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PRUFAGE

This thesis forms a record of the investigation carried out by the
author on the correlation of the thermodynamic properties of ordinary watex
substance,

The background to this problem was thoroughly explored and is discussed
together with detalls of the latest international developments,

Attention is drawn te the fact that the derivation of so-called 'Thermo-
dynamie Temperatures' by the addition of the quantity, 273.15, to temperatures
referred to the International Practical Temperature Scale leads to discrepancies
in tha values of the thermodynamic properties galculated from equations of state
by means of the thexmodynamic relations. These differences are shown to be
significant when compared with the tolerances in the 1963 International Skeleton
Tables,

Equations in the form of Chebyshev polynomials ave presented which enable
the thermodynamic properties of saturated water and steam to he calculated in
a systematic manner, In the equation defining the pressure~temperature relationship
allowance has been made for certain unpublished measurements of the National
Bureau of Standapds, Acocurate tables of satuvation properties for regular
intervals of temperature are included,

A new equation for compressed water from 1 to 1000 bav and O to 150 g
in which the dependent vaxiabia ie enthalpy and the Independent variables ave
pressure and entropy is described. As these are the most important properties
in pump and turbine performance, an example of the calcoulation of the efflciency
of a water turbine using the 'thermodynamic method! described by Thom (99) is
included,

Recommendations for future work are made and an outline of the advantages
of an h~s~p formulation based on ovthogonal Chebyshav polynomials is given.

The work is concluded with an evaluation of the theovetical 'characteristic

curvea' for watey,
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HISTORTCAT, BLBLTOGRAPHY

L.l Zotrodustion

The early investigatows of 2000 years ago weére among the first to
amimniate the wnlimited applications of steam gcme-md' inventions, They
bhad up .Imwiedgca of actual property values of vater substence, but they
were familisr with some of ite practical aspects, The first recorded use
' of steam was by Hero of Alexandria, sbout 150 B.C,, who deseribed and
illustrated 78 ioventions, Amohgst the number were a ayphon, a puwp, a
water elock and n steam eénging,
- After this early use of steam thove was a complete lapse in beth -
interest and progress until the upsurpe of selence in the sixteenth cantury.
¢ This next period saw the dovelopment of the steam engine foy various uses
: and in many varied forms, along with other types of steam operated apparatus,
:r . but it was not uatil the end of the eighteenth and the beginning of the
f’ ninetacnth centuries that eagineers vealised that they wore dealing with a
) non~ideal gas whose properties had to be detormined experimentally, and not
theopatically, From this vealisation, there followed the stindy of steam
proporties which has continued unabated simee this periond and has eontinued

to provide experimental wvalues of increasing accuwxacy for the various properties,

~ o~ T s

The aarliest known veséarches into the phenomena of steam, undertaken
with a philosophical purpose, were those of Ziegler in 1769, Between this
date and 1844 when Regnault (1) published the first of his memoirs, a large

no-_ -
.

nusher of experiments were carvied out by different workers who produced

r

results of varying adeuracy. However the first researcher to cawvry out

ageurate and consistent measurements was Repnault, He designed and buile

LA 4

apparatus with swhich he was able to weasure property values with an accuracy

-~

l

that was nof surpassed for over £ifty yesars. As a result he was able to

develop equations and stesm teblas whieh acecurately reflected hia experimental
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measurements, This was the pattern that was taiemarge, as the investigation
into the properties of water substance gathered momentum measurements would
be made, then tables at rounﬂéd intervals of pressure or temperature would
be compiled, and finally equations would be devised to represent the
experimental ov tabular values, This proeess has, of necessity, been con~
tinuous since more accurate meaaureﬁents eantiﬁué to be made. |

The first equations were based on a aoﬁbination of theoretical and
graphiaal ﬁathuéa while modern formulations hﬁve aither been based on theory
and caleulated by uampuﬁe# oy beaen based solely on mathomatical analysis of
all available measurements,

In ordex to appneeiané £u11y the latest progress in fowxmulating equations
to xepreseﬁ& the thermodynamic #rapen&ies of water substance, it is necessary
to follow ﬁhe various atages through which ﬁata raprgsenﬁaﬁion has passed,
TFor ease of deaeriptibn, this historical summary will discues firstly the
saturation aquatioﬁs and secondly the formulations which have represented

water subgtance in its varying forms.

1.2 Saturation Line

A great varieﬁy of equations hava baeen suggested to represent the
different saturation properties, The most important one is the vapour
pressure equation in which the préssure ie noxmally vepresentad as a
function of temperature. ‘This is dne‘not only to the importance of the
physical property itself but also to its relation to other thermodynamic
properties, such as the latenp heat of vaporisation. Various other pro?erties
have been measured also, the best known and most impertant of which are liquid
volume, latent heat and specific heat., A detailed description of vapour
pressure'equations will belgiven but equations for the other preperties will

only be mentioned in passing.

1.2,1 Vapour pregsure equations

The very earliest vapouy ptessuxe‘formnla was given by Dalton (2) in 1801
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who mbserﬁed that the pressures inereased in geomeuric pﬁogresaiom while
the temperature increased in ariﬁhmatic progreasion, that is
log p = a + bT vaene (1),
This relation was quickly disproved whem better measurements became available,

A éomplecaly different form was suggested asbout this time by De Prony (3)

pw a6t 5 bBE 4 ot 4 oo verre(2)
and was followed by the relationship invented by Young (4) where

p = all + be)™ vensn(3).
Bquation (3) was used by many physiclsts over the nest decade. In 1828
Professor Roche (5) suggested an equﬁtien.bf‘che form

p= apt/ L+ et) eaas(4)

Equation (4) can be gereralised by making the temperatuve series into a

double power series as follows;
A i

p = ab wnesslB)a

This approach was tried by wvarious people and culminated in the rather
elaborate equation of this form devised by Broch (6) in 1881,

In his attempt to find a suitsble relaéianéhip, Biot (7) (1844) modified
equation (2) to

log p=a+ vB* + oot soees{B)s

Regrault (8) in 1847 formulated a modified version, (7), of equation (6)
based on hig experimental results, which provided the hest representation to
the data up te that time,

log p ® a * bB™ + eC® veans{7)
where % = ¢ ~ dy

None of the equations, up to this date, had any particular theoretical

significance, ag most of them were based on the graphical approach. However

after this peviod many of the formulae weve based on theoretical considerations,
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the most common of which was the Clausius-Clapeyron velation

L R
dt " Tav ¢

In 1849, Raukine (9) produced one of the fivst equations, (8), to be denived

from this theory

mgpcﬁa"’%'"%a ﬁ‘v-'q.(B)a
and nine yeaws later Kirchhoff (10) using the same background proposed

log p = a b log T -<,% seens (9

The last of the simple equations (10) was sugpeeted by Antoine (11) im
1888, anél originated from the algebraic equations for the hyperbola and the

parabol‘m

10:’3 p”am?%"g «UtOu(]aO}g

This type of equation did not f£ind nearly as much support when it was
first presented by Antoine ns it has obtained in the period fyom 1945 wp
to the present,

Thiesen (12) produced a much more complicated equation in 1899 which
he based on measurements which he had earvied out bhimself., His equation

can be aimpl_iﬁigad to
(t’.'ﬁ'.a) 10&:9”*3"'3‘5*&(43"*:)4 '01..(11)‘

Inl907, Henning (13) carried out a guivey of eleven equations which were -
in use at that time and compared them with Thiesen's equation. The following
year Holborn & l{iermé,ng (14) published accurate vesults and provided a
correction curve ko :bé.;;sfad in conjunction with equation (11). Professor
Gallendar (15) published his ateam tables in the 1920's and produced an

aquation, which was based very closely on the Clausius~Clapeyron relation,

logpwan~ -gé “ ¢ log T+ d log C-%{w%} @ % vunwa(l2),

whege 2 = %’:’» .

Ag ean be easily appreciated. it was necessary to intewpolate lw it for p
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Méékbéﬁh»p and.T appear in a rather complicated mammer on the vight hand side
of the equation.

In the midst of theé% édﬁplieatad forms there appeared in 1924, proposed

by Henglein (16), a very simple equation

1055{')” a - P“n Qoeoi(la)
T S
to ba followad in 1927 by one (14) by Batchinski (17) where temperature was the

i:dependent variable
‘ - P, ,
t &+ a= b(if'lr}s - 103 d/laf{,( c[p),) dﬁutc(lt&)
Three years latex Hofbauer (18) produéad a rather unusual equation
log log p = & + log(T = b) ~ log T ~ e log (%D sevsa(15)
and in 1932, using natuval logarithms, Kirdef (19) scuggested
p~inp = all -1 in ™ +e svasa(16).
All the equations so far mentioned had originated in Euﬁope, particularly
Trance, but the next two equations of note were hoth prepared in the U,8.A,

The first, equation (17), was devised at Massachusetts Institute of Technology

(MIT) by Smith, Keyes and Geryy (20) and was calculated by "least squaves™;

P ‘ o o 3 4
105y « 3 @l BEECE G e (17)

' wheve = = T@ “ Ty
The sccond was devised, also in 1934, by Orborne & Meyexs (21), who took a
simple equation and added correction tewms una;l they obtained an adequate
it to the data over the complete range. They obtained

Ayl‘zﬁ

2
tog p = a+ g+ & (10 1) + 0 10] veses(18)

vhara x = Ta R, y = ta -~ e

The final equation (L8) was penerally accepted and, with the addition of a
more aceurate equation (12) formulated by Gewry, aad noted in reference (22),
to cover the temperature range 0 % to 100 QC, has been wveed internationally

up until the last four years vhon many new empirlcal eqeations have been
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davised wesing computers. Gexwy obtalned
d

10g9”’&*b10g1‘*&3 'l“*“;“r’:“ vaty}(lg)p

Doxaey‘(zg) in 1940 reviewe@ the work done over the previous 20 years
and concluded that equation (18), uséd over the tempeyrature range - 5 % to &;}%

Thomson (24) in 1946 advosated the use of the Antoine gquation to
represent the vapour pressure of any substance and showed that over a small
range it would f£it the data with great accuraey, This approach to the problem
was vepeated hy the Ameriaau Petroleun Institute (25) wﬁaa in 1954, vepresented
the vapour pressure of water in the ranpe 0 °e to 150 %¢ by nine Antoine
equationg, each govering a small rénge of temperatuve, .
In the period 1965 - 60 polynomial sexies of the form (20) have been

suggested by workers in Japan and Gaxmany, via

Inp=13 2 x seena(20)
5 k
vhere »m = (1 ~ 8) orv (T,W-Td) or t..
With the advent of computers this type of equatiion is likely to £ind

parmanent recognition due to the eape with which it may be programmed.

1,2.2 Qther saturation equations

Saturation properties othey than vapour pressure have been measured
and these include the total heat ov enthalpy, latent heat, specific heat
and liquid volume, The most important of these s the last mentioned and
will he dealt with fivst,

The fipst liquid volume equation of any note, (21), was pvmpaseé by

Tate & Faivbaimn (26) in 1860,

Vg ”'&1"‘“{)‘“%‘“&‘ aense(21)

It was unusual in that it used pressure as the independent variable instead
of temperature, The only other equation of any sipnificance was devised by
Smith & Kayes (27) in 1934 as pavt of a research project which was being

undertaken at MIT. This equation, (22), has been Formulated to give the
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eritical volume exactly and has been achieved by using (tQ -~ ) as the
independent varigble,

1
v, +oax /3 + Tam ¥ ex#
. . . TS ; tt’ﬁi{zz}

Va =

1» de[E - oen
vhege x = tu S

The other properties mentioned here have been vepresented by simple
equations which have usually been in the form of a polynomial series, |

Wﬁére is, hoﬁavér, oné research group wio spent the years between
1930 and 1940 préviﬁing neasurements and equations for the saturation
properties, This work was carried out at the National Bureau of Standards
using as thedr basis the celevimetric quantities o, 8’ and v which awé.
deseribed by Osborne (28). ¥rom these quantities, which are Fully deseribed
in Chapter &4, one can obtain all the saturasion propertice. This work has
naver been betteved and the equations and wesults obtained from it ave still
vsed in ateam tubles wo-day. Unfortunately it is partly wmade up of equations
and partly of tables and so is rather unwieldy to use, Heuée the proviaion
of stzaightforwawé equaiiana basad on this data would define the sgturation

properties in a mueh morve satisfactory manner.

1.3 Dquations of state

The raﬁreaanta@ioﬁ 65 the pmnparﬁies 6§ water substance has, mueh wmore
80 than‘the saturation érnparties, been attempted by both theoretlcal and
enplrical equations. In the theoretical approach, water substance in the
vapour phase has been consideved as an ideal pas and then modifications,
based on theoxeuiaél considevations, have been made to the original relstion.
to account for the diﬁﬁerenaeé botween theoretical and experimental results,
Partington and Shilling (29) have followed these developmentcs by Llisting 56
equatlons of state.  The empirical equations, on the other hand, appear to

have been Jdeveloped by the axperimenuers, who would formulave a simple




fequation to veproduce thelr resulta apd then produce steam tables from it.
‘These two attitudes will be discussed separately,

Before continuing with the discussion in this chapter it is necessary

to undeystand what is meant by the expression 'equation of state'. The
definition has varied over the yesrs and a slightly different form will be
advanced hera. The conventional definition may be expressed as follows:-

‘ The properties of a fluid of constont chemical composition are completely
defined when any two of three variables are known. These variables ave p“V“TY
and any equation representing the interdependonce of these three variablas

for a fluld is therefore an equation of state, Thus the genewal form of

such an equation ig

£ (p, vy T) = 0,

The presently accepted definition apgrees with the definition in general
but ot over the choice of variables., Heve an equation of state or character-

igtic equation is taken to vefer to an cyuation of three variables, for which,

if any two are known then all the other thermodynamic properties may he

calounlated direetly. Throughout the thesis the latter meaning will be used.

1,3,1 Theoretical equations

The first theoretical equation was suggested by Boyle and Lussac (30)
in 1662 for an ideal pay and is written
pv = RT senas(23),
This form was used for almest 200 years until Rankine (31) in 1854
suggested a modified form, (24), which apgreed move closely with the experi-

mental results,

v o= R‘I’wi}—fg« ;wn«.{fﬁ‘é)t

After this improvement had been appreciated, a large number of varied
forms were p.mﬁenﬁed; The next important step fovward was made by wvan dex
Waals (32) in 1873 who suggested equation (25) which has been used as a basis

for wore accurate equations by writing the constants a and b as functions of
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volume and temperature

e *‘ﬂz) (v-5b)= /Y eoens(28),
¥ ‘ .

Anothev well known end papulai form was devised by Dietexici (33) in 1898

vhere an exponentisl term was introduced
P(V “b) = RT’ exp(~ "ﬁ%) : . senraC26),

If the expomential in equation. (28) is expanded as apower series and only
the first term taken then ecquaticn (25) is obtained, Further improvements
are represented by the equation (27) wilch Berthelot (34) put forward two

years later

(p + ﬁﬁ) (v = b) = RT woren(27)0

There were many other equationa of a similar,natuxe suggestiad but none
of them managed to préﬁiaﬁ the exporimental properties with any greater accupacy,
Theve was, however, nné equation with which it was possible to obkain:
reasonable apreement with the expewimental values. This was the 'virial

equation® which could be written in two s5lightly diffevent forms:

. B .G |
: pv = A (1 +w‘;+:;2vt~..... ) enesa(28)
and pv = A (1 + By + cvz F oeeess )} raesa(29)

where A, B, G, «sess ave called tﬁe firat, sacond, thikd, svae vivial
goefficlents and are functions of tempevature., If only the first tewm is
used in equations (28) or (29) then the ideal gas equation (23) is abtéiued.
However this form of equation is uﬂualiy used with the constants fitted ag
empirical functions of temperatute, |

In fact, all the equations that have been mentioned inm thig section
pressure or volume in ordey to give a much better approximation of the
properties. A full description of this approach la discussed in Chapter 2

where the wost recent advances in this fiield are considered and desexibed,
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1.3.2 Empirical equations

The equations mentioned at the end of the previous chapter wexe both
theoretical and empirmcal in comparison winh the entirely empxtlcal equations

which will now he described. Samo of the ideal equations already dlscusaed

have been conmsidered for use in the ealaulatipn of steam tables e.g.

Callandar (35), but generally a simpler fomm of equation is chosen., The
theoretieal equations always use prassure, velume and temperature as the
varisbles whereas with empirical equations almost any cowbination of
variables are used.

The most common dependent variable, however, appesars to be enthalpy.
Regnault was the £irgt person to produce a simple relationship to define
enthalpys:

h=a+hbt »eren(30),

Thiz equation (30) and the othexs wﬁich follow are applicable only

For superhmaﬁ@d steam, Marke and Davie (36) in compiling their steam

tables modified equation (20) by adding an extra term to obtain
™ " 2 ) #
h=a+bt+et revea(31),

Holmes and Holliteh (37) provided three equations of the form

h= § b aij pi(a - 50)3 ewsee(32)
im0  j=0 -7
3 i
vhere o = 2 b, p

which they used for predicking steam turbine power plant pexrformance, These
equations gave good agreement with the enthalpy values from Keenen and Keyes'
Steam Tables (38) but were not evaluated for the derivatives, The only other
work using enthalpy as the dependent veriable was caxwvied out shout the same
time by ‘Steltz and Silvestri (39) who produced equations for enthalpy, entropy
and volume as functions of temperature and pressure, These equations were

not in any way connected but were completely empirieal. The mathod used
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would appear to be based on finding a simple equation which provided an
apﬁroximate fit to the data and then obtaining an sceurate representation
by the addition of covrection teria.

The only other equations of any interest ave two which were conceived

in 1936 at MIT, 'The first of these was also for stecam and is written

vm-»«-'gwn eees(33)

where B = f (-%;).

The second iz a compressed water egquabion,
v = a + bx - dye(p“a)+ ) roeas(34)
where x = ke ™ L,y B ~¢t
and § is a fuuction of p and t which is treated graphically.
The only othey approach to the problem of representing thermedynamic data by
equations is to use an interpolagion procedure along with the table values.
This is a reasounable mathodzzgriong ag a lavge amount of storage space is

readily available on a computer, and for this reason it has not received

much gupport,
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CHAPTER 2

OUTLINE OF REQENT INTERNATTONAL DUVELOPMENTS

a 2.1 Imtroduction

+ As the properties of water substence are of such great importance to
/ industry due to their use in boilers, pumps and other machines, a lot of
interest and cooperation has taken place over the vears on an intemational

\ scale., The first international meeting, called the First Intewmational

Ed

Conference on the Properties of Steam (let ICP8), took place in London

t in 1929, and since then they have taken‘place at intevvals over the inter-

i vening period, The last meeting, the Siwnth, was held at New York in October
r 1963, and the results of this meeting (40) and the subsequent effects are now
E degenibed, asithey had a large bearing on the work described in this thesisf
i ,

2.2 Th@nﬁimﬁh,mngennational Conference on the Properiies of Steam

This confervence first of all approved the new International Skeleton
Tableg (IST) prepared by the Internstional Coordinating Committee of the
' 5¢gh IGPS which had met in London in 1956, These Shelaton Tables, which

are normally referred to as the 1963 IST, weplaced the eavlier 1934 15T

which, in view of all the experimental work carried out since their inception
no longer represented the state of knowledge of yhe properties. The 6th ICPS
also discussed ite own future and the present and futuve ewperimental work

to be carried out, but the most important decision it made was in regard to
formulations for cowmputer uge. An International Pormulation Committee (IFQ)
was oreated to develop at the earliest practical date, within a year if
possible, a formulation of the properties of steam, represented by the

1963 I8T, for use with computers. The countyies which composed this committee
were Czechoslovakia, German Fedewal Republic, Japan, U.X., U.S.A, and U,8.9.R.,
since the bulk of the work on correlating equations and formulating steam

tables had been and was belng ecarrvied ocut by them.
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These then were the declsions and recommendations of the 6th ICPS
by whom the IFC was created and whose resulis will be discussed further
on in this chapters Now at this conference twé very interesting and
informative papers were given on the subject of formwlaotions for computer
use. A brief resumd of these papers and their saliest points will now be
given such that the advance of computer formulations and the slightliy
different approach of the vavious countxies up to the present time can be
digeerned.

The fiwgt addvess oo the subject "Formulations for computer use' was
piven by Dre K.R. Schaldt of the BaRoByy in widieh he supgested that this
gitle had a triple sense, velating to the three purposes to which these
formulations ave dirvected, namelys-

(a) that of smoothing and correlating meaguved values

(b) that of meking better Skeleten Tebles or Stesm Tables

() that of using these improved tablea for technical snd scientific
computations,

In the past the desixe for accurate knowledge of the properiies of

water led to the Ist ICPS in London in 1929 vherve it was decided to vepresent

‘the aceupacy of all experdmental work by so-called Skelevon Tables with

tolerances to give a measure of the probable accuracy, This process of
forming new IS8T was continped over the veays, the final 18T (1963) beiﬁg
approved at the 6th ICRS,

Up watil a fow yesws age all caleulatiocas were done by hand, now
thesa caloulations are belng earrvied out on an ever~inereasing seale by
digital computers. However, this vow raises the problem of efficient use
of computer time. The stovage of steam tables in the computexr is not
practical due to the lavge storage aves vequired and the slow access time
bu¢ even if the tablies ave veduced in gize and interpolation Fformulae used
these factors are still excessive.

he ideal position would be one with an intemationally approved
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formulation from which all sheam mmsés, if required, would be caleulated,
The following aonditions must be satisfled by ony equations established fox
cmm;;mt:é‘x uges
(a) ALl valuen caleulated from the equatlons must be within
the tolerances of the IS8T,
‘(b) Maximum reange. of application, including the saturation line.
(e} Thermodynanic ponsistency, and diffeventishility over the
whole range of application.
(4} Small stoxage dpace.
(e) Short computing times,
finece In the majority of cases tho temperature T and pressuve p ave - -
the glven quantitiss the formulations should have the forms
w{p, T hip, ™ #{py s
T# wonld probably not be possible ap this point of time to establish
one walque funetion Fulfilling all these reguirements and so it would be
necasgary to aceepht several separate functions ag applying in different
repgions e.g. compressed water, supexke,taamd;»ﬁ:'z:mm aml critical vegion, All
equations go faw proposad ave valid mllywer limited regions such as these.
The secovd addveds on thia pubjaeny vean glven by RW. Bain of NE..,
who had already formulated eguations for water and steam. using the fora,
pressuee as a fonetlon of density and %:em;semi:mra, Hie thought theve wvere
three possible pairs of independens mriaab!éﬁ*&?iiah; &éu:{d be used in a
compuker equation for wese in power eycle caleulations:
{a) pressure and tempsvature ~ This combination is the most popular
.althouph it does not appear popsible
0 cover the entire rangae of the
vaxiables with a single equation.
{b)  density (ox volume) « This form 42 net quire go conveniang
and temperature . bug it seems 1o offaer the best wethod
of corveiating the mass of experimental
dapa.

(e} pressuve asnd enfropy ~ Thig aquation would be just as convenient
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as () and because of the continuity of
all the thermodynamic functions acyoss the
two~phasa reglon there is a strong
possibility of being able to devise a
single equation which will cover both the
liguid and vapour regions. Unfortunately
any equation of this form must use an
equation of forms (a) or (b) to waleculate
initial enthalpies and entxoples,

He then continued by giving his personal opinion on equations in general,
There should not ba any limit on the nupber of separate equations singe if
there was only one approved it would imply that there wag no tolevance and
this is definitely not the case. However these equations must satisfy some
eriteria, The obvious one is agreement with expepimental knowledge and this
conld be modified to agreement with Skeleton Tables praferably with more entries,
A necespary extension would then be to provide tables and tolerances of other
properties e,g, specific heat, the Joule~Thomson coefficients and the derivatives
of presgure,

In any calculations where there is wncertainty in the basgie data an
assessnent of the uncartainty of the answexs should be included and it is
quite possible to do this aimply on computers, This perhaps adds one furthey
exiverion, namaly that a suitable equation should ineclude in its deseription
a statement of the ervos in its coefficients and of how they are statistically
aoyrelated, With this addition moye realistic answers to caleulations could
be pbtained, |

From these two addresses some of the differences in approsch are obvious,
mainly due to the faot that Schmide is an industyialist and that Bain is a
scientiat, Their attitude also reflects the views of their own countries
which will become mowe obvious later in this resund,

Meanwhile in the U.K. the work of aﬁmp{mér formulation has been caryied
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out on hoth a national and an intexmational level and they will be
deseribed in conjunction.
After the Sixth ICPS work in Britain was carrvied out in three main

centres ~ Canmbridge Univeraity, WM.B.L. and @lasgow University -« and discussed

and aoordinated in the Computation Panel of the Blectrical Research Association

(ERA) Committee 2B,% Most of the work prior to this had been carried out
at NEL by Bain and ﬂé Fevrae who together gaxyied sut a theoretical survey
(41) of possible foxrms of equation some of which were mautionéd by Bain
in his address to the Sixth Confereénce, These auggestioﬁa were examined
at Cambridge by Haywood énﬁ’Botu (42) and they divided the problem up into
stages as follows: '

(2) Plots of various forms of h = 9'#'p,

(b) Esxamination of methods of cuxve and surface-fitting.

(e¢) The results aﬁ'aurvatﬁitﬁing both the saturation line and a
few chosen isebars fax how h(s). anareanaﬁely‘they‘ware not able to
carry their‘imveatigation aﬁy further but the conclusiong that they reached
provided a sound basis for any future work,

Meanwhile at NEL, Bain hed left, and the work was bainé carried on
by ReT. MoLeod who carried out a short review (%3)‘b£ this caxlier work
and continued by writing a surface Fitting program to fit a surface for
s w 5¢h, 1n p).

During this period the work described in this thesis was initiated
at Glasgow, This consisted of first préviding an cquation for the saturation
line of the form & = a(ln p) which could be used with McLeod's suxface and

féllowing that a vapour pressure equation,

2,3 International Formulation Comnittee

The First HMeating of the IFC was held in Prague in March 1965 at

which the results of the above mentioned research was veported (44),.

*Now U,K. Committee on the Properties of Steam « Ministry of Technology.
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~ However before approving of any abmpﬁuarvfarmulatian it was found necessary
to defiﬁe explicitly the problem facing the IFC. This was done in Resolution 2
; which may bo sumerised as Follows:
There would appear to be two ohjects:
“ Object A: fhe determination, corvelation, tabulation and formulation
“ of the actual properties of natural water substance, (Actual
§ ‘ "pnﬁparties ave, of course, never exsctly known and statements
about them must be given linits of exror.)
ggiggéﬁﬁz The defiinitvion, by-ataﬁiﬁg ita properties, of a conceptual
fluid, *contractual stean’, (A definirion, by its nature

is exact,)

- o w——

Ohject A would be met by sharing, among Netional Delagatiogs, the work

on the following four sub-regiong:.

~

(a) superheated vapour

—— ™ T o T

(L) enitical
{e) compressed liquid
(4) saturation line,
Prom the.xesulta of this work a formulation should be agreed and adopted

and a formula for tolerancaes prepaved for use with the formulation.

li‘ Object B, while being partly satisfied by the sbove may only be fully
satisfied by the preparation of transformed formulations,

It was suggented that the tasks (@, O, (), and () be divided thus:

(a) USSR

{h) CSSR

(¢) ERD

(@) UK, i

Following on from the definition of the problem it was felt neceasary
to provide critaria which any equations must sotisfy 1f they were to gain

recognition by the IFG, These criteria may be emvmerated as follows:
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(1) The entire ficld of the 1963 IBT nmust be covered.
(2) The gpecific internal energy and the specifie entropy must be
zero at the triple point.
(3) As density + O then P¥/T + R where R = (461.51 + 0.07) I/kg %,
(4) Thermodynamic consistency must be maintained.
(5} ' 'Biat;enﬁiﬁuiﬁiés on inter-regional ‘baundas;ies should be less
: 'th’an tﬁe wzacoménﬁaﬁ mimum aacsapnaizle jdiﬁﬁﬂﬁﬁiﬂﬂiﬁ?a
:(63 flwthémai (ox i&nbar'ie) changés acvoss the saturation line
should be less than the meximun recomuended value, ’ |
(7) Suitability for usée in industrial caleulations and simplicity.
(8) Cumulative computational rounding ervors should mﬁ mém
1::‘)"‘("‘"3} +¥ vhere x is the nunbey of significent figures that
dan be held in the computer and y is the property miug caleulated,
(9) The cosbined virtues: of minimum avithmetilc opevations and
ﬁim:lmum ztom_puﬁar BLOTALA
The IFC adopted for ite work the symbols and unité to be used ap well as a
dimensionless fovm of the properties for use in the wquations, .
Two formulations had been presented to the meeting for considevation.
The firat, correlated by Dr 3&1&& (45) of the €S8R, is of the foxm p = pl{v,T)
which ié not v;:sxy suitable for industrial ecalevlations due te the form of
varigbles and its complexity, although it. is very accuvate. The other was

pregented by the BRD delegation and did not have the dirawbacks of the above~

‘mentioned although its inter-regional discontinuiries wore somewhat large,

It was proposed by Professor Le Fevie, the leader of the U.K. -dmegm:im,
that this formulation should be piven tempovary recognition ‘once it had had
some improvements, which he suggested, made to it. These medifications ares
(1) the formulation shall be in the fowm agreed at the Prague
meeting of the IFG
(2) the formulation shall include an expression for the saturation lines
(3) the dntexr—raglonal boundary between the superheated vapour and
the eritical region shall be wnambiguously stated,

It was vesolved that the shove taslk would be entrusted jointly to the BRD
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and UK delegations,

After the First TFC meeting the research continued at both NEL and
Glasgow University watil just before the Second IFC meoting, which was
held i Glogpgow in Mavch 1966, vhen a vapour presdurs eqaation had been.
formilated as part of the UK eontribution to Ohjedt A.

MeLeod had compléted his finst attempt to provide o foxmulation of
the type s » s(p, h) and he submitted a weport (43) to the Computation
Panel on his conclusions, He decided that there was no possible simple
representation aveilable in the above form but he suggested 'f,:hv:at: b = his, p)
might give better repults and that if the fit was constrained along the
gaturation line and the derivatives ignowed, at least, {nitially, nlore
sguccess might be-nbtainad. Meanwhile at Glasgow the other sopuxation
equations wore being completed prior to teckling the vuxfase fitting problem,

At the Second Meating (46) cquations For the sub-weplons vere presented
and in oxder to fulfil Object A two Foymulation Working Groups weme set up,
The figst, composed of the BRD, CEBR and USSR were to construct the formulation
and to prepare a technieal yeport and the pecond, composed of Japan, UK and USA,
ware o check the Formulation independently,

As a fulfilment of Object B the foxmulation prepaved by the UK and
BRD was awarded temporary yecognition end the equations vexe published (47)
in Maxch 1266,

Tt had been discovered thai the Japanese had obtained a cyitical
equation which if inscwted in the approved fogmyletion would considerably
improve it and it was deeided o lnvite collabotation over providing
this ivprovement, This rasulted in the improved 1967 formulation (48)
wvhich wae given temporary recognition in place of the 1966 forawdation,

The third and Final ITFC meeting (49) was held in Paris in April 1968
to consider the formwlation which bad been prepared as part of Object A,
This formulation composed of the four gub-regions indicated at vragué,qhnd

called "rirst YFC Mostor Formulstion', had been checked snd after some small




T T T x

-t

e T

T

AT AR SIS

é'aoﬁd

modifications which insluded a change of title, wag approved by the IFG,

However bofore disbandlng the IFC passad a wesolution in which ig
withdrew the designation tempovary' previeously quelifying its recognition
of the 1967 IFC Tormelation for Industrial use and submitved the following
twe Formulations to the 7¢h IOPS which was due to meet iv Tokyo in Septeamber
1964,

(2) fThe 1968 IFC Formulagion for Seicnvific and Gemeral Use,

as providing the best current répreaennatian of the
thermodynamic properties of steam.

