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(v)
ABSTRACT

The subject mtter of the thesis concerns the analytical 

and experimental investigation of the elastic behaviour of 

shell structures, in particular that of spherical shells, 

under axi-symmmtric, asymneeric and unsymmeric load systems.

Chapter I presents a critical survey o^ the relevant 

Xieera-tnre in the form of a dissertation. In view of the 

lack of a survey of this type it was felt desirable to present 

this in considerable detail so as to provide an up-to-date 

reference of the shell field. The survey clearly shows the 

need for an analytical procedure capable of handling all types 

of unaymmtrieal load systems, and also establishes the lack 

of published experimental The paucity of the latter

is most surprising in relatoon to the voluminous literature 

on the analysis of simple symmtrical load cases.

The plan of the research undertaken was, in consequence, 

designed to fill these gaps.

Chapter II presents a unified analytical approach based 

on the linear concepts of the shallow shell theory in which 

all load actions are considered as built up of the four basic 

actions of radial and tangential load, bending and twisting 

mommntso Their evaluation is to the author's knowledge the

first presentation of the unified approach to the analysis of 

such a complete range of load actions.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(vi)
Further, analytical consideration is given to the 

correlation of this unified shallow shell approach with the 

general shell theory* It is shown that neglecting certain

second order terms the general shell equations reduce to those 

of the shallow shell* The chapter culminates in the presen

tation of an Influence Line Method which, utilizing the 

permi is shinty of superposition in linear analysis, ‘provides 

a ready approach to the solution of any type of unsymmtrical 

load action*

In Chapter Ill a number of load actions are analysed iy 

means of the Iifluence Line Method* These examples, in the

min, have been selected from a range for which conventional 

theoretical solutions are available* It ±s shown that good 

agreement is obtained in all cases between the Infuuence Line

and conventional solutions.

The experimental tovestigatoons are described in Chapter 

IV covering the examination of the four basic load actions and 

certain selected comppslte actions. Some seventy tests were

oarried out covering a variety of radial and tangential area 

and ring loads, bending and twisting mosImnis, and their com

binations, applied directly to the continuous shell and to 

rigid inserts incorporated In the shell wall.

The experiments were carried out on shallow shell models 

of 6Oin radius, of £, £ and Un thiclmess and on a compete 

spherical shell 13ft. 61n diam* which was a 1/10 scale model

of the Douireay Nuclear Reactor Containment Build tog*
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The experimental and theoretical results are compared and 

fully discussed in Chapter V* It is generally shown that good 

agreement is obtained, fully substantiating the proposed 

analytical methods and their underlying conceptso

Chapter Vi sumnaaizes the min findings of the investi

gation regarding the basic aspects and their application to 

design analysiSo

A Bibliography and Author’s Index is provided in Chapter 

VHp follcwed in Chapter VII by eight appendices giving the

details of analyses considered in the thesis
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NOMENCLATURE

The following presents an abbreviated list of typical symbols.

The compPete list is shown in Appendix VIILIE .8

i,W; r,9 

Njc, N*y,Q»x'*

Mix, Mxy,--

X,U; L,M.

^9 » Pr> t 
P.M.T.H

u, v, w

,Oy, r J 
Zxy > 'Zxz , Zyz .

Orthogonal curvilinear and linear co-ordinates 
Pig. 1.1

SplfrH’iaal Polar co-ordinates Pig.1.2

Middle Plane, Normal Shear and Transverse Shear 
Forces. Suffixes consistent with all co-ordinate 
systems used.

Bending and Twisting Moments. Suffixes consistent 
with all co-ordinate systems used 

Comppltnt;s of External Load and Mommi'i-t in x,y,z. 

Comppnnnts of External Load in 0,^ , z co-ordinates

External Radial Load, Bending Moment, Twisting 
Momon't; and Tangen'ial Load

Comppnnnts of Displacement of any point on the un
strained middle surface in the x,y and z directions.

Normal and Shearing of Stress in rect
angular co-ordinates. Suffixes consistent with
all co-ordinate systems used.

£/> &} and Shear Componnnts of Strain in the
Xxy> • x,y and z directions. Suffixes consistent with

X ’ all co-ordinate systems used.

E, G
V

D, C

t

Mooum in Tension (or Comppensiot) and Shear.

Poisson’s ratio.

Flexural and Exte's^nal Rigidities of the Shell:-
D = EtMzd-tf*) ; C *

Thickness of the Shem.

Yp Radius of uniformly distributed load and radius of
of Rigid Insert.

Yo Radius of Loaded Ring.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INTRODUCTION

The study of thin sheila has been the province of both the
5

practicing engineer and the applied m^t^t^^r^an.cian for over fifty 

years 0

The theoretical aspects of shell design were pioneered by 

LOVE who formulated a general theory of thin shells 0 Owing to

the complexity of the analysis approximations were introduced by 

later investigators to enable specific problems to be solved.

In this theoretical work empha^s has been placed upon obtaining 

rigorous solutions to the shell problems. This has, in crase-

quence, that solutions are available to only a limited

num^^r of cases which exhibit some form of symmetry or inverse- 

symmetry (asymmetry) of shell and/or loading. Further, the

methods are invariably difficult in their application to parti

cular design problems and are generally not substantiated by 

systematic experimental work.

The advent, in particular, of the large spherical containment 

vessel In the field of Nuclear Power Engineering has created an 

urgent need for a relatively flexible method of analysis, capable 

of wide application to the many unconventional stress and defor

mation problems which have arisen in this field.

With this background in mind the present programme of researc 

was initiated, sponsored by the Mooheurwell Bridge and Engineering 

Co., and directed towards the development of methods of analysis 

of the effects of load actions on shell forms.
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CHAPTER I REVIEW OF PUBLISHED LITERATURE



 

 

 

 

 

 

 

 

 

 

3 (I.l)

Theoretical analyses and experimental investigations have 

been carried out in the subject of shell structures over a 

Kreat many years. The early work was directed toward improve 

ments In the design of boilers and storage tanks and countless 

experimental tests were performed. The theoretical aspects 

of shell design were pioneered by applied mathematicians such 

as ARON(1) and LOVE>3 ) who formulated a general theory of 

thin shells. Owing to the complexity of the ensuing differ

ential equations a number of approximations or assumptions 

have been made to enable specific problems to be solved. These 

are various and result In a large number of different theoreti

cal treatments, which are discussed In this chapter.

The review is presented in two main sections dealing 

respectively with theoretical analyses and experimental 

Invest igat ions•



4.
1.1 THEORETICAL ANALYSES

1.1.1 THE GENERAL EQUATIONS FOR SHELL FORMS 

(a) The Co-ordinate System.

(b ) The equations of Equilibrimi.

(c) The Strain Components.

(d) The Resultant Force and Moment Attions.

(e) The Stress-Strain Relations.

1.1.2 SIMPLIFICATION OF THE GENERAL EQUATIONS

(a) Loved First Approximation.

(b ) Love’s Second Approximation.
(c ) Approximation retaining the fz/R^* terms.

(d) Approximation coisidering the transverse strains

and transverse normal stress.

(e) General. Comment.

1.1.3 THE SOLUTION OF THE SIMPLIFIED EQUATIONS WITH 
PARTICULAR REFERENCE TO SPHERICAL SHELLS

(a) The ’General’ Spherical Shell.

(i) The Symim^]itic£^]^?Ly Loaded Shell.

(ii) The Asynmmt really Loaded Shell. 

(Hi) ’NumericrL Methods’.

(h) Shallew Shells



Fk.I.u Bcnowg *md Twisting moment Components

Pig. M Nomenclature fob General Shell
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1.1 ol THE GENERAL EQUATIONS FOR SHELL FORMS

The problem of curved plates and shells was first con

sidered by ARON^) in 1874* He followed the procedure adopted 

in the analysis of flat plates, and obtained an expression for 

the potential energy of the strained shell which is of similar 

form to that obtained by KIRCHHOFF for pkates. .This work

was followed in 1888 and 1892-3 by that of LOE^E ,3) who 

formulated a general theory of thin shells with reference to 

orthogonal co-ordinates located on the middle surface.

The general equations obtained by LOVE have become the 

classic basis of practicaLly all theoretical analyses carried 

out ,

(a) The Co-ordinate System

The co-ordinate system to be considered throughout is that 

of orthogonal curvilinear co-ordinates z which are capable

of defining the position of any point in the shell wall, as 

shown in Fig, 1,1, Thecx and ft curves are the lines of 

principal curvature on the middle surface of the shell, z»0.

The axes x and y are tangents to the curves oc and ^respectively 

at their point of intersection 0.

On the basis of the orthogonaaity of the curvilinear 

co-ordinates one can state that a distance 6s on the middle 

surface, corresponding in magnitude and direction to the arc 

distance from (x, p ) to (« + (£ + ££) is;-

6s = A2 IS + B2Sp*

Thus ^^en only one curvilinear co-ordinate is varied,



 

 

 

 

 

 

 

 

 

 

 

6.. (I ♦!)
Ss, = ASs ; Ssz = B£p ,

where &S, , &S2 are the increasar In ehi are lengih thena the 

cl-lrSCiate lines o<,p corresponding to the ihaitast of the 

curvilinear al-lrSChatts by $x?Sp respectively. The qualities

A and B are called the Lame parameters and are in fact radii of 

a^va1suie, They are functions of! andp and are characteristic

of the shell form.

(b) The Equations of Equilibrumi

The force and moment components per unit length acting on

the middle surface of the shell element in the directions x, y, 

z are shown in Fig. I.l. For example, on the side OC of the 

element the normal and shearing forces ares-

~NxxB$p y — i — Qxz. 6

while on the side OE these becomes

- Nyx AU • - Nyy A<5o ‘ - Qyz A S<x in the x, y, z directions

respectively.

Considering force equilibria and allowing forthe changes in 

shell geometry due to elastic deformation, the equations of 

equilib^i^ become:-

for hli^^l and shearing forces,

6) b(Ny* A) _«NjtyB4r/NnA) +(<^QxxB-K^Qy,A)4 ABX* = O

^(Mxyfi) 4 bPfyA) _ ( >QjxB + fe'QyzA) + (r/Xl ” *'NyxA) 4 AB Y 
d* bp

<KQ*z B) 4 j(QyzA) - Nxx B +^N Ny&) 4(ft blxy B 4 />Nyy A) + A6Z
bp

3 0

— O 

(I.labc)

and bending and twisting moment actions,

— 3(Mjy B) - b(Myy A) - (Mxx B r, 7 4 My A ) 4 (Qyz 4 L) AB = 0



 

 

 

 

\ A I 'I •

d (Mxk n) ■+ 3(Mmx A^ — (MxyBr/ 4 Myy Atj1) — (Oxz - M)AB — 0
a* apr

Mxx B |>, 4 Myy A 4 (May <j, 4 Myx A fa ) 4 (Nxy - Nyx) Al — 0

(I.2abc )

In the above relationships p* , qj , r‘ , p?' , q* , r£' , are parameters 

arising from the elastic deformation of the middle surface, and 

corresponding to small rotations of the form, [>'$<*, --- etc.

They are defined as follows:-

joAeap Rj/ BapKAa* TJ e fp)

Qt - A _ 2 f A _ I 3 A / | 3t*r - v A
7’ f?2/

r,' = -_L 4 2a£A^ - _Af_L^ -
B 3/3 a<\A^ AB3/3/ (?,\B3p

b' = 4 - J£) -4 _Li£
ap^Bap a a*'a a* »?,/

Q' - - 3 f I 3ur - _W^4 I 3Bf t 3or _ _tr\ 4 B f 3ir - u ^A)
* 3pkA3ot A3cAB3p P2/ A^vjk B3p/

r2‘ = ±3B 4 _3/j. 3v - 21 <LA\ 4. _B./'j.3ur _ u_^
A 9o< a a* ab ap/ s?a #?,/

(I.3a-f)
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(c ) The Strain Components

The extensional strains £, } £2 of the middle surface are 

defined as follows,

in the x direction, 4- HL
A 3<X AB3p R,

and in the y direction, £? = ■+ IL A®. + LL
B 3P AB dot R2

The shear strain of the middle surface

- J_l!£ -j. 1 du U 3A _ v dB 
A3* B3P AB 3p ’AB 3<<

Due to the moment action on the element the middle surface 

will have curvature changes Ky and Kg in the direction x and 

y and also a change in twist K^ defined as follows

K, = _ - J_1A
A3o6A3« I?,/ AB3p'B3p Rz/

= - J_ 2f_L - 3d___ L (13t*r - _u_\
B3p'B 3p Rz' AB 3a'A 3* ft,/

K7 = - > f _ | 3A 3far - _LlB 3ur^ +
AB'3*ap a ap aa b a<* ap /

j_ 3u _ i 3AuA-|. I f I 3v - J_ 3B vA
R,'B3P AB 3P / RxVA3ot AB 3* / (I.4a-f)

The corresponding values of the components of strain in the x, 

y, z directions for any general section of the shell situated a 

distance z from the middle surface becomes-

6x

fy

= ___ I___ ff, + ZKi 4 J-fil
I +z/(?, L A

= I ff2 + z K, + l (22
1+Z/fcL 6 k3P

- <7 + V9]



 

 

 

 

 

 

 

 

 

 

 

(I.l) 9.

)fxy = _&2
1 +Z/(?2

’<■ -!—) 4^-f-i 4 ±Q 
4Vt. / 14% V R A 11+Vr, 'W I+3V B

+, I . -Lf23 - h.'c 4 r.'?\ 4-' , - - rz7 +<US)(FW) Ab* / 1+V(?a b lap y )

3z

^2 *R)a(s -VS ’f'i)

4 K.

(I.5a-f)

In the above express ions > 5 ar® functions of cX., |3, z which 

have zero value when z = 0, i.e. on the middle surface. They 

may be considered as displacements In the x, y and z directions 

respectively, addition to those caused by the middle surface 

strains, allowing a point at a distance z from the middle 

surface to occupy any general position after straining.

(d) The Resultant Force and Moment Actions

Denoting the Internal stresses on the element as oj > Txy, 

Tyx--etc. the resultant force and moment actions may be defined 

as follows•-

Nxx = I Z J dz
-tfe *

,th
Nyy = J 05,(1 4 z)dz,

-tyz '

tt
y = I'M1" j,)^

Nyj

-t/i

= f Tyx((4 2)dZ 

-</2

M,

„ ^2 ,
Qxz = I Txz(l4 z)dz

-<% *
Qyz = f Tyz(l4|)o(z

-t/2 *'

^/2



 

 

 

 

 

10 . (1.1)

Mxx => J %z(l + i)dz
’fc *

Mx
-<f

My* JJjxZ(U |.) dz 
-t/2 *•

(1.68-3)

y

where R, and denote the radii of curvature of the normal

section of the strained middle surface.

(e ) The Stress-Strain Relations

Assuming the shell to be isotropic in all surfaces parallel 

to the middle but having different elastic constants normal to 

the middle surface, the stress-strain relations become

— E -+ "^yl +* £ 04
1-^ k J 0*D)Ez “

«l><«, <rz .--- Ei_ + 2sJE (£* ► £y)1I — 2((4)’E L (1-vjeX wJ
fit-yEz

Txy = G iGcy , Txz = , *^"yz = ^z^y*
U.7a-t)

For complete isotropy in the shell,(Vz = t0, Er = E)eqts. 

I.7a-c become

cry

01

e ( f* •f'Z/£y^ -f V 
l-x)i K J ~Tv~

= E (&i+’U£x) -+ _JLs 
l-yi J J \-v

l-x>

= E
1 - 2 v*

-► fy) 1
l--> 1 J (I.8a-c)
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1.1.2 SIMPLIFICATION OF THE GENERAL EQUATIONS 

The general equations 1.1 to 1.8 have been used as the basis

of theoretical analyses of shell problems. In order that a

solution may be obtained a variety of approximations and 

assumptions are introduced, as the general equations have 

proved intractable. Certain classical simplifications now

to be considered were first introduced by OEVE, based undoubtedly 

upon those of KOTFHHEFF in his plate theory. . This is

foioowed by an outline of mre recent work in this field.

(a ) LEVIS’S First Approximation

This incorporated the following assumpHons,

• O The thickness ’t ’ of the shell is small compared

with the least radius of curvature T ofthe middle

surface.

HO The strains and displacements are sufficiently small 

so that quantities of the second order and higher 

order magnitudes in the strain displacement relations 

may be neglected in compf-irison with the first order 

terms. This assumption ensures the linearity of

the resulting differential equations.

OHO The direct stress normal to the middle surface is small

compared with other direct of stress and

may be neglected in the stress-strain relations.

OV The normals to the undeformed middle surface remain

normal to the deformed middle surface and suffer no 

extension, that is:- &tz = fyz = £z&O at all points.



 

 

 

 

 

 

 

 

In addition to the above, LOVE stipulated that the ratio 

of z/R is to be neglected in comparison with unity in the

expressions of both the resultant force and moment actions and 

the strain component relations.

Using assumptions I and II and neglecting z/R the strain 

component equations 1.5 may be writtens-

£* = + zK, ; £y = t2 + zK2 ; Xxy =

^zx = A? ; fya = ; ££ - iS (I.9a-f)
az 3z dz

Assumppion III Wll modify the stress-strain equations 1.8 to:-

<X = _E__(Ex +l-T)i ' '

~ (I.lOab)

Assumppion IV which restricts the deformation of the normal so 

that Ez = Xxz - = O will also imply that Txa = Tyz =0

Thus equations 1.7 d, e, f reduce to;- Txy = G Xxy (1.11)

By substitution of eqts. 1.9 in 1.10 and 1.11 expressions for 

Ox, oy and T*y can be wittens-
<rx = i £a p; + VE2 + z(k,+ Pk2)J 

<Ty - E + Z(K2+l/kXj

Ixy = G Y,a + 2zK4] (i.iaa-c)

With these simpPifications it is noted that Qxx and Qyz 

in equation 1.6 are no longer retained. The other force and

moment actions can now be written from eqt. 1.6 using the above 

assumpPions. To the first order in t, the force-strain

equations ares-
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and to the third order in t, the moment-strain equations ares-

= D f K, + t>K2 + J.(£, + k£2)1
L Rz J

Myj = D T K2 + v Kt + _ L

Mxy =
Dd-v)r Kj +1&1]

L 2 Rz J

Myx d 0-r Kz 4» .1^2*]
(I.14a-d)L ~ 2 p; J

When the extensional strains are 

flexural strains, then Nxx, Nyy , NyX 9 

I.13a-d and Mxx, Myy------- bys-

coraparable with the 

NXy are given by eqt.

Mxx = D Ki •+ K2 1 

yy = D £ KzM

= d(|-^k3 (I.15a_d)
The equations of equilibrium 1.1 and 1.2 will also be

modified by the foregoing assumptions relating to the omission 

of second order terms. It can be shown that the product of 

the force actions and p' and q^ are of second order whereas 

certain parts of q' , r/ , j , r2 , are of first order in the 

product relationships. These then lead to the equations of 

equilibrium in the following forms-

afNxx B) + ICNyxAl + NxydA _ Nyydg + AB Qxz +ABX=O 
do* dp dp d°* Pi

d(hJxy B) 4- dfNyy A) 4- AB Qyz — Nxx dA 4- Nyx 3B -+ ABY = O 
3<* dp p2 dp d°<

3(Qxz B) 4- 9(Qyz A) — AB Nxx — AB Nyy ■+ AB Z =0
do* dp Ri ^2

d (Mxy B) ■+ 3 (Myy A) — Mxx d A 4- Myx dB — (Qyz + L)AB — O 
do* dp dP dot



 

 

 

 

 

 

14. (I .1)

3(MxtB) ■ 3(Mvx A) ■ Mxy 3A - Myy 56 4 (”Qii + Ml) AB = 0
3^ dp 3p 3o

M*v _ Mlyx + (Nxy — Nyx) = O
R, Ra

This formulation of the problem contains all the essential 
facts necessary for the treatment of thin shells as long as 
special conditions do not require inclusion of the effects of : 
transverse shear and transverse normal stresses*

It is noted, however, that a theory which includes the two 
assumptions oj = O and £z a 0 would fail to lead' to correct 

results in the special case of a flat plate subject to a state 
of homogeneous bending and stretching. This difficulty is

usually avoided by neglecting oj in the stress-strain relation 

eqt. I.8c and by then determining from the resultant equation 

a value for the strains-

£z = — (£* + £y) (1.17)
I- v . , .

and from eqts. I.9a,b:- £z = — + £2-* z(K, + K2)J (1.18)

It is seen that the resulting equations for the force and 
moment actions, (eqts. 1.13 and 1.15) are extremely simple and
are compPitely analogous with the corresponding formulae of the 
theory of flat plates. However, as NOVIZHILOV(^) points out in
his recent book, certain contradict ions or inconsistencies are 

present - these are considered to be of second order effect and 
to be no greater than the effects of the initial assumppions 

underlying the theory of thin shells. One point, however, will
be mentioned at this stage owing to its use in a later section.
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Following from assumption IV, the shear displacements Xz,Xyz 

were neglected., The logical sequel to this is that the

resultant transverse shear forces Qxz and Qyz are no longer 

retained. These forces, however, are present in t he

equilibriimi equations I.16, and in a later section one such 

term is used as the dependent variable in the fundamental 

equation for the axi-s^mmtrically loaded spherical shell. 

NOVOZHILO3) indicates that the hypothesis which requires 

normals to remain normals is only applied to determine the 

law of deformation of a fibre of the shell, parallel to the 

middle surface, and is not Used in the study of the equilibrim 

of forces. The resultant transverse shear forces - Q should 

thus be retained in the equilib^i^i equations, FLUGGE(5)

avoids this difficulty by envisaging that some of the elastic 

moduli have Infinite value, so that Ez s fz 5 i'/ 0 is satis

fied and the required resultant force terms retained in the 

equilibruum equation,

(b ) LOVERS Second ApppooXmat ton(3 )

This approximation retained certain terms containing z/R 

and introduced terms in consequence of the partial inclusion of 

the effect of the transverse normal stress , Such an 

approximation LOVE deems unnecessary unless the extensional and 

shear strains of the mid-surface <, > £Si are small compared

with the flexural strains, zKt, zK2 > zKj

The basis of the approximation is to simplify the expressions 

for the components of strain - eqt, 1,5, This is done in 

the following manner. The term £|(l + z/fct) * is replaced by £,



 

16 (1.1)
and the teim zK,(l-+z/p) by zKt-ZZJ^i • Values of §,7 > S

are substituted into eqt;. 1.5, those of § , y being zero as in 

the first approximation and 5= + ■+l^Kt+Kajz2 j (1*19)

obtained by integrating eqt. 1.18. Further the teims p/,

qf ,--------- that appear in eqt. 1.5 may be replaced by the

corresponding quantities relating to the unstrained shell, that

and finally 
,2 2

is:- K - ii -0 . f =- p . - -R

rejecting terms of the type ^>V/^t > £, K, Z . K, Z * the

modified strain component equations are obtained as follows :- 

8x - £ + zK - z2K, - Ii__ z2(k, + k2) 
2 l-U R.

£y - £2 + ZK 2 -ZZi<2 -±J-LL Z 2(Kl 4 K»)* R2 2
,&ty - #i2 + 2(f3Z - Kj Z2(l + (1.20)

From the relatinnships given in eqts. 1.6 and I.dd it is now 

possible to determine values for Nyy nnd yyx , by using the 

value for /xy given above in eqt. I.20c and replacing the 

deformed curvature R* by R, aan rR by.R2, fouuth order terms 

in t being neglected. These are as foioowsj-

Wxy ._JL_rv 2(l+o) L ■f t. .Kj - J W it 1 4 N \1
6 r <R, Rx/J

Ny* = — + tJ j - j ■ Rj 12 ( + ± 1 22(i+o)L f R, 12 * Ri Rx/J
(1.21)

A further metrication consists in determining a value for 

by substituting the values of oj and oy obtained in the first 

approximation in the equilibria equation for stresses# The

relevant equation. after neglecting z/R terms becomesj-

3 <* — cry
3z " R, 2

This leads to 3oj - E -f Ki+zK2 4. where 0* and. OX
iz v Rt Rz ; »
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are replaced by their first approximations and the extensional 

strains are neglected,, Since the value of must vanish at

Zs t and z = - t }

. f £ _ 72 V K| 4 U Ki 4 vki
k 4 A f ( )

= - 1_E_ (Io22)i W

From the stress-strain relations eqts. I„8apb in conjunction 

with eqto Io20"for and fy and eqt0 1.22 for o* , it is

possible using the resultant force and mommnt action expressions 

eqt;. 1.6 to writes-

n« = e t r(f, + u£2) + oJk,(j. _n_ i
t~v* L ,22 kJ 2i-tm Ae, r*/

Ke+vkz . Ks-t-Kk.YL
(1.23)R, Rz

together with the analogous expression for Nyy« The resultant 

moment actions are not affected by the second approximation, 

provided that the terms of a higher order than DK, are not 

retained. ■

As in the first approximation of LOVE, Tx* and Ty* are not 

considered and the shear forces Qxx and Qzzare zero,

(c ) Appppxoms^taorj retaining the ((/R)111 _terms (hhahe rn=l,S---- )

With a view to improving LOVE8s first approximation some 

investigators have sought new solutions of the classical theory 

by retaining the z/R terms in the strain component and the 

resultant force and moment action expressions, the other 

assumptions being retanned as before.

FLUGGE (5) mooified the general expression for the force-

strain and mommnt-strain equations for both cylindrical shells 

and shells of revolution, expressing them in terms of the 

displacements u, v, w and their differentials. Those terms



 18 (1.1)
which contained log f(t) were expanded in powers of t/R and 
fifth and higher powers were neglected* The expressions for
Wjtx , Nyy - -- Mxx# My-- thus contain only the rigidity
constants - the extensional rigidity, C and the flexural 
rigidity, D.

It is noted that in the resulting relationships the 
elastic change of curvature K, , K2, and Kj influence the 
normal and shearing force actions and the strain in the 
middle surface influence the bending and twisting
moment actions. The moment expressions are of a similar type 
to eqt. I.14a-d, while additional terms involving t5 (i.e. D) 
are considered in the normal and shearing force actions of 
LOVE’s first approximation eqt. I.lSa-d. For the particular 
case of the spherical shell, first analysed by HAVERS^). the 

log f(t) term does not appear, however, the term (1 + z/R) is 
retained in the resultant force and moment action expressions 
eqt. 1.6. The resulting expressions for the normal and 
shearing force action, however, are seen to correspond to eqt.
I.13a-d and the moment actions to the corresponding eqt. I.15a-d 
Thus it is seen that for the particular case of R, = R2 the 
force-strain and moment-strain equations are those of LOVE' 
first approximation.

Similar work is presented by BIEZENO and GRRAMMSl/7) for

/
’ (4 T

—----- i"
series, the trrm s o - th- tHlrdl or lower powers of t being 
retained. The results for tlef foree and moment actions are 
presented in teirms of u, v, w. BYRNe(0) in a recent
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publication followed a similar procedure which led to 

expressions for Nvv . Nyy . etc o as belowg«=

« Et If, + _ t*( J _ J. Yk, - £. \1
(i-d*) I 12 vie, R./J

Nyy = _Ei_ [fj + D£, - i’fi - 1 VK2 - £»■)]
(l-V*J L IZ'Bi E.A (?j/J (1.24)

These equations differ from equations 1.13 of LOVE8s first 

approximation in that certain terns of order t3 are added to 

the original expression. Again it is noted that the

additional terms of eqto 1.24 disappear when the significant 

radii of curvature of the middle surface are equals that is. 

in the cases of a flat plate and spherical shells.

A comparison of eqt:. 1.24 with that obtained by LOVE using 

his second approxlrnaaion(eqto 1.23) shows that eqt:. 1.23 Includes 

terms present in eqt. 1.24 except for the terms and & o
Ri R*

Additional teims in the LOVE analysiss which are of the same 

order as the correction terms present in BYRNEs eqt. 1.24. are 

introduced as a result of the inclusion of the effect of the 

transverse normal stress oj o The expressions of LOVE are 

furthermore valid for R(- R2

■ It was LOVE who pointed out that the values of NXy 9 NyXj(

Nxx$ Nyy, obtained by his second approximation agree substan

tially with those found by B&'SSIEP (9)„ The method used in

BASSET ’s derivation is that of expanding the stress., strain and 

displacement components in a shell Jn series of powers of z#

The order of each term., i.e. Mx,. Myy----- Xxz.Yys ®tCo ss con

sidered and those of fifth order or higher powers in t are
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rejected. This results in neglecting ixx and ^y. • The

expressions thus obtained contain the corrections introduced 
by BYRM58) in eqt. 1.24 as well as the additional terms 
introduced by LOVE a second approximation equations 1*21 and
1.23, together with further terms of third order value.

HILDEBRAND, REISSNER and THOMAS^^) commenting on the 

procedure of BASSET in neglecting certain terms which involve 
high powers of t, point out that such a procedure may not be 
valid in those cases where an appreciable change in the magni
tude of a moment occurs over a distance of the order of 
magnitude of the thickness t or over a distance of VSt for 
cylindrical and spherical shells, where fR’ is the radius of 
the circles of curvature. Such an appreciable change would 
occur in the case of local surface loading causing high . . con
centration of stress over a small area. It is considered, 
however, that the inclusion of the terms involving z/R and 
the expansion of the various quantities in terms of powers of 
the thickness co-ordinate does not add to the accuracy of the 
result, since such terms are of the same order as the original 
approximations made in the rest of the theory.

The work of HSENARpdR, ) underlines the above. This
work is based on that of EPSTBIeIN ) who, starting from the 
three-dimensional equations of elasticity, derived equations of 
motion for the elastic vibrations in cylindrical shells. 
KENNARD uses the resulting equations and obtains expressions 
for the force-strain and moment-strain equations for circular 
cylinders. He justifies the neglect of terms which involve t
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Similar work carried out by VLASOV(14 ) must also be mentioned

in support of this argument. He notes that In the fdrce- •

strain and moment-strain equations there exists certain terms

which are Independent of the curvature of the shell and which

Involve t3o After extensive theoretical analyses9 supported

by experimental Investigations, it is shown that these terms

are of second order and can be neglected without sensible

error, provided t/R^ > l/30. He quotes the work of

GALERKIN^5) on cylindrical shells and thin walled rods as

further evidence to substantiate this assumption.

(d) Approximation considering the transverse strains and the 
«. transverae normal stress — I.e. , t jfyg Q.nd 

It has been previously mentioned that assumptions III and

IV of LOVEcs first approximation (I.e. is small compared with

the other normal components of stress and » 0 )

when taken together are not entirely satisfactory. This has

lead certain authors to discard these two assumptions in order

to broaden the scope of the theory and enable It to embrace

the transverse strains and normal stress. A method of

REISSNER(16) which Is applied to the case of axi-symmetrlcal

deformation of a shell of revolution, consists of obtaining a

system of force-strain and moment-strain equations for a
«

co-ordinate system which has anisotropy In direction normal 

to the shell (see eqts. 1.7). The method used incorporates 

a variational principle previously used by REISSNER 7) <>

Assumed stresses and displacements are substituted into the 

appropriate form of the variational equation, certain second
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order terms are omitted, and a system of strain-force and 

moment equations developed. Those of are shown

below

REISSNER makes certain observations regarding these 

relations. Setting 14 = 0 andGz-°" and expressing the N‘® 

and M’s In terms of the £s and K's, BYRNE r s () and FLUGGE 1 a ) 

relations are obtained. He also notes that If the order of 

magnitude of the bending stresses Is the same as that of the 

direct stresses, and ift/R«1 and and are of the

order of I/- then all terms of eqt. 1.25 which have t/R or 

(t/ft)^ as a factor are small compared with the terms that do 

not have this factor. When such a modification Is carried 

out the force-strain and moment-strain equations that result 

are those of LOVE1s first approximation, i.e. eqts. 1.13 and 

1.15. REISSNER comments on this point, remarking - "Apart 

from the question of the transverse shear deformability, the 

force-strain and moment-strain equations of LOVE1a first 

approximation are all that are needed for the application of 

the theory to specific problems."

Despite this comment, REISSNER seeks to Improve these 

equations since they are deficient In certain termi which 

appear in LOVE1s second approximation (eqts. 1.21 and 1.23).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1.1) 23o
* »

The reason for this deficiency is that • additional teras should 

have been included in the approximations for <77 and'w’. The

teams and 'w’are thue defined in appropriately generalised foam.

The definition of*w' includes a team of similar form to the 

relevant term of LOVE8s second approximation, namely £ s 

(eqt. 1.19). The earlier method of analysis is repeated

and force-strain and moment-strain equations are obtained 

which are both long and co^pP^Jx. They do, however, include

the force-strain and moment-strain equations of LOV8s second 

approximations as a special case.

A recent paper by NAGTOIO* ? follows similar lines to that 

of REISSSNER ) mentioned above. Like REiSSNER he uses a

variational principle in order to derive a system of force- 

strain and momlet-strain equaaims0 In defining the stresses 

and displacements NAQIHDI adopts even more general forms than 

does REiSSNER in obtaining his improved rrlatlonshlpt. He

presents the results for the force-strain and moment-strain 

equations in such a way that the influence of neglecting or 

including the transverse normal stress is clearly seen. For

examppe, when <7 is neglected and the transverse shear defor

mation is retained the equations for the force-strain and 

moment-straIn equations simppify considerably. Neglecting

the second order terms in t/R these becomes-

Wxx = Et Tf 1 ■+ 1+ V 2 etc . -for Ny>p-l-D* L 12 U. fzJ J
Mxx = D £kj + vK3 - (1 etc. -or My--

(Io26)
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It is noted that in the case of a flat plate or a spherical

shell these results simpPify to those of LOVE * s first approxi

mation, except of course, that expressions are Included for the 

resultant shear force and

In the second place when the effect of the normal stress 

a, is considered the following expressions result:-

N*X = JEi__ lE. + flE, -iVi. —I 'K, -3i—
I-*1 I 1 F? l-V 12\2 u F?J KT- .

* +-u— t(v^)
ttx.. |-v 2

Mxx D f K.tVK, - (1 _ 1 V, _j/_ 1(| £z) + 1 (£,*V£,
L 'P, kJ i-v ) (?, r2J 5 v c, /

+ t2(< -a) 
5 hv! v Vetc, (1.27)

where and q are values of crz at z = + t/2O

Again compprison can be made with the work of LO~VB, In this 

caae it is noted that except for the shear resultants Qxz and 

Qyz and their effects on K, and K the force-strain and moment 

strain equations 1.27 are similar In foie to those of LOVE * s 

second approximation.

(e ) General Comm nt

It would appear that the assumptions made by LOVE’s 'first 

approximation’ although not taking into account the transverse

shear and normal stresses, form the basis of a simppified system 

of equations which are capable of solution, It was KOITER(19)

who pointed out that it is meaningless, in general, to carry 

out refnnement of LOVE’s first approximation unless the effects

of transverse shear and normal stresses are taken Into account
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at the same time. Although such refinements have been carried

out, as referred to above in the papers of REISSNER and

NAGHDI(16,18) the present author doubts whether the complex 

force-strain and moment-strain equations that ensue will enable 

results to be obtained for practical loading problems. It

would appear, therefore, that for the thin shelly the theory of 

LOVE * s ’first approximation5 is sufficiently accurate and 

further, is capable of providing a basis for the solution oi^ a 

wide range of shell problmmse The presence of the factor

( */R, - ) in a number of the approximations is particularly

fortuitous in the analysis of the spherical shell. This term,

which becomes zero for such shells, means that the maaority of 

the expressions discussed reduce to LOVE’ ’first approximatoon.’

>I



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26. (I .1)
1.1.3 THE SOLUTION OP THE SIMPLIFIED EQUATIONS WITH 

PARTICULAR REFERENCE TO SPHERICAL SHELLS

The simplified differential equations in the form given 

in the preceeding section are not readily amenable to analytical 

solution. In fact throughout the history of shell analysis 

the solution of these equations in their various forms has 

involved the use of mathemaatcal techniques not hitherto 

employed in such analyses. In this section a revi^r of 

these solutions is presented with particular reference to 

spherical shells, in both general form and as shallow shell 

structures. Throughout, attention is confined to those

differential equations which result from what is essentially 

LOVE1 a first approximation.

(a) The ^anneal' Spherical Shell

The first successful application of the theory of thin 

shells was made by H.-MSESiSKIN20R in 1912. REISSNER suit

ably modified the equations of LOVE1s first approximation to 

suit the .3pherical shell. In this case the principal radii 

of curvature are the same and equal to the radius of the shell 

R. The cxu?vilinear co-ordinate system o., ft used earlier in 

deriving the differential equations for the shell is moodfied 

to the system of < and 9 , where and 9 are the co-latitudinal

and co-longitudinal angles respectively. The foioowiig

equivalence between the qualities of Fig. 1.1 and Fig. 1.2 

is noted:-

U = 9 p = <

Nxx = ,

•>

Nyy = /JQty

Qxz = Qe , Qyz » Qf .

tNyx = Nj>& .Nxy = A/^ >



jpHEgic^L Shell Shoving Element OCDE

Details <* Foxes amp MonfA/ns on Element ocde

-6-1-2_ -Nomenclature for the General Spherical Shell
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and similarly for the moments. The externally applied forces

X, Y and Z become p@p p and p respectively*

The arc of the parallel circle OE is given by — R .sin (. SB

and the arc of the meridian OC by Ss$ ss R o Tnus the Lame 

parameters, A and B ares° As R sir>$ and B •= S

Using these values for A and B and the new tomentlltu:,e, 

the equations of equilibrium corresponding to LOVE8s first 

approximation eqt . Io16a=f can be written* putting M^L-Og-

R 3 M9S 4 36rN^e) -+ R M&(p tosJ - rQ& + Rrhe = 0
de a?

r) 4 R 9 N©<* — R Negccsd 4 $ + Rr |>r = 0
“24 ae

R 3Qe 4 3(rQ$) - rf^ae + 4 Rr j = 0
30 df

R 3M ei 4 3 (r “ R Md& cos$ - Rr 0$ = o
30 3?

R dMee 4 3 (rM^fl) 4- R &s<f> — Rr (3e = 0
30 3f

- + R(Ngp — N^e) =■ 0

whem T= R sin ( (Xo28a~f)

In a similar manner the expressions for the middle surface

strains can also be moddfied. Those for £, $ £i2 become g-
Eg K _L Ju + L OS# , ou 

r ~ a r
6$ = _L Jit h or

R a^ R
= J. Jv + J dm

r 36 Rtf
ML @ d
r

(Io29a-c )
and similarly for the changes in curvatureo

Wien the shell is sy^mmricaa^y loaded, all the derivatives

with respect to 9 are dropped and many of the force and mo mm nt



 

 

 

 

 

 

 

 

 

 

28.
components will vanish.

(1.1)
The resulting equilibrim equations

can be witten:-
d _ Noe Cos > - Qj sin < + R sin 4 0

0

dj
d(Qfsinj) - SindCtJee + NM) R sm p
a<

d(M^^+Smf^) - M$6 cos $ - Rsinfi.Qfl == 0 (I.30a-c)

£i = ± 4v + ur , X9f = ±du _ u_ cO 6
Rdt R r

(1.31)

The middle surface strains become:-

£a s V cO d + ,

Ke» cotd [v-dur'l KA - J_ r dv _ dzur "I
• TI J f r U£ # J

and the force-strain and moment-strain equations may be 

expressed:-
«,)]

Mm-D [Ke + vK*] -- H

D [K*.+ VKeJ = + P^-v)o>t/j (1.32)

In the first instance REISSNER gave the mernmrane solutions

for the state of stress and displacement in a shell under sym- 

meeric'al and uns;ym^^i*ic^(^^ loading. Neglecting the moment

effects and the difficulties sssciiated with the boundary, the 

cases dealt with aref essentially ssaaiiaaiy determiname, since 

a neglect of the mommnt teims leads to neglect of the normal 

shearing forces Q^. Such analyses describe the stresses in a 

shell satisfactorily if the boundary conditions are those which 

oan be fulfiieed by the mernmrane forces. The meromra^ or

momeitlett shell must be free from external edge loading in the 

form of transverse shearing stresses and bending momentt and



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

29 e
thus w and 4w» q at the edge. Wien the boundary conditions

dj
are not those which the membrane forces can fulfil it becomes 

necessary to apply to the edge of the shell additional forces

f and momonts This ’mixed state ’ Is invariably

confined to the edge regions of the shell, owing to its rapid 

decay, and for that reason Ho REISSNER called it the ’edge 

effect: However, such a state of stress may occur within

the shell where there is an abrupt change of the curvature of 

the shell or its thickness.

Thus REISSNER in tackling the general spherical shell 

under the action of a symmmtrical load, resolved the stress 

problem into a membrane stress and displacement analysis^ and 

a bending theory analysis for the determination of the edge 

forces required to satisfy the initial conditions of restraint 

of the shell. This is equivalent to stating that the non

homogeneous solution of the differential equations (due to 

surface loads) may be approximated by a corresponding membrane 

solution. This simplifies considerably the general problem

since it Is reduced to a solution of the membrane case and a 

consideration of the homogeneous equation = which essentially 

represents the edge loaded shell.

In the foioowingjsolutions of the homogeneous equation 

and the particular solutions of the general.non-homogeneous 

equation are discussed for both the axi’symmbtrically and 

asyrnimtriially loaded shell.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30 . (I .1)

(i) The Axlaymramtrlcaaiy Loaded Shell - Homogeneous Solution

When the surface loads are removed the problem is 

esennially one of edge loading of a shell. Credit again must

go to Ha RE!SSNEr(20) who by a choice of the dependent variables 

expressed the behaviour of a spherical shell under axisymmenrical 

loading in terais of two ordinary second-order differential 

equations. Utilisnng the equilibr^^i equations in the form

eqt. I.30a-c with p = pr » 0, and the middle surface strain 

values eqt. 1.31 together with the force-strain and moment- 

strain equations 1.32, he obtains the two governing equations:-

-A Qd -x d K + cM cotd _ K (ctt24> + v) 
df 2 *

= d*Qd 4 QQd tJ - Q/((ctt -v) 
df> d( ,

where A* - 12(1-1)*)^ and K = Kq tan d
p TaT ° *

AK
(I.33a-b)

REISSNER suggested the possibility of an asymptotic method 

for their integration, based upon the work of BLUMEM^IHtL. and 

the introduction of new variables, namely H/sin $ and 

which result in the disappearance of the first derivative. 

Expressions for K and are given by REISSNER in terms of an 

expc^neenial function of A, (which is related to the shell 

thlckmess) and a series in powers of the ratio of shell thick

ness to a representative dimension of the shell. The method 

will be outlined in a later section.

The work of H. REISSNER was soon foioowed by that of . 

MSISSNBR(21) who generalized REISSNER*s resuit to accommodate

syimi^^x*i<^^l deformations of shells of revolution generated by
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curves of constnat radii of curvature« Of particular interest

to this review is the reduction of the general fourth-order 

differential equation, which results from REISSNER? a equations 

1.33a,b to a single second order- differential equation,,

MSISSNER used the more general forms of the equations of 

equilibrium, etco (eqts„ 1.30 to 1.32), which involve the two 

radii of curvature R, an5 R- , and introduced two new variables:
V = Q^R2 an d U s R. Kg tan $

By a method similar to REiSSNER the two governing equations are 

obtained for a shell of constant thickness t:-L(V) + vV = Et UR.
L(U) - V U s - V Ri (1.34)

D 2
where L (oo o ) - L, .d f Rt5in.$ dl- • ■ ] _ R* cot < (- • -)

Sin- ' L R. "ct'F " J R*
Prom these equations it is possible to obtain a fourth- 

order differential equation for each of the two ucRcowcSo 
Thus for Vj-

L(y)* f L) _f vf L
r. W R

v*v Et EtI (1.35)
R, D . .

Assuming that the radius cf curvature R, is a i.e

the meridian is a circle (which is true for the sphere, the

torus and the cone) then?- L (a
VRJ

Thus eqt:. 1.35 is simpPified to

1 L (V) 
P,

L.Lfy) + 4Z4V » 0 (i.36)

where X+ = H ■

t7 4
An analogous equation holds for Uo

Eqt. 1.36 separates into the conjugate) eec^d-order equatnons
L(v) + 2jx*v . o 

L(V) - 2,jx2V - o (I.37a,b)



 

 

 

 

 

 

 

 

 

32 (1.1)
MEISSNER pointed out that the solutions of eqt.I.S'b) are complex

conjugates of the solution of eqt.I.37a, so that one can

ns3entially restrict oneself to the solution of eqt.I.37a. For 

the spherical shell eqt. 1.37a further simp^^es using V = 

to Lf^y) + Zjx2Qt = 0

where L((..) - .^.•••) -+ d( • . .) cot _ (...) cot

i.e. 4 4<( ctt ( - cot*# 4 2jX2Qd = 0 (1.38)
In a later paper by MEISSNER $this work is extended to

cover shells with thickness which varies with ( .

The solution of eqt.I.38, which constitutes the solution

of the homogeneous problem, has been tackled In a '-‘Variety of ways;
f

-Hypn^geomenrlc Series. It was MSISSNSR(21) j_n his earlier

paper who iemontS^atni that eqt.1.38 could be solved exactly by

a hypergnomenrlc series. By introducing new variables,
X = Sm2< cw\ct Q$ = Z 5/n f

equation 1.38 becomes
x ((x-l)dCz + (Sx - 2) dl + I - 2/X* z - 0 (1.39)

dx* v 2 7 CLlc 4.
This is a hypergnomeerlc equation with two solutions, one which

is regulurZa = I 4 3*- &2x 4 C3- S 2X 7 2- $2) jc2 4 (1.40a)
r2 9 16.1-2 IG2.!.2.2.3

where S = 5 4 83"%
and the other which has a singularity at < = 0 •

Zb = Z*ltoX 4 _- <?((*) (I.40b)
* *

where is a power series that is convergent for|x|<1.
The solution eqt.i.40b is not considered unless there is a hole 
at the top of the sphere. The real and imaginary parts of 
zQ (eqt.i.40a) are a set of two independent series solutions 
convergent for all values ofx less than unity. Thus the
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solution, for the closed shell, for Q^may be written:- 

Qf = zsln> = (C,Z, - CzZ^smcQ

where C, and C2 are arbitary constants.

A similar solution has been reached by FLUGGE - ° * us ing a 

slightly different transformation namely?-

x = coSC and Qf = z Sin $

The resulting equation is a hypergeomei^ic equation with two 

complex solutions whose real and imaginary parts are a set of 

four independent solutions. A linear commination of these

i.e. z, , z2 , Zs , z4 having four arbitary constants C, , C2 , C3 ,

C4 is the general solution of the problem;-

Qf -2 sm < - (c,Z, • C2 z2 + C3 Zj * Cd z#) Sm $

The ease of application of this analysis depends on the

rapidity of convergence of the series. This depends principally

upon X o BOLLE (23 ) working under MSISSNER shows that for X< 10

the convergence of t he series is sat;isfactory. The convergence

of the series, however, becomes slower and more terms must be 

calculated as the ratio R/t increases- such a difficulty is a 

particular disadvantage for shallow shells 0 TIMOSHENKO(24)

cites the calculation made by EKSHRoM^S) who, for R/t — 62.5 

(X 1C.1),finds it necessary to consider not less than 18

terms of the series.
••

FLUGGE considers that it is practically impossible to 

apply his series to shells whose X is subssannIally greater 

than 5, and where the edge to be considered has a co-iniIiude 

angle ( of not less than 70s. NOVOZHILOV (4) aonclidet that

such efforts to obtain a mathemmtically exact solution are to a
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great extent useless. They are inconvenient to use in practice

and also inconsistent, since the basic assumptions of the 

original equations involve errors of order t/R in comparison 

with unity. Hence there is little sence in retaining teims in

the solution of smaHer order than t/fo.

-81apliflcatCons of the Homogeneous Differential Equation. It

was BLLflSNT&lE(26 T in his classic paper on asymptotic integration 

who examined the fundamennal fourth-order differential equation 

obtained from H.REISSNBR*s two simultaneous equations (i.33a,b). 

in terms of this equation can be written:-

d+ 2u&(P d^Qp _ 3~ stn'f d*Q$ + cos p> (3 + 2s/n2p) dop 
ASm<^ d A Ctn*P AP1 CinJP d<$AAA Sm p A Smf ~d$

(1.41)

introducing z = Q^-/sinp eqt.1.41 becomes

(1.42 )

Sltth * r a "2 f+ = fl-u 2)fl + 12 R 
i ? , L t’J

d4z + a2 d2z + a, dz - (L4a ao)z = 0
dp* dp* dp ■

where a2 = - J + £ a, = 3 wd
2 Sin '# 2 ' ------

Oo a - 63 _I  + ±'. +
16 srn*f- 8 sm20 ,

For thin shells R/t is a large -number and b■ is large in com

parison with the other coefficients - provided of course that 

the anglep is not small. Thus as an approximation eqt.I.42

can be written :- d z + t>44 - 0 (1.43)
dP . .

