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SUMMARY

The present thesis discusses only problems concerning incompressible
and inviscid fluids,

There are various techniques used to solve hydrodynamical problems in
which conformal mapping plays an important part, In Chapter II two problem
have been separately discussed, The first deals with an inviscid incompres
fluid escaping in the form of a jet from an infinite chamber through a slit
impinging normally on a wall. The second deals with the flow through a fin
Borda mouthpiece. Here the inviscid incompressible fluid flows out of the
reservoir through the mouthpiece to form a jet which is bounded by the free
streamlines, These two problems were examined by C, A, Hachemeister and
He C. Levy respectively in the Quarterly of Applied Mathematics, Vol, 17,
1959, pp. 299-304 and Journal of Applied Mathematics and Physics (ZAMP) II,
1960, pp. 152=156, It is shown that from a mathematical standpoint Levy an
Hachemeister werc dealing with the same problem and consequently these two
problems are included in one chapter. In Chapter III, the work has been
extended by combining together the main physicel features of the two proble:
of Chapter II, The new problem has then been solved by Schwarz-Christoffel
transformations.

The transformation technique while mathematically very elegant suffers
from a serious drawback for it is limited to a potential flow satisfying
Laplace's equation, Thus this method cannot be used to solve problems of

compressible fluids,
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The hodograph technique not only solves the problems for incompressil
fluids but has in other connections been adapted to solve problems involv:
compressible fluids., The application of the hodograph method to incompre:
ible flow in this thesis may serve as an introduction to its use in the t:
ment of compressible flow.

In Chapter IV first Levy's problem, discussed in Chapter II, has beer
solved by hodograph methods, Then the Hachemeister problem has been solve
In both these problems there is a "notched hodograph" which requires an
extension of Mackie's work published in Proc, Edin, Math, Soc. II, 1950,
P. 107. The notch in both the problems gives rise to a singuler integral
equation, Since the same singular integral equation is obtained for both
problems we confirm here also that these two problems are mathematically
identical. The singular integral equations have been solved analytically
by an extension of method given by Mikhlin (Integral Equations by Mikhlin,
Ch, III, pp. 131) and verified by comparison with results of Chapter II,
In Chapter V, the problem discussed in Chapter IIlhas been investigated
by the hodograph method, There are now two "notches" instead of one, Due
to these two notches two simultaneous integral equations are obtained, An
analytical solution for these equations has not so far been found., The

pattern of streamlines in this problem has some interest,
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CHAFTER X

IRTRODUCTION

Irdrodynamics is the study of fluid in motion. A fluid is a continuous
nediun or ome that can be treated as such. Actual fluids fall into two
categuries, namely gases and liquids, A gas will untimately fill any closed
spee to which it has access and is therefore classified as a (highly) com-
presaible fluid, All known liquids are to some extent compressible, For
108t purpose:n, it is, however, sufficient to regard liquids as incompressible
fluids,

It 18 well known that in & two dimensional irrotational motion of an
incompreissibice fluld there exist a potential function¢p and a stream function
Y. Theie two can be combined together to give the complex potential w, w is
an angiyvtic fumction of 2z, and defined by £(z)., By an analytic fumction
£(z) wve generally mean that £(z) is one-valued and satisfies the so-called
Cauchy-Riemann equations.

£ u and v are the velocity components in the direction of x and y axis

of st:h a motion, then these are given by
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It is a simple matter ' show that & and ¢ satisfy laplace’s equation and

that q_\\. ""e
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or in polar coordinates q, @
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It i2 usually preferable to solve hydrodynamical problems directly in the
physical plane, that is to say in the plane of x and y. But there are
problems, perticularly those involving "free streamlines” on which the
preassure and consequently the velocity remain constant, which cannot be
easily tackled in the physical plane, In the first place the chape of these
streamlines cannct be predetermined and the fact that the boundary condition
on them is non-lineer mekes the problem more ccmpliceted. This difficulty is
experienced cspecially with problems involving jets and wakes, These probiems
are sometimes easily solved in the hodograph plane where the boundary-value
problen can be formulated and where the boundary conditions are lLinear.

The application of the hodegraph method to problems ir fluid dyramics
dates back to the time of Nelmholtz and Kirchoff. The underlying yrinciple
is simple., We change the independent variable of the governing differential
equation to q and @ where q is the velocity and 6 is the angle that the
velocity vector makes with the positive direction of x-axis, Thus the
physical plane is transformed into the plane of q and € where, if u a.nd v are
the cartesian components of the veloecity vector, theu u = q cos € aond
v=qoin &, This (qgf ) plane ie known as the hodograph plane,

There are varicus technigues used to sclve hydrodynamical problems in
vhich conformal mapping plays an important part., If the soluticn for w in
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{pay) t-plene is known and if the conformsl transformation from t-plase to
z=plane is known then the sclution for w im the z-plane can be immediately
obtained, Sometimes w passes through a series of transformations before
it can be expressed in terms of z. Fortunately, if the boundaries are
straight, the application of these transformations can be found by a
single basic theorem viz, the Schwarz-Christoffel mapping theorem. In
Chapter II two problems have been separetely discussed. The first problem
deals with an inviscid incompressible fluid escaping in the form of a Jjet
through a slit of an infinite chamber and impinging normally on a wall,
the side of the chamber being kept parallel to the wall, The second
problem desls with the flow through a finite Borda mouthpiece. Here the
inviscid incompressible fluld flows out of the reservoir through the mouthe
plece to form a jet which iz bounded by the free streamlines., These two
problems were published by C. A, Hachemeister (1959) and H. C. Levy (1960)
respectively in the Quartexrly of Applied Mathematics, Vol. 17, 1959,

PP. 299-304, and Journal of Applied Mathematics and Physics (ZAMP) II,

pp, 152=156, 1950, It is shown that from a methematical stemdpoint Levy
axd Hachemelsoter were dealing with the same problem and conseguently these
two problems are included in one chapter. Both these problems have been
solved by Schvarz-Christoffel-transformations., In Chapter III the work
bas been extended by combining together the main featiwres of the two
probleme of Chapter II, The new problem is solved by Schwarz-Christoffel
transformations, The solution is then analysed to show that if the meck
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is withdrawn the solution reduces to Levy's solution and if the wall is
withdrewn, it reduces to Hachemeister’s., This is done as a check to verify
that the new sclution is correct.

The transformation technique while mathematically very elegant suffers
from & serious drawback for it is limited to potential flow satisfying
laplace’'s equation. Thus this method cannot be used to solve problems
of compressible fluids,

The hodograph technique not only solves the problems of incompressible
fluids but may also in certain cases be adapted to solve the problems of
compressible fluids and so an application of the hodograph method to
incompressible flow serves as an easy and natural introducticn to its use
in the treatment of compressible flow,

The present thesis diescusses only problems concerning incompressible
apd invisecid fluids,

It will be shown that the problems for incompressible flow can be
solved directly in the hodograph plane. The mathematics used in applying
this method will be seen to be quite straightforward compared to that of
Schwarz-Christoffel.

Mackie (1958, Proc., Eidin., Math. Soc. II, 107) has solved a mumber of
basic problems of incompressible flow directly in the hodograph plane., Be
has shown how different techniques can be employed for different boundary-
value problems in the hodograph plane. In one of these problems he comes
across an integral equation giving thereby an indicatiom that we may have



to deal with integral equations to solve some of the boundary-value problems
in the hodograph plane.

In Chapter IV, in the first place Levy’s problem discussed in Chapter II
has been solved by means of integral equations., Then the Hachemeister pro-
blem is solved., Im both these problems we come across a "notched hodograph”
which is an extension of Mackie's work., Mackie, in his paper referred to
ebove has worked only with simple hodographs. In the problems discussed
in this thesis we have two poimts on one streamline (one point being at
infinity) in the physical plsne where the velocity of the fluld is zero.
Hence in between these two points we must have a point where the fluid
attains a meximm velocity. When these points are plotted in the hodograph
plane we obtain a "notched-hodograph”. The "potch” in both the problems
gives rise to a singulsr integral equation. Since we obtain the same
singular integral equation for both the problems we confirm here also thet
these two problems are mathematically identicel. These two singular inte-
gral equations have been solved analytically by an extension of method
given by Mikhlin (Integral Equatioms by Mikhlin, Ch. IXII, pp. 131) and
verified by comparisom with the results of Chapter II.

in Chapter V, the problems discussed in Chapter II have been solved
agein by @ hodograph method, Here we get two "notches” instead of ome
obtained in cach of the previous examples. Due to these two notches we
obtain two simultenecus integral equations. Am analytical solution for
these equations has not so far been obtained, The pattern of streamlines

in this problem has some interest.




