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Abstract 

A study into the role of secreted CLIC3 in tumour cell invasion 

The initiation and progression of cancers is thought to be linked to their 

relationship with a population of activated fibroblasts, which are associated with 

tumours. I have used an organotypic approach, in which plugs of collagen I are 

preconditioned with fibroblastic cells, to characterise the mechanisms through 

which carcinoma-associated fibroblasts (CAFs) influence the invasive behaviour 

of tumour cells. I have found that immortalised cancer-associated fibroblasts 

(iCAFs) support increased invasiveness of cancer cells, and that this is associated 

with the ability of CAFs to increase the fibrillar collagen content of the 

extracellular matrix (ECM). To gain mechanistic insight into this phenomenon, an 

in-depth SILAC-based mass proteomic analysis was conducted, which allowed 

quantitative comparison of the proteomes of iCAFs and immortalised normal 

fibroblast (iNFs) controls. Chloride Intracellular Channel Protein 3 (CLIC3) was 

one of the most significantly upregulated components of the iCAF proteome. 

Knockdown of CLIC3 in iCAFs reduced the ability of these cells to remodel the 

ECM and to support tumour cell invasion through organotypic plugs. A series of 

experiments, including proteomic analysis of cell culture medium that had been 

preconditioned by iCAFs, indicated that CLIC3 itself was a component of the 

iCAF secretome that was responsible for the ability of iCAFs to drive tumour cell 

invasiveness. Moreover, addition of soluble recombinant CLIC3 (rCLIC3) was 

sufficient to drive the extension of invasive pseudopods in cancer cell lines, and 

to promote disruption of the basement membrane in a 3D in vitro model of the 

ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) transition. 

My investigation into the mechanism through which extracellular CLIC3 drives 

tumour cell invasiveness led me to focus on the relationship between CLIC3 and 

the ECM modifying enzyme, transglutaminase-2 (TG2). Through this, I have found 

that TG2 physically associates with CLIC3 and that TG2 is necessary for CLIC3 to 

drive tumour cell invasiveness.  

These data identifying CLIC3 as a key pro-invasive factor, which is secreted by 

CAFs, provides an unprecedented mechanism through which the stroma may 

drive cancer progression. 
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1 Introduction 

1.1 Cancer cell invasion and metastasis 

1.1.1 The hallmarks of cancer 

Cancer is a very heterogeneous disease and it was believed that cells only 

acquired mutations over time, allowing these cells ultimately to change 

morphology and start proliferating. The cells were found to form insular masses, 

which spread over lymph nodes to form metastasis at distal sites. This is still 

valid. However, now it is thought that cancer is composed of complex tissues. 

They consist of various cell types that cooperate in heterotypic interactions with 

one another. In the year 2000, Hanahan and Weinberg published the first version 

of the hallmarks of cancer (Hanahan and Weinberg 2000). As cancer research has 

evolved in following 11 years, they published an updated version of the 

hallmarks of cancer in 2011 (Hanahan and Weinberg 2011). 

As the first hallmark it was established that cancer cells acquire the trait to 

sustain chronic proliferation (Figure 1.1). They are able to control their own fate 

by the production of mitogenic signals, which are mostly growth factors that 

bind to the cell-surface receptors. Mostly, these receptors contain an 

intracellular tyrosine kinase domain. The signalling through these receptors 

elicits intracellular signalling cascades that regulate cell cycle progression, cell 

growth, cell survival and energy metabolism. Cancer cells are able to produce 

the growth factor ligands themselves and secrete them in an autocrine manner. 

The other option is that cancer cells interact with the tumour-associated 

stroma, which then supplies cancer cells with a variety of growth factors. 

Moreover, cancer cells either produce more receptors or they produce receptors 

that do not need ligand binding to be active. In addition, the intracellular 

signalling pathways promoting cell growth and proliferation can be deregulated 

in cancer cells. Underlying these hallmarks of cancer are the somatic mutations 

in cancer cells, which were shown mostly by high-throughput methods such as 

DNA sequencing analysis. Some activating mutations of downstream signalling 

pathways deregulate cell cycle control as well as cell growth. Furthermore, 

inactivation of negative-feedback mechanisms that reduce proliferative 
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signalling are counted as an underlying hallmark. A prominent example is the 

PI3-kinase antagonist PTEN phosphatase. The phosphatase expression is in many 

cases mutated. Therefore, PI3-kinase is constantly active. Its product 

phosphatidylinositol-3,4,5- triphosphate (PIP3) is thus not degraded. This leads to 

constant active downstream signalling and an increase in cell growth and 

proliferation. However, excessive cell proliferation identifies the cell as 

inappropriate, thus it either enters the senescence state or these cells undergo 

apoptosis. For instance, the cells which express very high levels of oncogenic 

RAS may enter senescence, which is a viable but non-proliferative state. These 

cells have an inflated cytoplasm, they express the β-galactosidase enzyme and 

they show upregulation of tumour suppressors and an absence of proliferation 

markers. For cancer cells to continue proliferating they can either reduce the 

amount of oncoproteins or they adapt to the high levels of oncogene expression 

and deactivate either apoptosis or senescence.  

The second hallmark of cancer is described as evading the tumour suppressors. 

When cancer cells undergo indefinite cell proliferation they need to evade very 

strong negative cell proliferation regulation mechanisms. The two most well-

known tumour suppressor genes encode the retinoblastoma (RB) and TP53 

proteins. These are important to determine whether cells enter the cell cycle or 

whether they go towards the senescence programme. RB is important in deciding 

whether cells enter the cell cycle and thus proliferate or not (Burkhart and Sage 

2008). TP53 is important in transducing inputs from stress signals from 

intracellular systems. When DNA damage arises, it stops cell cycle progression 

and only allows continuation of the cell cycle program once the DNA has been 

repaired. However, experiments show that, when some cells do not express 

these tumour suppressors, the body shows normal homeostasis and experimental 

animals do not necessarily acquire cancer. Therefore, redundant mechanisms 

avoiding cell proliferation must exist. Moreover, cells stop proliferating when 

touching other cells and this mechanism is called contact-inhibition. A lot of 

research has identified several proteins which interact with signalling receptors 

blocking these for their agonists. Thus proliferation is inhibited and the cells stay 

in a quiescent state.  
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Yet another hallmark of cancer is that the cells acquire the ability to overcome 

programmed cell death such as apoptosis which is a tightly regulated mechanism 

where cells are killed (Lowe, Cepero et al. 2004; Adams and Cory 2007). 

In addition, replicative immortalisation of cancer cells is described as being one 

hallmark of cancer. Most cells’ replicative potential is exhausted after a certain 

number of cell duplications due to telomere shortening. However, when cells 

become immortalised the telomeres are not shortened, because of an active 

telomerase enabling the cells to divide indefinitely. For several years now, 

replicative senescence has emerged as a tumour suppressor mechanism.  

The penultimate of the hallmarks comprises the increase in vascularisation of 

tumours to provide the cancer cells with nutrients. Moreover, the cancer cells 

are supplied with oxygen whereas CO2 and other metabolic products are 

removed. Early on, it was postulated that a certain “angiogenic switch” takes 

place. During tumour progression the normally quiescent vasculature becomes 

proliferative and new vessels sprout (Hanahan and Folkman 1996).  

The last cancer hallmark comprises the ability of cancer cells to invade and 

spread to distant sites of the body. The cancer cells can establish there and 

grow in a secondary tumour, which is called the formation of metastasis. 

In addition to the major 6 hallmarks of cancer, Hanahan and Weinberg have 

defined other enabling characteristics and emerging hallmarks ((Hanahan and 

Weinberg 2011), not yellow coloured hallmarks). Tumour cells need to survive, 

proliferate and disseminate. However, depending on the tumour type, cells use 

different mechanisms. Therefore, one enabling characteristic is the acquisition 

genomic instability, which includes random mutations as well as chromosome 

rearrangements. The second enabling hallmark denotes the inflammatory state 

of premalignant as well as malignant lesions. These 2 hallmarks orchestrate 

other hallmark capabilities. 

Moreover, two emerging hallmarks have been proposed. One of them describes 

the reprogramming of cellular energy metabolism, which supports continued cell 
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growth and proliferation. The second one which becomes very important for 

cancer cells is avoidance of the immune system.  

In the last few years it has become clear that cancer cells need assistance from 

neoplastic tumour stroma cells, which accumulate around cancer cells in order 

to invade and metastasise. The tumour as well as the tumour stroma consists of 

cancer cells, cancer stem cells and cancer-associated fibroblasts. In addition, 

the tumour stroma consists of other cells such as endothelial cells, pericytes and 

immune inflammatory cells. I will describe in more detail the tumour 

microenvironment as well as the formation of cancer metastasis at different 

sites. 

 

Figure 1.1: The hallmarks of cancer and its emerging hallmarks and enabling 
characteristics. 
The six established hallmarks are shown in yellow. The two hallmarks classified as enabling 
hallmarks are genome instability and mutation as well as the tumour-promoting inflammation. The 
other two hallmarks that are considered as emerging hallmarks are deregulation of cellular 
energetics as well as avoidance of the immune system. Adapted from (Hanahan and Weinberg 
2011). 
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1.1.2 Cancer metastasis 

At the beginning of the 21st century the mechanisms of invasion and metastasis 

were mostly unknown. Research in the past 15 years has helped to increasingly 

understand that the formation of cancer metastasis is a multistep process 

involving loss of cell-cell adhesion, followed by local cell invasion allowing the 

cells then to undergo intravasation, a process during which cancer cells migrate 

into the blood stream or the lymphatic system. At a distant site, cancer cells can 

escape the vessels and settle in tissues (extravasation). They form small nodules 

of cancer cells as they micrometastasise, followed by the formation of 

macrometastatic tumours, which is termed ‘colonisation’ (Hanahan and 

Weinberg 2011). For cells to become more invasive, they undergo so called 

‘epithelial-mesenchymal transition’ (EMT). EMT is epitomised by transformed 

epithelial cells, which become resistant to apoptosis and which acquire the 

ability to invade and disseminate (Barrallo-Gimeno and Nieto 2005; Klymkowsky 

and Savagner 2009; Polyak and Weinberg 2009). One of the major characteristics 

of EMT is the loss of cell-cell attachment as well as the cell-to-extracellular 

matrix (ECM) attachment. E-cadherin, which is one of the of the most important 

cell-to-cell adhesion molecules (CAMs), forming bridges between epithelial cells, 

holding them together and stopping cells from proliferating by signalling through 

the downstream effectors β-catenin and transcription factor (TCF). The loss of 

E-cadherin protein expression or mutations are implicated in human cancers 

(Cavallaro and Christofori 2004; Berx and van Roy 2009; Hanahan and Weinberg 

2011). A basement membrane underlies the epithelial cell layers and presents a 

physical barrier to cancer cell invasion. The membrane consists of a thick layer 

of glycoproteins and proteoglycans (such as laminins and type IV collagens), 

which prevent cancer cells from invading into the surrounding stroma. However, 

when cancer cells acquire invasive and metastatic capabilities, matrix-degrading 

enzymes or proteases allow dissemination through the basement membrane and 

the associated ECM (Egeblad and Werb 2002; Palermo and Joyce 2008; 

Kessenbrock, Plaks et al. 2010). The proteases are usually tightly controlled 

either by autoinhibition or secreted inhibitors. However, in tumours pro-

carcinogenic metalloproteinases are upregulated, and this allows cells to 

migrate through the basement membrane to reach the vasculature (Kessenbrock, 

Plaks et al. 2010). To undergo intravasation cells must penetrate the tumour-
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associated vasculature. As the tumour needs a supply of oxygen and nutrients, 

blood vessels grow and surround the tumour. These blood vessels usually grow 

towards chemoattractants which are secreted from cancer cells and can be, 

amongst others, either vascular endothelial growth factor (VEGF) or basic 

fibroblast growth factor (bFGF). The vasculature grows at a fast rate, with these 

vessels often displaying a dilated and irregular shape. The cancer cells enter the 

blood vessels by crossing through the endothelial cell (EC) junctions. Once the 

cancer cells have entered the blood vessel, they need to avoid being killed by 

the immune system. They need to oppose shear forces, which could lead to 

physical damage and they need to evade programmed cell death. The cells do 

survive can extravasate into their hostile microenvironment. They extravasate 

through the vascular ECs via cell adhesion and chemokine-related processes. 

During this process several ligands and receptors expressed on cancer cells and 

ECs allow the cells to adhere to endothelial walls. The cancer cells then migrate 

through the endothelial wall, via a process called ‘transendothelial migration’ 

(TEM), followed by invasion into the basement membrane surrounding the blood 

vessels. Following extravasation, cells can stay in a quiescent state followed by 

cell proliferation, the establishment of interactions with the microenvironment 

as well as initiation of new angiogenic sprouting. Cancer cells then start 

proliferating to form micrometastasis and thereafter establishing 

macrometastatic lesions. 

For many cancer types it has been identified to which organ they preferably 

metastasise. In the case of breast cancer disseminated cancer cells preferably 

metastasise to the lymph nodes, the bone, the liver, the lung and the brain 

(Kennecke, Yerushalmi et al. 2010; Vona-Davis, Rose et al. 2014). Ovarian 

carcinoma cells preferably metastasise to the liver and the peritoneum (Lengyel 

2010; Kumar, Gilks et al. 2013). However, the organs to which cancer cells 

ultimately metastasise depend also on the individual patient. 

  



18 
Chapter 1 
 

 

Figure 1.2: Cancer metastasis 
The formation of cancer metastasis is a multistep process. Cancer cells disseminate from the 
primary tumour followed by entering the blood stream, which is called intravasation (Friedl and Wolf 
2003). This allows them to travel to distant sites where they could then undergo extravasation. 
These cancer cells form a niche, where they can proliferate forming the so-called metastasis. 
(Figure adapted from http://www.servier.co.uk/content/servier-medical-art.) 

  

http://www.servier.co.uk/content/servier-medical-art
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1.1.3 Modes of cell migration 

The migration of non-neoplastic cells during processes such as wound healing, 

immune cell trafficking or embryonic morphogenesis is very similar to the 

migration of neoplastic cells. Cancer cells need to acquire locomotory capacity 

to move from the primary tumour to distant sites, where they can establish 

metastases (Friedl and Brocker 2000; Friedl and Wolf 2003). For cancer cells to 

move and undergo EMT several transcriptional alterations have to take place. 

The most well-known are the repression of Snail and Slug, which keep cells in an 

epithelial cell shape. Moreover, Twist up-regulation allows cells to become 

mesenchymal (Wushou, Hou et al. 2014; Grzegrzolka, Biala et al. 2015). In 

addition, cancer cells can use transforming growth factor β (TGFβ) as a cytokine 

to increase cancer progression (Massague 2008). When the cells diffuse from the 

primary tumour, they can use several types of migration. In the following 

sections I will describe the different kinds of movement cells can undergo to 

disperse from the initial tumour (Friedl and Wolf 2003). 

1.1.3.1 Individual cell migration 

Several studies both in vitro and in vivo have shown that individual cells are 

motile (Enterline and Coman 1950; Wood 1958; Thiery 2002). Friedl et al. 

described, that single cell migration occurs in diverse morphologies. One of 

them is described as mesenchymal migration, one as amoeboid migration and 

the final one is known as mesenchymal cell migration in cell chains (Friedl and 

Wolf 2003). 

Mesenchymal cell migration is characterised by cell polarisation at the front of 

the cell. This migration type is separated into a so-called 5-step migration cycle 

(Lauffenburger and Horwitz 1996). When cells migrate in a mesenchymal way in 

3D environments, they form protrusions at the leading edge. During the second 

step, cells interact with the ECM and form focal contacts. Throughout this 

process, integrins at the outside of the cell come into contact with ECM ligands 

and they form integrin clusters (Cress, Rabinovitz et al. 1995; Cukierman, 

Pankov et al. 2001). The integrins can convey messages into the cells via their 

cytoplasmic tails. During the third step, the surface proteases recruited to ECM 

contacts allow focalised proteolysis. These focal adhesions can transmit the 
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actomyosin contractile force to the ECM. In the final step the cell body moves 

forward - following the leading edges - and this allows detachment of the 

trailing edge. The cell’s velocity is relatively slow and in the range of 0.1 – 1 

μm/min. In many cases, mesenchymal cell migration is triggered by receptor 

tyrosine kinases, such as EGFR or c-Met. This is followed by the generation of 

PIP3 at the cell front. There, the Rac GTPase further undergoes activation and 

recruits other components such as the Scar/WAVE complex and Actin related 

protein (Arp2/3) complex. Arp2/3 than nucleates actin branched networks (G-

actin into F-actin) (Figure 1.3: Schematic overview ofFigure 1.3). In addition, 

this mode of migration can be initiated via Cdc42 or by oncogenic RAS, which 

increases the presence of PIP3 by activating PI-3 kinase. PTEN as a tumour 

suppressor can reverse this process (Sahai 2005). RhoA and its effector activities 

are downregulated in mesenchymal cell migration and in turn RhoA can activate 

Rac-driven polarised F-actin-rich protrusions (Vial, Sahai et al. 2003). 

 

 

Figure 1.3: Schematic overview of some important molecules important in actin 
polymerisation. 
The Arp2/3 complex can bind to existing actin strands. This starts the elongation of the filaments, 
which causes actin branches (Machesky and Gould 1999). The control of polymerisation or 
branching of actin by the Arp2/3 complex is taken by the nuclear-promoting factor WAVE/Scar-Abi 
or Wasp complex (Robinson, Turbedsky et al. 2001). The WAVE complex consists of several 
proteins including, Nap 125, Abi, Sra-1 and HSPC-300. This complex can be activated by the small 
GTPase Rac being responsible for the dissociation of the Abi, Nap125 and the Sra-1 from the 
WAVE. Adapted from (Vicente-Manzanares, Webb et al. 2005). 
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Mesenchymal cell migration is mostly found in cells present in gliomas and 

fibrosarcomas, which are connective-tissue tumours (Paulus, Baur et al. 1996; 

Wolf, Mazo et al. 2003). These cells have a fibroblast-like spindle shaped 

morphology and use integrins as adhesion molecules. In addition, a chain like 

migration has been observed for cells from these varieties of tumour. This type 

of migration occurs in melanomas and non-neoplastic neural crest cells or 

myoblasts (Jacques, Relvas et al. 1998; El Fahime, Torrente et al. 2000). 

Specifically in melanoma cells, it has been shown that they move one cell after 

the other in a chain-like fashion. Even following transplantation of these cells in 

clumps in 3D collagen they form streams, which move along tracks of remodelled 

ECM (Friedl, Maaser et al. 1997; Jacques, Relvas et al. 1998). These cells form 

cell-cell contacts and their communication between one another is thus 

maintained. Cancer cells form single cell chains and are particularly present in 

epithelial neoplasms such as breast carcinoma and ovarian carcinoma. Single cell 

chain migration has been described to be very effective. This might be due to a 

very effective infiltration mechanism that leads to a high metastatic potential 

and possibly a poor prognosis (Page and Anderson 1987; Pitts, Rojas et al. 1991; 

Sood, Seftor et al. 2001; Seftor, Meltzer et al. 2002). 

Amoeboid cell migration originates from the single-cell amoeba Dictyostelium 

discoideum. A fair amount of tumour cell lines as well as leukocytes do not 

follow the mesenchymal cell migration, but the amoeboid migration pattern 

(Enterline and Coman 1950; Wolf, Mazo et al. 2003). These cells form elongated 

actin-rich filopodia at the leading edge, but they show a poor interaction with 

the substrate (Yoshida and Soldati 2006; Smith, Aranda-Espinoza et al. 2007). 

They rely on the activity of the RhoA-ROCK pathway and they do not require ECM 

proteolysis in order to penetrate the ECM, but squeeze through existing holes in 

the ECM. Moreover, due to the few focal contacts and the cells’ high 

deformability, they move at a velocity, which is 10 - 30 fold higher than 

mesenchymal migration mechanism (Friedl, Zanker et al. 1998; Friedl, Borgmann 

et al. 2001). However, switching from amoeboid to mesenchymal migration 

modes is possible. A second form of amoeboid migration is used by zebrafish 

macrophages as well as some stem cells. They form blebbly-like actin rich 

cytoskeleton structures and move a little slower than other amoeboid cells. They 

have low polarity and are poorly adhesive. These cells can change migration 
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behaviour from amoeboid blebbly to amoeboid pseudopodal (Blaser, Reichman-

Fried et al. 2006).  

1.1.3.2 Collective tumour cell migration and motility mode switching 

Single-cell and collective cell migration serve different purposes during 

morphogenesis. Collective cell migration has been described to contribute to 

cancer progression by local invasion. In addition, collective cell migration takes 

part in shaping, building and remodelling of complex tissues and compartments 

such as epithelia, vessels ducts and glands. For collective cell migration, it is 

important that cell-cell adhesions can form within these cell groups. The cells 

form a cortical actin filament along cell junctions (Hegerfeldt, Tusch et al. 

2002). This leads to the formation of larger sized contractile bodies. The cell at 

the leading edge generates traction via pseudopod activity (Friedl, Noble et al. 

1995; Hegerfeldt, Tusch et al. 2002). These ‘leading cells’ bind to and cluster β1 

integrins at the front protrusion closest to the ECM, and they have an increased 

expression of MT1-MMP and MMP-2 which leads to ECM degradation (Klinowska, 

Soriano et al. 1999; Nabeshima, Inoue et al. 2000; Hegerfeldt, Tusch et al. 

2002). Therefore, cells migrating in a collective fashion are sensitive to integrin 

antagonists and susceptible to protease inhibition. The latter has been shown in 

angiogenesis as well as branching morphogenesis (Hiraoka, Allen et al. 1998; El 

Fahime, Torrente et al. 2000; Simian, Hirai et al. 2001; Collen, Hanemaaijer et 

al. 2003). In collective migration, the cells in the inner body or at the trailing 

edge are dragged passively behind the leading cells (Friedl, Noble et al. 1995).  

In cancers two types of collective cell migration exist. In colon, mammary and 

oral squamous cell carcinoma cells form sheets and perform local invasion 

without losing contact with the primary tumour (Bell and Waizbard 1986; Page 

and Anderson 1987; Nabeshima, Inoue et al. 1999). In epithelia carcinomas and 

melanomas cells detach as a cluster from the primary tumour and form long 

interstitial tissue gaps as they move along a path, which gives the least 

resistance (Page and Anderson 1987). Collective cell migration gives selective 

advantage to the tumour as, during this process, the tumour cells secrete 

promigratory factors and matrix proteases and the topography of the migrating 

cell mass protects the inner cells from immunological attacks. Thus, although 

collective migration is slower than single cell modes of movement, this type of 
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migration protects cells from immune attack and apoptosis, thus increasing the 

probability of the tumour to metastasise successfully. 

When the tumour progresses, the cells dedifferentiate and epithelial cells can 

change their migration pattern. In this case, they change from collective 

invasion to a disseminated cell migration mechanism, and this type of migratory 

mode-switching conforms roughly to EMT. During the switch from epithelial to 

mesenchymal-type migration, cells usually lose their cell-cell junctions. 

However, they keep the expression of promigratory proteins such as integrins 

(Lochter, Navre et al. 1999; Thiery 2002). 

Tumour cells may also switch their migratory mode from mesenchymal to 

amoeboid-type migration and this has been termed the mesenchymal amoeboid 

transition (MAT) (Wolf, Mazo et al. 2003). MAT is in many cases followed changes 

in cell morphology. These changes can be from a fibroblast-like form to rounded 

shape. Moreover, integrin expression and distribution as well as actin 

cytoskeletal organisation changes dramatically. It is thought that amongst the 

factors that are capable of driving MAT are inhibition or proteolysis and the 

weakening of cell-ECM linkages. 

Finally, cells may switch from collective to amoeboid-type migration, and this is 

termed ‘collective to amoeboid transition (CAT). CAT includes breakage of cell-

cell contacts and the resulting amoeboid cell migration is β1-integrin 

independent. CAT has been reported in small-lung cell carcinoma, as it leads to 

increased resistance to cytostatic drugs and irradiation (Kraus, Ferber et al. 

2002). This switch may also be triggered by upregulation of integrins and 

increased substrate adhesion. 
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Figure 1.4: Graphical representation of the different modes of cell migration. 
Individual cell migration shows only very low control of cell-ECM contacts. However, when cells 
move collectively the cell-ECM control is increased and this provided by matrix-metalloproteinases 
and integrins. Moreover, when cells move collectively they show characteristics of cadherin 
expression and gap junctions. Leukaemia, lymphoma and small-cell lung carcinoma cells migrate 
in an amoeboid-like behaviour. Mesenchymal cell migration is used by fibrosarcomas, 
glioblastomas and anaplastic tumours. Epithelial cancers which show a high level of differentiation 
such as breast cancers, prostate cancers and melanoma migrate in a collective cluster. The ECM 
is represented with blue and pink lines. This figure was adapted from Friedl and colleagues (Friedl 
and Wolf 2010). 
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1.2 The nature of the extracellular matrix 

Most cells need a substrate in order to migrate. The ECM amongst having other 

functions represents the substrate upon which cells exert force in order to 

migrate. The ECM consists of a complex variety of macromolecules, which fill a 

substantial amount of the extracellular space of tissues. Two main classes of 

biomolecules constitute the ECM; one class is represented by the proteoglycans 

(PG) and the other class is the fibrous proteins, including laminin, different 

types of collagen, elastin and fibronectin. PGs are composed of 

glycosaminoglycan (GAG) chains, which are unbranched polysaccharide chains 

made of repeating disaccharide units (Krusius and Ruoslahti 1986; Dammer, 

Popescu et al. 1995). Furthermore, these molecules are largely hydrophilic and 

present as highly extended proteins, allowing the ECM to withstand massive 

compressive forces. The fibrous proteins can be further categorised into either 

structural or specialised proteins. The structural proteins are represented by 

different classes of collagens, elastin and fibrillins. The specialised proteins, on 

the other hand, are represented by fibronectin, integrins and several laminins. 

The collagens to date make up a group comprising 28 different types. Collagens 

constitute about 30% of the total protein mass of most metazoans, and they give 

the ECM structure, regulate cell adhesion, provide a substrate for cell migration 

and thus permit tissue development (Rozario and DeSimone 2010). Collagens and 

the other ECM components are produced and secreted by fibroblasts which 

reside in the stroma or by fibroblasts that migrate from nearby tissues. Following 

secretion from fibroblasts, ECM proteins assemble and are organised in a 

meshwork by integrin-dependent events which promote fibrillogenesis and 

deposition (De Wever, Demetter et al. 2008). Additionally, by putting pressure 

and tension on the matrix, fibroblasts can organise collagen fibrils into sheets 

and long ropes. In most tissues, one type of collagen is predominant, despite the 

fact that most collagen fibrils are heterogeneous (Frantz, Stewart et al. 2010). 

Collagen also associates with the fibrous ECM protein elastin. The precursor of 

elastin is secreted as proelastin and this assembles into fibres which are, in turn, 

cross-linked by lysyl oxidase (LOX) family members (Lucero and Kagan 2006). 

Fibronectin (FN) is another fibrous protein and this is involved in the 

organisation of the ECM. FN is very important in directing cell attachment and 

can be stretched to several times its original length (Smith, Gourdon et al. 
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2007). This in turn allows disclosure of integrin binding sites leading to 

pleiotrophic changes and rendering fibronectin to function as a 

mechanoregulator (Smith, Gourdon et al. 2007).  

1.2.1 ECM deposition and remodelling in wound healing 

1.2.1.1 ECM deposition in normal tissue homeostasis 

Normal epithelia comprise a single layer of epithelial cells that are present with 

apical-basal polarity. The apical face is exposed to a fluid filled lumen and the 

basal side is in most cases in contact with a single layer of basement membrane 

or myoepithelial cells (Barsky and Karlin 2005). The basement membrane is a 

specialised and very compact ECM. It is composed of mostly collagen IV, 

fibronectin, laminins and other linker proteins, connecting collagens with other 

proteins (Egeblad, Rasch et al. 2010). For normal tissue homeostasis, it is 

important to have controlled tissue organisation and communication with the 

surrounding normal stroma, which consists of non-activated fibroblasts. These 

fibroblasts secrete collagen I and collagen III, fibronectin, elastin and some PGs. 

These secreted proteins all maintain the functional integrity of the interstitial 

ECM. This meshwork is embedded in a glycosaminoglycan-chain containing a PG 

network (Bosman and Stamenkovic 2003). The ECM, as it is functionally very 

versatile, needs to be in control of its unique biochemical, physical and 

biomechanical properties in order to maintain tissue homeostasis. These 

properties ensure that its spatial arrangement, porosity, rigidity and insolubility 

are maintained allowing the ECM to act as a scaffold. Additionally, the ECM is 

indirectly or directly involved in signal transduction cascades, as the cells need 

to communicate with their environment. One example of such communication 

involves the accessibility to growth factors. The ECM is a charged protein 

network with many polysaccharides and their modifications can bind to certain 

growth factors, such as WNT, FGFs and hedgehogs (Hynes 2009). The ECM, due 

to its charged protein meshwork, is rich in polysaccharide modifications and is 

able to limit the accessibility of growth factors to their receptors (Hynes 2009; 

Lu, Takai et al. 2011). The restrictions that the ECM puts on growth factor 

signalling are important in regulating cell growth and migration (Hynes 2009). 

