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Some problews involving partial differential equations

with wixed boundary conditions.

Ce Cs Bartlett

Swuuary -
A function 4) eatisfies the equation

4)*1 @ (Pvm.*' hz‘# =

in a2 region R bounded by & closed curve C on which wmixed
boundary conditions are specified, for exaumple (ﬁ::o on
a part A of the boundary andé%wﬁwg on a part B, where
C = A+ 3. It is required to find the values of kX for
which the equation possesses polutions satifying the
mixed boundary conditions.

iwo variational principles are given for these
elgenvalues, and conditions are obtained under which
these two principles would give upper and lower bounds
for the lowest eigenvalue. lranscendentel equations,
obtained for the deterwmination of the lowest elgenvalue,
are shown to be functions of an unknown function which is,
for exawple, the value of 4) on the part B of the boundary,
or ofbﬁﬂ&\on part A. If a first order approximation to
this function is wade, it appears that the reesulting
approxiwation to the eigenvalue is of second order.

ihe general theory, obtained for a siuple closed
curve, is extended to inveetigate a curve enclosing =a

certain type of cowposite region, and it is shown that
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the conditions under which the two variational principles
would glve upper and lower bounds are eiwmilar to those of
the siwpler problew.

Several problems are worked out in detaeil and some
numerical results are obtained for cOmparisoqgith resulte
obtained by other asuthors by other methods. It is shown
that in all of the chosen problews for which the two
variational principles can be given, the conditions that
they give uvper and lowex bounds are satisfied.

An alternative wethod of solution of these problems
is given, using conformal traneforwations in a elightly
modified form of Schwinger's ‘'"equivalent static problem"
wethod.

1he paper concludes with a bLrief note on the
application of variational principles to wixed boundary

problews in potential theory.
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Srzmsary

A function ¢ sstisfies the eguation

ém: 4 éyy

+ k% = C
in a region R bounded by & clesed curye C cn whlch mixed boundery conlditicns
are specified, for e¢xample ¢ = O cn @ zart A of the boundary end 9 ¢/2n = 0
on a part B, whexe C = A + B. It is roeguired to find the velues of k for
vhich the equation possesces solutions satisfying the mixed bomdary
canditions.
Two variational. principles exre given for these eigenvalues, and
conditions axe cobtained under which these two principles wounld gilve wpper
and lower bournds foi’ the lowest eligervilue. A mmber of problems eras worked
cut in detail and it is ghom that in mogt of them the conditioma for chbialning
uppar and lower bounds are satlsfied.
An elternative methed of solution is given, uging conformel transformetlions
in & slightly modified form of Schwingar’s ‘eznivalent static problem? method.
The paper conciudes with a brie? note an the applicetion of varisiional

principles to mixed bourdary yroblems in potential theory.




£ = s
g 1, Intrcduciicn.

The type of sigenvalue problem specified in the sumusry has an
extensive literature.

In the Reyleigh-Ritz varistionel oppreech the wnlnown fumctlion
¢ is replaced by the subelass of functlons ¢/ having the form
= ey él + ¢y §2 *oeee + ey —és where the triel functions ¢ satisfy
the gpecified boundary ond continuity conditicms, but not the differential
equation. The method gives only an upper bound for the eigenvalues with
no information about the sccuracy of the bound. Closer epproximations ere
obtainable, but the Ritz minimizing process becomes very compliceted,
espacially for higher modes. One is usuelly reduced to the scmewhat
haphazerd epproach of epplying tha methcd to problems whose resulis ave
already known eccurately, end ccmparing the approximate results with the
sceurate. This is not satiefactory because the examples chosen wey happen
to be purticularly fevoreble. Modiflcations which simplify the minimizing
process have been suggested, notably by Gelerkin (1 ) dut they €o not
ovexrcome the lack of a lower bound.

The Coursnt-Trefftz method { 2 )( 3 ) is effectively the ccuubarvart
of the Rayleigh~Ritz method in that triel functicns ere chosen to satisfly
the differentisl equation but less restrictive bowndary ang continuity
conditions. A lower bound is cobtained for the eigenvalues. Thils bound
cen be improved by imposing more siringent boundary conditions. Indeed,
the method can theoretlcally be made to yield an upper bound as well, by
imposing boundery conditions more stringent than in the original problem.
The algebraic process is, howevey, even more compllicated than in the Ritz

method.




A method hasg been given by Welnstein ( __1_: ) vhideh will give hoth upper
and lower bounds. Unfortunately the expression to be mianimized is very
complicated. Only very simple trial functions cen be wvsed, limiting the
closeness of approach of the two bounds. Halm ( 5 ), Godderd ( 6 ) and
others have solved related yrcblems by reducing them to the solutlon of
en infinite set of simultenecus linear equations, which must then be
solved numerically. Hansen (_L) has obialned en opproximate soluticn
by determining Xk so that certain sssumed field distributions gatisly
the specified boundary conditlons on ecertein points of the boundary.
Further applications of a gimilar metbod can be found, for insbence, in
(_8 ) pp. 1435, 1859. Related problems occur in coanection with the
reaonance frequencies in microwave cavities and a convenient methed for
computing these frequencies in practice is given in the chapter by
‘Marcuwitz in { 9 ).

Hansen end Chu (19 ) end Chu (_11) bhave used an extension of Schwinger‘s
integrel-equation variatione) methed. An exposition of Schwinger's method
epplied to propegation in wvave guldes is given, for instance, in ( _3;2).

The method used in this paper is also essentially Schwinger?s method

modified to epply to elgenvelue problems, but we bave approcched the problem
from & point of view which is sowewbat different from elther Schwinger's
original approach in propagetion problems, or the approach in {_11) sad {_10).
The argument in (1L _) is quelitative. The proofs in (_10) refer to impedance
beurdary condition 4:/ 5n +o-¢ = 0 and it seems to be difficult to apply
the avgument to cases where ¢ = O on part of the boundary erd 3¢/2n =0

on the remainder. The adventege of the verlaticral method over the methods
of Habn and Hansen meationed in the lest racograph 1s tkat it involves much
lecs labor for & specified degree of accuracy. A considerable number of

problems of prectical interest can be formulated in terms of mixed boundary-




value procblems 2nd some of them are considered below in detall. Ve shall not,
however, be concerned with the formmlaticn of the partial dlffevential equation
of the problems inventigsted, being content to state the prcblen end to quoie
the appropriate equaiion and boundary condltions. Aiter a development of ithe
general theory a simplze problem is examined in some detall. This problem

is of little practical interest, btut serves to intiroduce anl demonstrate
several aspects whiel recur in tke sveceeding prcblems, &ll of which ave

direct or indirect develomuents of this Tirst example.




§‘ 2. Ceneral Theory.

e use the notation

(‘C,ﬁy = gS; S;-CX,»))g(),L))LH(u),

(2)
(\,Qqﬁ\ [( Nb% + b«—; i)i‘ udy
3‘3 »\
Green®s theorem states that
5
( d
(g - (60g) + | 6334
vhere b/a r deuctes differentiation nozmal to the boundary in an oubward
direction. Suppese that ¢ sotisfies V 2§ + k¥ 4 = 0 in a closed regicn
R bounded by 2 curve ¢ = A + B with ¢ = O on the paert A of the boundary
and )é/bn = 0 on the part B. Let LJ be the lowest eigenvelus of this
problem, with corresponding elgenfunction él(x,y) normalized so that
\
(., ) - 3)
Fron Green's theorem
" . 2 \ j ____l
(V¢11v<‘h) - (d)' ’V LP'/ . (b’ ds
= k(4=
= : v T
(k)

We proceed to obtaln an vpper bourd kX, for the lowest eigenvalue kl'
We take a funetion §(x,y) vhich approximates d»l(x,,y) and sbow that if
{S is & firgi order approximation to ¢1, then the resulting k+ is & second

and Xk, R gAL

owder arproxiration & k‘L 5.