In what follows, the hodograph methed applied to the problems discussed
cbove brings into play the theory of singulsr Integral Equations and is a
natural extension of the ideas put forward by Mackie in his paper published

in 1958,
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CHAPTER IIX

The method for finding the complex potential for problems of the type
in which the fixed boundaries are rectilinear end the other boundaries are
streamlines was first found by Helmholtz and Kirchhoff. This method comes
from the facts that the direction of the velocity is constant on fixed
boundaries and that the magnitude of the velocity 1s constant on free stream-
lines, In order to find the relationship between w and 2 Kirchhoff intro-
duced the intermediate function G which is equal to U gL where U is the

aw
value of the velocity at infinity. Sdsmcve

Sivee, %{%‘ = %g: *’L% A .3;%... LQ%% = U-vF = G?lf/ ;

we ohtain., G = % éta
where @ is the inclinetion of q to the x-axis., Aa @ is constant on & fixed
boundary and q is constant on a free streamlive the Dunction & = log G ie
introduced so that when the boundaries are transformed from the z-plene to

the Q-plane they are all straight lines.

ﬂ_ = Loa& ':.\...03% + LO.
The figure obtained in the Q-plane is rectangular,

The second transformation is from the z-plane to the w-plane. Since
¥ = ¢ + 1y, the figure on the w=plane is also rectangular. By means of the
theorem of Schwarz and Christoffel it is possible to transform the rect-
angular figures in the 2- and w-planes into the real axis of a fourth plane,
ealled the t-plane. As corresponding points in the L~ ¢and w-planes are
tmmmmmmmmt- s it is possible to find the



relationships between w and ¢ and © and t, The elimination of ¢ gives the
relationship between w and z, In the problems discussed in this chapter,

it is found couvenient to go into one more transformation, i.e. rromﬁephne
to\S'-plane by choosing & suitable relation between t and p. Hence in
addition to a relation between w and ¢ and O and t e relation between w and
p and O and p has also been obtained. The elimination of p then gives the
complex potential,

THEOREM OF SCEWARZ ARD CHRISTOFFEL

The theorem states that any polygon in the z-plane can te transformed
into the real axis of the t-plane, Points which are inside the polygon are

transformed into the upper half of the te-plane,

The tramformtzcm is
..,.\m-g Ay _1 @",19

I (S (D 8,
Where t = £ + im, Gy, Ges ooe O ocs O, Gre the internal angles of the
polygon and £3, 825 coo .Br oeo zn are the points on the f-axis which
correspond to the cormers of the polygon. K is s constant which mey be
complex,



If one of the values of 2 " is infinite, the factor corresponding to
it is omitted from the equation of transformation and the angle ar does not
appear,

In hydrodynamical applications we shall be concerned only with simple
polygons generally extending to infinity. Three of the mumbers £,, £ and
L3 may be chosen arbitrarily to correspond to three of the vertices of a
glven polygon, the remainder must them be arranged so as to make the polygon
of the right shape,

(a) Jet through a slit impinging on a wall

The flow ocut of a slit is a classical problem dbut the flow out of a
8lit against a wall which has a physical interest in connection with
Hovercraft was exsmined by Levy (1960), It differs from the usual kind of
problems as we shall see in having two stagnation points on cume streamiine.

An inviscid incompressible fluid is confined in an infinite chamber
whose side is parallel to the wall distance h away. The chanber side has

a slit of width d through which the fluid escapes (Figure 1).

FIQURE 1

The physical plane; with axis of eymmetry OA, chember side DE, jet boundary DCo
vall AB



The solution is carried through by mapping the flow region in the plane
of the complex velocity potential w and in the plane of the Helmholtz
potential, 2 on an appropriate region of the plane of the auxiliary complex

variable t.

Solution in details:

Since the velocity i1a in tho direction in which the velocity potential (¢)
increases the value ¢2 ¢ at E i8 -« and at C and B is +», DC is the free
streamline ¢ = U N where H is the height of C above B, and alcng the stream-

line Q&B, ‘y = 0,
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The transformation w = ¢ + iy ie now applied to the figure in the z~-plane.

AY

E | p  ¥=un e
W= O
O A T79
w-plane
FIGURE 3

The second transformation & = log g + 16 is now applied to the ﬁgur§ in
the z-plane.

From E to D the value of 6 is constent at 6 = -~ x while the value of
q goes from zero at B to U at D,

From O to A the value of 6 is constant at 6 = - x/2 while the value of
q increases from q = O at 0 and then decreases and again becomes g = 0 at A,
Since q = O both at 0 and A we must have a point X on OA which is a point
of maximod speed. Let q = g* at X,

From A to B the value of 6 is constant, 6 = 0, wvhile the value of q
goes from q = 0 at A to q =U at B,
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FIGURE &

In the mapping of the w~ and Q-planes onto the t-plane, the points (B,C),
D, (B,0), X and A are made to correspond to t = =1, O, 1, u and A
respectively, where ¢ and A are still to be determined.

i i P R
BCe B0 X A

t-plane

FIGURE 5
It will be convenient to introduce one more transformation, from the
t-plane to a p-plane, by the substitution, t = (! + t) gg ’
i.e.

When
t=o0, p=0
=1, p=1
=00, P =3 = woen




\+ 0o
Y=zo" , =0
Hence, when
o~ v
_..O* ’ \o — .

Similarly, vhen

.\:.,,"’\-%- ) %'\'.os
...“\a )‘P = .

Hence the mppanseo&he p=plane is as follown:-

i

€0 p-plane A B
FIGURE 6




Therefore by the theorem of Schwarz and Christoffel, cince the angles at
EO and BC in the w-plane are zero, the relation between w and ¢ is

A 0\ R
%&“2_ = CEH(Er) = X '\:-*\) (2.01)
o W= Zleg(ER) P (2.2

AC A: ¢ >1, w is real;
o'e B 18 real if o is real,

A D: V=0 w=sUHI

Lo B =0, and =T, a«ZH
Eence,w-mlos:;:
= ‘;;-; 108 (pﬂ L 1) ececaoe (2'05)

sincet-];t pe

The relationship between O and ¢ by the theorem of Schwarz and Christoffel

(since the angles at (B,C), D, (B,0), A and X are g— " g- , 0, 0 and 2% is

E¥eE k- -
kT K EREHEEED) “
Since, o
t = %\?Q_ ) 2\:&._ A0 Ji 3
ak - _Af | dp ~ dx
- @¥)



L= 35 ]

Hence; substituting the values of t and %-% in %—;- we obtain by partiasl

fractions

AL _ ¥
dJe == \_ ABXP.'\ ‘(9*" * ‘)%‘p Ver-12n \aﬁmﬁge 06)

. 0= %Qf:‘.—i-jtoa@fvi\)*ﬁ%%ba@g%m

vhere 7y is a constant of integration.

=NYE O\:-T%\*%@;;)'F @,%\%\Oﬁi% (2.08)

To evaluate 7, K, » and A we proceed as follows:-

At B, C, 2 =0, \p\ isigfinite

7“0.

Hence from (2.08) we obtain

()i @&

Fow, at D: _Q_-—-\:W t= ©, p=0

LW = 4'?2, \‘P-BL“ "'ff‘(‘i%@-‘y ‘v

A‘
-\ = %%}s%s\"")“ ST E (2.10)




o ¥ -

o N-'L%
at ‘) .
E.} K\ N9
‘. from (2,09) T A=
i ﬁ(\-}s
Le. = 1 .}%’ At . (2.11)

Hence from (2,10) and (2.11),

L K-t
L= T AN (2.12)

Again, dividing (2.11) vy (2.12)

Q-G
\ = — ACH = (2.13)
QLN .
M’ _‘-;-;‘ - w’q,
i.e. A= -ge?ij (2.1%)

Substituting the value of A in (2.13) we obtain

. \Qu'e\
P-— TZ.\R. e (2.15)

Hence at X, ‘?'2‘ = P"H ‘% C‘r‘ b= ﬁ) (2.16)
Again from (2.11) and (2.12) and (2.09)

= -5 (ER) - 1o (6% 1\)
tee ) = =~ \_T'-\- -)1Lo3(—=%§+%_\&3 (2.17)

Lo T ) M AT RN

wku.-‘ \Q.("



. Q= Log& = log(75¥)
Hence from (2.17),

\_,QSG._ = -\ +}log %’E%%_%—g)

R - pUrE)(+ef) &1 =0
since Gy | s wristas G'= o (&) ve obtatn

\R‘PQ'Q" G“'Q)"?Q*R')Q*da.)*'(" G‘P—) =0  (2.18)

Solving the quadratic, we get

R ':.
\a ng 5(\ e )+ \Km \tzﬂ- (2.19)

vhich gives,

Again from (2.18) o
\+%
b = Een )b -

-l = C‘*“}Q‘Ci )P“ \+ie

Substituting the value of p from (2.19), we get
\+R\/ \¥ Gt \*‘c..\ + \-wz \-m.e‘-
"’L\Q X L}[ \-Gé" \ c.."' &(2 20)

at 0, Eand A, G' = O since q = 0 at these points,

Buts &t |
© v

at -
E]gs P X\'
. akh, P= %

vhich gives,

EEPEAEIY ST ¥ SR aeTe Y
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Y sk
m«mé’-o, P: %J: (2.21)
R,

80, when p is either 1¥ or 17, we obtain frem (2.20)

o= L%E "R 4 \-—‘&]

L.BH.8. = R.H.8. if we consider the negative sign.

