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STUDIES 1IN THE THEORY OF DETONATION
Summary of Ph,D, Thesig by R, Welsh

The work of this thesis consints of two geparate problems
concerning the motion of detonation waves in invisecid, non-heat-
conduncting gases., A detonatlon wave is esegsumed Lo be a gurface
of discontinuity moving through the medium., On crossging this wave
the gas particles instantaneously release e certain amount of heatl
cnergy. VWherens shock waves are only of the compressive type, waves
involving such an energy release can be elther compressive detonations)
or expewnsive (deflagrations).

Pert I is concerned with the one~dimensional motion of such weves
through 2 uwniform gas contained in a straight tube, which igs closed
at the end where the waves are initiated., There are two accepted
models for the motion of a combustible gas in this case, In the filrat
o shock wove moves uniformly into the gas shead of a deflagration wave
which travels uniformly at subsonic gpeed relative to the stationary
gas behind it. There is a reglon of uniform motion bhetween the two
waves. The second concerns gonic (Chapman~Jouguet) deflegrations and
differs from the previous case in thalt there exists a point-centred,
gimple rarvefaction wave immediately behind the deflagration. Toxr a
certain value of the shock speed of the latter system the speeds of the
deflagration and shock coincide, resulting in a gingle debonation wave
fronts

In the present work the stability of these two gystems is
investigated by considering the effect on the flow of certain types of
gmall disturbences. The subsonlc model ls found to be non-evolutionary,
lee.y the problem of introducing speclfied small disturbances:into the
pystem has no unique solution, A self-generating, unstable solution is
found and is calculated in the cagse of the shock belng uniformly
accelorateod. The existence of such a solution suggests that the
subsonic model is unstable,

The problem of small disturbances introduced into the Chapman-
Jouguet model is shown to be evolutionery, provided the Chapman-Jouguet
condition is relaxed for the disturbances. Tor two particular numerical
cases it is shown thet there is no self-generating solution in which the
perturbation of the shock speed can be expregsed as a power series in
time, t, The solution for the perturbation on the gystem due to the gas
being not quite at rest initially is found in terms of the initial
velocity distribution elong the tube.

Paxt II/



Part II is an investigation into the mathematical solution for a
spherically or axlally symmetric detonatlion front travelling into
wniform gas in the dlrection towerds the centre ox axis of symmetry.

Tt is known that there is no solutlon corrvesponding to a constant speed
Chapman-Jouguet front for thig case, unlike the expanding radially
symmetric wave whose solution is analogous to the Chapman-Jouguedb
detonation in one dimension.

However, exemination of Guderley's simllarity solution for a
redially symmetvic contracting shock front, valid neer the centre ox
axis of symmetry, suggesits a method of solving the present problems
Cuderley's solubion shows that the shock accelerates towards the origln,
where the solution is singular and the shock speed, panticle veloclty,
and pressure are infinite. Since the addition of a heat release term
acrose this froat can only have a finite effect on the energy of the
flow behind the front, it follows that the detonation problem can be
conaidered as o small perturbation on the shock solution., This
perturbation is of preclsely the seme form as the correction due to
teking into account the sound speed of the stationary gas, which is
neglected in Guderley's solutlon.

The equations of motion of this basic solution luvolving a shock
front reduce to a single non-linear, f£lret order, ordinary differential
equation owing to the simllerity assumption, which algo permits the
equations governing the perturbations to be weltlten os a set of three
gimvlitencous, lincer, ordinary differential equations, The solufion of
the former single equatlon appears in the coefficlents of the latter sel
of equations, Hence it is necesmary to recompute Guderley's solution
ond his vosults are extended to higher values of ) . The assumpitlon
that the flow is regular on a cevtaln cheracterisitic, on which the
flow moy be singuler, ensures that there is & unilque solubion to hoth
the besic and detonatlon problems. The equations are lntegrated
numerically ueing e specially devised method which makes use of the
power series expansions in the vicinity of this charvacteristic, which
becomes a point in torms of the redefined variables. The method used
hes no difficulty in dealing with the solution in the neighbourhood of
this point, where the devivetives of thwee of the four variables, as
given by the differentiel equatlons, are indeterminate (but are actuall;
finite due o the regularity conditions)..
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Introduction

The work of this thesls is concerned with the
propagation of detonation waves through combustible 289@8,

Part I consists of an investigation into the stabllity
of the subsonic and Chapman-Jouguet models (described in detail
in Section 1) for the one-dimensional detonation of & uvniform
gas contained in an ilunfinite straight tube, closed at the end
where the detonatlion is initiasted. The atability of these two
femilies of uniformly expanding flows is considered by
determining the effects due to certain types of small
digturbances. In Section 2 the differential eguations governing
the propagation of disturbances through the systems sre
determined, the technigue being that developed by Gundersen (4),

It is shown in Section 3(i) that the pProblem of small
disturbances propagating through the flow of the subsonic model
is non-evolutionary (i.e. hes no unique solution). 4 self-
generating, uneteble solution, i.e. one arising of itself and
not produced by any external agency, ls found and evaluated in
detall for the came of the shock wave in the flow being subject
to a small, wniform scceleration, The celculations in this
section were done on the Deuce computer at Glasgow University,

The investigation into the gtability of the Chapman-Jouguet

model in Section 4(i) shows that the problem of small



34,
digturbances introduced into the system is evelutionary and
20 hes a unique solution, provided the Chepman-Jouguet
condition is relaxed for the disturbances. In Section 4(iii)
it is shown, for itwo particuier numerical cases, thei there
is no self-genersting solutlon in which the perturbetion of
the shock speed, expressed as a fuaction of time %, can he
expressed as a povwer series In t. The solution for the csse in
which the ges ds initlally approximately et reast is evaluvated
in Section 4(iv) in terms of the imitial distribution of
velocdty in the tube,

in Part XI the problen of a converging spherical detonation
Teont moving into & waiform gas s iavesiigated. The problem of
apherically symnetric weve motions ia ivntroduced in Section 1t
and cextaln rvelevant solutionsg are discussed, It is showa that
the required solution for the detonatiocn wave is & perviurbation
on the solution, obteined by Gudecriley (10), for a converging
gpherlcal shock wave.

The equations of moticn and similarity sssumptions are
deacribed in Section 2, A preel that there la no uwniformly
contracting solution is given here. The soluition sought, like
Guderley's solution for the shock wave, has the property that
the front accelerates towards the centre of symmetry 0, where
ite velocity is infinite, ae are the velocity and pressure of
the gas, Both solutions are walld near 0, A dgcaying, expanding

sphericael shock wave is reflected from the centre of symmetry.
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As well as taking into account the effects of the detonstion
the present solution can zllow for a finlte sound speed of the
initial gas, In Section 3 the equations of motion and boundary
conditions for the beslc Guderley solution, and for the
perturcbation solutlion due to the detonation, are derived. The
assunption of similarity reduces these equations to ordinary
differential equations. The method used by Butler (6) to
evaluste the Guderley solution lae followed. As for the basic
solution, it is necessary to assume that the Ylow ls regular on
g certain cheracteristic in ovder 4o heve a unigque solution to
the problem., In tsrms of the redefined variables of the problem
the path of this characteristic is a point. The condlition of
zggularity gives boundary conditions on the flow at this point,
which is & singnler point of the ordinary differential eguation
for the besic flow and of one of the three equations governing
the perturbations,

The equation for the basic flow has 4o be integrated in
such & way that it satisfies & bouwndary condition at each end of
the range (viz. the regularity condition et the cherscterisiic
and the conservation equations at the fronit) in order to find
the path of the shock wave., This cen only be done by trial and
error £g the differential equation is non-linear., The
perturbation terms aiso have to satlafy boundary conditions at

sach end of the range but the problem is spimplified in this case
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as the equationsg are linear, The problem ig to find the path
of the converging detonstion wave.

The method by which the equations are integrated numericaelly
is described in Section 4, This method is specially devised for
thisg problem and is uneffected by the fact that the
characteristic on which the flow has t0 be regular corresponds
%0 & singulay point of certain of the differential equations.
The method makes use of the fact thet the flow is wregular at
this point and so0 can be expanded as & power geries in its
neighbourhood,

The beslc Guderley soluition wes evaluated on the Siring
Computer in the Universglity of Strethclyde and foxr the solation
for the detonation the Atleg Computer of the Sci@nceuﬂaa@arch

Council was umed.



1. Detvonatlons and Deflapgrations in One Dimension

The subject of the propagation of reaction {combustion)
fronts through geses was first atudied experimentelly sround 1880
by a numbexr of French physiclsts, chlefly Vieille, Mallexd,

Le Chatelier and Berthelot., On igniting one end of a2 column of
gas contalined in g uniform tube they found that é slow combustion
wave, of veloecliiy a few metres pex second, was normally
propegated throuwgh the gas. In certein cases, however, 1i wans
.feund that the flamé accelerated very rapildly to velocities in
the region of 2,000 metres per second. Thisp lattor type of
process was called a dstonation wave, The final siteady velocity
of the wave was found to depend wpon only the chemical zad
physical neture of the gas.

A theoreticel explanation of this phenomenon was put forwerd
in 1899 by Chapmanr and independently by Jouguet in 1905, In this
it was assumed that the chemical reaction takes place
instanteneously, l.e., the resction front can be considered to be
e plane of dlscontinuity propageting through the gas, with burnt
gas behind and unbhurnt gas ahead. The model is evidently very
gimilazr o that of a plane shock wave, the only differences belng
the release of heat energy by the gas particles and the change in
the chemlcal nature of the ges.

& fuller treatment of the theory of detongitlon to ba

described here is given in Courant and Frledriches (%) end by



Taylor and Tenlkin (5). The two models to be discussed are
considered in detell by Adams and Pack (1), in pacrticular with
regerd t0 the transition thfough the possible solutlions to the
final, stable Chapmen-Jouguet detonaition,

Congider such & wave involving chemical reaction moving
thﬁough & column of gas contained in o siralght tubs, The
reaction front can be brought to rest by means of & velocity
transformation, It.will be assumed that the ges ie perfect,
non~hest-conducting snd inviscid and that its specific heats at
congtant volume end pressure cv” cp ara constant, The pressure,
density and particle velocity of the gas will be denoted by
P ¢, u respectively and ¥ = cp/c_vo The suffices 0, 1 refer

to the unburant and burnt ges respectively.

Q}{\ ,’P; ,‘%‘,\M ‘XD) ?"'; gn,\ﬁu

Since the front is considered to be stationary w, u, are in
fact the particle velocities relative to the front.

Relations batween the physical varisbles on either side of
the front can be found, as for shock waves, by consideration of
the conservation laws of mechanics. The equations of conservation
of mass and momentum, which are identical to those for shock waves,

are respectively

g, u, = g, 4o S

by o+ g uv = &’a*ge“% (1.2)



It will be assumed that the rassage of unit mass of gas scross
the front gives rise to the release of e constant amount of
energy, @ say. Thus the eguetion of conservation of Gnergy

can be wyititen

-L%E\. a{“-' -u-u}-{ém’e mE:im =
3 ‘sfn"'& %\

Y E”
i 2 e ) -
5 Wo < X, -1 ”g:‘%’gz (1.3)
From 1.1, 1.2 we deduce that

2 A

- Lo Y
T TS T (1.4)

from which we can deduce further, as for sﬁock waves, that
pressure and density increase and decrease in the same direction,
Whereas a shock wave cen only increaese the pressure of the gas
into which it propagetes, & wave front scross which there is an
energy releose can elther incresse or decresse the pressure of
the gaas, Thoaé fronts which cause an increase in pressure
(compressive) are called detonations and the others (expansive) .
corxespond %o slow combustions and are called deflagrations,

From 1,9, 1.2 we can devive the equation

%"’E_g,,, T = - (‘Ua )
vl S R ’

If the reaction front faces forwards then Ry W, are in the

negative direction., Thus for & detonation, i.s., Py > Py it

-3



<

follows that > oug and. for a daflagration n.-éhubu If the

1

gas ahead of the reaction front is stationary the representation

in the x-t plane is as follows

C
T A bacticle T barticle
\{ak
\\ {}T r'\t
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Detonation Deflagration

Congider a deflagration wave ataerting at the closed end
of e uwniforn, strsight, semi-infinite tube., The gas behind thip
front is deflected towards the closed end of the tube. However
a necessery boundary condition on the flow is that the particle
velocity be zero at the closed end, x = 0, A coneistent flow i
obtained by intrecducing a ghock wave moving ahead of the
deflagration, Behind this shock the gas is deflected awey from
the c¢losed end so that for an approprlate vaelue of the shock
speed the deflegration brings the gas to rest. The velocity of
the shock wave is determined by the velocity of the deflagration,

The system can be represented in the x-t plane as follows

< M \)mr\‘h\a
Pal

! &ﬂsk"&%ﬁ’@kibﬁ\
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Ihis is the Zeldovitch ~ Dowing -~ von Neumenn model and hae
been accepted as the modsl for o deflagration in & closed tube
slnce 1945,

Let the velocities of the deflagration (flams) snd the
shock in such a systen be denoted by V, W reaspactively. The
suffices 1, 0, 2 refer respectively to the region behind the
flame, the region between the waves and the region ahesd of the

shock,

L e 0 W 2

In the following ¢ denotes sound speed end it 1g gupposed that
w0 = ¥Wi = ¥ . The regions 2, 0 ave identical chemically so
that‘gb =Y also., The three conservetion eguabtions across the

shock cen be written in the form

5 e . i -:s; (’ i
30@\; SR (1.6)
4 7 i i :‘L e ¥ X " B =
Po MW~ ) P, w4 (%.7a)
- ’ - o b ‘E{&,
and 1,72 can be wewritien in terms of ¢, where ¢ = ‘??» , 88

WEE - o mbw(‘n}““ﬂ) = (W-uwo) o2

(1.7v)
using 1.6
and
0 e TR - N TR TR
d(w-ug X-1 7 TR (1.8)



The corresponding equations across the fleme ave the
following with u, = 0. (The equations are here given for the

case u, # 0, which will be required later)

g, (V- u.) = g‘(\f"\!\o\ (1.9)
\!“‘M-a. - _ o
%t‘*"vﬂ(\ ) %’o“ﬁ"% (\f W) (1.10a)
which may be written as
(v-wy <8 4 (v -m)w-m.f
=) 2 v (V- vl -a ) (1.10b)
VN SURTIN S -

With u, = 0 the equations 1.6 - 1,11 provide six equations
determining the seven varisbles V, W, Yo Sor Coo %1 and ¢, in
terms of the initial state of the ges, i.e., g.a and ¢ e There
is thue one degree of freedom in the system., 1In particular
the system is conmpletely detormined if either the shock or flame
speed 1s prescribed and it is assumed that all posgible systems
are equally likely to occur,

This model, however, ls only valid for subsonic flame

spaeds, It has been shown on thermodynemic grounds that it ie
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imposaible for the speed of the flame to exceed the sound

gpeed of the burnt gas, so that the model does not glve & true
physical representation for flame spesds exceeding this value,
Let us congider the case of the shock speed being such that

it would r»equire a supersonic fleme, It will therefore be
necessary to introduce s finite particle welocity vy inmediately
behind the flame such that ¥ - Ny = Cyo This is the Chapman-
Jouguet condlition, %o be discussed later, In order to allow

the value of uy to remaln zero at x = 0 it will be necessary o
introduce a gimple warefactlon wave, centred at 0, bringing the
burnt gas to rest along the line x = cﬂrtu where Cap is the rest
gound speed of the burnt ges. The representetion of this
(Chapmen-Jouguet) model is as follows

AN ¥
X= Cm_k.'
ra

- w= Ve
= Wt
/ .// =
"

:

listhematically we have introduced & new variable vy into the
system but the Chapman-Jouguet condition (Vv - w, = 01) ensures
that there is still only one degree of freedom, so that this
model ig also uwniquely determined in terms of either ¥ or W.
The lower limit of {the possible range of values of W ig W,

There is also an upper limit for the value of the shock speed,



Wﬁ say, for which the speed of the flame equals that of the
shock, In this case the paths of the flame and shock coincide
and form & single detonatlion front,

The theory of Chapman-Jovguet detonationg and defleagrations
(that the speed of the front is sonic relative to the buimt

gases) 1s given in detail in (3) and (5). Prom 1.4 we obitain

bk
ﬁ""“r = -yt (consat) (1.12)
‘:'5‘"" Sa

where

}

Qs Do =l My

80 that, if ¢ mzé'n any final state (pg, T7,) must satisfy the

condition

/&1."/&-@ (1013‘)

If we define the complete energy functioa E(psﬁf) to be
the sum of the energy of formotion per unit mass g avd the
internal energy rer unit mass ¢, where g is tesken o be
independent of p, T but e = e(p,€ ), then the form of the funciion
E(p, v ) for the unburnt ges will differ from that for the burnt
gas. Let the former be denoted by E(o)(pgfi“:’) and the latier by

5 (p, ).

A more geneval form of the energy squation 1.3 i

B ) bt o 0o, ) btk (1.14)



By elimineting the velocitias Uor Yq fwom 1.1, 1.2, 1,14, ana
dropping the suffix 9 for the burnti &ag, we obtain the purely
thermodynamic relation (the Hugoniot relation)

Ef"(‘%, 1) - E.lnj(loa et (=2 (ba k) = 0 (1415)

This equation determines the family of possible finsl states
(p, ) for & gas in the initial state (po,, fe-o),, The states
given by 1,15 give rise to s curve (the Hugoniot curve) in the

(p, ) plane, subject to the restriction (1,13),

b A

=

S

Y W

._?

A

The upper branch of the curve corresponds to detonations gnd the
lower branch to deflagrations, A line through (poyﬁfo)
latersecting the Hugoniot curve will in general, intersect it

at two distinct points, except for the lines through D, € which

are tangential to the curve. The points D and € erg the Chapuon-

9
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Jouguet points and can be shown to corzespond o & sonic
(Chepman-Jouguet) detonation and deflegration respectively.
The stete given by ﬁ is that finel state for o detonation in
which the entropy and !ub] egch apsuwne e minimum value, whereas
C is the deflagretion for which the entropy and luci each have
e maximum value, Polunts above D correspond to ‘strong’®
detonations, and points between A and D correspond to ‘wealk®
detonations., Similarly points below € give rise to 'sitrong’
deflagrations, and points bebtween B and € give rise to ‘weak®
deflagrations.

The ergument which execludes the possidvllity of strong
deflagrations le given in Courant and Priedrichs. By consldering
the reaction to take place over a finite distence, with 3
denoting the fraction of burnt ges in the mixzture at some control
surface within the weaction, i1t is shown that at some stage in
the reaction § would heve to be greeter then unity ia the case of
a strong deflegration, Thus it ig concluded that strong
deflaegrations ceannot oscur in practice.

It is slso shown in Couvent and Priedrichs that the correct
interpretation of a detonation wave ig that of & shock Front
followed immediately by e deflagration., In pariiculer e wealk
detonation consists of e shock followed by a strong iaflagratieno
Thus wealk detonetions cannot occcur in practice either.