This equation is similar to that obtained in the investigation 

of the syirai^^itl^t^^^ deformation of circular cylindrical shells.

h more usual form of eqt.I.43 is obtained when b4= 4p4,

+ 4 f4Z - =4 P O (1.44)shas is:-

with a corresponding solution for
Q< = j— k^Cc Cos + C2Sin,<P 4- Pt(CCcxSfP +C-S,lnL(^ (1.45)

yiL L
For very thin shells, with large angle of opening i method
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of GECKELER?'is permissibleo This consists in modifying eqts 0

IO34 as obtained by MEISSNERc For the spherical shell these

may be written?-
d2Q<t> -+ cot$ - - v) — Et U
d^2 j i

cet<^ - U (tot2$ * U) » -- G4K1 (Io46asb)
df* dd D

For a thin shell Qg and U will be damped out rapidly^ with the 

same oscillatory character as eqt.1.45,, as the distance from 

the edge increases. Thus sincef of eqt. 1.45 is large, the 

first derivative of the function Qg is large compared with the 

function itself9 and the second derivative large in comparison 

with the first. Thus eqt. I«46apb may be written?-
O* -Ei u

Jfu £‘
D .

eliminating U from these? - dty/ + 0

where — 5(l~

(I.47a,b)

The general solution for QJ is?
=. e^TCjCosj 4. B * C3c&s\/ +C4^^ (1.48)

In an effort to improve GECKELER’s work, HETENyJ28)

considered not only the second derivatives in eqts„ I.46apb but

also the first derivatives. H© Introduced the variables

U _ l- _ and into eqt. 1.46 resulting in the
•/Sin $ • ^Sind „

disappearance of the first derivatives. Neglecting and U

in the left hand sides the equations have the simplified foimts°
«. 4- Et U

$ = -gfy (1-49)

which are of similar form to those of eqts. Io47^rb<, Thus the
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solution for will be as follows?-
Qy = _ I Ig9fCaoS\ + Czsm- (^(C^cosj + (1.50)

, |/o \2 _
where A4 = 3(l -V

This equation (1.50) is identical to that obtained as BLUMENTHAL1 a 

first approximation (eqt.1.45), since in practice P s A

The above approximate equation was also obtained by HETENYI

in a later pubbleat ion (29). He analysed the spherical shall

loaded sTmumtriicaiy round the edge by reducing it to the

problem of flexure of elastically supported curved beams

consisting of menidiltal elements of the shell of variable width.

The governing different ial equation is as folOowi^-

4 2cost> d?Qd _ U dQ 9 cos6 dQ? + l2l--VvRQQ) - 0 (1.51)
dJ)* sinp d$>* dj sm # d( f2

It is noted that the third and fourth deeivatives of eqts• 1.41

and 1.51 are the sam! 

Q

Thus when making the subssitution

gf—. and neglecting the lower derivatives, first and second , 
ism 4

the ^Howing equation results ?-
+ 4A4§9 = 0 (1.52)

where i4 _ 3

The solution of this equation is eqt:. 1.50.

In ref. (28) HETENYI compares his own and CGECELLE’s

approximations with the hypergeomeeric series method of MEISSNER 

for the case of a built in spherical cap loaded with uniformly 

ilitributed radial pressure. Graphs of mee^^na! bending

moramnt and clrci.mfe^ential force, with co-latItudinal angle ( 9 

are presented by HE^ElNfIgati shown In Fig. 1.3, showing that for 

the particular case considered the approximation is cometetely 

valid. HETENYI states that the rat io of comp^ing work for
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Meridional Bending Moomnt Colatituqinal Angle <_

fic.r3 ftC^fStntX ffTVfX, &««, dficrai&e.
and HbtSnyi Solutions .
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GECCKSLER°ae his own and the hypergeometrlo series was l?2?20s 

whioh is in line with the remark made earlier in connection 

with the hypergeomeerio series. Both the GECKELER and HETENZI

approximations fail to predict satisfactory results, however, 

when the parameter large, Such occurs when $ is small

(i.e. at points close to the top of the shell) or when A is 

smmll,, ioe. for thick shells. It is also seen that the

parameter will be large for shallow shells, since the assumption 

of shallowness is r/R smaH compared with unity. Therefore, 

the approximations are inapplicable to the case of the shallow 

dome.

-Bessel Function Solution. in 1930, GEEJCLErLE) developed a 

Bessel function solution applicable to the shallow dome. in

the vicinity of the pole 0, oot$ may be expanded into?-
cot 6 = 1 - A -

3 45
If 0 Is smaH enough cot^»^- # Thus the governing equation

1.38 In can be written?- 4 ~ 4 Qj * 0 (1.53)

Introducing a new independent variable eqt;. 1.53 assumes

a standard Bessel form?- 4 j- 4 (I - -sn)^Q^^ *“ 0 (1O54)

The solution may be written in terms of the first derivatives 

of the Kelvin funotio n wit h a real variable - V&Z $ , yielding 

a final o^luoio n for as follows^

Q? m Atur'-faf 4 4 B,ker'i!Xf 4 Bgkrt'Vixf (1.55)
the primes indicating the derivative with respect to „

A similar solution may be obtained by using functions 

obtained by SCH^ICHBRtyL), This is mentioned by TIMOSHENKO^)

and has been used more recently in the examination of the



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1.1)
spherical shell by ESSLINGEr932) and PENNf(33). The solitlon

may be written;- Qf = C, ty, -+ C2y3 + Cjtj - C414 (1.56)

where again the prime indicates the first derivative with

respect to 9 • These functions Tpi > %z’~ are Schleicher functions

and are tabulated by TIMOSHENKO (24) and HETENYIC29 ). Thny arT

found to be proportional to the Kelvin functionss-

^(r).cb<^r z, m2(z) ~ - buz, W3(z)=-2.kkLZ 4 2.kerz (I.57a-d)
m 1 r

Thus apart from the values of the constants, which are obtained 

from the boundary conditions of the problem, nqtio I.55 and 1.56 

are identical. These solutions am, of course, valid for smaai

openings and the shallow shell problem0 PENNf(33) considers

that the theory is applicable for opening diameters less than 

about one-third of the vessel diameter.

-Asymppotic Integration. The poss^bl^y of expressing the

localized bending effects in a shem in terms d asime'fco^lic 

developments, in powers of the ratio of the ssell thickness to 

a representative dimension of the shell, was first suggested by 

H. REI3SNER.2O) m the advice of BLUMENTHAL. BLU^^IH^IL.26)

obtained such developments for thh case d a sshericaa sshl! d 

constant thickness. More recently the Inethel hhs reeanved

attention by several authors. A recent paper by LECKIE(34) is

particularly relevant in respect of this review. L^KIE solves

the homogeneous equation for spherical shells - eqt. 1.38 - 

using two different methods of aiymptotic integration, the 

classical method as used by HILDEBRAND(35) and a method developed 

by LANGER236).

In the classical method the solution of eqt. 1.38 is assumed
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to be the product of a function describing oscillations, with

exponentially increasing or decreasing amplitude, and a series
of descending powei*^. LECKIE takes this in the foliowing forms-

s QnX''* (1.58)
~ n >0

JL 'where 8 , Qo , Qo etc. are functions of & .

The series eqt. 1.58 is then substituted into the homogeneous 

eqt. I.38 and by equating the co-efficients of Xs, x'^ %*-•- 

to zero, an infinite set of equations result. Solving the

first three of these equations the following two-term series 

solution Is obtained for g-

where

^-Tsr'i1 1 ’■ -j o.„,

When the R/t ratio is large and the shell edge is well 

away from the pole> $ ** 0, then (S4 + 3c&t #)/)'*' X« 1 and only the 

first term of the series need be used. Eqicl.59 may be written in 

the now familiar forms-
Qf - --L_- jcs $X • + C2 Sin* «$) f (o ^(Cj cojXp + C4 Sm X /)! (1.60)

hint L
X4 « JO- -x^

This is essentially that proposed as BLUMENTHAL8s first approxi- 

ma tion eqt. I. 45 and HETENf I8 s eqt. 1.48, since j® m X X , 

for large R/t ratocs. The expression, oo courss, suffees from

the rettrictions imposed on these otoer surufiuns.

LANGERasymptotic solution, however, does not suffer from 

any of these difficulties, and is valid ffo all valuue d „

The differential equation i.38 is first transformee bb romann of 

the tubstltftion $ = sin.f so that the co-efficients cot^ and 

cot2$ are expressed in polynomial form. A further transformation



 

 

 

 

 

 

 

 

 

 

40 (I.l)

brings the equation into i form which may be compared with 

the LANGER equation, for which an asyInptotic solution is avail

able o For the shell problem this may be expressed in terms of 
Bessel functions of the first and second kinds, J, and Y, and 

of the first ordero The final expression for Qy may be written*
Qy - +A2b€tzi£)^ + B, k«rV2xy + B2ketSSxJ (1*61)

This same result has also been obtained by GALLETLY3*7

normalized the hom^o^^r|ttua eqto IO38 using the substitution
Zm Qj /"sin^ , which of course is similar to that used by H.REISSNER

The resulting equation is 2 = .. = o (1.62)

Two approximations are introduced into eq^.1.62, firstly the £

is neglected and also '/y is substituted for cot y GALLETLY

points out that the error in the approximation ctty%Jw011 be 

smaH compared with the 2x?termo

Thus j - - (?/**♦ ^)z = 0 (1.63)

The general solution of eqt. 1.63 may be written?-

Z = V? [(C. + jOXbr6x+jiifrCj) + (C2 + jDjXkctn/Szj +ykei,^xy)] (1.64) 

where C, , D, , C2 , Dz are arbitary constants.

Thus Qj = | A + Bb«r,V2X^ + CklidWj + DkXr+ C^iJ

Expressing the first order Bessel and Kelvin functions in terms 

of the zero order functions, can be further written:-

ty =yS_[A,tervf xy+A2lm'-/2xy+SAer'^xy + B*kfci'^xyJ (1.65)
which is identical to eqto I06I0

It is of interest to note that when pL-sf i.e. for points 
ylnf '

near the pole eqts. Io61 or Ic65 become?- 

f = A»txr^5xt»-r r Bgkei-S^Xk

which is the expression obtained by GECKELER by the asaumption
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cotjs 2 (eqt. 1.55).

LECKIE*54) pointed out when discussing the two types of

aiymptotla integration, that whenygx9>6» ber^x* beiV2x9 etc 

may be expressed by their asy^mtotlc expressions, If such

rnlatlonships are substituted into the LANGER - type form of 

solution ( eqto 1.61), the lET'ENYi tpe® f or eqt i 1.60 , nesuliso
__  X •

Thus the HETENYI type may be considered satisfactory provided 

$>(32) radians, I.e if R/t = 100, * should be greater than 19* . 

Actually MeLACHLAN(58) and GALLETLY(57) state that when v?x9>/O, 

the derivatives of ber, bei, etce may be ss;tmtolically expressed, 

which gives radians for the minemum co-latl^udinal angle.

-Discussion of the various types of solution. In recent years

the ait^eptotia integration methods have been widely used In

preference to the mom exact approaches of the Zurich school,

typified In the hypergnomenrla series, which Is particularly

tedious for the shallow shell. NOVOOZILOV(4) states In this

connection that the astmptotla solutions of shell theory are

accurate to within the same order of accuracy as the basic shell

equations. It Is thus pointless attempting to obtain morn

accurate solutions. The best asymptotcc solut^m are valid

over the entire shell and am aptlaeabne oo hhe shaioww shell.

They are obtained In closed form solution by the LANGER-type

technique, the papers of LECKIE(34939) and GALLETLY(57) being

examples of the method. However* for shells with a large opening,
__  *

the HETENYI solution, which Is essen^el^ the first term of the 

aitmptotlc solution, Is thought to be adequate, though as explained 

earlier this solution is not valid for the shallow shell.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

42 (I.l)
The Ax 1-3 ymme trie ally Loaded Shell- The Particular integral.

it was H.REISSNER(2°) who first suggested that the stress

problem be resolved into the mei^nne and bending solutions, 

implying that the particular solution of the nit-homogeteofs 

equation be taken as the ^^i^t^rane solution,, MEISSNER C2^), 

however, presents certain particular solutions and where these 

are not availabe advocates a solution of the nut-homuglteuft
I

system of equations. For the tymotrically loaded spherical

shell this matter is discussed by FLUGGE() in his recent book.

He obtains the non-hrmoglnlrut equation in turns of and its

derivatives and the surface loadings p and pr „ Four possible

loadings are then considered, internal pressure, self weight,

hydrostatic pressure and centrifugal force. in all cases except

the first where ^^0 there appears in the denomOnator of the

expression for , a term containing X*. For thin shells

is large, since it contains (R/t)2, and thus the transverse

resultant shear force is very stooII compared with the normal
••

forces and . Thus, FLUGGE concludes, the mem0ranl

solution , which assumes Q = 0, is almost identical with a 

particular solution of the bending equation, justifynng the 

general use,in spherical shells, of the mem0ratl solutions in 

lieu of particular solutions of the comppete bending theory or 

tot-homogetlifs equations.

HILDERBRAND (35) jn his paper on asyium potic integration con

cludes that the approximation 0 (where is the value of

obtained from the particular solution) is acceptable if terms 
,2

of order t/^» are to be neglected. A note of warning, however,



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1.1) 43°

was given recently by GGALLTLY an(3 RRADk'4*®41 ) who demoutt^atld

the inadvisability of* taking the membrane asaae as a particular 

solution for ellipsoidal and torilspheirical shells under the 

action of internal pressure. Despite this, the approximation

has been widely used^^^, 32, 33> 43, 44)o

NOVOZHILOV (4) cormmlts that when the stoH be of such a

form, and with such surface loading that it is of a truly

memO^lne type, i.e. a momoltless shell, then the particular

integral is exactly that of the mermrane solution. Thus the

limitation imposed is that the state of stress caused by the

surface loading should closely resemble that of the momoltllss

shell. In practice such is not realised and in the so called

”meim)rane solution” there will exist memO^atl rotation and the

corresponding “membrane mommnts .** HILDERBRAND (35 ) examines

the order of these terms compared with the order of the terns

obtained from the classical asymptotic integration of the

homogeneous equation. He concludes that as long as only the

leading term is retained in the homogeneous developments (as in 
*

the HETENfl derivation) one should, for consistency, neglect 

the memOrate rotation as well as the corresponding ^^T^t^i’ane 

momolts, and when the loading intensity does not vary appreciably 

over a distance of the order /Rt. When memOratl rotation is

important then at least the next term should be retained in the 

homogeneous development. it should be noted that such a con

dition is automoitcally fulfil^d in the closed form solution 

of the LANGGE-type.
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The relative importance of the membrane rotation and 

momnt increases in the case of shallow shells, as is shown in 

the investigatOons to follow.

(ii ) The As;yimetrlcclly Loaded Shell

As mentioned earlier it was H. SBISSNBr(20) who examined 

the asym^^liaa^ loaded shell, and solved the ^^l^t^zrane 

problem. He introduced ^^i^t^r’ane resultant forces in the

form of a Foru’ier seriesj-

N/6 « ZNj$n cos n 9 , Noe - oesnS > Nfe = L Nf>G, sm n &

and a similar series for the external loading, into the gover

ning ^^i^t^rane equations selected from eqts. I.28a-f. This

reduces the partial second order different:ial equation to that 

of an ordinary second order differential equation. As in the

axisymnetrical case the problem is usually considered in two 

par Its, the homogeneous equation and the non-homogeneous 

solution or particular integral.

The As^yie^etrlcaaly Loaded Shell - Homogeneous Equation

It was HAVES S6) in 1935 who solved the. general problem 

of the asyim^^^itl^c^ia^L shell obtaining expressions for the dis

placements and resultant forces arisirg from the edge loading 

of a spherical cap. Three partial differential equations for

the displacements u, v and w were derived from the force and 

moornnt-strain equations. HAVESS then uses a transformation,

employed by VAN DES NEIT?645) in the stability analysis of 

spherical shells, nammey:-

ar , V = 1©U
(I.66a,b)



 

 

 

 

The differential operator H(y) was introduced:- 
W(y) = + h 4 + 2y + £l

dP
together with:-

it =. r - ©

&*srny (I. 67*.)

and co —— 3H (I - 67b,c)
90 Sin 0

By this means the problem of the edge loaded shell was reduced 

to the solution of two basic equations:-

H(«) = 0

and H.H(T) —2 HCr) + (i-x*2) I + fe j _ Q
f

where T =* r - wr + 1 don s/n 6
t Z d$ '

and ? = c/]2^

(I.68a„b)
(1.68c)

Equation I.68b may be split into two equations?-

H(t) = 5,T and M(t) = S2T (I.69a,b)

inserting these into eqt:. 1.68b a quadratic equation with the 

foioowing roots:

, $2 = f- (i~-v2Vi+kSi = I + VI - (l-l/2)l+* 
fe

is obtained.

(I.70a,b)

Re-arranging eqt. I.70a,b and putting 4X4 = /2(/-tf2)R _ V*

5, = I + 2jx’ ( S? = I - 2/X2 V

Thus eqt. I.69a,b becomes-
Hfr) = + , H(t) = (C-2jX2)T (I.71a,b)

Let R($,0) be a solution of equation 1.71a and R(0,0) a solution 

of eqt;. 1.771b, so that R and R are conjugate complex numbers. 

Thus from eqts. I.71a,b,

£&+ M cot $ 4 (l-2jX2)R + = o
9G25/n20

& £R 4 afi cot0 + (l+2jXx)R 4 alR. _ o

9590
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The four solutions of equations I.72a,b are of an oscil

latory nature decaying with increasing distance from the edge. 

HAVERS solved these equations by an asymptotic method similar 

in form to that of BLUMSINTBAL(26 The approach, however, is

not valid for the case of the shallow dome. This difficulty 

has been overcome in the recent patlr by LECKIE(39) who solves 

both the axlsymmolricllly and asymmot^rially edge loaded 

spherical shell using the LANGEE-typl asy-mp pot ic technique,

ref. 36 .

in addition to the oscillatory solution obtained from 

eq^I^G^b the governing eqt. I,68b is also satisfied by the

solution T s 0, This leads to H(w)= 0, he,

— 3^ cot § + 2w + 3Z’Qf ss 0
30* 30 d6*sin*(

Separating the variables by w = w„(0) cosnQ

+ dur„ cot(p 4. uTn(2 — -L1-— ) = (1,73)
dtfi Slnty

The resulting solutions of this equation are found to be 

exactly those of the memOranl normal displacement w for the 

edge loaded shell, together with an ^extensions! deformation. 

Using this value of wn the values of the other displacements 

can be determined. Hen again these are found to consist of

the corresponding mei-mnd displacement for the edge loaded

spherical shell together with an buxtonsional deformation,
• %

FLUGGE cim!oonts on this point that it must not be concluded 

that the above is the case for any shell of revolution, but 

it may be expected that they will come very close to exact 

solutions if the middle surface is not too different from a 

sphere, A paper by FLUGGE and LECKIE (E5 )on the shell of
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revolution is interesting in this respect

The general solution to the problem of the edge 1oaded 

spherical shell is, therefore, the sum of the foioowing three 

effects

(1) Memmrane Displacement - giving rise to ^^r^t^rane 

resultant forces, and to smaai Membrane mo omens’

of significance in the region of the pole (see f.43)

(2) Inextensional Deformations - these deformations

occu? when the strains £$, , ify* and hence the

^^i^t^rane resultant forces are all zero. Wien the 

system iss-

(a) axisymnerrical (i.e. n *= 0), these deformations 

can-be conveniently taken as zero by a suitable 

choice of reference axis.

(b) aty^lmmtrieal of the first harmonic (n = 1), they 

represent two rigid body rotatoons and,

(c) asyemetrical and n> 2, they are true displacements 

yielding zero values of maim^ne resultant forces, 

and actual values of the resultant moiMnts giving 

rise to inextensional bending stresses. It is 

noted that such deformations do not occur on a 

complete sphere.

(3) □s^Hatory 'Solutions - which consist of four solutions 

which decay in an oscillatory manner with increasing 

distance from the edge.

HAVESS expressed the displacements u, v and w together with

the mermrane resultant forces and resultant in teims of
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«8„

these solutions which are vOLid for all values o^ • These

genera, expressions were used by LECKIE(5P) (in the paper 

already referred to on 0.33) in dealing with two cases, namely 

the axl^^yrm^meric n = 0 and asyTOTimtrioal of n = 1 loading. In 

obtaining the oscillatory solutions the variables of eqts. i.72a,b 

are separated by taking R and R in the formj

R * Rn($cojn9 , Rn($)cos>0

where R and R are complex conjugates.

Thus for n = 0 equation I.72a becomest-

Cott 4 (I - 2jX2)Ro a, 04 (1.74)
dp'

(I.76afb)

Differentiating with respect to ( eqt. 1.74 can be written in 

the form of the basic equation for used earlier (eqt. 1.38)

nammeyj- t Ro 4 d Ro dt P - dRo cot $ - 2jX dRo « Q (1.75)
d$3 dd( dp d(j

where the first differential of Ro is equivalent to •

Thus using the LANGER technique
dfio > [£, '̂■^5X0 + jbti'VzXp) + B,(ktr'H>Xp -
dn * d

similarly for Ro s-
|(B. 3-JJL [a,(W-V5x0 -y bei'vSx0) + Bj(kv'*5x0 -j'teiigxt)]

Prom HAVERS1 definition of the resultant shear Q^, j

) * AB + dR Qx can be written:-
Et dp i

Qp « P+^i 4 4 B, ktr S B, kti.'^ X d)J (1.77)

It is seen that apart from the value of the constants A<

As — this equation 1s the same as obtained by LECKIE earlier

(eqt. 1.61). Using eqt. I.76a,b the values of the resultant

forces and mommnts oan be obtained.

For n a 1 eqt. I,72a becomes

+ „ R,£oS*0 - 2y%*R, - 0 (1.78).ot,
d< «
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C^i^^pa^^ng this with eqt;. I .75, LECKIE notes that R( = iRO
Hence R, = —2”^ |A,(bwS£x^4ybeiT^X0)+Bl(ke^-S2’2X+./keic—X0)J

*na R'=y^4£t2(br’Vzx^-/^>eL'-Xx.) + B2(kerr—%—-/ keV-5M)] (I.79a,b)

By using the general expressions of HAVESS the oscillatory 

edge values may be stated - these are given in Chapter II of the 

thesis-and are valid for all val^v^es of ( • LECKIE shows that

these solutions may be simpHr'led when — is large, using the 

asymptotic expansions of the Kelvin functions. For the axi- 

symnerric case these reduce to the HETENYI form, a fact already 

observed in his earlier paper (ref. 34). For the same range

of f , LECKIE finds that the solutions for the asymmrric case 

(n = 1) bear a striking resemblance to the HETENYI solution for 

the axi33nanerrCi case, nammey?-

vo = v, , W.= w„ %(.= Mm, ,M*<- M—and Q*.

LECKIE further presents the ^^i^^x’ane solutions - 

displacements, rane resultant forces and resultant eoments -

for the case of the first harmonic (or mommnt and tangential 

shear force loading).

A study of the higher harmonics, n — 2 has recently been 

carried out by LECKIE and PEftNY-47). Three methods of

solutions of the homogeneous equations are discussed by these 

authors and the results compared graphically.

In the first case a rigorous solution is obtained by use 

of the LANGES-technlque of asymptotic integration. The results 

are expressed In terms of Kelvin functions of the n’th order 

and requiring the use of a digital computer for their solution.
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Secondly, a simpUfied aty^optotic solution, suitable for 

small- values of n is presented, which in fact is that given 

earlier for n = 0 and n = 1, and valid for all lllult of f .

For the higher harmonics these solutions are valid provided < 

is simai enough, but the range of ft decreases as n increases.

A third solution known as the ’Constant Edge Angle Solution’ 

is also presented o This solution is of the AAS JACOBSEN(48 )

type, its essend being that the edge bending solutions die out 

very rapidly. Thus the value of the sin2^ may be replaced by

alnZf where <o is the edge value of the co-lat l^dinal anel.e.

From the results it is seen that these solutions give satis

factory results, ^^en compared with the rigorous solutions, for 

all values of $0 provided n> 5. Even when n =0, the results 

are satisfactory for the limits 10°< (o< SO0

Singularity Conditions - HAVERS (6) pointed out that the poIis 

= 0 and < = 7T are singular points, i.e. points of infinite

stress or displacement, of the governing differential equation. 

it is, therefore, possible by obtaining expressions for the 

total displacoments in the vicinity of the pole = 0) and

applying continuity conditions at this point, to determine lliult 

of the constants inherent in the ford and moment expressions. 

in this way LECKIE presents the solutions for the point radial 

load, the point tangential* load and the point mommnt applied at 

the crown or tollt6>= 0o Such loading cisis on the closed 

shell can be dealt with by these ^sennially edge loading 

equations since p=p = p = O is always satisfied and the • 

governing differential equations are always homogeneous.
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The Asymmetrically Loaded Shell - The Particular Integral

Similar remarks can be made In regard to the particular 

integral of the asymmetrical case as was previously made for the 

axisymmetrical, namely, that for the spherical shell the 

membrane solution can be assumed to approximate to the pafrticular 

Integral of the non-homogeneous equation.

(ill) ’Numerical Methods1 of Analysis of the General Shell

A very brief comment will be made on the ’numerical 

methods' aspect of solving the above shell equations. It was 

PASTERNAK(49) in 1926 who applied the method of finite difference 

equations to the solutions of H. REISSNER's differential equations 

for the shell symmetrically loaded at the edge. However, owing 

to the task of solving the large system of algebraic equations 

resulting from a finite-difference formulation of the problem, 

the method does not appear to have been widely used. With the 

increasing availability of electronic computers, it is now 

possible to re-consider the matter.

In a recent paper PENNY(50) discusses this subject and 

indicates that the popularity of the method in shell design is 

increasing. Undoubtedly, the method avoids many of the

difficulties associated with analytical methods, in that 

variations in thickness, material properties, loading or 

temperature can be adequately handled. Even the approximation 

referred to above, whereby the membrane solution is regarded as 

a particular solution of the governing differential equations,

Is no longer necessary.
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52, •

Another numeral procedure has been used by GALLETLY in a

number of papers(40,51) where the differential equations of 

equilibria have been integrated niumr’idly, by use of the 

Hunge-Kutta techniques, on a high-speed digital io^p^t^r. A

sim.^ar procedure is advocated by M.Le COCQ-52)

(b ) Shallow Shells

A further eoOifiiation may be introduced into the general 

theory of shells based upon the shallowness of the shell. Such

may be defined by considering

the variation of the distance

z, which is that perpendicular 

distance from a plane XX to a 

point on the middle surface of 

the shell, Fig, 1O4, A shell 

(or segment of a shell) is said 

to be shallow whenever z/L 

(L being a reference lehgth)

and its first partial deriva- j.

tives are small in comp^ison

with "Unity, In the case of

a shallow spherical shell or
*

spherical cap (Fig. 1.5) L may
« -

be taken as the radius of 

curvature and z = —S2 — r* — fR—b)^ 
where h is the rise from XX to

Fig, 1,4 The Shallow Shell

0= 0. Fig, 1,5 The Shallow Spheeical 
Shell



Shallow Spherical Shell Showing Element ocde

Mrs

Details of Forces ano Moments < Element OCDE

Fig 16 Nomenclature for the Shallow Spherical Shell



 

 

 

 

 

 

 

 

 

 

 

 

  

 

oo
(1.1)

The assumption of shallowness is expressed by the follow
ing order of magnitude relation, 4^ t==-  - JC » O(l)

ar k
where 0(1) indicates for the significant values of r, that Vr 
is small compared with unity. In this connection, E. REISSNER

indicates that a segment will be called shallow if the ratio of 

its height to base diameter is less than say •&. However,

results obtained on the basis of this assumption will be applic

able to shells which are not shallow, if the loads applied are 

such that the stresses are effectively restricted to shallow 

zones. As a consequence of the above approximation, the funda

mental differential equations of LOVE1s first approximation wll 

simptify further. The curvilinear co-ordinate system u, f used

by LOVE will now be modified to 9 and r respectively where r is 

the distance from the apex of the shell measured in a plane 

parallel to the base plane (Pig. 1.6). The resultant force

teirnis are now written, Qxz = Qe > Qy* =• Qr •> hNx =* Nee,

Nyy = Nrr } Nxy = Na and similarly for the mm^e^ntn. The exter

nal forces X, Y Z become p& 8 pf and p respectieely. The Lame 

parameters A and B are A = r and B = 1.

Thus ‘the equations of equilibrium, eqts. I.16a-f can be

written:-

djNefl1 + d(Nrfl.r) + Ner - r Qe 4 fh = 0
30 dr R

d(Ner) + a(Nrr.r) - Nee + JC Qr 4 r hr - 0
30 3r R

3 (Qe) 4 d(Qr-r) -. i (Nee + Nrr) 4 r f = 0
30 3r R

d(Mer) 4 dfMrr.r) Mlee — r Qr = 0
30 3r
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3 (Mpg> 4- 3 (Mrg «r)
30 dr

M0r - rQ 9 = 0

Mer - Mrs 4 (Ner - Nrg) R = 0

(I.80a-f)
The middle surface strain components eqts. I„4a-f may also be 

written in a simplified forms-

4Z*

Zr

^rg

- 1 3u 4 V-
r ae r

= 4 Ur
3r R

= i 4 3u
r 39 3r

= - 1J('_l_ 3ur
r 39 ' ‘ r 30

ur
R

u
r

- _U 1 _ 1 ( 3 or - _V 'jR / r V Ar R '3r
Kr = - _1 (- If 'j 

3r V3r R /

The force-strain and moment-strain equations are those of 

LOVE8 s first approximation, eqts. Io13a-d, Io15a-d, which may 

be written?-

Nrr = It-Jt, + v£e]
0-i)2r J

= _Lt__+ v£r]
(l-J/’J

Nr© = Gt )frg

Mee = D [ Kg -t v Kr] 

M re 58 0 ~ l*) D Kpg

Mrr = D [Kr + 1/Kg]

(I,82a-f)

Ep REISSNER(43) has indicated that the equations for Kg , 

Kr and Krg (eqtso Io81d-f) may be further modified since the

normal deflection w when it occurs at all, will be large
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compared with u and v. Thus Kq s Kr and ma^ be written?

He = - J 3ur _ j 326 
r 3r r2 3&2

Kr = - i2ar 
3r2

Kre = - 1 (3aax - 2 3ul\ = - 1
r'-9.ar r d9 / arVrae/ (I.BBa-c)

These equations are the same expressions as those in the theory 

of bending of plates. The use of such expressions, REISSNER 

adds, is supported by known results for the buekling of 

circular cylindrical shells where the buckling modes sub

divide the shell into independent shallow panels. The above

approximation would appear to be justified even ^^en u and v 

have similar values to w, since the neglected terms are all 

divided by the radius of curvature.

REISSNER then reduces the above system of equations to 

two simultaneous differential equations involving a stress 

function F and the normal displacement w. Uheir use is

suggested by the theory of plane stress and the theory of plate 

bending to which the present equations reduce when R = <*>

When the transverse hhear forces Qr nnd Qq arn geglected in 

eqt. I.80a,b, these equations reduce to the eqellibre■a^ 
equations of plane stress, and may be satisfied by use of the 

Airy membrane stress function F.

Limiting attention to the case where the external load 

terms pr anal p0 are d edevable from a looa potential SL

h - - if- ’ h = - I If- (I.84a,b)

Uhe simplified equations I.80a,b are satisfied by setting,

Nee = iff + si 
hr2
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Nrr = -J 4- J. <Z2F • H
r dr r* ae»

A differential equation for F is obtained from the relevant

equations of compatibility, by using eqts. I.81a-c and I.85s-

V’VZF - t E VV = -(l-v)V2Sl (1.86)
2 R #

where V 2 = -+ ±_2_ +1 d* i 3 hhe Laplccaan operator.
dr* r dr r2 de*

The second fundapennal equation in F and w is obtained by

introducing the equilibrium equations I.80d and e into I.80c,

thus eliminating the transverse shear terms 0 9 -r •

Expressing the resultant poipuIs Mrr, Mpe , Mre in terms of w,

and its differentials from equations I.82d-f and I.83, and

introducing these into the equations derived by eliminating Qe

and Qr the foioowing is obtained:-

D. Wu + I 72F = h - (I.87)
R ' R

Equations 1.86 and IO87 ara eonsaierhd to be the two 

governing simultaneous differential equations of the shallow 

shell problem. In reference 43 E, REISSNER shows that eq^s.

I.86 and I.87 with, the loading terms zero, i.e. the homogeneous 

equations, may be reduced to two independent second order equations 

Equation I.87 is muuliplied by jp and 1.86 by a factor X .

Adding these the result iss-
V2V2(w + AF) - A(tE/R)V2(w - F/itED) = 0 (1.88)

Putting X = - f/AtED or A= y-/l2(l“V2,|/Et2 , and defining a 

quannity £ by the relation AtE/R = j/(2 so that £ = ~/St _ :

equation 1.88 can be written;-

72V2(^+AF) -(j/g2) V*(w- + XF) = 0 (I.89)

Next setting u f AF == < + If (I.90)
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where <£> and are the general solutions of

= 0 , v’ljr - 07t’)f- - O (I.91a,b)

Thus the two homogeneous simultaneous equations of the fourth 

order are reduced to the solution of two independent equations 

of the second order. E, REISSSSrIR) then solves eqts. I.91a,b

for rotationally symnetric case giving

$ = A, + Aj in r
f = A3Ia(Vj r/() + A4K„(^ r/() (I.92a,b)

where A,, A2 o□„ are arbitrary complex constants and Io and Ko 

are modified Bessel functions of the zero'th order.

Further I/j x) = ber x 4 j bei x

and Ko = ker x + jkeix (1.93a,b)

Subbtituting eqts. 1.93 and 1.92 into 1.90 separating real '

and imaginary parts, the foioowing expressions are obtained for

w and F

ur = C, ber + C2 bei / + C$ ker /l • C4 kei / + Cs + [7 in ft 

F = Et2///l2(l-*2)[c, bei </-C2ber ft + C3 kei ft-C+kerft +C6 tf + C$/ (1.94)

where C, , C2 .. <> are real constants.

In discussing the particular Integrals of eqts. 1.86 and 1.87
for various types of loading such as unifoimi normal load, para

bolic normal load, inert 1A load of a rotating shell, two methods 

are mentioned, the one being that of assuming power series for 

F and w, the other being the previously discussed mernmrane 

solution.

E. REISSNER then obtained explicit solutions for the 

foioowing three problems, (1) a shell with no edge restraint 

carrying a radial point load at the crown, (2) a shell with no



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

58
(I.l)

edge restraint carrying a radial load uniformly distributed 

over a smaai circular area with centre at the crown, (3) a shell 

with edge restraint carrying a point load at the apex. Further

axisymmetric spherical shell problems using the same fundamental 

equations are dealt with iy BERMIN(53 ) o These include uniformly

distributed vertical loading over the shell, uniform radial edge 

moment and uniform horizontal force loadings on either the inner 

or otter edge of the shelly hydrostatic loading, varying from 

zero to a maximum intensity.

Wien the shell is only 1oaded with a distributed norm a1 

load p then the general equations i.86 and 1.87 simpPify to:-
V*F - (tE/R)V2w = O •

7*ur +(i/RD)V2F = P/D (I.95a,b)

From these may be obtained two sixth order differential equations 

for w and F. That for w may be written ass-
V+w + - P/D

V2W = 0 (I.96a,b)

BiJLAARp(54) points out that from eqt;. i.96a, a shallow spherical

shell acts as a flat plate on an elastic foundation whose general

equation is 2- + k or = £ where kw is the reaction
D D

of the elastic foundation to the given distributed load p per 

unit area - Ref® 24.

The equivalent foundation modulus for the shallow shell is

thus s-
= -pF = -p- (I.97)

BiJLAARD(54) indicates that the aiove result was found earlier

iy VLASOV (55)
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A further point noted by BIJIA ARD is that the elastic 

restraints kw of the equivalent flat plate are related to the 

memPrlnh forces Nrrand Np9, So that from a consideration of 

memPranh equillbr^^, i.e. neglecting Q*s in eqt. I.80cs- 

(N1nr + Nnf = ( where (5 is the normal load per unit area, and 

thus equivalent to kw.

(Nrr + Ne&)/R = kw (I.98)

Subbsituting for Nrr and N^ in terms of F from eqts. I.85 and 

k from I.97, BIJIAARD obtained the following equations-

V2F = (t E/p) ur (1.99)
Applying the operation V to eqt:. I.99, equation I.95 results, 

thus confirming the use of the plate on elastic foundation 

analogy.

BIJIAARD then proceeds to obtain general expressions for 

w and F, from eqts. I.96, I.95 and I.99^for the rotational 

sy^pmptrical case^ which are identical to those of E. REISSNEr(45) 

using the above analogy. These general expressions for w and

F serve as the basis for a solution of the problem of a radial 

load acting upon a rigid cylindrical insert at the crown of a 

shallow shell.

In dealing with cases without axial sypmphry, BIJIAARD 

shows that for p — 0 eqt. 1.96a is satisMed ifs-

Jv ■+ 1 dur + 1 d2 *r + j ur = O
dr2 r dr r2 ae2 - -fi

putting w= £6^003^0 equation 1.100 can be writteng-

dV. ♦ i cT. + (+ i _ n*\ uz„ . 0
dr’ r dr ' £2
This is a type equation, the solution of

be written in the foioowing formg-

(1.100)

(1.101) 
which may
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urn = C,n b<4 ) C^te^r/s 4 C4ttkeU„ „// (1.102)

To this must be added the solution of eqt. I.96b.

So that:-

w„ - 0i) ber) / + 02)bjr/t 4 03nkef)r/[ + c4hkei»/ 4 Cs(r/t)\ Cff?)’" (1.103)

As an example of such a case, BIJIAARD gives the solution of the 

external moment acting on a rigid insert, i.e. n = 1.

Two further cases have been solved by CHINNN$6). in the

first case a radial line load was applied to the shell over 

the circumference of a circle. The same basic solutions for

w and F were used as in REISSNER and BIJIAARD*s work. The 

stresses inside and outside the loaded circle were determined by 

a consideration of the various boundary conditions. The second 

case was that of external moment loading of the circle and here 

the corresponding unsytm^^^3ti.cai forms were used for w and F.

These loadings correspond to radial load and moment loading on 

the sphere applied by ^^ans of an infinitely flexible pipe of 

zero width. The mommnt loading may be considered as a radial

load of varying magnitude applied round the circumference of 

the loading circle.

In a further paper REISSNER(57) tackles the asyTOnmtrlc 

bending of the shallow spherical shell for the harmonic order 

n = 1. A shallow cap with a rigid concentric Insert Is sub

jected to a side force and bending momett, and six simultaneous 

differential equations are obtained to formulate the problem. 

Certain second order teras are neglected, in these equations, 

and solutions with severe limitations are obtained. These

limitations restrict the shell and insert dimensions to such
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an extant that they are not appllcaile to the solution of

practical shall proilams, other than those where the insert 

dimensions are very large, or the shell extremely thin.

A method of pprticulir appliiation in the complex loading 

of shells has bien pprsentte bi- the aulhof and KENDD (58-61) a 

This introduces the InfLuence Line Concept to shell analysis 

and provides a generally applicaile and flexile technique 

capable of yielding solutions to a variety of complex design 

probleme. The influence Hnes are derived from the effects of 

'iasic • actions such as radial, tanged ial, and moment pending 

or twisting) loading. In the range considered the iasic actions

are of an esse^ially local character using the assumppion of 

shallowness and the corresponding governing equations relating 

to the shallow shell. Highly ltsytmletrrcal loading is analysed

using these relatIvely simple 'iasic' actions. The method and

its extension to shells other than shallow is discussed in greater 

detail in Chapters ii and III.

The work oo CHINN(556 ig ^aaa oo l^eraas in connection with 

the in^umne line aapproac. Ho tatains ilnluence rurfac es for

the various internal actions (resultant membrane forces and 

moment actions) when a spherical shell is under the action of 

rotationally syimietrrcal radial load.

The influence Line technique is gaining increasing acceptance 

as is indicated, for examppe, iy its use in the analysis of a 

gusset load on a spherical vessel (BAILEY and HICKS (62))f and 

most recently iy the recoementaaiot of LECKIE and PENN (47) for

use in aaeee where the loading does not lend itself to the 

appropriate Fouler representation.
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1.2 EXPERIMENTAL I WESTIGATIONS

I.2.I GENERAL EXPERIMENTAL WORK ON SHELLS

I.2.2 LOCAL LOADING OP SHELLS



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1.2) 63.

1.2.1 GENERAL EXPERIMENTAL WORK ON SIEIIS

Experimental investigatoons relatnng to the general testing 

of pressure vessels have been the concern of Engineers for over 

fifty years. The main object of their early work was to provide 

suitable empirical relatoonships capable of application in the 

design of cylindrical shells with a variety of different drum

heads under internal pressure. Ellipsoidal, torispherical and

splice ic a 1, plain and pierced heads were investigated. This 

work was undertaken mainly by experimenters on the Continent - 

BACH, DIEGEL, SIEBEI, KORBER and others(63-70). Considerable

difficulty was experienced by these early workers in that they 

were not able to measure the values of the strain on the inside

surface and thus were not able to compute with certainty the 

stresses on this surfaceo Estimated values were obtained from

measurements of external changes in curvature, such as was used 

by SIEB1SL (66).

This work was extended to cover; a wide range nozzle

attachments with different types of reinforcements by TAYIOR 

and WATERS(; to investigate manholes in various types of 

heads by SIEBEI and SCHIAIGERER(7E)° and concentrated loading 

in cylinders by ROARK(73) „ Once again the experimental work

was hampered by the difficultees of instrumentation and again 

had a bias toward the derivation of erap^ica! relatoonships.

The advent of the electrical resistance strain gauge 

enabled strain gauge work to be directed toward the measurement 

of strains within the vessel during the application of internal

pressure. Such an advance stimulated further investigatoons
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on cylindrical vessels with many forms of drumhead, with and 

without manholes and nozzles. Various types of nozzles with

and without rsinOorceelent and having proportions in relation to 

drum diameter'and thickness were investigated; also nozzle 

arrangements with unequal and staggered pitching together with 

investigations on the reduction of stress aoncentration due to 

changes in section were carried out. The types of drumhead 

included - spl-mical, elippsoidal, tor ispher icnl , conical and 

ioricotical. The workers of particular note in this field

are COOPER and SMITH, CARLSON and McKBAN, LANE and WELLS and 

THE BRITISH WELDING RESEARCH ASSOCIATiON (B.W.R.A. ) .(74-77 ) #

More recent work on the aiove subject on radial and 

oblique nozzles with types of reinforcement is given in tire 

foioowing references, (78-82). A photoelastic approach is r 

givon iy TAYLOR and SCHWEIKER (82 ).

it was reaMsed that in many vessels, particularly those used 

in the Nuclear Reactor Field, the nozzles and their reinforcement 

would ie loaded with a variety of load actions in addition to 

the internal pressure effects. Several investigators have

studied this field experimennally and tests on ioth cylindrical 

and spherical vessels have ieen carried out. The work of 

SCHOESSOW and KOOISTRA. MEHRINGER and COOPER, CRANCH and DALLY 

is of interest in this field(83-86),

Numerous tests have ieen undertaken to check experimennally 

particular designs or arrangements. Various experimental methods

have ieen employed - photoelastic, electrical resistance strain 

gauges or irittle coating. Some of this work has ieen carried



 
 

 

Fig.I.7 Stresses Produced by 1001b. Load Distribution Over 
^in Diameter Area at the Apex of the Hemispherical 
Shell having a 6in Radius and O.llOin Wall Thickness 
by CARR ref. (99)
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out on full size vessels, in addition to work on models. A

wide variety of loading has been applied - boltirg up loading, 

pressure and dead weight loading and thermal cycling - to 

assimilate actual working conditions„ Some vessels have been

taken to the point of actual collapse in an effort to examine 

buckling effects and plastic deformatoon. The foioowing

references give an indication of the range of such work(87-98).

I.2.2 THE LOCAL LOADING OF SHELLS 

In this section it is proposed to discuss in detail two

papers dealing with, the fundamental problem of local radial 

loading of spherical shells. The work of J© Ho CARR(99) will

be mentioned first. This paper reports tests carried out on

three hemispherical steel shells of different thicknesses - 

0.095, 0.110 and 0.150 inches and each of 12 in diameter.

The shells were mounted onto a special fixture which 

permitted the specimen to be tipped so that the radial load

could be applied at the apex of the hemisphere or at 30, 45 or 

60 deg. from the apex. Radial loads were applied as ’concentrate

and distributed loads. The distributed loads being applied to 

the shell surface over three diameters £9 J and f in. by ^^ans 

of cylindrical loading noses and £ in. thick neoprene pads. 

Electrical resistance strain gauges of £ in. and £ in. gauge 

1engths were fixed to the inner and outer surfaces in the 6ir- 
cunferential and meridional directors. For the case of the

■ in. diameter area loading applied at the apex, CARR compared 

the experimennally computed stresses with RliSSNIR?s theory, 

ref. 43. These are shown in Fig. i„7 of the thesis.
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It will be noted that the theoretical values show good 

agreement with the experimental results. From the results of

the tests of the concentrated loading at 30, 45 and 60 deg. 

from the apex, the influence of the welded boundary on the 

distribution of the strain is examined. These results are 

shown in Fig. 1.8. It was concluded that the strain dis

tribution curve shows very little distortion even when the 

load centre is only 30 deg. from the fixed boundary.

The second paper is by a group of authors, VOSS and 

others(100) and is the results of a test on a thin-shelled 

model dome of plaster of Paris. The model was in. thick 

and of 8-- ft. radius. The base diameter was 8 ft. with a

rise of 1 ft. and a 2 in. diameter hole at the crown. The 

Initial tests were carried out in 1940 and, therefore, the 

choice of a suitable strain gauge for measuring the surface 

strains was somewhat restricted. They used in fact an 

electrical resistance wire gauge composed either of a straight 

wire of 3 in. in length or ’hairpin’ of 1.5 in. length, placed 

in the circumferennial and meridional directoons on the 0°,

90°, 135°, 180°, 270° and 315° meridian lines. These were, 

however, restricted to the upper surface of the modee. The

model was loaded with a ’concrctrated’ load - which was actually 

assumed distrbbuted over 6.25 sq. in. - at several points on the 

0° meridian between the springing and the crown, and also aa 

other points between the 45° and 315° meridians.

Sand loads were distrbbuted uniformly over an eeghth ond a

quarter segment to study the transition from a concentrated load



 
 

. angular distance from apex of shell,
Fig .1.8 Effect of Built-In Boundary on Meridional Strain

Distribution for Concentrated Load of 100 lb on 
Hemispherical Shell Having a 6-in. Radius and

0.095-in. Wall Thickness iy CARR ref.(99)



0°

Meridional Strains Compression

Tension

Strain Equals Contour 
Value Times 10" 5 

Inches per Inch

0°

Fig .1 .9.—Strain Contours for a Concbntratrd Load of 40 Lb at Station 5,6 
. for Plaster of Paris Model ref. (100)
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to a uniformly distributed load over the entire surface. A 

•concentrated’ load test to failure completed the series.

An example of the strain contours on the upper surface, for 

a concentrated load between the springing and the crown, is shown 

on Pig, 1o9, On this diagram the contour Ikes connect points

of the same strain value. The upper part of the diagram shows

the meridional strains and the lower part the ’ring’ or circum

ferential strains. These contours have been obtained by

applying the load at measured distances along the circumference 

line through the gauge point - in this case 5, 6 i.e. at 34g- in 

from the crown, -

it is pointed out that immeelately under the loaded area 

in both the meridional and circumferennial directoons large 

comppessive strains occur? these decrease rapidly outside 

the loaded area and further away smaai tensile strains occur, 

often foioowed by equally smaai compressive strains. Near the

loaded area, the meeH^na! contours are approximately circular 

whereas the carcumferential contours are elliptical. . Fig, I.10 

shows the actual distributoons of strain for a concentrated load 

at the same point as the contours - 5,6, Pig, i.lOa gives the

me^Hona! and circumferennial strain distribution along the 0° 

meridian, and Fig, i.lOb the strains along six circumferential 

lines. it is noted that the turaerictl values of the maximum

strains in the meridional and circumferennial directoons at the 

same station are approximately equal.

Further test results indicated that as the position of 

application of the load was moved up the meridian toward the
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crown of the dome, the strains increased to a maximum at the 

station nearest the hole - some 7^ in, from the crown. Values 

of the compressive stresses for the various stations

were computed from the strain values on the surface. In order

to do this the mterl.al constants for the plaster of Paris were 

determined. These stresses are, of course, combined stresses,

i.e. bending and direct. The foioowing are their results for

a 40 lb. load.