(b) The 1967 IFC Formulation for TInduatwial VUse, an providing

equations better suited for use in industrial caleulations,

Tt also vecommended that deapite the adoption of these twe formulatlons,
worl showld ¢ontinua on formulations and on the producion and international

axchange of expeyimental data.
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GUAPTER 3

CURVE: AND SURFACH FLTTING

341 Introduction

This chapter contains a dlgscussion of both general and partieular

methods of curve and surface fitting. The mathematical details of the

methods uzed aye desepibed so that the problem, which appesred in the
course of the work, may be mope fully appraciated. It i3 neceszany also

to include the mumerical procedures invelved in the use of Chebyshev servies
and the statistical criterion which help to find the "best approximation'

to the input data,

3.2 Cupve fitting

Befora the problem in hand could Lo tackled it was necessary to consider
the possible methods of ecurve fitting which could be used. The only
regquiremant was the abilicy to find o smpoth equation to provide a close
fit to the data, which would probably be available at unequally agaca&ki
intervals,

As was mentioned in Chapter 2, Hayweod and Bott (42), at the suggestion
of the Computation Panel of the &,RiA. Stean Comilttea 28, carried out some
preliminary £its for the satupagion line nsing orthogonal CGhebyshev polynomialsg,
However, as this method, which is demeribed in section 3.5.4, could only be
wsed for the equally spaced problem, it was felt advissble to review the
different methods that wewe applicable for wequally spaced data, even although

there is a mebhod of calewlating the Chebyshev coefficivnts for the latter case,

32241 Gompavison of curve firting methods -

In 1964, Berztiss (50) carrvied out a detalled veview of five diffevent

methods of curve fitting, which he labelled as follows:



A: powey serias;

B: series of Legendre polymomials;

¢t series of Chebyshev polynomialsy

D: series of orthogonal polynomials, generated
by recurrence (Forsythe (51));

B: method D, modified to use Chebyshev polynomials (Clenshaw (52)).

Clenshaw and Hayes (53) in a paper entitled "Curve and Surface Fitting'
discussed thesa methods also, but drew slightly different conclusions, It
is proposed, in addition to these methods, to discuss two other methods:

F: Antoine equations;

€: splines,

xnlthe following, the methods will bo veferred to by their labels,

Mathods A, B and € involve the direct molution of the respective
normal equations in a straightforward manner. Method A is the simplest
and most commont curve Fitting method and is oﬂtezzgzgg;rad to as the method
of "least squares', Unfortunately the normal equations which result are
often very ill~conditioned and this limits A to low degree polynomials,
Moreover, for sach degree of polynomial fitted, an essentially different
computation is dnvolved. Hence A, although very useful for fitting a
small amount of data to a low power, need not be considered further.

The raaomman&aﬁioﬁa, which Berztiss made, were based on the accuracy,
storapge requirements and amount of computation necessayy for each method
and he concluded hy assessing their merit in cextain specific situations.
The severe disadvantages of method A have already been mentioned. The
vemaining four methods give results of comparable accuracy, E and B are
the éwo slovest methods and as B has no compensating advantage it need
not be aonsidered., This leaves C, D and E, One factor which Berztiss
did not take into consideration was, that for methods D and B, no prior

tnowledge of the dugree is required and this provides a very definite
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advantage, On account of this omission, Berztiss concluded that for the
general case methods C and D were likely to be the best, However, because
of this dimadvantage wethod £ will be discarded and this now leaves the
cholee between U dnd T on two opposing factors: & presents o convenient
output in concise form while D, alth@ugh it requives morve saoragéﬁ is
considerably faster. As one of the most inportant eonsiderations in curve
fitting is the absolute necessity of being provided with épough information
gbout. every fit, in order to be able to make a reanscned cholece hetween two
possihle equations, it seems more than yeasonable to ¢hoose B as beinpg the
best method of the £ive,

Method ¥ has been ineluded in this discussion singe Antoine equations
have bégn“used in the past to represent thermodynamic properties very
suaaesafully, The main advantage of F is its simplicity coupled with the
fact thatwer a smell range it can give a gapd‘repreaentauian of the data.
It can alst be extrapelated with no great loss of accuracy as it contains
no high powers, It has the added advantage that due to its simplicity it
cqﬁ‘bajwo;kgd out quickly by hand., Thomson (24) provides a good description
of Antoine equations and theiy use in vapour pressure equations. However,
there are two drawbacksg the first is the number of aguations needed to
cover the ywange of thée data, A good example of this are the equatipns,
which have been provided for the vapour pressure of water by the American
Petroleum Institute (25). In order to obtain an adequate fit for the range
of temperature O °¢ to 150 QG, nine different equations (27 constantd) are
required, The second drawback is the difficulty in deciding on how laxge a
range one equation should cover, |

Method @ was not consideved initially as a possible method, but it
was fielt, that due to the posaibilities ig presents, a brief desecription
of it should be inelunded. This method is basically rather similar to ¥
although it is much more sophisticated,  This subject is noe yet only in

its infancy and there 18 o lot of research being carvied out at present




R n
on it. ‘Two of the leading workers in the field in this country arve Curtis
and Powell of the Atomic Energy Reseaxch Estabhlishment, Im Saptembér 1967,
Powell pave o paper at the Conference organised by the Institute of Mathematics
and its Applications on 'Numerical Approximations to Eunctions and Data’
entitled 'Curve fitting by splines in one variable', The particular function
chosen was a cubic spline sinee it has the abilivy to adapt to a wide variény
of curve shapes, An algorighm was supplied which requires the saer to spéeify
only his measurements with weights, and the remaining decisions are automatic,
The basis of the algorvithm ig that the linear pavameters of the spline are
caleulated to minimise the weighted sum of squares of pesiduals plus a smoothing
term and the knots (joins in the adjacent equations) of the spline are determined
by an iterative procedure., Initially only a few knots are chosen, but more
arve ingerted if a statistical test supgests that the residuals have some
significance, until no more trends ave predicted, The smoothing tewm is
needed to prevent the approximation from following data errors.

This method seems to be ideal For fitting curves with very promounced
waves oy curyes where it would 22d?mpossib1e to obtain an adequate fit using
only one equation of any fqrm.ﬂuG also appears likely to suffer from the
deﬁeén that a larpe number of coefficients may be necessary to represent
the data,

The final and decisive reason ﬁorAe§oosing method £ is8 that it can be
used for surface fitting problems as its output and case of use make it
particularly advantageous and that it had already been used succesafully

by Haywood and Bott,

3,2.2 Description of Forsythe'a method modified by Clenshaw

This method is rveproduced from the papers of Clenshaw (52) and Clenshaw

and Hayes {53) as this chapter would not be complete without its description.

3.2.3 Forsythe's method

We fiyst assume that the independent variable : has been normalised so
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that its data values lie between ~1 and #1; that is, 1f the data valuen of
the orizinal variable X, say, 1ie in the range A€ X € B, then
xw (2K ~ A~ BY/(B - A) : arees(35),
The normalised variable is often modified to x = (2% ~ €)/D in ovder to |
sinplify the equation.
Let Y (e =1, 2, so., m) be thé ebsarved values of a dependent vavishle y
at the given values %,+ Then the polynomial XRC::) of degree k which minimises
the residual sum of sguares
‘ m . ,
6% .5 {Yk(xz:) o yr}z er0es(36)
may be obtained by truncating the servies

e, B 0K + e, py(x) *oey pplE) + wieay, erena(37)

after the !:earm ] pk(x). The polynomial P i(:c).ﬂ. of degrne 1, satisfies the
orthagonality tondition o
gp (X) pj(h) ”O * ’ .....(38)

8o that the coeflficients e, of the peries (37) are given by
2,
ey ® 5 ¥, Py (x5 pi(x) veres(39),

The polynomials pi(x) then gatisfy the following three-term recurrence velation

pi.;.l (x) - 2(‘3 - o‘i*.z.) Pi(x) " ﬁi piwl (K} *dene (40}
vhara i
Eox :}(x 5'
1 ur »-'g mm—»?-& N ' " MMLMW.‘ ssver Cél) [
Bea i
; pi (xw) k pi-*l (“

The racurrerce process may be started by taking g = O and P, 1.
The polynomials p; (=) and ¥, (x) are represented within the computer by
their values at the points %0 This method is deseribed by Forsythe (51),

and, with ewamples, by Ascher and Yoraythe (54).

3,2.4 Glenshaw's modifiled method

Esgentially the modification consists of a more compact storage procedure.
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An obvious way to achicve economy of storage is to stove the coefficlents
in their Chebyshev expmmsions piven by

LW, P
4 ?i(x) “._‘U; gtlﬂ' p.u Tu(lf) . . u.u(’ﬂ)

U LD 5 o 8, 2 )

wvhere %' indicates a sum whose £irst term is halved and T (%) is the
Chebyshaev polynomial in % of degrae u. A desdription of Chebyshev
polynomiale is pgiven in section 3;59

The' aoaﬁfiniema are genemt:ed ’by use of the relations

(i""l) pld )yp ) . (i«) - C:t 1)
' Pu . f u-i-'l. u*l] ?“14'1 ?u. B”i LA tueey (4'4.) .
aﬂd . e A,gi) L ﬁ <i-‘1) * 9’.‘-_5- Pt(‘i) XXX ] '(45) .

velation (40) and must he :.mtmmﬂ uaing Pa) w1 for i » 0, wlula equation

(45) is derived on substituting the seriaa‘(dz)'and {43) imnto the equatxcnv
Yolm) = ¥, () + cp py(%) P {13 8

In this method the output will include the. coefficients A(i)_ ancompanied

by all the wequired auxiiiary quantities.. 'm.m#e will be digeussed in

section 344 os they ave closely related to the cheise of 'hest fit',

An Algol program wag written to carry out this method of curve fittiidg

and a flow chart and print out of the program are included in Appendix ITI.

3425 Weights

Sometimes it is necessary to obtain a weighted fit to the given datas
that isg we need to find the yolymmial tk(x) of dagree k which winimisea
the weighted sum of squares of the residuals
2 m

. 2, s 2
G'ig,, ® T g o¥ (xr} {Yk(ﬁ’.)_ Y”} vassnl4T)
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whera the weights wz(#r) are defianed for ecach glven point X e it is
inmediately obvious that the case already consldered was in fact the
particular one where w2(xx) is constant for all values of Ko

Thus to produce a weighted £it it is oy necessawny to intyoduce the

factor wa(xn} into equations (39) and €41) aa follows
c, = wg(*x) y p (% )T x-rz(x) pg () ve e {48)
itk i R T N v’ FL Yy coene
and

L2y 2 2,00 2 e
- v dm By (=) i W"”x’,Pg () vone e (49),

2
g, (xr:)

Gy

i+, B =

B (%) vy (xr} pv (*r> P
3.2,6 Gonag-ra.ints

It 38 a cemon phenomenon waen fitting dats, to wequive the curve
to pass through a particular point, which may ov may not be fhe origin,
or for the cuxve to have an asymptote oy vertical tangent. The Flrst
case could be equated te providing an infinitely lavge welght af the point
and could poseibly be tackled in this manmer, fowever it 1s much more
gsatisfactory and also gimpler to constrain éhe cunve, such that it satisfies
the criterion, Method B can easily be modified to allow a general form of
constralnt to be uzed. A brilof deseviption now follows and ig concluded
with a simple examplé.

The fitting fuvetion y(x) may be written in tho form
‘y(ﬁ') = HCE} 4+ V{x} g(x) uv‘bap(ﬁo)ﬁ

The functions u{x) and v(x) ave defined by the constraints and g(x) ias a

polynomial. The guantity u(x) is chosen to be a simple function satisfying the

. given conditions, while v(x) is usually a polynomial which forces y(x) and its

derivatives to adopt tha same value as p(x) and its derivatives wherever
they ave specified, Tor example the two conditions y(x) = a at x = 1

and y(x) = 0 at x = 0 would be satisfied by taking p(x) = ax2 and
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P
vem) = G = Dy N
The main reétxictipn‘on using aﬁnﬁixaingaain eéuation {50) i3 that ;
the derivative of ovder g at any peint can be ﬁéraa& by preacribing n(x) v
and v(xovanly if y(x) and its previous (q - 1) derivatives are also foraed :i
at the sawe point. When these dewivatives of lower ovder ave wnot given, thé%
they may be estimated and their estimates vefined by an itevative procedure,
Tostead equation (50) is modified as follows
y(x) = ux) = 6(x) cneaa(51),
The constraints ave thus intvoduced by fitting Ve " qu%) directly taking
Py ™ v(x). Applicatien of eguation (40) enaures that v(x) will therefore
be a factoy oﬁtpi(x) for all the values of i+ As a vesult the function now
beiﬁg minimised i
R CH I R ) b e (52)
where
| €, (=) = w0 g, () | ceres (53,
lience the funetion ¥, (x) is obtained from

T %) = nlE) + G () | corad(54),

It can be seen that cinge p£{xb is an oxtheogonal polynowmial that v(x)
must be an orthogonal polynowmial alse. 1§ 9(x) is a polynomial of degree j
then pi(xb will cbwiously be of degree {i + j). The fact that v(x) nust be
limited to polynomisls cnly does not restdet the program wadely as most
gommon vequivements can be get uwp guite easily using apprepriate forms of
v(x) and (=),

Ag an axample: y'(x) = y(x) = O when x »} could give w(x) = (x - 1)2‘
This m@ans:whau pqix) would take the following value, expressed in Ghebyshéyi
polynomials, ‘

(8 = (k= DF 2 1,00 - 41,60 + 3]

Thug, whera one equation would not suffice, ftwo equations ean be used

a8 long as it is ensured that the function values and derlvatives of both
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equations at the join provide & smooth fit.

3,2.7 Dexivatives

As the equatloas, which are to be fowmmulated In the course of this
rapesreh, requive thelr first derivative to bae fitted as acourately as the
dependent, variable, it was thought that this daformation could be used to
increase the accuracy of the fiz, A wodification to Method E which will
include degivatives in the fiuting pwoesdure will vow be ée&cribéd.

Consider a set of m points where the values Kpr Vg and y; are knoﬁn.
Then, using the usuel notetion, it is necessary to mluimise

2 i _ Y o 2
™ By MG -yt e 2,0 ) -y} sveea(55)
where A i3 the weighiting ccefficlent,

The degivative Vﬁ ia ecaleulated hy differventioting equation (46} to give
f oyt '
T = Ypeuy * 0 Ry () «re0e(56)
where y&(x) is similarly obtained firom equation (40) such that
pﬁ‘*l(!ﬁ) " 21’k(3§) L 2(3{ - ak"l“].) P{q‘(ﬁ) - Bk Qémi(ﬁi) ouoao(ﬁ?)v

This vecursion is initiared using r, ™ 1, B, = 0 and p; = 0,
In order to make the next part casier to follow, it will be expresaed
vsing matrix notation, with k = 1 and with vy pstx).

Egnation (39) of method B may thevefore be written in this form

5 "é o Pyl [% * 1% ¥ Py
90000(58);
Ty Py E"’% 10 Ly Py

Now due to the owthogonality welationship (38), all the non-diagonal terms
of the matvix ave zere and this allowe equation (58) to be gimply sclved,
Hlowever this i3 vei the case when the dewivatives ave introducad aa

nay be seen from equation (59).
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e

B pg * A 30 Epgpy A EogRi| | % | ™| YoPo * ARy
DL 51 Ef’i * AR ° 2 ypy + AZyiRy

Unforuunanaly,vaé the polynomial @i does not satiefy the orthogonality relation
the non-~diagenal tewms will not be zero although they will probably be guite
small., Hence it is necessary to solve this sot of nowmel equations for the ey
This must, of course, reduce the sceuracy of the caleculation by an unspecified
amount. By vaxying the sizme of ), however, it is possible to eusure that. the
ofif ﬁiagﬂnal terms do not become too large, thus decveasing the accuracy of

the solution,

3,3 Burface fittipg

The problem of surface fitting (or data fitting in two independent
variableg) can be divided into three possible groups. Fivgily there is
the particular case where all the data presented is at the points of inter—
poction of a rectangular mesh vhose lines arve parallel to the sides of a
rectangular boundary (fig la)., This will be ealled, following Clenshaw and
Hayes (53) notation, problem (i), This problem has been dealt with by
Caduell (55) and De Lury (5€) and is solved by vepeated application of the
curve Ffitting routine, Problem (ii) is siightly move difficult to desl with
as the data points are seattered arbitvarily along lines which lie parallel
to, say, the x-axis. The boundavies for this case ave, as can be seen from
£ix Ib, two straight pavallel Lines and owo curves, This problem occurs
quite frequently io physical emperimsnts snd of course ln ship-fairing. As
in problem (1) we ave able to solve preblem (i) by repsated application of
eurve fitting techniques. The completely genexal case, problem (iii), is
vepresented by the one wherve the data is secatterediin an arbivvavy manney
within a eloged finite avea, flg le. This metbod requirvas e complicated

solution in terms of orthogonal polynomials in two wariables and Has been

(

9)
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demonstrated by Badn (67) and Cadwell and Willdlaws (58).’
As problem (ii) is the case considerved here a deseription of it will
vow be given., In order te simplify the surface fitting proecedure, especially
if constraints are veguiwed, it was deeided to veorganise the deta to conform
to a rectanguloy boundary., When constralnts are applied the general case

will ha congidered in theovry althongh in practice it is avoided.

3.3.1 Adoptation of curve fitting method

It may be assumed, without loss of geserality, that the data lie on
lines of covstant v L.a, vy @ Ve (6 =1, 2, voses, n). The x and 2z values
of the pointz, 23 they lie in diffevent posirions on each v, ave denoted
by LI and zr’s (=1, 2, senvry y%).

The curve flvtlog methed #, whick was described in section 3.2.4,
nay now be applied fiver of 211 fittlng the curves fox z in the x dirvection
for each value of s

o

1 ap w
AR a E a auﬂa Ta(la) (S 7 1, 2. .....n) vuco-(GO)

and then fitting Chebyshev polynomials in y to the coefiicients so obtained
1

+ ! ' o= 3 coean! ‘ oo.‘- w (0 .
LN z o bu,v Tv(y) (w0, 1, k) o (GL)

Eguations (61) and (62) may theo he rewritten as
(3 i

1 ¥ .
pe 8o yEp Py L@ T, W cenns(62),

If it is neccessary to apply weishts to any . then it mast be done
y:
vhea fitting equation (60), This would thep reguire the application of the

welghting technique as described in section 3.2.5 to equation (60} only,

and not to eguation (61),
3.3.3 Gomstraints

As in the curve £itting problem, it is often neceasary to constrain the



fit such that two separate surfacas may have a smooth joiln at the common
bovndary., Noymelly the constraings are applied along the boundary eurves

%= A(y) and X = B(y), The vaviable X ave then twansformed by

- 25 = A - BGy) |
* B - A veene(63),

Then the fitting function is of the form

2(x,) = nlx,y) + o(x) g(e,y) PN (1))

vhera u(x,y) is a siuple fanction, vot necessarily a polynomial, satlsfylog
the eonstraiows and v{x) is a polynomial which eonsuves that z(x,y) has the

saue bohaviour as n(z,y) wherever this is gpecified. Tt can now be written

2{x,y) = wlx,y) = uCs,y) esees(65)

and this reduces the problem to
2¢xz,y) = v(x) a(x,y) cvaus(66),

Equation (66) is analgous to equation (53) and is dealt with by setting
P, " v{z} in equation (60),

In ovder to demonstrate the simplieity of uwsing this method an cxomple
ie now glven. Take, for ememple, the conditions & = ¢(y) and %% a Py)

along the boundary X = A(¥). The latter condition may be rewritten

2
2 - 1oty - A vy .
Thus the following equations for n end v would prove suitable

w(ay) = B0 + QL+ m [Bl ~ A9] o
and wix) = (L + x)z .
Tt can thus be apprecilated that the constrained guvface fitting problem

is dealt with in an exactly similax manner to the curve Fittlag problom only

with the addition of an extra dimension,

3.4 ﬁritexion for goodness of £it

Trom the results obtalned by using method B, it is nacessary to decide
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on the "hest £it'. The polyuomial of hest £it may be cinceived as that which
most - effeckively compromisen between smoothness, as reprasented by the degree
of polyaanial, aud closeness to the data, measuved by the standard deviation.
Thers are vacvious Jifferent factors which can all be vsed in determining the

st £it and v v alsa show up ervors in tha input data.
best it and vhilch may also ghow up erwy in tha iaput dat

The first dactor ie the gpefficiepts. If the data points belag deali
with were exaet values of a well-behaved nathewatical function, the eoefficients
would decrease as the power i increaseds In practice, howvever, the xeudings
Yy invariably contaln rounding and observagional ervoys, which affect the
behaviour of the coefficients., For values of i exceeding a certain value k,
say, the coefficients will fluctuate sbout zero in sn appavently random monner,
Tha pgi}ﬁﬁﬁiaazgﬁéza may then be accepted as the desired solution, Altbough
it may sometimes be difficult to piek a definite value for k, the choice is
not erivical, sinee the difference in qul(XJ; kaﬂﬂ ond Yk+1(x} fox any
vaine of x should be small, q

The secoud factor fs the statistleal ones the stondard deviation. The
best value of i is that at which the standard deviapiom ceases o decreasa
significantly, Thio cwitevion is sasy to apply althouph it is nedessary to
take vare uhen applying it as the standard deviation may remoin steady foy
two or three powers before decvessing again.

ha third and final factov iz the behaviour of the successive sets of
zegiduals Ykézr) "~ Y+ Examination of the complete set for each power would
involve a lot of uunscessary work and so only the extreme values axe ilnspected,
Like the standard deviation, the sumerically lawger of Ei(iargesc positive
residual) and Niﬂlargast negative vosidual) will decrease appreciably as i
inereases until k s reached.

However, the gquanuities ?i and Ni have another useiul purpose., If one
reading Vo has an outapanding evrer in it, then there wiil be a tendency for
Pi‘or Ni to ogcur at the corresponding value of %, for the different values of i,

Based on the information provided by these three eriterla, the best fit
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may be ascertained and lawge errors in the input data can be qulekly spotted,

3.5 Chebyshey sgties

Before consideving the sevies it i necesgary to define the Chebysheyv
polynomial. This polynomial ls represcated by the notation Tr(x) which is

tha Chebyshev polynemial of degree 2 in x defined by
©,(x) = cos(r cos %) voren(67)

where 1 & x < 1,
It is posgible to wepwesent an avhitwary Ffunction £(x) by an infinite

Chebyshev series
£Cx) = %a@ * a2y TI{w) *a, ngx) Fonnes (68)

which may be vewritteo

>
2Ly v . !
ﬁ(‘f‘) & N E, 0 ar Ti:(x) Quinn(ﬁg)
where the pyrine indicutes that the fixst term is to be halved, Then provided
that the series converges veasonsbly vapidly, the function may be represented
very closely by a finite series off ovder n.
n
f(}ﬂ) = 7 *Z*’O ar Tr{ﬂ) .»...{70).
Chebyshev pelynomials ave easily evaluated using the vecurrvence relation
Tmlc:{) =™ 2w ‘Ix(ﬁ) ™ ’J:I"‘"i(m) it:tn(?l)
vhere the first two polynomials are defined by
Tﬁ(x) = 1 and Tl(x) ® 3,
Hence using equation (71) T?(x) " 2&2 “« 1 g T?(x) " ij - 3% 5 etc.
9.5.1 fummation
It is possible to evaluate a Chebyshev newins, with piven numerical
conetante , for an azbitrary value of x, by evaluating all the Chebyshev

polypomlals and then sumping the series. Hovever, there is a faster and



B e

more compact method which involves the use of the recurremce relation (72).

The values bn’ B 1;;§¢~¢-bo ave calculated, in turn, from

n -
br m 2 br*l o br+2 h a.»
anad bn"'l L bn+2 = 0 0-&0»(72).
Then

f(x} = g‘!(bo e bz) aqoou(?S)l
3,5.,2 integraﬁégg

Here it is necessary to obtain f£(x) dx where £(x) is expressed as o
Chebyshav series as in egquation (70).

Thus it is possible to write
n 4+ 1
ff('ﬁf) dx = 2' A T (K) q-&-‘(.?ll-)
cmQ ¥ X

whare
a g
:Eil Aol

oy = B e o),

a

atl © @

n*zma 0‘.’.(75)

and Ab is determined by the lower limit of integration. As the factor 2v

is the divisor there is no loss of accuracy.

3.5.3 Differentiation

The method here ig the exact opposite of that for integration., Given the

Chebyshev series

n
i e J' o
£(x) B} z o Ai Tr(X)

The coefficienta, Qs in

nmil
) = 27 a T (x)
T 0w
r =0

are caleulated using the welation (75) in reverse as
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-

T

[ 3.5 -
ey ™ Bapl * Ar #

and an“ﬁn*l m 0 in»!u(yﬁ)q

Unlike integration, the faotor 2r which appears in the sguation, is now

multiplicative and thus pives rise to a loss of accuracy which is invariably

A M L M . N . % _# n_‘r,r:‘,.“__A._QA_!v
PrG,5,4 Calenlation of Chebyshev coeifieients™ O

345.4 Galeulation of Chebyshev coeffieients

This method is only sultable where, for prescribed equally spaced values
of x, walues of £(x) oan be easily obtained, either by evaluating £{x) or
from tables, The formula used to ealoulate the coefficlenta B for the

equation (70) ia

a & ?‘* Fews Jli) cos TEL {77).
r n jRO w no R
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CHAPTER 4

THERMODYNAMIC THEORY

41 Introduction

The science of thexmodynamics deals with relations between heat and work.
It is based on two general laws of nature, the first and second laws of thermo-
dynamics, By logical veasoning from these laws it is possible to correlate many
of the observable properties of matter, such as coefificients of expansion,
compressibilities, specific heat capacities and vapour pressures,

Thermodynanics makes no hypotheses sbout the structure of matter, It is
an experimental ox empirical science, and thermodynamic formulae necessarily
have the same general validity as the two laws from which they are devived, The
price of generality is a rvestriction in scope. Thus thermodynamics can predict
manyArelationships between properties of matter but not the actual magnitude of
these properties.

Hence, once an equation of state has been established for a substance it
is then possible by using the thermodynamic zelations to calculate the remaining
properties., 7The accuracy with which thoy are calculated depends eutirely on the
accuracy of the original equation of state, which in tuxn depends on the accuracy
of the experimental data on which it was based. From this argument it follows
that an equation of state must not only provide close agreement with the measured
values vsed in its corvelation but also that its dewived values must also agree
with the experimental data.

There are however some properties which it is almost impossible to measure
e.g. entropy, internal energy while there are others for which it is comparatively
simple to provide accurate measurements e.g, pressure, teémperature. The guantities
which are measured in almost every experiment are p and T, while the following
are the others which ave most commonly measured; volume, enthalpy, specific heat
at constant pressure, the Joule-Thomson coefficient G%%&T, speed of sound,

However, before carrying out any work on equations of state for water substance
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it is necessary to be familiar with the different phasces as expressed on a
p~v~T diagram, the thermodynamic relationships among the properties and the

diffevent temperature scales, These subjects will now be dealt with in turn,

42  pey-T gurface for water substance

Study of the p-v~T suyface shows that theve are certain regions in which
tha'aubstance can exist in a single phase only. These are the solid, liquid
and gas or vapour phases, The other regions are two-phase and are the solid~
liquid, solid-vapour and liquid—vapour and they can be seen quite clearly on
the projection of the surface onté é p~T plane (Ffig 2), The point where all
three phases coincide is called the triple point. Vhere the liquid and vapéur
can exist ia equilibyium, the vapour is called a saturated vapour and the liquid
is a saturated liquid and together they compose thé saturation line, The pressure
applied by & saturated vapour or liquid is called the vapour pressure. The
point on the saturation cuyve where the 1iquzd and vapour values are equal
and ( QE;QW)T w 0 is called the eritical point, |

~ In the past the critical constants Pos Eoo Y, have beén calculated by

tha following two methods. }

The £irat is by substitution into one of the ideal gas equations. If
for example van der Waal's equation, (25), is chosen, then by application of
the above condition the following critical values are obtained;

8a 3
= 9Re  Po ™ Hjp2

v, = 3b; T

This method is very simple but due o the lack of precision displayed
by this type of oquation it is also very inaccurate.

Thé scecond is the method of rectilinear dismeters. Here the liquid and
vapour volumes (or auy other property) are plotted on a vT graph (fig 3)
and the mean of the volumes, § (vﬁ 0 vg), drawn in.

Then the point of intersection of the gatuvation curve and the mean

diameter will give the ewitical poink, This method allows fox far preater

precision and will alse allow a veasonable estimate of the error involved,
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Now the terms 'gas' and'vapour' have been used without distinguishing
between them although the distinction is in fact quite arbitrary. A gas
is a substance in its gaseous state at a temperature above its critical
temperature while a vapour, implying the possibility of ligquifaction, is a
substance in iks gaseous state at a temperatuyre below its cpitical temperature.
These two terms however ave only rarely used in the strict sense of their
definition,

Now that the existence of the solid phase has been described it will
not be alluded to further since it is wot of general intewest. Similarly
the sublimation curve (the solid-vapour boundary) and the melting cuive
(the solid-liquid boundary) are  here of less dismportence although cquations
for them have been devised by Stein (59).

Hence the only reglons of water substance which are of real interest
are the saturation line, the liquid and vapour phases, all of which will he

discussed in the course of this thesia,

4+3 Relationships

Bofore defining and caleulating the thermodynamie relationships it is

necessary to obtain the various mathematieal relations which will be required.

4.3,1 Relations between partial derivatives

Buppese that there are three variables satisfying the equation

@

zw z2(x, ¥)

then the following relations hold

( ) = 1/( ) eeese(78)
3%y (3Y) ( ) _— ceres(79)
oy 2 y

The order of successive diffepentiation of zlx, y) is immaterial. Hence

a8 2., 22 L 2. 02
32‘§ ay = B‘Y BES -w*;-(ﬂ(’)

Similarly for the equation w = w(x,y) where the variable n may be expressed




snfy (o

by = = x(y, 2) then

& "GP, c”’: @, veene (81)
and
G = a“) = vrees(82)
¥ y

4,3,2 Thexmodynamic yelations

These are all based on the First and Second Laws of Thermodynawics

wvhich may be written as follows:

Tiwst Laws dg = du + pdv seees(83)
Scoond Laws: dg = Tds asens(B4)
By definition: h = u + pv voeee(85)
£mu-Ts _ seese(86)
gmy-Ts +prmh - Ts veess(87)

Hence from eguations (83) and (84)
du = Tds ~ pdv RPN ¢:17)
By differentiation of equations (85) to (87) and substitution for du from

equation (88)

dh = Tdg + ’Vd}‘l easasp (89)
dE = -adT - ;;td'v ssene (90)
dp w ~gdT + vdp sanes{91)

By using the cross-differentiation identity given in equation (£0), Mamwell's

Relations may be calenlated from equations (68) to (91). They are

(3T} e (%,g) .-...(92)
v .
( ) . (GV) oqauv(;gg)
P

38y .
(5§bT (aw | versa(98)

V
R
b
i
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&8 = B vevss(95)
oV T 3T v

The following relations can be obtained siwply from the sbove equations.

Ay By .
(9.9,} (av . P ovotu(gﬁ)
y.C } - (3«) - veeee(OT)
3:1: o ' $
(3,53) & 5 ; verna(98)
b, e
e (BP . 3}?) v “as ..{99}

Howaver, if any further relationships ave veguived then they can be obtained

from these equations,

4,343 Saturation relotions

There are a few extra propexties vhich are valid ouly for the saturation
Live which will now be deseribed, The fivst of these relations is the

Clausius-Clapeyron relationship:

- B h =-h
‘.%L - *?z £ oo Bk (1003
V" Vg T%vg = V)

The properties which are peculiar only to the saturatiag line'are the
calqgimecxic observations, hased on principles 1aid down by Osborne (28).
Onlg"ghree of those experiments are of any concern.