A strong (overdriven) detomation cen be prodméa& by means of

& plston moving uwniformly into the burnt gases et s velocity
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greater thean the theoretical Chapman-Jouguet fluld veloelty

immediately behind the front,

A
biston _hastide bath
Y -

ovesd viven debonal i on

2 &
The work of part II of this thesis involves a converging
spherical detonation wave which is overdriven, due, in this
case, to the focusaing effect as the origin is approached and

the surface area of the front diminishes,
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2., Bguationg of Motion

Before congidering the effects of emall disturbences on
the systems described in Section 1 it will be necessary to
derive the differential equations governing the propagation of
these disturbances, The equations to be used sre those due %o
Gundersen (4), I% is escumed that there is a known solution for
& basic, isentropic (i.e., entropy is constent throughout the
fluid) one-dimensional flow, which is subject to small
disturbances in the physical variables. Both the basic and
perturbed flows must setisfy the equations for the one-~dimensionsl
motion of a gas, which ip assumed to be perfecs, inviscid, non-

heat-conducting and have constant specific heats ¢ € po The

pﬂ
equations governing the perturbations on the heasic flow are
obtained by linearising the equations of motion,

The fact that mass 1s conserved in the flow can be eoxpressed

by the differentiel equation

:‘:"5{ -+ %(%m) = 0 (2.1)

where ¥ ig time and x is the distance along the tube from the
closed end.

The equation of momentum is

P R
R (2.2)

The third equation of motion ig derived from the asgsumption that

there is no dissipation due to heat conduction or viscosity.
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Hence the specific entropy, s, remaiang comstant along a pariicle
path of the fluid

w Doy 3s 2,
L. L = -ﬁé_.%m ‘drstﬁo (2.3)

The equation of state for the ges can be eoxpressed in the form

N <

b:ﬂ @Té‘r. S (2.4)
by suitadble bhoice of units. s is the specific entropy of the
gas at some reoference state,
The four equations 2,1 - 2.4 gerve to determine the four
physical variables ygg » ¥, ® which prescribe the state and
notion of the gas completely. The sound speed of the gas ¢ is

given by
& = (%E")s = ?%h' (2.5)

By use of 2.4 snd 2.5 the equations 2,1 - 2.3 cen be expressed in
terms of u, ¢, 8 only. The equation 2.2 cen be put in the form

a

o =
Ul.t_ A WA g %\B‘Q.Eu - W g;.',_ = 0 (206)

where k m?%? and the suffices x, t denote paritisl derivatives,

fguation 2.1 can be exzpresgsed as

Qtf#' U.Cy -&--’j{(rﬂ)@.u&% O (207)
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Mathematically the system is defined by the three Aifferential
equations 2,3, 2.6, 2.7 for u, ¢, s as functioms of x, t.
Af%er molving these equetions p, g can be found by using 2.4
2050

P

The differential equatione for u, ¢, 8 are

Ce +W.Cy w4 (6=1) Cuy =0 (2.7)
A
We 4+ Wy 4 peey = ———.§, = 0
b W h- b8 '“LK"'U)QV " (205)

S+ WS,y = O (2,3)

Let the baslc igentropic £low be given by

w o= u (x, t)
¢ = c (x, t)

B=p, = constant,

Suppose that small disturbances sre superimposed on this flow and

thet the perturbed flow is given by

o = uo(x,‘i'.) + ﬁOC:cp'i;)
c oo(:c,'i;) + Eo(x, 4)

5= o go(xet)

o

r - E Ead
where Boe Coo 8,

8, 15 a solution of the equations of motion we can write

are of first order of smallness, Since Qo Coo

Cop 4 Wo.Coy +2(¥-1)Co. Uy = 0
upt + Wo Uy -t-\lco.c.x = 0 (208)

$o = Cons\ .




The perturbed flow mugt also setisfy the eguations of motion

g0 that

Eo\. + ot -\-(\&‘,‘t-“u)(?b ¥ Cel&) + ':{_('f“‘)(é—o‘* S o)(ﬁn Nl O (20 9)

Woty + W ok ‘t'lﬁu“’mt:)(ﬁ“a}k 'i'“ou) % o (T ¢ q)('f.‘-n& +Cox

(e T (2.10)
“‘é'bf-u)*&d PR
o *Vo S, = O (2.11)

The fixst two of these equations can be simplified by using 2.8
and by eliminsting all terns of second order of gmallvess, e.g.,

w.c_ etec., to give

o’ “ox
Eet.@uoaom '{?ﬂ{u an"‘i""&i_(h" I)(fo'\.&ez. “Q'(Q:‘:Cgﬁ) = O (2012)
U&B’( -q—mg.\-&oﬁ. -&*\ﬂ.u.\ﬁmh o k (E.m QD}A'&' Qoﬁ*ﬂ;ﬂw _ (2"‘]}3)
= e o%
Bguation 2,11 expresses the fact that §0fx”t) is constant along
the particle paths of the basic flow i.e., on &F = u (x,t). Also,

from equation 2,1, it follows that there sxists o stream funcition

V' for the basic flow given by

Va =8, Yo =8 4o
and 1’ = congbtant defines the pavticle psths of the flow, Thus

30(x9t) can be written in the foxrm
5 (%) = w(y)

for some functlon ¥, For convenience let us define the function
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H(x, t) by
Q% ‘ga_w_&_ = %m C% wﬂ {\V}

=Y f ‘lf‘""} CwH(“ak’)

Let ws introduce the Riemann inverianis o , B of the basic flow

given by

L (vorhe) = , % luethed =8

and the corresponding functions ¥, § defined by

e

Tlaoehe) =, L lae+ha) =@

Phe two combinations k (2.12) + (2.13) then yield
oy wlUoreded , +d {fwm *(8’-3}7{'%.@(& = LU,  (2.14)

B el By +1 A=Y = — L HEY (215)

and thip is the form of the perturbation ecquations to be used

latex.




% The Suvbsonic Model

(i) Stability end Uniqueness
In order to discuss the stability of flows of this type
let vs conesider the propagatlon of small disturbances throughout

the system caused by a disturbance just ahead of the shock,

t p Flu\\me.

I Sheck
o

=/
The positive and negative characteristics and particle paths of

the three distinct regions are sketched roughly,

oA € v

5 -

5

S \
—-‘-"‘-’-‘-
X \ 3 A
positive characteristics (C+) negative characteristics (C-)
t
8
7 X

particle paths (Co)
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Since w, ¢ are constant in eech reglon 211 the families are
stralght lines, The direction sssociated with esch line is thet
of time increasing.

A disturbance inmedistely aheed of the shock gives rise to
three distinet disturbences - the change in the shock speed
and the two waves travelling along Co and €+ in the zegion 0
between the waves., Since the shock woves with supersonic speed
relative to ths region 0 no wave can be propagesied from the shock
along the positive cheracteristics in thig region. To determine
the three independent disturbances we have three sguations due
to the fect thet the three conservation equations scross the
ghock have to be sotisfied when the disturbances ere introduced.
Hence we cen regerd these disturbances asg known,

Congider now the effect of a disturbance arriving at the
flame. Waves are propageted from the flame along Co and C- in
the region 1 behind the flame and along the positive cheracieristic
in the region ehead. Together with the displacement of th; flane
these make up four unknown disturbances. To determine these we
have, as for the shock, the thres conservation equstions,

The condition that the tube is closed at % = 0 serves %o
determine the wave travelling slong the positive characteristic
in the region 1, which is the reflection at x = 0 of the wave
travelling along the negative characteristic., We cen thus pneglect
the fact thet the tube is closed and also the reflected wave in

considering the uniqueness of the solution due to & disturbaace
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ehead of the shock,

Since there are seven degrees of'fra@&om for the distuxbed
flow end only six equetions d@tarmininghth@m, Lt follows that
there is no wnigue solution to the problem of & smell disturbance
ahead of the shoel, Thersfore the system is non-evolutionary (2).

Thig result can be srxived at by cénsid@ring the effect of
continuous smell disturbancee throughouvt the complete flow due
to a given initial distribution of distucbances in the gas
(ioce on t = Q). It will be shown that the general solution foc
the perturbation of any region of flow contains a degree of
freedom (i.e. an arbitrory function) corresponding to each
characterigtlc along which disturbances can propagate,

For a given distribution of disturbances along 1 = 0 the
solution for the region 2 can be considered as known, Theve ave
thres degrees of freedom in the region O and another two
corresponding to the displacements of the shock end the fleme.

If the tube is clomed this gives one condition on three degrees
of freedom in the region 1, reducing the number %o two. If the
tube is not closed at x » 0 then there sre still only two degrees
of freedom as dlsturbances cannot propagete along the positive
characterisitica in this case., In all there are seven unknowng -
two in region 1, three in region 0, and the shock and flanme
@ipturbances - and there are only ﬁhe six congervation eguationsg
to detvermine them in terms of the prescribed initial disturbances,

The fact that the system is non-evolutionsry, i.e., that
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there is no unigue solution to the problem of a given initial
disturbance, is teken to mean that the system is unstable and
cannot exist for eny length of time in practice (2).

Since the problem is underprescribed by one squation let
us seek a soludlon in vhich the region 2, ahead of the shock,
is wndisturbed, so thet there are six equations governing the
remaining seven variasbles., We can conglider the problem to be
that of finding the effect on the flow of a given, arblitrary,
small displacement of the shock wave, l.e. of determining the
six reneining wnknowns in terms of the shock displacement. Yhe
solution for the disturbance problem, as posed in this fashion,
is evidently self-genereting and therefore wnstable, The problem
of continuoues disturbances is complicated by the interplay of
waves in the region 0 so that the velue of sny variable on the
fleme depends on the values of the shock displacement at three
distinct insgtants (the three voints of intersection with the shock
of the three characteristics drawn through the point at the flame
under conslderstion),

(11) The disturbance of the shock and the region between the waves

It is to be assumed thet no disturbances originate in the
region 2 ahead of the shock, Hence this region remaing at rest
under the perturbation of the system,as disﬁﬁrhancaa originating
at the shock cannot propagate into this region,

Congideration of the conservation eguations across the shocl



in perturbed form, gives three equations for the values of the
disturbances immediately behind the shock in terms of the shock
displacement., If the shock speed for the perturbed flow is
W, o+ W(t), where W, is the comstant shock speed of the besic
flow and W(t) is of smell order, then the boundery values of

L

u, ¢, 8, on the shock are known in terms of W(t). ¥Foxr the
basic flow to ewist at t = O it is necessary that W(t) —» O as
t =3 0, It will be sssumed thet W(t) is & continuous funoction
8o that no secondary shock waves are set up.

The perturbed form of the conservation equetions across the

shock are obtained by differentiating the basic equations 1.6,

1.7, 1.8. Eliminstion of Co bhetween the equations 1.7, 1.8 gives
* ¥+l 2.
Wo = W, wewey =0 (5.1)

which, on differentiation, gives

. B BN
“cﬁ ¥t \!\,a
T—‘l\‘u@ ) Ba'y." (§°2>

Differentiation of 1.8 gives (using 3.2)

- b —
Co= Keo %\Noﬂ\ko) LK, + uﬂs \N

= (Y)W  say. (3.3)
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Tron 1,6 we deduce

?Iﬁ ‘:!-il oo
3o \M (u \N) W (3.4)
Since o =e V. ? we arrive st the following

result for the entropy disturbence behind the shock

= (\f“l)c\l "3'“”\1\‘0"“0 e
<o -—“’gL Gk g %‘:’;T% W (5.5)

== \%”\?ﬁ Say

The pressure disturbance is given by

\ g Re 1,
o = . (3.6)

Bquations 3.2, 3.3, 3.5 give the boundary velues of the
perturbed flow in region O on the shock, Let us now find the
general solution for the disturbences in this region. The

governing etiua‘bions, 2,14, 2.15, are

Ly wluotcd ol oy %}gm)wt *t»(\faz)(;ga{ =+ | (3.7)
B+ luomcQ B +4 &ta-x)« () @-’E fu ==L (3.8)

where u,, ¢, are constant and . =pf =0
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The function H is constant on the particle paths so that

H = H(x - uot)
which can be written
FH(x - uot) a Y (x - uot), g8y,

Thus 3.7, 3.8 become

T +(owed Ry = K Gteuct)

By Tluo-9 B, = ——’)L‘(sf.wmot)

The characteristics of 3.9 are given by
_dx G

.. L
U+ e ﬁy(x-uoﬁ)

at =

Integration of the first peir gives

X - (uo + co)ﬁ = A,, constant

19
and the second pair can be written

de

at = = =
ﬁi(ﬁ1 + coﬁ)

which gives
z = "&!’t//’((ﬁn'&-cnk) "n"é‘a. J |

where Aa ig an arbitrery constant,

(3.9)

(3.10)

The general solution of eguation 3.9 is therefore given by

== = il*(“q-ﬂ'(n)&’% ..g.f&l-; %(K“V\ot)

where F lg an arbitrary function,

(3.11)
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Similarxly the general solution of 3.10 can be obtained in the

form

...@ aemnd Gc('t')’\*- l”\o""cf?)k‘g""%:%(){““ot) (:‘:‘012)

where ¢ is an srbitrarxy function.

The entropy distucrbanee is given by

B i
el Sl Ry ER (5.13)

The general golution for the perturbation of region 0 is
given by 3.1, 3,12, 3%.13. This containg three arbiitrary functions
¥, G,%% which are constant along the positive characteristics,
the negstive characteristics and the particle paths respectively.
These functions asre determined by the conditions 2t the shock,

The path of the shock for the bsgic flow is

X = Wot
and for the perturbed flow it is

¢
L= \f\,ot =k SQWMO\K

Consider, for example,the value of the entropy perturbation s
» 0

on the perturbed position of the front. This is
— k -
SQ %(\E\}Q"\iﬂ)!{. ""(— g“ Q:a L&){!\k
- / t— =
- ga: 5\(\”0"\&3}%—\& A Lo . S \N(H&Kq}« . .
]

which has to be equated to KﬁﬁTt) from 3.5, Whewreas the first

term in the above expressgion isg of first order smallness, the
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second ig of second oxrder snd can therefore be neglected, In
general the values on x = Wi can be used for the boundary values
cn the perbturbed path of the front,

Setting x = Wt dn 3.13 and using 3.5 gives

. X & i o
Lpversad = LEETO = 6T,

2."’“6’"“} S
Hence
&% o :2!.'::.9—-2—&-'-"
f@ ('}L"“'Jt:)f’: Te {""-" N i_:‘;'.\ﬁc,“ Ma (3:»14)

Similarly, setiiog x = W in 3,19, 3.12 and waing 5.2, 3.3 we

obtain

(eeryBit = F L {wmuemcd) t‘% \ W)
AL G EECR IO A RO L L A R
i&),, LY 3

and hance

1o 4¢a)t
B (Llo ) =

™ i:rt-'(uu-wg)ag = (Rt‘*\‘{ta."\*ib W W‘;ﬁ:iﬁ(a)-%

oo tremeoll = lemend W RS

Afver setting

E{\?‘ %{\"“'{L“V‘B
R'L R \2(\ -‘%]“&{‘zﬂ“’g

we can write the solution for the region 0 in the form



o X={u.+¢)t W
of o w\\\\!\&%m}u“(“a‘(o)—{ \(\3 i\“ _“675 (5015)

e X, “‘L“m pl ¢ vt e ct

3@-\&0%
= RN 1 5 %
e (3.17)

This seolution can be considered geometrically as follows

e F

A

P is any point in the region 0 and PA, PB, PC are the positive

and negetive characteristics and particle path through P, Then

L (P) = RW(A) +%, W ()

B (P) = ~R,W(B) +¥W )

T (P) = W W)
The disturbances a® P are seen to depend on the shock
diaplacement at the three distinct points (or imstants) 4, B, C

due to the propagation of the disturbances along the three

characteristics, It is observed that A is ahead of P in time,
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This is not an inconsistency but is due to the fact that the
disturbances are self-generating, Sitrictly apeaking we ceannot
regerd the disturbances as being caused by the displacement of
the shock. Instead we must consider the perturbation of the
system to be subject t0 certain conditions of the form 3, 15,
3,16, 3.17. Nevertheless the solntion can be sxpressed
mathenaticelly in terms of the function W(%).

This completes the solution foxr the region b@ﬁwa@ﬁ the waves,
The boundary values immediately shead of the flame can be

obtained by setting x = Vut in this solution., These are

®o = RWARY) + Q. T (k) (3.18)

WG = QW (k) = Rl (kat) +2 KW (kat) (3.19)

Too= KW (k1) (3.20)
where \]B_(uo-\- (o) - \,9—- (wg=<o \ - \'u"u"
\Q‘ﬁ \'\)o-l\ﬁo’*“_ﬂs ? ha."" W~ (wgmca) ) . WNo— Mo

and cen be interpreted geometrically as follows

N
S




Note that k’n"«" e \f"-}; > 0.
Using the equation of state 2.4 we can evaluate the

boundary value of the density disturbance ahesd of the flame,

:g:u..‘b.-. e \ﬁl
Se

= EIRERY - @B (- 2tege®ilan] 520

(14i) The disturbance of the flame snd the region behind it

The region 1 behind the fleme is stationary in the basic
flow so that the equations governing the propagation of
disturbances throughout this region are

—

e w2y = = R
‘{5"—{‘:‘ bisic ﬁ\ .(.;L - "%ﬁ"\(i)

e =0 (¢, constant)

c::h 2-;‘ W o= X ( ¥ "") C\: “‘Gq

2% (%-1) &, Ky (O , S8y

.
=

The general solution of these eguations ig

o T F(c‘t‘"“) Al %h‘ %I(i)
€, = Glaran) < % O

i (¥-
= sk pES Qe ?ét (-‘0.
LY

The reflection condition at the closed end, i.e. that

W= 2 -6, =0ony=0, implies that ¥ £ G so that



AlBso

LT e <
ShAe e \f’.’.. “E“.'!"' e e
r'; ' - Sy Cag (\G l)

s F(ekn) 4 Fleteg - 2R %00

L] Ry

The bovndery wvalues on the flame take the form
i _— <] ol ( ) " "’)P)
Wy o of v B, T ¥ 3 {m‘\““x{a) k’\g - ¥ )( (e Vo) b {3.22

RE, =& 46, = ¥ 3,1_(@-"'\‘&)“78“*\”(f(“*” V’ UMY

R
— o eh)
e . (
2 B L (,‘. { o=\ OV R ?(fl‘“‘f. \ﬁl 4 K:-E} A, don
s R e 1{ 1.5 "t LA ? Y 1T f‘-"at\\"a‘,} (%, 24)
%\ - % e - ” e ‘
Thage veluves fov thoe fliow benind the fisme are relotedl Yo the

values shead of the flame, derived previously, by the conszervatioa
gguations in psriurved form, which are obbtained by differentiating

1.9, 1.10, 1.11 and metiing u, = 0.

1
I VIV VRN N O ST L VI e 5
‘\‘:za (“f “ i“ " . \."3 Ltt (\fo" 8 \} ﬁc’ - \a‘lq (jo 25)

M %:4.1;(\;0_%)73\; 2 (-0 g) €T ¢ \ T L j?(?il
Mo~Ua
= T, O Ve (Ve T A NG, (3. 26)

Wl o N g &y = ‘ﬁl.t:. [ {Ltn"‘ﬁo)ﬁa.‘% ‘}t.&‘u-f.“c (3.27)

The terms on the right hand sides of these squations, ﬁn)

s

= EN N \ i - ;
) %, , are given in Serms of the function W by 3,18, 3.19,
%,21. Also W, 5o oY, n%L can he expressed in terms of the two
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functions F,%,, (3,22, 3,25, 3.24) so thet the equations 3,25,
3,26, 3.27 can be regarded ss three simultancous linear
algebraic cquations for the functions V, ¥,7%, in terme of the
function W. These equations contain the velues of V and 7,
the single points t and Vi respectively. T appears at the two
points  (e-Nobt | (caVo)t  and Wat Wb, kb kt.