Hence near 0 and E,
\+G.‘" ra® ) __XTT_TEZ
k’"’ "'L \'C-\} \-c"-n' . \" % (2 22)

Again, when p -é', as before we obtain from (2.20)

®5-\ = Rge = 5%

L.,B.8, = R.H.8, if we consider the positive sign.

Thus near A,
F?.,, \‘W \'\’ Y;}: -—(‘“}a +'\is EW -\-Gl!?'a. "%‘] \W(a 23)

stnce v = 22 10g (3° - 1), the two values of v will be equal if the

expression under the redical sign in (2.25) and (2.22) vanishes and this
will be the point X.

Hence at X,
Q* R 52- G %'
w \=- G‘-" o (2.28)

But, at X, G’ -'l,% since @ = ~ n/2,
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Solving (2.24) we obtain
A, l=Jw + 4%
o = we| Li:i‘%

The second value is inadmissible, since %< 1.

Hence, o _ < {e
v o '-‘:EEE:
ILet q = g* at X,
*
o _ =R
R Y i v -3 (2.25)

Again, since w = -‘-f-log (p® = 1), we obtain from (2.23)

o= PuesRrC e BT 4

==

i.e.

w= %%@\—Wﬁ(\ﬂﬁ)& +9{\*W)& (& ,)36-%)(\% }%‘\b

+ Real quantity (2.26)

R.H.S, should have a varying imaginary part giving ¢ on @ = - x/2 as we
croes the jet from X to Q. This is possible if the expression under the
radical sign in (2.26) is negative

i.e, if Q. %
Q-RY (e rlera Lo

R

l.e. if %) ‘——%, since Q-b&meee%
Comparing with (2,25) we find that this is true on the line 6 = - n/2 ez we
crose the jet from X to Q.



Let ¥ = £(q) express the variation of the stream function with speed
q along the line on which 6 = -~ x/2 (shown by a dotted curve in figure 2).
Hence from (2.26),

(@)= ot RO LTt w20 10 T

(2.27)

Now, we have to fix the sign of the square root of the negative quantity

1.e.wehavetosee1fthesqtnrerootis+iaor-iavhere

= \e\z C\-\a.) Q- -3-,,) >0

moungucktonma,unmmtatmq-uma--x/ao Hence
¢ =1,
Consider a point Q' very near to Q.
At Q', G' = 1 (1 -~ €) where € is real > O,

Considering the flow near A, we obtain from (2.23)

- LW \ostL SCS;I_%,. _,\_\. ‘)\L \*Ge‘b ‘). j
"t

Nence, near Q'

0= Lo S - e ST
AREE)
- %uatcC&S—\+ o) F&J 4. \.’%‘1 \03(‘\_‘%*




Considering the square root of the negative quantity as ia' where @' = Jh' ’

we obtain, at Q'

w = LWog[hrew) +ise | + Wloa(RE)

= Wen () +Wlog (1) -ioce)x T+ SRl

Hence at Q'

W = LH- 52 Ps whave (= = @\“\E

i.e. ¥ < UBH, vhich is true as we cross the jet from Q to X,

This establishes that we must consider the square root of the negative
quantity as + i 4if we conmsider the expression of w mear A. Similarly, it
can be shown that if we consider the expression of w near E, then the choice
of the square root of the negative gquantity will be - io,

‘e from (2.27)

0(2) ='w.p. 0% ¥ Lo (G- w.)&:._- %‘*’“ﬁ*ﬂ‘m

- E.!i’cM\SLC\" P NI6R 5 -Gy \-‘-‘ﬁ"‘} |
- Q_\g _.9{.\*“ %_\_Q_w) 04. (2.28)
Let M= %’: 80 that M*= g

Hence, E..\ S\G.“. )J\QRM Q‘\%}'aﬂ-\‘\qlq' %%\%
0 = ? O-r) =20+ 3R +O-wr)nF | Mpw™

_C) %ow M(ﬂ” . (2.29)
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The curve on which ¢ = £(q) has been shown in the physical plane by the
dotted line XQ and is such that it crosses all the stream lines on @ = - n/2,

in the hodograph plane.

= §Q-nt) | [6 M (- Y- )™
Let Lw) '=-3€\'b"‘\" %—Q)f\'zq-r‘sw)am:g&w)%& i

8o that L(f\,} = LML)
When q =« U, M= 1

e IL(1) =1
When q = g*, L(M*) = O since #(q*) = 0 (surd is real)

Bence, L(1) =1, L(M*) =0 (2.31)
Again, from (2.25) M* = \:‘rﬁ‘

R = e&%)q_ (2.32)

Substituting the value of k in the expression for L(M) we obtain a second

vhich gives

form of L(M) as

R Sl ¥ e N L a8 Vs
\—-LM\ i -Wm“'% M C\+M9- -l 14 pAR (2.33)

S ————————————

Differentiating with respect to N we obtain

ol WY +2mZCi-we) -
A T W | MQrm>)] (v (v TV )

We shall have need to refer to the value of this derivative in later
chapters.



{v) Flow through a necked slit

We now illustrate ancther problem 'The Generalised Borda's mouth piece’
which is physically apperently quite different from the previcus example
elthough the solution may be carried through in the same way. Here the
inviscid incompressible fluid is confidned in e semi-infinite reserveir
vhich is bounded by the semi-infinite walls A’B’C’' and ABC having a gap
of width 2r between them. Two walls D'C’' and DC of length 'a’ bave been
projected into this semi-infinite reservoir forming & neck round the gap
through which liquid escapes, thus forming a Jet bounded by the {ree

gtreanlines D'E' and DE,

The jet contracts to the width 2or at E‘E far from the mouthpiece
where the speed of the fluid is uniform and of value U. (o being the
coefficient of comtraction,) The total efflux from the reservoir is
therefore 20rU, The speed of the fluid along the free streamlines D'E’
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and DE is U, Along the wet side and reservoir walls A'B’'C'D’ end ABCD
the surface speed varies. It is zero at the cornmers C' and C and at
the infinite points A’ end A, At two places B’ and B the surface speed
has a meximum, This follows because B is between A and C where the

surface speed is zero.

Solution:
Because of symmetry we need consider only one half of the flow field
in x 0. gVt~
n x ° ‘!’A/ 3 e _"__/,u..”/‘" v@\
= - @ /
VI~ -
€1 RN \ VY
aa -'}'5 ."":, f A“ ’.‘,‘ g q \ &
OB "] | Gee® s ‘
1\ Fat)
A ar® @~ ol ) = B0
? 1\ ::\.\~ : ;' ‘oj\,iil */ o . — ) v'v —cd
pol ! Yonamimal. Speed.

b | TN

LT =T
W
FIGURE 8
The value of ¢ at A and O 13 -» and that at F and E 4+, DE 1s the free
streamline = orU and OF is the streamline y = 0. The transformation
v v-0+ﬁpisnwappnodtotheﬁgure1nthes~plme.
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FIGURE 9

muecndtmmmionn-ug§+aumqpuutothe figure in
the z-plane,

From A to C the value of € is constant at -n while the value of g
goes q = O at A to Q = g** at B and then again falls to g = 0 at C,

mcunauwno--swaqman-ou
q=Uat D,

From O to ¥ @ is constant at 6 = - x/2 while q goes from q = Oat 0
tog=Uat ¥,

48
BF 0--% -
O=-W
M
a<-3}
D T e a"bg%
O-plane |
FIGURE 10

In the mapping of the w- and O-planes onto the t-plane the potuts (F,E),
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A
D, C, B, (A,0) are made to correspond to -1, 0, &, 4 and +i respectively

L2
where ¥ and p are still to be determined.

- ﬁq# L 4\
& [ B A0
E:]\Lane
FIGURE 11

Eere also for comvenience we introduce ome more 'runsformetion from the
t-plane to a p-plane, by the substitution, t = (v = t) 222 and as befcre
we get all the points of the t-plene in the first quairent of the p-plane.