“v?ha first 18 the quantity defined by Oshorse as o, @ symbol which it
is{popvenienﬁ to vetain along with the quantities g' and v, defivned below,

The quankity, «, {5 2 close approximation to the heat capacity of saturated

ilquid water, particularly at the lower temperatures. It may be shoyn that

o =T - v ::? tueee(100)
BY = Vf aj% .“..(1023
Y = v Tﬁ% veeso(103)

These aquations may be combined to give
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] hi.“’!ﬂi'?ﬁ' -;oveclof*)
' and h? ooy veees{105)
- 3

y by using equation (100).

Now equation (89) may bs rewritten

.y
e e mll'

; dp T v d}?
" and sinee
dh {11 h
‘ = = A+ 4T
3
: then
h h v o,
i Sy dT o e
' dn = d(T) + e dT i dap
[ 1f this equation is applled to the saturaved Lliquid then
| I, hf v,
dsf--:!(m%) *de-»a;{,-dp eanee(106)

Faquation. (106) may be reduced uvging equation (101) to give
: h{a
ds'ﬁ e d(m;f) + %?. ar oovonclf.’?)
Integration of eguation (107) gives the entropy of the saturated liquid as
T ok, T T
[3{3] - !.‘Ma::] + 'fi;'z dT + ¢ ...‘-(108)
I T A
o o o
vhere ¢ is a conotant of ingegration depending on the datum state, TQ, used.

in chapter 5, the triple point, Ttﬁ is always used as the datum state and

since §g % 0 theve, by definition, ¢ is always zero for this condition,
Por the satorated vapouy
hf.r
3?3 = Sf + _ﬁ‘:}a evaas(109)

4344 Relations for less impoxtant properties

Some of the less used properties — coefficients of expansion, compressi-
bilities ebe., will now be deseribaed and defined.

The first of these ig the woefficient of theymal expansion, Oy defined by

0‘:@ ”%; (’g"‘% nw--o(llg)
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' This property is also expressed in particular form for the saturation
. line by
§ 1 dv
GU = v (CIT)G nn-o-(lll)

The isothermal coefficient of bulk compressibility is expressed by

* 1@y
B =7 (ap veees(112)

but its saturation coefficient 60 is of littie importance.
N The thermal pressure coefficient, T? is the last of the p~v~T derivatives

| and is given by

i = (-£’~ ceena(113)
v
b d
and Yy ® Gﬁ%&c vesae (114),

These three coefficlents are repeated as adiabatic coefficlents i.e.

dervivatives for constant entropy.

T (g;) ..-11(115)
.3'1')3 n-.-t(llﬁ)
Ots’“ "‘( ) ooua.(ll?).

There are three heat c¢apacities which will now be mentioned., The first

Cyr is more alosely related to ewperiments than either ap or ¢ .

a0
Qu = T (‘a"‘r)g 0!'!0(118)
, av dp.
GPHQG*T { ) ( ) -oato(llg)
cv = QU -7 (‘a“") ( ) / ("5“1‘; T ».r‘l(lze)d

The last property vhich is of any importance is the valocity of sound, W, which

is obtained from

Y“}z = v}Bs -..I..‘(I.ZI.)
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4.4 Temperature scales

The problem of temperature scales is compliecated by the small changes
in the definitions of the basic measures. However this difficulty would
now appear to have been overcome in a sclentific manmer at the 13th
Cnnﬁéfance Géngrale des Poids ef Mesurves (CGPM) in Paris in October 1967.

There are two basic measures of tempervature., The fivst is the Thermo~

dynamic Temperature, T, whieh arises, ; as a corollary.

of the Second Low of Thermodynemics. In the Systdwe International d'Unité

(ST unit) the uniﬁ of thermodynamic temperature is the kelvin, and is obtained
by assigning to tha temperature level at the txiple point of ovdinavy water
subgtance, the exact nuwber 273,16, Thus the definition for the unit of
thermodynamic temperature, the kelvin, may be expressed using the terminology
of Lo Pevre (61) thus: o

The kelvin unit of thermedynanmic temperature, here named the kelvin and
given the unit symbol K, iz defined as 1/273.16 of the thewmodynamic temperature
in kelving, at the triple point of ordinary water substance.

However since the measurement of thermmodynamle temperature s extremely
difficult it io used only in the thermodynamic welationships,

The second is an empirical seale tewperatuvre which is very suitable for
making experimental measurements. This is called the Intexnational Practical
(Celsiug) Scale of Temperature, (IPT8), which assisne exact npunbers to certain
accuratély reproducible temperature levels. It is not possible to quote the
£full statement of the IPTE but two lmportant fixed polats are the triple point

of water, 0.01 % exactly and the steam peint, 100 % esactly at a pressure . of

1,01325 bar exactly. The unit on this scale 13 alwost equal in size to a
kelvin wnit and for practical purposes 'thermodynamic temperatures' may be
obtained by adding 273,15 to ihe IPYS value or in symbols

r %k = ¢ 9C + 273,15,

These two measures of {emperature, because of theiyr definitlons, can

neither ba identical nor be related by some simple formula, The difference
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between the two temperatures has been measured at a nuwber of fixed points,

These differences and the derivative %% were caleulated by Bridgensn and
Aldrich (62) using the equation
Tw1Tm™ *E“‘E"“' [""01006 L ("é’“gr““ - 1) (0004106 - 763637&10“5 t)] 0.-0-(122)
100 "100

adopted by the llth CEPM in 1960.
Two equations hased on his own appraisal of the data have been calculated
by Ferguson (63), They are
for the rvange O Oc‘g t < 630,54 °¢

b 6 . 2

t + 3.3995852x10 © & + 447805973, 9 t° - 3.7865610x10"

% + 3,8808200%10"

T oy = ~4,1637501x10" Y

A 4
14 t‘) i.nl-{lEBa)

and for the range 630.5 °C < t < 1063 °c

“[A

-t

T g om «24,822595 + 8,5027954x10 %t ~ 0.6569016x10 "t> + 3,6583805x10 >, .. (123b)

o

fh& dlfferences and derivatives obtained from thase aquations are in fairly
good agreement as can be geen from the eptvies in Table I, In the past the
difforence betwaen the two temperatuve scales has heen neglected as it was
considared to be negligible, However in the couwse of this work it was felt
that the difference might be more significant than had heen previously thought

and so the following investigstion was carried out,

be4,1 Effects of the diffevent temperatuve scales

It bas been shovm that there exists a difference between the two
temperatures -~ thermodynamie and IPTS ~ and it is of considerable interest
to discover what difference this makes in the calculatlon of the various
properties, The saturation propevties will be dealt with first.

The equations which ave cerrelated in Chapter 5 are assumed to be
functions of the IPIS since they are based mainly on esperimental results,
However, whether this is actually the case or not, it is necessary to meke
that assumption as a basis for further caleulations, The temperatures will
be represented by the following sywbolse:

IPTS ¢ t 'k = ¢t %C + 273,18
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Thermodynamic (THERM): TK
and the properties will use IPTS as a subscript to denote that they are
based only on that seale whereas lack of a subscript is tshen to mean the

true value, e.g. B?IPTS and B',

4.4.2 Saturation properties

Now the properties p, Ver O hg are defined to be on the IPTS since
they are all obtained from the equations in Chapter 5 i.e. they are all
functions of r. The first property to be caleculated is B' using equation
(102) which may be modified to

' . dp
BY mve T35

Cdp T dr
- Ve T-g%(;. 3&9

dp.
ﬂVdeT 0]

 Idr
where o = ol

But if the relation was used, substiteting + for T then

' dp
Blrprs ® Ve T 4y

Henee the difference AR' caused by the difference in temperature secale

may be wrikten

AB' = 6' i B‘IPTS b (U)"'l) B‘IPTﬁ .....{124)

S8imilarly from equation (104)

hg = o+ 6
b, w o+ B!
flPTS IPT8
Hence Ah, = h, = h wm g - gt AR eaeel(125)
£ £ fIPTS IS *

; hf )
From edquation (108), Bg =t s T2 aT
‘ \ , de
Now from equation (123), Pt 7(t)

and hence d¥ = F(r)dr




wdy P

however F(r) is very mearly constant and equal to uwnity and so it may be
negleeted, Thus it ie possible to write, where Kk = & :

T
h
84 a-f e f 82 dn
R T‘ 12

b
O
T 2

P

since 2 may be considered to be constant without any great loss of aceuracy.

sg = _freas + s Setar

IPTS P 2

hf hg‘ 4
Thus A6, = 8, ~ 8 @l - TgpUE o (k® - 1) 52 ag

"TPUS T L) k §
L g1 . 5

g+ (k2 s
rs ¥ F

f .p.'-a.(126)
IPTs

Howw vy = h_ =~ o
Y E A

and so0 since hg and o are covrected values v will be also.
From equation (103), 'vé - Y/f;%% '

e dn
- Uy Fadl

and v It dr

S1prs

1 : e
Henge Av_ = (& « L)v ‘ : eeees {127)
g o &1prs

h.. h
nmm Am-»gé;-‘ . m
+ i sf + T

Finally from eguation (169),'$g 8¢
. ‘h
+ Sprs

8 8
Syppe  Frppg TR

Hemce fo = 8, 4 [(h =k ~ahde-th -k Y]/x

wrs 8 Cyprg 2 Eyprg

'

Asg + [ﬁhg - hfipzs)(K = 1) =k Mhe]lr aaea, (128)

The quantities, expressed by equations (124) to (128); have been caleulated
for various temperatures and are compared in Table 2 with the IST values and

the tolerances for hﬂ and vg and in the other cases with the table entries from
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Appendix IV for B, 8p and sg. it is evident, in particular for vgb that

if the tolerance has any significance then the difference in the temperature

seales must be taken into account., This is txue for the saturation line and

it only remaing to show that this also holds fior the genaral casc, \
One further argument is supplied by a comparison of the difference (T -~ t;\

with the tolerance on teuwperature at the ar{tical point. The values are given

in Table 1 and it is at onge obvious that the difference (T ~ ) is slightly

larger than the tolerance of + 0,10 ¢y It is thus seen that the uncertainty

in the.ariﬁiaal temperature, and the other eritical values, cannot be reduced

wnless the difference in the temperatuve weasuves is acknowledged.

4o4e3 Water and Steam

If it is assumed that an equation of state for watex substance of the
form p = plv, 1) exists then it is possible to caleulate the difference in
entropy and enthalpy caused by the different scales. Now using the symbola
of the previous gection and the welationships derived in seéctlon 4,3.2 it

is posaible to caleulate As and Ah, -

o S w

t

i L0 .gsq e X .
Hence AS * 8 * 8yona = (G 1) Syprs ereen{129)
Tt is simpler to rewrite this equation, since it is only temperature-
dependent, as

zae = 82 5 1007 = (%ff’.f - 1) % 100
TPTS

and to give the values of ZAs for diffexent values of €. This is done in
Toble 3, Similarly, enthalpy is caleculated from
hw~fpiv +pv~T/¢ %% dv,
Since the only part of this oguation which is dependent on temperature

4 . ’ .
iz the last heémﬁ then' if it Is replaced by Y the following is obtained.

¢
-
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wp OB X dr, »3p
LI el T A Tl
and ¥ o ;.ﬁ& dv
TPT8 81
Henea Ah & I« hIPTS Y - yIETS

o (T dr o,
"t C¥h3$ -t S 3%,&v

ﬂl‘:.'(m, - 1) T 8 Y .(130)

P18

In oxder to compare'the values of Ah with the ST tolerauce, Table 3 has
been drawn up, It can be seen from the points chosen for this table that in
gome regions « in particular 1ow'pressura, high tewperature - almost half the
tolewance will be takén up.

This point is of particular importance since in some cases the real
uncextainty on the given property may be about one~third of the tolerance as
stated in the 1963 I8T, This is caused by two factors., The fiwst is that when
the 1963 IST wene ﬂaﬁm@d a very generous allowance was made inm estimating the
tolerance to allow for any systemafic ertoya in the experimental data and the
second is that new and morz apcurate measurements made since then eonfirm that
in certain repgions, the toleravees ave too large by a factor of two or three,
This emphasisaes yet sgain that the difference in temperature scales must be
allowed fut‘

However although the difference betwean the thermodynamic and Practical
temperatuves hag been showm to be significant no gocount will be taken of it
in the preparation of tables or equations in this work since all the data upon
which this thesis is based must already have this error imberent in it. Thus

the obvious solution is that in any future work the diffewvence in the temperature

gseales must he allowed for, especially if preater accuvacy is required,

——
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CHAPTER 5

THE SATURATION LINE

5.1 Ingroduction

The saturation line is very important as it provides the boundary
hetween the liquid and vapour regions. Due to this importance it was
felt necessary to unify the final results of Osborme, Stimson and Ginnings
(222/by providing equations to replace the untidy mizture of tables and

enfrelations upon which their final and definitive paper was based, The

- provision of these equations permits evaluation of all the state properties

along the saturation line from the triple point to the critical point, thus
pgoviding the most important boundary, with the exception of the hypothetical
gas curve, for any surface which purports to vepresent the thermodynamic
properties of water in its liquid and vapour phases, In view of the rigour
with which earliexr work was reviewed by Osborne and his colleagues, only work
relating to the saturation line published since 1939 is considered, The work
on the saturation properties at the NBS was carried out over the period 1930
to 1939 and their vesults and critical reviews of earlier work was published
in a number of papers, which due to theilr importance, are listed in reference
(64). The final paper by Oshorne, Stimson and Ginnings summarises in tabular
form the results of all the investigations and this paper must be considered
as definitive, These results were taken directly by Bain in 1964 and used

to compile the tables of saturation properties in the NEL Tables (65), All
the equations formulated in this chapter have been caleulated using data from
the lattexr source.

However, none of the correlations provided at the NBS are suitable for
use with an h -~ 8 ~ p formulation, The only reasonable form of saturation
equation for thia surface would have to be expressed using any two of the
variables enthalpy, entropy or pressure and this problem will be dealt with

first before tackling the more general one of finding equations which will
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specify all the saturation properties with thermodynamic consistency.

5.2 Saturation equation for use with anh = 8 - p formulation

This part of the work was undertaken in collaboration with R.I. McLeod
at the National Engineering Laboraéory, Bast Kilbride, who was attempting
to produce a single equation of the form s = s(h, p) to cover both liquid
and vapour reglons. An exploratory study of the problems which would arise
in the pursuit of the task was undertaken by Haywood and Bott (42) at Canbridge
University in 1964, They coneluded that for the purpose of providing a boundary
between the liquid and vapour phases in a 8 -~ h ~ p formulation, the saturation
equation could not he reprasentad by a p — t equation but it must be in any
two of the variables s, h or p., From graphs that they drew, and replotted
in £igss 4, 5 and 6 they concluded that an equation of the form s = a(ln p)
would have the best chance of providing an adequate f£fit, although there appeared
to be an inflexion in the steam ¢urve between p = 1 and p = 10 bar, They
carried our one fit of the satursted steam curve which, with the exception of
the vieinity of the critieal point, produced an adequate fit,

One difficulty in providing the saturation boundany was whether one
equation would suffice or whether two would be ncecessary. On looking at the
graphs it appeared much simpler and easier to use two equations: one for the

water and one for the steam,

5.2.1 Yapour entropy equation

This equation was dealt with f£first as Haywood and Bott had provided a
fit to it. However this equation was not adequate in the vegion of the

critical point. The general form of the equation is

n

L I ! AT (m) nto-o(131>
8 prmg F T

where m =(28 - A - BY/(B ~ A)

and x is the particular form of the dependent variable p,
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The data used in the curve fitting was taken from Table 1 of the NEL
Tables for temperatures from 0 % by 1 deg to the critical point (i.e,377 entries).

In order to demonstrate the usefulness of graphs in cuxve fitting problems,
the vapour entropy was fitted as a function of pressure i.a.

x = peeee (1)

The results of this fit can he seen in the first line of Table 4. The data
was fitted up to a power of n = 15 using form (i) and it was found that the
£it with 12 coefficients prévided the best approximation to the data., In
other words even if more than 12 coefficients were used there was no signi-
ficant decrease in the standard deviation. For all the correlations in the
tahle the maximym deviations along with the wvalues of pressure at which they
occurred ave tabulated so that the different equations may be easily compared,

The next form of the dependent variable used

x e Iy B e (13)

was, from graphical considerations, expected to provide an improved £it.
This, as can he peen, vas the case and an interesting point vorth noting
is that with the firet fit, the largest deviations oceurrved at the low
pressures where the accuracy of the data should be best while with the second
form the largest deviations occurred in the region of the critical point, In
fact, on looking at the maximum percentage deviations it is much more reasonable
to find an exvor im the cvitical value of 47 than one of 10% at the triple point.

Since the entropy values were obtained by c¢aleculation and not by experiment
the accuracy with which they should be fitted can only be estimated. Hence,
all that can be sald in advance about the accuracy of the fit is that it camnot
be any better than one figure in the last decimal place due to pounding errvor,
i.e. for values of entropy expressed in J/g K the maximum error cannot be less
than 0,00L J/g K and any #it obtained within 0,002 J/g K at all points will be
more than adequate, while more precise values are lacking,

It was at this stage in the work that Mcleod suggested that if the form

= (In y)k was used where k was about 0.4 a much dwproved £it would be obtained.



He had reached this conclusion by plotiing In B against In In p and #finding
what it turned out to be very near a straight line with a gradient very close
o 0,4, Thus it is possible to write, where k is the gradient,

In ng =kilnlnp+ ¢
k
= ln (ln p) ¢+ Inc
e In ofin p)k
. k
PR sfg = ¢(ln p)

However, instead of plotting p it was decided to use the dimensionless form
£ but this meant that (In a)k would be negative and so 1n(1ls) was used instead
and a plot of In sfg againgt In 1n(1/3) is given in fig. 7. In other words
the form x = {ln(liﬁ)}k'~w~W~ (i1i) was used since the powers of the constant
¢ can be included in the coefficients.

This relation applies to Sgo but it might also be applicable to 8,
and e However it is necessary to have one of these latter velations,
gince an equation for sfg will not enable eithex 8p 0¥ ag to he caleulated
without more information, But if for exmampla, equations for 8, and Sso are
given then in oxder to obtain sg both equations must be evaluated. TForx
this reason it was decided to fit both 8, and 8.

Using form (iii) further coxrelations were carried out using different
valueg of k and on examining the results as expressed in Table 4 it was
imnediately obvious that the equation with k = 0,3 satisfied all the necessary
eriteria about accuracy as well as using the smallest number of coefficients.

Hence the vapour entropy equation is written

9
5, % 4 Bo A, T (0 veees(132)
where me L~ A [1n (118)]

A compaxison of the values obtained from equation (132) with those
from the NEL tables is made im Table 5 and the coefficients are given in

Appendix IT.
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5.2,2 Liquid entropy equation

This equation was caleulated in an identical fashion to the vapour
entropy equation only in this case the best value of k was 0.2 as can be
seen from the results in Table 6, However on looking at these results
more closely it is lomediately obvious that there is a further problem.

This is due to the definition of g, » 0 at the triple point i.c. whore

£
p & 0,006112. Naturally it is not possible to obtailn the percentage deviation
at this point and so it is not given. But in each case the percentage deviation

is laréaat at zero temparature where 8 ™ - 0.,0002 L.e, at p » 0.006107 and

‘henee since these points are so close together they will have almost identical

deviations, On evaluating the egquation (133) for these values, it could be
geen that Sg ~2.7810~5 at the triple point. This would be permissible.
Héwever there is one method, waich is much sinpler and easler than
elther welghting or constraints for modifying the oquation such that the
1iquid entropy will be zero emactly at the triple point,
The equation with which this fit was obtained is
7

s, = ' B_T_(m veeea(133)
£ gmo ¥

1 0,2

where M = 1« Bs[ln C/8)) .

Bo[

It may ofcourse be expanded to give a constant term of ~'2 and if we assume

e = Aat ¢ = 0,01 ¢ then by adding —~ Aonto the constant temm P would be zero

'exabéiﬁ'éﬁiéﬁéugéiﬁle point, The advantage of this method is that it only

raquires a very minor alteration to BO which does not significantly affeet
the other wvalues of sf.' Hence the new value of the constant would be BQ - 24
ise, ABO w ~JA,

Therefore since A = m2.7815&810~5 then ABQ = 5,563096, -5, The values

10
of the coefficients are given in Appendix IT with the mew value of B, inserted

such that the twiple point value of e in zero emactly,

&
N
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5.3 Vapouy pressure of saturated waker

The saturation line is defined by the pressure-temperature measurements
made at the National Bureauof Standards (NBE) and at the Physikalisch-Technischen
Reichsanstalt (PTR) and which have been elosely approximated by two equations,
The first was devised by Dr. H.T, CGoerry of the NBS to cover the temperature
range 0 % to 100 °C and is based on the revised measurements of Holborn and
Henndng (14) at the PIR, The second equation, which is valid fron 100 % up
to the critical temperature, was correlated by Osboxne and Meyers (21) from
the NBS measurements. Thege two equations were used to Qrbvidé the input
data for the wvapour pressure corrélation¢

The vapour pressure equation is the one where pwessu?e is the independent
variable i.e, p = £(t) and will also be wefierred to as the primery equation

as opposed to the reverse form t = £{p) which will be termed the supplementary

‘equation,

5.3.1 Vapour pressure equation

From the many equations examined in Chapter L it appeaved that if the
variables were exzpressed in the form In p as a function of 1/T then a reasonable
£it mipht be obtalned. Some preiiminary investigation of possible forms of
the variables was thon eeﬁducted graphically and the relevant ones arve veproduced
in #ips, 8, 9 and 10, The first forms examined were p ~ ¢ and ln p ~ £ (fig 8)
but neither of these pave straight line curves, The other graphs were all
plotted using the inverse of 8, the dimnnaiqnxass form of pressure #o enable
the graphs to be plotted down to zexo tamperatune; When in 1/5 against IIT
was plotted (fig 9a) the rvesult was very close to a straight line. On taking
logarithms of both sides and replotting the vesults were not nearly 80
encouraging, However, a form of vﬁriable.whiqh had been used by Smith and
Reyes (27) amongst others was (tG'“ t) and this suggested the foxrm 1/& against

1 1 . L] v * K3 ] -
Q@ CRE On this form being enpressed graphleally it was lmmediately obvious
c
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(#ig 10) chat this was the best form of the equation.
Basing the cowxrelating equations on these graphs the followlng forms

of the variasbles were fitted in turn:

p o= £{t} . (A9
o p = €{t} e $V)
inp = f{(llm)k}' IR & <
1 p = £k - by} e CVED.

4
T ‘I'c

The vesults obtained by fitting these equations are tabulated in Table 7.
As expected forms (iv) and (v) ave not very successful and form (vi) with
k = 1 is very poor indeed, but with k ¥ 0.5 it proves much move effective.
When form (vii) is oxamined it is seen that it is cven better and that the
beat fit so far is (vii) wit@_k » 0.4, In all the £fits attempted, the optimum
number of coefficients appe#;;ﬁ to be about 12 and se, in order to simplify
comparison and calculation, this number of coefficionts is used unless otherwise
stated,

When this equation was evaluated for all the skeleton table points it
was seen that it provided an execellent fit well witﬁin the tolerances with
the eﬁception of t = 100 °¢ where due to the very small tolerance the equation
would need to be weighted or constrained. Tha derivative TA§% was next
evalupated in order to confirm that the values obﬁained were smeooth and in
reasonable agrecment with those of other workers, It was found that for
T = Tc’ (T%% = O which was not: in dgweament with the wesults of Oshorne,

c

Stimson and Ginmings who obtained (ng = 173.13 emglﬁ. In order to understand

TQQ '
why this came sbout it is necessary to show how the derivetive is obteined., The

form (vii) of the eguation is written:

0 : . )
Y=lnpw™ E'O 4 Tr(x) . raeee(134)

where x = {8y ~ A ~ /(8 -~ 4)
11k
and y = ﬁf ,@")

e



a7 ay " dx * dy * ax
= g v .EE;Y;.._......%N. K W (.... m.."!;)kwl -21)
A I T, ‘T3
k~1
-- 2 &4 (M 1)
T 7 B-A
e
4y n-1
Now = = %' Hh T (x) and can be simply evaluated, Such that if we now
dx =0 v ¥ Yool
avaluate the derivative for T = T, the factor G% "~% ) immediately springs
2 y T,

into pxnminanee as it is equlvalent to zero and thus forces the darivative to
2810 also.

There appeaved to be fwo possible ways of tackling this problem, The first
mathod twled was to extrapolate the cunve to 380 °C and to take some extra points
off the curve to be used in the curve fitting process. It was hoped that this
might improve the derivatives necar the ervitical point but only one or two fits
were necessary to show that this method was completely useless as the devivative
was not improved and the pressure values in fact deterwiozated, The other method
of surmounting this diffieulty was to alter the form of the independent variable
from Q% - rc) to (T - @w%iiﬁ wheze K, isién arbitrary constant. A few fits were
then undertaken using dﬁfferent values of K, and it was found that a positive
value of the oxder of 25 should prove successful. BRefore continuing further
it wes thought advi.sabio to make the «l‘aquat’:ion dimensioniess.. To do ﬁhifsvln P
was replaced hy In 8, T by @ and the indegendént variable was alteved as follows:

kT Tk T
w]:a n:!'v ma‘z'a e m—ng—-i-h e ng; -
G - +K o - G) Cpraey) "hE-9 -

The constant K? may be neglected as it will appéar in the coeffielents..

The approximate value of the conatant C obtained is thus:

Lo 6473

s‘:@’i%f‘l 6473435

G = 2 0,06

The cuxve £itting process was vow wepeated using the Forms

In g = £ C%; - c)k} e (¥AERY

Tirst of all, setting C = 1, the optimnm value of &k was confirmed to be 0.4,

then with k = 0.4 the value of C was varied, There was very little difference
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variables or to the number of coeffiecients. Vawious combivations of weights
weve tried and it was found that a weight of 15 applied to the temperatures
grom 96 °¢ to 105 °C was required to obtain Pigo ™ 1.01325,
The final form of the equation thus obtained is
11

11’1 3 = . 2'0 ar Tr(}!:) oo.u.(137)

whera x = (265 ~ 0,99 ~a y/a, .
The coefficionts for this equation are tabulated together with the coefficients
for all the other saturation equations in Appendix IT. In onder to demonstrate
the acauracy of this equation a ? deviation plot is shown in f£ig 11. In it
(POSG - ?EQN) ® 100/pOSG is plotted against temperature and it can immediately
be seen that the maximum deviation below 350 °C is 0.0015 ¥ and sbove 250 °¢
it is slightly higher at 0.014 Z. This proves that the data is fitted well
within the bounds of any experimental errors in the original data.

The equation values are compared with the IST values and tolerances in
Table ¢ and the only temperatures where the difference Prgp ~ PEQN approaches
the IST toleramce is at 374 °C and 374,15 %, This is hardly suvrprising since
there is considerable doubt as to the pxoperty values at the eritical point,
This mattey will be discussed in detall in section 5.8 end will not be further

aliuded to here,

543.2 Bupplementary equation

A supplementary equation was provided because it was felt much simpler
to provide this equation than to carry out inverse interpolation on the
vapour pressure cquation, As this equatiion ig just the reverse of equation

(137) it appeared logical to use a similar form of variable i.e.

3
Se (00 Yp) ¥ —m(in),

However the derivative of this equation is zero at the critical
point and a slightly modified form of the independent variable

is necesaary, From the results of fitting
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. the primary equation a suiiable fora of tbe independent vaviable might be:

i k % I
g (In /8 + ¢) = (lo /B) where ¢ = In K,

Howevar 1n K/B 0
% !.'.K_.ilq

This would thraefere give an equation of the form

N
14

. 13
= £{(In /) 3 .

-

o

Fitting was carried out using different values of k and K and the results
r are shown in Table 10, With R = 1, the best value of k is either 0.5 or 0.4
[ according eo.the sgandard deviation but the lattex giﬁes smaller maximum
| deviatians and should provide the better f£it. '
A value for K of 1,1 provides an adequate vesuli even although in Table 8

the value of the derivative at the eritical pednt for K = 1,1 is not quite the

maximum it is very elose to it. Thus the final form of the equation is
‘ 11

L. o b T evees (138)
6 " r&o *F

11

Ouh

where vy = (2(ln 1'1/6) - blq)/b13 .

This equation provides o close fit ko the data (fig 12) as below 360 °¢ the

largest deviation is 0,0012 Co, while above 360 °C the largest deviation is

greater by a factor of 10,

It has now been shown that both these equations represent the data very
accurately but it i3 necessary to show how accurate these two equatlons are
when used in conjunction, TFirst of all the primary equation iz used to caleulate
Py, from T, and then esing the secondary cquation, T2 is caleulated and the
difference between‘Tl aod Tz ¢an be geen. These values are given in Table 11
and the maximum value of (Tl - Tz) is 0,003 ¢® ad the weximum % deviation

(Tl ” T?Qx 100 4
i' ' is 0.003 Z. Table 12 expresses the results when the equatilons
1

are used in reverse and shows that the mawimun deviation is 0.005 bar or 0.002 %,
These results only serve to emphasise the accuracy of thase two vapour

pressure equations when used either separately or together.
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5,3.3 Vapour pressure equations based on 'Craigoe-Stimson’ corrections

After the vapour pressure equations already described had been completed,
it was discovered by Dx, Angus* that there existed more recent measurements,
in the tempevature range O % to 100 Oﬂ,whiah were being widely used by
chemists investigating the vapour pressure of organic substances. These
values differ slightly from those given in the 1963 IST and are to be found
correlated in Table 2~1-(1.01)~K of the American Petroleum Institute Research
Project 44 (25). It was also discovered that some recent measurements were in
conflict with both these sources, Dr. Angus and Dr, Bruges corresponded with
the various interested parties and then completed a short note on the subject
: which they submitted to the 2nd IFC Meeting in Glasgow and vesulted in the
following clarification of the problem,

The API 44 table nses as a basis the saturation table values of the
1963 18T, genevated from the 1934 correlation of Oshorne and Meyers whieh
was at that time considered valid from 0 °¢ to 374.15 GG, and added corrections
derived from measurements made at the National Bureaﬁ‘af Standards in connection
‘with a gas thermometry programme, by Stimson and Craigoe in 1942 and by Stimson
and Wilson in 1948, These 'Craigoe~Stimson' corrvections ag they are known,

have mever been published nor has the work on which they ave based, but they

have received limited private civenlation (6G6).

Table of 'Craigoe~Stimson' corrections

Temperature Ap to be added
% atm, x 107°
0 0
25 39
30 74
60 75
80 47
100 0

More recently Douslin (67), using an inclined piston gauge, has made

observations on the vapour pressure of water in the range 0 % to 20 “c.

%
Scientific Director, IUPAC, Thermodynamiec Tables Project Centre, Imperial
College, London,
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His measurements differ from both the IST and the API 44 tables, the difference
increasing with increasing tempevatures, and being outside the IST tolerances

at the highor temperatures of this range.

