gas 

Head pressure 125 Kpa 

Split ration 100:1 

Flow 0.43 ml/min 

Total run time 40 min

Identification was by comparison to known authenticated standards, and 

quatitation by the use of an internal standard (C22:0). BHT was added to 

all solvents to prevent oxidation, and all solvents used were either Analar 

or HPLC grade.

3.1.2 Results

The results are shown in Table 8. Gravimetric determination recorded the 

highest lipid contents in comparison with extraction and méthylation and 

direct méthylation with the exception of direct méthylation of C. vulgaris 

211/11c. However, the results of percentage conversion of oil to methyl 

esters suggested that some of this material was none lipid, and also that not 

all the lipid present may have been converted. The conversion was
A, I

expected to be less thaV for cod liver oil as algal lipids are complex and 

sterols, glycolipids, phospholipids and tocophe^ols which are water soluble 

may be lost. The differences in percentage conversion may be due to 

differences in content of lipid in the various species. Also, the presence of 

other compounds eg pigments, would affect the result. Further work 

including HPLC and GC-MS confirmed that not all material was lipid.
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The results of the comparative experiment, however, did demonstrate that 

for green algae, both direct méthylation methods (calibrated with internal 

standard) gave higher percentage lipid contents than any combination of 

extraction and méthylation. Furthermore, with the exception of C. vulgaris 

211/11 c it appeared that the ‘Christie’ méthylation method gave consistently 

higher lipid contents than the ‘Croda’ méthylation method. This may be due 

to the presence of KOH in the ‘Croda’ method which provides a source of 

water for hydrolysis which is irreversible and this may have resulted in 

estérification not going to completion.

Fatty acid methyl ester profiles for the four algae exhibited no significant 

peak differences qualitatively between extraction/methylation and direct 

méthylation methods (eg Figs 9 and 10). Quantitative differences favoured 

the direct méthylation methods. Therefore it was decided to use the 

‘Christie’ méthylation method as a direct méthylation method for all analysis 

of algal biomass.

3.1.3 Further Method Development

3.1.3.1 Florisil

Water soluble materials eg pigments were removed in the direct méthylation 

method with washing of the sample, however, lipid soluble materials eg 

phytol, carotenoids, sterols would remain. Therefore, a further step was 

added to the method after méthylation and extraction of the methyl esters 

in the form of a clean up step. Adsorption chromatography using a short 

column of Florisil (60-1OOUS MESH, FSA) in a pasteur pipette plugged with 

glass wool, and elution with hexane-diethyl ether (95:5 v/v) allowed samples 

to be cleaned up leaving impurities on the column.

3.1.3.2 Sample Size

During this experimental work, an average of 0.2g of algal material had 

been used per sample. A further investigation of sample size for the four
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Fig 9: G.C. Chromatogram : C. vulgaris 211/8K

a. FOLCH E X r* AND CHRISTIE METH b. DIRECT CHRISTIE

METH

STOP

1 •?
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Fig 10; G.C. Chromatogram : C. vulgaris 211/11C

a. FOLCH E X f  AND CHRISTIE METH b. DIRECT CHRISTIE

METH

IL ' .SS

11 '.M
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freshwater green algae led to the finding that the method was suitable for 

0.1 - 0.25g algal material. Results are given for Ankistrodesmus 

antarcticus:

Amount of algal material % of Lipid

(g) (Sum of MB’s)

0.2392 11.9

0.2367 11.2

0.2067 11.2

0.2087 11.4

0.1562 11.3

0.1405 11.6

0.1068 11.8

0.1030 11.5

0.0585 10.4

0.0601 11.0

3.1.4 Direct Methvlation Method

A flow chart of the direct méthylation method used for all samples is given 

(Fig 11) together with accompanying visual clarification (Plate 10). 

Duplicate samples were analysed by GC (3.2.2), each of the samples being 

injected twice to obtain an average for each fatty acid. Once all component 

fatty acids had been identified (3.2) their values were added together and 

given as a percentage of the total algal material calculated in relation to the 

known amount of Internal standard.

Total Area % Fatty Acid ME Amount (g) = Lipid (g)
Area % Internal standard ^ Internal standard

 Lipid (g)__________ X 100 = % lipid in algal material
Original weight of algae (g) (sum of fatty acid MB's)

62



Fig 11 FATTY ACID ANALYSIS 

(DIRECT EXTRACTION/METHYLATION)

=.1 =.2g ALGAE + =.01^INTERNAL STANDARD 
(C22:0 M.E.)

+ 1ml TOLUENE  

+ 2ml 1% H2SO4/METHANOL (+BHT) (A)

i MIX, 50°C/OVERNIGHT

+ 5ml 5% NaCI in HjO (B)

MIX

+ 5ml HEXANE - BHT (C)

CHILSPIN 4,000 rpm/5min 

REMOVE + RETAIN UPPER LAYER

REPEAT HEXANE - BHT EXTRACTION 

+ COMBINE RETAINED UPPER LAYERS (D)

+ 4ml 2% POTASSIUM BICARBONATE (E)

REMOVE & RETAIN UPPER LAYER

+ ANHYDROUS SODIUM SULPHATE (F)

FILTER/WHATMAN No 1 (G)

V

REDUCE TO DRYNESS/N,

+ 2ml HEXANE/10% DIETHYL ETHER

ONTO FLORISIL COLUMN (H)

'V
SAMPLE COLLECTED AND REDUCED TO DRYNESS/N,

4/

+ .5ml HEXANE (J) 

GC ANALYSIS

O'
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PLATE 10 FATTY ACID METHODOLOGY SCHEMATIC

W
c.

H
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3.2 IDENTIFICATION AND CONFIRMATION OF FATTY ACID METHYL 

ESTERS

3.2.1 Known Standards

Comparison to known standards was used for identification, the following 

standards being utilised:

Sigma: Lipid standard (189-6), Lipid standard (189-11), Linolenic acid

methyl ester (L2626), '^linolenic acid methyl ester (L6503),

k
methyl ester (E7877), 8,11,14 - Eicptrienoic acid methyl ester

Palmitic acid methyl ester (P0750), 11,14 - Eicodienoic acid
r

(E3511).

Greyhound: Lipid mixtures (GHF07), (GHPUFA) and (GHME64).

Also, esterified cod liver oil, the identification of the peaks already known.

3.2.2 Columns and Conditions

Biomass generated from the nitrogen limitation experiments with the four 

freshwater green algae was analysed by GC using a CP-Sil-88 column 

under the same conditions as stated in Section 3.1.1. All other algal 

biomass (nitrogen limitation experiments: cyanobacteria, brackish and 

marine species and C. caldarium: outdoor minipond experiments: all strains 

investigated) were analysed by GC using a WCOT fused silica CP-Wax-52 

CB column (25m - 0.25nm ID) with a 5m deactivated fused silica precolumn 

(Chrompack, Cat No. 7713).

GC: United Technologies Packard Model 439 with Hewlett-Packard 3390A

Integrator.

/-
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GC Conditions: Maximum column temperature 275°C

Detector temperature 300°C 

Injector temperature 240°C 

Oven - initial 160°C

- final 225°C

- rise (°C/min) 5 

Time initial (min) 2 

Time final (min) 20 

Stability time (min) 1 

He Carrier Gas

Head Pressure lOOKpa 

Split ratio 100:1 

Flow 0.43 ml/min 

Total run time 35 min

The CP-Wax-52-CB column was found to give a better separation of fatty 

acid methyl esters, specifically of C l6:3 and Cl 6:1 which coeluted with the 

CP-Sil-88 column. The samples which were previously analysed using the 

CP-Sil-88 column were also analysed by GC using a fused silica Silar 5CP 

Column to quantify the Cl 6:3 and Cl 8:1 components (Christie (1987)). 

GC: Carlo Erba Model 4130.

GC Conditions: Maximum column temperature 275®C

Detector temperature 300°C 

Injection temperature 60°C 

Injector temperature 260°C 

Oven - initial 60°C

- final 195°C

- rise (®C/min) 4 

Time initial (min) 3 

Time final (min) 17 

Hydrogen Carrier Gas 

Flow 2 ml/min

This was not continued when the column was changed to a CP-Wax-52-CB.
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3.2.3 HPLC and Bond Elut

A method was also available to separate fatty acid methyl esters by their 

degree of un saturation (Christie/987). GC samples were dried down under 

a stream of nitrogen and redissolved in a few drops of dichloroethane.

Samples were then analysed by HPLC using a silver loaded Nucleosil-5SA 

column (Christie, 1987). A solvent gradient was applied and an analytical 

run carried out to obtain retention times of peaks. This was then utilized on 

a preparatory run to obtain samples for GC analysis via a stream splitter.

HPLC Equipment:

Spectra Physics Model 8700 Solvent delivery system

(Spectra Physics Ltd)

ACS Model 750/14 Mass Detector

(Applied Chromotography Systems)

Silver impregnated Nucleosil 5SA Column

(4.6 X 250mm) (HPLC Technology)

Stream Splitter (10:1)

Spectra Physics Integrator SP4270 (Spectra Physics Ltd)

67



Solvent gradient system used:

Time (mins)

100% A 0

100% B 40

Solvent A 50% dichloromethane 

50% dichloromethane

Solvent B 100ml dichloromethane 

100ml dichloroethane 

10ml methanol 

10ml acetonitrile

lOpI injection volume

Fatty acid methyl esters with zero to six double bonds could be resolved 

(Fig 12) and fractions (1-7) analysed by GC (Christie (1987) for conditions) 

(Fig 13).

This methodology was initially used for identification of fatty acid methyl 

esters of the four freshwater green algae and then it was routinely used for 

confirmation of fatty acid methyl esters until an alternative approach using 

a Bond Elut System was developed (Christie, per comm. (1988); Christie, 

1989b). Again silver ion chromatography was utilized, with silver loaded 

Bond Elut s e x  solid phase extraction columns being used (Analytichem 

International).

The Silver Loaded Bond Elut SCX Column was prepared as follows:

r
A solution of 20mg silver nitrate in 0.25ml acetonitijfile-water 10:1 (v/v) was 

allowed to percolate through a Bond Elut SCX column. The column was 

wrapped in aluminium foil to the top of the bed. The column was washed 

with acetonit^le (5ml), acetone (5ml) and dichloromethane (10ml). A pipette 

bulb was found to help by applying slight pressure.
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Fig 12: H.P.L.C. CHROMATOGRAM OF A. antarctlcus

r

. :<2

y .

T2. bO 2

l b .  1 0

24.66 4

n i .  31 5

KF.Y: NUMDI'.nS AT PIîAKS
lU'.l'lîR TO HDMBBn 
OF nnUDMî RONDS 
IN Tin; FA1TY 
ACIDS.

11. 13
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Fig 13: G.C. CHROMATOGRAM : FRACTION 3 FROM Æ
antarcticus

1 1 . 7 4

BHT

L 6 . 46

,33 C 163

? .74 
10 .2 2

1 1 . 2 7
Cl 8:3
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Elution depending on unsaturation was achieved using a series of solvent

mixtures (Christie, 1989b). 0.5mg sample in 50|il dichloromethane was 
added to the column. Solvent mixtures were used as follows:

Saturated Fatty Acids - 5ml dichloromethane 

Monoenes - 4.5ml dichloromethane + 0.5ml acetone 

Dienes - 5ml acetone

Trienes - 9.7ml acetone + 0.3ml acetonitrile 

Tetraenes - 9.4ml acetone + 0.6ml acetonitrile 

Pentaenes - 4.4ml acetone + 0.6ml acetonitrile 

Hexaenes - 3ml acetone + 2ml acetonitrile

For reuse (within 1 day), 10ml dichloromethane removed traces of 

acetonitrile from the column.

Analysis of fractions was by GC using a CP-Wax-52CB column (for GC and 

conditions, section 3.2.2). This method was equally successful as HPLC 

and quicker.

3.2.4 Gas Chromatoqraphv - Mass Spectrometry

Initial work on confirmation of identification of fatty acid methyl esters by GC 

and HPLC was carried out by the use of GC-MS for the four freshwater 

green algae, and was only used sporadically for further work if unusual 

peaks were found. HPLC and Bond Elut fractions were converted to 

picolinyl esters and analysed according to Christie et al (1986).

3.2.4.1 Picolinyl ester preparation

Fractions were dried down under a stream of Ng at 50°C. 2ml of 1M KOH 

in 90% ethanol was added and samples left overnight at room temperature. 

5ml of water and 2.2ml 1M HCI was added and mixed thoroughly. Fatty 

acids were extracted with 4ml ether: hexane (1:1) and centrifuged (1,500 

rpm/2 mins), the ether hexane layer being removed. This was repeated.
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8ml extract was washed with 2ml water and again centrifuged. The upper 

layer was removed and reduced to dryness under a stream of nitrogen at 

50°C. 0.5ml trifluoroacetic anhydride was added and samples left for 30 

mins at 50°C. The excess reagent was then blown off with nitrogen. 0.2ml 

HMP-DMAP reagent was added (0.5ml 3-hydroxymethyl pyridine, 100mg 4- 

dimethyl amino pyridine in 5.0 ml dichloromethane). Samples were left for 

3 hours at room temperature. Solvent was then removed under a stream 

of Ng. 8ml hexane and 4ml water was added, and sample vortexed, 

centrifuged and separated. 4ml of water was further added and sample 

vortexed, centrifuged and separated. This was repeated. Solvent was then 

removed in a stream of nitrogen. 1ml ether and a few mgs of Bond Elut 

NH2 were added. The sample was left for 10 minutes then shaken and 

centrifuged. The solvent layer was carefully decanted and evaporated. The 

residue was redissolved in 1ml hexane (storage) or 0.2 - 0.3ml if used 

immediately.
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4. NITROGEN LIMITATION EXPERIMENTS
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4.1 INTRODUCTION

An investigation was carried out into the effects of nitrate depletion, 

temperature shift and growth phase on the biochemical content of a range of 

algae.

A multifactorial approach was used such that the three variables could be 

combined to investigate interactions as well as single effects. Four nitrate 

levels, 5, 25, 50 and 500mg NO3-N 1'̂  or mg NH4-N 1'̂  (2.1.2.1), three 

temperatures (17, 30 and 40°C) and two growth phases (exponential and 

stationary) were investigated utilizing thirteen different strains of algae (2.1) in 

a series of experiments using the Batch Culture System (2.2.1).

4.2 EXPERIMENTAL DESIGN

In order to obtain aseptic experimental conditions, the Batch Culture System 

was broken down into suitable components for autoclaving: (i) individual growth 

bottles (8 per tank) were filled with media (900 ml), sealed with a cotton wool 

bung and autoclaved (12rc /15  mins) (ii) inlet and outlet bottle tubing and bung 

(per bottle) were wrapped separately and autoclaved (121°C/15 mins) (iii) The 

outlet manifold was wrapped and autoclaved (121°C/15 mins).

After autoclaving and cooling, the system was assembled aseptically.

A set bottle pattern was chosen and maintained for every experiment to allow 

comparison of results. Two bottles at each of the four nitrogen levels, 5, 25, 

50,500 were placed in a tank per algal or cyanobacterial species. This allowed 

for up to four algal species to be grown simultaneously at the same 

temperature.

74



25S 50 500 S

MIXERHEATER

5 0 050 S5S

After assembly the heaters, mixers, lights and air supply (4.5 litres min'̂  per 16 

bottles) were switched on and the system allowed to equilibriate overnight at 

the required experimental temperature (17°C, 30°C or 40°C).

A suitable inoculum, usually 1ml, was then aseptically pipetted into each culture 

bottle to give initial cell numbers of 10"̂  cells ml '' for each species (2.1.3.1 ). An 

initial sample was taken after inoculation of all bottles, from the bottles chosen 

for sampling (bottles marked (S) on previous diagram), and thereafter every 3-4 

days, deemed to be suitable from previous work on cell inoculum levels where 

a rough time scale for the growth of the four green algae was 30 days. A 25ml 

sample was found to be sufficient for all analysis.

OD560 (2.3.2), dry weight (2.3.3), pH (2.3.5) nitrate/nitrite (2.3.6) and ammonia

(2.3.7) determinations were carried out on each sample. For nitrogen fixing 

cyanobacterial species, observations were made using a Leitz microscope for 

the presence of heterocysts.

A suitable harvesting regime was determined from the results of ODggo, dry 

weight and nitrate/nitrite levels, enabling exponential and stationary growth 

phases to be identified. Nitrogen depletion (< 0.1 mg NO3-N 1'̂ ) usually 

prec^/^ed stationary phase.
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Harvesting at 5 mg NO3/NH4-N 1'̂  occurred only in stationary phase (2 bottles) 

for all species although the cyanobacterial nitrogen fixers were left after 

nitrogen depletion to observe changes in biochemical composition due to 

nitrogen fixation. Harvesting at 25mg NO3/NH4-N 1'̂  and 50mg NO3/NH4-N I"* 

occurred in exponential and stationary phases (1 bottle per phase), again the 

cyanobacterial nitrogen fixers being left after nitrogen depletion. At 500 mg 

NO3/NH4-N all bottles were harvested together (2 bottles) in exponential 

phase once 5, 25 and 50 mg NO3/NH4-N M cultures were harvested as these 

cultures were never found to reach nitrogen depletion. The harvested material 

was freeze dried (2.3.9) and carbohydrate (2.3.10), protein (2.3.11), and fatty 

acid content (3.1.4) determined.

For determination of photosynthetic and dark respiration rates (2.3.13), cultures 

were grown under similar irradiance, temperature and inoculum levels, but only 

at 25mg NO3/NH4-NI using the Batch Culture System. Samples were taken 

at the same time as previous harvesting times for the nitrogen limitation 

experiments. ODggo (2.3.2), dry weight (2.3.3), nitrate (2.3.6) and ammonia

(2.3.7) presence was also determined.

4.3 RESULTS AND STATISTICAL ANALYSIS

For all results in this section, 5,25, 50 and 500 refer to initial nitrogen levels of 

5, 25, 50 and 500mg NO3-N M or mg NH4-N 1'̂  for 0. caldarium results. Letters 

after 5, 25, 50, 500 ie E, S, S/LE and A refer to Exponential, Stationary, 

Stationary/Late Exponential growth phases and After nitrogen depletion 

respectively. For example, 50S, refers to 50mg NO3-N 1'̂  initial nitrogen level 

-stationary phase.