The mapping is as followse:-

a.tc,t-%

E

Le= @)

since N L\

\{

atB’t-“

N\
\

|}
\ozﬁ%‘&ﬁ (£rom 2.16)
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The transformation from the t-plane to the p-plane has been explained in
mmmwmle.

If we now compare this problem with that of Levy's we find that
these two problems differ only in the pattern of streamlines and the
boundary conditions. The streemline pattern has been shown in Figure 8.
Applying the boundary conditions and proceeding exactly in the same way
as in the previous example we cbtain in place of (2.17)

ﬂ’ s 52 q“ : +§1b3(3’€‘»§>+ -}ﬁ*-b%( A:w w (2.35

e

and in place of (2.29),

- tb.—m‘ < \ém%_{m-\) A
\1 L%) - G~V % o’ *Q.(\faﬁb'ﬁﬂ- .%{ig _{)‘%.} .({ga\;s,g; o

36)
v Bot MATT whave s Alcy )

V¥ = b(g) being the curve on which @ = -x (shown by the dotited curve in

um 8)0

et W(M) = "%t&.\ Qv lermb-Cr-Floviy™ } (2.37)

(R-%) + 2+ WRIM2t-Li-Y)
So that,

\1GQ‘= G L + T U HM)
= GruDirwem)) (2.38)
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From (2.36), NWY= ¥V }
also, \'\(.%ﬁ”)-:’ vV

(2.39)
Rence, from (2.38) and (2.39)
RO = ) =0 (2.40)
Also, in place of (2.32) we obtain
.\é:gv (2.81)
Substituting the value of k in (2.37) we obtain the second form of B(M)
as
R\ = —“Vt M%._Q:M‘L) —@Q \-
) \:*Q‘\-ql) +Q.M \+ “( (e.82)
mo’ :é.’:\— o (201;5-
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CHAPTER ITI

FLOW THROUGH A NECKED SLIT IMPINGING ON A WALL

In Chapter II, we have discussed two problems separately, namely
the flow through a slit impinging on a wall and a flow through a necked slit.
In this chapter, we will combine them together and then solve it as one
problem., The inviscid incompressible fluid is confined in a semi-infinite
reservoir which is bounded by sides FP'R'S' and FRS parallel to a wall B'AB
distance h away. The chanber side has a slit of width 2r., Two walls D'F’
and DF of length 'a'’ have been projected into this semi-infinite reservoir
forming a neck round the slit through which liquid escapes.

°|
i‘ ) ",._ . !! > ¢
o " % ' f| ! ’ @
U4 ¢ 74 ¢l . Oy ‘ TEEES
B R YT\ ' S
G : il
Wﬁ%mﬂﬁwwm'%mmmm
U4 /7
' A B
FIGURE )

FPhysical plane; with axis of symmetry OA, chamber
sides F'S' and FS, Jet boundary D'C’' and DC,

The solution is carried through by mapping the flow region in the plane
of the complex velocity potential w and in the plane of Helmholtz potential

2 , on an appropriate region of the plane of the auxiliary complex variable
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t and p. Because of symmetry we need consider only the half of the flow

=0
; %:-—Ob

Saeu
P =0
Q, =V
= o, W =0 G =00
FIGURE 2
z-plane

Since the velocity is in the direction in which the velocity potential
(¢) increases, the value of ¢ at C and B 1s 4+ and at 0 and S it 1s -,
DC is the free streamline ¥ = orU and along the streamline QAB ¢ = O,
The transformation w = ¢ + iy is now applied to the figure in the z-plane
(physical plene).

\.\0
=) & W= G~xu (<
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The second transformation Q = log g- + 10 1s now applied to the figure in
the z-plane,

From S to F the value of 6 is constant at 6 = - ® while the value of
qQ incresses from q = O at 8 to q = ¢' at R and then decresses to q = O
at P,

From F to D, 6 is constent at 6 = - 3 X while q goes from q = O at
Ftoq=1Uat D

From O to A the value of 6 is constant at @ = = w/2 while the value
of q first increases fram q = O at O to g = ¢* at X and then decreases to
q=0at A,

From A to B the value of 6 is constant at 6 = O while the value of g
goes from @ = O at Ato gq=Uat B,

A®
©—-—o
e,B A A&L@:)%
=-L A '
®=-T
» c
=" i‘“’
D =
{-plane
FIGURE &

The mapping of v and @ planes into the t-planes, the points (B,C), D, F,
R, (8,0), X end A correspord to =1, 0, A, u, +1, v and § respectively.




=t ol A M > §€
BC D[ F R So o X A
{i=planc
FIOURE &

et e { T ke, =Bt vien

=, P == )

k>1and k' <1
The transformation of the t-plane to the p-plane by this substitutiom,.,
already been discussed in Chapter il. The points B, C, D, F, 5, 0, ard »
are mapped into the p-plane at point) e, iwm, 0, i— (<1), 1, 1, end ?:;s.
respectively. 4.e. all points in the t-plane are mapped in the first

quadrant of the p-plane.
[

N

D = s & A B
p-plane

FIGURE 6
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Since the angles at (B,C) and (8,0) are zero, the relation of w and ¢
by the theorem of Schwarz-Christoffel is

dw _ \ - LTl 1
axk L@““\&-\) . Tz_'gl’c-\ -\:.-H} (3.01)

Bence on integration, () —. Lk°3(‘t+\) 5 M

Applying conditions at B and it 1e easily seen that M = 0, | = 25¥U

Hence, w = BT-‘_-\,—) LOS C%:) (3.02)
G~ \J (3.0%5)
= = leg (™)) ?

The relationship between 2 and t is

L (=1 Y)
ok G+0% &5 - N(E2)E-D

since the angles at (B,C), D, F, R, (8,0), X and A in the Q-plane are
%/2, =/2, 0, 2x, 0, 2x and O respectively.

e, T= s G5 = @O S 4 -4

we obtain

¥ P~
2= 0 Sy

(3.04)
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and, by partial fractions,

~m\(\-D) /L _ A 2-D) . )
%:% \.‘:q@-) \ i B ‘\—&%G\*\‘w m"ﬁ;}

(-8 \ .
T E-)G> (ﬂﬁ‘s-ﬁt mm)(zw)

whence,

Q=+ A e (FRE +ﬁ@%—"’>}%%b3(%:%->
% _ (S- sc»)%(s}_ﬁi) -

+ B0ws) G- b+
There are six unknowns (7, K , A\, #, v and 8). .We have to evaluate them.

At B, C: D=0, k= {‘:; ') b= g:o
Hence, it can be easily proved that y = O, LoR
KA - i )
2= FHRSCR) g R ()
= 5 LA ded A .
o BN o
were 4= = {22 (<) ; L =18 e)

aap: SL = —3%{,, t=0o, P =0
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°e from (3-07)
<Y <D P ) }4} & 4)(6-9
..,r.i_c\.,; ’{3 \-\-x A=l w%) 5-)®%-2) (3.08)
w-i% \¥
At 0, S: QSL =
.p\ﬁ \" ?

Applying these two condit:lons in (3.07), it is easily seen that

) K | (S=1US =)
2 = fow) E-2%-) (3.09)

\ =P

‘F Q .,.ss@

Hence from (3.08),(3.09) and (3.10) we obtain

I W = =) (A=) |
2~ I3+ %Aﬂ‘)@a-%; (3.31)

Substituting the values of (3.09), (3.10), (3.11) in (3,07) we cbtain,

Q= - =3 (F) -G-8 C%@.%%)
= () i \ae\>“‘i’\°3( =) I

Allowing for the actual values teken by O we can write this as

m, (50‘3’::\:‘
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0 - o (D G i)

We now proceed to derive from ¢his result the perticular case cbtained
in the yrevious chapter.