TABLE 1.1

Stat ion Distance 
from Crown

Meridional 
Stress, of

C irc urnmeee nt ia 1 
Stress, <©

1,2 44.5 in. 164 lb/in2 167 lb/in2

3,4 42.0 437 436

5,6 34.5 462 476

7,8 25.5 471 453

9,10 16.5 545 545

21,22 7.5 596 631

The figures in Table 1.1 were compared with the maximum 

value obtained by the REISSNER theory(43) for a similar shell 

under similar loading conditions. The stresses on

the upper surface according to REISSNER are <rr = = GOJib/n1
. — - W « J, -•

(compressive), The results approximate closely to the

maximum stresses given by the 21,22 station even though this 

station is near the hole.

In the author’s opinion, the station 1,2 at the springer 

and 21,22 nearest the 2 In. diameter hole are not sufficiently 

remote from these discontinuities to allow comprrison with the



Compression O' Tension

<«) STRAIN ALONG 
THE MERIDIAN

Compression Tension

Scale of Strain / 
by IO’5,

Compression

Tension

(A) STRAIN ALONG 
CIRCUMFERENCES 
A. B. C. 0. E AND F

Fig.I .10 -Analthb of Stbaim Vabiation fob a Concbntbatbd Load of 40 Lb at Station 6,0
for Plaster of Paris Model ref.(100)



Fic. I-Ila Total Meridihtl Stress C t Direct $Bennng)

Fig I.lib Total Circumferential Stress DaEcTkBwrt)

Fl6 Ut TbL TTTAL MERIDIONAL ak> ClRCUMFERENITL St&SSBS TANG TWO DVECTITNS
IRADIATING FROM THE LOAD POINT 5,6 DUE TO A LOAD P, ON A PLASTER of PARI

Model by Itoss etU°Q compared with the theo'y of E. Reissue

j
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REISSNER theory,, The presence of the hole at the centre would

increase the maximum stress and the presence of the boundary 

would reduce the value - as indicated by Table 1.1. The maximum 

values within these two extremes are more nearly equal, though it 

is evident in this model* that even these values are influenced 

to some extent by the boundaries.

VOSS and his colleagues on the similarity of their

curves with those of REISSNER - but unfortunately no graphical 

comparison is made. The author has endeavoured to make this com

parison, using the contour plots of Fig. 1.9 and a table presented 

in the paper, for the load point 5,6, i.e. 34J in, from the crown. 

The meridional and circumferennial strains were obtained in the 

direction of the 0° meridian and also perpendicular to this line. 

The computed meridiinal stresses (Fig. I.11a) do not exhibit the 

same rapid die out as does the REISSNER curve, although the 

position of zero stress is approximately the same. In the case 

of the circumferentIally computed stresses (Fig, Iellb) the two 

sets of curves lie one on either side of the theoretic^!., VOSS 

and his colleagues conclude this section by noting that the 

results from one series of tests are not conclusive.

The distributed loads were applied ov6r two different areas - 

eighth and quarter segments ~ centred at the 0° meridian. As

In the earlier work the meridional and circumferennial strains 

were measured along the meridian lines. In both cases the 

loading Intensity was the same, however, the computed stress 

values are much lower for the quarter segment loading* Illus- 

tratnng the tendency for the stresses to decrease as a larger
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area is loaded. A study of the plastic behaviour in the 
plaster was carried out, by leaving the dome loaded for periods 
up to 4-8 days. At regular intervals of time the strains were 
recorded. It was found that re-adjustments took place in the 
strain values, which tended to reduce the strains in the upper 
surface of the loaded area.

More recent work by the author and KENEDl(58-6I) and by 
the author(101-105) ^as endeavoured to substantiate experi
mentally the whole range of local loading - radial, tangential 
and moment (twisting and bending) actions. The work has been 
carried out ons- (i) steel spherical domes of 60 in. radius 
and base diameter of approximately 3 ft. 9 in. and of thick
nesses 1 in. and in., and (ii) a complete sphere 13 ft. 6 in. 
diameter which in overall dimensions is one tenth of the 
Dounreay Containment Building. The experimental programme has 
also sought to substantiate the influence line approach referred 
to earlier on p. 61. , All this work is presented in
Chapter IV of the thesis.

/
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1.3 critical summary



 

 
 

 
 

 

 
 
 
 

 
 

 
 

 
 
 

 

(1.3) 72.

1.3 CRITICAL SUMMARY
The load actions and their resulting effects on a shell may 

be classified under the following three headingss-
(1) Abcisynnmetrcc - where the load is applied to the 

shell so as to produce a rotationally symmetric 
stress system.

(2) Asymmetric ~ where the resulting effects are con
sidered to be of an inverse-symmetrical type, the 
moment and tangential load being examples of this 
type .

(3) Uns;mmeetrcc - where no symmnetry of the loading or 
its resulting effects exists.

In the published analytical investigations of these effects 
emphasis has been placed upon obtaining rigorous solutions to the 
shell equations. This, however, has proved virtually impossible 
in the general unsymmetrical case and in consequence has resulted 
in a restriction of load cases that have been considered. Until 
recently, only solutions of the axisymmetric cases were available. 
Even these latter cases have proved intractable from a rigorous 
point of view and innumerable approximations have been introduced 
into the differential equations to permit the derivation of 
solutions. The most widely accepted approximation is that known 
as LOVE * s first approximation, introduced primarily, one suspects, 
due to its simplicity and to the correspondence of the resulting 
equations to the flat plate relations.

These simplified equations, however, are still not readily
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amenable to solution and necessitated both the introduction of
further simplifications and the use of mathematical techniques 
not hitherto employed in shell analysis.

It is significant that the tendency in published work has 
been to assess the value of a solution by comparison with the 
rigorous analytical solution of the problem, leading to further 
and further simplification of the load system considered.

Recently cases of loading have been examined containing 
various degrees of asymmetry; in 1961 LECKIe(59) considered 
the first harmonic and more recently LECKIE and PSNIN~N47) the 

higher harmonics.
A general procedure for the analysis of all types of un

symmetrical load systems (Inclusive of axisymmetric and 
asymmetric) has been outlined by the author and KENEDl(58-61) 

under the title - ’The Influence Line Technique.’ This method
utilizes the ’basic’ actions into which any loading at a point 
may be resolved. The analytical solutions for the necessary 
range of these ’basic’ actions were not available in the 
published literature, nor in fact have those available been 
substantiated experimentally. Further*, the validity Of the
approximations inherent in the solutions available were not 
tested in relation to load cases likely to be encountered In 
practIce.

In consequence, the analytical research efforts presented 
in Chapters II and III of the thesis were directed towards

(a) Unification of the available solutions for the ’basic’ 
actions together with those derived by the author for



 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 
 

74.(1.3)
hitherto unsolved cases of twisting moment and 
tangential load

(b) Evolution of a technique, which by utilizing these 
’basic’ actions provides complete flexibility of 
analysis suitable for the symmetric and unsymmetric 
cases. Such a technique would translate the problem 
into a form readily amenable to solution by a semi
graphical method, by a desk calculator or by a 
digital computer.

On the experimental side, the gaps are so obvious that they 
need not be emphasised. The experimental results that were 
available to the author from the published literature are either 
inapplicable due to inappropriate material (plaster of Paris) 
and inadequate gauging, etc., or are of no value because the 
experimental work, lacking In direction, was not carried out in 
association with analytical development.

The paucity of such results required the initiation, planning 
and execution of a complete experimental programme designed to 
test the accuracy and range of applicability ofg-

(a) the analytical solutions of the ’basic’ actions - 
radial, tangential and moment loadings,

(b) the proposed technique for the analysis of complex 
load systems.

The complete experimental programme carried out by the
author, briefly mentioned in the proceeding review (p.70 ), is 
presented in Chapter IV.



75

CHAPTER II THEORETICAL ANALYSIS OP FORCE ACTIONS ON 
A SPHERICAL SHELL



 

 

 
 

 
 

 

 

(II)76.
Any load action at a point on a shell can be broken down 

into the basic components of radial and tangential loads,
’bending’ and ’twisting’ moments. Analyses which are capable 
of predicting the stress and displacement distribution under such 
load actions will now be presented .

In the first instance, the analyses are directed toward 
the solution of shallow spherical shells under various local 
load actions. The radial and bending moment loadings at the 
crown have been dealt with by E. .REISSNER.^^^and BIJLAARD^4)

These authors both start from the governing shallow shell equation 
1.86 and 1.87 obtaining results for the cases tackled by diff
erent methods - as indicated in Chapter I.

In the present work, relationships for the normal displace
ment w and the membrane stress function F are derived in general 
terms capable of application to any value of n. Thus a more 
unified analysis is presented for these ’basic’ actions.

In the second part of the chapter the ’basic’ actions are 
further examined utilizing the general shell equations; the 
solutions for the oscillatory terms being those obtained by 
asymptotic integration and given by LECKIE * s*'. a comparison
between the shallow shell approach and the general shell approach 
is made for each basic load caae.

The final part of the chapter deals with a simplified 
analysis, referred to in the review, which, using the ’basic’ 
actions, enables a complex loading problem to be solved. i
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II .1.1

(a)

(b)

(c)

II.1.2

(a)
(b)

(c)

II.1.3

II .1.4

II.1.5

II,1 SHALLOW SPHERICAL SHELL THEORY

GENERAL SOLUTION FOR w AND F.

The Basic Differential Equations.

Integration of the Differential Equations. 

Generalized Form of w and F.

RADIAL LOAD

Uniformly Distributed Loading at the Crown. 

Concentrated Load at the Crown.

Uniform Loading of a Rigid Cylindrical Insert built 

into the Discontinuous Shell.

’BENDING » MOMENT

’TWISTING ’ MOMENT

’TANGENTIAL ’ LOAD
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lid SHALLOW SPHERICAL SHELL THEORY

II old GENERAL SOLUTION FOR w AND Fo 
(a) The Basic Differential Equations

Consider a shallow shell subjected to load components in the 
radial, meridional and circumferential directions, of intensity 
P* Pr » P0• The two governing simultaneous differential equation
for shallow shells are eqtSo Io86 and 1037, given in Chapter I 
as follows:

" 2 - (IId)
h - (II02)

where 51 is a load function obtained from eqtoIo84a,b namely
= - Mk and f>9 = _ 2 Ml (II03a,b)

3r

V VF - t£ V2v
DVVv *- —

R

_ 2 MA n r M©
The force resultants are those defined in eqtdo85a-c :-

Nrr 1 f + -!-fF 4 J!
r dr rz ae*

Nee j + J!
dr1

Nre — - i (J- ff)
ar ' r 30 /

the moment actions from eqts0 I o82d»f and
Mrr - D[ + vi' 1 3^ + » jk)]

L ar2 v r dr r 2 de2'J
Mae - D [ 1 du 4 1 3Ur 4 -U diJ£ 1I r 3r rr ae2 dr2 J
Mre — -0- v)D £ (±

dr v r a© / (II. 4a-f)

From the equilibrium equations 1.80 and eqts. II <>4, the trans

verse shear forces are :-

Qr = - D
dr

Qe = -Di r de (I1.5a,b)
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(b) Integration of the Differential Equations

V*F- tE kz 
R

It -or _
R T

Prom eqt did
where w$ la a solution oi Vloq * 0 , so that riae© n

= Ao 8oin r + £ (Aor + Bor ) cos o©

Thus from eqto II .6 V2F =t EE + (tf - - (l-V) Jl
• R

SubsSituting eqt.II .8 into eqt.II.2 the ioioowing is

CFV2or + J.T;± (] + **) - (i--y)-al 3 p - 2Jl
R -—? J ' R

which alter simpllilcatIon becomes:-

(II.6)

(II .7) 
(II. 8)

obtained:-

V4V + a = i r b _ (i+
7< d [ p —r—

(II.9)

where / _
Vt20-V)

The solution oi eqt;. II .9 may be expressed in three

1 ,e u — arh + up — utq

where wu is the solution oi V2V2w^ + ■ 0h [4

and wp is the particular integral oi the equation:-

7*VJwr + j _ J. I’d - (l + v)Jtl r 74 &Lr R—J
By subasituting w^= wn (r) cosn© into eqt.lit.11 

iactorizing , the ioioowing two equations result:-

parts,

(II .10) 

(11.11)

(11.12) 
and then

[v’ + (j. ?)]I ^nfr) = 0

(i + £)]| vn(r) - 0 (II. 13a,b

where j = yC"

These equations have solutions which are complex, those oi eqt. 

IId3b being the conjugate oi those oi eqt .II .13a. The two 

pail's oi solutions are therefore linearly independent and con

stitute together a set oi iour solutions oi eqt. 11.11. It is 

there^re only necessary to solve one second order diiferential

equation, either II .13a or b. As eqt:. II .13b has solutions

which can be expressed as Kelvin iunctlons, this is selected.
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(II .17)

Z x 80.(II.1)
It can be written in the form:-

+ 1 7? +n>\uxn = 0 (II.14)
dr1 r dr \*2 ?>)

This equation is tte rofified Bessel equation and tas a solution:- 

"n « Cu In(^Jr/() ( Kn (Vjn/t) (ii „15)

where In is a rofified Bessel function ff tte first kind-n’tt frdei 

and Kn is a rofdfied Bessel function ff the secfnd kind-n’tt frdei

and defined:-
+ j bet„r/< J

Kn(Vj r/|) = j n (W.ty + j kei„>/tj 

Introducing eqts.II„I6asb into eqt.IIol5 gives:- 

= C>*j'n[b*rnr/i + + C2xjn[kern% + y ke^r/c]

After separating tte real and imaginary parts ff ttis equation *
and nfting thaa w^wn (rCc^oanO; substitutin g ffr wn from eqt.II.17 

gives:- t (C,nfc> ernr/( ± C2nb«„r/t + kee,,*^ + 6 (11.18)

ffr all values ff n.

A verification ff eqt„IIil8 Is given in AAPpnndx VIII.1

To sflve ffr tte stress function F, eqts0 II.10 and II.I8

are substituted into eqt.11.6 giving;-

VC = tE (Cliybern % + + C3nker„r/£ Cnnt<^i.fr/g)a^snn + +rp ~ (,-t))JL (II .-9)

F may be written as:- F * + Fp -f Fj (II.20)

where Fj is tte solution of V Fj ~ 0 and tas tte same form as ttat

of wc given in eqt.II.7 ttat is:-

Ff = Co + b„ & % + £’ [an(r/^n + bh(r/f pi cos n < (11.21)
n = I

Fc is the solution of:«

V2F^ = tj pm brr„ /{ + brl„ /f + Cin^1, r/f + C^J^n1# J coSnP (11.22)
and finally, 72FP = <E urp - (II.23)

R
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Taking the form of solution of eqt.II.22 as:-
h = (Phbcr„r/f nQnta . r/f 4 ffn ker„ r/f + 5„ ket.nr/i) Cos nO (11.24)

— 2and using eqts .VIII .2 of Appendix VIII.l an expression for V 
can be written:-
V\ = be«.ftr/f QQnbern^ -knb„nr/t + 5nkern7f )<*sn& (n .250

t
Comparing eqt.II.25 with eqt.II.22

fn * ” ^R~ ^2n 1 Qn = - I t £ C.
(?n = - .4C ' Sn a - ^-R^ CSr»

Thus:-
Ph = - £jLE ( CZn ber„ r/£ -c,nbz^rft+c4nkerBr/f _ CSnk&-r/„)cosrc9 (H.26)

R
(c) Generalized Form of w and F,

It is now possible to write the general forms for w and P.
For w; eqts.II.18 and the appropriate form of II.7 are substituted 
into eqt .HolO giving:-

ur = £ fCn ber, ty + Ct„bei*r/P + C.inkcr„r/£ - C4„kc.i.nr/p) cos n &

IA0-Bo*n7* - £ [M^f+ 8^fe^njasn0 r (11.27)

For Fj eqts<,Ilo26 and 11.21 are substituted into eqt.iIo20 giving:
= £ 0-C2nbtrnr/l + C,„bcinr/f - C4rkernf/.t + C3nlkeLhrCi) CCS 9

n * O R n * ~ps o. sbeC*% 4 2 br^'nlcos^ 4 Fp (11.28)
These equations (11.27 and 28), first presented by BERMAN (53)9

will be used to derive the displacement and stress distributions 
for the ’basic' load actions of radial and tangential loads, 
’bending’ and ’twisting;' moments.

These generalized forms for w and F are also usable for the 
study of the higher harmonics.
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IIolo2o RADIAL LOAD

In this section the behaviour oi the continuous shallow 

spherical shell under the action oi a radial load at the crown,i
uniformly distrbbuted over a circular area, oi radius ip , is 
examined. Two additional cases are also considered, namely

a concentrated load at the crown and a uniform load on a rigid 

cylindrical insert built into the discontnnuous shell. These

latter two are essentially particular examples oi the uniformly 

distrbbuted area load, and are deduced directly irom this case.

The equations 11.27 and 11.28 whicn express w and P in genera 

terms iorm the basis oi the analyses. The particular integrals

Wp and Pp ior the various sections oi the loaded shell are deter

mined ior each case oi loading. The other constants in the

expressions are determined irom the boundary conditions oi the 

shell in question .

(a) Uniiormly Distrbbuted Radial Area Load at the Crown - Figll.l

prom rotational symneery 

it ioioows irom eqts. 11.27 

and II .28 that:-

ar = Ci ber Vf + Cbei VV + Qk*r Vt +£4 V&J

-Ao-BoAr/£ *uzp (11.29)
. Fig di .1 Radial Load at the Crown

F = £?£§ C2 b«r 2/b + f bct«b - Q ker r/t 4 cseei J + qo +■ boZn 7^ + Fp (11.30)

Derivation oi constants ao and Bo

1. Since only derivatives oi P appear in the iorce equations

II.4a-c the constant a. is imneterial.
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2r The constant is shown to be equal to zero by the 

following analysis:-
The viluer of the meridional and circumferential strains
for n = 0 rre as follows J-

tr - dr + % _ J. [Mrr -

6e - v r f - J-Jl^vNrr] (II.31a,b)
Substituting for w from eqtrllr6 and for Nrr asd Ne0 from
eqts .1104a-c, eqts.II.3Ia,b become:-

dv _ fi> 
dr R f r (! + )) d2F 

tE dC
V - ft 
r f

- — (l + u) 1 dF 
tE r dr

(II ,32a,b)
Multiplying II.32b by r and differentiating with respect
to r gives :- - J. d (. to) = - (j+v) iaF (II.33)

■Jr R Jr f tE dr’
From eqts rll r33 and II «,32a, arr = ^rr <a) This is only 

y dr
possible when Bo= 0 (Eqt rII „7)

The solution to the distributed load problem is considered in 
two parts, (i) the part of the shell inside the loaded area,

(ii) the part of the shell outside the loaded area.
(i) Inside the Loaded Area i.e. 0<r<rP

The subscript ’i’ will be used for this regionr Thus from 
eqts.II.29 and II.30:-
ft ~ C, forty 4 C-ifoi. ft + Cjfor -Ao * *
Ff =i!^(-C2b^r77 -^Wr/o Cjke r/{/ + b^Tf 4 Fp (II.34a,b)
Particular Integrals:- The loading is radial i.e. p=-po=-iIl 3

TTrp
and p~- p = 0, therefore Jl - 0

* 9 r
The value wp is the P.I. of V^VCup + ’ [| - fl-t-tO-fl j (II.I2)
For this case eqt.II.I2 simplifies to V2V2/P ■ Oj = -

t4 D
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Thus

The value Fp 
For this case

Thus
Derivation of
At r = 0

R*
' Et' ,

is the Polo of v Fp — - (I-tz)_Q

eqt.II.23 simplifies to
Fp « - ■bSl’ 

p 4
constants C3 and b@

= - MR

(11.35) 
(11.23)

(11.36)

'w to he finite 
iteVrO) C 

Nrr to he finite
Yielding

r c3 = o 
C 4.= 0 

b„ = 0
(II .37a-c)

Details of the derivation of these constants are given in 
Appendix VIII :2.lap. 251

Substituting eqtsell.,35,36 and 37 into II.34a,b, and Ff may he
written :- = C,btrr/l + Czbei/ + Cs

Fi = [C, b«ir/£ - C2 btr r/lj _ fro4.,? (II :38a^b)
where C5 =-A0- Po P2 

Et
(ii) Outside the Loaded Area I.e » r.C r °°

The subscript ’o' will he used for thia rorl-Oic Thus from eqts.
11.29 and II.30 introducing other constants and noting that,
as before, Bo= 0 and ao is immaterial, the following is obtained: 

C0O = CgberTf 4 C-yb<*.r/r £ + ckkr1/: + -C?k&Lr - A,-+ Wp
Fo - IjtE L L/ ~ C7her /l - Cqker/{ + Cgkel/l) + bBl«/l + Fp (II.39a,)

R
Particular Integrals
p = pe= 'r= 0, thus Jl = 0 and eqt :II .12 is satisfied whpn

wp= 0 (11.40)
Therefore from eqt .11.23 V*Fp * 0 and Fp = A + BlnV( (11.41) 
The constant Ap however, is iramaSe^daX, since only derivatives 
of F appear in the force equations ii.4a■“C, and the constant B
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13 combined with b, such that Cin « (B+b.)Vl2(l-Ja)

Et*
Derivation of constants C& 537 and A»

(11.42)

As r °
Ca= C,= 0

(II.43a-c)A,» 0

0
Mrr r 0 yielding
w —► 0

Details of the derivation of these constants are given in 
Appendix VIII.2«,lb, p. 251
Derivation of constant_Ct defined aa eqt.II.42
The summation of vertical forces acting on any parallel circle 
must be zero. Thus from Fig.II.2 the sum of the vertical com
ponents of Nrr and Qfis

(II .44)
From eqtsoil.5 and II. 4a,
eqt.II.44 becomess-
-Dd(Vtr) - df - P 

or Pdr 2( r
Substituting for w and F

Qr - I Nrr = -JL R 27Tr

Flg.II.2

from eqtsrll.39arb utilizing 
eqts.IIo42 and II.43a-c, C,o = - PRv/l2(l-t>* 

2HEtx
Derivation of constants Cl9Ca»C5»Cs and C9

(//.45)

There remain thus FIVE constants which are determined from 
the conditions at r = rp . It is convenient to define a para
meter /a by .u = rpfy, and express the constants C, in terms of a 
new series of non-dimensional constants cn , given by the
relationship?- Cn = cn PR

TfTkkJ

The expressions for w and F can thus be written from eqts* II.38
II.39a,b utilizing eqtsr//r43a-c and IIrb5:-
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= Pg-Zl «--)*) c. bxr m 
Et’U/x2 L o Cz beL If + cj J

= PR-/ll21-D2) I Cg Utr r/{ ■ Ca kei % 1 EtT n’ 1=

Ft

Fo —

fa [e.bnt - Ckur7l-

PP I’ c# kei 5/ - c< ker / - U *4 / 1 
Tm* L 2 *-]

(II .46a-d)
At r = r.

—T = doe 
dr dr

dr
v2f.

dfo
dr
v%

yielding, after 
solving five 
simultaneous 
linear equations

Full details of the derivation of these co

C, = -ju ker'jp 

Cz~ m ken'u 

4 C5 - - I 

Cg ~ -// b&r'

Cq =. m beiM1 (II.47a-e)
nstants are given

in Appendix VIIIo2.1c p.25S
Substituting eqta<>IIo46a-d into eqtB.II.4 it ia possible to 
express the forces and momenta in terms of the constants c,, 
c2,c5,CgjC 9 which are known for a particular /a from eqt .II .47a-e . 
The following relationships:-

Nrr “ <7ot , Woo = fleet
Mrr = fret t Mee = £©s_t (I1o48a-d)

6 G
enable a further modification to be made and the direct and 
bending stress to be written in the following form;- 
Inside the Loaded Area i.e. 0 < r < rp

°~ro = [ c, bee fy _ c2 her ' / _ _J_1
yjx3t2 L r/£ r/£ / J

<0d = PVl2((-V2) [c.btL'fy - c ber"r/E _ Jl
' V>u2t2 L 2 J

<r?s = i &>P cfbeiTf -+O-iXber'/tl + cder// _ (l-vUbei'fy
ne^2 IL r/£ J L r/£



 

 

 

 

 

 

 
 

 
 

8( r (II ./)
= + -6. f cTG-tOberV r vbei r/[ 1 + c.fG-v)beiz7l + vber r/P 11 

TTt2l L r/^ J L r( Jj

W = PE«/I2(|i-D; r c, ber I* + c2 bei / + cs r (II r49a-e)
TEt’.1 L J

In particular at r= 0, using the appropriate series expansion
given in the Appendix VIIIrb

<r^(^) = cr>o(o) = p/^g^i-y*) (c,+ c,)
J2 Tju 2t*

O'rB ro) / ^on(O) « ± 3P(lfU) c2 
TT>2tx

kr(o) = PEvTl2(l--Ua) Cc, + cs)
TEtM2 (Ii.50a-c)

where c, = - xukrrbi . c2 = ,ukei',u and c$ = — I

Outside the Loaded Area r b Tp

<yB = 4 _6P_f-Qfkeir/Z 4 0-~b)ker,|/l1 + frtkcr ( - ri-->)kci/r//l .
Tr’tU L r/£ J L T/ .

rfo = 4 {-c6keir4 -(-j)krVf,J + Cal’uker1/* + Q-i;)kei/|Z*.j .

ur = P(?V)2(I--VZ) T Cg ktr 7- - Cq ket /£|
TEt2.1 L J (II.^/s^^^)

where c.--b<beryu and Cq — u he.b

From equations //.49 and //.5/ it is possible to derive values 
of stress for particular values of /a i re r rp/i . Figs. II r3 -*•
II .5 present the equations graphically for various values of / .

The relationships for ber" , bei*9 ker", kei"used in this 
derivation, are given in Appendix VIIIO8 
(b) The Concentrated Load at the Croom. FigoII ..6 
The concentrated load is essentially a particular example of 
the uniformily distributed load case, where r. i.e. m = 0.
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Thus considering the squat ions relevant 

to outside the loaded area,eqts. II051a“e> 

and substituting for ©8 and from eqt.

II.47d,ep the eqt. for «rro may be written s<

r,t> P-/lZ((--J* [- ber^j. kt»!l _ bet'ktr'Vfr ~ ±(—\2
TTt* ‘ L M r/t m ' r/i z

Fig.II.6

(Ilo52)

/

t J

From the defInitOons of bg/xn and given in Appendix VIII.8:

■for O j ber'/* — 0 and bei m = 1 (lle53a,b)
Mi m2.

Thus II.52 oan be writtens

(II.54a)

In a similar way the relationships for a> °~&ti andw can be

<90 » + _PV»2(i-g)[.ker'JJ 4- + Uf!
2Tit’ L V/fl (4J J

f ker rjt + j • v i
L r/{ \ r/l) J

written :«

= ±JP

^8

ir F
± AL f 0 

Tit*

fktr/f - (i t>) kei/l j
L r/t - 1

+ x>ker % J
r/p

or Pgyi2(l-u>) |<€i r/t 
2HEt* (I1.54b-e)

Wien title radius r= Op it is possible to obtain finite expres

sions for or, c*rD and 9 using the definitoons of kei z, kef z ,
kerz

z

foioowss-

and k^ given in Appendix VIII .8. These are as

ur(o) = - P£
4 Et*

<ro(o) = - 1 £
8 V

<6> (o) = - ±VJ(U) _P
8 t’

Approximate values of f and o£g for smaai values of r/i are

also obtained cr 1 3P (f + tO XU r/f
re Tit* ~z~ *

crfig ± Jj -u>) /u r/X
“Tt* 2 (II .55a-e)

Equation II.54a-e are shown graphically on Figs. XI.3 and 5«



 

 
 
 
 
 

 

 

 

83 . (II.1)
(c) The Loading of a rigid cylindrical insert built into the 

discontinuous shell (F:igo 11 o7)
The relevant equations for w 
and p governing this problem 
are those of the shell with a
uniformly distributed load in 
the region outside the loaded 
area, ioeo IIo46b,d namely r*

(a * fco ker / - c9keir/t 1

F = -0J f cg kri '/{ - e< krr /f . I* 7 ]Ttj* L 2 J
Giving the following equations:-

crD - Pp^I2(l-v*)

Fig.II.7

c e kt-L .. c9 krr'/t _ 1f V 
t/ r/1 2(i/

°&o = es kt-'r/l - Cgkrr"r/£ +

e/f = i CP 4 Q-gkerVlj + c^kcrTi - Cl--)kei'r/lj j

<0b = i j C(p*kz-ri -(i-vJker'TEj 4 c-i’/k^er 1>40-x0ke,t//Uj

— PRlg-l3 T Co ker '/I + Co kei 1T 
TTEt1/*’ I 'J

iT /i*t*

or —
(I!o56a-e)

Derivation of the constants cg and c9
In this case the two constants cg and e9 are obtained by

considering the boundary r = rp 
at r = r„ r c» = - Cl-- tbu kei'y 

2[V]
yielding:- <

6© = - 0 Co = - Cg ker -0
Et .

dur - c ZF

kei'x (II . 57 a . b
where fV] = LLfkeijuke^-ker%ket,u)-(l+vkki/5u + ker/Z/x)]

The derivation of the above constants is given in Appendix VIII 
VIII .2.2a po 260.
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(11*1) 90
Equations 11.56 and .57 have Deen presented graphically In 
Fig .II.B for different values of >u.

A comparison between the stresses and radial deflection 
predicted for the uniformly distributed and rigid insert radial 
loadings is shown graphically for two values on Fig.II.9. It 
is noted that the main differences occur in the case of the 
circumferential stresses in the region of the insert.

I
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91 . (II. 1)

0^4.6
j k

II .1.3 BENDING MOMENT - Fig.II .10 
This section Is concerned with the M
moment loading of a shallow shell
through a rigid cylindrical insert
at the crown . The moment M is
acting in a plane which contains
the normals drawn from a meridional 
line, and will be designated a 
’bending’ moment. The procedure
is as previously outlined. The 
general expressions for w and F,
eqts. 11.27 and II.£8 are considered, Fig.II.10
For this case the harmonic order n is equal to one. Thus the
equations for w and F may be written

or = [C« ber, j-i * C21 be i, —£ + c^, kcr( + C4, keii—i. ] cos 0

-[A , Vi + B, (V^JcesS + '

F = % + ln - C41 ker, r/£ 4 Cjjkei.j cos©
R L J

+ + b^9y)jj<os0 + Fp (II. 58a,b)

Eqts. II.58a and b contain the Bessel and Kelvin functions of 
the first order. These may be modified to those of zero

order using the following relationships (McLACHLAN (38)):~ 
ber, = 1 (ber'r^ _ b«i'7f)

bet,1/p = _L (berz,/£ + bei'i/j)
V2

ktr, r/f = _L (ke.r' / - ke,i' r-l)
V

kei, V = JL (ker'r/( + kti'Tft) 
/z

(II.59a-d)



 

 
 

 
 

 

 

 

 
 

 

 

(II.I) 92.*
Substituting these into equations II. 58a,b, and introducing a
new set of constants w and P may be written 

(<r =. [Ciber'r/£ + C2bel + Cj ker' r/£ + C+kec'ryf -Air/f - 6, fy- Jcos0 + uzp 

F = f l*tE C2ber'r/t + C.bai'r/g - C4kef'r/[ + c3ket'V£J

+ b; + Fp (II.60a,b)
Particular Integrals

The shell surface is free from loading, thus wp= 0 and it 
follows using the general relationship for Fp in eqt. 11.23 
that

Fp » (A + B co$ 0 (I1.61a,b)
Derivation of constants a, A and B

As in the case of n - 0, It is possible to determine certain 
constants before considering the boundary conditions.

It can be shown that the constants and A are immaterial

Further it follows that B, - 0

in the membrane force expressions, for details see Appendix 
VIII.2.3a, p. 260

Thia can be verified in a
manner similar to that used to prove Be= 0. It is shown 
in Appendix VIII.2.3b. £><261

Derivation of constants C, , C2 and A,
roo ^06

Mrr

or

yielding- C2= A,= 0

(II.62a-c)

0
0
0

Full details of the derivation of these constants are given in 
Appendix VIII.2.3c. £.262

The equations for w and F (II.60a,b) may, therefore, be written, 
utilizing eqts. II.61a,b and 11.62:-



 

 

 

 

 

 

 

 
 

 
 

93 (II.I)
w = (C3 kv'r/( + c4 kziT/%) cos 9

F = Mt* r C kei' t _ C4 ker' rf/ + Cs(r/.\~‘ ]cos8 (11, 63a ,b>)
/120-x)’}!- c t___ _ 1 'J J
where C5 - (8 + b,)-/>2(l-TVZ 

Et-Derivation of constant C„
For large values of r, the applied moment M is taken by 

the membrane force Nrr - Figo IIallc
The total moment M can be equated to these forces, thus

,T ,M = -2 f Nrr i cos 9 - d8 

= - 1x3 nTTp
Thus Nrr - - MR cos 9 (II„64)

This force, Nrr, can also be expressed In terms of C,, C+ and

Cf, using eqt0 II063b for F and II.4a for Nrr. For large
values of r, this simplifies to Nrr - - =L4= =-(? Cs -£$)c^s 0 (u og5)

Comparing eqts<> II e64 and II 065, Cs s gNV.Vtl-U2) (II«,66)
T£t?£

Derivation of C3 and C4 _

£# = (Np6-vNrr)= 0 
Et

yielding e

jC3= ~fl+-y)[jg(HVa)]*fe - /iker>n) MR 
“ "h> Lx] E3L

C^- - Cj tekcM -++u keen) 
2 keL'j - -m ker/a (IIo67a,b)

where [X] -0+v)[j-1 (ker*u + kei2m) + 4(ket'>u + ker'Zu)

4- 4>u (keOw keiju - keru kei -fu *(ker m kj +keiM kel><3

The derivation of the above constants Is given in Appendix 
VIII02e3d, pc 263
It will be noted that the constants C*, C4 and C5 are not non
dimensional e In this instance their use in this form is just 
as convenient as in a converted non-dimensional form„

As in earlier cases it is possible to express the stresses in 
terms of the constants C , C4 and Cs using the equations for

L



Fig. H-ll Thie M^i^idio^^l Normal Force (Nr- on The Shell
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w and P (eqta eII£3Sfb) in eqt:, ,11.4 with the aid of IIO48 and 
the equation a for kei and ker * as gi ven In Appendix VIII <>8,,.

{jcr« E_ fcju«r% - ZUei/K) + C4(keir/» + 2ker'7Z)_?C4r) 'icosG 
t R(W)l " V» J

<7ei> - Hse » I rcy>er'% -ker/7 f \ + q(k«i'% J- -?ker'tf»\
* R r/? (r//)? ' r/fi (r/o)2 /wr Vl (r/2)3

+ 2C5(^I cos 6

TO
^re - - •—r— ~

r*D~ « £ rcj(ker//-2k«/%)4 C4(kei7f . 2 Cc (% j H Sin 0
* W rZt J

_ /+QrOzt4ket% -ktL'ftl
i-xm 1 x/9 (W ' J

'■ /’ +2(bv)k*i'r/t •+ktr'r/t]\cos&
L rA (W U

fea « ± M#_e + ..feJL, C CaTG~p)kfti 7/ + gQ-v)kcrVt + vket'yzl 
t’ SVi2G~i>) t ' rfy fifty I

4 <4 . tgj&rTl - ?(< -v)k(_i’r/l +T/ker,r/t|lcft50
IJ

TrftS = ± Mrg 6 - ± ... 6£ „ ' p
6j___f - f' k«£ + 2 ker ’ 7f 1
Vf2(ui>«H I fyW" I

4 C J ker Vr,/ 2 k«̂ :r/l ,1
r*)’ JJ

5in 0

(II .68a-f)
Using eqta.II.68a~f in conjunction with the equations for Cs *
C4 and Qs (eqtd. I«67aph and eqt di 066) the distribution of the 
stresses can he determined for any jj value o These are shown
graphically in PigdlolS for various values of M o
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II .1.4 * TWIST INC? MO MINT

The shell 1s here loaded by a moment T in the tangent 
plane of the shell at its crown „ The moment is transmitted 
to the shell by means of a rigid
cylindrical insert as in FigcIIolS 

i ’oeignated a ? twisting*
momentc

This problem is similar m
certain respects to the case of Figoll.13
rotational symmetry (n — 0) in that the multivalued functions of 
sin 0 and cos 0 can not bo present in the stress function? also 
the displacement and stress resultants must be independent of &0 
The relations of w and F may bo written as follows from eqts.
II27 and II.28:-

ur « C, ber - C2bei rf - C$ker / 4 £4 kei / - A© 4 a/p
F = • C.bet -C4ktrfy + C4+cLfyi+ tp (II.69a,

Particular Integrals
For this case w. = 0 (as for the radial loads and bending

moment:) (II „70a)
Fp must therefore satisfy?- ?*Fp — O and meet the restric
tions of the torsion problem,, Such a value is given bys-

= A + r> (m r/y 4 Cs 9 (II O^C^’b)

Derivation of Constant A
Since only derivatives of F appear in the force equations 

II.4a-c, A is immaterial.
Derivation of Constants C» , C2 and A©

<w> Mnr “** O 
-*• O

Ur O
yielding- C1 = C-z — Ac — O

This derivation is similar to that of eqts. IIo43a-c
(II.71a,b
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Derivation of B and bo

At any radius r, the sum of vertical forces acting on any 
parallel circle must he zero„ In this case the applied

twisting moment T is assumed to he taken hy the shear forces 
Hre In the plane of the shell* Thus eqt* 11.44 will becomes*

Qr ~ rr - 0 (11.72)
I

using eqt* II*5 and II.4a eqt* 11.72 becomest-
- dP =0 (11*73)

dr ■ Rdr
Substituting eqts* II*69a,b and II*70a,b with II*71a,b Into 
11*73 yields s- 0 ■+ So = 0 = 0 (11*74)
Derivation of O3 and C4
At r f Sw 

a?
-B

The derivation of 
p*263 Thus w and

0 f
0 yielding.- j £3 = c4 - 0 (11*75)I
these constants is given in Appendix VIII.24, 
P may now be written

w « 0 , P - Cff9 (II*76a,b)
Derivation of Constant C5

Prom rotational equilibrium it is assumed that:-
Nre27Tr2 = T (11*77)

Also frrm eqt. II* 4c and II*70b, Mr e — Cs/j.* (11*78)
Prom eqqs* 11.47 and 78, C5 - T/2T (11*79)
Thus eqts• I1**7 e,b ecoome-e w « 0 e F- T 9 (11*80)27t
The Tangential Displacement M

This can he obtained from the shear strain Yre , defined
as eqt* I*81o in conjunction with the force-strain relation 
eqt * I *82o *
Thus from eqts* I*81c and 1*82o:-

ire = JiL 4 = iM. (11*91)
r30 dr r tG



 

 

 

97 . (II .1) ;
since di = 0 , eqt:. II .81 may be expressed,

9V
tfrs = r.£(U\= Nf = T from eqt;. II .77

3r\rJ J TTtdi1
ue u = - _JT____  -x k

r 47TtGTT*
n = - T.— + Kr

4ntGr -
when r -» «o , -u -► O /• K = O

and U * - _!------- (II.B8)
47tGr

Meridional Displacement V

This Is obtained from the meridional strain £r (eqt.I,Bib)

and the force-strain relatOcras of eqt;. I.82a,b. Thus

£r = - -OT = ± [Nrr-in Nee] (II.83)
dr R tE

Substituting for w from eqt. II.6 and Nrr and NO© from eqt.
II .4a-o, eqt • 11.83 may be witten 

dif - = - lift1)

Thus v . -(i+v)dF 4 [wi'dr .+. {(&) (II .84) , where f(&) is a 
tE dr j'c '

function of 9 .

The function of 0, f(Q) $ mist he zero. together with the

first differential of P. Thus eqt. II.84 can he written
V = [j£$.4r It is noted from II.7 that for this

J R

case Wj = Ao + Bolur =0.

Thus V = 0 (II.85)

The results may he summrised:-

= Nrr = Ngg — Mrr — M gg = Mrs = v = 0
Tr9^ Nrfi =-!----- .

t ZTIr-t
u = - T

4TGt r
(II .86a-i)

It is seen that these equations are similar to eqts. 

VHI.73a=d and eqt. VLII.74 of App«adix V:il.3. ’A Twisting

Moment applied to a Flat Plate

A graphical representation of equation II.86 is shown on

Fig. II.I4 and is common for.all radii of Insert rp9 wLth a 

suitable 1 cut-off’ at r . rp .
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II .1.5 tTANQENTIAL* LOADING ON THE SHALLOW SHELL 

A shell Is loaded by a load H In the tangent plane to 
the shell at Its crown. The force la transmitted to the 
shell by means of a rigid cylindrical insert at the crown as 
in Fig. 11.15. Following out the
procedure, as in the other cases and 
considering the general expressions 
for w and F (eqts. 11.27 and 11.28), 
noting that this case can be represen
ted by n = 1, the basic equations are 
seen to be similar in form to the 
bending moment loading, i.e. eqts.
II.60a,b. The values of the 1
particular integrals II.61a,b and of 
the constants a„ A and 8, are also 
similar. The equations can thus be

Fig. 11.15written :-
w « (C,ber'r/{ + C2bei?r/£ ■ C3ker'r/f + Qkei'ty - ArfficosQ

&
J a*

F = |g^i(-C2ber/r/ +C(b^ii7v-C4^^r'|+C3k«t'/)+(bi+6)jiJcos6 (II.87a,b) 
Derivation of constants C« , C2 and A,

When the outside radius r2 of the shallow shell is large 
compared with the Insert radius rp , the stresses on the boun
dary will be very small. This is particularly the case for 
the bending stresses which, for a shallow shell subject to a 
tangential load, will be small, compared with the direct stresses 
for all positions of r.
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Thus at r Maa -► 0 

Mrr -* 0 
ur - O

r
yielding:-

Ai*0 (II i88a-c)
The derivation of these constants is similar to those of eqts* 
II*62a-o and are shown in Appendix VIII.2.3c, p* 262.

The expressions for w and F oan therefore be written 
w s (Cjker'/l + C4kei,1Z/)cos6

F = Et* fc»kti'7j - C^ker'//)). Cs^Y'lcose (II.89a,b)
where C5 = (B+b,)

The corresponding expressions for Nrr and Nr0 using II*4a,o
Hrr - (Et [Cj(ker / - 2!«0l)4 +*(k(if + kW'/l )1 _ 2C»5 1 cose I RW)l vT r/t j ., rsj

C| = Ca = 0

Hr- » It ,f ct (kv hf -hOWl) 2 C»(Ui5) i o>s2 (I-.oo-,b)
iRWtP T/l r/t J r’J

The solutions for Nrr and Nre are however deficient inasmuoh as 
they do not represent the resultant tangential foroe H defined 
by H - - 2l(NrrOJs6 -Nr»Sin 8) r d9 (11.91)
Substituting eqt* II*90a,b into eqt* 11*91 and integrating;, the 
right hand side is fotmd to be zero* It is, therefore, neces
sary to modify the stress funotion in a suitable manner in order 
to incorporate terms In the forces and displacements capable of 
representing the tangential foror e i ehf fooiiwing formi is 
found suitable for this additional stress functions-

(11*92)
with corresponding additional values for Nrrb N0e and Nxe from 
e qt• 11*4.
The form of w given in eqt* II*89a is assumed to remain unchanged 
Derivation of Cj and C4

Before setting down all the equations for the foroes and 
displacements the constants C3 and C. may be found from

F*» r9sn\9 + (CtT3* Cgr"* Cqrbgr) cos 0
2



 

 

 

 

 

 

 

uiaj 100 ,
pconsidering the shell at r

r = rp <O = 0
< ar yielding- C3 = <4 = 0Gr = D22jy > 0 (11.93)
I dr

Details of this derivation ar* found in Appendix TCH.2.5, p.264 

The Stress function may thus he written from eqts. II.8Sfo and 

11.92

P « £6 r,0s^m 0 4 4 C^T -hC^rAstr 4 J Oos0

P » C$r.a.sm0 4 £^7^3 4 Cot"' 4 C^r/nrJ cos0 (11.94)

where C. = Cg 4 f,Cs

The force compcraents from eqts. II.4 ares-

Nrr = 06 cos9 + (2C7r-C0io 4 Cq)osd 
~ J

N9 = ( 6C C7 r 4 2 Cto 4 C«jC cos 9 
rJ r 7

Nra = (CC7r - 2Cjo 4 C? ) Son 0 
rr t ' (II .95a«c)

The strain„ displacement, force relations obtained from eqts.

1.81 and 1.82 with w & o (since C3 = C4 = 0) may be written,
£r — 3u -b J (NrrrTUNge)

3 r tE« I 4 1 & « J (N00-t>Nrr) 
r r re tE

f 4 9tf — U ~ -Nrg (II .96a-e)
r 30 dr r 16

Substituting for Nrr, Nee and Nr@ in eqts. II.96a-e and

integrattog:-

V = -t[C6A<r + C1r2(l-3v) + £jp(i+v) 4 U-v)Cq l*rJ cos 9 4-f(0) (11.97)

where {(0) is a function of 9.
Using eqt;. II .97 s
U = 4E[“ce(v + &<r) + Cir2G4P)4£oO+X)4Cq(i-iuXl--(4r)]sm0-fe)de+F(r) (11.98) 

where P(r) ir a fimotion of r.
Further, using eqts. 11.97 and 98s-

)fr = -1 f ca to- 0 + 4C7r(l4i) - 4Ctf(1n>) 4 2Cq(V-l)lsm0 
tELr r* r 1

4 F'(r) - ttr) 4 4 £fo) (11.99)
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The value of tire la obtained from eqts. II.95c and 96o.

’r« (II.100)

(II.101)

(11.102)

ZsinPQ+iQ^2C7r - 2Cj0 +

Equating 11.99 and II .100
r F'W - F(r) + ff(9) + f(P) = [- Q (v-l) + 4 C,J

equating the r’s rF#(r) - F(r) = - C|,

. • Ffr) s C)2f

where C,, and C,2 are constants of Integration,
equating the 0*5 J/(0) + f (9) = Clt 4 p-Cfc(v-l)4 4-Cqj

Thus {(©) 4 {*(9) = c°s9 [-Cfcftf-1) + 4-CqJ

-f(0) = Cl3 SinG 4 C,4cos 6 4 [4Cq - C6(-u-l)JOsin_0

where C,3 and Cl4 are constants of Integration.
In eqts. II.99-*» 102.Ftr)indicates the first differential w.r.t, i 

f'(B) ff n n tt " <
, I” ’ " second differential " (

The eqts. 11.97 and 98 for V and U oan thus be written, sub
stituting for f(9) and F(r) from eqts. II .101 and 102:-
v = _L r + C7r2(l-3v) + £i2(i+v) + CqO-u)4< rj CCS 9

4 C,3sm 9 + C,4cos0+ ^4Cp - Cc.fo-l)j9sin9

u - -LT- Cg(-u+6,r)+C7r2(5+'y) + C1p(i+v)4CqO-PXl-£nr)]sin 9 
tE L

4Cij cos 0—C14Sin 0- ^69-9cosS)4CjgF (II .103a ,b
2Et

The equations II.95a-c and II ,103a,b contain In all seven con
stants

Cfc, C7 , C? , C10 , Cl2 , C,3 , and CJ4 , which are determined 
from the boundary conditions.
Derivation of oonstant C6

The resultant tangential force H is defined by eqt. 11.91.
Substituting values for Nrr and Nre from 11.95 Into eqt. 11,91



 
 

 

 
 

 

 

 

 

 

vn.u 102
_ -it 

TTgives C6
Derivation of constants C& and C,3

(II.104)

Points on the meridional line 0=0° have no circumferential 
displacement, i.e. Ws 0 for all values of r. Such is oflly 
satisfied when

C,2 = 0 and C13 (II d05a ,b)

)erivation of C7 , C9 , C,o and J 

It r = r2 5

0= 0"
yielding the following 
values for the four 
constants

r = r£ £9 • (Nap ~VNrr) a 0 
Et

Cf - Ce(v~) t C! = Cj(l+v)rP _rLC 7 = -

C14 * — Ct (l+vX3~-V)£n r, f fp (l+~0)^ „ TQ (l°3y)(l~~^)2 1 (II 106a-d)
Et L 4 W+rfl J

Jsing the values of the constants contained in eqts. 11.104 
11.106 the stresses, resultant forces and displacements can be
written s

rf+-r?