Additionally, despite the fact that the ECM can resist a lot of physical and 
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chemical insults, it needs to undergo remodelling in order to stay healthy (Kass, 

Erler et al. 2007). The remodelling is carried out by matrix metalloproteinases 

(MMPs) and these are inhibited by their counterparts, the so-called, tissue 

inhibitors of metalloproteinases (TIMPs) (Docherty, Lyons et al. 1985; 

Carmichael, Sommer et al. 1986). Additionally, LOX proteins and 

transglutaminase crosslinking activities are used to stiffen the ECM during 

remodelling (Lucero and Kagan 2006).  

1.2.1.2 ECM remodelling in wound healing 

When a tissue has been wounded, the wound healing machinery needs to be 

activated. At first, when the vasculature has been damaged and a fibrin clot has 

formed, monocyte infiltration to the damaged ECM is stimulated. The immune 

response is thereby intensified as monocytes bind to ECM-degradation products 

and cytokines, leading to a differentiation of monocytes into macrophages (Clark 

2001). The macrophages in turn stimulate the release of several 

metalloproteinases, growth factors and cytokines, resulting in angiogenesis, 

fibroblast migration and proliferation (Schultz and Wysocki 2009). The 

fibroblasts present at the wound are then responsible for ECM secretion, which 

entails the deposition of collagens I and III, fibronectin and hyaluronic acid. This 

ECM deposition leads to increased mechanical stress at the wound, which in turn 

can lead to fibroblast activation into myofibroblasts. The tissue is then stiffened 

by these myofibroblasts, whose main characteristic is to be highly contractile. 

The secreted ECM components consist of rigid collagen bundles, which are cross-

linked by LOX enzymes and thus are much stiffer, compared to unwounded ECM 

(Szauter, Cao et al. 2005). This now wounded and stiffer microenvironment 

results in basement membrane disruption and the apical- basal polarity of the 

destabilised epithelial cell-cell adhesions is lost. Additionally, the wound and the 

remodelled ECM cause cells to migrate towards the injured tissue (Schafer and 

Werner 2008). Once the wound has been closed, tissue homeostasis is restored 

and fibrosis inhibited by specific feedback mechanisms (Schultz and Wysocki 

2009; Velnar, Bailey et al. 2009).  
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1.2.2 Parallels between wound healing and cancer 

The ECM has always been seen as a structural support for the maintenance of 

tissue morphology, but the notion that the ECM can be a supportive milieu for 

cancer progression, has only recently been established and is now considered to 

be a hallmark of cancer (Hynes 2009). Cancers are conspicuous by the complete 

loss of tissue organisation and this is a characteristic that they share with 

unhealable wounds (Bissell and Radisky 2001; Schafer and Werner 2008). Indeed, 

like scar tissue, tumours tend to be stiffer than the surrounding normal tissue, 

and this is due to many of the same processes, such as inflammation, fibroblast 

activation and ECM deposition and cross-linking that occur during wound healing 

(Tan and Coussens 2007; Butcher, Alliston et al. 2009; Levental, Yu et al. 2009). 

1.2.3 The ECM and its components in cancer 

As described above, there are some parallels between the ECM deposited around 

tumours and wounds. The so called tumorigenic ECM makes the cancer cells 

more permissive to move from primary tumours to distant sites. Following 

malignant transformation, changes in the normal amount of ECM deposition and 

composition, alter the biochemical properties of the ECM and thus have the 

potential to increase many growth factor signalling pathways. Additionally, the 

physical properties of the ECM are important in the tumour-associated ECM. The 

arrangement of the collagen I fibres has been shown to be important in this 

regard. In normal tissues the collagen I fibrils are arranged in a non-oriented 

loose meshwork. However, in breast cancer they are aligned in highly linearized 

collagen I fibrils, which are either arranged perpendicularly into the tissue or 

oriented adjacently to the epithelium (Provenzano, Eliceiri et al. 2006; 

Levental, Yu et al. 2009). The enzymes which remodel the ECM are also very 

often deregulated in human cancers. Metalloproteinases, cysteine cathepsins 

and heparanases are upregulated in many tumour types (Ilan, Elkin et al. 2006; 

Kessenbrock, Plaks et al. 2010). As mentioned before, the tumour stroma is 

often stiffer than the normal stroma. Indeed, in breast cancer the stroma is 10 

times stiffer than the normal breast stroma (Levental, Yu et al. 2009; Lopez, 

Kang et al. 2011). Some of this could be due to an increased activity of lysyl 

oxidase (LOX). The oxidase cross-links the collagen fibres and other ECM 



29 
Chapter 1 
 

components, and has been shown to be upregulated in head and neck cancer and 

breast cancer (Le, Harris et al. 2009; Barker, Chang et al. 2011). Furthermore, in 

mice the increased expression of LOX stiffens the ECM and promotes tumour cell 

migration and invasion (Levental, Yu et al. 2009). The overexpression of LOX 

alone, however, is not enough to promote tumorigenesis in normal breast 

epithelium (Hollosi, Yakushiji et al. 2009). Therefore, it seems clear that ECM 

remodelling is not the only cause for cancer initiation, but likely is a key factor 

that contributes to tumour aggressiveness. ECM dynamics, are dictated by the 

cells within the tumour microenvironment, and these cell types include; cancer 

cells, cancer stem cells, immune inflammatory cells, pericytes and endothelial 

cells (Hanahan and Weinberg 2011). These specialised cell types need to be 

studied to understand the multistep process of tumour progression. I will focus 

on cancer-associated fibroblasts as they secrete many factors that constitute the 

tumour permissive ECM. 

1.2.3.1 Fibroblast activation and cancer-associated fibroblasts 

Two different types of fibroblasts are present within the tumour environment; 

normal fibroblasts and myofibroblast-like cancer-associated fibroblasts (CAFs). 

The myofibroblast-like CAFs can be characterised by the expression of α-smooth 

muscle actin (α-SMA), account for a considerable fraction of the stroma of 

tumours (Sappino, Skalli et al. 1988), and they rarely appear in healthy tissue. 

They do appear, however, in wound healing as well as in chronic inflammation. 

These myofibroblast-like CAFs can arise via activation of normal fibroblasts. The 

myofibroblast-like CAFs secrete extracellular matrix components such as 

collagens and fibronectins. Specifically, they have been shown to have an 

increased deposition of collagen I, II, III, V and IX (Zhu, Risteli et al. 1995; 

Kauppila, Stenback et al. 1998; Huijbers, Iravani et al. 2010). As these activated 

fibroblasts change the ECM and make it more permissive for cancer cells to 

grow, it was proposed that their ablation might reduce cancer growth. To test 

whether ablating myofibroblast-like CAFs has an effect on tumour growth, a 

knockout mouse was generated which was devoid of α-SMA positive CAFs. 

Unexpectedly, these mice were more prone to develop pancreatic cancer 

indicating that ablation of myofibroblasts promoted cancer emergence 

(Ozdemir, Pentcheva-Hoang et al. 2014). Therefore, the research in this area 
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rather focuses on targeting and examining secreted factors which influence the 

deposition of an ECM microenvironment, which is permissive for cancer 

progression. The ECM fibres deposited by myofibroblasts are remodelled and 

cross-linked not only by LOX, but also by transglutaminases, which increases 

their stiffness. The studies which test the effect of depletion of enzymatic 

components of the ECM, such as lysyl oxidase, have shown reduced angiogenesis 

(Baker, Bird et al. 2013), reduced tumour growth (Levental, Yu et al. 2009) and 

increased drug delivery (Provenzano, Cuevas et al. 2012). Vascular endothelial 

growth factor (VEGF) is able to increase vascular permeability, which increases 

vessel sprouting and growth. This has been shown to be particularly true for stiff 

breast cancer tumours, which are very invasive and highly vascularised 

(Levental, Yu et al. 2009; Baker, Bird et al. 2013). All of these characteristics 

constitute a vicious cycle, which acts to drive tumour aggressiveness. This 

includes tumour-associated ECM stiffening and reciprocal ECM resistance induced 

by resident tumour cells and myoepithelial cells. This generates contractility 

which increases tumour growth, survival, angiogenesis, tumour cell invasion and 

metastasis (Paszek and Weaver 2004; Paszek, Zahir et al. 2005; Butcher, Alliston 

et al. 2009; Erler and Weaver 2009).  

1.2.4 Role of the ECM in cancer progression 

The formation of cancer metastasis is a multistep process as described above. It 

is characterised by local invasion, intravasation at the primary tumour, 

movement through the blood stream, extravasation at the distant site and 

proliferation forming the metastasis (Paget 1989). It seems that the ECM 

supports the cell proliferation, colonisation, and the expansion necessary to 

form macrometastasis in the metastatic niche in a similar manner as it does in 

the primary tumour niche. Support of this hypothesis has been provided by a 

study in mammary carcinoma cells. These carcinoma cells have a low survival 

rate when they do not express the hyaluronan receptor CD44 on their surface. 

However, when these mammary carcinoma cells express the CD44 surface 

marker they have a higher survival rate (Yu, Toole et al. 1997). The obtained 

data suggest that possibly hyaluronan as part of the ECM promotes survival of 

cancer cells in the metastatic niche. Additionally, in the primary tumour ECM, 

the activity of the lysyl oxidase was higher and this has also been reported for 
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the metastatic niche. The action of LOX in the secondary organs has been shown 

to promote the seeding of cancer cells into metastatic niches (Erler, Bennewith 

et al. 2009). Additionally, as in the primary tumour site, ECM stiffening could 

promote infiltration of immune cells as well as triggering the angiogenic switch 

at the metastatic site.  

Furthermore, in the distant pre-metastatic niche fibronectin secretion is 

increased. This is important for the VEGF receptor 1-postive hematopoietic 

progenitor cells, which express the fibronectin-binding integrin α4β1 and 

migrate and adhere to niches in the lung (Kaplan, Riba et al. 2005). Once the 

VEGFR1-positive hematopoietic cells are resident in the metastatic niche they 

secrete MMP9, which has a potential role in lung-metastasis (Hiratsuka, 

Nakamura et al. 2002). This would imply that that the ECM is a significant player 

to form distant metastasis.   
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1.3 Transglutaminases 

Transglutaminases are cross-linking enzymes and are thought to play a role in 

ECM stiffness and cancer progression. The transglutaminase (TG) family consists 

of 9 members in humans, namely TG 1 - 7, factor XIII and band 4.2 (Griffin, 

Casadio et al. 2002). One of the functions of the transglutaminases is to catalyse 

thiol- and calcium-dependent transamidation reactions. It was first described by 

Pisano et al, that a primary amine group and a carboxamide group of a peptide 

bound glutamine residue can form a covalent bond and this is called a 

transamidation reaction. An amine donor in the reaction can be ε -amino group 

of the peptide bound lysine. Therefore, a transamidation reaction entails 

formation of a crosslink of covalent nature between an ε-amino group of a lysine 

and the γ-carboxamide of the glutamine (Pisano, Finlayson et al. 1968). 

Furthermore, the transglutaminases possess a GTPase and G-protein function. 

However, recent reports suggest that these functions are mutually exclusive. 

The transglutaminase family members can be discriminated by their tissue 

distribution, localisation, physical properties and mechanisms of action (Table 

1.1). Transglutaminases have also been described to be involved in wound 

healing and in stiffening of the erythrocyte membrane (Aeschlimann and 

Paulsson 1994). Transglutaminase-2 (TG2) and fXIIIA are secreted proteins, but 

they lack the amino-terminal hydrophobic leader sequence that is typical of 

secreted proteins, thus must be released from the cell via unconventional 

mechanisms. They are structurally and functionally related proteins. Therefore, 

it has been suggested that they originate from duplication of a single 

transglutaminase gene. These genes probably evolved early in evolution, 

because primitive organisms such as bacteria also have transglutaminase 

enzymes (Yokoyama, Nio et al. 2004). However, in lower vertebrates only one 

transglutaminase exists. It was therefore suggested that gene duplication gave 

rise to the transglutaminase family, and this view is further supported by the 

sequence similarity in the genes encoding these enzymes (Grenard, Bates et al. 

2001). Furthermore, they are known to catalyse Ca+-dependent posttranslational 

modifications of proteins. This can be for example that free amine groups are 

covalently linked, which is called a transamidating/deaminating function as 

described above. The transamidation (catalytic active site) domain is retained in 

all transglutaminases, except band 4.2 as this protein is mostly involved in 
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scaffolding (Satchwell, Shoemark et al. 2009). They further possess a GTPase/G-

protein function and they have therefore the potential to function as a signalling 

protein (Begg, Carrington et al. 2006). 
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Gene 
[Protein] 

Molecular 
Mass kDa Main function Tissue distribution References 

TGM1 
[TG1] 

90 Forming cell envelopes 
during keratinocyte 
differentiation 

Membrane bound 
keratinocytes 

(Kalinin, Marekov 
et al. 2001) 

TGM2 
[TG2] 

80 Apoptosis, cell adhesion, 
matrix stabilisation, 
signal transduction  

Many tissues: cytosolic 
nuclear, membrane, 
and extracellular 

(Chen and Mehta 
1999) 

TGM3 
[TG3] 

77 Forming cell envelopes 
during keratinocyte 
differentiation 

Hair follicle, epidermis, 
brain 

(Kalinin, Marekov 
et al. 2001) 

TGM4 
[TG4] 

77 Reproduction Prostate (Williams-Ashman, 
Notides et al. 
1972) 

TGM5 
[TG5] 

81 Cell formation in 
keratinocytes 

Foreskin keratinocytes, 
epithelial barrier lining, 
skeletal muscular 
striatum 

(Candi, Oddi et al. 
2001; Candi, Oddi 
et al. 2002; 
Cassidy, van 
Steensel et al. 
2005) 

TGM6 
[TG6] 

78 Not known Testis and lung  

TGM7 
[TG7] 

81 Not known Ubiquitous, but 
predominantly in testis 
and lung 

 

fXIII 
subunit A 

83 Platelets, astrocytes, 
dermal dendritic cells, 
chondrocytes, placenta, 
plasma coagulation, 
synovial fluid, bone 
growth 

Cytosolic, extracellular (Lorand 2001), 
(Wozniak, Fausto 
et al. 2000) 

Band 4.2 72 membrane skeletal 
component, signal 
transduction 

Red blood cells, bone 
marrow, foetal liver 
and spleen 

(Ideguchi, 
Nishimura et al. 
1990) 

Table 1.1: Properties of the 9 transglutaminase proteins. 
This table is mostly taken from Eckert et al. (Eckert, Kaartinen et al. 2014). 
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1.3.1 Transglutaminase 2 

The first transglutaminase, nowadays known as TG2, was identified in 1987 in 

guinea pig liver extracts (Achyuthan and Greenberg 1987). TG2 has been 

detected in many tissues and cell types. It has been shown to be mostly present 

in the cytosol, but also in the nucleus and plasma membrane. Therefore, it was 

named tissue transglutaminase. TG2’s functions as a GTPase, as it hydrolyses 

GTP, and it is also able to catalyse a Ca2+-dependent posttranslational 

modification of proteins (Lorand and Graham 2003). Additionally, TG2 has 

several proposed functions which were published. Therefore, it was proposed 

that it can act as a protein scaffold (Akimov and Belkin 2001; Akimov and Belkin 

2001), as protein disulphide isomerase (PDI) (Hasegawa, Suwa et al. 2003; 

Mastroberardino, Farrace et al. 2006), as protein kinase (Mishra and Murphy 

2004; Mishra, Saleh et al. 2006), and as DNA hydrolase (Takeuchi, Ohashi et al. 

1998). Moreover, TG2 interacts with several proteins such as β-integrins, 

fibronectin, osteonectin, RhoA, multilineage kinases, PTEN, IκBα and the 

retinoblastoma protein. In mice, TG2 loss leads to viable offspring, but delays 

wound healing and results in a poor response to stress (Murtaugh, Mehta et al. 

1983). 

1.3.2 Structure and function 

1.3.2.1 Structure of TG2 

The multifunctional enzyme TG2 consists of 4 domains, namely the N-terminal β-

sandwich domain (AA1-140), the catalytic core ranging from amino acid residues 

141-460 and 2 C-terminal β-barrel domains, which range from amino acid 

residues 461-589 and 587-687. Additionally, three different structures of TG2 

have been resolved, giving invaluable insight into the possible functions of TG2. 

TG2 was crystallised in a complex with ATP rendering it in the closed form 

(Figure 1.5) (Han, Cho et al. 2010). It was also co-crystallised with GDP and 

rendering it in a closed form (Liu, Cerione et al. 2002). Finally, it was complexed 

in an open conformation, with a TG2 inhibitor (Pinkas, Strop et al. 2007). TG2’s 

catalytic site (transamidating site) is composed of cysteine proteases, namely 

cysteine C277, histidine 335 (H335) and aspartate 358 (D358) (Liu, Cerione et al. 
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2002). The mutation of cysteine C277 renders the transamidation domain 

inactive. In addition, this cysteine mutation C277S is able to reduce the 

GTP/GDP binding due to changes in the conformation of the protein (Begg, 

Carrington et al. 2006). Next to this catalytic active site, two conserved 

tryptophan residues (W241 and W332) have been shown to stabilise a thiol 

intermediate, which forms during catalysis (Murthy, Iismaa et al. 2002; Pinkas, 

Strop et al. 2007). The mutation of W241A results in loss of the TG2 

transamidase activity, but the GTP/GDP binding capability is not impaired. 

Mutation of W332F, however, impairs GTP/GDP binding (Murthy, Iismaa et al. 

2002; Gundemir and Johnson 2009). Additionally, the tyrosine residue at position 

516 (Y516) has been shown to form a hydrogen bond with the cysteine 277. This 

seems to keep TG2 in a more closed confirmation, but when Y516 was mutated 

to a phenylalanine, TG2 was observed to be in an open conformation (Begg, 

Carrington et al. 2006). 

 

Figure 1.5: X-ray structure of TG2 complexed with Adenosine triphosphate (ATP). 
This structure was crystallised by Han and colleagues and downloaded from the RCSB PBD 
website (http://www.rcsb.org/pdb) (PDB code: 3LY6) (Han, Cho et al. 2010). The structure was 
generated in PYMOL (https://www.pymol.org/). The black dotted line indicates the ATP molecules 
in its binding site. The β-barrels are indicated in red and orange, the catalytic core is indicated in 
yellow, turquoise and green. The dark blue is one β-sand. 

 

http://www.rcsb.org/pdb
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Unfortunately, TG2 has not yet been crystallised in the presence of calcium. 

Therefore, the crystallised structures of TG3 and factor XIII (Fox, Yee et al. 

1999; Ahvazi, Boeshans et al. 2003; Ahvazi, Boeshans et al. 2004) were used to 

predict the calcium binding sites for TG2. From calorimetric studies and site 

directed mutagenesis it has been detected that six calcium binding sites exist. 

When mutating three of them, the transamidation activity did not change. 

However, when mutating all six of the calcium binding sites the transamidation 

activity was blocked, but the GTP/GDP binding capacity was not changed 

(Kiraly, Csosz et al. 2009). 

1.3.2.2 Transamidating/deaminating function 

The reactions catalysed by TG2 have been studied to date in great detail. It has 

been shown in experiments that one γ-carbon of a peptide glutamine side chain 

can be nucleophilically attacked by sulphur of an active site cysteine of TG2 

(C277). Ammonia is the product being released after the formation of a thioester 

bond (active site cysteine and substrate). For the transglutaminase to detach, an 

amine (transamidation) or H2O (deamination) (acyl-acceptor) attacks the 

thioester bond. The transamidation reaction has two possible outcomes. The 

result of the first reaction occurs after adding an amine to the protein. The 

amine can be the attacking group and this leads to isopeptide bond formation 

between the glutamine side chain and the amine (Figure 1.6 C). This has been 

regarded as a posttranslational modification. Furthermore, the properties of 

both proteins are changed. An isopeptide bond forms between two amino acids, 

such as glutamine and lysine (Figure 1.6 B). It has been described that this 

isopeptide bond functions to increase the ECM stability and it has also been 

described that it stops the release of cell contents of apoptotic cells (Nicholas, 

Smethurst et al. 2003). The result of the second reaction occurs upon the 

presence of an amine. This amine can form an indirect cross-link during its 

incorporation as a cross-linker (Figure 1.6 D). 

When a deamination reaction occurs a glutamine residue is transformed to a 

glutamate residue (Figure 1.6 A). In 2002 it was shown that the deamination 

reaction only took place under specific conditions, such as low pH (Fleckenstein, 

Molberg et al. 2002). However, in 2006 it was shown that one glutamine residue 
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in Hsp20 was specifically deaminated by transglutaminases and not 

transamidated (Boros, Ahrman et al. 2006), and this was subsequently shown to 

be the case for other proteins too (Stamnaes, Fleckenstein et al. 2008).  

 

Figure 1.6: The transamidating functions of transglutaminases. 
(A) Deamination of a peptide-bound glutamine to a glutamate residue by TG2. The water in this 
case functions as an acyl-acceptor for the deamination process. (B) Isopeptide bond formation to 
crosslink two proteins. In this case it is shown the ε-group of the peptide bound lysine as the acyl-
acceptor. (C) Posttranslational modification. In this case a primary amine (acyl-acceptor) and the 
glutamine residue is modified. (D) An alternative for an isopeptide bond can be a primary amine 
which acts in this case as a cross-linker of 2 proteins. This figure was adapted from Gundemir and 
colleagues (Gundemir, Colak et al. 2012). 

1.3.2.3 GTPase/G-protein function 

Transglutaminase 2 was first shown to hydrolyse GTP in 1987 (Achyuthan and 

Greenberg 1987). In these experiments it was also shown that GTP binding to 

TG2 and calcium binding to TG2 were competitive. When TG2 is bound to GTP, 

TG2 acquires a closed confirmation (Figure 1.7). In addition, they showed that 

the mutation of the active site cysteine (277) did not abolish GTP hydrolysis. 
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One research group has categorised TG2 as Gαh, which belongs to a family of 

heterotrimeric guanosine triphosphate (GTP)-binding proteins. TG2 was further 

shown to associate with the α1-adrenergic receptor and increase its signalling 

capacity (Nakaoka, Perez et al. 1994). 

The binding affinity of TG2 to GTP has been determined. It has, however, proven 

more laborious to determine the affinity of calcium ions to TG2, as the protein 

has several binding Ca2+-binding sites. These binding sites have different binding 

affinities. However, it seems quite likely that the GTP/calcium ratio in the cell 

(~150 μM/~100 nM), ensures that cytosolic TG2 will be in the GTP-bound state 

thus maintaining intracellular TG2’s transamidase activity at relatively low 

levels. In addition, some GTP-binding defective TG2 mutants have been shown to 

promote apoptosis, suggesting that uncontrolled cytosolic TG2 activity may be 

pro-apoptotic (Datta, Antonyak et al. 2007; Gundemir and Johnson 2009; Tee, 

Marshall et al. 2010). Finally, a study has shown that different TG2 isoforms 

change cell differentiation in in diverse ways. When a GTP-binding short isoform 

of TG2 is present the neuroblastoma cells differentiate more compared to the 

long isoform as this inhibits neuroblastoma cell differentiation. As TG2 inhibitors 

are able to inhibit neuroblastoma differentiation induced by the short form of 

TG2, this suggests, that differentiation is induced by TG2’s transamidating 

activity (Tee, Marshall et al. 2010). 

1.3.2.4 TG2 and other functions 

As described above it seems that increased calcium concentrations increase 

TG2’s transamidation activity, and when the GTP/GDP concentration is high TG2 

assumes a closed GTP-bound conformation (Figure 1.7). However, even though 

the extracellular calcium concentration is significantly higher than extracellular 

GTP levels, TG2’s transamidation function is not necessarily high outside the 

cell. It is thought that activation of TG2’s transamidation activity outside the 

cell may be triggered by exposure to outside stresses (Siegel, Strnad et al. 

2008), indicating that in addition to the influence of calcium other potential 

factors that control TG2’s transamidase activity need to be considered. 

Observations that the five intramolecular disulphide bonds in TG2 were 

presumed to be able to form under oxidising conditions suggested the possibility 
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that the redox state of the environment may to have an impact on TG2’s 

transamidase activity (Hasegawa, Suwa et al. 2003). More recently it has been 

shown that disruption of the disulphide bond between C370 and C371 inhibits 

transamidase activity in the presence of calcium (Stamnaes, Pinkas et al. 2010).  

 

Figure 1.7: Transglutaminase2 exists in 3 different conformations and has several functions. 
This figure shows TG2 in the two catalytic inactive forms and in its catalytic active conformation. 
TG2 can be present in the GTP/GDP bound catalytically inactive conformation. When TG2 is 
present in its catalytically active and open conformation, it performs transamidation and 
deamidation reactions. The Ca

2+
 bound crystal structure of TG2 has not been resolved thus far. 

However, the putative Ca
2+

 binding sites are homologous to those of the FXIIIa domain. Upon 
GTP/GDP binding Ca

2+
 can no longer bind to TG2. TG2 domain 3 and 4 are altered and expose 

the catalytic domain, upon binding to Ca
2+

. When the protein is present in the open active form in 
oxidising conditions, the catalytic activity is lost. In the presence of thioredoxin the open and active 
site can exist. The red indicated fold is the COOH-terminal and the blue is the NH2 domain. This 
figure was adapted from Eckert and colleagues (Eckert, Kaartinen et al. 2014). 

1.3.3 TG2 and signalling 

Despite the fact that TG2 was initially discovered as a cross-linking enzyme, 

nowadays it seems that TG2 also has several signalling functions. TG2 has been 

shown to interact with several target proteins located on the ECM, in the 

cytoplasm, in the nucleus and in mitochondria (Lorand and Graham 2003; Park, 

Choi et al. 2010). I will concentrate on TG2’s function in enhancing integrin-

mediated signalling and crosslinking of ECM proteins. TG2 is released via a poorly 

understood non-classical secretion pathway, where it covalently modifies ECM 

proteins to enhance their stability by forming homo- or heteropolymers 

(Aeschlimann and Thomazy 2000; Lorand and Graham 2003). This has been 
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described to increase the rigidity of fibronectin (Nelea, Nakano et al. 2008) and 

collagen (Spurlin, Bhadriraju et al. 2009). This increase in ECM stiffness 

promotes fibroblast and osteoblast adhesion (Chau, Collighan et al. 2005; 

Forsprecher, Wang et al. 2009) and is further able to enhance cell growth, 

survival, migration and differentiation, by having an impact on integrin-related 

mechanosensing pathways (Bershadsky, Kozlov et al. 2006). Additionally, it has 

been described that fibrinogen αC, once cross-linked by TG2, allows endothelial 

cell adherence and increases integrin clustering. This then leads to the 

formation of focal adhesions and extracellular signal-regulated kinase (ERK) 1/2 

activity (Belkin, Tsurupa et al. 2005).  

Integrins have a transmembrane domain and act as signalling and adhesion 

receptors. However, they do not possess an intrinsic enzymatic activity. ECM 

proteins can activate integrins (Hynes 2002). As described above, TG2 can 

interact with the ECM, enhancing cell adhesion and integrin-mediated signalling 

via interaction with β1, β3 and β5 integrin (Zemskov, Janiak et al. 2006; Belkin 

2011). Additionally, in cancer cells and during metastasis TG2 has been shown to 

enhance the affinity of certain integrins for fibronectin, which increases cell 

attachment to the matrix and in can lead to an activation of integrin signalling 

(Satpathy, Cao et al. 2007; Belkin 2011; Piercy-Kotb, Mousa et al. 2012). TG2-

induced integrin clustering increases integrin-dependent signalling. This is for 

example the activation of FAK and Src. Furthermore, this leads to increased 

levels of GTP-bound RhoA and its downstream target ROCK. The outcome of this 

can be actin stress fibre formation, which leads to enhanced actomyosin 

contractility to promoted further ECM remodelling (Toth, Garabuczi et al. 2009; 

Torocsik, Szeles et al. 2010). 

1.3.4 Transglutaminase 2 in cancer 

TG2 is highly expressed in several cancers including breast (Agnihotri, Kumar et 

al. 2013), pancreatic (Iacobuzio-Donahue, Maitra et al. 2003), colon (Miyoshi, 

Ishii et al. 2010), non-small cell lung cancers (NSCLC) (Choi, Jang et al. 2011) 

and melanoma (Fok, Ekmekcioglu et al. 2006). TG2 overexpression can confer 

transformed characteristics such as enhanced survival capacity and anchorage-

independent growth on normal fibroblasts and epithelial cells (Verma, Wang et 
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al. 2006; Yakubov, Chelladurai et al. 2013). However, TG2 cannot transform 

fibroblasts by itself. It has therefore been proposed to collaborate with other 

factors to transform fibroblasts. TG2 expression has been associated as a 

negative prognostic marker. The expression of TG2 is usually detectable in 

advanced cancer (Mehta, Fok et al. 2004; Fok, Ekmekcioglu et al. 2006; Herman, 

Mangala et al. 2006; Mehta, Fok et al. 2006). 

Cells in primary tumours can change their cell migration behaviour from 

epithelial to mesenchymal migration. This goes hand in hand with extensive 

remodelling of the ECM. The remodelling is carried out in some cases by matrix 

metalloproteinases (MMPs). TG2 seems very important in laying down ECM and 

increasing its stiffness. Moreover, several studies show that TG2 is also 

important in inflammation and wound healing (Chau, Collighan et al. 2005; 

Collighan and Griffin 2009; Fisher, Jones et al. 2009; Mehta, Kumar et al. 2010). 