From (3.12), SL( \.' w..\’ .\_:_Ef“)} (3.18)

Again since,

L= \oﬁ(%) +L& :Log (%’-éu)

S _odrards s Gy

nanconibotitutingtintomofp

= 9\.:‘6(-‘%—\) % (3.15)

. (9N
. - 26y L.
e o fl’ﬂ (’o“), d-L =} -ﬁ’ ?-‘ e'

Substituting ¢ from (3.13) and integrating z from D to F we obtein
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v "6.
S:I“ % (\'\"" _\3!‘5‘(\—\@\' \Tf' PF)OU‘O o

&)

S":: -t %QQWXT%)&(T‘% \t\@ d‘°

Hence on Mtemtion
\’
QL= Q’g g L\,?)( \"? *“ LL\.:"_‘Z’Y?M (3.17)

8 = 0 requires the upper-limit of the integral to vanish, i.e. {R is
infinite. And when | is infinite, we obtain from (3.13)

=N -\-4-\.03 QT%) A ‘\'\os(\*_:‘\'

s - ST B . Tt et e

Mchvcriﬁuth.aom:onoftheﬁrctwobh-ofmn (see 2.17).
Again, mﬂerapointo_¥k in the p-plane. Here p > | and also
p>é’(1.o. Rp>1)and p<é:, (1.e. @p< ).
mm(sta)nm

- -~=s: +5leg(RE)* Ha SRR ()
v SY_ _t L%)t(%%)(ﬁ%‘; T Gas)

Hence, ubotm

ctz.-.aﬁ%: ¥ ?"r"t )(ﬁ%
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Since 0' is the origin and A 13[0, -i(h + a]:l.n the physical plane

e = amg (e

vhen h -» o, R,H.S. tcnd to :l.nﬁuf.y which means that

i.e. h’-) 0.
; s w8
v -X-m;

Nence, if \R' > 0, \+§ =0
N S =-|

i.e. the point A coincides with B and C.
Eence when \2! 2 0, we obtein fram (3.13)

fL=-gmitileg LT") F33 C”“‘ o-t. (2:35)

Hence it has been verified that if the meck is withdrawn,  the problem

reduces to Levy's and if the wall is withdrawn, it reduces to Hachemeister's,

This verification also establishes the correctness of the result of this

new problem.

We can find out the complex potential w from (3.13) and (3.03) in
the same wvay as has been obtained in Chapter IXI. But since the form of

P is very complicated in this case it is found desirable to close this
chapter at this stage.
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CHAPTER 1V

JET THROUGH A SLIT IMPINGING ON A WALL AND A FLOW
THROUGH A NECKED SLIT BY A HODCGRAPH METHOD

1. Jet through a slit impinging on a wall

The physical and hodograph planes are shown in Figures | and 2. It

is sufficient to consider only one half of the plane because of symmetry.

(o) %1—0

A B=0;¥=0
Physical plane Hodograph plane

FIGURE 1 FIGURE 2
The flow is governed by the equation

2 W oo
T rasp e = O

(8.00)

Our problem may formally be stated as the search of the sclution of
equation (%4.01) subject to the boundary conditions for the portion ABCQ
and AQDE. The boundary conditions in the hodograph plane are y = 0 on AB

(0 «=0), y =UHonED (0 =~-x) and ¢ = UH on DQC where U ie the velocity
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of the Jet at infinity downstream and H is the height of B above C and
¥ = 0on OXA (0 = - x/2) ¥ = 8(q) on XQ (8 = - =n/2).

We will first consider the portion ABCQ with the following boundary
conditions imposed on 1it.

That Y = Oon @ = 0 .
¥ = UH, (x/2<6 <0) = hev (%.02)
¥ = 8(q) on6® = -x/2with #q) = (0O, %Sq<q'
i-l(q)q*<q<0

q* being the velocity of the fluid at X.

In practice it is found convenient to obtain the solution into two
parts which are superimposed to give the final result. In the first part
we f£ind the solution for ¢ = O on AB, ¥ = O on AQ and y = UH on BQ and in
the second part we find the solution for which ¢ = O on AB, § = 0 on BQ
and ¢ = #(q) on AQ with 8(q) = O on AX. These two boundary velue problems
will be treated separately. We will call the combined solution VR i.e.
the value of ¢ for the right hand side of the hodograph plane.

- Y=o
i
D ,I'b

(%.03)
Solution for y;' )

We require to find & function ¢(q,0) which satisfies (4.01) and the
following boundary conditions:-
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(&) Y=o o =0

(®) W=0O an e""‘"-%

(¢) W=UW wien q,=V G%C@(O)
The most general solution of (4.01) is given by

vy = [AQ bi“]s"'“@\e“'&) (4.08)

If it is to satisfy (a) and (b) then (4.03) must be of the faorm
V-Aqnsinrﬂ.

But, ¥ = O vhen @ = - x/2 suggests that n must be an even integer. Let
n = 2.

2%

Hence, ¢ = A g~ sin 26

Hence the most general solution of (2.01) satisfying (a) and (b) is

| =2 eox
V= E A% Sim2k® (4.05)
l
Again condition (c) requires that ¢ = UH vhen q = U.
Q .
Uk = S AU Sinaxe (4.06)

By the theory of Fourier sine series

o © ok o
1&;)\-\ SIN2KO — ng SiviakBd.e

A\
°L

which gives, A = (o) if K is even

- 49%‘3{& "when K is odd
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Let | = 2n + 1 where n is an integer.
4nre

o0
Y
From (3.05) Y = E-— 25 -az-\.,g-.\(‘v) Sin(@ans)® (s.01)

"=o

e \\}{ — ﬂ%’%‘iéﬁ\ Q%f‘g::@ma;e

=0

, 00 AN
T am () simtaerae
(=]

o0
=\W\n vmt’l °Q Z.Q-‘T_I.:"‘
o

- ) gﬂqbénﬂ-a
i tﬂﬂ\- \_ g UO\NNC-%:\)M (8.08)
Substituting this value in (8.07) we obtain,

Q) ~\ ¢ QMR
o

Solution for ¢\2)

AL
Q) Lanie
u) é-.(‘\ﬂ. e

In this problem we seek the solution of (%4.01) with the following
boundary conditions imposed upon it:-

‘(""°' oNne=0 e 5

V:Oa‘g_LQQO %%
':.Z(.QJO([Q--WMM - O A%

Y ) = 2 ) <=0 s X8
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Finite Fourier Transforms are used to transform (%.01) with respect to 6.
The resulting ordinary differential equation in q is solved by finding the
Oreen's Function to give the transform of the unknown function ¢{q,0).
The required solution of (4.01) is finally obtained from the inverse
transform.

Define, Y (‘b .“_> g *‘(‘b 0) Simamedse (%.10]

ottt W(U,0) = -}_’_Q(%,ﬂ)s\_mme (k1)

Multiplying (4.01) by sin 2nf and integrating with respect to 6 from

@ = - %/2 to @ = 0 we obtain, s "w
~* P
° 5‘;‘;,_S\.V\.'z.«r\ecl.a -\-S"- vs"""med-e-!—g% S Swanede

=% -1 =o
Hence, we obtain the ordinary differential equation

£3vg - =P

Memhmmuthm

R3] A =)

(%.12)

The required Oreen's function is the solution (G (q q') of the equation

dG e _
o%q)[_‘b da, |\~ ?%'G" =24 q,’) (3.13)
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which (1) 4s finiteat g =0
(11) =sssumes the value zsero on g = U
(141) 4s continuous on q = q'

In (%.13), 8(q = q') is the Dirac Delta Function.
The most general solution of (3.13) which satisfies the condition (1) amd

Wy A V4A] (x.18)
& () = q" o
vhere A and B are constants. b Q—J) - '35) o, <

We now choose A and B to fulfil (111),
This requires that
Y. \an ,y \@n
- B (&) —(& ]
L (%) ) (3.15)
Also on integration of (¥.13) fromq e @' = 0 to q = @' + O, the continuity
of G requires that | |
@4sT™ =
v-o =
i.e. G.‘ - '%{JI (#.‘6)
Hence from (%.14) and (#.16) we obtain
N=1

B‘."“‘ L&) (.\_)_9_.,,_(&!,)( _‘) 9-"""\‘\' = -f{; (%.15)

Hence solving (%. 17)m(h.16)weobtnn 'M\ -
Ao 4\.“ UMELU) %f) ] (.18)
e
B = I (%’) ™
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Substituting the values of A and B from (4.18) in (’G.l‘) we obtain the
required Green's function of (4.12) namely,

G\ qy2n g o Qv
) = i«&) W@

(5.19)
(%)™ Y =B v

If we multiply (%.12) by 6{q,q') and (4.13) by ¥(q) and subtract, then
on integration with respect to q from q = 0 to q = U, we have after
making use of boundary values of G and ¥

Y= (LN B! e

Thus on interchanging q and q' we may obtain the required solution of (4.12)
by evaluating the integral

v = e ey TN

We have reached o stage where we must specify 4(q') more fully, we have to
consider the following situatioms for 5(q')

© wvhen %(Q,

LC%) i Fo s % <&, (2.22)

Also we have the following range of integrsation:-
@ 0 &LV
(v) o (c\’f & <o

(&.23)
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So, from (4.21) and from (%.23) when q < g*

@)= - g:%u 200 (3 TS (S e

%5 Sg"%,‘{’)(%[(”)f(v)z}’” fefk,_( SR 2% o

Since we are not interested when q < q*, we will consider the case when
q > g%,
Hence frcn(lll);nd(ha)vco‘btun