4.3.1 Freshwater Green Algae

4.3.1.1 Growth and Nitrate Results

0. vulgaris 211/8K and 0. vulgaris 211/11c were both found to grow at the 

three experimental temperatures whereas Ank. antarcticus 202/25 and ^
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obliQuus 276/3A did not grow at 40°C. Results for ODggo against time (Ç 

vulgaris 211/8K - Figs 14-16: C. vulgaris 211/11c- Figs 17-19: Ank. antarcticus 

202/25 - Figs 20 and 21 ; S. obliouus 276/3A - Figs 22 and 23) and dry weight 

against time (C. vulgaris 211/11c- Figs 24-26: C. vulgaris 211/8K - Figs 27-29; 

Ank. antarcticus 202/25 - Figs 30 and 31 ; S. obliouus 276/3A - Figs 32 and 33) 

show all strains grew significantly faster at 30°C and 40°C than at 17°C, 

irrespective of initial nitrogen level. All cultures, with the exception of those at 

500mg NO3-N l'\ went into stationary phase. Results of nitrate depletion 

against time (C. vulgaris 211/8K - Figs 34-36: C. vulgaris 211/11c- Figs 37-39: 

Ank. antarcticus 202/25 - Figs 40 and 41 ; S. obliouus 276/3A - Figs 42 and 43) 

show that nitrate levels were very low (< 1.0 mg NO3-N M), with the exception 

of S. obliouus 50s at 17°C (1.6mg NO3-N 1'̂ ) and Ank. antarcticus 50s at 17®C 

(3.4mg NO3-N M), or depleted at stationary phase harvest (Tables 9,10,11,12). 

Depletion or low levels of nitrate usually preceeded stationary phase. With all 

strains, depletion of nitrate occurred in the order 5 -> 25 -> 50 mg NO3-N \'\ 
None of the cultures grown at 500mg NO3-N I"* ever attained nitrogen depletion. 

pH results (C. vulgaris 211/8K - Figs 44-46; C. vulgaris 211/11c - Figs 47-49; 

Ank. antarcticus Figs 50 and 51 ; S. obliouus - Figs 52 and 53) all exhibited an 

increase in pH with exponential growth and decrease with later growth in the 

pH range 6-11.
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FIG 14 C.vulaarls 211/8K 17'C
OD 560 vs Time
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FIG15 C.vulgaris 211/8K 30°G 
OD 560 vs Time
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FIG16 C.vulaarls 211/8K 40'C
OD 560 vs Time
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FIQ18 C.vulaarls 211/11c 30°G
OD 560 vs Time
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FIG 19 C.vulqaris 211/llc 40''C 
OD 560 vs Time
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FIG 20 Ank.antarcticus 202/25
OD 560 vs Time
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FIG 21 Ank.antarcticus 202/25 30 *̂0 
OD 560 vs Time
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FIG22 S.obllQUUS 2 7 6 /3 A 17"C
OD 560 vs Time
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FIG23 S.obllQUUS 276/3A SO'C 
OD 560 vs Time
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FIQ24 C.vulqaris 211/11c 17"C
DRY WEIGHT vs Time
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FIG 25 C.vulaarls 211/llc 30^C 
DRY WEIGHT vs Time
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FIG 26 C.vulaarls 211/llc 40"C
DRY WEIGHT vs Time
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DRY WEIGHT vs Time
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FIG 28 C.vulqaris 211/8K 30"C
DRY WEIGHT vs Time

Dry weight (g/l)
0.8

0.6

0 .4

0.2

2 52 0 3 0 3 5151050

—— 6 mg N03-N/I 

60 mg N03-N/I

Time(days)

Nitrogen Level

26 mg N03-N/I 

600 mg N03-N/I

FIG 29 C.vulqaris 211/8K 40 C 
DRY WEIGHT vs Time
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FIG30 Ank.antarcticu8 202/25 17°C
DRY WEIGHT vs Time
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FIG 31 Ank.antarcticus 202/25 30 0  
DRY WEIGHT vs Time
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FIG 32 S.obliauus 276/3A 17"C
DRY WEIGHT vs Time
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FIG 33 S.obllquus 276/3A 30 C 
DRY WEIGHT vs Time
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FIG34 C.vulgaris 211/8K
NITRATE vs Time
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FIG 35 C.vulgaris 211/8K 30“C 
NITRATE vs Time
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FIG 36 C.vulgaris 211/8K 40'C
NITRATE vs Time
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FIG37 C.vulgaris 211/11C 17 C 
NITRATE vs Time
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FIG38 C.vulgaris 211/Hc 30 G
NITRATE vs Time
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FIG39 C.vulgaris 211/llc 40 C 
NITRATE vs Time
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FIQ40 Ank.antarcticus 202/25 17°C
NITRATE vs Time
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FIG40 Ank.antarcticus 202/25  17°C
NITRATE vs Time
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FIG42 S.obllquus 276/3A 17°C
NITRATE vs Time
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FIQ44 C.vulgaris 211/8K 17^0
pH vs Time
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FIG46 C.vulgans 211/8K 40°C
pH vs Time
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FIG48 C.vulgaris 211/llc 30 G
pH vs Time
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pH vs Time

11

10

9

8

7

6

6
10 16 206 260 30 36

6 mg N03-N/I

60 mg N03-N/I

Time(days)

Nitrogen Level

~+- 26 mg N03-N/I

600 mg N03-N/I

96



FIG 50 Ank.antarcticus 202/25 17 C
pH vs Time
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FIQ52 S.obliauus 276/3A 17 C
pH vs Time
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pH vs Time
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Table 9: Harvest Parameters for C. vulgaris 211/8K

Temperature/ 
Initial N 
Level

Phase Time
(Days)

0̂ 560 Dry wt 
(gl-')

NO 3-N
(mgr‘)

ITC 5 S 15 0.57 0.16 0 . 0 2

25 E 14 0 . 8 8 0.28 7.4
25 S 24 2.08 0.65 0 . 0 2

50 E 14 1.05 0.30 22.5
50 S 33 3.68 1.08 0

500 E 33 2.24 1 . 0 2 432

W C  5 S 13 0.45 0  1 1 0

25 E 13 1.28 0.41 2 . 1

25 S 2 0 1.37 0.43 0

50 E 15 1.03 0.29 6.4
50 S 2 2 1.80 0.60 0.09
500 E 2 2 2 . 2 0 0.72 330

40T 5 S 9 0.17 0.05 0.95
25 E 9 0.78 0.23 1 . 1

25 S 17 0.74 0.30 0.03
50 E 13 1.06 0.41 7.8
50 S 2 0 1.24 0.46 0.90
500 E 2 0 1.09 0.77 295

E = Exponential Phase 
S = Stationary Phase
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Table 10: Harvest Parameters for C. vulgaris 211/llc

Temperature/ 
Initial N 
Level

Phase Time
(Days)

^̂ 560 Dry wt 
(gl')

NO 3-N
(mgl’̂)

ITC 5 S 13 0.17 0.07 0.49
25 E 19 0 . 6 8 0.31 11.3
25 S 32 1 . 6 6 0.92 0.09
50 E 14 0.46 0.14 23.4
50 S 33 2.64 1.32 0

500 E 33 1.58 0.94 423

W C  5 S 13 0.44 0.15 0

25 E 13 1 . 2 1 0.52 4.2
25 S 2 0 1.26 0.60 0.09
50 E 15 1.71 0 . 6 6 0.9
50 S 2 2 2.08 0.60 0.05
500 E 2 2 1.72 0 . 6 6 345

40"C 5 S 1 0 0.14 0.08 0 . 0 1

25 E 1 0 0.67 0 . 2 2 1,9
25 S 16 0.80 0.36 0 . 0 2

50 E 1 2 0.53 0.27 1 2 . 0

50 S 23 1.18 0.48 0.80
500 E 23 1 . 2 0 0.60 385

E = Exponential Phase 
S = Stationary Phase
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Table 11: Harvest Parameters for Ank. antarcticus 202/25

Temperature/ 
Initial N 
Level

Phase Time
(Days)

ODĝ o Dry wt
(gl-̂)

N O 3-N
(mgl-i)

IT C  5 S 15 0.45 0.27 0

25 E 1 1 0.44 0.33 6 . 2

25 S 24 1 . 8 8 0.72 0.03
50 E 14 0 . 6 8 0.24 19.3
50 S 33 3.44 1.32 3.4
500 E 33 2.76 1.16 419

30°C 5 S 1 2 0.54 0.19 0.07
25 E 1 0 0 . 6 8 0 . 2 2 3.4
25 S 25 1.42 0.62 0

50 E 1 2 0.85 0.28 24.5
50 S 25 1.91 0.60 0.9
500 E 25 1.28 0.65 398

Table 12: Harvest Parameters for S. obliquus 276/3A

Temperature/ 
Initial N 
Level

Phase Time
(Days)

OD5 6 0 Dry wt 
(gl')

N O 3-N
(mgl-')

17T 5 S 15 0.28 0 . 2 2 0 . 0 1

25 E 1 1 0.28 0.15 7.2
25 S 24 1.64 0.85 0 . 0 2

50 E 1 1 0.45 0 . 2 1 21.5
50 S 33 3.32 1.40 1 . 6

500 E 33 2.52 1.62 397

30°C 5 S 1 2 0.46 0.30 0.14
25 E 1 0 0.81 0.41 0 . 0 2

25 S 25 2 . 0 2 1.14 0.09
50 E 1 2 1 . 1 0 0.54 18
50 S 25 2.36 1.24 0

500 E 25 2 . 0 2 1.29 345

E = Exponential Phase S = Stationary Phase
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4.3.1.2 Carbohydrate, Protein and Lipid Resuits

The results for carbohydrate, protein, lipid analyses are given in Tables 13,14, 

15,16 for C. vulgaris 211 /8K, C. vulgaris 211/11 c, Ank. antarcticus 202/25 and 

S. obliQuus 276/3A respectively.

0. vulgaris 211/8K increased lipid content with decrease in temperature 

(average lipid content at 17°C - 9.42%, 30°C - 9.18%, 40°C - 5.64%), increased 

protein content from T7°C to 30°C but decreased from 30°C to 40°C (average 

protein content at 17°C - 7.57%, 30°C - 8.92%, 40°C - 5.65%), and increased 

carbohydrate content with decrease in temperature (average carbohydrate 

content at 17°C - 40.95%, 30°C - 28.65%, 40°C -18.88%). The major shift was 

the accumulation of carbohydrate with decreasing temperature. With respect 

to growth phase, 0. vulgaris 211/8K increased lipid, decreased protein and 

accumulated carbohydrate in the stationary phase compared to exponential 

phase (Figs 54 and 55). These changes were independent of initial nitrogen 

level, but were in response to nitrate depletion or very low nitrate levels.

C. vulgaris 211/11c increased lipid content from 17°C (average, 4.67%) to 30°C 

(average, 7.38%) and decreased at 40°C (average, 4.97%). Protein content 

decreased from 17°C (average, 8.87%) to 30°C (7.57%) and then increased at 

40°C (average, 7.88%). Carbohydrate accumulated with decrease in 

temperature (average carbohydrate content at 17°C - 56.43%, 30°C - 38.63%, 

40°C - 31.15%). The accumulation of carbohydrate exhibited was common to 

both strains of 0. vulgaris. With respect to growth phase, 0. vulgaris 211/11c 

increased lipid, decreased protein and increased carbohydrate at stationary 

phase at 17°C and 30°C (Figs 56 and 57). At 40°C, the reverse appeared to 

occur.

Ank. antarcticus 202/25 decreased lipid content from 1 TO  to 30*0 (average 

lipid content at 17°C -18.43%, 30°C - 12.69%), decreased protein from 17°C 

to 30°C (average protein content at 17°C - 8.25%, 30°C - 5.47%) and slightly 

increased carbohydrate (average ^T0  - 26.65%, 30°C - 27.70%). With respect 

to growth phase, lipid increased, protein decreased and carbohydrate increased 

with stationary phase (Figs 58 and 59).
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s. obliquus 276/3A decreased lipid content from 17°C to 30°C (average lipid 

content 17°C - 17.13%, 30°C - 12.12%), slightly increased protein content 

(average protein content at 17°C - 9.47%, 30°C - 10.67%) and decreased 

carbohydrate content (average carbohydrate content at 17°C - 31.20%, 30°C - 

25.48%). With respect to growth phase, lipid increased, protein decreased and 

carbohydrate increased with stationary phase (Figs 60 and 61).

4.3.1.3 Statistical Analysis of Carbohydrate, Lipid and Protein 

Results

Statistical analysis of the carbohydrate results for the four green algae show all 

the ‘main effects' - temperature, algal species, nitrogen level and growth phase 

- to be significant at 0.1% (p < 0.001). Carbohydrate means at the three 

temperatures are 17°C - 38.86%, 30°C - 30.12% and 40°C -18.35%, which are 

all significantly different and confirm carbohydrate accumulation at the lower 

temperatures. The phase means are exponential - 26.18% and stationary - 

33.03%, a significant difference which confirms accumulation in stationary 

phase. The respective nitrogen means are ‘5’ (mg NO3-N M) - 33.61%, ‘25’ - 

30.46%, ‘50’ - 28.19% and ‘500’ - 23.74%. All levels have significantly higher 

means than at ‘500’ which confirms carbohydrate accumulation more readily 

occurs at lower nitrogen levels and with nitrate depletion. The means for the 

species, 0. vulgaris 211/8K - 29.49%, 0. vulgaris 211/11c - 42.07%, Ank 

antarcticus - 22.97%, S. obliquus - 21.90%, show significant differences 

between the species which divide into three groups with C. vulgaris 211/11c 

markedly different to the other three species, and C. vulgaris 211/8K 

significantly different from Ank. antarcticus and S. obliquus which themselves 

are not significantly different. There was one significant interaction term 

between temperature and algae (1% or p <0.01). Further analysis (multiple 

range testing) confirmed that the interaction term resulted from C. vulgaris 

211/8K and 211/11c exhibiting different behaviour to the other two species in 

that the decrease in carbohydrate from 17®C to 30°C was significant for these 

species but not significant for Ank antarcticus 202/25 and S. obliquus 276/3A. 

Therefore there appeared to be a difference in the behaviour amongst the four 

algae between C. vulgaris 211/8K and 211/11c and Ank. antarticus and
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obliquus with respect to carbohydrate.

Statistical analysis of the protein results showed all the ‘main effects’ - 

temperature, algal species, nitrogen, phase - to be significiant at 0.1% (P < 

0.001). Protein means at the three temperatures (17®C - 8.74%, 30°C - 8.16%, 

40°C - 6.88%) were only shown to be significantly different at the highest 

temperature. This only relates to C. vulgaris 211/8K and 211/11c which grow 

at 40°C. A first order interaction between temperature and algae was also 

significant (1% or p<0.01). The interaction term was found to be due to a 

significant decrease in protein at 40°C for C. vulgaris 211/8K only, which 

suggested different behaviour of this strain compared to the others possibly due 

to its high temperature nature. Phase means were 8.95% for exponential and 

6.77% for stationary, a significant decrease in stationary phase confirming 

protein decreased at stationary growth phase. The means for nitrogen, ‘5’ (mg 

NO3-N M) - 6.25%, ‘25’ - 8.24%, ‘50’ - 9.51%, ‘500’ - 8.20%, show ‘5’ 

significantly lower than ‘25’ and ‘25’ significantly lower than ‘50’, which 

suggests protein content is dependent on previous nitrate availability in the 

culture. Species means, C. vulgaris 211/8K - 7.38%, C. vulgaris 211/11c - 

8.11 %, Ank antarticus - 6.37% and S. obliguus - 9.58% - showed a significant 

difference between Ank. antarcticus and the other species.

Statistical analysis of the lipid results showed all the ‘main effects’ again to be 

significant at 0.1% (p < 0.001). Mean lipid content at the three temperatures 

(17°C -12.41%, 30°C -10.34%, 40°C - 9.02%) showed a significant decrease 

with increased temperature. Phase means were exponential - 7.81% and 

stationary -13.37%, a significant increase from exponential to stationay phase. 

A significant interaction term between temperature and phase (1% or p < 0.01) 

when further investigated showed the mean lipid content was not significantly 

different over temperature in exponential phase, but that the interaction was 

due to the significant decrease in lipid levels with increasing temperature in 

stationary phase only. Nitrogen means (‘5’ (mg NO3-N M) - 15.71%, ‘25’ - 

11.17%, ‘50’ - 8.78%, ‘500’ - 7.95%) showed a significant reduction from ‘5’ to 

‘25’ to ‘50’, which implied that lipid content, like protein content, is dependent 

on previous nitrate availability. Species means (C. vulgaris 211/8K - 8.08%,
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vulgaris 211/11 c - 5.67%, Ank. antarticus - 13.84%, S. obliguus - 14.77%) 

exhibited a significant division into two groups with C. vulgaris 211/8K and 

211/11 c significantly different to Ank. antarcticus and S. obliguus. A significant 

interaction term was identified between algae and phase which showed that 

lipid levels for the exponential and stationary phases were only significantly 

different for Ank. antarcticus and S. obliguus. This confirmed a difference in 

behaviour between the algae in relation to lipid accumulation.

Therefore, it would appear that the four green algae were behaving differently. 

Although changes in carbohydrate, lipid and protein content were observed for 

all genera, statistical analysis showed that increases in carbohydrate with 

decreasing temperature were only significant for C. vulgaris 211/8K and 

211/11 c. Protein changes at higher temperatures were only significant for 

vulgaris 211/8K (high temperature strain) and at lower temperatures for Ank. 

antarcticus. Lipid accumulation was temperature and phase dependent. 

Furthermore significant changes in lipid content only occurred in Ank. 

antarcticus and S. obliguus.

4.3.1.4 Fatty Acid Results

The fatty acid profiles for all four species exhibited a predominance of Cl 6 and 

018 fatty acids (Tables 13, 14, 15, 16).