Additionally, the ability of TG2 to cross-link ECM proteins has not only been 

associated with the desmoplastic response, but also with kidney scarring, 

atherosclerosis and diabetic nephropathy (Johnson, El-Koraie et al. 2003; Cho, 

Kim et al. 2008; Schelling 2009). Moreover, it has been demonstrated that TG2 

overexpression in the tumour stroma is associated with a high risk of recurrence 

in invasive ductal carcinomas of the breast (Assi, Srivastava et al. 2013). The 

extracellular pool of TG2 has also been shown to cross-link secreted fibronectins 

and to stabilise the ECM as it has been found to bind to the gelatin-binding 

domain of fibronectin. This then increases the association between the 

fibronectin and integrins on the cell surface, enabling TG2 to impact 

characteristics of cancer cells (Akimov, Krylov et al. 2000; Chau, Collighan et al. 

2005; Mangala and Mehta 2005; Collighan and Griffin 2009; Fisher, Jones et al. 

2009; Mehta, Kumar et al. 2010). TG2 can impact on FAK, Akt, NF-κB, PI3K, focal 

adhesion kinase or phospholipase C signalling via its cross-linking or signalling 

functions (Verma, Wang et al. 2006; Verma, Guha et al. 2008; Mehta, Kumar et 

al. 2010; Yakubov, Chelladurai et al. 2013). Some of these pathways have been 

associated with epithelial-mesenchymal transition. The TG2 expression is 

increased upon high protein level of inflammatory cytokines, such as TGF-β in 

fibroblasts and epithelial cancer cells. This leads to enhanced production of both 

collagen and fibronectin. This dense material presents at the clinical diagnosis 

as a lump or dense stroma (Walker 2001; Apte and Wilson 2012). 
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TG2 has also been shown to be involved in the process of EMT in cancer cells. 

These cancer cells therefore acquired a more stem-cell phenotype. MCF-7 breast 

cancer cells were treated with doxorubicin and the cell population which 

survived were considered to be cancer stem cells. These cells also had high TG2 

expression (Calcagno, Salcido et al. 2010). Additionally, in ovarian carcinoma it 

has been shown that TGF-β is secreted which increases the expression and 

enzymatic function of TG2, leading to the acquisition of the stem cell-like 

phenotype (Cao, Shao et al. 2012).  

TG2 has been shown to be up-regulated in drug resistant cancer cells. Upon 

inhibition of TG2 expression, certain cancer cells acquire drug sensitivity. 

However, the mechanisms that TG2 uses to mediate drug resistance have not 

been completely understood, and it depends on the cancer tissue, as well as 

drug in question (Antonyak, McNeill et al. 2003; Herman, Mangala et al. 2006). In 

one case it has been shown that doxorubicin-resistant breast cancer cells 

displayed upregulation of TG2. This is partly because TG2 can activate the EGF 

signalling pathway, contributing to oncogenic breast cancer potential and 

promoting chemoresistance against doxorubicin (Antonyak, Miller et al. 2004). 

 

1.4 CLIC proteins 

1.4.1 Phylogeny and structural conservation of CLICs 

The CLIC family of proteins have a high sequence similarity and appear very 

early in evolution. CLIC proteins are conserved throughout metazoa. Lower 

organisms such as Hydra magnipapillata (phylum Cnidara), Schistosoma mansoni 

(phylum Platelminthes), Drosophila melanogaster (phylum Arthropoda) and 

Ciona intestalis (phylum Chordata) express a single CLIC. In Drosophila 

melanogaster the CLIC proteins are represented by DmCLIC. Nematodes express 

two CLIC-like proteins, which are EXC-4 and EXL-1. The crystal structure of the 

(DmCLIC) and EXC-4 reveal that a potassium ion is bound in what would be part 

of the glutathione (GSH) site. The urochordate Ciona intestinalis CLIC protein 

has a sequence identity with vertebrate paralogues of 45%. There is some 

variation in CLIC proteins from different species as, for example, teleost fish 
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have a second copy of CLIC5. However, lizards and birds do not contain CLIC1. 

Choanoflagellates also have a CLIC-like gene. The human CLIC family of proteins 

consists of 6 paralogues namely CLIC1 to CLIC6, with CLIC2, CLIC5 and CLIC6 

existing in alternative splice forms (Littler, Harrop et al. 2010). The six family 

members have a high sequence identity ranging from 47 to 76 % (Singh 2010). A 

characteristic of the CLIC proteins is a ~240 amino acid stretch forming the 

glutathione S-transferase (GST) fold. The most divergent CLICs are CLIC5B and 

CLIC6, as they are longer in sequence and have an N-terminal domain, which is 

attached to the GST-fold (Shanks, Larocca et al. 2002; Griffon, Jeanneteau et al. 

2003). These domains often include repetitions and are not very well conserved 

in sequence. In addition, the size of the protein is also not well conserved.  

In addition, CLIC5 and CLIC6 are not as widely expressed in human tissues 

compared to the other CLICs and their function is most likely far more diverse. 

The crystal structure of CLIC1, CLIC2, CLIC3 and CLIC4 has been resolved in their 

soluble, globular state. They have a very high structural homology as they all 

contain 10 α-helices and 4 β-sheets. Between helix 5 and 6 they possess a highly 

negatively charged loop, which extrudes from the globular domain and is 

positioned between Pro147 and Gln 164 in CLIC1 (Singh, Cousin et al. 2007). Due 

to sequence and structural similarities the human CLIC proteins have probably 

arisen from one single CLIC protein through duplication events (Littler, Harrop et 

al. 2010). CLIC proteins in vertebrates are highly conserved which would suggest 

that these proteins have a very similar function. However, it has not been 

validated in science so far and needs further investigation. 
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Figure 1.8: Crystal structures of the human CLIC proteins (CLIC1 – CLIC4). 
The protein structures were downloaded from the RCSB Protein Data Bank 
(http://www.rcsb.org/pdb). The CLIC protein structures were visualised and aligned in PYMOL 
(https://www.pymol.org/). The orange structure represents CLIC1 (PDB structure 1K0M), the green 
structure represents CLIC2 (PDB structure 2PER), the blue structure represents CLIC3 (PDB 
structure 3FY7) and the red structure represents CLIC4 (PDB structure 2D2Z). The divergent loop 
is encircled with the black dotted line. I generated the Figure myself but the idea was from Marta 
Dozynkiewicz. 

 

1.4.2 The structure of CLIC3 

The CLIC3 protein was first identified in a yeast two hybrid screen binding to 

ERK7. ERK7 is part of the mitogen-activated protein kinase family of signal 

transducers. CLIC3 interacted with the COOH-domain of ERK7, which was used as 

a bait. Qian and colleagues showed via Northern blot analysis that CLIC3 is 

expressed in the heart, the lung and the placenta. Finally, they showed the 

association of ERK7 with CLIC3 via co-immunoprecipitation and found that the 

protein is mainly localised to the nucleus, but it was also detected in the 

cytoplasm (Qian, Okuhara et al. 1999). 

In 2010 the crystal structure of CLIC3 was resolved at a 2 Å resolution by Littler 

and colleagues (Figure 1.9) (Littler, Brown et al. 2010). The crystal structure of 

CLIC3 revealed that it can be present in the oxidised and reduced state. CLIC3 

was identified as being monomeric in solution. In addition, it possesses a GST-

http://www.rcsb.org/pdb
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like form, with a more open and polar active site compared to the other CLIC 

proteins. This might open the possibility to form distinct interactions with other 

proteins during specific cellular processes. The foot loop region is more flexible 

in the other CLIC family members compared to CLIC3. This might suggest that 

CLIC3 is functionally divergent. The GST-fold in the CLICs consists of two 

domains: the C-terminal all helical domain and an N-terminal thioredoxin-like 

domain. The N-terminal thioredoxin domain is thought to be the active site and 

comprises two active cysteines. These are able to form an internal disulphide 

bond within a thioredoxin-like CxxC motif (Figure 1.10) (Littler, Brown et al. 

2010). This cysteine motif is homologous to that of the GST-fold and serves to 

fine-tune the reactivity and enzymatic action towards the substrate. Moreover, 

the soluble GST-like state of the CLICs has been well characterised, but the 

structural transition into a membrane spanning ion channel remains unknown. 

Therefore, in CLIC3 a disulphide bond might form between the CxxC motif 

(Cysteine 22 and Cysteine 25) (Figure 1.10). With the formation of a disulphide 

bond it could reduce other proteins which have a formed disulphide bond, thus 

acting as an enzyme. This hypothesis relies on the observations which were 

made with CLIC1, CLIC2 and CLIC4 as they can act as an enzyme (Al Khamici, 

Brown et al. 2015). Furthermore, whether CLIC3 is a secreted protein or only 

acts within the cells has not been evaluated. 
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Figure 1.9: X-ray structure of CLIC3.  
CLIC3 (PDB structure 3FY7) was crystallised by Littler and colleagues and the structure was 
downloaded from the RCSB Protein Data Bank (http://www.rcsb.org/pdb/home). The structures 
were then visualised by PYMOL (https://www.pymol.org/). The arrows indicate the β-sheets and the 
curls represent the α-helices. 

 

Figure 1.10: Conserved cysteines in CLIC3 crystallised in the reduced state. 
Electron cloud of the potential active site of CLIC3 protein. A potentially disulphide bond can form 
between the two cysteines. Adapted from Littler and colleagues (Littler, Brown et al. 2010). 

 

http://www.rcsb.org/pdb/home/home.do
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1.5 CLICs as membrane inserted proteins 

The sequence similarity between the CLICs and other well-characterised ion 

channels is negligible. In addition, CLICs do not possess a region that could 

conform to a transmembrane domain.  

Nevertheless, there is evidence that the CLICs can insert into membranes. The 

crystal structure of CLIC1 was solved in reducing and oxidising environments by 

Littler and colleagues (Littler, Harrop et al. 2004). This indicated that under 

reducing conditions CLIC1 exists as a soluble, GST–like protein with a 

glutaredoxin-like active site. However, when CLIC1 is present in an oxidative 

environment it is present in a non-covalent dimeric state. This is due to the 

formation of an intramolecular disulphide bond between cysteine 24 and 

cysteine 59. The assumption of the dimeric state entails dramatic structural 

changes, where most of the N-terminal domain appears in a different secondary 

and tertiary structure. It was shown that CLIC1 undergoes a conformational 

change to insert into artificial bilayers. To further evaluate the membrane 

insertion of CLIC1, Förster resonance energy transfer (FRET) spectroscopy was 

used to measure the distances between the tryptophan on position 35 located in 

the N-terminal domain (suggested to be transmembrane domain) and the three 

conserved cysteines (Cysteine 89, Cysteine 178 and cysteine 223) on the C-

terminus in the presence of membranes or in aqueous solution. This indicated 

that in the presence of a lipid bilayer conformational unfolding occurs between 

the N- and C-terminus, which was not observed in aqueous solution (Goodchild, 

Howell et al. 2010). Consistent with this, EXC-4 - the CLIC protein found in C. 

elegans - can localise to luminal intracellular apical membranes and a 66 amino 

acid residue of the N-terminal domain is required for this. This N-terminal 

helical portion of the protein has, therefore, been termed a putative 

transmembrane helix (Berry, Bulow et al. 2003; Berry and Hobert 2006). Studies 

on CLIC1 suggested that CLIC proteins might only insert into lipid bilayers in 

oxidising conditions. However, Singh and colleagues have found that CLIC4 

inserts into membranes under both oxidising and reducing conditions (Singh and 

Ashley 2007). Additionally, CLIC2 inserts into membranes at lower pH and in a 

way that is insensitive to redox state (Cromer, Gorman et al. 2007). Therefore, 

further studies need to be conducted to identify under which conditions specific 
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CLIC family members insert into the lipid bilayers and whether the insertion into 

the membrane has any physiological role in vivo. 

1.5.1 Ion conductance 

Prior to the publication of crystallographic studies, which have now indicated 

that the CLICs are (at physiological pH and cytosolic redox conditions) soluble 

globular proteins lacking transmembrane domains, it was thought that the CLICs 

were ion channels – and this accounts for their, perhaps, rather anachronistic 

name. It is interesting to consider the history of the discovery of the CLICs as 

this sheds light on why they have been considered to be chloride conductors. In 

the 1980s Al-Awaqati and colleagues screened compounds derived from three 

classes: indanyloxyacetic acid (IAA), anthranilic acid (AA), and ethacrynic acid in 

order to look for pharmacological tools to manipulate chloride channels in the 

bovine kidney. This led to the discovery of IAA-94 as a potent inhibitor of 

chloride conductance. Subsequently, these workers used an expression cloning 

approach to identify the molecular targets of IAA-94, which led to the cloning of 

a gene for a protein that they termed p64 and which is now known as CLIC5B. 

Thus, because p64/CLIC5B was identified as a target of IAA-94, there was 

considerable pressure to show that it was a chloride channel, despite the fact 

that its primary sequence argued against it being a membrane protein (Redhead, 

Edelman et al. 1992; Landry, Sullivan et al. 1993). Indeed, patch clamp and 

whole cell current experiments were executed on mammalian cells endogenously 

expressing bona fide chloride channels and on those overexpressing CLIC 

paralogues. However, 25 years later the chloride conducting properties of CLIC 

proteins have not been proven convincingly.  

Following the discovery of p64/CLIC5B, the human sequences for CLIC1 

(Valenzuela, Martin et al. 1997) and CLIC4 (Howell, Duncan et al. 1996; Duncan, 

Westwood et al. 1997) were cloned. This revealed that neither of these proteins 

contains an N-terminal extension that might mediate insertion into membranes. 

In addition, structural analysis showed that they exist in a globular form and not 

as a transmembrane protein. Nevertheless, the potential channel activity of 

CLICs 1 & 4 was further investigated because it is similar to p64 (Landry, Sullivan 

et al. 1993). Initially, localisation studies indicated that CLIC1 was present in the 
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nucleus and the cytoplasm and it was therefore termed, NCC27 (nuclear chloride 

channel - 27) (Valenzuela, Martin et al. 1997). Tonini et al. showed with 

electrophysiological experiments that CHO-1 cells transfected with CLIC1 

showed higher Cl- channel activity. In addition, they tagged CLIC1 at the N- or C-

terminal with a FLAG-tag and identified that CLIC1 was inserted into the plasma 

membrane, with the C-terminal end extending into the cytoplasm. This was 

identified with a FLAG antibody (Tonini, Ferroni et al. 2000). Furthermore, CLIC1 

and CLIC4 channel activity have been measured using isolated membranes. 

Berryman and colleagues used purified CLIC1 and CLIC4 proteins and added 

these to artificial liposomes. This resulted in a dose-dependent chloride efflux 

from the liposomes that were sensitive to IAA-94. Additionally, they showed that 

CLIC5A was stably expressed in placental chriocarcionma cells and localised with 

ezrin in apical microvilli. The efflux of iodide was not influenced by CLIC5A 

expression. It was therefore reasoned, that the channel activity might be 

restricted to intracellular membrane compartments (Berryman, Bruno et al. 

2004). A study shows that macrophages from CLIC1 knockout mice display 

defective phagosome acidification and this is the only physiologically relevant 

experimental setting where CLIC proteins function as ion channels so far (Tulk, 

Kapadia et al. 2002). 

There is evidence that CLIC proteins might not so much act as selective chloride 

ion channels, but rather as non-selective ion channels. Indeed, CLIC2 can 

suppress the cardiac ryanodine receptor calcium release (Board, Coggan et al. 

2004; Jalilian, Gallant et al. 2008), and this was consistent with a role for this 

CLIC in reducing the electrochemical gradient across the ER membrane. 

Additionally, Singh et al. described CLIC4 insertion into membranes and showed 

that this increases the conductance of the bilayer, but not in a way that is 

specific for chloride ions (Singh and Ashley 2007), CLIC1 and CLIC5 have been 

shown to transport anions other than chloride (Valenzuela, Martin et al. 1997; 

Singh and Ashley 2007; Ponsioen, van Zeijl et al. 2009). Although these studies 

generally support the CLIC’s ability to insert into or associate with cellular 

membranes, the capacity for the CLICs to act as ion channels (whether more or 

less specific for chloride) is still under debate. 
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1.5.2 CLICs as glutathione transferases 

The first GSTs were enzymes identified because they were associated with 

xenobiotic metabolism. However, since the whole genomes have been encoded, 

more and more proteins belong to the GST fold superfamily. This includes the 

identification of several other GSTs. The CLIC proteins belong to the GST 

superfamily despite their weak sequence homology (15%) with the newly 

discovered GST omega (GSTO) proteins (Dulhunty, Gage et al. 2001). An 

important characteristic of GSTs is that they are able to catalyse the conjugation 

of a tripeptide (glutamine, cysteine, glycine) glutathione (GSH) to electrophilic 

regions of other molecules (Wilce and Parker 1994). The reaction occurs through 

activation of the thiol group of GSH, which allows non-covalent, but high-affinity 

binding to the substrate. A GST-fold is made of two different domains. One of 

the two domains is made up of the α-helical C-terminal domain. The second 

domain has been described as the N-terminal thioredoxin fold. Most of the 

thioredoxin proteins have an active site in which a redox-active cysteine is 

located. This specific site is not present in all GST proteins (Wilce and Parker 

1994). 

The CLICs comprise a ~240 residue that adopts a GST superfamily fold (Dulhunty, 

Gage et al. 2001; Harrop, DeMaere et al. 2001). A single conserved cysteine is 

part of all CLIC proteins. Structural analyses reveal that the cysteine sits within 

a putative enzymatic active site. Furthermore, this putative ‘active site 

cysteine’ seems to become activated by the protein itself and thereafter is 

capable of forming disulphide bridges with GSH (Ponsioen, van Zeijl et al. 2009; 

Littler, Harrop et al. 2010). Moreover, in CLICs 2 & 3 the ‘active site cysteine’ is 

adjacent to another cysteine, thus forming a possible di-cysteine motif (Cys-X-X-

Cys).  

Experiments in which 2-hydroxyethyl disulphide was used as a substrate have 

recently indicated that CLIC1, 2 and 4 have a “glutaredoxin-like glutathione-

dependent oxidoreductase enzymatic activity” (Al Khamici, Brown et al. 2015) , 

which was ablated by mutation of the putative ‘active site cysteine’. Moreover, 

the indanyloxyacetic acid (IAA) and ethacrynic acid compounds (IAA-94, A9C) 

that had been previously identified as CLIC-binding molecules in the 1990s and 
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(perhaps erroneously) termed ‘chloride channel blockers’, inhibit the 

glutathione-dependent oxidoreductase activity of CLIC1. Conversely, 4,4'-

Diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS), which is well-established to be 

a bona fide chloride channel antagonist had no effect on CLIC1’s oxidoreductase 

activity. Taken together with structural observations that the GST-like active 

site fold is not present in the membrane-inserted form of the CLIC1, these 

studies suggest that the CLICs are metamorphic proteins that can assume at 

least two distinct structures. One is a globular soluble enzyme possessing 

glutarredoxin-like activity that is inhibited by IAA compounds, and which is 

neither a channel nor a membrane-associated protein. The other one is a 

membrane inserted/associated conformer, which lacks a GST fold, does not bind 

to IAA compounds, and that may have some influence on the ion permeability of 

biological membranes in a way that is unrelated to the enzymatic activity of the 

soluble CLIC conformers. To conclude, I think that the evidence that CLICs are 

chloride conductance channels is not persuasive, and that the primary role of 

the CLICs is to function as oxidoreductases. Moreover, the conclusions that 

compounds such as IAA-94 act as chloride channel blockers is likely based on 

circular argument that relied on the likely false assumption that the CLICs were 

chloride channels. However, the metamorphic nature of the CLICs cannot be 

ignored, and the ability of these proteins to switch between soluble-globular 

enzymes and membrane inserted proteins likely contributes to their biological 

roles. For instance, many CLICs localise to cellular membranes – CLIC3 is present 

at late endosomes and lysosomes and CLIC4 localises to the plasma membrane – 

and the ability of these proteins to insert into membranes may contribute to 

this. Thus the membrane inserted forms of the CLICs may form a reservoir of 

catalytically inactive CLIC within a particular cellular locale. Then, upon 

dissociation from these membranes, the CLIC may assume its globular conformer 

and act as oxidoreductase. Finally, the ability of the CLICs to insert into 

membranes is likely to form part of the mechanism allowing them to cross the 

plasma membrane to exit the cell via an unconventional secretion mechanism, 

and the role of secreted CLICs, in particular CLIC3, is the primary focus of this 

thesis (Al Khamici, Brown et al. 2015). CLICs and their various biological 

functions are summarised in Table 1.2. 
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Protein AA length Function References 

CLIC1 241 Involved in cell cycle regulation (Valenzuela, Mazzanti et al. 2000) 

Modulation of amyloid-β phagocytosis (Paradisi, Matteucci et al. 2008) 

Regulation of osteoblast differentiation (Yang, Jung et al. 2009) 

Apoptosis (Kang and Kang 2008) 

Involved in cancer (Wang, He et al. 2012) 

Functioning as an enzyme (Al Khamici, Brown et al. 2015) 

CLIC2 247 Interacts with the RyR1 receptor and 
modulates its activity 
 

(Meng, Wang et al. 2009) 

it modulates RyR2 channel activity (Board, Coggan et al. 2004; 
Dulhunty, Pouliquin et al. 2005) 

CLIC3 236 Associates with the COOH-domain of 
ERK7 

(Qian, Okuhara et al. 1999) 
 
 

Expressed in tumour cells of ER-
negative breast cancers and the cancer 
aggressiveness is likely attributable to 
its ability recycle MT1-MMP back to the 
plasma membrane 

(Macpherson, Rainero et al. 2014) 

Expressed in pancreatic 
adenocarcinomas leading to poorer 
survival due to control of the recycling 
of lysosomally-targeted α5β1 integrin 
back to the plasma membrane 

(Dozynkiewicz, Jamieson et al. 
2012) 

Expressed in the placenta (Money, King et al. 2007; Murthi, 
Stevenson et al. 2012) 

The absence of CLIC3 functioning as a 
chloride channel makes cells more 
prone to Listeria infections 

(Kim, Choi et al. 2013) 

Expressed in bladder cancer and a 
peptide (CLT1) is able to kill bladder 
cancer cells through integrin α5β1 
integrin and CLIC3 

(Knowles, Zewe et al. 2013) 

CLIC4 253 Tubulogenesis (Ulmasov, Bruno et al. 2009) 

Myofibroblast conversion  (Ronnov-Jessen, Villadsen et al. 
2002) 

Association with Schnurri-2, apoptosis 
Regulates TGF-β- dependent 
myofibroblast differentiation and 
produces cancer stroma 

(Shukla, Malik et al. 2009; Shukla, 
Edwards et al. 2014) 

Affects RhoA and Rac1 activation and 
cell motility 

(Spiekerkoetter, Guignabert et al. 
2009) 

Capillary sprouting and endothelial 
proliferation 

(Tung, Hobert et al. 2009) 

Acts as an enzyme (Al Khamici, Brown et al. 2015) 

CLIC5A 251 Ezrin-CLIC5-Podocalyxin co-expression 
increases migration and invasion in 
HCC 

(Flores-Tellez, Lopez et al. 2015) 

Associates with the actin cytoskeleton (Berryman, Bruno et al. 2004) 

CLIC5B 410 Interacts with AKAP350 (Shanks, Larocca et al. 2002) 

Regulates myoblast proliferation and 
differentiation 

(Li, Yin et al. 2010) 

CLIC6 704 Interacts with a dopamine D2-like 
receptors 

(Griffon, Jeanneteau et al. 2003) 

Table 1.2: The functional diversity of the CLIC proteins. 
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1.5.3 CLICs and their role in cancer 

The CLICs 1, 3, 4 have been shown, in one way or another, to contribute to the 

initiation and/or progression of cancer. In the following section I will focus on 

the roles played by individual CLICs in a cancer: 

CLIC1. CLIC1 is expressed in several cancers including ovarian carcinoma (Tang, 

Beer et al. 2012), hepatocellular carcinoma, high grade gliomas (Wang, He et al. 

2012), human breast ductal carcinoma (Wulfkuhle, Sgroi et al. 2002), gastric 

cancers (Chen, Wang et al. 2007), gallbladder metastasis (Wang, Peng et al. 

2009) and nasopharyngeal carcinoma (Chang, Wu et al. 2009). In 2004, CLIC1 was 

found to be expressed in liver cancer and it was thought to alter cell division 

and/or apoptotic signalling, resulting in cellular transformation. CLIC1 was found 

to be upregulated in mouse hepatocellular carcinoma and this was further 

associated with cell migration and invasion (Song, Tang et al. 2010; Li, Zhang et 

al. 2012). The presence of CLIC1 in cancer cells has been associated with 

increased ROS production by NADPH oxidase, and this can lead to CLIC1 

translocation as well as alterations to chloride fluxes (Milton, Abeti et al. 2008). 

ROS levels are fundamental for cell cycle progression. Therefore, at high ROS 

levels CLIC1 has the potential to insert into the membrane, or conversely CLIC1 

insertion into the membrane is associated with increased ion flux which keeps 

ROS levels high. This could promote cell cycle progression (Peretti, Angelini et 

al. 2014).  

CLIC1 has been suggested to be important in the development of glioblastoma. 

CLIC1 is highly expressed at the mRNA and protein level in glioblastoma, and is 

higher expressed in high grade tumours than low grade tumours (Wang, He et al. 

2012; Setti, Savalli et al. 2013). In addition, silencing of CLIC1 in cancer stem 

cells injected into immunodeficient mice reduced their self-renewal capacity as 

well as their proliferation and migration. (Peretti, Angelini et al. 2014). 

CLIC3. Our group has discovered and described an intracellular role of CLIC3 in 

cancer cells. We have shown that CLIC3 is highly expressed in tumour cells of ER-

negative breast cancers and in pancreatic adenocarcinomas, and that high CLIC3 

levels are associated with reduced survival in these cancer types (Dozynkiewicz, 
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Jamieson et al. 2012; Macpherson, Rainero et al. 2014). These studies found that 

CLIC3’s association with tumour aggressiveness is likely attributable to its ability 

to control the recycling of lysosomally-targeted α5β1 integrin and MT1-MMP back 

to the plasma membrane. Since then some other studies have been published 

associating CLIC3 with renal carcinoma and bladder cancer. In bladder cancer an 

antiangiogenic peptide CLT1 forms complexes with fibronectin killing 

proliferating cells through the α5β1 and CLIC3 pathway (Knowles, Zewe et al. 

2013). The other study indicated that the plasma membrane sialidase NEU3 

regulates the malignancy of renal carcinoma cells by controlling β1 integrin 

internalisation and recycling. Silencing of NEU3 upregulates the Ras-related 

protein RAB25. RAB25 directs internalised integrins to lysosomes. NEU3 silencing 

also downregulates CLIC3 which induces the recycling of internalised integrins to 

the plasma membrane. Therefore, silencing of NEU3 increased the β1 integrin 

endocytosis, but blocked recycling and thus reduced β1 levels at the plasma 

membrane (Tringali, Lupo et al. 2012). 

CLIC4. CLIC4 is likely to be relevant in cancer and has been shown to be present 

in the tumour profiling of glioma (Zhong, Kong et al. 2012), melanoma (Alonso, 

Tracey et al. 2007), uterine leiomyoma (Bae, Kim et al. 2004) and bladder 

cancer (Dyrskjot, Kruhoffer et al. 2004). CLIC4 expression varied considerably in 

these tumours. Moreover, CLIC4 expression has been associated with a poor 

prognosis in colon cancer, and it is expressed in colon cancer stem cells (Deng, 

Tang et al. 2014). Furthermore, CLIC4 has been identified as a circulating 

biomarker in patients with ovarian carcinoma (Tang, Beer et al. 2013), and has 

been shown to be released in exosomes from ovarian cancer cells (Liang, Peng et 

al. 2013; Sinha, Ignatchenko et al. 2014). Moreover, the level of circulating 

exosomes in ovarian carcinoma is correlated with disease progression (Szajnik, 

Derbis et al. 2013). Therefore, CLIC4 might be an ideal biomarker to measure 

tumour progression.  

CLIC4 has two opposing functions in cancer. When expressed at high levels in the 

tumour cells it functions as a tumour suppressor, but when it is expressed in the 

myofibroblast stroma, it is associated with tumour progression. 
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CLIC4 downregulation in osteosarcoma cells in vitro and in vivo increased 

apoptosis and decreased cell proliferation, and this was enhanced following 

TNFα administration (Suh, Crutchley et al. 2007). However, in this study the 

antisense mRNA that was used to suppress CLIC4 levels also targeted CLIC1 and 

CLIC5, and thus the reduction of tumour cell proliferation may be attributed to 

multiple CLIC protein loss. In addition, other experiments showed that CLIC4 was 

lost in many tumours, but that its high expression in the tumour stroma led to 

malignant progression. CLIC4 is lost early in the evolution of tumours (Suh, Malik 

et al. 2012) and the re-expression of exogenous CLIC4 in the tumour inhibited 

growth. CLIC4 might act as a tumour suppressor, because its presence makes 

cells responsive to TGF-β-mediated growth inhibition, which in turn functions 

through keeping SMAD in a dephosphorylated state (Shukla, Malik et al. 2009). 

From these studies it becomes clear that CLIC4 loss leads to tumour progression. 

Recently, a few studies have shown that following TGF-β treatment, CLIC4 is one 

of the most upregulated proteins in myofibroblast stroma of breast cancer 

patients (Ronnov-Jessen, Villadsen et al. 2002). Finally, CLIC4 has a role in 

angiogenesis and this may be important to the stromal contribution to tumour 

growth (Ulmasov, Bruno et al. 2009).  
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1.6 Project aims 

The goal of my project was to determine the characteristics of stromally-derived 

extracellular CLIC3 and the effect that this has on cancer cells. It has been 

shown that CLIC3 is expressed in fibroblastic cell types, but the impact of 

stromal CLIC3 on tumour aggressiveness has not yet been investigated. 