Elimination of V from the simultaneous equations yields

\!g(\;a"“a) 5%’: ._k?"'\’“—ua) ""K‘ *kc\?\

— \! (\! -—“0‘ ----w- (1\'0““0)“0 < \L(a?o (3028)

<N, E:- w6 \uo(\Ju-\.\.)"ﬁ" ek (q'o_mo);:_"\
ci}\' ? - Y L\Jn"“o) Ug = kco (\! \(uu‘) Co (30 29)

We can now substituie for W, %’: j Ty in terms of ¥,%,

and then eliminate 7%,(Vi) to obtain the following equation
(using 1,10b)

‘%%F(k‘*gi ‘B’Vu ‘5-%“ ‘fi‘\!d‘““\

-1 €%
+ ke Flkst) {l"" fc\l., a7 C.(wo—“ﬂ'&
- ) B w—-)\:_s:!!i-—.,
- zswe,-m)sl‘ﬁ’*w“ “"QS L '“"“\."* c* h

2 % v 4N, -u.-g
- ¥ (Vo-to) <\ ic‘ N (\'0 ’ )

(where h‘.‘g - Vo, ke =V, so that ke D l& & 2 (.))

which can be written as

8% (kt) + 6, F(ket) = ELO) (3.30)
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where ?bz_".'? G, 0 dace V. < C.K“Q\Ns \.lo‘s)‘

Hence
“~

- Bk - Rk =-felld

A

o = ] o - - s s

- e am o

8. ““) H:‘i:«) B8P )= (-8 ,)EU?’-‘-"-)

Sumning these equations and taking the limit ag W=D e gives

a remainder on the left hand side

&) P )
v\v'naw

= 0 svaca }B‘h @\EA\}lkq\-&\ks\
and !Lk;m ?L“S\

w29
Thus %:G_Fuw.t‘) s i‘__’ - @uh) F % ’&‘)
80 that
Fly = 12_,__;@“ L.) ECr).

Thisg is the perticular solution of 3.30 and in faclt represents
the general solution also, The complementary function, i.e. the
solntion of the reduced equation with G(t) == 0, is obtained by

setting P(+) g::i;n,, n consteat, so that
B, h,:‘ e '%z.!n;‘ = 0

Since Bﬂ, Boy k4, ?a::5 are all positive, this equation has no
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selution for m posltive, whieh is essential in order that (%)
setiofien the conditlons of the problem, i.e. that all
dipturbances are sumell and tend Ho zero as ¢ tends 1o zero.

The solution for V is obtained by subatituting for

r—

ﬁﬁlji‘}-f%_ into 3.2%5, 3.27 and @1imim3$img“}£(?ﬁ) between

L]

them, which glves

sl 2]
S ‘.Kg‘"‘\ = CLW \j = ﬂ,‘&to cn ={ C\ *-%l-—" e {\?Q"‘U\ u)q"S"’\ “r‘(\\rhu;{l‘; U\g

Yo ( Yo (o~ o) a

-k ij‘"ﬂ - ‘fﬂ Flkat)-teg § oy« %EE‘ (ket)

[ro—-

— ?agkq"\“ gi.'%?;‘“’(\ﬁ "“a)%é \ ww::;obj ieg(ﬂis ﬁ”’cﬁﬁggi{'j
(3.31)

" i - By AN
*’-*"é;%\z“(‘@-\w%\?:; o % s,(ts‘»-\—e--%i)'% f {\ 33. f anc) kg

e coVo ariffm)%\ﬂ R, % lkt)
| EM-) == IJT\;E@ 1“0(\9u‘“°)4§ =280

& \Ja pn
L L\q oot + €t 4 2o N = (¥+v ““‘fg""‘ (Vo1 a) R W (\"&a,'i')

2 (g ueNolomia v T (4, b

€Ca €y
Wo = R, W (kt) +R. WD,
LT = R W k) - R (k) + 2K W (kst)

ang —

B = R (k- R0 = =) KeW ka ).
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The equation 3,31 defines the dlsplacement of the flame
speed, ?, in terms of the displacement of the shock spaeed, V.
If the function W(t) is chosen to be At", whexe A, are constants
and M>> 0, then V(t) is also proportional to +''. In this case
the infinite series is a geometric progression of common raiio
- %_: F L!‘ﬁ:‘?’ , Which hes o numerical velve<1. Thus the series
is convergent and V(%) is bounded if A is finite. If W(t) is
chosen to be a periodic funcition, say Vo) oin wt (), W constants),
then E(+) is & linesr combination of ain(l,wt), sin(k,wi),
ain(lggvrt), go thet the infinite series is a linear combination
of the three serles

fo¥e) -\ w

< (:rjéi) N }EL.M&-ugt)

= o J = ?u 29 Fo

8ll of which are convergent since |@.)~<‘4.‘3;~.\ o 1t is

observed thet if W hes frequency w then V is a bounded combinetion

of terms having frequencies

«
%i) 1‘2; (N o Where r ig e nomn-negative intoger
end ) = 1,2, 3,

Since the problem is linear the molution due to W(%) being o
linear combination of oscillatory terms and terms of the form AL T
ip simply the sum of the solutlons dwe %o each individuval term in
W(t),

It is observed that the infinite sum in 3,31 is finite

provided the function E(t) is bounded, by comparison with &
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(_. B\

multiple of the geomotric sexies ‘-'{g;) - o Thig
=0

neens that & bounded displacement W will alweys produce a
bounded displacoment V., However, e solution proporiional %o o
pogltive power of ¢ ig unbounded as t - %@ | although owr
solution would ne longer be valid, Thus the existence of such
solutlons shows thet the system is wnsteble.

(iv) The cese of a y_accelerated shocl

Conglder the perticular case in which the shock accelerates
wifornly, i.e. W(t) = At (A constent) and the path of the shock
is x = Wt + 3%, The solution of the simulianeous linesr

=3

equatione 3,25, 3.26, 3.27, gives the following valuves for W , V

. £afs-0.80
-y Ao B (3.32)
5w f:f-Blle (3.33)
‘3‘\@‘5 ‘A'&.Q‘t
where A = %o

ho= 2= (g4duo(Vo-uo) eV = W5
A, = Lt )RB b R) ¢+ - ok Ri- kR 2k, Ks)

- (Vo-ud &, %\'&R - R Ra -2 (Y- ‘)‘%kﬁ.}

¥ Vo <o
ﬁl} = '-'-%-“; c&-(tf-a) ““g;o‘“ﬂ

ﬁs’ g 'J.(\ig—\lg)-b- (%‘—I)(\fq,"""o)(l- :_

S i"" (x-1) (\!.o.;_::;-.)‘} (b Rty Ra) (uu‘)(ﬁi‘é“—ﬁ'{mrhm“ SELN ‘i‘%
—ﬁ-fi"-“-' ﬁ_\v. Rie-ka Ru-2(8-) R5 K 73



The solution fox ;ﬁi " %&- hap been tabunleted over &
renge of values of W fox one set of values of the basic
parenetors (i.e. ¥,Q k?;,., Ra Do

Por the sake of comperison we can conslder the problem
negleciing the faet thet disturbences ave propageted at ceviain
speeds elong the characteristics, assuming instesd thet any
disturbances ave propagated instentaneously, This is equivelent
0 apsuning that any algebreic relations, involving the physical
varigbles in the separate rvegions of fleow, which hold for the
bagic flow,also hold for the perturbed values., As for the
digturbed system, there is one degree of fresdom in the basic
£low, @o&o W@o g0 that 1f the shock speed changes %o WO + ¥  then
the disturbances in the flow are found simply by differentiating
the slix conservetion equations rvelating the flows in each region.

As previously, the velues behind the shock are

Ve = 2K, W

T o= (¢-)¥a W

T oL, wo- 3w Wo_ =
$a \N‘,(\AQ"’No)

end in this cepe these eguations represent the values of

To , Co | %‘3; et any point in the xegion 0,

Eliminetion of < between 1.10, 1.11 with u, = 0 gives

@ s . (Dl
(';g;.‘) muu ﬂ%‘\( + \&U&o = Voe %o

vhich can be differentiated to give V in terms of Yo ,; Co and

hence in terms of W. This results in the equation
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il \ n - (-\9
Too alvend [§ 68 gy Qheil L ity ]
W (\h"\\ cr)-&rfg (\’ "““) Wa N

@ A, 38Y.
If the path of the shock is
k
= Wot o (W (dk
Q
then the path of the flame is
k—r-n--
PR :\Jat ‘!‘”g N (E-&k’
= \| o % / g W k)ék
Congider the wvalue of A\, in the case of a Llimitingly weak
shock. The wanit of velocity of the system is takean to be the
sound speed of the initial gas i.e. the region 2, We have the
following epproximations for u c v W

of “oF ¥ “p

Wo b ) cg av), Vo<l w44

and W
\!u“" R (b""\) &
80 that
(X“'f) Q 0
>\ e (\’D"uﬂ) % (\fo-\ﬁn) U\; \\\
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The approximaetions For s limitingly sirong shock are

Mo v e o Vo AW, PN (Ll VNS
€t ) ) (]
. 4 ~
\1{:5 L :g“:; ) \e\l A --—--?:“"é”"l"‘

Co (¥4¢)"
so that A, ~ 1,

Oalentations hoave been made for this ‘einplified’?
spolution and the »revious ‘wave' golution, The valuss azgigned

to the yparameters of the problemn were

A=,

| - E o
Cy = 1 (by definivion)
2. = % gm./litre

bx = 1 atmosphore

5
]

1, 400 calorvies/gu.

= 41,8 on the scale defined by Ty = 1,
With thess velues the wpper limit, ¥° for thae shock apeed for
these subsonic flows tekes the wvalue 4,69, The range of values

of W nsed in the calculations was 1 & W & 10,

The two solutlons are plotted on the graph Fig., 3.1. It

sty

=
is obsexved that both solutions for*%% decrease steadlly as W,
W

iz increased end tend ssymptotlically to the wvalua unity st Wom ol
The value given by the full theory is ealways gresater than thet

due to the simplified theory, particularly for lower speed flows,
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The linlting veluwes at W = 1 are 2 and .77 (given by 3.35)

raespectively,

Phe graph Fig. 3.2 shows the resulis of the full theory

for three combinations of Y, Q. The velues of <L L. are
W W

Plotited. The former is always greater than unity end has the
limiting values ©Q and 1 at the lower and upper end of the acale,

wh@reas% is elwaeys negative and has a finite iimit at W= 1
W
and the limit O at W = 02



e

4, The Chepman-Jouneuet Model

(1) Stebility and Uniqueness

The representation of the Chapmen-Jouguet model in the

x-% plane is as followa,

//F

A S

The regioner of flow are

L}

2 - state of rest ahead of the shock

N

0 - uniform motion between the wave fronts
1A - simple wave behind the deflagration
iB - region of rest,
The positive emd negative characteristics and perticle peths are

pkaetchad

>3

pogitive characteristics (C+) negative characteristics (C-)
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particle paths (Co)

The direction is that of time increasing,

In order to counsider the stabllity of the system consider
the effect of a disturbance propegating through the region 2
when it meets the shock., This resulis in two outgoing waves
(C- and Co in vegion 0) as well as the displacement of the shock,
The effect of a disturbance at the flame is to initiate three
waves (C+ in region O and C~, Co in region 14) as well as to
displace the flame., On the last characteristic of the gimple wave,
i.e. the line separating 1A and 1B, two waves are propegated (C-,
Co in region 1B). Since this is & sonic line the fact that the
tube is closed does not affect the problem as waves reflected at
the end will not catch up with this ling. Thus there are 7 unknown
waves and the 2 unknown displecements of the wave fronts, The
equations governing the basic flow ere ten in number composed of
1. the three conservation equations across the shack

2. the three conservation equations scross the flame
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3o the three equations demanding continuity between the

regions 1A and 1B
4, the Chapnan-Jouguet condition,
If these four sets of equations were applied to the perturbation
of the system the problem would be overspecified. Since none of
the equetions 1,2, 3 above can be relaxed without violating the
laws of ﬁechanica, let us relax the Chapman~Jouguet condition for
the disturbances., The system ls now evolutionary, i.e. we have
nine equations to determine the nine unknowns appearing in the
problen,

The seme result is obtained by considering the effect of
continuous disturbances shead of the shock. The general solution
of the region 0 has three degrees of freedom (as for the subsonic
model) each correspopding to an arbitrery function. The simple
wave, veglion 14, has only two as the posgitive characteristics meet
at O, The disturbences propagating eslong these characteristics
are therefore constant, and in fact zZero since all dlsturbances
era zero at O, The region 2 has two degrees of freedom in its
solution, the disturbances aslong the positive characteristics belng
zerxo if the tube is not closed and determined by the reflection
condition at x = 0 if the end is closed, In either case they do
not appeer in the boundary'valuea on the limiting sonic line and
so cannot affect the solution ashead of this line., Therefore the
problem has seven unknowns (functions) together with the two unknown
wave front displacements, agreeing with the result of the previous

paragreph,
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The problom arises ss te the effect on the system of an
sxbltrary distribution of disturbances in the region 2. The
gtete of this region at ¢ = 0 can be defined ap & perturbetion
on zthe basic state of & wniform region at rest. However it will
be of much interest to find out whether ox not there exist any
unagsable, self-genersting solutlons of the type Ffound for the
pubsonic model. In particular there may be some value of w for
vhich such an unsteble solwiion exlsts with W = A% Phis is
in effect the complementary function of the solubion, Thig
problem will E@ investigated before the more genseral problem of
a given digturbsnce in the region 2, %o evelvate this latter
solution digturbances in region 2 will have 4o be inﬁﬁoduc@d S0
that-%ha boundary conditions acrosgs the shock, and hence the
solution obtained for bthe region 0 in the previous sectiom, will

have €0 be modified.

(i1) The dispturbence of the simple wave

Lot us conglder the perturbation of the simple wave, which
is the same for both @roblemﬁ.
¥rom The theory of characteristics we obbtain the following
well known resulits for the basic flow in the wave (which is
isentropic) P = ~du -+ ;f—_‘;; = consbant on the lines RT W=y
| i.e th@ negative characteristics.

Since the characteristics M = We-e, come from the uniform
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veglon 1B 1% follows that

¢ = ——{?}%“ = (*, , eay (constant)

wvhere €, is the rest sound speed of the simple wave so that
M= Quak ip the liniting senic line,
Also
of = 3 W "{;’f@' = coast e X = W T <
Therefore “,C\ are constant slong the positive chareciterisiices,
A= U 4< | which ave straight lines through the origin, the
squationa being = M\4 <,. Thus we can find Wy, ¢, o 88

functions of x, ©

Wy i%ﬂ'(’f“'ﬂg;&

LoJ
i
‘Eq:,
’__:/'\
AP
P
i
S

L = waw\(g * %‘E
Hence we can write the egqustiong governing the perturbaition of

the sinple wave, l.e. 2.14, 2.15, es

%’c&.k«rnc{ “de %‘““% - 154-% @‘% “j;“b.H (4.1)
£ B +tlacc) B = -4 EH (4.2)

One set of chearacteristics of 4,2 is given by
ab = A%
W, -,
il.e, the negative, curvilinesr chervacteristices of the simple wave,

This equation is

0

R
Tt =% Xu Vo

which has the solution



=¥
6=\
-;&.';(3&.-3- "l&ﬂt} - C.‘%' - caﬂ$t " &‘E'H

80 thaet one form of these characteristics is

W= &*” o constent, which
defines y
-\
where N = Z{g’“ﬁ
end since € OC'Q:M' an elternetive form is

2
g S & = congtant,

44,

(4.3)

Before molving the equations 4.1, 4.8, it is necessary to

find the equations of the particle paths in order %o find the

form of the function H(xz, t). These lines arvo defined by

L]
w = My

° o & R -
ta. N T Try %;Q:' ~ ¥ a)iﬁ&

which hasg the solutlon N

e

o> |
> N Q,,Gﬁ = comst w &
ox N < = congb

ox g, &\ = consto

Therefore the stream function \}f can be written as a functioan of

either of the letter two varisbles given above,

let us write
Wl = 2 3 ol ()
= 2 % w’ (ih\&p)

where W is an arhitrary function,

The equation 4.2 can now be solved for B, One set of

For convenlence

(4.4)



cherecteristics of this eguation is the set of curvilinear
cheracteristics of the simple wave, so that we cen use the

integral y = conet Lo integrate the equation
Ce = -2 LTERY
uumm\w (c‘\.aﬁ)
~ap=t g oap - W
== £ W (g7
Therefove E? _ i M&(ﬁ\‘ﬁﬁ?
lf;\&
is & particuler imtegrﬁl of 4.2 and the generel solution is

"f@; ) “?N‘& WQ\M "\ ) + gome funciion of y

= T wlawh) «ag :(“3\) (4.5)
aay, where ?Q ig an arbitrary differentieble function.

The solution 4.5 can now be used to solve 4.1 fox a - One
set of charvecteristics of 4.1 is the set of wrectilinear
characterigtics of the simple weve

ioﬁa‘%

o ¢y = const.

a CORBH.

Therefore we can integrate the following eguatlion Lowx @

treating ¢, &g a congbant

% o= h R - F Eo "“L

K#l

1.8,

2=
Ly = c (@) « 5 Y0

&) a P EF, (PO )2

and hence

vt + 35T ()

== Eﬁ\&p‘ (405)
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This is a partiocular solution. To obtain the genersl solution
fox & an additional term, constant on the rectilinear
characteristics of the wave (.8 GG%) for an exrbitravy function
¢), must be sdded to 4.6. Since the ch&r&ctezistics-% = conabant
neet at 0, G must be comstant snd in fact sero, since G( X
88 ®, t both —% 0 along any peth, Thug GG%)EE 0 and @, B ave
given by 4.5, 4.6,
The entropy disturbance gﬂ can be found in terme of W ag
follows., If
5 = iﬂﬂu(\%f)' w Wy ﬂ\@? E&ﬂ} , Bey
then the condition
o S = w{¥-0) &y HOLY)
impillies that
&> wile ) aatP o, m ¥(o) e, 28 ! (6
cz“*f{“f"
a
mic:i‘*(’a) " g wm d -?

_ >
Wa(@:ttlﬂ) — %(};'ﬂﬁmc,'ii Qt_kml@ %g

where By, ig an arbitrery congtent

a0 thot

and hoence
e,\&ﬁ

: 2
= 'ﬁ(}{“ﬂ) Q\g % ki( ;:z } ‘Q:S N"EE) Gm}.?g
LY P
2,

The equations 4.5, 4.6, 4.7 determine the periurbed flow in

(4.7)

the simple wave in terms of the two functions F, w.
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(111) Self-Genersting Solubions

Let us now conslder the problem of the existence of selfl.-
gensrating solutiong i.e. selutions in which the region shead
of the shock is uwnaffected by the perturbation of the systenm,

Whether the tube is closed oxr not, the bouwndery values in

the region 1B %t x = c,mi; are

= ~F ( % Cna,t)
= (o, &:) -+ Qer.. rall SCD
3= 2O Ufog)
These values have to b@“?ﬁatch@d with the values on 3 = (¥
in the perturbation of the simple wave as the flow ig coanbinuvous

across this line, Egualting the two sets of values gives
4
e "5 &
Flack) = 239 s Folw) - 2wt ()

Flaca+ 2% () = shrwlaey?)« S RO)E ()

" { '.‘.1"3.‘:\
Y(cok) = 5&.%;_,§ E&ﬂ g ;@m dL’Q
?‘i‘{ S ‘&{{

where B, = Qma‘fd'kl

These conditions can be satisfied by In",,"’jli provided F o0 ¥ satlefy

the equation e, &%i"
e Se (| win)
ng‘ﬁl U&S Fﬂ("%) - ‘g‘fg g% x> 0&%
so thaet in genexal
@, 4/’
v ()
3-# "1,_ e @08
Xy F.l4) = g = 2 (4.8)
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Thig means that the perturbed flow in the simple weve can
be expressed in terms of a single function, e.g., F ov 8O that
the three comservation equations scross the flame front relate
P, V to the flow ehead, which is known in terms of the shook
dimturbance W(t).