0. vulgaris 211/8K showed little difference qualitatively in fatty acids between 

temperature and growth phase, however quantitative differences were apparent 

(Table 13). The major fatty acids found in 0. vulgaris 211/8K were 16:0,16:2, 

16:3, 18:2(n-6) and 18:3(n-3). 16:0 and 16:2 fatty acids increased with

increasing temperature and 16:3,18:1 and 18:3(n-3) decreased. Changes were 

also found with phase (Table 13). The average percentage total of unsaturated 

fatty acids (% UNFA) at the three temperatures for C. vulgaris 211/8K (17°C - 

75.97%, 30°C - 71.30%, 40°C - 70.68%) showed an overall decrease in 

un saturation with increasing temperature. The percentage unsaturation also 

decreased from exponential to stationary phase at all three temperatures (Table 

13).
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c. vulgaris 211/ 11c showed a major qualitative change at 17°C with the 

appearance of 16:4 fatty acid (Table 14). Quantitatively, changes occurred with 

all fatty acids with temperature and growth phase. The major fatty acids found 

in C. vulgaris 211/11c were 16:0, 18:2(n-6) and 18:3(n-3). 16:0, 16:2 and 

18:2(n-6) fatty acids increased with increasing temperature and 16:3,16:4,18:1 

and 18:3 (n-3) all decreased. Changes were also found with phase (Table 14). 

Again, the average percentage total of unsaturated fatty acids (mean % UNFA) 

at the three temperatures (17°C - 77.40%, 30°C - 73.55%, 40° - 65.05%) 

showed an overall decrease in un saturation with increasing temperature. The 

percentage unsaturation also decreased from exponential to stationary phase 

with few exceptions (Table 14).

Ankistrodesmus antarcticus 202/25 exhibited minor qualitative changes with the 

appearance of 20:0 and 20:1 fatty acids at the lower temperature (Table 15). 

Quantitatively, changes occurred with temperature and growth phase. The 

major fatty acids found were 16:0, 16:1, 18:3(n-3). 16:4 and 18:4 fatty acids 

were also present. 16:0 and 18:4 fatty acids increased with increasing 

temperature and 18:1 decreased. Changes were also found between growth 

phases (Table 15). The average %UNFA at 17°C - 80.60% and 30°C - 71.15% 

showed a decrease with increasing temperature. The percentage unsaturation 

also decreased from exponential to stationary phase (Table 15).

S. obliguus 276/3A exhibited minor qualitative changes, similar to those of Ank. 

antarcticus (Table 16). It was also observed that 16:4 and 18:4 fatty acids 

were prevalent in S. obliguus and Ank. antarcticus at both temperatures, unlike 

C. vulgaris 211/8K where these fatty acids did not occur and C. vulgaris 

211/11c where 16:4 fatty acid was only found at 17°C. Quantitative changes 

were again seen with temperature and growth phase for S. obliguus. The 

major fatty acids found were 16:0, 18:1 and 18:3(n-3). 16:0 and 18:2(n-6) 

increased with increasing temperature and 18:3 (n-3) decreased. Changes 

were also found between growth phases (Table 16). Unsaturation decreased 

with temperature, and decreased between exponential and stationary phase 

with the exception of 25E/S at 30°C (Table 16).
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4.3.1.5 Statistical Analysis of the Percentage Unsaturation Results

Statistical analysis of the un saturated fatty acid contents (% UNFA) gave 

significant results for all 'main effects’ (temperature, algal species, nitrogen and 

phas^at 0.1% or p <0.001 . The means for temperature, (17°C - 79.22%, 30°C 

- 72.93%, 40°C - 69.39%) showed a significant decrease as the growth 

temperature increased. Phase means (exponential - 74.58%, stationary - 

73.12%) showed a significant small decrease from exponential to stationary 

phase. Nitrogen means (‘5’ (mg NO3-N M) - 68.27%, ‘25’ - 74.37%, ‘50’ - 

75.21%, ‘500' - 74.65%) showed only a significant result with ‘5’ compared to 

other initial nitrogen levels. Species means (C. vulgaris 211/8K - 72.65%, 

vulgaris 211/11c - 72.00%, Ankistrodesmus antarcticus 77.08%, S. obliguus - 

73.65%) showed a significant difference between Ank. antarcticus and the other 

three algae.

Overall, the degree of fatty acid unsaturation decreased with increasing culture 

temperature and attainment of stationary growth phase.

4.3.1.6 Gross Photosynthetic and Dark Respiration Rates

The results are given in Table 17 for the four green algae grown at 25mg NO3- 

N \'\ The cultures were harvested at the same times as for the nitrogen 

limitation experiments (see Tables 9-12).

Gross photosynthetic and dark respiration rates decreased from exponential to 

stationary phase at all temperatures, and increased with temperature for all 

species.
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4.3.2 Brackish and Marine species 

4.3.2.1 Growth and Nitrate Results

N. atomus 251/4B and Isochrvsis so. 927/14 were found to grow at two of the 

experimental temperatures, 1TC  and 30®C, but N. oculata 849/1 and Isochrvsis 

galbana 927/4 only grew at IT C . Results for ODggo against time (N. atomus 

251 /4B - Figs 62 and 63; N. oculata 849/1 - Fig 64; Isochrvsis so 927/14 - Figs 

65 and 66; Isochrvsis galbana - Fig 67) and dry weight against time (N. atomus 

251/4B - Figs 68 and 69; N. oculata 849/1 - Fig 70: Isochrvsis so 927/14 - Figs 

71 and 72; Isochrvsis galbana - Fig 73) show N. atomus and Isochrvsis so grew 

significantly faster at 30°G than at IT C , and that all the algae were slow 

growing at IT C .

Time considerations restricted the harvesting of cultures to a maximum of 45 

days at 17°C, at which time 50mg NO3-N M cultures still had significant residual 

nitrate levels (Tables 18, 19, 20, 21). However, the growth rate was slowing 

down (Figs 62,64,65,67) which suggested stationary phase had been reached 

or was approaching and these cultures were therefore designated S/LE to 

signify stationary/late exponential growth phase. All cultures at 5 and 25mg 

NO3-N r \  at 17°C, achieved nitrate depletion or very low nitrate levels (< 

0.25mg NO3-N 1'̂ ) at stationary phase harvest with the exception of N. oculata 

(Table 19).

At 30°C, harvesting at 26 days gave rise to a similar problem in that nitrate 

levels were still significantly high (Tables 18 and 20). Similarly, growth curves 

(Figs 63, 66, 69, 72) suggested stationary phase had been reached but these 

were again designated S/LE to signify stationary/late exponential growth phase.

Results of nitrate utilization against time (N. atomus - Figs 74 and 75; ^  

oculata - Fig 76; Isochrvsis so - Figs 77 and 78; Isochrvsis galbana - Fig 79) 

showed that nitrate depletion occured in the order 5 > 25 > 50mg NO3-N \ ' \  

Cultures at 500mg NO3-N 1'̂  never attained nitrogen depletion.
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pH results (N. atomus - Figs 80 and 81 ; N. oculata - Fig 82; Isochrvsis so - 

Figs 83 and 84; Isochrvsis galbana - Fig 85) showed a rise and fall in pH with 

growth but the pH change was not as dramatic as for as the four fresh water 

green algae (Figs 44-53).
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OD 560

FIG62 N.atomu8 251/4B 171
OD 560 vs Time
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FIG63 N.atomus 251/4B 
OD 560 vs Time
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FIG64 N.oculata 849/1 17^0
OD 560 vs Time
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FIQ65 Isochrvsis so. 927/14 17°C
OD 560 vs Time
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FIG66 isochrysis sp. 927/14 
OD 560 vs Time
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FIQ67 Isochrvsis galbana 927/1 17°C
OD 560 vs Time
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FIG68 N.atomu8 251/4B 17 C
DRY WEIGHT vs Time
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FIG69 N.atomus 251/4B 30 C 
DRY WEIGHT vs Time
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FIG70 N.oculata 849/1 17 C
DRY WEIGHT vs Time
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FIG71 Isochrysis s d. 927/14 17 C
DRY WEIGHT vs Time
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FIG72 Isochrysis so. 927/14 30 C 
DRY WEIGHT vs Time
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FIG73 Isochrysis galbana 927/1 17 C
DRY WEIGHT vs Time
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FIQ74 N.atomus 251/4B 17 C 
NITRATE vs Time
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FIG75 N.atomus 251/4B 30 C 
NITRATE vs Time
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FIG76 N.oculata 849/1 17 C
NITRATE vs Time
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FIG77 Isochrysis so. 927/14 17 C
NITRATE vs Time
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FIG78 Isochrysis so. 927/14 30 C 
NITRATE vs Time
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FIG79 Isochrysis galbana 927/1 17 C
NITRATE vs Time
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FIG80 N.atomus 251/4B 17 C
pH vs Time
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FIG81 N.atomus 251/4B 30 C 
pH vs Time
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FI682 N.oculata 849/1 17 C 
pH vs Time
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FIG83 Isochrysis sp. 927/14 17 C
pH vs Time
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FIG85 Isochrysis aalbana 927/1 17 C
pH vs Time
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Table 18: Harvest Parameters for N. atomus 251 /4B

Temperature/ 
Initial N 
Level

Phase Time
(Days)

ODggQ Dry wt 
(gH)

NO 3-N
(mgl-̂ )

IT C  5 S 16 0.59 0.24 0

25 E 15 0.74 0.37 9.94
25 S 26 1 . 1 0 0.75 0

50 E 2 0 0.97 0.60 29.57
50 S/LE 45 1.45 2 . 1 0 4.51
500 E 45 1 . 8 8 1 . 8 8 393

30“C 5 S 15 0.41 0.19 0

25 E 15 0.41 0.25 1 2 . 6 6

25 S/LE 26 0.59 0.43 4.69
50 E 15 0.49 0.36 36.29
50 S/LE 26 0.76 0.51 19.30
500 E 26 0.83 0.71 431

Table 19: Harvest Parameters for N. oculata 849/1

Temperature/ 
Initial N 
Level

Phase Time
(Days)

ODggo Dry wt NO 3-N
(mglO

IT C  5 S 16 0.71 0.28 0

25 E 2 0 1 . 2 1 0.71 8.76
25 S/LE 45 2.32 1.80 1 . 2 0

50 E 24 1.09 0.50 34.91
50 S/LE 45 1.94 2.14 8.09
500 E 45 2.44 2 . 6 8 376

E = Exponential Phase 
S = Stationary Phase
S/LE = Stationary/Late Exponential Phase
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Table 20: Harvest Parameters for Isochrysis sp. 927/14

Temperature/ 
Initial N 
Level

Phase Time
(Days)

OD5 6 0 Dry wt 
(gH)

N O 3 - N
(mgl-̂

17°C 5 S 16 0.33 0.18 0
25 E 24 0.58 0.19 10.09
25 S 45 1.04 1.06 0.25
50 E 24 0.78 0.39 27.72
50 S/LE 45 1.42 1.84 7.6
500 E 45 1.44 2.24 382

30°C 5 S 15 0.21 0.09 0.07
25 E 15 0.27 0.14 9.44
25 S 26 0.21 0.21 0.09
50 E 22 0.32 0.19 17.55
50 S/LE 26 0.34 0.36 10.06
500 E 26 0.41 0.59 441

Table 21: Harvest Parameters for Isochrvsis galbana 927/1

Temperature/ 
Initial N 
Level

Phase Time
(Days)

ODggo Dry wt 
(gl-')

N O 3 - N
(mgl*̂ )

17“C 5 S 20 0.35 0.11 0
25 E 20 0.55 0.30 10.25
25 S 34 1.14 1.10 0.09
50 E 24 0.88 0.59 27.19
50 S/LE 45 1.74 2.02 10.65
500 E 45 1.74 2.06 401

E = Exponential Phase
S = Stationary Phase
S/LE = Stationary/Late Exponential Phase
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4.3.2.2 Carbohydrate, Protein and Lipid Results

The results for carbohydrate, protein and lipid analyses are given in Tables 22, 

23, 24, 25 for N. atomus. N. oculata. Isochrvsis so. and Isochrvsis galbana 

respectively. It should be noted that the levels of lipid, protein and 

carbohydrate may be underestimated due to the fact that they are based on dry 

weight. The presence of salt in the F/2 media, used for cultivation of the 

marine and brackish species, would increase dry weight, and consequently 

reduce the percentage composition of cell constituents. Ash free dry weight 

was not determined for many samples due to lack of availability of algal 

material, and not reported where determined due to lack of duplication of 

samples.

N. atomus increased lipid content with a decrease in culture temperature 

(average lipid content at 17°C - 6.86%, 30®C - 3.32%), increased carbohydrate 

with decrease in growth temperature (average carbohydrate content at 17°C - 

18.57%, 30®C - 15.14%) and increased protein with decrease in temperature 

(average protein content at 17°C - 5.62%, 30°C - 1.22%). Regarding growth 

phase, N. atomus accumulated lipid in stationary phase but only at 17°C (Table 

22). Protein did not significantly change between phases. Carbohydrate 

decreased in stationary phase at 17®G with the exception of 5s, and increased 

in stationary phase at 30°C (Figs 86 and 87).

N. oculata did not grow at 30°C and therefore, a comparison across 

temperature was not possible. With respect to growth phase, N. oculata 

increased lipid content at 5s (with nitrogen depletion), which was not observed 

at 25 and 50 mg NO3-N 1'̂  S/LE, suggesting the absence/presence of nitrate 

may be a trigger for lipid changes (Figs 88 and 89). Protein decreased slightly 

in stationary or stationary/late exponential phase (Figs 88 and 89). 

Carbohydrate results mirror the results for lipid and suggest the 

absence/presence of nitrate as a trigger for carbohydrate changes (Figs 88 and 

89).

137



Isochrvsis sp increased lipid content with decrease in growth temperature 

(average lipid content 17°C - 7.23%, 30°C -1.96%), decreased protein slightly 

with decrease in temperature (average protein content at 17°C -1.37%, 30°C - 

1.57%) and increased carbohydrate slightly with a decrease in temperature 

(average carbohydrate content at 17°C - 5.85%, 30°C - 5.07%). Lipid content 

increased in stationary phase at ^TC and decreased at 30°C (Figs 90 and 91 ). 

Protein and carbohydrate contents did not change significantly between phases 

(Figs 90 and 91).

Isochrvsis aalbana did not grow at 30°C and can only be compared across 

growth phase. Lipid content decreased in stationary phase, 50 S/LE did not 

exhibit a decrease which may be due to nitrate availability (Figs 92 and 93). 

Protein decreased with stationary and stationary/late exponential phase (Figs 

92 and 93). Carbohydrate exhibited a similar pattern to that of lipid content 

(Figs 92 and 93).

4.3.2 3 Statistical Analysis of Carbohydrate, Protein and Lipid 

Results

Statistical analysis of the lipid results for the four marine and brackish species 

found all the 'main effects’, temperature, algal species, nitrogen level and 

phase were significant at 0.1% (p < 0.001). Lipid means at the two 

temperatures (17°C - 8.59%, 30®C - 4.19%) showed a significant reduction with 

increased temperature confirming lipid content increased at the lower culture 

temperature for N. atomus and Isochrvsis sp. Nitrogen means (‘5’ (mg NO3-N 

r’) - 11.22%. '25' - 7.34%, 50' ■ 4.74%, '500' - 2.96%) divide into three groups, 

with ‘5’ significantly different to '25' both significantly different to ‘50’ and ‘500’. 

Nitrogen history of the culture appeared to affect the level of lipid for all 

species. Phase means (exponential - 7.63%, stationary/late exponential - 

5.15%) showed a significant reduction from exponential to stationary/late 

exponential phase. Species means (N atomus - 5.09%, N. oculata -12.30%, 

Isochrvsis so -4.59%, Isochrvsis galbana - 3.59%) showed a significant 

difference between N. oculata and the other algae.
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Statistical analysis of the protein results gave significant ‘main effects’ for 

temperature (0.1% or p < 0.001), algae (0.1% or p < 0.001) and phase (1% or 

p < 0.01) only. Temperature means (17°C - 2.81%, 30°C - 0.72%) showed a 

significant reduction in protein content at the higher temperature. Species 

means (N. atomus - 3.42%, N. oculata - 0.26%, Isochrvsis so. - 1.47%,

Isochrvsis aalbana - 1.91%) showed a significant difference between ^

atomus. N. oculata and the two Isochrysis species which were themselves not 

significantly different. Phase means (2.24% - exponential, 1.29% - stationary) 

confirmed a significant reduction in protein content at stationary phase.

Statistical analysis of the carbohydrate results gave only two significant effects, 

algal species (0.1% or p < 0.001) and nitrogen (1% or p < 0.01). Species 

means (N. atomus - 16.85%, N. oculata - 6.74%, Isochrvsis so - 5.46%,

Isochrvsis aalbana - 3.74%) showed a significant difference in behaviour

between N. atomus and the other 3 algae, which were not significantly different 

to each other. The respective nitrogen means (‘5’ (mg NO3-N M) -12.76%, ‘25’ 

- 8.15%, ‘50’ - 6.22%, ‘500’ - 7.70%) showed the value at the lowest nitrogen 

level to be significantly higher than at the other three initial nitrogen levels, 

which themselves were not significantly different. This may be due to the the 

fact that cultures at 5mg NO3-N 1'̂  were left for a period after depletion, 

whereas other cultures at 25, and 50mg NO3-N 1'̂  were not and therefore, 

carbohydrate increases may be enforced by prolonged nitrogen depletion.

Therefore the four brackish and marine algae were behaving differently with 

respect to changes in cellular constituents. Statistical analysis was limited by 

the lack of results at the two higher temperatures. However, the results 

indicated that lipid accumulation again was temperature and phase dependent 

and N. oculata behaved differently to the other algae. A difference in behaviour 

was also found between N. atomus. N. oculata and the two Isochrysis species 

for protein content, and between N. atomus and the other algae for 

carbohydrate contents.
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4.S.2.4 Fatty Acid Results

The fatty acid profiles for all four species exhibited a range of constituent fatty 

acids from C12 to C22 (Tables 22, 23, 24, 25), a much broader range than that 

found in the freshwater green algae and cyanobacteria studied.

N. atomus exhibited little difference qualitatively in fatty acids between 

temperatures and growth phases (Table 22), however, quantitative differences 

were found. The major fatty acids in N. atomus were 16:0 and 18:1(n-9). 