It was decided that there were reasonable grounds ﬁag preferring the

APL 44 since the equations do not merge well at temperatures just below 100 °c.
Further, the measurements of Moser and Zmaczynski (68) between 73 °c ana 130 %
_aré almost identical with the original PIR (14) (69) (70) observations and the
correlation of Osborne and Mﬁyérs. Ae@ordian% it was deeided to use the API 44
values as 'input data' between O °¢ and 100 °C and the Osborne and Meyers
correlation as input data fxom 100 °¢ to 374.15 % an? to fit a single equation to the
two sets of data, The basic equation has the same foim as equation (137) and a
complementary equation similar to (138) was also correlated. The two sets of
equations give virtually the same results except In the range O % to 100 %
where the gecond set, which will be denoted by (137b) and (138b), give slightly
higher pressures than the fiwst set, A comparvigon of equations (137) and (137b)
in Tables 13 and 14 shows this agreement very well for both pressure and the
derivative T%%. Tig 13 givea deviations of equation (137b) from the 1934
cortelation of Osbouwe and Meyers as well as other pertinent differences. There
18 pood agreement between API 44 and the Craigoe~Stimson values except at 25 °¢

where there is en unexplained difference of 4,,.~6 bar, which may be due to

10
*smoothing' done originally by Meyers. Egquation (137h) agrees with API 44

to within 0,3 N/mz'exceﬁt at 90 °C where the discrepancy is OJS‘NIm?a As

can be seen both the APL 44 correlation and equation (137b) give smocth curves

whereas the 1939 NBS equation of Gerry appeaxs to be imperfeét between 70 ¢

and 100 °G thus demonstrating yet again the poor merging of the two NBS (1939)
equations, raferred to sbove and also shown in figs 11 and 12,

It was decided not to attempt to improve the equation further since the
values obtained were aeuugéte enough for practical purpeses and well within the
limits of all except the most precise pressure measurements, It was also deecided -

to yecommend the use of equatdons (137h) and (L38b) iwn preference to equations
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(137) and (138), although the latter rveproduce the 1963 IST almost exactly,
wvhile at the same time equations (137h) and (135b) give values within the
bounds imposed by the tolerapces and are equally valid. At temperatures

above 100 °C both sets of aquationg give values which are indistinguishable.

5+3.4 Comparigon of vapour pressure equations

Mention hae already been made of the two vapour pressure equations devised
at the ¥BS, Since then various other equations, which all have rather different
advantages and disadvantages, have heen suggested and uged, It is interesting
and instructive to make a comparison of the best of these equations with respect
to the important ceriteria used in computer programming l.e, economy of storage,
spaed and. eage of uga, There arve six equations which will be discussed:

(1) Osborne, Stimson and Ginnings (086); (2) Steltz and Silvestxi (39) (88);

(3) Bridgemon and Aldedch (62) (BA)s (4) 1966 X fumction (47); (5) 1967 K function
(48); (6) equation (137, The form of these eguations, their derivatives and
“ecoefficients ave all desevibed in Appendix I.

In order to be able to dvaw coiparisons between different equations it
is neceasary to apply the eritexia mentioned above. They may also be ezpressed
by the following wore positive quastions,

(a) How many equations and what range do they caver?

() Nunmber of coefficients?

(a) Number of operations e.g. addition ete. to be performed in

calculating one value?

It is very simple o evaluate the first two points but the third is
slightly wore complicated. Now the ideal corwelation would be the one which
required only one equation tomver the entive range, used a minimum number of
coefficients, say approximately 6, had & minimum numher of arithmetic operations
with no procedures ox complicatod functions e.ge cosh, In, exp, and provided
oxact agreement with the originel data. Table 15 has been-drawn up to txy

and show how well the equations corvespond to these criteria and an examination
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of the table provides a very goed guide as to how well they ave satisfied.

The number of arithmetic operations ave tabulated and the total time
taken for the caloulation of one wvalue is given as a multiple of the time
takea for an addition. This is based on the time factors calculated using
the Whetatone Algol compiler on the English Elactric KDF 9 and given in Table
1G. These times are only approzimate as the times for any particular operation
vary according to the size and numbey of dipits of the numbars being operated
ons This is true in particular when using the procedures for in, exp and 4
(this is the Algol symbol for a? which is represented by a + b) which use an
iterativg process, o

Hence it 1s now poasible to make an evaluation of the usefulness of the
various equations based on the above criteria, The two aquauioné of the NBS
axo not very suitable for use due to their fiorm and the fact that together
they require at least as much storage as'any of the others without providing
any benefit in speed. The equations of Steltz and Silvestri which are based
on the results of Keanan and Keyes do not cover the full range although they
are the fastest, with the exception of the 1967 X function. The equation of
Bridgeman and Aldrich doas not have any advantages. It takes a long time to
caleulate as it c¢ontains the function cosh "1 and moxeover its values in the
region 20 °¢ ~ 100 ¢ are slightly hipgh (see Table 18) although still well
within the IST tolevances,

From these comments it is obvious that none of these equations are
particularly suitable for general use, Thus only the last three equations
are left, They were all programmed for the computer in both the XDF 9
Assenbly Lénguagaﬂvser Code, and Algol and their calculation times are given
in Table 17, |

The programmes in User Code were writien by Bradly of English Eleectric
for a paper (71) which he has submitted to the 7th ICPS and the average times
he obtained awd glven in Table 17, are reproduced from his paper.

From a cemparison of the relative times, it can be szeen that those
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from Table 15 provide fairly good agreement with those obtained from the

User Code programmes, However on comparing the times of the Algol programmes
it is immediately obvious that the time taken for equation (137) is very
much longer than for either of the other two, which is in direct conflict
with the previous times. This anomaly can be explained by the difflculty of
programning the summation of Chebyshev polynomials in Algol. Either arrays
are used, which is very wasteful of time or else a large number of assignment
statements would be required which is almost as wasteful, In order to
elucidate the problem it is now written in full,

n
5! a, Tr(x) is expressed mathematically by

The suwmation of y =
. . r a

b LRV

a2 bn+l

br " 2x bw-l “ b *a, (r =0, 0L,.00as,Ll, 0)

42
y = (b, ~by)/2
Programmed in Algol using arrays it would appear

b[n+2] imwb[n+1] :w0,0; xom2,0xx;

for r=n step ~1 until O do

b[x] e [o4l] ~b [p+2] +a[x] 5
y=0,5x(b[0]~b[2]) 5

Now if this was re-programmed to eliminate the arrays it would appear
YiwdemQ,05  xim2,0x%;

for v:=n step -1 until O do

begin X:m¥; Yisz;
ZrwxxY-X+alr] 5

end;
Raiad il

$m0, 5% (Z-K) 3
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However when this problem is tackled in User Code, the second method guitably
‘modified would provide the basis of the programme. None of the agsignment
statements would be required since User Code makes use of az nesting store

in which all the required values of X, Y and Z would be caleulated and

stored without having access to and from the main stove which would use up
considerably more time,

Tables 18 and 19 have been drawn up in order to compare the wapour
pressure values and the derivatives of the various equations.

Mention has already been made of the £irst three equations which leaves
only the 1966 and 1967 X functions and equation (137) to be discussed, The
two former have both been constrained to give p = 221,2 bar exactly and in
doing this have lowered the pressuve at 374 °C to the limit of the tolerance.
Thé only other point of significance in these two tables is that the value
of the derivative at the eritical point for the 1967 K f§né€ian is zero
due to the form of the constyaint,

It is now poassible to dyaw conclusions agbout all the equations examined.
Firstly any of the ghove equations would provide an adequate representation
of the vapour pressure, Secondly if the prime criterion for the choice of
equation is speed, (where the derivative is not required) then the obvious
equation to use is the 1967 K function. Thirdly, if the most important
eriterion is accuracy and consistency then equation (137) would be the
obvious choice since it is the most accurate of tha thyee and since a

supplementary equation is also supplied,

5.4, Liquid volume

It was again found convenient to use the entries in the NEL Steam
Tables as input data since they arve in exact apreement with the IBT values
which ave dexived dirveetly from the WBS table, which in turn is based on
the measurements of Chappuis (72), Thiessen (73) and Smith and Keyes (27).

The experimenters at the NBS found that the observations of Smith and Keyes
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were not in agreement with their own calorimetric observations sbove a
? temperature of 330 °¢, In order to confirm the reliability of their own
experimental meagsurements Osborne, Stimson and Ginnings carried out special
volumetric observations in the neighbourhood of 370 °¢ ana consequently
computed liguid volume values above 330 %¢ from their own ealorimetric
observatiéns.
From the abwe history it is to be expected that liquid volume will
be one of the most accurately represented properties due to the large number
} of experimental values which were available for its original correlations at
the NBS and at MIT. For this reason and due to the fact that these values
should provide good agreement and continuity with the other observations of

the NBS it was decided that it was necessaxy to provide a Liquid volume

equation,
5.4.1, Liquid volume equation .
y As usual when trying to find the most suitable foxm of an equation

rough plots were drawn up.

From these it was seen that Ve fitted as a function of temperature
produced a line with a more severe curve than if the inverse of Vg vere
plotted., It thus appeared likely that the bast form of the dependent
variable would be 1/vf. As the graphs were not of any great assistance

apart from this one factor they have not been included., The following four

forms of equation werve tried and the results can be seen in Table 20 for

different values of k; In ecach case the best fit required only 11 coefficients.
v # £{(8) ()
vy = £ (%)k}.m_.__(xi)
1/“’f R THC AL TYS L M )
1/v£ w £ (T8 - 1y Fp(xidL)

JIn accord with the results of earlier equations the best value of k was found

to be 0.4 using foxm (xii). Thus the form of the equation in dimensionless
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form is

10

L v ,
= - ] 2 o e Tr(z) vusne(139)

vhere z = 1 ~ 2(1 -~ t/tﬁl)ﬁ'a.
After all the saturation equations had been correlated it was discovered
that the critical values of different properties calculated from the liquid
and vapour phases did not agree, Thus it was found necessary to alter slightly
the critical values glven by the liquid volume and the wvapour enthalpy equations.
A full deseription and survey of the critical properties is given in section
5.8,, It will suffice for the moment to say that the liquid volume equation
wag/%aightad slightly to give a value ﬂar‘ve of 3,15 cmsjg.

Tig 14 shows the deviations of the NBS recommended values from those of
équaciﬂn-(IBQ). It was found appropriate to include values derived £rom the
rvecent data of Kell and Whalley (74) whiceh extend over the temperature range
0 ¢ to 150 %¢. 1In this case Whalley's generxal correlating equation was used
in econjunetion with the vapour pressuve equation (137) given here. The results,
as can be seen from fig 14, are in good agreement with equation (139),

Table 21 demomstrates how well the equation values agree with the 1963

IS8T values and that nowhere is more than 80% of the tolevanne used,

5,5 Correlation of vhe NBS a values

The o cbhservations are the mogt important of the WBS calorimetric observations
and may be considered second only to the pressure-temperature velation for the
saturation line which is fundamental. In deriving the saturation properties
it seemed preferasble to follow the proecedure laid down by Osborne. Accordingly
it was decided to refit the o measurements over the whole temperature range
replacing the two NBS equations with a single equation.

However before proeceeding with the correlation it was necessary to alter
the units, int. J, in which ¢ was expressed and convert them te abs. J or J

using the rolation,
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1 dint, J (NBB) = 1.000165 7T,
Also note had to be made of the fact that the datum state has been changed
gince Osborne devised the o equation. This however does not affect the
value of o itself, but only the velations in which it is used,
Titting was carried out using an equation of the form
13

- t
p,c1 vcl = ; 5 o dr Tr (Q) 'oq-o(]jiﬂ)

Q

where Q = (2(%/8 -~ ©F ~ a0/,

with the results shown in Table 22. 1In this equation the important deviation
is the maximum percentage deviation gsince this occurs at the triple point.
r Using this criterion as the final judge thé constants were given the values
¢ = 0,99 and k = 0,5,
As with the liquid volume equation the eritical value of « had to be

slightly modified by weighting.

rov ~ %ose? /®osc
it can be seen that above 20 °C the maximum deviation is less than 10 Pspoil,

A deviation plot of (u is included as fig 15 from which

(or 0,001%). For lower temperatures than this a larger deviation is expected
since as ¢t + 0, ¢ >~ Q0 and s0 at £t = 0 % the deviation will be infinite., Since

the actual observations of o were in reality observations of gg, a comparison

is made in fig 16 of the deviation in %% between the two equations and this

plot also reflects the accuracy of the new equation.

5.5,1 Conversion of o to new datum state

The NBS o valves were caleulated using the old datum state vhich was
defined by the following relation:
att=0°, hw0 and s =0,
However this was altered by the 5th ICPS in 1956 to give the new datum
state based on the triple point, It is

at ¢t = 0,01 OG, uw(Q and s =0,
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In ordex to correct o to the triple point datum a constant value, which
will now be calculated, must be added thus
g ™ Opow * e
The constant K is calculated as follows:
h o= u+ pv by definition
and 80 at t = 0,01 then ‘

ht =0+ Py Vn

but h is calculated using the calorvimeiyic quantities o and B°

using the fomula h, =«

|
g 5% B

d
1 o
where 8.1 =, (Tagﬁ

hence in order to obtain ht correctly it is necessary to modify Gy r

ot L t
80 o ht ﬁt

&
Anin %“{E
=Py Yy " Ve (Tgpy
= v, (o, - (w%%)n>
s ~ 0,0060101.,
Hence CGNEW
w (3,0415834

nust be ~ 0,0060101
but WEQN
PR K= Qe ™ %pow = 0,0060101 - 0.0415834
= = 0,0475935,
Hence in all the themmodynemic and calorimetric eguations o must be
replaced by o + K,

€ere D= ¥ B' must be wyinten h, = (o + K) + g',

£

5.6 Caleulation of the rewaining liquid propertics

It ig now possible to czleulate the other liquild pyoperties using only

the equations alrveady obtained and the relations expressed in section 4,3.3,

The first of thesais the other liquid calorimetrie property, 8', which is
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caleulated using relation (102)

Voo e
BY = ve Tag

The values cobtained are aompared with those caleulated by Osborne, Stimson
and Ginniﬁgs in Table 23. The resulting agreement to less than 0,2 % for
temperatures less than 374 °¢ is more tham adequate énd aven although the
difference is approximately 17 vound the eritieal this is much less than the
uncertainty,

The mext property to be obtained is hf by vsing relation (104)

iafm (o + K) + 8"
The value of K was caleulated in the previoua section and so it only remains
to compare the results with the IST as has been done in Table 24, The accuracy
of this propewty is excellent as even B50% of the tolerance is reached only once
but in general any disagreement in the values is due mainly to roundiag off,
The last property whidg'can be obtained is liquid eatropy, 84 which is
caleulated from the equation (108) |
5. = [h-r:m']i+ E A% an,
Tt t
This espression appears to be very complicated especially the integral,

However thexe are two possible ways of dealing with it, The fizst is by a

numerical integration method like Simpson's Rule but this is a vather slow

and untldy process vhereas an analytical solution should be mueh faster and

neater. The only possible method of tackling ir appeared to be by transformation.

fret of all the o equation may be written
: 1
a=p v o4, T ()
ol el rmg °F

. . - . r !
where () = (2(% - 0‘99)0"3 - dlg)/dlg*

T
Hen@e . dq -1 -aug'm % 0.5 {_é_ s 0.99) 0.5(‘»&-‘%} dT
13 , T
Ll 2 ar
dyg (dyahdyn) " 2
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. (45 Q *+ dy,)
N 3 (43 0 * &, a0
oo 2

d‘

vhere f—ﬁﬁ AT m §%" fa(dlgq + dl?)dQ
T

dy3

- g [ B(Q Jo le = S dQdQ) + d, fa. do]
13 r ;
- i [y Q% dy Mo daQ - d;./fa aqaq]

n.-.0(141)

T dig Q Q Q i
Hence T-gsz B (d13 Q+ dlz) o dQ - dlB I o dodqQ

vhere Qt is the value of Q at the triple point,

T % T - Tt

Nowr I 9 AT m K s o

T T Tt
t

This only leaves the problem of integrating the o equation which can be achieved

by writing the integral as a Chebyshev polynomial thus:

Q 12'
Qta dQ = p, v, . i . D Tr(Q)

uging the integration formula (75) to obtain the values Dy, Dz,...nl?, the
coefficiont D, being determined by the lower limit of integration, Qt, ag

follows:
12
D ==2 % D T_ (Q
© r=1 L F

Q Q

J J a 9Q dQ is calculated in identical fashion,
Q Q

§ t
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; Hence the liquid entropy was caleulated using this equation

e E T
| sg = [ /‘J,‘]T " 3T [Cdy5 @+ 4, 0 dQ - 4, 4ff0 4Q 4Q] + Rz ) cores(142)
. t

The values obtained from this equation are compared with those in the NEL
Tables (Table 25) which in turn were taken from the NBS wvalues, The
agreement is yet again almost exact below 370 %G and provides as good a fit
as the liquid entropy equation (133) over this range, As expected towards
the critical point the agreement is not quite so accurate due to the
readjustment made to the cwitical point properties.
There are other properties (ufg B ff) which ecould now be caleulated
also but as they are normally neither tabulated nor measured it is pointless
| to calcoulate them at this stage. They are all bowaver evaluated in Appendix IV,
The equations described to date have been shown to provide an accurate
representation of all the liquid properties., The mext stage is to find a

saturated vapour equation.

5.7 Saturated vapour properties

Now all the wvapour propexrties can be deduced if vy is now expressed as a
function of temperature. This in fact was the procedure used by the NBS in
genevating thely table of properties and was the only valid procedure since
v was an observed property. However, it has proved more convenient to fit

hg as a function of temperature and to dompare the calculated values of vy

with the cbsarved values of the NBS., This course was dictated by the fact

that a complete table of hg values was ready to hand in the NEL Tables,

whereas it would be necessary to genaerate values of y from the NBS data.
Moreover, in view of further work on equations of state planned by the author

it was recognised that it would be more econvenient to have hg as a function of T
rather than y or hfg' It is to be apprecilated that only one of these properties

need be defined since the othey two can then he evaluated.




5.7.1 Vapour enthalpy equation

Fitting was carried out for an equation of the Zorm

k

T
c 0t
hp = f{Gﬁw N7}

g

using different wvaluas of k (Table 26). A wvalue for k of 0.4 proved to be
moxe than sufficient as the waximum porcentage deviation ds only 0.015 7
which is within the round-off errov of the oxiginal data as it is given only
to four significant Ffigures., This is demonstrated wery foreibly in 'Table 27
ag ouly at the critical point is the dlfference between the equation and

IST values greater than 1 J/g. As with the previous equations the eritical
value had to be modified slightly and a final equation of the following form

was obtained

1 10
e S L - i (7)) eeees(1A3)
€ £ =0 r r

and = = 2L

TE fig % is examined closely then it is seen that there is a meximum on
the vapour enthalpy curve, It is of interest to discover at what temperature
this occurs and so the temperature which satisfies tha_condition.§¥g~w 0 for
the above equation was evaluated. It was found to be satisfied by

£ = 234.615251 “¢.

85.7.2 Other vapour properties

It is now possible to evaluate vy the last of the NBS calorimetric
properties by using the relation
"{"hg“ﬂ »
The values obtained are compaved in fig 17 with the smoothed NBS values

and the values re-correlated by Bridgewan and Aldrich (75) above 300 fjC,

both of which were based on the NBS measurements., The agreement obtained is




very good and the disagreement increases with increasing temperature which
is how the expevimental accuraey behaves.
The next property to be calculated is vapouyx volume and this is done

with the relation
v
and the results arxe compared with the IST valwas in Table 28, The biggest
discrepancy between the values when compared with the tolerance occurs at
374 °¢ and only takas up 257 of the tolerance,
The only quantity that remalns to be calculated is the vapour entropy
8, which is caleculated from

hfg
sgmsf-b IT

The results are tabulated and compared with the NEL values in Table 29 with
almost identical accuracy to the liguid entropy comparison.

Thus all the most important saturated properties, both liguid and vapour,
have been caleulated and compared elther with the 1963 IST or the NBS values

as presentad in the NEL Tables. In every case the deviations are well within

the tolerances or possible experimental errors iIn the data.

5.8 Critical point properties

Apart from the low temperature vapour pressures which may be in error,
by a small amount the only other region where theve is some doubt is around
the critical point. It is inevitable that a fairly large uncertainty must
be associated with the values of the properties at the exitical point,

In order to demonstrate this uncertainty Table. 30 has heen drawn up
with the successive experimental values obtained duxing the past 60 years.,

It is certainly necessary, as suggested by Juza (45), to caxry out further
experimental and theoretical work, such that the uncertainties on the various
eritical propaties may ba rveduced. This necessity is cmphasised very
strongly by the latest measurements carried out earlier this year by

Blank (86) at Exrlangen., The values he obtained are considerably different
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from those accepted by the 1963 I8T and are in fack well outwith the
tolerances, MNoreover even if his estimated erxor is included his values
are still outwith the 1963 IS8T toleranceé. |

It is dntevesting to compare the values of p obtained from the vapour
pressure aguations for the various experimental values of ¢ (Table 31), The
different equations provide faixly close agreement with each other and not
unreasonable agreement with experimental values of p with the exeeption‘of
Bridgeman and Aldrich's value based on the recorvelation of the N88 data.

Table 32 compares the derivatives (T%%Q of equation (137) above 370 °g
with those of the NBS (1932) (87), Egerton and (allander (88), Keyes (MIT)
(09), NBS (1939) (22), Bridgeman and Aldrich (62) and the 1966 IVC K function.
It is interesting to note that the 1966 K function gives higher values than
ghe others, It is also interesting to note that theaverage.value, excluding
that dexived from the K function is close to the predicted values given by
equation (137) and by Bridgeman and Aldrich. The value of (T g% e would
appear to be close to 172 J/cm?.

The value of the cwitical volume would certainly appear to he less
than the 1963 18T value of 3,17 cmslg. Tn addition to the values given in
Table 30, if the method of rectilinear diameters is used then a value of
approximately 3.11 cmg!g is obtained.

A vexy intevesting paper (90) on ghe ewitical region was published in
1966 by Bridgeman, in which he diseussed the values of the criticsl point
derivatives for various properties. These valﬁes, which are mostly + o,
ave glven in Table 33 together with the values obtained from the sétufasion
equations, Due to the forxm of the variables chosen for the equationa all
the exitical derivatives turn cut to be in agreement with the theoretical
values.

Another important point which sppears in this paper is the recommendation
of & temperature variable of the form [3(1 w'% ﬂlla in the corrvelation of

c
data on gaturated fluid properties. This ig very inteveating as the function




need in most of the saturation equotiona and arrived at independently is
Gﬁﬁ - 1)k where & = 0.4, Both these functions are almost identical and
pyovide fairly good agreement between tha powers, Hemece it wouid appear,
ag suggested by Bridgeman, that this type of ﬁuna:ian ghould prove very
useful in enalytical studies and correlation of properties in the critical

region,

5.9 Thermodynamic consistency

It is now possible to examine the equations as to how closely they
maintain thermodynamic consistency., The agreement should be excellent
since only the minimum number of equations are used and the thermodynamic
relations are used to caleculate the remaining properties. However there
are two good criteria which can he used to show conclusively that the
saturation equations do not contain any incomeistencies of a thermodynamic
nature, These two critevia will now be dascribad,

The ﬁirst is that the saturated liguid and wvapouwr values of Gibb's
function}shoulé be identical i.e. g ™ gg. Table 34 has heen drawn up to
show the difference between these values. Tn all cases the deviation does
not exceed SlOHQ J/g which, above 120 OG,vﬁepreaents 12 gignificant figures
or the limits of accuracy on the computer, In fact the deviations in this
region amount purely to round—-off error, In faect the wmost significant

deviation is at 0 ¢ vhere it is ?.610~9 Jlg (or 7.6, ~0%),

10
The secopd is the use of the Clausius Clapeyron relation, which may
be written

8

m%%u'ré_i .
These results are also included in Table 34 and agsin successfully demonstrate
the ateupracy of the equations and thely compatibility. The lanrgest deviation
occurs att thé eritical point (= S.OAloMT J) and ghuwa that the eritical values

are not quite as cousistent as the other entwrles. This is not pavticularly

surprising as these values had to be modified elightly in oxder to obtaln
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agreement between the liquld and vapour values of the same property at the
eritical point,

However if the properties such os cp.,. e, ete are to be calculated it
ie vecessary to obtain one of tha partilal &arivm:ivm; ' (%g')ﬁ! or (-Bw%)?. _
These values can only ba caleculated from an equation of state whose variables
are p, v and T and the inkroduation of these quantities will rméessm:iljr
raise the question of thermodynamic consistency, However as these properties

can be caleulated only by using other derivatives this whole subject will

be dealt with in Appendix IV,
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CHAPTER 6

CHARACTERISTIC LQUATIONS

6,1 Introduction

Bafore carrying out any surface fitting of the properties of water and
steam it was necessary to decide firstly which varizbles should be used and
gecondly vwhat data was pequired and for which regions. Thus it was necessary
to examine the above points before carrying out any corralations, although it
was possible to write and test the necessary computer programs which would bhe

required at a later stage,

6«14l Ghoice of varishles

In an address to the Sixth Intermational Conference on the Properties
of Steam, New Vork 1963, R. W, Baln supgested that it might be ppasible to
cover the entire liguid and vapour vepions with a single equation of the form
h = hip,a) — other forms are p = p(h,8) and ¢ = s(h,p), This is one of four
canonigal equations
uwuls,v) - (144)
£w £(v,T) ____ (145)
g = g(Typ) _____ (146)
and h = hip,a) __  (147)
which possess a number of advantages over those in which the various properties
(h, v, & ote,) are expressed as functions of p and T, If p = plv, T) _  (148)
not only is it unlikely that a siggla equation can cover both the liguid and
vapour phases\but additional information has to be sﬁppiied in order that energy
quantities may be caleulated, This is uvsually expressed as c?o = £(T) ____ (149).
Formulations, compyising equations (148) and (149) for example, involve
both integration and difforentiation in computing the usual properties, whereas

any one of tle canonical equations (144) to (147) defives all thermodynamic

properties uwsing only the quantities themselves and thelr devivatives. 'The
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derivation of the various thermodynamic properties from the four canoniecal
equations was demonstrated by Bain and Le Fevre (41) in a paper from which
sha.entrias in Table 35 have been taken. Columns (1) and (2) of this table give
the quantitias appropriate to the canonical equations (147) and (145) and column (3)
refers to equation (148), which is not a canonical foxm and for which it can be
seon that hoth intepration and differentiation are required.

In addition to the computative advantages of the canoninal equations
derivative quantities across the saturation line are smooth and all guentities
axce continuous, The ahsence of gross discontinuities such as ave ewhibited
by an aquation of the form p = plv,T) is a further factor in favour of the
suzface h = h(p,s), which is represented in fig 18. This particular type
Qf'eﬁuation saems to have been advanced im the first instance by Holmes and
Holliteh (37) who ¢overed the field of industrial interest with a series of
equations for compressed water and steam. Juza (91) has also presented equations
of this type speaifically for industyial caleulations but no attempt to provide
a single equation, as supgested by Bain, has yot succeaded, Haywood and Bott at
the instdgation of the UK Committee on the Properties of Steam (ERA Research
Advisory Committee 2B as it was then termed) made a preliminary investigation
which was subsequently followed up by MolLeod at the Natlonal Engineering Laboratoxry.
Taking the form of the surface as s = s(p,h) ____ (150) and using constraints
Meleod was unable to obtain a surface from which satisfactory properties eould
be derived., As a contribution to the UK efifort the saturation properties were
raspecified in torms of equations suitable for computers (reference (92), see
Appendiz V) bafore moving on to the problem of the h-p~s surface. It is this
latter work which is described here and which is helioved to supply a valuable
clue to any future Ffitting of this oy similay thermodynamic suxfacas,

Once it was deeided to work on the h-p-5 surface the obvious choice of
independent variables wasg pressure and entropy as in equation (147) since MeLeod

had already used tha inverse form in equation (150).



6,1,2 Cholice of inpuk: data

It 15 not possible to use expevimental data as none exists for entropy
and very little is available for enthalpy., Hence the input data must be
obtained either from tables or firom equations of state, It was thought that
the most recent tables, which were the NEL Stean Tables, would be quite adequate
iﬁ the ﬁirst place for providing some initial correlations., If they did nog
give the necessary sccuracy thon the input data would have to be caleulated
from one of the computer formulations which was available,

1t was né&assany to conaider the various formulations which ecould then
he wnad if the ﬂ&L Table: wvaluee proved inadequate, There wewe three possibilities,
0f these the BRD and Japanese farmnlauian were faivly similar in foxm but they
had large intar-regicnal discontinuities. The third bad been prepared by Juza
of the CBSR ond provided graasber accuracy and smaller discontinuities than either
of the other two. (These discontinuwigies are tdbulated in Appendix VI.) Its
major drawback was the increased nunber of counstants that it contained,

Theré was éna furthew squatlon, provided by Whalley and based on his own
pev-T measurements, vhich was valld for compressed water in the temperature
roange O %¢ o 150 ?G. The data on which it was based was more accurate than
previous emperimental work and it was felt that if this region could not be
adequately fitted then the proposed wethed could not poseibly be applied teo
water substance,

This equation had already been used by Leong and the author in preparing
a note for the Znd IFC on the davivation of some of the lass used properties,
and in particular the epeed of sound, Trom this work it was confirmed that
the equation was easy to use and that its derived quantities weve in excellent

agreement with experimental results,

6,1.3 TFoxm of equation

Gince the method of surface fitting was deaided on and deseribed in

Chapter 3 it is only neceseary to show how it was applied, The variables

B O e T TR o rer T L,
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usod were h-p-s ond since the data in the NEL Tablos was provided for isobavs
(l.es lines of constant p) then the siwplest approach was to £it h o his), RS
shown in equation (151},

7
hwe B Gifﬁi‘i(m 99.&&(151)
iw0

vhore ¥ = {28-CA) /0B,
Then the ecoefficients wove fitkoed as a Hunction of pressure as in equation (152)

#wmo.
Ci “j E'@}Bi’j ?ﬁ(ﬁ) Qﬂlot(k-‘jz)
& m )

where ¥ = {(2p~DA)Y /0B,

Hence the final foxm of the equation may be written

n
w
h L S' a' ni_j ?Q(X)Ti(gg) iﬁ&!!(lsa)
iw0 jwo™ ‘

6,2  Input daka from ML Tables

Pollowing on from the docision to use the NEL Steam Tshles for inmput data,
it was nocessary to decide whichiswagion « high tempewxsture, compressed water,
superheated steam, ete. should be fitted. Ut Qaa felt that wother than tiy to
fit the 'emzim sugface with one equation fmmediately, smaller replons vhere the
propertics were wost wegulay should be aexée\latad fivet, onitting the move
difficult and less well~defined wegions, such as the critical region, until thé
mothod had boon proved., Thus it could be scen on exemining fig 16 that the
compresaed water yepion and the high pressure region had the most pegularly
ppaced isobars and isotherms, Based on this observation it was declded to
attompt to correlate the high pressure vegion fivst since it would provide a
goide to the likeiibood of figting the surface with a single oquation, ‘The

results of this investigation will now be discussed.

6.2.1  CGurve-fitting alons isobars

The f£ilyat stop in attempting to eovrelate the high pressure region was

to fit k » h(s) along variocus isobavs and to find how many coefficionts wera
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necessary for the temperature range 0 °¢ to 800 °G. After this had been

done for lsobars between 250 bar and 1000 bar it was found that 10
coefificients appeared to provide the best fit although at the lower pressures
of 300 and 250 barg 1l coefficients improved tbe f£lt, These results, given
in Table 36 for aquation (151), show that the maximm deviations, 0.83 J/g at
1000 bar, 0,88 J/g at 400 bay and 1,73 J/g at 250 bar are all well within
the IS8T tolerances, It would appear that more coefficients may be required
at the lower pressures although this question should be answered when this
region dig finally fitted.

The zecond step is to axamine a plot {(fig 19) of the coefficients, ci’
agalnst pressure in order to see if a smooth curve is produced, If this is
the ease then there should be very little difficulty in fitting equation (152),
When fig 19 is examined it is obvious that the plots of the coefficients G,
and Gl’ are almost straight lines, both of them having a very slight coneavity,
It would sgppear from these results that there is a reaaou@ble chance of an
equation of this nature providing a pood fit to the data, certainly as far
as enthalpy isrooncerngﬁ.