Let us set W(t) = A", A and w constants with W ° =0, and

exanine whether or not we can £ind o solution which satisfics

2ll the conditions of the problem,

Let ues weite

-8 e
- y R a
?f'vg(‘f&} s }"\)dn- Q‘W‘ ‘\%

f
Coy m&"‘& Y ,% Q% %ﬂr
g’w, S A i M

P
dna

where Cy 15 the value of €, on the flome and 2, is chosen

to be zero.
Then the valves on the flame avre

T - (naap)het®
= e )t S
S = w{¥+) qﬂhg( AT
- g&,«w ) 2 (2L vr) by ?k

and the condition 4,8 impli@ez that

yas,gé;‘ai.ﬂ ] ke

L e
A



{;-:)o
Hence the boundary veluwes can be weititen
W = - (e t”
- - e
€ = %.“““’ %’%ﬁ’ B gw %M-
2.%(3=%) %\;& n (3~¥) :..ra 2 ?m
"

s:w- %.‘” T

For convenience lat us write

q
]
ey

v{mﬁﬂwa) :::k%(;-“ _
- - Lo

Aftter substituting for  Wo, ¢ ,57  in terms of

iy oY - .
W(=ht'") we can write the congervation eguations acrops the flame

in perturbed form as

. T, =i Ngm%s
i‘l J\i"‘wn}? '“F{:L' ¥ ?, N - \‘h %b Kt
%
VgV e s ™
Vooes V= P o & = Ry W
N 7, = R Al

(ueru )V = ¢, W« he, G,

whers

Re= i\iaw%? Reo~ Ry
= ™ —{\f g Ko -*f-—' (*«s-ﬂf\jiﬁz&
Rg = = (v, -uy ﬁg«ﬂ-f“ Re
lﬁs = R, h <+ Ry b
Re = Rk, - [Ka,?&a, + 2Kz kg
co Rs = RoWD- R bl = 2 (¥ Ks by

Thug h 4o hé kave to satisfy the eguations

-
gl&e&ﬁ _ 2(3=¥) < 25 4 =a.m.&3u-:ﬂ Sf' %.1\\%"* ‘”ﬁ\ﬂ@fm%“
5 oy
(4.9)

=S R N

\f =W o




O e 1N
iwmr k SH Ri-lkea,*r”b‘“‘" = %15}\

pliu — (4.10)

%wm«sﬂa - X0 gﬂ %Zh&_-ﬂrm"k LI

‘*W (4.11)

From these three equations h4ﬂ h&% cen be eliminated
resultliag in an equation for w. PFrom 4,10, 4,11

Vo= Ve
e L P

Eﬁ@g ==

= &‘i&%u 3"‘“& (4.12)
Substitetding this value fox h@ into 4.9, 4.10 and dividing

the resulting eqguations glves

ﬂ
{2 Eﬂlﬂ &*N (2 w)gﬂ K ?
WY = e £ Cyp_ Natp e
N 5 " Ve -
AU S v Ra=hy (4.13)
A
provided Yin) = ‘ﬁ"ﬂ'&” g == 0,

but Ylo)=| ana \ﬁ'ﬂw) is an increasing function of N\ so
that Y {w) =0 has no pesitive root.
For such & goluiion Vo have phyeslcal significance it is

necessary that N2 0, Bouetion 4.13 can be writien

Sy B A "
{m—a - “gﬁﬁh S Pﬂ < w {3-%) § ﬂ‘ﬂji . %k?(ﬁ" b Cav Ma c%

— B a ghA) (L

(4.14)

vokis
Ao



where GF™ (e=V/s wu \vf R
Co= = (et Vo-ug Ry
Cx = Lﬁfcm(\fe-!ﬂo) Wy
= (Vg=ug-cy) g;(v-»}m —\ Q- fﬂz (v, ~uo- wh)z&

L= (Vomtg 4y i&xﬁa){\sat-m&o)w e (v.,-m.,-s-‘m}I R
L R

By dnspection 4,14 has a2 root v == 7 N (= 0) having ao
physicsl significance,
FPor the cmae Y= 3 the equation 4,14 simplifies %o give
no= -y

QA

S 9] (=B ki+ (5-D )kt = © (4,15)

Fox the upper limit of such flows, i.8, ¥ = ?:f’m and ¥V = W,
we have = ?n,a E}? s0 that 4.1% is simply the condition
=D, + Cy- hkﬂ:ﬁ “Dy =
The left hand side of this expression wag evslusied for the cass
Q = 1,400 celories/gn,
b, = 1 atmosphere
§a = 1 gn,/iitre
Co= 1 by definition,
(for which W « 8,87, W, = 17.56)

and found to have the value 1,07 = w‘;o



For the case W = W', and the above date, 4,15 becomes
baveeo® (lowa)®  0:99uio™(0-87) = ©39w10® (0.05) = O
which has no solutlon with W >0 ag the left hand side is
positive for W=0 and iz incressing for w2 0,
Thus we conclude that there ave ne self-generating
solutions with ¥ = At" for the two numericel ceses investigated.
Heuce, since the problem is linesw, there is no solution wheon W

is expressible as & power series in .

(iv) The evolutionsry solutios

Let ue now consider the problem of the disturbance of the
systen due b0 a specific externel cavwse, PFor exemple we can
conslder the initial stete of the gus, i.e. the region 2, %o be
epproximately uniform with o distribution of velocity, U(x) say,
along the tube (W(0) = 0), the imitial velues of entropy snd
sound speed being conptant,

The solution in the region 2, ashead of the shock, due %o
this initlal distribution of disturbance is

Vo= £ T(R=k) « L T(aet)

o= 4 Tet) - 4T (k)

T
and L ke where Sa. = |
. Ra, / 4

ond the values on the shock, y=\WW,b , ave

W, =+ U imﬂﬂ <2 1 iw"ﬂ) tg (4.16)
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7 =1 Ul —3 *(Timm)t-g (4.17)
& 4
‘f;m = 2+ U i.(wa-a)% -= N (L(\NM)Q; (4.18)
A
Before differentiating the conservation eguetions across
the shoclk (with ER&JAEKJAQL non-zero) we can derive the

following general relationghip from the conservaiion sguations

(4.6, 1.7, 1.8)

( - e
‘:-_::“52" (Wa""‘“‘*h) ‘}‘“\Na"i" K"g':ﬁ Wo = %“‘uxjs =

which, on differentiatlion, gives

% F oM el R
asran o= L% e o ““‘"' R %
Mo = g ug %;.m w\mi E"“‘ Wo
aionce €\ = E,) W, = 0,
Also, from the equation
p
i .
‘P&E{;‘"#' (\a\ga"‘uo\ﬁ = t&(-z -t {Na“u&)
wa deduce that
- . e T w,* ~Wo) Mg
Lo Gy = \i"}% M‘;‘N t Qo = ! W"‘ ‘*— (N 0)

The deusity perturbation is given by

. 8, W= W -

Se TR Y W U TG0,
These bowndary values, behind the shock, can be expressed in

terms of the fuuction \J using 4.16, 4.17, 4,18

To= 2B + 2T, oot} +2 T (Wi} ] (4.19)



?gﬂ:ﬁgwhﬂ+%T;Wﬁ@mwﬂ+rnvﬁmwnq

(4.20)
e = -Sﬂh E-Q ( = (' E
fom T ey Cowlvnles of (4.21)

— _ i
= iy W ll‘)"i‘T:W {(\&Dhﬂ) l"guﬁ-T?‘vs\fwamn)%—?‘
where
T = —Sod Vot 2
Wiy = () =¥ ""‘”@:«E“
. X3 . Mg =g
2TV = TgET -{;ﬂo
Lol = - ~dwly 4 (We-ud 27Ty

‘&.i‘;ﬁkb =4 . -&;wo ol &\Ma ~\y) 21y

! 4 . B e
TE SR ol - G Bt W,
Y DL a.,.v& R T e

‘i-:’g - d:ﬁ Wl& lj‘\ ‘t‘ kg

The boundary values 4,19, 4.20, 4.21 senve to determine
the solution in the reglon 0 in terms of the functiens T, W,
Procecding ag previously we cesn obtain the boundary velues in

this vegion, et the flame, as
T = (Kb O) W) = (ko) W k)
(T T ~T)T i& o g1) kg%m (G-5-1) 9 SL(\M ot \""Q

& (Tgm + T;* "'T;_) A\ %.( W~ "B !u: Ji"} - ﬁ‘h“ﬂ-‘;ﬁs‘)‘@ X( Wi ) hl&l



we, = (Kb k) Wled) + ek W k6 « 2%, W (& t)
- (ToeTy =T) T Wt bl = (T, T 1)"@'{( ik,
+ 2T, T ) bt 4+ (T T 1) T $(w1) M%
* (70T U f o kbl 4 2y Tk}

- :L‘{(‘G

fs = YKBW(%H—F"@TE(N +=M\g+f“3’§wa "‘W!‘Y\l

S W . L
‘SG\ (.'3 g\ﬁ (‘gﬂ'l)
whasa T E e w8 (=) S T
) e %
@
1! = LY (¥m1) O
- T €y 2

These are the boundary values just shead of the flame, in
terms of the unknown function W(t) and the given function T(t),
We have %o xelate these to the values Jjust behind the fleme.
Applying the equation 4.8 to the solution of the simple wave
reglion, we can write the latter in terms of the single function

w, as follows X
w2
T, = l«s(c ty“) -k :‘ S (\ dx
“:A)\h& g

ccg“’l
A T ! m[,a ’) 4 <, W Ax
s}‘ S e 3”‘% (‘:\S S} > J\

a

_ (1)< 5 -\-—i}; wles) + <, Sm ﬁ&?&k}}

i

S\ Lo }a *
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go thet the boundary velues at the Flame can be writien

= = Sle)

o= <(w
= =2 (v

B
4 S

Qe "‘sfj

\;@(\ g ) W_ﬂ.,..-—l%—- !\1
- Y P ANe WL o e T A=
where f:,Uﬂ = ¢ N ) %

The three congsrvatlon equations scross the flame will

serve to determine &, t‘i W in terms of W, These ave
] -y T Y P 3. —
(V-uat ¢ Ste Voo g = (Veug 3o | @, (4,22)
. s cy o
Wom R . - ., @,
\;—\H 0 /\j U“ bg‘!"‘ l.:\ - }f"‘i‘\ (‘-ﬁ’o“uﬂ\! ‘«f"i"\ \1 L) ° (4°23)
Q
(N, -40) Be %V toCo (4,24)

-
{ue-wg) N = € % e @, = -

where the suffix 1 signifies the value at the flane,
In these six equations the veluwes of the functions S v
2t the single ingtent +t appear. U iz evaluated at the six

distinct poiats (W + 1) ks t (3 =1,2,3), but is known, The

unknown function ¥ is evaluated at the three distincd points ke

(3 = 1,2,3).

J‘t
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Bxpressed in texms of ‘ﬁ, S the left hand sides of 4,22,

4,23, 4,24, are respectively

Betle o e ey Mot €
Ty <\ ?
\kg"“\ =T
. VU S)
(wo-a )W+ = ¢

Blimination of V between 4,22 and 4,24, and 4,22 and 4.23 gives

respectively

35+ 0=0Vemwll S(Y)

= Q. (\\fa“!\’lu) §° - -{{Iem (\!0"‘“‘0) ‘{Eu “‘%‘\Q_(“?g

L]

-, (4.25)
o 2 Ceo
L i .-.E:—- %‘h e "c"’%;’"" ‘-(ihn -'%’ T P .
g{ﬂ = Y €l N8N s (U4 g~ho (4.26)

2

gince (Ii"*")(\fa*‘ﬂw) G = Co +¥ (Vs ~\o)
from 1.10s with \, =4, =

8o that the eguation relating W to ‘T, obtained by elimination of

$(t) between 4,25, 4,26, is

gy € Sxoap 3 =X Np—vo .SJ.E'{Q‘Q
FAF L e TRV

A—cai% ‘éfiﬁ(\%"\"‘)‘gm =0 (4.27)

ox Q@%\ %’9‘:«%‘@;\1}# ‘F’nﬁaﬂé’; - Q) —



In terms of W, U, 4,27 is

NG 08) G (l ) 4%, W (ket)
=N U EL(N@-‘)R,Q«%\{;Q_ R(\NQ-H)\{LQ‘ -tr\iz'ﬂ %\(\NQ-H) ka% (4.28)
XL, QL(WBF»\)\MGS AN TR YA S RmRY

where
___‘1{\_&_____‘_ v ___\j;_\___...--: e ___}-—:‘:""’:"’ oz {-\ \"T \ql’i‘ Q 3
l{ g-'\{\"%(;‘ TS- -1-\3"" \ \ Tb+ ‘eg-_ l‘ o )

7{"3 : \{"* — “‘Z e A Vo QLJ‘ Q["\

-.-:::--—-—-—"""—_‘-—-ﬁ.

ok Te T T "

—X b T o YA (IR
W T, T,

The solution of 4.28, written now as

%% (k) % W () 4 X k) = ELE)

for the function W can be obtained, as for the corresponding
equetion for the previous section with two terms on the L.H.S,

The series solution is

()

© b (beg)t YN /A0 R
W ()= 7 Z__“ et %‘;M:’:-.‘E(W)
A .‘{ i X‘ A\ (4029)

B-.\—.-O {?:0
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which hes been shown (4) to be the unique solution of 4.28

and %o be uniformly convergent provided l}izl + \}{3\ £ | X5\ -
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1e The Convexrgeing Detonation Veve

The problem to be considered here is that of a
sphorically (or exislly) symmetric flow in which there is a
spherical (or cylindrical) detonation front, moving inwards
towards the centre (or axis) of symmetry. The wave ie
assumed to have been initlated by detonating the gas, initially
uniform and at resit, simulieneously at 2ll points on a
sphericel (or eyiindrical) surface, so that the ges shead of
the wave front is at rest, It hes been shown by
Stanyukovich (24, pp 526-527) and by Selberg (23) that there is
no solution involving & uniformly contracting, Chepnan-Jougues
detonation front,

In order Yo investigate the present problem it will bde
necesgary to exemine certain types of solutlons, involving
shock fronts and detonation fronts, which are either plane orxr
spherically ar axially asymmetric,

There is e well known class of solutions for the one-
dimensional, linear wave motion of an inviecid, non-heat-
conducting gas in which 2ll physicel gquentlties are funcilons
of the single varisble x/%t,where © is time aiid. % is the lineax
coordinate in the direction in which wvariations may occur, Since
all quentities depend only on x/% the flow has slways the same
pattern on a gcale which expands wniformly es time increases.

Although guch a flow ie unsteady the fact that all wvarigbles



depend on only x/% simplifies the mathematical solation of

the equations governing the flow, which can be reduced from
rartial differential equationa in %, ¥ Yo oxdinary differential
equations in the single variable x/t. For a genersl ungteady
flow there is no such simplification. The particular type of
solution in which the equations of motion reduce to ordinery
differential equations is called a simileriiy solution. In
the case just mentioned x/t is called the similarity veriable,
A more general similarity solution in which the similarity
varisble is of the form x/t%, where a is o constent, will be
discussed later, In order to decide whether the solution of a
given problem is & similarity solution, one must investigate
the dimengions of the basic parameters which determine the
solution, This will be dizcussed fully in Section 2,

An exemple of a linear wave motion in which the similarity
variable is 2/t is the Chapman-Jouguet detonation weve starting
at the closed end of & uniform tube filled initilally with s
uniform combustible gas. The detonation wave is considered to
be a plane of discontinuity, moving with uwniform welocity into
the unreacted statlionary gas., The front gives a forward
velocity to the gas particles as they cross it, This velocity
is reduced to zero by means of a simple rarefaction wave, along
which the flow variables are consitant on lines z/t = consgbent,

and this wave terminates on the line x/t = the rest sound speed
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of the burnt gas.
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One can alsc seek similarity soclutions of the equations
ox maﬁion.for & flow which is not linear but has apherical or
axial symmebtry., In this case the physicel quantities depend
only on the radial coordinete R and the time . It is naturael
to look for solutions of this type analogous Hto lineaw
gimilarity flows., The spherlcal analogy of the linear Chapman-
Jovuguet detonation is the detonation of & uniform combugitible
ges initiated et a point within the gas. The soluition to +this
problen has been obtained by Taylor (25) and is & similarity
polution with similarity verisble B/%. A spherical Chepman-
Jougnet detonation front expends uniformly outwards into the
unreacted stationary gas. There is & wniformly expanding core
of statlonery gas and the fluld velociity incremees steadily
from zero at the surface of the core up to the front.

A simple, one-dimensional, uniform similarity flow is thet
caused by a eolid piston moving with wniform velocity into a

column of uniform gas at rest contained in a uniform straight
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tube, PThe fiow patitern conglata of a shock wave travelling
ahead of the piston into the stationary gas, with the region
hetween the shock and the piston moving with the velociiy of
the piston. The spherical analogy, & uvwniformly sexpanding
apherical piston, has been solved by Taylox (26), A spherical
shock front moves with constent speed shead of the pistorn, the
gas ahead of the front belng at rest, The velocity of the
region between the shock and the‘piatan increasss stesdily
from thé pigton to the shoclk. Agein the sinmilarity veriable is
R/%,

Por any similerity solution with similaxity variable R/t

the equation of a discontinmity must be of the form R/t =
aa
dt

gquation of the front is R = A), must be consbtant. Xf the front

constant, so that the velociiy of the front, (where the
moves into & uniform medium at reet ite sitrength cannot alter
i.8, the jumps in the physical wariasbles across the front de
not vary with time, Thus such a solution, in which the flow
is adisbatic, must represent an isentropic flow apart from
entropy jumps across discontinulties.