Changes were observed with temperature and growth phase, especially in 

18:1(n-9), 18:2(n-6) and 18:3(n-3). The overall level of unsaturation (sum of 

individual fatty acid changes) increased from 17°C to 30°C (average % UNFA, 

17°C - 66.05%, 30°G - 69.34%). The % UNFA at 17°C increased from 

exponential to stationary/late exponential phase, and decreased from 

exponential to stationary/late exponential phase at 30°G. The presence of 

20:5(n-3) and 22:6(n-3) fatty acids was noted, and these fatty acids were 

present in the range 0.48 - 2.75% and 0.33 - 2.34% respectively, depending on 

temperature and growth phase.

N. oculata exhibited few qualitative changes between growth phases (Table 23), 

however quantitative differences were apparent. The major fatty acids in 

N.oculata were 16:0, 16:1 and 18:1 (n-9). The % UNFA increased from 

exponential to stationary/late exponential phase. 22:6(n-3) was not present in 

all samples and when identified, it was at extremely low levels. However, 

20:5(n-3) was present in the range 5.97 - 9.96% depending on phase of 

growth.

Isochrvsis sp. again exhibited few qualitative changes in fatty acid content 

between temperatures and growth phases, but quantitative differences were 

apparent. The maior fattv acids found in Isochrvsis so. were 14:0,16:0,18:1(n- 

9), 18:4(n-3) and 22:6(n-3), 20:5(n-3) also present in low quantities. 14:0 and 

16:0 fatty acids increased with increasing temperature and 18:1 (n-9), 18:4 and 

22:6(n-3) fatty acids decreased. Ghanges were also observed with phase 

(Table 24). The overall degree of unsaturation (sum of individual fatty acid

140



changes) decreased from 1TC  to 30°C (average %UNFA, 17°C - 66.95%, 30°C 

- 54.16%), the opposite of N. atomus. % UNFA increased from exponential to 

stationary/late exponential phase at 17°C and 30°C. The presence of 20:5(n-3) 

and 22:6(n-3) was noted, and these fatty acids were present in the range 0.55 - 

0.91% and 4.70 - 17.45% respectively.

Isochrvsis galbana showed a similar fatty acid profile to Isochrvsis sp.. 

Quantitative differences rather than qualitative differences were again found 

between growth phases with respect to individual fatty acids (Table 25). The 

major fatty acids in Isochrvsis aalbana were 14:0,16:0,18:1 (n-9) and 22:6(n-3). 

The % UNFA increased from exponential to stationary/late exponential phase. 

The presence of 20:5(n-3) and 22:6(n-3) was again noted, and ranged from 

0.43 - 0.65% and 6.06 - 20.90% respectively, dependent on growth phase.

4.3 2.5 Statistical Analysis of the Percentage Unsaturation Results

Statistical analysis of the total unsaturated fatty acid contents (% UNFA) gave 

significant results for the effect of temperature (0.1% or p < 0.001), algal 

species (0.1% or p < 0.001), and phase (1.0% or p < 0.01) and a significant 

first order interaction for temperature and algae (0.1% or p < 0.001). 

Temperature means (17°C - 65.25%, 30°C - 60.51%) showed a significant 

reduction at the higher temperature, however a significant Interaction term 

between algae and temperature showed that this was only the case for 

Isochrvsis so. N.atomus actually Increased the percentage unsaturation at the 

higher temperature. Species means (N. atomus - 67.69%, N. oculata - 63.83%, 

Isochrvsis so - 60.56%, Isochrvsis aalbana - 59.43%) divided into three groups, 

comprising N. atomus. N. oculata and the two Isochrysis species. Phase 

means (exponential - 60.95%, stationary/late exponential - 64.80%) showed a 

significant increase from exponential to statlonary/late exponential phase.

Quantitative changes In fatty acid content rather than qualitative changes were 

the result of changes of culture temperature or growth phase. 20:5(n-3) and 

22:6(n-3) fatty acids were found to be present In all species, with the highest
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levels of 20:5(n-3) and 22:6 (n-3) found in N. oculata and Isochrvsis aalbana 

respectively.

4.3.2.S Gross Photosynthetic and Dark Respiration Rates

The results are given in Table 26 for the marine and brackish species grown 

at 25mg NO3-N \'\ All cultures were harvested at the same times as for the 

nitrogen limitation experiments (see Tables 18, 19, 20 and 21).

Gross photosynthetic and dark respiration rates decreased from exponential to 

stationary/late exponential phase at all temperatures, and increased with culture 

temperature for N. atomus and Isochrvsis so..
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PIG88 XCarbohydrate^ ProteLn and LLpLd
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FIB90 ’/Carbohydrate^ ProteLn and LLpLd
IsochrysLs sp, 927/14 ExponentLoL Phase
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4.3.3 Cyanobacteria

4.3.3.1 Growth and Nitrate Results

The two Synechococcus species required lower irradiances for growth (43 -55 

jxmoi m  ̂ s’ )̂. Synechococcus so POO 7943 grew at the three experimental 

temperatures, however problems were encountered at 17°C with 

Synechococcus so 1479/5. The cultures at the lower nitrate levels were turning 

white overnight after a few days growth, a problem not observed at 30°C. It 

was concluded that a combination of lower nitrate concentration and lower 

temperature was the cause of the problem. Synechococcus so 1479/5 did not 

grow at 40°C.

Results for ODggo against time and dry weight against time for the two 

Synechococcus species are given in Figs 94 - 103. Growth was significantly 

slower at 17®C than at 30°C and 40°C for Synechococcus so PCC 7943. All 

cultures of Synechococcus so PCC 7943, with the exception of those at 500 mg 

NO3-N r \  went into stationary phase (Figs 96-98). At 17°C, stationary phase 

was not preceded by nitrogen depletion (Fig 106). Synechococcus so 1479/5 ^  

did not grow well at 17°C and at the three lower nitrogen levels cultures were 

harvested at 6 days. From ODg^ (Fig 94) and dry weight results (Fig 99), it 

was concluded that these cultures were dying. Nitrate was not depleted with 

the exception of the lowest nitrogen level (Fig 104). Cultures at 30°C went into 

stationary phase (Fig 95) accompanied by nitrate depletion (Fig 105), with the 

exception of the 500mg NO3-N 1'̂  culture. Results for nitrate depletion with time 

are given in Figs 104 - 108, and show depletion in the order 5 > 25 > 50 mg 

NO3-N for both Synechococcus species. Harvest parameters are given in 

Tables 27 and 28.

pH results for the two Synechococcus species showed a rise and fall in pH with 

growth (Figs 109-113). The pH results for Synechococcus so 1479/5 at 17°C 

(Fig 109) showed a lack of change in pH at the lower nitrate levels compared 

to the culture at 500mg NOg-N \'\ This confirmed that growth never really 

commenced, and^ltures were dying.
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A. flos-aguae 1403/13A grew at IT C , 30°C and 40°C. A. varabilis 1403/12 

only grew at 17°C and 30°C. As these two cyanobacteria were nitrogen fixing 

cyanobacteria, some of the cultures were allowed to continue growing past 

nitrate depletion (designated A in Tables 29 and 30) and others were harvested 

(designated S/LE in Tables 29 and 30). Results for ODggo are given in Figs 

114-116 for A. flos-aguae and Figs 117 and 118 for A. variabilis. Dry weight 

results are shown in Figs 119-121 for A. flos-aauae and Figs 122 and 123 for 

A. variabilis. Growth at 17°C was slower than at 30°C and 40°C for both 

species. Cultures did not enter stationary phase after nitrate depletion. Results 

for nitrate depletion are given in Figs 124-126 for A. flos-aguae and Figs 127 

and 128 for A. variabilis. All cultures, with the exception of 500mg NO3-N \ ' \  

initial nitrogen level achieved nitrate depletion in the order 5 -> 25 -> 50 mg 

NO3-N r \  In some cases nitrate was found to reappear at very low levels 

which may have been due to cell loss by death. Harvest parameters are given 

in Tables 29 and 30 for A. flos-aguae and A. variabilis respectively.

pH increased and then decreased with growth, with some fluctuations after 

nitrate depletion in cultures allowed to continue growing with nitrogen fixation 

(Figs 129-133). The pH changes observed with growth were found to be 

similar to that of the green algae.

Heterocysts counts (percentage composition of cells) at 17°C and 30°C for both 

nitrogen fixers are given in Tables 31 and 32. Heterocysts were found to 

increase with nitrate depletion at 5, 25 and 50mg NO3-N 1̂  but not at 500mg 

NO3 \'\ Low levels of nitrate and nitrate depletion induced heterocyst formation 

in these two strains as many other workers have found.
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FIQ94 Synechococcus sp.1479/5 17̂ ’C
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FIG 96 Synechococcus sp.PCC 7943 17^0
OD 560 vs Time
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FIG 97 Synechococcus sp.PCC 7943 30 C 
OD 560 vs Time
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FIQ98 Synechococcus sp .PCC 7943 40^C
OD 560 vs Time
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FIG 99 Synechococcus sp.1479/5 17'C
DRY WEIGHT vs Time
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FIG 101 Synechococcus sp.PCC 7943 17“C
DRY WEIGHT vs Time
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FIG 102 Synechococcus sp.PCC 7943 30"G 
DRY WEIGHT vs Time
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FIG 103 Synechococcus 8D.PCC 7943 40°C
DRY WEIGHT vs Time
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FIG 104 Synechococcus 8P.1479/5 17°C
NITRATE vs Time
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FIG 105 Synechococcus sd.1479/5 30 C 
NITRATE vs Time
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FIG 106 Synechococcus sp.PCC 7943 17 C
NITRATE vs Time
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FIG 107 Synechococcus sp.PCC 7943 30°C 
NITRATE vs Time
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FIG  108 Synechococcus sp.PCC 7943 40 C
NITRATE vs Time
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FIG 109  Synechococcus s d .1479/5 17^0
pH vs Time
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FIG 110 Synechococcus sp.1479/5 30°C 
pH vs Time
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FIG  111 Synechococcus sp.PCC 7943 17"C
pH vs Time
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FIG 112 Synechococcus sp.PCC 7943 30 C 
pH vs Time
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FIG  113 Synechococcus sp.PCC 7943 40 C
pH vs Time
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FIG 114 A.fios-aauae 1403/13A 17 C
OD 560 vs Time
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FIG 115 A.flos-aguae 1403/13A 30°C 
OD 560 vs Time

OD 660
2.6

0.6

1610 20 2660 30 36

6 mg N03-N/I

60 mg N03-N/I

Tlme(days)

Nitrogen Level

26 mg N03-N/I

600 mg N03-N/I

166



F IG  116 A.flos-aguae 1403/13A 40''C
OD 560 vs Time
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FIG  117 A.varlabills 1403/12 17 C
OD 560 vs Time
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FIG 118 A.varlabills 1403/12 30 C 
OD 560 vs Time
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FIG 119 A.fios-aauae 1403/13A 17 C
DRY WEIGHT vs Time
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FIG 120 A.fios-aauae 1403/13A 30"C 
DRY WEIGHT vs Time
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FIG 121 A.fios-aauae 1403/13A 40 C
DRY WEIGHT vs Time
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FIG 122 A.variabllis 1403/12 17 C
DRY WEIGHT vs Time
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FIG 123 A.varlabills 1403/12 30 C 
DRY WEIGHT vs Time
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FIG 124 A.flos-aquae 1403/13A 17 C
NITRATE vs Time
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FIG 125 A.fios-aauae 1403/13A 30"'C 
NITRATE vs Time

N I t r a te lm g  N 0 3 - N / I )
60

40

30

20

10

0
10 16 20 26 

Time(days)
30 36

N it r o g e n  L e v e l

—  6 mg N03-N/I 26 mg N03-N/I
172

60 mg N03-N/I



F IG  126 A.flos-aquae 1403/13A 40 C
NITRATE vs Time
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FIG 127 A.variabllis 1403/12 17^0
NITRATE vs Time
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NITRATE vs Time
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FIG  129 A.flos-aquae 1403/13A 17""C
pH vs Time
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FIG 131 A.flos-aquae 1403/13A 40 C
pH vs Time
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f ig  132 A.variabills 1403/12 17 C
pH vs Time
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FIG 133 A.variabills 1403/12 30°C 
pH vs Time
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Table 27: Harvest Parameters for Svnechococcus sp. 1479/5

Temperature/ 
Initial N 
Level

Phase Time
(Days)

OD5 6 0 Dry wt 
(gl-')

N O 3 - N
(mgl'i)

IT C  5 S 6 0.09 0.03 0

25 S 6 0.13 0 . 0 1 16.16
50 S 6 0.13 0 . 0 1 43.05
500 E 32 5.04 0.78 382

30°C 5 S 7 0.42 0 . 1 2 0

25 E 7 0.82 0.16 8.72
25 S 17 1.92 0 . 2 1 0

50 E 7 0.82 0.15 22.90
50 S 19 2 . 8 6 0.70 0

500 E 19 3.44 0.87 332

E = Exponential Phase 
S = Stationary Phase

178



Table 28: Harvest Parameters for Svnechococcus sp. PCC 7943

Temperature/ 
Initial N 
Level

Phase Time
(Days)

OD5 6 0 Dry wt 
(gl-')

NO3-N
(mgl̂ )

IT C  5 S 2 1 0.34 0 . 1 0 0 . 0 2

25 E 2 1 0.25 0 . 1 0 9.89
25 S 2 2 0.18 0 . 1 0 8.99
50 E 2 1 0.7 0.19 18.74
50 S 32 1 . 6 8 0.54 13.54
500 E 32 1 . 6 8 0.76 403

3(PC 5 S 7 0.38 0.09 0.09
25 E 7 0.34 0.07 3.70
25 S 14 1.46 0.31 0 . 2 1

50 E 7 0.58 0.14 26.73
50 S 2 1 2.56 0.85 0.35
500 E 2 1 3.06 0.98 381

40T 5 S 7 0.27 0.06 0

25 E 7 0.85 0 . 2 2 5.26
25 S 19 1.61 0.52 0

50 E 7 0.93 0.25 18.64
50 S 19 2.14 0.61 0.09
500 E 19 1.32 0.44 417

E = Exponential Phase 
S = Stationary Phase
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Table 29: Harvest Parameters for A. flos-aquae 1403/13A

Temperature/ 
Initial N 
Level

Phase Time
(Days)

ODgoo Dry wt 
(gl-i)

NO 3-N
(mgl'O

17°C 5 A 33 2 . 0 0 1 . 0 0 1.18
25 E 1 2 0.41 0 . 2 0 10.28
25 S/LE 18 0.58 0.31 0

50 E 1 2 0.43 0.32 35.84
50 A 33 1.94 1.18 0

500 E 33 1.96 1.28 420

30T 5 A 2 1 2.18 1.04 0.09
25 E 7 0.60 0.29 1.50
25 A 2 1 1.64 1.03 2.75
50 E 7 0.51 0.24 22.90
50 A 2 1 1 . 8 1 . 1 0 1 . 1 2

500 E 21 0.73 0.79 393

40°C 5 A 15 0.90 0.90 1.55
25 E 7 0.76 0.36 0.95
25 A 15 1 . 1 2 0.48 0.56
50 E 15 0.91 0.53 4.15
50 S/LE 24 1 . 8 6 1.26 0

500 E 24 0.64 0.74 328

E = Exponential Phase
S/LE = Stationary/Late Exponential Phase

A denotes after nitrogen depletion, cultures being left under nitrogen 
depletion for a period before harvesting, for observation of heterocysts due 
to nitrogen fixation.
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Table 30: Harvest Parameters for A. variabilis 1403/12

Temperature/ 
Initial N 
Level

Phase Time
(Days)

OD 5 6 0 Dry wt 
(gl-')

N O 3-N
(mgl‘)

\T C  5 A 33 1.80 1.60 1.36
25 E 1 2 0.37 0 . 2 2 11.47
25 A 26 0 . 8 6 1 . 0 0 0.15
50 E 1 2 0.18 0.18 38.52
50 S/LE 33 1 . 0 0 1 . 0 0 0

500 E 33 1.77 1.40 400

30°C 5 A 2 1 1.50 1 . 1 0 2.56
25 E 7 0.78 0.40 12.44
25 A 2 1 0.80 1.48 1.78
50 E 7 0.43 0.38 26.95
50 S/LE 2 1 1.14 0.96 0.73
500 E 2 1 1.24 1 . 0 2 403

E = Exponential Phase
S/LE = Stationary Phase/Late Exponential Phase 
A - denotes after nitrogen depletion, cultures being left under nitrogen 
depletion for a period before harvesting, for observation of heterocysts due 
to nitrogen fixation.
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Table 31 : Heterocvsts (Percentage Composition of Cells) for A. flos-aquae
1403/13A at IT C  and 30°C

Time 17°C 30̂ )C
(days) 5 25 50 500 5 25 50 500

0 0 0 0 0 0 0 0 0
7 ND ND ND ND 7.4 0 0 0
12 5.5 1.8 2.1 0.6 9.2 8.1 0.5 0
18 8.3 4.0 4.6 1.3 ND ND ND ND
21 ND ND ND ND 11.2 8.1 9.9 0.7
23 5.7 ND 2.1 2.3 ND ND ND ND
26 8.5 ND 3.8 0.6 ND ND ND ND
30 9.6 ND 8.3 0.7 ND ND ND ND
33 13.0 ND 6.5 0 ND ND ND ND

Table 32: Heterocvsts (Percentage Composition of Cells) for A. variabilis
1403/12 at 17°C and 30°C

Time 17°C 30°C
(days) 5 25 50 500 5 25 50 500

0 3.3 3.3 3.3 3.3 5.3 5.3 5.3 5.3
7 ND ND ND ND 5.1 2.6 1.1 0.7
12 3.5 2.7 3.3 2.5 6.9 3.1 0.9 0
18 7.3 3.0 2.4 0.6 ND ND ND ND
21 ND ND ND ND 8.9 8.3 3.0 0
23 7.0 4.8 3.0 0.8 ND ND ND ND
26 9.0 5.3 3.9 3.1 ND ND ND ND
30 7.1 ND 3.2 0.6 ND ND ND ND
33 4.7 ND 5.1 0 ND ND ND ND

ND = Not Determined
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4 3.3.2 Carbohydrate, Protein and Lipid Resuits

The results for carbohydrate, protein and lipid analyses are given in Tables 33, 

34, 35 and 36 for Svnechococcus so. 1479/5, Svnechococcus so. PCC 7943, 

A. flos-aauae and A. variabilis respectively.

Problems with growth at 17°C for Svnechococcus so. 1479/5 makes 

comparison across temperatures difficult. However, from the results available, 

Svnechococcus so. 1479/5 increased protein content (average protein content 

at 17°C - 9.71%, 30° - 12.87%) and carbohydrate content (average 

carbohydrate content at 17°C - 12.33%, 30°C - 24.12%) with increase in 

temperature, but lipid content remained similar at both temperatures. With 

respect to growth phase, the results at 30°C indicated lipid and protein contents 

increased slightly at stationary phase, with carbohydrate increasing significantly 

(Figs 134 and 135). The major change in cellular constituents for 

Svnechococcus 1479/5 was accumulation of carbohydrate at stationary phase 

but this was only observable at 30°C.

