https://theses.gla.ac.uk/

Theses Digitisation:
https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author
A copy can be downloaded for personal non-commercial research or study, without prior permission or charge

This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given

## SUMMARY

The present thesis discusses only problems concerning incompressible and inviscid fluids.

There are various techniques used to solve hydrodynamical problems in which conformal mapping plays an important part. In Chapter II two problem have been separately discussed. The first deels with an inviscid incompres fluid escaping in the form of a jet from an infinite chamber through a slit impinging normally on a wall. The second deals with the flow through a fin Borda mouthpiece. Here the inviscid incompressible fluid flows out of the reservoir through the mouthpiece to form a jet which is bounded by the free streamlines. These two problems were examined by C. A. Hachemeister and H. C. Levy respectively in the quarterly of Applied Mathematics, Vol. 17, 1959, pp. 299-304 and Journal of Applied Mathematics and Physics (ZAMP) II, 1960, pp. 152-156. It is shown that from a mathematical standpoint Levy an Hachemeister were dealing with the same problem and consequently these two problems are included in one chapter. In Chapter III, the work has been extended by combining together the main physical features of the two probles of Chapter II. The new problem has then been solved by Schwarz-Christoffel transformations.

The transformation technique while mathematically very elegant suffers from a serious drawback for it is limited to a potential flow satisfying Laplace's equation. Thus this method cannot be used to solve problems of compressible fluids.

## All rights reserved

## INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.


ProQuest 10662285
Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106-1346

The hodograph technique not only solves the problems for incompressil fluids but has in other connections been adapted to solve problems involv: compressible fluids. The application of the hodograph method to incompres Ible flow in this thesis may serve as an introduction to its use in the th ment of compressible flow.

In Chapter IV first Levy's problem, discussed in Chapter II, has beer solved by hodograph methods. Then the Hachemeister problem has been solve In both these problems there is a "notched hodograph" which requires an extension of Mackie's work published in Proc. Ddin. Math. Soc. II, 1958, p. 107. The notch in both the problems gives rise to a singular integral equation. Since the same singular integral equation is obtained for both problems we confirm here also that these two problems are mathematically identical. The singular integral equations have been solved analytically by an extension of method given by Mikhlin (Integral Equations by Mikhlin, Ch. III, pp. 131) and verified by comparison with results of Chapter II. In Chapter V, the problem discussed in Chapter III has been investigated by the hodograph method. There are now two "notches" instead of one. Due to these two notches two simultaneous integral equations are obtained. An analytical solution for these equations has not so far been found. The pattern of streamlines in this problem has some interest.

# HODOGRAPH MEXHODS APPLIED TO SOLVE CERRTAIN PROBLRMS 

## ON THE FLON OF JEMS

## being a dHasis presented by

## SAMJIV RAMGACHARI

to the University of Glasgow ..... in
application for the degree ..... of
MASTER OF SCLEACE

## Comgrians

CHAFMER ..... Page
I Introduction ..... 1
II SchmazmChzistosiel transfomations applicd to:- ..... 7
(a) A jec timough e sist impinging on a mall.
(b) Flow througis a necked sijit.
IIT Schwerz-Christoffel transformations apolied to 0 8low through a necired-slit hmpinging on a wall ..... 29
IV Hoalogroyh method epplied ६o:- ..... 39
(a) A jot Elrougia a sitit iroinging on 2 , well.(b) Flow through $e$ nectice slit.
V Fiodogreph method applied to a flow finrough a necked slit 2mainging on a wall ..... 66
Reforences ..... 73

## ACKINONLEDGEATMIS

I am deeply indebted to Professor D. C. Pack for introducing me to the subject and for his constant assistance and eridance.

I wish also to thank Mr. D. B. Butler and Mr. D. MeCrecor for their advice, discussion and emcouragement.
S. Rangachar',

Glasgot:
Nay 1964

## CHARTER I

## INTRODUCTION

Hydrodynamics is the study of fluid in motion. A fluid is a continuous medium or one that can be treated as such. Actual fluids fall into two categories, namely gases and liquids. A gas will untimately $111 l$ any closed sparse to which it has access and is therefore classified as a (highly) compeesaible fluid. All known liquids are to some extent compressible. For frost purposes, it is, however, sufficient to regard liquids as incompressible pluses.

It is well known that in a two dimensional irrotational notion of an incompressible fluid there exist a potential function $\phi$ and a stream function W. The le two can be combined together to give the complex potential. wo is an analytic function of 2 , and defined by $f(z)$. By an analytic function $f(z)$ we generally mean that $f(z)$ is one-valued and satisiles the so-called Cauchy.Rdemano equations.

If is and $\nabla$ are the velocity components in the direction of $x$ and $y$ axis of grith a motion, then these are given by

$$
\begin{aligned}
& u=\frac{\partial \phi}{\partial x}=\frac{\partial \psi}{\partial y} \\
& v=\frac{\partial \phi}{\partial y}=-\frac{\partial \psi}{\partial x}
\end{aligned}
$$

It is a simple matter se show that $\phi$ and $\psi$ satisfy Laplace ${ }^{\circ}$ s equation and that

$$
\frac{\partial^{2} \psi}{\partial u^{2}}+\frac{\partial^{2} 4}{\partial v^{2}}=0
$$

or in polar coordinates q, $\theta$

$$
\frac{\partial^{2} \psi}{\partial q^{2}}+\frac{1}{q} \frac{\partial \psi}{\partial q}+\frac{1}{q^{2}} \frac{\partial^{2} \psi}{\partial \theta^{2}}=0
$$

It is usuaily preferable to solve hydrodynamical problems directly in the physical plane, that is to aay in the plane of $x$ and. $y$. But there are problems, perticularly those involving "Iree streamlines" on which the preasure and consequently the velocity remain constant, whilch cannot be easily tackled in the physical plane. In the first place the shape of these streanlines connot be predetermined and the fact that the boundary condition on them 18 non-linear mokes the problem more compliceted. This dipplculty is experienced especially with problems involving jets and wakes. These problens are sometimes easily solved in the hodograph plane where the boundaryovalue problen can be formulated and where the boundary conditions are $11 n e a r$.

The application of the hodograph method to problems tw elud dynamsce dates back to the time of Helmholtz wod Kirchofi. The underlying principle is simple. We change the independent variuble of the governing differential equation to $q$ and $\theta$ where $q$ is the velocity and $\theta$ is the angle that the velocity vector maises with the positive direction of $x$-axis. Thus the phyeical plane is transformed luto the plane of $q$ and $\theta$ where, 19 und $v$ are the cartesian compoments of the velocity vectory then $u=q \cos \theta$ axd $\nabla=q$ घin $\theta_{0}$ This ( $\alpha, \theta$ ) plase is known as the hodograph plane.

There are varicus techniques used to solve hydrodymamical problems in which conformal mapping piays an important part. If the solistion for w in
(say) toplane is known and if the conformal transformation from toplane to zoplane is known then the solution for w in the zoplane can be immediately obtained. Sometimes passes through a series of transiormations before it can be expressed in terms of $\%$. Fortumately, if the boundaries are straight, the application of these transiomations can be found by a alngie basic theorem viz. the SchmarzoChristoflel mapping theorem. In Chapter II two problems have been separetely discussed. The Pirst problem deals with an inviscid incompressible iluid escaping in the form of a jet through a slit of an iniluite chomber and impinging normaily on a wall, the side of the chamber being kept parallel to the wall. The second problem deal. with the flow througin a Pinite Forda mouthplece. Here the Imviscid incompreastble pludd flows out of the reservoir through the mouthe plece to form \& jet which is boupded by the free stresmines. These two yroblens were prblishod by CoA. Jachemetiter (1959) and HoC. Levy (1960) reapectively in the Quartexly of Agplied Mathenstics, Vol. 17, 1959. PRo 299-304, and Joumovi of Appised Mathemstics and Physics (2AMP) II, pe. 152m156, 1960. It is ahown that from a methematical standpoint Levy wal Hachowaster were dealing with the amn problem wnd conseguently theae two problems are included in one chapter. Both these problems beve been solved by Schwareochristoffelotrensiormations. In Chapter III the woris has been extemaded by combining together the main leatures of the two problesse of Cuspter II. The new groblem is solved by Schwarg-Claristoffel tramsormations. the solutiow is thew analysed to show that id the neck

13 withdrawn the solution reduces to $\operatorname{levy}{ }^{\circ}$ s solution and is the wall is withdrewn, it reduces to Hishemeister ${ }^{9}$ s. This is done as a check to verify that the new solution is correct.

The transformation technique while mathematically very elegant suffers from a serious drewback for it is limited to potential flow satiafying Laplace ${ }^{9}$ s equation. Thus this method cannot be used to solve problems of compressible pluids.

The hodogreph technique not only solves the problems of incompressible Rluids but may also in certain cases be adapted to solve the problems of compressible fluide and so an application of the hodograph method to incompressible flow serves as an easy and natural introduction to ite use ta the trestment of compressible Plow.

The present thesis discusses only problems comcerning incompressible and inviscid sluids.

It will be show that the problems for incompressible plow can be solved directly in the hodograph plane. The matheramtics used in applying this method will be seen to be quite stralghtforvard compared to thet of Schware Christorfel.

Mackie ( 1958 , Proc. Masw. Math. Soc. II, 107) has sodved a muber of basic problems of incompressible flow directly in the hodograph plane. Ee has shown how drpferent technsques can be employed for different boundaryo velus problems in the hodograph plane. In one of these problems he comes across an lutcerel equation giving thereby an ludscation that we may have
to deal with integral equations to solve some of the boundaryovalue problems In the hociograph plane.

In Chapter IV, in the Pirst place Levy ${ }^{9}$ problem discussed in Chapter II has been solved by maans of integral equations. Then the Hachemeister prow blem is solved. In both these problans we come across a "notched hodograph" which is an extension of Mackse ${ }^{\prime}$ work. 縣ckic, in his paper referred to sbove hes worked only with eimple hodogrephs. In the problems discussed In this theais we have two points on one streanilne (one point being at infinity) in the physical plane where the velocity of the iluid is zero. Hence in between these two polnts we must have a point where the fluid attains a meriman velocity. Whan these points are plotted in the hodograph plane we obtain \& "notched-hodograph". The "wotch" in both the problems gives rise to a singula Lategrei equation. Stace we obtein the ame sixgula 1 ntegral equation for both the problems we conssm herc aiso that these two proolemg are msthematicaly identicel. Whese two simgular Lateo exri. equations hswe been solved malyticaliy by an exteosion of method given by Mathin (Integrai Equetions by Manitns Ch. ITI, Pp. 131) and. verifled by counpmisou with the results of Caspoter II.

In Cbayter $\mathbb{V}_{3}$ the problens alscussed in Chapter II bave been solved agria by a hodograph methot. Here we get two "motches" instead of one oivtained in exch of the previous osamples. Dre to theac two notches we obtaln two stmaltancous integral equations. Am manyitical solution for these equstions has not so far been obtained. The pattern of streamlines In this problem has ane interest.

In what Rollows, the houograph method applied to the problens discussed above brings Lato play the theory of siogular Integral Equations and is a neturel extexnion of the sdeas put Pormard by Mackie in his paper published. In 1958 .

The method for indilng the complex potential for problems of the type In which the fixed boundaries are rectilinear and the other boundaries are streamlines was first found by Helmholtz and Kirchhoff. This method comes from the facts that the direction of the velocity is constant on fixed boundaries and that the magnitude of the velocity is constant on free stream 1ines. In order to Sind the relationship between w and a Kirchope introm duced the intermediate function $G$ which is equal. to $U \frac{d z}{d w}$ where $U$ is the value of the velocity at infinity. Stave

$$
\begin{aligned}
& \text { Since, } \frac{d w}{d x}=\frac{\partial \phi}{\partial x}+i \frac{\partial \psi}{\partial x}=\frac{\partial \varphi}{\partial x}-i \frac{\partial c}{\partial y}=u_{i} i x=q^{i}, \\
& \text { webtain, } \epsilon_{3}=\frac{U}{a} e^{i(a}
\end{aligned}
$$

where $\theta$ 1s the inclination of $q$ to the soaxis. As $\theta$ is convtent on a Pizod boundmy and q is constant on a Pree streamilne the sunction $\Omega=10 \mathrm{G}$ as introduced so that when the boundariez are trensiormed from the moplane to the Roplane they are all atraight inmes.

$$
S L=\log \pi=\log \frac{u}{q}+i \theta
$$

The Plgure obtained in the $\Omega$-plane is rectangular.
The second transformation is from the z-plane to the woplane. Since $w:+1 \%$, the figure on the woplane is also rectangular. By means of the theorem of Schwarz and Christoffel it is possible to transform the rectangular figures in the $\Omega$ - and woplanes into the real axis of a fourth plane, called the t-plane. As corresponding points in the $\Omega$ - wnd whenes are transformed into the same point on the toplane, it is possible to find the
relstionships between $w$ and t and $\Omega$ and $t$. The elsmination of t gives the relationship between w and \%. In the problems discussed in this chagter, It is found courvensent to go into one more transformation, i.e. from Atoplane to poplane by choosing a suitable relation between $t$ and p. Hence in acldition to a relation between w and tond $\Omega$ and t a relstion between wa $p$ mad $\Omega$ and $p$ hss also been obtarned. The eliminstion of $p$ then gives the comples potentizl.

## FWFOREM OF SCDRARE ARD CHRTSMOFTHI

The theorem statea that any polygon in the zoplane can be tranalormed. Into the real axds of the toplane. Points winch are ingide the polygon are transformed tinto the upper hals of the toplane.

enplame

toplane

The trexsformation is

 correspond to the commers of the polygon. \& in a constaut which mey be complex.

If one of the vaiues of $2_{r}$ is infinite, the factor corresponding to It is omitted from the equation of transformation and the angle $\alpha_{r}$ does not appear.

In hydrodynamical applications we shall be concerned only with simple polygons generally extending to infinsty. Three of the numbers $\ell_{1,} \ell_{2}$ and $\ell_{3}$ may be chosen arbitrarily to correspond to three of the vertices of a given polygon, the remainder must then be arranged so as to make the polygon of the right shape.
(a) Jet through a slit impinging on a wail

The flow out of a slit is a classical problem but the flow out of a silt ageinst a wall which has a phyaical interest in connection with Hovercrait was exsmined by Levy (1960). It dipiers from the umusl kind of problems as we shal see in having two stagnation points on ane atreamine.

An inviscid incoumreasible pluid is confined in an infinite chamber whose side is paraliel to the wall diatance $h$ away. whe charaber side hsis 2 slit of width d through which the Pluid escapes (Figure 1).


FIGURE I
Tho physical planes with acis of aymaetry $\mathrm{MA}_{p}$ chomber aide $\mathrm{DE}_{\mathrm{g}}$ g jet boosodary DCe
vall $A B_{0}$

The aolution is carried through by mapping the flow region in the plane of the conplex velocity potentiai. w and in the plane of the Helmholtz potential, $\Omega$ on as appropriate region of the plane of the auxiliary complex varlable t.

Solution in details:
We need consider only the hulp of the flow field in $x \geq 0$ by symmetry.


2upiane

$$
u=\frac{\partial \phi}{\partial 2 x}=\frac{\partial y}{\partial y} \text { >omear : }
$$

Since the velocity is in tho direction in which the velocity potential (0) Increases the value 0 at S is and at $C$ and $B$ is $+\infty$. $D C$ is the free streamline $\psi=U$ Where $H$ is the helght of $C$ above $B$, and along the streame line $Q A B, \psi=0$.

The transformation $\mathrm{w}=+$ iv is now applied to the Pigure in the zeplane.

w-plane
FIGURE 3
The second transformation $\Omega=\log \frac{U}{q}+10$ is now spplied to the figure in the zoplane.

Prom $E$ to $D$ the value oi $\theta$ is constant at $\theta-\pi$ while the value of q goes from zero at S to U at $\mathrm{D}_{0}$

From 0 to $A$ the value of $\theta$ is constant at $\theta \equiv \pi / 2$ while the value of $q$ incresses from q = 0 at 0 and then decresses and again becomes $q=0$ at A. Since $q$ a 0 both at 0 and $A$ we must have a point $X$ on $Q A$ which is a point of maximal speed. Let $q=q^{\prime \prime}$ at $X$.

From $A$ to $B$ the value of $\theta$ is constant, $\theta=0$, while the value of $q$ goes from $q=0$ at $A$ to $q=U$ at $B$ 。


In the mapping of the w- and $\Omega-p l a n e s$ onto the $t-p l e n e$, the points ( $B, C$ ), $D,\left({ }^{2}, O\right), X$ and $A$ are made to correspond to $t=-1,0,1, \mu$ and $\lambda$ respectively, where $\mu$ and $\lambda$ are still to be determined.