Assure that J{x,y) is nowmalized, so that

(¢, P)=1 (5)

and that é})_ 13 continuous In R, possesses continucus firgt-order

Contangys
derivetives in R and PiecewiseL s2cond-crder dexivatives. We éa2fine gn

error fupction § (x.y) by the egustion ES = (bl + & . From (5),

(d)\; § 4?,, §) = 1 ; and on expending and using (3),
208, ) + (5.5, ®

In order to obtain ar upper bound for the lovest eigenvalue kl suppose

that _BE satisf{ies tke followlng conditions.

Ll') Viﬁp + k‘z@ T QO b R «L-r Savb  cre st IQ,

(,.‘.] (P = O J\\PM Q JA".L! bco“g(bvn N
(anj; ¢ %if ds =o.

It will be seen later that in the application we consider, condition {{11)
provides a8 transcendental egquation from which 1:+ can be determined.
A3 in the derivetion of (4), using Green®s theorsm, ecuation (5),

and conditions (i) - (i{i) we have
(v‘b’vﬁ)’\@z- (7)

Also (V‘PvV‘P): (VL{>‘,V\Q) + 2(vd,9 ¢) r(VS,QS)’ 8)

(98,94 = 5,9 $) 4 5}%%43
= k\b(g;d)y\ . (9)

%



This shows that if ¢ is a firet order spproximation to b, then k. ia
a second oxder approzimetion to kl. From Reylsigh®s principle it ig w2ll
known that if § is sny function conbinucvs in R, with plecewlse continnous

first-order derivatives in R, and such that $ = ¢ when d =0 on C, then

(‘,7_;,_1’3\ = (11)
L$,3)
A brief account of Rayleigh's principie cen be found in (22) page 3068. A
more detailled account appears in (,}_5_) Ch III. Fron the definitions of
$ and ¢, the conditions of Reyleigh's principle are satisfied by d , so
that on using (11) in (10), ' 6o
k. Pk
Another veriational rriaciple for the lowest eigenvalue czn be cbhbtained
by considering a function \ which satisfies conditicns
(1) w2 y+x*F=0 in B for same conetant k_ ,
(115 O¥/dn = 0 on part B of the boundary,
(1115' j Q%%as = O.
A
On repeating the argument leading to {7) but wsing (i)’ - (iii)l we find
(V&I_),V\_{/) - k* (13)

As before, we define an error function &€ {x,y) such that ‘E = ¢» + & .+ The
result (9) with & in plece of § is no longer true since ;r' and thevefore
€ 1is no longer, in general, zero on part A of the boundary. Instead of (9)

we write

(ve,vd) = =, ve) fcb 4




On svbstituting (&), (6), (13), (&) in (18) we heve

k"= k2 - {( ve , V& )~ L»_z('s,w} (15)

This result should be ccmpared with (10). It shows thet if & is & first-order
approximetion to ¢l then k_ 1s a second-order approximation to kl. Unforeunately
Rayleigh's principle ro longer applies sioce _‘{' and therefore £ is nct in
generﬁl zero on those peirts of the houndary where ¢l is zero. Hence the

result (11) with € in place of $ is no longer aveilsble and we cannct

deduce from (15) that k_ < K. (Attempls to yrove results analogous to (11)

for &, by the methcd used to prove (11) in (13 ». 164, ron into the
non-unifoim convergence difficulties mentioned in (_13) pp 102-104.)

However, the result that k_ < kl will be proved for scme epplizetions in

this paper.




s P 4 D 1 -~ o o ® aon e - - - -
2 3 A Problen iavelving a rechangulad
N e = e R

we consider a rectongulaxr regicn 0 < x < g,

gides except x =a, 0< y <D, on whlch

9¢/b7(:0)6<|.35k,; \t);‘o .Og'jl: ..
(16)

‘-——Q—%

A7

18
|
|
Flgure T b

& —»

31

B

sl X

Thig will be referred to as the Simple Prcblem.
By seperation of variables a sclution of éxx ¥ cﬁw + k% = 0 which satisfies

th2 bounde.y corditions on x =0, y =0, ¥y =h i

by = & & faud¥x Tyl (172
oo
vhere Z: : 5wl wso } .
% 3 whes N70

(17v)

N'-

! . 2 <
Y, = [@varr- ] = [k emmSE

We assume a time factor exp(-iwt) and this is the reesoa Tor the minus sign in
the last equatior. We can obtain approxixatiors to the eigenvalues in either

of two ways which will be distinguished throughout as cases I end I1.

Coge I. Consider & functlon § defined oy
o0
\
@(‘l-b}) = Z 2. € etk P t Wyl (18)

nee
: e
P« [Gau/™ k2T ifk Hiie) J* (19)

vhere




D = O T OEYNEE S
M {52 ]
= F’({) X =04 N B 3 <b

sco that § sotigTies condition (ii) in & 2. The functlon W{y) is wdmouwn. IF

A A T Ain g 3 mry g
e use (18) to give a fomm for d(a,y), muleiply it by cos - - end integrate

fram O to b with respect to y, it follows, using (20), that

b
( FD e i d’}' (21)

Q“Co‘skﬂrﬂa % = AL
bJ b
8

On substituting this result in (18}, taking the dorivative with respect So x, end
sa3tting X = 2, we have

L
g

cQ
3%} . 2 55T wAb FOD iy o (22)
t T

Qa
))\ i .D =0 ..L
Condition {41i) in § 2 gives
N (B@ dy = D
A y O

3 i

On substituting (20}, (22) in this expressica we find

n=9

= (,b 12
2 f“' P“ tz.n.\"\ P“p\ J F(‘ﬂ) &”'LEJ A%J = O, {07)
8

This is e transcendental eguotion for the dotermination of k " The anzlysis

-~

in & 2 indicates that if we choose as T(y) & first order approximebicn to the

value of ¢ on x = &, then the swellest root of this equation gives e sssond-crder

r

epproximation Lo the lovwesht eigenvalue 11:1. Also k.  ie grester than Sy
w ole

Case II. Conelder a function Y defired by

=
\P (‘*,U)) = i’: £. Ca wsh @ o W“'j/iz (£h)
=9

' I
2 2 -3 . K - (i Y T B
vhere O, = [(Vl'ﬂ AY-kT = - [‘:- (wr b)* | (25)

b



g0 that v° s}, £3 7 j = &nd hence & suatisfies e y () of
skall assome that
J 4 ) : e R
¥/ = Gy , r=a  o=y=S$,
{(256)
= O x: C‘. N 6 < U f b)
)

o that §> glso satisfies conditior (ii)Y in § 2. The fumetion ofy) is
unknovn. The censteats € in {(2%) can be expressed in texms of Gly):

C. O, shOWK =
On substitud

Yeyy -

ing this resvlt in (24) we find,

2
b

2

B
L ,(’ Gl oL i) (27)

for % =

a,

e 5Y
s &

=0

-l S
®. l}';ml« & } f C(:}) o h_‘::r] J-1 ) ‘%J .