A more interesting, non-igseniroplc similarity solution is
that of the lanstantaneous relesse of & lsrge amount of energy
at & point in a uniform, non-reecting ges., Thig le Taylor's
point-explosion solution (27). A sphericel shock wave expands
from this point, which is the cenire of symmetry. Since the

anount of energy aveilable to drive thiz shock is precisely
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gqual to the energy libersted lunitlially snd so must be fixed
(unlike the spherical piston), the front decays as it progresses
through an increasing amount of the medlum, The similarlty
veriable in this case is B/t%

The solution involving a contracting spherical (ox
cylindrical) shock front, obtained by Guderley (10), suggests e
method of solving the present problem of a contracting
detonation front, This solution shows that the shock froant
accelerates as it approaches the origin, where the speed of the
shock is infinite., Aes the shock wave progresses ite surface
area diminisghes and the amount of ges pmgsing through the front
per unit displacement of the front decreases ag A decreases and
tends %o 0 &t B = Q, The similarity hypethesis uwsed to obisin
the solution is baged on the fact that the shock is strong, i.e.
that N is small relative to the initial radius of the front, so
that the soluwtion is independeat of the method of initistion.
The assunptican that the shock is atrong means that the values
of the physical varigbles immediately behind the front depend
only on the shock speed and the initial density of the medium,
This forms the hasis of the similarity hypothesis.,

If one congiders 8 detonation front in place of & shock
front then there is an sdditional emount of energy Q, the heat
energy released per unit mass of the gas snd assumed constant,
available for each unit mass of ges behind the front, However

the apeed of the shock front and the kinetic and interal energies
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of the gas lumediately behind the front are very large and
tend Yo Infinity as A tends to 0, Thus the effect of
introducing the finlte amount of energy @ into the system
must be of smell oxder and the effects due to Q cen be obtained
as periturbations on the basic Guderley solution., It will also
be shown that the effect of taking into account the sound
speed of the stetionary ges in the Renkine-Hugoniot conservation
relations across the front, neglected in the Cuderley solution,
does in Yact give xise to periurbation terms of precisely the
sane form as those due to Q. Hence the sciution o be developaed
here will be capable of determiniang the result of botk of these
effects, together or in isolation, The problem is in fact
linear in the tvo geparate effects of heat release aend finlte
sound speed.

In the Guderley solution the shock speed, sz, has

magnitude preportional to k?“gg vhere @ is 8 constant and
0< @ <1 gince U ~D>eo as A —% 0, Also ug, of, the
particle veleocity and sound speed of the gas immediately behind
the shock front, have megnitudes proportional %o h?"é; Thue
the kinetic snd internal enexrgies per unit mass, which contain
z?  x? 2-2/q,

Uy o C5 o ore of order A o Ve are to assume that the effects

of the detonation are of relatively small order so let uws write

Wy, ©p o the velues of w, o immediately behind the detonation .

front, in the form



éao
= ; - . 8
uﬁ s uﬁ + A

qg = c§ + ¢ kb, vhere 1, ¢ are finite,

then the additional terms in the energies per unit mess are
of ‘the form & w, A%, & c AP, Since these are due directly
t0 the heat release Q, which is finite, they must be of
finite order, Thus

& = b = -1 +<%

=4

1
5

. x R .
ploce u; » Cg 0re of owder A o , and the perturbstions are of

2
order A"°* s wvelative %o the Guderley solution, This result

will be shown later to be conpistent with that obtained from
exanination of the jump relations scross the frond,

In the present problem energy considerstions can tell us
only the form of the solution., In the problem of & point-=
explosion the conservation of energy shows that the similavity
variable ig R/i;%’o In this latter case the motion is confined
to the region 0 & R & A go thet en explicit form of the
conservation of energy cen be obbtained. In the present problem
this is not the case as the motion is confined to the region
R 2 ), and the solution is invalid ai large values of R.

The speed of the shock in the Guderley solution is given by

3 1 -

UB = = N &

Thus it 1s to be expected that the speed of the detonation front
will be of the form

= (- wd kB o
% m = A7 (148 A ), where § is & constant.
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The main interest is to evaluate the paremeter a for
the shock front and the perameter P deternining the correciion
for the detonation speed. Wherees the parameter @ for the
poini-explosion can be evaluvated simply by congldevation of
congexvation of energy, in the case of the Guderley solution
it is necessary to integrate the governing differentisl equatious
in order to evaluate @, In place of the energy esguation one
melkkes vee of the assumption that the flow is reguler on a
certain characterisiic, Bvaluation of @ is effected by
integration of the eguations of moticn, which can be reduced %o
a single ordinary differentiel equation, and by making the
solution setisfy the regulerlty condition at one end of the
range and the jump reletions scross the front st the other, Thia
can only be done by trial snd error, The results given by
Butler (6) for the six cases ¥ = 1.2, 1.4, 5/3 for sphericel
and cylindricel symmetry heve been recomputed and extended o
the case ¥ = 3, corresponding to the mowion of the products of
a detonation., It is necessary to tabulate the Guderley solution
over the renge of integration in oxrder to evaluaste the soluiion
for the perturbations as the former appesrs in the coefficlents
of the differential equations governing the latter.

In order to evaluate B it is necessary to integraite the
three simultaneous orxdinary differential equations for the
perturbations. As for the shock, the solution for the

perturbations must satisfy the regularity condition and the Jump
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relations siuwnltaneously. It is necessary to take into
account the displacements of the paths of the front and the
characteristic in considering the boundary conditions th@reo
It is fovnd that these give three conditions af% the front in
terms of the unknown B, and three at the charvacteristic in
terms of the displacement of this cheracteristic and one other
unknown parameter, As these are the only conditions to be
gatisfied the problem is scluble, The evaluation of p is
greatly simplified by the fact that the equations governing
the perturbations are linesr. Having found any two linearlyl
independent solutions of these equaitlions the appropriate
solution can be reedily found ar a combinstion of these two,

When the detonation front reaches the point B = 0 it will
be reflected as & shock wave, 1T the reactlon has besn comploted.

The gsection dealing with the equations of molion end
boundary conditions for the detonation problem will follow the
method used by Butler for the Guderley sclution. The same
trensformations of the physical varisbles will be uged,
Substitution of the form of the solution for the physical
variables into the equations of motion gives the required
ordinary differentisl equations. These appesr as coefficients
of increasing powers of R in the expansion of the equations of
motion, the leeding term giving the equation for the CGuderlay
solution and the second gliving the equetions to be gatisfied by

the perturbations.



Several suthors have spitudied related sinilarity
solutions end corrections to those solutions since Taylor's
solvtion to the sphewvical pliston problen, Thig appears to he
the first solution of this type, followed by the same anthor's
expanding Chapmen-Jouguet detonation front and point-exzplosion
solutions., The exmct solutlon of the point-explosion was
given by J. L. Paylor (R8) from energy consideraticns.

Sakuraei (19, 20) has found the solutioa for the second term in
the expansion of the poini-explosion solution, of order TI“;L
due to allowing the rest sound spsed to be finite, In effect
this extends the solutlon to higher velues of R, where the shock
lg lees strong and the rest sound speed is no longer negligible
(a8, of course, the present work does for the Audexley molution
when only the effect of the sound speed s counsidered).
Korobeinikov and Ryssanov (/6) have considered s point-axplosion
in which the initial density varies as a power of R, also teking
the initial mound speed into account,

Hefele (//) has fouwnd 2 similarity solution for s plsune
shock, decaying in strength due to the absence of any
reinforcenent. This is effectively the Guderley solution for
the lineav, one-dimensional case. Jones (/§) has obbained a
eimilarity solution foxr a plane shock, taking the initial sound
speed into account, propagating through s region in which the
density veries as o power of x (the linesx coordinate), not

varying move rapidly then x>,
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The problem of o plane shock wave arriving at & vacuunm
has been studied by Sakuvai (2/), who finds & similarity
solution, the method heing very similar to that of the
Guderley solution. The shock speed veries as a power of x,
the power being evaluated by means of a regularity condition,

The collepse of an empty cavity in water (cavitation)
would appeaxr to be a problem simlilar to the converging shock
wave, The former problem hes been investigated by Hunter (/3,/4),
who Integrates the governing equations numerically for the
initial stages and continues thip solutlon for the latter stages
of the collapse, when R is emall, by meens of & sinilevity
solution, In this case also the origin is a singularity, and
agaln the exponent in the formula for the speed of the fromt is
found by means of a regularity conditlon. PThe similarity
solution in thie cese differs fyrom that for the converging
shock in that it is isentroplc (i.e. entropy is wniform throughout
the £fluid) and the boundary conditions at the front are
digsimilar, The similarity hypothesis in this cage r@ﬁuir@a
that the denslty at the front is smerc, Holt and Schwarts (/2)
have found s corvrection %o Hunter's sclubion, of oxder Tﬁ“q
by allowing the density to be fialte,

Perry and Kentrowitz (/¢) have made experimental situdies
of counverging cylindrical shock weves., They succeaded in
forming shocks of moderate strength (Mach number 9,7) and found

that the stability decreassed rapidly with increasing strength,



The numerical scolution for & converging cylindrical
shock front has been performed by Payne (/7), whose results
are in agreecment with the Guderley similarity selution foxr the
final steges of collapse,

A digcussion of sphecical waves (called progressing
waves) iz given by Courant and Friedrichs ( 9). The 'l;heorj
of pimilarity solutlons is given by Sedov (22), which also
contelns the sclutlons to several of the problems meationed
previously. The Guderley solution is also given by

Stanyulkovich (24, »p 521-528),
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2, Bouationg of Motion and Similswily

Let us comsider the syherically (or axialiy) symmetric
motion of a perfect, inviscld, non-heat-conducting gas,
having congtant epecific heels at constant volume and presgsure,

c ePu The wvariables will he danobted as follows

vﬁ'

% - particle velooclty (in the onitward radial direction)
D - pressure

@ = densilty

¢ - gpesd of scund

B8 ~ gpecific entropy

vine

P
E

R - radlel distence (measuved from the centre of symmetry)

Y o GP/ Cpo

The equations governing the symmetric motion of auch & gas ave

5 i og 3
‘}33 as\%h w QM X | R 0 o
e e e = o1
Sc W S © 3 IR > R (2.1)
b S S
R e Al
e P T 0
Né._fg- e T = D 2“ %
SE 2R, (2.3)

where & denctes e physical quantity end j hrs the value 2 for
apherical symmetry. The corrssponding equatlons for axially
symmetric flow are the sbove with j = 1. Bguation 2.1 is the

consarvation of mass, 2,2 the equation of momentuwm, and 2.3
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expresses the fact that a® is constant for any perticle of the
gas i,e. the fact that the ges is non-heat-conducting and
inviscild,

These equations can be written more conveniently in

charascteristic form

%(m“:&:\&d) -Jr(u"* o %@(m—x lg,ut)

L u:f__c_.__* ,,:.._‘_.Catl_ﬁ
= = 3 = iy Q& (294)
*
R 8 T E—S-b? = VU
7«33’ TR (2.5)

2 % . .
where k = T eand ™ is the local sound speed defined by

ed™ = (‘Sﬁﬁ?)

% b
LTy S TR

The quentity ¢“ is a measure of the specific entropy s™ and

is defined by s

[ F=
Y <
$" = log S Q@

Suppose that U™ is the velocity of & wave front R = At),

along which the variables u™ cmg ¢K ere given in terms of

?

7" and M, where M is some quantity whose dimensions contain that
of mess, say density. This i1is the case if the wave front is a
strong shock wave (i.e¢. the sound speed and pariticle velocity

ehead of the front are negligible in comparison to the speed of

the front). Por dimensional reasons, the boundary values of uﬁg

cﬁ, p- at this front muet be of the form
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where B,, 3B,, B3 are dimensionless constants,
Hence, the value of ¢ at the front is given by

$" = k log U + ¢

where ¢§ is the value of ¢" at some reference state,

The flow is specified by the two quantities u* M, at

?

least in the domain of dependence of this wave front., Since
¥ hes the dimensions of veloeclty, it follows that its

dependence on R, N\ must be of the form

% A ; :
U = a3, vhere o is o dimensionless consbant

since'% is the only quantity having the dimensions of wvelocity

which can be formed from A\, %, M, A% any point on the front

E_dh A
it = %% °

Hence the equation of the front is

[)

t = ANE , Where A ig en arbitrsry dimensionless constent,

Let us fix the length scale by eetting A = a so that the front

is 1]
1 S
ah w
and ita velocity is q
Um - 1u@

a

Hence the boundary wvalues caen be writiten in the form
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Wk = B.ﬁvi&
et = BuNW
¢ = k(- &) begn+ 9]

3
If we let %-::- “R-‘a then, since no new dimensional parasmeters

,“J"

cen sppear in the general values of uv", o', ¢, it follows

that these variables must be of the form

o = w (DR

c;_:"' = Qi%} \Q*:f.%i

g = (- aR + §(€) + 0
where uh}-s-gn’ el = Bkd }6(’)@

These values can now be subsgtituted into the equations of

motion 2.4, 2,5 to give

{1- o} & (s209
= (ire)(nt)uthe) F VML = = {‘; EI% + iy (2:6)

AP — h{-agw (2.1}
o § I- & w
do

from which ﬂ can be eliminated to give the two equations

A
El‘* Q‘;(m-_‘«;()g 'Eﬁé(“\i%‘aﬁ)
= (=) w wx k) YRR = blie) o (2.8)

5 =&
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which can be simplified by means of transforming to the
variebles 6(%)’ s( &), defined by

':.:H\% ; S = C..%

to produce the egquations

i

g(awrﬁs)gfg(w-i\@.s) =

(2.9)

where

%-@- m(*ﬁ'*!){bm cﬁa({iﬂfgi‘fﬁkg)“’.@s&(fﬂ)gg . 1?-51;«\ >

from which we obtein

i.‘.b‘% "M = nmﬁws‘)%#=ﬁ~ (i=v-3) B

fUK.E) % 'E (& ?‘-&-s) (ﬂ-»x‘a -g) @. (2.10)

where D == Nﬁﬁ)(ﬁ*ffa-s)(ﬂ“f‘ﬁ)
The varisble ‘5 can now he eliminated to give the following

equation for r = x»(s)

Aode (1o 45) Bt (1=5-9 6~
. e (-5 +3s)By = (16 5) Q.

(2,11)

The time ¢ = 0 will always be teken %o be the instent at which
the wave front is at the oxigin, Thus t > 0 corresponés %o
expending waves and + < 0 to contracting weves. Bxpending weves
have positive values of 8 and contraciing ones heve negative

Falues.



79,
Coneider now the special case of @ = 1, for which the
similarity varieble is R/t so thet the flow is uwniform and

isentropic, asmentioned in section 1, Thus

i

=% - W
and the solutlion cen be written in the form

W = W (%ﬁ)

ch = ¢ L%}

X

4t = $R) < b

The fact that the flow is isentropic can be seen from 2,7 which

reduces to

a¢ g, o
ﬂ“"o/"qa““%.

Thus @ = 0, The equaiion 2,11 with @ = 1 weduces %o

v € (!-'-@'f‘-— & (143)

- = .

des = s (H*W){ﬂ“f'“%;.\r)«-s““

(2,12)

Stanyukovich (24, pp 526-527) shows that no solutions of
this form can be extended from the point corresponding to a
Chepman-Jouguet detonation in the contracting case. Selberg (23)
shows that nelther a Chapman-~-Jougunet nor an overdriven uniform
contraciting detonation is possible by considering the expansion

of the solution sway from the front. The argument given here



80,
foxr the non-existence of o wniforn converging front clarifies
the above two explenations, and involves exemination of the
integral curves of equation 2,12, These curves are glven on
page 426 of Coursnt and Filedrichs ( 92).

The equation has six singulay points
A (010), B(i/‘ﬂ, Qﬁ (0;3: ” 1) ( "% ) L U-z- lﬂ))

- -3;. -
Since k" =y 2 0 fozr Y—| and _ﬁwﬁwz) D:&: lie within

the tmangular reglon betweesn b =20 and ¢ = 0,
NS

B

&= \

Co Cu

>s
Aé:;s f \\\qrui*S

Since D chenges sign on crossing the lines ¢=1lts it
follows that the direction of the solution curves (i.e. the
direction of increesing t for o given R) is reversed on crossing
elther of these lines. In gemeral e point in the x,s plane
corresponds to a line R/t = constant in the physical R, % plane
and an arc of & soluntion eufve in the », 8 plane corresponds %o
the complete physical solution for some specific flow,

The jump relations across & discontinuity in the flow
determine the values of the physical vaeriables immediately

hehind the wave, and so a discontinuity of specified strength



81,
glves a point P in the r, e plane, this point corresponding to
the path of the wave. The solution for the flow behind such
e digcontinuity corraesponds to a solution curve of 2,42
starting et P and leaving P in the direction of increasing t.
Let us consider the jump relations ascross s discontinuity,
whose width is assumed to be negligible in comparigon with R,
80 that the relations acrose it are precisely the equations
across & plane front. Suppose there is en instantaneous
reaction in the gas as the front pesses through and this
releages & congtant smount of energy Q per unit mass. This
correspouds to & detonation wave and the speciel case Q = 0
corresponds to a shock wave,

Let U™ be the speed of the froant and the subscripts 0,1
refer to the values lnmedietely shead of and bebhind the front
respectively. The jump relations are the conservation equations

of mess, momentum, and energy end arve

g (wi - W) = %:‘(“é‘*w})

w Y~
\’:“"""gﬂ My —UK Y- = %’:‘ 4‘%“ (““
- 2 & (2015)
‘%(“3”0‘“)“*%%”“ “m)?%-ﬁ‘*a

If the gas ahead of the front is at rest then uz" = 0, Replacing

ThY
-5,; by ¢* and eliminating g 5 %;\r from these equations
glves

pe(aie WY () e o T (o) el 20

T

a® 3 < K
C" = Ug;“ B w%'m\'}
. ﬂ%”“m
) 7 \N’L‘F@Q ‘} v

N= 1{+1
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shock locus
detonation locus
infinite shock
infinite detonation

Chapman-Jouguet detonation

o= 1+8

nV

d=| =5
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2

from which CJ can be elimimated to give the followling

A
eguation for <\

. B o % & Q
&8 (U(:“ “U\:‘){%“F“’f W (¥=) =

In terms of the veviables x, s thisz ie
ey (‘("QJQ 2 .
g’_"—g(ant)i“‘{_\‘r‘ﬁ'\m W 5 (2.14)

and for a shock

JP

(2,15)

Since » » 0 1t is observed thet, for o given value of », %the
corresponding value of s for a detonation ig numerically lese
then that for a shock. The ‘shock locus® 2.15 is an ellipse.
The solutlon curves for 2,12 ave sketched in Pig, 2.1,
They do not dlffer in character whatever value be assigned to ¥
and whether j = 1 or 2. The ‘shock lacus® (01,5 2,15, and
"detonation locus® 2,14, sre exhiblted. These curves cen only
:x:'épr@swn-i; such waves for velues of » not greater than *%:g,‘; ,
which corresponds to & shock or detonation of infinite
atrength. The direction aszsoclated with the solution curves i
that of time increesing, Positive values of s correspond to

expending fronts and negative values to contracting fronts.

The lines » = 1 ¢ 8 corvespond %o sonic (Chepman-Jougues) paths,



8%,
Since no solwtion curves leave the line r = 1 +8, 8 < 0,

i1t follows that there iz no contrecting solution of the R/t typa
for a Ghapmén«Jouguet detonetion front, The paxrt of the
‘detonation locus' corresponding to overdriven fronite lies
between the Chepman-Jouguet point and o = :ﬁ%? . The
solutlon curves stariting at points on this arc run into the
sonic line r = 1 «» 8, where the particle velocity is not szero,

which is not physically possible. Hence thore ave no overdriven

solutiong,
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3. The Fguationg end Boundery Conditiocns for the

_JDetonation Solution

It was showm previously thet the effect of allowing a
release of heat energy scrossg & converging spherical shock
wove. is to introduce perturbation terms of order h71¢:§ in
the boundexry veluwes at the shock and in the speed of the front.
It will now be shown that this is consistent wlth the
congervation equations across such & detonation front subject
to the condition that U™ is large in comparison with both the
initial sound speed of the gas and Q%O

The solution of the conservetion egquations 2,13 determining

the jumps acroses the front for u’ ig

2!