1. I will characterise the effect of extracellular/secreted CLIC3 on cell 

migration and invasion. 

2. I intend to investigate CLIC3’s function as an enzyme and its role in 

collaborating with TG2 to promote ECM re-modelling, cell migration and 

invasion. 
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2 Material and Methods 

2.1 Materials 

2.1.1 Reagents and solutions 

Solution Details Company Catalogue 
Number 

2 % gelatine diluted in PBS Sigma  

Albumin Standard  Pierce 23209 

Ammonium hydroxide 
solution 

 Sigma 318612-
500ml 

Ampicillin    

Amphotericin B 
solution 

final concentration: 
0.25 μg/ml 

Sigma A2942-
100ml 

Ascorbic acid  Sigma A4403-
100mg 

Bovine Serum Albumin 
(BSA) 

  40-00-410 

Comassie stain Instant Blue Expedeon I5BIL 

Cyclo(-Arg-Ala-ASP-D-
Phe-Val (cRADfV) 

final concentration 2.5 
μM 

Bachem H-4088 

Cyclo(-Arg-Gly-Asp-D-
Phe-Val) (cRGDfV) 

final concentration 2.5 
µM 

Bachem H-2574 

DNase I final concentration: 50 Roche 1128493200
1 

dNTP  Promega  

Dulbecco’s Modified 
Eagle Medium (DMEM) 

 Gibco 21969-035 

Advanced DMEM/F-12 
(Dulbecco's Modified 
Eagle Medium/Ham's F-
12 

 Gibco 12634-010 

Epidermal growth 
factor Receptor (EGF) 

50 ng/ml Sigma  

Fibronectin final concentration 25 
µg/ml 

Sigma 1141 -5MG 

Glutaraldehyde  Sigma G6257 

Foetal Bovine Serum 
(FBS) 

 Gibco  

Geltrex LDEV-Free 
Reduced Growth 
Factor Basement 
membrane Matrix 

 Life 
technologies 

A14132-02 

IPTG Isopropyl β-D-1-
thiogalactopyranoside 

  

1 x IF Wash 1 x PBS, NaN3, BSA, 
Triton-X, Tween 
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Matrigel  BD Biosciences 354230 

Methanol  VWR chemicals  

Millipore-P PVDF 
membrane 

 GE Healthcare  

L-Glutamine (200 mM)  Gibco  

Penicillin/Streptomyci
n 

10 U/mL penicillin and 
10 ug/mL 
streptomycin 

Gibco  

NDLB cell lysis buffer 150 mM NaCl, 50 mM 
Tris, 10 mM NaF, 1 mM 
Na3VO3, 5 mM EDTA, 5 
mM EGTA, 1%Triton X-
100, 0.5%Igepal 

  

NuPAGE MOPS Running 
buffer (20x) 

 Life 
Technologies 

NP0001 

NuPAGE Pre-cast gels  Life 
Technologies 

NP8323BOX 

NuPAGE LDS Sample 
Buffer (4x) 

 Life 
Technologies 

NP0007 

NuPAGE Transfer 
buffer (20x) 

 Life 
Technologies 

NP0006-1 

Parafilm wrap    

PBS containing Calcium 
and Magnesium 

  Sigma 

PBS/EDTA (PE) PBS + 1mM EDTA Beatson 
Institute 
Central Services 

 

PBS-T PBS+0.1%Triton X-100   

Precision Plus Protein 
Standard All Blue 

 Biorad 161-0373 

BL21 pLys(DE) E.coli  Life 
Technologies  

 

Roswell Park Memorial 
Institute (RPMI) 1640 
Medium 

 Gibco 31870-025 

SOC medium  Life 
Technologies 

 

SYBR green PerfeCTa®  Quanta  

One Shot® TOP10  Life 
Technologies 

 

Trypsin 0.25 % final 
concentration 

 Gibco 

Triton-X  Sigma  

VECTASHIELD Antifade 
Mounting Medium with 
DAPI – non-hard set 
 

3 drops of the 
mounting medium 
used every well/dish 

Vectorlaborator
ies 

H-1200 

Z-DON Inhibitor used at 40 µM 
and 20 nM 

Zedira Z006 
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2.1.2 Antibodies and dyes 

Antigen Details Dilution for 
WB 

Source 

TG2 rabbit 1:1,000, 5% 
milk 

Sigma, 
HPA021019 

Calcein, AM, cell-
permanent Dye 

  Life 
Technologies, 
C1430 

Phalloidin Alexa Fluor 546 1:200 Life 
Technologies, 
A22283 

Vincullin mouse   

secondary IR Dye 680 goat - anti-rabbit 1:10,000, TBS-
T 

Licor: 926-
32221 

secondary IR Dye 680 donkey – anti - 
mouse 

1:10,000, TBS-
T 

Licor 926-
68072 

secondary IR Dye 800 donkey – anti - rabbit 1:10,000, TBS-
T 

Licor: 926-
32213 

secondary IR Dye 800 donkey – anti - 
mouse 

1:10,000, TBS-
T 

Licor: 926-
32212 

Laminin 5 γ-chain mouse, Lot: D4B5 1:200 Millipore, 
MAB19562 

Integrin β4 mouse anti-human 1:200 BD555722 

FITC goat – anti – mouse 1:200 southern 
Biotec, 1031 – 
02 

Phalloidin 546  1:200 Life 
technologies, 
A22283 

 

2.1.3 Enzyme and kits 

Kit Supplier Catalogue Number 

AMAXA Nucleofection 
Kits 

Lonza VCA-1001 
VCA-1002 

Glutathione Sepharose 
beads 

GE Healthcare 17-0756-01 

Improm II Reverse 
Transcritption Kit 

Promega A3800 

PreScission Protease GE Healthcare 27-0843-01 

Pierce ® BCA Protein 
Assay Kit 

Thermo Fisher 
Scientific 

23227 

QIAquick® PCR 
purification Kit 

Qiagen 28104 

Quick Change® Site-
Directed Mutagenesis Kit 

Stratagene 200518 
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2.1.4 Tissue culture plastic ware 

Kit Supplier 

Cryotubes NUNC 

3 cm glass bottom dishes MatTek 

6-well plates Falcon 

10 cm dishes Corning 

15 cm dishes NUNC 

Transwell Permeable 
Support; pore size of 8 µm 
diameter 

Corning 

 
 

2.2 Methods 

2.2.1 RNA extraction 

Total cellular RNA from cells was isolated using the RNeasy kit, according to 

manufacturer’s instructions. The medium was removed from plates. Plates were 

transferred onto ice and washed twice with ice-cold PBS (pH 7.4). The cells were 

lysed in 1 ml of RLT buffer supplemented with β-mercaptoethanol (10 µl per 1 

ml of buffer). The samples were filtered using Qiashredder columns and RNA was 

extracted and purified. DNA was removed by an on column DNAse I digestion. 

RNA was eluted from the column in 50 µl H2O and snap-frozen on dry ice and 

stored at -80˚C.  

The RNA concentration was measured using the Nanodrop (Spectrophotometer, 

Thermo, NANODROP 2000c). 
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2.2.2 cDNA Synthesis 

cDNA was synthesised using the Promega kit according to manufacturer’s 

instructions to a final reaction volume of 20 µl.  

 

Reagent Amount 

Oligo-dT primer (500 µg/ml) 1 µl 
1 µg RNA x µl as determined from the 

RNA concentration 
H2O make up to a final of 10 µl 

Table 2.1: The olido-dT/template thermal denaturation was performed at first. 

 

The samples were heated up to 70˚C for 10 minutes in the Biorad DNA (Dyad) 

Engine Peltier Thermal Cycler and transferred to ice for one minute. The reverse 

transcription reaction was then added to the samples. 

 

Reagent Amount 

imProm-II 5 x reaction buffer 4 µl 
MgCl2 (25mM) 3 µl 
dNTP mix (10 mM) 1 µl 
RNasin (40U/ml) 0.5 µl 
IMProm-II Reverse Transcriptase 1 µl 
H2O 0.5 µl 

Table 2.2: Reverse transcription reaction setup. 

 

The samples were incubated at 25˚C for five minutes, which allowed initial 

annealing, and the elongation proceeded at 42˚C for 1 hour. When the first 

strand synthesis was completed, the reaction was terminated by incubation of 

the samples at 70˚C for ten minutes and the samples subsequently cooled to 

4˚C. 
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2.2.3 Primers for real time PCR 

These are the two primer sets for real time PCR. 

 

Description Sequence 

TG2 Fw CCGTAAGGCAGTCACGGTAT  
TG2 Rev TCAGCTACAATGGGATCTTGG 

GAPDH Fw AGGTGAAGGTCGGAGTCAAC 

GAPDH Rev AATGAAGGGGTCATTGATGG 

Table 2.3: Primers used for real time PCR. 

 

2.2.4 Real time PCR 

PerfeCTa® SYBR® Green SuperMix was used to perform quantitative PCR on a 

BioRAD C1000 Thermal Cycler CFX96 BioRAD Real time System. As a programme 

the Bio-Rad CFX manager was used. A standard curve was prepared from cDNA 

starting at a dilution of 1:2 down to 1:256. The real time PCR reactions were 

assembled as follows: 

 

Reagent Amount 

2 x PerfeCTa® SYBR® 
Green SuperMix 

5 µl 

Primer forward 0.5 µl (100 pm/µl) 
Primer reverse 0.5 µl (100 pm/µl) 
cDNA 0.5 µl 
H2O 3.5 

Table 2.4: Reagents which were mixed for PCR assembling. 
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The real time PCR reaction was performed according to the protocol shown 

below Table 2.5. 

   

Initial denaturation 95˚C 10 min 
40 cycles 
 
Denaturation 
Annealing 
Extension 

 
 
95˚C 
55˚C 
72˚C 

 
 
30s 
30s 
30s 

Plate read   
Final extension 72˚C 5 min 
Dissociation curve 70˚C to 90˚C in 0.3˚C increments 
Final hold 4˚C  

Table 2.5: The real time PCR reaction setup. 

 

The data was analysed with the Bio-Rad CFX manager with the help of the ΔΔC(t) 

method and GAPDH served as a reference gene (Livak and Schmittgen 2001).  

 

2.2.5 Cloning and DNA manipulation 

2.2.5.1 Bacterial strains 

OneShot® BL21 (DE3) pLysS E.coli competent cells were used for protein 

production and One Shot® TOP10 E.coli DH5α were used for all other cloning 

procedures. 

2.2.5.2 Bacterial transformation 

The pGEX-6-P1 fusion plasmid (GE Healthcare) was transformed into OneShot® 

BL21 (DE3) pLysS E.coli competent cells. All other plasmids, which were used for 

sequencing, were transformed by using the One Shot® TOP10 E.coli DH5α 

chemically competent cells. 1 µg of the corresponding plasmid was added to 50 

μl of (thawed on ice) competent cells, incubated for 15 min and heat shocked at 

42°C for 10 sec. Subsequently, 450 μl of SOC medium were added and the cells 

incubated at 37°C, shaking at 350 rpm. E.coli cells were then plated on LB 

containing soft agar in Petri dishes containing 100 ug/ml of ampicillin. Plates 

were further incubated overnight at 37°C. The next day single colonies were 

picked and cultured for protein production overnight in 20 ml of LB 
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supplemented with 100 ug/ml ampicillin. Plasmids for sequencing were cultured 

in 5 ml LB medium containing 100 µg/ml Ampicillin shaking overnight at 37°C. 

 

2.2.5.3 Plasmid preparation 

The overnight cultures were pelleted by centrifugation at 3,000 rpm for 10 

minutes using the Beckmann Coulter centrifuge. Central Services then used the 

QIAprep Spin Mini-Prep Kit followed by sequencing the samples. Sequences were 

analysed using the CLC Genomic Workbench. If large scale plasmid preparations 

were used, 200 ml were cultured overnight in LB media with 100 µg/ml 

ampicillin. The cells were pelleted by centrifugation as described above for a 

duration of 10 minutes. Maxipreps were performed by Central services. The DNA 

was quantified with a Biophotometer at 260 nm absorbance. 

 

2.2.5.4 Site-directed mutagenesis 

The GST-TG2 plasmid was a kind gift from Dr. Jeffery Keillor (Roy, Smith et al. 

2013). The coding region of CLIC3 with flanking restriction sites was amplified 

and subcloned into a pGEX-6P-1 vector by Marta Dozynkiewicz. The GST-

CLIC3C22A and GST-CLIC3C22A C25A were generated by mutating the cysteines of 

CLIC3 in the position 22 and 22 and 25 to alanine using site directed 

mutagenesis, according to the manufacturer’s instructions (Stratagene). The 

following primers were generated to perform these mutations. 

 

Description Sequence 

CLIC3 C22/A22 Fw GAGAGCGTGGGTCACGCCCCCTCCTGCCAGCGGCTC

TTCATG 

CLIC3 C22/A22 Rev CATGAAGAGCCGCTGGCAGGAGGGGGCGTGACCCA

CGCTCTC 

CLIC3 C22/A22 C25/A25 Fw GAGAGCGTGGGTCACGCCCCCTCCGCCCAGCGGCTC

TTCATG 

CLIC3 C22/A22 C25/A25 Rev CATGAAGAGCCGCTGGGCGGAGGGGGCGTGACCCA

CGCTCTC 

Table 2.6: Sequences for mutagenesis primers 
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In short, the plasmid (pGEX-6-P-1) was denatured and the designed primers were 

annealed. The plasmid was then further extended using the PFU Turbo DNA 

polymerase, incorporating the mutagenic primers. This resulted in nicked 

circular strands. 

 

Reagent Amount 

10× reaction buffer 5 µl 

pGEX-6P-1 – CLIC3 10 ng 

oligonucleotide primer #1 125 ng 

oligonucleotide primer #2 125 ng 

dNTP mix 1 µl of 10 mM dNTPs 

ddH2O make a final volume of 50 µl 

PFU Turbo DNA Polymerase 1 µl 

Table 2.7: PCR setup 

 

The Polymerase chain reaction was performed in the DNA Engine Thermal Cycler 

(Biorad). 

 

Initial denaturation 95˚C 60 s 

18 cycles 
 
Denaturation 
Annealing 
Extension 

 
 
95˚C 
60˚C 
68˚C 

 
 
50 s 
50 s 
7 min 

 68 7 min 

Table 2.8: Program used for PCR setup. 

 

Afterwards, the non-mutated methylated parental DNA template was digested 

with DpnI. For this, 1 µl of DpnI was added to the samples and incubated for 60 

minutes at 37°C. The new formed plasmid was subjected to transformation and 

sequencing. 
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2.2.6 Recombinant protein production 

2.2.6.1 Protein expression 

One litre of sterile LB media with 100 μg/ml ampicillin was inoculated with 10 

ml of overnight culture, grown under shaking/agitation at 37°C until an OD600 of 

0.4 - 0.6 was reached. At that point, 1 ml of sample was taken as an uninduced 

control and then protein expression induced with 0.25 mM of IPTG. After 2 

hours, 1 ml of the solution was taken as a sample for immunoblotting. The rest 

was pelleted at 4,000 rpm for 30 minutes at 4°C. The pellets were frozen at -

80˚C. After thawing on ice, the pellets were resuspended in 10 ml of PBS (pH 

7.4) and 0.1 % Triton X-100. After the cells were resuspended, 1M of 

Benzamidine and 1 mg/ml of PALA (Pepststin, Antipain, Leupeptin and Aprotinin 

protease inhibitors) were added. The cells were sonicated on ice, with three 

cycles of 30 seconds ON and 30 seconds OFF at 50 mAmp (Sonicator: Sonics, 

Vibra Cell). The sonicated cells were then spun at 11,000 rpm for 30 minutes at 

4˚C. The supernatant was transferred to a 50 ml Falcon tube and kept on ice. 

250 µl of pre-swollen 50% glutathione agarose beads were added. The tubes 

containing the samples were incubated on a roller mixer at 4˚C for two hours. 

The lysate with the glutathione beads was spun at 1,000 rpm for 10 minutes at 

4˚C and then transferred to 1.5 ml tube. The beads were washed three times in 

1 x PBS (pH 7.4) and spun for 5 minutes at 500 x g. The beads were then washed 

with cleavage buffer, which contained 50 mM Tris-HCL pH 7.0 (at 25˚C), 150 mM 

NaCl, 1 mM EDTA, 1 mM DTT and 0.01% Triton X-100. Finally, the PreScission 

Protease (20 U) was added to the PreScission Protease buffer. The samples were 

further incubated overnight at 4˚C with slow rotation. The following day the 

samples were centrifuged at 500 x g for 5 minutes, the supernatant was 

collected in a fresh 1.5 ml tube and the protein concentration was determined 

using the BCA assay. 

 

2.2.7 Mammalian cell culture techniques 

2.2.7.1 Cell origin 

Stable clones of A2780-DNA3 cells were a kind gift from Gordon Mills and were 

generated as described previously (Cheng, Lahad et al. 2004). The originators of 
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the A2780 cell line have not defined to which histological ovarian carcinoma 

subtype they belong. However, it is up to now the second most common high-

grade serous ovarian carcinoma (HGSOC) cell line used (according to PubMed). 

Whether the A2780 ovarian carcinoma cell line resembles HGSOC or another 

histological ovarian carcinoma subtype, was recently analysed by Domcke and 

colleagues (Domcke, Sinha et al. 2013). They have published a study in which 

they analysed 47 ovarian carcinoma cell lines and identified those that have the 

highest genetic similarity to ovarian carcinoma (Domcke, Sinha et al. 2013). To 

do this they made use of The Cancer Genome Atlas (TCGA) in which more than 

500 tissue samples per tumour were characterised. They also used a collection of 

genomic profiles of about 1000 cell lines which are used as model systems for 

various tumours and this collection is called The Broad-Novartis Cancer Cell Line 

Encyclopaedia. They compared these databases and identified that typical signs 

for HGSOC are a mutation in TP53 and flat copy number alterations. The A2780’s 

have been shown not to be the best cell line to study HGSOC carcinoma as they 

lack a TP53 mutation. Moreover, the A2780 cell line mutations per million bases 

was correlated with the copy number alterations of HGSOC tumour samples and 

this resembles only 20%. Therefore, this analysis stands in contrast to the 

frequently used cell lines as models for this subtype. Therefore, to study HGSOC 

specifically another cell line is certainly better such as KURAMOCHI cell line. In 

this thesis I partly follow up on the work which was previously done in the lab 

and this is the reason I have used the A2780 cell line (Dozynkiewicz, Jamieson et 

al. 2012). In the future it would be better to consult the study first and pick the 

best suited cell line. 

MCF10DCIS.com cells were a kind gift from Chavrier Philippe. Telomerase-

immortalised foetal fibroblasts (TIFFs) (Munro, Steeghs et al. 2001) were 

obtained from Deborah Gardner, immortalised cancer-associated fibroblasts 

(iCAFs) and immortalised normal fibroblasts (iNFs) (Orimo, Gupta et al. 2005; 

Polanska and Orimo 2013) from Juan Hernandez. These two cell lines were 

generated from healthy human breast tissue. Fibroblasts were isolated from the 

breast tissue and transfected with a retroviral pMIG (MSCV-IRES-GFP) vector 

which expressed hTERT and GFP. These cells were cultured and then FACS sorted 

for GFP positive cells. Afterwards these cells were transfected with a pBabe-

puro retroviral vector. Following a few days in culture the GFP positive cells 

were selected for puromycin resistance. These cells were selected and thus are 
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called immortalised mammary fibroblasts. The immortalised mammary 

fibroblasts were mixed with MCF-7-ras human breast carcinoma cells and 

injected into an immunodeficient mouse. To generate normal fibroblasts the 

immortalised mammary fibroblasts were injected into an immunodeficient 

mouse without mixing them with MCF7-ras cells. After 42 days of incubation the 

breast cancer xenograft was isolated and a single cell culture prepared. These 

cells are from hereon called immortalised cancer-associated fibroblasts (iCAFs). 

The normal fibroblasts were also isolated at the site of injection and a single cell 

culture prepared. These cells are called immortalised normal fibroblasts (iNFs). 

The cells were selected for puromycin resistant cells. Both of these cell lines 

were again injected into mice and incubated for 242 days. This was done as 

described above. The iCAFs were co-injected with MCF-7-ras cells into an 

immunodeficient mouse and this was done because they wanted to increase the 

activated myofibroblastic phenotype. The iNFs were injected alone into an 

immunodeficient mouse. The tissues were again isolated and a single cell 

suspension was prepared from both cell lines. The cells were selected again for 

puromycin resistance. Finally, these are the iCAFs and iNFs I used (Polanska, 

Acar et al. 2011). MDA-MB-231 breast cancer cells, as well as PDAC (Pdx1-Cre, 

KRasG12D/+, p53R172H/+) (Morton, Timpson et al. 2010) were obtained from Max 

Nobis. 

 

2.2.7.2 Cell maintenance 

A2780 DNA3 cells was cultured in in RPMI-1640 supplemented with 10% (v/v) FBS, 

2 mM L-glutamine, 10 U/ml penicillin, 10 µg/ml streptomycin and 0.25 µg/ml 

amphotericin B in an incubator at 37˚C and 5% CO2. The iCAFs, TIFFs, iNFs, PDAC 

cells and MDA-MB-231 breast cancer cells were cultured in DMEM supplemented 

with 10% (v/v) FBS, 2 mM L-glutamine, 100 U/ml penicillin, 100 µg/ml 

streptomycin and 0.25 µg/ml Amphotericin B in an incubator at 37˚C and 5% 

CO2. The DCIS.com cells were cultured in Advanced DMEM/F12 supplemented 

with 5% (v/v) horse serum, 2 mM L-glutamine, 100 U/ml penicillin, 100 µg/ml 

streptomycin and 0.25 µg/ml Amphotericin B in an incubator at 37˚C and 5% 

CO2. 

The cells were passaged once they reached 80 – 90% confluence. The cells were 

washed with 1 x PBS. 0.25% Trypsin/PE was added and the cells were put in the 
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incubator to detach. The cells were resuspended in fresh medium and spun at 

1,000 rpm for five minutes followed by resuspension in fresh medium and 

seeding at the desired density. 

 

2.2.7.3 Freezing of cells for long term storage 

For long term storage the cells were washed once in 1 x PBS and then trypsinized 

in Trypsin/PE at 37˚C. The cells were resuspended in fresh culture medium 

followed by a five minute spin at 1,000 rpm. The cell pellet was resuspended in 

freezing medium (10% DMSO in FBS) and aliquoted into cryo vials. The cells were 

frozen at -80˚C and then transferred to the liquid nitrogen. 

 

2.2.7.4 Nucleofection® 

Nucleofection® was used to transfect siRNAs into A2780, iCAF, iNF and TIFF 

cells. The cells were passaged the day before and were about 80% confluent at 

the day of transfection. The cells were trypsinized, re-suspended in the 

corresponding growth media and centrifuged for 5 minutes at 1,000 rpm. The 

cells were washed in PBS, followed by another centrifugation step. The resulting 

cell pellet was resuspended in 100 µl of the corresponding Nucleofactor solution 

R for iCAFs, TIFFs, and iNFs and solution T for A2780 cells. The cells in the 

Nucleofactor solution were mixed with 5 µl of 20 µM siRNA (1 µM final siRNA 

concentration) and transferred to a Nucleofection® cuvette and inserted into 

the Amaxa Nucleofector®. The transfected cells were suspended in 500 µl of 

warm media and added to tissue culture dishes. 

 

2.2.7.5 Cell proliferation assays 

For the cell proliferation assay 10,000 cells were seeded in 6-well plates. They 

were seeded in the morning and allowed to settle on the plate. In the afternoon, 

inhibitors or recombinant proteins were added to the cells. The next day, the 

cells were counted using the CASY® counter. The cells were counted every day 

either for four or six consecutive days. 
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2.2.8 Inverted invasion assay 

Geltrex™ inverted invasion assay was performed as described previously 

(Hennigan, Hawker et al. 1994). Pure growth factor reduced Geltrex™ (LDEV-

Free Reduced Growth Factor Basement Membrane Matrix, Cat. No. A1413202) 

was thawed on ice and mixed with equal volume of ice-cold PBS and 

supplemented with 25 µg/ml soluble fibronectin. The sample was additionally 

supplemented with either 2.5 µM cRADfv, 2.5 µM cRGDfv, 25 ng/ml GST, 25 

ng/ml CLIC3 C22A or 25 ng/ml CLIC3 with or without 20 nM Z-DON 

(Benzyloxycarbonyl-(6-Diazo-5-oxonorleucinyl)-L-Valinyl-L-Prolinyl-L-

Leucinmethylester). Z-DON functions as a TG2 inhibitor by functioning as an 

analogue of TG2’s substrate, glutamine (McConoughey, Basso et al. 2010). 

Transwells (Corning, pore size of 8.0 µm diameter) were inserted into wells of a 

24-well cell culture dish, followed by the addition of 100 µl of the Geltrex™-PBS 

mixture and this was left at 37˚C to solidify. A2780 cells were washed in PBS and 

trypsinized. After resuspension in media and centrifugation for 5 minutes at 

1,000 rpm, the cells were counted and 4 x 104 cells were seeded on top of the 

then inverted transwell. The cells on the bottom of the filter were covered with 

the base of the 24-well cell culture plate so that they made contact with the 

cell droplets. The cell attachment was allowed to take place at 37˚C, 5% CO2 for 

4 hours. The wells were again inverted and non-adherent cells were washed off 

by two sequential washes in 1 ml of 0.5 % FBS-RPMI medium. The transwells 

were then placed in 1 ml of 0.5 % FCS-RPMI supplemented with 2.5 µM cRADfv, 

2.5 µM cRGDfv, 25 ng/ml GST, 25 ng/ml CLIC3 C22A or 25 ng/ml CLIC3 with or 

without 20 nM Z-DON, respectively. In the upper chamber, 10 % FBS-RPMI was 

supplemented with 50 ng/ml EGF and 2.5 µM cRADfv, 2.5 µM cRGDfv, 25 ng/ml 

GST, 25 ng/ml CLIC3 C22A or 25 ng/ml CLIC3 with or without 20 nM Z-DON, 

respectively. The cells were allowed to invade towards the serum-EGF gradient 

for 72 hours at 37˚C and 5 % CO2. To visualise cells that migrated into the 

Geltrex™ matrix, 4 µM Calcein-AM (acetoxymethyl ester calcein) was used. The 

transwells were transferred to a new 24-well plate and 1 ml of the Calcein–RPMI 

mixture was added into the top chamber of the transwell ontop of the Geltrex™ 

matrix. After one hour of incubation at 37˚C, the transwells were imaged by 

confocal microscopy using the Olympus FV1000 with a 20x/0.75 NA objective at 

an excitation wavelength of 488 nm and emission wavelength at 515 nm. Starting 
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at the bottom of the transwell 10 µm slices upwards in the direction of cell 

invasion were taken. The resulting images were analysed and quantified using 

the Image J. The threshold fluorescence intensity of the images was set to 

register only cells which are present in the individual slice. The sum of the 

resulting fluorescence at 30 µm and above was divided by the total fluorescence 

of all the sections. This gave the invasion index of 30 µm and above. The data 

were generated from at least 3 independent experiments, with each individual 

experiment encompassing three transwells per condition and three different 

optical sections acquired at different 3 areas of the transwell. 

 

2.2.9 Generation of cell derived matrix 

The cell derived matrix (CDM) (Cukierman, Pankov et al. 2001; Bass, Roach et al. 

2007) was generated as described before. Tissue culture plates were coated with 

0.2 % gelatine for one hour at 37˚C. Afterwards, the tissue culture dishes were 

washed 2 times with PBS followed by crosslinking with 1 % of sterile 

glutaraldehyde for 30 minutes at 37˚C. Subsequently, the wells were washed 

twice with PBS and the cross-linker quenched with 1 M of sterile glycine in PBS 

(pH 7) for 20 minutes at room temperature. Following 2 more PBS washes, the 

tissue culture wells were equilibrated with DMEM containing 100 U/ml penicillin, 

100 µg/ml streptomycin, 2 mM L-glutamine and 10% (v/v) FBS for 30 minutes at 

37˚C. iNFs, iCAFs or TIFFs were grown up to 70 – 80 % confluence and then 

transfected with final 1 µM siRNA concentration. The cells were transfected with 

a control (siNT) or with a siRNA targeting CLIC3 or TG2. After transfection cells 

were seeded near confluence and cultured for 8 to 9 days in DMEM containing 

100 U/ml penicillin, 100 µg/ml streptomycin, 2 mM L-glutamine and 10 % FBS 

(v/v) and 50 µg/ml ascorbic acid. Every second day the medium was refreshed. 

The ascorbic acid induces collagen production and renders the cell-derived 

matrix adherent to the cell culture wells. To denude the matrix from intact 

cells, PBS containing 20 mM NH4OH and 0.5 % TritonX-100 was added to the cell 

culture wells and left for about 2 minutes. Once all the cells had died, the cell-

derived matrix was washed twice with PBS containing MgCl2 and CaCl2. During 

this step the remaining DNA was digested with 10 μg/ml DNase I in the PBS 

containing 0.1 g/L MgCl2 and 0.133 g/L CaCl2 for 30 minutes at 37˚C in 5 % CO2. 

Afterwards, the CDM was washed twice with PBS containing 0.1 g/L MgCl2 and 
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0.133 g/L CaCl2 and stored in PBS with 0.1 g/L MgCl2 and 0.133 g/L CaCl2 

supplemented with 100 U/ml penicillin and 100 µg/ml streptomycin.  