S

Condition {iii)® in £ 2 gives

9

Bulstitution of (26) and

< ’ -t (_ g 2
Z. 3 @,GMLQa } ( J G(\)) e u_? dat = p,
YO o

This is a trenscendental
in § 2 indicotes thet if
3ds% on x = &, then the

to thz lowest

iR

t
©

4

(28)

in this expressica gives

.
exnalysis

eguation for the determination of k .
¢{y) is e first-ovder approximetion velue of
smallest root of (29) gives & seacnd crder epproximation

is shovn in & 5 thet &  1s less than k, .
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In this section we derive the tianscendental eguations {23) arnd {29) by an
integral equetion spproach. If we apply the boundsry conditions (16) to the

solution {17) we obtain the following "dual series?®:

(s~
~ 1
S 24 ¥ A suhYa wo myfh = 0, B<ys b (30a)
n:o
i '
?. @ v wi = O’ o= <K, .
s A wsh Yo tn wTy/, e (508)

=
Y

Constants Ay satiefying these relations exist only for specigl values of Xk, and
the problem is to find these velues of k and the ccrresponding values of Ah'
Equations (30) can be reduced to integral equations in either orf two ways, 2nd
a variational expression caen be derived from emsch of the integral equations,
corresponding to cases I and IT in § 3.

Case 1!, Suppose that the left-hand side of (30b) equals the {unknown)
function f(y), B < y < b. The constants A, cen be expressed in terms of

£(y) [c-£- (21)] end if the result is substituted in {30a) we bave

oo L
£ v Tkike qu\)m adfsa®r =0, 6<ysh (31)
w9 A

This is an integral equation for f{y) which possesses solutions only for
certain k. The difficulty in solving this equation exactly is thot we have
to find simultaneocusly k ani f(y) so tkat the 2quation is satisfied in
B<y<b. Ifveknew f(y), we could multiply (31) by £(y), integrate over

Yy and obtain

2

=5 b
' w ‘m)..a ‘V ) Wi =
“{%‘of‘b - (& (‘Aaxa_go'ji N -




15.
This hag removed the y-depondence and glves a gtiaight forward trenscendental
equation for k. OF course we do rot know F{y) exactly. Bub if ws guess
a reasonable spproximation to £{y), say F(y), and uwse this in plose of £{y)
in (32}, we should expect that the resulting equation would give a recsopabvle

Ca 0 .
approximation to k. Ths waowmy o vasonohe  wnll i clas ot

Case IL1'. Similarly suppose that the lelft hand sige of (30a), 1.e.
3d/n at x = &, equals the (unknown) function g(y), O < y < B . The constents
A can be expressed in terms of gly) (e.£.{27) end on substituting the result

in (30b) we have the integral equation

= [

1 bt
A {vnmm] f 9> o W 0 P =0, 0wy <8 (33)
=0 °
This posseeses solvutions only for certain valuzs of k. As before, we can
remove the y-dependence by multiplying by gl{y) and integrating over y. If in

the resulting equation we replace g{y) by an epproximetion to gl(y), say G(y),

we cbtein the transcendental equation {(29).



$ 5 Further general thecry.

In this section we shall generalize (23) and {29) and censider Hhe
stationary nature of the resuliing expressions directly. Consider the
solution of any second crder partial differentlsl equation in cuwrvllinear
coordinates (x,y) in tke region O <x<2 0<y<b. Assume that & solution
satisfying the boundary conditions on 2l)l boundery surfoces exeept ¥ = & csn

be found in the form

b= Z 4, X0 o
b
where jo \(N(j)'\.’“(j) 'LA =0 y ™ n ; TV, m=n.,

Suppose that mixed boundary conditions hold on x = a:

d=0, osy<8, /e =0, B<ysh,

Then proceeding exactly as in £3% or§l it is easily shown that we cbtain the
following results in which
P = X @O 4@ (35)
92(;__1_ . The integral equation for £(y), the exact value of ¢ on

x =8, B<y<b, is
o b
2 A f 'f(’\’ Y“Q’D A Ye(Wd)=0 g <y<bh.
n=o 8

The variational expression generslizing (23) is

2 Pl {J e Yol ‘5} (37)

whera T(y) is an approximation to the valuve of d on x =a, B< y < h.

(36)

Case IXI. The integral equation for g{y), the exsct value of 3¢/4n on

X =8, 0<y<k is

(Hj 30 Vu)o\o] Y=o , owy<h. (38)




The varietionel expression generalizing (29) is

o g 1*
néj) 'FIL-){ {(;—(3)\(“(")311.‘3 } " (32
where G(y) 18 an approximation to the velve ¢fedfBn on x =a, 0 < y < B.
In order to investigate the stationary property of (37) suppose that
F(9) = & {3(3) PRI (10)

where ¢ is an arbltrary constent which is at owr disposal since the magnitudes
of F snd f are not fixed - f satisfies the hamogencous integrel equaticn (36)
so that f and F can be multiplied by any constent. (Similarly in§ 2 the
magnitudes of 4:1 &nd § are fixed arbitrarily). Once ¢ has been chosen it

is sssumed in the usval way that § (y) is a function which gives the shape

of the error function end 6 is a small coustent. The variational nature of
any expression containing F(y) is lnvestigated by varying § . It will appear

later that it is convenient to fix g by assiming that
b
f CEIY, (Ddy = o | (41)
B

From (%0) this means that
[ (b
ek j FOM Y, (9 dy /Je F ¥ (9dly.
[+ /
The constent o does not depend oa § and therefore we can Sl
BT ee———— 5 (Pl ke

F(j'\ & r(‘_‘)) 4 ST(‘S) whe  the $(~3) O s quua('w; o oL Gimad (42)

L@ we (wo)

On multiplying (36) by any function X(y) and integrating over y we have

) b b
.§°%‘9£ fo Yo gy L‘ku(v)% = B e

Expansion of 'Pn(k-t) in (37) in a Taylor seriles gives

pal) = P ¢ (- k) p ) 4 OCk, -k, (k)



I? we now fneexrt (42), (%) in {37) and wse (41) aud (3} with JO = © and

" = ¥ we can shov that

- 4

P UBEW LSCOLE Z (45)
= L X - 45
R -k s - 2 § : § o+ 0(8)

n O [Mpme |
8

M

My

©

ft

n

Hence the difference between k+ and X is second order. If further it is
assumed that

a) Pa (&) > 0 n | (46a)

)
b) 1,,'(h)<o . n20 (46b)

)

)

then (4b4) gives the result
ey % i
I+ should be noted that-although conditions (k5) are sufficient, they are not
necessary.
In the example in 53, on comparing (17) and (34),
f“(k) = Yutwhy,a.
Suppese we are investigating the lowest eigenvalue. Then, On physieal grounds,
it is evident thast O < k < n/2a. Thils means that ¥ 1s real for n > 1 so that
assumption (&) is satisfied. Noieo thaﬁ, fram (17b), pO(k) = -k tan ka < 0.
This is the reason for arranging that the relation {41) ies true so that the
sun in the mumerator of {(U45) sterts from n = 1. Ws bhave also
) = ~kal Oua) Gl %i & sehwa
so that condition (b) is sitisfied. Hence th2 transcendental ecquation {23)
gives an upper limit for the smellest eigenvalue.
In order to investigate the stationary property of {39) we procesd in
& similer way. As in the analysis leading to (41), (42) we cen arrange that

& (4)= § M)+ = /,('J)

where 'k 1) Yo @ty = ©
v




O
-
5]
C
v
T
2
tde
3
-
o
(8Y)
o)
et
~
L
F9)

Expansion of the term 1/pn(k ) and vse of thees

F L [Chwvaon’ )
! nT T“Ul) © (‘(" ~ ‘JS :\&/
h-k = P . 7+ 0™
fu' (k) :
h e » @

Hence the difference between k_and k 1is second order. If in addition
conditions (2) and (b) are satisfied, then

k. = k,
Since conditions (a) and (b) are satisfied for the problem of § 35 the
transcendentel egration (29) will give e lower limit for the smellest
eigenvalue.