U e J (- - 2 ()@ W
(g+1) K"

end since U 3> C, a* i can e wrivian

A% =

W ‘r,:&
"= W - RO (3.1)

vhere terms of order T -9 have been neglected

- mgda
i o3+ (31) Q

and K =

We derive sinilar expressions for cm, @K

w2 et
- c* - EUF B R (3.2)
where o i Sﬂ“‘“ﬂ v
EJ.‘:‘- b‘wf_:.ga-—-"""" Cf;‘ﬁ wd ‘%{l‘“ llf(ﬁ""l) (BEX) Q
2. (1) J;x; (=)
= = Sawly-1)

-l }



and the positive sign rvefers 4o sun expanding wave front end

the negative sign %0 a contracting one.

%=k Q,%(;e_- U\%— H, U{ +\’l5:°‘" (3.3)

wh@z:aH - A i{g'@!)Q'&‘ A=t C:&':.g

° L {¥~) y(g-1) °

The equations coxrresponding to a strong shock wave are 3.1,

; a?
3.2, 3.3 without the terms containing Q, c:;' o It ip observed
thet the correction terms introduced into these boundexry

e

S
values are all of order U" >, and since U° = - A % (taking

the incoming wave), these correction terms are of order N *R
By teking the appropriate values of K, E°, Hﬂ we can find the
effects on the solution of introducing Q and cfap githexr
geparately or combined. Thege boundery vaelues also show that
ifr Y is nearly unity, i.e, the ges has avery high internal
energy, then the affect of Q is negligible in comperison with
that of cﬁa,

The velocity for a contracting sphericel shock wave isg

Ut = -NTE
)

8o let ve write the equation of the converging detonation wave

= - N E (1R

where f is e constant depending on ’?f, )/Q, C

vhere 0O <« = £ \J

an

LS

(¥

o=

The boundary wvalues behind the front can be written



[+]
o
A

o

) -t =
"'L ﬂ o . ’ "“ Qh{'% / ﬁ." s,
0% ;;?>\ + L 7
L (¢

-

.ﬁ.ﬂ"
where terms of relative order ) =t have been

neglectead.

The general solution conteins no new dimensional pereamcters and

can be wrlitten im the foim

W = U‘*Q\E) ?\:rﬁ“*' qﬁ(%) %2:%& .}
= ()R w2 () RV
= k-5 Lok + $(§) +F(§)R

end ia this cape 2 4 0,

g

(35.4)

The functions w, c¢ ¢ determine the Guderley solution and %he
functions ¥, ¢ F determine the corrections for the detonation.

We can now determine the boundery values of these six funciiong
at the front, taeking into account the fact that the psth of the
front is now slightly displaced from the shoclk path, The equation

of the shock path ig {% = =7 go that the equation of the
detonation path is ';)
=54

- =3
% | (i%‘ ?E >\
where éi g

B T
80 the detonation is

{3 = -\ _fl—--' XM‘%{

= -0 (3.5)
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The boundexy values at % = =7 can now be Lfound by
it 43 #

substlituting 3.5 into 3.4 to give the values of w°, ¢, @

there, This gives

-4 —— "‘"'%(
o= al-ON Tt {_i%m’(-') *“(ﬂ)—%x

l"-%\ G ‘ .,.|} m{ﬂ_‘) >'" ‘J‘k
¥ = ¢\ " J3am StV < \

x \ (3.6)
~2t%
?ﬁ% = k('-%\)%a¢‘é(‘l)*{Fél]f é:(%:tsé(-i) A
from which we deduce
w(-\) = 35
Sl b (3.7)
(é("l) = f
and
C ol
aby= k- 2o e

El) = E' 4 gE = 5 0

32

Fle) = Hotkp - L p'60) (3.8)

The derivetive terms appeering in 3.8 may be evalueted
ptralghtforwardly using the equations of motion 2.8 and the
boundery velues 3.7,

Conplder the equations of motion of the system, The
equations which u", o, ¢ must satisfy eve the partial

differential equations 2.1, 2.2, 2.3 for the spherically

gsymnetric flow of an iaviecid, non-heat-conducting perfect gas.
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These were pul in characteristic form as 2.4, 2.5

-{?‘-&” ( W \ﬂc'ki) ,4_(“*1 Cm) “E:',{"‘( l&%i"@.(_"*)
N WER

= 2t A PR (3.9)

X- ¥
}mﬁ, T L5 Sl
3¢ =0

3R

The governing equations for the six variables @,c, l#v,'& €

can now be dtrived by substituting “*%, C“t, 56* from 3.4, inte
3.9, Thisg results in power series in R, the power of R
increasing successively by - 2+ %“3: y which ia positive,
Setting the lesding coefficients zero in each equation resulte
in the differentisl equations for the shock flow, The second
cnefficients give rise to the linear diffemential equations

whi.ch “‘R,E 3 ¥ must satisfy, These ore

]Si_‘g(“i c}g(“":‘: \;.c‘)

= (-t Qlushe) s VAU v@i- {‘i ﬁb{'%-\m(l--ea]lg
(3.10)

/ A\
ba\ = - (30 11 )
P (‘EUL 3 ( AR Se &z\" )
which coincide with the equations 2.8, 2.7 derived previously,

and
{l-— Clus cﬂ;(tﬁ“"h ),q,_(l_c()i(wscc){u S-\,,_q (m«f‘»hc_) )}
< (i (vx c.}(\f& “*-:-‘&c‘

(3.12)

= giﬂl(m&-?\c) = -‘?“‘(“' gh(l“°‘)“ %Q’)} £ {% =2 (I~ F’g
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(- §u) F' + 20-Quk= ki) {‘-# }f’ (3.13)

as previously, we can eliminate @' betwesen 3,10, 3.11 to get

(1= Sluzolluwzke
& (1= _g2 (3.14)

= (- o{){\&*i‘c}({h ko) 'fi';-‘s““‘:” X -k

70 solve the detonation problem 1t is necessary to integrate
3,12, 3.13 after eliminating ¢°, w’, c¢’, using 3,10, 3,11, and
solving 3.4 for w,c, The problem is specified by the five

differential equations, 3,14, 3,12, 3.13, togethexr with the

=

appropriate boundary values., The boundary wvalues fox ﬁ,, EE,,
at <§ = -1 are given by 3.8 in terns of the wunknown parameter f3,
and those for w, ¢ are given by 3.7, The parameter @ which
appears in equations 3,14 is as yet undetermined. Before we
can find a unique solutlon we must obtein one extre boundary
condltion for the shock solution and one for the detonation.
Before consldering the form of the remaining boundery

condltions let we rewrite the problem in terms of the variables

<(§) s(ﬂ’ ag(‘g)"‘g {g) defined by
= W (‘E' § == (_%

/
- =
The differentisl equations for v, ¥ ¢ ¥ obtained from
3,14, 3.12, 3,43 are
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%Uﬂrw'-s.)(ﬁ*\as) = ':‘

(3.15)

N A B
Q&Qm »E":'{-.s)(q * e") = (e (f«-s$5) (3.16)
% (i ‘*-"'*")Flr 2~ v F = %’————-—-—"!‘f\;‘) ¥ (3,17)

vhere

Be=(ry S_n - w(fﬁs\}g(w:h ) FAAT (o) 13_;(,,!:1\_ g

% B
s = et kete s ety
F-Ylk-1) ez -F S—) =5 \Ale T Fs)

o 2o (et - l**
=~ §%

OF§

7]
vhere €25£ %',F' have been eliminated from A+ using 3.15

o 011,
%1%,

From the five equations 3,15, 3,16, 3,17 wé can oliminate %

to reduce the problem to four equations for ¥, §;-E, ? considered

ag functions of s,

(1~ 5)( ?%%HQ Bo= (-re($5 R, (3.18)
(\i"‘-l)(l«-r-s) )% “A ( "'!@) (3.19)
(=) {1~ ) ( § g ‘”\Q ) B. = A- (%f*¥“) (3429

(€'~| ) B - (ivc{) ( sr-s)( H@.) g}\g-(sﬂ)i’-:.rh ?z (3.21)



The boundary veluves of z, =, 8, F at {5 = el 0@ § = B

cen be dedunced from 3.7, 3.8, After replacing U\', ('J Yb‘ in

3.8 by meens of the equations 3,10, 3,12 we get the bouwndary

vealues to he

A (wE) = e

) (3.22)
e a PIREE Ll
a E) - (1) (R =) ¥t et & K
= Foay = —6E_ atls-) 4\
s ( E‘) 3= ol IZN h‘ﬂs 3 (3.23)
F{‘“E) = H, +h & %;l"*" E%(}ng‘ﬂ

-~

The funciion x(s), which corresponds to the shock solution,
has e satisfy the differential equation 3,18 and the singlo
boundery conditlon 3,22, Since 3,22 containg the unlnowa
pargmeter o one other boundery condition is regquired. Tue
correction texms for the detonation r(s), s(s), F(s) have v
satiefy the differential equations 3.19, 3,20, 3,21 end the
boundary conditions 3,23, containing B. One extza condition
ie aleo required in order to eveluate B.

The two remaining conditions can be determined by
exenining the lines along which the basic soluiion of the shock
problem, determined by equations 3,14, mey be singuler. Theve

gre four such lines
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(1) b= (wxe)§ =0
(ii) l=u§ =0
(111) £ =~

In the B, ¢t plene these lines have equationsg of the form (5; =

congtant, i.e. they must pass through the origin., On these

lines
—
= R-&" © CONsY
L
go that ££§.,m IR _ jﬁ:_:k
&k T TE %
and for (1),

1
dR = (wxe R = = W= ¥
&k (

1,8, the positive and negetive characieristics in the R, ¢ plane
passing through the origin. Similarly (ii) is the particle path
through the origin avd (iii) i8R = 0, ©+ & 0,

The flow is thus seen to have possible singulavilties on
the two chesrecteristics énd particle path which are at R = 0
at the same instant (l.e. © = 0) as the wave front, and also on
the t-axis. It is esoumed thet the solution we are sesking,
which is valid for small values of R, is independent of the
conditions a% large values of R, i.e, is independent of the
mnethod of irnitiation, As the fxont approaches the origin the

disturbances it produces become unbounded, so that any inltlel



effect wlll eventuwelly be overshadowed by the effects of the
shock, Therefore we shall require that the solution be
regular on the limiting negetive cheracterisiic (l.n.c.)
through the origin., This enables us to evaluate the solution
for t+ £ 0, There 18 no positive characteristic through O for
t £ 0 a8 the flow is supersonic sheed of the front,

There is a posltive cheracteristic through 0 in the region
t >70. This has been shown (6) to be o regression edge, which
points to the fact that the front is reflected outwards from 0O
a8 & discontinuity. If it is assumed that 2ll the aveilable
chemical energy in the medium is released by the incoming wave
then the reflected expanding front must be a shock wave.

The particle path throvugh 0 is the t-axis. The solution

will be singular on the t-axis, i.e. at the centre of symmetry,

LA
where the speed of the front ,which is proportional to ka “

where 0L a<« 1, becomes infinite, As we have assumed that the
effect of the detonation is of small order relative to the
Guderley solution, the above argument for regulariiy on the
l.n.c. holds for the solution for the detonation weve. It will
be seen that thls condition of regulariiy gives the extra
conditions necessary for specifying & unique solution to the
conplete problem.

Since Uﬁ,ﬁ*,@# are regular functions of R, t, the
functions W,¢, $ &, T, F must be regular in % go that

€%, F are regular functions of s, If 8o is the value of s




on the l.n.c. then %% F can be expanded as & power

geries sbout thig point, ILet the expensions be

N E T 4 (s-8) v - - - - tTalsesg) - - -
? = ?"’ ’TT. (Q—i;) -4 - - - - '\'E_,\ (S-.go)“,i. 5
< = S, <, (6-%0) - - == S (S“";w)“"i‘ .

FﬁFu'*F\(S“‘So)"? = o ""'*F:,,(Sm—go)“.t PR

Let the equation of the Ll.m.c. he %m ({' (£ Q) for the
ghocle. £low, This path will be slightly disturbed for the

detonetion wave so in thils cese let the path be

¢ =% (1« RS

& -2 3
so that &= o %‘R“ (l + SR ) on this line
L g -4 il
and %@gw—?f"x = AE5K (3.24)

on the l.n.c.

The gemersl forms of WY, <%, d™ are

w =P R w (1) §"F

<™ = (YR L 2(f) £

$% = k(- &)l +(5) %F(%)R““%‘

-t d
so thet the velues on the l.n.c, % % (H g@ ) are

94,
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- R (G s s s ] g
&= c (D) R™ %(M ng AT ‘;)z ;= (3.25)
= W05« §0), 5.5+ FIERE *

On this l.m.c.

0% 4% 2
ST T W~ C
ok

b

80 that, using 3.24,

L S S Y S
¢ R T ‘R

"(m‘-':)‘& wt'i&& e )"'(K‘-c%ﬁ
Where we=u(5) ,‘M(-':" %Q_)’\"“k. <&
end equating coefficients of R in this equation gives
Ynre) =
so that o =g = | snthe Ruc. (3.26)
end %:‘ Clui- e+t (m-2) 4+ 32§ =0 (3.27)

2 S n‘—-&
I A M)k {,

“”"3'(1)“""2(?] = =¥ w’*“g'\i(&s}



and from 3,15 +

s §(85 ), (§3) - B
where B "E'E.‘.(‘r“,fe)

/2

Hence m’ _ - £\ @w
% e = ® 253 (6,4 )

and gimilerly
@ o+

Lo
t?’ €, =3 = S,

. . 2‘5}(‘34- l‘l)

inserting these into 3,27 gives

- {3
= B ufg§ 4 LOoU B g -\
° T Yglnen 2]

A

A

We thus have two eguatione 3,26, 3,28 relating $o, %, $a )";m
However the l.n.c, iz a negative charsctevistic so that the
varlabies on 1% must satisly the characteristic comdition which

is

& "& l&(-ﬁ)

!”’

g

i
s<y;
B
e

5? (3.29)

& A%
vhere W , €, § are given by 3.25,

u-c‘& '!E ,_t‘._w—"?.‘%.
When expanded this condition hes terms of order R 3 @\ )@

*

Setting the two leading coefficients zero gives

- - -



(=4 ) romtese) = 3Fe S = %(t-—-ﬁa)so (3.30)

- %%u-t- _}_:é_ LN
i.s“’ T ok (r.-a-tx)‘g a 2 (v +1- L ?S

tol o)t == 4+ 2kt L Not(zeey)
.\hgsailhd \"l' X X o 2 ——-\-:—:Z"*—f-a.

-.g-S,im-p ?-M‘si‘:'i?-ﬁ-%;saﬁ = (3.31)

The four equations 3.26, 3.28, 3.30, 3.31 serve %o

determine So, To, %o | T, in texrmsof Fo § The
lesttwo of these egquations could have been devived by
exenivnation of the differential equations 3,15, 3.16, On
this chavacteristic Y= |+< and the solutlon has to he
reguler, Since the left hend side of 35,15 vanighes at 8 = 8,
the zight hend side must venioh aleo,for - %% %o
remalin finlte at 8 = 8,0 Hemce B.= 0 at 8 = 840 which ig
precisely equaition 3,30, If we write

Q- :He- -ﬁ‘ﬁu. (S-Q» e . +Qn— (§=Sg)“-a‘.~ - .

then the derivatives %‘% 5 %qi‘?:

v

will be finite at 8 = %

£¥)

W

provided A, = O aund hy = 0. The fivet of these follows from

3,30, end after mome algebza it cen be shown that the second,

97,

A.= o0 , 1o ldentical to 3.3, If x_ is xeplaced by 1 + 8,

in equation 3,30 the resulting eguation for s o ig 2 guadratic
end g0 in geueral there are two possible combinstions

('*ro-i- ) So< )o('r""' ) So- )0



It cen now bHe seen that these Lonr coadibtlons for the

boundaxry values 2% 68 = 9 vogether with the goveening

@P
differential equations and the beundery conditions 35,22, 3.2%
determine the solution uniqualyo Po golve for » = x(s) the
eguation 3,20, conteining @, must be integrated subject to the
boundary velues *?(egz;sg’ y(«E)'a-ﬁg . In this way we cean
@valuaﬁ@cianétﬁppzaprim&e solution for z = z(s)., The
detonatiocn corvection Lerms G?, s )Er are deterninet by the
three linear divferentlal eguations 5.19, 3.20, 3.21 subject
%0 the boundery values 3.235 at 8 = B, in teras of the uvuknown

parsmater B, end the bowndary velues 3,28, 3.3%1 at 8 = 8_, in

@9
ternn of the unlknomm parameters go ¥

a

(4]

Phe Whlthen Simplified Analysis

B@f@r@ congiderving the resulits of the conplete numerical
solutien of the pzoblem as alwzeady described, 1t will be of
interest to exemine the solution cbtalned by applicetion of
the much simplified analysis, ir the form glven by Whithem (29),
fox the motion of non-stationary shocks.

The problem of o converging spherical or cylindricel wa#@
front i ovidently mathenaticelly equivalent to the problem of
2 gimilar wave Lront trevelliang along o tube in the shape of

e cone or an infinite wedge respectively,
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neglecting the effects of heat conducition end viscosity et
the walls of the tube, The motion of shocks in tubes of
slowly varylng crosg-section hes been studied by Chester (7)
and Chisnell (8). The latter hes applied his mesulits to the
problem of convergling shocks and compared his results with
those for the similavity solution obitained by Butler (6) for
the finel steges when the shock is very strong, As the arce
of the tube veries es R\ (eylindrical) and ag (spherical)
the cross-sectional eres ls verying very vapidly in the finsl
ptages. In splite of this the resulits of the simplified
anelysis are extremely close to those given by the similarity
solution (ot worst 4, difference in the eveluwation of @&, and
much less than that in most cases).

It has been shown by Whithem (29) thet the approximate
repults of Chester and Chisnell can be obtained by a very
sinple methed, the one to be wsed here, Thig is to apply the
cherecteristlic condition, which has to be satisfied by the
flow variables behind the shock, o the actual bouwndery values
immediately behind it. Whithem hes spplicd his theory %o the
problem of converging shocks and obtained the same numerical
resulte as found by Chisnell, This analysis is exitremely
simple end cen be epplied to the present problem for the
evaluation of B, the perangter determining the correction %o

the speed of the front,
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The appropriate charvacteristic condition was derived

previovsly (3.29) as

. ~{
AW ey = AW Rk - Mgt

According to the simplified theory this equation has to be

satlefied by the houvndery valuwes at the front i.e.