 

2.2.10 Migration assay 

A2780 ovarian carcinoma cells or MDA-MD-231 cells were plated onto CDM in a 6‐

well plate at a density of 1 x 105 cells/well. Two hours later, recombinant CLIC 

proteins were added at different concentrations ranging from 0.3 ng/ml up to 25 

ng/ml. Another three hours later the timelapse was started. The cells were 

transferred to an incubator attached to the microscope (37°C, 5 % CO2). Every 

five minutes pictures were taken of the cells over a 22 hour period at a 

10x/NA:0.25 magnification with a Nikon Z6012. The analysis of pseudopod 

lengths was carried out with Image J. The pseudopod length was measured from 

the nucleus to the front tip of the cell. 30 cells per movie were measured and 

six images were taken per each well. In total, 180 pseudopod lengths were 

measured per condition per experiment. 

 

2.2.11 Conditioned Media Experiments 

80% confluent 15 cm culture dishes of iCAFs or iNFs were nucleofected, using 

Amaxa Kit R and programme T-20 (Amaxa Nucleofector®), with 1 µM final siRNA 

concentration. One siRNA was used as a non-targeting control (siNT) and another 

to target CLIC3 (siCLIC3 oligo #3). The cells were allowed to recover for 24 hours 

and then seeded at 1.5 x 106 cells per 10 cm dish. After 72 hours at 37˚C and 5 % 

CO2 incubation, the supernatant was sequentially spun at 300 x g for 10 minutes, 

2,000 x g for 10 minutes and 10,000 x g for 30 minutes. The remaining medium 

was mixed (1:1) with fresh DMEM (10% FBS). MDA-MB-231 cells were trypsinized 

and resuspended in 10 ml DMEM and counted. 1 x 105 cells were seeded per well 

in the respective conditioned medium from iNF siNT, iCAF siNT, iCAF siCLIC3 

cells or MDA-MB-231 in DMEM containing 10 % (v/v) FBS, 100 U/ml penicillin, 100 

µg/ml streptomycin and 2 mM L-glutamine. Before, the timelapse was started 

either 1 ng/ml GST or 1 ng/ml CLIC3 was added. 
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2.2.12 Fixing and staining cells on CDM 

A2780 DNA3 cells were seeded on 3 cm glass bottom dishes (MatTek), with CDM 

laid down. The cells were allowed to settle on the dish for two hours followed by 

stimulation with CLIC3 (1 ng/ml) for 2 hours. Afterwards the cells were fixed 

with 4 % Paraformaldehyde (PFA) for 15 minutes followed by permeabilisation of 

the cells with 0.2 % Triton in PBS for 5 minutes. The cells were washed in PBS 

twice and then blocked with 1 % BSA for one 1 hour, followed by 1 x PBS wash. 

The cells were stained with fibronectin antibody (1:100 diluted in PBS) for 1 

hour. Afterwards, the cells were washed again three times with PBS and stained 

with FITC, and the excess staining was washed off two times with PBS. Finally, 

the cells were stained with Phalloidin 546 (1:200 in PBS) for 10 minutes. 

Afterwards, excess stain was washed off two times PBS and one time dH2O. In 

the end, nuclei were stained with DAPI (VECTASHIELD Antifade Mounting Medium 

with DAPI – non-hard set). The cells were imaged by confocal microscopy using 

the Olympus FV1000 with a 60x (oil) /NA: 1.4 objective. Starting at the bottom 

of the cell, a Z-stack with 0.3 µm slices upwards in the direction of the cells, 

with at least 20 slices, were acquired. The images were merged using the Image 

J software. 

 

2.2.13 Protein isolation 

Cells were cultured until they reached a confluence between 70 or 80 %. The 

medium was aspirated and the plates were transferred onto ice and washed 

twice with ice-cold PBS (pH 7.4). The cells were lysed with 1.5 x NDLB buffer 

which contained protease inhibitors: 1 mM AEBSF (4-[2-Aminoethyl] 

benzynesulphonyl fluoride), 50 µg/ml Leupeptin and 50 µg/ml Aprotinin. The 

cell lysates were scraped with a cell lifter, homogenised with a 25 gauge syringe 

and transferred to a 1.5 ml tubes. After centrifugation at 13,000 rpm for 10 

minutes (4˚C), and the cleared cell lysate was transferred to a fresh tube. The 

samples were snap frozen with dry ice and stored at -80˚C. 
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2.2.14 Determination of protein concentration 

The protein concentration was measured using the Pierce BCA Protein Assay Kit 

according to manufacturer’s instructions. The BSA standard had a working range 

of 20 – 2,000 µg/ml. The samples were pipetted in duplicate to reduce pipetting 

errors. To identify protein concentrations a working reagent was made up 

consisting of a solution A and solution B, with a ratio of 50:1. 200 µl of the 

working reagent was pipetted into each well containing either the BSA standard 

or samples (96-well plate). The mixtures in the plate were mixed and incubated 

at 37˚C for 30 minutes. The plate was cooled and the absorbance was measured 

at a wavelength of 562 nm in a plate reader (Molecular Devices). The individual 

protein concentrations were determined by correlation to the BSA-standard 

curve. 

 

2.2.15 SDS-PAGE and Coomassie staining 

Sodium-dodcyl sulphate (SDS) - poly acrylamide gels were used to resolve the 

protein samples. 40 µg of each protein sample was mixed with 1 x sample buffer 

(NuPAGE LDS Sample Buffer with freshly added 50 mM DTT). The samples were 

heated for 5 minutes up to 95˚C and afterwards briefly spun before being loaded 

onto a 4 – 12 % gradient gel (NuPAGE, Life Technologies). Gel electrophoresis 

was performed by adding 1 x MOPS running buffer (NuPAGE, Life Technologies) 

and run at 150 V for 1.5 hours. To identify the size of the protein molecular 

weight markers (Precision Plus Protein Standard All Blue, BioRad) were loaded 

next to the samples. The gel was either stained with Simply Blue Coomassie stain 

(Expedeon) or subjected to Western blotting. 

 

2.2.16 Western blotting 

The gel was transferred onto a PVDF-membrane in blotting buffer (NuPAGE 

Transfer buffer (20x)) at 100 V for one hour using a BioRAD wet transfer. 

Afterwards, PVDF membrane was blocked in 5 % milk overnight at 4˚C to block 

the excess protein sites. The membranes were then incubated overnight with 

primary antibodies at the corresponding concentrations at 4˚C. The membranes 

were washed three times for 5 minutes in TBS-T, followed incubation with the 
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corresponding LICOR fluorophore conjugated secondary antibody at a 1:10,000 

dilution for 30 minutes at room temperature. The membrane was then washed 

three times in TBS-T followed by scanning the membrane with an infrared 

imaging system (Licor CLx Odyssey). 

 

2.2.17 Secretion experiments 

The cells were plated at a density of 1.5 x 106 cells/10 cm dish and left for 48 

hours at 37˚C and 5 % CO2. The medium was then changed to 7 ml/10 cm dish of 

serum-free DMEM (100 U/ml penicillin, 100 µg/ml streptomycin and 2 mM L-

glutamine). After 24 hours the supernatant and cells were harvested. The 

supernatant was harvested and transferred into Beckmann spinning tubes. The 

samples were spun sequentially at 300 x g for 10 min, at 2,000 x g for 10 min and 

at 10,000 x g for 30 minutes. The supernatant was then transferred to a 15 ml 

falcon tube and Trifluoroacetic acid (TFA, 10%) was used to reduce the pH to 5. 

Afterwards, 70 μl of Streptavidin beads were used for each supernatant. The 

tube containing the beads was vortexed for 1 minute and then rotated in the 

cold room overnight. The beads were pelleted by centrifugation at 2,000 x g for 

1 minute. The beads were mixed in with 35 μl of 4 x loading buffer containing 50 

mM DTT. The samples were boiled before being loaded onto SDS PAGE gels. 

 

2.2.18 Preparation of collagen I from rat tail tendons 

The method has been precisely described (Timpson, McGhee et al. 2011). 

Briefly, twelve adolescent frozen rat tails were used to prepare collagen. The 

tails were thawed and washed in 70  

% ethanol. The skin on the tails was removed by slicing through from the top of 

the tail to the bottom of the tail with a scalpel and the tendons were detached 

using teethed forceps from the core of the proximal region of the tail. Once the 

tendons were removed, they were placed in a petri dish with 70% ethanol as 

they needed to be kept hydrated. Subsequently, the tendons were extracted for 

48 hours in ice-cold 0.5 M acetic acid and stirred at 4˚C. The solution was 

centrifuged at 7500 x g for 30 minutes and the pellet discarded. The cold 

supernatant was kept in a beaker on ice. Afterwards, 10 % (w/v) of NaCl was 

added to the solution in the beaker and this was stirred again for 60 minutes. 
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The solution was then further centrifuged at 10,000 x g for 30 minutes. The 

pellet was resuspended in 0.25 M acetic acid (in about 300 ml) and resolubilized 

by stirring for 24 hours at 4˚C. The collagen was finally dialysed to remove the 

NaCl and highly concentrated acetic acid. Two dialysis tubes (BioDesignDialysis 

TubingTM (14,000 MWCO, Fisher Scientific) (around 40 cm each) were put in the 

microwave in dH2O for one minute. On one side a knot was made and the 

collagen was poured in from the other side. The top was closed and air bubbles 

were avoided. The collagen was dialysed against millipore water containing 17.5 

mM acetic acid for 4 days at 4˚C with the solution being changed two times 

daily. The dialysed collagen was then centrifuged at 30,000 x g for 1.5 hours to 

remove any remaining debris. The supernatant was removed and placed in a 

fresh sterile flask. The collagen I solution was adjusted to about 0.5 mg/ml with 

acetic acid at 4˚C. The collagen concentration was measured with the BCA assay 

described previously. 

 

2.2.19 Organotypic assay 

The 3D matrix consisting of collagen I preconditioned with fibroblasts was 

prepared as described previously (Timpson, McGhee et al. 2011). Rat tail 

collagen I (approx. 0.5 mg/ml) was mixed with 10 x MEM and the pH adjusted to 

7.2 with 0.22 M NaOH. To this sample, 1-2 x 106 fibroblasts (iCAFs or iNFs) 

resuspended in 3 ml FBS were added. The preconditioned collagen I with 

fibroblasts was allowed to set and then fresh culture medium (DMEM, 10 % FBS) 

was added and the collagen was detached from the sides. The iCAFs and iNFs 

were allowed to contract. To analyse the invasion of primary invasive pancreatic 

tumour cell line that was derived from a primary tumour of a Pdx1-Cre, 

KRasG12D/+, p53R172H/+ expressing KPC mouse (Morton, Timpson et al. 2010). The 

cells were stably transduced with pMSCV-IRES-EGFP (Addgene), thus expressing 

EGFP and seeded at a density of 1 x 105 cells onto each plug. The following day 

the plugs were transferred onto a metal mesh grid and fresh medium was added 

to the bottom of the dish. The PDAC cells were allowed to invade for eight to 

nine days and the area of invading cells was identified by the amount of GFP 

signal, quantified by the area calculator plug-in using Image J. 
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2.2.20 Determination of Collagen amount 

Collagen second harmonic images were collected using a Trim-scope (LaVision 

Biotec) fitted with a Ti:Sapphire femtosecond pulsed laser (Coherent 

Chameleon). An excitation wavelength of 890 nm was used so that the second 

harmonic generation (SHG) would be generated at a wavelength of 445 nm. The 

beam was focused to the sample plane by a long working distance 20x/NA:0.95 

water immersion objective (Olympus). A 150 μm deep stack was imaged over a 

region of 500 μm by 500 μm in 5 μm increments and three regions of interest per 

sample were acquired. Image analysis was performed using Image J. The images 

were loaded into ImageJ. A threshold was manually adjusted to remove 

background. Afterwards, the plugin Area calculator was loaded. The threshold 

was put in and the algorithm determines the total area, the threshold area and 

the region of interest. The region of interest is determined by dividing the 

threshold area by the total area and multiply it by 100. This gives the final value 

of the amount of fibrillar collagen per slice.  

 

2.2.21 Three-dimensional basement membrane cultures 

The three-dimensional basement membranes cultures were performed as 

described before (Debnath, Muthuswamy et al. 2003; Macpherson, Rainero et al. 

2014). 10 μl of Growth Factor Reduced Matrigel was evenly spread on each well 

of an eight-well glass chamber. The glass bottom chambers were incubated at 

37˚C and 5 % CO2 for at least 15 minutes. In the meantime the MCF10DCIS.com 

cells were trypsinized using Trypsin/PE and resuspended in DMEM F12 complete 

medium. The cells were spun at 900 rpm for 3 minutes and then resuspended in 

3 ml of fresh medium. Afterwards a stock medium containing 2 % Matrigel, 5 

ng/ml EGF and 25 ng/ml CLIC3, CLIC3 C22A, GST or CLIC3 respectively with 20 

nM Z-DON was prepared. The cells were counted and diluted in the prepared 

stock medium to achieve a final concentration of 12,500 cells/ml. The 8-well 

chamber was removed from the incubator and 400 μl of cell suspension was 

added into each well on top of the solidified Matrigel. The final concentration of 

cells was then 5,000 cells/well. The cells were grown in the incubator for 6 

days. Brightfield images were taken from day three until day six and analysed 
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for circularity of the spheres formed by using Image J. On day three the stock 

medium was changed. Fresh stock medium containing 2 % Matrigel, 5 ng/ml EGF 

and 25 ng/ml CLIC3, CLIC3 C22A, GST-CLIC3 respectively, with 20 nM Z-DON was 

added. At day six the cells were fixed and stained using immunofluorescence. 

 

2.2.22 Immunofluorescence of mammary epithelial cells 

The cells were fixed with 2 % paraformaldehyde (PFA) for 20 minutes at room 

temperature. Afterwards the cells were washed 1 x in PBS and stored in 500 

µl/well PBS overnight. The next morning the cells were permeabilised with 0.5 % 

Triton in PBS for 10 minutes at room temperature. Afterwards the wells were 

rinsed three times in 1 x PBS-glycine for 10 minutes each. The wells were then 

incubated with 200 µl of primary block (IF wash plus 1 % BSA) for 1 hour. The 

primary block was then removed and the wells were incubated with the primary 

antibody diluted (1:100, used 100 µl/well) in IF wash and 1 % BSA overnight at 

4˚C. 

The following day the chamber slides were brought up to room temperature, as 

the Matrigel hardens again at higher temperatures. The wells were washed three 

times with IF wash each for 20 minutes with gentle rocking. Afterwards, the 

secondary antibody was added in IF Wash and 1 % BSA for one hour at room 

temperature. All the steps from the secondary antibody were performed in the 

dark. The secondary antibody was washed once in IF wash for 20 minutes. 

Afterwards, it was rinsed 2 x in PBS for ten minutes each. The F-actin 

cytoskeleton was than stained with Phalloidin toxin at 1:100 (in PBS) for 30 

minutes at room temperature. The remaining, unbound antibody was washed off 

with PBS and then 3 drops of DAPI Vectorshield, were added into each well. The 

cells were imaged by confocal microscopy using the Olympus FV1000 and the 60x 

objective (oil). Twenty images were taken per condition and per antibody 

staining. 

2.2.23 Statistics 

Graph Pad Prism 5 was used for statistical analysis. When comparing more than 

two groups the Kruskal-Wallis test with the Dunn’s post test was used. If two 

groups were used the Mann-Whitney U test was used. The statistical tests used 
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were stated in the figure legends. Experiments were performed 3 times if not 

stated otherwise. A significant difference was defined with a p-value of < 0.05.  
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3 CLIC3 is secreted by iCAFs to promote the 

invasive behaviour of tumour cells  

3.1 Introduction 

Cancer-associated-fibroblasts (CAF) are the predominant cell population of the 

tumour stroma. They consist of at least two different cell types. The first type is 

represented by normal fibroblasts, which constitute the foundation of the 

structure supporting normal epithelium. The second type of cells are the 

myofibroblasts, which account for a considerable fraction of the stroma of 

tumours (Sappino, Skalli et al. 1988) and their presence constitutes one of the 

key hallmarks of cancer (Hanahan and Weinberg 2011). These myofibroblast-like 

CAFs have the ability to render the tumour stroma more permissive to tumour 

cell invasion, metastasis, angiogenesis, recruitment of immune/infiltrating cells 

and drug resistance (Desmouliere, Guyot et al. 2004; Orimo, Gupta et al. 2005; 

Kalluri and Zeisberg 2006; Tsujino, Seshimo et al. 2007; Hanahan and Weinberg 

2011; Mao, Keller et al. 2013). Myofibroblast-like CAFs also contribute to 

aggressiveness of tumours by producing a number of categories of molecules, 

including those of the extracellular-matrix (ECM). The ECM is made of fibrillar 

collagen and fibronectin-rich fibres, which are secreted by fibroblasts. 

Additionally, it consists of proteins, water and non-cellular components making 

up a 3D matrix. The ECM is present within all tissues and organs providing a 

physical scaffold, which also initiates biochemical and biomechanical functions 

(Cukierman, Pankov et al. 2001). The increased mechanical stiffness of the ECM 

has been exploited to detect cancer (Sinkus, Lorenzen et al. 2000; Butcher, 

Alliston et al. 2009). The high stiffness of the ECM is important in cell growth, 

survival of tumour cells (Lo, Wang et al. 2000) and tumour cell invasion, and the 

latter process in turn is β1 integrin-dependent (Levental, Yu et al. 2009). 

Moreover, increased ECM stiffness contributes to angiogenic sprouting (Mason, 

Starchenko et al. 2013), and in mice the stiffness of breast tumours is thought to 

dictate their invasiveness and their degree of vascularity (Levental, Yu et al. 

2009; Baker, Bird et al. 2013). Furthermore, removal or inhibition of ECM 

components that are known to increase stiffness, such as lysyl oxidase, leads to 

reduced tumour angiogenesis (Baker, Bird et al. 2013), reduction in tumour 

growth (Levental, Yu et al. 2009) and increased drug delivery (Provenzano, 
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Cuevas et al. 2012). Thus, it is clear that inhibition of certain key proteins 

expressed in myofibroblast-like CAFs (such as lysyl oxidase) can reduce ECM 

stiffness and influence tumour growth and invasion. However, this is 

controversial as Özdemir and colleagues have shown that, in a mouse model of 

pancreatic cancer, depletion of α-SMA-positive CAFs (the cells that are 

responsible for stiffening tumours) can lead to faster disease progression 

(Ozdemir, Pentcheva-Hoang et al. 2014). So far a number of studies have looked 

at factors expressed or secreted explicitly from CAFs (Bronisz, Godlewski et al. 

2012; Torres, Bartolome et al. 2013), but the complexity of signalling that is 

orchestrated by these secreted factors, in the context of cancer progression, has 

not yet been fully elucidated.  

 

CLIC3 belongs to a subgroup of the glutathione S-transferase (GST) superfamily, 

which is comprised of six members (CLIC1 – CLIC6). The CLIC proteins have been 

associated with several biological processes such as angiogenesis, macrophage 

activation, cancer invasiveness and response to DNA damage (Valenzuela, Martin 

et al. 1997; Berry, Bulow et al. 2003; Ulmasov, Bruno et al. 2009; Shukla, 

Edwards et al. 2014). As they can adopt more than one three-dimensional 

structure, CLICs have been named metamorphic proteins (Murzin 2008; Bryan 

and Orban 2010). The study of crystallographic structures of the CLICs has shown 

that they can adopt a structure which conforms to a soluble monomer with a 

GST-fold, and without any obvious hydrophobic stretch that could form a 

transmembrane domain (Harrop, DeMaere et al. 2001; Littler, Assaad et al. 

2005; Littler, Brown et al. 2010). Biophysical studies have shown that the N-

terminal domain of CLIC1 is conformationally plastic with its structural stability 

reducing at low pH and under oxidising conditions (Fanucchi, Adamson et al. 

2008; Stoychev, Nathaniel et al. 2009; Achilonu, Fanucchi et al. 2012; Legg-

E'Silva, Achilonu et al. 2012). The possibility that CLIC1 spontaneously integrates 

into membranes has been demonstrated in artificial lipid bilayers, but the 

physiological relevance of this CLIC property is still not established (Tulk, 

Kapadia et al. 2002; Warton, Tonini et al. 2002; Singh and Ashley 2006; Singh 

and Ashley 2007). Furthermore, the conditions under which membrane insertion 

takes place has not been resolved because CLIC4 can insert into lipid bilayers 

under oxidising and reducing conditions (Singh and Ashley 2007). For CLIC2 the 

situation is somewhat different, because redox conditions do not influence its 
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capability to insert into lipid bilayers (Cromer, Gorman et al. 2007). Thus further 

work is needed to identify the mechanism(s) through which CLICs can insert into 

lipid bilayer and to determine the physiological relevance of this phenomenon. 

The cellular function of the CLICs has been evaluated to some extent. CLIC1 is 

crucial to macrophage function as it modulates phagosomal acidification (Jiang, 

Salao et al. 2012) and CLIC4 is known to be an important factor in TGF-β 

signalling during cancer cell growth (Shukla, Malik et al. 2009; Shukla, Edwards 

et al. 2014). In the Norman group, we have shown that CLIC3 is highly expressed 

in tumour cells of ER-negative breast cancers and in pancreatic and ovarian 

adenocarcinomas, and high CLIC3 levels are associated with reduced survival in 

these cancer types (Dozynkiewicz, Jamieson et al. 2012; Macpherson, Rainero et 

al. 2014). These studies found that CLIC3’s association with tumour 

aggressiveness is likely attributable to its ability to control recycling of 

lysosomally-targeted α5β1 integrin and MT1-MMP back to the plasma membrane. 

However, CLIC3 is also expressed in fibroblastic cell types, and the impact of 

stromal CLIC3 on tumour aggressiveness has not been investigated. Furthermore, 

it is interesting to note that CLICs are found extracellularly in the blood plasma 

of patients (Chang, Wu et al. 2009), but any potential role of this extracellular 

pool of CLIC3 has not yet been described. 

In this chapter I will describe data indicating that expression of CLIC3 is strongly 

upregulated in fibroblasts that undergo myofibroblastic conversion to CAFs, and 

that expression of CLIC3 in CAFs is necessary for these stromal cells to support 

the invasiveness of tumour cells. Furthermore, I will describe how CLIC3 is 

secreted from CAFs and that it is this secreted pool of CLIC3, which is 

responsible for many of the pro-invasive properties of the CAF secretome. 

 

3.2 Results 

3.3 iCAFs enhance invasiveness of tumour cells 

iCAFs influence collagen remodelling in organotypic 
matrices and increase tumour cell migration and invasion 

To investigate the role of stromal fibroblasts in tumour progression, Orimo et al. 

(2005) developed two immortalised cell lines; one derived from breast cancer-

associated fibroblasts and one from normal mammary fibroblasts. These lines 
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were generated by injecting immortalised human breast fibroblasts into mice in 

the presence or absence of Ras-transformed MCF-7 cells. These fibroblasts were 

then recovered from the mice. Those that had been injected in the absence of 

tumour cells were termed immortalised normal fibroblasts (iNFs) and those that 

had been co-injected with MCF-7-Ras cells were termed immortalised cancer-

associated fibroblasts (iCAFs) (as described in the Materials and Methods 

section). (Orimo, Gupta et al. 2005; Polanska, Acar et al. 2011). These workers 

then went on to show that these iCAFs were more potent that iNFs in promoting 

tumorigenesis in xenograft models of breast cancer. 

To determine whether iCAFs are capable of altering the ECM microenvironment 

in a way that might promote cell migration and invasion, I used an organotypic 

system (Timpson, McGhee et al. 2011), in which matrices of collagen I were 

preconditioned with either iNF or iCAFs. To do this, collagen I was allowed to 

polymerise in the presence of either iNFs or iCAFs. Following a period of four to 

eleven days, during which the preconditioned collagen contracted, I used 

second-harmonic generation microscopy (SHG) to determine the amount of 

fibrillar collagen in these matrices. The collagen is illuminated using a near 

infrared (>800 nm) femtosecond pulsed laser with a very high intensity. Due to 

the noncentrosymmetric structure of fibrillar collagen in the matrix, the light 

emitted is exactly half the wavelength and double the frequency (400 nm, blue 

light) of the excitation source. I first recorded the fibrillar collagen content of 

matrices that were preconditioned with either iNF or iCAF (Figure 3.1 A). iCAF-

preconditioned plugs remodelled the ECM in a way that yielded a higher 

proportion of fibrillar collagen than those preconditioned with iNFs (Figure 3.1 

B). One possible consequence of increased fibrillar collagen is that it may 

enhance the invasive capacity of cells that migrate through it. Indeed, the 

aggressiveness of cancer is closely linked to the fibrillar collagen content of the 

tumour stroma (Provenzano, Eliceiri et al. 2006). To investigate this, I looked at 

the ability of a primary pancreatic tumour cell line Pdx1-Cre, KRasG12D/+, 

p53R172H/+ (PDAC) that was derived from a primary mouse pancreatic 

adenocarcinoma (Morton, Timpson et al. 2010) to invade plugs of collagen I that 

were preconditioned with either iCAF, or iNFs (Figure 3.2 A). The PDAC cells 

invaded into iCAF-preconditioned collagen plugs with many tumour cells 

penetrating the plug to a depth of 75 μm or more (Figure 3.2 B). The proportion 

of PDAC cells that were able to invade into the iCAF-preconditioned collagen I to 
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distances of 50 µm and deeper was significantly greater than that recorded for 

PDAC cells migrating into collagen I plugs preconditioned with iNFs (Figure 3.2 

C). 

These experiments indicate that iCAFs are able to influence the amount of 

fibrillar collagen in a 3D microenvironment, and that this is associated with 

increased invasiveness of tumour cells. I now wished to determine, whether the 

ability of iCAFs to remodel the ECM was causally linked to the invasive process. 

When many tumour cell types, including MDA-MB-231 breast cancer cells and 

A2780 ovarian carcinoma cells, are plated onto preparations of cell-free ECM, or 

cell-derived matrix, the invasiveness of these cells is manifested by extension of 

protrusions called invasive pseudopods at the front of the cell (Caswell, Spence 

et al. 2007; Caswell, Chan et al. 2008; Rainero, Caswell et al. 2012). To 

determine the contribution of the matrix-depositing cells in this index of tumour 

cell invasiveness, I generated cell-derived matrices from iCAFs and iNFs and 

measured the ability of tumour cells to extend invasive protrusions into these 

ECM preparations. Time-lapse microscopy videos were analysed by measuring the 

pseudopod length from the middle of the nucleus to the front of the cell in the 

direction of movement using Image J. The green arrows indicate the direction of 

movement and the red brackets denote the length of the invasive pseudopod.  