Svnechococcus PCC 7943 maintained similar protein contents (average protein 

content at 17°C - 12.42%, 30°C - 14.96%, 40°C - 13.39%) and lipid contents 

(average lipid content at 17°C - 4.38%, 30°C - 4,92%, 40°C - 5.42%) with 

increasing culutre temperature. However, the average carbohydrate content 

decreased significantly (average carbohydrate content at 17°C - 33.45%, 30°C - 

29.02%, 40°C - 23.34%) with increasing temperature. With respect to growth 

phase, lipid content decreased slightly in stationary phase, but protein content 

did not exhibit a regular pattern of increase or decrease in different phases but 

was temperature dependent. Carbohydrate increased with stationary phase at 

all temperatures. The major change therefore appeared to be carbohydrate 

accumulation in stationary phase but it was slightly greater at the lower 

temperature for Svnechococcus PCC 7943 (Figs 136 and 137).

A. flos-aquae showed increased protein content with increasing temperature 

(average protein content at 17°C - 7.33%, 30°C - 8.09%, 40°C - 10.67%) but 

maintained lipid content at similar levels irrespective of temperature.
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Carbohydrate content decreased significantly with increasing temperature 

(average carbohydrate content at 17°C - 29.07%, 30°C - 15.21%, 40°C - 

11.42%). Regarding growth phase, lipid content did not exhibit a regular 

pattern of change with growth phase but protein increased at stationary phase. 

Carbohydrate accumulated at stationary phase at all temperatures (Figs 138 

and 139). Although A. flos-aquae has the ability to fix nitrogen, it still appears 

to behave similarly to the two non-nitrogen fixers (Synechococcus species) in 

accumulation of carbohydrate.

A. variabilis maintained lipid content (average lipid content at 17°C - 2.44%, 

30°C - 3.40%), protein content (average protein content at 17°C -13.30%, 30°C

- 14.40%) and carbohydrate content (average carbohydrate content at 17°C - 

19.30%, 30°C - 21.05%) at similar levels from 17°C to 30°C. Regarding growth 

phase, lipid content did not exhibit a regular pattern of change with phase but 

protein increased at stationary phase (Figs 140 and 141). Carbohydrate 

accumulated at stationary phase (Figs 140 and 141), although contents were 

similar at 17°C and 30°C. A. variabilis. like A. flos-aauae. behaved similarly to 

the two non-nitrogen fixing cyanobacteria.

4.3 3.3 Statistical Analysis of Carbohydrate, Protein and Lipid 

Results

Statistical analysis of all the lipid contents for all cyanobacteria investigated 

gave two ‘main effects’, algae and nitrogen as significant (0.1% or p < 0.001). 

Species means (Svnechococcus so. 1479/5 - 4.16%, Svnechococcus PCC 

7943 - 4.91%, A. flos-aquae - 3.68%, A. variabilis -3.07%) exhibited a 

significant difference between Svnechococcus so. 1479/5 and Svnechococcus 

PCC 7943 and the two Anaebaenas in lipid content. This is an interesting 

division between non-nitrogen fixing and nitrogen fixing cyanobacteria in relation 

to lipid content. Nitrogen means (‘5’ (mg NO3-N M) - 4.28%, ‘25’ - 4.26%, ‘50’

- 4.44%, ‘500’ - 2.03%) only showed a significant decrease from ‘50’ to ‘500’ 

with the other three initial nitrogen levels not being significantly different. 

Therefore, nitrate depletion affects the lipid content in the cyanobacteria 

studied.
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Statistical analysis of the protein results showed four significant 'main effects', 

temperature (1% or p < 0.01), algal species (0.1% orp< 0.001), nitrogen (0.1% 

or p < 0.001) and phase (1% or p < 0.01). Temperature means (17°C - 

10.52%, 30°C - 12.58°C, 40°C - 12.88%) were not significantly different at the 

higher temperature, but there was a significant reduction at the lowest 

temperature. Species means (Svnechococcus so. 1479/5 - 11.39%, 

Svnechococcus so. PCC 7943 - 13.59%, A. flos-aauae - 8.70%, A. variabilis - 

14.29%) showed significant differences between species. Nitrogen means (‘5’ 

(mg NO3-N M) -11.62%, '25' -10.10%, '50' -12.29%, '500' -15.57%) showed 

a significant higher value at '500' compared to the other initial nitrogen levels, 

demonstrating that nitrogen history affects protein content. Phase means 

(exponential - 10.84%, stationary - 13.15%) showed a significant increase in 

stationary phase.

Statistical analysis of the carbohydrate results showed significant results for the 

four ‘main effects’ (0.1% or p < 0.001). Temperature means (17°C - 22.99%, 

30°C - 22.35%, 40°C - 14.86%) show a significant reduction at the highest 

temperature, confirming carbohydrate accumulation at lower temperatures. 

Species means (Svnechococcus so. 1479/5 - 14.52%, Svnechococcus PCC 

7943 - 28.61 %, A. flos-acuae -19.57%, A. variabilis -17.57%) showed that the 

mean for A. variabilis was not significantly different from A. flos-aauae but was 

significantly different from Svnechococcus so. PCC 7943. The mean for 

Svnechococcus sp. PCC 7943 was significantly greater than the other three 

means. Therefore there were differences between Svnechococcus so. 1479/5 

and Svnechococcus so. PCC 7943 and between the non-nitrogen fixing and 

nitrogen fixing cyanobacteria in the amount of carbohydrate accumulated. 

Nitrogen means (‘5’ (mg NO3-N M) - 30.81%, ‘25’ - 20.17%, ‘50’ - 17.86%, 

‘500’ - 13.54%) showed significant differences between ‘5’, ‘25’ and ‘50’ and 

‘500’, initial nitrogen level was affecting the amount of carbohydrate 

accumulated. Phase means were exponential - 14.76% and stationary - 

25.38%, a significant increase at stationary phase.

Therefore, changes occurred in protein, lipid and carbohydrate contents for all 

cyanobacteria with temperature changes and growth phases, but the major
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shifts were in carbohydrate accumulation at stationary phase which was 

especially noticeable for Svnechococcus sp. PCC 7943.

4.S.3.4 Fatty Acid Results

Fatty Acid results are given in Tables 33, 34, 35 and 36 for Svnechococcus so. 

1479/5, Svnechococcus so. PCC 7943, A. flos-aauae and A. variabilis 

respectively. The fatty acid profiles for all four species showed a predominance 

of Cl 6 and Cl 8 fatty acids, but also included significant quantities of Cl 4 fatty 

acids especially in the two Synechococcus species.

Svnechococcus so. 1479/5 showed only minor quantitative changes in 

individual fatty acids with growth phase at 30°C resulting in almost identical 

levels of unsaturation between phases (Table 33). The major fatty acids found 

in Svnechococcus sp. 1479/5 were 14:0, 16:0 and 16:1. With increasing 

temperature, 14:0 and 16:0 appeared to increase whilst 18:1 (n-7) decreased. 

% UNFA decreased significantly with increased temperature (average % UNFA 

at 17°C - 63.50%, 30°C - 43.50%).

Svnechococcus so. PCC 7943 showed quantitative changes in individual fatty 

acids with growth phase and temperature (Table 34). The major fatty acids 

found in Svnechococcus so. PCC 7943 were 16:0 and 16:1. With increasing 

temperature, 16:0,18:0,18:1(n-9) and 18:1 (n-7) fatty acids increased and 14:0, 

14:1 and 16:1 decreased. % UNFA decreased in stationary phase at 17°C and 

40°C and increased in stationary phase at 30°C. Average % UNFA decreased 

significantly with increased temperature (average % UNFA at 17°C - 50.71%, 

30°C - 50.14%, 40°C - 45.22%).

A. flos-aauae also exhibited quantitative changes in individual fatty acids with 

growth phase and temperature (Table 35). The major fatty acids found in Æ 

flos-aquae 1403/13A were 16:0,16:1,18:1,18:2(n-6) and 18:3(n-3). Increasing 

temperature increased 16:0,18:1(n-9) and 18:2(n-6), and decreased 18:3(n-3). 

% UNFA increased in stationary phase at all three temperatures (Table 33). 

Average % UNFA decreased significantly with increased temperature (Average
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% UNFA at 17°C - 69.30%, 30°C - 65.73%, 40°C - 59.96%). A. flos aquae 

although exhibiting a similar fatty acid profile to the two Synechococcus species 

also had significant quantities of polyunsaturated fatty acids in the C18 range 

notably 18:2(n-6) and 18;3(n-3).

A. variabilis showed quantitative changes in individual fatty acids with 

temperature and growth phase (Table 36). Major fatty acids were found to be 

16:0,18:2(n-6) and 18:3(n-3). Increases were found in 16:0 and 18:2(n-6) with 

increasing temperature and decreases in 16:3 and 18:3(n-3). % UNFA

decreased in stationary phase at 17°C, and increased at stationary phase at 

30°C. Average %UNFA decreased significantly with increased temperature 

(average %UNFA at 17°C - 64.48%, 30°C - 60.78%). A. variabilis exhibited a 

similar fatty acid profile to A. flos-aquae. with significant quantities of 18:2(n-6) 

and 18:3(n-3) fatty acids.

4.3.3.5 Statistical Analysis of Percentage Unsaturation Results

Statistical analysis only gave two significant 'main effects’ at 0.1% significance 

(p < 0.001), temperature and algal species. Temperature means (17°C - 

62.00%, 30°C - 55.04%, 40°C - 52.14%) showed that the reduction in 

unsaturation as the temperature increased was significant for all species of 

cyanobacteria investigated. Algal species means (Svnechococcus so. 1479/5 - 

51.38%, Svnechococcus sp. PCC 7954 - 48.69%, A. flos-aquae - 64.99%, Æ 

variabilis - 60.50%) showed a significant difference between the two 

Synechococcus species and the two Anaebaenas. Svnechococcus so. PCC 

7954 also had a significantly lower value for unsaturation than Svnechococcus 

so. 1479/5.

4.3.3.6 Gross Photosynthetic and Dark Respiration Rates

The results are given in Table 37 for the cyanobacteria species grown at 25mg 

NO3-N r \  The cultures were harvested at the same time as for the nitrogen 

limitation experiments.
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Gross Photosynthetic and dark respiration rates decreased with increased 

temperature from 17°C to 30°C with the exception of Svnechococcus so. PCC 

7943.

At 40°C, A. flos-aauae increased its photosynthetic and dark respiration rates 

from 30°C, whereas Svnechococcus sp. PCC 7943 decreased its rates. All 

species decreased their gross photosynthetic and dark respiration rates from 

exponential to stationary/late exponential phases (and after nitrogen depletion) 

with the exception of Svnechococcus so. 1479/5 at 30°C.
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FIG134 XCarboh_ydrate;, ProteLn and LLpLd
Sunechococcus sp. 1479/5 ExponentLaL Phase
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FIG136 ’/Carbohydrate^ ProteLn and LLpLd
S ynGchococcus sp. PCC7943 ExponentLaL Phase

Peroentage

70

GO

50

40

30

20

10

0

InLiLaL NLtrogen LeveL (mg NÛ3-N/L) 
□  5 □  25 0  3D ■  500

] fc  30®C 4D°C 17°C 3D®C 40°C 17°C 30°C 40°C
Growth Temperature 0

FIG137 XCarbohydrate^ ProteLn and LLpLd Synechococcus sp. PCC7943 StctLonary Phase
Percentage

EnLtLoL NLtrogen LeveL (mg ND3~N/LJ 
0  5 □  25 0  3D ■  500

17°C 3D°C 40°C 17®C 30"c 4D°C 17°C 30°C 40"c
Growth Temperature C

192



H  ^  ^  U> H  ro U1* H m • • CO ifl I
• • • LO 00

• 2

1/1 VO r) 1/1 ^

M  5 ^ S 3 m

ui CN VO o  CO n  r '
I (TV CS <N * • <N OO I

' M

Tf OV H VO Tf OVI ov H n • ' Tf ir CS I I I I I I I I ]]

(TV CJ O OV H r>
00 H  cs • • Tf tn* * * VO CO * '

O CO OV 1/1 rH ; n • ^ H 00 I | S 3 % S S

CO o  rn o  1/1 CO 
H  (Tv ^  ^  . .

VD M O U1 VÛ „
HgJiHIHI  I I I l ” l I

 ................   I I I I I I t 23
" « " 3 3

« 5 3 gg
[S H  ?

H  M
■ 2

m  OV H  1/1 CO
I r> I ^  • • cs n

I

■5;« 73

PW >,
H VO OV S <NI m I 1/1 ' > I VO , ^  w  w  w  ,

• H  H  lO in
I I I I I I I I I »

, ,  w  w  ur  I , , , , ,  w  , ,

M M m in

4) V

H flj 

II 3

OV CD 00

^  73

18 « Bh <

<n u> VO VO rn rnin M VD oir'Vorovom
C C C C C G C C: C

O O H O O H C S n ' T ' O O H i H M r O r O ' T ' O O H M n i . ^ U l O O H i n V O O

I I I I I I M T ? ?
C C C C C C  H C f i C

all•H < m ij 0

.S'âgïS-s
i J  03 g  t i l  Oi A

193



FIG138 XCarboh_ydrate^ ProteLn and LLpLd
fl.fLos~aquaQ 1403/13A ExponentLaL Phase
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FIG140 XCarbohydrate^ ProteLn and LLpLd
R.vorLabLLLs 1403/12 ExponentLoL Phase
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4.3.4 C. caldarium

4.3.4.1 Growth and Ammonium Results

C. caldarium only grew at 30°C and 40°C. Results for ODggo against time (Figs 

142 and 143) and dry weight against time (Figs 144 and 145) show Ç. 

caldarium in exponential phase at the time of harvest at both temperatures (32 

days, Table 28). This was the result of an error in making up the media which 

contained approximately twice the stated experimental amount of ammonium 

sulphate. This should be noted when looking at the figures and tables of 

results for C. caldarium. Results of ammonium uptake against time (Figs 146 

and 147) show that NH^-N depletion did not occur at either temperature. 

Results of pH against time, demonstrated the ability of C. caldarium to grow at 

acidic pH (pH 2.0-2.5)(Figs 148 and 149).
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FIG 142 C.caldarlum 1355/4 SÔ 'G 
OD 560 vs Time
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FIG 144 C.caldarlum 1355 /4  SÔ 'C
DRY WEIGHT vs Time
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F IG  146 C.caldarlum 1355 /4  30 ‘’C
AMMONIUM vs Time
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FIG  148 C.caldarlum 1355/4 30"C
pH vs Time
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Table 38: Harvest Parameters for C. caldarium 1355/4

Temperature/ 
Initial N 
Level

Phase Time
(Days)

OD5 6 0 Dry wt
(gl-')

N H 4 - N
(mgl-')

30°C 5 E 32 0.79 0.45 4.33
25 E 32 0.80 0.40 32.50
50 E 32 0.41 0.23 79.88
500 E 32 0 . 6 8 0.37 988

40°C 5 E 32 1.17 0.67 5.66
25 E 32 1.03 0.57 35.44
50 E 32 0.80 0.43 87.23
500 E 32 2.04 0.94 1008

E = Exponential Phase 
S = Stationary Phase
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4.3.4.2 Carbohydrate, Protein and Lipid Resuits

The results are given in Table 39. The lipid and protein contents of 

caldarium in exponential phase at all nitrogen levels were not significantly 

different with increase in temperature. A similar result was observed for 

carbohydrate with the exception of the lowest ammonium-N level, where 

carbohydrate content was significantly higher (Fig 150).

4.5.4.3 Statistical Analysis of the Carbohydrate, Protein and Lipid 

Resuits

Statistical analysis of the carbohydrate results gave a significant result at 0.1% 

(p < 0.001) for the effects of nitrogen. Nitrogen means (‘5 ’ (mg NO3-N 1̂ ) - 

28.35%, '25' - 10.02%, ‘50’ - 7.70%, '500' - 6.80%) divide into three 

significantly different groups consisting of '5', '25' and ('50' & '500') with 

decreasing carbohydrate values. This may suggest that nitrogen stress results 

in carbohydrate accumulation for C. caldarium. Statistical analysis of the 

protein and lipid results gave no significant effects.

4.3.4 3 Fatty Acid Results

The results are given in Table 39. 0. caldarium had predominantly 018 fatty 

acids, with minor levels of CIS and 020 fatty acids, with the exception of 16:0. 

Quantitative differences in fatty acids were found between temperatures. 

Increasing temperature increased 16:0, 18:1(n-9), 18:2(n-6) and decreased 

18:3(n-3). Mean %UNFA (30°0 - 64.91%, 40°0 - 59.24%) appeared to show 

a significant decrease at the highest temperature. Statistical analysis confirmed 

this result (1% significance or p < 0.01).

4.3.4 4 Gross Photosynthetic and Dark Respiration Rates

The results for 0. caldarium are given in Table 40. These cultures were grown 

at a level of 25mg NH4-N \'\ A decrease in gross photosynthetic and dark 

respiration rates with NH4-N depletion suggested the cultures had entered
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stationary phase at 32 days. However, the results at 16 days would be 

comparable to the results of the nitrogen limitation experiments due to the error 

in media composition. Gross photosynthetic rate decreased from 30°C to 40°C 

but dark respiration rate increased.
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4.3.5 Algae and Cyanobacteria chosen for Outdoor Mini pond Experiments

The following cultures were chosen for comparative work in the outdoor 

minipond system:

(a) C. vulgaris 211/8K and S. obliouus 276/3A.