«fo = -EC = ___ f 3+U - 0+u/r* _ - (l+V)Tp 1
4irrt 1 (W.3)fe>+ rra] H + Tfc.]r« J

C05 0

<eo = Mae - - - y/Yi+x?) + (i-u)l cos#
t 4Hrt ( (v-^frAr-p’] p + rp^r J

Nre
T

—H J T*(1f -l)* + r/O+V) + (I--0A Sin e
4Trt 1 (v-Mi/+rp’] f|+r//r;]H J

H____ fte-tOi,
8tlrG | 'r t/+_1

2
If +
r2 v-3 J J

C0S 0

-re,t>

v = -

U a

H

1 v ~ 0

u » 0

v - 0

4 8

&
rk+1

+ H f(3-v)k% + (n-v) + (—v)
StTG I * fi + ’&.l 2(v-3)

2 r*

wi%2 + ( + d) .SinP
r&r» + (II .107a-e)
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When the outer radius rt-*-«o the 

modify to the following:-

>fo -
4-Tt

[ - lliV) f

<n>o = -

• ^rs.o = 4/bf|[V- +- <^rS J

When rp-*-o equations IId03a-c

by TIMOSHENKO (104) for the flat

a _ (3+t>) H
4-Trt

cos 9

<0,D = (l -V) H , 
4-1 rt

err 0

'trlt.o Sin 1
4TTrt

The expressions of equations II 

11.16 and 17 for values of rp =

In ches •

equations for the stresses

cos 9

ccsS

s'n6 (II.108a-c)

simplify to those presented 

plate s=

(II.1O9a-o)
107a“-e are plotted in Pigs. 

oOO, 1.51, 1.75, 1.11 and 1.51
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104.

II.2 THE GENERAL SPHERICAL SHELL THEORY

II.2.1 RADIAL IPAD
(a) The Loading of a Rigid Cylindrical Insert built 

into the discontinuous shell.
(b) The concentrated Load at the crown.

II .2.2 Q^E^I^INC^ - MQMBTT.

II .2.5 QTWISTDNG^Q MOMENT.

II.2.4 TANGENTIAL LOAD.



 

 

 

 

 
 
 
 

 
 

 

10 5 „
IIp2 THE GENERAL SPHERICAL SHELL THEORY

In the analysis developed by the author and presented in 
this section extensions of the solutions for the general 
equations are considered applied to the case of a spherical 
shell with a radially cylindrical insert at the crown, and 
subjected to radial and tangential loads and moment actions®.

The essentially local nature of the stress dealt with is 
recognised in the analysis by assuming th© eo-latitude angle 
to be small throughout®. It is then shown that the solutions 
tend to assume forma similar to that obtained for the shallow
shello

IloSel RADIAL LOAD

For the axisymmetrical case (n» 0) only the membrane and 
oscillatory terms need to be considered (see Chapter I, p047 ) 
Membrane Solutions

From a consideration of the equilibrium of the shell:-
= - E 

0 2WRsw,t
N (IT- HO a, b)®®<s s

21TR sin2#

where and Ne6c. are the meridional and circumferential
membrane force actions respectively for n= 0. The strain, 
displacement - resultant force equations are

£$ = Et(N°e<> ’ Vf f * Vfi cot# 4 go
R

£<> = 2 (Nf/fa-V Nwe) - J foo 
Et R d#

Subtracting:- -VocetQ = --S. [Nee 
Et °

- UP 
R

d$
substituting for NM>0 and N<^
II .112 may be written :- ^Y® -if0co[(f> - - P(l+v)

EtHsma4

(II.llia,b)
(IIoCi2)

from eqt. II.110a,b<>, eqt
-



106, (II.2) 
(11.113) 
(II .114)
(11.115)
(11.116)

Thus Vo = [ ] ffW + C ] Sin ]

and wo = P(i + y) _ f f (T^) + c 1 cos d 
?Tf£tSin’1> S J

andjT4/^-+ C ] S'n < „ ,x

The tangent rotation Xo = - ]s^° - V°)R ' ad t 
From eqts. 11.113 and 11.115 Xo = 0

Eqt. 11.114 reduces to * P(l+~/) f | + cosj tan $ 1
2TT£t L 2 J

. P(I+t>) cosdhj+ I -cos 4 1 . .
Wl 74OS0 I (11.117)

Oadllatory Solutions
These are presented below:-

N0,» - ft col: 0 ( A.T, + A2T2 + B,Ts + B t )
0i-d’)r

NgPc — - . Ei— (AT ■ A2 f + 8, t3 + 6* f4)

Xo = . 2X* r A,(li - a. T,)_ Aj(T, +3i T2) + e,(T,-Z T,).. BJTj + K T4)l
R(l-V*) 1 (X* (X* ' 2X’7 (' 3 (%»*'J

'  fA,(T,+ 2X*T2)4 AjOi-ZVT,) + g,(T3+2X2T,,)+Sad^-ZX1^!
c(0 (l-Va) I J

Mod0 = f Ajf2 + -UccCfT^ - V (f. + v<a>t<*T,)l
120-y’PR2 L I 2X4 J

- Az T + J cot 0 t +- / (j + u cot Tj"|

+ Bi| T4 + Vcetj T4 - _LjT3 + vcoty T3)j

- + VC&f T + (T4 •+iCa>t0T)j |

Mob = (?Et*X* rAifvt + cot<7z ~JL (V. + ot^T.) \
I20-U*)2?* | [ ** 4 J

- -?j V T, + rot^T, o TrL^uT.t cotf>7+C|

+ Bi J Vl4 4 cot Ho - -4-fa + °VT 4) j

- B*juT* + cot Tj 4. + cot.0 4)} J
(II.118a
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In tue above equationss-
4rK I2(I-V*)R2 _ vz 

t2
(11.119)

T,

L

ber'z

= /T ker'z 

where z -

T2

Tt

■{&
(H.iaOa-d)

and the derivatives of T, .... T4 w.r.t. 4> are

- &
= ./-^ ku'z

f'“-l/5x&[Uiz 4z£?U4“t*>'z]

f* 4Cot*M

T. « -t/2x/_£T keiz + __L'3

T+

(i+ “**) ker'x]

^£tkeri (II.121a-d)
f $m <f> |

In the equations II.118a-f the terms associated with A, and 
A2 are funotlons of which increase as Increases, consequently* 
they are associated with the lower* or outer edge of the shell.
The terms associated with B, and B2 decrease with damped oscil
lations as <p increases* and desorlhe the stresses oaused by loads 
acting at the edges of a hole at the top or by foroes applied 
at the crown of the shell. In the work which follows it Is 
assumed that the outer edge of the shell is sufficiently remote 
that the stresses associated with these boundaries* l.e.*A, 
nd As stresses’ do not Influence those associated with the
orown» loading.
.ssumption of Localized Effect of Load

The expressions stated above may be simplified considerably

I
y assuming that the co-latitude angle representing the extent 

f load effect on the shell* Is small. This results In the



 

 

 

 

 

 

 

 

108 (II.2)
following:- and <cotj«e ty and VR-r* R (II.122a-c)
Further restricting consideration to thin shells V* may he 

- - *
considered small compared with , Thus eqt. II .119 for X 
may be written:-

% = P4y£ (11.123)
where, (■

teO-v*)
In the following two examples of the radial load are con
sidered, namely:- (a) The loading of a rigid cylindrical 
insert built into the discontinuous shell, and (b) The con
centrated load at the crown •
(a) The Loading of a Rigid Cylindrical Insert built into the 

discontinuous shell - Fig. II.7.
The expressions giving the

force and moment resultants,
are given in eqts. II.118a-f.
These may be simplified using
the assumptions of eqts. II.122a-c
and II.123 and may be written:- Fig. II.7

=

Nee, =

- _L r 6, ktr'/ + B,ket'r/(1 _ FR
(i-v*)r L J zur1

_ Et C 8. (kei.V/ + kerf . B,(ker % _ ket'wjl + PR
o-t>«nL 1 ~r/r~ w <j 2nr*

‘Sfr [ O'* ♦ U? kti'r/t -

- vi*(- R [kei \ + ker'f ] + v£ ker'/Al
R*V 7 1 VI r Vj

-BJ-K^/z+J^t) + V&kir'rl +

+ | O / - J«p/t] + k“' ?*)]]

120



 
 

 
 

 
 

 

 

 
 
 

% • XJJV •

Mm = et1 Tr fvRfker % - k<i'7('1 + £ kei'% _• 12(1-V’)’? L* I• r

-Vl‘(.vR[ktir/l +!a^2f] + fAM-VlR J .

_(^_V|(ktir/j + ktrfyi \ + £ ker'7^ +

+ v|*(V.R party -kerr/t] + £ kti'ty)}J ( ii .124a-d)

The simplified radial deflection expression Is obtained by
Integrating eqt. II.118d and adding eqt. II.117 and utilizing 
the assumptions of eqts. II.122 and II<,123:-

“ ‘ (11.125)+ pdty)+B^keity-R’kef + ^[l +A.Xr] 
These equations contain two constants B, and B2 which are 
determined from the boundary conditions at the insert. 
Determination of the constants

<*o

The boundary conditions at the insert r» rp , yx are
= 0 and S& = (Hn-vN<m<)/Et = 0 (II.126a ,b)

ar
Prom which the values of the constants B, and B2 are as follows:-

6, = - Pgfi+vXi-v*)
2iTrpEt (kwli + R^keix)

| + fkai'x - g//2kerLX-ke-^-^- - +pikuHj++(i+i)he/u)
[-/u kei. x kei> -mm ke-x ker x* + pCxkeiy toe>)-+)i+t))ker'5*

- mm kei'x kerx + -+-u) kei'ax) ]
Ba » -PRCi-M-i*) [f-kerx -fyke' + 

2lTrp Et I L-xx kei'x keix -xa k
mUm + (i+v)ker'ru)

J L-xx kei'x keix -xa kerx keriu ♦ ^4x kety ker'xx),* 
+0+v)ker,au -Alei'ikeru +0+u) kei'2x)]

«
(+u) kei'zx )l (ii .127a ,b)

The derivation of these constants is shown in Appendix 
VIII.2.6, p. 2G5
The magnitude of B, and B2 is thus dependent upon the size of 
the insert and the particular R/t ratio. From the magnitudes 
pf B, and B2 the values of resultant force and moments, (eqts.
II.124a-d) are obtained.
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For amall values of p, where the dominant terma are ken*p 

Dl / n \and those involving —. (or - ) 9 the expressions for B, and
B2 (eqts. II.127a,b) can be simplified considerably tos-

B, = - PR 0 + J >>») 
2TTrp Et [ ft+-o)kerUi J

Bt = PR(l4PXl-b2)r_ R2k<Lt^< +vkkerAul V
2TrpEt L P J R*(l+x)ker'*er * (II.128a,b)

Theae aimplified expresaions for B, and B2 can be substituted 
in the resultant force and moment equations (IIe124a-d)o As 
an example the meridional direct force la selected^ i.e. eqt.
II.122a«

<ro = N&Ee = --£L—(6..kv:r/t +f(,,kei'%«) _ PP '
t O-V*>rt 2Ttr2t
a—ifl-T*) P r/»_^kej/ _fv>(errM - )kfctz7f _ 1 (II.l

27jU t* (' Wr>/ r/ ( Pke'*u / / (r/fl*j
i .e . dfo

r// ( Pker'*u / T/p (r/£J
The conntfrnt3 jpeviously uobained by the shallow shell treatment 
can also be samppinid when p is smallo Hence C# and Cq of
eqt. II.57a,t becomes-

Cg = _u Mei'f C9 XX (11.130)2 ker ' 2x* 2ker>u
The meridional direct stress from eqt. II.56o can be written

<*o - PVl2(l-v»)l?ke..',u + E I \ ke/Vl _ XL 1 .TT
ZTTjut2 l ker—/ / rf V kerr W r/ (i— j C11.15!)

The difference in eq^. 11.129 and 11.131 11vo in the constant 
looocilted with kei % „ ita actual value being smaller in the

case of the shallow aeell relationship, (eqt. 11.131). The 
percentage difference between the constants is shown in Fig. 
11.18c for various values of R/t and p. Although this is 
large it has negligible effect on the final stressowing to 
the very small value of the conatant compared with the other
constant s- GJr; - . and the association of the former constant
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(II .2) 111
with the leas dominant term in the expression*

For larger values of ja, the dominant terms In the oonstants B, and 

Bt eqts. II .127a,b are alwaya thoae involving R/t (o R/£») , all 

other terma are inalgnlfleant. In this caae the eonstanta B. 
and Bz reduce to a almllar form aa and C9 (eqt. II.77a,b) 

and the atreasea predicted are, therefore, Identical.

In a aimilar mnner, the reaultant moimnta and normal dis- 

plaeementa have been examined and compared with the ahallcw 

ahe11 expreasions. Aa a result of this It ia concluded that 

In the region of the 'die out5 distance, the 'shallow shell' 

theory predicts results in agreement with the. 'general ahell' 

approach for all values of

(b) The Concent^atnd Load at the Crovwu, Fig. II.6

The expressions for the resultant 

force and moment actions and for

the radial deflectoons are those 

quoted above for the rigid Insert 

eqts. II.224a-d and II.125. The

values of the two constanta B» and Fig. II.6

Bjoan be found in two ways. Firstly by allowing the radius

the rigid insert, Tp to tend t;o zero, and secondly by *

examining the singularity at the crown.

Using the first approach, the valuea of B, and B* are thoae 
>f eqts • II .t28a,b .

B, » - PRO+JXl-^*) r___ L2 nrpEt L (l+Jkeru ]

B2 = PR (lu-uXl-T**) +-uke^'ul (II.128a,b)2TrpFt L i"1 J R2(l+U)ker'2,A<
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Utilizhag the relationships for ker' and kei’ given In

App. VIII.8 , It is noted that for smaai values of p; ,

ker'^ -►• “ 1 and kt' -► _ uJaAM (ll.!32a,b)

Eqts. II.128a,b thus modify to:=
B, = + PR (l-V*)

2TEtt

where r_— 0, p-* 0 and

b2= PRfi-o2)r-n^u^M 2HEt? L

B, = PR (!->*) 
2HEt£

B2 — -PO-tJ*)^^

R*

as before

(II.133a,b)
2-tfEtR

In the second approach to determine B, and B2, the expressions 

for Nrr0 and from eqt. II. 124a,b are considered in the

vicinity of the crown.

For small values of Vf ;

ker r/f -~ - k r/f t keify^-Z , kerf — -j kef-.--ft ktyt (n ,i34a-d)

Kfirfe-iSir;5 *

Similarly an expression for Xo can be written from eqt. II.II80 

using the assumptions of eqts. II.122a-o and 11,123 and the 

relatoonships of eqts. II.134a-d.

+ -II.158.)
The horizontal deflection of the shell is given by the 

expression:

" “ ss

A = R 5io < (Ng$0-’V(f»fo}
Et ,

Utiliznng the assumption of eqts. 11.122 A — i (Nw) 
Et

which from eqts. Il.lSSapb is shown to approach the singular

value at the origin -—! fPR O-U2) _ 8,1 _L
(l-T>*) LEtt2ir

(11.136)
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For continuity, A»0 at the origin.
113 .

Thus from eqt. 11.136
(11.137)B, = PRO-U*)

Bt£2TT
Similarly at the origin Xo approaches the singular value* 
obtained from eqt. II.135o, of s- -_E— [B/uf* + B.l jL

t’o-im i?*+ *J r/t
For continuity at the origin Xe=O, thus:-

B2 = s - fylO-V3) (11.139)R* Et 2TTR V 1
It is seen that the two methods yield identical results for Bi&Bg. 

Using these constant* the foroe and moments* and from these
the direot and bending stresses, may be written from eqts. 11.124:

= - PR rkerzr/£ - _ _£g_2TT£r L 1 Ra J 2TTr»

(II.138)

whioh reduoes to

Thus vr>

Mm.

(II.149b)

(II.140o)

= -PVl2(l-T>»)ri<er'ft - rt'te'W +1 1 (11.140a)
2 it* lyf e*T7e“ (sy’J 

-£E_rkti%+ ktr'yt +vr/ktr7»_ kei'r/I) + X 12irt>l. ,.r/l ~vT'- (yt)*J

giving,- <re,0 =

, . * if fleer 7f - G-^keiW 4 )Tlt»L L J R4
±fpkerP> - +kfc£i7Zl(l +t>\L4)
SffL € tty rty J R*'

Thus <^8 • p-PJket'r/l + Vkerr/fj(i + D1^)

Prom eqt. IX .125, % s _£_^l+vXker54+1+6.^)+£fkei^(l-vr)l

<r. - PSaZSES) f kei % + (wXkerW-rHZk^g) 1 (TI ,zi et* L (i^)’(i-vt»/jj4) J i »•*«►«
It is noted that using the arsumptlon of localised load 

effect* p being small, the expressions for resultant foroe and

(II.140d)

moment derived by LECKIE (39) reduoe to those quoted above in
eqts. 11.140 (negleoting ’« as small oompared with unity). 

R4



 

 
 

 

 
 

 
 

 

 
 

 

(II©2)114.
Comparing these equations (II©140) with the shallow shell 
expressions eqts© IIo54a«e, it should be noted that terms con
taining t/R (or Vp ) are not present in the latter© For thin 
shells, the terms containing t/R may be considered negligible 
and for such shells the general shell equations solved for small 
co-latitude angles reduce to the shallow shell expressions for 
all values of r, excepting those extremely close to the crown 
r= 0© At the crown the 'general shell’ approach and also the 
'shallow shell' theory© allowing the rigid insert radius rp to 
approach zerop predict infinite values for the direct stress 
terms, and *50 © However, using the 'shallow shell' theory
again but in this case allowing the uniformly distributed area 
load3 of radius r^ to approach zero* it is noted that the values 
of <rr0 and are forced to remain finite, due to the boundary
conditions at r = 0©



 
 
 

 
 
 

 

 

 
 
 

 
 

 

(II.2) 1X5.

Fig, 11*19
1,

11,2,2 'BENDINCP MOMENT - ,19
The Insert is fixed to the shell 
at the orown, and loaded with a 
moment M aoting in the plane con
taining the normals drawn from a meridional 
line. The approach to this problem is 
the same as for the axisymmetrical case, 
in that membrane, inextensional and 
oscillatory solutions must be con
sidered, For the moment loading, 
the first harmonic is of relevanoe, i.e, n*
Membrane and Inextensional Solutions

Reference has been made to these solutions in Chapter I* 
p,47 and 48 • An outline of the relevant material Is given in 
Appendix VIII,5 from whence the following solutions are quoted, 
relevant for this type of loading,
Membrane Displacements for n = 1
From eqts, VIII.109, 110 and 111

V, = - M9I+U) [".£u I- cost _ 2cost 
4^^1^-t L 14 cos< sm’0 .

9r, a 0

»+ ,M(l4V)r_2 + 2 + cost ( \-cas,j> 1 (11,141,-0)
4lREt Lsrn*0 1+010 J

Inextensional Displacements
For n= 1, these correspond to body movements 

v, & D2 - D, cos < 

or, - Di S in ,
U, = D, - D2 cos < (II,148,n°)

where D, corresponds to a lateral displacement and 1 a rotation,



 
 

LL6 ( (II.2}
Resultant Force and Momenta
These are obtained from eqts® VIIIolOl and VIILeL14 of App.VLII.5

- -N$0( « “ (-M N^0, = - M cost
TP*sin30

Mc>(>, s - Mqq, = Mie ___ . Myef — Mik coi #
TSsin3# ITRstn^y

where -=ty,?(?*
Oacil-atory Solutions

These are presented belows°
fl-v)Ui = - _ _ (A,T, + A, T, + B.T, + 6z T4 )

Sin y

(l-iOtr, = A.T, + A,T,-f B, Tj + B, I4

(II.143a-i

(-l/jv, = A,(T, + 2 L2I2) + A2 ' I2- 2XT.) - B, -3 -ZX*T4) + Bz(T4-2**T3)

Nyf ~ £. t_  - A| ( T, cot - T| \ _ Ag ( Cot — Ty \(l »U*)R v K Sin'f J

- S' (V** -s-j ) - B,(7t^ -Jfr)]

Me = J A-I^Tzf ct'-IcttV-Az((x2l-f2a>ty+T2oDt'y)
’ (I-U')rL

+8 (l*! +T, cot< -is cofy) - B* (2%* t “ t4 coty -i-cty)]

Nye, * Nm,= -^t.. f A./Lcoy _ Ii \ - Ajf I 
(—D*(?L ' SinLy sr<p • ' €

cos I r2-N
srn*y Siny /

;6,f-ii^s^.-fy L; B^T,cos4 __j^U 
SinlV Sin$' ■ ' Siri2(b Sincp /JSin2(p

Sin1#

%, = _ I A,|2XYii^ - i_V ipxVWHlss +^yj)l
‘ i2(i-o*Mm>) .1 I v*1 k v * 'I

,r-2%»(T,cot<> - JL.) +V(2X1T. -T2«ot#-Hi[JL_ iut])l

+ -JL_) f y-2L2I3 -T4^ty-|.T;[2_ + Jw y|



 

 

 

 

 
 
 
 

 
 

 

 
 
 

(II.2) 117.
mm - jai

s _J=A

A,[(I+U)T> w 2XW^(TX-T2eot^)+-Ucot^(f,-Tla»t^)j

4A»^I+U)T2 + 2XW^ffl-T,cot^)+-Utot^(i-Tf©tf|

+ Bp+P)T3.2x*cot<t> (T4-T4<oty)4'Ucoty(fj-T|Cotf]j

4 Ba£ (t+lflT* +2X<cot<£ (T, -Tjcot^) +-ycot^(^-T4cet^

AL_r_2xVf4-T2cot^) 4 v(f, -T.cot^jl 
L JSm^

+_A2_r 2%*(t; -T,ut^)+v(^ -t, o>t^j| 
*• Sin^ L J
4-eL_r-2xJ(f4-T4«t#)4v(Tj-Tj£otd

Sin 4 L J
+-£^ Z5t’(f3 -Tjtet^4 D(T4-T4®t#|

(II.144a-l)
whore T,T4 and T,-► T4 are given by eqts. 11.120 and 11.121 

and k —. tz/iZR’
The above expressions containing four oonstants give the 

resultant foroe and moments In general form. As previously the 
terms associated with A, and A2 describe the stresses oauaed by 
loading of the lower or outer edge, and those with B, and Bz the 
top or orown of the shell. In the work that follows It is 
assumed that the outer edge of the shell Is sufficiently remote 
that the stresses associated with these boundaries do not 
Influence those associated with the 'orown1 loading.

Utilizing the assumptions of the looallzed effeot of the 
,oad contained In eqts. II.122a-c and of thin shells, eqt. 11.123, 
he resultant forces and moments may be written from eqts. 11.143 
rad 11.144, and the normal deflection w, from eqts. II.141b and
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11,1440, aa follows'
= ..it

Nee,

NO,

Mo,

Et R [n( ktC/f + Z«r'7A ft7l«rr/>-2ke.'7(')! _ MR
O-O H V W + W' WH

Et I? rft.f’kei'J . k<i?/-2ker'W_8Jk«rV^ + ^'!^ 
<•-»*) t‘1 1 -Tf ■&#-> *1 1 Vt (r/()zcJ

Et R ) B. (k« r/ „ 2ker'r/tK B,IkerVf - 2kti'7fV- _ Mt?
(-v*) e-| ' 'r/j _&(?> ' <Jl (r/t)1 ;J Tr3

Ft5 fR r O+u-izr2 ker'7j _ R4 fkerVi ~2kei'r7t\
r\-Vl)l^1(l+D) j ’1 t* t4' r/{ (•/£)’ J

_ uR^kti'/l j. 2ker‘r/t Ml 
f*i 7/f ■ w ;j

lftjfQ-u>)ltR2l<et'7- - £4ffM7t + 2^^'t)
L F C4' Vf (r/t)’ /

*Vbf7t _ Zfcei'7Ml)
A r/t w/e)1 /Jj

+URit-j

M„,=

+ vf 
e

Mt2
I2TT7*

Et* fB, rt/|[-H>0l2l?2kec'Ti + J?4fka-r7- _ 2kei'7t\
-+u) | It2 ' t*' W Mi)1 J

2k<e‘

-2(i-v*)R2(i-
+ vR?(-kei'/f +k£i?l + 2k^/%\l 

t’V 7? I-/l)2 /I
.6, rP(l+v)l2R2 ke'r/f 4 £4f ketT; + 2krr'7f\ 
It’ f4' -/j |7/t)2 I

+ vgi / k*- ' ft - kcj-t + 2kei' ftV-1 _ Mt*
t2' /t 70" /J| I2TI-3

MO, - Et’
I2|--»*)-?*I-+I>}

’ B, r. p4/ ker 7? - ZkdWt + Vg2/_ keir/J _ 2ktr'7(M 
L t*\ r/| |r/£)2 / £’V r/t It/t)* /I(tft)* 'J

or, = I
(l-v*)

r/t
8f[ R4(. ke7l _ 2ker'r7(\ + VMkkrZl - Zkejf) 
A tA >/( "WF 2 TA r/l (r/t*) /J

w

fB,(ker-r7t + |2ket'/£) 4 B2(kti'r/g - fjker''^)]

UntL
I2ttr3

(Ilo145a-

These equations contain two constants B, and B2whtch are 
determined from the boundary conditions at the insert.



 

 

 
 

 
 

 

 

 

 

 

 

(II.2) 119.
Determination of the Constanta

The boundary conditions at the insert, r = rp , are:-

H ? £f = (NBBoe-UrryEt = 0 (II.146a,b)
Prom which the values of the constants B, and B2 are as folOwrss-

B, = - M(l+T)Xi-TF)Lnkeru -2ed'u + Rfe ker ju 4rukciru)]
TT EW R* * keuu + kerr keo-U- O+rflju^kei’u 4 ker*ru) 4* 44(ke</^u 4 k^^r^'5«) 4 4ju(krrxi ke/4 -kei^iker>u)JJ„

4 ^(kkeixi kervu - kei" r keiru) - 2>ux(kei/5u 4 ke-‘2n)

Ba = - M(l+rXl-~Q))[,kkeLyU 4 2kerX< + %p(kkcizu - xuker-p]

KEt,u £' p^Ckei'A kel-u + keirTkevu)- (l4))£u2(keiru + kerr«)4

* + 4(k tiZ + ke-'2r)44/u(kerAikei/M - kd'# kecrUjj 

4#3(kez# kerr - ker V keiiu) -2>U*( kei' # 4ker'%)

(II.447a,b)

The derivation of these constants is shown in Appendix.VIII.2T.7
(h«4s)

The mafgitudes of Bt and B^which are dependent upon the 

size of the insert and the particular R/fc ratio, enable the 
values of the resultant force and moimnts (eqts. II.145a-g) 
to be obtained.

As in the case of the radial loading, comparison is to be 

made between the expressions for resultant force and moimnt 
obtained by the shallow shell theory and those obtained in this
section•

Considering firstly the resultant force expressions for 

different p values;-

For small values of p, where the dominant terms are ker'p 

and those involving R/t (or R/£* ), the expressions for B, and 
Bi(eqts. II.147a,b) can be simplified considerably:-



 

 

 

 

 

 

 

 

 

 

 

190 (II.2)

Thus s- B, =

B2 -

<1 or© r X I

(2k<r> -t-^ukei/x)
[X]

MO+tQO - i)z) [2 kcr'xx + ^2 (2ket',u - v far#)]
TTEtjul R|a [xj (II.148a,b)

= 0+^)[X4 ’(kei’xj +kerxx)+ 4(kciZz>u + ker'^w)
+ 4>w (keou kei>u - kei >u ker/i)] - ju3(k& m ker# 4keL% kei/x)

Those simplified expressions for Bs and B^when substituted 
in eqts. 11.145 yield values for the resultant foroes and 
moments. As an example of the resultant force, the meridional 
direct stress is as follows;-

» N^. cos9 = -Eg rs.fket// 4. gker'^^. B,(k«rr/l - 2 keiz \lco50 
t t (l-Dx)ea L ‘ r/i (r/i)x ' r/i <J7/ W

- MR cos0
7Tr3t

rr0 M-ZlgQ-V1) G+i>)
pc]

(2ker'/U + aktiv) T ktlVl + 2 ker' %
L n (r/i)

p]

---------------w 4

_ Mg cos 9 (11.149)TTr^t
The equation for o?.D obtained by the shallow shell treatment is 
presented in eqt. II.68a and by substituting for the constants 
C3 „ and C5 from eqts. 11.66 and IIo67asb, may be written as 
follows

<rn = (2ker'xi-»xikeiju)[ktiT/(_ 4.2ker'r/f 1 
L r/t (VtY Jt’T-u t [XJ

-feket'-u-uker-ulT ktrr/f _ zkti'l7l] 
L W (VlY J ► cos 9 - MR cos 9 

Ir3t
(11.150)

As in the radial loading a difference ocours in the values



 

Mrr 4V SHALLOW' SHELL

The Ratio of the MQmqhum M&miwnal Mqment, Mrr ut r* r„)

PesoncriED by the General and Shallow Shell Treatments ?oe
various % tAr/os ano a values when a Pioid Inseer is lesuwo

With a Benoins Moment



 
 

 
 

 

 

 

 

 

 
 

 

 
 

(ii.2) ia

of the smaller of the two constants obtained by the two methods 
of approach. The magnitude of this difference depends upon the 
particular R/t ratio and the p value. Although the percentage 
difference Is large, greater In magnitude though similar In form 
to the radial case, Fig. 11.18, It has negligible effeot on the 
final stress owing to the small magnitude of the oonstant, oom- 
pared with the other larger constant, and the association of 
the oonstant with the less dominant term In the expression.

Similar remarks may also be made about the other dlreot
stresses•

For the larger values of p, the dominant terms In B, and 
B2 are always those Involving R/t, aid the constants B, and Bx 
reduoe to the same form as C3 and C4 of eqts. II.67a,b.

It may, therefore, be concluded that for all values of p 
the direct stresses obtained from the shallow shell theory are 
In agreement with those predicted by the general shell approaoh.

Regarding the resultant moments, It Is noted that In the
Immediate vlolnlty of the Insert considerable divergence ooours
between the shallow shell and the general shell treatments.
This Is mainly Influenced by the term Mt* which Is present Is l2Tr5
the expresslonr for Mrr,, and Mar , eqts. II.145d-f. This
term la the moment arising from the membrane or mld-surfaoe dis
placements. The difference In the results obtained by tw 
methods depends upon p and the R/t ratio, and Is shown Is Fig.
11.20, for the maximum meridional moment Mrr, (at r « xp • In 
this case the general shell treatment predlots values whloh are 
higher than the shallow shell. This difference, however, is
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a purely local effect in the immediate vicinity of the insert, 
aa indicated by Figo IIc21o

A comparison between the two treatments for the other moment 
actions yields a similar type of result to that presented for Mw, 
Aa pointed out above, and shown in Fig o II021, these effects are 
only of significance in the region of the insert, and then only 
of importance when p Is small



 

F/6.1L-2I TH£ VARIATION OP THE RATIO QE Mrr VALUES PREDICTED BY THE

General a shallow shell treatments foe ft-240 ano

AL-O‘lt AS Vi INCREASES.
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II.2.5 'TWISTING* MOMENT - Pig.11,22

The shell Is loaded by a moment T 
in the plane of the shell and 
aoting at its orown, and trans
mitted to the shell by a rigid 
insert, as lndloated In Fig.II.22. 
llentorane Solutions
Resultant Foroes « Nee « 0 , N^e
Displacements

c i^T

Fig.II.22

= _JL2TTr (II.151a-o)

The relevant deformation-strain relationship is given In 
Appendix VIII.5:-

- Ucosf + Rfy^Sinf (VIII.lD2o)
whloh in this oase simplifies tos- du - ucotj & R&fe (II .132) 
Using the appropriate strain relationship!- (11.153)
and substituting eqts. II.lSlo into eqt. 11.152, the following 
is obtained s-

du _ u cot EZ.2TTr*Gt
U » —I I"- £cotd ■+ Sin d. lu I- cosd 1 + Ci sin 4

STTRGtL r

where Cfsm^ may be considered as an inextenslonal displacement. 
Sinoe ■ 0, it follows that - 0 . Thus ths
straln-dlsplaoement equations, eqts. VIII.102, (Appendix VIII.5) 
beoomet- + ur « 0 « Vcos^ + ursir\<j) sO (II.15flb£)

Thus (11.154)

From eqts. II .155a ,b, - Vcot^ = 0
and, therefore, VsCzsinf and thus (II.156a,b)

Rqt. II.156a oan only satisfy the physloal aspects of tbs problem 
when Ct * 0. Thus v » w a 0. (11.157)



 

 

 

 

 

 

 

 
 

124 (11.2) i
Resultant Momenta

As in the case of the earlier types of loading, the dia—--'1 
placement u will produoe moment actions These relation
ships are given in full in Appendix 7III.5 eqts. VIII.112jfor 
this case they simplify tos- .*

M00 = = 0

M <J0 Et3
12(1-1*) I 2

ru_I<i - _u 1 2 L 30 J (IIol58a-e)
Substituting eqt. 11.154 in eqt. II .158c:<

Mao TtJ
24TTRssm)0

(11.159)
Outer Boundary

If the shell is fixed at the outer boundary r = , or■ * * •
-•-j.Then u = 0. Thus from eqt. 11.154, C, 
and in eqt. 11.154:-

_I__r2cOt J> - sin I ws—
matt * '* i^aJ5

U S T L 2c©tf s Ss\0 II Jos0 -j 2tott- s in^- J m0U l-QoS&l (IIolSO)
•«. dVRGt L l-noof Sin^ l+O>s<2j J

Using r and rj , sOq0=5- ,
u - _T—TVz'-rS _ -R)-r) + _L/«,frYR4^a~r/ VIr 

4-itcR (rf Rr) R* p+ypT-;;?Rr*
when R «<o , i.e. for the flat plate

(11.161)

U » —T f_L « JL 1 r , which Is identical to eqt.4!t(6 Di* r) J
VTII.73e of Appendix 7111.3. ’A Twisting Moment applied to a 
Flat Plate.'
Oscillatory Solutions

In the case of the torsion problem equations, II.151a-c, 
158a,b, 159 and 11.161, represent the complete solution. 
HATVRsS*— and LECdE^C) potot out that the form of R in the

oscillatory solution would be ©Rfa) . (For the other cases,
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R ■ Rn (0) oosne was adequate) .

185,
However, when thia la aub-

atltuted In the osolllatory forma of u, v and w whloh are
(lT^)u »f$R + dRl _J__ , (l—vjv « aR + £R Jan

L9e ae J 3< op
(|o->)<w ■ RR+f^R(where R ■ and F« ■> I + ?<%* ,

l-v l+v R

It la noted that while u la Independent of 8, and dependent 
only upon 0, the vOLues of v and w are not Independent of 8.
Thus the osolllatory solutions oannot exist.

The relationships for fy and for u have also been obtained 
by an alternative method, given In Appendix VIII.4. The 
expressions are seen to be Identloal,

A comparison of the relationships for the resultant foroes 
obtained by this and by the shallow-ahell approaoh eqta, 11,88 
lndloate that the two are Identloal, The values of u predioted 
by equations 11.861 (shaalow slielX) and 11,111 (genaral shell), 
do not differ by nwea hhna ,.2a fr a the rimee o a thin aShO a used 
In this Investigation. The term Is of very lma00 magnitude
oompared to Nps • For the sheila used In this Investigation
Nft varies from 720 to 11500 and Is thus negle^ed.



 

 
 

 

 
 

 

 

 
 

 

 

  

 

II. 3 © TANGENTIAL LOAD - FlgoIIe23
A spherical Shell Is loaded by a 
tangential load H in the plane of 

the shell and acting at its crown©
The foroe is transmitted to the 
snell by means of a rigid cylindri
cal insert' This case ib similar
to the moment loading and can be =__________
represented by the first harnxuc*, n » L» Three solutions 
exist as before - meabm.e, inextensional and oscillatory © 
Membrane and Inextensional Solutions

Figo IIo25

An outline of these solutions is given in Appendix VTII®5 
from whence the following solutions are quoted, relevant to thia 
type of loadingo
Membrane Displacements
From eqts© VIII.109, X10 and 111

V, = - H(l+tt) j 2(l - oos>) + 2 ■ 6I ©cos 4 
4TEt L Sin*<^ l + co$4

If, = - M0-rl?r sin </»lu I-eos I _ 2 cos 4 ]4lTEt L S? $ ,

U, H(H*) ■ Zp-cof) 
4TTEh . s»n<

+ 2 ■+ Pf -cos<© l-cos</>|
I +cosf> J

Inextensional Displacements (for n = 1.
v, = D 2 — D, co s < 
or, = - D, Sin
U< = D. - D- cos f

(II.162a-0 
These are body movemen

(IIO163a
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Resultant Force snd Momenta

id7.

tip -cos#)
TTR sm3<£

r 1 Tfsu\*<f>

These are obtained from eqta. VIII.101 and VIII.114 of 
Appendix VIII.5.

- N<^ - We®, = N^b, =

- - Mee, = HE ,
TTsm3^

where » tz/j2R2 

Qaoillatory Solutions
These are exactly those of eqts. II.144a-i whioh are 

valid for values of in the region IT > 0 >0 . The complexity 

of these expressions can be reduced when >6 by using the
asymptotic expansions of the Bessel and Kelvin functions* Such 
simplified expressions relevant to this analysis are given belowt

(ll*164a-f)

U, = - Rfl + v)
•JZXEt sin*2^

eX^C,Sir>M + 3)- C2CO5(X^ + I)J 

eX^[E»cosf%^ + p+E25in(%0+I)J

v; = R (I + v)__ , e^fCjCosX^ +C2sinx^l
E-tvW [ I J

+ e’X^E, cos X<t> E2smX</>J

75 xr(tr, J- e%*rc,cos(x0 + 1) 4 CIsi'n<X^ + 2)1 
EtvW 1 L 4 4 J

4e~’t*[E,Sin(x04l) - E2cosM> 4 ’)jl

(II.165a-o)
In this particular case the effect of the outer edge is 

examined, which in the earlier oases has been assumed remote*
The boundary conditions at this outer edge are used to determine



 

 

 
 

 

 

 

 

 

 

 
 

128. (II.2)
:he values of the inextensional displacements and also the resull 
ant forces at the edge.

A3 will be appreciated from the foregoing, the analytical 
solutions are exceedingly complex. In thia instance the exam
ination of the outer-edge conditions introduces additional 
coimplications which makes the presentation a f a wholly symbolic 
solution exceedingly clumsy. In a onsequenne oad also as a matt'
of variety a in this instance a a numerical solution is presented 
for a specific case which has been examined by the author 
experimentally.

The Analysis of a lin Shell of 60in radius Fixed at the Outer 
jdge, and ioaded.with a. Tangential Load Ho - FigeII.24 
Taking Young ?s modulus for stee!~ 13400T/ln * l I
and Poisson’s ratio V=O,3
the constant *1 * V t A

Flgoll 024J 9 SOuter Edge Connaction 0 .322rad - 18-58
Membrane Displacements

Substituting the relevant dimensions in eqts. II .162a-c -> 
V, a - »•? 4 67xJO"4M 

s + 2»!6J6> |3"4Hor,

u, * ~l'24£7x I(O4M (II.166a-c)
The expression for the tangent rotation 1, is obtained froms-

1.

1,

i (. v, 1 
R ‘ dM 1

- M(I'+l) T~2 cod 
VHEtR *

Thus at the outer edge 1(

and from aqta. II.162a,b;-
(II .167) 

(II^Sa)

In 1
t +c&$j> A

• -0 ai08y10H
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Inextensional Displacements from eqt.II.163a-c

v, = D2 - D,x
OT, = - D,x 0-52500
U, = D, - D2 x0-94571 (II.168a-))

The corresponding value of X, is obtained from Xi = (<^1 - V,J
i.e. X , ■© - D2/6O (^^.^^<))

Oscillatory Displacements
When considering the outer edge it is possible to use the 

simplified relations, eqts.II.165a-c, since JXf ( = 9.16) > 6.
The relevant part of the equations II.165a-c are those involving 
6-^ , it being assumed that the edge-bending effeots die out so 

that they do not affect the other edge.
Thus U ; — RQl+v) I" C, + %) _ C^aos (%$ -1)1

^XEtsmn^L 4 4 J
I* C, , cos<> + C2sm7C<^"l 

E tVs„ < L -I
X.R I"- C.cosOt} o-J)-C2sinf(x0 + 5)1 (II.l*9a-o)

EtVsin^ L _
and — - 7SC22 (II.170a,b)

Thus at the outer edge the oscillatory displacement terms are:-
U, » - 0 .00397C, - 0.0020r?CSi

V, « 0.00899, 4- 0.0125C2

Vi =

where C. = e—C
W, *

RX,
=t - 0 . 090CC, - 0.7946C2
= 9.103C, - 22.057C2 (II.17la-d)

Boundary Condition at the Outer Edge
u, = v, = s, » X, - 0 (II.172a-d)

These relationships give rise to four simultaneous equations, 
obtained by combining the membrane, Inextensional and oscillatory 
displacements, from which the four constants can be determined.
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Using in addition eqt ©II ©X70a>b < these are found to be:-
C, =40 ©500iI0'tkp C2 x+0 dSI/iO *H© D,©-0 ©67I© 10 *H, D?©- - 2o05il0^

(II©173a~d
Details cf the derivation of these constants is given in Append 
VIII c2.i 266
It is thus possible to determine the stress distriDution at the
outer edge from the resultant force and moment expressions^
suitably simplified « since ©/?'*-$> 6 © The resultant force express^
are am fellowsi- NJfhp. • - -© C? smX/j© _ HQ- <os£))Vsn^TL J Tssir-*^

Nfln - /i. *_ | e coc (-xf ■+ J) 4 C, sin(x^i ijj, 4 Hp-cas^)
ViW I 1 + * 'J in?

‘ rex^(cfcdsx^ 4 (11.174
I. J TT(?sir\*f

These results are presented for the particular shelly using 
the values obtained for C, and C%> in Fig. II.25. As expected 
the values of the above resultant forces are relatively small 
compared with those at the insert

In a similar manner the resultant moments can be determine! 
These have small magnitude© though give rise to approximately t 
same value of stress on the surface as do th© corresponding dir
stresses ©
Rigid Insert Connection

Various sizes of insert have been considered in the invest 
gat ion © By way of ejamnple rp =© OofCin is selected ©

In determining the stresses in the shell it Ia necessary 
to consider both the membrane and oscillatory solutions9 i©e© 
eqts. H©162P II©I64 and II©I44© In the case of the oscll©
latory solutions © only those terms associated with Bs and Bz ar 
considered since the edge-bending effects die out quickly© Thu
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181.(II.2)
two constants B, and Ba must be determined for solution. These 
are obtained by considering the boundary conditions at r = rp 
Boundary Conditions at r * rf = 0.50in > < * 0.0098 radian

= o aad £e = (N00--uNrr)/Et = o (H.l= 5a,b)
By combining membrane, nnextedsiodal and oscillatory solutions, 
two simultaneous equations in Bjand are obtained by consider
ing eqts. II .175a -b. The resulting values for B, and B£ are
as follows?- B,= -2.622x 10'-H, Bz»-1.920 x io“* H (II.176a,b)

It is of interest to point out that for the point or oonced- 
— £trated horizontal force Ba=. 0, and B2= -2.000 - Hx JO •

The values of B, and obtained in eqt. II.176a,b provide the 
basis of computation for determining the resultant forces at any 
particular $ value (or r value), using the oscillatory expressions 
eqts. II.144a-i and the corresponding membrane expressions 8E.164.

In this investigation a range of values of rp have been 
examined namely rp=0o00, 0.50, 0.7 5, 1 . ,0 and 1.50in. The pro
cedure for solution is as above, in that the constants B, and B2 
are found for the particular insert. These values then serve 
as the basis of further computations for finding the resultant 
forces or direct stresses for any <jf or r value. The complete
family of curves is presented in Figs. II.26.

It is noted that these curves are similar in form to those
detained for the shallow shell analysis (Fig.II.16) but with
light differences particularly noticeable in the circumferential 
tresses. Graphs are plotted in Fig.H.27 showing this 
omparison for rp*0.50nn and 1.50id.
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The Resultant Moments which have been considered negligible 
in the shallow shell treatment can also be calculated from the 
oscillatory and membrane solutions of the general theory. These 
are of small magnitude compared with the resultant forces and 
are therefore not shown.

The derivation of the constants given in eqtoIIoI76a©b 
is given in detail in Appendix VIII .52.8b p.267.
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II.3 THE INFLUENCE LINE APPROACH

.3.I ’BASIC © OR UNIT ACTIONS

:i .3.2 INFLUENCE LINES

:I.3.3 THE SHALLOW CAP



 
 

 

 
 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

 

(II.3) 134
II.3 INFLUENCE LINE APPROACH

In the field of shell analysis there is a need for a 
generally applicable and flexible method capable of yielding 
solutions to a wide variety of complex design problems. The 
principle of superposition lends itself to the development of 
such a method utilizing an Influence line concept derived from 
the effects of 'basic* unit actions. This method is well 
known in other fields of structural analysis, and its application 
to shell problems is a restatement rather than a rediscovery of 
Its basic Ideas.

The resultant force, moment and displacement relations 
presented in this thesis have been obtained from fundamental 
differential equations which have been simplified and linearized 
to enable them to be solved. This implies that within the 
approximations stipulated the principle of superposition is 
applicable to both the stresses and diiplacenmnta.

II .3 .l 'BASIC* or UNST AACIIOS
Any load action at a point on a shell caa be .bokoe down 

into basic components a f radiil aad A aa geei 15 ial loads, 'n^nitng' 
and 'twisting' moments . If the principle of superposition is 
assumed to apply, the stresses and displacements due to the 
original load action may be obtained by combining appropriately 
those corresponding to the individual basic actions. These 
individual basic actions have been fully analysed in Chapter 
EI.l and 2 of the thesis and the solutions obtained will now be 
ltilised in connection with the method presented.



 
 

 
 
 

 

 

 

 
 

 
 

 
 
 
 
 

 

 

I35o (II .3)

The main feature common to both stresses and deformations 
arising from these basic actions is their localized nature, in 
that their magnitudes reduce to practically negligible values 
within a relatively short distance from the point of application 
of the load action. Such a distance is referred to as the 'die 
out© distance.

II ©3 o2 INFLUENCE LINES
The basic concept can best be outlined in a qualitative 

manner with reference, for example, to the determination of de
formations such as normal deflections of a shell. The method 
is naturally of general application for the analysis of both 
deformations aid stress actions.

Consider two points C and D on the surface of a shell shown 
in Fig. II.28. If the principle of superposition applies,
Maxwell's reciprocal theorem for deflections is also operative.
In simple terms this reduces to a statement of 'reciprocal 
symmetry', wCo = *oc where wcois, say, the normal deflection at 
C due to a radial unit load at D, while wDC is the normal deflei 
tion at D due to a unit normal load at C. In consequence, the I 
variation of the normal deflection at C, as a unit load travels! 
along the load path AB, may be obtained rapidly by evaluating I 

the normal deflections at every point along AB due to a unit j

normal load applied at C only to the otherwise unloaded shell. Sj 

The curve so obtained is the influence line for the normal j 
deflection at C, and may be derived for spherical shells for J

the 'basic’ action presented earlier. ■
To show the use of the method, consider a radial line load!



 

Fa.LZ8 The Influence Line Concept



 
 

 

 

 
 
 

 

 

 
 

 

 

 
 

 
 

 

(II .3) 136•

of varying distribution p= F(s), acting on the surface of a shell 
along th© path AB as shown in Fig, II .188. It is required to 
obtain the normal deflection at a point C on the surface of the 
shell•

Assume that the load p is removed and a unit concentrated
normal load is applied at C and that the normal deflections
along the path AB, due to this unit load are known from the
influence line as given in Fig. 11.28. The deflection at C
due to the loading p becomes:- 

6 r 6As = J wds = J F(s)to-e(5.
'A

The integral represents the area from A to B under a 
curve obtained by multiplying each ordinate of the load distri
bution with the corresponding ordinate of the influence line.
This can be evaluated by direct integration or in cases of 
irregular loading by graphical, semi graphical or numerical means

If the load p is not a ’concentrated1 line load but acts 
over a finite width d, this can be catered for sufficiently 
accurately in design analysis, by applying the unit load at C 
not as a concentrated load but distributed over a circular area
of diameter d.

Where the load p acts over an area rather than a line path, 
a series of similar influence lines covering the load area and 
providing an influence surface can be derived. The integral 
effect at C is then obtained as the volume between the shell and 
a surface derived by multiplying each load ordinate by its appro
priate influence ordinate, the evaluation again being carried out 
by any convenient means.