It will be convenient to introduce one more transformation, from the toplane to a poplane, by the substitution, $t=(1+t) \frac{p^{2}}{2}$, ide.

When

$$
\begin{aligned}
& t=0, p=0 \\
& t=1, p=1 \\
& t=\lambda,(>1), p=\sqrt{\frac{2 \lambda}{1+\lambda}}=\frac{1}{k}(\text { (ass })>1
\end{aligned}
$$

$$
\begin{aligned}
& t=0, \quad 0=\sqrt{\frac{2\left(a^{-}\right)}{1+0}} \Rightarrow \sqrt{\infty}=\frac{0}{1}=10 \\
& t=0 \quad 0,0
\end{aligned}
$$

Fences when

$$
\left.t=\begin{array}{l}
0^{-} \\
0^{+}
\end{array}\right\}, p=\begin{gathered}
i 0 \\
0
\end{gathered}
$$

Similarlys when

$$
\left.\left.t=\frac{1^{+}}{-}\right\}\right\}, p=\left\{\begin{array}{l}
1^{+} \\
1
\end{array}\right.
$$

Againg mhen

$$
t=-1+\varepsilon, p=\sqrt{\frac{2(-1+\varepsilon)}{\varepsilon}}=\sqrt{\frac{2}{\varepsilon}} \rightarrow i \infty \text { an } \varepsilon \rightarrow 0
$$



Bence, wien

$$
\left.t=\infty 1_{0}^{t}\right\}, p=\left\{\begin{array}{l}
i \infty \\
\infty
\end{array}\right.
$$

Hence the maping of the poplane in as Polions:


Wherefore by the theorem of Sckrart and Christoffel, since the angles at EO and BC in the woplame are zero, the relation between w and is is

$$
\begin{align*}
& \frac{d \omega}{d t}=\frac{\alpha}{(t-1)(t+1)}=\frac{\alpha}{2}\left(\frac{1}{t-1}-\frac{1}{t+1}\right) \quad \text { (2.01) } \\
\therefore \quad \quad \quad \theta=\frac{\alpha}{2} \log \left(\frac{t-1}{t+1}\right)+\beta & \text { (2.02) } \tag{2.02}
\end{align*}
$$

At $A:$ t $>1$, wis real;

$$
\therefore \beta \text { is real if } \alpha \text { Ls real. }
$$



$$
\therefore B=0, \text { and UN }=\frac{c}{2} \pi \text { ic. } \alpha=\frac{2 U 5}{\pi}
$$



$$
\begin{align*}
& =\frac{0}{\pi} \log \left(5^{2} \circ 1\right) \ldots . . .  \tag{2.03}\\
& \\
& \text { sines } t=\frac{1+t}{2} \mathrm{p}^{2}
\end{align*}
$$

The relationship between $\Omega$ and t by the theorem of Schwann end Chrietoriel (since the angles at $\left(B_{y} C\right), D_{3}(5, O)$, $A$ and $X$ are $\frac{\pi}{2}, \frac{\pi}{2}, 0,0$ and aTilt) is

$$
\begin{equation*}
\frac{d \Omega}{d t}=k \frac{(t-\mu)}{(t-2)(1+t) t^{t} t^{2}(t-1)} \tag{2.04}
\end{equation*}
$$

stane,

$$
\left.\begin{array}{l}
t=\frac{p^{2}}{2-p^{2}} \\
\frac{d p}{d p}=\frac{4 p^{2}}{\left(2-p^{2}\right)^{2}}
\end{array}\right\} \quad \text { How } \frac{d \Omega}{d p}=\frac{d \Omega}{d t} \cdot \frac{d t}{d y}
$$

Hence, substitutive the values of tod $\frac{d t}{d p}$ in $\frac{d p}{d p}$ we obtain by partial.
fractions
where $\gamma$ is a constant of integration.

$$
\Rightarrow N+\frac{k}{\sqrt{2}}\left(\frac{1-\mu}{1-\lambda}\right) \log \left(\frac{p-1}{p+1}\right)+\frac{k(\lambda-\mu)}{(\lambda-1) \sqrt{\lambda(1+\lambda})} \log \left(\frac{k p-1}{R p+1}\right)(2.08)
$$

To evaluate $\gamma, K_{0}$,

$$
\begin{aligned}
& \text { At } B, C, \Omega=0, \quad|p| \text { isigeinite } \\
& \therefore \quad \gamma=0 .
\end{aligned}
$$

Hence from $(2.08)$ we obtain

$$
\Omega=\frac{k}{\sqrt{2}}\left(\frac{1-\mu}{1-\bar{\lambda}}\right) \log \left(\frac{p-1}{p+1}\right)+\frac{k(\lambda-\mu)}{(2-1) \sqrt{2}(1+2)} \log \left(\frac{k p-1}{k p+1}\right) \quad(2.09)
$$

$$
\text { mon, at } D: \Omega=-i \pi, t=0, p=0
$$

$$
\begin{aligned}
& \therefore \quad-L \pi=\frac{k}{\sqrt{2}}\left(\frac{1-\mu}{1-\lambda}\right) i \pi+\frac{k(x-1)}{\sqrt{\lambda(1+2)(N-1)}} i \pi \\
& \therefore-1=\frac{k}{\sqrt{2}} \frac{1}{1-\lambda}\left\{(1-\mu)-\frac{\sqrt{2}(-1-\mu)}{\sqrt{\lambda(1+\lambda)}}\right\} \quad(2,10)
\end{aligned}
$$

- 86 -

$$
\begin{align*}
& \text { at } \quad \underset{E}{E}\}, t=\begin{array}{l}
1^{+} \\
1
\end{array}, \quad \Omega=\left\{\begin{array}{l}
1^{+}, \\
1, \\
N-i \frac{\pi}{2} \\
N-i \pi
\end{array}\right\} N \rightarrow \infty \\
& \therefore \text { from (2.09) }-i \frac{\pi}{2}=\frac{k}{\sqrt{2}}\left(\frac{1-\mu}{1-\lambda}\right) i \pi \\
& \text { ide. } \\
& -\frac{1}{2}=\frac{k}{\sqrt{2}}\left(\frac{1-\mu}{1-\lambda}\right) \tag{2.11}
\end{align*}
$$

Hence from (2.10) and (2.11),

$$
\begin{equation*}
-\frac{1}{2}=-\frac{K(\lambda-\mu)}{(1-2) \sqrt{2(1+2)}} \tag{2.12}
\end{equation*}
$$

Again, dividing (2.11) by (2.12)

$$
\begin{equation*}
1=\frac{(1-\mu) \sqrt{2(1+\lambda)}}{\sqrt{2(\lambda-\beta)}} \tag{2.13}
\end{equation*}
$$

Bur, $\quad \frac{2 x}{1+x}=\frac{1}{12}$
i.e. $\quad \lambda=\frac{1}{2 k^{2}-1}$

Substituting the value of $\lambda$ in (2.13) we obtain

$$
\begin{equation*}
\mu=\frac{R+1}{2 R^{2}+R-1} \tag{2.15}
\end{equation*}
$$

Hence at $x, \quad p^{2}=\frac{2 \mu}{\mu+1}=\frac{1}{R}\left(i f\left(p=\frac{1}{\sqrt{k}}\right)\right.$
Again from (2.11) and (2.12) and (2.09)

$$
\begin{aligned}
& \Omega=-\frac{1}{2} \log \left(\frac{p-1}{p+1}\right)-\frac{1}{2} \log \left(\frac{k p-1}{R p+1}\right) \\
& \text { i.e. } \Omega=-i \frac{1}{2}+\frac{1}{2} \log \left(\frac{1+p}{1-p}\right)+\frac{1}{2} \log \left(\frac{1+R p}{1-R p}\right) \quad(2.17) \\
& \text { where } R<1
\end{aligned}
$$

But, $\quad \Omega=\log G=\log \left(\frac{u}{q \bar{e}}\right)$
Hence from (2.17),

$$
\log G=-i \pi+\frac{1}{2} \log \frac{(1+p)(1+R p)}{(-p)(1-R p)}
$$

which gives,

$$
k p^{2}\left(a^{2}-1\right)-p(1+k)\left(1+c^{2}\right)+c^{2}-1=0
$$

since $\} 1$, writing $G^{\prime}=\frac{1}{6 s}(\leqslant 1)$, we ointain

$$
\begin{equation*}
k p^{2}\left(1-{c^{2}}^{2}\right)-p(1+k)\left(1+c^{\prime 2}\right)+\left(1-{c^{\prime 2}}^{\prime 2}\right)=0 \tag{2.18}
\end{equation*}
$$

Solving the quadratic, we get

$$
\begin{equation*}
p=\frac{\left(\frac{1+R}{R}\right)\left(\frac{1+c^{2}}{1-E^{2}}\right)+\sqrt{\left(\frac{1+R}{R}\right)^{2}\left(\frac{1+a^{2}}{1-a^{2}}\right)^{2}-\frac{4}{R}}}{2} \tag{2.19}
\end{equation*}
$$

Again from (2.18)

$$
b^{2}=\left(\frac{1+R}{R}\right)\left(\frac{1+\operatorname{ci}^{2}}{1-\cos ^{2}}\right) p-\frac{1}{R}
$$

which gives,

$$
p^{2}-1=\left(\frac{1+1}{n}\right)\left(\frac{1+\cos ^{2}}{1-\cos ^{12}}\right) p-\frac{1+12}{12}
$$

Substituting the value of p from (2.19), we get

$$
p^{2}-1=\left(\frac{1+k}{R}\right)\left(\frac{1+a^{2}}{1-G^{2}}\right)\left[\left(\frac{1+k}{2 R}\right)\left(\frac{1+G^{2}}{1-G^{2}}\right) \pm \frac{\sqrt{\left(\frac{1+k}{k}\right)^{2}\left(\frac{1+a^{\prime 2}}{1-G^{2}}\right)^{2}-\frac{4}{k}}}{2}\right]-\frac{1+2 R}{R}(2.20)
$$

at $0, E$ and $A, G^{0}=0$ since $q=0$ at these points.
Bute at

$$
\text { at } \quad 0 \quad \begin{aligned}
& 0 \\
& b
\end{aligned} \quad p=\left\{\begin{array}{l}
1^{+} \\
1
\end{array}\right.
$$

at $A, p=\frac{1}{V}$

Hence when $=0, \quad p=\left\{\begin{array}{l}1^{t}, 1^{-} \\ \frac{1}{R}\end{array}\right.$
So, when $p$ is either $1^{+}$or $1^{\circ}$, we obtain from (2.20)

$$
0=\frac{1+R}{R}\left[\frac{1-R}{2 R} \pm \frac{1-R}{2 k}\right]
$$

$L_{0} H_{0} S_{0}=R_{0} H_{0}$. if we consider the negative sign.
Hence near 0 and $E$,

$$
p^{2} \Rightarrow 1=\left(\frac{1+R}{R}\right)\left(\frac{1+c^{1^{2}}}{1-G^{12}}\right)\left[\left(\frac{1+R}{2 R}\right)\left(\frac{1+a^{2}}{1-G^{12}}\right)-\frac{1}{2} \sqrt{\left(\frac{1+k}{R}\right)^{4}\left(\frac{1+G^{r^{2}}}{1-G c^{12}}\right)^{2}-\frac{4}{k}}\right]-\frac{1+k}{R}
$$

Again, when $p=\frac{1}{R_{0}}$, as before we obtain from (2.20)

$$
\left(\frac{1}{R}\right)^{2}-1=\frac{1+R}{R}\left[\frac{1-R}{2 R} \pm \frac{1-R}{2 R}\right]
$$

Lo H. S. = R. Hos. if we consider the positive sign.
Thus near $A_{0}$

$$
p=1=\left(\frac{1+k}{R}\right)\left(\frac{1+G^{\prime 2}}{1-G_{1}^{2}}\right)\left[\left(\frac{1+k}{2 k}\right)\left(\frac{1+e^{2}}{1-c^{12}}\right)+\frac{1}{2} \sqrt{\left(\frac{1+k^{2}}{R}\right)^{( }\left(\frac{1+G^{1} 1^{2}}{1-G^{2}}\right)^{2}-\frac{4}{k}}\right]-\frac{1+R^{2}}{R}(2.23)
$$

Since $w=\frac{\mathrm{UF}_{\mathrm{m}}}{\pi} \log \left(\mathrm{p}^{2}-1\right)$, the two values of will be equal is the expression under the radical sign in (2.25) and (2.22) vanishes and this will be the point X .

Hence at $\mathrm{X}_{\boldsymbol{p}}$

$$
\begin{equation*}
\left(\frac{1+R}{R}\right)^{2}\left(\frac{1+R^{2}}{1-k^{2}}\right)^{2}-\frac{4}{k}=0 \tag{2.24}
\end{equation*}
$$

But, at $X$, $G^{0}$ 녕 since $\theta \ldots \sim \pi / 2$.

Solving (2.24) we obtain

$$
\frac{a}{u}=\frac{1-\sqrt{k}}{1+\sqrt{k}} \text { or } \frac{1+\sqrt{k}}{1-\sqrt{k}}
$$

The second value is inadmissible, since $\frac{\mathrm{U}}{\mathrm{U}}<1$.

$$
\text { Hence, } \quad \frac{a}{U}=\frac{1-\sqrt{k}}{1+\sqrt{k}}
$$

Let $q=q * a t X$.

$$
\begin{equation*}
\therefore \quad \frac{a}{v}=\frac{1-\sqrt{k}}{1+\sqrt{k}} \tag{2.25}
\end{equation*}
$$

$$
\text { Again since } w \frac{\text { wi }}{\pi} \log \left(p^{2}-1\right) \text {, we obtain from (2.23) }
$$

1.e.

$$
\begin{equation*}
\text { W) }=\frac{U H}{\pi} \log \left[(1-12)+(1-1 B) \operatorname{cx}^{4}+2(1+212) e^{2}+\left(1+\operatorname{cas}^{2}\right) \sqrt{(1-1)^{2}\left(1+\operatorname{cs}^{2}\right)^{2}+1618 e^{2}}\right] \tag{2.26}
\end{equation*}
$$

+ Real quantity
R.I.S. should have a varying imaginary part giving $\psi$ on $\theta$ - $-\pi / 2$ ai we cross the get from $X$ to $Q_{0}$ This is possible if the expression under the radical sign in ( 2.26 ) is negative

Comparing with (2.25) we find that this lis true on the line $\theta-\pi / 2$ as we cross the jet from X to $\mathrm{Q}_{\mathrm{o}}$

$$
\begin{aligned}
& \text { 1.e. if } \\
& (1-k)^{2}\left(1+a^{2}\right)^{2}+16 k a^{2}<0 \\
& \text { 1.eo Is } \frac{a}{u}>\frac{1-\sqrt{k}}{1+\sqrt{k}} \text {, tine } G^{\prime}=i \frac{a}{u} \text { on } \theta=-\frac{\pi}{2}
\end{aligned}
$$

Let $\psi=$（q）express the variation of the stream function with speed q along the line on which $\theta \equiv \pi / 2$（show by a dotted curve in figure 2）． Fence from（ 2,26 ），

$$
\begin{aligned}
& \text { (2.27) }
\end{aligned}
$$

Now，we have to fix the sign of the square root of the negative quantity 1．e．we have to see if the square root is $+i \alpha$ or $-i \alpha$ where

$$
\alpha=16 k \frac{a^{2}}{v^{2}}-(1-k)^{2}\left(1-\frac{a^{2}}{v^{2}}\right)^{2}>0
$$

Looking back to fIgure 2，we find that at $Q, q=U$ and $\theta=\pi / 2$ 。 Hence $G^{0}: 1$

Consider a point $Q^{0}$ very near to $Q$ 。

$$
\text { At } Q^{\prime}, G^{\prime}=1(1-\in) \text { where } \& \text { is real }>0 \text { 。 }
$$

Considering the flow near A，we obtain from（2．23）

$$
\begin{aligned}
& \frac{1}{\pi} \frac{4 H}{R} \log \left(\frac{1+R}{R}\right)
\end{aligned}
$$

Fence，near $Q^{0}$

$$
\begin{aligned}
& +\frac{U H}{T I} \log \left(\frac{1+2}{\sqrt{2}}\right) \\
& =\frac{1 H}{\pi} \log \left[0(8)-1+0\left(\varepsilon_{0}\right) \sqrt{\left.-\frac{1}{v}\right]+\frac{y H}{\pi} \log \left(\frac{1+h}{n}\right)}\right.
\end{aligned}
$$