-4 -1k
W= 25 R (k- 2£)R
- "*L
et = ERT® « (E'+gE)RTT

$" =k (- L) LR + (Hot k) R

On substituting these values into the charvascteristic condition

and uwsing the fact that _%ﬁt:‘{ = Wt M ; we obtein a

2~ &

2>

polynomial in powers of R which has to be identicelly

8670, Hquating the coefficlent of the highest order term to

zero gives the following formuls for @
" £

i ‘ Wb

T GG+ B)

which is ddentical to the formulae 11 given by Whithem (29), On

setting the coefficient of the next highest term zere we obtain
the following equation for B, after simplifying by uvsing the
adbove formuls for @

o ER-@pE | FEHok-

%‘.E (3 +€) 4 (g -+ - E.)
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It is of interest to note that this theory predicts thet,
for a given velue of U, % ~| dis proportional %o j, which is
found to be very nearly the case for the similarity solution,
It also gives values for P which are independent of j. There
is no reason to expect the values of f given by the similerity
gsolution to be completely indepeandsent of j. The motion of the
shock is lavgely governed by the fooussing effect whereas the
aeffect of the addition of g uwniform heet release is purely a
volume effect. The present sinplification does not glve the
correct wave propaegetion behind the front as the cheracteristic
condition is incorrectly applisd. The nunerical resulis will

be given later along with those of the complete analysis,
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4, - The Method of Solution

The mathemntical problem relating to the besic shock wave

golution can be written as

e Cegws) 8 wli-s-9)6o

N e (4.1)
b h\i‘T {1~ \i“-{-g\ B, - {1~ ¢~ B :
3 2
with \5*(-' EZ) - :‘::T
(4.2)

\.@.(gq == )% oo
where B+ and B, depend on a, and 8, hap one of two possible
values, To evaluate a we must imtagrat@ the equation 4.1
between 8 = -B and 8 = 8, in such a ﬁay that the two conditiouns

4,2 ave satisfied. Since r = 1 + s and B_ = 0 at 8 = 8, both

the numerator end denominator venish at s = o, but, since r(s)

o9
is assuned to hg regular ot this point, %% ig in fact finite
for the required solution, However, the fact thet the
nunerator and denomingtor vanish 3imu1%an§0ualy at 8 = 8, may
give rise to difficulties in the integration of 4.1, The
nethod used to perform this integration, to be described later,
effectively generates the power series for »(s) ebout the point
B = 8.

It wes noted that the equation determining B for given
values of @, ¥, J, is a quadrvetic se that there are two

possible velues for s . When the power series for v(s)

T o 4085 « .- - - 46 (58 % - - -

is pubstituted into the differentisl equation 4,1 and the
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o AFe equated

to zero, recurrence relations are obtained for the coefficients

coefficients of the individual powers of a - @

T4 The first two of these are

Bon = -
s levW)B,. + (- )Me-W)B,, = 0

whese E"ﬁ' = Bb-,g < gm(‘a"'sn\ %t e e o® T

The equation Bo““ 0 is'@quivalanﬁ to 3.3%0, and the second of the
o %6 and

is a quedratic in r,. (B, conteins ¥, only snd B, contains

r, linesrly and ro)o The coefficient of (auao)n equated to

above equations serves to determine zq in termg of x

zexro glves
=) 5. (‘5'\*\1;)%“_”’" 2LSa WS, K‘_ % Tn (ﬁ“-\v_\ 'BQ-\'- “&I" 3")\,\&“@%
“‘V’ keﬁ'ms “'“ ‘q‘“ﬁ\) E-I-iu"'a-.. = 22

ﬁi O %as w32

where B,. contains Tae Tpge == = = = only

and is lineaer in T

Thus if ry ¥q ave determined, the remaining coefficients r,
exe uniquely defined in terms of these two. For o givea @
there are four possible solutions satisfying the given boundary
conditions on the l.n.c.

1f one selecte a value of @, between O and 1, and chooses

one of the four possible solutions and then integrates 4.1 as

fax as the shock point, i,e, 8 = -B, the vaine obtained fox
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»(~-B) will in general differ from the requived value,
Suppose that r(-~E) exceeds ;ﬁﬁ“ by an amount d, the
discrepancy (a funciion of @). 'The problem is to £ind some
velue of ¢ for which one of the four solutions gives the
velue 0 for d.

Heving obtained the appropriste velue of @, for which

d = 0, and tabulated the solntion fok r = »(s) over the renge
-8 %0 s, we can now conpider the solution for the detonaiion
correction terms ¥(s), 8(s), ¥(s). The differentiel egquations
vhioh these Functions must setiefy arve 3,19, 20, 21 where all
the coefficients are now known, In this cese the unksown
peremeters appear only in the boundary conﬂitionso The bourdaxny
velues at 8 = - are given bﬁ 3.23 in berms of § and mlso the
values of 7{,‘) , ¢ , Q which are to be essigned. Also
2% 8 = 8

8

the boundery values ¥, G

oﬂ
in teyme of the unknown parvemeters b, F ., The reguired solution
O T

o0 ore glven by 3.28, 3.21
has to satisfy the differentisl equations 3.19, 20, 21 and
these aix'bdundary conditions (i.e. including (11“)o 2 Fo)
containing the three unknowns B, b, Fye If we obtain two
independent solutions of the differentiel sguations, each
corrgsponding to a saparate choiqa of the combination b, FD and.
nelther in goneral satisfying the eppropyiaste conditions ot

8 = -I, the required solution to the problem can be foﬁnd by

taking the linear combination of theme two solutions which does
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satisfy the conditions at 8 = -, Thus we can find the value

of B so that the speed of the incoming front Uﬁg which is given

3" = K\* ¢ N M&)

ig known in terms of the distance N from the centre of symmetzy.

by

Let 6(0), ﬁ(o), and &(1), F(1) be the two pairs of values
(4] 0
taken for o, T, and let :"Eg"), 5}(;’) and i‘-g”, i‘«g) be the
values at 8 = 8 0 ~I of the two solutions so obtained. From
these we wish to calculate the gppropriste values of b, Fo, Bo
Congider the solution formed by taking X times the (0) solution
end ¥ times the (1) solution, Then this conbination has o
gatisfy 3.235 which we can write as
g -R
- i
Su = 9-& -& (4.3)
Asp +Ws
80 that we reguire
-’IVI - o
z Lo _(l‘ il a—" ' (404)
‘;{‘ SH — @ale e
W %'m T = ﬁae i

which can be readily solved foxr X, ¥, B. The correct valuss

of &, ¥, can now be found from
(o

F ¥ o)+W‘:o

e {0 Ll ) '-"'{"‘ - {a
WE “m =) (4.5)
(&~ ‘) SD-?
2e> (\S“-ﬁ l@)

S =

2 (a~) -
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The Numericel Solution

Consider the evaluation of @ and the tabulgtion of » = »(8).
The integration of 4.1 will be performed by nmeking use of the
power series expension for »(s) and by developing the solution
by means of an Lterative method which effectively tekes ilato
acconunt an extre term in this peries dt each iteration, Although
the expension about the point 8 = sg'ia uged to evaluate the
solution at all pointm of the subdiviglon, for all cases the
range of integration (-E %o so) is never grester thon 0,2,

The equation for ¢ = »(s) cen be written as

e t sy = e sHe'ck) 8~ (15 as)(o'- W) B,
- b (4.6)

and the selution cen be expanded aboul the point 8 = B, &8

U
€ =TT Lsmsa)t = =~ - 2 AT ) e~ ~ -

On subhstituting thie series into 4,6 we obtain the power series
‘(0 i '{n ( 5*‘.,“) e - - - ok 'Qﬁwksﬁg“)ﬂ'& = S

sy, where Q“"“" D for all W
and e, determines Yo
& 4

= 0
Qn = 0 determines W, ebc,

By solving the oquations G, = O for €. we can develop the

series solution for #(e), in theory., However the algebra
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involved is prohibitive, pertliculariy as the solution of each
equation Q“ = O is & separate procedure, For thls reason it
was thought necessary 4o @@Walop' an iterative procedure for
developing the solution., In oxder %o do this we seek
approximetions @n, Ru: to ¥, ' at the nth stage of the
iteration, with *@n, 52\.: equal o the series expansions for
N, 8 ' respectively as fer as the term involving Yw (i.e,

=\
Q

the tern in (s -s.) for Rn and (s-58) for R! ) . By

means of the appropriate iterative procedure sach successive
approximation K“.%; ney be formed and the solution may be
evaluated to any glven accuracy, by taking into sccount as
many terms in the series @xpanaions as are found to be necessary.

1ot Ri, &\ be the initial approximations to <, ¢
defined by

&‘-:; Tot I \(S"‘Su) s {{:";‘r&

By solving .iw-;:ﬂ /ﬂm-: 0 for ¥s, ¥\ we can tabulate the
functions @, ; ﬁ\" . By substituting &, ,@: into 46 and
exemlning the leading term we cen dervive a formule for K,j
which is the second a.ppraséimmian ta &' acourate a8 far ag

the texm in (s - B0

&lﬁ.‘ﬂ ; - s) = (R,~ w')(%%}sﬂ- (R:’*s')(:}%:)s “”ﬂ"'!-::;-_ ({(‘.. !’]1 (%)5
<+ l&a -8‘)(‘3:“3') {%%s‘)s -Q.(;,[‘e-?; % 20, L%j%.)a: D}

o= (so50) E_(A-) - ﬂﬁ% ‘:( 1 .
_,%_(5.;3 {-rg(.gi-—s,_ ( %}\‘azs‘k(%)&_ 2, %%x‘.@.lsi (%%*‘)3 4 0(($-59) )
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Let wg denoie &(‘@w R :,s) by | &(n) and define

‘ L.0)
;,: &lt - =
& (s—su)i(‘% -&»‘a.( % (4“7)

T S w6 + 3 2y (Sa sn)‘-% "-‘((‘5"“’)?)

o @3L-=g°~\} T35, 3&‘)% 2y ""‘“ ?
" mk@m &, F 3&(%);&-&(3&.)35 Ao ( ) -9 1( S

m-&-&

and {g ig independent of s,
Thus we can use 4.7 to tabulate R,f at each point of the range
and \QL can now be evaluated by integrating this teble

nunerically, bo give
3 ta
%&ﬁ&'a <&, Lﬁ"“%%"t@"m ((_‘m 55«»—@- ﬁ'& (5-5(9 - O ((Sﬂ-%o)‘)

provided the integration has not introdwoed exvors of oxder
3

(S»-‘Se) o The process can be repested indefinitely and, in

general

et

. . ql&!)
ﬁ =yt Q.i'm(s-‘ia).a- o = & m%‘«(gme} &% (vwa) ‘é.wn-g("g"s‘—’“) *+ O (56’5’0\

4 .
Ba = 8o T st} & - - 2+ €, (s—s@ w Cadq (’5*‘:—0)0\ - g(gg-su}‘“}

\w we-= | . § wh(\.& ‘B & n#&)'ﬁ’m«( 'i}u
w& \ m%@ *(wﬂl(mg‘-) ‘S 4 a (g\f}‘ &4 A o &31
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¢
The iteratlion formule o \Q“-;a is

‘Q\w:i = &v: - = Q}(“) .
(Q—":.u) S\G&)J’ (W“,)@é A‘"(S (4.8)

To integrate the table of values of K; we form
St
Rl = Ralse) + S s

- -
‘ wbere gn{ 5“) = o

It will be most convenient o0 use an integration formvla which
involves the values of @wf only ot points of the initial
gubdivision, In all the c&lculwﬁ:&gm the fellowing fouwr~polnt
formule wes used for the integration

$1

q s b_ ¢ ' ¢ .
gg\f JLS o= U "“'qi.,-._'a' ‘3@';-_“’3’ I3 ¢‘{_«-t-§|—§ _ (499)

(Sl

3

whore h is 'L‘h@‘atep width end «!‘{ =X "('5:), This formula hag
gynmetry in the points of evaluation and requires one
extrapolation ef each end of the »ange, siunce %, 18 known. The

relative exvor in 4,9, due to trvmcetion, is glven by

l"s
L ﬂt(‘émi) o
g \A dst ¥ w&n@.w_ g:“m-ﬁa. §3¢. ‘:gi_,ﬂ

3

Witk 5 subdivisions over a m&ﬁg@ of 0.2 in 8, h hag the value

0.04, so thet

A& g
"?'z.q‘/‘ = 4.0
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It is emsential that the accuracy of the lnbtegraiion formula
4.9 be such that any exvors introduced into Ra , by use of
this formula, are of order not greater than (s~%n)m¢%, Thisg
is arrvenged by meking h sufficiently small, and in practice it
was found that five subdivieions were sufficient,

For the extrapolatien.at the ends of the range the
formula used was the fouwrspoint formula, corresponding to the
integration formula 4.8, in ovder thet the errors in
extrapolation and integratlon be consistent, Thip formuls is
¢

: | ¢
b 53“’ QQ‘S’Q-»& ”%&%{Q,h

- (4.10)

¢
2 o=

Ledn =

The method enteils only a emall enount of algebre and,
being iterative, iz ideally suited for progremming om a
computer, It is self-cheoocking to the extent thet it cen only
converge if the successive eppromimations satisfy the equation
more accursiely ot ogch stage, eand it can be eapily checked
that the zesulting tabuletions for €< satlaly the eguetion
by examining the residwal, gimh ,» 8% ecch stege. Since the
renge of integration is very small there is no difficulty im
valng the expansion of the solution sbout a single point,.
Porheps the most importent sdventage is thet no ALfficulity is
de

enocountered at the starting point 8 « B0 wh@re'gg is



111,
indesermingte for divect sunbstitubion in the differentisl
equation,

The resuléing soiution for »(s), coxresponding to the
correct velue of @ (determined by triel end orror), can be
stored in the compuier to be wsed in the evaluwation of 2, &, ¥,

The equations governing the peviurbation gquantities 2,

B, T are _
L{s) %(3“1“5"5)3.1: (fa'-'-k‘a-'i') ~Qelet ) =0
M (s) = (»a'-t](l-ms)B_ (?'-\:'i‘)-— &.‘(‘L H = Q

' (4.11)
N { s) ﬁ(ﬁ'ﬂ\ B.;. F"“(l-— d}(‘-‘é"—ﬁ”f'ﬂ-!a)gZ\Tlf-l)F* 1*13’%"5 0

where » = x(s) is now known, Bz depend on », o only, and A+
ere polynomial combinations of , 8, B, », 5 aud are lineer in
2, 8, F |

The method to be cmployed in the intomration of 4.11 is
sinply an extonoion of thet wsed to evelvete »(s). Having
selected any two values for 6, P, we start ot 6 = 8, end
satlsly the regularity conditions 3.28, 31, The equetions 4,11
are to he integrated from g = 8, %0 8 = ~H. Iot the powex
sories expanslons for z, §, ¥ be
% -;“a-tnﬁ_g\(;..ga.@ - - 4Tty & ~ -

-

mare. — —— Wn ) .
T = Sack G (680 « =« =~ » a4, (e~%) % -

Fofaf (834 = = *afule-sde ~ ~ -

and let
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o

R“"-: Eb "'\“:f-\ (Q-Sa)"\ - - = % %“Lﬁ*gq\“"%\\“*&s"g“)

*:k o (( L= sg)“ﬂ')

= f‘ of (=5 a\“)
'Rf - 'i:\* 1?1((','_5&,‘ - —-k 'lj\-;‘,‘ (S"su) <% (U\‘H)‘"ﬁﬁ*""So ot
A

IS wel b
T = g 4% L6y ~ = = 4 S (6 =99 + O, (6-59) -%'0((9*501 )
w e '
-\ bine \\'i-t)
T =3, 2 () - - - -mZ.\(S’-SS«a(wn)g..-n{@%u) « 0 ((ss0)
" = Ay

w A\ ad
EW'; ‘Fa'ﬁrt(‘f&n)-@ R R(kh\*%ﬂ‘f’s% -%'0('-5“5*'\ )

4

£ = feaflesds - - teFalead )l s olles™)

The solution can be derdved inm theoxry by expanding

LL?,’E—‘, g"g‘}F) 5) es o power sevies in (s - go)_
Lo-ﬂrL,(s—sa)-t .. -kL“(s-sa)“ﬂg .

and setting Li = O foxr all 1, together with the same opewxation

on M, e L@ m 0 giv@g

e _ - (
Tk, = o (rieel (4,12)
gsx B
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and My, = 0 ( Mo= M= U by zceson of the vegulavity

condition) glves

F-ks, = o (.‘“"m (4.13)
gn (l“" S“.} ?}u.—
where A, is linear in Z,, B,
and, finelliy, N o™ 0 gives
%o-? 3 ke (- ‘”{){fl""tﬁ)(l‘?o% o -4 \&??o) (4,14)

Thue we ocan eveluate ¥, 51,3‘0 corresponding o the
perticular choloe of b, FQ, and tabulate the initlal

- approxingtlions

= wE— ‘
m—m by 0 -y MR
R‘“‘\rnﬂ?\?\(s‘“stﬂ}) \\‘ P ﬂ'\ @tco

8o that inmivielly W, = 9, = %%_ = 0,
bet we conslder the iteraition formulae in geneval,

Suppose that the residvals L(n), M(n), ¥(n) have been obiained

-
by substitution of Rn,, Rn ote into L, M, N, These residuels

can he expanded in powers of ( ;3..,.%)
W | - — _,=;l:
L () = (as ){s-52) %(%m‘i‘ ?we«) (%‘)ﬁ' (96\-@?‘ SM-) @-E‘) }S

4+ © (( S.'Qa)nm)

pd
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M= (s-sn)“ﬂ: I _L\\ N E;“*')Sl (%E-ti)""“ ‘*“"“) Gbg‘)l

Bun-5u) &@g) <l (22) %
-+ (%w* v F“*‘)(%%)t

-

-+ O ((S-Sa)‘wa)

J

and

N(”\). == {n+e)( 5“’50)“( Fw)('}gi)

W4t
o 0(('5-50) )
where, for oxample, (%'g)‘ is ihe coefficient of (s-s,) in
the expsnsion of -‘9.3«-%» end lg 2leo the first non~-zero
ocoefficient, '
‘Thus, neglecting all terms except the first in each of

these three expensions, we arrxive at the feilowing i‘i:e:em*sign

- i
formulae for ﬁ\wn ,S“:"-) E;m in ferms of L-(n’,
N(“)' N ¢ { N ()
E\‘\*\ = E w o b ) (4015)
2F' e

R <R - o] LR L
= (et (35) Ml s
- N () (‘%‘%i), e*%')f

&

(4.16)
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(- | () ‘%T?‘l:') o ™ (“) (s~ °)h1
Em:.u = § | - ? ; - i(%} g (WH.)(%{Q‘) ‘:E Lth)

(:g')n 3&;“)!
| - (,E_&L,) N (4,17)
A t}?“ [}
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B Resulig
The integration of 4.1 to evaluate the solution fox

Y =<x(s), for any given value of @, was performed by meens
of a program, shown in outline in Fig. 5.1, wrltien in Sirius
Autocode, Having selected the walues of 3'1 J, the solution
can be coblained for any pariicular velue of ¢ and, by trial
and error wa can find the value of @ for which d = 0, to the
ﬁ@quir@d aceuracy. Heving fized ¥, j, @ one of the fouw
§§}utiona (coxresponding to Sex Sz ) has to be selected.
In practice it wae found that one and only one of these four
%Qlutians counld be made to satisfy the condltion at the shock
(é = »E) as well es at the l.n.c, (8 = 80)0
| Thé golutions obtalined by Butler fex the six cases

X e 6/5, 1/5, 5/3% with j = 1,2 were calculated, in each case
the same solution "hranch? (Bo«’ rﬂﬂ) was found to be
approprinte. Phe solution for the case ¥ = 3, correspending
ve motlon of products of a detonation, was soughit. It was
found thet the branch selected sbove could not be made %o
setlipfy d = 0, However a golution was found by integreting
slong the bhranch Bop s Fqe Foxr this reagon it was thouwght
necessary o investigate the integral curves of the
differential equation 4.1 with & view %0 exemining the mannexr
in which the changeover takes plece and also the unigueness
pnd exlstence of the solution, pexritlicularly in the reglon of

thae changeover, The integrel curves for the case ¥ = 1.4,



read ¥, @ Jj, H N
|

compute Byy Tqs _Bo+ etc.