 
 
 

 
 

 

 
 

 

 
 

 
 
 

 
 

 
 

 
 
 
 
 

 

(II.3)137.
II.3.3 THE SHALLOW CAP

The basic advantage of the method is that the primary 
analysis necessary is always that of a unit radial or tangential 
load, moment or torque, as the case may he, concentrated or dis
tributed over a small area. These analyses are presented 
earlier In this section. The unit action may then be considers 
to act at the centre or crown of a shallow cap the extent of 
which corresponds to the ’die out8 distance for the particular 
action in question. In this way the analysis of essentially 
unsymmetrical problems may be tackled and a solution obtained, 

reference being made only to the corresponding unit actions.
There is a further point of Interest which permits the 

application of the method outlined as an approximation to shells 
of varying form. The effects of a load acting at a point or 
small area on a piate-struoture die out fairly rapidly with 
distance from the point of action. Thia implies that the 
analysis of the effect of the unit action is influenced 
p imarily by the shape of the shell at, and in the near vicinitj 
of, the point where the unit action is applied. Generally the 
shape of any shell, provided it is of relatively large radius oi 
curvature, can be approximated to that of a spherical or cylin
drical segment. 9 in the localized region where the effect of the
lead is considered. i.e. within the ’die out’ distance. For th 
region, in consequence, the available relevant unit action solufc; 
may be utilised. If the shell is of such a form that thia appro 
mation is not permissible and no analysis of the unit action is 
possible, recourse may be had to model experiments from which t 
appropriate influence lines can be obtained empirically.

The next section of the thesis presents tne solution of a 
series of problems, using the method outlined.
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CHAPTER III. APPLICATIONS OP THE INFLUENCE
LISE METHOD TO SPHERICAL SHELLS.



 
 

 

 

 

 
 

 
 
 

 

139. am

The Influence Line Method outlined in Chapter II.3 is 
capable of wide application to cases of complex loading, without 
any restriction as to uniformity and symmetry of load distri
bution and loading path.

Although the method is applicable to complex loading, 
certain applications are presented In this chapter, which are 
also capable of solution by conventional methods. These rela
tively simple applications have been Intentionally included so 
as to serve to establish the validity of the Influence Line Metl 
through comparislons of solutions obtained by the method with 
those derived by conventional means.

The applications presented illustrate the use of the metho< 
for each of the basic actions given earlier, In Chapter II, 
namely s radial and tangential loading, bending and twisting 
moments. A final application is included which illustrates th 
method applied to the solution of interaction problems.
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111.1 A UNIFORMLY DISTRIBUTED RADIAL IOAD
111.1.1 ON A COMPIETE GRUSAT CIRCLE
111.1.2 ROUNI, TIE CIRCUMFERENCE OF A CIRCULAR. RING

111.2 A VARYING RADIAL LOAD DISTRIBUTED ROUND THE CIRCUM-
----- FERENCE OF A CIRCULAR RING___________________

III .3 A VARYING 'BENDING' MOMENT DISTRIBUTED ROTND THE 
  CIRCUMFERENCE OF A CIRCULAR RING_________________

III.4 A 'TWISTDIG’ MOMENT UNIFORMLY DISTRIBUTED ROUND THE 
----- CIRCUMFERENCE OF A CIRCULAR RING

111.5 A TANGENTIAL SHEAR LOAD UNIFORMLY DISTRIBUTED ROTND
----- THE CIRCUMFERENCE OF A CIRCULAR RDNG________________

111.6----- THE INTERACTION EFFECTS BETWEEN A SPHERICAL SHELL 
----- AND A CYLINDRICAL SKIRT



5PMERICAL CAP

Fi<6. Hl’ I /) Radial Line Load al tee lduttor of A

spherical Shell.
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III.l A UN IFORMLY DISTRIBUTED RADIAL LOAD 
ON A SPHERICAL VESSEL

III.l.l IN IFORMLY DISTRIBUTED ON A COMPLETE GREAT CIRCLE
The first example Is that of a radial line load (i.e. 

zero wide) p f unit length, uniformly d lstrihuted on a complete 
great circle of the spherioal shell, Fig.III.l. Both the 
radial deflection and resultant moments will be determined at 
any point C, on the loaded great circle.
Derivation of Radial Deflection at C ((ee Fig.III.l)

The applied load, pf unit length, is and a unit
concentrated radial load is applied at C. The radial deflec

eqt. II.54.:- 
Putting P« 1 and re-arranging,

tions along the great circle due to this unit load are given by
la = PRVl2(I~V*) ktir/i 

2>Et*
w - RCtf-V^T kei.^ ......

---f------  (IU ,l)
where r is the polar radius within the spherioal cap. (Flg.BI.D
The totald eflection due to the loading over the whole great

■6. (III.2)oircle is thus:- Ac = f \>tuds 
•A

where A and B are the limits of the inhe&ra<b±OTn«
Owing to the rapid die out of the Kelvin fwnoticms, it may

r •be assumed that the arc dlstanoe s 
Thus eqt. Ill .2 becomes:- Ac = J dr 
Prom eqt. III.l, Ae = JA*'—^£30-ASF kei fydr

when the equator loading p/imit length is oonatanti-
At - PR GJ Cl -!>*)]* I kti % d 

TEt1 JA (III.9)
Since the function kei/|rapidly becomes negligible, the

limits A and B of eqt. Ill .3 may be taken to infinity, i.e.
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j z**’At = [3(|-iP)P1 kei ty dr
TTEt2 J- (III.4)

Ac = PI[[(l-V* 1)]* (III. 5) where / = r/£

A closed form of dy was not readily available. How
ever . owing to the rapid die out of the function , the integration 
was evaluated from the tabulated values (38, 106, 107) giving
Jkeiydya 1.1105. Hence the radial deflection at C by eqt.HE.5 
o
may be simplified tos-

Ar = -fg. £SO-V*)(-|) H (III.6)

Derivation of Resultant Moments at C
The method may be applied to the computation of the resul

tant moments in precisely the same fashion. Considering the 
shallow spherical cap, loaded with a radial load P= 1, the 
meridional and circumferential resultant moments, specified as 
M/r and M^e respectively are obtained from eqts. II.54c,d.

± f ker fa - H-0) keif 
2lT L € J

5_ = - _L f Vker rh ♦ 0-i>) kei' r/d 
90 2iL J

Mrr -

M90 = “ 2.J ck4r /f -» kei 7C| (III .7a,1
The planes in which these moments act are shown in Fig.Ill

Thus for a uniformly distributed load round the equator, the mer 
r cdlonal moment for the spherical shell Mrr = ( J 90 dr
-aO

Thus from eqt. Ill. .7b . Mrr = £ J (yktr + (l-vllui'Wjdr
1 O

cO
-= jtlJ(Vktrty -+ (i-y)

(III
The integrals contained in eqt. III.8 are dealt ,1th as

OO

beforee However, in the case of owing to the singul
ity condition of the function at q=0, the integral is dealt wi
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143.(III.1)
in two parts, I.e. fkrrp-dp = J kef-dp + kerf-dp.

The integral J kerp. dp is obtained by integrating ktfp.

kero = (0.115 93 - 4>o. a) + ±X1 a*- i(OII5 93 -6oota+15)3? - J_. 3?T /r44 r 4 d 7 10 144- 64
<+ J. _£] - LV

Thus y ktrp.dp = 1.17571.
The integral fkerp- <p being obtained in the manner as outlined

earlier.
The total integral is evaluated to gives-

Mrr rr [ (.l-U2)*) ] 4 (iii.9)
A t

and by a similar method
Mee = ■£E[3(l-t>z)(|)*J 

An alternative solution of this problem is obtained by
utilizing the expressions obtained by HETnTYI(for a shallow 

spherical cap. The edge is 
loaded by a uniformly distri- it
buted horizontal force p per 
unit length and moments Mrr 
per unit length. (Fig. iii.[) .

The horizontal displacement 
and

- l
' 4 (III.10)

due to p is 2\Rsn2< f 
Et 2

due to Mrr is 2 X sm < y^r
Et

The angular rotation of the edge of the shell, 
due to p is 2 A BC* I

Fig.III.3.

Et

4 Mir
ERt

due to Mrr is 
4 9/, _»x\/ox2

(Ill.lla-d)
whore A =■ [(l-l)J^^y

In the present case a complete sphere is loaded round a
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great circle with a radial line load. The problem, however, 

may be considered as that cf two hemispheres externally loaded 

with a horizontal (i.e. radial) uniformly distributed load ^2 

per unit length, and by the internal moment Mrr per unit length

acting as an external moment at the edge.

Utilizing equations III.lla-d,the horizontal

due to % -XPE and due to Mrr ia 2Aa Mrr
Et Et

and the rotation of the edge S"

due to 0% is \^P and due to Mrr is 4X1 Mrr
Et ERt

At the edge the chsnge in slope is zero .
_ _ —i

eqts. III.12c and d, Mrr -=- K_ p « [3(l y ] 4

The total radial deflection of the edge from eqts.

Ill .13 > A = XRf> - 2Xs Mrr
Ft ET ,

& = xtpo-v^yr

displacement

(lll„12a-d) 

Thus equating

(ill.13)
III.12a,b and

(III.14)

It is noted that the values for Mrr and A obtained by this 

analysis are exactly these of eqts. III.9 and III.6 obtained by 

the Influence Line method.



 

UNIFORMLY DISTRIBUTED RADIAL

fi6.IT.4- The .Spherical Shell, subjected to a 
gAoiAL Ring Load
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III.1.2 UNIFORMLY DISTRIBUTED RADIAL LOAD ON A SPHERICAL
VESSEL ROTND THE CIRCUMFERENCE OF A CIRCULAR RING - 
NOT A GREAT C IRCLE

In the second case of uniformly distributed radial loading, 
the load is of a given width and distributed round the circum
ference of a circular ring - not a great circle - as in Fig.III.4. 
In this case an alternative approach by CHINN ( } is available for 
comparison with the Influence Line Method.

It iiould be noted that while in the previous example 
stresses and deformations have been evaluated for a point on 
the load path, the wide applicability of the Influence Line 
Method is illustrated in this case by considering the stress and 
deformation conditions at points out with the load path.

The two cases analysed are as follows s-
(1) No restriction on change of slope of the shell, due to the 

loading, across and along the load path.
(2) Complete fixity of the shell, across and along the load 

path completely preventing a change of slope in the loaded 
region .
These cases incidentally correspond in practical terms to 

the load being transferred to the shell by an infinitely flexible 
and infinitely stiff tube respectively. In consequence the 
unit actions for the first case are those corresponding to uni
formly distributed radial load (eqts. 11.49 and 11.51) while in 
the second case those given by the rigid insert loading (eqts.H.56).

In order to illustrate the analysis only the case of radial
ring loading, with no restriction on change of slope will be 
presented in detail, that obtaining in the case of complete fixity-



 
 

 
 

 
 

 

 
 

 
 

 
 
 
 

 

146. (III .l)
being identical in approach.

Tt io further proposed to solve this case by means of a 
graphical approach, illustrating the method by considering a 
particular size of ring - 5^ inch mean dla. and of inch width 
acting on a 10 ft. diameter steel spherical shell of £ inch wal". 
thickness and subjected to a radial ring load of 1.60 ton unfbn 
distributed over the circular path. '

For this type of loading, the distance rc for the ring is 
taken as the mean radius of the load, i.e. 5.50/2 = 2.7 5 in.
Since i _ = 2.125 for this case, the value of ji for this
ring _ —75fai2s = 1.29 -
Determination of Radial Deflection. Consider any point C, 
(Fig. III.4), at which the radial deflection is required. The 
ring load is removed and a unit radial load applied at C which 
ia uniformly distributed over a circular area of diameter equal 
to the ring load path width, in this case i inch. The shell
under the action of this unit load only, may be regarded as 
rotationally symmetrical about C. The point C corresponds to 
the crown of a 9 shallow cap* loaded with a radial load at C.
It Is observed from the graphical representation of the equatioi 
for the radial deflection In Fig. II.5, that the influence of tj 
factor ’p’ is primarily manifested at small r/l values, the curs 
at higher values of r/l practically coinciding. From Fig.III.
it is seen, that for the range of p., from 0.03 to 0.10 the valu 
of deflect ion, for ail practical purposes coincide. The curve; 
may - be used, therefore, to give the value of radial deflection 
of any pointy radius r from C, (Fig. III.4) since for this
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147.(III.1)
particular case t = 2.125 and p. for the loading » r,y£-.0-OSM.

2i2-ttS
Consider by way of example one point on the loading path - 

point F - a distance r3 =. 1.94 in. from C (see Fig.III.4 and III.9) 
that is having a value of r/£ =. 1.94/2.125 = 0.914. From Fig.HI.5 
this corresponds to a value of 0.280. Using the given
shell dimensions, E» 13400 Ton/in“ and P = l; w = 0.020 in.

Radial deflections at other points of the load path suoh 
as A, D, G etc. (Figs, III.4 and III.6a) are obtained In exaotly 
the same way. The distribution of these deflections along the 
ring load path are shown pictorially (for easier visualization) 
in Fig. III.6a and are replotted on the base of the developed 
length of the ring load path in Fig. III.6b. This distribution 
is in faot the influence line for radial deflection at C, corres
ponding to a unit load traversing along the load path AB. The 
total radial deflection at C, due to the ring load along AB ia, 
therefore, given by the summation of the products; load x appro
priate ordinate of the influence line.

In the given case the ring load intensity is a constant
equal to 1.60/ip x 5.5 = 0.0927 ton per in. Thus the total
deflection at C becomes:- 0.0927 x Area enclosed by the
Influence line of Fig. III.6b. This area may be evaluated
numerically or graphically and Is found to be 0.140 In1 per ton.
Hence the deflection at C = 0.0927 x 0.140= 0.013 in. This is
shown non-dimensionally as Et*<*r on Fig. III.7. The ordinate 

PRfor the point C being J34oo*_(i/ x 0.013 =» 0.113 and th® abscissa 
1*60x60

4^250-<? where r is the radial distance of C measured from the 
I 2125 *
or own of the actual shell, i.e. the centre of the ring load.



 

 
 

 
 
 

 
 

 
 

 

 
 
 
 

 

 
 
 

 

 

148. (III.l).
The complete distribution of radial deflection along a grea 

cirole ia derived by taking a number of points, such as C along 

the selected great circle and computing the deflection for each 

as outlined shove, thia is shown on Fig* III .7. This distri

bution is also compared with that obtained using the line load
( 56)

analysis (i.eo zero width) proposed by CHINN ' . Any slight 

deviation that occurs takes place in the region of the load and 

is due to the fact that an allowance is made for the load path 

width m the influence line method, as opposed to the analysis 

developed by CHINN which deals with a line load of zero widths 

Bending and Direct Stresses. The basic procedure is exactly 

the same as for the radial deflections, although in the stress 

case, four quantities have to be considered,, These are the 

circumferential ani meridional bending and direct stress actions

Considering, as previously, a point such as C (Fig. III.6a^ 

on the surface of the shell, the ring load ia removed and a uni1 

radial load is app led at C as before. Aa in the case of the 

radial deflection. It is seen from the graphical representation 

of the bending and direct stresses. In Fig. II.3S4 that the l| 

Influence of the factor :/pr is primarily manifested at small 

r/£ values o It is seen in Fig* III .8 that for the range of u| 
from 0.03 to 0.10 only the bending stress curves show any noticl 

able variation aa different ’ji’ values are considered. Therefol 

envelope curves are used for this range of *u’ values In relatll 

to the direct and tending stresses. 1
In the case of the bending stress curves, the maximum hoi 

of the curve is more sensitive to the changes in value. T



 Fig. JL 7 The Distribution of Radial Deflection on a Shallow Shell subject 
to a Radial Ring Load P. applied mth no restriction of the slope
at the Load, me-n29 - A Compaeison between the Ieeeleece Line
and Chinn (s6' Analyses
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maximum bending stresses for a range of fu’ values from 0*03 in 
increments of 0.01 to 0.10 are shown in Fig. III.8. The complete 
bending stress curve for any ’p’ value within the above range is 
then obtained by using the envelope curve up to the relevant maxi
mum. Utilising Fig. Ill .8 and considering as before the point F 
(Fig.III.9) on the load path, as an example (the relevant = 0.914} 
the corresponding non-dimensional values of the bending stresses on
the outer loaded surface are JTa&k. 0*360 (compression) and 

,, P
Ofol =-0-064 (compression).

P
Substituting t = i in and P = 1 ton, the actual ’unit load’ 

bending stress values acting at F in Fig. III.9 are obtained as 
Ogg =-5.76 ton/in2 and ep.fi = --.03 "ton/in2 . These stresses are 
the circumferential aad mesiiitndl actions at F with respect to 
C as the crown of the shell. Their lines of actions in plan are 
perpendicular and parallel to the line CF as shown in Fig. III.9.

The ultimate aim of the analysis is to deduce the circum
ferential and meridional stresses at C due to the ring load. The 
lines of action of these stresses, from symmetry, are in the X and
Y directions at C and consequently only stress components in these*
directions are relevant. Thus the component actions in the X 
and Y directions of the stresses shown at F in Fig. III.9 have to 
be determined.

A convenient graphical method is the Mohr circle diagram 
shown in Fig. III.10 giving the stress components at F in the X * 
and Y directions respectively as -4.55 tons/in2 and

-2 .21 tons/in2 . The effect of shell curvature tais been 
disregarded in the stress resolutions as it is generally negligible
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in comparison with the effects of orientation.

Deriving the X and Y components of the bending stresses due 
to the unit load at C for other points of the load path A, D, G 
etc. leads, as in the case of deflections, to the appropriate 
influence lines for stress at C corresponding to a unit load 
traverse along the load path AB. These influence lines for the 
circumferential and meridional bending stresses at C, cja and 
respectively are shown plotted on the base of the developed lengt 
of the load path AB in Fig. III.11. The influence lines for the 
direct stress are obtained in an exactly similar way. .

A3 In the case of deflections the appropriate total values 
at C due to the ring load are given byt ring load intensity x 
area enclosed by the relevant influence line. Hence the circum 
ferentiai bending stress at C = 0.0927 x (area enclosed by 
Influence line — -17.70) =. -1.64 tons/in* , i.e. compressive on 
the outer surface. The meridional bending stress at C
* 0.0927 x (area enclosed by cryg influence line = + 3»99) = + 0-37 "ton/m 

i.e. tensile on the outer surface.
The complete distribution of all stresses along a great 

circle perpendicular to the ring load path is shown plotted in 
non-dimensional form in Fig. III.12. These are derived, as in 
the case of the deflections, by repeating the above procedure fo 
other points such as C along the selected great circle. The co 
ordinate values In Fig. 111,12 relevant to point C, with r now

I60



**•
\ IN*

CT^r-CIRCUMFERENTIAL BENDING 
' STRESS IN X DIRECTION

AREA ENCLOSED ■-17 70X0*4^^ 
IN

Fi6.HI.ll The Distribution of Bending Stresses rouno the loading path ab
DUE TO A UNIT LOAD AT C



 

Fie.TH.-i2 Tue of Direct Stresses and Bending 5thesses on the outer.

SURFACE OF A jHAUOW SHELL SUBJECT T A RADIAL &NG LAD P, APPLIED WTH

NO RESTRICTION OF SLOPE AT THE LOAD, u- 1-23 - 4 COMPARISON BETWEEN THE

Influence Li ne (load path width ^.o-osaa) ano Chinn (56) analyses



 fcJILIJ The Dksrg BjrtoN of Direct Stresses and Bending Stresses on the 
OUTER SURFACE OF A SHALLOW SHELL SUBJECT TO A RADIAL UlNS LOAD P,

APPLIED ST A <?/6/Q CONNECTION, u= 1-4.8 - 4 CJ^^g/60N BETWEEN THE

Influence Line (load Path moth ^/(~o-t25) and Chinn1 analyses



 
 

 

 

 

 
 

 

 

 

 
 

 

 
 
 

 
 
 
 

(III.l) 151.
As in the case of the deflections, these distributions are 

compared with those obtained using the analysis proposed by 
CHINN 56) , a slight deviation occurs in the region of the load, 

and as expected the Influence Line approach predicts values of 
bending stress slightly lower than the Chinn analysis.

The same procedure has been repeated for the case where the 
loading is applied by complete fixity of the shell across and 
along the load path. In this case the equations for the rigid 
insert loading serve as the basis for the unit actions, i.e.
Eqts. 11.56. A ring of 7.72 in mean diameter is welded to a 
spherical shell of f in thickness and 60 in radius. This corres 
ponds to a value of p for the ring of 1.48. The width of the 
load path is 0.66 in, which leads to a p for the load of 0.125. 
The unit actions are obtained from Fig* II.8 utilising the curves 
for p = 0 .125.

The Influence Line approach is compared, as previously, with 
the CHINN analysis on Fig. III.13, and is seen to predict results 
which are in agreement for all values of r, other than in the 
[immediate vicinity of the load.

Using the Influence Line approach a family of curves for 
pifferent ring p values can be obtained. It is, however, noted 
fchat comparing these values with those obtained by considering a 
lLlne load (i.e. zero width) the variations only take place in the 
LnmQediate vicinity of the load, for both cases. When the width 
fcf the line load is small compared with the diameter of the ring 
Itself, it is seen that the distribution of radial deflection and 
■ irect stresses approximate closely to those of the line load. In
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consequence the bending stress distribution may be obtained for
design purposes from the zero width line load distribution by 
’cutting-off? the peak of these stresses, over a width equal to ’ 

width of the load® These are shown on Fig. 111.14 for a ran® 
of ring ji value* indicating a suitable 8 cut-off’ for a particulai 
width of load*

III .2 A VARYING RADIAL LOAD DISTRIBUTED ROUND THE CIRCUM
FERENCE OF A CIRCULAR RING-_________________________

A varying radial lead of the form p.cosS, where p is the 
load intensity at 0 * 0, is distributed around the circumference 
of the load path (which may be defined by the tube-spherical she 
junction), as indicated in Fig, III.15.

It is required to determine the distribution of radial de
flections and stresses in the shell due to the above loading.
An alternative solution for a load path of zero width is present 

(56)by CHINN , and this enables the accuracy of the results from 
the Influence Line Method to be assessed.

In order to illustrate the method a specific case will be 
dealt with, namely, a spherical shell o.
60 in radiua. The circular ring ia 5
1 in width. From the shell dimensions 
p for the ring is 2,500/3-i006 = 0*332

The approach to thia problem is as 
except that since the radial loading is
round the load path, its variation (p.cca©) must be considered.

J in wall thickness anc

in mean diameter and of
l- Vft _ _ 3-0O6i». Thus 

l/i 2 (i-v*)

in previous examples, ; 
not uniformly distributJ
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(III.2) 153.
In order to illustrate the approach the radial deflection will 
be determined.

Considering a point C (Fig. III.16) on the surface of the 
shell at a distance 3.75 in (f^ = 1.25) measured in plan from the
load path centre at 0. The ring load is removed and a unit load
(P = 1) is applied at C uniformly distributed over a circular 
area of radius rp equal to the half width of the load path, in
this case 0.50 in. The corresponding vaLue of rr/£ for the
load is 0.17 e

Considering further a point F (Fig. III.16) on the load 
path of radial distance r = 1.75 in = 0.583) and using 
Fig. II.5 for p. = 0.17 (by interpolation for very small
values) it is possible to obtain a value for Et2 w/PR at 0-533 
namely Et2 w/PR = 0.339. Thus for P- 1, w = 6.06 x 10 3 in.

The load intensity per unit load path length at F (0 «23’) is 
p cos23° , giving the contribution of the load per unit length 
at F to the deflection at C, as w* = 6.06 x 10 % cos23° or w*/p»
5.6 x 10 J. Repeating the procedure for successive points such

as F on the load path the influence line diagram for the radial 
deflection at C, for the loading shown in Fig. III.15 is obtained. 
It is shown in Fig. III.16.

The area under the influence line gives the total radial 
deflections at C due to the imposed loading,

i.e. w/p = 1.80 x 10"* in1 per unt- of load (III.15)

I It is noted that the distribution of radial loading, p cos0, 
Ion the spherical shell would be produced by the application of a 
pending moment M to a tube of mean diameter equal to that of the
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Load path., and in The plana 0 - 0- 
Tube is only capable of a ppJ.ylng r adial h ooting to the ahtH 

Tte magnitude of The applied moment M is obtained from

(III.2)

IT bo inn asswned thet Th©

rij ±Fig. ILL a15s« M = ^pcase. r0.CrLos0.de a Ur0 (III.16)
rh ere ro is The mean raddnn a f h he h oad hath, in thia cash 2.5 in
Thus rro h eqt • LL 1.5 5 and 16 - = ±SO*IO

M 7Tr02
PLcTTing This as a non-dimensionaL parameter-

-. -3t o- 9/7*10'
-on3 _ ur = 0*280 
VeT cos0 M

against The r/f vaLue for The point C (5n = Xe25) a point on The
distribution curve for radia'L defection is obtained.

Repeating The whone procedure ouTLined above- for successive
points such as C aLong The great OC- The distribution of radiaL
defLecTion ia obtained- as in Fig. III.17. This is compared wi^
The analysis obtained using The Line Load anaLysis (i.e. zero 

(56)width) proposed by CHUTN ~ - again The agreement is exceX^nT.I
In detaining the dLsTfibuTl^ona of bending and direct sTressl 

along a great circle- The procedure for anaXysia of The str0a3a3| 
is The same as in The case of The uniformLy distributed Load in 
section III.1.2. The method of deaLing with The varying radial 
Load is The same as in The above derivation of The radiaL defies 
Tions. FoLLowing This procedure The compLehe resuLTs for This 
size of ring (> - 0.832) with a 1 in path width are presented
Fig.III.18 .

Any variation between These results end Those obtained by 
The CHINN anaXysis occurs in The region of The Loaded ring.



 ThC DISTRIBUTION Of fknAL PEFLgCTtON DuB TO A &£MDIM6 MOMENT APPutD

as a vamhg Radial Load - A Comparison between rue Inplubmc£
Line Method ano Chinn
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Applied moment on load path : tt at 0 ■ o and 
tt cos G at 0

Fig. Ht• 19 Varying Bending Moments on a Spherical Shell



 
 

 
 

 
 

 
 

 

 
 

 

 
 

 

 
 
 

(Ill.3) 155.

III.3 A VARYING 1 BENDING’ MOMENT DISTRIBUTED ROUND THE 
CIRCUMFERENCE OF A CIRCULAR RING

A varying meridionaL moment of The form m cos0- where m
is The moment intensity et 0 = 0 - is appmed to The sheH and
distributed around The circumference of The Load path (which
may be defined by The tube-sphericaL sheLL junction) as in
Fig. III .18.

As in earLier exampLes it is required to determine The 
distribution of redia! defections and stresses in the sheH 
due To the above Loading.

The same sheH and tube dimensions used in section III.2 
again serve To illustraTe the appro ahi.- i.e. T = | in- R = 60 in- 
ro= 2^ in end 1 in Load path width- yieLding:- H = 3.006
p for The ring = 0.832 and p for The Load = 0.17.

Considering again point C = 1.25) on The great circLe end 
F (fy = 0.583 with respect To C) on The Load path - Fig. III.20.
To satisfy The ’reciprocai symmetry* conditions necessary for 
The derivation of The influence Line - the unit moment vector 
eppMed ah C must be paraLlel in Line of action- but opposite 
in direction To the specified moment vector on The Load path 
aching at The point considered. Thus To obtain The ordinate 
at F of the infLuence Line for the appropriate bending moment 
at C the unit moment vector is appLied ah C as shown in Fig. III.20e

The effect of this unit moment- at any radius r- measured 
in pLan from C on The otherwise unLoaded sheLL is given in non
dimensionaL form by Fig. 11.12. The Load path width is aLLowed 
for as in The earlier cases - by a rigid circuLar insert of radius
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rr * 0,50 In (^ = 0.17) • The resulting values of the bending 

stresses ars obtained from Pigs. II.12a-c for r= 1.75 C7$ = O*58i)
as °Felvg* --l88 , orfrtftft--I’fei , Tr. BtVet = 00-87

McosG MceJ© M sinG
The angle 0 in tte abooe ii ttaa of the unit a cfcicns, and i s 

noted as 0° on Fig. III.20a, in this case (foOnt F) 0 u = 58°. 

Thus when M = 1 ten in and R and t as above (60 in and J in 

respectively)? - OG9G tt'n2, <0s= - 0*620 +/n*> X-»,s - 4O‘S4O//m2

Resolving these stress actions in the X and Y directions by 

means of the Mohr circle diagram Fig. III.20b gives <7- o=-l—lSt/ir/ I 

which is the ordinate at F of the influence line for the 

mer iodlonal bending stress at C. The specified moment

iniensity per unit ioa 1 path length at F (0 = 23°) is m cos 23° I 
6iving the contribution of the moment per unit length at F to tM 

meriodional bending stress at- C as <7* = -1.185 m cos 23*, i.e. I

= -1.082. Im L
Repeating thia procedure for successive points such as F J 

on the load path, the influence line diagram for the meridionall 

banding stress at C, for the moment loading shown in Fig.III.19l 

is obtained. it 19 shown in Fig. III.21. |j

The a^aa between the graph aid the base line gives the totl 

meridional bending stress at C due to the imposed loading, for M 

this case equal to -4.82 in’ . That is:- «

^ra/m = --4.82 per ton in. (111.17)1

It is noted that the distribution of moment, m cos©, on th® 

apierical shell would arise due to the application of a bending® 

moient M to a cube of mean diameter equal to that of the load jl 

palh, and in the plane 9 = 0. The tube being of such a form ■
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(iii.3& 4) 137 .
that it ia capable only of applying meridional moment to the
shell.

The magnitude of the applied moment M ia obtained from 
Fig. Ill.i9 ,

M » 4/ m cos© . coaO. d© ® T ro m (III.18)
where ro ia the mean radius of the load path=-2.5in in this case.

-J•- 4'g2/lh2-5 — 08 648fThus from eqts. IH.17 and 18;
Plotting this as a non-dimensional parameter, ort*^ . - 0-40

Mcosd
against the r/£ value for point C (fy = 1.25) a point on the
distribution curve for meridional bending stress is obtained.

Repeating the whole procedure outlined for successive points 
such as C along the great circle OC, the complete distribution of 
meridional bending stress is obtained, as in Fig. III.22a. The 
load path width effect is clearly seen in this case, the rigid 
insert concept leading to the linear transition of bending moment 
across the load path width.

The distribution of the circumferential bending stress is 
obtained using the value obtained in Fig. III.20b, together 
with other similar values. This is plotted also on Fig. Ill.22b.

The direct stress and radial deflection distributions are 
obtained by a similar pL-'j-Goedme, and are shown on Fig. III.22

III.4 A ’TWISTUG’ MOMENT UNIFORMLY DISTRIBUTED ROUND THE 
CIRCUMFERENCE OF A CIRCULAR RING

A twisting moment T* is uniformly distributed round the load 
path, defined by the tube-spherical shell junction as in Fig.3II.23.



 
 

 

 
 

 

 

 
 

 

 

 

 

 
 

 
 

 

158 . (III.4)
It is required to determine the distribution of shear stres 

and tangential displacement along a great circle due to the abot 
loading.

An alternative approach has been derived by the author and 
is presented in Appendix VIII,6. In this analysis the basic
shallow shell equations are utilized directly and using the

I
boundary values the distributions of shear stress fnd circum
ferential displacement are obtained for a twisting moment applie 
over a path of zero width, This approach is hereafter referred 
to as the 'Rigorous* Method,

As in the earlier case the Influence Line Method is compare 
with the alternative method in order to substantiate and assess 
the accuracy of the Influence Line Method,

The approach is illustrated using a spherical shell (Young 
modulus E = 13*400 ton/in2 and Poisson's ratio V = 0,28) of 60 
radius* and t i thickness, The load path I’dii^ua r„ is 2,5 i
and the width 1 in, Fig, 111,23,
Derivation of Stoar Strssh Dettnibunion , Consider i point C
(Fig, III,24a) on the surface of the shell at p distance of r»4 
measured in plan from the load path centre 0, and a point F on 
the load path at a distance of 1,98 in from C,

The applied twisting momenae T'are removed and a unit twis 
ing moment (T = 1) ia imposed at C acting in the direction show 
This direction is such is to satisfy the condition of reci-proas 
symmetry between C and the point F on the load path, The alioB 
ance for the load path width is again effected by applying the I 

unit action at C via a rigid insert of diameter equal to the I
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load path width, i.e. ip = 0»5Q in.

Consider, as before, the stresses at F due to the unit 
twisting moment at C, that is distance r = 1.98 in. Fio)m
Fig. II.14a, t/j =-r0’040in2. This is resolved, using the Mohr
circle, to enable the stresses on the X, Y planes to be determined^ 
see Fig. III. 24b. Only the Shear stresses Tyx are relevant;, 
since the resultant normal stresses are zero - obtained by summing 
over the whole load path. In this case = 0.020 in”2 „
Thus the ordinate value at F of the influence ltae for shear 
stress at C due to the unit moment traverse of the load path is 
^5f/y = 0.0530 (ton/ln) per ton in. The complete distribution
is obtained by considering other points on the load path - Fig.
III.25. This is the hifluence line for Shear stress at C.

The resultant Shear stress = Load Intensity x Area under 
Influence Line

l:r9t = T' xO.l58 (III .19)
The uniformly distributed twisting moment T* round the load 

path is equivalent to a total twisting moment T, where
T s T'x2TTro (III.20).

Thus from eqts. III.19 and 20; %0t/j = 0»0l00ti~2
This is plotted on Fig. III.26 with other values obtained in a
similar manner and a comparison is made with the ’Rigorous* method.
Derivation of Circumferential Displacement Distribution. The
circumferential displacement u at F due to the unit moment action
at C is obtained from Fig. II.14b corresponding to r =. 1.98 in.
Thus utG a 0-0395 tn~‘ giving the displacement at F in the K direction 

T
(Fig. III.27b) as UxtG/r = 0-0346m"1 • Plotting such values in



160. (III.4&5)
Fig. III.28 th© appropriate influence line for displacement at 
C is obtained. Thus th© value of utQ at C = Load Intensity 
Area under influence line

= T' x 0,303
and from eqt;. III. 30 9 utG/y _ o «01I3 ton per ton-in

This value ia shown on Fig. III.29 with other values
obtained in a similar manner, and further compared with the 
Rigorous Method.

It is seen that for both the shear stress and tangential 
displacement distributions along a great circle, excellent 
agreement i3 obtained between the Rigorous Method and the 
Influence Line Method.

II 1.5 A TANGENTIAL SffiSAR LOH) TNT IFORNLY DISTRIBUTED ROTNTD
THE CIRCUMFERENCE OF A CIRCULAR RING

A tangential shear load, is uniformly distributed round
the load path? defined by the tube-spherical shell junction as
in Fig. Ill .50. It is required to determine the distribution
of shear stress and tangential displacement along a great circl
due t.o the above loading.

The alternative approach derived by the author, given in 
Appendix VIII.6 i3 used to compare the results of the Influence 
Lihie Method and thus assess its accuracy. This approach is
referred to as the ’Rigorous* Method.

The method is again illustrated by a numerical example,
the relevant shell dimensions being as in Section III.4 and 
shown on Fig. HI .30.
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of Shear Stress Distribution. Consider a point

C (Fig. Ill.31) on the surface of the shell at a distance of 
n s= 4 in measured in plan from the load path centre 0, and a 

point F on the load path at a distance of 1.98 in from C. The 
applied load, p^, is removed and a unit tangential load (P * 1) 
is imposed at C acting through a rigid circular insert of radius 
Pp equal to half the width of the load path, in this case 0.5 in. 
The line of action of this unit load at C is parallel to the line 
of the applied shear at F (tangential to the load path circle at 
F). In the direction it is oriented as shown in Fig. III.31a so 
as to satisfy the condition of reciprocal symmetry ere
Z ia the shear stress in the shell due to the appropriate unit
actions.

The circumferential and meridional normal and shear stresses 
due to the unit action at C are obtained from Figs. II.16a,b, 
using the curve p = 0.50 in for distance n = 1.98 in which is 
the distance of F from C. These ane:-
°r///Coi0 " — 0*30 . °eD>k/pcos& =■ +■ 0'°} W/p5(n0 * +0-002

Noting that 0 for F measured at C is 37® givtngj- =-0.104 in"1

OSot/p =+0.013 in’1 and TCroat/p =40.036 in 1 • Resolving these 

actions in the X and Y directions by means of a Mohr circle 
diagram, Fig. I it 1 a sesnthaa the shear stress cy* Is
the only acaion which w ill have a v aane aa C due to the imposed 
loading. The r esultant values o f 15 and <p become zero at 
C when the imposed load effect is ootaannd by summation over the 
whole load path. In consequence, the ordinate value at F of the 
influence line for shear stress at C due to a unit load traverse
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of the load path l3Z^xt/P = + 0.068 ton/ln per ton. This value, 
together with similar values obtained in the same way for other 
points on the load path,is plotted on a basis of developed lengt 
of load path in Fig.IH.32 forming the influence line for shear 
stress at C. The shear stress at C V due to the imposed 
load is thus = Load Intensity x Area under the influence line

sPexO.397 ton/in (III.21)
The uniformly distributed tangential shear p., round the load 
path is equivalent to a total twisting moment T about the 
rotational axis, where T = p- x 2ir r* (III.22)

Hence from eqts .H1.21 and 22, TTst/j «0.0255x0,397= 0.0102(ton)periorai 

This value is shown plotted, in Fig.III.33, against the radial 
distance of 4m, relevant to the point C,

Repeating the above procedure for other locations on the
great circle, tho complete distribution is obtained- Fig.III.33
This is compared with the Rigorous Method given in Appendix VIL
Derivation of Circumferential Displacement Distribution. A a in
the case of the derivation of shear stress, the behaviour of th
3hell at F is examined due to the tangential shear force at C.
From Fig.II.17, for the curve r^ 0.50in at the point r= 1.98in,
it? =+0.247 and utG •-0.200 a Using the appropriate values 
Peas 0
for cosQ and sin9, vtG/P = 0.197 and utG/P» -0.120 -Fig. III.34*
Co&bining vtG/P and utG/P as in Fig.III.34b the resultant value
in the X direction is, u*tG/P = -0.205. The resultant values
in the Y direction becomes zero at C when the imposed load eff*
is evaluated by summation over the whole load path. The ordin
ate value at F of the influence line for circumferential disp
lacement i3 thus u*tG/P= -0.205 ton/ton (Fig.III.35)
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The complete influence line is obtained by considering other 
points on the load path. The resultant circumferential dis
placement at C due to the imposed loading is thus

utG = (Load Intensity) x Area under Influence Line
utG * pB x 0.780

From eqt. Ill .22 ttG/j * 0-0198 in'i
This value Is plotted on Fig. III.I6a gainst the radial cLla'kmnce 
of 4 in relevant to the point C.

Repeating the above procedure for other lloaatons on the 
great circle, the complete distribution is obtained. This is 
compared with the Rigorous Method (given in Appendix VIII.6) on 
Fig. III.36.

It is seen that for both the shear stress and tangential 
displacement distributions along the great circle, excellent 
agreement is obtained between the Rigorous Method and the 
Influence Line Method.

III.a THE INTERACTION EFFECTS BETWEEN A SPHERICAL SHELL AND 
A CYLINDRICAL SKIRT

Is order tn obtain the induced stresses in any vessel, due
tn the constraining effects of the supports nr the flexibility
of the loading attachment, it is first necessary tn determine the
redundant forces present at the point, or surface, of attachment.
The approach in such a case is tn equate the displacements and
rotations of the various elements, asd from these relationships
compute the redundant actions - forces and moments. In obtaining 
the displacements and rotations, the influence line analysis is
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particularly valuable - since it enables complex forms to be 
readily dealt with.

In order to illustrate the method the following example is 
presented.

A complete spherical steel shell, subjected to an internal 
pressure p, is rigidly connected to a cylindrical steel skirt 
support as shown in Fig. III.37a. It is required to evaluate 
the redundant actions q and m as indicated in Fig. III.37b.
In the particular example chosen, the sphere has a constant 
thickness t4 = 1.7 5 in and diameter 135 ftr 0 in and the skirt
thickness tc = 1.312 in.

Considering Ln the first place the deflections of the shell
The force q - which is the redundant force in the horizonts 

direction - is uniformly distributed round the intersection and 
can be considered as consisting of two components, namely - radii 
and tangential at the surface. The radial deflect ion caused t 
the radial component of q is obtained by considering the influer 
line for radial deflections for any point such as 0 on the load 
path .

In this case the load path width is taken as the thickness 
of the skirt at its intersection with the sphere, measured tan
gential to the sphere, and is equal to 1.454 in. Thus the
value of rp is 0.727 In. From the sphere dimensions
£ = 20.71 in and p * rp/£ = 0.035

Utilising the basic curve for radial deflection given from 
Fig. III.5, it being noted that for this small value of ju the 
uniformly distributed and rigid insert graphs are identical for
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Fig. HI-37 Twe Interaction Effects between a Spherical Shell
and a Cylindrical SkiRT
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all relevant points of T/e , the influence line for deflection 
at 0 can be constructed. This is shown in Fig. III.38.
Thus the radial deflection of the sphere due to the horizontal 
load q per unit len^g;h= q sin. x area under influence line

q x « 185 x 46.6 x IO-1
^2= 20.0 x IO q radially inwards.

Due to the internal pressure p the change in radius of 
the sphere (free membrane action only) 2ET,

where t5 = I.75 in and corresponds to the thickness of 
the sphere.
The change in radius due to p « m9«79i» radially outwards

2% 13400x1-75
Thus the radial deflection = 9.7f> - 20.0 x I0“a q
The horizontal deflection . (9.79p - 20.0 x I0”2 q) sin. (HI.23)

It will be noted that the influence of the tangential com
ponent of q, acting on the sphere can be evaluated in a manner 
similar to that of the radial component, but using the tangential 
load data as in Section III.5. However, it can be shown that 
its effect is of negligible order and in consequence it has been 
disregarded in eqt. III.23.

The horizontal deflection of the cylindrical skirt due to 
a uniformly distributed force q and moment m (the standard oase 
of an edge loaded cylinder, ref. (24) ) is given by:-

J (w+d where in this case D = Etc and 9*. 3 Cl-V*
2f.D T I22i-i>*2 RfC
klso in this case the radius of the cylindrical skirt, Rc . 29 ft
md the wall thickness of skirt, tc . I.3I2 in.
hus horizontal deflection of the skirt = 0.0496m + 0 .82Bq (m«24)

quating horizontal deflection of sphere and skirt, from eqts.III.23
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and 24j- 9.79p = 0.115mi + 2e'125q (III.25)

In the se.ond place*, by considering the rotation of the
sphere and cylinder another equation involving m and q can be 

found.
The change of slope of the sphere in the plane of moment m 

at any point, 0, on the attactmient line due to the moment m per 
unit length* is obtained from the influence line for the change 
of slope at the point 0.

In order to derive this influence line the relationship 

between the slope change and the radius must be obtained.

It d a seen from eqx. II .63a that s- w = (C^ker)^- C)kei—)cos© 
This relationship predicts the radial deflection* w, at a point 
r, 0 on t he she'll * where the constants C3 and C4 are obtained 
from e qts . 11 . 6 '7a ,b-.

Since the change of slope in the plane of the moment m is 
required* if is necessary to obtain the change of slope at varic 
distances from 0 along the intersection circle OA and in planes 
containing the lines of the great circles (Fig. III.39a)* 
i.e. $£ .

dw

From eqt. II.63& 8- 4*? = fC3k^r-*& ♦Qkd^'14^cos9 + [c3br% + C4dti](-S"'ti£e 
dr, L c Jdf- ' dr,dr.„

du? = [c.ker')^ + C4kei'i/{j(-l)d)At e - dr. -i'- 'll'

Since coaOs r2/r and
and when i«e. <& ~ (Gter'J + C4 kei'li} 1

2 Jrz r, dr2 < f ' r,

dr2 c3sm 0
(III.

From eqt. Ill ©26 the influence 'line Fig. Ill .39b can be drawn, 
yielding a value lor the change of slope of the sphere

— m x area under influence line 
=. m x II .18 x 10~4
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The change of slope of the cylinderical skirt due to q and m

c -L- fepn + <0 , f* and D being as before 
2p*D r 1

= 0 .00 596m + 0.0497q
Equating changes of slope for the sphere and skirt:-

-II.I8 x I0'4 m = 0.00596m + 0.0497q (III.27)

From eqts. III.25 and 27 q= 7.42 p 
m- -52.0 9p

The author, in ref. (58), has obtained these redundant actions 
(58)using the analysis suggested by HICKS for the particular 

example put forward in this section. The following results 
were obtained:-

q == 7.39p , m = -5I.90p , which are seen to be
very close to those obtained by the Influence Line Method.

It may, therefore, be concluded that the method put forward 
in this chapter is an entirely valid method of approach. Where 
alternative analyses were used to compare the results obtained by 
the Influence Line Method, the agreement is seen to be excellent.

The Influence Line Method was further substantiated by 
experimental investigation^ these are discussed in Chapter IV.



CHAPTER IV. EXPERIMENTAL INVESTIGATIONS
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The experimental investigations presented in the thesis 
were designed to evaluate the basic actions of radial and 
tangential loading, bending and twisting moment presented in 
Chapter II.

The experimental scheme was further directed to examine 
the extent to which the shallow shell concept may be applied, 
to assess the range of applicability of the principle of super
position and to verify the Influence Line Method by an experi
mental examination of certain of the specific cases discussed 
in Chapter III*

The work was carried out on shallow shell segments of 60ir 
radius and of J in, J in and 1 in thicknesses, and on a complel 
sphere, of 13 ft. 6 in diameter, built-up from plates of vario- 
thicknesses, thus permitting the degree of approximation intro
duced by the 1 shallowness concept' to be evaluated by direct 
experiment• „
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CHAPTER IV. EXPERIMENTAL INVESTIGATIONS
IV.l BASIC ACTIONS

IV.I.I RADIAL LOAD
(a) Uniformly Distributed over a circular area
(b) Applied via a rigid stud

iv.i.2 'bending' MOMENT
IV.I.3 'TWISTING MOMENT
IV.I.4 TANGENTIAL LOAD

IV.2 THE SHALLOW CAP CONCEPT
IV.2.I BOUNDARY EFFESCTS
iv.2.2 ^RES^ES^ANDJEFLECTrroSs
IV.2.3 SUPERPOSITION OF SHALLOW CAPS

IV. 3 EXAMINATION OF SELECTED COMPOSITE ACTIONS
IV.3.I RADIAL RING LOADS

(a) Transmitted by a Freely supported ring
(b) Transmitted by a rigidly fixed ring

IV.3.2 RINg'sENDING-1 MOMENT

IV.3.3 RING<TWISTING’ MOMENT



 

 

 

STEEL SHOT, OR WATER FILLED 
RUBBER MEMBRANE

DIAL
GAUGES SHELL UNDER TEST
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EXTENDED TABLE 
SUPPORT

LOWER PLATEN 
OF TESTING MACHINE

Fig.IV.1 Arrangement of Shallow Spherical Shell under Radial 
Loada Uniformly Distributed Over a Circular Area.
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IV.1 BASIC ACTIONS
IV . 1.1 RADIALLY APPLIED LOADS 

The radial loads were applied to the shallow shell segments
n two ways. In the first place, uniformly distributed over a 
iroular area, and in the second place by means of a stud welded 
o the shell, this being considered equivalent to a rigid insert, 
n the case of the complete sphere it was only possible to investi- 
ate the rigid insert case of radial loading.
a) Uniformly Distributed Over a Circular Area
xperimental Model:- The investigations for this type of loading
ave been carried out on shallow spherical shells of 1 in and £in 
hickness and of 60 in internal radius. At the boundary (3ft.3£in 
nd 3 ft. 3 in chord diameters, for 1 in and i in respectively) 
he shells were welded to heavy flange rings l£ in thick, 3ft. 10In 
utslde diameter and 2 ft. 8£ in inside diameter. These flange 
ings were then bolted, using fitted bolts, to a heavy base in the 
orm of an extended table. A typical assembly is shown in Fig.
V.l.
oading Technique:- The shallow spherical shells were subjected 
o a radial load uniformly distributed over areas of various dia
meters • On the £ in thick shell these areas were of £, l£, 2£,

10 and 12 in diameters. In the experiments on the 1 in 
hlok shell the £ in diameter was omitted.

The technique of applying a uniformly distributed load wasfJ
aried to suit the magnitudes of the loads required to produce 
easurable strains. In the case of the 1 in thick shell, the 
oading devloe consisted of a piston acting on steel shot of



 

 

 
 

 

 
 

 
 

 

 
 
 

 
 

 
 

 

 

 

 
 
 

 

172. (IV.l)

approximately I in depth contained in a cylinder, the shot (of 
approximate?^ in diameter), being the loading medium between 
the piston and the shell (Fig. IV.I)• Tests of the loading 
set up on aluminium plate, indicated that the shot produced a 
uniform distribution of shot marks over the whole of the loaded 
area. It was, therefore, considered that under such an arran 
ment the shell would undergo uniformly distributed loading. Fo 
this type of loading, the measurement of strains was restricted 
to the region outside the loaded area as attempts to obtain 
reliable readings from strain gauges under the load and in con- 
taot with the shot were unsuccessful.