The next step is to check that the derivatives obtained by the equations
for the isobars are accurate. In othey words sinee T = G%%)p an evaluation
of«%% from equation (151) for any particular isobar, say 700 bar, should show
how well the derivatives will be represented In any equation, The results
of this examination are given in Table 37 and it is interesting to note that
the maximum deviations in # ocenr at the extvemities 0 °C and 800 °C. Lgnoring
these values the largest percentage deviation, A% x 1007, is approximately 0,1%.
There is no difficulty in constraining the end points of the lsobars i.e, at
t =0 °C and at t = 800 °C to give corrected temperatures, In fact this has
been done in Table 38 and it can be seen that when ho and TQ are constrvained
then the standard deviation on temperature is considerably reduced, Uafortunately
when hgoo and Ty, ave constrained the improvement is mod nearly so great, This

may be caused by inaccurate valves of enthalpy at the higher temperatures,
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it is also possible to examine Gp in & similar manner since ¢, {as p[(
but as this property is not t&bularad in the 1963 18T iy ie very amfFicult
to put a tolerance on the experimannal values or tables based on them. However,
based on the isobaric equations it was meﬁi@ed that thg values aﬁ_e@ had two
maxima (at * 50 % and =~ 490 °c for 700 bar) and a minimum (at * 90 %G fox 700
bar)., These phenomena ave not reflected in the exparimental valueéa vhere a
maximum i8 to bg fougﬁ only at ” 4%0 QG, ﬁnﬁ‘weuld appeay to be causad by ervors
{n the original enthalpy or entyopy data, |

In ovder to try and imprave the values of T and cp obtained from the eduations

it wag decided vo introduce the dexvivative T inte the curve f£ltting voutine as

)2

) 4 ALCT ~ EQN

wag deseribed in 3.2.7. . This was done by minimising Z(h - EQN
and allowiug the factor A to adopt vanrious values.

Table 39 has been drawn up to show how vaviations in A affect the correlation
for a pressure of 700 bar, It can be seen that as A is inereased the standard
deviations on both emthalpy and temperature inerease also, This effect vas
quite unaxpected but on a veappraisal of the resulis it is scen that the largest
deviations on temperature have been reduced although to the detviment of the other
daviaiions. tchi.a han been ohown in Table 39.by webulating thoe devlatlens of the
othér eorrélaﬁiona For thé témpératurés ag whiah thé largest deviatlons ocecuw,
and thus adequately demonstvates the effects of this techmique. Unfortumnately
it is not of much assistance as the overall amount by which tha £it is beproved
is negligible, Au approach which 1a Likely to be mowe succesaful is the addition
of extya data points, By this means the devivatives obtained should be much
smoother, and the eﬁd points ¢an be deait with by using constraints as has already
been demonsirated, The problem was tackled in this manner in all later work)and
waa found to be successful 30 éerivaﬁives were never again used in the corvelating

procedura,

64242 SBurface fitting

The final step ls to carry out the fitting of equation (152) for various

values of m and to examine the results obtained. This would have two effects:



w5

fivstly it would provide a check on the computer programme and seecondly it
would give a comparison of the accuvacy obtained by fitting the isobars and
the accuracy of the full equation.
The region to be fitted was the high pressure range with the data made
up from the iﬂﬁarvals 700 bar by 20 bar to 1000 bar and O g by 10 deg C to
800 %¢.” Uging the vasults of the curvamﬁitting it had appeared that the
optimum value of n was 2 {(i.e. 10 coefficients) and so corzelations were.
undartalten for various values of m as shown in Table 40, The different fits
ware compared with the original data and the standard deviations of the properties
enthalpy, tempevature and volume ave given in this table for diiﬁexéut Pressures.
. The bhest fit appeared to be the one with m = 3 although some of the 6thars ware
almoat as good. In order to confirm that n = 9 was the hoest, some moxe £its
were carried out in which n was varied but they only sexved to confiiym that
the equation with n = § and ', = 3 provided the best fit to the data.
Since Haywood and Bott had vecommended the use of In p instead of p
the equation was refitted with this modification but there was no improvement in
the rvesulting covrelation., Thus at this stage attention was concentrated solely
ou the h=g~p fornulation,
A comparison of the equation values from the best fit was made with the
1963 18T walues and tolevances in Table 41 and the Zollowing conclusions may
he reached., Tiratly that the equation gives enthalpy values which ave every-
vhere within the tolerance and secondly that many of the volume values lie
considersbly ountside the tolerances., It is also interesting to note that the
maginum deviations Ah and At obtained from the surface fitting procedure
ara only marginally larger than those obtained from the cuxve fitting. The
maximum pevcentage deviations of the temperature are also teo lavge because
if the equation was enterad with p and ¢ and h was calculated then there would
be an arror on h of the order of 0.5% which in some cages is lavger than the
tolerance,

The final point wovth wnoting from Tables 40 and 41, and one which is not




guexpeoted, is that the volume values of the isobars bouwnding the equation

(i.a; 700 and 1000 bar) are much more poorly represeuted by the equation

than those on the middie of the range of pressure,

In ovdaer to check that all these results were not caused by some factor
which only occurred at high pressures a fev isobars were fitted fox compressed
water at low pressures., The coeffieients of these fits when plotted were not
nearly as smooth as those shown in fig 19 and only served to ewphasise the
unsuliability of the WEL Tables,

From all the information which has now been obtained it is quite obvious
that the NEL Tables connot be used as input data in the covvelation of new
equations. This decision. may ba explained by the following factors:

{a) Thore ave rounding aud smoothing ewrrors in the data which produce in the
course of any correlation g considerable smount of unwanted 'noise’ and
thus reduee the acoursey of the curve-fitting proceduve,

(b) ‘There are systematic errors in the data which introduce considerable
crrors into the derivatives of the nevw correlation,

(c) ‘there are not enough entries in the Tahles to help to overcome either
of the sbove problems i.e. p and t require to be tabulated at closer
intervals.

The problem which ia mentioned in (a) was foracast by Haywood and Bott
in their "suggestions for future work'. Thelr ddea for overcoming this problem
was to use only experimental data as input and thus avoid the effects of
sieoothing, This method would necessitate all the sulteble exzperimental data
beling sorted mnd avaluated in ovder to discover how reliable and accurate it
was end this would take a considerable time, _

It would the appear that the only sultable method of obtalning input
data would be to calcilate the propertiee from‘?ae of the available computer

formulations already mentioned.

6.3 Input data from Whalley's equation

It has now been conclusively demonstrated that as a source of input data,
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temparature ace smaller than those from the NEL Table correlations by o
ﬁactoﬁ of between 20 and 100, This is shown very clearly if Table 42 and
36 are compaved.  In ordeyr to emphasise the difference between using tables
annd corrélations ag a sourge of input data Table 43 wag drawn up. This shows
the differences Ah and At for the 1000 bar correlation and singe the maximum
value of At is less than 0.1 deg € (0.036%) the dhanée of £inding ap accurate
equation looked very good. This is besausq_ii the éqnauion wag interpolated
for a particular value of tempewvaturd §han the eorréaponding value of enthalpy
would be altered by less than 0,036%Y. \'Inxgrder'to diascover if the deviations
of the equation from the 1963 IST values ware greater than the tolezances, it
was possible to draw up the followiap bands of tolerance for enthalpy:
' 001 /g > Tolerance on h > 1,2 Il

0,47 Z > Z Tolerdnce on.h > 172, | .
Hence the percentage corvection to h baged on the difference At lies well within‘
the band of percentage tolerance,

It may possibly be argued that the comparisons batween the correlations
based on the NEL Tables aad those of Whalley's equation are not valid since they
cover different tamberaturu ranges, It was felt though that this was quite
legimate as it is the best £it that ia'being gcompared which in the former
required 10 coefficienta and in the latter only 5 coefficients and thus it was
possible to draw comparisons between them,

Finally the coefficients were exemined praphically and as they provided
a smooth plot for pressures between 1 and 1000 bar it was with confidence that

the aurface fitting process was tackled,

6.3.2 Surface fitting

Surface fitting was now cavried out uesing 20, 100, 160, 200 and 300 isobars
in order to discover whethex the numbeyr of isobars was evitical. From the

results for different numbaers of coefficients it was found that about 200 isobars
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gave the best fit., Thus for the correlations to be cavried out the following
isobars were used; 1 bav by 1 to 100 bar by 5 to 200 bax by 10 to 1000 bax,
For m = &, m was given different values as shown on Table 44. By comparing
the standard and maximum deviations for the iscbars 1000, 600, 200, 100, 50
and 10 bars, it was concluded that a value of m = 3 gave the optimum results,

By using the experience gained in working with the NEL data it was then
possible to estimate whether the equation lay within the IST tolerances. First
of all an examination of the wmaximum percentage deviation on both h and t confirmed
that the wminimum percentage tolerance on h of 0.47% was not exceeded, The bands
of tolerance on v arve given by

0.0001 cmglg < Tolerance on v < 0,0005 cmslg

0,0L % < 7 Tolevance on v < 0.04872.
Now both the maximum devietion and the meximum pervcentage deviation exceed the
maximum tolaervances and so without emamining eveny entry it can be deduced that
the equation does not satisfy the eriteria laid down in the 1963 IS8T,

Baiore carrying out any iwprovements to the equation it is necessary to
find out how many points lis outwith the tolerances, since if thexe ave only
a few a simple alterxation te the eguation might suffice. It was found that over
the whole region the new squation gave values within the IS8T tolerance except
for volumes along the 150 %0 isotherm a pressuves below 150 bar and for enthalpy
at 0 ¢ and L bax,

There were only two possible methods, either weighting or constraining the

fit, which ecould be used to overcome this difficulty. Since there were only z
very fow points which lay outiside the tolerances it was decided to vefit using
tﬁm weighting precedure mentioned in 3,3.2. Tt was hoped that this would prove
suceessful and thus avoid the complication of introducing eonstraints into the
equation,

It ip iwpossible to show any of the rasults and so all that will be said

io that welghting was carried oui on the isobars for the low pressures by a

ferial and exrvoxr' process wntil a switsble £ir was obtained. The coeffiicients
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fox this final foyrm of the equation arxe tabulated in Appendix VIIL, The

eguation is written

4 3
h= ! A D 1.(X)T.(Y) c oo»mO(lsS)
1w im0 i"%l 4
where %= (28 ~ 11,99)/12.01
and Y = (2p -~ 1000) /1000,

This final equation meats the ¢riteria laid down by the 1963 IS8T, At
all the skeleton table points the valuse of enthalpy lie within the tolerances
while the values of volume also lie within the tolervance wlth the exception of
the 150 a igsotherm from p « 25 bar to p = 125 barw vheve the wvaluves toke up all
the tolerance, This is demenstvated in Table £5. The gaturation line provides
& boundary to the eqguation from 100 °¢ to 150 °¢ and e comparison with the IST
saturated liguid vaelnes fyom 100 °¢ down to 0 °¢ so that the possibility of
using the eguation below 1 bar pressure and so extrapolating its vrange to the
saturation line frowm 0 °C te 100 °C may be comsidered, As can be seen from
Tables 45 and 46, with the exception of the liquid wvolume valuas at O %¢ and
0,0L %c all values ave within the presexibed tolerances,

A compavison of the saturation values which may be derived from equation
(155) is made in Table 47 with the values previously obtained in Chapter 5.

Lneluded are values of cp, which are caloulated from the equation (156),

N S T A s
c}? i iiT)f (d':f}f '{"Q‘E (3'3')'[;] T} 00010(156')

whana-%% p ig derived frvom equation {(154) and the other quantities from tha

saturation equailons.

6.4 Toput data from Juza's formulatlon

It has been ghown that for suffliciently accurate data the method of
surface fiviing using orthogonal Chebyshev polynomials will provide an excellent

intevpretation of the actual propervties of water. It oply remalvs now to apply
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These last two pieces of information may be of use at a later stage in the

work but based on the vesulis mentioned, the following tentative conclusions

were suggested,

range of tempevature maxioum number of goefflcients
100 deg 4
“200 deg 6
300 deg 7

. The #lrst vesults of the suwface fitting should either confizm or modify
these suggestions and enable eurve fitting to be dispensed with completely

~ for the rest of the work,

6.4,2 Purface fitting

Qurface fitting was carried out for the range of temperatuye 0 to 250 °C
at intervals of 2 deg € and for the vange of pressure 1 to 1000 bay at intervals
of 10 bar. On tryiag various wvalues of m foy n = 5 very poor rvesults were
obtained, The cause of this wmslch@aﬁﬁcé that although at dlutexvals of 100
bar the coeffieients were smooth ai intexvals of 10 bayx they were not. 1t was
found subsequently that the maximum value of n wag 4. TFurthewmorve a discontinuity
arese for isebars whose pressure was less than the saturation pressure at 250 °a
(i.ev 3948 bars). This is because 126 points were used in fitting the isobars
above 39.8 bavr but for all those below, fower and fewer points weve fitted and
thie radically affected the values of the eoefficients and is shown graphically
in f#ig 24, The general nature of tﬁis phenomencn was confivmed by fitting
equations over different temperature ramges, It may he aveided either by corre-
lating much swmaller intervals of temperature and thus inareasing considerably
the number of equations required or by using the eritical isobar as a boundary
and dividing the surface into wegions as demonstrated im £ig 25. The latter
method was chosen as it would probably help to keep the final formulation as
aiﬁpla as possible,

In ovdey to engure that the discontinunities on the boundavies between the
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various equations were kept to a minimum, it was decided to fit isobars right
down to 50 bar such that the equations A and € would overlap and might not
require constraining along the boundary supplied by the critical isobar.

A correlation for vegion C was then carvied out with T = 250 OG, ned
and m = 3., On comparing the resulting values with the IST, excellent
agreement was obtained with the exception of the 0 0 isotherm where the
tolerance on volume was either equalled (from 500 bar to 1000 bar) or exceeded
(under 500 bar). This was a case which called for the use of constraints to
reduce the volume values within the tolerance.

Unfortunately the surface fitting prograrme had been modified to take
aceount only of constraints on h, T or cp but not on v since it involved a
slightly different technique and it proved impossible to include this facility
within the time available, A description of the technique was not included
in Chapter 3 and the only deseription of it is given by Clenshaw and Hayes (53).

All that now yemains to be done is to make recommendations as to how any

future work may be carried out.

644,3 Bupgestions for the course of future work

The studies made in this chapter make it possible to vecommend the course
that any future work based on the results of this investigation should take.
Since it has been shown that erthogonal Chebyshev polynomials will provide an
accurate representation of the h-g~p properties of water substance over suitable
ranges it only vemains to fit equations to a number of regions such that the
property values on the boundaries are identical,

Considering the matter in retrospect, it should be possible to complete the
task with the minimun effort and maximum success, assuming that a general programme
capable of f£itting all kinds of constraints is gvailable, if the following
procedure is carried out: Referring to fig 25, region C should be fitted and
the values oit the isotheym To constrained, followed by vegion D with the isobherm

T, similarly constrained and continuing in this way until the entire surface
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for p » p, has been Fitted. Then the rveglons A and B would be corvelated
while constraining the saturation line and, 1% necessary, the critical iscbavs.
It may, in fact, be possible to £it both regiéﬁs with one equation, as suggested
by Bain and by Haywood and Bott, if spuriocus data were used in tha'ﬁwa«phaae
region,

In this way it is hoped that this particular 1ine of research into the
calculation of an h-g-p characteristic equation, which was first suggested by
Bain and Le Fevre back in the late 1950's and which has aroused much interest

may #inally be brought to a successful conclusion,

6.5 Adventages of an h-g-p double-power serieg over the other types of equation

The argument that follows Is quite stralghtforward but since ait dififerent
times people have queried the advantages of this method of representation it was
decided to include it,

The form of the general equation has already been expressed in equation

(153), from which the properties v and T can be cbtained by differentiation

thug:
oh no= b m'
bk LB, (X ves
( ) CE im0 jm 3 iuJ, i< )Tj(Y) ’ « o+ (157)

L ;;& | 3' | m"'i:'"; e, T, (0T, (¥) (158>
a]_}ﬂ B i,no Jag . p 1 j OQO!!

The coeffzclents F and G axe both calculanad from D usxng the relat;on (76)
(Chapter 3) and can be eaaxly aalculated when nnd if they ara requined.

Moreover only one proeadume 13 needad to ealcuiate b, v and T. This is unusual
because in all the other formulatians a dmffarenh rounmne is required for each
property (a.g; 1966, 1967, 1968 IFC and Juza £ormu1at10ns); It is thus poss;ble .
to stata that a formulation using Ghébyshgv pnlynom;ala will reéult iﬁ a mch
shorter, simpler and faster éomputer programme thean any'of,the mentiéned

formulations even if more coefficients are raquired. The simplest and quickest

method of evaluating the double-power series will now be demonstrated and attention
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drawn to its advantages.

6,5.,1 Evaluation of Chebyshev double-pover garies

Equation (153) will be used to demonstrate the method. It is _posaible

to write
2 D, (8 i‘ - | (159)
ho= 3! b n, X (X)T. Y} l rovee{lBD
im0 =0 ii?i 1 _ ‘ )

vhere X = (25 ~ CA)/CB
capd Y = (2p -~ DA)Y/DB .

T@is may be pearranged to

n n ‘
Now the following may be written

" _
B = i i'o‘ni jTj(Y?

whene Bi is a function of pressure.

Hence

0

he z* Biwi(X) o o0+ {160)
iw=0
and is also evaluated using relations (72) and (73). If equation (159)
is to be evaluated along an lsobar for various values of entropy ox if
iteration is to take place for entropy then all the Bi would be evaluated
amd equation (160), which is only a single power series, would be used
instead of the double power seiles. ﬂnﬁaﬁndnaﬁely for a once only
evaluation of the equation this method is of no advantage. However this technique
may he used in any of the Chebyshev equations and i8 especially valusble when
iteration is being carried out,
This method is in contrast to equations composed of a conglomeration

of terms which have been produced by a method of twial and error and hence
have neither symmetry nor regulavity of form., TFor this reason they usually

have to be entirely re-evaluated through every iteration.
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G.5.2 Combination of given variables

Tha Chebyshev equations can he written in the following form such that
their properties can be more easily expressed,
(a)

(b)

v = v(p,s) (),

D ]

h = h(p,s)
T = T(p,s) — o
The evaluation of the other propertiecs for any given two can be divided into
three categories as follows}

(1) Given p and s, Direet avaluations of (a), (b) and (¢) give the properties

b, T and v direectly.

(2) Given p and h (oxr p and T ox p and v). Direct intexpolation in (a), (b)
or (e¢) will enable s to be caleulated and once this has been done the
othexr two equations may then be evaluated dirvectly. (The calculation is

identical if s is given instead of p).

(3) Given h and T (oxr h and v ox v and T)._ This 18 a rather complicated
combination of pioperﬁies as it requires iterpolation in both (a) and

(b) to find p and & concurrvently. TFor this case, as well as (2), a

vary simple equation which could be used to obtain a close approximation

to the given data would he ideal, as interpolation in both equations would

be a lengthy process,

Henee in order to reduce iteration in the caleulation of thermodynamic
properties it would De a definite advantage if some very simple equations in
different variables were available in owrder to provide a very accurate initial
guess, This technique, although it might look very clumsy at first sight,

could well result in large savings of computer time,

6.6 Ezamination of aceupacy of foxmulations

The only method for examining the accuraey of equations has baen the
comparison with the IS8T Tables values and tolerances, The only other method

whichhas been suggested is the comparison with experimental data. This would
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involve the introduction of a definite tolerance on the data which in some
cases might prove rather difficult.

in order to avoid the above problem a supgestion, which may provide a
nore analytical method than either of the above, was made by Angus (101).
This was the use of the 'charvactewistic curves’, ox curves on which the
compressibility factor (Z = pv/RT) or its derivatives become zero, originally
proposed by Brown (102) and diseussed by him in great detail f£yom a theoretical
viewpoint, Further comments on the subject ave contributed by Rowliamson (103)
but, as far as is kuown, no exsmination of these curves has been made for a
veal £luld, It was decided to plot thesa curves for water using values obtained
frow Juza's formulation as it 1z the only equation which covers the necessary
range ~ up to 100000 bar and 1000 %6, The curves as xedefingd by Angus may be
represented by the conditions dwavm wvwp in Table 48, The first order curves
Jd, Ay B and € are the most useful and can be calculated fairly easily using
numerical differentiation techniques, The gsecond order curves are very much
more complicated such that alvhough many more are given by Brown, only the Bp
and CT curves are included, t

According to Brown, the G curve intersects the J curve at itas (the J cuxve)
maximm and the B?(or CT) qurve ilnterscets the B curve at its maximum. On
exandning fig 26, which i3 a plot of the characteristic cumves, this is seen
to be the case, Unfortunately due to the limitation of the equation the curves
sannot be continued outwith the temperature range O.QCVto 1000 °C and so the
othar conditions obtained by Brown caovot be checked, It'%uuld certainly appear,
as suggested by Angus, that these vequivements would provide very severe tests
of formulations but unfortunately they occur outside the areas of general use

of equations and for that reason they are unlikely to be of any use,
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APPENDLX 1

]

Yapouy prossure equations,

All the equations which ave desdribeﬂ jn this Appendix have been used in
GhapterlS. They are the most impoﬁtanﬁ and the moatlaaeurate of the equations
which have been devised over the past thirty yeara. fThese equations are
desexribed along with thelr derivatives %% and theixr coefficients. In every
cage the equationm have been modified to accept pressure in bars and temperature
in depgraes centigrade.

(1) Ocborme, Stimson and Gimnings (1939)

Thesa auth&rs~uaed two equationie im caleulating the saturation properties
for their fimal paper. The first devised by CGexry for the temperature range
090,5 t > 100°¢ was rewritten by Bain in computing the NBL Tables to reduce
the number of coefficients, However he had small round-off errors in two of

the coefficients and these ave covrected in the equation:

logpmwA+Blogz+Cz+ %
whera 2 = ¢ + 273,16
A w 28,590467 B owm 3,2

G = 2.4804. 53 1 . 3142.305,

The derivative takes the form:
d 8 - D2
zi%ﬂmp(zynﬁ‘c Z)

whara H = In 16 w 2,302595,

For temperatures above 100°C the correlation of Osborne and Meyors was used.
1.25

23 £y

2

2

whexe ¥ w 27 - o

2
log p = a+ 24 810%™ 1) 4o 10

y = 374,11 -~ ¢
a = 5,432 368 b *“Q?Qﬁslloﬁ

e = 1,3869;~h d = 1.1965,,-11

1

1073 £ = *5.714810"3

a n ~b4
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The derivative is expressed thus:

2

: wf109E 2 &
d . Np[ - brexCo 2Dy seqo™ (1 o+ 2vady - 7 wmp 0 1057l'25]
Z

<

e o SV T U

(2) Steltz and Silvestri (1958)

Two equations are requived in this formulation, The finst covers the
range 10 °¢ £ ¢ < 93.3 %,

P

Lerit % ¥
log " L

where y = A + Bx + st

2= 1 4+ Dx

T w t + 273,15

® = Terit -7

, oy O ) _

"If‘cri.t- = 647.27 K pfﬂl’iﬁ = 221,088 bhar

A = 3,2437814 Bow 5.8682610-~3

Cwm 1.;1702379].0“& D= 2.187846210»—3
& gy BBV (8 + Ssz)a - fcgit‘y}
a7 P ) )

Ta T e 2

The second equation covers the range 93.3 cc‘i € < 373.89 %

P -
1og c;ii: n%}g

vhere ¥ = g + bx + cx3 + dx’

2wl 4 dn
a = 3.386313 b e 4.1411316«2
e = 7515684, =9 d = 1.3794481, -2

e ™ 6@56&4410“11

2

\ 3, T by
g% - Np{x[dY ~ {b_+ 3ex +‘éex 32] - grit 1

T 22 p2 A
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(3) Bridseman and Aldrich (1963)

This equation aovers the entire saturation line from O °c up to the
eritical temperature (374.15 °¢). It has been rewritten slightly to reduce
the number of coefficients and to improve ilts presentation.

log p = A+ Yl - Bl + Ct)Ya

. DX
whaere Yl - g

Y, = 3K - a) [167% = (% = a)?]

2
X =t~ 187

a = B2(1.87% - 22 /(7 + ct)
“l

5 i .ka

2 m + K cogh (‘*M}
A = 1,0699498 B = 1,0137921
C = 5,83581, -4 D = 4,16385282
E = 2,37098157, 2 § = 3,0231574 1
Gaaﬂwﬁgya U o= 2,44182356
J = 3,9730778, ;-9 K = ~4,31182356
L = 6,542906, .2 M e

10 2.66?78192 .
The devivative of this equation was not caleulated owing te its complexity
end to the fact that values of the derivatives ave tabulated in a paper by

Bridgeman and Aldrich (62),

AT A R N v Ay

(4) 1966 IFC X function

This equation eppears in the '1966 Industyial Formulation' although
it was superseded by the Japanese equatlion in the 'Improved' wersion. It is:
B wmexp (X) -~V
-1 “1 2 54
vhere X = ko = ky® © = k0 “r{l - exp (ko 3} - k, exp{ ~43(ky ~ ©) "7}
T = K (8 = k) (0 ~ 1)) exp (~120%)

2
roe gl - kﬁ
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ko = 7.109304476 ky = &.2210“1

k - 5.7710 -1 k3 = 7.132345857

k4 = &.06656102610m1 kg " 2.00910*1

kﬁ e 48374 k7 = 1.06207681010”2
kg w 1,002 Kl v ﬁ'410"5

1} ]
9. e | oy - D
aF " w [d@' exp (%) de]

Q

dx o oo Pncn e 2 ) .. 215
where-ag ® kBG ka[(z 8 “»{1 exp(kﬁr Y} + 4 Lﬁr exp(k )] k7 T
5
(kﬁ e 9)*.&np{m 43(k3 )] ,4}
dy wTaat - - . k- .
3% = K exp( 1267 [20 Iy = T, = 4807(8 ~ %, ) (0 k2)]

B 1 TR ot 1

(5) L9667 IrC¢ X Ffunetion

The Japanese have provided a numbaw cf.correlations ovar the last few
years and this is nh§ one which was presented to the IFC as part of the
Japonese proposed industrial formulation, It was prepared at Keio University,
Tokyo in November 1965 and afterwards inmcorporated in the 'Improved 1966
Industrial Formulation'. It is:

1

1'9.3""‘6'0

T

“
o §
where X = % K.(L -~ @)"
i
i =1

YL+ R(L - 0) + Ky - 0)?

Ry =« 7.6912 34564 Ky m - 2.6080 23695]01
KS w o~ 1,6817 06546102 K@ = 56,4232 355041Q1
Ky = = 1.1896 46225102 Kg 4.1671 1732

K7 = 2.0975 0676101

do P {dx Xy X}
dT T GY de ¥ a8
where %% = z i Kitl o 9)& - D
i =1
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(6) APL 44 ‘
P . : 0,8 € o O
This correlation only covers the temperature vange 0 ¢ ~ t ~ 150 'C
with 9 Antoine equations and is based on the unpublished vesults of Stimson,
The form of the equation is

log p = 750,062 = A - é%t

wvhexe 0 £ ¢ < 30 A = 8,184254 B = 1791,3 C = 238,1
JO %5 & < 40 A = §,1393986 B = 1767.,262 (= 236.29
40 £ t < 50 A = §.0686767 B = 1739,351 € = 234.10
50 x £ < 60 A = B.0464202 B = 1715.420 C = 232.14
60 < & < 70 A= 8,0116295 B = 1695.,167 C = 230.41
70 % £ < 30 A = 7,9845588 B o= 1676.,948 € = 228,97
80 %t 590 A w= 7,9634288

o}
#

1665.924 € = 227,77
90 £ t <100 A = 7,9483960 B

¥

1656,390 G = 226.86

100 x & <150 A= 7,9186968 B w 1636.909 € =~ 224,92

-

aT ~ 750,062¢C + t)2

L )

(7) Gibson and Brupes (1966)

The two equations given here with their dexivatives ave those fully
! described in 5,3.1 and 5,3;2 and their coefficlents are given in Appendix II,
Thejfirat or primavy equation which hés been used in the 1968 IFC Formulation
for Scientifiic and CGeneral Use (104) ma¥1be written

YemIlnfw ¥ arTr(x)

r =0
whero % m {2(1/8 - .95)'4 P }1313
G.6 T
d " o) l 'y 6 . dY
R baad o—-w-u-:-u-b«v-u i |< /e oo 95) ----:
am r.ll 3 T‘?' dx

]

ay
Thepe w . s
whe ds is the dexivative exprossed by
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APPENDIX LI

Summary of saturation equations and coefficients

Eguations
Specific entropy of saturated vapour

&

Coefificients
Equation (132)

o Ay = 1.1835 076x10" A, = 2.5364 843x10 z
3" 2'0 A, T, A = ~2,1272 558 LM ~1.7939 573x10 -
v A, = 7.6163 359&10«i Ag = “2.8016 014x10 N
where m & 1 - Alo{ln(llﬂ)]a’s A‘3 = «2,0397 835x10 - Ag W §.5911 506x10 4
A, = 1,037 278x10 S Ayt 9.8708 522x10
Ay = ~6.2114 799x1072
Specific entropy of saturated liquid Equation (133)
) ‘ By = 5.9011 350 By = ~2,0115 gzleozz
o= B BT 31 = 2.0084 300 L %" 1,1878 1735107
r=0 : ? = «7,7074 51910 - 37 = 4,0439 196x10
%uemmlm%ﬂMHMFd B3u1am3mmw% By = 1.2497 246
B, = 2.1924 89010
Vapour pregssure of saturated water Equation (137)
(basic equation) 8y ™ ~8.1193 642 a, = 12455 399x10 "
n a, = 5.1322 555 ag = ~4,9154 208107
tapm B ey TG ay = ~1.1842 407 ag = 4.6302 565107
0.4 ag = 1,1779 592x107" a = 1.5301 334x107
wheve x = {265 = 0,95 *a a 8, = 5,1576 420%10™> a = ~2,0054 530%10"
n = 1l in (137) By = ~1.4689 537510 0 a = 1,4522 0717
n = 12 in (137b) ag ™ 5.3622 818x107" 3,4 -0.8487 8953
Equation (137b)
ay = ~B.1151 622 ag = ~7.1680 6aax10“f
a; = 5,132 021 8y = 7,0116 1z7x10“i
a, = ~1.1841 669 ay5™ ~1.3369 460x10 e
ag = 1.1780 993310 ay;® 7.2621 0L3x10 ?
8, = =5.2291 339x10"° ay,® ~1.2413 833x10™°
a5 = +1,3829 ZGOxIGZi ag g 14522 0717
ag = 47091 300x10™" &= ~0,8457 8953

ay = 1.6236 398x10

4
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Vapour pressure of saturated water

(supplementary equation)

11
..%. a ' b

r =0

0.4
vhera y = {2[1n($%$9] - b

()

Byt g

6

Equation (138)
»  3,0452 937

1™ ~G.8230 952510

2 o
3

L.6411 495210

b,
by
b
b
b,
bs
b

4

Eauation (138b)