@ E i“”t(v) “(:'.)n_]s“(% -uﬂfs nane
\\’ =¥(*9= 3_2 {%s(uﬁﬂﬂ (‘\,)j g—%’r)"&}s . :: :6)

It can be easily proved that the infinite series in (%4.26) are uniformly '
convergent. Hence changing the order of integration and summation we
obtain from (%.26)

RPN~ (G B S DR
\\} g %.L&,){f_c $Sinane (1) 'XL%)M (x. (u e1)
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i (%TZ—\\)“ Slvnn® S&@S‘ﬁ O
=tmpog S EUART (4

. q, q,"'" %‘Zq’ﬁ-{)q b4,28)
T L @ voqtatcoat gl “s.,.g_%&)%w o
sinilarly, v——_
i@\ s.nam@,—)“% ¥ l
%A Q;"'Uq (4.29)

[ ‘C*’f&g%“”W‘ W2l en s ! Pinde
mammgmmm of (%.28) end (#.29) and writing M = = q’
W --— ‘“‘M’ 2" ve obtain Q«rm@- ‘2-'1)

V\QIS\- DX
\\’R. Sl SQ‘(W) M4 fm‘-n‘%’co@-\-w‘\ +‘W W)W(u 30)

Again since, ¥p .'g) + (2) 1 we ‘set Q'LM) \)\m)“ Sk
from (4.09) and (4.30)

7-“% ‘lﬂq%% '2-0“&\‘_( ) m‘m) Meltr/

mi‘ WEMBM (8.31)

(M3 )gﬁ_ swa.Q V‘\clM'
SLL“ ) MraRw 2844'4 g Q{"tma_a.\.yel) .\.@s\,‘m)
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Integrating by parts and remembering that we are working in the fourth
quedrant, we obtain

s \—Y\._'J-P)I.\__———-»
g\*m K%m“-t\' Teamew'd

WF ak : 1
- G ”%_MW x +} °u- x:\ erfema) )

M‘.\-nw)w}
= _ta’ %\A’N ,/LQ_B} %. )

'd&‘\!

g\—(‘“"\ \-k-‘z.n ; aoo?.m-n“\‘\"*
Wx L

- v«-vw)’la}-w-g&{t@e 2fi }‘%u 33)

- .2_ W Cnas)  2)% ) ~SiNn206
Hence substituting the values from (4.32) and (4.33) in (%.31) we get

‘Z\N wl r&Smw}{,uab‘ ﬂ% |42
\=4 anisw%

o5 N AL 5 0 n'S 28 ot
tﬂ-v\%“* o \-)—\:S O -‘n. swo,.ﬁ’} (u 34)

gb“ ‘TT “* -ka- ““\ &ﬁ
“% =Sn 20)

We shall later need the partial derivative of th:ls e:qn-ession with

respect to 0.
Differentiating with respect to & we obtain,

2-vH)Cm2e  _aww  Ci-nd)
%-“% (}_z)q,+4‘.@s:ﬁ9 T+ 2(Cen28+

H&‘“‘ M (8.35).
;ﬁ‘\ e *')-t?&wﬁ\'% L‘i""’“ enib)cut’

+2%§ (gﬁ%&%' 2R 2B
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We will now proceed to work with the left half of the hodograph plane
and obtain similar expressions for 'I. and its derivative.

Solution for the left half of the hodograph plane

For the left half of the hodograph plane we have the following

boundary conditions:- W=UM E
>
Yy=UH on 6 =-x g
¢y=8(qg)on 0 ==~x/2 ' 7\‘
¥ > (4.36)

and ¢ = UH when -x < 0 < -x/2

Here also it is found convenient to obtain the solution into two parte
which are then superimposed to give the fimal result. In the first part
we find a solution for which¢ = O on DB, ¢ = #(q) on BEQ and ¢ = UH on IQ.
I, the second part we seek a solution for which ¢ = UH on DE, ¢ = 0 on EQ
and ¢ = O on IQ.

These two boundary value problems will be treated separately. We
vill call the combined solution as ¢, 1.e. the value of § for the left

half of the hodograph plane. "

[0

L

(5.37)
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Solution of wé' )

Here the boundary conditions of Yy are as follows:~
y=0 on @=-x
¥ =8(g)on @ = -x/2 (%.38)
and ¥ = Ul when -x < 0 < - x/2
But we bave already solved the problem for which y satiefies the following
conditions (see the solution of ¥y 1.e (4.02))
¥y=0 on @ =0
¢ =8(q)on 0 =~ xn/2 (4.39)
end ¥y ~UH, -n/2<60<0
If we replace @ by -x - 6 in (%.39) we obtain (4.38). Thus, if we replace
@ by -x - @ in the solution of ¥, we will obtain the solution °f?§,”-
Hence from (%.3%)

o, FOER e v
"&ﬁ h“%w‘%t%}d" j) '\"V‘% Sm'm?’"‘

Solution of 'ﬁe)

Here wve have the following boundary conditions:-
() ¢$=UH on @ =-x
(44) ¢$=0 on 0 =-gxn/f2
(141) ¥ =0 when qu U (-x < 0 < -x/2)
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The most general solution satisfying (i) and (41) is

2.
RAYA ! Ce + 4 ZQ‘W% Swvi2Me  (4.h)

The Condition (iii) requires that y = O when q = U

whence,
220 (8+T)= TanwlSiname

By the theory of !'ourior Sine Series we obtain,

Cn = Lo 1
L = T ATy U2
Hence from (4.41) we get
“(( .._'?.-.\l."!Qe-\-\\)_?-U** C’“)Sm‘me

0 v(\."

But, it can be easily shown that

&'—3 S ‘“Qﬂezm%—’gl%m, as vetore, %=t

Hence,

-0

\VS-;%FU\‘:(S'* %—) = H.b:"“%‘\ N g_'_wge } (4.42)

Hence from (%.37), (%.%0) and (%.42) we obtain

ounb! € an-Suaa® \)“ A28
t —nd (T = G Wstae |

\\{\’ = ‘Z\\ \-\(9.\. 1) 5_\) \-\ta_“sl mﬂm}

Q_\)\\ cLL QM-
%. \-M °>‘)-e “&,‘ t&m{h sg;)
S 2w’ Gong 1 sﬁge




Differentiating with respect to 6 we obtain,

- M -M1)E0s20 ‘20\~ MACN25)
W+ A T S0 W rawcasivt

> vieans _ 4o L\_C.e?z:@
\‘(\.__ 3 ‘\i%RIEZ'— \agn’cme-\-\c‘\ »
2 & -
Yy ;..7“’*' R % w «ﬁﬁm &%‘gjﬁy

At this stage we shall state that since y satisfies Laplace's equation,

its partial derivatives must de continuous across the line XQ in the
hodograph plane and on this line we must have

)e-_-‘-‘{w ) O (a)

mmmumu@tmuauuchof(b.ss)m(n.n)
is singular vhen @ = - u/2. To avoid this singularity we will deform
mmorm-m-cnmmm\/\'mbermwmg

0 tend to - =/2. Then we will make use of the result given by (4.45).

Thus to find, ‘au_ P\'K Mo h‘lc‘ﬁﬁj Y

1= %3-— 3;.\'\" ne+2renien204+w

we will first consider the expression

= Muadw zeﬂ\"‘ z W -\-\'\ *?—‘"’
" é5-\‘\‘ H *-E‘). .gz H

— F—-‘: =4 ——tegvhere T=—it
a}-\‘\"""' T =




.-,534»

Hence, tm’“ -Lg % -——9- ’l oLV\,
X = ©>-F AW | HETE \’\‘q' “'Q'X

—_— __.;‘_2._(1‘_‘.11] (4.56)
\ % A ¢
1= 9*7'“/9_ *dM' \'\'1’-""1'
]
I‘l = e5-L g “'O\M' \,\v\..__-.-‘: "
First we will consider the mtegml?
-LB \9 ¢
when e _»_. ‘T e ___’L ) e —»-\
and bence, t"'“" ) t"*-L“ (.47)

T—>M™ -r-;\'\
mungum:ltyotlghatn w P (=¥ where M is real). Let us deform

the contowr by a semi-circular indentation below the real axis when T

approaches YA from above. Thus the integrel is regular on the new contour.
This 1s quite clesr if we ook at the drewing in the W\ ’-plane

A ;
[ SRS SRR
M-piane
Thus - 1
’ \ 2 '
. A_L_ 4 — “M '*. \8 w w&
Zorn) s 99"{[% FHE) J ]
2 “*:. Dé_l_- n__.a‘“'_\. U.W\ 12‘ M'
an' went - 0>-T ) ' Wit

>

m«r-\v\mtherulana
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\
AL W

I,\ ':‘_gxa,m" + tﬁVE {residue of the integral from
o %,uocny\ )

édmtu the Cauchy Principal Value. The positive sign in the second
term of the right hand side is due to the fact that here the aeu;e of the
contour is anti-clockwise and we multiply the value of the integral by %
since the contour here is a semi-circle.