We have thus established that we cea obtain upper and lower bounds fer
the lowest eigenvalue in this particular problem. We are able to do so, elso,
in several other problems. Further, in the problems computed we show that
Cases I and II give k_< k+ with the differences hetween k_ end k+ very crall.
‘The computetions in every case, however, involve the summation of infinite
series by approximation methods and the results may yet be upset by the

introduction of these approximations.



f 6. Numerical results for the Simple Problem.

Choice of F{y), G(y). 7o obtain numerical epproximations for the lovest

eigenvalue and the corresponding lowest eigenfunction of the prcblem of § 3 we
must first cheose sulteble triml functicns F(y), Gly). The rubstitution of
eny suiteble spproximation functicn F{y) in (23) results in s velue k_vhich

is no less than the lowest eigenvelue k We may further substitute into (23)

7"
an eligible function F(y) which €@epends upon ¢ne or more paremcters kl ke i e kﬂ’
and minimize with respect to the perameters. The minimun so achieved will glve
a lowest upper bound k+ with respect to the N parameters. The larger the number
N, the wider 1s the class of functions so defined and so, in general, the lower
is the computed upper opound for ;\1
Let us write .

Fo = 2 cefe (47)
vhere ¢ is e paremeter and fr('q ) is an eligikr? > epproximation function for
£(7 ). Substituting F{(7 ) for £{7) ) in (31) end writing f"n tanh i"na = An

vhere Pn is the resulting approximation to B’n, we obtain the equation

— "
Z f.‘.-\,. 2‘ Ce T.... (n“T‘fj/L =0
n = o

P
where I.. - | { o w4 /b A4
=

Multiplying by’ 5[ {. w e /b o BT y to remove the y-dependence, we
ocbtain the get of {m + 1) simulteneous equations
O w )
Z Z = A“C, p Is,, =0 , S0, ... m, (48)
nNTo r=o
For the lowest eigenvalue, A will be the predemirvant term. We therefore

rewrite (1&8) 5 Sere.ra.tlng out the H tems

Z‘ C+ ngISo ™ E o\hean. T(.
r=o

ngy F= 0

Zn Ce Srs V““‘" A\ Z )‘ Ta..-'rbh

=0



ig,
Ry

We have thervafore the system of {m + 1) squations with {m + 1) coafficients c_,

W

ot =

§: (-"‘"\'—\;9 !,l ST l,:: > St %
=0 L = o - 2 | ;

LY ™

Theae will be consigient 1i' th2 dotermipant

With scme manipnlation, this determinant may e written

l A l 1 1 u - ~
Et\ole" +Seo 5'.>‘a *I--o’-[oo"'s"o :".'\ol.'..iooi-\-zo
> 1! Y 43)
~ Bas T.OAS\’,,_IN ~Sol,, 4 On j - o : o ( 3)
= S°0 -‘{la 4 S)" joo . 3 - A - o.

which 1s linear in FIO and esn, &t least theoraticslly, be solved for 1;+ for
any m in (48). The computational labor for m > O Lecomes great very rapidly
es m inereases. We shall indicate pumerically that if fo is suitably chosen
the numerical resunlts of teking i‘r = 0, r> 1 are sufficlently accurate for
moat prectical purposes and that taking fo, 1’ f‘2 £ 0, fr =0, r >3, vhile
increasing the lebor encrmously, does not improve the resuvlis apprecisbly.

i¥ fr = 0 r > 1, we require to solve

*

AO T’O + §°O = O .
b

o 2
that is, -.i ). I,o + ‘2::' A“ Tov\ 0.

Pl

which is idential with (23).

Similarly if we write G();r) = g drgr(’l] ) (50)

where 4 is a parameter and gr( Y ) an eligible approximation function for gV ),
we arrive at a determinantal equation similar to (49) which reduces to (29)
when n = O.

Cholce of functions fo(y) and go(y) can be made by ccnsidering the edge
behavior of d) and its derivatives near the point x = a, ¥y = B. A summary of

the literature on edge conditions will be found in {14%) pp. 75-76.



In the inmediate neighborhood of a sherp cdge or corney the egustion
v + k% = 0 18 well spproximated by Laplace’s equationsz % = 0. in
terms of polar coordinates with the pole at the sherp edge or corasv, thia
has solution

4’ < (ﬁf"i + B )C(‘_ w O+ D v p&
where p is eny number and A, B, C, D, constant multipliers. For & o be
finite at r = 0 we must have B = 0. We consider two casss:

{1) At e sharp edge the boundary copnditiong are

34)/89 = Q 2 g =0 end 0 =2n . A o 0950
This is satisfied when @ =0 if D = 0. When @ = &x we require -pArP gin 2np =
of which the first non-trivial value of p is 1/2.
-' -
mmce b < Astete ek he- 40+ ods 20

Trhat is, the fleld is proportional to r_l/ & and the potentisl is proportional
to rl"':a, when r is small, r being the li;lffr distance fram the edge. Thus,
uhmdshes yve are congidering an aperturetgn a gtraight line, a circle or ony other
curve, the field and potential near the sharp edze of the aperture ere
approximately iaversely and directly proportional respectively to the square
root of the linear distance from the edge.

(ii) At a right sngled corner the boundary

conditicns are 6 = 3n/2

.
< F )

5'/'///////

7~ =
0 ® =0

722
Pl
o

§’%=°, & = 0 end @ = 3n/2.

With +those conditions, D is again zero snd gin 232 = 0.

The lovest nen-trivial value of p is therefore 2/3; end for thls value,

U3 19
¢ ~Ar wie vtk Wi - Zar 3 to (51b)

A problem involving such & corner is considered in § 10.



It follows that in the simple problem the mixed boundary conditions (16)
imply that on x = 8,

b~ (4-3) ! a y—=> 8, (522)
P |
°~;§~ c.\8-9) " & g8, (526}

Also on x =8, d¢/3x is finite at y = O and & is finite at y = b. Hence

suitable trial functions will be )
J
Fop = [ (s=87- (b-9']? (53e)

2 2 '21
Gty = (%90 (53b)

These have been chosen firstly because they satisfy the edge conditions (52)
and secondly because the resulting integrals can be evalusved simply ~ an
important consideration.

Limiting cases: We shall compute eigenvalues for the range of values of

the ratio B/b = O(4)1. The limiting cases B/b = 0, B/b = 1 will have the

regpective boundary conditions -

a) QJé¢px =0 , x =0, a
a¢/ay=0 ) y=0,0
a = . =
b) 5{& =0 , x w0
§‘$ = 0 ) y=0,b
é =0 , x=a.

By separation of variables, solutions of ¢xx - ¢yy + k%) = 0 satisfying these

conditions give the eigenvalues

o ke = [ @01
D ke o« [EEY + T

respectively, where r, s are integers. The lowest eigenvalues for the two

limiting cases are therefore k =0 and k = n/2a.




Bafore using trial functions (53) we can meke a very rough epproximetion
by teking the simple trial function

G(yd>= i
8

Then

it

o

I G(9) e ""‘S/b 0(43 (b/.,-rr)c,;.. GawBlh)

= 8
If we make the further sporoximations

M ozt

C':ﬁn@qa "-l, ©. b ~niw ; Nyl

equation (29) reduces to

M!h,a) . _;_*__( _‘_;_,)3_1 Z _L3 Mz(ﬂﬂﬁlb). (55)
2\ W L W
k. b B nz)
To sum the infinite series, let

2
o5 2 (o),

Mg

Py =

he
Differentiesting twice with respect to q,

o0
F¥ (@) =2 Z% cos 2naw - 2 log 2, guoting & well known result.
p |
Therefore integrating twilce successively,

Fey ~ —'o("[lc.al« - 3 ]

3 (56)
= —,{l /ﬂ‘l) ‘3’;/;

Using (56) in (55) we obtain a first approximation formula
ot koo 2

o & 2.25&
kb T w

: (57)
TS

Solutions for k a over a range of valves of the ratic B/b are shown in
Teble I(a).