When A2780 cells were plated onto cell-free ECM derived from iCAFs, they 

extended significantly longer invasive pseudopods than when they were plated 

onto ECM from iNFs (Figure 3.3). This indicates that the ability of iCAFs to 

support tumour cell invasion is due, at least in part, to differences in their 

ability to remodel the ECM. 
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Figure 3.1: The influence of iCAFs on the fibrillar collagen content of organotypic plugs. 
(A) Collagen I was mixed with either iNFs or iCAFs and plugs were allowed to contract until they 
reached equivalent size, and second-harmonic generation microscopy (SHG) was used to 
determine the amount of fibrillar collagen in these matrices. The dimensions of the image stacks 
acquired were 500 x 500 x 150 μm. A single slice at a depth of 22.5 μm was used as a 
representative image; scale bar: 50 µm (B) SHG was used to determine the percentage of fibrillar 
collagen throughout the whole depth of the collagen plug. Values are mean ± s.e.m., n = 3, 
****p<0.0001 Mann-Whitney. 
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Figure 3.2: Invasion of PDAC cells into organotypic matrices preconditioned with iCAFs or 
iNFs 
(A) Schematic set-up of an organotypic assay. Collagen I was preconditioned with fibroblasts. After 
contraction, cancer cells were seeded onto the top of the organotypic plug. The cancer cells were 
then allowed to invade (Timpson, McGhee et al. 2011). (B) Collagen I was mixed with iCAF or iNF 
cells and was allowed to contract. Following this, EGFP-expressing PDAC cells were seeded on 
top. The PDAC cells were then allowed to invade for 8 days. The invasion of PDAC cells into 
organotypic matrices was measured by multiphoton imaging, and these data are expressed as a 
function of distance into the organotypic plug. Values are mean ± s.e.m., n=3 independent 
experiments. ****p<0.0001 Mann-Whitney. (C) Representative images for the invasion of EGFP-
expressing PDAC cells (green, EGFP) into organotypic matrices. The purple colour scale 
represents the SHG signal of fibrillar collagen I. 
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Figure 3.3: iCAF-derived matrix increases the length of invasive pseudopods extended by 
A2780 cells 
(A) Representative images of A2780 seeded on iNF- and iCAF-derived cell-derived matrices 
(CDM). Time-lapse microscopy was used to visualise invasive protrusions at the front of the cell. 
The green arrow indicates the direction of movement and the red bracket an example of an 
invasive pseudopod. (B) A2780 cells were plated on iNF- and iCAF-derived cell-derived matrices. 
Time-lapse videos were recorded over a period of 22 hours. The pseudopod length was measured 
from the middle of the nucleus to the front of the cell in the direction of migration and analysed 
using Image J. One biological replicate is shown. Three biological replicates were performed. 
Values are mean ± s.e.m., n = 1 (counted 180 cells per experiment), ****p<0.0001 Mann-Whitney. 
The data were plotted as a Box and Whisker 5 – 95% plot. The median is presented as a black line 
and the mean as a black cross, scale bars: 100 μm.  
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CLIC3 is highly expressed in cancer-associated, but not 
normal fibroblasts  

To identify candidate proteins that might be responsible for the increased ability 

of iCAFs to deposit an ECM which is highly supportive of tumour cell invasion, we 

compared the proteome and secretome of iNFs and iCAFs. Cells were subjected 

to Stable Isotope Labelling with Amino Acids in cell culture (SILAC)-based mass-

spectrometry (MS). iNFs and iCAFs were labelled with light and heavy SILAC 

amino acids respectively (forward experiment), and with heavy and light amino 

acids respectively (reverse experiment). We then prepared cell extracts from 

which proteomes were detected using an LTQ-Orbitrap and MS data were 

analysed with the MaxQuant computational platform (Cox and Mann 2008), which 

identified proteins in the proteome with high correlation between forward and 

reverse experiments. In Fig. 3.4 A, the proteins upregulated in the iCAFs in both 

(forward and reverse) experiments are presented in the top right hand corner 

and are within the region shaded in blue. The proteins downregulated in the 

iCAFs in both (forward and reverse) experiments are presented in the bottom 

left corner and indicated by the region shaded in red (Figure 3.4 A). As 

expected, there were a number of differences between the proteomes of iNF 

and iCAF. The myofibroblast-like iCAFs showed a myoCAF signature in which 

proteins such as α-SMA and TGF-β were upregulated and mesenchymal markers 

were downregulated. In addition, many ECM components such as collagens, 

fibronectin, laminins, lysl oxidase and transglutaminase 2 (TG2), most of which 

would be expected to influence tumour cell invasion, were upregulated (data 

not shown). Interestingly, CLIC3 was identified as a protein that was expressed 

at significantly higher levels in iCAFs than in iNFs (Figure 3.4 A). This result was 

confirmed by Western blotting (Figure 3.4 B). CLIC2 was not detected in the 

proteome, and the other CLIC family members (CLIC1, CLIC4, CLIC5 and CLIC6) 

were present in similar quantities in both iCAFs and iNFs (Figure 3.4 C). 
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Figure 3.4: CLIC3 is highly expressed in iCAFs by comparison to iNFs. 
(A) The plot shows the log2 of the iCAF proteome over the iNF proteome. They are two 
experiments, with one being termed as forward and the other as reverse. The iCAFs were labelled 
first with heavy isotope amino acids and the iNFs were labelled with light isotope amino acids. The 
heavy and light labelling was reversed in the “reverse experiment”. The results were analysed 
using the MaxQuant computational platform (Cox and Mann 2008). The resulting graph shows the 
proteins which were upregulated in the iCAF proteome in the top right square (blue region). The 
proteins in the left bottom quadrant were downregulated in the iCAFs (red region). (B) The 
expression of the CLIC proteins was calculated by inversing the logarithm of 2 and correcting for 
loading errors. (C) Western blot analysis shows that iCAFs express CLIC3 at higher levels than 
iNFs. The data of the proteomic screen were produced by Juan Hernandez. The Western blot was 
performed by myself. 
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3.4 Expression of CLIC3 in iCAFs is required for the 

generation of a highly fibrillar ECM that supports 

tumour cell invasion 

As described above, CLIC3 is highly expressed in iCAFs and this might be linked 

to the ability of these cells to remodel the ECM in way that generates a pro-

invasive stroma. Therefore, I used siRNA to investigate whether CLIC3 expression 

is required for iCAFs to generate a pro-invasive microenvironment that is rich in 

fibrillar collagen. CLIC3 knockdown (siCLIC3) significantly reduced the ability of 

iCAFs to increase the fibrillar collagen content of organotypic plugs (Figure 3.5). 

Consistent with this, PDAC cells were less able to invade into plugs 

preconditioned with CLIC3‐knockdown iCAFs by comparison with plugs 

preconditioned with control knockdown (siNT) iCAFs (Figure 3.6 A-C). Taken 

together, these data indicate that CLIC3 expression in iCAFs is required for these 

cells to increase the fibrillar collagen content of organotypic matrices and to 

support the invasion of tumour cells into this stromal-like microenvironment. 
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Figure 3.5: CLIC3 knockdown reduces collagen remodelling by iCAFs. 
Collagen was mixed with iCAFs transfected with a non-targeting (siNT) siRNA or one that targets 
CLIC3 (siCLIC3), and second-harmonic generation microscopy (SHG) was used to determine the 
amount of fibrillar collagen in these matrices. The dimensions of the image stacks acquired were 
500 x 500 x 150 μm. (A) A single slice at a depth of 22.5 μm was taken as a representative image, 
scale bars: 50 µm. (B) The percentage of fibrillar collagen was analysed throughout the whole 
depth of the organotypic plug. Values are mean ± s.e.m., n = 3, ****p<0.0001 Mann-Whitney. (C) 
Western blot of cellular extracts from iCAFs transfected with control (siNT) or CLIC3 siRNA 
(siCLIC3) were probed with CLIC3 antibody, with the expression of vinculin being used as loading 
control.  
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Figure 3.6: Invasion of PDAC cells into organotypic matrices is opposed by siRNA of CLIC3 
expression in the iCAFs used to precondition the plugs. 
Collagen was mixed with iCAFs transfected with a non-targeting (siNT) siRNA or one that targets 
CLIC3 (siCLIC3). Following plug contraction, PDAC cells were seeded onto the top of the 
organotypic plug. The cancer cells were then allowed to invade for 8 days (Timpson, McGhee et al. 
2011). (A) The invasion of PDAC cells into organotypic matrices was measured by multiphoton 
imaging, and these data are expressed as a function of distance into the organotypic plug. Values 
are mean ± s.e.m., n = 3, ****p<0.0001 Mann-Whitney. (B) 3D rendering of multiphoton images of 
the invading PDAC cells (EGFP, green) into the organotypic matrix (SHG, magenta). The images 
have a dimension of 500 x 500x 150 μm. 
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CLIC3 is a component of the CAF secretome that is 
necessary and sufficient to promote cancer cell 
invasiveness 

Expression of CLIC3 in iCAFs is required for their ability to increase the fibrillar 

collagen I content of organotypic plugs, and for iCAFs to generate an ECM that is 

strongly supportive of cancer cell invasiveness. The enhanced ability of iCAFs to 

remodel the ECM may be either due to alterations in their ability to physically 

manipulate the ECM, or to differences in the profile of proteins secreted (the 

secretome) by iCAFs and iNFs. To determine whether differences in the 

secretome were responsible for iCAF’s ability to foster increased invasiveness, I 

investigated the ability of MDA-MB-231 breast cancer cells to extend invasive 

pseudopods in the presence of conditioned medium (CM) from either iCAFs or 

iNFs. This clearly indicated that MDA-MB-231 cells extend significantly longer 

invasive pseudopods when cultured in the presence of CM from iCAFs than they 

did in the presence of CM from iNFs. Moreover, the ability of iCAFs to produce 

CM that supported increased pseudopod extension was reversed by siRNA of 

CLIC3 in the iCAFs (Figure 3.7 A, B). Taken together, these data indicate that 

the ability of iCAFs to support tumour cell invasiveness can be attributed to the 

composition of their secretome, and that CLIC3 expression is required to 

increase the pro-invasive characteristics of the iCAF secretome. 

 

I then hypothesised that CLIC3 itself might be a component of the secretome 

from iCAFs. I first looked at the coding region of CLIC3. The coding region of 

CLIC3 does, however, not contain any sequences that conform to a canonical 

signal peptide that would aid its translocation into the lumen of the endoplasmic 

reticulum. Thus, one would not necessarily propose that CLIC3 would be a 

secreted protein. However, our mass spectrometry analyses have consistently 

indicated that CLIC3 is a component of the iCAF secretome, and that CLIC3 is 

incorporated into ECM deposited by these cells (data not shown). Moreover, 

there is evidence that proteins of the CLIC family are found in plasma and in 

other biological fluids (Chang, Wu et al. 2009; Tang, Beer et al. 2013), indicating 

the possibility that these proteins may be able to leave the cell to perform 

extracellular functions. Proteins may be released from cells by mechanisms 

other than those that involve canonical signalling peptides (Nickel and Seedorf 

2008). To investigate this possibility, I used a secretome prediction programme 
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developed by workers at the University of Denmark (http://www.cbs.dtu.dk 

/services/SecretomeP), (Bendtsen, Jensen et al. 2004; Bendtsen, Kiemer et al. 

2005). This programme is based on a feed forward neural network. For the 

neural network to function properly it needs to be trained. This is done by using 

a positive and a negative control. The authors would have liked to use proteins 

which are secreted via the non-classical secretion pathway as a positive control. 

However, only thirteen secreted proteins via the non-classically pathway (such 

as FGF1, IL1 or CNTF all human) are available. Instead they used 3321 

extracellular mammalian proteins which were imported from Swiss-Prot as a 

positive control. The N-terminal signal peptide was removed as the network was 

trained to identify proteins secreted based on the sequence, the number of 

atoms, number of positively charged residues or transmembrane helices. 

Furthermore, as a negative control they used 3654 mammalian proteins also 

imported from Swiss-Prot which were present in the nucleus or cytoplasm. They 

removed all proteins from other locations and also the transmembrane proteins. 

Based on the protein features and sequences they could identify ten of the 

thirteen known protein which are secreted via the non-classical pathway 

reaching a secretion score above 0.6. Based on test results the programme 

generates this score (a SecP score) which indicates the likelihood of it being 

secreted by a non-canonical pathway – a SecP score in excess of 0.6 indicates a 

high likelihood of the protein being a secretome component. The protein coding 

sequence of CLIC3 generates a SecP score of 0.838, indicating a high probability 

that it may be secreted via a non-canonical mechanism. 

 

Based on these observations, I used Western blotting to determine whether 

CLIC3 is released from cells, and whether it is incorporated into the ECM. 

Indeed, Western blotting indicated that iCAFs secrete CLIC3 and that it 

physically associates with the cell-free preparations of cell-derived matrix 

(Figure 3.8 A). In addition to the presence of CLIC3 at its expected molecular 

weight, we noticed that there was a band of immunoreactive CLIC3 at a higher 

molecular weight in the preparations of the cell free fibroblast-derived matrix, 

indicating the possibility that CLIC3 is covalently associated with other ECM 

proteins. Moreover, CLIC3 is secreted from MDA-MB-231 breast cancer cells 

(Figure 3.8 B). Since CLIC3 has late endosomal localization (Dozynkiewicz, 

Jamieson et al. 2012; Macpherson, Rainero et al. 2014), I explored a well-
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characterized cellular mechanism for unconventional secretion, which involves 

late endosome/multivesicular body (MVB) exocytosis as a possible export 

mechanism (Malhotra 2013). However, CLIC3 release is not dependent on Rab 

GTPases that control such a mechanism, for instance Rab27a/Rab27b (Figure 3.8 

B), consistent with a non-exocytic route for CLIC3 release. 

These observations that CLIC3 is secreted from iCAFs prompted us to test 

whether CLIC3 might act extracellularly to influence ECM remodelling and 

tumour cell invasion. Therefore, I prepared recombinant, soluble purified CLIC3 

(rCLIC3) and a control protein (rGST) (Figure 3.9 A, B) and added these to the 

extracellular milieu to determine whether this was capable of rescuing the 

ability of CM from CLIC3 knockdown cells to drive invasive pseudopod extension 

(Figure 3.7 B). Clearly, addition of rCLIC3 to CM from CLIC3 knockdown iCAFs 

yielded a CM that supported pseudopod extension to the same extend as did CM 

from control iCAFs. Furthermore, addition of soluble rCLIC3 drove pseudopod 

extension in MDA-MB-231 cells even in the absence of CM (Figure 3.7 B). Taken 

together, these data indicate that CLIC3 is a component of the iCAF secretome 

that is necessary and sufficient to promote invasive behaviour of tumour cells. 

 

Characterisation of the pro-invasive attributes of 

extracellular CLIC3 

The measurement of pseudopod extension from cells plated onto cell-derived 

matrix is a quick and convenient way of obtaining a quantitative read-out of 

invasiveness.  

I used Western blotting to estimate the concentration of CLIC3 in the cell-

exposed medium. This indicated that iCAFs released CLIC3 at levels sufficient to 

attain a concentration which was in the low pM range (11.26 - 22.52 pM or 0.3 - 

0.6 ng/ml) (not shown). I therefore, wished to determine whether the 

concentration of rCLIC3, which is required to drive the extension of invasive 

pseudopods, was approximately within this concentration range. I plated A2780 

and MDA-MB-231 cells onto cell-derived matrices, added rCLIC3 to achieve final 

concentrations in the range of 0.3 ng/ml up to 25 ng/ml (11.26 - 938.16 pM) and 

measured the length of invasive pseudopods (Figure 3.10: Response of 

pseudopod extension to various concentrations of rCLIC3.Figure 3.10). In A2780 

cells significant elongation of invasive pseudopods was seen at an rCLIC3 
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concentration of 0.3 ng/ml and this increased in a dose-dependent fashion to 

reach a maximum at approximately 25 ng/ml. In MDA-MB-231 cells maximal 

pseudopod extension was achieved following addition of 0.3 ng/ml rCLIC3. 

rGST, which like CLIC3, possesses a glutathione-like fold, does not drive any 

significant extension of invasive pseudopods – indicating that there is a degree of 

specificity in regard of the invasive response to CLIC3. Despite this, I wished to 

perform an additional control to assess whether CLIC3 must be in its appropriate 

conformation to evoke pseudopod extension. To do this, I boiled rCLIC3 and 

tested the ability of this (presumably) denatured protein to drive pseudopod 

extension. Clearly, boiled rCLIC3 was unable to promote the extension of 

invasive pseudopods, indicating that CLIC3 must be in its proper folded 

conformation to function as a pro-invasive molecule (Figure 3.11). 

I also wanted to determine the timeframe over which rCLIC3-driven pseudopod 

extension takes place. To do this, I seeded A2780 cells onto cell-derived matrix 

and initiated time-lapse microscopy. I added rCLIC3 and measured pseudopod 

length at 5 minute intervals following this. The data indicate that maximal 

pseudopod extension was achieved within 5 minutes of rCLIC3 addition (Figure 

3.12). 
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Figure 3.7: Identification of CLIC3 as a key pro-invasive component of the iCAF secretome. 
(A) MDA-MB-231 cells were plated onto fibroblast-derived matrix in the presence of either iNF or 
iCAF cell-exposed medium (CM). Representative images of cells migrating in the presence of iNF 
CM or iCAF CM are presented. The green arrow indicates the direction of migration of the cells and 
the red bracket indicates the length of the invasive pseudopod. The pseudopod length was 
measured from the middle of the nucleus to the tip of the cells in the direction of migration. Scale 
bars, 50 µm. (B) Invasive pseudopods of MDA-MB-231 cells were measured in the presence of iNF 
CM or iCAF CM or CM from iCAFs that had been transfected with siRNA targeting CLIC3 (siCLIC3) 
or a non-targeting control (siNT). rCLIC3 (1 ng/ml) was added to CM where indicated. One 
biological replicate is shown. However, three independent experiments were performed. Values are 
mean ± s.e.m., n = 1, ***p<0.001 Mann-Whitney. Plots are Box and Whisker 5 – 95% plots. The 
mean is indicated with a cross and the median with the line through the plot. (C) Cell lysates from 
iNFs and iCAFs transfected with a control siRNA and iCAFs transfected with a siRNA targeting 
CLIC3. Western blot was used to assess the CLIC3 knockdown. Vinculin was used as the loading 
control. 
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Figure 3.8: CLIC3 is secreted from iCAFs and MDA-MB-231 cells. 
(A) iNFs and iCAFs were seeded at 1.5 x 10

6
 cells/dish in a 10 cm dish. The medium was changed 

for serum-free medium after 48 hours. The cell-exposed medium and cells were then harvested 
after a further 24 hours. The cell-exposed medium was centrifuged to remove cell debris. Following 
this, the cell-exposed medium was incubated with StrataClean beads to concentrate the proteins, 
which were present in the cell-exposed medium. The beads were resuspended in sample buffer 
supplemented with DTT and boiled to remove the proteins from the beads. The Western blot 
indicates that CLIC3 was expressed in iCAFs and that it was secreted into the cell-exposed 
medium. The ECM was also harvested and CLIC3 was detected to be bound to the ECM. (B) 
MDA-MB-231 cells were transfected with siRNAs targeting CLIC3 (siCLIC3), a non-targeting 
control (siNT), or a siRNA targeting Rab27A and Rab27B and plated onto 10 cm dishes. The cells 
were incubated for 48 hours. Afterwards, the cell-exposed medium was changed to serum-free 
medium for further 24 hours. The cells and the cell-exposed medium were harvested and 
concentration of the supernatant was performed as described in (A). 
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Figure 3.9: Production of recombinant CLIC3 and GST.  
(A) The left hand lane show samples of the BL21 (DE3) pLysS E.coli cells transformed with CLIC3–
GST expression vector, but before induction with IPTG. The second lane shows the lysate after 
IPTG induction. Following this, the bacteria were sonicated and an aliquot of this is shown in the 
third lane. Thereafter, the lysates were centrifuged and the supernatant incubated with glutathione 
agarose beads. Finally, the purified rCLIC3 was cleaved from GST using PreScission protease. (B) 
The migration of GST for comparison. Gels were stained with Coomassie brilliant blue. 
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Figure 3.10: Response of pseudopod extension to various concentrations of rCLIC3. 
A2780 ovarian carcinoma cells (A) and MDA-MB-231 breast cancer cells (B) were plated onto 
fibroblast-derived matrix. Time-lapse videos were recorded (over a time period of 22 hours) in the 
presence of no protein, rGST (1 ng/ml) or the indicated concentrations of rCLIC3. Pseudopod 
elongation was measured from the middle of the nucleus to the tip of the cell in the direction of 
movement using ImageJ. One biological replicate is shown and three independent biological 
replicates were performed. The median is shown as a black line and the mean as a cross. Values 
are mean ± s.e.m., n = 1, ****p<0.0001 Mann-Whitney. The data are represented as Box and 
Whisker 5 – 95% plots.  
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Figure 3.11: rCLIC3’s ability to drive pseudopod extension is ablated by boiling the protein. 
A2780 cells were plated on fibroblast-derived matrices. Time-lapse videos were recorded in the 
presence of rCLIC3, rGST, or boiled rCLIC3 (all proteins at 1 ng/ml). The distance between the 
middle of the nucleus to the tip of the cell in the direction of movement was measured using 
ImageJ. One biological replicate is shown but three independent biological replicates were 
performed. Values are mean ± s.e.m., n = 1, ***p<0.001 Kruskal-Wallis test with a Dunns post- test. 
The data are represented as a Box and Whisker 5 – 95% plots. The mean is indicated with a cross 
and the median with the line through the plot. 
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Figure 3.12: Pseudopod extension becomes apparent 5 minutes following rCLIC3 addition. 
A2780 cells were plated onto fibroblast-derived matrix. Time-lapse microscopy was started and 
after 1 hour rCLIC3 (1 ng/ml, blue) was added and the pseudopod length was measured every 5 
minutes afterwards for 15 minutes. A minimum of 540 cells were measured. Values are mean ± 
s.e.m., n = 3, *p<0.05, Mann-Whitney. 
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Mutation of cysteine residues in CLIC3’s thioredoxin fold 
opposes its ability to drive pseudopod extension 

CLIC proteins have been proposed to function in a number of ways including as 

Cl- channels and molecular scaffolds (Littler, Brown et al. 2010), but evidence 

that their primary role in the cell is to function as oxidoreductases is now 

accumulating. A recent study has clearly demonstrated that CLIC1, -2 and -4 

have glutaredoxin-like activity, with a cysteine in the GST fold acting as a key 

catalytic residue (Al Khamici, Brown et al. 2015). To investigate the 

functionality of the putative active cysteine at position 22 within the thioredoxin 

domain of CLIC3, I generated a mutant CLIC3 (rCLIC3C22A) in which this cysteine 

was replaced with an alanine. Moreover, CLIC3 is unique amongst the CLICs as it 

possesses an additional cysteine close to position 22 at position 25. I therefore 

constructed a double cysteine mutant of CLIC3 by mutating both cysteine 22 and 

cysteine 25 to alanine (rCLIC3C22/25A). Both rCLIC3C22A and rCLIC3C22/25A were 

completely unable to drive extension of invasive pseudopods in A2780 or MDA-

MB-231 cells (Figure 3.13 B, C). These data indicate the possibility that a 

functional thioredoxin domain is essential for extracellular CLIC3 to drive 

invasive protrusions, and suggest that the oxido-reductase activity of the CLIC3 

is required for its pro-invasive function.  
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Figure 3.13: The cysteine residues in CLIC3’s thioredoxin domain are required for its ability 
to drive the extension of invasive pseudopods. 
(A) Crystal structure of the thioredoxin fold of CLIC3 indicating the position of the proposed ‘active 
site’ cysteines (Littler, Brown et al. 2010). (B & C) A2780 adenocarcinoma (B) and MDA-MB-231 
(C) cells were plated onto fibroblast-derived matrix. Time-lapse videos were recorded in the 
presence of rGST, rCLIC3, rCLIC3

C22A
 and rCLIC3

C22/25A 
(25 ng/ml). The distance between the 

centre of the nucleus and the cell front was measured (with respect to the direction of migration). 
Image J was used to measure pseudopod length. rCLIC3

C22A
 and rCLIC3

C22/25A
 do not lead to 

pseudopod extension in A2780 cells or MDA‐MB‐231 cells. One biological replicate is shown but 
three independent replicates were performed. Values are mean ± s.e.m., n = 1, ***p<0.01, Kruskal-
Wallis test with a Dunns post-test. The data are represented as Box and Whisker 5 – 95% plots. 
The mean is indicated with a cross and the median with the line through the plot. 
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Extracellular CLIC3 drives tumour cell invasion 

The pseudopod extension assay provides evidence that extracellular CLIC3 can 

drive some of the morphological changes that are associated with the invasive 

process. To determine whether extracellular CLIC3 can activate a complete 

invasive programme, I used an inverted invasion assay, which measures the 

ability of invading tumour cells to translocate considerable distances into a 

Matrigel plug. A2780 cells were seeded on the bottom of a transwell (0.8 µm 

pore size) and were then allowed to migrate through these pores into a Matrigel 

plug towards a chemoattractant, which consisted of full medium supplemented 

with EGF in the presence or absence of rCLIC3 (Figure 3.14 A). The addition of 

rCLIC3 to the chemoattractant medium significantly promoted invasion of A2780 

cells into Matrigel (Figure 3.14). Moreover, the degree of invasiveness observed 

in the presence of rCLIC3 was comparable to that evoked by cRDGfV – an αvβ3 

integrin blocking peptide, which is routinely used as a positive control in these 

inverted invasion assays (Caswell, Chan et al. 2008). 

It is thought that estimates of invasiveness using assays such as the inverted 

Matrigel assay may be influenced by the proliferation rate of cells plated into 

the assay. I, therefore, determined whether addition of rCLIC3 to the 

extracellular milieu altered the growth of A2780 cells. However, A2780 cells 

proliferated at identical rates irrespective of whether they were treated with 

rCLIC3 or with rGST control (Figure 3.14 D). 
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Figure 3.14: Extracellular rCLIC3 promotes tumour cell invasion 
(A) Schematic representation of the set-up of an inverted invasion assay. A2780 ovarian 
adenocarcinoma cells were seeded on the bottom of Matrigel plugs (transwell with a 0.8 µm pore 
size). The Matrigel plugs were formed in the presence of 25 μg/ml fibronectin. The cells were 
allowed to invade for 72 hours towards a gradient of 10% FBS, 50 ng/ml EGF and cRADfV (2.5 
μM), cRGDfV (2.5 μM), rGST(25 ng/ml) and rCLIC3 (25 ng/ml). (B) Cells were stained with calcein 
acetoxymethyl ester and visualised by confocal microscopy. Serial optical slices were captured at 
10 μm intervals. They are presented as a sequence in which the individual optical sections are 
placed alongside one another with increasing depth from left to right as indicated. (C) The relative 
invasion was measured by quantification of the fluorescence intensity of cells penetrating the 
Matrigel to a depth of 30 μm and greater. cRGDfV is a well-established pro-invasive positive 
control in this assay. The addition of rCLIC3 increased invasion by comparison with the rGST 
control. Values are mean ± s.e.m., n = 3, **p<0.01, * p<0.05 Kruskal-Wallis test with a Dunns post-
test. Plots are Box and Whisker 5 – 95% plots. The mean is indicated with a cross and the media 
with the line through the plot. (D) A2780 cell proliferation was measured over 4 days in the 
presence of rCLIC3 (1 ng/ml, blue) or rGST (1 ng/ml, grey). The cells were plated at a density of 
1x10

5
 cells/well in a 6 well dish and were treated with either rGST or rCLIC3. The cells were 

counted using a  CASEY® counter every day for 4 days, Values are mean ± s.e.m., n = 3. 
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In many types of carcinoma, the acquisition of malignant phenotype is 

associated with the progression from a relatively non-invasive form of the 

disease, in which tumour cells acquire the ability to proliferate inappropriately – 

but do not disseminate because they are confined by an intact basement 

membrane – to a more aggressive phenotype in which the basement membrane is 

disrupted and the carcinoma cells can then spread into the surrounding tissue. In 

breast cancer this progression is characterised by transition from the relatively 

non-invasive ductal invasive carcinoma in situ (DCIS) to the more aggressive 

invasive carcinoma. Experimentally, this transition may be modelled using the 

MCF10DCIS.com breast cancer cell line. MCF10DCIS.cells are ER-negative 

premalignant mammary carcinoma cells which are derived from the ‘normal’ 

MCF10A cell line and are known to form well-defined comedo-like DCIS 

structures when injected as subcutaneous or intraductal xenografts. However, 

with time these lesions spontaneously progress to invasive carcinoma 

characterised by disruption of their surrounding basement membrane, and the 

development of invasive outgrowth (Miller, Santner et al. 2000; Hu, Yao et al. 

2008; Behbod, Kittrell et al. 2009). Elements of this progression may be 

recapitulated in 3D culture (Jedeszko, Victor et al. 2009; So, Lee et al. 2012).  

When MCF10DCIS.com cells were cultured for up to 6 days in Matrigel they 

formed comedo-like structures, which were surrounded by basement membranes 

evidenced by immunofluorescence staining for the basolateral marker β4 

integrin and the basement membrane component laminin-5 (Figure 3.15 A, B). I 

used an algorithm to quantitatively assess the shape of these organoids and 

found that MCF10DCIS.com cells formed structures that were roughly spherical – 

as reflected by high index of circularity of a cross sectional focal plane – and this 

sphericity was maintained for up to 6 days in culture (Figure 3.16 A, B). 

However, when rCLIC3 (but not rGST or the inactive CLIC3 mutant, rCLIC3C22A) 

was added extracellularly to this assay, structures with high degree of sphericity 

were able to initially form, but their symmetry became significantly disrupted 

during the following few days (Figure 3.16 B). Consistently, immunofluorescence 

staining for β4 integrin and laminin-5 indicated that addition of rCLIC3 (but not 

rCLIC3C22A) drove substantial disruption of the basement membrane surrounding 

the comedo-like structure and MCF10DCIS.com cells can be seen to migrate out 

of the organoid (Figure 3.16 A).  
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Figure 3.15: Extracellular rCLIC3 leads to a disruption of comedo-like structures formed by 
MCF10DCIS.com cells. 
(A, B) MCF10DCIS.com cells were plated on a thin layer of Matrigel in the presence of rGST, 
rCLIC3 or rCLIC3

C22A
 (25 ng/ml). The cells were fixed after 6 days in culture and stained for 

basement membrane, the nuclei and the actin cytoskeleton. To visualise the basement membrane 
acini were stained for β4 integrin (A, green) or Laminin-5 (B, green). The nuclei were visualised 
with DAPI (blue). The actin cytoskeleton was visualised with phalloidin-Alexa-Fluor-546 (red), scale 
bars: 50 µm. 
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Figure 3.16: The circularity of MCF10DCIS.com cells was disrupted by extracellular rCLIC3 
but not by rGST or the rCLIC3

C22A
 mutant.  