Now residue of
'r"- "
‘I\’ ”(ﬁ\\-\:?-%
—%(&\ linoe'l‘ W\ vhen B~ %):_
Hence
I \‘\‘-M‘ . A
I = %&WN “\":.M'L s %“(m' “u_-r (%.48)

deform the contour by means of & semi-circular indentation above the real
axis as T approaches |\ from below. The integral will now be regular on
this new comtour. This will be clear from the figure drawn in the
W-place.
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TF
Y
!

ol

Thus,

Iy= .9-)-%8 \\: 'd‘?\‘ 9—7"'/3.8( Yau §L P + UO\HJ
e sggsc.)ﬁ Ml o E}_iﬁ"ﬁh' |
&‘ v e %”&émm of the integral

from B to C at W' = 1)

aince T = when 0 = - n/2.
The negative sign in the second term of the right hand side of Ig is due
%o the fact that here the senfe of the contour is clock-wise. Proceeding
in the same way as was done for Iy we find

1= g-(m\ E‘“ (Iﬁ'\ W= (5.39)

mr-iummm.nmm(nus). (ne).m(uug)

. S (.IR\ (%.50)
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Mow applying (h 45), we obtain from (4.35), (4.44) and (%.50)

S (6‘4«\ @“':"-\ﬁn ) i@;‘,’ﬁ'}m (3.51)

This is a singular integral equation, the singularity being at \»\\ =
since A * <W< 1, The integral on the left is now to be interpreted

a8 the Cauchy Pr%.-ncip-.l Value. To solve (#.51) we proceed as follows:-
Let H‘:? and t‘c"':.“t
Substituting these values in (4. 51) we obtain
S \G oLW @«t\(\ ~-Pey (J-t)‘éw
Again writing \r%f' = Qp)ama m* =, % (4.52)

we get

‘ Ap :
§*@m B-0-p0)  Qye-

(%.53)

This is not a standard integral equation owing to an extra factor in the
denomingtor in L.H.S. But (#.53) can be brought into a standard integral
equation (sometimes called the ‘aerofoil equation®') by the following
device:~

Equation (%.53) can be written as

éﬁ%\ \*K. _Eg -l &*k‘)‘b




¥=\ ’\,L':. Q.

Hence vhen p varies from p* to | i.e. vhen p varies from a value less
than 1 to §1, u varies from a value greater than 2 to 2, i.e. vhen p
increases, u decreases, i.e. gmu negative,

Hence, we must take
W g

W
R . . (8.56)
e T T TEa

Aabs .é-'L - -~ ;'\A_:—
3 J=4

Also let, Q(p) = G(u) (%.58)

(%.57)
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Substituting the values from (4.55), (#.57) and (4.58) in (4.54) we
obtain
\

:.———-

gv'
m u-— AU

or

g%'j—\@ M) do = L

(4.59)
where \Q,L\&B"’ \I'—'E_% and -@L‘Q A-Q‘ (4.60)

LS e
Let == 2. . Hence from (4.60) we obtain

& \QL\Q I = @—L"'B (4.61)

This is a singular m.ml equation of the first kind. To solve this we
refer to Integral BEquations by Mikhlin, p. 131, Chapter III. To quote the
result,

A _;__‘S‘SEY_QQ&Q

vhere @ and B are the beginning and end of the unclosed contour.
Comparing (%.61) and (8.62) we obtain

A
__ Ju-jfu-ay fordh | _Z=
RO)= o= ~->~\&_ =TT T )

5.63)

Msmce v {_\ and -FL\»L)‘E’B o 'éfi—c;
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we- o\shaln j

o= e AL e R e
=X

By meking cubotitucim, AL = :.Q.qago-. > we find (-v-o.

g Jeaewan = e +a-4l5w4)

(= K > B

(4.65)
mwtmmmimmmrmmmwmwm

(4.64) has & singularity at u = r we find from Cauchy principal value,

G | 7 A=) = 0 |
S Sllpeahsida -ti,""Qﬂ (4.66)

A ¢
2

Hence from (4.6%), (3.65) and (4.66) we obtain,

h(‘(\ . e QLQXN - UIN = el
= T T ) V- (A-Y) A cx-q.imf )

i.e. DRV RPN 15 L
e = - S T

From (%.60), we obtain

QL yu-2 {32 +Teilur2)
G == i) -
and from (4.55) and (4.58) we obtain

Qv : 3 ‘
R = —{ = *’.."'T_\*? |
+2 o Tg,_
= {¢* (\+?3°=—‘2-'?§\*-v“)+m‘~rgg\*\§‘l=
ANEHMNCERGIR)




v 60 =

Q,(\ﬂ e erap vt R (el

o 77 Tae) e JG-eR0-Fe9
where & = T{&.L (say) = constant

(4.67)

. = ol A5 o(1+E*) et e (i e |
dp = e WQ*\oN\oS@ \e«\\a\aﬁs J

Hence on integration,

_ o (a1 Bd—ap(i+p%)
—(p)= 7_\ S (\_\,P)r B- P \’*) d@ +f

vhere Y 1s & constant of integration
g[(:\ el p# -\-M*

Substituting, p - p* = (1 = pp')uelndcnintogmtiwuw "f"@

L) = TW}~ ;ﬁk&%ﬁ%ﬁﬂ}+{ (5.68)

Again, since, \_L‘p") =.0
o ey =

we find,
A== ,¥=o0
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[
Hence c,:-%\: gince O = neu
This is how the constant is evaluated. Substituting the value of o
nnd" in (%.69) we get

) %ng -\w*} i

_ I \Y(l?-\»*3 W)

and since p = ,p--“r’,weobtain

Lt A e N R () |
W= ‘cwsl W2 ) |
ol.L, _ __ L. R T Qm*"’

= ! \ @ A= %’L) (&.70)
AR {? ‘W (W) \\)
vhich agree with the result obtained by Schwarz-Christoffel method.

Flow through a necked slit

The physical and the hodograph planes are shown in Figures 3 and &,
Because of symmetry we consider only ome half of the plane.



va q,%\)
PE:ical plane Hodograph plane
FIGURE 5 FIGURE 4

The phyesical plane hes already been described in Chapter II. The
boundary condition in the hodograph plane are ¢ = O on GF (8 - - n/2),
YoorUon ABC (0 = = x), ¢ =oxUon CD (0 = - 3x/2), ¢ = orU on DQE
where U is the velocity of the jet at infinity, ¢ = h(q) on BQ
{locus @ = - =).

The distinct features of the streamlines in this problem are that
unlike Levy’s problem, all the streamlines do not cross the line EQ.
Moreover, the streamlines which cross the line BQ (locus @ = - x), cross
it twice. There is only one streamline which just touches the line BQ.
Beyond thie line, the other stresmline neither touch nor croes the line

BQ.
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This problem though physically different from that of Levy's has
been shown already to bave the same mathematical character. Hence ve
will not solve this problem in details. We will show how to match the
boundary conditions of this problem in the hodograph plane with Levy's
and show that it must be derived from the same singular integral equation,
The solutions may then be found directly from Levy's. We proceed to solve
the problem as follows:-

For convenience, let orU = |{ where K is a constant. The boundary
conditions in the hodograph plane will be now ¥ = |& on CD, D@E, AB and
BC, ¥ = O on OF, ¥ = h(q) on BQ. We will then take out \K from each of
the boundary values. This is allowed since | is constant. We will
denote the source and sink by a dot and a cross, In fact, the following

fhra Qisgrams represent mathematically equivalent flows.

%

FIGURE 5 FIGURE 6 " FIGURE 7

Pigure T follows immediately from Figure 6. They differ only in the
direction of flow of the filuid, since the source and sink in Figure 6

bave been interchanged in Figure 7.



FIGURE T FIGURE 8 FIGURE 9
Figure 8 is exactly Levy's problem and has been solved previously.
Figure T differs from Figure 8 by Figure 9, But Figure 9 represents a
flow between source and sink symmetrical in the hodograph plane; hence
the normal derivative % is zero of the stream function on the dotted
line (locus @ = = x) in Figure 9. So we will get the same integral
equation for this problem as has been obtained for Levy.