Considering the square root of the negative quantity as is where $\alpha^{\prime}=\frac{1}{\mathbb{E}}$ ， we obtain，at $Q^{0}$

$$
\begin{aligned}
\omega & =\frac{U H}{\pi} \log \left[-1+o(\varepsilon)+i o(\varepsilon) \alpha^{\prime}\right]+\frac{u H}{\pi} \log \left(\frac{1+k}{k}\right) \\
& =\frac{u H}{\pi} \log (-1)+\frac{v H}{\pi} \log \left[1-o(\varepsilon)-i o(\varepsilon) \alpha^{\prime}\right]+\frac{u H}{\pi} \log \left(\frac{1+k}{k}\right)
\end{aligned}
$$

Hence at $Q^{\circ}$

$$
\psi=U H-\frac{U H}{\pi} \beta, \text { where } \beta=\tan ^{-1}\left\{\frac{O(\varepsilon) \alpha^{\prime}}{1-\partial(\theta)}\right\}
$$

i．e．$\psi<\boldsymbol{U}$ 艮，which is true as we cross the jet from \＆to $X$
This establishes that we must consider the square root of the negative quantity as＋ice il we consider the expression of w near A．Similarity，it can be shown that is we consider the expression of v near $E$ ，then the choice of the square root of the negative quantity will be－ 10 ．

$$
\begin{align*}
& \therefore \text { sion (2.27) } \\
& P(q)=\ln , p \cdot \circ+\frac{u H}{\pi} \log \left[\left(1-n^{2}\right)+(1-v) \frac{u^{4}}{u^{4}}-2(1+3 k) u^{2}+i\left(1-\frac{q^{2}}{u^{2}}\right) \sqrt{\left.1612 e^{2}\right] v^{2}}\right] \\
& =\frac{\text { UH }}{\pi} \tan ^{-1}\left\{\begin{array}{l}
\left(1-\frac{a^{2}}{y^{2}}\right) \sqrt{16 k \frac{a^{2}}{y^{2}}-(1-k)^{2}\left(1-\frac{a^{2}}{u^{2}}\right)^{2}} \\
(1-16)-2(1+3 k) \frac{1}{4}+(1-16) / v^{24}
\end{array}\right\}  \tag{2.28}\\
& \operatorname{Let} M=\frac{\alpha}{u} \text {, so that } M^{*}=\frac{q^{*}}{u}
\end{align*}
$$

The curve on which $\psi=\ell(q)$ has been shown in the physical plane by the dotted line $X Q$ and is such that it crosses all the stream lines on $\theta=-\pi / 2$. in the hodograph plane.

$$
\text { Let } L(M)=\frac{1}{\pi} \tan ^{-1}\left\{\frac{\left(1-n^{2}\right) \sqrt{16 k M^{2}-(1-k)^{2}\left(1-m^{2}\right)^{2}}}{(1-k)-2(1+3 k) M^{2}+(1-k) M^{4}}\right\} \quad \text { (2.30) }
$$

so that $\quad \ell(q)=U H L(M)$
When $\mathrm{q}=\mathrm{U}, \mathrm{M}=\mathbf{1}$

$$
\therefore L(1)=1
$$

When $q=q^{*}, L\left(N^{*}\right)=0$ since $b\left(q^{*}\right)=0$ (surd is real)
Hence, $L(1)=1, L(M N)=0$
Again, from (2.25)

$$
\begin{align*}
& M^{*}=\frac{1-\sqrt{R}}{1+\sqrt{R}} \quad \text { which gives } \\
& R=\left(\frac{1-M^{* *}}{H M^{*}}\right)^{2} \tag{2.32}
\end{align*}
$$

Substituting the value of $k$ in the expression for $L(M)$ we obtain a second form of $L(M)$ as

$$
L(M)=\frac{1}{\pi} \tan ^{-1}\left\{\frac{\left.\left(1-M^{2}\right) \sqrt{M^{*}\left(1+M^{2}-M^{2}\right)}\right)\left(-2 M^{2}\left(1+M^{2} M^{*}\right)^{2}\right)}{\}}\right\}(2.33)
$$

Differentiating with respect to M we obtain

$$
\frac{d L}{d M}=\frac{1}{\pi}\left\{\frac{M^{*}\left(1+M^{2}\right)^{2}+2 M^{2}\left(1+M^{* 2}\right)}{\left.M\left(1+M^{2}\right) \sqrt{\left(M^{2}-M^{2}\right)\left(1-M^{2} M^{22}\right.}\right)}\right\} \quad \text { (2.34) }
$$

We shall have need to refer to the value of this derivative in later chapters.
(b) Flow through a necked slit

We now illustrate another problem "The Generalised Borda, s mouth plece"
which is physically apparently quite different from the previous example although the solution may be carried through in the same way. Nere the inviscid incompressible fluid is conflemed in a seminininite reservoir which is bounded by the semi-infinite wall.s $\mathrm{A}^{9} \mathrm{~B}^{9} \mathrm{C}^{8}$ and ABC hoving a gap of width $2 x$ between them. Two walls $D^{9} C^{\prime}$ and $D C$ of length ' $a^{\prime}$ bsve been projected into this semi-infinite reservoir forming a neck round the gap through which 1iquid escapes, thus forming a jot bounded by the Iree streamlines $D^{9} E^{9}$ and DE.


The jet contracts to the width $20 r$ at $\mathrm{F}^{6} E$ far from the mouthpiece where the speed of the IIuid is uniform and of veiue $U$. ( $\sigma$ being the coefficient of contraction。) The total efflux from the reaervoir is therefore 2orU. Whe speed of the fluid along the free streamlines $D^{9} E^{6}$
and DE is U. Along the wet side and reservoir walls $A^{3} \mathrm{~B}^{9} \mathrm{C}^{9} \mathrm{D}^{1}$ end ABCD the surface speed varies. It is zero at the corners $C^{3}$ and $C$ and at the infinite points $A^{0}$ and $A$. At two places $B^{0}$ and $B$ the surface speed has a maximum. this follow because $B$ is between $A$ and $C$ where the surface speed is zero.

Solution:
Because of symmetry we need consider only one half of the plow field in $x \geqslant 0$ 。


FIGURE 8

The value of at $A$ and $013 \times \infty$ and that at $F$ and $E+00$ DE is the free gtreanilne $\psi=\sigma r U$ and $O F$ is the streaming $\psi=0$. The transformation $w-1+4 \psi^{-1 s}$ nor applied to the figure in the zoplane.

- 25 -

emplane
FIGURE 9
The second transformation $\Omega=\log \frac{\mathrm{V}}{q}+i 0$ is now applied to the figure in the z-plane.

From A to $C$ the value of $\theta$ is constant at $-\pi$ while the value of $a$ goes $q=0$ at $A$ to $q=q u *$ at $B$ and then again falls to $q=0$ at $C$.

From $C$ to $D \theta$ is constant at $\theta=-3 \frac{\pi}{2}$ while $q$ goes from $q=0$ to $q=\mathbf{U} \mathbf{a t} \mathrm{D}_{\mathbf{0}}$

From 0 to $F \theta$ is constant at $\theta=-\pi / 2$ while q goes from q $=0$ at 0 to $\mathbf{q}=\mathbf{U}$ at $\boldsymbol{F}$.


FIGURE 10
In the mapping of the w- and $\Omega$-planes onto the t-plane the points ( $\mathrm{F}, \mathrm{E}$ ),
$D, C, B,(A, O)$ are made to correspond to $-1,0, \alpha_{8}^{\lambda}$ and ti respectively where \& and \& are still to be determined.


ETCHER 11

Here also for convenience we int roduce one more ismasiormetion from the $t$-plane to a p-plane, by the substitution, $t=(0 ; t) \frac{p^{2}}{2}$ and as before we get a.11 the points of the $t-p l e n e$ in the first quadrant of the poplane. The mapping is as follows:-

$$
\text { at } C_{3} t=\lambda
$$

$$
\begin{aligned}
& \therefore b=\sqrt{\frac{2 \pi}{1+\pi}}=\left(\frac{1}{R_{0}} \text { Bay }\right)<1 \\
& \text { ane } 2<1 \\
& \therefore \quad B, t=\beta
\end{aligned}
$$

FIGURE 12

The transformation from the t-plane to the p-plane has been explained in details in the previous example.

If we now compare this problem with that of Levy's we find that these two problems differ only in the pattern of atreamlines and the boundary conditions. The streamline pattern has been shown in Figure 8 . Applying the boundary conditions and proceeding exactly in the same way as in the previous example we obtain in place of ( 2.17 )

$$
\begin{equation*}
\Omega=-\frac{3}{2} \pi i+\frac{1}{2} \log \left(\frac{1+p}{1-p}\right)+\frac{1}{2} \log \left(\frac{1+k p}{1-k p}\right) \tag{2.35}
\end{equation*}
$$

and in place of (2.29),

$$
h(q)= \begin{cases}\sigma v u-\frac{\sigma u}{\pi} \tan ^{-1}\left(\frac{\left(1-M^{2}\right) \sqrt{16 k M^{2}-(k-1)^{2}\left(1-M^{2}\right)^{2}}}{(1-1)+2(1+3 M) M^{2}+(k 8-1)}\right) & \text { for Mst } \\ \sigma r u s & (2.36)\end{cases}
$$

$\vartheta=h(q)$ being the curve on which $\theta=-\pi$ (show by the dotted curve in Figure 8)。
Let $H(M)=-\frac{1}{\pi} \tan ^{-1}\left\{\frac{\left(1-M^{2}\right) \sqrt{\left.16 M^{2}-(k-1)^{2}(1-M)^{2}\right)^{2}}}{(M-1)+2(1+3 M) M^{2}+(V-1) M^{2}}\right\}(2.37)$
So that,

$$
\begin{align*}
h(u) & =\sigma_{r v}+\sigma_{r u l}+(m) \\
& =\sigma_{r v}[1+H(m)] \tag{2.38}
\end{align*}
$$

Pram (2.36), $\left.\left.\quad \begin{array}{rl}\text { also, } & \quad h(u)=q^{*} \\ \text { *N }\end{array}\right)=\sigma_{\gamma v}\right\}$
Fence, from $(2.38)$ and (2.39)

$$
\begin{equation*}
H(1)=H\left(t^{*}\right)=0 \tag{2.40}
\end{equation*}
$$

Also, in place or (2.32) we obtain

$$
\begin{equation*}
R=\left(\frac{1+t^{*}}{1-t^{m}}\right)^{2} \tag{2.41}
\end{equation*}
$$

Substituting the value of $k$ in ( 2.37 ) we obtain the second form of $H(M)$ as

$$
\left.\begin{array}{rl}
H(M) & =-\frac{1}{\pi} \tan \left\{\frac{\left(1-M^{2}\right) \sqrt{\left(M^{2}-t^{2}\right)\left(1-M^{2} t^{* 2}\right)}}{t^{2}\left(1+M^{2}\right)^{2}+2 M^{2}\left(1+t^{* 2}\right)}\right.
\end{array}\right\}(2.42)
$$

## FLOW TWROUGH A NECKIED SLIT TMPINGING ON A WALH

In Chapter II, we have discussed two problems separately, namely the flow through a slit impinging on a wall and a flow through a necked slit. In this chapter, we will combine them together and then solve it es one problem. The inviscid incompressible fluid is confined in a semi-infinite reservoir which is bounded by sides $F^{\prime} R^{\prime} S^{\prime}$ and FRS perallel to a wall $B^{0} A B$ distance $h$ away. The chamber side has a slit of width $2 r$. Two walls $D^{9} F^{1}$ and $D$; of length ' $a$ ' have been projected into this semi-infinite reservoir forming a neck round the slit through which liquid escapes.


FIGURE
Physicai planes with axis of symmetry OA, chamber sides $\mathrm{F}^{5} \mathrm{~S}^{8}$ and FS. Jet boundary $\mathrm{D}^{9} \mathrm{C}^{9}$ and DC.

The solution is carried through by mapping the flow region in the plane of the complex velocity potential wand in the plane of Felmholtz potential $\Omega$, on an appropriate region of the plane of the auxiliary complex variable
$t$ and $p$. Because of symmetry we need consider only the half of the flow field in $x$ a $0.0,9=0$

FIGURE 2
z-plane
Since the velocity is in the direction in which the velocity potential ( $\emptyset$ ) increases, the value of at C and B is $+\infty$ and at 0 and $S$ it is $=\infty$. $D C$ is the free streamline $\psi=\sigma r U$ and along the streamline $O A B \psi=0$. The transformation $w+1 \psi$ is now applied to the figure in the zaplane (physical plane).


FIGuRE 3

The second transformation $\Omega=\log \frac{U}{q}+10$ is now applied to the ifgure in the z-plane.

From $S$ to $F$ the value of $\theta$ is constant at $\theta=-\pi$ while the value of $q$ increases from $q=0$ at $S$ to $q=q^{*}{ }^{*}$ at $R$ and then decreases to $q=0$ at $F$.

From $F$ to $D_{0} \theta$ is constant at $\theta=-3 \frac{\pi}{2}$ while $q$ goes from $q=0$ at $F$ to $q=U$ at $D_{0}$

Fram $O$ to $A$ the value of $\theta$ is constant at $\theta=\pi / 2$ while the value of $q$ first increases from $q=0$ at 0 to $q=q^{*}$ at $X$ and then decreases to $q=0$ at $A$

Prom A to $B$ the value of $\theta$ is conetant at $\theta=0$ while the value of $q$ goes from $q=0$ at $A$ to $q=U$ at $B_{\text {。 }}$


S-plane
EICURR 4
The mapping of $w$ and $\Omega$ planes into the toplanes, the points $(B, C)_{0} D_{y} F_{s}$ $R_{0}\left(S_{0} O\right)$, X and A correspond to $i_{3} O_{2} \lambda_{0} \mu_{9}+i, v$ and $\delta$ respectively.

tioplane
FiGuRE 5
Let $p=\sqrt{\frac{2 t}{1+i} ;}$ when $t e A_{1} p=\sqrt{\frac{2 \pi}{1+2}}=\frac{1}{k R}(2 y)$, when

$$
\begin{aligned}
& \sum_{=0,0}^{\infty} p=\sqrt{\frac{25}{\sqrt{7}}}-\frac{1}{k_{j}^{j}} \text { (sem) } \\
& \mathrm{k}>1 \text { and } \mathrm{k}^{1}<1
\end{aligned}
$$

The transformation of the t-plene to the p-plane by this eubetitution has. already been discussed in Chapter in The points $\mathrm{B}, \mathrm{Cg}, \mathrm{D}, \mathrm{F}, \mathrm{S}, \mathrm{O}$, and th are mapped into the peplane at point: $\infty_{0} 100_{3} 0, \frac{1}{k}(<1), 1$, 1 , and $\frac{1}{\mathbb{E}^{0}}$ respectively. i.e. all points in the t-plane are mapped in the first quadrant of the $p$-plane.