These two species were chosen because of their differing behaviour with 

respect to major shifts in biochemical composition, C. vulgaris 211/8K 

accumulating carbohydrate and S. obliouus 276/3A accumulating lipid. Also, 

differing fatty acid profiles in respect of the presence of 16:4 and 18:4 

polyunsaturated fatty acids in S. obliouus 276/3A, which were not found in 

vulgaris 211/8K.

(b) N. atomus 251/4B and Isochrvsis so. 927/14.

These two species were able to grow at 17®C and 30°C and it was considered 

that the temperature variation outdoors would not exceed their growth range. 

The other two species investigated would not grow at 30°C. In addition, lipid 

accumulation at the lower temperature was found to be statistically significant 

for these two species. N. atomus. a green alga, had a higher carbohydrate 

content than the other three species, a similar property to the freshwater green 

algae. N. atomus and Isochrvsis so. also contained both 20:5 and 22:6 fatty 

acids.

(c) A. flos-acuae 1403/13A and Svnechococcus so. PCC 7943.

Both species grew at 17°C, 30°C and 40°C, an advantage with variable outdoor 

temperatures, also, Svnechococcus so. 1479/5 did not grow well at IT C  

(section 4.3.3.1). Obviously, one species was a nitrogen fixer (A. flos-aouae). 

Levels of carbohydrate accumulation were greater with Svnechococcus so. 

PCC 7943 and A. flos-aouae. Lipid levels although appearing very similar 

between all cyanobacteria, were statistically shown to be significantly different 

between the two Synechococcus species and the two Anabaenas. In addition, 

A. flos-aouae along with A. variabilis exhibited a greater range of fatty acids 

specifically more polyunsaturated fatty acids than the Synechococcus species.

For all algae and cyanobacteria investigated, cellular constituents were found 

to vary depending on the level of available nitrogen and therefore, for
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comparison of growth in defined medium (ASM or F/2) to growth in algal treated 

slurry, an approximate level of 25mg NO3-N 1'̂  was made available in addition 

to any low levels of nitrate and ammonium available in the slurry superna^nt. 0^
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5. OUTDOOR MINIPOND EXPERIMENTS
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5.1 INTRODUCTION

Following the results obtained in the nitrogen limitation experiments (section 

4.3), an investigation was carried out into whether these results could be 

emulated in an outdoor slurry based system.

Experiments were carried out using six strains of algae and cyanobacteria - Ç. 

vulgaris 211/8K, S. obliouus 276/3A, N. atomus 251/4B, Isochrvsis so. 927/14, 

A.flos-aouae 1403/13A and Svnechococcus PCC 7943 - comparing growth in 

defined culturing media against a slurry based media (nitrate level 25mg NO3-N 

M), at different times of the year thus allowing for different ambient temperature 

and light conditions in the outdoor minipond systems (2.2.2).

5.2 EXPERIMENTAL DESIGN

The trays and perspex lids were thoroughly cleaned using disinfectant (Tepo) 

and dried. The pumps were allowed to run for a few hours in disinfectant and 

then with distilled water, to prevent cross contamination between experiments. 

The miniponds were then assembled in a rooftop location. Media was poured 

into each of the miniponds (two miniponds per algal or cyanobacterial species, 

one defined culturing media (ASM or F/2), one slurry based media, 2.1.2.2) and 

inoculum pipetted aseptically directly in front of the mixer unit (2.1.3.2). The 

volume of media used was adjusted to take account of algal inoculum volume 

to a final volume of 16 litres. The lids were secured and the pumps were 

switched on and mixing checked. The temperature was continuously monitored 

by the use of temperature probes in two of the miniponds connected to a 

manually calibrated chart recorder. Minimum and maximum temperatures per 

day were recorded. Ambient light conditions were monitored and recorded by 

a nearby weather station.

The experimental time scale ranged from 20-30 days and sampling was carried 

out daily if possible. A 50ml sample was taken initially after inoculation and 

thereafter at the same time every day. ODggo (2.3.2), dry weight (2.3.3), pH 

(2.3.5) nitrate/nitrite (2.3.6) and ammonia (2.3.7) were determined for all
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samples. In addition organic nitrogen (2.3.8) was determined at the beginning 

and the end of each experiment. For cyanobacterial species, observations 

were made using a Leitz microscope for the presence of heterocysts. 

Exponential and stationary phases were determined from ODggo and dry weight. 

At exponential phase only, a suitable volume (3-5 litres) was removed for 

harvesting (2.3.9), and the supernatant was returned to the minipond. At 

stationary phase, all material was harvested. Due to the replacement of 

supernatant and the addition of sterile distilled water (to maintain minipond 

levels), samples were taken before and after these times eg before and after 

exponential harvesting. Chlorophyll analysis (2.3.12) was also carried out on 

the initial sample and samples taken at exponential and stationary phase 

harvesting. Harvested biomass was freeze dried (2.3.9) and carbohydrate 

(2.3.10), protein (2.3.11) and fatty acid content (3.1.4) determined.

5.3 RESULTS AND STATISTICAL ANALYSIS

5.3.1 C. vulgaris 211/8K and S. obliquus 276/3A

Two experiments were carried out, one from 2/5/89 to 22/5/89 (20 days, Expt. 

1) and one from 21/9/89 to 15/10/89 (24 days, Expt. 2). Minimum and 

maximum daily temperatures and daily irradiances are given in Tables 41 and 

42. Average minimum temperatures were similar for both experimental runs 

(11.3°C (Expt 1) and 10.7°C (Expt. 2)) but maximum temperatures differed by 

5.9°C (22.5°C (Expt. 1) and 16.6®G (Expt. 2)). Irradiance was significantly lower 

on most days for the second experiment (21/9/89 - 15/10/89).

5.3.1.1 Growth, Nitrogen and Chlorophyll results

In both experiments, 0. vulgaris 211/8K failed to grow in defined medium 

(ASM), although growth occured in the algal treated slurry (TS). Microscopical 

examination showed both 0. vulgaris 211/8K and S. obliguus to be unialgal in 

both media systems.

ODsso against time (Figs 151 and 152) and dry weight against time (Figs 153

213

Q
A.

A
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and 154) show similar patterns of growth for both species in each experiment. 

However, for S. obliouus. growth in algal treated slurry (TS) appeared better 

than in ASM in the first experiment and vice versa for the second experiment.

This may have been due to irradiance, with higher levels in experiment 1 able 

to provide good growth in the slurry supernatant. C. vulgaris grew better in the ^

first experiment also, probably due to increased maximum temperature and 

higher irradiances.

Results of nitrate and nitrite depletion are shown in Figs 155 - 158. Depletion 

of nitrite and nitrate was achieved by all cultures in both experiments with the 

exception of C. vulgaris in algal treated slurry in the second experiment (1.34 

mg NO3-N M and 0.33 mg NOg-N 1'̂  remaining). Ammonium (Expt. 1 - initial 

level 5.52mg NH4-N \'\ Expt. 2 - initial level 8.89mg NH4-N I '') had depleted in 

all cases before depletion of other nitrogen sources in the order ammonium > 

nitrite > nitrate (7 days and 6 days respectively for experiments one and two).

In all cultures, growth reached stationary phase. Total Organic nitrogen was

found to decrease with growth in slurry supernatant but increase with growth ^

in defined media for both C. vulgaris 211/8K (TS only) and S. obliguus. 

Harvest parameters are given in Table 43. Chlorophyll a, b and ç all increased 

over time and from exponential to stationary phase (Table 43). pH against time 

showed an increase and then decrease in pH with growth (Figs 159 and 160).
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F IG  151 OD560 In Defined media(ASM) &
Algal Treated Slurry(TS) for C.vulgarls

211/8K & S.obllauus 276/3A (2 /5 -2 2 /5 /8 9 )
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FIG 152 OD560 In Defined Medlum(ASM) & 
Treated Slurry(TS) for C.vulgarls 211/8K 

& S.obllguus 276/3A (21/9-15/10/89)
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FIG 153 DRY WEIGHT in Defined medium(ASM)
& Algal Treated Slurry(TS) for C.vulgarls

211/8K & S.obllauus 276/3A (2 /5 -2 2 /5 /8 9 )
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FIG 154 DRY WEIGHT: Defined Medium(ASM)& 
Treated Slurry(TS) for C.vulgarls 211/8K 

& S.obllguus 276/3A (21/9-15/10/89)
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FIG 155 NITRATE In Defined medlum(ASM) &
Algal Treated Slurry(TS) for C.vulgarls

211/8K & S.obllauus 276/3A  (2 /5 -2 2 /5 /8 9 )
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FIG 156 NITRITE in Defined Medlum(ASM) & 
Algal Treated Slurry(TS) for C.vulgarls 

211/8K & S.obllauus 276/3A (2/5-22/5/89)
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FIG 157 NITRATE In Defined Medium(ASM)&
Treated Slurry(TS) for C.vulgarls 211/8K

& S.obllauus 276/3A (21/9-15/10/89)
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FIG 158 NITRITE In Defined Medlum(ASM)& 
Treated Slurry(TS) for C.vulgarls 211/8K 

& S.obllauus 276/3A (21/9-15/10/89)
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FIG  159 xPA In Defined Medium(ASM) and
Algal Treated Slurry(TS) for C.vulgarls

211/8K & S.obllauus 276/3A (2 /5 -2 2 /5 /8 9 )
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FIG 160 In Defined Medlum(ASM) & Algal 
Treated Slurry(TS) for C.vulgarls 211/8K 

& S.obllauus 276/3A (21/9-15/10/89)
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Table 41: Minimum and Maximum Daily Temperatures and Irradiance Levels for
Outdoor Mininond Experiment Dates 2/5/89(01-22/5/89(201

Time
(Days)

Minimum
CC)

Maximum
(°C)

Irradiance
(Cal/cmVd)

0 NA NA
337.1
260.1

1 1 0 18 699.5
2 10.5 23 680.6
3 9.5 21.5 709.9
4 1 2 NA 633.2
5 14 26 202.3
6 9.5 17.5 708.6
7 1 0 24 654.4
8 9.5 24 288.2
9 9 15 317.7
1 0 9.5 14 680.4
1 1 9 25 417.8
1 2 11.5 2 0 517.7
13 9.5 23 712.2
14 9.5 26.5 629.6
15 11.5 25 2 0 0 . 6

16 13 19 369.5
17 12.5 2 2 677.6
18 15.5 32 654.6
19 15.5 30 721.7
2 0 14.5 NA

Average (°C) 11.3 22.5

NA = Not Available

2 2 0



Table 42: Minimum and Maximum Daily Temperatures and Irradiance Levels for
Outdoor Minipond Experiment Dates 21/9/89(0)-15/10/89(241

Time
(Days)

Minimum
(°C)

Maximum
CC)

Irradiance
(Cal/cm̂ /d)

0 1 0 17 115.1
1 9 16 54.9
2 9 17 166.4
3 9 17 317.8
4 9 17 143.2
5 1 1 16 76.3
6 1 1 19 147.7
7 9 17 204.9
8 1 0 18 314.5
9 8 18 166.1
1 0 9 15 239.3
1 1 1 0 15 311.8
1 2 13 17 55.4
13 1 1 16 124.2
14 1 2 16 241.7
15 1 2 16 119.3
16 1 2 17 96.9
17 13 16 128.7
18 13 17 87.4
19 14 17 88.7
2 0 1 0 17 75.9
2 1 1 0 17 49.7
2 2 1 1 15 158.5
23 1 1 15 185.6
24 1 1 NA 73.3

Average (°C) 10.7 16.6

NA = Not Available

2 2 1
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5.3.1.2 Carbohydrate, Protein and Lipid Results

Value for carbohydrate, protein and lipid contents are given in Table 44. Ç. 

vulgaris 211/8K, in algal treated slurry only, accumulated carbohydrate, slightly 

increased protein content and increased lipid content at stationary phase in the 

first experiment (Fig 161 ). In the second experiment, carbohydrate decreased, 

protein increased and lipid slightly decreased in stationary phase (Fig 162). 

The difference observed in lipid and carbohydrate content between experiments 

may have been due to the fact that nitrate and nitrite had not depleted in the 

second experiment (Table 43).

S. obliguus showed similar results in ASM to algal treated slurry for 

carbohydrate, accumulation occuring in stationary phase in both experiments 

(Figs 163 and 164). Protein changes were also similar in both media (ASM and 

TS) in both experiments, decreasing at stationary phase. Lipid accumulation 

occured at stationary phase in both media in the second experiment, however, 

it only accumulated in stationary phase in algal treated slurry in the first 

experiment.

5.3.1.3 Statistical Analysis of the Carbohydrate, Protein and Lipid 

Results

Statistical analysis of the carbohydrate results only gave one significant effect 

for growth phase (1% or p < 0.01). Phase means (exponential - 16.6% and 

stationary - 31.6%) showed a significant increase from exponential to stationary 

phase confirming carbohydrate accumulation at stationary phase. Temperature, 

algae and media were not found to be significant.

Statistical analysis of the protein results gave one significant ‘main effect’ of 

temperature (1% or p < 0.01). Temperature means (expt. 1 - 4.66%, expt. 2 - 

10.27%), showed a significant reduction in protein content for expt. 1 

(minimum temp 11.3°C, maximum 22.5°C).

223



Statistical analysis of the lipid results gave no significant main effects or first 

order interactions.

5.3.1.4 Fatty Acid Results

For C. vulgaris 211/8K, quantitative differences in individual fatty acids were 

observed between experiments, and between growth phases for each 

experiment (Table 44). The major fatty acids were 16:0, 16:3, 18:2(n-6) and 

18:3(n-3) in both experiments. Individual fatty acid changes culminated in % 

UNFA decreasing at stationary phase in the first experiment and increasing 

slightly in stationary phase in the second experiment.

For S. obliguus. quantitative differences were observed between experiments 

and between growth phases in both experiments (Table 44). Similar fatty acids 

profiles were found with growth in both media. %UNFA decreased at stationary 

phase with the exception of growth in algal treated slurry in the second 

experiment.

Statistical analysis of the percentage unsaturation results gave no significant 

main effects or first order interactions.
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FIG 161
ComparLson of Growth Ln DefLned Medium (ASM] 
and A lg a l T r e a te d  S lu r r y  (TS)
C. vulgaris 211/Bk 
( 2:5:89 ~ 22:5:89 )

Percentage

Media and Phase (Expn.~ Exponential,, S ta t.-  Stationary) 

0  RSM Expn, 0  RSM Stat, 0  TS Expn, |  TS Stat,

Conboh ud^ate Protein  

C e ll C on stitu en t2

FIG 162
Comparison of Growth In Defined Medium [ASM] 
and A lg a l T r e a te d  S lu r ry  (TS)
C. vulgaris 211/Bk 
( 21:9:89 - 15:10:89 1
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FIG 163
ComparLson of Growth Ln DefLned Medium (ASM] 
and A lg a l T re a te d  S lu r r y  (TS)
5. obllquus 276/3R 
( 2=5:69 -  22:5:89 )

Percentage

Media and Phase (Expn.- Exponential, S ta t.- Stationary) 

0  RSM Expn. 0  RSM Stat. 0  TS Expn. |  TS Stat.

Carbohydrate. Protein  

Cell Constituent2

Llpld

FIG 164
Comparison of Growth In Defined Medium (ASM] 
and AtgoL T re a te d  S lu r r y  (TS)
S. obllquus 276/3R 
C 21:9:89 - 15:10:89 )

Percentage

Media and Phase (Expn.- Exponential, S ta t.-  Stationary)

0  RSM Expn. 0  RSM Stat.
TS Expn. ■  TS Stat.

Carbohydrate Protein

Cell Conetltuent2  
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5.3.2 N. atomus and Isochrvsis sp.

Two experiments were carried out, one from 2/6/89 to 25/6/89 (23 days, Expt. 

1) and 20/10/89 - 21/11/89 (32 days, Expt. 2). Minimum and maximum daily 

temperatures and daily irradiance are given in Tables 45 and 46. Average 

minimum and maximum temperatures were greatly reduced in the second 

experiment (Table 46). Irradiance was also significantly lower on most days for 

the second experiment (20/10/89 - 21/11/89 - Table 46).

5.3.2.1 Growth, Nitrogen and Chlorophyl Results

Isochrvsis so. did not grow in either media (F/2 or TS) in the second 

experiment, and this was assumed to be due to either low temperature, low 

irradiance levels or both.

Results for ODggo (Figs 165 and 166) and dry weight (Figs 167 and 168) show 

similar growth patterns for both species in each experiment. None of the 

cultures appeared to be in stationary phase but in late exponential growth at 

harvest and therefore, they were designated S/LE (Table 47).

Results of nitrate and nitrite utilization are shown in Figs 169 - 172. At all S/LE 

harvests, low levels of nitrate were still present (Table 47). In the first 

experiment, ammonium (initial level 8.37mg NH^-N 1'̂ ) had depleted in the algal 

treated slurry by 7 days for both species and nitrite (initial level 0.51 mg NOgN 

in slurry supernatent, 0.01 mg NOg-N 1'̂  in F/2) had depleted in all cultures at 

19 days (Fig 170). In the second experiment, ammonium (initial level 14.51 mg 

NH4-N M) had depleted at 15 days, but low levels of nitrite were still present at 

harvest (S/LE - 32 days) (Table 47). Depletion was in the order NH4-N > NOg- 

N > NO3-N. Total organic nitrogen decreased with growth in slurry supernatent 

but increased with growth in defined media.