~B-8g

set h =

tebulate s; = o + ih, h = 0(1) H

86t n = 4
H = E . == 5 T =
tabulato Ry = 2, + z,lh, R,: =z, for i = 0 =>H
7

compute £(n) = f'(Rn,R:‘) for 8" Eij:, imq =3

_ i . a0 =
iterate for Ry pqfoxre =gy, i»1=—3H

N S " : K
oxtrapolate fox R .° &t's 4 sy . 4

integrate for_Rn+ila?J?i'_i = 9 “““*%% H

n < N n=n4++ 1
f%n-ih‘ﬁ.J?le&T.; .
: = iang;;:fL,
evalnate d = 1(-2) - 3*1 ks
'@

PIG, 5.9
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J = 2 are glven by Guderley., The two cases selected here,
corresponding to distinct branches for the actuel golution
with the correct value of @, eve e 2, j = 2 and™ = ¥,

Wi

j ne 20
Let ne note here that for a glven value of ‘é’ there is
e prohibiied ronge of values of ¢ for which the roots of the

quadratic for g, ere imeginary, o, < o <« of , B8¥.

o
The value of Qg iz never greater than about 0,0% for any of
the cases exemined and the range 0 <« @ <L @y never yields =&
correct solution, However, for j = 2, as ¥ ineresses from
1.2 to 5/3 the aotuel value of a, go approaches the value
of @0 In fect for ¥ = 5/3, j = 2

olg = O 633 &, =087
It im thus to be expected that, if, for some valwe of 7,

oly = o\ then this value £Y is in some sense eritical,

The differentisl eguation for »(s) is

B (t-ras) R, « (-r-5) G-
® ds (i-e+) R, — (i«&-s,) R.

s

ey (- Jore-r) - & {%("d}"“‘ (1) J‘} -
S fe-) i"‘"&-l-m’qr(;*h-u)} te ¢ ($-Yig-1) -t%a.{“%_h? (1= r%
(501)
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This equation hes nine singular points in the g-r
plane, There are three on the r-awis Y| a,o\} %'(&), ‘),(")I:?\),

and three in the reglon s < 0

?1& (SB.&, i "So-‘c)

?3 (Sm-.) l‘%‘gé-)
N S
P (s, a(mw._))

uging Guderley's sufflces., The remaining three points are
the mirror lmages of Pa,, 1959 P5 in the s-axls and are in the
region s~» 0 (which corvesponds to %;‘:) (o) and expanding
waves end so can be ignored.), The shock point lies below

v = 1 (the value of = here is ;};‘;‘ ) so thet consideration of
the integral curves cen be restricted to the region s« 0,

0 £ v2 1, The quantities 8y, @TE the two roots of the

==

quadratic foxr s, end S is the negative solution for s of

* < (‘3'“ ‘)(ﬂ&r—ﬁ —
k{ +ali-0}
where k. s

Y Ty

In celoulating the positions of the singularities of
interest, 1.e. Pao Poy ?59 Pg, P5, i% is obmerved that the

point 1?5 lles above the lime © = 1 + 8 foxr the case ¥ =

wfn

and below 1t foxr the case Ym 3,



J AT
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Let us now conslder the nature of th@é@ singvlar points,
éh@ pointe P?p P4 are »espectively a saddle point and a
degenerate node, irrespective of the veluwes of Y, i, @
Por X = 5/3, the points P,, Py ave vespectively &

2
node end & saddle polint, and P, is & node. Foxr thesd

5
caleulations the velue of e taken was the one which was found
to be the correct one (i.e. 0.688377). The intesral curves
can now be drewn in the region of interest and eve sketched in
Pig. 5.2 (not %o scale as P5 ig in fact very close 4o the
straight line ©» = 1 + 8). The dir@cﬁiem of the ourves is that
of vime imoreasing. ALl curves, eoxcept the four limiting ones
through Pg and P39 chenge divection on crossing the line © = 1+6.
#he shock point is (5 %) end lies betveen the straight lines
ra i+ g rs i,

‘In order to solve the problem it is necessary to choose @
such thet one of the limiting integral cuzves, starting ab ?2 or
P59 suns into the shock point, with time decreasing towards
‘the shock., It is observed that the curve ?3 P5 can hé
disregarded as time increases on it away from Pﬁa

The line ¢ = 0 iQYE - % plone corresponds to the point
P4(6,0) in the s-r plane, It must be possible for the
solution in the s-r plane to follow a singularity-free path
from the shock point through P, or P59 and thea o Py Of
'thé remaeining three curves under congldevation only two pass

through Py, There is no apparent difference in the nature of
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these two curves o svggest & preference of one %o the
excluslon of the other, In practice it was salways fouwund, foxr
values of X in this neighbourhood, that the curve through P3
is the eppropriate one,

The integrel curves for the case Y= 3, J = 2 differ from
the previous ones and are shown lun Pig. 5.3. Here PR and P3
&ré both nodes end PS is a saddle polnt, now below = = § + @,
Two of the four cuxves uvnder conglderaitlon run towards P§ and
8o can be discounted, The remaining two are each the limiting
curve through & node, not having the sane slope et this point
88 all the remsining curves running towerds the singuleriity,
Agein there is no obhviowns prefervence., The reguired cuvve is
in fect the one through Pga For no value of @ was it found
rossible ﬁo make the one through ?3 poss through the shock
point.

It is thus seen that investigation of the integral curves
in the 8 -~ » plane does not in fact settle the issue of choice
of soluetion or of the wniqueness and existence of the solution.
It would seem that the question of cholce of solution can only
be settled nuwnerically. As e 1s veried the positions of three
aingularities ng Pﬁﬂ P§ vary. Lt must be that the verlations
of thelr positlons, as @ is veried, are restmloted in such a
manner a8 only one of the poasible curves cen be made to pess
through the shock point, for the solution to be unique for all

ceses, The discrepancy 4 wasg tebuleied over a range of values




Table o2

a a a d
g (p, soln., ) (1"3 soln. ) % (P2 soln, ) (1'1‘3 ‘80ln, )
0.005 r, imag, 1,13 0,623 0,330 0.458
0,010 . | x, imag, 1,14 0.625 0,213+ 1.« 01483
0.015 r, imeg. 1,12 0.63 0.087 010,507
0,020 1 % imag, . 8, imag. 0:7 - ~0,280- - ry imag.
0,6226 8, imag, | 8, imag. -0:8. - ] . -0.412 -, - ;r{-imagu-
0.6227 | 0.371 0.434 0.9 =0.475 ‘i, imag.
e a(P,) a(®,) @ a(e,) '~-_'§(F5)f
0,674453 | s imeg.| s_ imag. 0.6738556 | o, i@ag;.i 9@ insg.
0,6744535 | ~0,00459 | -0,00033 0.6736559 { +0,00206 | +0.0033
0.674454 | -0,00557 |+0.00066 | 0,6738560 | +0.001352 | +0,0059
0.674456 | ~0,00798 | +0,003508 | 0.6738562 | +0.00079 | +0.0046
0.674460 | -0,0109 |[+0,00606 | 0.67386 <0,00387 | +0.0092
0,675 - | -0.0749 [+0,0751 | 0.675 'ﬁu091063 i +0.118
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of @ for ¥ = 3, J = 2 (in this cese @, = 0.0185, a, = 0,6226)
for the two integral curves, between which we must choose.
The results gliven in teble 5.1 show that only one solution is
poaeihlao |

It can be geen from the two sets of integral curves that
the changeover from one molution to the other tekes place as
follows, (We shall comsider only the sphericel case j = 2,
and aseume that the cylindrical cese is similer). As ¥ i
increased from 5/3 the roots of the quedratic for 8, (vsing
in each case the correct value of @) become closer and closer

together. For some critical value of ¥ , ¥, say, the roots

ok

are equal and Ps, P§ coincidae, In oxder for this traunsition

to take place smoothly ?5 migt algo colncide with P, P, for

2 °3

W =¥e o AsY. is appromched, either from sheve op below,
the region surrounding the inner singularity, which is a saddle
in elther cese, must vanish. Thus for the eritical case ¥= ¥
the three glngulaxities Pg, P5, Pﬁ nerge into & siagle
glagulerity, e node, so thet a smooth trensition takes plédce,
For velues of ¥ < ¥ it would appesr thet the upper
integral curxve will provide a solution and o unique solution,
and fox ¥ >Y% . the lower curve provides the required
wigue solution,

The velue of ¥ wes calculated by triel and error and

found to be 1.87. The results ere shown in teble 5.2, For




~ [ @ (Whithem)
102 0, 757142 0.754021
1.4 0.717174 0.717288
5/3 £ 0.688377 0,688654

3 0.636411 0, 629542

able 5,%(a) (sphericel)

< @ a (Whithom)
1.2 0.861163 0.859762
1.4 0.835323 0.,8‘35':373 .
5/3 ' 0.815625 0.816043 -
5 0. 775667 0. 772661 N

Peble 5,3(h) (cylindrical)




Por the cage V= V. the zoots of the quadvetic for 8, &re
equal and the correct velue of @ is @,. In ovder to calculate
e it s necespary to eveluate @y for the @&rﬁicuﬁ&ﬁ

egtinate of ﬁf; end then deo a brief tabuletion of 4 for
values of @ slightly greater then @q0 Although the vnigqueness
of the solution in the reglon of the changeover cannot be
vroved by caloculations of this sord, the results glven in .
table 50299@rﬁ&inly guggest that the golution ig always uwnigue.

Por the cese ¥ = 3, j = ﬁdit was also found thet the
integral curve through PQ wes the eppropriete one, so thatb
there is sowme crivical value of '{'h@tW@@n"ﬁfﬁ and 3, in the
cylindrical cese,

The valuss of g, in the elght selected cmses, Y = &/5,
1/5, 5/3,3 with j = 1,2, were calouloted and are shown in tables
5.5, The results ave in agrgement with those obtained by
Butlexr to the guoted acouracy of six decimel pleces, apartd
£rom the case W = 1.4, j = 2 the difference in this case
being in the fourth decimal place, The valve given by |
Stanynlovich for™W = 3, j = 1 (i.@, 0.810) ig in exvor by
0,034

In the present work it wes found that five subdivisions
wvere sufficient for evelvating ¢ to six decimal places.
Approximately 8 iterations were reguired. The discrepancies

of the tebulated solutions are all less them 1072 in magnitude,
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read ¥, @ Jj, @, Sy s

H, N

tabulate 2(s), ,r'(s) for o = gy i » 0 =P H

compute Tor Bgo _‘?1' etec,
set m = Q0

tebulato ﬁ'.' = 50 + T ﬁ; =z, for 4 « 0 =2 H

n=-1

compute L(n), M(n), N(n) end hence iterate for ﬁﬁ:‘ﬂ evc, at
| By, i = 1 =3

extrapolate for ﬁ'

n 4 q @8c. at S 40 Bp , 4 ond ?lence_

integrate for ﬁn at Bys im 4 ——>H

r n £ N nen4+ 14
n
|
<& m< 3 oxtract g0 ry ote.
memn+ 9

|
compute corroect values of - By Fo, B

1)

Pige 5.4




and the velues of P cobitalined by use of these dete ls taken
%0 be acourate o four signiflicent Ligures.

Heving evaluated ¢ and tabulated the solution for » = (a),
it us conslder the evaluation of B. %o this end o prograwn
was wrltten in Atlas Algol, the flow dlsgram being. glven in
Pig. So4.

As mentioned pr@viouslgsﬁh@ linearity of the equations
determining ¥, 8, ¥ mesns thet § may be ecvalueted without
recourss to triel and exwxer, although boundery conditions
have to be sabisfied at esch end (the front mud the l.n.c.)
of the range of integraticn, The procedure is to evaluate
two independent solutions of the governing equations,
corresponding to distinct choices of the combinatlon B, Foo
The coxxect velues of B, b, ¥, can now be calovlated from
these two solutions, as described in pection 4, and the
solution for E, 8, ¥ appropriate to the corzect valuss of &
FQ,@ nay also be evaluated, if required. In all the
celenlations the a@l@ctéd combinations of o, P were (1,1) and
{1, -1), for which the two solutiens were sufficiently
independent,

The celoulatliong in this section were performed with six
subdivisions, In order %o evalusie Eﬁp EHQ FH coxrest to five
pignificant figures, approximetely 20-30 ilterstions were

found 10 bHe necessary. As an example 24 iterations weve



uged for the cese ¢ = 3, j = 2, Q= 1, ¢ = 0. In the
eveluation of the golution with the comwesct valﬁ@@ of &, FQD
p (nemely -1.5908, 10,763, 4.4760 respectively) 24 iterabions
were used. After 23 iterations the values at the end polas,
g = B of the range were

4 We5.76 %1077, ¥ 1,89 = 1079,

Lm - 1,85 x 107

T = 0,8273897

8 = ~3,6726337

P a 9,4182447
and after 24 iterations

5 e 1,43 z 1074, M = 4,41 x 1077, ¥ = 1,42 x 1077

by

= 0,8273994
“'ﬁo 6?86241

&9
f

® = 9,4182420,

The errors in the derivatives are, of course, greater
then those for the functions at any given stage, but the
devivasives do not enter into the evaluation of B,

Ag well as checking that the solution converges we can
verify that it does in faot converge to the veluwes (at 8 = =B)

=

el K

@1

= by - B
F o= A3 B + Héo

In the above case
Ay p-Kw 0.8274068
Ag B =~ B'= ~5,6726168
A§ B+ H = 9,4182599,



¥ | 8(Whithan) B B -’%4- Kf B + %’
1,2 | ~0.0482 ~0,1009 | -0,3209 | 0.8891
1.4 | 0.2158 0,2508 | -0,2292 | 14,2108
5/3 | 0.5894 0.7737 | -0.9152 | 1.6626

3 3. 2679 4,4760 | +0.4760 4,4760

Teblo 5,4(a) (spherical, § s 1, o = 0)

X 8 (Whitham) p p= %l K Pt %'
1.2 | -0,04816 ~0,08199| ~0.3020 | 0.9080
1.4 | 0,2158 0.2310 | -0,2490 | 1.1910
5/3 | 0.5894 0.6692 | -0.2995 | 1.4783

3 3,268 3.594 -0.4056 5.5944

Q

| 2
Table 5.4(b) (eylindrical, Q = 1, ¢ =« 0)




¥ | P(¥hithem)] B | p- "g%;_l_ k| @B

1.2 | -0.4750 _-94?,04?7_ ~1,7047 | 4,2536

2 1'4 0“21?2 < W 05!350‘97- "066_.905?1_1 i 29.7532-{‘: e ¢

5/3°| 044541 | 0,6942| -0.3058 | 2.0942

5 | o.6667 | 1.0435]| +0.0a35 | 1.3769 |

X A(Whitham)| . g --ﬁ-%ﬁt_,,; B+ %.

1.2 | -0,4730 | -0.6211 | “-1,621 2 | 43371

| oz | oz otaer | aers

5/3 | 0.4541. | 0.5587 |- -0.4413 | 1.9587 - |

3 0.6667 0.7738 | -0.2262 | 4.107% |

Table 5.4(d) (cylindricsl, @ = 0, cp = 1)

,,,,,,,
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The present solutlon gives the correction terms to the
Guderley solution dug to the separate oxr combined effects of
the heat release O end allowing the sound speed ¢ (neglected
in the Guderley gimilarity solution) to be finite, Howaever,
since the quantities K, B, H awve linear combinatlons of
&i“) it follows thet the two effects combine limearly, Thus
it iz necessaery o consider only two cases for given ¥ and j,
Go8 the two soluiions Q = 1, CF = 0 and Q = 0, (8 [
Por eany glven situvation the sctual solution cen be evaluabted
by teking the appropriete linesr combinetions of these two
solutiona,
The valve of § has been calcnlated for the 16 cases
Y= 6/5 1/5, 5/3 3, with j = 1, 2, and Q = 0, ¢ = 1
and @ = 1, <& = 0, The rvesults are given in tebles 5.4,
vogether with those for the simplified Whitham enalysis, The
fluld veloelty and sound speed immediately behind the front
are glven by

e =2t %) [ e B TN 75

o)

ﬁh’

= EN {l"* (@'"""’)\):‘

« + 1

The coefficients B - 5 K P +‘%n are alpo tebulated.
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A complete tabuletion in the case of the simplified anslysis
can bhe found readily and & graph of 8 againet Y is given in
Pige. 5.5, 6, the discrete polunts being the full solution for
comparison., In Plg, 5.5 <he three separate v&lu@m of B fox
¥ = 1.2, 1.4 ave indistiaguisheble on the scale of the graph,
The solublons for the functlons &, &, F are not of
perticular interest and weve celonlated for the appropriate
values 0f B, Fogo B only in %h@ cage Y = 35 J =2, @ = 1, _c;‘*%m 0,
t0 check thet the m@ﬁh@ﬂ converged ©o the corzect values of
?, 8, Po The graphs of », £, 8, P for this case areo given in

Figo 5.7

Discusglon of Resgulis

The results for @ in tables 5.3, end the corresponding
values obtalned by the simplificd emelysis, have been glven
aud comperad by Whithem, spexrt Lfrom “he case Y = 3. He
investigates the reason for the remerkeble scouracy of the
gimplified results. The shock ig in fect not sufficiently
close to belng & negetive charscteristic for the appropriate
condition to hold om it, The meason ig, in fact, that the
guentity

" & a4y
1% e v 3 ¢ W &

is very small at the sheck, causing the characteristic
condition to be nearly satisfled thera,

Poxr the additionel case, Y = 3, studied heve, the evver

of the approzimate method is lerger but ls etill not greater
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than obout 1% . Prom the tables 1t ils obsexved that the
eryor in the epproximate evelduation changes sign bebween
Yo 1,2 aud Y = 1.4 end does so again between Y m'%
and W =3 (for both j = 1 and j = 2),
The simplified golution for B is much less accurete than

that for a, as seen in tables 5.4, (Presumebly the quentity
}?”‘{: o> e W  is nob sopecially small in this cese.)
The approximation that  is independent of J is not
periicularly good. In every case considered it ls seen that
the approximete valve of P is numerically less then the
eylindrical velue which i, in tuen, numerically less than the
aphericel value, Ian spite of the leck of aécumacy of the
approximate eveluation of B, the resuits obtained appsar o
follow very closely the behaviour of the correct values (fox
both j = 1,2), as seen from the grephe 5.5, 6. The valuesof
Y for which § = 0 were found, by the epproximaite method,
tobe YW =1.30 for Q= 0, ¢ =1 and Y = 1,24 for Q = 1,
¢ s 0, The fact that B = 0 for some particular value of ¥
means that for this value of ¥ the speed of the fzont is
unelvered by tekiag into account either of the two effects
(1.@. heat melease and finlte sound speed), alithough the flow
behind is altered., For velues of ¥ above this criticel value
the speed of the front is greater then that of the basic
Guderley solutlion, end lese then for wveluvwes of X less than the

critical value,
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The paremeter determining the corxrection to whe fluid
velocity behind the front, P - ;i%xl K, is seen to be
negative in all cases @xc@pt.‘ﬂ @ 3 jw=1or2 The sound
gpeced, on the other hand, is elways greater than the value
given by the Guderley solution sgince @ + E?/E is always &

positive guantity.
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