FIGURE 6

Since the angles at $(B, C)$ and ( $S, 0$ ) are zero, the relation of wan $t$ by the theorem of Schwarz-Christoffel is

$$
\begin{equation*}
\frac{d \omega}{d t}=L \frac{1}{(t+1)(t-1)}=\frac{L}{2}\left\{\frac{1}{t-1}-\frac{1}{t+1}\right\} \tag{3.01}
\end{equation*}
$$

Hence on integration, $\omega=\frac{L}{2} \log \left(\frac{t-1}{t+1}\right)+M$
Applying conditions at $B$ and it is easily seen that $M=0, \perp=2 \frac{\sigma r u}{T}$

Hence, $\omega=\frac{\pi r u}{\pi} \log \left(\frac{t-1}{t+1}\right)$

The relationship between $\Omega$ and $t$ is

$$
\frac{d \Omega}{d t}=K \frac{(t-\mu)(t-\nu)}{(t+1)^{\frac{1}{2}} t^{\frac{1}{2}}(t-\lambda)(t-\delta)(t-1)}
$$

since the angles at $(B, C), D, P, R,(S, O), X$ and $A$ in the $\Omega$-plane are $\pi / 2, \pi / 2,0,2 x, 0,2 \pi$ and 0 respectively.

$$
\text { since, } t=\frac{p^{2}}{2-p^{2}}, \frac{d t}{d p}=\frac{4 p}{\left(2-p^{2}\right)^{2}}, \frac{d \Omega}{d p}=\frac{d \Omega}{d t} \frac{d t}{d p}
$$

we obtain
$\frac{d \Omega}{d p}=k \sqrt{2} \frac{(1+\mu)(1+2)}{(1+2)(1+\delta)} \frac{\left(p^{2}-\frac{2 p}{1+2}\right)\left(p^{2}-\frac{22}{1+1}\right)}{\left(p^{2}-\frac{22}{1+2}\right)\left(p^{2}-\frac{25}{1+6}\right)}$
and, by partial fractions,

$$
\begin{aligned}
& \frac{d \Omega}{d p}=\frac{k}{\sqrt{2}} \frac{(1-\mu)(1-\nu)}{(1-\lambda)(1-\delta)}\left(\frac{1}{p-1}-\frac{1}{p+1}\right)+\frac{k}{\sqrt{2}} \frac{(\lambda-\mu)(\lambda-\nu)}{(\lambda-1)(\lambda-\delta)}\left(\frac{1}{p \sqrt{1+\lambda}-\sqrt{2 \lambda}}-\frac{1}{\sqrt[{1+\delta+\sqrt{2 \delta}}]{ })}\right. \\
& +\frac{k}{\sqrt{\delta}(\delta-1)(\delta-2)(\delta-2)}\left(\frac{1}{p \sqrt{1+\delta-\sqrt{2} \delta}}-\frac{1}{\sqrt{1+1}+\sqrt{8 \delta}}\right)(3.05)
\end{aligned}
$$

whence,

$$
\begin{align*}
& \Omega=\gamma+\frac{k}{\sqrt{2}}\left(\frac{(-\mu)(1-\lambda)}{(1-2)(1-\delta)} \log \left(\frac{p-1}{p+1}\right)+\frac{k}{\sqrt{\lambda(1+\lambda)(\lambda-1)(\lambda-8)}} \log \left(\frac{p-\sqrt{\frac{2 \lambda}{1 / 2}}}{p+\sqrt{1+2}}\right)\right. \\
& +\frac{k}{\sqrt{\delta(1+\delta)}(\delta-p)(\delta-2)(\delta-1)} \log \left(\frac{p-\sqrt{\frac{28}{1+5}}}{p+\sqrt{\frac{25 / i+5}{2}}}\right) \tag{3.06}
\end{align*}
$$

There are six unknown ( $\gamma, \mathcal{K}, \lambda, \mu, v$ and 8 ). We have to evaluate then At $\mathrm{B}, \mathrm{C}$ :

$$
\Omega=0, t=\left\{\begin{array}{ll}
-1 \\
-1
\end{array}, \quad p=\left\{\begin{array}{l}
\infty \\
i \infty
\end{array}\right.\right.
$$

Hence, it can be easily proved that $\boldsymbol{y}=0$.

$$
\begin{gather*}
\Omega=\frac{k}{\sqrt{2}} \frac{(1-\mu)(1-\nu)}{(1-\lambda)(1-\delta)} \log \left(\frac{p-1}{p+1}\right)+\frac{k}{\sqrt{2(1+2)} \frac{(\lambda-\mu)(\lambda-\nu)}{(\lambda-1)(\lambda-\delta)} \log \left(\frac{k p-1}{k p+1}\right)} \\
+\frac{k}{\sqrt{6(1+\delta)}} \frac{(\delta-\mu)(\delta-\nu)}{(\delta-1)(8-\lambda)} \log \left(\frac{k^{\prime} p-1}{k^{\prime} p+1}\right) \tag{3.07}
\end{gather*}
$$

where $\frac{1}{k}=\sqrt{\frac{2 \lambda}{1+2}}(<1), \frac{1}{k_{0}^{\prime}}=\sqrt{\frac{28}{1+6}}(>1)$
At D: $\Omega=-3 \frac{\pi}{2} i, t=0 ; P=0$.
$\therefore$ Prom (3.07)

$$
\begin{equation*}
-\frac{3}{2}=\frac{k(1-\beta)(1-2)}{\sqrt{2}(1-2)(1-8)}+\frac{k}{\sqrt{2(1+2)(\lambda-1)(2-8)}}+\frac{(\lambda-\mu)(\lambda-1)}{\sqrt{8(1+0)}} \frac{(8+3)(8-2)}{(8-1)(8-\lambda)} \tag{3.08}
\end{equation*}
$$

$$
\text { At } 0, s: \Omega=\left\{\begin{array}{l}
H-i \frac{\pi}{2} \\
H=i \pi
\end{array}, t=\left\{\begin{array}{l}
1^{t} \\
1^{\infty}
\end{array}, \quad p=\left\{\begin{array}{l}
1^{t} \\
1^{-}
\end{array}\right.\right.\right.
$$

Applying these two conditions in ( 3.07 ) o it is easily seen that

$$
\begin{equation*}
-\frac{1}{2}=\frac{1}{\sqrt{5(1+8)}} \frac{(8-\mu)(8-2)}{(8-1)(8-2)} \tag{3.09}
\end{equation*}
$$

and, $\quad-\frac{1}{2}=\frac{k}{\sqrt{2}} \frac{(1-\mu)(1-2)}{(1-A)(1-9)}$
Hence from $(3.08),(3.09)$ and $(3.10)$ we obtain

$$
\begin{equation*}
-\frac{1}{2}=\frac{k}{\sqrt{\lambda(1+2)}} \frac{(\lambda-\mu)(\lambda-\nu)}{(\lambda-1)(\lambda-8)} \tag{3.11}
\end{equation*}
$$

Substituting the values of $(3.09),(3.10),(3.11)$ in $(3.07)$ we obtain,

$$
\begin{align*}
\Omega & =-\frac{1}{2} \log \left(\frac{p-1}{p+1}\right)-\frac{1}{2} \log \left(\frac{k p-1}{k p+1}\right)-\frac{1}{2} \log \left(\frac{p^{\prime} p-1}{p^{\prime} p+1}\right) \\
& =\frac{1}{2} \log \left(\frac{1+p}{p-1}\right)+\frac{1}{2} \log \left(\frac{k p+1}{k p-1}\right)+\frac{1}{2} \log \left(\frac{k^{\prime} p+1}{k^{\prime} p-1}\right) \tag{3.12}
\end{align*}
$$

Allowing for the actual values taken by $\Omega$ we can write this as

$$
\Omega=-\frac{3}{2} \pi i+\frac{1}{2} \log \left(\frac{1+p}{1-p}\right)+\frac{1}{2} \log \left(\frac{1+k p}{1-R p}\right)+\frac{1}{2} \log \left(\frac{1+k^{\prime} p}{1-p^{p} p}\right)(3.13)
$$

We now proceed to derive from this result the particular case obtained in the previous chapter.

$$
\begin{equation*}
\text { From (3.12), } e=i\left\{\left(\frac{1+p}{1-p}\right)\left(\frac{1+R p}{1-R p}\right)\left(\frac{1+R^{\prime} p}{1-R^{\prime} p}\right\}^{\frac{1}{2}}\right. \tag{3.14}
\end{equation*}
$$

Again since,

$$
\begin{aligned}
\Omega & =\log \left(\frac{u}{u}\right)+i \theta=\log \left(\frac{v}{q e^{2}}\right) \\
& =\log \left(u \frac{d z}{d u}\right)=\log \left(u \frac{d z}{d p} \cdot \frac{d p}{d w}\right) \\
& =\log \left(u \frac{d z}{d p} \cdot \frac{d p}{d t} \cdot \frac{d t}{d \omega}\right)
\end{aligned}
$$

we obtain

$$
{ }^{n} \Omega=v \frac{d z}{d p} \frac{d p}{d t} \frac{d t}{d w}=v \frac{d z}{d p} \frac{\left(2-p^{2}\right)^{2}}{4 p} \pi \cdot \frac{t^{2}-1}{2 v i v}
$$

Fence substituting $t$ in terms of p ,

$$
\begin{array}{r}
R=\frac{\pi}{2 \pi}\left(\frac{p^{2}-1}{p}\right) \frac{d z}{d p}  \tag{3.15}\\
\therefore \operatorname{Irm}(3.14), d z=\frac{2 \pi \pi}{\pi} \frac{p}{p^{2}-1} e^{2} d y
\end{array}
$$

Substituting $e^{\Omega}$ iron (3.13) and integrating $z$ from D to $F$ we obtain

$$
\begin{equation*}
\int_{D}^{F} d z=-i \frac{2 \sigma p}{\pi} \int_{0}^{\frac{1}{k}}\left(\frac{p}{1-p^{2}}\right)\left(\frac{1+p}{1-p}\right)^{\frac{1}{2}}\left(\frac{1+k p}{1-k p}\right)^{\frac{1}{2}}\left(\frac{1+k^{\prime} p}{1-k^{\prime} p}\right)^{\frac{1}{2}} d p \tag{3.16}
\end{equation*}
$$

$$
\int_{\substack{\text { Fence on integration }}}^{\text {ie. }} d r=-i \frac{2 \sigma}{\pi} \int_{0}^{\frac{1}{k}}\left(\frac{p}{1-p^{2}}\right)\left(\frac{1+p}{1-p}\right)^{\frac{1}{2}}\left(\frac{1+k p}{1-k p}\right)^{\frac{1}{2}}\left(\frac{1+k^{\prime} p}{1-k^{\prime} p}\right)^{\frac{1}{2}} d p
$$

Hence on integration

$$
a=\frac{2 \sigma r}{\pi} \int_{0}^{\frac{1}{k}}\left(\frac{p}{1-p^{2}}\right)\left(\frac{1+p}{1-p}\right)^{\frac{1}{2}}\left(\frac{1+k p}{1-k p}\right)^{\frac{1}{2}}\left(\frac{1+p^{1} p}{1-k^{1} p}\right)^{\frac{1}{2}} d p(3.17)
$$

$s=0$ requires the upper limit of the integral to vanish，ie．解 is infinite．And when $k$ is infinite，we obtain from（3．13）

$$
\Omega=-i \pi+\frac{1}{2} \log \left(\frac{1+p}{1-p}\right)+\frac{1}{2} \log \left(\frac{1+k^{\prime} p}{1-p^{\prime} p}\right)
$$

which verifies the solution of the first problem of Chapter II（see 2．17）． Again，consider a point $0^{\prime}$ ；p in the $p$－plane．Here $p>1$ and also $p>\frac{1}{k}($ i．e．$k p>1)$ and $p<\frac{1}{R_{i}^{\prime}}$ ，（1．e．Nip＜ 1 ）．
Hence from（ 3.12 ）we obtain，

$$
\begin{equation*}
\Omega=-i \frac{\pi}{2}+\frac{1}{2} \log \left(\frac{1+1 p}{p-1}\right)+\frac{1}{2} \log \left(\frac{k p+1}{4 k p-1}\right)+\frac{1}{2} \log \left(\frac{1+k^{\prime} p}{1-k p}\right) \tag{3.18}
\end{equation*}
$$

1．e．$\quad e^{\Omega}=-i\left(\frac{p+1}{p-1}\right)^{\frac{1}{2}}\left(\frac{k p+1}{k p-1}\right)^{\frac{1}{2}} \cdot\left(\frac{k^{\prime} p+1}{1-k^{\prime} p}\right)^{\frac{1}{2}}$
Hence，as before，

$$
\int_{0}^{A} d z=i \frac{2 \sigma}{\pi} \int_{p=0}^{\frac{1}{k^{0}}}\left(\frac{p}{1-p^{2}}\right)\left(\frac{1+p}{p-0}\right)^{\frac{1}{2}}\left(\frac{k p+1}{k p-1}\right)^{\frac{1}{2}}\left(\frac{1+k^{\prime} p}{1-k p^{\frac{1}{2}}}\right)^{\frac{1}{2}} d p
$$

Since $O^{\prime}$ is the origin and $A$ is $[0,-i(h+a)]$ in the physical plane we obtain on integration

$$
\left.h+a=\frac{2 \pi r}{\pi} \int_{p^{\prime}}^{\frac{1}{p^{\prime}}}\left(\frac{p}{1-p^{2}}\right)\left(\frac{1+p}{p-1}\right)^{\frac{1}{2}}\left(\frac{k p+1}{k p-1}\right)^{\frac{1}{2}}\left(\frac{1+k^{\prime} p}{1-k^{\prime} p}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}} p
$$

when $h \rightarrow \infty$, R.H.S. should tend to infinity which means that $\frac{1}{\mathcal{R H}^{\prime} \rightarrow \infty}$ i.e. $R^{\prime} \rightarrow 0$.

But, $\quad \frac{1}{R^{\prime}}=\sqrt{\frac{28}{1+8}}$
Hence, if $K^{\prime} \rightarrow 0, \quad 1+\delta \geq 0$

$$
\text { ي } \delta=-1
$$

1.e. the point A coincides with B and C. Fence when $R^{\prime}=0$, we obtain from (3.13)
$\Omega=-\frac{3}{2} \pi i+\frac{1}{2} \log \left(\frac{1+p}{1-p}\right)+\frac{1}{2} \log \left(\frac{1+k p}{1-k i p}\right)$..f. (2.35)

Hence it has been verified that if the neck is witharami, the problem reduces to Levy's and is the wail is withdrawn, it reduces to Hachemeister's. This verification also establishes the correctness of the result of this new problem.

We can find out the complex potential w from (3.13) and (3.03) in the same way as has been obtained in Chapter II. But since the form os $p$ is very complicated in this case it is Pound desirable to close this chapter at this stage.

## JET THROUGH A SLIT IMPINGING ON A WALT AND A FLOW THROUGH A NECKED SLIT BY A MODOGRAPH METHOD

1. Jet through a slit impinging on a wall

The physical and hodograph planes are shown in FIgures 1 and 2. It is sufficient to consider only one half of the plane because of symmetry.


Physical plane
FIGURE 1


Hodograph plane
FIGURE 2

The flow is governed by the equation

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial q^{2}}+\frac{1}{q} \frac{\partial \psi}{\partial q}+\frac{1}{q^{2}} \frac{\partial^{2} \psi}{\partial \theta^{2}}=0 \tag{4.01}
\end{equation*}
$$

Our problem may formally be stated as the search of the solution of equation (4.01) subject to the boundary conditions for the portion $A B C Q$ and AQDE. The boundary conditions in the hodograph plane are $\psi \in 0$ on $A B$ $(0=0), \psi=U H$ on $E D(0=-\pi)$ and $\psi=$ UH on DQC where $U$ is the velocity
of the jet at infinity downstream and $H$ is the height of B above $C$ and $\psi=0$ on OXA $(\theta=-\pi / 2) \psi=s(q)$ on $X Q(\theta=-\pi / 2)$.

We will first consider the portion ABCQ with the following boundary conditions imposed on it.

That $\psi=0$ on $\theta=0$

$$
\begin{aligned}
& \psi=U H,(-\pi / 2<\theta<0) \\
& \psi=\mathcal{H}(q) \text { on } \theta=-\pi / 2 \text { with } r(q)=\left\{\begin{array}{l}
0, \quad 0 \leqq q<q^{*} \\
\mu(q) q^{*}<q<U
\end{array}\right.
\end{aligned}
$$

$q^{*}$ being the velocity of the fluid at $X$.
In practice it is Pound convenient to obtain the solution into two parts which are superimposed to give the final result. In the first part we find the solution for $\psi=0$ on $A B, \psi=0$ on $A Q$ and $\psi=U H$ on $B A$ and in the second part we find the solution for which $\psi \approx 0$ on $A B, \psi=0$ on $B C$ and $Y=A(q)$ on $A Q$ with $S(Q)=0$ on $A X$. These two boundary value problems will be treated separately. We will call the combined solution $\psi_{R}$ doe. the value of for the rigirt hand side of the hodograph plane.