As must be expected for such a crude approximetion, the method
feils when B/b is large.

Returning to trial functions (53) , the resulting integrals can be evaluated

explicitly by Sonine’s first integral [(?2) p 46 equation (5 )] :

b * ;
J; [ e NS g = b_(_i___b;ﬂ)(q)“j,(ﬁ“_fg-_“’) Cn»p (582)
L (b-8)

n=0,



)

B 3
2 T (58b)
[ 0%y oy ay = 275 () wvo.

The spproximations k+, k_ to the smallest eigenvalue k are the szallest roct

of the following transcendental equations, obtained by using {58a,b) in (23),(29):

3k buba - [Fs] h" L D bR () -

%{u mk_s)": 3 (@,Ltmt@“a)“']"(me/;), (55b)

A

To solve equation (59b) for k¥ we rewrite it in the form

(60)
L i wirBA ) + v B/y
z(k.\-\‘wh,\») u-.z. “Tl( ) né o, H w0, h'“ I( ).
The first serles on the right of (60) can be sumed by vriting .
(=] 2 N-A n 2 o r 2 6
? 13 @w =2 alow +.§N LIGo= S % (62)

where N is a suitable integer. S1 is evalvataed numericeally and N is chosen

large enough so that the Bessel functions in the second swmrpation can be

replaced by their asymptotic exparsion:

oo
\
5, ~ 2 E.N o R LS )

This is eveluvated by using the appreximation

i (:(n) ~ f -C(p.g( (62)

NN N-
More acecurate formulae can be used for evaluating this sum. See for exemple,

(15) p. 156 and appendix I at the end of this pmper. However, taking N = 16,
(62) is sufficiently accurete for the present analysis. The eccuracy of the

final sum (61 ) cen be checked by repeating the calculation with, say, N = 12.




el

We can now solve (€0) in the followving way. First we make the approximations

@b ~ w¥F 1 (63)
[ N1,
Towh O ~ | !

Then the second sum of (60) is zero; and the resulting transcendental equation
is easy to solve. Ve obtain a first approximation to k , shown in table I(b).
We can then use this first approximation for k_ to form a second eagtimate of
an and tanh Bna to replace (63) for the first N terms. Hence we cen estimate
the sum of the first N terms of the second series of (60), & series which is
quickly convergent, and solve to find a second estimate of k_. This procedure
is repeated until no change is found in the value of X . Eguation {592) can

be solved for k _in exactly the seme way. Final results are shown in Teble I(c)
end Fig. IV, which shows that the upper and lower limits are extremely close.
The accuracy depends on how closely F(y) and G(y) approximate the true values
of f(y) and g(y). Physically we should therefore expect k. a to be more accurate

us

when B is nearly equal to b, and k & when B is small. Even Hh;% approximations (63
o vasals shewm o Table TL) a

,remarkably accurate though, of course, this n> longer gives upper and

N

lower linits.

Finally we can choose the parameter laden trial functions
LEEN
Fo) = & e fheor- 6]
(2 & f"-';
GG,’)t Z 0(1-[6‘:‘]"]
o

corresponding to (47), (50). The resulting integrals, teking forms similar

to (58), are easily evaeluated. Taking m = 2, we reguire to solve a third order
determinant {49). The labor involved is enormously increased and in view of the
closeneas of the upper end lower bounds in Table I{c), the results cennot be
greatly improved. In the particulsr cese when B/b = 1/8, 1~::£JLq increases froa
0.50699 to 0.50701 .



~

An altercstive solution of this problem, using e conformal mepping technigw

is outlined in& 16. Values of k computed by this metbed are showa in Table I (4).

Values of the potentisl funciion &{x,y):

It is readily showm from preceding formules that approximate values for

the potential ¢{x,y) ares given by:

(e

‘ e
e 5 " ¥ 7 " \
case T: T (0=8) oSkt &> O wshhx 3 /ﬂz‘_‘;‘ﬂ) iy, 6

2h — et i 2N B
=R, 6 asee N gl Ta B
o
T <3 ! AT
Case II: "—1'- QR% fo Mg e cosh ©.% I.,("“g/L){"U"f . (65)
. " 1::__‘9 G}ﬂb._ O Bl @hk Q‘;&\’ O- &

We compute & pattern of wvalues of rb for both caces 7 and II at the points

a b
X = O(H)a ? ¥ 0('27)1":

-,

for the particular case a/b = 7/8. At the computed points where x < & the
retios cosh /" nx/coshf "n& and coshé’nx/sinh ®_a both tend rapidly to zero as
n increases,so that {6k) and (65) are easily suwmmed to & high degree of nccuracy.

When x = a these two ratlos tend rerxidly to unity and we therefore require to

evaluate the infinite sums

T -8 :
et (ﬂ_f':‘;_._]) s B2
o

+“ (6€a)
:. o (F) e P - (€6v)

\

b3

Taking N large enough, we replace Jo(x) 4 Jl(x) by their asymptotic values

- TR
J, O ~ ﬂi‘ o> (7“ ‘/T‘, \

- i
Jo ~ |2 e (x3r),
VT x -



and use gpproximation (63), viz © D o, The Serles |

t 2bL ",_ T; { ‘mg
e e e T Y.l 2
i ("'b ) p% n3h ["’(‘E 3 )‘s‘“"e ' (t10)
1 o>
-1 2% )L o 8 u,(hﬂg _m ) Wty
T (“._é N% W b T (‘ﬂb)

They therefore differ only by & constant multiplier snd &re obviously coanvergent,
although rather slowly so,when y is swell compared with b. They may be cumed
using equation (62).

Figure II shows that the potentlals cbieined from these formulae sgrec
setlsfactorily for 3 = %b. For B > 322) ve should expect (6%) to give more
accurate results and for B < %b, {65) should be more accurate. The egreement
Por B = éa indicates that setlsfactory results can be cbtained over the whole
range of B using the appropriate equation (64) or (565). TFigure III shovs tha’c.
the two sets are in satisfrctory agreement for B = gv;b The velue of the potenticl
should be zex'o::x = 8, over the range 0 < ¥y < B, With the approximations

G{y) and F{y) this will not be so,but it should aversge zero approximately.

Cemputing & set of values for ¢ in case I over this range shows that it is so.

In order to illustrate the staticnary natuvre of the estinates k and k&

37

using epproximations (53) we have investigoted the sffect of verying 2 1n the

epproximations
9
S, _— l~ " - q‘
Feyy = [ (b-e) = (oo J v>o (682)
. -
Ge> = (B=4*) ~Nvo, (65b)
The imtegrals (58) are raplaced by
b >~ ~ a 21;—;-' 2Veq -
be6) =(1- ) L un /l, s ® E P(\)h) 2L L “i ‘ ﬂﬂ'i‘:)'bj) "
Jl; (G- ()" ] a3 dy Z wi{u-¢] (-8 ‘}’%P' W el

n

AV+
Epoad (b-£) /p(ved) “=d,
2



& e84

) - LY L-_:,, .
J (8*-9) wrvshdy = & v p(w‘.»( 2 NE T (=) .5,
: ®

<o

= @ r(l- '0)/1"(3'1. v) , n =0,

The infinite serioe;s corresponding to those in fqp&tions (59a), (59b) are of
the forms % 2 ’{"\,: w o anach 8 Né VFL;T. w’s the first
of which converges i7 ) > 0, end the seccnd if & < L. FNear these limits
the convergence is slow. The results are given in Table II, Figure V. I is
seen that on varying ) the resulting valves of k+ pass thrcugh a minimum and
the valves of k_ pass through 2 maximum. The rasults confirm that the velues
Y = % which has been used in (58) is very close to the cptimum value of 3/ .
Table I. Solntions of the Simple problem. .
Values of §k+a and %k_a, vith afo = 7/8, B/b = O{é)l.