= ~1,9239 111x10™
w 57454 94251077
648411 554x10

-1
-

o =2,0232 16510

o

= 3,3650 007x10"
w ~1,2342 2481077
o 1.4826 550x10"°
~1,0211 645x107C
m «4,0808 090x10""
= 2,9609 4250

w =3.1798 8801

by 346395 850210

by = ~65232 0n2=10" by = ~1.4499 7655100
b, = 1,6412 30510 -1 by = 4:3608 9902100
by = ~2.0218 200x10™° byo™ ~3.0565 463x10™0
by = ~1,9323 3&1m10" Byy® ~640574 9575107
by = =5.6427 254310™" byy™ 249609 4250
b = 0.0579 866110 5 byg= ~241798 8801
Specific volume of saturated liquid  Tquatiom (139) . :
co = 4,332 053 65 = ~34765 370x10™
10 = 1,107 796 0, = 1,123 845x10°0
== 3'e T T (r) 7 g
X emo ¥ \ e, = ~5.275 ze?ylo og = ~2.458 266210
9-1 : . - "‘3
vhere z = 1 ~ 2(1 = i?“° Gy ™ 2,173 ﬁé?xlo cq = 1:425 ssoxiomg
cl e, " m -], 754 636&10 40" =1+304 721x10
cs'm ¢325 nogxlo ,
Saturated liquid o equation Equatidu (1405 ' -
1L do‘ﬁ 2,62 821 dy = 8.949 glaxxo
oy o B d. Tr(Q) d, ® 1,164 542 d, m ~2,309 QObeO
Pei’el z w0 1 vy B
d% - “1,529 A?leo dg “ a352 Gﬁaxlﬂ
- A -6
d4 " 2«3 B?Oxlo d;,= ~2,335 760x10
dg = 6.365 584310"4 d,.m ~1.0746 319

Specific enthalpy of saturated vapour

Equation (143)

8 = 54600 998x10"" og = ~1.39% 169510

1 0 e, = 2,208 094x10"> o, = -1,841 311x10™

e by er Tr<W) 1 -8 7 el

r =0 e? « 2,908 374x%10 58 w -1 ,087 239z10
vhere v = 1 = e, (& - 1)0+4 ey = 5,286 767x10™ eg = ~4,918 106x10™
e, m ~7.300 192x10"% o = ~2.310 695x10™>
1 Pclval 4 ) 10
and e eS e ~3,042 949x10 611” 1.763 847
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APPENDIX TIT

Algol Programmes

In this appendix the programme using Clenshaw's modification to
Forsythe's method of curve fitting is printed along with its flow chart,
This version does not include the facility for either weighting or
conéuraining but these can be easily introduced using the desecription
in Chapter 3, sinee only three or four lines need to be altered for each
case, The surface fitting programmes are based on the curve fitting
routine such that the main difference in all the programmes is to be

found in the input and output facilities.
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Ao Programme for curve fltting by orthogonal Chebyshev polynomlals.

begin integer m,v,r,1,j,N,D,fa,fb,lc,fd,fe,l,mm,11,£{,V;3

‘real xe,yc,xF,yI',k,C,a,b,L,M,K0,K1,P0S,NEG,MAX,SD,eta,phl,mu,
cy,alpha,beta,p,delta,per,Y;

boolean woolj;

real array X,¥,Xx,yy,del,YY[1:1000],T,A[0:25],P[0:25,0:2];
fa:=rormat([sss=-d.dddond]);

fhi=format([sssss~d.ddddw+nd]);

fei=format([-d.ddddsddddsdddo~nde] ) ;
fd:=format([-ndsss]);
fe:=format ([ -ndddd.dddsss]);
ff:=format([sss~d.ddddddwtmnd] ) ;
open(20); open(70);

mm:=read (20);

for 11:=1 step 1 untll mm do

begin mi:=read(20);
1f mCO then
begin m:=abs(m);

for ri=1 step 1 until m do

begin x{r]:i=read(20);
ylr)i=read(20);
end;

end

else

begln for r:=1 gtep T untll m do

x[r]:i=read (20);

for r:=1 gtep 1 until m do

ylr]i=read(20);

end s

[Retttett




—
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N:=read(20);

for 1:=1 gtep 1 until N do

begln comment set up variables and constants;

swibch SW:=L1,L2;

D:=read(20); v:=read(20); C:=read(20);

ki=read(20); xc:=read(20); yci=read(20);

xFr=pead(20); yF:=read(20);

bool:=read boolean(20); V:=read(20);

wrilte text(70,[[p3c2s]D[9s]C[11s]K[10s]XC

[108]YC[10s JXF[10s]¥F[c]]);

write(70,fd,D);

write(70,fe,C); write(70,fe,k);

wrlte(70,fe,xc); write(70,fe,yec);

write(70,fe,x); write(70,fe,yF);

xei=xct+xl'; yei=yctyF;

1P x[11>x[m] ghen write text(70,[[2c]VALUES*

OF*X*SHOULD*BE #* INCREASING *NOT*DECREASING.

i?cl?ﬁ*UBTKIN*CDRRECT*RESULTS%WHEN*EVALUATING

FTHEXPOLYNOMIAL*BEITHER *CHANGE *THE *S TGN *#0F *

B»AL?OJ@R%CHANGE*THE*SIGNS*DF*THE*EVEN*

COEFFICIENTS[4c]])s

1£ DO then

begln a:=read(20)+xF; bi=read(20)+xF;
D:=abs (D)3

end:

else begin a:=x[1]+xF; bi=x[m]+xF; end;

goto SWID];




L1:

L2:

Tl
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ai=(a/xc=-C)Tk; b:=(b/xc~C)Tk; a:=atb; b:=2Xb=a}

for r:=1 step 1 untll m do

begin yylrl:=(ylr]+y¥F)/yec;
xx[r]:=(2x({(x[r]+xF )/ xc=C)Tkwa)/b;

ends;

goto L

ar=(a/xc-C)Tks b:=(b/xc=C)Tks

a:=a+bs b:=2Xb-a}

Tor ri=1 step 1 untlil m do

bepin yylr]:=In((ylrl+yF)/yc);
xxlr]i=(2x((x[r]+xF)/xc=C)Tk=a)/b3

end;
beta:=K1:=0.05 T[0}:=1.0;
PlOs1]:=P[1,2]:=1.035 P[1,1]:=P[2,2]:=0,03%

for J:=0 gtep 1 untll v do

Al 3]:=0.03

for li:=-1 step 1 untll v-1 do

bepdn comment loop for calculating coefflcients;

KO:=K13
K1 :=L:=M:=P0S :=NEG :=MAX :=5SD:=0.0}

for r:=1 step 1 untll m do

bemin p:=P[0,1]1/25 T[1]):=xx[r];
for Jj:=1 step 1 until i+l do

begin p:=p+P[J,1IxT[J];
T3+ ] r=2xxx[r IXT[ 3 1-T 3-11;
end;
K1 :=K1+pT23;
Li=Lixx[r]XpT2}
M:=Mtyy[r]xp;
end;

if i=-1 then goto first;
for r:=1 step 1 until m do




begin comment calculation of deviations;

Yi=A[0]/23 T[1]:=xx[r];

for j:=1 step 1 untll 1 do

begin Y:=Y+A[ 10 313
T 3+1 ) e=2xax [ IXT[ J =T =113
ends
delta:=1f D=1 then yeX¥-yF-y[r]
else 1f D=2 then yexexp(Y)-yF-y[r]
else 0.03
YY[r]:=deltaty!r]l;
dellr]:=deltay
Af ylr]=0.0 then per:=0.0 else
per:=100xdelta/y[r]l;
If delta>PO0S then
begin POS:=delta;
eta:=x[r];
end
else 1f deltadNEG then
begin NEG:=deltaj;
phi:=x[r];
ends
1f abs(per)>abs (MAX) then
begin MAX:=per;
mi:=x[r];
ends
SD:=3D+deltal?}
end;
beta:=K1/KO3
SD:=sqrt(SD/ (m+i ) )
Af bool and 1>V then
begin write text(70,[[2e7s]X[14s]Y*0BS[11s]
YHEQN[ 125 ]DEV[2¢]]);

for r:=1 step 1 untll m do
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begin write(70,rfx[r]); write(70,02,y(r]);
welte(70,£7,YY[r])s write(70,fadellr]);
newline(70,1);
end.;
newline(70,5)3
end;
write text(70,[[c3s]MAX*POS*DEV] 8s X[ 9s JMAX*
NEG*DEV][ 8s ]X[ 8s [MAX*PER*DEV[ 9s ]X[11s]S.D.[e]1]);
wrilte(70,fa,P0S); write(70,fb,eta);
write (70,fa,NEG)s write(70,fb,phl);
write(70,fa,MAX):; write(70,fb,mu);
write(70,fa,5D);
if i=v-1 then goto END;
first: alpha:=L/KT;
¢ :=M/K1 3
write text(70,[[5c]COEFFICIENTS[c]]);

for J:=0 step 1 until i+1 do

begin A[31:=A[J]+exP[J,1];
write(70,0c,Al3]);
Pig,2):=P[3+1 ;1 ]1+P[abs (J=1),1]=2xalphax
Plj,1]=betaxPlj,0]3
end;

for j:=0 step 1 untll i+1 do

begin P[J,0]:=P[j,1];
P[js1]:=P[J,2];
end;
P[1+2,0]:=P[1+3,1]:=0.05 P[14+2,1]:=1.03
ends;
END:end;
end;

close(R0)s close(T70);
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HHPUT DATA \
[ SET UP CONSTANTS & VARIABLEST]
-
| NORHALISE mou‘guoun VARIABLE ]
IL;' 9] |
Fo,i= P, %) =t
_YEs POS~1
N eta=X,
l NEG A
phinX,
E.o...._..',—{ _g—D:—S_Dw‘ Al ;L....._.._..._
{5 | [t )
. . _ M
[Krt-H-FOS-NiG~5D-% | [59_‘(9’”‘*'__]
EJ(TJ . /PRINT DEVIATIONS\
¥ .
7 1
B;f°"/z ) {=v-rp ST ES
L’_;_'] : NO
[p Py TX,) I_«_{ BEE 4= LK,
ves | CaM/¥,
‘0 e 1%_]
{ no o] Ei—w
Ky Ko p? A AJ‘CPJJ_l"*“‘—]
L=L4X,p? ——
MalMty, p ‘ ﬁ""”.__. ALY [J=d ]

A YES l P P P P l
- .
R e ——
A . Y.E._S_.-,;M

Ea

YaVih, T,()f ) },lk[ Jndel |

| @w S A T ——

Flow Chart for Curve Htting Programme

END
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APPENDIX. IV

Tables of saturation properties

All the properties in this appendix have been caloulated using the
saturation equations (137), (139), (140) and (143) from Chapter 5 and
the thermodynamic relations from Chapter 4. These yelations are adequate
for calculating the properties in the firvst three tables but for the
calorimetric properties in the last two tables the partial derivatives
G%% o o G%%)T are required, In order to maintain thermodynamic con-
gistency among the properties as far as possible only one of the derxivatives

was used. The other could then be caleulated from the relation

o cap)T (dT)c

&P, = G
It was neeessary to ensure that the most significant of the derivatives
was used and this resulted in G%%)T heing ueed for the liquid properties
and G%%)p for the vapour properties. The darivatives were caleulated Ffrom

the 1968 IFC Formulation for Bcientific and General Use and the values used

were as follows:




160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
372

374

15
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oV
==
op £

cm3/g bar

=5e020730~5
«5002045=5
=l g T733U=5
“405627M"5
=4 47990-5
-454642m~5
U4 5018555
=U4e58311=5
=l 702455
-4.8554m-5
50439 ~5
=5e26525~5
~5e521G0y-5
=5:8170p~5
=6o15455=5
62540135
‘609808M"5
~754860m-5
-8;0670m-5
80738555
=%e5194y=5
w1 ¢OU3 Ys9=4
=1.151 251t
=1,2797 =4
ol U3U30=4
1 .,62244-4
w1 o85455-1
-251450m~4
«2,5153 =4
~2,9969p~4
«3e63915-4
wl} 5221 el
578484
“756876m~4
-160776m~3
~126398p-3
~330144m-3
=7 2373610-3
~6;2602m~2
-1&8462m—1

Ll co

oV
(55)

cm3/g K

7 «569919+2
7 o 564 4+2
377190 +2
159840m+2
1 09551042
64320851
3e795050+1
24 36273+1
1 ¢52065+1
1 a009059-+1
62886445+0
4,82U454+0
3246315+0
24 54294+0
1.90720+0
1 o« 45924+0
151376m+0
90257301
7281051
5096615~1
L,96165-1
4318u3m-1
3457625-1
3.09583-1
24713250-1
2, 40T 00 =1
251614m~1
1.9649y,-1
1 .80025=1
1.68855=1
15989 -1
12538701
15081 1-1
1511251
145578301
1;6712m—1
1e917310~1
24T17%0=1
8elt7355~1
1 58863+0
3.7862m+1
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C
0 0
0,01 0
10 O
20 0
30 6]
4o 0
50 0
60 0]
70 0
80 o]
90 0
100 1
110 1
120 1
130 2
140 3
150 4
160 6
170 7
180 10
190 12
200 15
210 19
220 23
230 27
240 33
250 39
260 hs
270 55
' 280 64
| 290 74
, 300 85
’ 310 98
320 112
l 330 128
! 340 146
350 165.
360 186.
370 210.
372 215.
. 374 220.
( 374.15 221.

p

bar

LOB6107
.006112
012271
. 023368
Lob2h7
.073749
. 123346
-19919
.31161

. 47359
70108
.01325
4326

. 9854
L7012
6136
7597
1804

. 9202
L0270

. 5522

. 5505
080

. 201
.979
LA80
776

. QLo

. 051
19
BPINIRS]
917
.697
.90

.65

.08

37
Th
53
62
84

23
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dp.
T3t

J/cm3

0.0121207
0.0121290
0.0232772
0.0424236
0.0737944
0.1231068
0.197787
0.307155
0.462552
0.677413
0.967283
1.349776
1.8445
2.4729
3.2584
4, 2055
5.4007
6.8115
8. 4863
10. 4549
12.748
15.396
18.432
21.889
25.802
30.206
35.141
Lo.648
46,773
53.565
61.082
69.389
78.562
88,6904

o

J/g

=0, 0006

0.0416
42,0257
83.8715
125,6405
167.3785
209. 1041
250. 8245
292, 5424
334, 2594
375.9769
h17.6961

Lsg,up
501.14
542,86
584,58
626.30
668,00
709.69
751.36
792.99
834.59
876.15
N7.66
959.12
1000.52
1041.86
1083.13
1124,33
1165.46
1206,51
1247,49
1288.39
1329. 21
1369.95
1410.61
1451.18
1401.66
1532.07
1540.14
1548, 20
1548, 81

ale

2 5
-3
S A

~ 0=
W =\ =~
C© oo

N~~~ N~
SRR ===
VW £ C Co~I~0 N

=01 =
=330

@

W = EUtgt O OYOY OV

Bl

J/g

0.01212
0.01213
0.02329
0.04250
0.07412
0.12407
0.20017
0.31240
0.47307
0.69709
1.00207
1.40847
1.940
2,622
3.486
4,563
5.890
7.506
9.456
11.787
14,55
17 .81
21.62
26.05
31.19
37.13
43.97
51.84
60.91
71.35
83. 41
a7. 40
113.7T4
133.00
156.03
184,20
220.06
269.85
360.13
395.94
478,53
539.18

J/g

2500.84
2500 .81
oL77.16
2453.70
2430.14
2406.39
2382, 41
2358, 20
2333.72
2308,92
2283,76
2258, 14
2232.00
2205.23
2177.75
2149,48
2120.31
2090.18
2058.99
2026,65
1993.07
1958.16
1921.80
1883.87
1844, 24
1802.76
1759.23
1713.45
1665.16
1614,02
1559, 64
1501 .50
1438.89
1370.82
1295.80
1211.36
1112.89
989.56
798.76
732,44
598.73
539.07
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0,01
10
20
30
4o
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
372
374

J/g

=0,036681

0.,005502

42,0

839
12547
1674
209,2
251.1
202.9
334,9
376.9
419.0
461,.,2
503.5
546,0
588.7
631,6
6T4.8
718.2
762,0
806,1
85046
89545
Lh0,9

98649
103345
1080,8
1128.9
117840
1228,2
127967
1332.,8
1387.8
1445,2
1505,8
157068
16424
172641
1845,3
1884,7
1964,9

374415 2018
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u
g

J/g

2374.8
2374.8
2388,6
2402, 4
2416,1
2429,6
2442,9
2456,0
2469,0
2481,7
249l 2
2506.3
2518,0
2529,3
2540,0
2550.,2
2559,7
256845
2576.5
2583,6
2589.,8
2594,9
2599,0
2601 .8
260343
2603, U
2601.,9
2598.7
259345
2586,0
2576,0
256340
2546,5
2525.5
2498,9
2464,5
24184
2351.5
2226,9
217T7«5
206945
2018

B¢
J/g

000
0,00
=0,76
=300
=466
~11.71
~18,09
=25075
=34,67
~44.81
~56013
=-68459
=-32,18
-96.85
=112,59
~129,36
"'1 47.1 Ll'
=165.90
-185.63
=2064 30
-227,89
-250438
=273 74
~297 49
=323,0
=348,93
=375.62
~403,11
=431 .37
~460,39
~490.15
520464
=551 .84
=583.T74
-616.34
=649 ,60
~683453
~T718:11
=753e33
=760 45
~767 59
=768413

fe

J/g

0,00
0,00
«0.76
=300
6067
""1 1 .72
=1810
"25-77
~3471
<144 ,86
56620
68470
"82033
=97.06
-112.88
-129.75
147,66
"1 66.59
=186.,52
=207 43
229,32
=252.18
275098
"300073
=326, 42
~353.04
=380,60
=409,10
"438.54
468,94
50031
=532470
566413
=600, 67
=636443
~673655
=T712:32
=753 47
~80018
=-811.80
=329, 42
"837.8
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Publications

"New equations foy the thermodynamic properties of saturated water

in both the liquid and vapour phases', J. Mech. Eng. Sci.,? (1), 24, 1967,

'An equation of state for compressed water fzom I to 1000 bar aond from

0 ¢ to 150 Qc', J. Mech, Eng, Sci., Octoberx, 1968, [In preas]

"the dynamic viscosity of aompressed water to 10 kilobay and steam to

1500 °c', J, Mech, Eng. Sci., October, 1968, [In pross)

Submitted for publication

'Galeulation of the thexmodynamic proparties of water substance, allowance
being made for the difference batween tha Thermodynomic end International

Practical Temperature Scales’,

This proposed paper is mot included in the Appendix since its content

is almost identical to section 4 of Chapter be
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NEW EQUATIONS FOR THE THERMODYNAMIC PROPEF
OF SATURATED WATER IN BOTH THE LIQUID
AND VAPOUR PHASES

By M. R. Gibson* and E. A. Bruges?

Equations in the form of Chebyshev polynomials are presented which enable the thermo-
dynamic properties of saturated water in its liquid and vapour phases to be calculated in a
systematic manner. In the equations defining the pressure-temperature relationship the
authors have made allowance for certain unpublished observations of the National
Bureau of Standards and these are considered in the section relating to vapour pressure. !
It is believed that the assembly of equations specify for the first time the saturated liquid i
and vapour boundaries whose properties have previously only been available in tabular ‘

’

INTRODUCTION

THE PURPOSE of this paper is to unify the final results of
Osborne, Stimson and Ginnings (1)} by providing equa-~
tions suitable for use with electronic digital computers in
place of the ‘patchwork’ of tables and correlations on which
the final and definitive paper of these authors is based.
The provision of these equations permits evaluation of all
the state properties along the saturation line from the triple
point of water to the critical point, thus providing the
most important boundary, apart from the hypothetical gas
curve, for any surface which purports to represent the
thermodynamic properties of water in its liquid and vapour
phases. In view of the rigour with which earlier work was
reviewed by Osborne and his colleagues only work relating
to the saturation line published since 1939 is considered
here. The 1964 N.E.L. Steam Tables were accepted and
used as input data along with certain calorimetric ob-
servations of the National Bureau of Standards.

In the paper reference is made to the 1966 Formulation
(2) which was prepared by an international group working
under the aegis of the Sixth International Conference on
the Properties of Steam. This group has defined certain
quantities which are listed in Appendix 2 and which the
authors have adopted. This has involved the use of the
symbol g for reduced pressure, necessitating the use of the
quantity 8’ for the function o, T(dp/d T, originally termed

The MS. of this paper was first received at the Institution on 25th
May 1966 and in its revised form, as accepted by the Council for
publication, on 16th September 1966. 3

* Assistant, Mechanical Engineering Department, University of
Glasgow.

| Reader, Mechanical Engineering Department, University of
Glasgow. Associate Member of the Institution,

% References are given in Appendix 4.
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i
B by Osborne. The unit of pressure is the B
where reference to the Cr agoe—Smmson correctlo
in which the unit of pressure is the normal atﬁ
|

\

Notation

A4, B,C Constants.
a,b,¢c  Constants,
k Specific enthalpy, J/g.
P Pressure, bar, atm.
Gas constant, J/kg degK.
s Specific entropy, J/g degK.
T Temperature, °K,
T, Triple point of water temperature, 2

¢ Temperatuore, °C, T = r4-273-15.
u Specific internal energy, J/g.
v

Specific volume, cm?/g. |

o, B,y Properties of saturated liquid an
defined by Osborne.

B Reduced pressure.

€ Reduced enthalpy. .

0 Reduced tempexl')ature. Appendix 2

X Reduced volume.

Subscripts

fre Refer to saturated liquid and vaj
respectively.

te Refer to the states at triple and crit
respectively.

HISTORICAL BACKGROUND

During the period 1930 to 1939 a number of paj
thermodynamic properties of saturated water i

Vo,
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liquid and vapour phases were published by Osborne
and his associates of the National Bureau of Standards (3).
These papers give not only the results obtained at the
N.B.S. but include also a number of critical reviews of
the work of earlier and contemporary experimenters. The
final paper by Osborne, Stimson and Ginnings (1) sum-
marizes in tabular form the results of all the investigations
and this paper must be considered as definitive. In view
of the importance of the N.B.S. researches a complete
list is given under reference (3).

In deriving the equations presented here it was found
necessary to refer to the smoothed calorimetric data from
which Osborne, Stimson and Ginnings compiled their

A
a3
N
! S
Bo\/ / (a-ag) q
/\
N
N\
\ N
o
A sy N -
G F € ] s
' a
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final paper. These observations were derived from experi-
ments based on principles laid down by Osborne (4)
prior to the commencement of the researches. Only three
of these experiments need concern us here, although the
relationship between pressure and temperature along the
saturation line is also of fundamental importance,

(1) Measurement of a—constant mass experiment.
This experiment leads to the determination of a quantity
defined by Osborne as «, a symbol which it is convenient
to retain along with the quantities 8’ and y, defined
below. The quantity, «, is a close approximation to the
heat capacity of saturated liquid water, particularly at
the lower temperatures. It may be shown that

dp

o = h T‘ﬂf ar . . .

(L

(2) Measurement of p'—an experiment in which
saturated liquid is withdrawn from the calorimeter. It

may be shown that
dp

JB = 7"[ dT . (2)

i

(3) Measurement of y—an experiment in which satu-
rated vapour is withdrawn from the calorimeter. In this

case a quantity, y, is determined where

dP
y =, T I 3
i
SATURATION
LINE
LIQUID VAPOUR
H B//C \L

5

The ‘Gibbs line’ lics to the left of the saturated liquid line by an amount 4s. 4s = v,(dp/dT) and at the datum temperature
ds = 0-000 044 J/g degK. Thus the points O and A are almost coincidental.

Area OFGAO = g’

Area CDEBC = f’ = v, T(dp/dT).

Area OABEFO = (a—ay).

Area BLKEB = y = v, T(dp/dT).

Area HBJH —area OAJO = —[g/] = —[h;—

ToS].

Fig. 1. Representation of the quantities o, ' and y on the T-S diagram

JOURNAL MECHANICAL ENGINEERING SCIENCE
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26 M. R. GIBSON AND E. A. BRUGES

It is to be noted that the quantities «, 8’ and y are
functions of temperature and that, if the saturation pres-
sure, p, and the specific volume of the saturated liquid, »,,
are also expressed as functions of temperature it is rela-
tively easy to generate a complete table of properties for
ihe liquid and vapour phases using the equations given in
Appendix 1. Further, Haywood (5) has shown that the
quantities «, 8’ and y may be represented as areas on a
T-S diagram as indicated in Fig. 1.

In reformulating the N.B.S. measurements, which
were given in international joules per gramme, it has been
necessary to introduce a conversion factor relating the
international joule (N.B.S.) value to the absolute joule or
joule, there now being no difference between ‘international’
and ‘absolute’ units. Stimson (6) gave the conversion factor
as

. lint J (N.B.S. value) = 1-000 165 J

In addition to taking account of the above conversion
the authors have allowed for a change of datum state from
0°C to 0-01°C, which is the triple point of water tempera-
tute and is equivalent to 273-16°K exactly. At the triple
point of water, which is now the datum for all steam tables,
the internal energy and entropy are taken to be zero,
whereas previously the enthalpy and entropy were each
taken to be zero at 0°C.

The authors have treated the International Practical
Scale and the Thermodynamic Celsius Scale of Tempera~-
ture as being identical although some workers (7) (8) have
shown the very small discrepancies that can arise if allow-
ance is made for the small difference between the scales.

VAPOUR PRESSURE OF SATURATED WATER
When the work described in this paper was initiated the
authors believed that the entries in the 1963 International
Skeleton Tables (1.S.T.) represented the best possible
interpretation of the vapour pressure measurements.
While the work was in progress Dr Angus* drew the
authors’ attention to the existence of unpublished measure-
ments which had been used by the American Petroleum
Institute to specify the vapour pressure-temperature
relationship at temperatures between 0°C and 100°C,
These A.P.L values differ by no more than 75 % 10-% atm
from the 1963 Skeleton Table values and are not outside
the bounds of the Skeleton Table tolerances. In view of
this confliction the authors decided to put forward two
sets of equations, a first which is based directly on the
1963 Skeleton Tables and a second which takes account
of the unpublished N.B.S. observations.

Vapour pressure equations based on 1963 Skeleton
Tables

in the temperature range 0°C to 100°C the vapour pres-
sures of saturated water in the 1963 1.S.T. are based on a
correlation of Dr H. T. Gerry of the N.B.S. (1) which was
itself based on the revised observations of Holborn and
* Dr S, Angus, Scientific Director, I.U.P.A.C. Thermodynamic

Tables Project Centre, Imperial College, London.

JOURNAL MECHANICAL ENGINEERING SCIENCE

Henning (9). The original observations were fou
unreliable due to an error in the temperature sc
by the Physikalisch Technische Reichsanstalt. T
was subsequently corrected by Henning and the ¢
values were published in the Wirmetabellen (xc
100°C to the critical temperature (374-15°C) the
pressure values in the 1963 I.S.T. are based on -
correlation of Osborne and Meyers (11).

A new equation relating the vapour pressure a
perature of saturated water has been develope
produce the entries in Table 1 of the 1964 N.E.I
Tables (x2). These 377 entries, which were used
data, are themselves derived from the two equatii
of Gerry and that of Osborne and Meyers, g
Osborne, Stimson and Ginnings (1) and are !
agreement with the values appearing in the 1
national Skeleton Tables. The equation is in the {
Chebyshev series

11
Ing=3aT(x
r=0

= o) )

A supplementary equation has also been d
using the same notation and this has the form

1 11
5 = 2’ brTr(y) . ‘
r=0 {

= (] o)

The equations have been expressed in dime
form using values adopted by the Sixth Inte
Conference on the Properties of Steam, New Yo
as the nearest estimates at that time of the true
the critical point. These quantities are given in Ap

Very little difficulty was experienced in fitting
and an accuracy of one part in 15 000 (0-007 pex
better was obtained from an earlier form of the ¢
However, this earlier fit was unsatisfactory since
vatives in the critical region were poor and, if
the critical point dp/dT was zero due to the for
equation then being used. It should be emphas
in addition to achieving a high degtee of acc
reproducing the values of p, the derivatives dp/d]
equations (4a) and (5a) should be smooth and ag
closely with the values obtained by other worket
the constants of the equation were changed sl
give satisfactory derivatives (Table 2), coefficie
obtained which gave p to an accuracy of one par
(0-015 per cent) or better and these coefficients ¢
in Appendix 1. The quantity fitted was In 8 and nd
ing was employed except in the vicinity of 100°C (
where the equation must reproduce a value of]
N/m? exactly.

Table 1 compares the results from equation (
the values and tolerances on p, given in the 1963
tional Skeleton Tables, and with the values f
saturation function K of the 1966 Formulation (:.;

Vol 9;

where

'
I

where
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be seen that, at the critical point, the difference between
the value given by the proposed equation and the I.S.T.
value is three-tenths of the tolerance, at 374°C it is six-
tenths of the tolerance, while, apart from these points,
the differences everywhere are about one-tenth of the

Table 1
Temg&rature, Pressure, bar
Value and tolerance | Value from| Value from
from International equation saturation
Skeleton Tables 1963 (4a) function K
+
*0 0-006 108 |0-000 006 0-006 107| 0-006 108]
0:01 0:006 11210000 006| 0-006 112 0-006 112
10 0:012 271}0-000 010| 0-012271| 0-012276
20 0-023 368 | 0-000 020 0-023 368 0-023 371
30 0042 418 (0000 030| 0-042 417| 0-042415
40 0-073 750 (0-000 038 | 0-073749| 0073743
50 0-123 35 |0-000 06 0123 35 0-123 34
60 0:199 19 {0000 10 0-199 19 0-199 19
70 0-311 61 |0-000 16 031161 7| 031162
80 0:473 58 [0-000 24 0473 59 0-473 61
90 0-701 09 |0-000 36 0:701 08 0-701 10
100 101325 |+ 1:013 25 1:013 25
110 1-4327 |00010 1432 6 11432 6
120 19854 (00013 1985 4 19853
130 27011 |0-0016 2:701 2 277011
140 - 36136 (00021 36136 3-6135
150 47597 |[0-0032 4759 7 4759 6
160 6:1804 [0-0042 6:180 4 6-180 4
170 79202 {0053 7920 2 7-920 2
180 10-027 0-007 10-027 10-027
190 12-553 0-008 12-552 12-550
200 15:550 0-008 15-550 15-550
210 19-080 0-008 19-080 19-080
220 23-202 0:009 23-201 23-201
230 27979 0-010 27-979 27979
240 33480 0-012 33-480 33-480
250 39776 0013 39776 39-776
260 46-941 0:015 46-940 46-940
270 55:052 0-017 55-051 55-051
280 64-191 0-020 64-191 64:192
290 74:449 0-022 74-448 74-449
300 85-917 0024 85:017 85-917
310 98:694 0-030 98696 98-698
320 112:89 0:03 11290 112-90
330 128-65 0:04 128-65 128-65
340 146-08 0:04 146-08 146-08
350 165-37 004 165-37 165:37
360 186-74 0-05 186-74 18673
370 210-53 0-05 210-53 21050
371 21306 010 213-06 213-02
372 215-63 011 21562 215-58
373 2182 01 218-21 218-18
374 220-9 01 220-84 220-80
37415 |221-2 01 221-23 221-20
+0-10

* The states here shown are not stable,

1 The pressure at the saturated state has a tolerance which is zero
when the temperature is 100°C on the International Practical
Scale and is $:0-000 04 bar when the temperature is 100°C on
the Thermodynamic Celsius Scale,

JOURNAL MECHANICAL ENGINBERlING SCIENCE

00020
0-0015
00010

< /n
00008 [1— ) YA
/

\ 4 N A \

|4 |
50 100 150 200 250 300 350 400
TEMPERATURE — °C

Fig. 2. Percentage deviation of values given by
equation (4a) from 1963 1.8.T. values
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Fig. 3. Percentage deviation of values given by
equation (5a) from 1963 1.S.T. walies
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tolerance or lower, At the temperature of 100°C the agree-
ment is exact. The function K, on the other hand, gives
larger differences in the critical region, varying from two-
tenths 'to ten-tenths of the tolerance.

Fig. 2 shows a plot of the percentage deviation against
temperature for equation (4a) where the percentage devia-

tion = {w}x 100 per cent.

oqn

As can be seen in Fig. 3, which is a similar plot for

equation (5a), there is a small discontinuity at 100°C.

This would appear to indicate that the two equations used

by Osborne, Stimson and Ginnings do not merge per-

fectly in the vicinity of 100°C, a fact which is substantiated
in the next section.