$\underline{\text { Solution for } \Psi_{8}^{(1)}}$
We require to find a function $\psi(q, 0)$ which satisfies ( 4.01 ) and the following boundary conditions:-
(a) $\quad \psi=0$ on $\theta=0$
(b) $\psi=0$ on $\theta=-\frac{\pi}{2}$
(c) $\psi=U H$ when $q=U\left(-\frac{\pi}{2}<\theta<0\right)$

The most general solution of (4.01) is given by

$$
\begin{equation*}
\psi=\left[A q^{n}+B q^{-n}\right] \sin (n \theta+\varepsilon) \tag{4.04}
\end{equation*}
$$

If it is to satisfy (a) and (b) then (4.04) must be of the form $\psi=A q^{n} \sin n \theta$.
But, $\psi=0$ when $\theta=-\pi / 2$ suggests that $n$ must be an even integer. Let $n=2 K$.

$$
\text { Hence, } \psi=A q^{2 K} \sin 2 K \theta
$$

Hence the most general solution of (4.01) satisfying (a) and (b) is

$$
\begin{equation*}
\psi=\sum_{1}^{\infty} A q^{2 k} \sin 2 k \theta \tag{4.05}
\end{equation*}
$$

Again condition (c) requires that $\psi=$ UH when $q=0$.

$$
\begin{equation*}
\therefore U H=\sum A U^{2 k} \sin 2 k \theta \tag{4.06}
\end{equation*}
$$

By the theory of Fourier sine series

$$
\int_{-\pi / 2}^{0} U H \sin 2 k \theta=\int_{-\frac{\pi}{2}}^{0} A U^{2 k} \sin ^{2} 2 k \theta d \theta
$$

which gives, $A=0 \quad$ if $K$ is even

$$
=-\frac{4 U H}{\pi} \frac{1}{U^{2} K} \quad \text { when } K \text { is odd }
$$

Let $K=2 n+1$ where $n$ is an integer.

$$
\begin{aligned}
& \text { From (4.05) } \psi=\sum_{n=0}^{\infty} \frac{4 U H}{\pi} \frac{1}{2 n+1}\left(\frac{2}{v}\right)^{4 n+2} \sin (4 n+2) \theta \text { (4.01) } \\
& \text { i.e. } \quad \psi_{R}^{(1)}=-\frac{4 U H}{\pi} \sum_{n=0}^{\infty} \frac{1}{2 n+1}\left(\frac{a}{v}\right) \sin (4 n+2) \theta
\end{aligned}
$$

But,

$$
\begin{array}{r}
\sum_{0}^{\infty} \frac{1}{2 n+1}\left(\frac{a}{u}\right)^{4 n+2} \sin (4 n+2) \theta \\
=\operatorname{lm} \cdot \text { part, of } \sum_{0}^{\infty} \frac{1}{2 n+1}\left(\frac{a}{u}\right)^{4 n+2} e^{i(4 n+2) \theta} \\
=\frac{1}{2} \tan ^{-1}\left\{\frac{2 M^{2} \sin 2 \theta}{1-M^{4}}\right\} \text { where } q=U M \tag{4.08}
\end{array}
$$

Substituting this value in (4.07) we obtain,

$$
\begin{equation*}
\psi_{R}^{(1)}=-\frac{2 U H t^{-1}}{\pi} \tan \left\{\frac{2 M^{2} \sin 2 \theta}{1-M^{4}}\right\} \tag{4.09}
\end{equation*}
$$

Solution for ${\underset{R}{(2)}}_{(2)}$
In this problem we seek the solution of ( 4.01 ) with the following boundary conditions imposed upon it:-

$$
\begin{aligned}
& \psi=0, \text { on } \theta=0 \\
& \psi=0,-\frac{\pi}{2}<\theta<0 \\
& \psi=l(a) \text { on } \theta=-\frac{\pi}{2} \text { arch that } l(q)=\left\{\begin{array}{l}
0 \text { on } A x \\
\neq 0 \text { on x }
\end{array}\right.
\end{aligned}
$$

Finite Fourier Transforms are used to transform (4.01) with respect to 0. The resulting ordinary differential equation in $q$ is solved by finding the Green's Function to give the transform of the unknown function $\psi(q, 0)$. The required solution of (4.01) is finally obtained from the inverse transform.

Define, $\quad \Psi(a, n)=\int_{-\frac{\pi}{2}}^{0} \Psi(a, \theta) \sin 2 n \theta d \theta$
so that $\Psi(a, \theta)=\frac{4}{\pi} \sum \Psi(q, n) \sin 2 n \theta$
Multiplying (4.01) by ain $2 n 0$ and integrating with respect to $\theta$ from $\theta \equiv-\pi / 2$ to $\theta=0$ we obtain,

$$
\int_{-\frac{\pi}{2}}^{0} \frac{\partial^{2} \psi}{\partial q^{2}} \sin 2 n \theta d \theta+\int_{-\frac{\pi}{2}}^{0} \frac{\partial \psi}{\partial q} \sin 2 n \theta d \theta+\int_{-\frac{\pi}{2}}^{0} \frac{1}{q^{2}} \frac{\partial^{2} \psi}{\partial \theta^{2}} \sin 2 n \theta d \theta
$$

Hence, we obtain the ordinary differential equation

$$
\frac{d^{2} \Psi}{d q^{2}}+\frac{1}{q} \frac{d \bar{\Psi}}{d q}-\frac{4 n^{2} \Psi}{q^{2}}=-(-1)^{n} \frac{2 n}{q^{2}} l(q)
$$

which can be written in the form

$$
\begin{equation*}
\frac{d}{d q}\left[q \frac{d \bar{y}}{d q}\right]-\frac{4 n^{2}}{q} \Psi=-(-1)^{n} \frac{2 n}{q} l(q) \tag{4.12}
\end{equation*}
$$

The required Green's function is the solution $\mathrm{Se}_{\mathrm{l}}\left(\& q^{\prime}\right)$ of the equation

$$
\begin{equation*}
\frac{d}{d a}\left[q \frac{d a}{d q}\right]-\frac{4 n^{2}}{q} a=\delta\left(q-a^{\prime}\right) \tag{4.13}
\end{equation*}
$$

which (i) is finite at $q=0$
(ii) assumes the value zero on $q=\boldsymbol{J}$
(iii) is continuous on $q=q^{\prime}$

In (4.13), $8\left(q-q^{\prime}\right)$ is the Dirac Delta Function.
The most general solution of (4.13) which satisfies the condition (i) and (ii) is

$$
G\left(q, q^{\prime}\right)=\left\{\begin{array}{cl}
A q^{2 n} & q<q^{\prime}(4.14) \\
\text { constants. } & B\left[\left(\frac{q}{v}\right)^{2 n}-\left(\frac{u}{q}\right)^{2 n}\right]
\end{array} \quad q^{\prime}<q .\right.
$$

We now choose $A$ and $B$ to fulfil (iii).
This requires that

$$
\begin{equation*}
A a^{1^{2 n}}=B\left[\left(\frac{x^{1}}{u}\right)^{2 n}-\left(\frac{u}{a}\right)^{2 n}\right] \tag{4.15}
\end{equation*}
$$

Also on integration of (4.13) from $q=q^{\prime}=0$ to $q=q^{\prime}+0$, the continuity of $G$ requires that

$$
\begin{align*}
& {\left[q \frac{d G_{2}}{d q}\right]_{q-0}^{i+0}=1} \\
& \text { i.e. } \quad G_{2}^{\prime}-G_{1}^{\prime}=\frac{1}{q^{\prime}} \tag{4.16}
\end{align*}
$$

Hence from (4.14) and (4.16) we obtain

$$
B\left[2 n\left(\frac{q^{i}}{v}\right)^{2 n-1}\left(\frac{1}{u}\right)-2 n\left(\frac{u}{q^{\prime}}\right)^{2 n-1}\left(-\frac{u}{q^{2}}\right)\right]-2 n A q^{2 n-1}=\frac{1}{q^{\prime}}
$$

Hence solving (4.17) and (4.16) we obtain

$$
\begin{align*}
& A=\frac{1}{4 n} \frac{1}{u^{2 n}}\left[\left(\frac{u^{\prime}}{u}\right)^{2 n}-\left(\frac{u}{a^{\prime}}\right)^{2 n}\right]  \tag{4.18}\\
& B=\frac{1}{4 n}\left(\frac{a^{\prime}}{u}\right)^{2 n}
\end{align*}
$$

Substituting the values of A and B from (4.18) in (4.14) we obtain the required Green's function of (4.12) namely,

$$
G^{2}\left(a, a^{\prime}\right)= \begin{cases}\frac{1}{4 n}\left(\frac{a_{1}}{u}\right)^{2 n}\left[\left(\frac{a^{\prime}}{u}\right)^{2 n}-\left(\frac{u}{q^{\prime}}\right)^{2 n}\right] & q<q^{\prime} \\ \frac{1}{4 n}\left(\frac{a^{\prime}}{u}\right)^{2 n}\left[\left(\frac{q}{v}\right)^{2 n}-\left(\frac{y}{a}\right)^{2 n}\right] & q^{\prime}<q\end{cases}
$$

If we multiply (4.12) by $G\left(q, q^{\prime}\right)$ and (4.13) by $₹(q)$ and subtract, then on integration with respect to $q$ from $q=0$ to $q=U_{\text {, we her after }}$ making use of boundary values of $G$ and | $\bar{y}$ |
| :---: |

$$
\begin{equation*}
\Psi\left(q^{\prime}\right)=(-1) \int_{0}^{u}(-1)^{n} \frac{2 n}{q} e(q) \sigma\left(u q^{\prime}\right) d q^{\prime} \tag{4.20}
\end{equation*}
$$

Thus on interchanging $q$ and $q^{\prime}$ we may obtain the required solution of (4.12) by evaluating the integral

$$
\begin{equation*}
\Psi(v)=(-1) \int_{0}^{U}(-1)^{n} \frac{2 n}{q^{\prime}} e\left(q^{\prime}\right) G\left(0 q^{\prime}\right) d q^{\prime} \tag{4.21}
\end{equation*}
$$

We have reached a stage where we must specify $\boldsymbol{B}\left(\mathbf{q}^{\prime}\right)$ more fully , we have to consider the following situations for $\mathcal{E}\left(q^{\prime}\right)$

$$
l(v)= \begin{cases}0 & \text { when }  \tag{4.22}\\ \pm<0 & q<q^{*} \\ \text { when } & q^{x}<a^{*}\end{cases}
$$

Also we have the following range of integration:-
(a)

$$
0<a^{\prime}<q^{*}<u
$$

(b)

$$
\begin{equation*}
0<a^{x}<a^{\prime}<u \tag{4.23}
\end{equation*}
$$

So, from (4.21) and from (4.23) when $q<q^{*}$

$$
\Psi(q)=-\int_{q^{*}}^{u}(-1)^{n} \frac{2 n}{q^{\prime}} l\left(q^{\prime}\right) \frac{1}{4 n}\left(\frac{q^{u}}{u}\right)^{2 n}\left[\left(\frac{q^{\prime}}{u}\right)^{2 n}-\left(\frac{u}{q^{\prime}}\right)^{2 n}\right] d q^{\prime}(4.24)
$$

and, when $q>q^{*}$

$$
\left.\bar{\Psi}(q)=-\int_{q^{*}}^{q} \frac{(-1)^{n}}{2} \frac{e(d)}{q^{\prime}}\left(\frac{q^{\prime}}{v}\right)^{2 n}\left[\left(\frac{a}{v}\right)^{2 n}-\left(\frac{u}{q}\right)^{2 n}\right] d q^{\prime}-\int_{q}^{u} \frac{(-1)^{n}}{2} \frac{2\left(q^{\prime}\right)}{q}\left(\frac{q}{v}\right)^{2 n}\left[\frac{q^{\prime}}{v}\right)^{\prime n}-\left(\frac{u}{q}\right)^{2 n}\right](4.25)
$$

Since we are not interested when $q<q^{*}$, we will consider the case when $q>q^{*}$ 。

Hence from (4.11) and (4.25) we obtain

$$
\begin{aligned}
& \text { (2) } \\
& \left.-\frac{4}{T} \sum_{n=0}^{\infty}\left\{\frac{(-1)^{2}}{2}\left[\frac{(\alpha}{v}\right)^{2 n}-\left(\frac{u}{a}\right)^{2 n}\right] \int_{q^{*}}^{q}\left(\frac{a^{\prime}}{v}\right)^{2 n} \frac{l\left(q^{\prime}\right)}{q^{\prime}} d q^{\prime}\right\} \sin 2 n \theta \\
& \psi_{R}=\Psi(a, \theta)=\frac{4}{\pi} \sum_{n=0}^{a 0}\left\{\frac{(-1)^{n}}{2}\left(\frac{a}{v}\right)^{2 n} \int_{q}^{u}\left[\left(\frac{q^{\prime}}{v}\right)^{2 n}-\left(\frac{u}{q^{\prime}}\right)^{2 n}\right] \frac{l\left(q^{\prime}\right)}{q} d q^{\prime}\right\} \sin 2 n \theta
\end{aligned}
$$

It can be easily proved that the infinite series in (4.26) are uniformly convergent. Hence changing the order of integration and summation we obtain from (4.26)

$$
\begin{aligned}
& \text { obtain from } \quad-\frac{4}{\pi} \int_{a^{*}}^{q^{4}} \frac{l\left(a^{\prime}\right)}{2 q^{\prime}}\left[\sum_{0}^{\infty}\left(\frac{a^{\prime}}{v}\right)^{2 n} \sin 2 n \theta(-1)^{n}\left\{\left(\frac{a}{v}\right)^{2 n}-\left(\frac{v}{q}\right)^{2 n}\right\}\right] d q^{\prime} \\
& \psi_{R}^{(2)}=-\frac{4}{\pi} \int_{q}^{u} \frac{l\left(q^{\prime}\right)}{2 q^{\prime}}\left[\sum_{0}^{2}(-1)^{n} \sin 2 n \theta\left(\frac{q}{v}\right)^{2 n}\left\{\left(\frac{q^{\prime}}{u}\right)^{2 n}-\left(\frac{u}{q^{\prime}}\right)^{2 n}\right\}\right] d q^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \text { But } \\
& \sum_{0}^{\infty}\left(\frac{a^{\prime}}{v}\right)^{2 n}(-1)^{n} \sin 2 n \theta\left\{\left(\frac{q}{v}\right)^{2 n}-\left(\frac{u}{a}\right)^{2 n}\right\} \\
& =1 m \text {.p. of } \sum_{0}^{\infty}(-1)^{n} e^{i 2 n \theta}\left\{\left(\frac{q a^{i}}{v^{i}}\right)^{2 n}-\left(\frac{q^{\prime}}{q^{i}}\right)^{2 n}\right\} \\
& =\left[\frac{q^{2} q^{\prime 2}}{q^{4}+2 q^{2} q^{\prime 2} \cos 2 \theta+q^{14}}-\frac{q^{2} q^{\prime 2} u^{4}}{u^{8}+2 q^{2} q^{1^{2}} u^{4} \cos 2 \theta+q^{4} q^{14}}\right] \\
& \text { Similarly, } \\
& \sum_{0}^{\infty}(-1)^{n} \sin 2 n \sin \left(\frac{a}{v}\right)^{2 n}\left\{\left(\frac{a_{j}}{u}\right)^{2 n}-\left(\frac{u}{a^{r}}\right)^{2 n}\right\} \\
& =\left[\frac{q^{2} q^{\prime 2}}{q^{4}+2 q^{2} q^{\prime 2} \cos 2 \theta+q^{\prime 4}}-\frac{q^{2} q^{2} u^{4}}{u^{8}+2 q^{2} q^{\prime 2} u^{4} \cos 2 \theta+q^{4} q^{44}}\right] \sin 2 \theta
\end{aligned}
$$

Substituting the values of (4.28) and (4.29) and writing $M=\frac{q}{\bar{v}}$, $M^{\prime}=\frac{a^{\prime}}{U}$ and $M M^{*}=\frac{q^{*}}{U}$ we obtain from $(4 \cdot 2 \eta)$

$$
\Psi_{R}^{(2)}=-\frac{2}{\pi} \int_{M^{n}}^{1} R\left(M^{\prime}\right) \frac{\left(M^{2} \sin 2 \theta\right) M^{\prime} d M^{\prime}}{M^{4}+2 M^{2} M^{2} \cos 2 \theta+M^{\prime}}+\frac{2}{\pi} \int_{M^{*}}^{1} R\left(M M^{1}\right)^{\left(M M^{2} \operatorname{Sin}^{\prime} 2 \theta\right) M^{2} M^{\prime} d M^{2} M^{\prime} x(4.30)}
$$

Again since, $\psi_{R}=\psi_{R}^{(1)}+\psi_{R}^{(2)}$ is we set $\quad l(M)=U M(M)$ we obtain from (4.09) and (4.30)

$$
\begin{aligned}
& \Psi_{R}=-\frac{2 U H H^{-1}}{\pi} \tan ^{\pi}\left\{\frac{2 M^{2} \sin 2 \theta}{1-M^{4}}\right\}-\frac{2 U H}{\pi} \int_{M^{*}}^{1} L\left(M^{\prime}\right) \frac{\left(M^{2} \sin 2 \theta\right) M^{\prime} d M^{\prime}}{M^{4}+2 M^{2} M^{\prime 2} \cos 2 \theta+M^{4} 4}(4.31) \\
& +\frac{2 U H}{\pi} \int_{M^{*}}^{1} L\left(M^{\prime}\right) \frac{\left(M^{2} \sin 2 \theta\right) M^{\prime} d M^{\prime}}{1+2 M^{2} M^{\prime 2} \cos 2 \theta+M^{4} M^{4}}
\end{aligned} \quad \begin{aligned}
& \text { But, } \\
& \int_{M^{*}}^{1} L\left(M^{\prime}\right) \frac{\left(M^{2} \sin 2 \theta\right) M^{\prime} d H^{\prime}}{M^{4}+2 M^{2} M^{2} \cos 2 \theta+M^{\prime}}=\int_{M^{*}}^{1} L^{*}\left(M^{\prime}\right) \frac{\left(M^{2} \sin 2 \theta\right) M^{\prime} d M^{\prime}}{\left(M^{2} \cos 2 \theta+M^{2}\right)^{2}+\left(M^{2} \sin 2 \theta\right)^{2}}
\end{aligned}
$$