a) Solutions of equeticn (57),

b) Solutions of {59) using epproximations (63),

¢) PExact® solutions of {59),

d) First epproximations from the Eguivalent Stetic Problem, £,

B/b 0 1/8 2/8 3/8 h/8 5/8 €/8 7/8 1

(a) .503 .6o2 .TOO0 811 .91k fails =

§k+u. .52h 631 <724 .811 .889 .950 .088 1.000
(0) TS

?:_a 0 .512 610 st .802 .880 .927 .95L

-ﬂé‘;_'_a. -507g .6087 =700, .7892 .873{+ .91.ua3 .9859 1.000

(e)
Xa| 0 .507, .608 700, .788; .8705 .931,  .9h7

(a) %}s_a 512 610 .7is .80k .888 .9k .985




Table II. Veriatlons of & e and k”a with , using the epprozimations
{68) ana (63) in (59), 8a/o=7/8, B/e=1/8.
0 1/h 1/2 3/ X
Y
Tk 8 . .545 .52 .536 1.796
Fka  0.50C  .500 512 JAho ;
Figure II. Values of the potential §Kx,y), Simple problem.

afo =7/8 ,

B/b = 1/2

Upper figures ere for k (Csse I)

Lower figures are for k_ uase IIL}

1000 897 768
1000 Bok 763
)
|
i
]
]
oo | _ _ __ms_ _ _ _ _|ap
027 7}17 -25
i
. o3
: Y12
I
852 625 2
860 o34 23




Figpre {EE.

Values of the pobventisl ${x,y), Simple pyohlsn.
a/b = 7/8 , B/b = 1/2
Upper figures are for k., (Cese 1)

Lower figures are for k_ (Cose II)

The figuves in the range x = a, ¥y = 0(b/32) b/8 are for
Case II only.

1000 993 976 260 . 952
993 974 95 950
gl 927 850 819 781

o6 [~ T "9 T e T Ten T |78

--'3»
v =il
. el

883 850 740 509 .
886 853 7 515 ;
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£ 7 Extension of Th2 General Theory to @ coamposits re

Th W D b T T ST O e e — e - -

Consider next the following problem involvine & cornosite reglon. Tan
funetion ¢ satisfies 79 + X% = O in 2 closed regicn R boundad by a currve C on
}which ¢ == O on some pert of C end 3% = 0 cn the remairnder. Suppose that R
is subdivided into two regions S and T, R = 86 + T, with a camon boundary D on
part of which 9¢/n = 0 and ¢ is continvous ecross the vemainder. The
significance of D is simply that in the applications considered later S and T
are chosen so thet the boundary value preblems can be solved by separetion-of-

variables in S and T separately, but not in R Bs & whole. Ve exiend the notation

{(2) in an cbvious way by writing, for exemple,

(;,3)5 = ”F(w) §(x9) b My,

As before, let k. be the lowest elgenvalue with correspcnding normalized

A
eigenfunction d)l. We Introduce again a normalized Dunction § which approximates
¢, and an error function §{xy) so that § = by + § wheve ¢ bas the some
properties as before except that this function and its derivatives may be
discontinuous aecross D.

We consider a region R = S + T as in Fig. VI bcunded by C, the simple
closed curve LRMRQVL? with LPQ the common boundary between S end T. On this
common kboundary we suppose that g—?{ = O on LP

and ¢ is continuous mcross EQ.

From Green'®s Thaorem

(vb,v@z,-w,vwm[ 3%y,
(v v) - (¢ v'@»'f' 't} %?ds.
vkt T Mctuw(i e wemal disroalives ,};\ o~k gé;\.' ot Sl o

’ / \3___)’
c&‘)m)wwg‘- v



ThereYore adding,

QV@)V&»{{ ~ —(\[) 'V’&}))R +[ L"P}Eg{s --J *{’g_fdsj (69)

fud 3 ae- L, 3R a]

In orderr to obteln an upper bound k for the lovest cigenwalue k. 2 Suppose that

§ satisfies the following conditions:

(1) 28 + k+2§ =0 in S and T separately for same constant Xk ,
(.ﬁ) § gatisfies the same conditions as 4> on C, (SQ)
(111) § is continuocus across PR,
(iv) I§ g-g- ds = 0 on PL, PLY.
Then (69) reduces to
T = . ("100)
(V\ijaf )' k‘ PM&‘ALP& b.,, QP ( SQP]JS o Gk (R)
2
Also ( v . Vd’-)g =k (5 , ) with the same proviso. Croey. X

Using exactly the same reascning that lead to equastions {10),(11},(12) it

Grow
follows that, 1f (PX) is satisfied, Xk Z> kl‘g, where if & 15 a FPirst order
approxiration to ¢l’ then k+ is 8 second order approximetion ta kl'

A second veriational princlple for the lowest eigenvalua can be obtained
by considering a function Ge which catisfics the conditione
(1) v° 9 + k2 ¥ =0 1in § and T separately for some comstant k ,
{14)v ‘I’ satisfies the same conditions as ¢ on C,
(111)°d ¥@Pn = 0 on PL, P'LY,
(1v)o j'fggds =0 on Qp, QP
We also define an error fanction ¥ (x,y) such thet ¢ = d"l + 2

A0 (Qob)
Repeating the ergument leading to z&(&? $2) but using (1)? - (iv)', we find

2

(V‘P,v\i’)g = k.. " ‘:)i}
provided L, ¥i ( 5%'**)09- ( 5‘?/3“ )9"" ]‘lg s (%)
and (V‘é' V&,)g = L."k-," k-‘(’-b, , 2 ) as in {(14).



Tt follows egaln that if 'T‘ 1s a first orier epproximation to ¢,, then k is
,» but not mecessarily trat k_© < k, 7.
The conditicns that k+ and X should glve upper ond lower bourds for the

a second order approximation to x

lowest eigenvalue k., will be exactly the same s those in é 5. Ii is shown

1
in the problem of 5 9 that these conditions are satisfled and thet therefore

k_<k.



$ 8 Klystron Resonators.

A girect extension of the Sinple praoblem leads to e problem ol praciical
interest, that of determining the natuvalmcdes and fregquencies of Xlysiron
resonutors. A Klystreon resonator is o type of electron vecuum tuke exployed
for the emplification and generation of microwave fregusncies. TFhyslcal
descriptions, applications cnd operabional requlrements are given, for exanple,
in {16), (17), {18) Extensive bibliogrephies are given in {19) and (20) and
detailed numerical results ere Lo be found in (21).

The basis of cperaticn of a Klystron explifier is the interection between
an electron beam and a resonant cavity. A simple form of such 2 resonator is
a re-entrent cylinder of circuler cross section, and cross section through its

axis OA as shown in Fig. VII. /\A

Figure VII 5

_____)L B c

A veloclty modulated electron beam passes in the direction OA Through &
copducting grid structure in the region BCDE, end exelites eleciro-magnetic
oscillations in the cavity. It 18 required in practice to know relative
dimensions of lengths BC and CD for maximum efficiency. Coupling to the
resonator is mede with a swell loop L. The positioning of this loop is
determined by the position of current nodes in the internmsl surface. A study

of such re-eptrant cavitles ig given in (g;) chapter VIII.