Harvest parameters are given in Table 47. Chlorophyll levels, a, b, ç all 

increased with time and from exponential to stationary/late exponential phase, 

with the exception of N. atomus in both media in the first experiment, where
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chlorophyll a decreased and chlorophylls b and ç increased (Table 47). pH 

against time exhibited an increase and then decrease with growth (Figs 173 

and 174).
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FIG 165 OD560: Defined Medium(F/2)&Algal
Treated Siurry(TS) for N.atomus 251/4B
and Isochrvsis sp.927/14 (2 /6 -2 5 /6 /8 9 )
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FIG 166 OD560 in Defined Medlum(F/2) &
Algal Treated Slurry(TS) for N.atomus 

251/4B (20/10-21/11/89)
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FIG 167 DRY WEIGHT;Deflned Medium(F/2)&
Treated Siurry(TS) for N.atomus 251/4B
and Isochrvsis ap.927/14 (2 /6 -2 5 /6 /8 9 )
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FIG 168 DRY WEIGHT in Defined Medium(F/2) 
& Algal Treated Slurry(TS) for N.atomus 

251/4B (20/10-21/11/89)
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FIG  169 NITRATE In Defined Medlum(F/2)&
Treated Slurry(TS) for N.atomus 251/4B
and Isochrvsis sd.927/14 (2/ 6-25/ 8/89)
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FIG 170 NITRITE in Defined Medium(F/2)& 
Treated Slurry(TS) for N.atomus 251/4B 
and Isochrvsis sd.927/14 (2/6-25/6/89)
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FIG 171 NITRATE In Defined Medlum(F/2)
& Algal Treated Slurry(TS) for N.atomus

251/4B (20/10-21/11/89)
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FIG 172 NITRITE In Defined Medlum(F/2) 
iAIgal Treated Slurry(TS) for N.atomus 

251/4B (20/10-21/11/89)
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FIG 173 yPU  In Defined Medium(F/2)&Algal
Treated Slurry (TS) for N.atomus 251/4B
and Isochrvsis sp.927/14 (2 /6 -2 5 /6 /8 9 )
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FIG 174 /FH  In Defined Medium(F/2) & Algal 
Treated Slurry(TS) for N.atomus 251/4B 

(20/10-21/11/89)
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Table 45: Minimum and Maximum Daily Temperatures and Irradiance Levels for
Outdoor Minipond Experiment Dates 2/6/89(0)-25/6/89(23)

Time
(Days)

Minimum
CC)

Maximum
CC)

Irradiance
(Cal/cm̂ /d)

0 12 20 550.9
1 13 22 666.9
2 10 25.5 765.9
3 12 19 484.8
4 11 19 426.7
5 11 25 750.3
6 11 25.5 717.8
7 12 20.5 404.9
8 14.5 21 333.8
9 14 20 364.8
10 18 23 284.1
11 18 24.5 294.5
12 15.5 30 815.6
13 15.5 26 626.6
14 15.5 24.5 655.5
15 16 29.5 747.6
16 16 28 729.3
17 18.5 29.5 674.1
18 14 28 673.4
19 14 20 753.2
20 14 26 618.7
21 14 18 305.9
22 15 21 410.5
23 15 NA 247.8

Average (®C) 14.2 23.7

NA = Not Available
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Table 46: Minimum and Maximum Daily Temperatures and Irradiance Levels for
Outdoor Minipond Experiment Dates 20/10/89(01-21/11/89(32)

Time
(Days)

Minimum
(T)

Maximum
CC)

Irradiance
(Cal/cm̂ /d)

0 8 14 154.6
1 9 13 132.8
2 9 16 118.6
3 10 15 186.4
4 8 14 20.7
5 9 13 27.9
6 8 14 106.6
7 8 13 8.89
8 11 18 91.6
9 10 14 63.4
10 11 15 152.6
11 8 16 128.5
12 9 15 125.5
13 8 14 128.7
14 7 12 86.3
15 6 12 76.8
16 6 9.5 120.8
17 6 13 80.6
18 7 14 60.90
19 7 11 NA
20 7 13 NA
21 8 14 N A
22 8 12 73.9
23 8 10 11.8
24 8 14 75.2
25 7 16 NA
26 4 14 NA
27 6 11 NA
28 4 13 NA
29 9 13 NA
30 10 12 NA
31 10.5 16 NA
32 9.5 NA NA

Average (°C) 8 13.6

NA = Not Available
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5.3 2.2 Carbohydrate, Protein and Llpld Results

Results for carbohydrate, protein and lipid contents are given in Table 48. 

Isochrvsis so. increased its carbohydrate content, and slightly increased its 

protein content in stationary phase (Fig 175) in both F/2 and slurry supernatent. 

Lipid content increased slightly in stationary phase in F/2, but decreased slightly 

in algal treated slurry (Fig 175).

N. atomus increased its carbohydrate content in stationary phase in both media 

for the first experiment, but showed decreased carbohydrate content in 

stationary phase in both media for the second experiment (Fig 176 and 177). 

This may be irradiance or temperature related, both variables significantly lower 

in the second experiment. There was little variation in protein content between 

growth phases, but protein levels increased in the second experiment. Lipid 

levels increased in stationary phase in the second experiment, but decreased 

in the first experiment (Figs 176 and 177).

5.3 2.3 Statistical Analysis of the Carbohydrate, Protein and Llpld 

Results

Statistical analysis of the carbohydrate results gave only one significant effect, 

the ‘main effect’ of algae (0.1% or p < 0.001). Species means (N. atomus - 

21.51%, Isochrvsis so. - 6.23%) show N. atomus having a significantly higher 

level of carbohydrate than Isochrvsis so.. There were no significant 

temperature, phase or media effects.

Statistical analysis of the protein results gave two significant effects, the ‘main 

effects' of temperature and algae (both 0.1% or p < 0.001). Temperature 

means (Expt. 1 - 3.60%, Expt. 2 - 9.40%) showed a significant increased in 

protein content for the second experiment (lower minimum and maximum 

temperatures). Species means (N. atomus - 8.10%, Isochrvsis sp. - 4.91%) 

showed a significantly higher value for N. atomus. However, it should be noted 

that both of these results may well have been affected by the lack of data for 

growth of Isochrvsis so. in the second experiment.
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Statistical analysis of the lipid results gave no significant main effects or first 

order interactions.

S.3.2.4 Fatty Acid Results

Fatty acid results are given in Table 48.

For Isochrvsis so., quantitative differences in fatty acids were found between 

growth phases, but similar qualitative and quantitative profiles were found 

between media (F/2 and TS). The major fatty acids identified were 14:0, 16:0, 

18:1(n-9), 18:4(n-3) and 22:6(n-3) under cultivation in defined media or algal 

treated slurry. Individual fatty acid changes culminated in %UNFA decreasing 

with stationary phase in algal treated slurry, but increasing in stationary phase 

for F/2 media.

For N. atomus. quantitative differences in fatty acids were found between 

growth phases, but similar qualitative profiles were observed in the two media 

(F/2 and TS). The major fatty acids identified were 16:0, 18:1(n-9), 18:3(n-3) 

and 18:4(n-3) in both media investigated. Individual fatty acid changes 

culminated in %UNFA not exhibiting a regular pattern of change with respect 

to phase, media or experiment. Statistical analysis of %UNFA results gave no 

significant main effects or first order interactions.
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FIG 175
ComparLson of Growth Ln DefLned MedLum (F/2] 
and RLgoL T r e a te d  S Lurrg  (TS]
IsochrysLs sp. 927/14 
( 2:6:89 -  25:6:89 ]
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FIG 176
ComparLson of Growth Ln DefLned MedLum (F/2] 
and RLgaL T r e a te d  S Lurrg  (TS)
N. atomus 251/4B
( 2:0:89 -  20:0:89 )

Percentage

Media and Phase (Expn.- ExponentLal, S ta t.- Stationary) 
0  F /2 Expn. 3  F/2 Stat. 0  TS Expn. |  TS Stat.
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FIG 177
ComparLson of Growth Ln DefLned MedLum (F/2] 
and RLgaL T r e a te d  S L u rry  (TS]
N. atomus 251/4B 
( 20:10:89 -  21:11:89 )

Percentags

Media and Phase (Expn.- ExpanentLal, S ta t.- Stationary)

0  F /2  Expn. 3  F /2  Stat.
0  TS Expn. ■  TS Stat.
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242

Llpld



5.3.3 A. flos-aquae and Svnechococcus sp. PCC 7943

Only one experiment, comparing the growth of A.flos-aauae and 

Svnechococcus so. PCC 7943 in defined media (ASM) and algal treated slurry, 

was carried out due to time limitations and outdoor conditions. These species 

were grown between 26/6/89 to 20/7/89 (24 days). Minimum and maximum 

daily temperatures and daily irradiance are given in Table 49.

5.3.3.1 Growth, Nitrogen and Chlorophyll Results

Growth curves of ODgeo against time (Fig 178) and dry weight against time (Fig 

179) show Svnechococcus so. in ASM to lag behind growth in algal treated 

slurry, and behind growth of A. flos-aauae. All cultures were in late 

exponential/stationary phase at harvest and so were designated S/LE. A.flos- 

aauae. an organism capable of nitrogen fixation, was harvested at nitrogen 

depletion. Results for nitrate and nitrite utilization (Figs 180 and 181) show 

nitrate and nitrite depletion at S/LE harvests with the exception of A. flos-aauae 

which had a very low level of nitrate remaining (0.43mg NO3-N l'\ Table 50). 

Ammonium (initial level 7.39mg NH4-N f  ) depleted in the algal slurry by 8 days 

for A. flos-aauae. and 11 days for Svnechococcus so.. This was followed by 

nitrite and nitrate depletion. Total organic nitrogen decreased with growth in the 

algal treated slurry, but increased with growth in defined media for both 

cultures. Harvest parameters are given in Table 50. Chlorophylls a, b and ç 

increased with A. flos-aauae in ASM and decreased in algal treated slurry for 

both A. flos-aauae and Svnechococcus so.. pH increased throughout the 

culture period for both algae (Figure 182).
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FIG 178 OD560:Deflned medla(ASM)&Treated
Slurry(TS) for A.flos-aquae 1403/13A and

Svnechococcus spPCC7943 (2 6 /6 -2 0 /7 /8 9 )

CD 560
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FIG 179 DRY WEIGHT:Deflned medium&Treated 
Siurry(TS) for A.flos-aauae 1403/13A and 

Synechococcus soPCC7943 (26/6-20/7/89)
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FIG 180 NITRATE:Defined Medium & Treated
Slurry(TS) for A.flos-aauae 1403/13A and

Svnechococcus sd.PCC7943 (2 6 /6 -2 0 /7 /8 9 )

N lt ra te (m g  N 0 3 - N / I )

10 16 
Tlme(days)

ALOAE/MEDIUM 

A.floa-aquae/A8M A.floa-aquae/T8

8ynechococcua /A8M 8ynechococcua /T8

FIG 181 NITRITE: Defined Medium & Treated 
Siurry(TS) for A.flos-aauae 1403/13A and 

Svnechococcus sp.PCC7943 (26/6-20/7/89)
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FIG  182  f  H In Defined Medlum(ASM)&Treated
Slurry(TS) for A.flos-aauae 1403/13A and

Svnechococcus sp.PCC7943 (2 6 /6 -2 0 /7 /8 9 )
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Table 49: Minimum and Maximum Daily Temperatures and Irradiance Levels for
Outdoor Minipond Experiment Dates 26/6/89('0)-20/7/89('24)

Time
(Days)

Minimum
(°C)

Maximum
CC)

Irradiance
(Cal/cm̂ /d)

0 12 22 497.3
1 14 24 599.9
2 13 18 396.4
3 12 24 702.1
4 14 24 176.5
5 12 22 381.5
6 11 24 689.8
7 14 28 744.7
8 14 28 778.6
9 16 30 761.3
10 17 30 693.1
11 16 30 614.2
12 16 29 661.2
13 17 30 610.3
14 15 22 380.5
15 15 30 607.4
16 16 27 NA
17 14 30 787.7
18 15 26 619.1
19 17 29 722.7
20 17 30 685.9
21 15 27 623.9
22 16 27 750.0
23 17 31 665.8
24 20 NA 482.8

Average (°C) 15 26.8

NA = Not Available
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5.3.3 2 Carbohydrate, Protein and Llpld Results

Results are given in Table 51. A. flos-aauae accumulated carbohydrate, 

decreased protein and decreased lipid contents at stationary phase in both 

ASM and algal treated slurry (Fig 183).

Svnechococcus sp. accumulated carbohydrate and decreased protein content 

in both ASM and algal treated slurry (Fig 184). Lipid increased at stationary 

phase when grown in ASM and decreased at stationary phase when grown in 

algal treated slurry.

5.3.3 3 Statistical Analysis of the Carbohydrate, Protein and Llpld

Results

Statistical analysis of the carbohydrate results gave two significant ‘main 

effects’ of phase and algae (0.1% or P < 0.001 and 1% or p < 0.01 

respectively). Phase means (exponential -15.2%, stationary - 37.6%) showed 

a significant increase in carbohydrate content from exponential to stationary 

phase. Species means (A. flos-aauae - 23.5%, Svnechococcus so. - 29.3%) 

showed that Svnechococcus sp. had a significantly higher level of carbohydrate 

than A. flos-aauae.

Statistical analysis of the protein results gave no significant main effects or 

interactions, and this was also found for the lipid results.

5.3.3.4 Fatty Acid Results

These are given in Table 51. For both A. flos-aauae and Svnechococcus so., 

quantitative changes in individual fatty acids were found between phases. 

Similar fatty acid profiles were observed for A. flos-aauae in both media (ASM 

and TS), however, Svnechococcus sp. showed qualitative differences, 

specifically the presence of 16:4 in ASM. Individual fatty acid changes 

culminated in %UNFA increasing in stationary phase for both A. flos-aauae and 

Svnechococcus so..
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Statistical analysis of the percentage unsaturation results gave no significant 

main effects or first order interactions.
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FIG 183
ComparLson of Growth Ln DefLned MedLum (RSM] 
and RLgaL T r e a te d  S lu r r y  (TSÜ 
fl.flos~QquGe 1403/13 A 
( 26:6:89 -  20:7:89 )

Percentage

Media and Phase (Expn.- Exponential, S ta t.- Stationary)

0  RSM Expn. 0  RSM Stat.
H  TS Expn. ■  TS Stat.

Carbohydrate Protein 

Cell Constituent2

Llpld

FIG 184
Comparison of Growth In Defined Medium (ASM] 
and A lg a l T r e a te d  S lu r r y  (TS)
Synechococcus sp. PCC7943 
( 26:6:89 - 20=7:89 )

Percentage

Media and Phase (Expn.- Exponential, S ta t.- Stationary)
0  RSM Expn. 0  RSM Stat.
S  TS Expn. ■  TS Stat.
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6. DISCUSSION AND CONCLUSIONS
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6.1 DISCUSSION AND CONCLUSIONS

All the algae investigated exhibited different behaviour with respect to the 

cellular content of carbohydrate, protein and lipid in relation to changes in 

temperature, nitrogen availability and growth phase.

The difference between the four green algae was the major shift to 

carbohydrate accumulation with decrease in temperature and at stationary 

phase exhibited by C. vulgaris 211/8K and 211/11c, and the shift to lipid 

accumulation under similar conditions exhibited by Ank. antarcticus and S. 

obliQuus. Statistical analysis confirmed this difference in behaviour between the 

four green algae, and also that previous nitrate availability affected the amount 

of carbohydrate or lipid accumulated.

The protein content of the four green algae decreased in stationary phase but 

statistical analysis showed the only significant decrease with temperature was 

at 40°C for C. vulgaris 211/8K. This difference in behaviour exhibited by 

vulgaris 211/8K may be due to the fact that it is a high temperature strain. 

Protein content was also found to be dependent on previous nitrate availability 

for the four green algae.

The fatty acid content of the four green algae was dependent on temperature 

and growth phase. Quantitative changes in individual fatty acids rather than 

qualitative changes were exhibited by all four green algae, although there 

appeared to be no regular pattern of change exhibited by any individual fatty 

acid between the algae studied with the exception of 16:0, which increased with 

increased temperature in all four green algae. The degree of unsaturation 

decreased with increased temperature and at stationary phase.

The four cyanobacteria studied all exhibited a major shift to carbohydrate 

accumulation at stationary phase similar to the green algae. However, the 

strains studied did not appear to exhibit a uniform response to temperature, 

Svnechococcus so. 1479/5 increased carbohydrate with increased temperature 

and Svnechococcus sp. PCC 7943 and A.flos-aouae decreased carbohydrate
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with increased temperature. All four cyanobacteria exhibited carbohydrate 

accumulation although the two Svnechococcus species were non nitrogen fixing 

cyanobacteria and the two Anaebaenas were nitrogen fixing cyanobacteria. 

Since nitrate availability affected carbohydrate accumulation in the 

cyanobacteria studied, it appears that fixed nitrogen may not affect the 

partitioning of assimilated carbon into carbohydrate at stationary phase in the 

nitrogen fixing cyanobacteria.

The two Synechococcus species and the two Anaebaenas also exhibited 

differences in behaviour with respect to changes in lipid content. Previous 

nitrate availability also affected the lipid content of the four cyanobacteria.

Protein content of the four cyanobacteria increased at stationary phase in 

contrast to the decrease at stationary phase observed in the green algae 

studied. This may be due to nitrogen fixation providing a source of nitrogen for 

protein production in the nitrogen fixing cyanobacteria but this does not explain 

the same response in the non-nitrogen fixing cyanobacteria.

The cyanobacteria studied exhibited a similar range of fatty acids to that in the 

green algae studied with quantitative differences rather than qualitative 

differences shown in response to temperature changes and growth phase. As 

with the green algae, there appeared to be no regular pattern of change 

exhibited by any individual fatty acid in response to temperature change or 

growth phase between the genera studied. The degree of unsaturation 

decreased with increased temperature similar to the green algae.

Of the four marine and brackish algae, N. atomus. a brackish green algae, 

appeared to behave similarly to the freshwater green algae with increased 

carbohydrate and lipid content with decreased temperature and at stationary 

growth phase. Statistical analysis of the carbohydrate results for the four 

marine and brackish species showed a difference in behaviour of N. atomus to 

the other three marine and brackish algae studied. Previous nitrate availability 

again affected carbohydrate accumulation. Lipid accumulation with decreased 

temperature was confirmed statistically for N. atomus and Isochrvsis so., and
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previous nitrate availability again affected lipid content, however lipid content 

appeared to decrease at stationary phase in contrast to the increase at 

stationary phase exhibited by the green algae. Protein decreased with 

increased temperature and at stationary phase.