Integrating by parts and remembering that we are working in the fourth quadrant, we obtain

$$
\begin{aligned}
& \int_{M^{*}}^{\prime} L(M) \frac{\left(M^{2} \sin 2 \theta\right) M^{\prime} d M^{\prime}}{M^{4}+2 M^{2} M^{\prime 2} \cos 2 \theta+M^{4}} \\
&=\left[-\frac{1}{2}-\left(M^{1}\right) \tan ^{-1}\left(\frac{\left.M^{2}+M^{2} \cos 2 \theta\right)}{\left.-M^{2} \sin 2 \theta\right\}}\right]_{M^{*}}^{1}+\frac{1}{2} \int_{M^{*}}^{1} \frac{d L}{d M^{\prime}} t^{-1}\left\{\frac{M^{2}+M^{2} \cos 2 \theta}{-M^{2} \sin 2 \theta}\right\} d M^{\prime}\right. \\
& \quad=-\frac{1}{2} \tan ^{-1}\left\{\frac{1+M^{2} \cos 2 \theta}{-M^{2} \sin 2 \theta}\right\}+\frac{1}{2} \int_{M^{*}}^{1} \frac{d L}{d M^{\prime}} \tan ^{-1}\left\{\frac{M^{2}+M^{2} \cos 2 \theta}{-M^{2} \sin 2 \theta}\right\} d M^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{H^{*}}^{\text {Similarly, }} L\left(M^{\prime}\right) \frac{\left(r^{2} \sin 2 \theta\right) \mu^{\prime} d \pi^{\prime}}{1+2 r^{2} \pi^{2} \cos 2 \theta+r^{2} \mu^{14}} \\
& \left.\quad=-\frac{1}{2} \tan ^{-1}\left\{\frac{M^{2}+\cos 2 \theta}{-\sin 2 \theta}\right\}+\frac{1}{2} \int_{M^{*}}^{1} \frac{d \mu}{d \mu^{\prime}} \cdot \tan ^{-1}\left\{\frac{M^{2} \pi^{2}+\cos 2 \theta}{-\sin 2 \theta}\right\} d \mu^{\prime} .33\right)
\end{aligned}
$$

Hence substituting the values from (4.32) and (4.33) in (44.31) we get

$$
\begin{aligned}
& -\frac{2 U H}{\pi} \tan ^{-1}\left\{\frac{2 R^{2} \sin 2 \theta}{1-M 4}\right\}+\frac{U H}{\pi} \tan \left\{\frac{1+\pi^{2} \cos 2 \theta}{M^{2} \sin 2 \theta}\right\} \\
& \psi_{R}=-\frac{4 H t^{-1}}{\pi}\left\{\frac{R^{2}+\cos 2 \theta}{-\sin 2 \theta}\right\}-\frac{U H}{\pi} \int^{1} \frac{d u}{d A^{\prime}} \tan ^{-1}\left\{\frac{\pi^{2}+r^{2} \cos 2 \theta}{-\pi^{2} \sin 2 \theta}\right\} d T^{\prime}
\end{aligned}
$$

We shall later need the partial derivative of this expression with respect to $\theta$.

Differentiating with respect to $\theta$ we obtain,

$$
\begin{aligned}
& -\frac{8 u 4}{\pi} \frac{r^{2}\left(1-r^{4}\right) \cos 2 \theta}{\left(1-\pi^{4}\right)^{2}+4 r^{4} \sin ^{2} 2 \theta}-\frac{2 u 4}{\pi} \frac{\left(1-r^{4}\right)}{1+2 r^{2} \cos 2 \theta+\pi^{4}} \\
& \frac{\partial \psi_{R}}{\partial \theta}=\frac{2 U H}{\pi} \int_{\pi^{4}}^{1} \frac{d}{d M}, \frac{r^{2}\left(r^{2}+r^{2} \cos 2 \theta\right) d \pi^{\prime}}{\pi^{3}+2 R^{2} \pi^{2} \cos 2 \theta+\pi^{4}} \\
& +\frac{2 U H}{\pi} \int_{M R^{2}}^{1} \frac{d L}{d M^{\prime}} \frac{\left(1+r^{2} \pi^{2} \cos 2 \theta\right) d r i}{1+2 \pi^{2} \pi^{2} \cos 2 \theta+\pi^{4} \pi^{14}}
\end{aligned}
$$

We will now proceed to work with the left half of the hodograph plane and obtain similar expressions for $\psi_{L}$ and its derivative.

Solution for the left half of the hodograph plane

For the left hall of the hodograph plane we have the following boundary conditions:-

$$
\begin{align*}
& \psi=U R \quad \text { on } \theta=-x \\
& \psi=B(q) \text { on } \theta=-\pi / 2 \tag{4.36}
\end{align*}
$$

and $\psi=$ UH when $-x<\theta<-\pi / 2$


Here also it is foumd convenient to obtain the solution into two parts which are then euperimposed to give the IInal result. In the firgt part

 and $\psi=0$ on Da.

These two boundary value problems will be treated aeparately. We will call the coubined solution as $\psi_{L}$ i.e. the value of $\psi$ for the left half of the hodograph plarie.


Solution of $\psi_{\text {L }}^{(1)}$
Here the boundary conditions of $\psi$ are as follows:-

$$
\begin{align*}
& \psi=0 \quad \text { on } \theta=-x \\
& \psi=B(q) \text { on } \theta=-x / 2 \tag{4.38}
\end{align*}
$$

and $\psi=U H$ when $-\pi<\theta<-\pi / 2$
But we have already solved the problem for which $\%$ satiailies the following conditions (see the solution of $\psi_{R}$ 1.e. (4.02))

$$
\begin{align*}
\psi & =0 \quad \text { on } \theta=0 \\
\psi & =s(q) \text { on } \theta=-\pi / 2  \tag{4.39}\\
\text { and } \psi & =U H_{,}-\pi / 2
\end{align*}
$$

If we replace $\theta$ by $-\pi-\theta$ in (4.39) we obtain (4.38). Thus, if we replace 0 by $-\pi-\theta$ in the solution of $\psi_{R}$ we will obtain the solution of $\psi_{\mathrm{L}}^{(1)}$. Hence from (4.34)


Solution of $\psi_{\text {(2) }}^{(2)}$
Here we have the following boundary conditions:-
(i) $\psi=0$ on $\theta=-\pi$
(ii) $\psi=0$ on $\theta=-\pi / 2$
(iii) $\psi=0$ when $q=U \quad(-x<\theta<-\pi / 2)$

The most general solution satisfying (i) and (ii) is

$$
\begin{equation*}
\psi=-\frac{2 U H}{\pi}\left(\theta+\frac{\pi}{2}\right)+\sum a_{n} q^{2 n} \sin 2 n \theta \tag{4.41}
\end{equation*}
$$

The Condition (iii) requires that $\psi=0$ when $q=U$
whence,

$$
\frac{2 U H}{\pi}\left(\theta+\frac{\pi}{2}\right)=\sum a_{n} u^{2 n} \sin 2 n \theta
$$

By the theory of Fourier Sine Series we obtain,

$$
a_{n}=-\frac{2 u H}{\pi n} \frac{1}{u^{2 n}}
$$

Hence from (4.41) we get

$$
\Psi_{L}^{(2)}=-\frac{2 U H}{\pi}\left(\theta+\frac{\pi}{2}\right)-\frac{2 U H}{\pi} \sum_{n=1}^{\infty} \frac{1}{n}\left(\frac{q}{v}\right)^{2 n} \sin 2 n \theta
$$

But, it can be easily shown that

Hence,

$$
\begin{equation*}
\psi_{L}^{(2)}=-\frac{2 u H}{\pi}\left(\theta+\frac{\pi}{2}\right)-\frac{2 u H \tan ^{-1}}{\pi}\left\{\frac{M^{2} \sin 2 \theta}{1-M^{2} \cos 2 \theta}\right\} \tag{4.42}
\end{equation*}
$$

Hence from (4.37), (4.40) and (4.42) we obtain

$$
\begin{aligned}
& \frac{2 U H}{\pi} \tan ^{-1}\left\{\frac{2 M^{2} \sin 2 \theta}{1-M^{4}}\right\}+\frac{U H}{\pi} \tan ^{-1}\left\{\frac{1+M^{2} \cos 2 \theta}{M^{2} \sin 2 \theta}\right\} \\
& \Psi_{L}=-\frac{2 U H}{\pi}\left(\theta+\frac{\pi}{2}\right)-\frac{U H}{\pi} \tan ^{-1}\left\{\frac{M^{2}+\cos 2 \theta}{1-\sin 2 \theta}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{u H}{\pi} \int_{M \pi}^{1} \frac{d 1}{d m^{2}} \cdot \tan ^{1-M^{2}}\left\{\frac{\operatorname{m}^{2} \pi^{2}+\cos 2 \theta}{\sin \theta \theta}\right\} d r^{\prime}
\end{aligned}
$$

Differentiating with respect to $\theta$ we obtain,

$$
\begin{aligned}
& -\frac{2 U H}{\pi}+\frac{8 U H}{\pi} \frac{M^{2}\left(1-M^{4}\right) \cos 2 \theta}{\left(1-M^{4}\right)^{2}+4 M^{2} \sin ^{2} 2 \theta}-\frac{2 U H}{\pi} \frac{M^{2}\left(M^{2}+\cos 2 \theta\right)}{1+2 M^{2} \cos 2 \theta+M^{4}} \\
& \frac{\partial \psi_{L}}{\gamma \theta}=+\frac{2 U H}{\pi} \frac{1+M^{2} \cos 2 \theta}{1+2 m^{2} \cos 2 \theta+M^{4}}-\frac{4 U H}{\pi} \frac{M^{2}\left(\cos 2 \theta-M^{2}\right)}{1-2 m^{2} \cos 2 \theta+M^{4}}
\end{aligned}
$$

At this stage we shall state that since $\psi$ satisfies Laplace's equation, its partial derivatives must be continuous across the line $X 0$ in the hodograph plane and on this line we mast have

$$
\begin{equation*}
\left(\frac{\partial \psi_{R}}{\partial \theta}\right)_{\theta=-\frac{\pi}{2}}=\left(\frac{\partial \psi_{L}}{\partial \theta}\right)_{\theta=-\frac{\pi}{2}} \tag{4.45}
\end{equation*}
$$

The first integral on the right hand side of each of (4.35) and (4.44)
is singular when $\theta=-\pi / 2$. 20 avoid this singularity we will deform the contour of this integral into the complex $M^{\prime}$ plane before letting (tend to $-\pi / 2$. Then we will make use of the result given by (4.45).


$$
I=\lim _{G \rightarrow-\frac{\pi}{2}} \int_{M^{\prime \prime}}^{d H^{\prime \prime}} \frac{M^{2}\left(M^{2}+H^{2} \cos 2 \theta\right) d N^{\prime}}{n^{4}+2 r^{2} H^{\prime} \cos 2 \theta+N^{4}}
$$

we will Pret consider the expression

$$
\begin{aligned}
& =\frac{1}{2} \frac{t^{2}}{M^{2}+t^{2}}+\frac{1}{2} \frac{I^{2}}{n^{2}+E^{2}} \text { man } \\
& =-\frac{1}{2} \mu^{\frac{T^{2}}{2}-T^{2}}-\frac{1}{2} \frac{\bar{T}^{2}}{\mu^{2}-T_{1}^{2}} \\
& t=m e^{-i \theta} \\
& \bar{t}=\mathrm{Me} \\
& T=- \text { it } \\
& \mathfrak{C E}=\bar{T}
\end{aligned}
$$

$$
\begin{align*}
I & =\lim _{\theta \rightarrow-\frac{\pi}{2}}-\frac{1}{2} \int_{M^{*}}^{1} \frac{d L}{d M^{\prime}}\left\{\frac{T^{2}}{M^{2}-T^{2}}+\frac{\bar{T}^{2}}{H^{\prime}-T^{2}}\right\} d M^{\prime} \\
& =-\frac{1}{2}\left[I_{1}+I_{2}\right]
\end{align*}
$$

where

$$
\begin{aligned}
& I_{1}=\lim _{\theta \rightarrow-\pi / 2} \int_{M^{*}}^{1} \frac{d L}{d M^{\prime}} \frac{T^{2}}{\frac{M^{2}-T^{2}}{T^{2}}} d M^{\prime} \\
& I_{2}=\lim _{\theta \rightarrow-\frac{\pi}{2}} \int_{M^{*}-d M^{\prime}}^{1} \frac{\bar{T}^{2}}{M^{2}-\bar{T}^{2}} d M^{\prime}
\end{aligned}
$$

Mist we will consider the integral IP.

$$
\text { when } \theta \rightarrow-\frac{\pi}{2}, e^{-i \theta} \rightarrow i, e^{i \theta} \rightarrow-i
$$

and hence, $\underset{T}{T} M M, M, \underset{M}{\rightarrow} M \underset{T}{\rightarrow} M$
The singularity of $I_{2}$ is at $M^{\prime}=T(\mathrm{~m} M$ where $M$ is real). Let us deform the contour by a semi-circular indentation below the real axis when $\frac{\mathrm{r}}{\mathrm{s}}$ approaches Mirom above. Thus the integral is regular on the nebr contour. This is quite clear if we look at the drawing in the M-plane.


Moblane

$$
\begin{gathered}
I_{1}=\lim _{\theta \rightarrow-\frac{\pi}{2}} \int_{M^{*}}^{1} \frac{d U}{d M^{\prime}} \frac{T^{2}}{M^{2}-T^{2}} d M^{\prime}=\lim _{\theta \rightarrow-\frac{\pi}{2}}\left[\int_{A}^{B}\right) d M^{\prime}+\int_{B}^{C}\left(d M^{\prime}+\int_{e}^{B}(x) d M^{\prime}\right] \\
=\int_{A}^{C} \frac{d L}{d M^{\prime}} \frac{M^{2} d M^{\prime}}{M^{\prime}-M^{2}}+\lim _{\theta \rightarrow-\frac{\pi}{2}} \int_{B}^{C} \frac{d L}{d M^{\prime}} \frac{T^{2}}{M M^{2}-T^{2}} d M^{\prime}
\end{gathered}
$$

$\oint$ denotes the Cauchy Principal. Value. The positive sign in the second term of the right hand side is due to the fact that here the senfe of the contour is anti-clockwise and we multiply the value of the integral by $\frac{1}{2}$ since the contour here is a semi-circle.