Table 2 compares the derivatives (T dijjz‘)’ of equation

(4a) above 370°C with those of the N.B.S. (1932) (x3),
Egerton and Callendar (x4), Keyes (M.I.T.) (15), N.B.S.
(1939) (1), Bridgeman and Aldrich (8), and LF.C, K
function. At temperatures below 370°C the various corre-
lations give derivatives which differ only slightly from one
another, although above 300°C the LF.C, K function
gives values which are up to 1-5 per cent higher than those
given by the other correlations. Above 370°C the effect
of any differences among the correlations is most marked.
The K values are undoubtedly on the high side and
Keyes’s values are low, there being reasonmably good
agreement among the remaining values. It is interesting
to note that the average value, excluding that derived from
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Table 2
5"C 72 (JJem®)
N.B.S. Egerton Keyes N.B.S. Bridgeman K Equation Averages
1932 and (M.LT.) 1939 and (4a) ‘_
Callendar Aldrich - With K Without K
370 161-01 162-40 161-48 161-94 161-97 164-22 161-83 162-24 161-91
372 166-31 166-82 165-69 16660 166-57 168-63 16625 166-64 166-31
374 170-93 171-41 170-08 172-53 171-57 17327 170-91 171-54 171-25
37415 — — —_ 173-13 171-91 173-63 171-27 172-48 172-10
Table 3 stants for this second equation which gives an accuracy. ’
a Equation (4a). of one part in 11000 (0-009 per cent), are given in
Appendix 1. ‘
Temperature, Pressure, ‘Temperature,
°C bar °C Vapour pressure equations based on ‘A.P.1. 44’
0-000 0-006 107 0-000 between 0°C and 100°C - :
138:888 (1):(1)% gg 138:888 - The relation between the pressure and temperature of
150-000 47759 7 150-000 water at saturation at low pressures is widely used as a
200-000 15550 200-000 reference by chemists investigating the vapour pressure
%38:888 gg:gzg ggg:ggg of organic substances. It has recently come to light that
350-000 165-37 340.999 the values for the vapour pressure of saturated water used
374:150 22123 374152 by them are commonly not those given in the International.
Skeleton Tables, but those in Table 2-1-(1.01)-K of the
. American Petroleum Institute Research Project 44 (z6),
b Equation (5a). which differ from the 1963 L.S.T., and that some recent .
. measurements are in conflict with both sources. b
Pre;:’;re’ T pELamIe, Preg:?re’ The A.P.L 44 table uses as a basis the saturation table-
values of the 1934 1.S.T., generated from the 1934 corre-. -
0-006 107 —0-00 0006 107 lation of Osborne and Meyers which was at that time con-
0-123 35 50-00 0-123 35 . . ° ° . .
1.013 25 100-00 1.013 26 sidered valid from 0°C to 374-15°C, and added corrections
4759 7 150-00 4759 7 derived from measurements made at the National Bureau
1000 20000 15520 of Standards in connection with a gas thermometry pro-.
85-017 300-00 85917 gramme, by Stimson and Cragoe in 1942 and by Stimson _
16537 350-00 165-37 and Wilson in 1948, These ‘Cragoe-Stimson’ cotrections,
221-2 31414 2121 as they are known, have never been published nor has the

the K function, is close to the predicted values given by
equation (4a) and by Bridgeman and Aldrich. The value

d
of (Ti) would appear to be close to 172 J/cm®.
dT [eess

Tables 3a and & illustrate the accuracy of equations (4a)
and (5a) used in conjunction. For Table 3z one value of
T = T, is fed into equation (4a) to give p = p;, which is
in turn put into equation (5a) to give T = T,. As shown,
the values Ty and T, agree up to 350°C, after which there
is a maximum error of one part in 18 000 (0-006 per cent).
Table 36 was obtained by starting with the value of p
and using the two equations in reverse order. The values
of p were in complete agreement except at ¢ = 100°C,
where a maximum etror of one part in 100 000 (0-001 per
cent) was obtained.

Equation (5a) has been put forward as a supplementary
equation since it was thought easier and quicker to use a
second equation than to interpolate in the first, The con-
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work upon which they are based, but they have received
limited private circulation (17).

Table of ‘Cragoe-Stimson’ correlations

Corrections to be added to pressures given in Table 2 of Osborne
and Meyers (11).

Temperature, AP to be added,
°C atm X 10-°
0 0
25 39
50 74
60 75
80 47
100 Q

More recently Douslin (18), using an inclined piston
gauge, has made observations on the vapour pressure of
water in the range 0°C to 20°C. His measurements differ
from both the I.S.'T. and the A.P.1. 44 tables, the difference
increasing with increasing temperature, and being outside
the I.S.T. tolerances at the higher temperatures of his
range.
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Fig. 4. Deviations of equation (4b), I.S.T. 1963 values
and A.P.1, 44 correlation from 1934 N.B.S. correlation

The authors decided there were reasonable grounds for
preferring the AP.I. 44 values since the equations of
Gerry, and Osborne and Meyers do not merge well at
temperatures just below 100°C, Further, the measurements
of Moser and Zmaczynski (19) between 73°C and 130°C
are almost identical.with the original P.T.R. (9) (10)

. observations and the correlation of Osborne and Meyers.
Accordingly it was decided to use the A.P.I. 44 values as
‘input data’ between 0°C and 100°C and the Osborne and
Meyers correlation as input data from 100°C to 374-15°C
and to fit a single equation to the two sets of data. The
basic equation has the same form as equation (4a} and a
complementary equation (5b) is similar to (5a). The two
sets of equations give virtually the same results except
in the range 0°C to 100°C where the second set give slightly
higher pressures than the first set. The coefficients for
equations (4b) and (5b) are set out in Appendix 1 and
Fig. 4 gives deviations of equation (4b) from the 1934
correlation of Osborne and Meyers as well as other per-
tinent differences. There is good agreement between
A.P.I, 44 and the Cragoe-Stimson values except at 25°C
where there is an unexplained difference of 4 X 10~ bar,
which may be due to ‘smoothing’ done originally by
Meyers. Equation (4b) agrees with A.P.I. 44 to within
3% 1078 bar except at 90°C where the discrepancy is
8% 10~5 bar. As can be seen both the A.P.I. 44 correla-
tion and equation (4b) give smooth curves whereas the
1939 N.B.S. equation of Gerry appears to be imperfect
between 70°C and 100°C, thus demonstrating the poor
merging of the two N.B.S. (1939) equations, referred to
above and also shown in Figs 2 and 3.

The authors decided not to attempt to improve the
equation further since the values obtained were accurate
enough for practical purposes and well within the limits
of all except the most precise pressure measurements, It
was also decided to recommend the use of equations (4b)
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and (5b) in preference to equations (4a) and (5a), al-
though the latter reproduce the 1963 I1.8.T. almost exactly,
while at the same time equations (4b) and (5b) give values’
within the bounds imposed by the tolerances and are:
equally valid. At temperatures above 100°C both sets of:
equations give values which are indistinguishable.

SPECIFIC VOLUME OF SATURATED .
WATER IN THE LIQUID PHASE )
As in the preceding section it was again found convenient!
to use the entries in the N.E.L. Steam Tables as input’
data. The N.E.L. values, in exact agreement with the.
1.S.T. values, are derived directly from. the N.B.S. table,,
which in turn is based on the observations of Chappuis!
(20), Thiessen (21) and Smith and Keyes (22). The experi-:
menters at the N.B.S. found that the observations of Smith| -
and Keyes were not in agreement with their own calori-f
metric observations above a temperature of 330°C. In|
order to confirm the reliability of their own expetrimental
measurements Osborne, Stimson and Ginnings carried out
special volumetric observations in the neighbourhood of
370°C and consequently computed liquid volume valuesi
above 330°C from their own calorimetric observations, |
The equatlon for the specific volume is in the form of a’
Chebyshev series:

=2'alz . . . ©

04 A i
z2=1-2 (l—i) )
tcl ,

The volume is expressed in the dimensionless form:
x = 9/v.1, where 7, is the constant quality described in:
Appendix 2. In order to achieve thermodynamic con-|
sistency between the various equations presented here it
was found necessary to accept a slightly lower value for
the critical volume than that adopted by the 1963 Steam
Conference. The value found by the authors is 3-15 cm®/g
as against the Skeleton Table value of 3-17 cm®/g. Further
discussion of property values at and in the vicinity of the
critical point is given in the concluding section of this
paper.

Fig. 5 shows the deviations of the N.B.S. recommended
values from equation (6). It was found appropriate to

350; 7 : |

where

| I | T
300I—5 wHALLEY '_“""'_‘l' i
250~ x N.B.S. 1939

200} © SMITH ATND KEYES _ | !
150! s ;

1
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XD X x| o
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&1 x
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Flg 5. Dewiation of liguid volume values from equation (6)
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include values derived from the recent data of Whalley
(23) which extend over the temperature range 0°C to
150°C. In this case Whalley’s general correlating equation
was used in conjunction with the vapour pressure equation
(4a) given here. The results, as can be seen from Fig. 5, are
. in good agreement with equation (6).

CORRELATION OF THE N.B.S. « VALUES

The o observations are the most important of the N.B.S.
calorimetric observations and may be considered second
only to the pressure-temperature relation for the satura-
tion line which is fundamental. In deriving the saturation
properties it secemed preferable to follow the procedure
laid down by Osborne. Accordingly it was decided to refit
the « measurements over the whole temperature range
replacing the two N.B.S. equations with a single equation.
This equation has the form

where q= {2 (5—-0~99) —E}/F e D

Fig. 6 shows the deviations of the N.B.S. fitted values_ﬂ-";'?: :

from the values given by equation (7). Agreement is. @~
maintained to better than 20 p.p.m. except in a very small -

range of temperature below 10°C, and the values given

Va) ST
N NJ =N/ A .

DEVIATION ~pp.m
(o]
D
N
>

-40 |

50 100 150 200 250 300 350 400 | -
TEMPERATURE—°C i

o u Fig. 6. Deviation of N.B.S. fitted « vak
o . 6. .B. S, a values from
=S4T - . . O g f N.B.S. f fi
Per¥er 1o equation (7)
Table 4

t, °C p, bar T(dp/dT), Jjem® a Jig B,Jlg »Jis
0 0:006 107 0-012 140 4 -0:000 7 00121 250079
0-01 . 0006111 00121486 0-0415 0012 2 2500-76
- 10 0-012 277 0-023 291 4 42-025 6 0023 3 247712
20 0-023 378 0042437 1 838715 0:042 5 2453-65
30 0:042 433 0073815 4 125:640 4 0074 1 2430-10

40 0-073 774 0-123 140 7 167378 4 01241 240634 |

50 0-123 383 0:197 830 209:104 1 0:200 2 2382-36
60 0-199 24 0-307 192 250-824 4 0312 4 2358:15
70 0-311 66 0-462 562 1292542 3 0473 1 2333-67
80 0:473 64 0-677 377 334259 3 0697 O 2308-88
920 0701 12 0:967 195 375976 9 1:002 0 228371
100 1:013 25 1-349 654 417-696 0 1-408 3 225810
110 1432 6 1:844 4 459-42 1:94 2231-95
120 190853 2:4729 501-14 2-62 2205-18
130 27701 1 , 3258 4 542-86 3-49 217770
140 36135 4-225 7 584:58 4-56 2149:43
150 4759 7 54009 62630 5-89 2120:27
160 61805 68117 668-00 751 2090-13
170 79203 8-486 4 70969 9-46 205894
180 10:027 1 10-454 8 751-36 1179 2026-60
190 12552 3 12747 792-99 1455 1993:03
200 15-550 5 15:395 834-59 17-81 1958-11
210 19-080 18431 876:15 21-61 192175
220 23201 21-889 917-66 26:05 1883-82
230 27979 25-802 959-12 31-19 1844-19
240 33480 30-207 100052 37-13 180271
250 39776 35-142 1041-86 4397 1759:19
260 46-940 40-649 1083-13 51:85 , 1713-41
270 55-051 46773 112433 60-91 1665-11
280 64-192 53-565 1165-46 7135 1613-97
290 74-449 61:080 1206-51 83-40 1559-60
300 85-016 69-386 1247-49 97-39 1501-45
310 98-696 78:560 1288:39 113-73 143884
320 112:90 88694 1329-21 133-00 1370-77
330 128-65 99-912 1369:95 156:04 129575
340 146-08 112:39 1410-61 184-20 1211-32
350 165-37 126-40 1451-18 220-05 1112-84
360 186-74 14251 1491-66 269:84 989-51
370 210-53 161-85 1532-07 360-15 79871
371 21306 16403 1536:10 376-17 76850
372 215-62 16627 1540-14 39597 732:39
373 21821 16856 1544-17 422-04 685-20
374 220-84 170-92 154820 47854 598-69

374:15 22123 171:28 154881 539-1 539-1
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by equation (7) are well within the accuracy of the original
observations,

FORMULATION OF 8’ VALUES

The quantity 8’ defined by z,T(dp/d T) can now be formed,
using equation (6) for v, and equation (4b) to derive dp/dT.
The resulting values are given in Table 4. It is found that
the resulting agreement, to within 0-2 per cent, is more
than adequate,-as can also be seen from the tables of
derived properties.‘

FORMULATION OF y VALUES

The quantities p, v, and «, each expressed as a function of
temperature suffice to calculate all the saturated liquid
properties. Further, all the vapour properties can be
deduced if y is now expressed as a function of tempera-
ture. This, in fact, was the procedure used by the N.B.S.
in generating their table of properties and was the only
valid procedure since  was an observed quantity. How-
ever, it has proved more convenient to fit 4, as a function
of temperature and to compare the calculated values of
v with the observed values of the N.B.S. This course was
dictated by the fact that a complete table of 4, values was
ready to hand in the N.E.L, tables, whereas it would be
necessary to generate values of y from the N.B.S. data.
Moreover, in view of further work on equations of state
planned by the authors it was recognized that it would be
more convenient to have %, as a function of T rather than
y or ly, It is to be appreciated that only one of these
properties need be defined since the other two can then be
evaluated.

The following series gives 4, as a function of temperature
in the form

=3 el . . . . ®

r=0
1 0-4

l — Pe1Ve1
€ hk,

1 10
€

where

and

T I T T f
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Fig. 7. Deviation of N.B.S. 'y observations from
computed values
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Since A, = a+y, y is immediately derived. In fitting 4,

it was found necessary to adopt a value of %, = %, = 2088
J/g at the critical point in order to achieve thermodynamic
consistency. Fig. 7 shows a comparison between the
computed y values and the original N.B.S. observations.
Agreement is well within the limits of uncertainty
associated with the experimental observations and the
procedure for reformulating the y values is justified.

CALCULATION OF THE ENTRIES IN
TABLES 4 AND 5
The argument is temperature and the tabulated values
were calculated as follows, in accordance with the resumé
given in Appendix 3. ’

Quantity  Eguation Formula
p (4b)
Uy (6)
’ ’ dp
B (4b) and (6) B = ”fTﬁ‘
o )
hy (9) by = at-p’

AT T«
sy (15) § = {TJT, n T dT+c
hy - ©)

Y (83) Y = k,}—a
hfg (10) hg""hf
dp

Vg (18) vy =y T&T‘

T T hyq
39 an [so)z: = [z + T

r
SUMMARY

So far as the authors are aware no new calorimetric
experiments similar to those carried out by the N.B.S.
have been carried out since 1939, However, there have
been additional vapour pressure measurements among
which should be included those of Eck (24), Moser and
Zmaczynski (19) and Stimson (17). The observations of
Eck, who also determined the critical volume, were
included by Dorsey (25) in his comprehensive survey, the
N.B.S. values being preferred. Moser and Zmaczynski
obtained complete agreement with the correlation of
Osborne and Meyers (N.B.S.) in the temperature range
73°C to 130°C. The unpublished measurements of vapour
pressure at 25, 40, 50, 60 and 80°C by Stimson are re-
ferred to by Rossini (26) in the calibration of apparatus
used to determine the boiling points and vapour pressures
of petroleum products. They have also been used to
provide reference values of the vapour pressures and
boiling points of water in the American Petroleum
Institute Research Project 44 (16). However, the difference
between the A.P.I. 44 value and the original Osborne and
Meyers correlation does not exceed 75x107¢ atm, an
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Table 5
t, °C b, bar vy, cm®/g v, cm®(g ke Jlg hios Jig hos Jig sp, Jig degK | sg4, J/g degK | 50, /g degK
0 0:006 107 | 1-000 18 | 205 989 —0-041 6 2500-8 2500-8 —{0-0002 9:155 9-155
0-:01 0:006 111 { 1-000 18 | 205843 0-000 631 2500-8 2500-8 0-0000 9:155 9-155
10 0:012277 | 1-00039 | 106353 42-00 24771 25191 0-1510 8748 8-899
20 0:023378 | 1001 8 57 819 83-86 24537 25375 0-2963 8:370 8-666
30 0-042 433 | 1:004 4 32921 125-66 2430-1 2555-7 0-4365 8:016 8-452
40 0073774 | 1-0078 19541 167-45 24063 25737 0-5721 7684 8:256
50 0-123383 | 1-0121 12 042 209-25 23822 2591-5 0-7035 7-372 8075
60 0-199 24 1017 1 7676:5 251-08 23579 2609-0 0-8310 7077 7-908
70 0-311 66 1-022 7 5045-1 292-96 23332 26262 0-9548 6-799 7754
80 0:473 64 1029 0 3 4086 334-90 2308-2 26431 1-0753 6-536 7:611
90 0701 12 1-036 0 2361-2 376:93 2282-8 2659-7 1-1925 6286 7478
100 1:013 25 1:043 5 16731 419-05 22567 26758 1-3069 6:048 7-355
110 1432 6 1051 6 12101 461-30 2230-1 2691-4 1-4185 5-820 7-239
120 1:9853 1060 3 891-74 5037 2202-6 27063 1-528 5-602 7-130
130 27701 1 1-069 7 66834 546-3 21743 2720-6 1-634 5-393 7-027
140 36135 1079 8 508-66 589-1 21449 2734-0 1739 5191 6931
150 4759 7 1-090 5 392-57 632-1 21144 2746-6 1-842 4-997 6-838
160 6:1805 11020 306-85 6755 2082-7 27581 1-942 4-808 6-751
170 7-920 3 11143 242-62 7191 24095 2768-6 2042 4625 6-666
180 10027 1 1127 4 193-84 763-1 2014-9 27780 2:139 4-446 6-586
190 12:552 3 11415 15635 8075 1978-5 1786-0 2:236 4272 6507
200 15-550 5 1-156 5 127-19 852-3 1940-4 27927 2-331 4-101 6:431
210 19-080 1-1727 104-265 8977 1900-2 29779 2-425 3-933 6358
220 23201 1-1901 86-064 9437 1857-8 2801-5 2:518 3767 6285
230 27979 1208 8 71-476 990-3 1813-1 28033 2:610 3603 6214
240 33-480 1229 1 59-679 1037-6 1765-6 2803-2 2702 3-441 6143
250 39-776 12512 50-059 1085-8 17153 2801-0 2794 3-279 6:072
260 46-940 1275 4 42-151 11349 1661-6 2796-5 2-885 3-116 6-001
270 55-051 1302 2 35-600 1185:2 16043 2789-4 2:976 2-954 5-980
280 64-192 1-3320 30-131 1236-8" 1542-7 2779-4 3-068 2-789 5-857
290 74-449 1-3655 25-533 12899 1476-2 2766-1 3-161 N 2:621 5-782
300 85-916 1-403 6 21-639 1344-8 1404-1 27489 3-255 2:450 5705
310 98-696 1-4477 18-:315 |- 1402-1 13252 27272 3-351 2:272 5623
320 112-90 1-4995 15-455 1462-2 1237-8 2700-0 3-449 2-087 5:536
330 128-65 15617 12-969 1525-9 11398 26657 3-552 1-890 5-442
340 146-08 16390 10-778 1594-8 1027:2 26219 3-660 1-675 5-336
350 165-37 1741 8-804 16712 802-8 2564-0 3779 1-433 5212 .
360 186-74 1-893 6-943 1761-5 7197 2481-2 3-916 1-137 5-053
370 210-53 2:225 4-935 1892-2 438-6 2330-8 4113 0-682 4795
371 21306 2-293 4-685 1912-2 392-4 23046 - 4144 0-609 4753
372 215-62 2:38 440 1936-1 336-5 2272-5 4-180 0-521 T 4701
373 218-21 2-51 4-06 1967-1 2623 2229-4 4227 0-406 4633
374 220-84 2:80 3-50 2026-7 120-2 21469 4-318 0-186 4504
374-15 | 221:23 3-15 315 -| 20879 —-0-0 20879 4-412 —0:000 4412
i

amount small enough to keep the A.P.I, 44 values within
the I.S.T. tolerances. There are also measurements in the
range 0°C to 20°C by Douslin (x8) which do not agree
with any of the above references and show an error, with
respect to the LS. T., increasing with temperature and
outside the tolerance, Since Douslin’s observations are as
yet unsupported by corroborating work the only change
justified would be towards the A.P.I. 44 values and this
the authors have done.

Apart from the low temperature vapour pressures which
may be in error by a very small amount the only other
region where there is some doubt is around the critical
point. It is inevitable that a fairly large uncertainty must
be associated with the values of the properties at the
critical point. It is clear that the value of the critical volume
(2.1 = 317 cm?®/g) selected by the Sixth I.C.P.S.is too high.
The authors found, using the method of rectilinear dia-
meters, a value of 3-11 cm®/g accepting the N.B.S. liquid
and vapour volumes. Bridgeman and Aldrich (27), using
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Table 6. > v, T values at the critical poine

Pressure, | Volume, Temperature,
bar cm®/g °C (I.P.T.S.)
1963 1.S.T. 2212 317 | 37415
401 +015 | £010
Bridgeman and 222-261 3:-1547| 37402
Aldrich (27) 374-136 °C (therm)
Rivkin (28) 3-165
+0-019
TJuza (29) 22106 316 | 37407
(best values) )
Present work 20123 | 315 | 37415

a special procedure, reanalysed the N.B.S, calorimetric
measurements and obtained a value of 3-1547 cm?®/g at
374-02°C. They also took into consideration differences
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between the temperature scales. Their findings are best
summarized in Table 6 along with the estimates of recent
workers. The most recent analysis is that of Juza (29) who
suggests that further experimental and theoretical work is
needed to reduce the uncertainties on the various properties
at the critical point.

CONCLUSION

The authors believe that their equations adequately
specify the thermodynamic properties of saturated liquid
and vapour water substance. The only area where any
large measure of disagreement exists is in the vicinity of
the critical point.
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APPENDIX 1
SUMMARY OF EQUATIONS AND COEFFICIENTS

Equations
Vapour pressure of saturated water (basic equation)

g =3 aT .
r=0

1 0
where x = {2 (5-0-95) -—A} /B,

n = 11 in (4a),
n =12 in (4b).

(4a) and (4b)

Vapour pressure of saturated water (supplementary equation)

1 11
h= 2, brT'r(y)
o r=0

where y = {2 [ln (%1)]0'4—0} /D‘

(5a) and (5b)

Specific volume of saturated liguid
1 10
—= >l . . . . . (6
X r=0

t 0-4
where 2 = 1-2 (1—2—) .

cl
The following weighting factors were applied to the volumes
used as input data:

20 at 0°C, 0-01°C and 1°C
10 from 2°C to 10°C inclusive

Coefficients
Equation (4a)
ap = —8119 364 2 a; = 53622818x10-¢
a; = 51322555 a; = 1-2455399x10~¢
ap, = —1-184 240 7 ag = —4:915428 8 x 108
ay = 11779592x10"* ay, = 4-6302565x10~°
a, = —5157642 0X10°% a4 = 1530133 4x 105
as = —1-468 953 7xX10-% @, = —2:095453 0x10-°
A= 1452207 17 = —{(-848 789 53
Egquation (4b)
a, = —8119182 2 as = 47091300%x10"1
a, = 51321021 a; = 1-623639 8x10-*
az = —1-184 166 9 as = —7-168068 8 X108
az = 1-11780993X10"* g9 = 7-0116127x10"°
a, = —52291339x10"% a0 = —1-336948 0x10-°
as = —1'382926 0x10°® gqy; = 7262101 3x10-°¢
A= 1-452207 17 a;p = —1:241383 3x10°5
B = —(0-848 789 53

Egquation (5a)

by = 30452037 bg = 6-8411554x10-2
by = —6-8230052x10"* b; = 33650007x10"°
by = 16411405101 by = —1:2342248x10-%
by = —2:0232165x107% by = 1:4826550x10~¢
by = —1923011 1X10-23 by = —1-0211645%10-8
by = —5745494 2x10-% byy; = —4-090 809 0x10-%
= 2960942 5 D = —2-179 888 01
Equation (5b)

bp = 30453155 bg = 6057986 6x10°5
by = —6-8232822x10-* b; = 3-8395850x10-°
by = 1641239 5x10"* by = —1-449978 5x10-5 -~
by = —2:0218292%x10"% by = 43608220x10"°
by = —19323341%X10-% b, = —3-058546 3x10-%
by = —5642725 4x10~* by, = —6:057498 7x 107
C = 2960942 50 = —2-179 888 01

Co 4332 053 Cq —3-765370x 103

¢ —1:107 796 cr 1-123 345x10-3

—5-275 102X 102 Cs
2-173 547x 102 Co
—1:754 636 x 102 C10

5125 009x 103

Cg
C3
Cy
Cs

—2:458 266 x 103
—1-425 530 x 1032
—1-304 721 x10-3

[ [

[ T
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Equations Coefficients
 Saurated liquid o equation
3 1"; - = z' dT( . . . . dy = 2-262 821 ds = 6365584%x107*
c1%Ue r=0 = . = . -5
where ¢ =42 (_l._o.gg)o'ﬁ_E}/F g; = —iégg Zégx 10-2 ZZ = _gggg g(l)gi ig—s
q= 8 : d; = —6-087 624x 102 dy = 1:352658x10°°
The following weighting factors were applied to the « values dy = —1233320x10°%  dyp = —5:909 329X 10~°
used as input data: ds = 6246461x10-*  dj; = —2-335760%x10"°
5 from 356°C to 370°C inclusive E= 12746319 F = —1-0746319
26 from 371°C to 374-15°C inclusive

Specific enthalpy of saturated vapour e = 5-600998x10-* eg = —1:394169x10~*
L ey = 2298004X10°% e, = —1-841311x10-*
=Yl . . .. . ® o= 2:908374x107% ¢ = —1-087239%10"*
. N r=0 \ gg = 5286767x10-3 eg = —4-918 106 x10-°
h e 1—G ___1) : e = ~7-390 192X 10"% ;0 = —2:310 695X 10~°

where w (e es = —3042949% 10-%% G = 1.763 487

Chebyshev polynomial
The function 7'(x) is the Chebyshev polynomial (or 7-poly-
nomial) of rth degree with x normalized in the range —1 < x < 1,
The first two T-polynomials are
To(x) =1 and Tix) =x

The remaining 7T-polynomials are calculated using the re-
currence relation .
To(x) = 25T - 1y(%) — Ln - 2x(%)

Hence Tolx) = 2x2—1; Tax) = 4x®—3x; etc.
Derivatives
In a set of Chebyshev coefficients, a,, of the polynomial
’ n
y=3 aT(x) . . . . . @
r=0

APPENDIX 2
Reduced dimensionless quantities
plpey = B, reduced pressure
T[T,y = 9, reduced temperature
/v = ¥, reduced volume
hj(perver) = € reduced enthalpy

Defined constant quantities (1966 Formulation)
Spp =0, =0
pu = 6112 N/m? = 611-2 J/m?®
Ter = 647-3°K
Per == 22 120 000 N/m? == 22 120 000 J/m?®
Vo1 = 0:003 17 m?/kg = 317 cm®/g
R, = 461-51 J/kg degK
1 bar = 10° N/m?

APPENDIX 3

RESUME OF THERMODYNAMIC EXPRESSIONS REQUIRED
TO FORMULATE THE SATURATION PROPERTIES

By definition from Osborne we have
dp

o = hI—T‘UIE,, . . . . . (1)
dp
B = ‘l)fT ar . . . . N (2)
and
d
y =g, d,f, )

where a, p’ and y represent the N.B.S. basic observations.
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the prime indicates that the first term of the sum is to be
halved.

On differentiating y with respect to x in equation (i) we
obtain

d

a%’— z'AT(x) N ¢ ))
where Ar;l = A.s1+2ra,
and An = An-}-l =0

A description of Chebyshev polynomials is given in Chapter 8
of Modern computing methods, 2nd edition (N.P.L. Notes on
Applied Seience, No. 16, H.M.S.0., 1961).

We may combine these equations to give

kr = C¢+,B“ . . . . . . (9)
and
hy=aty . . . . . (83)
also
ho=y—8 . . . . . 10
h d L. .
since 'Ui Z = Td—§ which is the Clapeyron-Clausius equation.

_ Iz}tegration of equation (9) gives the enthalpy of the saturated
liquid at any temperature I° with respect to a datum at 7.
Hence

[h]T=fTadT+fT-vT£2dT 1
Flrg . s £ daT . . ( 1)
T T .
=f adT+f gdT . . . (2
T¢ T
Now dh = Tds—]-v dp
dh
or ds = - dp
. dh h h
and since - =d (T) +-j:~5 dr
_ .k h v
ds=d (T) o AT —2. dp
If we apply this equation to the saturated liquid we may write
h h
ds, = d( ’)+T; aT-%dap . . (13
Equation (13) may be reduced using equation (1) and we get
h o
ds, —d( ’)+T2dT S 4
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Integration of equation (14) gives the entropy of the saturated
liquid as
5, = [@]T [ pmar+ s -
[s;)8, = 7]t ), 77 c ..

where ¢ is a constant of integration depending on the datum state,
For the saturated vapour

[th"; = [hf]g“e'*‘[hlg]z‘ . . . . (16)
so=hefE o an
and
R 4
7)9 - g (18)
dr
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a, b, ¢, d

C

P

Q
C

P
f=u-Ts
g =h -~ Ts
gl
h = u+ pv
p(plgpz,pp)
s
t
T
Ti(XJ
u
v
YA
v

_2s - 11.99

To1l2.0L

_ 2p - 1000
y 1600
Z
Subscripts
£
t, ¢

J/g K

J/g K
J/g
J/g

m/s
J/g

bar

J/g
cma/g

cms/g

m/s

Coefficients
Specific heat capacity

Specific heat capacity
at zero pressure

Specific free energy (Helmholtz
function)

Specific free enthalpy (Gibb's
function)

Acceleration due to gravity
Specific enthalpy

Pressure

Specific entropy
Temperature

Temperature

Chebyshev polynomial
Specific internal energy
Specific volume

Specific volume at
one atmosphere (pA)

Velocity

Normalised entropy

Normalised pressure

Height above datum

Refers to saturated liquid state
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An Equation of State for Compressed Water from 1 to 1000 bar

and from 0 °C to 150 °C

by M. R. Gibson and E. A. Bruges'

Abstract

The precision with which the thermodynamic properties of compressed water
and steam are known has led, not unnaturally, to the development of equations
of state suitable only for use on electronic digital computers. The equations
are in the main empirical although some are highly sophisticated and lead to
lengthy programmes and complex sub-routines. Among such equations are those
of the 1966 and 1967 Formulations of the Thermodynamic Properties of Ordinary
Water Substance prepared by the International Formulation Committee (1) of the
International Steam Conference. The favoured form of equation has been one in
which the dependent variables are enthalpy, volume and entropy and the independent
variables pressure and temperature., However, this form of equation may not prove
to be always the most suitable and the purpose of this paper is to describe how
another type of equation, in which the dependent variable is enthalpy and the
independent variables are pressure and entropy, may be established and applied.
It is believed that this particular type of equation, relating as it does the
three most important parameters in pump and turbine performance, has special
qualities for deéign and efficiency calculations. By way of example the
efficiency of a water turbine is evaluated éccordingAto the 'thermodynamic method'
described by Thom (2). A concluding section outlines the further steps being
taken by the authors to provide a similar type of equation over ranges of pressure

and temperature up to 1000 bar and 1000 °c.
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Introduction

In an address to the Sixth International Conference on ‘the Properties ‘
of Steam, New York 1963, R. W. Bain (3) suggested that it might be possible to
cover the entire liquid and vapour regions with a single equation of the form
h = h(p,s) ~ other forms are p = p(h,s) and s = s(h,p). This is one of four

canonical equations

u=uls,v) (1)
£ = £(v,T) (@)
g = g(T,p) ___ (3)
and h = h(p,s) ___ (&),

which possess a number of advantages over those in which the various propertieé

(h, v, s etc) are expressed as functions of p and T. If p = p(v, T) _____ﬁS)’

not only is it unlikely that a single équation can cover both the liquid and

vapour phases but additional information has to be supplied in order that

energy quantities may be calculated. This is usually ekpressed as cpO = £(T)___(6).
Formulations, comprising equations (5) and (6) for example, involve both

integration and differentiation in computing the usual properfies, whereas

any one of the canonical equations (1) to (4) defines all thermodynamic properties

using only the quantities themselves and their derivatives. The derivation of

the various thermodynamic properties from the four canonical equations was

demonstrated by Bain and Le Fevre (4) in a paper from which the entries in

table 1 have been taken. Columns (1) and (2) of this table give the quantities

appropriate to the canonical equations (4#) and (2) and column (3) refers to the /

form p = p(v,T), which is not & canonical form and for which it cam be seen that

both integration and differentiation are required.

e

In addition to the computative advantages of the canonical equations

derivative quantities across the saturation line are smooth and all quantities

e - -

are continuous., The absence of gross discontinuities such as are exhibited
by an equation of the form p = p(v,T) is a further factor in favour of the
surface h = h(ps), which is represented in figure 1. This particular type

of equation seems to have been advanced in the first instance by Holmes and




_3-

Hollitch (5) who covered the field of industrial interest with a series of
equations for compressed water and steam. "Juza (6) has also presented equations
of this type specifically for industrial calculations but no attempt to provide
a single equation, as suggested by Bain, has yet succeeded. Haywood (7) at

the instigation of the U.K. Committee on the Properties of Steam (ERA Research
Advisory Committee 2B as 1t was then termed) made a preliminary investigation
which was subsequently followed up by McLeod (8) at the National Engineering

Laboratory. Taking the form of the surface as s = s(p,h) and using constraints

McLexdwas unable to obtain a surface from which satisfactory properties could be

derived. As a contribution to the U.K. effort the author; (9) respecified
the saturation properties in terms of equations suitable for computers and,
following a computation of the properties of compressed water, moved on to
the problem of the h-p-s surface. It is this latter work which is described
here and which is believed tc supply a valuable clue to any future fitting of
this or similar thermodynamic surfaces.