In loading the £ in thick shell an alternative loading 
teohnique was adopted permitting the measurement of strains bot 
Inside and outside the loaded area because of the considerably 
lower loads required to produce measurable strains. The shot 
in this case was replaced by water contained in a thin rubber 
membrane and the strain gauges under the rubber membrane were 
found to perform satisfactorily. Tests were carried out to 
estimate the effect of the normal pressure on the ohATacteTlJlti 
of the strain gauges, and it was found that under the pressure 
applied during testing, these effects were small and could be . 
negleoted. In order to contain the rubber membrane within t 
cylinder, oarpenter's putty was used to provide a small fillet 
between the cylinder and the shell. This material was found 
to be ideal since it hardened under pressure.

Da both types of loading the piston was designed to allow 
the radial load to be applied through a steel ball bearing of



 
 
 

 

 
 

 

 
 

 
 

 

 

 

 

 
 

 

 

 
 

xv.i; 173.

Li in diameter situated as close to the surface of the shell as 
possible, thus reducing the possibility of any applied moment.

These tests were carried out in the compression side of a 
Jniversal Testing Machine. The loads were applied to the shell 
jither by the loading ram of the machine itself or by a dyna- 
nometer, in this case a proving ring, placed between the fixed 
lead and the load point on the shell. These alternatives were 
ised as required appropriate to the magnitude of the load applied• 

leasurement of Strain and Deflection. Circumferential and
neridional strains were measured on the outer (loaded) and inner
surfaces of the shells using, in the first place, Maihak strain * •
gauges positioned in the above directions, on several great 
lircles passing through the crown. These results established
;he rotational symmetry of the crown loaded system, and in later 
jests of this series only one great circle passing through the 
irown was strain gauged. In certain cases additional gauges
rere fixed in the vicinity of the load on another great circle 
sear to that which was fully gauged.

Electrical resistance strain gauges of both the bonded wire 
and foil types were employed in thi3 and In all further tests 
eported in the thesis. Strain gauge details which are common 
;o all loadings will be discussed in this section.
animation:- In order to obtain a gauge factor for the strain
gauges a selection from each batch of gauges was fixed to a 
[standard calibration set-up, using exactly the same fixing 
echniques as those employed by gauges fixed to the aotual shells



 

 

 
 

 

 
 

 
 

 
 

 
 

 

 
 
 

174. (IV.1)

Layoutt- The layout of the strain gauges on the various shell* 
was suoh that In the region of high stress gradient the gauges 
were olosely grouped together, while in other areas they were 
relatively more widely spaced* For the loads dealt with, th* 

region of hlgh stress gradient is in the immediate vicinity of 
the load*
Zero Drift:- During the tests routine checks for zero drift
were incorporated* It was found that accurately repeatable 
results were obtained when readings of the gauges were taken In 
batohes of fifteen, the loading being repeated for eaoh batch* 
Loading:- The loads were applied in a number of increments, 
usually four, up to the maximum value, readings of strain being| 
reoorded throughout* Each test was repeated three or more 
times to ensure that repeatability was obtained* Values of
strain per unit load were thus obtained for eaoh gauge* 
Derivation of Stres s values- From the experimental value a
of the strain per unit load (in the meridional and olroumferenl 
dlreotlons) , values of the bending and dlreot stresses per unf 
load in both the meridional and circumferential d^^tlons wef 
determined using the following standard relationships:-

-—L-UO +r l-V* I--P
and V*"—Sti+ve;) ; —£rl1-1)4 , l-t»

(iv.Dl
where » 0** <e* and are the total meridional and
ohtoumferential tressess on tee outte and inner ar^oess res- 
peotively, and , ^s and the experimental strai
In the meridional and oiroumfetent1al dlreoSlmne on the outerj
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and Inner surfaces. Prom these total stresses the bending 
and direct stress values are obtained as:-

<rr- ;
2

°*a = .OlL_2Sl 
2

* ge°
2~ ra —e (IV.2)

Finally, the experimental values were plotted in non
dimensional form.

For the present case - radially applied loads uniformly 
distributed over a circular area - nichrome wire bonded 
alectrical resistance strain gauges, of 200ohm and Jin length, 
vere used. A typical layout of these gauges is shown in
?ig. IV.2.

The percentage change In resistance in the strain gauges 
due to straining of the shell was measured, in this case, using 
a 50-way Static Strain Recorder.

Using the procedure outlined above (ff 13-174) the stress 
variations were obtained in non-dimensional form for all loading 
areas on both thicknesses of shells (Jin and lin). A typical 
set of results for both thicknesses is shown in Fig. IV.3. All 
results are shown in Appendix VIII.7 where they are compared with 
he theoretical values.

The radial deflections of the shell were measured along a 
preat circle using O.OOOlln dial gauges. The arrangement for 
lupport, adjustment and alignment of the dial gauges is shown in 
?Lg. IV.l. The same standard of repeatability was observed in 
;he deflection measurements as in the measurement of the strains, 
n order to obtain the radial deflection at close Intervals of



 

 

 
 

 

 

 
 

 

 

 

 
 

 
 

 
 
 

 

176, (IV.1)

horizontal radius* t, along the great circle* several positions 
of the dial gauges were selected* the loading procedure being 
repeated for each series.

The results from two such tests* one for each thickness* 
are shown graphically, plotted in a non-dimensional manner In 
Pig. IV.3. The complete results are shown in Appendix VIII.7
<iere they are compared with the theoretical values.
(b) Radial Loads applied by means of a rigid stud welded to

the shell.
A series of stud-attachments on both a shallow shell and 

a complete sphere have been examined under the application of a 
radial load. Discussion of these is grouped in two sections* 
the one dealing with the shallow shell* the other with the 
complete sphere.
Shallow Shell -

Experimental Model>
A shallow shell of £in thickness and 60in radius was welde< 

at its outer boundary - a 3 ft. 3in chord diameter - to a heavy 
flange ring, and mounted as in the previous case on a heavy bas 
in the form of an extended table. At the crown of the shell a 
radial cylindrical insert (O.978in dla«* i.e. p = 0.23) penetrat 
the shell* being welded to the shell on both outer and inner su 
faoes by continuous fillet welds. On the outer surface the 
weld was machined to retain the cylindrical form of the insert 
Fig. IV.4.
Loading Technique. The radial loading was applied to the she
by means of a loading frame* thrust washer* 6001b. proving rin£
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 Fig.IV.4 Arrangement of Shallow Spherical Shell under Radial 
Loads Applied Through a Rigid Insert •
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Mv.jj 777 •
whioh was previously calibrated, and a hall bearing, as shown 
in Fig;. IV.4. The proving ring was used hoth as a load applying 
and load measuring device.
Measurement of Strain and Deflection. In thia series, two types 
of electrical resistance strain gauges were employed to measure 
the strain in the circumferential and meridional directions on 
the outer and inner surfaces. In the near vicinity of the
load, Phillips foil gauges of 4m.m. length and 720 ohms resis
tance were used, and elsewhere, Saunders Roe, Ferry foil printed 
circuit gauges, with epoxy-ethylene hacking, of §in length and 
45-50 ohms.

Owing to the symmetrical nature of the loading, only one 
great circle was strain gauged* A typical layout, which is the 
same on hoth the outer and inner surfaces is shown in Fig.IV*5.
It is noted that in the immediate vicinity of the insert the 
4 m.m. gauges,enabled strains to he recorded at stations much 
closer to the insert than the -in length type. As a check on 
the meridional strain close to the insert a £ln strain gauge 
was fixed on a great circle 780° to the gauged great circle, aid 
as near as possible to the insert.

It will he further noted, that apart from the two stations 
near the insert, occupied by the 4 m.m. gauges, all the other 
gauges are placed on the great circle. This alternative lay
out was considered to be of greater accuracy for those load 
cases that were not axi-symmetric and which were imposed later 
on this particular model. Using this type of layout the 
strains at any given position are determined, by interpolation,



 

 
 
 

 

 

 

 

 
 
 

 

 

 
 
 
 
 

 

17R . (IV*7}
from the plots of strain (or strain per unit load) against radit

The strain gauges mounted at 45*• to the gauged great circ] 
and those 45* gauges on .■the other great circle (shown in Fig*IV« 
were not used in the present test, but were used in the torsion 
test, reported later*

The 53-way strain recorder was again employed in this seri< 
all other details being as outlined on p.>. 173-175

Utilizing eqts* IV.l and 2, the values of the corresponding 
bending and direct stresses in both the meridional and circum
ferential directions were obtained* The results are plotted 
non-dimens ion ally and shown in Fig. IV*6.

The radial deflections of the shell were measured along a
great circle using O.OOOlin Dial Gauges as outlined on p* 77
The arrangement for support, adjustment and alignment of the
dial gauges, is that previously described, and shown in Flg*IV.
The results for the p=0.23 Insert are plotted non-dimens ionall
on Fig* IV*6* ■
Complete Sphere f
Experimental Model:- The overall dimensions of the model sphJ

which is 73ft* 6in diam*, are one tenth of the Dounraey Contain
ment Building, with access doors in the side and top of the 1
vessel* The sphere plate thickness for the upper tiers is £ll
and for the lower tiers, 5/76,§, and iin, the thickest seotil
being placed at the supporting skirt* The model has twin ski
support inside and outside, together with an anchor ring* A I 

% .11 general view of the model is shown In Fig* IV*7 and a section j
Fig* IVJ3, I
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Pig.IV.7 General View of 13ft-6in Diameter Model Sphere



 

 

 
 

 

 

 
 

 
 

 

 

 

 
 

 
 
 

 
 

 
 

 

\ j » • */ 179,

A continuous programme of research on the vessel is In 
progress* Details are given in ref* (108) a copy of which 
is appended to the thesis*

The tests on the model which are of direct relevance to 
the work presented in the thesis are those relating to a rigid 
Insert, or stud attachment, under a variety of load actions and 
those of certain pipe attachments under radial load* In this 
section the rigid insert case under a radial load is discussed*

In the first instance two different diameter studs were 
considered in the investigation*Prior to welding the studs on 
to the Inside surface of the vesael,the radii of curvature were 
measured over the region selected for stud-attachment. On the
basis of these measurements the position of the attachment was 
established* It was found necessary in all cases to avoid
areas in the immediate vicinity of a weld or other discontinuity, 

such as an access door* The stud-attachment positions were 
thus arranged diametrically opposite on the same great circle. 
Marking of the Vessels- Great circles were marked on the outer 
surface of the vessel at 0* , 90° , 780° and 270° together with 
the equator line* In order to transfer these lines and other 
positions relevant to the strain-gauging from the outer surface * 
to the inner surface of the vessel, a series of circles of lin 
diameter was scribed at 6in intervals along the line on the 
nfter surface* A thin layer of ^ernpiistik’, a chalk with a
Siven melting point (in this case 250* P) was applied to the 
nside surface in the approximate region of the line* A torch 
rith a small area acetylene flame was concentrated for a
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predetermined time on the outer surface In one of the 1 in dlam
■orlbod cirolea. As the heat from the flame penetrated the 
sphere material a email circle of melted chalk, of from & to 11j 

dlam. booamo visible on the Inner aurfaoe. Aa eaoh position 
on the outer line was so treated a series of such ’templlstik 
olrcles’ appeared on the inner surface. The oentres of these 
olroles were joined to give the required line on the Inner surf

Before using the above method several test runs were oarrl 
out using a rectangular plate, marked off at identical points o 
eaoh side* The 'Tempilstik' technique applied to this plate 
Invariably defined the appropriate cirole oentres within &ln oi 
the aotual marked positions. Since, in the case of the sphere 
a considerable number of 'templlstik circles’ defined the llnoj 
the aocuraoy of loacating the inner line was considered satis
factory.

On completion of the preliminary marking of the vessel th 
studs were welded on to the Inside of the vessel using a contim 
fillet weld, oare being taken to ensure that they were position 
radially. Studs of different diameters were fixed to differs! 
thloknesses of plate as shown in Fig. iV.8. The oorrespondlnl 

H values are 0.092 and 0.195. |
Loading Teotolcne:- A radial load was applied to both studs! 
one and the same time, using a £ln dlam. steel wire strotohod Ii 
across the sphere oonneotlng the studs. Suitable shackles <0! 
Incorporated to ensure axiallty of the load. A turnbuokle J 

used to apply the load and a 1,2501b oapaolty proving ring to I 
measure its magnitude as shown in Fig. iV.8. I
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Fig.IV.9 Layout of Strain Gauges for Stud-Attachments 
on Model Sphere.
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Measurement of Strain s- Saunders Roe 41* length foil strain 
gauges were fixed along two lines 90* apart to measure strains 
on the inner and outer surfaces in the circumferential and
meridional directions«

The purpose of gauging the two lines was two folds in the 
first place it would provide information as to the symmetrical 
distribution, or otherwise0 of the loading* and secondly* since 
the gauges on the two lines were positioned at stations of 
different radii it would give additional information as to the 
strain distribution in the regions of higi strain gradient,
The strain gauge layouts for the two studs are shown in Fig.IV.9. 
The s train gauge leads for each gauge were connected into a 
plastic(terminal strip cemented to the surface of the sphere in 
the vicinity of the stud-attachment, as shown in Fig.IV.9. 
Multicore cables (25 x 7/.0076* 25 core) were then used from the 
terminal strip to the strain recorder.

As in the earlier tests the 90-way strain recorder and the 
gauge procedure outlined in IT-AI^were employed.

Typical experimental results for one of the attachments, 
for the bending and direct stresses are plotted non-dimensionally 
in Fig. IV.10 • It is noted that the results from gauges placed 
on both lines lie on one and the same curve, thus indicating the 
symmetrical nature of the loading.

A further radial load test was carried out on a ijln diam. 
stud* This stud of j = 0.394 and described on pd84 and shown 
in Fig. IV.13* was used primarily for bending moment and 
tangential shear loading; however* facilities were provided to



 

 
 
 

 

 
 
 

 
 

 
 

 

 
 
 

182. (IV.1)
enable a radial load to be applied by means of two such studs, 
welded diametrically opposite onto the equator of the sphere, 
and loaded using the same technique as employed for the other 
radially loaded studa. The strain gauge layout for this stud 
is shown in Fig. IV.15.

Complete experimental results for this series of radial 
stud loadings is given in Appendix VIII.7.

IV.1.2 'BENDBl' MOMHTT
The bending moment was applied to the shell through a rigi 

insert, or stud attachment, welded to the shell. Two types o 
experimental models were investigated, namely, the shallow shel 
and the complete sphere.
Shallow Shell
Experimental Model:- The shallow shell of ^in thickness and
60In radius and rigid insert 0.978in diam. was again used for 
this investigation. The insert penetrated the shell, being 
welded to it on both outer and inner surfaces. On the outer
surface, the weld was machined to retain the cylindrical form 
of the insert as shown in Fig. IV.4. The outer boundary, 3ft . 
chordjdiameter, was welded to a heavy flange ring and mounted 
onto the extended table.
Loading Technique:- The bending moment was applied to the
Insert by means of a 3" x 1^" channel of 4 ft. 6 in length 
rigidly secured at its centre to the insert. Equal and opposi 
vertical forces were applied to the ends of the channel at 50



Flg.IV.ll A Bending Moment Applied to a Shallow Shell 
Through a Rigid Insert.
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centres, in such a manner that a pure bending moment was applied - 
as shown in Fig. IV.ll.
Measurement of Strain and Deflections- The electrical resistance
.------------------------------ --- -------- - - - -

strain gauges used in the earlier tests (the layout of which is 
shown in Fig. IV.5) were again employed in the present investi
gation. The comments made in the previous section (IV.l.lb; 
p.176, 177 , 178 ) regarding gauge layout and strain recording 
being again relevant. The plane of the applied moment was 
arranged to coincide with the gauged great circle. The measured 
strains were thus those corresponding to the line 0 = 0° .

The loading was applied by means of dead weights, as shown 
in Fig. IV.11 and, as previously, was applied in Increments up 
to the maximum load, readings of strain being recorded through
out. The procedure for strain recording and stress analysis 
outlined earlier on p .177-1*75 was followed and experimental 
results for bending and direct stresses obtained. These are 
plotted in Fig. IV.12.

The radial deflections of the shell were again measured 
using 0.0001 in dial gauges, the arrangement for support adjust
ment and alignment previously mentioned being utilized. In order 
to facilitate these measurements in the plane of the moment, holes 
vere drilled and slots milled along the channel centre line. 
Extended spindles were then fitted to the dial gauges as shown 
in Fig. IV.ll. A series of loadings with different dial gauge 
positions were carried out, to enable the deflections to be 
obtained at close intervals of the horizontal radius r. The 
■ame standard of repeatability was observed in the deflection



 

 

 

 

 

 

 

 

 

184. (IV.1)
measurements as in the strain measurements.

The results of these teats plotted in a non-dimensional 
manner are shown in Figo IV012o 
Complete Sphere
Experimental Models- The 13 ft. 6in diam. model sphere shown 
earlier in Fig. IV.7 and discussed on p.178 was again used for 
the present investigation.

To enable a bending moment and also a tangential shear load 
(reported later) to be applied to the shell, the attachments were 
positioned on the equator of the shell which, in fact, coincided 
with a welded seam in the vessel. The radii of curvature over

I
the selected region were measured and on the basis of these 
measurements the position of the attachment was duly established' 
The vessel was marked on the Inner and outer surfaces in such [

' 4 jlocations as to enable the attachment position and that of the I 
strain gauges to he determined on both surfaces. The techniquJ 
used for marking the Inner surface of the vessel from the outer 
surface was by using the 'Tempilstik' and acetylene flame, j
described in detail on p.l79o f
Loading Technique:- The load was transmitted to the shell by ■ 
means of l£ln diam. stud attachments each welded with a continued 
fillet weld to the surface of the sphere© These studs were l 
located diametrically opposite on the equator, and on the inner! 
and outer surfaces on the same radial axes. Every effort wail
made to retain the cylindrical .form of the studs after welding-, ■ 
although unavoidably a small radius did exist at the sphere to ■ 
stud connection. This, however, was nowhere greater than o.liw
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A maximum value of the weld diameter of 1.70in was therefore 
reoorded.

The studs on the inside of the vessel were loaded by foroes 
aoting vertically down, while those on the outside surface could 
be loaded in either direotion depending on the foroe aotion under 
investigation (i.e. bending moment or tangential load)*

The inside studs wore loaded as follows. Over each stud,
a olosely fitted blook was seoured by means of a small gruhsorew.
The blook on one stud was suitably machined to enable a hardened,
£in side, laiife edge to bis on ifca upper surfaoe thussi
providing a knife edge support. The other inside blook, diamet
rically opposite, was machined and suitably ground to provide a 
roller support on its upper surface, as shown in Pig. IV.13.

Spanning the Inside of the vessel and resting on the 
blooks at either end was a 7 x 41n R.S.J. Loading Beam, out at 
the oentre and joined by fish plates to provide suitable adjust
ment. Hardened steel plates were fixed at the extreme ends of 
the beam, on its underside. At one end the plate was maohined 
to looate the knife edge and at the other, ground for the roller 
support, (Fig. IV.13) .

At distanoes of 14^ in from the point of the knife edge and 

the roller support, twe identical vertical loading rods were 
situated. At the upper end of each loading rod a shackle was 
mounted such as to straddle the Loading Beam and looate a lln 
diam. steel ball, which was suitably seated in a hardened plate 
on the beam. A dynamometer and turnbuckle arrangement, screwed
into the lower end of the shackle, was secured at the other end to



 

 

 

 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 

 

'186. (IV.1)
an extension of the 12-armed spider. The spider arrangement 
used for loading the twin skirt support was not in use at this 
Juncture, and provided a rigid fixture for the loading rod. 
Details of this are shown in Figs. IV.13 and IV.14.

In order to load the two Inside studs, equal foroes were 
applied, by means of the loading rods, to the loading beam and 
thus were transferred to the studs, the magnitude of the foroe a1 
the stud being the same as that in the loading rod. Aa indicate 
on Fig. IV.13 the vertical foroe thus applied was situated some 
distance from the centre of the shell plate, producing a bending l 
moment and a direct force in the vessel. I

For the investigation of pure bending moment applied to thl 
shell, it was therefore necessary to apply to the vessel on outsl 
force equal in magnitude and opposite in direction to that alreal 
applied to the inside stud, that is, vertically upwards. Such I 
action was applied through the stud on the outer surface. In tfl 
case the loading technique was as follows: Over each of the oJ 
studs, a closely fitted block was secured by means of a small gzl 
screw. The lower surface of these blocks were machined to givJ 
a spherical seating located at exactly the same distance from tn 
outer sphere surface, as the knife edge and roller support wereH 
located from the inner surface. A lin diam. steel ball was j 
placed between this seating and a corresponding seating screwed!! 
to the dynamometer, turnbuckle and loading rod arrangement. AI 
forked end was screwed onto the lower end of this loading rod I 
providing a lin diam. pin support. The above arrangement wasB 
repeated on the other outside stud as indicated in Fig. IV.13. I



The Loading of the Stud 
Attachment - Inside the 
Sphere.

The Loading of the 
Stud Attachment - 
Outside the Sphere.

Pig.IV.14 Inside and Outside Loading for Bending Moment and
Tangential Load on the Complete Sphere .
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167 .
In order to check the results from this type of loading and 

also to perform the tangential shear loading test, the direction 
of the load was reversed to act vertically down. The block was 
therefore turned through 180* to allow the spherica1 seating to 
be on the upper surface. A shackll, of similar design to those 
used within the vessel, was then fitted over the block locating 
the lin diam. steel ball (Fig. IV.14)• The same turnbuckle and 
dynamometer arrangement was used as in the previous case, except 
that in this instance the loading rod was in tension. A 2 ton 
ingot was used to provide a reaction for the load in the rod.
?he ingot, which rested on the floor of the building, was connected 
;o the rod by means of a bracket, lin diam. pin and a forked end on 
;he loading rod. Preliminary lining-up of the rod was done by 
•aising the 2 ton ingot from the floor by using the turnbuckle , 
md allowing the stud to carry the full weight of the ingot.

I
The magnitude of the load in each of the four loading rods, 

s measured .by means of a dynamometer which was made up of four 
ectrical resistance strain gauges fixed to a machined section

the rod. The gauges were placed diametrically opposite on 
e O° , 90*, 180° and 270° lines, in the longitudinal direction 
d connected in series, thus avoiding the recording of any strains 
ising from bending stresses in the rod. As a protective measure 
e gauges were given a coating of ’Evostik1 and covered with 'Prestik! 
itably matched compensating gauges were employed and protected 
the same manner as the active gauges.

Each rod was calibrated up to 5 ton in the laboratory prior 
installation on the model sphere. The calibration was carried



 

 

 

 

 
 

 

 
 
 

 

 
 

 

 

 
 

 
 

 

 

 

 

 

1813. (IV.1)
out in a testing machine using the spherical shackles incorporate 
in the actual set up. The readings of strain were noted in ^ton 
intervals up to the maximum of 5 ton. Several tests were made on 
each rod to ensure that repeatability obtained. From the plots 
of load against dynamometer strain reading, the calibration for 
each loading rod was obtained. For rods 1-^4 (see Fig. IV*13), 

these were respectively as follows:- 79.2, 80.6, 81.6 and 83.4 
microinches/in per ton of load.

Preliminary testing of the loading mechanism established 
that the following loading procedure should be adopted. In the 
first instance, the inside studs were loaded, using the loading 
beam and the inner rods 2 and 3, applying equal forces to both 
rods and thus to both studs. Four increments of load were 
applied as in earlier tests and strains suitably recorded. Next 
the outside studs were loaded using rods 1 and 4. Application o 
this loading was carried out in both directions, that is, vertici 
upward and downward, in order to provide a check on the readings 
strain. Four increments of load, similar to those applied to t 
inner studs were used and strains recorded as before. |

In order to obtain the results relevant to the bending . 
moment, the results from the inside loading and from the outsidJ 
loading, when the load was vertically upward, were superposed. I

A further final test was undertaken in which all four rod! 

were used, equal loads being applied to all stud attachments. 9 

this means the strain readings for bending moment were obtained! 
directly. Although this latter procedure appeared somewhat moB 
direct than that previously outlined, the interdependence of thj!
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stud loads gave rise to difficulties in obtaining identically 
equal loads in the rods. It was therefore more difficult to 
achieve the same standard of repeatability as that obtained in 
earlier tests. For this reason the results presented are those 
obtained, by applying the inner and outer loads separately. 
Measurement of Strain:- Electrical resistance foil strain gauges
(Saunders Roe £in length) were again employed in these tests for 
the measurement of strain on the inner and outer surfaces in the 
circumferential and meridional directions in the vicinity of one 
pet of studs. .

Two 'vertical* lines, that is, in the plane of the moment,

I
one line on the equator at 9O°to the plane of the moment, were 
ain gauged.as shown in Fig. IV.15. The gauges on the upper 
e were installed to provide a comparison of strain with that 
ained on the more completely gauged lower line. These 
itional gauges together with those on the equator provided a 
ns of assessing the asymmetry of the loading.

As in the radial load tests on the sphere, the strain gauge 
ds for each gauge were connected into a plastic terminal strip 
ented to the surface of the sphere in the vicinity of the stud 
achment as shown in Fig;. IV.14. Twenty five core cable was 
n used from the terminal strip to the strain recorder.

In this series of tests a Baldwin-Lima-Hamilton Portable 
ain Recorder was employed, together with five of the 20-channel 
tching units. Using these switching units it was possible
economise in the use of compensating gauges, by using one 
pensator for a number of strain gauges situated closely together



 

 

 

 

 

 
 

 

 

 
 

 

190 . (IV.1)

Since in these investigations the active strain gauges were 
closely grouped in the vicinity of the stud, it was arranged 
that one compensator gauge served 20 active gauges. Compensating 
gauges were therefore located at central points in the gauge 
layout on both the inner and outer surfaces.

A comparison of strains on the upper and lower ’vertical1 
lines, showed that good agreement between the two was obtained, 
the only exception being the circumferential strain on the inner 
surface ( ) in the immediate vicinity of the load. This ,
divergence was attributed to a slight local imperfection of the 
sphere in the vicinity of the stud in the circumferential direct!

From the strain results on the ’vertical’ line (9 = 0° and I 

0 = 180) , the corresponding bending and direct stresses were • 
obtained, in the manner outlined on pp. 174 and 175, and are j 
plotted in non-dimensional form in Fig. IV.16. i

IV.1.3 TWISTING MOMENT
As in the earlier load actions, the twisting moment was 

applied to the shell through a rigid insert, or stud attachment 
welded to the shallow shell.
Experimental Model:- The shallow shell of i-in thickness, (6)ii 
radius and rigid insert 0.978in diam. was again used for this 
investigation. The insert penetrated the shell, being welded
to the shell on both the outer and inner surfaces. On the
outer surface the weld was machined to retain the cylindrical 
form of the insert as shown previously in Fig. IV.4. The outer]



Fig.IV.17 A ’Twisting’ Moment Applied to a Shallow Shell 
Through a Rigid Insert .
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191 .
boundary, - 3ft. 3in chord diam., - was welded to a heavy flange 

ring and mounted in the horizontal plane, on the extended table. 

Loading Techniques- The twisting moment was applied to the

insert by means of a 3” x l£w channel of 4 ft. 6in length, 

rigidly secured at its centre to the insert. Equal horizontal

forces, acting in opposite directions, were applied to the ends 

of the channel at 5Oin centres using suitable pulley arrangements 

and dead weights as shown in Fig„ IV.17.

Measurement of Strain and Displac-e^nt The electrical resistance

strain gauges discussed earlier, the layout of which is shown on 

Pig. IV.5, were used in this investigation. The remarks made in

;he previous section, (IV.l.lb, pp.177-178) regarding gauge layout 

,n<3 strain recording are again relevant. In this case, however,

he gauges positioned at 45° to the great circles were also used.

For this type of loading it was noted that the 45° strain 

auges were the only gauges to show any significant strain reading 

|nd also that the values of the strain on the inner and outer 

lirfaces were substantially the same, apart from in the immediate 

tcinity of the stud where small differences occurred.

I The application of the twisting moment, therefore, only 

roduced ’mid-surface* shear stresses in the shell, the bending 

Iresse3 and direct stresses being insignificant. From the

Icorded strains £45° the maximum shear stress was determined at 

|e various stations using the relationship '>re = (IV.3)

lese are plotted in Fig. IV. 18.
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IV. 1.4 TTANGETIAL IL AD DI G
Tangential Loading was applied to the shell through t 

rigid insert, or stud atTachMent, welded to the vessel. Experi
ments were carried out on both the shallow shell and the complete 
sphere, and discussion of This load action is considered under
these Two sections •
Shallow Shell
ExperimentaL Model:- The shallow shell, previously described 
in connection with The radial loading and bending and twisting 
moments, was used for the present investigations. The shell
was --i Thick, 60in radius, with a rigid insert of 0.978in diam. 
as shown in Fig. IV.19. The ouUtr 3 ft. 3in chord
diam., was weIOeO Tu t heavy flange ring and mounted, in Thr 
horizontal plane, on Thr extended Table.
Loading Technique:- Thr tTngrntial shear load was applied at
The surface of The shell by a force (H + SH) and Tt some distal 
from Thr surface by a smaller force (JH) as indicated in FigTW! 
Thr magnitude uf 6H and the distance from The mid-surfAce was si 
That thr resultant moment action tT Thr ATTachmenT and on Thr
mid-surface, was zrru.

The luwrr Loading arm, placed as near to Thr surface of tl 
shell as possible, consisted uf:- a 2” x loading plate, wh 
was a push fit over The insert; t loading rud of liin diim; t 

Thrust washrr and loading nut. Thr load was applied tu the
plate and rud by screwing up The loading nuT. Tu prevent the 
torque, which was applied Tu The nut during loading, from reachl 
The insert, a Torque reaction block was fixed tu The loading ru
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Fig.IV.19 Arrangement of the Shallow Shell under Tangential 
Loading Applied Through a Rigid Insert.



 

 
 

 
 

 

 
 

 
 

 
 

 
 

 

 
 

193
This reaction was transferred from the block to the loading frame 
and thus to the extended table.

The horizontal reaction from the loading arm was also carried 
by the loading frame and transmitted thereby to the extended table 
support.

The magnitude of the load in the arm was measured by means 
Df a strain gauge dynamometer. Two ^in long electrical resistance 
Toil gauges, connected in series, were fixed to the upper and 
Lower faces of the 2in wide loading plate, thus eliminating the 
neasurement of strains due to bending. The loading arm was 
salibrated up to 3.0tons in a testing machine.

The upper loading arm was of similar construction to that 
f the lower arm. In this case, however, the force (£h) was 
nasured by a 12501b. proving ring which had been previously 
alibrated in a testing machine. The horizontal and torque 
eactions were again transferred to the loading frame.

In order to determine the magnitude of the force (SH) in 
le upper loading arm, corresponding to the force (H+ SH) in the 
ewer arm, such that the resultant moment at the attachment and 
i the mid-surface was zero, the following procedure was adopted.

The distance of the lower arm from the surface of the shell 
is first determined. Using this Information the distance of 
ie upper arm was fixed and the probable values of the force ($H)
)r values of (H + £H) were determined e On thiiLs basis the insert 
is loaded up to the first increment.

The force ($H) was further adjusted so that the inner and 
Iter strains, in any one direction, in th.e sttiion eaaeest the



 
 

 

 

 
 

 
 

 

 

 
 

 
 
 
 

 

 
 

194. (IV.1)
insert, were identical. That is, All bending stresses were 
Eliminated from The shell At The insert. When such a condition
was established, The values of The strain At all stations were 
recorded.

This procedure was repeated for each increment of load. 
Measurement of Strain:- The Electrical resistance strain gauges
used in The earlier Tests, The layout of which is shown in Fig.IV. 
were Employed in This investigation, The comments made earlier 
regarding gauge layout and strain recording being again relevant, 
pp.177-178.

The load was arranged To be applied in The plane containing 
the strain gauged line 8 = 0°and also in The plane 0 = 90°. This 
enablEd both The normal and shear strains To be obtainrd on both
Thrse lines.

I. was found That in The line 0 = 0. only normal strains 
were of significance, whereas in thr line 0 = 90°the significant 
gauges were Those aT 45°.

From these values of strain, The stresses in the meridionT 
and circumferential directions on the 0 = 0°line and the shear 
stresses on The 0=0° line were computed, using eqts. IV.l, IV. 
and IV.3. Thr direct stresses, Thus calculated, are shown in 
Fig. IV . 530 • The bending stresses were found to be wholly I

negligible in comparison with thr direct stresses. ■
CompletE Sphere I

ExperimentAl MoUed?e The 13 ft. 6in diam. model sphere shown ll
Figs. IV.7 and IV.13 and discussed un pp.178, 184, 185, was aga 
used fur the present investigAtion.
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iyo
Loading Technique:- The load was transmitted to the shell by 
means of stud attachments of ijin diam., welded with continuous 
fillet welds to the surface of the sphere. The studs were 
located diametrically opposite on. the equator and on the inner 
and outer surfaces on the same radial axes.

The s tuds on the inside of the vessel were loaded by forces 
acting vertically down, while those on the outside surface could 
be loaded in either direction - in this case vertically down.

The method of applying these loads is shown in Fig. IV.13 
and 14 and discussed in detail on pp.184-188. The loading 
procedure adopted in this case was the same as in the bending 
noment application, and was as follows. The inside studs were 
’irst loaded, using the loading beam and inner rods 2 and 3, the 
itrains being suitably recorded. Secondly the outside studs 
rere loaded, first in one and then in the other direction, using
ods 1 and 4. It will be noted that these separate results are 
xactly those of the bending moment application. In order to 
etermine the strain values for the tangential shear load, the 
wo relevant inner and outer results were superposed.
I A further test was undertaken in which all four rods were 
Ised, equal loads being applied vertically down to all stud 
Ibtachments. As in the case of the bending moment reported 
Brlier, p.188, difficulties were encountered regarding repeat- 
Bility of results, due to' slight differences in the load values 

B the attachments. The results presented, therefore, are 
Bose obtained by applying the inner and outer loads separately. 
Basurement of Strains- The electrical resistance strain gauges



 
 

 

 

 
 

 
 

 

 

 

 
 

 
 

 

196. (IV.1)

used for The bending moment test, on the completr sphere, Thr 
layout uf which is shown in Fig. IV.15, were employed in thr 
present investigations. The Twu 'vertically1 gauged lines
were in the plane of the tangEntial furcr (H) and the gauges 
un the equator were at 90° Tu the plane of (H).

Thr other comments regarding the gauge layout, wiring and 
strain recording given un pp.189 and 190 ate Again relevant in 
This case.

A comparison uf strains un The upper and lower 'verTical' 

lines, showed that guud agreement between the twu was obtained. 
As in The bending moment case, the only exception to this was 
the circumferential strain on The inner surface ( Eg ) in The 
imMEdiate vicinity of the load, this divergence being attributed 
to local imperfection uf The sphere.

From the strain results un the 'vertical' lines (8 * O' 
and 0 . 180°) The corresponding bending and direct stresses wet
obtained, using eqts. IV.1 and IV.2. The direct stresses are 
plotted in Fig. IV.21 and as in the Earlier test un The shallow 
shell the bending stresses were found tu be wholly negligible i 
comparison with the direct stresses.

The strains on The equator Line, 0 = 90° were also record
and iT is noTrd That terse values were very small, yielding 
currespunding bending and direct stresses which were negligible 
in comparison with Those on thr 0 - 0° line.
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IV.2 THE SHALLOW CAP CONCEPT 

In introducing the Influence Line Method (Chapter II.3)
attention has been drawn to the fact that the primary analysis
necessary when applying the method is always that of a unit
radial or tangential load, moment or torque, concentrated or
distributed over a small area. Thia is the case irrespective of 
whether the problem is symmetrical or unsymmetrical in nature. 
rhese unit actions art always considered to act at the centre, or
crown, of a shallow cap, the extent of which corresponds to the
'die-out’ distance for the particular action considered.

The second phase of the experimental work was directed
;owards the examination of this concept in the case of radial 
oading. This type of loading was selected owing to its ease 
f application at any point on the shell surface.

The radial load was applied to the shell in a number of 
ositions ’off-set? from the geometric centre of the shallow 
■cell. The point of application of the load became the centre
Ir crown of a shallow cap which is essentially unsymmetrical in 
relation to the geometric centre of the finite shallow shell, 
Icese experiments investigated?-
I (a) the influence of the welded boundary on the stress

distribution in a shallow cap?
1 (b) the distribution of stress and radial deflection in

several directions around the crown of the shallow cap;
1 (c) the effect of superposing two loads centred at the

crowns of two different shallow caps.
B The experimental model, loading technique and strain



 

 
 

 

 

 
 
 

 
 

 

 

 
 
 

 
 

 
 

 
 

198 (IV.2)
MEAsurement are common Tu all The Above trsTs and are. thereforE, 
discussed aT this puinT.
ExperimenTAl Mu^t^l:- This series uf expErimenTs was carried out
on a Jin thick, 6Oin radius shallow shell. As in earlier work 
thr outer boundary - 3 ft. 3in chord diim. - was welded to t 
heavy flange ring and mounted, in the horizontal plane, on thr 
extended table.
Loading Technique:- The radial loadings wrrr Applied Tu thr
shell by means of a loading frame, loading shackles, thrust 
washers and proving rings of 12501b capacity which had been 
previously calibratEd. The frAMe. which was fabricated from
3" x lj" channel and 2M x lj” Angle, was capable uf housing Thr 
loading shackles in t variety of ’off-set’ positions and always 
normal To The shell surface - as shown in Fig. IV.22.

The Applied load was distributed over a circular area of 
iin diim. currespunding tu a ja value of 0.0 588. To rnsurr That l
thr load was uniformly distributed a renewable lead insert was 
placed between Thr --i diim. anvil on the proving ring and Thr 
shell, Thus allowing for any surface irregularities.
MrasurrmenT of Strain and Drflrctiun:- Saunders Rue -Iii length 
foil gauges wrrr Again employed tu Measure thr strain un the 
uutrr and inner surfaces, using the same fixing techniques and 
calibration procedure as described earlier. The gauges were j 
fixed in three directions, corresponding to thr meridional, 
circumfErenTial and 45i lines of the shell, and placed along j 
one great circle. The layout is shown in Fig. IV.23. As discus 
un p.177, this Type uf layout was considered more accurate for 1



 

LOADING BRIDGE Loading shackle

Fig.IV.22 Arrangement of the Shallow Spherical Shell under 
Radial Loads ’Off-Set' from the Geometric Centre
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,IV.2J 199.

lon-axisynmietric loading, though interpolation from the plots of 
itrain (or strain per unit load) against radius was required to 
ietermine the three strains at any one point.

The 93-way strain recorder was employed in these testa and 
;he procedure for measurement and repeatability of readings (i.e. 
sero drift of gauges, etc.) was as described in connection with 
iarlier tests pp.173-175.

The radial deflections of the shell were measured using 
i.OOOlin dial gauges. The arrangement for support, adjustment 
nd alignment of the dial gauges is shown in Fig. IV.22. The
I
ial gauge rig could be so arranged that radial deflections could 
e measured at any point on the shell surface.

V.2.1 THE INFLUENCE OF THE WELDED BOUNDARY
The radial load was applied at four different positions at 

.40, 10.65, 12.80 and 15.70in radius, measured in plan from the 
rown of the shallow shell. These positions were located on the 
brain gauged great circle and are shown in Fig. IV.23. The 
trains in both the meridional and circumferential directions 
Long this great circle were measured for each position of the 
>ad. Using eqts. IV.l and IV.2 the values of the direct and 
mding stresses corresponding to the experimental strains were 
imputed •

The results from one such position (l2.80in) are plotted 
'n--iIjAAnsionally in Fig. IV.24a. The complete series are shown 
ter in Chapter V where they are compared with the theoretical 
lues •

In order to measure the radial deflection on a great circle



 

 

 

 
 

 

 
 

 
 

 
 

 

 
 

 

 
 
 

200 (IV.2)
for the various load positions, the shell was loaded along a 
line 180° to the gauged line - thus avoiding the strain gauges. 
The results for the four load positions are shown in Fig. IV.24b,

IV.2.2 DISTRIBUTION OF DEFLECTION AND STRESS AROUND THE CROWN 
OF THE SHALLOW CAP

The investigation of the previous section was extended to
consider the distribution of both deflection and stress around 
each load point. That is, to examine the behaviour of several 
shallow caps, whose crowns were situated off-set from the 
geometric centre of the shell.

Firstly, radial deflections were measured along 0c, 45°, 
90°, and 180° shallow cap great circles. Typical results for 
one such cap, the 5.40in, are shown in Fig. IV.25, and are seen 
to lie on a common curve.

Secondly, in order to examine the behaviour of the stresse 
in the shallow caps, the strain gauges on the great circle passl 
through the crown, or geometric centre, of the shallow shell wer 
used. In this case the load itself was successively applied 
around the circumference of a circle of radius equal to that of 
the loading point position (or shallow cap crowns) and the strai 
recorded on the gauged great circle for each load position. Or 
average, eight such positions were considered for each of the o: 
set distances.

Each gauge point, such as C shown in Fig. IV.26, on the 
gauged great circle was thus looked upon as a point on a series 
of shallow spherical caps with the appropriate load points (for 
example B) as their crowns. The procedure adopted will be



 
 

Rg.IZ-25 The Distribution of Radial Deflection Around 
the Crown of a Shallow Cap 5-40 i in from 
the Geometric Centre
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(IV.2) 201.

described with reference to the 5.40In off-set position, and 
with the load point in position B, ijin from the gauged line as 
shown in Fig. IV.26.

The inner and outer strains on the gauged line were recorded 
due to the application of the radial load at point B and, using 
the procedures outlined earlier, their variations were plotted.
From these graphs the magnitudes of the three strains at any 
point C on the gauged line were determined. In this case the 
magnitudes of the three outer strains at C in directions 0°, 45°,
50* to the gauged line were -0.220, -0.100 and -0.117 respectively.

These strains were then resolved, using the Mohr’s circle 
) strain, to give strains In planes corresponding to the meridional 
ind circumferential directions of the shallow cap at B (i.e. in the 
.ine BC and perpendicular to BG) . Thus £e * -0.250 and <•*«-0.082. 
^t will be noted, from the strain circle in Fig. IV.26, that the

_ o _ owo strains c& and cr are not exactly principal strains. Their 
eviation, however, is exceptionally small, representative of 
xperimental error, and In consequence it Is permissible to con-
lude that the meridional and circumferential directions of the 
hallow cap are, in fact, principal directions on the outer surface 
t B.

In a similar manner the strains on the inner surface at B 
3re computed and using the eqts. IV.l and IV.2 the direct and 
ending stresses determined.

Similar values of stress were determined for the points D,
, F, G and H (Fig. IV.26) which lie on 157-1°, 1121°, 90°, 67l°,
) lines, respectively, and at various distances from the load
int .



 
 

 
 

 
 

 

 

 
 

 

 

 
 

 
 
 

 
 

202 (IV.2)

This procedure was repeated for loads situated at distances 
other than l&ln from A and again stresses were obtained at points 
rotationally displaced around the load points.

The stresses obtained from all these tests were then trans
posed, using the condition of reciprocal symmetry, on a shallow 
cap whose crown was the point A and situated 5.40in from the 
geometric centre of the shallow shell. The complete results fox 
the 5.40in off-set are shown in Fig. IV.27. It should be noted 
in this figure that the ordinate of the direct stresses is five 
times that of the bending stresses.

It is seen that, within the limit of experimental error, 
the stress values define a single curve, thus substantiating the 
rotationally symmetrical nature of the shallow cap, and also the 
concept of reciprocal symmetry inherent in the derivation of 
Fig. IV.27.

The results for the other off-set positions are similar t 
those of Fig. IV.27, and indicate that the boundary influences 
the experimental stresses and deflections around each load poin 
in the manner shown by the results in Fig. IV.24 and Figs.V.9&

IV.2.3 THE EFFECT OF SUJERPPOSING TWO LOAADS BOTTH ’OFF-SET • RRC
• THE GEOMETRIC CENTRE

To investigate the applicability of the Principle of Supai 
position, two equal radial loads, ’off-set* from the geometric 
centre of the shallow shell, were applied simultaneously. Two 
series of tests were conducted; firstly, the two loads were 
situated in the 5.40in and 12.80in positions, that is 7.40in 
apart (Fig. IV.28) and secondly in the 10.65 and 12.80in positli
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Fig.IV.28 The Arrangement of Two Radial Loads Both ’Off-Set 1 
from the Geometric Centre.
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bhat is 2.15 in apart.

203

For recording the strains, the loads were positioned on the 
gauged great circle, and for measuring the deflections, on the 
Line 180° to the gauged line© The two loads were increased 
at the same rate and with the usual four increments© The
3train and deflection were recorded in the manner discussed 
aarlier© Results for one such test are presented in Fig,
EV©29.



 

 

 
 
 

 
 

 
 

 
 
 

 
 

 

 
 

 

 
 

204. (IV.3)
IV.3 EXAMINATION OF SELECTED COMPOSITE ACTIONS

In this section, experimental work designed to test the 

Influence Line Method is presented . Selected load cases 

inclusive of radial loads and moments were experimentally 

investigated. These load cases were amenable to analysis by 

the Influence Line Method thus permitting direct comparison of 

predicted with experimental valueso These comparisons are 

presented in a later chapter, the present text containing the 

description of experimental techniques and typical results. 

Investigations were carried out on shallow shell segments and a 

complete sphere.

IV.3.1 RADIAL RING LOAD

The radial loading was applied in two ways. Firstly, witl 

no restriction on the change of slope of the shell across and 

along the load path, and secondly with complete fixity of the 

shell across and along the load path, preventing any change of 

slope in the loaded region. Discussion of the radial load will 

be considered under these two sections.

(a) Radial Loading Transmitted by a Freely Supported Ring 

Experimental Model:- These investigations were carried out on 

a shallow shell of the type previously described, i?in thick and 

QOin radius. The outer boundary, 3 ft. 3in chord diam., being 

welded to a heavy flange ring and mounted, in the horizontal 

plane, on the extended table - shown in Fig. IV.30.

Loading Technique:- The shell was loaded by means of rotational 

symmetrical ring load systems. Because of the rotational 

symmetry it was unnecessary to develop an articulated load, and



 

  

 

 

 

 

 

GENERAL ARRANGEMENT

Detail op Ring Loading Device

Pig. IV 30 Radial Ring loading Without shell restraint at the load



 

 
 

 

 

 
 

 

 
 

 

 
 

 
 

 
 

 

 
 

 

(IV.3) 20 5.
a rigid ring or tube, faced to provide a loaded width of ^-in, 
was used as the load transmitting device. In order to ensure 
that any local irregularities in the shell surface under the 
load path did not unduly influence the uniform distribution of 
radial pressure around the ring* the load was transmitted to the 
shell through a pad of ,FrastikT, as shown in Fig. IV.50.

The shell and extended table support were placed on the 
Lower platen of the compression side of a universal testing 
machine. The load was applied to the ring through the loading 
rod, spherical seating (ijin OEaa. ball) and loading flange. As 
Ln the case of uniformly distributed loading, p.173, the spherical 
jeating was situated as close to the surface of the shell as pos- 
lible, thus reducing the possibility of any applied moment.

Five different diameter rings were used in the investi
gation, having mean diameters as follows •- 2§, 5j, 8, 10-- and
2|in. The loading flange shown in Fig. IV.30 was used for the 
hree larger rings. A similar flange was designed and used for 
he 2f and 5-^in diam. rings.
aaaurament of Strain and Deflection •- Since the crown of the 
lell was not under load it was possible to measure both the 
brains (by means of electrical resistance strain gauges) and 
^flections (by means of O.OOOlin dial gauges) within the. 
oaded ring.

The strain gauges employed in this series, were nichrome 
.re, paper backed, flattened helical grid type, of 200 ohm and 
.n length. Ag in earlier work, a batch of these were call-
■ated using the standard calibration procedure. Owing to the



 

 

 
 

 
 

 

 
 

 
 

 

 

 
 
 

 
 
 

 
 
 

 

206. (IV.3)

symmetrical nature of the loading, essentially only one great
circle was strain gauged. The layout of gauges was that used
in the earlier tests for the uniformly distributed loading of 
the *in shell. This is shown in Fig. IV.31 together with the 
positions of the ring loads. As the radial pressure at the 
loaded ring was relatively low, it was possible to make use of 
the strain gauges situated under the ring itself. Thus reading, 
of strain were obtained on both surfaces close to the ring.