9 Southwell''s Proglem.

-y e e

We shall consider first o simple two-dimesnsional vroblem, regerding

Fig. Vilas the plsne cross sechbion of an infinite tube. This has been

dealt with in scme detail by Seuthwell in (22) by o Relexation wrethed.

There are two mejor objections to using Relaxation methods for this type

of problem, firstly thet the numeric&l work can becore excessive, end
waiacourulc

secondly that relaxstion becomes wesstsbidm in the neigbborhood of sn edge or

corner. Comparison of the resulis cbtained in this paper, witb those given

in (22) shows a discrepsncy in the eigenvalue camputations of up to 10%.
S TO N

Thies 18 most probably due to the E&f of the velexation procedure

near the re-entront edge.

Utilizing the symmetry properties of Fig. VI{it is sufficient to consider

a rectangular region o< x<a+d, 0<y<b, as in Fig. VIII.
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Fig. VIII. b
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We specify the boundosy conditlons governing a potentiel function d::

(1) $ =0 on AB,

{11) gg =0 cn BC, CD, DE, EF,

(ii1) Sgl a1 cn EA (8%)
(iv) ¢ continuous across FG (70

{v) 3% continuous across FG.
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(Ve shnll be interested in the configuraticn in vaich 4 is ewnll coapered with
a, Whken this 1s so the resvlis are veyy littlie effecind vhetber ve use emdition
(iii) or veplmce it by ¢ = O on BA.)
Ve divide the figuwe into tvo regions.

It 0<x<a , 0<y<b,

i1 a<xzx<a+d, O0Lysh
with corresponding potential funetioms 4’1 and ¢2. By seraratisn of variables,
solutions of ¢n + éyy + h% = 0 in the two reglans, satiefying the boundary

canditicns sre

b0 = 2 B An ek Vex wliry ), (709)
Cb..(“"i) - 56 “% 7 @., g&hL‘fh(hhd)}(ﬁ(“‘j'/‘)’ (w

2 % L S v (3 (¢ & :
where Bn‘[(“m)'k] =i fie- m)], and &. is dofined

as in (17d). We can obtain approximotions to the elgenvalues, es in the Simple
problem, in either of two ways:

cagse I. We consider Munctions _{land §2 @zfined in regions T and IT respactively

by (f),(x.j) % 'E',.E:. £, f, wsh l’.xm@wslb)' —
‘E,(Tﬂ)) = f‘;,z-‘é., al{fGee ) ] o (g ) (720)
where Pv = [(‘“A)I“k‘tjez - [&.,1.(“"/‘)‘]35

8o that \7‘&."\4’@» = Qz&;*&taéa « @,

Ve imtroiuce wlmown functicas Fy(y), Foly), F(y) by writing
§;¢ {esy)
¢ (a,¥)
$i(a,y) - Sy} = Fily) ~Fly) =Fly), B<y<h,

=0 0<y<hH.

Fily), BZyghd
Fo(y)y BLysgd

(78)

so that § (x,y) setisfice comdition (iv) of (86¢)(T), whee o- P.u:k,_. wi, X mhﬂ‘;‘lj-




~ B
Conditicn (v) of (T1) reanires that D(E' > 5.&‘: O, X=a Oeys R

That 15, & £. (Q.aoh Mo ~Both Tad ) o (uys )xo, oeyrb, using (ii) of (71},
=0

so that C.othPad = A. sk Ta,
Substituting for 8. in (T2b) and using (T3) we obtain the expression for A
tosh Vol

b
A= f Yoo M2 A7
DO)L p‘(a‘o&" . F(f in b i (Th')

But condition (ii) of (T1) requires b&-/bm ~0, nea ) 6‘(:11-‘ L.
If we were to use {72a), (74) in this conditiom we would obtain the following

integral equation to determine the exact value of k:

5 on sobla whTud [ «rs . )
.{Lfk i T LFC‘S)tm = g o '% =0, §vq=b,

Multiplying by ¥(y) snd integrating with respect to ¥ to remove the y dependence,
a8 Por the Simple Problem,

o b 2
"., § j wq = O

hgo %t Gothlaa + AU T4 [ 8 P e IS 'ISJ (13)
vhich corresponds to (23) of the Simple Problem.

Case I Cousider fumctions F, ana ‘F. aerirea vy

‘k(u,j): (2/5)"5::02,'(.'" cos‘L(Q, xwa(“'"‘;/s), (76s)
Yt(g‘j)z (’2—/5) 3" f.'D.., s&(@,(*‘a‘d)-]m("j /i,)‘ (st)

h=o

where Cf and 5%/‘-,. ere continuous ecresse AX=6& , O <Y = , and where
X
@ = ((mm kT s i [k - amr]?

¢ 5 so that
VL*.{ k_?‘f’ - V, *$4L~'T1 = 0 .
We imtroduce an umknowvn fuuction G(y) by writing
%—g=%=@(‘j) , x4, o‘jf@‘ (17)

O' % = o, Gsn‘ku

il
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Fream {76) and (77) ve can quleXly derive the fozms

6
-t
Shllrerred £ 7 ()
’ 8
. ws {7€v)
D, A.. wsh O [ 6 - Bt

and hence, svbstituting (78) in (76) ond using the conmtinulty condition,

) [ 1
é £ 5'_ cotlh Q.0 4 ol o\a)[ f CGren 22 Jg] = 0 (79)

corwesponding to (29) of tha Simple problem.

Rumerical resulis for Scutinell!s pichlem.

To be able to compaxe results with thome of (22) reges 392, 39%, we
choose the dimensions of Fig. VIII ¢o bhe

b/@=8 , a/daT, B/t =0(1)8
The eigenvelues in the limiting cases B/d = 0,8 are exmetly es in the
Simple problem,

ke = (T4 (B]° =0, (80a)
kes = [(**’1)‘(3)’4[?)‘]’ , tla-s. (80b).

end the lowvest eigemvalue koo for B/A = 1{1)7 will therefore Be tebtwsen
zero aud xn/2.
The pyosess of finding mmerical spproximatiocns o the lowest eigenvalues
of this problem 13 almest identical with thot which dealt with the Siuwpls prchlen.
The ccaditicons for clhwosing suiteble trial funeticns P(y) and G{y) are

identical in the two pichlens, end we therefore take
. % e
¥p = [Ceot-Gp* Tt (81a)

¢~ [ ”].& {81b)

A slight simplilication is cbtained by writing b - B = C in {812), and

b-? = §, 80 vhat cur trlel functions will be



) = (c“?‘)!‘ ; (8za)
Py |
G- (6> 1) 7 (82n)

Substituting (C2a,b) in (75) and (79) respectivaly, we cbialin the approximabe
txanscendental equetlons for the doterminaticn of k{_ and & ,

| - *
"o s
Z il wth Mg ¢tk DA [ jl FG) G "g ’(f] =0, {832)

h

o 4 [ 2
{ . (u"\‘-\@u 4tm.L®A)[ LGG) (78 ':r';.s ,’sI =By (m)

A wvéry exude First aopraximation, corzesponding to {57), csn agein be fomd
by using the trial function G(pn) = 1 in (83b), together with the opproxizaticns
th Oua+ Wldd ~ 2 |, w3

)

&8s
<S)-\ -v%r 'h2|- ‘ )

Subatitution of (84) in (83b) redvees it 1o

i Letha alad - '621(,%)3;? 5o (wf),

Mg

ix1

for the right hand sids of which, being fdentical with the right hand gide of
{55), ve knov the approximate swm. The first approximation to (83b) is

thercelfore

g [uthatekd ] o Ry BRE (85)

Valuss of X a cbiained from this equation, over the range of values of B/b,
are ghown in Table ITX(a).