Now residue of

$$
\begin{aligned}
& M^{\prime}=T=\frac{M}{2} \cdot\left(\frac{d^{\prime}}{d M^{\prime}}\right)_{M^{\prime}=T} \text { since } T-M \text { when } \theta \rightarrow-\frac{\pi}{2}
\end{aligned}
$$

Hence

$$
\begin{align*}
& I_{1}=\oint_{M^{*}}^{1}\left(\frac{d l}{d H^{\prime}}\right) \frac{M^{2} d H^{\prime}}{M^{2}-M^{2}}+\frac{\pi i}{2} M\left(\frac{d I}{d M^{\prime}}\right)_{M^{\prime}=T}  \tag{4.48}\\
& \text { similarLy, to sind, } I_{2}=\lim _{\theta \rightarrow-\pi / 2} \int_{M^{*}}^{1}\left(\frac{d b}{d H^{\prime}}\right) \frac{T^{2}}{M^{\prime}=T^{2}} d M^{\prime}
\end{align*}
$$

deform the contour by means of a semi-circuiar indentation above the real axis as F approaches $M$ from below. the integral will now be regular on this new contour. This will be clear Prom the figure drawn in the $M^{\prime}$-plane.


$$
\begin{aligned}
& \text { - } \\
& I_{2}=\lim _{\theta \rightarrow-\frac{\pi}{2}} \int_{M^{*}}^{1}\left(\frac{d L}{d M^{\prime}}\right) \frac{T^{2}}{M^{2}-T^{2}} d M^{\prime}=\lim _{\theta \rightarrow-\pi / 2}\left[\int_{A}^{B}() d H^{\prime}+\int_{B}^{C}() d M^{\prime}+\int_{C}^{D}() d M^{\prime}\right] \\
& =\lim _{\theta \rightarrow-\frac{\pi}{2}} \int_{A}^{D}\left(\frac{d L}{d \mu^{\prime}}\right) \frac{T^{2}}{r^{2}-T^{2}} d H^{\prime}+\lim _{\theta \rightarrow-\frac{\pi}{2}} \int_{B}^{C}\left(\frac{d u}{d H^{\prime}}\right) \frac{T^{2}}{r^{2}-T^{2}} d H^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \text {-alice } \overline{\mathrm{T}}-\mathrm{M} \text { when } \theta=-\pi / 2 \text {. }
\end{aligned}
$$

The negative sign in the second term of, the sight have side of $I_{0}$ is due to the fact that hose the sente of the contour is olock-wise. Proceeding in the same way as was done for $\mathrm{I}_{2}$ we sind

$$
\begin{equation*}
I_{2}=\int_{M^{*}}^{1}\left(\frac{d H^{\prime}}{d r^{\prime}}\right) \frac{r^{2}}{M^{\prime 2}-r^{2}} d r^{\prime}-\frac{\pi^{i}}{2} M\left(\frac{d}{d \pi}\right)_{M^{\prime}}=\bar{T} \tag{4.49}
\end{equation*}
$$



$$
\begin{equation*}
I=-\int_{M^{*}}^{1}\left(\frac{d L}{d i^{\prime}}\right) \frac{M^{2}}{M^{2}-r^{2}} d r^{\prime} \tag{4.50}
\end{equation*}
$$

Now applying (4.45), we obtain from (4.35), (4.44) and (4.50)

$$
\begin{equation*}
\int_{M^{*}}^{1}\left(\frac{d L}{d M^{\prime}}\right) \frac{M^{2} d H^{\prime}}{\left(\mu^{2}-M^{2}\right)\left(1-M^{2} M^{2}\right)}=\frac{1}{2} \frac{1}{\left(1+M^{2}\right)^{2}} \tag{4.58}
\end{equation*}
$$

This is a singular integral equation, the singularity being at $M^{\prime}=M$ since $M^{*}<M<1$. The integral on the left is now to be interpreted es the Cauchy Principal Value. To solve (4.51) we proceed as follows:Let $M^{\prime^{2}}=p$ and $M^{2}=t$
Substituting these values in (4.51) we obtain

$$
\begin{equation*}
\int_{r^{+}}^{1} \sqrt{p} \frac{d t}{d H^{\prime}} \frac{d p}{(p-t)(1-p t)}=\frac{1}{(1+t)^{2}} \tag{4.52}
\end{equation*}
$$

nasion writing $\sqrt{p} \frac{d u^{\prime}}{d R^{1}}=Q(p)_{\text {and }} M^{k^{2}}=p^{*}$
we get

$$
\begin{equation*}
\int_{b^{*}}^{1} 2(p) \frac{d p}{(p-t)(1-p t)}=\frac{1}{(1+t)^{2}} \tag{4.53}
\end{equation*}
$$

This is not a standard integral. equation owing to an extra factor in the denominator in Io. $\mathrm{H}_{0}$ S. But (4.53) can be brought into a standard integral equation (sometimes called the "aerofoil equation") by the following device:-

Equation (4.53) can be written as

$$
\int_{p^{*}}^{1} 2(p)
$$

$$
\frac{d p}{p^{2}\left[\frac{1+t^{2}}{\frac{2}{2}}-\frac{1+p^{2}}{p}\right]}=\frac{1}{(1+t)^{2}}
$$



Hence when $p$ varies from $p^{*}$ to 1 1.e. when $p$ varies from a value leas than 1 to $\mathrm{f}_{1}$, v varies from a value greater than 2 to 2 , io. when $p$ increases, u decreases, io. $\frac{d p}{d u}$ must be negative.

Hence, we must take


Substituting the values from (4.55), (4.57) and (4.58) in (4.54) we obtain

$$
\begin{aligned}
& \text { ting the values from (4.55). (4.57) and (4.5 } \\
& \int_{2}^{\frac{1+p^{*^{2}}}{p^{*}}} \frac{G(u)}{\sqrt{u^{2}-4}} \frac{d u}{u-r}=-\frac{1}{\gamma+2}
\end{aligned}
$$

or

$$
\begin{equation*}
\int_{2}^{\frac{1+p^{x^{2}}}{p}} \frac{R_{1}(u)}{u-r} d r=f(r) \tag{4.59}
\end{equation*}
$$

where $R(u)=\frac{G(u)}{\sqrt{u^{2}-4}}$ and $f(\gamma)=-\frac{1}{\gamma+2}$
Let $\frac{1+p^{x^{2}}}{p^{*}}=\lambda$. Hence from $(4,60)$ we obtain

$$
\begin{equation*}
\int_{2}^{\lambda} \frac{k(u)}{u-\gamma} d u=f(r) \tag{4.61}
\end{equation*}
$$

This is a singular integral equation of the first kind. To solve this we refer to Integral Equations by Mikhiln, po 131, Chapter III. To quote the result,

$$
\begin{aligned}
& \text { ip, } \frac{1}{\pi i} \int_{\alpha}^{\beta} \frac{\phi(\rho)}{\rho-t} d \rho=f(t) \\
& \text { then } \\
& \phi(t)=\frac{1}{\pi i \sqrt{(t-\alpha)(t-\beta)}} \int_{\alpha}^{\beta} \frac{\sqrt{(\rho-\alpha)(\rho-\beta)}}{\rho-t} f(\rho) d \rho+\frac{c}{\sqrt{(t-\alpha)(t-\beta)}}
\end{aligned}
$$

where $\alpha$ and $\beta$ are the beginning and end of the unclosed contour.
Comparing (4.61) and (4.62) we obtain

$$
\begin{equation*}
R(\gamma)=\frac{1}{\pi i \sqrt{(r-2)(r-\lambda)}} \int_{2}^{\lambda} \frac{\sqrt{(u-2)(u-2)}}{u-r} \frac{f(u) d r}{\pi i}+\frac{c}{\sqrt{(r-2)(r-\lambda)}} \tag{4.63}
\end{equation*}
$$

anon since $v<\lambda$ and $f(u)=-\frac{1}{u+2}$
we obtain,

$$
\left.R(\gamma)=-\frac{1}{\pi^{2}(\gamma+2) \sqrt{(r-2)(\lambda-\gamma)}} \sqrt[\int]{\int_{2}^{2} \frac{\sqrt{(u-2)(1-u)}}{u+2}} d u-\int_{2}^{\lambda} \frac{\sqrt{(u-2)(y-u)}}{u-r} d u\right](4.64)
$$

By making substitution, $u-2=(\lambda-u) x^{2}$, we find $\sqrt{(r-2)(\lambda-r)}$

$$
\begin{equation*}
\int_{2}^{\lambda} \frac{\sqrt{(u-2)(\lambda-u)}}{u+2} d u=\frac{\pi}{2}[6+\lambda-4 \sqrt{\lambda+2}] \tag{4.65}
\end{equation*}
$$

and by the same substitution and remembering that the second integral in (4.64) has a singularity at $u=r$ we find from Cauchy principal value,

$$
\begin{equation*}
\int_{2}^{\lambda} \frac{\sqrt{(u-2)(\lambda-u)}}{u-\gamma} d u=\frac{\pi}{2}[\lambda+2-2 \gamma] \tag{4.66}
\end{equation*}
$$

Hence from ( 4.64 ), (4.65) and (4.66) we obtain,

$$
\begin{aligned}
R(v) & =-\frac{2+v-2 \sqrt{\lambda+2}}{\pi(\gamma+2) \sqrt{(\gamma-2)(\lambda-\gamma)}}-\frac{c i}{\sqrt{(\gamma-2)(\lambda-y)}} \\
\text { 1.e. } & R(u) \\
R_{R} & =-\left[\frac{2+u-2 \sqrt{\lambda+2}}{\pi(u+2) \sqrt{(u-2)(\lambda-u)}}+\frac{c i}{\sqrt{(u-2)(\lambda-u)}}\right]
\end{aligned}
$$

From (4.60), we obtain

$$
G(u)=-\left[\frac{2+u-2 \sqrt{\lambda+2}+\pi e^{i}(u+2)}{\pi \sqrt{(u+2)(\lambda-u)}}\right.
$$

and from (4.55) and (4.58) we obtain

$$
\begin{aligned}
Q(p) & =-\left[\frac{2+\frac{1+p^{2}}{p}-2 \sqrt{\frac{1+p^{* 2}}{p^{*}}+2}+\pi e i\left(\frac{1+p^{2}}{p}+2\right)}{\pi \sqrt{\frac{1+p^{2}}{p}+2 \sqrt{\frac{1+p^{x^{2}}}{p^{2}}-\frac{1+p^{2}}{p}}} \text { since } \lambda=\frac{1+p^{x^{2}}}{p}}{ }^{2}\right. \\
& =-\frac{\sqrt{p^{*}}(1+p)^{2}-2 p\left(1+p^{*}\right)+\pi e i \sqrt{p^{*}}(1+p)^{2}}{\pi(1+p) \sqrt{\left(p-p^{*}\right)\left(1-p p p^{*}\right)}}
\end{aligned}
$$

Hence,

$$
\frac{Q(p)}{\sqrt{p}}=-\frac{\sqrt{p^{*}}(1+p)^{2}-2 p\left(1+p^{*}\right)+a \sqrt{p *}(1+p)^{2}}{\pi(1+p) \sqrt{p} \sqrt{\left(p-p^{*}\right)(1-p p *)}}
$$

where $\alpha=\pi C i($ say $)=$ constant

How $\frac{d u}{d p}=\frac{d u}{d M^{\prime}} \frac{d M^{\prime}}{d p}=\frac{Q(p)}{\sqrt{p}} \frac{1}{2 \sqrt{p}}$ since $M^{2}=p$

$$
\text { i.e. } \frac{d u}{d p}=\frac{1}{2 \sqrt{p}}\left[-\frac{\sqrt{p^{*}}(1+p)^{2}-2 p\left(1+p^{*}\right)+p \sqrt{p}(1+p)^{2}}{\pi(1+p) \sqrt{p} \sqrt{\left(p-p^{*}\right)\left(1-p p^{*}\right)}}\right]
$$

Hence on integration,

$$
L(p)=-\frac{1}{2 \pi} \int \frac{(1+\alpha) \sqrt{p s}(1+p)^{2}-2 p\left(1+p^{*}\right)}{\left.p(1+p) \sqrt{\left(p-p^{*}\right)(1-p p *}\right)} d p+\gamma
$$

where $\gamma$ is a constant of integration

$$
=-\frac{1}{2 \pi} \int\left[(1+\alpha) \sqrt{p}+\frac{(1+\alpha) \sqrt{p^{*}}}{p}-\frac{2(1+p \pi}{1+p}\right] \frac{d p}{\sqrt{\left(p-p^{2}\right)(1+p}}
$$

Substituting, $p-p^{*}=\left(1-p p^{*}\right) u^{2}$ and on integration we get for

$$
L(p)=\frac{2}{\pi} \operatorname{Lan}^{-1}\left\{\sqrt{\frac{p-p p^{*}}{-p p^{*}}}\right\}-\frac{1+u^{-}}{\pi} \tan ^{-1}\left\{\sqrt{\left(\frac{\left.p-p^{*}\right)\left(1-p p^{*}\right.}{(1-p) \sqrt{p^{2}}}\right.}\right\}+\gamma(4,68)
$$

Again, since, and

$$
L\left(p^{*}\right)=0
$$

we find,

$$
\alpha=-2, \gamma=0
$$

Hence $\quad c=-\frac{2}{\pi c}$ since $\alpha=\pi c i$
This is how the constant is evaluated. Substituting the value of $\alpha$ and of in $(4.69)$ we get

$$
L(p)=\frac{2}{\pi} \tan ^{-1}\left\{\sqrt{\frac{p-p^{*}}{1-p p^{*}}}\right\}+\frac{1}{\pi} \tan ^{-1}\left\{\frac{\sqrt{\left(p-p^{*}\right)\left(1-p p^{*}\right)}}{(1-p) \sqrt{p^{*}}}\right\}
$$

$$
\begin{aligned}
& =\frac{1}{\pi} t^{-1}\left\{\frac{(1-p) \sqrt{\left(p-p^{*}\right)\left(1-p p^{*}\right)}}{\sqrt{p^{*}}(1+p)^{2}-2 p\left(1+p^{*}\right)}\right\}
\end{aligned}
$$

and since $p=M^{2}-p^{*}=M^{* 2}$, we obtain

$$
L\left(M^{\prime}\right)=\frac{1}{\pi} \tan ^{-1}\left\{\frac{\left(1-M^{2}\right) \sqrt{\left(m^{2}-m^{* 2}\right)\left(1-\pi^{2} k^{2} k^{2}\right)}}{M^{*}\left(1+M^{\prime 2}\right)-2 M^{\prime 2}\left(1+\pi^{k^{2}}\right)}\right\}
$$

Also,
which agree with the result obtained by Schwarz-Christoffel method.

Flow through a necised slit
The physical and the holograph planes are shown in Figures 3 and 4. Because of symmetry we consider only one half of the plane.


FIGURE 3


Hodograph plane
FIGEx5 4

The phyaical plane has aready been deacribed in Chapter It The boundary condition in the hodograph plane are $\psi=0$ on cy $(0-\infty / 2)$ )
 where $U$ is the velocity of the get at 2nifinity, $\psi=h(q)$ on $B Q$ (20cus $\theta=8$ )。

The distinct festures of the stresmines in this problem are that unilise Levy ${ }^{\text {g }}$ problem, s.11 the streamilnes do not cross the line $\mathrm{EQ}_{\mathrm{g}}$ Boreover, the streamilnes which cross the line $B 8$ ( $20 c u s$ (0 - $x$ ), cross It twice. shere is only one stremmine which just torches the line $\mathrm{BQ}_{\mathrm{o}}$ Beyond this line, the other stremmine wether touch nor cross the inne BQ

This problem though physically different from that of Levy'e has been shom alreagy to bave the same mathematical character. Hence we will not solve this problem in details. We will show how to match the boundary conditions of this problem in the hodograph plane with Levy's and show that it must be derived from the same singular integral equation. The solutions may then be found directly from Lavy's. We proceed to solve the problem as follows:-

For convenience, let orU $\propto K$ where $K$ is a constant. The boundary conditions in the hodograph plane will be now $\psi=K$ on $C D, D Q E, A B$ and $B C, \psi=0$ on $G F, \psi=h(q)$ on $B Q$. We will then take out $K$ from each of the boundary values. This is allowed since $K^{1 s}$ constant. We will denote the source and sink by a dot and a cross. In fact, the folloring three alagrams represent mathamaticaily equivalent flows.


FIGURE 5


FICURE 6

figure 7

Figure $T$ follows immediately from Figure 6. They differ only in the direction of flow of the siuid, since the source and sink in Figure 6 have been interchanged in Figure 7 .

Again from Figure 7 we obtain,


FIGURE 8


FIGURE 9

Figure 8 is exactly Levy's problem and has bees solved previously.
Figure 7 differs from Figure 8 by Figure 9。 But Figure 9 represents a flow between source and sink symmetrical is the hodograph planes hence the normal derivative $\frac{\partial \|}{\partial \theta}$ is zero of the stream function on the dotted line (locus $\theta=\pi$ ) in Figure 9. So we will get the ane integral equation for this problem as has been obtained for Levy.