Thus, instead of (%.51) by setting b (M) = oxU [1 +W(H)] we
obtain in this case
\d&_ M ol - o 1
dm’ (M= v =i T 2 (l-ne)2

(4.71)

The solution is carried out exactly in the same way as was dome in the

previous example and since we have set h(l“\)e orU [1 + HQ«Q) ), where
M= 9/U ve £ind by applying boundary conditions on hm) at Q
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{where q = U) and at B (where q =~ g**) that H(1) = H(t*) = 0, t# being
equal to -L;: . These two values of H give @ =Y = O in (4,68). Hence

from (%,68), instead of L(p) we obtain in this case

—_C-CP-pN-p¥) ( (s,
HeD = - i *?Z(PQ*V‘>§ o

2.
and since p = W\! , p* = t#2, we obtain from (%,72)

o) = ‘%’(&E‘;"“ Qw2 (L 1w f (5.73)

0 M‘*)°‘+ ‘M\""C\*?"‘)

Similarly, we obtein from (4.67)

__Q’)-- - (\_\.“ﬂ) L' ‘*‘:’1 (5.75)
ow\' W (\*'W‘ .y \—w“‘@“

A e TmaWR o

These tvo results also agree with those obtained by Schwarz-Christoffel

method.



As in Chapter III, we combine the two problems of Chapter IV
together and then solve the new problem by a hodograph method, For

Figure 1
Physical Plane Hodograph Plane

The physical plene has already been described in Chapter III. The
physical plane has been divided into three rogi.o;zs and these regions
in the hodograph plane are marked by the letters I, II and IIX,

The boundary conditions in the hodograph plane are § = O on
AX (6 = = %/2) and AB (6 = &) ¢ = K (where K 1s & constant = UH)
on GRF (6 = -x) and FD (0 = - 3x/2), y = I on DIQC, DIQC being the



free streamline, ¢ = h(q) on RI (locus & = -x) and ¥ = 8(q) on XQ
(locus 6 = - w/2),
Considering the portion ABCQ in tbhe hodograph plane, we find that,
Y=0 onb.«-0
¢ = 8(a) on 6 = = x/2 such thatf(q) = 0 am aX
v= WK onQC (-x/2<8<0)
Hence cmparing with (#.02) we obtain from (%.37)

- " % -\ 2
Fam 5\'-‘5-—%2’51" §+ \%tnmi___s__iﬁ-\:': 2?7\7.9}
- - ki RIS U it i ok o
- ﬁtf‘“%'imie}"%&é@tmi%%}m (5.0t
- 2,
’+ %%\dl.lu G S
ﬂo

Vg _ being the value of ¢ on the right hand side of the lime AQ,

Differentiating with respect to #; we get

- 8% U= )Cn28 -\aq'\‘
W C‘ﬂ"f‘:.-n+) Harsinae)®

S>We _ _ax (TP Y) =
K= TR Toartemnr A
L20 de (A cenag)di
TC ettt 420 n Coo2
For the portion AQI, we have the following boundary conditions:-

¥ = h(q) on AT (6 = -x) such thet h(q) = K on AR
¥ = K om IQ (=x < 0 < -x/2)
¥ = 2(q) on AQ such that £(q) = 0 on AX
It is found convenient to obtain the solutiom in two parts which are then



superimposed to give the solution of the entire part, We will call
these two parts as y(‘) and (2) and the combined solution as ;.

\)
R

\\)g_ = *’\.. +‘\’Q‘" SN

Here, y =0 on@ = - x
¥ =K x <6< -xf2
and ¢ = £(q) on 6 = = n/2 with 8(q) = O on AX
Hence replacing & by = x = @ in (%,37) we obtain,

W IR “\‘_“22°}+\<-L AR - e
e S Kg)&&“%’%m+ﬁgﬁmig]g 5% X

Solution for *(2

Here, § = h(q) on @ = -x with ¢ = \{, on AR
¥=0 on@=-xf2
and ¥ = 0 % <0< -xnf2
Hence replacing & by @ + n/2 in (4.33) and remembering that h(q) £ O on
AR (q <<q**) we obtain from (4.24), (4.27) and (%.33)

5,‘6:“{ Y-S enma®

C;) “'&.Q*.w _ti"‘(\.}nﬂ')cu)?;e
Yo = ‘ e
. QS’W) %4 T %
vhere {267

But h(M) = [1 + W(})] where B(1) = B(t*) = O.
Substituting the value of h({]) and integrating by parts we obtain from (5.04)
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@ -T\% %%} i ’Tbm’s\. Sw‘l.ﬁ}

Yo = %-’ca, S‘M\" M-‘&S\;F\ow&é‘—st%}qb.os)

Hence from (5.05). (5.0%) and (5.03) we odtain

’ . =) ‘q_ ¢ \d-\. =\ R !
e\ =
% S B e p{Se e
“ﬁ “*
¥ = ) “ a \ 2
[ _KSCL“ =t Cq' =&l 4. Sd,\\- L X o,
W ﬁ‘wam "'%' I’ M%% (5.06)
* >
Differentiating with respect to # we get

'du (e "-m«.m)g'« C\h\%u‘
&4 ) ) "“
-‘«' 51' n*an
)W\— -
by 5 o7)
'\‘\‘\-‘u\\\‘%ﬂ\'* ““ H-rm wze\-n*n‘

mmmimm.wmmrmmcmum-

¥ = h(q) on GI with h(q) = \Kon GR (0 = - x)

¥ = Woa (9 = - 3x/2)

v= [Kon X (-3x/2 < @ < -x)
It is convenient to obtain the solution in three parts which are then
superimposed to give the final result. We call the entire lolutiony,r
i.e. the solution of ¢ on the top of the line GI.



-] r{a =

> w.” |
= X+ /& /@
wEh (@) s~ s
\ \) (@) & (5.08)
wowe = W YT Yy

Replacing @ by « @ - 28 in (5.05) we obtain
W = %\-&m psd % X Cnad
Q) :r-‘_?tasﬁ = e ﬁ%ﬁm, -E\h—-——'_’ S

Ye = \ R . \ N o
B\Y AL <RESA2LE Tf et AAAL- e (, Aix
5 &* .

Replacing @ by € + n/2 in (4.%6), we get

@ pASS AN " l@
= K Kob==\ WS ALS o
“:’-T T (%éﬁ\) o -'ﬁ; t@gﬂ, \%\{LC@DQ@} {5.10]

Again replecing 6 by 0 +n in (%,09) we get

®_ _awe-t ¢ sl
\VT - %&t@%% e \I. 11,

Hence from (5.08), (5.09), (5.10) and (5.11) we obtain

_ o awk %’W © .,,\4, =\ Cowdsinns
Q\%T“" *—ﬁt&% \ 4-Ca2S 'ﬁt@l’\ - @

l
- ¥ M% Q—m@%@}@ 4 K\t =Can2bl5.12)
'ﬁgﬁq ' ﬂs\’ =N T‘l ;ﬂ;t‘g'ﬁ% =< \lﬂle'%M
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Differentiating with respect to 6 we get
2% 2% Q- \'ﬂ)&)z&[?\‘e'{\kékmﬁh |=(\-r8)sinae
A % tl\'f."-—(\-\-m“)%'lg"’ [Q-r¥)sinad]

Yr_ L.%“;}ﬂ _t_«&g.\_*)i&ﬁ—
— H\“ Q-r@)>+40Si< 20

and (5.07)

‘A-rv-
Q'SM ‘(> t\‘ti N‘\!") d“"( \*“‘*‘3 @"‘)L (5.1%)
Again since, C‘“—S he C%)e _w:%obtam from (5.07)
©= -1 =<

and (5.13)
\ W~

um' e
gdﬂ' \-\-tt‘ - .é‘?ﬂ:\" tt‘,-t'ﬁ')(\-ﬁ\k“) . (5.15)
numwmo--ula,mﬂmmumnmmum
of (5.02) and (5.07) 1s singular and when @ = -x , the third integral in
the right hand side of (5.07) and the (same) first integral on the right
band side of (5.13) is singular. But it has been shown in Chapter IV
how these integrals are reduced to Cauchy Principal values (vide %.53,



o T2 =

4,.5% and 4.55). Hence the singuler integrals given by (5.1%) and (5.15)
are now to be interpreted as Cauchy Principal values.

Proceeding in the same way as in Chapter IV these two singular
Mcqutimmre@odto,

ZS \Q.;QL) a— S R"L‘q %:‘ ~r+0.
A .
&_V&\ L\L) —J:::; +2 Sf;,gbk)-;‘ =0 (5.16)

where ky(u) and kp(u) ets, have been derived in the same way as in
Chapter IV. Analytical methods of solution of these simultaneous integral

equations have not yet been developed, but would provide the subject of
further work in this field,
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