As in earlier tests on the shallow shells the 90-way strain 
recorder was used to measure the strains in the meridional and
circumferential directions on both the inner and outer surfaces. 
The loading was applied as before in four increments up to the 
maximum load. The procedure for measurement and repeatability 
of readings (i.e. zero drift of gauges, etc.) was as in the earlJ 
tests pp.173-175.

From the strain per unit load values the bending and direc 
stresses were obtained using eqts. IV.l and IV.2. The results : 
on© of these tests are plotted non-dimensionally In Fig. IV.32a,

The radial deflection of the shell was measured using the 
O.OOOlin dial gauges, supported, adjusted and aligned in the man 
shown in Fig. IV.30. In order to measure the radial deflection 
of the shell within the ring a series of holes was drilled in th 
loading flange. Three such holes are shown in Fig. IV.30, and 
a further tvo were located on another flange diametral line. 
Extended legs were fitted to the dial gauges to enable these .
deflections to be measured.

The results for one of these tests are plotted non-dbnemsioi
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IV.3) 207.

n Fig. IV.32c. The complete results for both stresses and 
eflections are presented in Chapter V where they are compared 
ith the theoretical values.
b) Radial Loading Transmitted by a Rigidly Fixed Ring
xperimental Models- The complete sphere* shown in FIg.IV.7
nd discussed on p.178, was used to investigate the behaviour 
f a shell under the action of a radial load applied by means 
f two different diameter welded pipes. As in the earlier cases 
he radii of curvature were measured over the regions selected 
‘or pipe attachment. On the basis of these measurements the 
lositions of the attachments were fixed, avoiding areas In the 
.mmediate vicinity of a weld or other discontinuities and positioned 
in the same great circle diametrically opposite each other.

The vessel was marked on the inner and outer surfaces in 
iuch locations as to enable the attachment positions and those 
f the strain gauges to be fixed on both surfaces. The tech- 
ique used for marking the inner surface of the vessel from the 
inter surface was the ’Tempilstik? and acetylene flame method, 
escribed in detail on p.179.

Two pipe attachments of mean diameters 7.72 and 9.32in were 
raided to the inside surface of the continuous vessel by means 
f continuous fillet welds on both the inside and outside 
iamaters of the pipe. The widths of the welds were measured 
md found to be 0.66 and 0.92in respectively. The 7.72in mean 
lam. pipe was welded to the fin thick plate and the 9.32in 
nan diam. to the Jin plate, the two pipes being diametrically 
pposite, as shown in Fig. IV.33. The corresponding m values



 

 

 
 

 

 
 

 
 

 
 
 

 

 

 

 
 

 
 
 
 
 

 

208 (IV.3)
for the pipes were 1.48 and 2.20, and fov the load widths 
0.125 and 0.216 respectively.
Loading Technique:- Owing to the higher loads envisaged in 
this case, compared with the stud attachments, it was found move 
convenient to use a solid loading rod spanning the sphere between 
the two attachments. In order to maintain axiality of loading, 
shackles were mounted at either end of the loading rod. The 
shackles were of similar design to those described earlier and 
incorporated a spherical seating and ijin diam. steel ball.

The load was transferred from the shackle to the actual 
pipe by means of a short rod screwed into the shackle and fixed 
to a blank flange. This in turn was bolted to a further flange 
welded onto the pipe. The bolts used had the same pitch circle 
diameter as the mean diameter of the pipe. Using this double 
flange system the surface of the sphere within the enclosed pipe 
area was accessible. Details of the above arrangement are shown 
in Fig. IV.33.

Radial loads were applied to both attachments simultaneous 
by means of a turnbuckle which was of similar design to that usel 
for the bending moment and tangential load tests on the sphere. 
The load was measured by means of four Maihak strain gauges, as 
shown in Fig. IV.33b, mounted on a machined section of the rod, 
and placed diametrically opposite on the 0° , 90° , 180° and 270° 
lines in the longitudinal direction. The four gauges were eac 
read separately and the mean value determined. The loading roc 
with its Maihak strain gauge dynamometer was calibrated up to 
4 ton in the Laboratory prior to installation in the model sphe]
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Pig.IV.33b Arrangement of Radial Loading of Pipe Attachments 
on the 13ft-6in Diam. Model Sphere, showing the 
Maihak Strain Gauges.



Fig.IV.34 Layout of Strain Gauges for Pipe Attachments 
on the Model Sphere.



 

 

 
 

 

 

 
 

 

 
 

 
 

 
 

 

 

 
 

 
 

kIV .0/ 209
The shackle a used in the actual set up and shown in Fig. IV.33 

were employed in the calibration arrangement. Several cali

bration teats were performed to ensure that repeatability obtained . 

Measurement of Strains- A3 in the other casess electrical 

resistance strain gauges were employed in these tests for the 

measurement of strain on the inner and outer surfaces in the 

circumferential and meridional directions. Saunders Roe |-in

length foil gauges were used throughout., a selection of them 

being calibrated in the manner previously Indicated.

A3 in the case of the stud loading on the spheres two lines 

90° apart were strain gauged using the above gauges. The purpose 

of gauging the two lines was., as in the previous case, to obtain 

information as to the symmetrical distribution, or otherwise, of 

the loading. The strain gauge layouts for the two attachments 

are shown in Fig. IV.34. The strain gauge leads for each gauge 

were connected into a plastic terminal 3trip cemented to the 

surface of the sphere In the vicinity of the attachment. Twenty 

five core cable was then used from the terminal 3trip to the 

strain recorder. In this series the .50-way strain recorder was 

smployed and the procedure for measurement and repeatability of 

readings (i.9. zero drift of gauges) was as in the uniformly 

Jistributed radial load, tests, pp.X73-X75.

The loads were applied to the attachments In four incre- 

lents up to the maximum value, readings of strain being recorded 

ihroughout. The procedure for obtaining the corresponding 

ending and direct stresses was the same as that of the earlier 

lasts and outlined on pp.174 and 175.



 

 

 
 

 

 
 

 
 

 

 
 
 

 
 
 

 
 
 
 
 

210. (IV.3)

Typical experimental results for one of the attachments
for the bending and direct stresses are plotted non-dimens tonally 
in Fig. IV.35. It is noted that the results from gauges placed 
on both lines lie on one and the same curve, indicating the 
symmetrical nature of the loading. The other results are given 
in Chapter V.

IV.3.2
Experimental Model:-

RING BENDING MOMENT
A bending moment was applied to a con

tinuous shallow shell through a pipe attachment. The shallow 
shell, of Jin thickness and 60in radius, was welded at its outer 
boundary, 3 ft. 2fin chord diam., to a heavy flange ring and 
mounted, in the horizontal plane, on the extended table. The 
extended table was bolted to a heavy base which consisted of 
two 9” x 7” R.S.J’s - as shown in Fig. IV.36.

A pipe attachment of 5in mean diam. and Jin thickness was 
welded to the shallow shell using continuous fillet welds on the 
inside and outside diameters of the pipe, giving a weld width of 
lin at the shell. The centre line of the attachment coincided
with the crown of the shell. A flange was welded to the pipe 
and after welding was machined parallel to the base of the shell 
The value of p for the ring was 0.832 and for the load width?-0U' 
Loading Technique:- The bending moment was applied to the pipe 
attachment by means of a 5” x 2j” channel of 4 ft. 6in length to 
which was welded, at its centre, a lOin diam. blank flange* This 
flange was bolted to the pipe flange as shown in Fig. IV.36. At 
the ends of the channel section, two proving rings were position!



 

Fh.iv-35 typical Experimentally obtained direct stress and bendune stress on the outer surface a* a

COMITD SPERd-twDwwJ Du TO A PADIL LOAD P TRANSMITTED BY A AHDLY TIED RN
-RESULTS POR A ME A DIAM. TUBE ON In PLATE



N8IS
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Fig.IV.36a The Arrangement of The Shallow Spherical Shell 
Subject To a ’Bending’ Moment.



Fig.IV.36b The Shallow Shell Subject to a 'Bending* Moment.
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equally disposed about the centre of the shell and a distance
50in apart. The proving rings were secured to the base beams
by means of 5" x 2-|” channels, as shown in Fig. IV.36. To 
facilitate the load application, thrust bearings were employed 
between the loading channel and the loading nut. Aa in a previous 
test, the proving rings were used both as a load applying and 
measuring device. In order to apply a moment to the set-up 
the two rings were arranged to act in opposite directions. A 
reversal of these directions enabled the direction of the moment 
to be reversed and this provided, in each of the tests, a check 
on its method of application.
Measurement of Strain and Deflections- Ferry foil electrical
resistance strain gauges of -in length were again employed in 
these tests. Calibration of the gauges was as previously 
indicated. The majority of the strain gauges were mounted on 
me great circle and were fixed on the inner and outer surfaces 
An three directions corresponding to the meridional, circum
ferential and 45° lines of the shell. Two additional groups of 
gauges were fixed to record strains in the vicinity of the welded 
’ing. The layout Is shown in Fig. IV.37a

As discussed on p.177, this type of layout was considered 
lire accurate for the non-axisymmetric loading, though inter- 
>olation from the plots of strain (or strain per unit load)
.gainst radius was required to determine the three strains at 
ny one point. The additional-strain gauges mounted close to 
he weld were of particular value in this connection.

The 33-way strain recorder was employed in these tests and



 
 

 

 

 

 

 
 

 

 

 
 

 

 
 
 

 
 

the procedure for measurement and repeatability of reading 
(i.e. zero drift of gauges, etc.) was as in earlier tests, 
pp.173-175.

By suitably positioning the shell on the base beams it 
was possible to apply the bending moment in a series of planes 
having great circles rotationally displaced to those great 
circles containing the gauges. Four such positions were con
sidered, these being 0 * 0° , 30* , 60°, and 90°. In all cases 
the bending moment was applied to the shell in four increments, 
readings of strain being recorded throughout. Repeat loadings 
were carried out by applying the moment in the opposite directic

From the strain per unit load values at the various static 
the bending and direct stresses in the meridional and circum
ferential directions (relative to the particular great circle 
under consideration) were obtained using eqts. IV.l and IV.2.
The values of the bending (outer-fibre) shear stress and the 
direct (mid-surface) shear stress for the same great circle were 
obtained from the derived values of the shear strain on planes 
containing the particular great circle. These values of shear 
strain were obtained using the Mohrfs circle of strain construe’ 
from the experimental strains in the three directions. From tl 
values the magnitudes of the shear stresses on the inner and ou’ 
surfaces were computed using the following equations

= G and - 6

From these values the bending (outer-fibre) and direct (mid
surface) shear stresses were found from the following:-
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IV.3) 2X3
The results obtained from the above indicated that when 

;he moment was applied in the line of the great circle containing 
;he strain gauges (0 * 0°) the principal stresses ware in the 
iirection of the meridional and circumferential gauges, there 
)eing no shear stress on the great circle. When the moment 
ras applied at 90 (0 * 90 ) to the gauged great circles, only

o;he 45 gauges recorded a 3train reading - Indicating a condition 
of pure shear on this line. Considering the above results, 
together with those obtained from the other two cases (0 * 30° 
ind 0 = 60 ), it was concluded s-

(i) that the meridional and circumferential stress dis
tribution in great circles rotational^ displaced by 
an angle 0 from the applied moment varied as the 
cosine of the angle 0|

(ii) that the shear stress distribution in the above planes 
varied as the sine of the angle 0.

typical results are plotted non-dimensionally in Fig. IV.38a-f.
The radial deflections of the shell were measured as before 

ising the standard 0o0001in dial gauges. The dial gauge supporting 
ig was positioned, in the first instance, to enable deflections
be measured along the 0=0° line.

In order to facilitate these measurements in the plane of 
;he moment, holes were drilled and slots milled along the loading 
iiannel centre line. Extended spindles were then fitted, where 
leeessary, to the dial gauges. As an extension of these tests 
eflections were also measured along the 0 = 30° , 60° and 90°
ines In order to measure the deflections of the shell within



 
 

 
 

 

 
 

 
 

 
 

 

 

 
 

214. (IV.3)
the loaded ring, holes were drilled in the channel and tta baank 
flange along the four lines 0-0°, 30°, and S9)°.

As in earlier tests, the bending moment was increased in 
four increments, readings of deflection being recorded throughout. 
It was later reversed in direction as a check on the readings.

From the results it was concluded that the distribution of 
radial deflection along great circles rotationally displaced by 
an angle 0 from the applied moment varied as the cosine of the 
angle 0. Results are shown in Figa IV.38g.

At a later stage the port ion of shell the pipe ttaccl
ment was removed leaving what was virtually a nozzle attachment.
In a similar manner to that outlined above a bending moment was 
applied to the nozzle, the strains and deflections being recorded 
as before. It was found in this case that the resulting stressi 
and deflections were almost Identical to those obtained for the
earlier case of the continuous shell.

IV.3.3 RING * TWITTING* MO £OT
Experimental Model:- A twisting moment was applied to a continu 
shallow shell through a pipe attachment at the crown. The shell 
used was that previously described on p.210 of -in thickness and 
60in radius, and welded at its outte bouunarr ( 3 ft. 2^±rc chord 
diarne) to a heavy flange ring. ebo pefa t^acen^ t of ine mean 
diam. and lin thickness was welded to the shell using continuous 
fillet welds on the inside and outside of the pipe. As mentioned 
earlier, the flange welded to the attachment was machined paralle 
to the base of the shell.
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(IV.3) 215.
Loading Technique?- The shell was suitably mounted in a

180,000 In.lb capacity torsion machine. The heavy flange ring 

base of the shell was bolted, using fitted bolt3, to a large lin 

thick disc attached by means of a Sin thick keyway plate to the 

straining side of the torsion machine. The keyway plate was 

bolted to the torsion machine and to the lin thick disc by means 

of specially designed fitted bolts. The welded pipe attachment 

was bolted, using fitted bolts, to a suitable flange and shaft 

arrangement which could be gripped In the weighing head of the 

machine. The set-up is shown ir Fig. IV.39.

Measurement of Strain and Displacementg- The electrical

resistance strain gauges used in the earlier tests In connection 

with the application of the bending moment, and shown in Fig.IV.37 

were again employed In the present investigation. The comments 

made in the previous section pp.211 and 212 regarding this layout 

and strain recording are again relevant here.

A total torque of ICO,000 in.lb was applied to the shell 

in four increments, the readings of strain being recorded through

out. It was noted that only the gauges along the 45° lines 

recorded a strain reading, and that the values of strain on the 

Inner and outer surfaces were identical. The system was thus 

In pure shear, and U3ing eqt. IV.3 the ’mid-surface’ shear stress 

vas obtained. These results are shown in Fig. IV.40.

The tangential displacements of a great circle of the shell 

rare determined at six radial positions by means of O.OOOlin dial 

gauges. Each dial gauge was mounted so that the measuring leg 

as at right angles to the great circle under investigation, and
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in a plane parallel to that containing the tangents at the 
particular point in that circle. At six different radial 
positions down the relevant great circle small brass cleats 
(«" x £B) were cemented to the shell, the longer side o« the 
cleat being in a plane containing the great circle and the normal 
o« the shell. The dial gauges were then suitably adjusted so 
that the measuring leg o« a gauge was positioned at the centre 
of one o« the cleats, and at right angles to the section0

Owing to the shallow nature o« the shell it was necessary 
to fit a special measuring leg to the dial gauges which enabled 
the displacement to be measured in a line parallel to the centre 
line of the dial gauge and close to the surface of the shell.

The twisting moment was increased in this case, in eig^it 
increments, readings of displacement being recorded throughout. 
Several tests were carried out for each radial position to ensure 
that repeatability was achieved. The results are plotted in

IV.4O.



Fig.IV.39b Arrangement of a Shallow Spherical Shell 
Subject to a 'Twisting* Moment.
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CHAPTER V. COMPARISON OF THEORETICAL AND 
EXPERIMENTAL RESULTS
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In Chapters II and III of the thesis the theoretical 
analyses for a spherical shell under a variety of load cases 
are presented. These load cases are examined experimentally
in Chapter IV. The present chapter compares the theoretical 
analyses of Chapters II and III and the experimental work of 
Chapter IV; examining in turn the basic actions, the shallow 
shell concept and selected composite actions.
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CHAPTER V. COMPARISON OP THEORETICAL AND EXPERIMENTAL 
--------- RESULTS

V.1 BASIC ACTIONS
V.lol RADIAL LOADS

(a) Uniformly Distributed over a circular area
(b) Applied via a rigid stud or insert

Volo2 'bending moment
v.1.3 ‘twisting’ moment
v.1.4 tangential load 

v.2. the shalioww cap concept
v.2.1 INFLUENCE OF SHELL BOUNDARY
V.2.2 STRESSES AND DEFLECTIONS
V.2.3 SUPERPOSITION OF SIALLOW CAPS

y.3 E3AMMINATION OF SELECTED COMPOSITE ACTIONS
I V.3.1 RADIAL RING LOADS

(a) Transmitted by a freely supported ring
(b) Transmitted by a rigidly fixed ring

V.3.2 RING 'BENDING’ MOMENT
V.3.3. RING'TWISTING' MOMENT
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V.l BASIC ACTIONS
V.1.1 RADIAL LOADS

The radial loading was investigated theoretical ly and 

experimentally in two forms? firstly, uniformly distributed 

over a circular area of the continuous shell and secondly, 

applied in the same manner to a rigid insert.

(a) Uniformly Distributed over a Circular Area - Shallow Shell 
Models (Figs. V.1s2)

The comparison between the theoretical values and typical 

experimental stress results are illustrated by considering the 

two extreme p values for each shell, i.e. 0.0 588 and 2.824 for 

the i-in thick shell and 0.147 and 1.412 for the lin thick shell. 

These are presented in Fig. V.l. The complete set of comparisons 

for both the iin and lin shells is presented in Appendix VIII.7 

Figs. VIII.4 and 5.

These results show significantly good agreement between 

theory and experiment. It ia of interest to note that the 

agreement is particuarly good for the smaller area loads. This 

is ascribed to uniformity of load distribution being more closely 

approached in these cases. Generally any deviations present are 

insignificant and it is considered that the theory is wholly sub

stantiated by the experimental results.

In a similar manner the experimentally obtained radial 

deflections are compared with the corresponding theoretical 

curves, again for the iln and lin shells. Typical results for 

these cases are shown in Fig. V.2. In Figfc V.2a and 2b the 

results for the smaller area loads for shells of ^-in and lin are 

shown. In these cases it was possible to measure the deflection



 

 
 
 

 

 

 
 

 

 

 

 

 
 

 
 

221 . (V.l)
at a large number of points and so define precisely the
deflected form of the shell as a whole. This permits criti
cally searching comparison with theory and indicate good agree
ment •

It is relevant to mention that there appears to be slight 
divergence in the results obtained for the larger area loads in 
the lin shell, as shown in Fig. V.2d. This is considered to be 
due to a ring load action originated possibly by friction of 
the steel shot on the retaining ring in the arrangement described 
on p.172. The reason for ascribing this effect to the steal 
shot loading device is that the deviation was not present in the 
water filled membrane leading arrangement used for the Jin shell, 
the results of which are shown in Fig. V.2c.

On this basis it is considered that the deflection variatio 
also substantiate the theory in a satisfactory manner.

The complete series of results for both shells is presented 
in Appendix VIII.7, Figs. VIII. 6,7.
(b) Radial Loads Applied by means of a Rigid Insert - Shallow Shell (Fig. 3a,b) Complete Sphere (Fig.5c)

The shallow shell stress and deflection results (for p=0.23,
are shown in Figs. V.3a,b and those of the complete sphere for
the case p - 0.092 in Fig.V.3c. (The other complete sphere result
for p = 0.195 and 0.394 are shown in Appendix VIII.7, Fig.VIII.8’

The deviations that occur between the theory and the exper: 
mental results are seen to obtain in the immediate vicinity of 
the insert. It would appear, therefore, that the boundary con
dition at the insert of = 0, assumed in the theory, is not
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realised In practice, despite the precautions taken during the 
welding of the inserts,. It is further noted that the stresses
would be equally well predicted by the theory of the uniformly 
distributed radial load applied to the continuous shell as given 
by eqts. 11.49-51 and Figs. 11.3,5.

The experimental results for the deflections of the shallow 
shell are seen to be somewhat higher than both the rigid insert 
and the uniformly distributed load theories. This is considered 
to be due to the method of construction of the models, which con
sisted of drilling a hole in the shell and welding a solid insert 
of appropriate size to fill the hole. It seems fairly clear that 
complete integrity of the shell was not obtained leading to a 
degree of ’weakness’ which resulted in increased experimentally 
recorded deflections in comparison with the theoretically pre
dicted values.
V.l.2 BENDING MOMENT - Shallow Shell (Fig.V.4) and Complete 

Sphere (Fig. V.5)
The theoretical predictions are fully confirmed by the 

experimental results for all actions except the circumferential 
stress in the immediate vicinity of the insert. This again is
attributed to the lack of integral continuity between insert
and shell.
V.l.3 TWISTING MOMENT - Shallow Shell (Fig. V.6)

All that need be noted here is that the agreement obtained 
between theory and experiment is excellent.
V.l.4 TANGENTIAL LOADING - Shallow Shell (Fig.V.7) and Complete 

Sphere (Fig.V.8)
It is seen that the shallow shell results for both the
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circumferential direct stress and mid-surface shear stress 
(Fig.V.7) show good agreement between the theoretical and 
experimental results. The same measure of agreement, however, 
was not found in the case of the meridional direct stress for 
the shallow shell, where the experimental curve has a more rapid 
’die out’ than that predicted by the theory. It is of signifi
cance that in the case of the complete sphere generally good 
agreement was obtained particularly in the case of this same 
meridional stress (Fig.V.8)

This conflicting evidence for the meridional stress for 
the shallow shell and complete sphere is explicable in terms of 
the method of tangential load transfer to the shell.

In the tests carried out on the complete sphere the load wa 
applied through pads welded to the surface of the sphere, in the 
form of a ’tractive* force of total value H. In this case the 
experimental and theoretical results show good agreement.

In the shallow shell test3 the Insert penetrated the shell, 
being welded on both the upper and lower surfaces. These doubl 
welds were intended as a practical precaution to ensure that the 
tangential load would in fact be applied as a tractive force.
It now seems clear, however, that this did not materialize, and 
load transmission is presumed to have been partly tractive and 
partly in the form of a bearing action applied over the contact 
area between insert and shell wall. Such a condition would 
naturally affect the meridional stress results to a greater exter 
than those of the circumferential and shearing stresses and woulc 
produce just this more rapid ’die-out’ effect manifested by the
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Further experimental confirmation of this effect was 
specifically provided through a subsidiary series of tests. In 
this, the insert was removed and a hole, of the same diameter, 
was drilled in the shell wall. A closely fitting bar was then 
passed through This hole and was used To apply a tangential load 
to The shell wall practically wholly by bearing action. This 
had The effect of increasing The peak value of meridional stress 
above that corresponding To The rigid insert and wa3 accompanied 
by a much more rapid ’die-out* Than that shown by The theoretical 

and by The other experimental results.
These effects emphasise the care necessary in ascertaining 

The actual lead Transmission mechanism of the particular loading 
attachment used.
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V.2 THE SHALLOW CAP CONCEPT
The experimental work, as already indicated, has been 

directed in certain instances to the substantiation of aspects 
which may be used as the basis for design methods. These con
cern the significance of the ’die-out’ distance for both stresses 
and deflections and are discussed in the following.
V.2.1 INFLUENCE OF SHELL BOUNDARY - Shallow Shell (Flgs.V.9,10)

Figs. V.9 and V.10 compare the experimental and rotational; 
symmetrical theoretical distributions for a series of ’off-centre 
radial loads. It can be seen from the stress values presented in 
Fig. V.9s-

(i) That the theory for the rotationally symmetrical case 
(applied at the load point) is in complete agreement 
with the experimental stress results for an ’off-centr 
load, provided the boundary of the shell is out with t 
’die-out’ distance.

(ii) that the experimental results have the Intriguing 
feature that even when the boundary is within this 
’die-out’ distance the stress distributions tend to 
follow the variation predicted by the theory, being 
in a sense * cut-off’ at the boundary.

The radial deflections, shown in Fig.V.10, for the same sei 
of loads indicate, as expected, greater divergence from the rotat 
ally symmetrical theory since they are forced to conform to the 
physical condition of* zero radial deflection at the boundary. Ir 
the 00.55nn nnd 22.00n n enr^r^r e clitddoee oaadnn g the deviation of 
the radial deflection is only of sinn505ctdt magnitude in the
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vicinity of th© load point, and in these cases it would not be 

unreasonable to predict the radial deflection on the basis of 

this theory.

V.2.2 DISTRIBUTION OF DEFLECTION AND STRESS AROUND THE CROW
OF THE SHALLOW CAP - Shallow Shell (Fig . V.ll).

The behaviour of several shallow caps whose crowns were 

situated off-set from the geometric centre of the shell were 

investigated experimentally. Typical results for such a cap, for 

which the load position defining its crown is 5.4OIn from the 

geometric centre of the shell, are presented in Fig.V.ll. In 

this figure the experimental stress and deflection results and 

the corresponding rotationally symmetrical theoretical values 

are given.

It is seen that not only do the stresses and deflections 

define respective single curves but these curves are the appro

priate theoretical curves for the case of a shell loaded in a 

rotationally symmetrical manner-. Thus the evidence is again 

indicative of the applicability of the rotationally symmetrical 

theory.

V.2.3 THE EFFECT OF SUPERPOSING TWO LOADS BOTH «OFF-SET’ FROM 
THE GEOMETRIC CENTRE - Shallow Shell (Fig.V.12)

Fig. V.12 presents the stress results of experiments des

igned as a direct demonstration of the Principle of Superposition. 

The theoretical values with which these experimental results are 

compared have been obtained by superposing two rotationally 

symmetrical systems situated with their crown at the corresponding 

load positions. There is good agreement between the experimental 

and theoretical values.
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The radial deflections for the two aeries of tests are 
also shown in Fig.V.12. These experimental points are compared 
in the first place, with the superposed experimental values for 
the relevant single load cases (Fig.IV.24). In this case it is 
seen there is good agreement between the two . Secondly, they 
are compared with the 3uperp03ed theoretical values for the 
rotationally symmetrical case, where, as expected from the 
single load results (Fig.V.10), there are deviations between 
the experimental and theoretical results In the region of the 
load nearest the boundary.

It may, therefore, be concluded that within the limits of 
experimental error it is possible to superpose the effects of 
two shallow caps placed in close proximity to each other, and 
that the rotationally symmetrical theory may be used in those 
cases where the single load results are predicted by the 
rotationally symmetrical theory.

r
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V.8 EXAMINATION OF SELECTED COMPOSITE ACTIONS
As indicated in Chapter IV (section IV.8) selected load 

cases inclusive of radial loads and moments were investigated 
experimentally® These load cases were amenable to analysis by 
the Influence Line Method (Chapter III) thus permitting direct 

comparison with predicted and experimental values® These com
parisons are presented in this section®
V.8.1 RADIAL RING LOADS

These were applied to the shell firstly, by a freely suppor
ted ring and secondly, by a rigidly fixed ring.
(a) Radial Loading Transmitted by a Freely Supported Ring - 

Shallow Shell (Figs® V®15 and I4)
The comparison between the theoretical values, obtained by 

the Influence Line Method® and the experimental values from the 
shallow shell for stresses and radial deflections are shown in 
Figs® V®18 and V.14, respectively®

It i8 seen from these results that the agreement between the 
theory and the experimental results is quite satisfactory and would 
appear to be within the experimental accuracy of the set-up. The 
experimental difficulties in these tests were in ensuring that the 
load was distributed uniformly round the ring, and that there was 
complete freedom of constraint at the load point. It will be 
noticed that the results of the smaller rings of 2f and 5iin diam. 

show some divergence from the theoretical values in the region of 
the ring. This is undoubtedly due to these difficulties, which 
despite improvements in the experimental technique were still
present. The larger rings do not 8how this divergence in the 
region of the ring because of the fact that in these cases the
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load per unit length was smaller and the above difficulties corres 

pondingly reduced.

(b) Radial Loading Transmitted by a Rigidly Fixed Ring - Complete 
Sphere (Fig.y.15)

The comparison between the predictions of the Influence 

Line Llethod and the experimental results are shown in Fig.V.15 

and it is noted that there is good agreement between the two.

Some divergence, however, is noted in the ease of the smaller 

ring = 1.48) in the region of the shell contained within the 

ring. These are thought to be due tc local irregularities in 

the vessel surface in this region., a defect not present in the 

shell surface associated with the larger ring.

V. 3.2 RING SENDING MOMENT - Shallow Shell (Figs. V.16, 17)

In the experimental set-up discussed in Chapter IV, the 

moment transmission to the shell almost certainly took place by 

a combination of radial and tangential load3 and moment actions, 

the magnitude of these depending upon the relative stiffness of 

the ring (or tube) and shell. To illustrate thi3 effect a 

selection of the experimental results shown in Fig.IV.38, namely 

radial deflections and meridional stresses, are compared with the 

theoretical values derived on the basis of moment transmission by 

varying radial load (Fig. III.18). These are 3hc<wn in Fig. V. 16a,T

It will be 3een that the deflections vary in a similar way 

to that of the theory though lower in magnitude, this being par

ticularly noticeable in the region of the loaded ring. At point 

outside and some distance from the region of the ring the agree

ment with the theory is not unreasonable. The meridional bending
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stresses shown in Fig.V.lCb exhibit similar characteristics, 

the deviation from the values predicted by the theory being 

clearly defined.

It was, therefore, proposed to superpose the effects of 

the moment transmission by radial load and by radial moment.

The effects of the tangential load at the ring/shell junction 

are neglected since they are considered of small maggitude.

The individual actions are those analysed by the Influence Line 

Method and presented in Chapter Ill. That of the moment trans

mission by a varying radial load is given in section III.2 and 

presented graphically for the particular ring/sphere under test 

in Fig. III .18, while that of the varying radial moment is given 

in section III.3 and Fig.Ill.22. These curves are also shown in

Fig. V.16c-g<>

The actions were then combined, using a semi-empirical 

analysis, in proportion appropriate to the experimentally measured 

radial deflection distribution. The combined curves so derived

for the bending and direct stresses are shown in Fig.V.16c-g.

They are then compared with the experimental results and shown in 

Fig.V.17.

It is noted that the experimental bending stresses show good 

agreement with the derived curves though the direct stresses show 

a certain am^i^nt of scatter in the region of the load ring. This 

is probably due to the lack of consideration given to the tangential 

load, which if of significant value would influence the direct 

actions to a greater extent than the bending actions.
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V.3.3 RING TWISTING MOM3NT - Shallow Shell (Fig.V.18)

The theoretical solutions of this case by the Influence 

Line Method are presented in Chapter Ill, sections III.4 and 

III.5, where these have been obtained by two different methods 

of load transference. Fig.V.18 presents the results where the

theoretical line is drawn through the individual theoretical 

points. The experimental points for this case are also shown

in Fig.V.18 where the agreement with the theory is seen to be 

excellent.



 

fig.v. Id Shear stress due to a 'Twisting' Moment * ieh units)

+ Influence e ine method X Influence unc 
DETTlNJUTO EMOR FORCE DETTIjUTO M

• EXPECRMBETCL EOTULTS

theoretical- Influence Line Mr tod

fg.V.18 Smear stress and tangential Displacement of a shallow spherical
Smell doe to a * twisting’ Moment applied via a welded ring - A Comparison 
BETWEEN The INFLUENCE LlLE METHOD AND EXPERIMENT
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CHAPTER VI. SUMMARY AND CONCLUSIONS

VI .1 BASIC ACTIONS - Comparison of Theoretical Analyses

VH.2 BASIC ACTIONS - Compaaison of Experimental and
Theoretical Results

VI .3 DESIGN APPLICATION - Influence Line Method
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VIa BASIC ACTIONS - Comparison of Theoretical Analyses
The theoretical analyses of the ’basic’ load aotions of 

radial and tangential load, bending and twisting moments on 
a spherical shell are presented in the thesis. These are 
obtained firstly, by using the governing shallow shell equations, 
which incorporate the membrane stress funotion P, and secondly, 
by a general shell approach. The stress and displacement 
results, for the basic actions, obtained by these two analyses 
are compared.

It is concluded for the range of shells considered that:-
(1) Radial loading applied via a rigid insert
The ’shallow’ shell theory predicts results in agreement 

with the ’general’ shell approach for all values of ja.
(2) Radial loading concentrated at the crown
Neglecting second order terms in R and £ the stress and

radial deflection equations obtained by the ’general’ shell 
theory reduce to those obtained by the ’shallow’ shell theory. 
This is permissible for all values of r, excepting those values 
extremely close to the crown.

At the crown the ’general’ shell approach and also the 
•shallow’ shell theory, developed for the rigid insert case, 
predict infinite values for the direct stress terms and 
Against this, the ’shallow* shell theory applied to the case 
of a continuous shell results in finite values of <^0 and <r$o 

due to the imposed boundary conditions at r = 0.
Prom a practical point of view the finite values of 

and Oq0 are the ones considered acceptable.
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It is of Interest to note that FLUGGE avoids this 

infinity condition, for these stresses, in the 'general r shell 

approach by putting v * 0.

(3) Bending moment applied via a ri^g^D! insert

The direct stresses obtained from the 'shallow' she11 and 

the 'general' shell analyses are In agreement for all values of 

p. The bending stresses also agree, apart from their values 

in the immediate vicinity of the insert*

This divergence in the bending stress values given by the I 

two analyses is of signifcaance for the smaller R/t ratio shells 

in cases where the u value is also smaAl. For example when

R/t » 60 and u» 0.1, the value of the maximum meridional 

mommnt, Mrr , (which occurs at the insert) as predicted by the 

'general' shell theory is 1.43 times that given by the 'shallow' 

shell, thereas when R/t = 240 and u = 0.2 the corresponding

ratio is only 1.04. In this respect the 'shallow' shell theory

oversimppifies the problem by neglecting consideration of momnt 

terms arising from the mid-surface displacements and, in con

sequence, underestimates bending stress values in this region.

(4) Twisting moment applied via a rigid insert

Both theories produce identical results for this case.

(5) Tangential load applied via a rigid insert.

The results obtained for the 'general' and 'shallow' shell 

treatments are similar in form. Good agreement of stress values

obtain in the regions near the crown where the stresses are of 

significant magnitude.

Deviations are shown in the stress values given by the two
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theories at points far from the crown. These, however, are

not considered significant from a practical point of view 

since the stress maggnitudes in these regions are in themselves 

small, of the order of 10% of the maximum stress value.

In the foregoing it is clearly seen that the 'shallow’ 

shell theory provides a rational and acceptable method of 

analysis for evaluating the effects of basic actions, with the 

exception stated in (3) .

VI .2 BASIC ACTIONS - Comparison of Experimental and Theoreti
cal Results

The comparison between theory and the range of experiments 

performed for all the four basic actions (radial and tangential 

load, bending and twisting moments) indicate significantly good 

agreement and substantiate In every respect the analytical 

results derived on the basis of the 'shallow'shell theory.

Small deviations which obtained in a few cases were due 

to difference between the theoretical and experimental models. 

These weire the difficulty of obtaining the boundary condition 

SQ * 0 at the periphery of the rigid insert and the unavoidable 

transmission by a combination of bearing and tractive forces of 

the tangential load when applied to the shallow shell by a welded 

stud insert.

It is of interest to note that the existanoe of a finite 

boundary in the experimental shallow shell models did not intro

duce any detectable deviation from the theoretically predicted 

values.
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VI .3 DESIGN APPLICATION - Influence Line Method

An application of the theoretically derived and experi

mentally substantiated basic actions is presented in the form 

of an Influence Line Concept capable of yielding solutions to 

a wide variety of complex load cases including those not other

wise amenable to analysis.

To provide a form of theoretical substantiation of the 

Influence Line Method a number of cases capable of solution by 

conventional analytical ^^^ns and involving all the types of 

load actions considered, were selected for examination.

In every case the Influence Line and conventional analytical 

solutions shew excellent agreement.

In a similar manner experimental substantiation was 

obtained through performing tests on the variety of load cases 

presented in the thesis. These confirmed (1) that for the

purposes of design analysis, the 'die-out:1 distance may be 

considered as defining the significant shallow cap, and (2) all 

basic actions for this shallow cap my be superposed to yield 

results for the many unsyrnTtrical load cases characteristic 

of practical shell analysis.
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A VERIFICATION OF THE FORM OF SOLUTION OF EQT.II .11

flr-ll]= 0

To assist the manipulation of the Bessel and Kelvin functions 
the relations shown ln eqt.VIII.2a-d are obtained by substituting:-

= Cw/’n[b€rn9J + Jbein9jz] + C2<ltj”[kernfy (11.17)
Into [Va- (^2 + n/r*)] = 0 (II ,13b)

These are as follows:-
C|o<. j'nt V2bern^ - n*ber„ty 4 J ] 

r* *
4 Clot fn4,[vab€in^ - n’bei„r^ _1 bernty]
4 jn C V2ker„ - c1 k<r„ 41 kei„fy]

4 -J^kefnfy]
Thus:- V2bern b«rnfy 4 i/p bet„ ity

(VIII.l)= O 
= 0

= 0

= 0 

= 0 (VIII .2a-d)

Vab<unr/j - n7r»bet„7^ - fy* bcr„ ’/Z 
V2k«r„r/^ -n/^ker,,^ 4 
Vaket„r/£ -n^.»kfct„7£ - fyiker„r/£

Eqts.VIII.2a-d will be used in the proceeding analysis.
The solution of eqt.II.11 has been expressed in eqt.II.18 as: 

Uh * (Ctn ber„ ?£ 4 Cz» bet*^ 4 C3h ktrn 4 C4n knhfy ) cos t\Q (It - IS)
Considering only the first term:- Wj, » Cinbe^fy cosn0 (VIII.3)
expressions forVw^ and vV wj, can be written aa follows :- 

V*<«rh = C,n (V*ber„ - rfy* bern r/£ ) cos n9 

and V'Vtuj, » C,„[7*Val>ern7t - Vab«rB?£ - 4 fl*bernfy jcosnfl

(VIII.4a,b)
The right hand side of eqt.VIII.4a,b can be simplified using the 
relationship of eqts.VIII.2 
Operating on eqt.VIII.2a with V :-

7'P’Ur„!?f - _ 0 (VIII>5)
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Then substituting for V*bei„9£ from eqt .VIII.2b and for bein7g 

from eqt.VIIi.2a, eqt.VIH.5 can be written:-

VVb<rnr/( - VfiVerni7()_ nYvebcrn!| + be r„ fy =0 (VIII .e
Substituting eqt.VIiI.6 into eqt.VIII.4a,b

V*VX » Cln (- ^4 ber„ 0j ) cos n 9 (VIII.7)
Substituting eqt.VIII.7 into eqt.ii.11:-

Cm(-l*bennO>) cosoS + = 0 (VIII .8)

Eqt .VIII.8 is satisfied when wk= Cmbernfy cosnB 

Thus w^ = Cmberffycosr© is a solution of eqt. 11.11.

In a similar way the terms involving bei, ker and kei 

maybe verified.
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THE DERIVATION OF THE CHARACTERISTIC CONSTANTS

In the expressions for w and F a 'number of constants are 

introduced. These are determined by considering the boundary 

conditions for the various loadings.

VIII .2.1. UNIFORMLY DISTRIBUTED RADIAL AREA LOAD ON A
SHALLOW SHELL (p .82)

(a) Derivation of TjjC^and b0 (p.84)

The two governing equations for inside the loaded area are:

- C be fy 4 C-i bet r/p 4 C3 ker 4 C4 ket r/y - A0 -
Et2

Ft = [-C(be ty 4 C, bet r/p - C4ker7g 4 Cjket-Ubpfify - --JRr2
R 4

At r a 0 l*w is to be finite
f(2TlrQ r) -► 0

irh
Nrr is to be finite

At r = 0, ker5>-*-oo o Thus applying eqt .VIII.10a to eqt .VIII.9a,

C, - 0. From eqt .II.5a Qr = -D 2.V aw , using eqt .VIII .9a
9r

2Vrf)r = ~ 2nP3(-C,rbei'ry + C2rb«r'r/£ + C4r kef ) (VIII.11)

Since at r = 0 . C4 rker^-*- - C and bei'fy and berfy =» 0, the 

R.H.S. of eqt .VIII.11 ■ 2tt D C4 . Applying eqt .VIII .10b , C4 = 0

The exppreision for Nrr or eqt.II.-4a for this case can be written 

. Thus rrom eqt .VIII.9b, puttCng C3 = C4 = 0

(VIII.9a,b)

(VIII.10a-c)

Nr|. =. J 4.F
r dr

[E^ (-C,fe«£.'* + C, ) + 9o £ - fes-51
L R v Y • 7* 2 JNrc

b0 = 0Applying eqt .VIII .lOc 

Thus Cn = C4 = bo = 0

(b) Derivation of C6,C7 and A, (p.85)
(II.37a-c)

The governing equation for w, outside the loaded area is:- 

<ro = C69o-?£ 4 Crbetfy + Cgkerr/p 4 Cqkei.r/p -A, (VIII.12)
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At 0

0

0
Mrr

w (VIII.13a-c)

The expression for Mee and Mrf from eqts .II .4d,e are

£^1 > Mrr = -Df3±r+Iziu/:1 
L r 3r dr3 J I ar* r ar J

Thus from eqt.VIII.12,
Mas = - D [ 0-P)nCf ber'ty 4 C7bei'r/( 4 CgkeCty +Cfkei'?y)

L r (
■ ^(-Cq bei ?y 4 C7 ber fy + C? lee- r/( - £. keir/{ ) J

Mrr = - D f 1 (- Cg bei ?4 4 Cyber ,£ 4 Cqker ,y -C$kei */y )
L £2

- (MV) (C6 ber'ffy 4 C7 bet '/y 4 Cs kef +C9 kei fy)]
For large values ofr/y, kerfy, kei^y# ker'fy and kei^ -*■ 0 

Thua Mas = -D^[^L)(Cfcbf/7y 4 C7b^i.Zr/y) 4 JK-cggbetfy 4 CybeV^}]

Mrr «-d£- (L^u)^,C6b^er,'_ 4C7^t/?y)4 _«,(-Cgbeify + C?b«r/y)]
Applying eqta .Viii .13a ,b it is seen that for r °* :-

Cfc 4 C7 = 0 and -C$ 4 C7 = 0 . Thus ffe = C7 — 0

Applying eqt .Viii .13c, and putting Cf=. C7 = 0, it is found thtt 

A, = 0. Thua Cq = C7 = A, = 0 (II«43a-c)

(c)Derivatoon of c, ,c2 ,c5 ,cfl ,suS c9 (p.85)

The governing equationa for w and F are eqts.ii.46a-d
<0- = PbJM-V*) f C,ber?y 4 czbtira 4 Q 1 

Et*TT/Mx L J
£R
Et

(VIII.14)

(VIII.15)

io. s PRV>20—Ox) [ Cjkerfy 4 Cq k«i?y 1 
EtMr/** L J

P = T/-. ,b be/ r/£ - <4be r/i - ^)’]

F, = PR r Cgkelfy - cqker% - efArl
Tm* I 2 £ J (II.46a-d)



 

 

 

 

 

 

 

 

(VIII .2) 259.

wAt r = r WeP

k- /

t - "O
duTi _ dwo
J? ~ IF
V*J =» Vzuro

= eA 
dr 7

dFt - dFo
dr ar *
V-ciVaE:- (vih .raa-e)

L V*Fi = V2Fo (VIH.16)

Using eqts.II.46a-d and conditions eqt.VIII.16 it is possible 

to set up five simultaneous linear equations:- .

w- =. wD c, berp -4 cabei p - c^ker p - c, kei p =. -cs

— *■ = Cur > c, ber'p c Cxbe— p - c. krr' p - c- kei' p= 0
dr ar

V*V0- c, bei p + c2ber p 4 Cg kei p - c. ker p = 0

c,bei'p - cl ber 'p - c^kei* p 4- c*ker'p == 0

c,ber p 4cabei p - c^ker p - cQkei u = 1

From inspection of eqts .VIII .17a and e, cs--1 

By mltipying eq;.(b) by bei p and eqt„(c) by ber'p and adding, 

c, is eliminated. Similarly miutiplying eqt.(d) by ber p and

eqt .(e) by bei p, and addingtc, is eliminated. Subtracting the

two resulting equations the following equation in c^ and cg is 

obtaanndc^eeip beC -ktrptb^p - ketpbep 4k€rlbei^//u)

- Cffkerrp iberu 4 ketp bet p - kerp berp -kexp bei/p) s - iei 'p (VIII .18)

Similarly by miutiplying eqt(b) by ber p and eqt.(e) by ber'p 

and adding, and eqt.(c) by bei'p and eqt.(d) by bei p, Bad aaddng 

the resulting equations after subtraction yield

Q (ktr/* btra - ktr/ ber/ 4 kelp bet A - kei^M bei a)

4 C< (kbA berp - Utp ber'/u -krabbA 4 ker'pbsip) » bbr'a (VIII el9)

From ref.(105) it is noted that:-

bep ktr A 4 be A kba - berA ktra - bet a ke M — ~ Va

and btrakt/a + btia ktr A - ber'/ kxa - bxA ktr/ -= 0 (VIII.25aa,b)
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Thus from eqta.VIII.18 and 19, Cq » p bei'p and -p ber1 p

Similarly it ia shown that:- c,» p ker'p and c2« p kei'p (II .47)

VIII.2.2 RADIAL LOADING OF A RIGID INSERT ON A SHALLOW SHELL
Cp789)

(a) Derivation of C8 and C. (p.999)

The two governing equations are:-

W PRQi2(I- i)[) f Cg ke r 4t 9 * ker r/f 1EVTTyu* L 1 M
F * [ Cj kk _ c^kerty „ fa ]

rp p = /*

(VIII.21a,b)

At r = odr
- (Me© - uNre)/E£ = 0 (VIII.22a,b)

f = PgVl2(li--J») | [Csktr'?» + Cpk«i#5t]Prom eqt .VIII.21a

Thua from eqt ..VIII .22a

U a ing eqta.II.4a.b

From eqt .VIII.21b at r

Nrr s If _£ / Q kei m - Qi kerp - ) 1
rpL^*'? t 2rf>J

Nig ajL J' £j(ktrjt _ to) _ C| (-tax - kerU)+iL* J

Substituting the values of Nrr and NpOf eqt ..VIII .23a,b into 

eqt ..VIII .22b:-

Cf(kvj» )-9(f-kiju-keJu\/4i/ a x-ff fay-Cokri j
P * t* 2^ rr 2rr)

EpTT/l I
„ . -C, ktr'v/^

Nrr - -ar and N ee = de

(II.57a)

rp r • _* ““

(VIII.23a,b)

(VIII.2))

(II,57b)Prom eqta.II.57a and VIII.24, C#= - (/+"+** kei'M.
2 [Vi

where [V] = / (keipw kcr-kek«rtttketyx) - (hvXkei'p 4 ker'fp)

VIII.2,3 'BENDING* MOMENT ON A SHALLOW SHELL (p.91)

(a) Derivation of constants ai and A (p•92)

The governing equation for F, eqt.II.SOb ia aa followsr- 

F . f-21£|- Cilx/fy + C.bei'fy - C4to'?y4 Cjkec'fy ) 4 (a.+A)^ 4

L *

Prom eqt.II.4a, Nrr

+ 0>.4 I COS©

. & + 1 £f rJ 
r dr r- w*

(VIII.25)
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Thua from eqt. VIII.25,

Nrr - f f- —2 ^"*7 • kei/jT - £4 ker*- - £3 kei'-f ] 4 («i 4A) _ (b,+&)£
l R 1 r 4 r Ir £ r U r{ ' fj

- - t*E F-Cbber'f -+C,b&'{ - C+kerf * c^keL'/l _ («,+A) -(bt46)11 os0 
R LI t / £j -£- J

Thus (a% -V A) ig im^mtelial. The same conclusion is reached

when considering Npp and Nr$

(b) Derivation of the constant B, (p.92)

The mridional and circumferential strains are defined

as foioows from eqts. i.81aobs- tr = dy 4 if = -/-[Nrr-OJJt. ] 
dr r tE

e& = 4 y+tf* =. ^[Npp-PNrr] (VIiI.26a,b)

Substituting for w from eqt. Ii.6 and for Nrr and Npp from 

eqts. il44a,b, eqts. VIII.26a,b can be written after simjp.lficaton :

3r _ (£5 _ _ Q+v) alF
ar R tE dr*

1 iy 4 If -Wf = - 0 + y) (JL -f 4 A dlM 
r 30 r R tE E Jr r 3r* r

(VIiI.27abb)

£& + fO 

(?
Prom eqt. VCII.27a v = - (up) £P j. (to tE 3r J (?
where f(0) is a function of © only.