(A) MCF10DCIS.com cells were plated on a thin layer of Matrigel in the presence of rGST, or 
rCLIC3 or rCLIC3

C22A
 (25 ng/ml). The recombinant proteins were refreshed every other day and 

phase contrast images were captured at day 3, 5 and 6 days after plating. Scale bars: 50 μm.       
(B) Individual comedo-like structures were delineated and their circularity was determined using 
Image J. An Image J algorithm was used to determine the circularity. The value of 1 describes 
perfect circularity. Crosses are mean ± s.e.m., n=3, ***p<0.001, ** p<0.01 Kruskal-Wallis test with a 
Dunns post-test Plots are Box and Whisker 5 – 95%. The bars represent the median. 
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Other CLIC family members elongate invasive pseudopods 

CLIC1 and CLIC4 display 50 % and 45 % sequence homology to CLIC3, 

respectively. I, therefore, wanted to determine whether the rCLIC3-induced 

increase in pseudopod length is a particular characteristic of this CLIC family 

member, or whether rCLIC1 and rCLIC4 are also able to promote the elongation 

of invasive protrusions. I generated rCLIC1 and rCLIC4 (Figure 3.17 A, B) in 

E.coli, purified these proteins as previously described for rCLIC3, and evaluated 

their ability to drive pseudopod extension in A2780 cells. When added to the 

extracellular milieu, rCLIC1 and rCLIC4 increased pseudopod length to a very 

similar extent as CLIC3 did (Figure 3.17 C). This indicates that these three CLIC 

family members have similar biological activities with respect to the ability to 

drive pseudopod extension in A2780 target cells. 
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Figure 3.17: A comparison of the ability of rCLIC3, rCLIC1 and rCLIC4 to drive pseudopod 
extension in A2780 cells. 
(A+B) Recombinant rCLIC1 (A) and rCLIC4 (B) were produced, purified and then visualised using 
Coomassie staining of an SDS-PAGE gel, as for Figure 3.9. (C) A2780 cells were plated on 
fibroblast-derived matrix and rGST, rCLIC1, rCLIC3 and rCLIC4 proteins (25 ng/ml) were added to 
the medium. rGST was used as a control protein and did not drive pseudopod extension. One 
biological replicate is shown and three independent biological replicates were performed. Values 
are mean ± s.e.m., n = 3, ****p<0.0001 Mann-Whitney. Plots are Box and 5 – 95% Whisker plots. 
The mean is indicated with a cross and the median with the line through the plot. 
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rCLIC3-driven pseudopod extension is α5β1 integrin and 
RCP-dependent 

Previous work has indicated that certain drivers of cell invasiveness, including 

blockade of αvβ3 integrin with cRGDfV and the expression of certain mutants of 

p53, are associated with increased recycling of α5β1 integrin. α5β1 recycling is 

controlled by Rab11 effector, Rab-coupling protein (RCP) and, consistently, a 

number of aspects of mutant p53-driven invasiveness (including the extension of 

invasive pseudopods) are dependent on α5β1 integrin and RCP (Muller, Caswell 

et al. 2009; Rainero, Caswell et al. 2012). I used siRNA of RCP and a blocking 

antibody that targets α5 integrin to test whether the ability of rCLIC3 to drive 

pseudopod extension requires α5β1 integrin and its RCP-dependent recycling. 

Clearly, both the blockade of α5 integrin (using mAb16, 2 μg/ml) or suppression 

of RCP levels (using either a SMARTPool or a single siRNA oligonucleotide 

targeting RCP) completely ablated the ability of extracellular rCLIC3 to drive the 

extension of invasive pseudopods in A2780 cells (Figure 3.18 A, B). Taken 

together, these data indicate that extracellular CLIC3 relies on RCP-dependent 

trafficking of α5β1 integrin in order to drive the extension of invasive 

protrusions.  
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Figure 3.18: α5β1 integrin and RCP are required for extracellular rCLIC3 to drive the 
extension of invasive pseudopods.  
(A) A 2780 cells were plated onto fibroblast-derived matrix and allowed to attach. Following this an 
α5 integrin blocking antibody (mAb16, 2 μg/ml) or an isotype matched control antibody (IgG,          
2 μg/ml)) were added and pseudopod extension determined using time-lapse microscopy and 
Image J analysis as for Figure 3.3. (B) A2780 cells were transfected with an siRNA targeting RCP 
(siRCP #3), a SMARTPool of siRNAs targeting RCP (siRCP sp) or a non-targeting control (siNT). 
Pseudopod extension was determined as in (A). One biological replicate is shown and three 
independent biological replicates were performed. Values are mean ± s.e.m., n = 1, ***p<0.001, 
Kruskal-Wallis test with a Dunns post-test. Plots are Box and 5 – 95% Whisker plots. The mean is 
indicated with a cross and the median with the line through the plot. 
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3.5 Discussion 

The tumour stroma is important for tumour cell invasion and angiogenesis. CAFs 

are a major component of the tumour stroma and they can render tumour cells 

more permissive to undergo EMT as well as helping tumour cells to establish 

metastases at distant sites. Despite these observations, a recent study has shown 

that when CAFs are genetically deleted in a genetic mouse model of pancreatic 

adenocarcinoma, tumour progression is accelerated and the survival of the 

animals is significantly reduced (Ozdemir, Pentcheva-Hoang et al. 2014). This 

indicates that the relationship between the tumour stroma and tumour 

progression is far from straightforward, and that at least some CAF-generated 

factors may be tumour suppressive. This conflict highlights the need to 

understand what particular stromal factors promote tumour aggressiveness, so 

that these may be selectively targeted. Indeed, it has been discussed in the 

literature that neutralisation of certain CAF-secreted factors may be sufficient 

to yield better patient outcomes (Orimo, Gupta et al. 2005; Yu, Xiao et al. 

2014). I have found that CAFs increase the amount of fibrillar collagen and 

stiffen (not shown) the ECM. Consistently, CAFs increase invasion of pancreatic 

adenocarcinoma cells into organotypic matrices. Mass spectrometry revealed 

CLIC3 to be one cohort of proteins with markedly higher expression in CAFs than 

iNFs, and CLIC3 knockdown reverses a number of CAF-specific attributes – such 

as the ability to generate a pro-invasive stroma with increased levels of fibrillar 

collagen. Thus, simply suppressing CLIC3 levels renders CAFs to be more akin to 

normal fibroblasts. α5β1 integrin has a well-established role in helping tumour 

cells to respond to the stromal environment and, in particular, this integrin is 

key to sensing altered stiffness and transducing these mechanical cues into 

increased tumour growth and invasiveness (Levental, Yu et al. 2009). Consistent 

with this, I have found that the ability of tumour cells to respond to the secreted 

stromal factor, CLIC3, requires them to express α5β1. Moreover, my 

observations that RCP is also required for tumour cells to respond to 

extracellular CLIC3 indicates that not only must α5β1 be present, but that it 

must traffic appropriately to enable tumour cells to respond to the stroma.  

CLIC family members are known to be highly expressed in tumours and the 

tumour stroma. Specifically, CLIC4 drives tumour cell growth (Shukla, Edwards 
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et al. 2014) via alterations in TGF-β signalling, and CLIC3 increases invasiveness 

by driving integrin recycling (Dozynkiewicz, Jamieson et al. 2012). However, the 

pathways by which stromal CLICs might drive tumour progression are not yet 

clear. As discussed by Shulka and colleagues CLIC4 might act within stromal cells 

to influence TGF-β signalling (Shukla, Edwards et al. 2014), but our data indicate 

that it is the extracellular pool of CLIC3 that drives tumour cell invasion. Indeed, 

I have shown that factor(s) that drive invasiveness are present in CAF-

conditioned medium. Knockdown of CLIC3 in CAFs yields conditioned medium 

that is incapable of driving extension of invasive pseudopods and that, strikingly, 

the pro-invasive attributes of iCAF-conditioned medium may be restored by 

adding purified rCLIC3. From this and other experiments, I have been able to 

deduce that CLIC3 is a bona fide CAF-secreted factor that is necessary and 

sufficient to support invasiveness of tumour cells through Matrigel and to 

accelerate DCIS to invasive carcinoma transition in a 3D model of breast cancer 

invasiveness.  

It has been previously suggested, that CLICs might be secreted (Chang, Wu et al. 

2009; Wojciak-Stothard, Abdul-Salam et al. 2014). However, as none of the CLICs 

possess a canonical signal sequence to guide the protein to the endoplasmic 

reticulum, an unconventional mechanism seems to be more probable to move 

CLIC3 from the cytosol to the extracellular space. As shown before, CLIC3 has a 

late endosomal location (Dozynkiewicz, Jamieson et al. 2012; Macpherson, 

Rainero et al. 2014) and I explored whether CLIC3 release was linked to 

exocytosis of multivesicular bodies. However, upon knocking-down the levels of 

Rab GTPases controlling this process (Rab27A/Rab27B), I found that CLIC3 is still 

secreted into the extracellular environment, consistent with a non-exocytic 

route for CLIC3 release. Structural studies have identified that CLIC3 can exist in 

two different conformations; a soluble globular form comprising a GST-fold, that 

most likely possesses a thioreductase activity; and another confirmation 

displaying amphiphatic helical regions, capable of inserting into lipid bilayers. It 

has been suggested that the amphiphatic membrane insertion conformers enable 

Cl- transport across membranes. However, the CLICs can switch between the 

soluble globular and the membrane-inserted confirmation very quickly, 

suggesting that this change in confirmation might be a mechanism via which 
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CLIC3 permeates the plasma membrane and leaves the cell (Littler, Harrop et al. 

2004; Littler, Assaad et al. 2005).  

CLIC proteins are highly conserved throughout their family (with 6 CLIC family 

members) and throughout evolution. It is thought that most of the CLIC proteins 

are highly expressed in tumours and increase angiogenesis (Ulmasov, Bruno et al. 

2009; Tang, Beer et al. 2013; Deng, Tang et al. 2014; Shukla, Edwards et al. 

2014). Therefore, it was thought that in terms of tumour cell migration they all 

have a similar outcome and indeed I was able to show this. The precise 

molecular mechanisms through which CLIC proteins achieve their biological 

effects are still not clear. Littler and colleagues demonstrated that CLICs might 

have several different functions ranging from Cl- channels, to molecular 

scaffolds, to functioning as oxidoreductases enzymes (Littler, Brown et al. 

2010). A recent study showing that CLIC1, -2 and -4 have a glutaredoxin-like 

activity, with a cysteine in the GST-fold acting as a key catalytic residue, has 

increased awareness that the enzymic activity of CLICs may be biologically more 

relevant as the channel activity (Al Khamici, Brown et al. 2015). Indeed, our 

results indicate that mutation of the putative ‘active site’ cysteine in CLIC3 

completely ablates its pro-invasive capacity, which suggests that extracellular 

CLIC3 functions as an oxidoreductase to promote ECM remodelling and tumour 

cell invasion.  

In the following chapter, I will show that extracellular CLIC3 acts via TG2 to 

drive invasive processes and I will argue the possibility that this may be linked to 

the CLIC’s ability to function as oxidoreductases. 
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4 Secreted CLIC3 regulates ECM remodelling via 

TG2 to generate a pro-invasive stroma 

4.1 Introduction 

In the previous chapter I demonstrated that CLIC3 is a secreted protein which 

increases both the stiffness of the ECM and the amount of fibrillar collagen in 

organotypic plugs. These changes in the tumour microenvironment are 

associated with increased tumour cell migration and invasion. However, how 

CLIC3 changes the behaviour of the tumour stroma to drive tumour cell invasion 

has not yet been established. A mass spectrometry screen provided an insight 

into which secretory proteins might be co-regulated with CLIC3 during fibroblast 

activation. Indeed, one abundant secreted protein whose levels increase in 

parallel with CLIC3 is transglutaminase 2 (TG2). 

Transglutaminases are multifunctional enzymes catalysing the Ca2+-dependent 

posttranslational modification of proteins by introducing covalent bonds 

between free amine groups and γ-carboxamide groups of peptide-bound 

glutamines (Folk and Finlayson 1977; Eckert, Kaartinen et al. 2014). They have 

been shown to be upregulated in several tumours as well as in the tumour 

stroma (Assi, Srivastava et al. 2013), and are found both within cells and as 

secreted proteins in the extracellular milieu. TG2 - the most studied 

transglutaminase - is upregulated in many cancers, and it is reported to perform 

many functions within and outwith cells, including protein cross-linking and the 

regulation of a number of intracellular signalling pathways (Oh, Ko et al. 2011; 

Leicht, Kausar et al. 2014). It has been shown that the desmoplastic response 

involves interplay between invading tumour cells and altered ECM (Apte and 

Wilson 2012) and, as TG2 alters the ECM, it is thought to be likely that this 

enzyme impacts on tumour cell behaviour. Indeed, it is possible that the γ-

glutamyl cross-links, which are potentially generated by TG2, contribute to 

stiffening of the ECM – in much the same way as has been reported for the lysyl 

cross-links generated by lysyl oxidase (Levental, Yu et al. 2009). Therefore, I 

hypothesised that the reduction of the amount of fibrillar collagen that was 

observed upon CLIC3 knockdown could be due to the reduced activity of TG2.  
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A role for intracellular CLIC3 in tumour cell migration and invasion has been 

previously described by our group (Dozynkiewicz, Jamieson et al. 2012; 

Macpherson, Rainero et al. 2014). However, the mechanisms through which 

CLIC3 acts extracellularly to promote ECM remodelling and tumour cell invasion 

are yet to be described. Structural studies have shown that the CLIC proteins 

belong to the GST superfamily (Dulhunty, Gage et al. 2001; Harrop, DeMaere et 

al. 2001). GST proteins can be divided in at least 12 classes of proteins. They are 

multifunctional enzymes that exist mostly in a dimeric form in the cytosol 

(Hayes, Flanagan et al. 2005). GSTs are cytosolic proteins which can catalyse the 

conjugation of a tripeptide (glutamine, cysteine, glycine) glutathione (GSH) to 

electrophilic regions of other molecules (Wilce and Parker 1994). This reaction 

can occur through activation of the thiol group of GSH, which allows non-

covalent, but high-affinity binding to the substrate. Moreover, GSTs have been 

reported to be upregulated in tumour cells and can contribute to anticancer 

drug resistance (Booth, Boyland et al. 1961; Kanaoka, Ago et al. 1997; Harrop, 

DeMaere et al. 2001).  

The CLIC proteins have been shown to exist in a globular form consisting of an N-

terminal thioredoxin domain which contains four β-strands in between three α-

helices which contain the conserved glutaredoxin monothiol or dithiol motif 

(Board, Coggan et al. 2000). Experiments in which 2-hydroxyethyl disulphide was 

used as a substrate have recently indicated that CLIC1, 2 and 4 have 

glutaredoxin-like glutathione-dependent oxidoreductase enzymatic activity (Al 

Khamici, Brown et al. 2015), which was inhibited by mutation of the putative 

‘active site cysteine’. Moreover, the indanyloxyacetic acid (IAA) and ethacrynic 

acid compounds (IAA-94, A9C) that had been previously identified as CLIC-

binding molecules in the 1990s and (perhaps erroneously) termed ‘chloride 

channel blockers’, inhibit the glutathione-dependent oxidoreductase activity of 

CLIC1. In contrast, 4,4'-Diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS), which 

is a well-established chloride channel antagonist had no effect on CLIC1’s 

oxidoreductase activity (Al Khamici, Brown et al. 2015).  

Given the recent work describing CLIC1’s thioredoxin activity, and studies 

indicating that thioredoxin activates TG2 (Jin, Stamnaes et al. 2011), I proposed 

that CLIC3 might be able to reduce the disulphide bonds of the enzyme TG2 to 

influence its activity. Therefore, in this chapter I investigate how TG2 is 

required for CLIC3 to perform its extracellular pro-invasive function.  
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4.2 Results 

CLIC3 influences transglutaminase-2 behaviour in a redox-
dependent manner 

As discussed above, TG2’s activity is sensitive to its redox state. Indeed, TG2 

possesses cysteine residues that need to be reduced for the protein to display 

full enzymatic activity. Moreover, thioredoxin – a protein that is involved in a 

number of redox signalling events – can function as an activator of oxidised TG2. 

This is likely to be mediated via the ability of thioredoxin to catalyse the 

reduction of cysteine residues within oxidised TG2. Indeed, the activation of TG2 

by thioredoxin is inhibited by a small molecule inhibitor, which reduces 

thioredoxin (Jin, Stamnaes et al. 2011). In addition, structural analysis of CLIC3 

revealed a thioredoxin-like CxxC motif and, as for CLIC2, these two cysteines are 

capable of forming an intramolecular disulphide bond (Littler, Brown et al. 

2010). Therefore, if thioredoxin was to be capable of evoking similar cellular 

responses as does the addition of extracellular CLICs, then this might implicate a 

redox-like mechanism in CLIC3’s function, and also indicate a possible 

involvement of TG2 in the function of extracellular CLIC3. I determined the 

ability of a range of concentrations of recombinant, purified thioredoxin (rThx) 

to drive pseudopod extension in A2780 cells plated onto cell-derived matrices. 

rThx was capable of driving pseudopod extension, but this occurred at an 

approximately 30-fold higher concentration that is necessary for CLIC3 to evoke 

a similar response (Figure 4.1). Taken together with data from the previous 

chapter demonstrating the requirement for CLIC3’s putative active site cysteine 

in its pro-invasive function, this observation suggests that a redox reaction is 

involved in CLIC3’s extracellular role, and that this might be mediated via 

activation of TG2. 

I then determined whether CLIC3 and TG2 are capable of interacting physically, 

and whether the redox context is important to this. To do this, I expressed TG2 

as a GST-tagged fusion protein in E.coli and purified this using affinity 

chromatography (Figure 4.2). We then used a fluorescence polarisation assay 

(Lorand and Graham 2003) which exploits the fact that TG2 is a GTP/GDP-

binding protein. First we confirmed the capability of recombinant TG2 to bind to 

the fluorescently-labelled non-hydrolysable GTP analogue, Mant-GMPPNP (Figure 
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4.3 – point (a) on graph). Then we explored CLIC3’s interaction with TG2. We 

observed a transient increase in the polarisation signal from the Mant-GMPPNP-

TG2 complex following addition of rCLIC3, but not rCLIC3C22A (Figure 4.3 - point 

(c) on graph). This increase was observed in the presence of reduced- 

glutathione, but not its oxidised form (Figure 4.3 - point (b) on graph). 

Furthermore, this effect could not be seen using dithiothietol (DTT) indicating 

the specificity of the effect toward reduced glutathione (not shown). Since TG2 

was at a sub-saturating concentration, the increase in polarisation signal could 

indicate either that rCLIC3 physically interacts with Mant-GMPPNP-TG2 or that it 

regulates the affinity between TG2 and Mant-GMPPNP.  

TG2 binds to Ca2+ ions and this is known to control its affinity for GTP. Thus, at 

sub-millimolar calcium concentrations, such as would be encountered in the 

cytosol, TG2 binds to GTP and is thought to function intracellularly as a GTP-

binding protein. Conversely, when the free calcium concentration is in the low 

millimolar range, as found in the extracellular milieu, the affinity of TG2 for 

GTP is reduced. Consistent with this, our data indicate that addition of 5 mM 

Ca2+ led to a marked reduction in the Mant-GMPPNP fluorescence polarisation 

signal indicating that GTP was released from TG2 at high free calcium 

concentrations (Figure 4.3 - point (e) on graph). Interestingly, in the combined 

presence of rCLIC3 (but not rCLIC3C22A) and GSH (but not GSSH) the Mant-

GMPPNP fluorescence polarisation signal did not reduce following addition of 5 

mM Ca2+, indicating that CLIC3 is able to oppose the Ca2+-induced release of GTP 

from TG2. These results are consistent with recent evidence that several CLIC 

proteins are glutaredoxin-like enzymes (Al Khamici, Brown et al. 2015), hence 

we conclude that CLIC3 may be an oxidoreductase with glutathione-dependent 

activity and that TG2 is a likely CLIC3 substrate. 
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Figure 4.1: Thioredoxin is capable of driving extension of invasive pseudopods, but with 
approximately 30-fold less potency than CLIC3. 
A2780 cells were plated onto CDMs. Time-lapse videos were recorded in the presence of 1 ng/ml 
rGST, 1 ng/ml rCLIC3 or increasing concentration (1.16 ng/ml, 3.46 ng/ml, 10.7 ng/ml and 31.08 
ng/ml) of thioredoxin. The distance between the centre of the nucleus and the cell front was 
measured (with respect to the direction of migration). Image J was used to measure the pseudopod 
length. One biological replicate is shown and three independent biological replicates were 
performed. Values are mean ± s.e.m, n = 1. 180 pseudopods were measured per experiment, 
****p<0.0001, Mann-Whitney test. The data are represented as box and Whisker 5 – 95 % plots 
(the median are shown with lines and the mean as a cross).  
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Figure 4.2: Production of recombinant purified TG2. 
(A) The left hand lane shows the lysate of the BL21 (DE) pLysS E.coli cells which were 
transformed with TG2-GST expression vector (E. coli lysate). The lysates were filtered and 
centrifuged. The second lane shows the pellet which was remaining after centrifugation (cell pellet). 
The supernatant was loaded onto a GSTrap column. Afterwards, the column was washed with lysis 
buffer to remove proteins which were not bound to the column. An aliquot of this was loaded in lane 
three and was called flow through (FT). Finally, rTG2 with a size of 77 kDa was cleaved from GST 
using PreScission protease. The protein was concentrated and frozen in liquid nitrogen. The gel 
was stained with Coomassie brilliant blue. (B) The Western blot confirms that the 77 kDa band is 
rTG2 protein; an immunoreactive degradation product is visible at approximately 45 kDa. 
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Figure 4.3: CLIC3 influences the polarised fluorescence signal eminating from the Mant-
GMPPNP/rTG2 complex in GSH dependent fashion. 
Mant-GMPPNP (2 μM) was added to the cuvette of a polarised fluorimeter. rTG2 was then added 
and the fluorescence measurement increased as rTG2 bound to Mant-GMPPNP (a). The following 
were then added in sequence: Reduced (GSH) or oxidised glutathione (GSSG) (1 mM) (b); rCLIC3 
or rCLIC3

C22A 
(8 μM) (c); GTP (2 μM) (d); and CaCl2 (5 mM) (e). In the presence of reduced 

glutathione and rCLIC3 polarised fluorescence from Mant-GMPPNP/rTG2 increased transiently, 
but oxidised glutathione or rCLIC3

C22A
 were ineffective in this regard (d). Unlabelled GTP (2 μM) 

was added to displace some Mant-GMPPNP from rTG2. This experiment was performed by Juan 
Hernandez. 
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TG2 and CLIC3 collaborate to promote ECM remodelling 

In view of the indications provided by our fluorescence polarisation analysis that 

CLIC3 and TG2 might be physically and mechanistically linked, I determined the 

requirement for TG2 in the ability of extracellular CLIC3 to promote ECM 

remodelling and cell invasiveness. Initially, I used either control or TG2-

knockdown iCAFs to precondition organotypic collagen plugs, and multiphoton 

microscopy to quantify their fibrillar collagen content. siRNA of TG2 in the iCAFs 

led to significant reduction in the proportion of fibrillar collagen present in the 

organotypic plugs, indicating clearly that TG2 expression is required for CAFs to 

efficiently remodel the ECM (Figure 4.4). 

Next I wanted to determine whether ability of extracellular rCLIC3 to drive 

pseudopod extension in cancer cells is TG2 dependent. Initially, I used a well-

characterised TG2 inhibitor (Z-DON (Benzyloxycarbonyl-(6-Diazo-5-

oxonorleucinyl)-L-Valinyl-L-Prolinyl-L-Leucinmethylester)) to test whether TG2 

activity is needed for CLIC3-driven pseudopod extension. This inhibitor is an 

analogue of TG2’s substrate, glutamine. When TG2’s active site cysteine attacks 

Z-DON’s carbonyl group, this leads to alkylation at the active site of the 

transglutaminase thus irreversibly inhibiting the enzyme (McConoughey, Basso et 

al. 2010). Low concentrations (20 nM) of Z-DON are reported to selectively 

inhibit extracellular transglutaminases, whereas higher concentrations (40 μM) 

can act on both the intracellular and extracellular pool of transglutaminases 

(Schaertl, Prime et al. 2010). Addition of Z-DON at concentrations of either 20 

nM or 40 μM completely opposed the ability of rCLIC3 to drive extension of 

invasive pseudopods, indicating a clear requirement for a transglutaminase (and 

most likely an extracellular one) in extracellular CLIC3 function (Figure 4.5 A). 

The amounts of Z-DON inhibitor used did not affect proliferation of A2780 

ovarian carcinoma cells (Figure 4.5 B). 

TG2 is expressed in both A2780 cells and fibroblasts and mass spectrometry 

indicated that considerable quantities of TG2 are associated with the cell-free 

ECM deposited by iCAFs. In view of this, I was particularly interested in which of 

these two potential sources of TG2 (from the tumour cells or from the 

fibroblasts) might play a role in the function of extracellular CLIC3. TG2 

knockdown in A2780 tumour cells did not compromise the ability of extracellular 
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rCLIC3 to drive pseudopod extension (Figure 4.6). However, when A2780 cells 

were plated onto cell-derived matrix generated by TG2 knockdown fibroblasts, 

CLIC3-driven pseudopod extension was strongly suppressed (Figure 4.6 C, D). 

Extension of invasive pseudopods may be driven by a number of stimuli including 

addition of rCLIC3, inhibition of αvβ3 using cRGDfV, and expression of mutant 

p53 or the Rab11 GTPase, Rab25. To test whether TG2 expression in the matrix-

producing cells was required for one of these other drives to pseudopod 

extension I plated Rab25-expressing A2780 cells onto cell-derived matrices 

generated by control and TG2 knockdown fibroblasts. Consistent with previous 

reports, Rab25-expressing A2780 cells had longer invasive pseudopods than 

control A2780 cells (Caswell, Spence et al. 2007) and, interestingly, the length 

of these was unaffected by knockdown of TG2 in the matrix-generating 

fibroblasts (Figure 4.5 C). These data indicate that the requirement for ECM-

derived TG2 in pseudopod extension depends on the stimulus used to evoke the 

invasive response.  

To provide confirmation of the requirement for extracellular TG2 in the invasive 

process, I determined whether the ability of rCLIC3 to drive pseudopod 

extension could be restored by addition of soluble rTG2 to cell-derived matrices 

derived from TG2 knockdown fibroblasts. Addition of rTG2 to A2780 cells plated 

onto cell-derived matrices did not significantly influence pseudopod extension in 

the absence of rCLIC3. Furthermore, rTG2 did not enhance rCLIC3’s ability to 

drive pseudopod extension when A2780 cells were plated onto cell-derived 

matrices generated by control fibroblasts. However, rTG2 restored the ability of 

CLIC3 to drive pseudopod extension when A2780 cells were plated onto cell-

derived matrices generated by TG2 knockdown fibroblasts (Figure 4.7). Taken 

together these data provide evidence that an extracellular pool of TG2 (which 

may be either soluble or ECM-associated) is necessary for CLIC3 to evoke the 

extension of invasive pseudopods. 
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Figure 4.4: Knockdown of TG2 in iCAFs reduces the fibrillar collagen content of organotypic 
plugs preconditioned with these cells.  
Plugs of collagen I were preconditioned with iCAFs that had been transfected with siRNAs 
targeting TG2 (siTG2) or a non-targeting control (siNT). The SHG signal was then measured using 
multiphoton microscopy followed by application of the Image J area calculator plug-in to measure 
the fibrillar collagen content at the indicated depth into the plug. Values are mean ± s.e.m, n = 1, 
p<0.0001, Mann-Whitney test.  
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Figure 4.5: Transglutaminase-2 inhibitor Z-DON inhibits CLIC3-driven pseudopod extension,  
(A) A2780 adenocarcinoma cells were seeded on fibroblast-derived cell-derived matrices. 
Following attachment the Z-DON inhibitor was added at 20 nM or 40 μM. 30 minutes later either 
rGST (1 ng/ml) or rCLIC3 (1 ng/ml) were added. Time-lapse videos were started after the addition 
of either CLIC3 or GST. The distance between centre of the nucleus to the front of the cell was 
measured (in the direction of movement) using Image J. One biological replicate is shown but three 
independent biological replicates were performed. Values are mean ± s.e.m, n = 1 and 180 
pseudopods were measured per experiment, ***p<0.001, Kruskal-Wallis test with a Dunns post-
test. The data are represented as box and Whisker 5 – 95 % plots (the median are shown with 
lines and the mean as a cross). (B) The cells were seeded at 10,000 cells per well. They attached 
to the plastic dish. rGST, rCLIC3 and rCLIC3 in the presence of Z-DON was added (all proteins at 
1 ng/ml). Every day the cells were counted with the CASY® counter. The treatments were 
refreshed every 2 days in fresh culture medium. n = 2.  
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Figure 4.6: Knockdown of TG2 in the ECM producing fibroblasts opposes CLIC3-driven 
pseudopod extension by tumour cells.  
(A) A2780 cells transfected with a siRNA targeting TG2 (siTG2) or a non-targeting control (siNT) 
and seeded on fibroblast-derived matrices. Pseudopod elongation in the presence and absence of 
rCLIC3 (1 ng/ml) was determined in the same manner as for Figure 4.1. The siRNA of TG2 in the 
A2780 cells was confirmed using Western blotting (B). (C) A2780 cells were plated onto cell-
derived matrix. The fibroblasts producing the cell-derived matrices had been transfected with a 
siRNA targeting TG2 (siTG2) or a non-targeting siRNA (siNT). The siRNA of TG2 in the fibroblasts 
was confirmed using qPCR in (D). Pseudopod length in the presence or absence of rCLIC3 (1 
ng/ml) was determined in the same manner as for Figure 4.1. One biological replicate of the 
pseudopod extension assays is shown and three biological replicates were performed. Values are 
mean ± s.e.m, n = 1 experiments and 180 pseudopods were measured per experiment, 
***p<0.001, **p<0.01, Kruskal-Wallis test with a Dunns post-test. The data are represented as box 
and Whisker 5 – 95 % plots (the median are shown with lines and the mean as a cross.  
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Figure 4.7: Addition of soluble rTG2 restores CLIC3-driven pseudopod extension when 
A2780 cells are plated onto cell-derived matrices generated by TG2 knockdown fibroblasts. 
A2780 cells were plated on fibroblast-derived matrices. The fibroblasts producing the cell-derived 
matrices has been transfected with a siRNA targeting TG2 (siTG2) or a non-targeting control 
(siNT). Pseudopod length in the presence and absence of rCLIC3 (1 ng/ml) and/or siTG2 (0.9 
ng/ml) was determined in the same manner as for Figure 4.1. One biological replicate is shown but 
three independent biological replicates were performed. Values are mean ± s.e.m, n=1 
experiments and 180 pseudopods were measured per experiment, ***p<0.001, **p<0.01, Kruskal-
Wallis test with a Dunns post-test. The data are represented as box and Whisker 5 – 95 % plots 
(the median are shown with lines and the mean as a cross). 
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CLIC3-driven tumour cell invasion is TG2 dependent 

The previous section makes extensive use of the pseudopod extension assay to 

pinpoint the source of TG2 that is necessary for CLIC3’s ability to drive invasive 

behaviour. To determine whether TG2 plays a role in CLIC3’s ability to evoke a 

comprehensive programme of invasive behaviour, I investigated the 

consequences of TG2-inhibition on CLIC3-driven invasiveness in the inverted 

Matrigel assay (Figure 4.8) and on the morphology of spheroids formed by 

MCF10DCIS.com cells plated into Matrigel (Figure 4.9).  