The next syproximations for k A and X to the cmellest elgenvalue ars
obinined by using the trial functions (82) in eqwmtions (83). The resulting
trangscendental equations are almost identical with eguaticns (59) and the
successive steps in thelr eporozimete soiut.ian ave precisely the cama. We
tharefore omit the detalls. Resulting values of k b end k b exe ghown in
Table I1X(b).



Fionlly uwsing the 4twial fimetion
mn e
6 = & o [&-p177°
rFso
e cbtain the following resulis for the cmse wkan B/ = 8, ¢/d = T, B/d = 1

— S

m (¢) 1 2

%s b | W3, w5, D6,

indicating slightly dmproved results for enormomsly increased lebor.

Teble III. Solwtion of Scailmell®s problem by the vaxietionol method.
Values or b and Zxh, wvithp/d=8, a/a=7, BJa=O0(1)8.
(a) Solutics of equaticns (85)
(b) Solutions of equations (82) using appracimating functicns {(81)

B/d 0 3. & 3 I 5 6 7 8
e — oo o e
;(a ) stgk-h i - 550 652 .38 .835 .927 foils - -
%‘4-5 : - .h798 .5857 .6781 .7665 .GSlh .92%,} .978,‘ 1.00C
"~ 0 ‘13733 -,5822 . 6751 . 761!" - 8393 09011 . 929u -

S (Tob)
Values “‘é’lmﬁembeobmmdﬁmfomm 8% ana 8.

The forms for Case IT are

0

.Q & i uSh % _C_O.‘_(‘e‘“ ‘(.nd’) nn*j

Z h.JMka n=" 6—0\ Su\\‘@.a

. =i Ml-(x—'«’t‘) - ._L seak [0, (1~A-d)]T Wi €Y ., u
‘Fz z k.o ok g o.4 ek Sk ( )

(86e)

(86v)



The infinite series in (B5) egain converge v repddly, asd can therelfore be
gummed etsily, exeept au th? lirs X = a. VWien 2 = & the Inficite ceries moy

be epprotinated by

.Zi 3 ath@a J, (-Eg)c. 'T';) & Yr_b; é‘w‘_"\ I(ﬁg{@)m u_EJ ’ (872)
) 4 " o }
ma &gy WAIT)eP 42 8 o g (e (870)

The infinite talls cf theas tvo expuessicus axe ideutlieal and eve the cone
as (66b). Their volues ave thevefora Enown.

Figawwe I shous valusg of ¢ computed for Cose I1. These ore compared
with Southvell’s Pigures (_2. page 382, in Figure X. Sorthwell les used the
valize -:‘:-(kh) h91 ccopared with cur -2-1: h = .l;73 It 13 of interest to
compars FMgures IX and X with Figwre XTI vhich giws values of $ compited from
gur expressicns (B7) but usirg Sowtwellls velve, S(th) = .OT, .

Figures IX, X, XI. Valuas of the potential ¢(z,y).

b/d = 89 alld = 7, B/d = 1.

Figwe IX.  Compwted fram (87), with Z6 = apy

1030 qF2 383, ¢ >
- {19
Q644 . o2 {LL o
3184 333
Qv £35 314 245 o
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Figure X. Sorchwells vemults, given in (22), page 392, wiih ?’% = 48T,

1000 Gt nts 4
Qe q'} M1y

341 b
Qi o 28.29 |

Figure XI. Campueed fronm (67),

1000 A 455 o °
L
Foot aa 182{2 »
w2t 340
qit 309 ws 350 fo

Valuesofblmdéaahmﬂd, of course, be equal on the line x =8, 0<y < B

With the epprovimaticns ¥(y) arcd G(y) this will not be so, but th: cveyage

difZerence shruld approximate zero.

this.

The recults shown in Tablz IV egree with



Teble IV. Valiuss of §,, é, in Southwells problem,om ihe line

X = Dy B/‘ﬁ = 1, "n/& w & ¥ = C(L,’;C By %h_b = w3,
y 0 b/32 2b/32 3p/32  b/8 (-8) e o h
62 29"'57 2978 50!&9 3155 5527

Higber eigenvalucs k are easlily foaamd. For example, from (80) we cee that

the second lowest symetricnl elgenvalue k].]. will lie elc:ne‘;hm bstvean the
. [(n/a)a 3 (n/b)2] i [(5:/&)2 - (n/b)a] ,

that 48 o2 + (M/a)® < (k- b)- < %% + (3ub/22)? {cB)
when 0 < B/b < 1. It follows that @0 = [(nn)‘? - (’k“)‘l)]%:ls iraginayy for
n = C, 1 and alse thot the function ®n vhich 18 wmest depenfent upon kll will
be 01. Separating out the first two terms of (83b), usivg approx:!mtim;
(82b) end wemult (56b), cwit pu“@) 0,218 6,219 | 55 bux B -t O o veed "

ot Ga mw)* ((.teo-t» r‘)I(“'s)
3 2" ( mL@.m&»NA)J ‘(z8) (29

M= o b

2:931.(

A first estimste of k,, for given B/o is best famd by sssuming 3 lireer
relsticaship between k,,b ond B/b, vsing (8B). Using the xesults in the first
term of (89), ard spproximetions (84) in the right side of (89), a second
estizate 1s obtalined. An iterative process now easily improves the approximaticn
to ku'b o any Gesixed agccurscy.

We bave computed k).b and correspcnding valnes of 4;1 in a particulexr cace.
The results, shown in Figure XIT can be campaved directly with Southwell's
resulis, Figure XIII, for the same comfiguration. OGur wvalue of k..b = 5.0359

Al
is to be campared with Scautinells, kllb =~ 5.15.



Figure XII. Scuthwell®s problem, valuwes of ¢ Tor second lowest symetrical

elgenvalve k,, = 5.039 , 2/A =7, b/d = 8, B/é=1

=160 ~W1d 306 €4l 334 } "
EET)S - 327 151 g2 551 9

G 1 -15) =% 28 o
) 313 ¢ "M g .
1000 Sl i s s 1 5

Figuwre XIII. Southwell®s results (22) page 394, with the ssme confimuration

as Figure XII. Eigenvalue R~ 5.15
~i5¢ -5 315 e 18 %N 3
uwy -1 wo WIS sv 0
no L R A 1 LI 0
12t W - "Nt -l 5
- oL B A 0

Lpper e&nd Lower bounds for Scuthwell®s problem.

In determining vhether the inequelities k_< k; <k, eve true for the
lovest eigenvalue k, of Southwell’s problem, the form of the fincticn pn(k)
of expressions (46) is

e« v, [cal¥ug + Toak ¥ea 77

! o>
e T Y3 I 0 ANy TR TS

i 7
It 1s cbviously true that p (k) > 0 forn > 1. Ve also require -&{p n(k)) s
'.Dn"(k) to be negative for n > 0.



. . T ' "
aae - &
Whea n > 1: L = = [ - "J
B r) Lo . {ﬂ& + “(./“L X'v\ ‘{ Yl (‘?ﬂ)

(l"tb..\tr\’ }’nd\) ‘('&‘/ﬂ\(uﬂ\«zb"c.°'>

vhere E = =
n ]
Lk;d‘" \Aw A ¥ teonta th

< | B rmL Bh (k < l =5 thL X‘. /l. gl;“& wTLYy\°>' 5 C‘-‘]Z]

[‘,Q‘th ¥, 0 + tank Yud

Therefore pn°(k) is negative provider. ;-1-5 >1 - tenh ¥ 4, vhich is eo.
¥,

Whem n = O: ¥ = -ik and p (1) = -k{cot ka - tan k4)™,

(=
Therafore po"(k) = ~(cot ka - tan lsa}'l' - &(a cosee® ka + & sec?® k&).
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