Thus eqt. VII1.27b:-

du 3 X tur# - O4D) f „ (l+ir/dV 4 (l+y)dF _ „ f(&)
30 £ “ tE 3r rt E 0* r t E r r JR

After simplification and differentiation w.r.t. r eqt. VLII.28

(VT^^I .2©)

becoms : £(3u) =-0±1>r a (<££ )1
3r30' tE Ur Wea'J

(VIiI.29)
Muutiplying eqt. VIH.27b by r and differentiating w.r.t. r:-

*(2uU £<r - 2/i3) = -^raif + .p^f)1 
arUej 5? a-Ai’/ tE Lar* arAr^evj
Subtract ing eqt. VIII.50 from VIII.J7a and substituting for

_3(3u\ from eqt. mi.29s- 2 (W4-T)- = 0 (mi.31)
arUe/ dr R

From eqt. il.7, = (A,tt 4 8,/r) os9 (VIII.32)

Since A, is shown to be zero from the conditions at r-*-«® ,

(VIH.30)
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eqt. VEII. 31 can be witten:- 3 ( Bcos©) - 6 cosO = 0 , ie 6, = 0 , 3rxR ' rR
(c) Derivation of C,, C2 and A, (p„92 and p.98)

The governing equation for w ia:- 

ur * er/^-»- Czbei'fy + C^ke/fy* C4kei'r/y-A,,fy)c6S0

Thus 3ar _ f l ICif-bfr fy-ker'fyV C2(berfi _ k<?7t)4 &(•!«'% - ke/Jt) +
3r UL Vi ~VT * VW '

(VIII.33)

4 C4 (ker r/j - ka'7X)1 - Ail oos 8 
Vt J C J

Jw- « fcosSpCf-taifi 4 kei4 2k<r'7L^ 4 CffXr'Vf-bwVl -22bC?£)4-lw-
3r*

As r 40 <0

Ci(-kti'r/y +kdr/t i^ker'/ft) 4 Cj/kerVi-kerH +2ku'llllt
\ (Vi) J n < to 7^ ,JJ, (Vi)

CMrr - 0

Mp$ 0

w ♦- 0

(VIII.34a,b)

(VIII.35a-c)

J

From eqts. II.<dl,e Mrr rT^f-l 3*" 4 X 3^"]
L3r» vr 3r r* ae*AJ

M®e .-DR-Str 4 j 3v 4 v jy "I 
Li 3r r*ae* ar*J

Thus using eqts. VEII.34a, b, noting that for larger her & , 
. i ’ x

kei 7, ker % , kei >r/y 0

Mfr = - !? " (-C, bei'7; 4 C^ber' 7/) 4 (l-v)(Ci ket 7/ - 6a. ber r/t)£"L r/t

+ 2(l-r))(c.,teLr'r/l 4 Cjksu'7.)] cos©
f -

Me® _ D
P*L

V C C. kei '97 4 C? kt-A/iiu (--))- -, b< r/t 4 Cz ker 7t)
' ‘ ' r/t

+ 2(I-X~ C,ber ty- C2 kei,r£)l cqs8 (VHI^a,b)

Applying conditions, eqts. VLH.35a,b to eqts. VHIe36a,b

0-C, + C2 and C ,4 C2 =, 0 Thus C, ® C2 = 0

Applying condition, eqt. VIII.35c to eqt. VEII.33 and putting
• •

C, » C2» 0, it is found that A, = 0. Thus C, = C2 = A, = 0
(II ,62a-c)
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(d) Derivation of Cj and C4 (p.93)

The two governing equations for w and F reduce to the

following:- = CC her'V( + C4 ke i'f )a>s&

F = =££- [ Cjkel'/ - C4W'r^ + Cs()J ‘ cos (II.63a,b)
tTK->2 r ' Jtl2

At r = rp . p x p fltw _ tr 
r

£$ = Wee-w’W^/ef- - O (VIII .37a,b)

From eqt. TT963a, eqt. VIII937a becomes
1 (C3ker/u 4 C4i^^i"ju) cosy = 1 (c^ker'/u + C4ketu)ons 0
£ f rp ,z

Using the expressions for ker p and kei,,p given in Appendix
VIII .8:- C4 = - CjC-kt'* + ukuu) (TT967a)

2k efu -
From eqt. TT92a9b : Nr- = i df 4 .1 dV and Nflfi = 92

4 rr r )c )ea d
Using eqt. II.63b for F

N rr = -Utr C3<<err/i -2kei Vfl + C4(keir/( 4 glf£) _ 2C»(f )*a J rase
R(f r/l r/f - - _

Nee = —ii T Cj(ker7f - ktr /( -(kn'T) 4 C.lke*'r/t -kef -2ke^l} + 2Cs<Pp}3 
R *• (W ' 1 W ' (VITT,38a

cosQ 
(VIII^a,!)

Using the condition of eqt. VIII .37b in conjunction with eqts.
VTTT938a,b:- C\[ker'M - (Ua)kecu 4 2 1 /-

yu xc* .
4 C4[keAx< - <+-)keu - 2 (l+v)berr: 1 + 2(\±O) Cs = O (VII^O)

yu yy 2 >u3
From eqt. TT967a, and the relationship given for C5 in eqt9TT.66,
eqt. VTTT939 yields the following value for C< •-

Cj - _ <l--i))-/l2((V2j (2 ko 'r - m ker a* ). Mg (II^b)
7m M Et*i

where £X] = (l*u)[,(/ (.ker *u 4 kei^i) ■ 4(kti,:*u 4 Ier'/u ) +
+ 4n(kerX* kt m - ktrx kn'*)] - ^(ker'/^tryi + lcc/x<ket-u)

VTIT.294 'TWISTING * MOMENT ON A SHALLOW SHELL (p.95)
(a/ Derivation of C3 and C4 (p996)

From eqts. TT969a,b, 11.70, 71 and 74 

= C3 ker r/% + C4 ka ’Zfur
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At r = rp , r _ 11
P f

F = 1*1 E (- C4 ker 4 C^ket fy) + C 9
R 5

dur = O
J <r

£e = (Nee-uNr)/Et = O

From eqt. VUIo^Oa and eqt. VIII. 41a Q = - Vex ‘ m
kec'x

(VIII.2)

(VTII.4)a,b)

(VIII.41a,b) 

(VIII.42)

U sing eqts. II.4a,b, Nq- * 1 3f + 1 3^f and Ng# = d*F
/ ar r a©* ar*

and eqt. VI11.40 b N-r * (- £4. ker 4 k&.' % )
£ ity r/o /rf

Ne0 = tE (-C+ ker" r/< + c3 kcS r/fJ

Thus using eqt. VIII.41b:-

ti(kt<u - OiiUteeVk) - C+(kuM 4 (l+v) kt'u ) - 0 (VIII.43)
xt /u y

Equation ViII.42 and 43 are only satisfied when C.= C4^ 0
(11.75)

VIII .2.5 TTATGEETIAL LOAD ON THS SHALLOW SSffiLL (p.98)
(a) Derivation of Cj and C4. (p.99)

The relevant equation for w, eqt. II 839a, is:-

ur = (C* ker' 7y ♦ C4. ke ' /y) cos 9 (II .89a)

At r = rp, = p

From eqt. II .89a. 

From eqt. VIII.44a ,

Sin ce

ju - O 
3r

Qr -Op (Vv) 
ar

& = J^(C}ktrliri ■ C^kex* fy) cosO 
3r I ,

C, = - £4 ke* r/£ (VIII.45)
ktr" ri

= 3*ar + J. 3ut 4 J. 3*ar 
r dr r2 30x3r:

0 (VIII.4^a,b)

J. 3 ar using eqt. II.89a,

/Ju =. —z(-£3 kex *c/y + C4 ker'fy) toS 6 
%

Thus Qr = - fi (~Cjke*r/£ 4 C4 ke-"r/y) wsB

From eqt. VIIIe44b, C+kef - C3ke^,/r/y = 0 (VIII.46)

Equations VIII.45 and 46 can only be satisfied when

c i —
» 0 Orr- 93)
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VEII.2.6 THE RADIAL LOADING OF A RIGID INSERT - GENERAL SHELL 
THEORY (p .108) 

(a) Derivation of B, and B2 (p.109)

= 0 , =■ (Nw-vNrr)/Et = 0
ar

The boundary conditions at the insert r = rp , = p are

(II,126a,b)

Using eqts. II.124a ,b, the values of Nrro and N^ at the

insert are:-
Nr = -Et -B,ker!a + ) - PR

Nfifl = - kEt ("- &t ,k-e -) +)kV S k fktrxx - kei# ) + PP 
• MX ' V Xx 4 2vrp*

Using condition, eqt* II.126bs-

Bifl^r*A + d+vWrxl . + (iu0)kex'*l = - PR^vX-V) (VEII.47)
L £ ~VJ L -7 ~J rirfet

The value of lw» at the insert is obtained from eqt. 11.125:- ctr
4?o — . r8( (kk"/•-*-£ ft zo.) + B^Oo-tx* - ?*ktrx< j] -.P(l+v) (VEII.48)
dr R(l-D*) L i> - 2Etlrp

Using condition eqt. II.126a, eqt. VEII.48 can be re-arranged 

to give:-
rn-nYl_n»)D C J7ab--'.. Y1 I

(VEII.49)

From eqts. VII .47 and 49

B, = f- P(l+vXl-D*)R I 6, (W* I Z'krr# )___ !_________
L ziEtr* £* keen) +£ *ka>)

. _______ r

+ (te t - k/12ker'^tX~ker# - *keih i/+»)brblil

[3 £uku#ker'# 4-"-t))kcr‘xx -AtkeiM ktr# L
" + 0 +tX ket' xJ - xx ket xx kei> - #ker# ker<uj f

-ktr1# - R/ptkei,'U + #kti#. 4- (ii+))kktf'#

6, = -PZ(l+vXl-V)
2TT rpE((trrju + R*kXju)

e*

B* * PR(Hv)Xl-f)___________________

2rrpEt * £§ ptkci#kcr'A4 4 (l-^TV)kz^"#-AkktSkkrrjU 404-D)keilx<J-
.. b„- /.. b.- .. .. 1___ 1___ i- xx kei. '# keixx - *n kecx kee'xx J

(II »127a ,b)
I I . _

VII.2e7 A BENDING MOMENT ON A SHELL - GENERAL THEORY (p.115)

(a) Derivation of Bf and Bz (p.119)

The boundary conditions at the insert r = rp , = jo are

t- = — and £e » (Nee -T/NirVEt = O (]II 1l4(^a ,b)
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Prom eqt. II.145g,
dif
H* = i -ker'?t4^(Ker!Z;-ka,r/£)l' I L “Vf" C r/£

+ Bz[ker r/f - kei.'r/f> 4 £*(U<. ?i + ker'fy.)]l 
l 6 “iTT r 1 TT" ( VIII.50)

Using the condition of eqt. II.146a in conjunction with eqt. 
II.145g and eqt. VIII.50, the following relationship Is obtained:-
8,pwf>u 4 R’kdx* 4xxkei>u + k«rX4 - ?*(x«ke<x4 - +

4- Ba rice*'n - uktfM+kuu- + k«<'x4)l = 0
L 7* C J

From the condition of eqt. II.146b, using eqts. II.145a ,b:- 
8 xZk«A m - (l4T?)yu keen -2(l4l))l<er'yu] -

- BJ,/ ke/f',u - k«<>u +2(f-nJ)kex Su 1 - - M (l4'u/l-l?r)
TTEt rp

From eqts. VIII.51 and 52,
<ukefM -2k<* xx 4- ^/fz(2.ker'u +Xxkexu}

(VIII.51)

(VIII.52)

8. - - MO-rUH-P1-) 
irEt>ut

B2 = - M/l+M-D*) 
irEt^l

4-ktr'ztJc«r,u.)-(l4-u)jxx *Zke4 ax. 4 ker xx. ) +
£ 44(ket/^w+kcr'zx<) 4 4/u(ke-r'>u k<ixt - kti (a keoOjJ +

>u3[ke/,ukw,M -kw'xxkexxx]-2/4X£k«x/^*< 4k(r'2>t]
xxkexxx 42kerxx 4 (2keiCu - xx kef m )

VIII.2.8

PVxx^ke-i'xxkfcix^ 4kM'iukecu)-6+u)|>a*fk<xl>tt +ker*,u) +
* 4 4(ke?xx< 4 ker'*44) 4- 4x4 (ker'ukau -ku'xi keou)}J+

+ Z43f k*i^»keen. - k€r'x*k«x.xxj -2>4X£k«*/>< 4 ker'^xtj
(II.14'fa,b)

A TANGENTIAL LOAD ON A SHELL - GENERAL THEORY (p.126
(a) Derivation of constants C, , C2 , D| and Dz (p.129)

At the outer edge of the shell, u. = v, = w » X,= 0(II.172a-d)
These relationships give rise to four simultaneous linear 

equations, obtained by combining the membrane (eqts. 11.166), 
inextensional (eqts. 11.168) and oscillatory (eqts. 11.171)^ 
displacements
For u, :- -1.2467 x 10‘4H 4 D, -D, x 0.9457 -0 .00 397 CfO .00 2070^ 0 
For v, +1.2467 x 10’4H + D2 - D, x 0.9457 + 0.03890,4 0.01250,= 0
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-4For w, :- +2.1616x10 H-D, x.3250 -O.4O8OC, - 0.78460,,= 0

For RX, :-- 60x0.1108x10 4H -D + 8 .10300,- 22.5720Ca = 0
(VIII.53a-d)

Solving equations VIII.53 yieldss-
C, = +3.684xlo"+H j C2 = + 1.118xl0“*H

Using eqts. II .170a,b 8 C, « j£i =+0-500*10 bH > C2- C «.-|.O«i5lxl0“fcH

and D, = -0.671xlO"H, D2=-2.05x10 H (I1.173a-d)
(b) Derivation of constants B, and B2 (p. 130)

The boundary conditions at the insert r = rp» O.fcin,
0.0083 radians are = 0 and = (N&e-Utfrr)/^3 O (II.175a,b) 

The expression for is the combined one involving membrane, 
inextensional and oscillatory vaLues. The three values are
set out belows-
Membrane Slope
Differentiating eqt. 110162b, the following equation for ^r'

, ... ... _ _results:- = -
dtp

cosfl lu l-tosfl 4 2 +_2__ I
4-TTEt *- I4COS0 Sw^> J

which in this case leads to 
Inextensional Slope

= -O-0954H (VII I. 54)

From eqt. II.163b:-
substituting the value of D,= -0.671x10 H from eqt. 11.173c,

= + o.670*IO'4H (VIII.55)
df

Oscillatory Slope
From eqt. II.144c, taking =■ I

VS»rr0
Birker"-v5xtf+2x2keiV2Xtf1 -fx2ker'v^x^l

d<fi L J 0^7 L J
leading to:- 4*' = I-44-3xIO4B, - 46-65x/0462 (VIII.56)

The combined slope is obtained by adding the results of eqts.
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V^II.54, 55 and 56 which from condition, eqt. II.175a becomes:-

4% = -0-8953H + \-^443aI04-Bt - 4fe.65xl04B2 = 0 (VLII.57)
d<t>

The expressions for N^ and N^( are obtained from eqts.111164a,b 

and and considering only the tn^ms associated with B,

and B2 result in the following expressions at the insert:- 
Nee, = 7-766xI06b, +I.IIO005 B2 +0.32SH

Ntf, =-7-152il06B, .9-640»U0Bx - 0-325 H (VIII.58)

Using the condition, eqt. II.175b

10 .092x10* B, + 8.210x10^2 +0.422H= 0 (VLII.59)

From equations VIII.57 and 59 s-
-s -6

-2,622x10 H and B2* -1.920x10 H (H'17ta,b)
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A 'TWISTING’ MOMENT APPLIED TO A FLAT PLATE

A plate of outside radius r2 

Is subjeoted to a ’twisting’ moment 

T acting in its plane. The moment 

Is applied to the plate through a 

cylindrical insert of radius r^- 

Fig.VII.1.

Fig. VII.1

Owing to the rotational symmetry of the probeem, the stress 

function selected must Oe independent of terms which involve 

sin© or cos©. A suitable form is thus:-

P = ao& r + 0or2+ cor’Aur + dor*© 4 eo© (VIII .60)

where r and 9 are polar co-ordinates referred to the plate

centre. Using eqts. II.4a-c with Jl » 0.

Nrr = —o +2cotuT 4 2b0 4- c0 + 2d0 6 
r*

N©© = - 4 2 b0 + 3 c# + 2colnf 4 2do&
r*

Nre = i° - do (VIII.51a-c)
r*

The strains are defined as follows

fr = Il ’ j- (N- ” V Nee)

= 7 + i 3$ = f|(N©e-T>Nrr)
^’jiL . Ju- “ - = (VIII.22acc)

roe oT r tu
Substituting eqts. VIII.61a,b into eqt. VIII.62a and integrating:-

V- ±p-ao(l4-£)+ 2Cor(i-uX£nr-l)+2b0r(l-u) + c0r(l-3u) + 2dor0(l-»)l + f(©) 

where f(0) is a function of 0#

Substituting eqts. VII1.61a,b into eqt. VII 1.620 and using 

eqt. VII.63 U = 4-Cor9 _ Jf(() + F(rr (VIII.64)

where F(r) is s function of r.

Substituting eqts. VIII.61c into eqt. VIII.62c using eqts .VIII
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63 and 64:- £ S* _°orj =- f'O)) 4 r FYrU f{(9)d8 - -(r)

Equating the 0*3, $'(&) 4 J($r) = K

(VIII.3) 

(VIII.65)

(VIII.66) 

(VIII.67)and

i .e • f foj s Asin 9- 4 B oss 8

r *s -L [Eo-dorl-K = rF'(r) - Ffr) 
tG L r J

Eqt. 1VII.67 Ss a linear differential qquation of the first

order with a solution, F(r) = - €o _ dor- £ur 4 Cr 4 K fVTiT -68)
2Gtr Gt

Substituting nqts. VIII.66 and 68 into thn nqts. VEII.63 and 64 

for v and u:- v = jLao(i±u).+2cor(l-i’X£6r-l0 + 2bor(l-u>) 4 cr(i--iT
tE

u □, 4c or 6 _ £.v _ dor Zu n 4 Cr -ArosG 4 Bsin 0
Et 26tr Gt

4 2dor 60-vO j 4 A sin 9 46 cos 9

(VIII,69a,t

Equations WII.61 and 69 gVne the values f f Nrr , Ne0 , Nrp , v

and u and contain EIGHT constants.

Derivation of Constants

Since Nrr , Nee , Nrfi , v and u mut t n e indepennent of 0

do- Co = A = B = 0 (VEII .70a-d

At r = r. ,v=u = 0 and r = rp> F& = JL_( Nee - v Nrr) = 0

At any radius r, Nr© =

Using thn conditions nqt. VIII.71, ao
" ' 2Ti ' 4TtGraa

Subst itut ing nqts. VEII.70 and 72 into nqts. VEII.61 and 69

Et
(VIII.71a-d

_ _ (vnr-72a-dbo = 0, no- 3 ) C = _L

N, 0 ; Nr0- _Z— u - —I I
B 2Vr« ' 4-719:6 r JN9e = v =

Whnn r2 -► 00 , thnn u becomes tl =• - T J.
4ntG ' r

( VEII .73a-e) 

( VEII.74)
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VEII.4 A 'TWISTING* MOMENT APPLIED TO A SPHERE

A sphere is subjected to a 'twisting* moment T, acting

in its plane and applied at the crown.

The following method consists of simplifying the general

equations of equilibrUmi by omitting the membrane normal stress 

and the bending stress resultants, as second odder terms. Such 

results in a shear stress resultant at colatitude angle (^)

and angle 9 of N<«e = V27rr* (VIII.75)

This equation is the same as that for a flat plate under 

the same load action.

From eqt. I.29c the shear strain may be defined as follows:

&© = - U cos < J. (VIlI.76)
3f R r r de

For this case the displacements are independent of 0 , thus eqt.

VI11.7 6 can be wrirtenn = du jl _ U costp
04 R r

= cU - u..
Rd^ Ro d(p

Tha , fye = r A 1
L^lrJjR Gt 2TT-'Gt

Afu\ =____j

since r = Rsin^ .

from eqt. VEII.75

21T Rising.Gt

M _ 
r 2TTR2Gt

Thus

H _
T 2HRJ

t_0
R2Gt [Jsinty

T r - 1 cosec $ cot 4 t -L . tan i 1
RaGt L 2 2 2 J

in terms of r and R. — = — ^ T- E ife -*■ 2 + JhfTL_____ Jl 4. C
F 4-TRaGt L rz ' R+VrTtVP

At the outer boundary r = r2 and u * 0, thus C can be found, 

giving:-

u = + 1 (viii.77)
4irtG L l?r/ Rr1 f?J VraA -j Jl
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VEZEI • 5 AN EXAMINATION OF MEMBRANE DISPLACEMENTS AS EXACT

SOLUTIONS OF THE GENERAL EQUATION FOR THE EDGE LOADED 
SHELL

As stalled in Chapter I p.47, the complete solution to the 

problem of the edge loaded spherical shell is the sum of the 

following three effects:-

(1) Membrane Displacenramts- giving rise to membrane 
resultant forces, and to small 'membrane moments

(2) Inextensional Deformation

(3) Oscillatory Solutions

It is proposed to examine section (1) in this Appendix, 

discussing in some detail the case of n = 1.

The governing equation is eqt. 1.73:

+ M cotp + <*Tk(2 - n* \ = 0 (1.73)
df ' s\i*i<> '

Axl-Symnbt^lcal Case, n = 0

In this case eqt. 1.73 becomss- LU + <W> ++o(2-J-__)» 0

Substituting ur9 = (fy-^f + C J cos < (VEII.79)

into eqt. VIII.78, the equation is then reduced to a first

order dif ferent ial equation in q:- f-Ztan *. 0

with a solution q « SjCosfystrif • Thus morn tqt. I1II.79,

uro = g°rcosd-lk l-cos< +2*1 -+ C cos S (VIII.80).
2 L i+cos+ J

Comparing this equation with eqt. 11.117 it is seen that the 

mem rane dispaa cement is In i-JQ 6 $+21 where —0 » PQ+tJ)
2 L 1+gos4> J 2 TEt

The term Ccos+ is the inextensional deformation.

It is thus concluded that the mernmrane displaeement given

by eqt. 11.117 is an exact solution of the eqt. 1.73.

First Harmonic n = 1. In this case eqt. 1.73 becomesi-

dVr, + c^irr, cot< + or,(2 - _!   =0 (VIII.81)
cT(f x Sm*$ 7 .

By the substitution d*z, = " ^«J5in9) (VIII.82)
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eqt. VIII.81 lg reduced to a second order differential equation 
In ql- flj sin^ + 3a, cosf st 0 with a solution q = 4B4

C<0Thus from eqt. VIII.82s- ur, = fyJ-2cot<t + stndthl-cgs<^'l_D[sin<^ (VTII.83) 
L l+CM^J

where B4 and D| are constants.
Similar relations can be obtained for u, and v, in the follow
ing manner.
Determination of ut Since T = 0, for these solutions (Chapter 
I p.45) eqt. 1.68c may be written?- Psur- (VIII.84)
Since from eqt.1.66a U = » eqt. VIII.84 may be
written;- U = 3ur - 1 3*60 

do Sin 0 2 39 30 (VIII .85)
Putting u =• un sin n© , w - wn cosn© , = concosn0 into eqt .VIII .85;-

which for n « 1 
(VIII.86)

UnSinnfl = - nufnSin n0 4 InSinn© 3u>n 
Sin cd 2 30

becomes;- U, «• - . ur, j. 3u)i
Sin0 2 30

The value of w, is given by eqt. VIII.83, and since H(u>) = 0 from
eqt. 1.68a, the form of (A is similar to w, , thus;-

u>, = - (2 B3 + 2 e^f- 2cot 0 .5in0^u t-cos01 - 2D2S<n0 (VIII.87)
I +COS0 J

where B^ and B+ are constants relating to possible types of 
loading md D2 to a body rotation.
Thus from eqts. VIII.83 end 87s- U, =-B p2(Hcos£) + 2 +(l+cos0)Zm>-cps0]_

(VIII .88)

(VIII.89)

(VIII.90)

- BaF + 2 4 cos <-cos0~| + O, -D„cos0 l-Sin’0 I+COS0JV
Determination of v,

I+COS0.
Prom eqts. I.66b and I.67b,c,

ir = d& - dT _ u>Sind 
dj ft

Prom eqt. VIII.84 using the relation H(u>) = 0
3ur
30 d62 2s\n<p

Putting ur = urn cosn0, u) = u>n cosn 0 and tr* t/^eosn© into eqt.VIII.90 
3urn _ n2yields ;- U>,

Thus for n = 1,
2Sm0

v, a 3ur, __ a),
d(t> 2sm#

(VIII.91)

V + 3au? __ l_
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Using eqts. VIII.83 and VIII.87, eqt. VIII.91 becomes.-

If, a B. [2(1- cos f) . 2 + 0 + costjM (I - cos <P J 
L $in30 0-tf>sS)J

♦ BJ Zm \-<os<t> - 1 4 o, - D, cos 4
L \+cos6 J (VIII.92)\+cos$ S\n*$

The equations VIII.83, 88 and 92 give values of w, u and v 
which satisfy the general equations I.68a,b, and which are in 
fact the membrane and inextensional displacement relations. For 
the membrane displacements the constants B3 and B4 have particular 
values relating to the appropriate applied loading - in this 
case moment and tangential loading of the shell, and are determine 
by considering the membrane state. These displacements give 
rise to both resultant forces and moments, and these will also 
be determined sincc they are used in Chapttr II of the thesis. 
Membrane Analysis

(1) Membrane Forces. From the equilibrium equations
relevant to the membrane case and for the first harmonic, it is
possible to express N, N©a add in terms of two integration
constants (FLUGGE _ ) such thats- =_ L__ (C,cdt.^ 4 h^tton-^ )

2 stLty 2 2

N„, - I (c.toti - C2tan#)2^2? 2 2 Z
where * N^( cos 8 , = N©0j cos Q , N<e = N?a, sifi .
It is noted that at the poles f - 0 and J * Tf these values 
become infinite. In order to examine the singularity at the 
pole a spherical cap of radius R, and chord radius Rsinf is 
considered. The forces acting on the cap are the resultant 
forces and N^© add the external forces at the pole as yet 
undetermined - Fig. VIII.2. Suimning tht resutaant foress s-

cosf.cos 0.RsL<fi.d0 - J Stn6. Rsl $-d6 (VIII.94)

(mi^aatb)
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Fig. VIII.2

(VIII.5)
and the resultant moment with 
respect to the diameter 0=2^ s

os 9. Rsm <pd& (VII I.9 5)

Using and Nyo = N^o, 5m 0,
the integrals may be evaluated. 
Considering the limiting values 
of the resulting actions, eqts.
VIII.94 and 95, at f * o, it is 
seen that external actions must
he applied at-the pole to maintain equilibrium. These are?- 
A tangential force H =-TTpL (Ny^cos^m^-Nye, smO) (VIII.96)
and an external moment M = - TTPjL (N^t Vn3<) (VIII.97)
Introducing eqts. VIII.93 into eqt. VIII.96 leads to:-

M « IE (C, - Ci) (VIII.98)
and introducing eqta. VIII.93 into eqt. VIII.97, M = -TTR’cr (VIII.99)

From eqta. VIII.98 and 99, Ct = - M and CXS-2H - M (VIII.100a,b) TR* ( TR f?*
Substituting these values for C, and C2 into eqta. VIII.93a,b

Nee, = - N0, = H (I- cos#)
HR sin (f

Nya, = - Moos t + H(l-cos^)
Tf?*sin3 TR smJ<

(2) Displacements.

M
I

(VIII d01a,b)
TTie gennral equations for strain

and deformation are given in Chapter I, (eqts. I.29a-c). They
can be written as follows (- 4 vcosip +urs\<$ = Rfesin^ •a©- - 2V -( or = Vf>3d *

tested - UCOS^ 4 = RfyfiSind (VIic.lO2a-o) 
( o&

These ana be ee^oer to a set of ordinary dffeennniS^la euuaiions
for the iista aaronnca by the substitution 
U = U, sn 0 tv=vlco^^i uu = ur,cos0t fy=fyu>s&' £e= £©,<^0, fye® fy^sin 9 .
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U, + ir, tos f + un, stn 0 = R£g, i‘a < 

s R Ey,
= R Xfe, sm >

ur.
(VIII.103a-c)

(VIII .104)

dv, + 
d<fi '
du, sud- u, cos0 - v, 
af

Eliminating u, and ur, from eqt. VIII.I03a-c
d_( sinty - dv, su\Jco(> = RXdo.Stnd + Rsinfpfdf, _ dde.l 
df df [~d< dtp J

The R.H.S. of eqt. VIII .104 contains it a, , dij, and d£e,
* _ •* a? J?

Rearranging eqts. I.32s-
- JANpp,- vN„.), £e, = J. (Nae.-DN^,),^,.. .g<Hi>)W»»,

ct c’’ Z cAEt Et

(VIII.10 5)

From eqts. VTII.I01a,b,
fy, = - _ I QVI f _M + H(|ccss<?)lEt URsm’y I I J
te, = +_0 + v) r M + H(l - cof!Et^rRinavL l J
X>e, = ~2(uv) rtjco s y-no-cosy/l

EtURsm^^ J
Thus from eqt. VIII.I0 5, , _ _

d ( - -Cv) -- 3ccS 0 M + H(l-cos0)l + Hsm <? l
0? EfmiiV t fny t R J J
die, - -0+-?) r_Sosyr t +H(l-«>in))+Hinn) _ (vmofc)
dd Et^lPi.r^s? t Sm4 L R J J

Substituting eqts. VIII.105 aid I06 into eqt. VIII.I04 yielda:- 
dn^| sinf - i,, mnCcast _ t nulo? _ M _ H(l— as ")_ (VIII .105)
d*. d/J CaMLCdj Ettsrn’y

Using the substitution x^I-eos? in eqt. VHI.107. it reduces to
dy t + 4-(l+-TXi-x) o M + Hx t (VIII.105)
d*? EOx^-xJ. L|? J

The R.H.S. of eqt. VIII.I08 can be separated using partial 
fractions and by this means a particular solution can be obtained. 
To this must be added the complementary function, V, = D2 - (^ccs? . 
The complete result is:- V, - - MCH-i) t—«? s <t - 2 ost

4-irUEt Is_s? Jn2<P

- H(l-rlJ) r 2(l^ coS'0,) + 2 — (I’-fcsj)5k I Ie—oi'LD,,DD|ca(y (VIII.109)
4-TEt L sm*t l+css? J

cm eqt. VIII.103b ur * Ri^ — dr, # Thus ussing eqts.VIII .Io 5 & I0 
df

or, » - H(I+))) 0^00!* l-ccsg „ 2tosf 1 — D, sin ?
L * l+ca? sm<p J Sin ? (VIII.II0)

Substituting eqts. VIII.I09 and II0 into eqt. VIII.103a gives:-
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U, - 4- NW + V) r 2 4. 2 4- |- CQS01 4.

4-TTEt R l>tn20 l4CoS0 J
4- M(l-t-t)) r 2Q-COS0) + 2 +(l4 co5<?)^t |-ios0j + n_ D coJ0 ( VI11. Ill) 

4-KEt L 5,nV l+a>s0 J

Comparing eqta. VIII.109, 110 and 111 for v, , w, and u, with
eqta. VIII.92, 83 and 88 obtained earlier, it ia noted that
the constants B. and E. are as follows:" 8, = - M(l+u) & 8 -H(l+i>)

4TTREt 4 4-TTEt

(3) Resulting Moment Actions. The displacements v, , w, 
and u, are the displacements of the middle surface of the shell, 
and in the general case will produce membrane rotation with 
corresponding ’membrane moments’. These are generally of small 
magnitude depending on the R/t ratio and the value of 0. Their 
values may be obtained from the resultant moment - displacement 
relationships

Et3 f_ 3u _ ircot0 4 cot<f> + 3 or _ L\3tz + V^or 1Mee - —£■* f 
60 i2(i-va)PlL 30ls,n’0 30 30l J

:t3 dir 4. 9*ar _ y du _ VucotQ + u3mtcot 0 + V 3 ar]
"d’JP’L 90 90* 30s/n0 30 nnl0 3ezJ

Mod , M<4« = Et J(l-») Tucotrf'-du _ 3u _ 29i<r c«r<> + 2 <)*«r 1 ,._TT ,>
246-b*)r‘L 3<p aw^J (vm.usa-c)

Using the relationships, u = u, sin 6, ir - v, tos 0, ar = ur, cos 6 j 
M$e = Mee, 0 , Mm = M00( cos 6 , N0e - M00, sin 0

30 sin0 30

12(1-

eqts. VIII.112a-c can be reduced to a set of ordinary differential
equations M«l.s-E±L!_r-UL_ _ i/(c£>t0+ dor, cctcb .or, _ vdir, 4Ud2ar,l 

l20-O^RaL «<«0 d0 Sina0 30 d0*‘ J
M00, = Et3__  ("_ dVi 4 djtTj _ VUi_ _T>ir,tot0 +itdor,cot0 - Vw, 1

I2(I-D’)RZL d0 d0~a sm0 30 sma0 J

(i-V) rul£ot0"du, +J£i_ ^.2or,cos& ^2d<>r, 1 (VIII.113a-c)
24(I-V‘)RxL d0 Sm0 Sinl0 cf0iin0j

By substituting values for v, , w, and u, from e qts . VIIi .109, 110,
111 together with their differentials into eqts. VTII.113a-c

Mee, - - Mfe _ Mfe
TTRsm’^ TTSin30 

= 4 Mfecos0 4 Hfecos 0

= 4 Mfe

TTRsm30 Hfe__TT 5lA*0
TT/? sin30 TFsin10

(VIII»114a-c) where k = t/2R*
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VIII.6 A ’TWISTING1 MOMENT APPLIED TO A SHALLOW SPHERICAL
SHELL BY MEANS OF A CIRCULAR RING

The spherical shell is loaded 
by a moment T, transmitted to the 
shell round the circumference of a 
ring radius ro - Fig. VIII.3. The 
solution of this problem is con
sidered in two parts. Fig. VTII.5

(1) The part of the shell inside the loaded ring.
(2) The part of the shell outside the loaded ring.

(1) Inside the Loaded Ring. C r ro
Using the relevant equations obtained from the basic actions

for the shallow shell, eqts. 11.69, 70, 71 and 74s- 
urL =. C, berr/[ + Czbeify + C^ker -t- C4kti r/( - Ao

F; = CtEf-C2berVg + C,beX?£ - C4ker'/£ ■+ C3ke4.'?£) 
R (VIII.115a-b

Derivation of Constants C_j , C4, C5

At r w are to be finite
Nrr ”
N ” yielding

c5 = o 

c4 = o 

Cj= 0

(VIII.116a-c)

0

Verification of eqts. VIII.116a-c is as followss-
(a) At r = 0, ker -*■ °° . Thus for w; to be finite, = 0
(b) Nrr = lt£ T- C? ber'fy + C, b«/9£ - ker r/l j

L r r r
At r - 0, Eer'r/S. O x betz r/f o and -

r r r
Therefore for Nrr to be finite at r « 0, C4 = 0,

oO

(c) Nre=-Afl^f\ = '’^5 At r = 0, Nr« must be finite, i.e. C5= 0 
drvraeJ

Therefore:- ar; » C,ber?^ -+ C2 bet r/$ - Ao
F; a £*t E (C ibe* 9^ - C2be.rr/£)

P
(VIII ,117a ,b)
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(2) Outside the Loaded Ring, i.e. r„ 4 r 4 oo
wo = Cfcberty - C7 bei fy + Cg ker fy - C< kei fy - A,
F = _ C7b^rrf-C9kef+Cgk«fy)+Clo0 (viII.118a,b)

R v
Derivation of constants - Ce, C7, A,

f 0At Mrr -*■ 0 
Mee 0 
w — 0

yielding C6 - c,
lA ■ = 0

The complete derivation of these constants is the same as that
given in Appendix VIII.2.1(b)
Thus:- **o = Cgkerfy + C9 ke* fy

Fo = £!ti f-f« ker fy + Cg kar/y) + C lo0 (VII) .119a,b)
R

Derivation of Co
These five

the loaded ring
wt « W0
Qe- Qr„

4 £e; =
VI = Vo
fit ) dur0

. dr dr

yielding after solving 
5 simultaneous linear 
equations Ci = C2~ Ar q<s- 0»= 0

(VIII<»120a—e)

The details of the above are given below:-
From eqts. VIII©117 and 118

= wo ), ber f% + Zr bi f) - Cg krr </) -Cqker/-) = Ao

Qr. = Qr0 G hi) Vo/y - (2) hrr tyy-Cg ke/o/y c99ker'/f * 0

£© = S6q C^err - (l-tV)) bei'^ ] » C2[1j/ 0j + (I +>)tbtf'f ]
T t t

- Cg )ker t/g - )llX £ ke'rrJ - G^kc* r/y + )i4i»£ ker'C°o = 0 
ro g t

vi * j -Cibet/ve + Czber'f/p -Cgei'oo/o ■ Cgker r°/o =- AoC* c c (|+d) {
C.ber'y +C2bei'r/o - Cgker'fyf -C9k&',% = 0 ( VIII )121a-e)

dr dr ’ x
Multiplying eqt. VIII.121b by (+v) 1/rQ and adding to eqt .VIII )121c 
gives C, ber •// + C2b< r/y - Cg ker t/g _ C9 kei '// _ Q (VTII .122)
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Comparison of eqt. VEII.I2Ia with eqt. IIII.222 shows that A=0 

The resulting four equations are:-

C,ber r°/f> + Cz beirtyg - Cakerr°£ - C 9ketr<y< = 0

C, bd'r°/i - C2ber'ro/ - Cgkei'ty + Cq ker'r°/° = 0

C, bef 4 C2ba'rr/g~ Cgker'r/ _ C9kd;r°/° * 0

-C,fC'ryf 4C2b«r'r°//-Cakei'rr/£ + C99er'r/ = 0 (VIII.123)

Using simple Determinant Theory:- C,= C2 = Cr = Cg= 0

Derivation of Constant C,o

Prom rotational equilibrUm it is assumed that:-

Nrp . 2*r2 = T (VII.124)

Also from eqt. II.4c and eqt. VIII .119b; Nr& = Cio/r— (VTII»125) 

From eqta. VII.124 and 125, C10 = T/27T (TCII.126)

The Tangential Displacement u

From eqt. 11.81 Xnj - 3/ - y = Nr£
dr r tG

since 3 — - 0 \ #re = r — * y Nre (VIII.127)
ae arVrJ to.

Outside the Loaded Ring; From eqt. VII. 124; Nre * J—/2 and

thus in eqt. VIII .127 X/e == /£ {US =   
ar-Vr; 2T/2tG

uo = — _r____ + R
T 4-ntGr2
Uo s -__ T + R r

4UtG r
when r -►oO, u -► 0 K = 0 and Uo = - —T____ (VTII>128)

O^tOr
Inside the Loaded Ring, since C, = Cz= 0, it follows in eqt.

VIII.18b that F= 0 and further that N/d = 0. Therefore, in

eqt. VII.127 he = r 3 /u\ _ 0 /. q = Kr
3r V / /

From eat. VIII .128 the value of u at r = rQ is:- Uo= ____
_ 4-TT’bQ ro

Since u0 at r = r0 , K = -

and Uc = T /r \ (VH^ 1.129)
4ir^6
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Meridional Displacement9 v

Following out the same procedure as in section II.1.4, 
relating to the application of a twisting moment at the crown, 
it is seen that v= 0•

The results may be summarized as follows :- 
Inside the Ring

wl = n = 0
w « Nf(. = Nre— Mrr — Mrg V <= 0
u - - T fr\ (VIII.130a-i)47rGt \roxz

Outside the Ring
*0 = 0, Fo = Z 0ZTT
W —■ Nr — ^00 = Mrr — Mq0 = Mr° = v = 0
U = - T Tre = Mrp - T (VIII.131a-i)4TTGt ’ w t 2^r,t
It is noted that these equations are similar to those of

a flat plate subject to the same loading
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VIII.7 PRESENTATION OF IEESULTS FOR THE
RADIAL LOADING OF A SHALLOW SHELL AND
COMPLETE SPHERE - A Comparison between
theory and experiment

In Chapter V typical graphs were presented comparing the 
experimental and theoretical results for?-

(1) The uniformly distributed radial loading for a 
shallow shell,

(2) The radial loading of a rigid insert in a complete 
sphere.

In this section the complete results are given for both
these cases.

Figs. VIII.4 and 5 show the direct and bending stresses for 
the iin and lin thick shallow shells, respectively, under the 
action of a uniformly distributed radial load and Figs. VIII.6 
and 7 show radial deflections under the same radial loading, 
again for both shallow shells.

Fig. VIII.8 presents the direct and bending stresses on a 
complete sphere due to the radial loading applied to several 
rigid inserts.
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Ptt.V1.6 Radial Deflections dug to Uniformly Distributed area loads, radially 
applied at the crown of a liw thick shallow spherical Smell - a 
comparison of Theory ano experiment



RG.VH.7 Radial Deflections due to uniformly Distributed area loads Radially Applied at 
THE CROWN OF A 1 IN THICK SHALLOW SPHERICAL SHELL - A COMPARISON OF THEORY

and Experiment



p& vrn. ft Direct m Bending Stresses in the meridional ano circumferential direction due 

to a Raidaily loaded Rigid Insert on a Compete Sphere (xt auues Q.092.QI9?
and o.3m) - A Comparison oc Tkory and Experiment
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viiId8 nomenclature

Orthogonal curvilinear co-ordinates. Fig.I.l
Rectangular co-ordinates Fig. 1.1
Spherical Polar co-ordinates Fig. 1.2
Polar Co-ordinates, - two dimensional Fig, i,6
A distance on the middle surface.
Lame Parameters# which define the shell form.
Normal forces per unit length acting on sections 
perpendicular to ,the x and y directions respectively Fig. I.la.
Shearing forces per unit length in the direction of 
the y and x axes respectively Fig. I,1a
Transverse shearing forces per unit length in the 
direction of the z axis - Fig. I.la
Bending moments per unit length acting on sections 
perpendicular to the x and y axes respectively 
Fig. I.lb
Twisting moments par unit length.
Components of the intensity of the external load (estimated per unit area of the middle surface), 
parallel to x, y and z axes respectively Fig.I.la
Components of the intensity of the external moment. 
Fig, I.lb
Normal forces per unit length acting on sections perpendicular to the 8, <? and r directions, 
respectively Figs. 1.2 and 6.
Shearing forces per unit length Bn the direction of the 0, 0 and r, © axes respectively, FigSvI.2 & 6.
Transverse shearing forces per unit length in 
sections 0, © and r = constant. Figs. 1.2 and 1.6
Bending moments per unit length acting on sections 
perpendicular to the 0, © and r axes respectively.
Twisting moments per unit length on sections 0, f> 
and r = constant. Figs. 1.2 and 1.6.
Components of the intensity of external load, parallel to 0, 0 and z axes, Fig. 1.2.
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» ' • 1 .1 <,•!=*
» r*

f, £2

Parameters arising from the elastic deformations 
of the middle surface.
Extensional strains of the middle surface in the 
x, y directions - eqts. I.4a,b.

Xtt Shear strain of the middle surface, eqt. I.4c.
K., Kt Curvature changes of the middle surface in the 

x, y directions - eqts. I.4d,e.
Kj Change of twist of the middle surface, eqt. I.4f.
£*> £y, £a Components of strain in the x, y and z directions, 

situated a distance z from the middle surface, 
e qt s o 1.5a ,b,d •

X*i, Xjzt^ Components of shear strain situated a distance z 
from the middle surface, eqts. I.5c,e,f.

£9» £<, £r Components of strain in the circumferential and 
meridional directions, eqts. I.29a,b, 1.31 & I.81a,b.

Xfy, ^er Shear Strain in the 0, 0 and 0, r planes, eqts. 1.29c, 
1.31 and 1.81c.

Kp,K,. Kr Curvature changes in the circumferential and 
meridional directions - eqts. 1.31 and I.81d,e.

fyp, Kf-p Change of twist in the 0,0 and planes, eqt.I.81f.
u, v, ur Components of displacement of any point on the 

unstrained middle surface in the x, y and z 
directions - Fig. I.lc.

Xo , X, Tangent rotation for n = 0 and n = 1 respectively.
Ri > Ra The principal radii of curvature of the middle surface
r: , r; The radii of curvature of the normal of the strained 

middle surface.
r The radius of a spherical vessel.
Ruin Minimum radius of curvatureo

f-7? Displacements in the x, y, z directions, defined on p9

<i,<Y ,°I Normal components of stress parallel to the x, y, z 
axes.

Txty, T* r ' Tya Shearing stress components in rectangular co-ordinates.
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■ °ftO

7/8,0, 7/8,8
V* %

U>,‘wt>>X0--

NM)Nw«~' 
M*0P, —
v,,ur„ X, —

»Mea,--

Xt v9

£r°. «r\ £?, £>
to
E

G
V

Er.Gr.T,

t

D
C
P
M
T
H
rP

TT

Direct stresses in the meridional and circum
ferential directions.
Bending stresses in the meridional and circum
ferential directions.
Direct (mid-surface) and Bending (outer fibre)Shear Stresses in the r,0 plane.
Values of oj at z = ± Vfc

Displacement, Resultant force and moment relating 
to n = 0 in e.g. = ZNo0n«>snO ttc

Displacement, Resultant force and moment relating 
to n « 1 in e.g. » Z N^nto5nf? etc.

Total meridional, circumferential and shear stressaa 
on the outer and inner surfaces.
Meridional, circumferential and shear strains on 
the outer and inner surfaces.
Young's modulus of elasticity in tension and 
compression.
Modulus of elasticity in shear.
Poisson's ratio.
Tension and Shear modulii and Poisson's ratio in 
the z direction for the anisotropic case.
Thickness of shell.
Flexural rigidity of the shell, D= EtVi2G-i)*) 

Extensional rigidity of the shell, C = Et/ji--)*) 
Total radial load = (o'nrp where p? = -p(Fig.II.l)
'Bending’ Moment, Fig. 11.15
'Twisting* Moment, Fig. 11.00
Tangential Load, Fig. 11.03
Radius of uniformly distributed load and radius 
of Rigid Insert.
Radius of loaded ring.



 

 

 

 

 

286.

I

M

Jl

F

UTp, Fp

k

LL..)

HL..)

7%..)

V4

*,b,0XA

Ao"* An 
00^ ®« , 0,, Dx 
bo, bt <> .Cpdo Co

6u (...)
0t
n
J

r.,
J»

Yn

(VIII.8)
Parameter 6 = VFt/^l2O-D’)

Parameter p» 'p/Z for U.D. Area or Load Width 2rp 
and p = a/*> £ or ^Lo^<3<^d Tin..

Load potential eqts. I.84r,b.
Membrane Stress function.
Particular Integrals in the deflection and stress 
function equations, respectively.
Foundation modulus, eqt. 1.97.
Linear homogeneous differentiol Dperotors- 

For the ’general* shell
For the spherical shell = !£?(•••) 4-d(—)tt0--..)cDt*0 

d04 d(p *
Differential oportDoa a *(^a 3(...)tot>42(...) + 3 (»»•) 

dp* dp re*3in’Y
Laplacian Operator V (...) = 3 (...) 4 1 3 1 3*L-«)

, v Or* r 3o r*O0*= V 7'

Parameters given by:- "X - 3(g-B)a)5 _ V ; b = (|-T) Jj+llSg] 

p4= 1 ; \* = 3(I--*))T ; A‘^l2(l-«*)5'

Characteristic Constants.

Natural logarithm
= t’/-2g>a

nth term of the Fourier series.
vti

Schleicher functions
Bessel function of the first kind - nth order.
Bessel function of the second kind - nth order.
Modified Bessel function of the first kind - 
nth order, eqt. II.16a.
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Kn Modified Bessel function of the second kind -
nth order, eqt. II.16b.

bernz, Kelvin functions, real

kernz, kei h Kelvin functions, real
y-’K., (^)

ber*z » -belz - ber'z 
z

ixuaz = berz - beiz
* *>

ker^z = -keiz - ker'z 
zkei"z • ke/c - kei'zz 

For small arguments•-

btrz » I - Z __
2! 4*

b&z = -z2 - _
2* 22 4* 6*

and imaginary parts of

and imaginary parts of

From eqts. VIII.2a-d

kerz = - (uz i C.H5 9 + Jz* - 
16

ktiz » - (fa)-^2 -5 + -.1159 Z2

Z 1(7
hfiii- £ - _Z+ 
z 2 2<4. €>*

kerz = _ I - JL - z?hcz 
z Z* 8 K

keiz a _ l-iuz _ 1 + O.SS8O 
z 2 4

ber d— i (berz) on d brr'd
dz

_*((brcz}
dlz*
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