The four marine and brackish species studied exhibited a much broader range 

of fatty acids than the green algae and cyanobacteria. As with the other 

genera studied quantitative changes in fatty acids rather than qualitative 

changes were exhibited with temperature changes and growth phase. Again, 

as with the other genera studied there was no regular pattern of change in 

individual fatty acids between the four marine and brackish species in response 

to temperature changes and growth phase. However, the level of unsaturation 

appeared to increase with increased temperature in contrast to the decrease 

observed with the green algae and cyanobacteria.

C. vulgaris 211/8K, C. vulgaris 211/11c, N. atomus and the cyanobacteria 

studied all exhibited a major shift to carbohydrate accumulation in stationary 

phase. Levels of carbohydrate accumulated were significant - C. vulgaris 

211/8K - up to 56%; C. vulgaris 211 /llc  - up to 67%; N. atomus - up to 37%; 

Svnechococcus so. 1479/5 - up to 37%; Svnechococcus so. PCC 7943 - up to 

48%; A. flos-aouae - up to 35%; A. variabilis - up to 33% of cell dry weight.

Carbohydrate accumulation in C. vulgaris has been observed by other workers 

under conditions of nitrogen limitation with carbohydrate approaching 50% of 

the total dry weight of cells (Pirt and Pirt, 1977). This area has been further 

researched by Behrens et al (1989) who observed nitrogen sufficient cultures 

of C. vuloaris contained approx. 20% of their dry weight as starch, whereas 

under nitrogen limitation, the starch content comprised up to 55% of the dry 

weight. El-Fouly et al (1985) also found carbohydrate accumulation in ^  

vulgaris as a result of nitrogen starvation in laboratory and in growth outdoors.

Carbohydrate accumulation under nitrogen limitation has also been found in 

Ankistrodesmus so.. Isochrvsis so.. Nannochloris so. (Ben-Amotz et al, 1985) 

and Isochrvsis calbana (Utting, 1985). The two Isochrysis species studied in
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this project did not exhibit a significant increase in carbohydrate content 

however due to the experimental timescale they did not achieve nitrate 

depletion.

Conditions of nitrogen starvation have also been shown by Gibson (1978) to 

induce carbohydrate accumulation in Oscillatoria redekei. Foy and Smith 

(1980) suggest carbohydrate synthesis may be induced by nitrogen starvation 

causing an accumulation of metabolic intermediates which stimulate glycogen 

synthesis in cyanobacteria. The accumulation of carbohydrate in certain algal 

species investigated in this project and not in others cannot be explained by 

differences in dark respiration rates at stationary phase under nitrogen 

depletion. Dark respiration rates were found to be similar between algae 

exhibiting carbohydrate accumulation and those accumulating lipid. It is 

therefore suggested that the effect of nitrogen depletion is on the enzymic 

activity of carbohydrate biosynthesis.

Ank. antarcticus and S. obliauus exhibited significant shifts in cellular content 

to lipid accumulation with decrease in temperature and at stationary phase 

(nitrogen depletion) (up to 23% total lipid for Ank. antarcticus and up to 32% 

total lipid for S. obliauus). but also increased their carbohydrate content. 

atomus behaved similarly.

Lipid content of N. oculata and the two Isochrysis species did not exhibit major 

changes but this may be due to the slow growth of these cultures, nitrate 

depletion not occuring within the experimental timescale for most cultures. 

However N. oculata and Isochrvsis so. cultures at 5mg NO3-N 1'̂  initial N did 

increase their lipid contents with nitrogen depletion and therefore under nitrogen 

depletion they may infact accumulate lipid. The cyanobacteria studied did not 

significantly change their lipid content with change in temperature or growth 

phase.

Lipid accumulation appeared to be triggered by nitrate depletion, and previous 

nitrate availability affected the amount of lipid accumulated. Spoehr and Milner 

(1949) first showed that nitrogen deficiency induced an increase in lipid content
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of Chlorella ovrenoidosa. This has also been observed in Isochrvsis calbana 

(Utting, 1985; Kaplan, 1986; Sukenik and Wahnon, 1991), Ankistrodesmus so.. 

Isochrvsis sp.  ̂Nannochloris so. (Ben-Amotz et al, 1985), Nannochloropsis so. 

(Suen et al, 1987), C. vulgaris and S. acutus (El-Fouly et al, 1985).

The comparative study by Shifrin and Chisolm (1981) indicated that the lipid 

contents of fifteen chlorophycean strains grown under nitrogen-deficient 

conditions increased to 130-320% of the values observed for exponential 

phase. Piorreck et al (1984) found that green algae but not cyanobacteria 

could be manipulated with respect to fatty acid and lipid compositions by 

nitrogen limitation. Therefore, the differences observed between the algae and 

cyanobacteria investigated in this study probably indicate fundamental 

metabolic differences in these strains and is comparable to the findings of 

Piorreck et al (1984).

The biochem^jal basis of lipid accumulation under nitrogen-deficient conditions 

has not been thoroughly investigated. Lipid accumulation can probably be 

attributed in part to the fact that storage lipids and most membrane lipids do not 

contain nitrogen and therefore continue to be synthesised in nitrogen deficient 

cells while the synthesis of nitrogen containing compounds eg proteins is 

curtailed (Roessler, 1990).

Changes in levels of enzyme activity are also evident because the ratio of 

storage lipids to membrane lipids greatly increases in nitrogen-starved algae 

(Roessler, 1990). Roessler (1988) has studied the enzymic activity with respect 

to silicon deficiency in diatoms. Experiments indicated that the activity of 

Acetyl-CoA carboxylase, which may catalyse the rate limiting step of fatty acid 

biosynthesis, doubled within four hours after the onset of silicon deficiency and 

that this increase could be blocked by adding protein synthesis inhibitors. 

These results suggest that an increased cellular level of Acetyl-CoA 

carboxylase may be induced by silicon deficiency, which may contribute to a 

higher capacity for lipid synthesis. A similar situation of inducement by nitrogen 

deficiency may exist in other groups of algae. Sukenik and Livne (1991) have 

investigated the variation in lipid and fatty acid content in relation to Acetyl-CoA
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carboxylase in Isochrvsis aalbana under nitrogen limitation. Their results 

suggest that Acetyl-CoA carboxylase plays an important role in the regulation 

of flow of photosynthetic assimilated carbon into lipids in I. aalbana.

Temperature has a major effect on the types of lipids produced by microalgae. 

The general trend towards increasing the degree of fatty acid unsaturation with 

decreasing temperature observed in higher plants and other organisms (Raison,

1986) also occurs in algae, thereby optimising membrane function over a range 

of temperatures. Patterson et al (1970) observed a greater degree of fatty acid 

unsaturation in Chlorella sorokiniana cells grown at 22°C relative to cells grown 

at 38°C. Thompson et al (1992) found a significant inverse relationship 

between percentage of PUPA's and temperature for eight species of marine 

phytoplankton.

Lipids provide the essential property of fluidity in membranes. Some 

investigators have tried to relate changes in fatty acid unsaturation to the 

growth temperature - dependent shift of temperature for the thermotrophic 

phase transition of membrane lipids (Sato et a l^ 97 9 \; Wada et al;/l990)). ^  

Sato et al (1979) also found the degree of un saturation of fatty acids to be 

inversely related to temperature in A. variabilis and A. nidulans. The increase 

in unsaturation of fatty acids on lowering the growth temperature predict a 

downward shift of temperature for the transition between the liquid-crystalline 

and phase separation states of the membrane liquids. Lynch and Thompson 

(1984) suggest acclimation to low temperatures enhances acyl chain 

desaturation as a means of modifying membrane properties in response to low 

temperature.

Results from this study show an increase in unsaturation with decrease in 

temperature to occur with the green algae and the cyanobacteria but not with 

the marine and brackish species.

The effects of temperature on the total lipid content of microalgae have only 

been reported for a few species and a general trend has not became apparent. 

For example, the lipid content of Ochromonas danica increased from 39% to
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53% as the temperature was raised from 15°C to 30*C (Aaronson 1973) but the 

lipid content of C. sorokiniana did not change in response to alterations in 

growth temperature (Patterson 1970). However, Cobelas (1989) states that 

temperature effects on lipid content depend upon the temperature optima of the 

microalgae involved, and as a rule cryo- and mesophilic algae show increasing 

lipid content as temperature increases. This was not found in this study where 

the algae exhibiting lipid accumulation exhibited increased lipid with decrease 

in temperature.

The green algae and the marine and brackish species studied exhibited 

decreased protein contents at stationary or stationary/late exponential phase, 

but the cyanobacteria studied showed increased protein contents. Ben-Amotz 

et al (1985) found decreased protein contents with concurrent increased 

carbohydrate and lipid contents under nitrogen deficiency in Ankistrodesmus 

S P .. Isochrvsis sp. and Nannochloris sp.. Utting (1985) found a similar result 

for Isochrvsis aalbana. and also found a correlation existed between protein 

and lipid contents, and protein and carbohydrate contents in this organism. 

Carbohydrate has been found to act as an intermediate reserve in some algae 

(Marker, 1965) because time is required after nitrogen becomes limiting for 

enzymes essential for lipid synthesis to be produced (Fogg, 1956). 

Consequently where protein decreased both lipid and carbohydrate might be 

expected to increase.

The fatty acid compositions of the algae investigated were generally in 

agreement with the known distribution of fatty acids in algae and cyanobacteria 

stated in the literature (Wood, 1974; Borowitzka, 1988). All algae studied 

exhibited quantitative changes in fatty acids with temperature changes and 

growth phase. No regular pattern of change was observed with respect to 

individual fatty acids between the different algae investigated. Other workers 

have also found changes in fatty acids with nitrogen-starvation (Piorreck et al 

(1984); Ben-Amotz et al (1985); Sukenik and Wahnon (1991)) and growth 

phase (Piorreck and Pohl, 1984).
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The most interesting and wide ranging fatty acid compositions were observed 

in the marine and brackish species studied, especially due to the presence of 

20:5(n-3) and 22:6(n-3). However, the higher levels of lipid, in comparison, 

were found in the green algae. It should be noted, however, that the 

compositions for the marine and brackish species are based on dry weight and 

maybe underestimates of the true values.

A comparison of the nitrogen limitation experiments and the outdoor minipond 

experiments showed all the algae chosen for growth outdoors grew successfully 

in algal treated slurry, with all the algae preferentially using ammonium-N before 

nitrite and nitrate. Similar results were found outdoors to the laboratory work, 

in both defined media and algal treated slurry. For C. vulgaris 211/8K 

carbohydrate accumulation was exhibited in stationary growth phase in the first 

outdoor experiment but not in the second. This may have been due to the fact 

that nitrogen depletion did not occur in the second experiment. 8. obliauus 

exhibited lipid and carbohydrate increases in stationary phase in both defined 

media (ASM) and algal treated slurry (TS). Similar fatty acid compositions were 

obtained between media (ASM and TS) and were comparable to fatty acid 

results from the laboratory work for both green algae.

The two cyanobacteria also exhibited carbohydrate accumulation in stationary 

phase in defined media and algal treated slurry comparable to the laboratory 

results. Again, depletion of ammonium-N occur^ before nit rite-N and n it rate-N. J  

Similar fatty acids compositions were observed between media (ASM and TS) 

and were similar to those observed in the laboratory work for both 

cyanobacteria.

N. atomus accumulated carbohydrate at stationary phase in the first experiment 

but did not increase carbohydrate at stationary phase in the second experiment. 

This may have been due to lack of nitrate depletion in the second experiment. 

Isochrvsis so. did not grow in the second experiment which was attributed to 

the low temperature, but did grow successfully in the first experiment. 

Comparable growth of Isochrvsis so. was found in defined medium and algal 

treated slurry with increased carbohydrate at stationary phase in both media
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(F/2 and TS). Similar fatty acids compositions were obtained between media 

which were comparable to results obtained in the laboratory for both N. atomus 

and Isochrvsis so.. N. atomus contained significant quantities of 20:5(n-3) and 

Isochrvsis so. contained significant quantities of 22:6(n-3).

It would appear, therefore that the algae studied behaved similarly outdoors 

in defined media and algal treated slurry to the laboratory based growth. 

Temperature and light conditions would appear to be important, however, and 

although light conditions outdoors could not be altered without cost, 

temperature could be altered with the use of the heat generated via the aerobic 

treatment of piggery waste (Fig 1).

Many workers have also shown successful growth of C. vulgaris in pig slurry 

(Barlow, et al (1975); Allen and Garrett (1976); Boersma, 1975; De Pauw and 

De Leenheer (1979); Matusiak (1976); Strain et al (1986); and Scenedesmus 

obliauus in pig slurry (de la Noüe and Bassères (1989); De Pauw and De 

Leenheer (1979); Martin et al (1985); Nair et al (1981)). There are few reports 

with other species of algae. Pouliot (1989) investigated growth of 

cyanobacteria in domestic wastewater. The main area of interest with respect 

to sewage grown algae appears to be single cell protein (Boersma (1975); 

Becker (1981)).

This work has shown that the behaviour of the algae studied in the laboratory 

system can be emulated in an outdoor system using algal treated slurry. 

Therefore, manipulation of cellular content can be achieved in a slurry based 

system which would allow for optimisation of specific cell constituents. Interest 

in algal fatty acids would probably only be in the aquaculture field, with Interest 

in developing specific algae with high contents of polyunsaturated fatty acids, 

and not from the medical or health food areas due to health hazards associated 

with growth on sewage.

At present, microalgae feeds have limited applications in aquaculture. The 

most prevalent use Is in small scale indoor microalgae production units which 

produce microalgal culture for hatchery and nursery operation in shellfish and
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finfish aquaculture (either fed directly or for raising plankton feeds) (De Pauw 

& Persoone, 1988). The raising of marine finfish and freshwater salmonids 

requires feeds containing large amounts of lipids (in particular the omega-3 fatty 

acids). This is mostly provided by fish meals, but since omega-3 fatty acids in 

fish oils derive from marine phytoplankton, production of marine microalgae, 

particularly of biomass high in omega-3 fatty acids would be of interest.

Selected strains of microalgae serve as preferred food for bivalve larvae, seed 

and adults. The specific microalgae considered highly desirable include 

Isochrvsis aalbana and Dunaliella salina and related species. They are 

generally characterised by elevated contents of omega-3 fatty acids.

Laboratory studies have shown major changes in the fatty acid composition can 

result from modification of culture conditions but little attention has been given 

to this in hatcheries. These variations can be exploited to maximise the 

nutritional quality of the algae.

Several marine fish and molluscs commonly grown in commercial aquaculture 

facilities have exhibited improved growth when fed algae containing high levels 

of EPA and DMA (Langdon and Waldock, 1981; Pillsbury, 1985). This is 

apparently due to the inability of juveniles to produce adequate levels of these 

essential fatty acids (Kanazawa et al, 1979; Waldock and Holland, 1984). The 

environmental conditions under which feed algae are grown affect the growth 

rate of cultured bivalves (Enright et al, 1986), apparently because of the 

different levels of long chain polyunsaturated fatty acids in the algae.

The other avenue of interest suggested by the results of this study is 

optimisation of carbohydrate accumulation. Interest has been shown in the use 

of ‘high energy' genera for aquaculture feed (Solar Aquafarms Inc, Fallowfield 

pens. comm. 1989). This area has been reviewed by Brown et al (1989). 

Carbohydrate accumulation in cyanobacteria may then be of interest due to the 

fact that they would be easier to harvest due to their filementous growth. 

Nutritional deficiencies in a diet can be avoided by the use of mixed algal diets. 

For example, green algae can be used to provide a high carbohydrate content 

and their lack of 020 and 022 - polyunsaturated fatty acids can be met by
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another species of the same size rich in these compounds.

The current high cost of production of algal feeds has spurred the search for 

alternative algae production techniques (Benemann, 1992). Growth in slurry 

with nitrogen depletion to optimise lipid, carbohydrate or specific component 

fatty acid production maybe an alternative.
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7. FURTHER WORK

(I) Research into the enzymology of lipid and carbohydrate biosynthesis in 

the algae studied under conditions of nitrate sufficiency and depletion. 

Acetyl-CoA carboxylase appears to be important with respect to lipid 

biosynthesis (Sukenik and Livne, 1991).

(II) Scale up of the growth of sewage grown algae using the high rate algal 

ponds to investigate whether the behaviour of the algae studied can be 

emulated on a larger scale.

(III) The use of genetic manipulation in fatty acid metabolism manipulation.

(IV) Investigation of the mathematical model suggested by Sattur and 

Karanth (1989a, 1989b, 1989c), who have developed a 

mathematical model for predicting microbial lipid production based 

on the carbon/nitrogen ratio.
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Fatty Acids
Shorthand Designation 

12:0 

14:0

14:1 (n-5)
15:0
16:0
16:1 (n-7)
16:2

16:3 (n-6)
16:4

17:0
18:0
18:1 (n-9)
18:1 (n-7)
18:2 (n-6)
18:3 (n-3)
18:3 (n-6)
18:4 (n-3)
19:0
20:0
20:1 (n-9)
20:2 (n-6)

20:3 (n-6)

20:4 (n-6)
20:4 (n-3)
20:5 (n-3)
21:0

22:0 (Internal standard) 
22:1 (n-9)

22:5 (n-3)

22:6 (n-3)
24:0

Systematic name
Dodecanoic
Tetradecanoic
cis-9-tetradecenoic
Pentadecanoic
Hexadecanoic
cis-9-hexadecenoic
cis- hexadecadienoic (position of double bonds 

unknown)

cis-6,9,12-hexadecatrienoic
cis- hexadecatetraenoic (position of double
bonds unknown)
Heptadecanoic
Octadecanoic
cis-9-octadecenoic
cis-11-octadecenoic
cis-9,12-octadecadienoic
cis-9,12,15-octadecatrienoic
cis-6,9,12-octadecatrienoic
cis-6,9,12,15-octadecatetraenoic
Nonadecanoic
Eicosanoic
cis-11-eicosenoic
cis-11,14-eicosadienoic

cis-8,11,14-eicosatrienoic

cis-5,8,11,14-eicosatetraenoic
cis-8,11,14,17-eicosatetraenoic
cis-5,8,11,14,17-eicosapentaenoic
Heneicosanoic

Docosanoic
cis-13-docosenoic
cis,-7,10,13,16,19-docosapentaenoic 

cis -4,7,10,13,16,19-docosahexaenoic 

Tetracosanoic
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