Firstly, Z-DON was used to determine whether CLIC3-driven invasion into 

Matrigel was TG2 dependent. A2780 cells were allowed to invade into 

fibronectin-containing Matrigel plugs in the presence and absence of 20 nM Z-

DON. Z-DON significantly opposed CLIC3-driven invasion into Matrigel plugs 

(Figure 4.8 A, B). Furthermore, I used MCF10DCIS.com breast cancer cells, as 

described in the previous chapter, to investigate the role of TG2 in CLIC3-driven 

invasiveness. As before, addition of rCLIC3 drove extensive disruption of the 

basement membrane that formed around MCFDCIS.com cell spheroids, and this 

led to a significant loss of circularity and extension of invasive protrusions. 

Addition of Z-DON significantly opposed this rCLIC3-driven basement membrane 

disruption and loss of circularity indicating that TG2 is required for CLIC3 driven 

invasiveness. Furthermore, Z-DON did not affect proliferation of MCF10DCIS.com 

cells (Figure 4.10). 

Taken together, these data indicate that extracellular CLIC3 functionally 

associates with TG2, and that CLIC3 acts via TG2 to promote collagen I 

remodelling and tumour cell invasion. 
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Figure 4.8: The TG2 small molecule inhibitor Z-DON opposes rCLIC3-driven invasiveness. 
(A) A2780 cells were allowed to invade into fibronectin-supplemented Matrigel plugs. Cells were 
stained with calcein acetoxymethyl ester and visualised by confocal microscopy. Serial optical 
slices were captured at 10 μm intervals. They are presented as a sequence in which the individual 
optical sections are placed alongside one another with increasing depth from left to right as 
indicated. The invasion behaviour was measured by quantification of the fluorescence intensity of 
cells penetrating the Matrigel to a depth of 30 μm and above. Recombinant proteins and the 
inhibitor were present in the Matrigel plug as well as in the medium. (B) The proportion of cells that 
invaded to point of 30 µm or above was determined. The addition of rCLIC3 increased invasion by 
comparison with the rGST control (rGST). The TG2 inhibitor Z-DON reduced rCLIC3-dependant 
invasion. Values are mean ± s.e.m, n=4, ***p<0.001, **p<0.01 Kruskal-Wallis test with a Dunns 
post-test. The data are represented as box and Whisker 5 – 95 % plots (the median are shown with 
lines and the mean as a cross). 
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Figure 4.9: CLIC3-promotes disruption of the basement membrane and this is reversed by Z-
DON. 
MCF10DCIS.com cells were plated on a thin layer of Matrigel in the presence of rCLIC3 or rCLIC3 
(25 ng/ml) and Z-DON (20 μM). These cultures were cultured for 6 days. The cells were then fixed 
in 2% PFA followed by immunofluorescence staining. The basolateral membrane was visualised 
using β4 integrin (A, green) and the basement membrane, acini were stained for Laminin-5 (B, 
green). The cytoskeleton was visualised with Phalloidin-Alexa-Flour-546 (red) and the nuclei were 
visualised with DAPI (blue), Scale bar: 50 μm. MCF10DCIS.com cells were plated on a thin layer of 
Matrigel and phase-contrast images were taken from day 3 until day 6. Individual acini were 
outlined and circularity determined using ImageJ with a value of 1 representing perfect circularity. 
(C, D) Values are mean ± s.e.m, n = 3, ***p<0.001, **p<0.01, Mann-Whitney test. The data are 
represented as box and Whisker 5 – 95 % plots (the median are shown with lines and the mean as 
a plus). (GST day 3 n = 228, CLIC3 day 3 n = 267, CLIC3 Z-DON day 3 n = 177, GST day 5 n = 
141, CLIC3 day 5 n = 180, CLIC3 Z-DON day 5 n = 145, GST day 6 n = 123, CLIC3 day 6 n = 137, 
CLIC3 Z-DON day 6 n = 129). Phase contrast images were taken every day from day 3 onwards. 
(D) Representative Phase contrast image of a formed acinus after 6 days in the presence of 
rCLIC3 (25 ng/ml) and the TG2 inhibitor Z-DON (20 nM), Scale bar: 50 μm. 
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Figure 4.10: rCLIC3 and Z-DON do not alter the proliferation rate of MCF10DCIS.com cells  
MCF10DCIS.com were plated at 10,000 cells per well. They were allowed to attach to plastic 
dishes and the rGST (1 ng/ml) or rCLIC3 (1 ng/ml) in the presence and absence of Z-DON (20 nM) 
were added. The cells were counted using a CASY® counter at 24 hr intervals following plating, 
and the treatments were refreshed every two days. Values are mean ± s.e.m, n = 2, n.s., Mann-
Whitney test. 
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4.3 Discussion 

In the first chapter I identified that extracellular CLIC3 drove cancer cell 

migration and invasion. This chapter has dealt with the role that the 

multifunctional enzyme TG2 plays in CLIC3’s ability to evoke invasive responses 

from cancer cells. Indeed, my data indicate that expression of TG2 in the ECM 

producing cells is key to the ability of extracellular CLIC3 to drive invasive 

responses from tumour cells within that ECM microenvironment. Moreover, I 

have shown that the pool of TG2 that enables CLIC3 to perform its pro-invasive 

role is extracellular. Taken together with data indicating that CLIC3 and TG2 

interact in a way that depends on the redox environment, these data suggest 

that CLIC3 may achieve its pro-invasive functions by acting as a redox enzyme to 

activate TG2. 

CLIC proteins were initially described as chloride channels, however, their 

functions have been extended to act as molecular scaffolds (Littler, Brown et al. 

2010). In addition, it becomes more apparent that CLIC proteins function as 

oxidoreductases. Al Khamici and colleagues have demonstrated that CLIC1, -2 

and -4 have glutaredoxin-like activity, with a cysteine in the GST-fold acting as a 

key catalytic residue (Al Khamici, Brown et al. 2015). Furthermore, compounds 

such as IAA-94 and A9C, which have been previously considered to be inhibitors 

of the chloride channel ion conductance activity, have been shown to directly 

inhibit the oxidoreductase activity of CLICs. I found that CLIC3’s putative active 

site cysteine 22 is necessary for all of its TG2-dependent extracellular functions. 

Furthermore, there is a requirement for glutathione in CLIC3’s ability to 

influence the binding of TG2 to GTP and to CLIC itself. This supports the view 

that the pro-invasive capabilities of secreted CLIC3 are associated with its 

glutathione-dependent oxidoreductase characteristics.  

Reactions catalysed by glutaredoxin-like enzymes depend on the redox context 

of the environment. In the strongly reducing environment of the cytosol, high 

glutathione concentration (0.5-10 mM) can compromise protein activity by 

glutathionylation, and CLICs may de-glutathionylate these cysteine residues to 

restore protein activity (Al Khamici et al., 2015). However, outside the cell, 

where glutathione concentrations are much lower (µM range), CLICs would not 
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need to function as de-glutathionylating enzymes. Certain extracellular enzymes 

possess cysteine residues which control their activity, and reduction of oxidized 

cysteines in extracellular proteins is known to be performed by thioredoxins 

which use FADH as a source of reducing equivalents. Like thioredoxins, 

glutathione transferases catalyse reduction of cysteine using glutathione as a 

source of reducing equivalents. We propose that CLIC3 acts in this way to 

activate extracellular TG2. Although TG2’s most well-characterized role outside 

the cell is to act as a Ca2+-dependent transglutaminase, TG2 is a multifunctional 

protein which can bind directly to integrins to influence their signalling (Akimov, 

Krylov et al. 2000; Wang, He et al. 2012). Our polarized fluorescence 

experiments indicate that CLIC3 is clearly capable of altering TG2 association 

with its ligands, such as GTP. Thus, in addition to acting via TG2’s γ-glutamyl 

cross-linking activity to drive ECM stiffness, CLIC3 may influence its capacity to 

bind to integrins, which may contribute to the α5β1-dependence of CLIC3 driven 

invasiveness of tumour cells (Figure 4.11). 

  

Figure 4.11: Proposed model for CLIC3’s influence on cancer.  Adapted from Hernandez, 
Ruengeler et al., submitted. 
CLIC3 is a protein released from the tumour stroma. In the presence of GSH, CLIC3 converts GSH 
to GSSG, thereby interacting with TG2 and rendering it active. This reaction increases ECM 
stiffness and increases tumour cell migration and invasion. Furthermore, the increased ECM 
stiffness as well as the CLIC3 and TG2 interaction increases α5β1 integrin binding, thereby 
increasing tumour cell migration and invasion. 

 

Experiments using Z-DON have shown that CLIC3’s ability to drive invasiveness 

absolutely requires the enzymatic activity of TG2. Moreover, Z-DON is effective 
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at a concentration that, according to previous reports (Schaertl, Prime et al. 

2010), would be expected to selectively target extracellular (and not 

intracellular) TG2. Despite the fact that A2780 cells express TG2, it is clear that 

the TG2 activity necessary for CLIC3-driven extension of invasive pseudopods 

into cell derived matrix is derived from the ECM-generating fibroblasts and not 

from the A2780 cells. However, in the Matrigel-based invasion assays that I have 

used – namely the A2780 cell inverted invasion assay and MCF10DCIS.com 

spheroid assay – the only cell types present are the invading tumour cells. Thus, 

in these assays the TG2, which is responsible for supporting CLIC3-dependent 

invasion, must either be secreted by the invading tumour cells (both A2780 and 

MCF10DCIS.com cells express TG2) or must be present in the Matrigel. The 

Matrigel-based invasion assays are conducted over a much longer time period 

than the pseudopod extension assay. Thus, if TG2 were to be slowly secreted by 

A2780 and MCF10DCIS.com cells, then it is possible that extracellular TG2 may 

accumulate over the several days during which the Matrigel assays are 

conducted. Conversely, CLIC3-dependent effects are visible within 4 hours of 

plating cells onto cell-derived matrix and, as this might be insufficient time to 

allow accumulation of tumour cell-secreted TG2, then CLIC3-dependent effects 

would rely on the TG2 present in the fibroblast-derived ECM. Nevertheless, using 

a range of approaches our study has shown a requirement for a source of 

extracellular TG2 in CLIC3-driven invasiveness. TG2 is known to be associated 

with metastasis of a number of cancer types (Erdem, Yegen et al. 2014; Han, 

Kumar et al. 2014; Kumar, Hu et al. 2014; Kumar, Donti et al. 2014). Thus our 

data indicate the possibility that targeting the redox-dependent interaction of 

CLIC3 with TG2 might represent a potential avenue for anti-metastatic therapy. 
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5 General Discussion 

5.1 Summary 

In this thesis, I have shown that CLIC3 is secreted from CAFs as well as from 

MDA-MB-231 breast cancer cells. CLIC3 has previously been shown to be localised 

to late endosomal compartments (Dozynkiewicz, Jamieson et al. 2012). I then 

explored the possible involvement of a mechanism for unconventional secretion, 

which involves late endosome/multivesicular body (MVB) exocytosis as an export 

mechanism (Malhotra 2013). However, CLIC3 release is not dependent on Rab 

GTPases, such as Rab27a/b, which control MVB exocytosis. Therefore, most 

probably CLIC3 is released via a non-exocytic route. Furthermore, I explored the 

functions of extracellular CLIC3. I was able to show that it increases α5β1 

integrin-dependent extension of pseudopods that invade into preparations of the 

ECM, and induces tumour cell invasion into Matrigel. Extracellular CLIC3 was also 

able to disrupt the comedo-like non-invasive structures formed by 

MCF10DCIS.com cells, and to drive the cells to a more invasive phenotype. 

Moreover, I have shown that extracellular CLIC3 relies on an extracellular source 

of TG2 in order to drive the invasive processes described above. Because, 

CLIC3’s ability to drive these TG2-dependent invasive processes requires ‘active 

site’ cysteine residues in CLIC3’ thioredoxin fold, I propose that the role of 

extracellular CLIC3 acts via a redox mechanism to influence TG2 function to 

promote integrin-dependent invasion. 

5.2 The function of extracellular CLIC3 in the tumour 

stroma 

Cancer research is nowadays not only looking at the cancer cells and their 

genetic and epigenetic changes, but at tumours as a multicellular milieu. The 

tumour stroma is known to drive tumour cell invasion and angiogenesis (De 

Wever and Mareel 2003). It comprises several different cell types, such as 

pericytes, endothelial cells, immune inflammatory cells, cancer cells as well as 

cancer associated fibroblasts (CAFs) (Ronnov-Jessen, Petersen et al. 1996; De 

Wever and Mareel 2003). Additionally, the ECM components, which make up the 

scaffold of the tumour microenvironment, comprise a variety of proteins, such 
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as for example collagen. Many of the factors secreted by CAFs, including ECM 

components, render cancer cells more prone to undergo EMT and establish 

metastasis at different sites (Orimo, Gupta et al. 2005). Therefore, it seemed 

important to examine these cells in more detail. One possibility was to remove 

the CAFs from the stroma, thus lessening the secretion of the ECM as well as 

tumour growth and metastasis at distant sites, due to inherent reduction of 

stiffness. However, when Özdemir and colleagues removed CAFs from mice in a 

pancreatic cancer model, the survival was significantly reduced (Ozdemir, 

Pentcheva-Hoang et al. 2014). Due to removing the CAFs, the ECM was 

profoundly altered – indeed the collagen I content and stiffness was considerably 

reduced. Therefore, this study led researchers to look at single secreted factors 

from CAFs, as well as proteins that CAFs overexpress compared to normal 

fibroblasts in the healthy ECM. Özdemir and colleagues moreover found that LOX 

was still expressed, despite the lack of CAFs (which were previously assumed to 

be the major source of tumour LOX) (Ozdemir, Pentcheva-Hoang et al. 2014). 

LOX is an extracellular amine oxidase, primarily shown to be important in 

posttranslationally modifying collagens and elastin in the ECM to catalyse 

covalent cross-linking, and LOX is involved in tumour progression (Kagan and Li 

2003; Butcher, Alliston et al. 2009). Furthermore, it was shown that lysyl oxidase 

was expressed in the tumour stroma, leading to increased collagen crosslinking. 

This was shown to enhance breast cancer metastasis (Cox, Bird et al. 2013). 

Additionally, it was shown by Cox and colleagues that LOX is a secreted factor in 

hypoxic ER-negative breast cancer cells (Cox, Rumney et al. 2015). Therefore, it 

is important to identify single proteins that increase primary tumour cell growth 

and metastatic formation. Using a proteomic screen, which was designed to 

provide a quantitative comparison between breast cancer CAFs and normal 

fibroblasts, we have identified CLIC3 as being expressed at high levels and 

secreted from CAFs (Figure 5.1). I then proceeded to show that CLIC3 expression 

in CAFs leads to an increased amount of fibrillar collagen I in organotypic 

matrices and found that this corresponds to increased invasion of PDAC cells into 

these matrices.  

I further established that extracellular CLIC3 drives tumour cell migration and 

invasion and that this process is α5β1 integrin dependent (Figure 5.2). Our study 

is in line with the current literature as, for example, Levental and colleagues 

have described that integrins are important in responding to microenvironmental 
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stiffness (Levental, Yu et al. 2009). They have shown that ECM stiffening drives 

the formation of focal adhesions and increased PI3 kinase signalling which 

enhances tumour invasion. The next step was to determine how CLIC3 could 

modify the ECM as well as drive tumour cell migration and invasion. 

 

5.3 Secreted CLIC3 regulates ECM remodelling via TG2 

to generate a pro-invasive stroma 

I have shown that extracellular CLIC3 requires the activity of TG2 in order to 

drive tumour cell invasion. Moreover, our data indicate that the pool of TG2 that 

is required for extracellular CLIC3 to function is also outside the cell. Indeed, 

not only does a TG2 inhibitor oppose CLIC3-driven invasion when added at a 

concentration that would not be expected to inhibit intracellular TG2, but 

experiments in which rTG2 is added to the extracellular milieu clearly show that 

TG2 acts from outside the tumour cells to support CLIC3’s pro-invasive 

capabilities. TG2 is well-established to act both within and outside the cell. In 

the high free Ca2+ concentrations that are found outside the cell, TG2 acts 

primarily as transglutaminase which is involved with ECM remodelling. However, 

intracellular TG2 functions as a G-protein (Lorand and Graham 2003), as an 

ATPase, as a protein kinase (Mishra and Murphy 2004; Mishra, Saleh et al. 2006) 

or as a transcriptional regulator. An average GTP/calcium ratio in the cell (~150 

μM/~100 nM) is thought to ensure that cytosolic TG2 will be in the GTP-bound 

state, thus maintaining intracellular TG2’s transamidase activity at relatively 

low levels. A GTP-binding defective short isoform of TG2 induced neuroblastoma 

cell differentiation, but a long isoform inhibited this process (Tee, Marshall et 

al. 2010). As TG2 inhibitors are able to inhibit neuroblastoma differentiation 

induced by the short form of TG2, this suggests that differentiation is induced by 

TG2’s transamidating activity (Tee, Marshall et al. 2010). Therefore, to keep the 

intracellular GTPase function is quite important to reduce neuroblastoma 

formation. Furthermore, TG2 acts as a regulator of transcription. When 

stressors, such as intracellular calcium levels rise or hypoxic conditions are 

present within the cell, TG2 is translocated to the nucleus and controls the 

transcriptional program. Furthermore, the crosslinking activity of TG2 is calcium 

dependent as mentioned. Ca2+ concentrations are generally quite low in the 

cytosol. Therefore, intracellularly it is not so likely that TG2 will act as a 
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transglutaminase. However, outside of the cell the calcium concentration is 

higher and this causes TG2 bound GTP to dissociate and an increased TG2 

activity.  

TG2 has not only a transamidase activity but it also binds to integrins, which are 

transmembrane adhesion and signalling receptors that regulate a variety of 

intracellular signalling processes. Integrins are activated by binding to ECM 

proteins (Hynes 2002). As described before, TG2 can interact with the ECM, 

enhancing cell adhesion and integrin-mediated signalling via interaction with β1, 

β3 and β5 integrins (Zemskov, Janiak et al. 2006; Belkin 2011). Additionally, in 

cancer cells and during metastasis TG2 has been shown to enhance the affinity 

of certain integrins for fibronectin, which increases cell attachment to the 

matrix and in turn activates integrin signalling (Satpathy, Cao et al. 2007; Belkin 

2011; Piercy-Kotb, Mousa et al. 2012). TG2-induced integrin clustering increases 

integrin-dependent signalling, such as the activation of FAK, Src and increased 

levels of GTP-bound RhoA and its downstream target ROCK. The outcome of this 

can be actin stress fibre formation, which leads to enhanced actomyosin 

contractility promoting further ECM remodelling (Toth, Garabuczi et al. 2009; 

Torocsik, Szeles et al. 2010).  

This ultimately leads to two possible mechanisms through which CLIC3 may 

affect TG2, and thereby influence ECM stiffness, cancer cell migration and 

invasion. One possibility is that CLIC3 might activate TG2’s enzymatic activity 

via a thioredoxin-like mechanism, which leads to increased ECM stiffness 

followed by integrin activation and signalling. This signalling mechanism in turn 

could drive pseudopod extension (Figure 5.2 A). TG2 is able to crosslink the γ-

carboxamide of the glutamine with the ε-amino group of the lysine in a calcium 

dependent mechanism (Fox, Yee et al. 1999). In our studies TG2 drives ovarian 

carcinoma cell invasion and tumour cell migration. This is probably due to its 

cross-linking activity as the presence of TG2 drives an increase in the levels of 

fibrillar collagen in CAF preconditioned matrices. Increased fibrillar collagen 

would be expected to promote a stiffer microenvironment, which could drive 

tumour cell invasion. Another possibility is that CLIC3 influences TG2’s ability to 

activate integrins more directly and this then influences matrix deposition and 

stiffness (Figure 5.2 B). 
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The mechanism I explored could potentially be used in cancer therapy. CLIC3 

and TG2 are upregulated in cancer - TG2 has been shown to be upregulated in 

several cancers such as pancreatic adenocarcinoma (Verma, Wang et al. 2006), 

breast carcinoma (Mehta, Fok et al. 2004) and ovarian carcinoma (Satpathy, Cao 

et al. 2007; Hwang, Mangala et al. 2008). Moreover, CLIC3 upregulation has been 

shown to lead to a poorer survival in pancreatic and ovarian adenocarcinoma 

patients (Dozynkiewicz, Jamieson et al. 2012). Furthermore, some studies 

suggest TG2 may represent an excellent drug target (Szende, Schally et al. 

1991), as TG2 has been identified as a negative prognostic marker and has been 

linked to evasion of apoptosis and drug resistance. This, however, depends on 

the context, because chemotherapeutic agents have different effects on TG2 

and tumours in different tissues (Benedetti, Grignani et al. 1996; Antonyak, 

McNeill et al. 2003; el-Metwally, Hussein et al. 2005; Joshi, Guleria et al. 2006). 

Therefore, targeting TG2 alone may evoke both positive and inhibitory effects 

on tumour growth (Monteagudo, et al., 2015). However, pharmacologically 

targeting the enzymatic activity of CLIC3 might be a better possibility as it is 

upstream of TG2 and is only upregulated in cancer tissue and the surrounding 

tumour stroma.  
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Figure 5.1: CLIC3 is a secreted factor from cancer-associated fibroblasts and has the 
potential to activate TG2. 
CLIC3 is secreted from CAFs in the reduced form. It then acts on TG2 to convert the protein from 
the oxidised (inactive) to the reduced (active) form. In this case TG2 is mostly ECM associated. 
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Figure 5.2: CLIC3 interacts with TG2 and drives invasion via two possible mechanisms.  
(A) TG2 activated by CLIC3 crosslinks glutamine residues in adjacent collagen strands. This leads 
to an increase in ECM stiffness. Moreover, the affinity to integrins further increases stiffness and 
leads to elongation of pseudopods in tumour cells. (B) Following activation by CLIC3, TG2 binds to 
integrins and this leads to activation of integrin signalling, which increases the contractility of the 
CAFs. This then leads to an increase in ECM stiffness and cell invasion.  

 

Future Directions 

In this thesis, I have determined several characteristics of secreted CLIC3.           

I have also determined that CLIC3 has, under reducing conditions, the possibility 

to interact with TG2 and to lead to TG2 dependent ECM remodelling and tumour 

cell invasion. Despite evidence that these TG2-dependent functions of CLIC3 are 

sensitive to the redox environment and require CLIC3’s ‘active site’ cysteines 

(which suggests a role for CLIC3’s oxidoreductase activity), further studies are 

needed to identify and understand the mechanistic details of the interplay 

between extracellular CLIC3 and TG2. For instance, the possibility that CLIC3 

affects proteins other than TG2 to drive tumour cell invasion must be 
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considered. Furthermore, the unconventional mechanism through which CLIC3 is 

secreted from CAFs needs to be identified and characterised. 

 

Evidence presented in this thesis suggests that CLIC3 is able to activate TG2 via 

a redox mechanism. I hypothesise that an intramolecular disulphide bond in 

CLIC3 is reduced by GSH and this reduced CLIC3 is able, in turn to reduce TG2’s 

disulphide bonds, rendering TG2 in an active conformation. However, this 

working hypothesis needs further testing in order to be properly ratified. In 

particular, it is necessary to used enzyme-based assays to formally demonstrate 

that CLIC3 possesses oxidoreductase activity and that it is capable of activating 

the enzymatic activity or the integrin-binding capacity of TG2. 

This project has been conducted using cell lines and in vitro and ex vivo assays 

that report on ECM remodelling and various aspects of tumour cell invasiveness. 

To fully establish the importance of extracellular CLIC3 to tumour progression, it 

is necessary to address this question using in vivo models of cancer and tissue 

from human subjects. Preliminary experiments have been conducted to explore 

the role of extracellular CLIC3 in vivo. In one experiment MCF10DCIS.com cells 

were mixed with Matrigel in the presence and absence of rCLIC3 and injected 

subcutaneously into the flanks of nude mice. The tumours were harvested after 

two weeks and examined histologically. In the absence of rCLIC3 the 

MCF10DCIS.com cells had grown to form tumours that displayed a non-invasive 

comedo-like morphology that were bounded by a basement membrane and a 

layer of smooth muscle actin-positive myoepithelial cells. By contrast, when 

MCF10SDCIS.com cells were mixed with Matrigel that was impregnated with 

rCLIC3 prior to implantation, these cells grew to form tumours that have an 

extensively disrupted basement membrane and myoepithelial layer. 

Furthermore, as mentioned previously, extracellular CLIC3 is able to promote 

the ability of endothelial cells to form tubules in 3D cultures. We, therefore, 

used an in vivo approach to examine the pro-angiogenic capabilities of 

extracellular CLIC3. Endothelial cells mixed with Matrigel plugs and implanted 

subcutaneously into mice in the presence and absence of rCLIC3. This 

experiment indicated that the ability of the endothelial cells to form functional 
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blood vessels was significantly enhanced when they were co-injected with 

Matrigel that had been impregnated with soluble rCLIC3, whereas CLIC3C22A was 

ineffective in this regard. Moreover, the ability of rCLIC3 to promote 

angiogenesis was opposed by addition of Z-DON, indicating that the ability for 

extracellular CLIC3 to drive angiogenesis in vivo is TG2 dependent – as it is in 

vitro. To use a more controlled system, we are generating a CLIC3 knockout 

mouse. A CLIC3 -/- mouse has previously been generated by Kim and colleagues 

(Kim, Choi et al. 2013). They reported that these mice are viable, but were 

more susceptible to Listeria monocytogenes (LM) infections. Additionally, they 

have shown that chloride influx and the consequent acidification of endocytic 

vacuoles containing LM were inhibited in CLIC3-/- bone marrow-derived 

macrophages (Kim, Choi et al. 2013). However, they did not thoroughly 

characterise the mouse and also do not explore the cancer-associated aspects of 

CLIC3. Another CLIC3 knock-out mouse was generated at the Beatson Institute. 

LoxP sites are present before exon 2 and after the exon (CLIC3 has 6 exons) of 

CLIC3 were present. Once Cre-recombinase was added the gene between the 

loxP sites was excised and CLIC3 protein expression abolished. So far the mice 

were crossed to a whole body Cre-recombinase, excising CLIC3 from the genome 

and abolishing its expression throughout the whole organism. According, to the 

mentioned paper by Kim and colleagues the mouse should be viable. However, 

no homozygous offspring has been born thus far – indicating the possibility that 

CLIC3 knockout may be lethal. Other CLIC knockout mice have been generated 

previously and all of them were reported to be viable. So far knockout mice of 

CLIC1 (Chalothorn, Zhang et al. 2009; Qiu, Jiang et al. 2010), CLIC4 (Gagnon, 

Longo-Guess et al. 2006; Chalothorn, Zhang et al. 2009; Ulmasov, Bruno et al. 

2009) and CLIC5 (Gagnon, Longo-Guess et al. 2006; Bradford, Miller et al. 2010) 

have been generated. However, it seems that the redundancy of the six CLIC 

proteins is an important aspect overshadowing the experiments in mice. This 

could be due to the similar structure of the CLIC proteins and thus they can take 

over functions from the other proteins. Therefore, a more valuable approach 

would be to cross this mouse with a cancer model known to be associated with 

CLIC3 overexpression and a tissue specific Cre-recombinase. One valuable cancer 

model might be breast cancer as it was shown that CLIC3 is highly expressed in 

breast cancer (Macpherson, Rainero et al. 2014). In this case a possibility would 

be to use the MMTV-PyMT model. In this mouse the expression of polyoma 
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middle T antigen (PyMT) is under the control of the Mouse Mammary Tumour 

Virus promoter (MMTV, driver for oncogene expression). This leads to breast 

tumours, which metastasise into the lung and lymph nodes (Guy, Cardiff et al. 

1992). Additionally, it might be valuable to further evaluate the function of 

CLIC3 in pancreatic cancer as it was shown to be not expressed in normal tissue 

but in human pancreatic ductal adenocarcinoma (Dozynkiewicz, Jamieson et al. 

2012). Therefore, one possibility would be to cross the CLIC3 knock-out mouse to 

a Trp53R172H/+, KRasG12D/+, Pdx1-Cre model of pancreatic adenocarcinoma (Olive, 

Tuveson et al. 2004; Hingorani, Wang et al. 2005).  

To conclude, I have shown that CLIC3, a protein thought previously to be an 

intracellular protein, which controls the trafficking of integrins and other 

receptors, is released from stromal fibroblasts. This secreted pool of CLIC3 is 

able to drive a range of cancer relevant invasive processes and I have shown that 

it required TG2 activity in order to do so. Further experimentation using in vivo 

and other models will determine the degree to which CLIC3 is secreted by 

stromal and tumour cells in vivo and the relevance that this process has to the 

progression of cancer in humans.  
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