Thus, instead of (4.51) by setting $H(M)=$ ord $[8+H(M)]$ we obtain in this case

$$
\int^{1} \frac{d M}{d M^{\prime}} \frac{M^{\prime 2} d M^{\prime}}{\left(M^{\prime}-M^{2}\right)\left(1-M^{2}-M^{\prime 2}\right)}=\frac{1}{2} \frac{1}{\left(1+M^{2}\right)^{2}}
$$

$$
\begin{equation*}
t^{*} \tag{4.71}
\end{equation*}
$$

The solution is carried out exactly in the same way as was done in the previous example and since we have set $\operatorname{Ha}(M)=$ ord [I $+H(M)$ ], where $M=a / U$ we find by applying boundary conditions on $H(M)$ at $Q$
(where $q=U$ ) and at $B$ (where $q=q^{* *}$ ) that $H(1)=H\left(t^{*}\right)=0$, $t^{*}$ being equal to $\frac{q^{* *}}{U}$. These two values of H give $\alpha=\boldsymbol{\gamma}=0$ in (4.68). Hence from (4.68), instead of $L(p)$ we obtain in this case

$$
H(p)=\frac{1}{\pi} \tan ^{-1}\left\{-\frac{(1-p) \sqrt{\left(p-p^{*}\right)\left(1-p p^{*}\right)}}{\left(1+p p^{2} \sqrt{p^{*}+2}+2 p\left(1+p^{4 n}\right)\right.}\right\}
$$

and since $p=M^{\prime 2}, p^{*}=t *^{2}$, we obtain from (4.72)

$$
H\left(M^{\prime}\right)=-\frac{1}{\pi}\left\{\tan ^{-1} \frac{\left(1-m^{2}\right) \sqrt{\left(M^{2} x^{2}\right.} t^{\left.-t^{2}\right)}\left(1-M^{2}\right)^{2} x^{2}}{t^{2}\left(1+m^{12}\right)^{2}+2 M^{2}\left(1+t^{2}\right)}\right\}(4.73)
$$

Similarly, we obtain from (4.67)

$$
\frac{d A^{\prime}}{d M^{\prime}}=\frac{Q(p)}{\sqrt{p}}=-\frac{1}{\pi}\left\{\frac{t^{*}\left(1+M^{2}\right)^{2}-2 M^{2}\left(1+t^{2}\right)}{M^{\prime}\left(1+M^{2}\right) \sqrt{\left(M^{2}-M^{*}\right)}\left(1-M^{2} t^{2} k^{2}\right)}\right) \int_{(4,74)}
$$

These two results also agree with those obtained by SchwarzeChristoffel method.

## CHAPTER V

Flow through a necked slit impinging on a wall by a hodograph method
As in Chapter III, we combine the two problems of Chapter IV together and then solve the nev problem by a hodograph method. For symmetry only one half of the plane will be considerge (b)


The physical plene has already been described in Chapter III. The physical plane has been divided into three regions and these regions in the hoalograph plane are marised by the letters I, II and III.

The boundary conditions in the hodograph plane are $\psi=0$ on $A X(\theta=-\pi / 2)$ and $A B(\theta=-\pi) \psi=K$ (where $K$ is aconstant $=U B)$


Ire streamilne, $\psi=h(q)$ on $R X$ (Locus $\theta$ ex) and $\psi=\&(q)$ on $\mathbb{K} Q$ (locus $\theta=-\pi / 2$ )。

Considering the portion ABCQ in the hodograph plane, we find that,

$$
\begin{aligned}
& \psi=0 \quad \text { on } \theta=0 \\
& \psi=\&(Q) \cos \theta=\infty \pi / 2 \text { such that } \ell(Q)=0 \text { on } A X \\
& \psi=K \cos \theta(\cos / 2<\theta<0)
\end{aligned}
$$

Hence compering with (4,00) we obtain from (4.37)

$$
\begin{aligned}
& -\frac{2 k}{\pi} \operatorname{con}^{-1}\left\{\frac{2 M^{2} \sin 2 \theta}{1-M^{4}}\right\}+\frac{k}{\pi} \tan ^{-1}\left\{\frac{1+M^{2} \cos 2 \theta}{-M^{2} \sin 2 \theta}\right\}
\end{aligned}
$$


Differentiating with respect to $\theta_{s}$ we get

$$
\begin{aligned}
& -\frac{8 k}{\pi} \frac{M^{2}\left(1-M^{4}\right) \cos 2 \theta}{\left(1-M^{4}\right)^{2}+\left(2 M^{2} \sin 2 \theta\right)^{2}}+\frac{2 k}{\pi} \frac{M^{2}\left(M^{2}+\cos 2 \theta\right)}{1+2 M^{2} \cos 2 \theta+M}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{2 k}{\pi} \int_{-1 n^{2} M^{\prime}}^{1} \frac{d M^{\prime}}{\left.1+2 M^{2} n^{2} n^{\prime 2} e \cos 2 \theta\right) d r^{\prime}}
\end{aligned}
$$

For the portion A\&S, we have the POLRowimg bounciary conditions:-

$$
\begin{aligned}
& \forall=h(q) \text { on AT }(0 \text { ( }+ \text { ( }) \text { arch that } h(q)=K \text { on } A R \\
& \psi=K \cos (\sin <0<-x / 2) \\
& \Psi=\mathbb{S}(\mathrm{q}) \operatorname{AQ} \text { exch that } \boldsymbol{( q}(\mathrm{q})=0 \text { os } A X
\end{aligned}
$$

It is Pound convenient to obtain the solution in two parts which are then
superimposed to give the solution of the entire part. We will call these two parts as $\psi_{L}^{(1)}$ and $\psi_{L}^{(2)}$ and the combined solution as $\psi_{L_{0}}$.
 (5.03)

Solution for $\psi_{\text {I }}^{(1)}$

$$
\begin{aligned}
\text { Here, } \psi & =0 \text { on } \theta=-\pi \\
\psi & =K \text { on }<\theta<-\pi / 2 \\
\text { and } \psi & =f(q) \text { on } \theta=0 \pi / 2 \text { with } L(q)=0 \text { on } A X
\end{aligned}
$$

Hence replacing $\theta$ by o $\pi=\theta$ in ( 4.37 ) we obtain,


Solution for $\psi_{\text {I }}^{(2)}$

Here, $\psi=h(q)$ on $\theta=-\pi$ with $\psi=K$ on $A R$

$$
\begin{aligned}
\psi=0 & \text { on } \theta m-\pi / 2 \\
\text { and } \psi=0 & -\pi<\theta<-\pi / 2
\end{aligned}
$$

Hence replacing $\theta$ by $\theta+\pi / 2$ in (4.33) and remembering that $h(q) \neq 0$ on

(2)

$$
\frac{k}{\pi} \cos ^{-1}\left\{\frac{t^{x^{2}}\left(1-r^{4}\right) \sin 2 \theta}{k^{2}\left(1+t^{4}\right)-t^{n^{2}}\left(1+\pi^{4}\right) \cos 2 \theta}\right\}
$$

wherefore

But $h(M)=[1+M(M)]$ where $H(1)=H(t *)=0$ 。
Substituting the value of $h(M)$ and integrating by parts we obtain from (5.04)

$$
\begin{aligned}
\Psi_{L}^{(2)}= & \frac{k}{\pi} t^{-1}\left\{\frac{1-r^{2} \cos 2 \theta}{r^{2} \sin 2 \theta}\right\}-\frac{k}{\pi} \tan ^{-1}\left\{\frac{r^{2}-\cos 2 \theta}{\sin 2 \theta}\right\} \\
& +\frac{k}{\pi} \int_{L^{*}}^{\prime} \frac{d t}{d 1^{\prime}} t^{-1}\left\{\left\{\frac{n^{2} r^{2}-\cos 2 \theta}{\sin 20}\right\} d x^{\prime}-\frac{k}{\pi} \int_{t^{*}}^{\prime} \frac{d H}{d H^{\prime}} \tan ^{-1}\left\{\frac{r^{2}-r^{2} \cos 2 \theta}{\pi^{2}-\sin 2 \theta}\right\} \sin (5.05)\right.
\end{aligned}
$$

Hence from (5.03), (5.04) and (5.05) we obtain

$$
\begin{aligned}
& -\frac{k}{\pi} \int_{H^{*}}^{1} \frac{d u}{d H^{\prime}} \tan ^{-1}\left\{\frac{n^{2}+r^{2} \cos 2 \theta}{H^{2} \sin 2 \theta}\right\} d y^{\prime}+\frac{k}{\pi} \int_{M^{*}}^{1} \frac{d 1}{d H^{\prime}} t^{-1}\left\{\frac{r^{2} n^{2}+\cos 2 \theta}{\sin 2 \theta}\right\} d n^{\prime} \\
\Psi_{L}= & -\frac{k}{\pi} \int_{t^{*}}^{1} \frac{d H}{d H^{\prime}} \tan ^{-1}\left\{\frac{n^{\prime 2}-r^{2} \cos 2 \theta}{r^{2} \sin 2 \theta}\right\} d r^{\prime}+\frac{k}{\pi} \int_{t^{*}}^{1} \frac{d H^{\prime}}{41^{\prime}} \tan ^{-1}\left\{\frac{r^{2} n^{2} \cos 2 \theta}{\sin 2 \theta}\right\}(5.06)
\end{aligned}
$$

Differentiating with respect to $\theta$ we get

$$
\begin{aligned}
& 24 \quad \frac{2 k}{\pi^{*}} \int_{M^{*}}^{1} \frac{d L}{d r^{\prime}} \frac{r^{2}\left(r^{2}+r^{2} r^{2} \operatorname{cose\theta }\right) d r^{\prime}}{r^{4}+2 r^{2} r^{\prime} \cos 2 \theta+r^{\prime}}-\frac{2 k}{\pi} \int_{r^{*}}^{1} \frac{d \mu}{d r^{\prime}} \frac{\left(1+2 r^{2} r^{2} \cos 2 \theta\right) d r^{\prime}}{}
\end{aligned}
$$

For the portion apr, we have the following boundary conditions:-

$$
\begin{aligned}
& \psi=h(q) \text { on ©I with } h(q)=K_{\text {On }} \text { GR }(\theta=-\pi) \\
& \psi=\operatorname{Kan~}_{\mathrm{F}}^{\mathrm{F}}(\theta=-3 x / 2) \\
& \psi=\text { Kn DII ( }-3 \pi / 2<\theta<-\pi \text { ) }
\end{aligned}
$$

It is convenient to obtain the solution in three parts which are then superimposed to give the final result. We call the entire solution $\psi_{T}$ 1.e. the solution of $\psi$ on the top of the line $\mathbf{G I}$.


$$
\begin{equation*}
\therefore \quad \psi_{T}=\psi_{T}^{(1)}+\psi_{T}^{(2)}+\psi_{T}^{(3)} \tag{5.03}
\end{equation*}
$$

Replacing $\theta$ by $0-28 \ln (5.05)$ we obtain

$$
\begin{aligned}
& \text { (1) } \frac{k}{\pi} \tan ^{-1}\left\{\frac{1-\pi^{2} \cos 2 \theta}{-\pi^{2} \sin 2 \theta}\right\}-\frac{k \tan ^{-1}\left\{\frac{\pi^{2}-\operatorname{con} 2 s}{-\sin 20}\right\}}{\pi}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Replacing } \theta \text { by } \theta+\pi / 2 \text { in (4.46), we get }
\end{aligned}
$$

$$
\begin{equation*}
\psi_{T}^{(2)}=-\frac{2 k}{\pi}(\theta+\pi)+\frac{2 k}{\pi} \cos \left\{\frac{r^{2} \sin 20}{1+r^{2} \cos 20}\right\} \tag{5,10}
\end{equation*}
$$

Again replacing $\theta$ by $\theta+8$ in ( 4.09 ) we get

$$
\psi_{T}^{(3)}=-\frac{2 k \tan ^{-1}}{\pi}\left\{\frac{2 \pi^{2} \sin 2 \theta}{1-\pi 4}\right\}
$$

Hence from $(5.08)$, (5.09), (5.10) and (5.15) we obtain

$$
\begin{aligned}
& -\frac{2 k}{\pi}(\theta+\pi)-\frac{k}{\pi} t^{-1}\left\{\frac{\left(1-\pi^{4}\right) \sin 2 \theta}{2 \pi^{2}-\left(1+\pi^{4}\right) \cos 23}\right\}
\end{aligned}
$$

Differentiating with respect to $\theta$ we get

$$
\begin{aligned}
& -\frac{2 k}{\pi}-\frac{2 k}{\pi} \frac{\left(1-\pi^{4}\right) \cos 28\left[2 \pi^{2}-\left(1+r^{4}\right) \cos 2 \theta\right]-\left(1-\pi^{8}\right) \sin 2 \theta}{\left[2 \pi^{2}-\left(1+n^{4}\right) \cos 28\right]^{2}+\left[\left(1-r^{4}\right) \sin 20\right]^{2}} \\
& \frac{\partial \psi_{T}}{\partial \theta}=+\frac{4 k}{\pi} \frac{r^{2}\left(r^{2}+\cos 2 \theta\right)}{1+2 \pi^{2} \cos 2 \theta+k^{4}}-\frac{8 k}{\pi} \frac{r^{2}\left(1-r^{4}\right) \cos 2 \theta}{\left(1-r^{4}\right)^{2}+4 r^{2}+\sin ^{2} 2 \theta}
\end{aligned}
$$

Since $\quad\left(\frac{\partial \psi_{R}}{\theta}\right)_{\theta=-\frac{\pi}{2}}=\left(\frac{\psi_{L}}{\partial \theta}\right)_{\theta=-\frac{\pi}{2}}$ we obtain from $(5.08)$
and (5.07)

$$
2 \int_{M}^{1} \frac{d u}{d M^{\prime}} \frac{\pi^{2} d \pi^{\prime}}{\left(r^{2}-r^{2}\right)\left(1-\pi^{2} r^{2}\right)}+\int_{t^{*}}^{1} \frac{d H}{d M^{\prime}} \frac{r^{2} d r^{2}}{\left(r^{2}+\pi^{2}\right)\left(1+\pi^{2} \pi^{2}\right)}=\frac{1}{\left(1+\pi^{2}\right)^{2}}
$$

Again since, $\quad\left(\frac{\partial \Psi_{L}}{\partial \theta}\right)_{\theta=-\pi}=\left(\frac{\partial 4 /}{\partial \theta}\right)_{0=-11}^{\text {we obtain from (5.07) }}$ and $(5.13)$

$$
\begin{equation*}
\int_{r^{*}}^{1} \frac{d r}{d r^{\prime}} \frac{r^{2} d r^{\prime}}{\left(r^{2}+r^{2}\right)\left(1+r^{2} r^{2}\right)}-2 \int_{t^{*}}^{1} \frac{d H}{d r^{\prime}} \frac{r^{2} d r^{\prime}}{\left(r^{2}-r^{2}\right)\left(1-r^{2} \pi^{12}\right)}=0 \tag{5.15}
\end{equation*}
$$

It is seen that when $\theta=\pi / 2$, the first integral in the $x$ fight have sides of $(5.08)$ and $(5.07)$ is singular and when $\theta=\pi$, the third integral in the right hand aide of (5.07) and the (same) first integral on the right hand side of $(5.13)$ is singular. But it has been shown in Chapter IV how these integrals are reduced to Cauchy Principal values (vide 4.53 ,
4.54 and 4.55). Hence the singular integrals given by (5.14) and (5.15) are now to be interpreted as Cauchy Principal values.

Proceeding in the same way as in Chapter IV these two singular integral equations are reduced to,
and

$$
\begin{aligned}
& 2 \int_{2}^{\infty} k_{1}^{*}(u) \frac{d u}{u-r}+\int_{2}^{\beta_{k_{2}}^{*}}(u) \frac{d u}{u+\gamma}=-\frac{2}{r+2} \\
& \int_{2}^{\alpha_{1}^{*}} k_{1}(u) \frac{d u}{u+r}+2 \int_{2}^{\beta_{k}^{*}} k_{2}(u) \frac{d u}{u-r}=0
\end{aligned}
$$

where $\operatorname{lng}_{2}(u)$ and $\mathrm{r}_{\mathrm{m}}(\mathrm{u})$ etc, have been derived in the same way as in
Chapter IV. Analytical methods of solution of these simultaneous integral. equations have not yet been developed, but would provide the subject of further work in this field.

RePerences

| 1 | LEVX, H. C. | 1960 | Journal of Applied Mathematics and Physics (ZAMP) II, 152. |
| :---: | :---: | :---: | :---: |
| 2 | HACHEMEISTER, C. A. | 1959 | Quarterly of Applied Mathematics 17.299. |
| 3 | MACKIE, A. G. | 1958 | Proc. Edin. Math. Soc. II, 107. |
| 4 | McLAUGHLIN, M. D. \& PACK, D. C. | 1958 | Commuication to International Congress of Nathematicians, Edinburgh. Compressible flow with circular sector hodograph. |
| 5 | MACKIE, A. G. \& PACK, D. C. | 1952 | Proc. Camb. Phil. Soc. 48, 178. |
| 6 | MIWJE-THOMSON |  | Wheoretical Eydrodynamics, Macmillan \& Co. Ltd., London (1960). |
| 7 | RULHERFORD, D. E. |  | Fluid Dynamicz (1959). |
| 8 | COPSOR, E. T. |  | An introduction to the cheory of function of a complex variable. Clarendon Press Oxford (1950). |
| 9 | GILXESPIE, R. P. |  | Integration. Oliver \& Boyd (1939). |
| 10 | LAMB, H. |  | ```Infinitesimal Calculus. Cambridge Univ. Press (1924).``` |
| 11 | FGRRAR, W. L. |  | A Textbook of Convergence. Clarendon Press, Oxford (1956). |
| 12 | MKHLIM, S. G. |  | Integral Equations. Pergamon Press (1957). |