Surface fitting procedure

After successfully using orthogonal Chebyshev polynomials to represent
the saturation properties (9), the method, which is now described, was
extended to fitting the h-p-s surface. Initially enthalpy is fitted as a
function of entropy along isobars in the form

n
h = . i'oai T, Y ____ (7)
where x = (25 - 11.99)/12.01.
(A description of the Chebyshev polynomials, Ti(x), is given in appendix 2).
The (n + 1) coefficients obtained from equation (7) were then fitted as

functions of pressure in the form

m

a, = &' b,, T.(y) (8)
i j=0 i 73

for i =0,1, 2 .....(n -1} n

2p - 1000
1000

where y

Equations (7) and (8) may now be combined to give
n m
h= I ' b,. T.(kx) T.(y) (9},
i=0 j=0 H 1T 3T ——

which is a representation of the h-p-s surface.



ST
In order to test the computer programs which were written to carry out
the above process it was decided to use as input data the values of enthalpy

and entropy tabulated in the 1964 NEL Steam Tables (10). Although an adequate

fit in enthalpy as a function of entropy was obtained along any isobar the

input temperature, T, could not be recovered through the relation T = gg-.
P
In addition, values of volume, v, derivable through the relation v = %g

s
were quite unsatisfactory. These troubles arose from two sources. As regards

reproducing the original input temperature the fault was attributed to "round
of f" present in the tabulated values of enthalpy and entropy and small thermo-
dynamic inconsistencies in that part of the table relating to compressed water
in the range 0 °C to 150 °C. In their study Haywood and Bott (7) warned against
the possibility of this troublesome interaction between the smoothing of the
table values and the fitting polynomials. Inability to derive satisfactory
volume values stemmed from the fact that there was an insufficient number of
temperature intervals. The coefficients a, when plotted, were not smooth and
it followed that satisfactory values of v could not be obtained. It became
clear that although these tables gave satisfactory entries, within the Skeleton
Table tolerances, the entries could not be used to provide input data such as

would seem necessary for generating the h-p-s surface.

Creation of new input data

At this sfage it was decided to set aside the NEL Tables as a source of
input data and to generate an entirely new set of values of h and s at such
intervals of pressure and temperature as the preliminary surface-fitting work
suggested. For this purpose the volume measurements of Kell and Whalley (11),
through their correlating equation

d,. t7{p - pA)j (10),

1 ]

A i

Hoo
- w

0 7
were used to compute the thermodynamic properties of compressed water. Equation
(10) cannot be used-without certain additional information relating to Yy and
the saturated liquid values. The necessary saturated liquid values were
obtained from the authors' earlier publication (8) and values of v, were

derived from an expression established by one of us (MRG) and published by

Bruges (12). The expression for Va is repeated here in appendix 1 for the
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convenience of the reader. In this latter publication the volume measurements
of Kell and Whalley are compared with those of Amagat (13), Smith and Keyes (1k),
Kennedy, Knight and Holser (15) and Vukalovich (16)., There is little doubt that
the data of Kell and Whalley enable the best possible evaluation of the thermo-
dynamic properties of compressed water to be made and the next stage of the work
was to repeat the earlier surface-fitting. Since the volumes were given to six
significant figures it was decided to calculate all the input data to six signi-
ficant figures also and to have as many isobars as isotherms.

The values of enthalpy and entropy at intervals of 1 deg.C along the isobars
were evaluated from equation (10), using the relationships in column 3 of Table 1.
Then by fitting along each isobar using equation (7), the optimum value of n was
found to be 4. The coefficients Ay thus obtained were then fitted Ffrom eqn.(8)
and a value of 3 for m was found to be adequate. The values of the coefficients
bij are now substituted in eqn.(9) to provide the new surface from which it is
necessary to reform not only the input data h, p and s, but also T, v and cP. It
is also necessary to make a comparison with the values in the 1963 International
Skeleton Tables and their tolerances. It was found that over the whole region
covered by the new equation agreement with the input data was extremely good and
that the new equation gave values within the IST tolerances except along the 150°¢
isotherm at pressures below 150 bar and at 0°C and 1 bar. These discrepancies
were overcome by a weighting procedure and the final form of eqn. (9), whose
coefficients are tabulated in table 2, was obtained.

This final equation meéts the criteria laid down by the 1963 IST. At all
the skeleten table points the values of enthalpy lie within the tolerances while

the values of volume also lie within the tolerance with the exception of the 150°¢

isotherm from p = 25 bar to p = 125 bar where the values take up all the tolerance,
The saturation line provides a boundary to the equation from 100°C to 150°C and a
comparison with the IST saturated ligquid values is given in table 4. In addition,
table 4 gives saturated liquid values from 100°C down to 0°C so that the possibility

of using the equation below 1 bar paressure and so extrapolating its range to

the saturation line from 0°C to 100°C may be considered. As can be seen from

tables 3 and 4, with the exception of the liquid volume values at 0°c and 0.01°%¢
all values are within the prescribed tolerances.

A comparison of the saturation values which may be derived from eqn. (9)
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is made in table 5 with the values previously obtained by the authors (Q).

Included are values of ¢ which are calculated from the equation
£

dp

oh
e = (=) -
aT de

b . v, - (-g-}’») T} (11),
where C§¥) is derived from equation (10) and the other quantities from
reference (9).

In addition, values derived from equation (9) are compared in Ffigures
2, 3, 4 and 5 with the corresponding values derived from the observations
of Kell and Whalley. The compariscn is made for the 0, 50, 100 and 150 °C

isotherms.

Efficiency of a water turbine

The efficiency of a water turbine or pump may be determined very elegantly
by the'thermodynamic method', a method which depends not only on the thermo-
dynamic properties of water but also on the precision with which small temperature
changes can be measured. Evaluation of the thermodynamic properties in such
efficiency calculations may be carried out very easily using equation (9) and
the following hypothetical results for a turbine are used to illustrate such
an application.

The efficiency, New? of a turbine is given by

2
2

- 3 . . 2
(hp h2)splo + g (zp 22) + (Vp v
where the suffices vefer to the measuring stations shown in figure 6. In

)/2

2
o /2

3 2
) (hl - h2)lO + g"(zl - 22) + V-V (12)

ntu

the example shown a small flow of water is taken from a point upstream of the

turbine and throttled in a calorimeter. The temperature difference (T, - Tl)=AT

2
is measured, from which observation the necessary fluid properties can be

deduced. The following constants, table 6, apply to the turbine for which the

computed efficiencies are given in table 7.
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TABLE 6

, 2
g 9.798 m/s
2y H79.2 m
22 476.9 m
zP 481.8 m
Vl 0.5 m/s
V2 5.2 m/s
Vb zero (included in enthalpy term)
Py 1.1 x 105 N/m2
p, 49,20 x 10° N/m°

_ _ .0

Tl = TP = 10°C

(hl - h2)103 enthalpy change J/kg

(hp - h2)5103 isentropic enthalpy change J/kg

IABLE 7
plxlo‘5 N/m? Ayﬁgog ey %
Thom's Eqn.(9) Eqn.(10)
method
ug .42 50.3 90.90 90.89 90.91
48.65 63.2 90.25 90.23 90.26
48 .74 71.9 89.67 89.66 89.68
48.90 72.1 89.97 89.96 89.99
48,95 66.4 90.57 90.56 90.58
48.88 72.8 89.88 89.86 89.89
Average 90,21 90.19 90.22

The efficiencies so derived are compared with the values which would
have been obtained had the primary data, from which equation (9} was itself
depived, been used instead. The efficiencies in the first column are derived
by using certain coefficients described by Thom (2) where a full account of

the 'thermodynamic method' is given. TFor the sake of completeness a revised
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set of coefficients, based on equation (10) is given here although the
values differ only marginally from those quoted by Thom.

It is immediately seen from table 7 that equation (9) gives values

of ntu in excellent agreement not only with those which may be derived

from the primary data of equation (10) but also with the values obtained

by Thom's method. The authors would commend equation (9) to the practitioners
of the thermodynamic method, of which group Thom is a member, together with
the values of the coefficients given in appendix 3. It is believed that
considerable advantage would be derived by expressing all the quantities
appearing in equation (12) in S.I. units as the authors have done.

Extension of the h-p-s surface to high temperatures

The successful development of equation (9) and its application, as
demonstrated in the preceding section, encouraged the authors to believe
that even if the whole field up to 1000 bar and 1000 °C could not be
covered by a single equation of the h-p-s variety it seemed reasonably
certain that the field could be divided up into a number of sub—regions.v
Each sub-region would be represented by a suitable equation which more likely
than not would match almost exactly with its neighbour along inter-regional
boundaries, since it would only be a question of matching like with like.
Apart from finding out how to divide up the surface, shown in figure 1,
assuming this to be necessary, there is the additional and all important
task of providing consistent input data in the form of h and s at close
intervals of p and T. Although the NEL Steam Tables had previously been
discarded, for reasons already glven, equations were provided from which a
smooth set of input data could be derived. However, these egquations would
not take into account the latest specific heat capacity observations of Sirota
at ‘the high pressures (between 600 and 1000 atm) and it was decided to examine
other sources. The only other sources are the 1966 and 1967 formulations of
the IL.F.C.(1) and the formulation of Juza (17). Of these the only formulation
worth considering is the latter since the 1966 and 1967 IFC formulations exhibit

relatively laprge discontinuities at the inter-regional boundaries and near these
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boundaries first differences of enthalpy are easily shown not to be smooth.
Previous experience showed smoothness and absence of discontinuities to be
essential in the input data if a satisfactory h-p-s surface was to be generated.
Consequently, it was decided that Juza's formulation should be used to provide
the required input data vepeating the Ffitting of the temperature range 0°c-150°¢
if necessary.

Juza's formulation, based on the equation of van der Waals, is one which
has taken many years toc develop and although its complexity may discourage
many a user the authors have successfully checked its quality by evaluating
h, v, s and cP at close intervals and found no discontinuities or irregularities
which could make it unacceptable for further surface-fitting work. Juza's
formulation covers the fluid from 100,000 bar to 1000 °C with four regions
and it is important to confirm that the functions h, p and s are sufficiently
smooth across the three inter-regional boundaries. The adequacy of this
formulation is shown in table 8 which gives the discontinuities in p, h and s
as dp, dh and ds together with the maximum discontinuities recommended by the
IFC which were 0,005 p, 0.2 J/g and 90.0002 J/gK vrespectively. The only
boundar& where the recommended values are exceeded is iIn a range of temperature
255(t) < t < 272 °C.
Conclusion

The authors have established an equation for compressed water of the
form h = h(p,s) and have demonstrated its suitability for evaluating the
efficiency of water pumps and turbines., They have alsc shown that consistent
input data in the form of values of h, p and s at sufficiently close intervals
of temperature and pressure is required to achieve the necessary result. An
indication of how the work will now be extended to higher temperatures through
the formulation of Juza is given together with a brief appraisal of this
formulation. Tt is believed that an interlocking set of equations may now
be derived thus providing the first formulation in the next generation of

equations of state.
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Table 1
~ gliven
function .
h(s,p) Fv,t) p(v,T)
other
properties
of
P P e P
dh
T 35 T T
. 3h v v
ap
v
_ ot - p
s s 5T JVO 3T dv
' v
h h £ g—i— - v 'gf, - J pdv-T Jv 5T VIRV
o) o
2 2 v 2 2
32F.52F  3%f 9P J d ] d
. 2—2— T557 377 ~ 3var) T3y ["o orr 4v| +(55)
D % 925 %
3s2 dve oV
v
oh oh
£ h-p o S 23 £ - . p dv
o




2.29396778966104

1.49785098900104

4.20456184702103

478 9
6.47843041 47102

4.47369162798101

v7.05515999554l 2

1l

Table 2

9.90221723853102

0

3.44974682900102

9.93241195508101

1.86056524920101

~9.22809517786101

~7.46436404816. 1 . .

10

—3.93283089753101

—1.24112560347101

—1.85857222935100 -

481
3 gu 3660448100

2.77856793062

lOO'

1.4}141411490100

4.4513773117710—1

.6.57125442419, -2

10
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Table 3

Comparison of values derived from equation 10 with

1963 IST values and tolerances

COMPRESSED WATER

Volume cma/g Enthalpy J/g
t°c 0 150
0 50 100 150 0 50 10
p bar
1(a) 1.,00012 1.0121 0.059 209,38
(b) 1.0002 1.0121 - 0.06 209.3
() -0.8 0 -0.1 0.8
(d) 1 2 1 1
5 0,9999 1.0119 1.0432 1.0905 0.465 209.7 19,4 632.0
0,9999 1.0119 1.0433 1.0906 . 0.u47 209.6 4iso.u 632.2
0 0 -1 -1 -0.5 1 0 -2
2 2 2 3 2 2 2 3
10 00,9996 1.0117 1.0430 1.0901 0.97 210.2 419.8 632.3
0.9997 1.0117 1l.0431 1.0903 . 0.98 210.1 419.7 632.4
-1 ' 0 -1 -2 -1 1 1 -1
2 2 2 3 2 2 L L
25 0,9989 1.0110 1l.0422 1.0891 2.49 211 .4 420.9 633.2
0,9989 1.0110 1.0u23 1.0894 2.50 211.3 421.0 633.4
0 0 -1 -3 -1 1 -1 -2
2 2 2 3 5 2 L 0
50 0.9976 1.0099 1.0410 1.0875 5.02 213.6 u.22.8 634.8
0.9976 1.0099 1.0410 1.0878 5.05 213.5 u22.8 634.9
0 0 ) 0 -3 -3 1 0 -1
2 2 2 3 10 2 b4 i
75 0,9964 1.0088. 1.0397 1.0859 7.53 215.7 naun.7 636.3
0.9964 1.0088 1.0398 1.0862 7.58 215.7 uay .7 636.5
0 0 -1 -3 -5 0 0 -2
2 2 3 L 15 2 n 4
100 0.9951 1.0077 1.0385 1.,08u42 10.0 217.9 u26.6 637.9
0.952 1.0077 1.0386 1.0846 10.1 217 .9 u26 .6 638.1
-1 0 L -4 -1 0 0 -2
2 2 4 L 2 2 L L
125 0,9939 1.0067 1.0373 1.0826 12.5 220.0 428 .4 639.5
0.9940 1.0066 1.0373 1.0830 12.6 220.0 n28.5 639.7
-1 1 0 =4 -1 0] -1 -2
2 2 u L 3 2 L L
150 0.9927 1.0056 1.0361 1.0811 15.0 222.2 430.3 641.,1
0,9928 1.0055 1.0361 1.0813 15.1 222.1 430.4 6u4l1.3
-1 1 0 -2 -1 1 -1 -2
2 2 y u 3 2 L L
175 0.9915 1.0045 1.0349 1.0795 17.5 224.3 u32.2 eu2.7
0.9915 1,004k 1.0348 1,0798 17.6 224.3 432.3 642.,9
0 1 1 -3 =1 0 -1 -2

2 2 n 4 4 3 n 4
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Volume cma /g Enthalpy J/g
t
0 50 100 150 "0 567 U166 150
> _bar

200 0.9903 1.0035 1.0337 1.0780 20.0 226.5 4341 6uL,2
0.9904 1.0033 1.0336 1.0782 20.1 226.,5 uan, o 644 ,5

-1 2 1 -2 -1 0 -1 -3

2 2 n n m 3 Iy n
225 0.9891 . 1.0024 1.0325 1.076L 22.4 228.6 436.,0 645.8
0.9892 1.0023 1.0324 1.0766 22.6 228.6 436,1 646.1

-1 1 1 -2 -2 0 -1 -3

2 2 I b 5 3 N n
250 0.9879 1.0014 1.0313 1.0749 24,9 230.7 - 37,9 647.5
0.9880 1.0012 1.0313 1.0751 25,1 230.7 u38.0 647 .7

-1 2 0 -2 -2 0 -1 -2

2 2 I n 5 3 I I
275 0.9868 1.0004 1.0301 1.0734 27.3 232.9 439.8 649,1
0.9868 1.0002 1.0301 1.0736 27.5 232.8 439.8 649,3

0 2 0 -2 -2 1 -1 -2

2 2 y m 5 3 y u
300 0.9856 0.9993 1.,0290 1.0720 29.8 235.0 uyl .7 650.7
0.9856 0.9992 1.0289 1.0721 30.0 235.0 u41,.8 650.9

0 1 1 -1 -2 0 -1 -2

2 2 L n 5 3 y n
350 0.9833 0.9973 1.0267 1.0690 34.6 239.3 445 .5 653.9
0.9834 0.9972 1.0267 1.0692 34.9 239,2 445 ,6 654.1

-1 1 0 -2 -3 1 -1 -2

2 2 i 4 6 3 I 4
400 0.9810 0.9953 1.0245 1.0662 39.4 2u3,5 u49,3 657.2
0.9811 0.9951 1.02u4 1.066L 39.7 2u3.5 4u9 4 657 .4

-1 2 1 -2 -3 0 -1 -2

2 2 It n 7 3 1 m
450 0.9788 0.9933 1.0222 1.0634 un 2 247.8" 453.1 660.5
0.9788 0.9932 1.0222 1.0636 uh .6 on7.7 u53,2 660.7

0 1 0 -2 - 1 -1 -2

2 2 mn m 8 u L I
500 0.9766 0.9913 1.0201 1.0607 49.0 252.0 256.9 663.8
0.9766 0.9912 1.0200 1.0609 49.3 252,0 457.0 664 .0

) 1 1 -2 -3 0 -1 -2

2 3 i 5 8 i 4 u
550 0,97u5 0.9894 1.0179 1.0580 53.7 256.2 460.7 667.2
0.9745 0.9892 1,0178 1.0582 54,1 256 .2 460.8 667.3

0 2 1 -2 -4 0 -1 -1

3 3 n 5 8 4 I 4
600 0.9723 0.9875 1.0158 1.0554 58.4 260.4 44,5 670.5
0.9723 0.9873 1.0157 1.0556 58.8 260.4 464 .6 670.6

0 2 1 -2 - 0 -1 -1

3 3 n 5 9 y y n
650 0.9703 0.9856 1.0138 1,0528 63.1 264 .6 468 .3 673.9
0.9703 0.9854 1.0137 1:0530 63.5 264 .6 468 .1 874 .0

0 2 1 -2 -l 0 -1 -1

3 3 m 5 10 n i 5
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Volume cm3/g
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Enthalpy J/g

tC
0 50 100 150 0 50 10¢ 150
p bar .
700 0.9682 0.9838 1.0117 1.0503 67.7 268 .8 L4L72.1 677.3
0.9682 0.9836 1,0116 1.,0505 68.1 268.8 472.1 677.3
0 2 1 -2 4 0 0 0
750 0.9662 0.9820 1.0097 1.0u479 724 273.0 476.,0 680.7
0.9662 0.9818 1.0096 1.0480 72.7 273.0 476.0 680.7
0 2 1 -1 ~3 0 0 0
3 3 L 5 11 6 5 5
800 0.9642 0.9802 1.0078 1.0u55 77.0 277.2 479.8 684.1
0.9642 0.9800 1.0076 1.,0u56 77.3 277.1 470.8 684.0
0 2 2 -1 -3 1 0 1
3 3 b 5 12 7 7 7
850 0.9622 0.9784 1.0058 1.0432 81.5 281.4 483.6 687.5
0.9622 0.9782 1.,0057 0.0432 81.9 281.3 483.6 687 .4
0 2 1 0 -4 1 0 1
3 3 U 5 12 8 8 8
900 0.9603 0.9767 1.0039 1.0409 86,1 285.5 ug7.u4 690.9
0.9603 0.9765 1.0038 1.0409 86.5 285 .4 ug7.3 690.8
0 2 1 0 -4 1 1 1
3 3 L 5 12 9 9 9
950 0.9584 0.9750 1.0021 1.0387 90.6 289.,7 u91.,2 694 .4
0.,9584 0.9748 1.0019 1.0386 9l.1 289.,6 491,2 694 ,2
o) 2 2 1 -5 1 0 2
3 3 L 5 12 10 10 10
1000 0.9566 0.9733 1.0002 1.0365 95.1 293.9 495,1 697 .8
0,9566 0.9731 1.0000 1,0363 95.7 293.7 495.,0 697 .6
0 2 2 2 -6 2 1 2
3 3. L 5 12 12 12 12
(a) equation (9) value
(b) 1IST value
(c) equation value - IST value

(d)

IST tolerance



+%¢

.01
10
20
30
40
50
60
70
80
80

100

110

120

130

1m0

150

p bar

0.006108
0.006112
0.012271
0.,023368
0.0u2418
0.073750
0.12335
0,19919
0,31161
0.47358
0.70109
1.01325
1.4327
1.9854
2.7011
3.6136

b.,7597
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Table U4

Comparison of saturated liguid values with

1983;IST and its tolerances =

Ve cms/g

eqn(10)
1.00013

1.00013
1.00032
1.0018
1.00uy
1.0079
1.0121
1.0171
1.0227
1.0290

1.035¢9

1.0434

1.0515

" 1.0603

1.0697

1.0797

1.0905

Ve cms/g.
IST
1.00021

i1.00021
1.0004
1.0018
1.0044
1.0079
1.0121
1.0171
1.0228
1.0290

1.0359

1.0435
1.0515
1.0603
1.0697
1.0798

1.0906

Av

he J/g
eqn(10)
-0.0415

0.000611

42,00

83.91

© 125,74

167.52
209.3
251.1
293.0
334.9
377.0
819.1
461,14
503.8
546 .4
589.1

632.0

he J/e
IST
-0.0416

0.000611

© 4,99

83.86

-125.66

167.47
209.3
251.1

293.0

- 334.9

376.9
419.1
461.3
503.7
546, 3
589.1

632,2

Ah

Tol.
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Table 5

Comparison of saturated liquid values

3 3
o K
e p bar ve em /g Ve om /g hf J/g he J/g st/g K st/g K cpr/g K cPfJ/g

(9) eqn(l0)  (9) eqn(10) (9) eqn(10) eqn(l1l) eqgn(10)
0 0.006107 1.00018 1.00013 -0,0ul16 -0.,0415 -0.0002 -0.0001 4,218 H.214

.01 0.006111 1.00018 1.00013 0.00631  0.000611 0.0000 0.000C 4.218 L4.2l4

10 0.012277 1.00039 1.00032 42.00 42,00 0.1510 0.1511 4.193 4,197
20 0.023378 1.0018 1.0018 83.86 83.91 0.2963 0.2965 4,182 4.186
30 0.0u2u433 1.0044  1.0044  125.66 125,74 0.4365 0.4368 4,179 4,180
4O  0,073774 11,0078 1.0078 167 .45 167 .52 0.5721 0.5724 4,179 4,177
50 0,123383 11,0121 1.0121 209.25 209.30 0.7035 0.7037 4.181 4,179
60 0,19924 1.0171 1.0L71 251.08 251,11 0.8310 0.8311 4.184 4,183
70  0.31166 1.0227 1,0227 292.96 292.98 0.9548 0.8549 4,190 4.189
80 0O.473B4 1.0290 1.0290 334,90 334,92 1.0753 1.0753 4.196 4,197
90 0.70112 1.0360 1.0359 376,93 376 .96 1.1925 1.1926 4,208 4,207
100 1,01325 1.0435 1.0434% H19.05 419.11 1.30869 1.3070 4.216 4,218
110 1.,u4326 1.0616 1.05156 461.30 461,38 1.4185 1.4187 4.229 4.231
120 1.9853 1,0603 1.0603 5038.7 503.8 1.528 1.528 4,245 4,244
130 2.7011 1.0697 1.0697 546.3 S546.4 1.634 1.635 4,263 4,259
140  3,6135 1.0798 1.0797 589.1 589.1 1.739 1.739 4,285 b,274

150  4.,7597 1.0906 1.0905 632.1 632.0 1.842 1.841 4,310 4.289



1000
8OO
600
500
450
400
380
375
374
373
372

371.
371.

1000
800
600
500
400
300
280
260
258
256

1000
800
600
400
200

0

p bar

2806 .3
2011.1
1174.5
T43.7
530.1
323,7
245 .4
226.7
223.1
219.6
216.2
214.5
213.8

9097.6
6837.5
4u73.6
3234.6
1947.8
621.6
356.4
a4.,1
68.0
2.1

21433.5
17465.0
13334.1
9095.2
4698 .4
1118.5
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TABLE

8

Boundary between Regions I and IT

dp .0005 p h J/g dh
.002645 1.40 4127.9 .000615
.002645 1.0 3501.2 .000615
. 002645 .59 2789.1 .000615
. 002645 .37 2u32.,4 .000717
.002645 .27 2248 .2 .000715
.002594 .16 2051.3 .000697
-.001440 12 1966.9 ~-.000247
.000809 .11 1946 .4 .000272
.002633 A1 1938.5 .000612
. 00400k .11 1933.4 .000931
.002627 Al 1928.0 .000611
-.000563 11 1925.2 -.000131
-.002612 11 1924.0 —.000607

Boundary between Regions II and IIT
-.005620 4.5 4267.2 -.001108
-.006650 3.4 3470.7 -.001275
-.008117 2.2 2647 .6 -.,001510
-.009096 1.6 2221.4 -.001663
-.0010289 .97 1782.3 —-.001842
117417 .31 1323.7 .014313
.117487 .18 1229.5 .014326
.117195 . 047 1134.2 .014298
.117167 .034 1124.6 .OL4295
.117138 .021 1115.0 014293
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Appendix 1

Summary of equations

(1) Vapour pressure of saturated water A

0
11 AL
Ing = L' A, T, (q)
Ty 1 A
- 2
1 0.4 A3
where q = {2(5-— 0.95) _AlQ}/AlS Au
6 = TI- and g = B .
cl Po1 5
A6
(2) Specific volume of saturated liquid BO
10, B
% = I B, T, () L
{20
i B2
where r = 1_2(1_1:'_!:__)0.4 Ba‘
cl
B
and X = ;;L- 4
cl B5
(3) Saturated liquid a equation N
. 11 €
—2 = ptc, T, (w)
Pe1 Vo1 im0 i )
1 0.5 CS
where w = (2(5 - 0.99) '012)/(:13
C
m
C5
C6

(4) The saturation properties hf and s f are

h,f=(1+T

1
~™
=z
I
H

T

[s 4,

t

(5) Atmospheric volume equation D

9 D
a ¥ 1Eo By T3 (@

where Q = t/75 -1

and coefficients

It

-8.119
5,132
-1.184
1.177
-5.157
-1.468

5.362

4,382
~1.107
-5.275

2.173
~-L.754

5.125

2,262
1.164
-1.529
~6.087
~-1.233

6.2uU6

364 2

255 5

240 7

959 2xl

BU2 0x1Q
953 7x10°

281 8x10°

053
796

102x10°
547x10
636x10

009%10

821
542

470x10
62ux10
320x10

u61x10 "

0

2

2

2

3

2

2

2

m

= 6.365 58ux10" "

-1

3

3

i

1.245 539 9x10

m

4,915 428 8x10 >

4,630 256 5x10

1.530 133 4x10"°

-2.095

1.452

-0.848

-3.765

1.123

-2.458

-1.425

-1.304

8,949

-2.309

1.352

-5.309

-2.335

1.274

-1.074

5

453 0x10°

207 17

789 53

370x10"°

345%107°

266x107°

530100

721x107°

91ux10™°

905x10™°
65810
329x10™°
760x10 0
631 9

631 9

evaluated from the following equations:

v

+

11

dp
ar

T o
Jp T2 4T

t

1.035

337 8

4.586 415 9x10

-2

9.803 300 8x10"3

-5.132 654 1x10

-4

2.855 835 5x10

n

n

n

n

n

-5.758 072 5x10

5

1.809 699 1x107°

4,850 423 9100

2.381 440 1x10™°

~1.566 218 (leO‘6
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(6) v-p-t compressed water equation

5 3 . .
Y214+ 3 & a, . t(p - p, ) ___(10)
Ya i=0 4= M
d . = -5.09769%x10 > d_ = 8.2627x10°° d_ = -9.109x10 13
or =~ o2 = ¢ 03 : ‘

B -7 _ -10 _ -14
dj; = 3.71999x10 dy, = -1.3794x10 dj, = 2.626x10

_ -9 _ -12 - -16
d,, = -7.01760x10 dy, = 3.4032x10 d,y = -8.913x10

_ -11 _ -14 _ -17
d;, = 6.00227x10 dy, = -3.6432x10 dya = 1.1467x10

_ -13 _ -16 - L -20
d,; = -3.09041x10 d,, = 2.0836x10 d,, = -7.102x10

_ -16 _ -19 _ -22
de, = 5.93416x10 dg, = ~H.1744x10 dey = 1.4841x10

(7) h-p-s compressed water equation
m 3
- !
h= ifé jfobij Ti(x) Tj(y) — 9 The coefficients bij are given in Table 2

where x = (2s - 11,99)/12.01

i

and y = (2p - 1000)/1000

Defined constant quantities

T, = 273.16 %k
T . = 647.3 %k
cl
P = 221.2 bar
Vo T 3.17 cmS/g

All the equations to which reference is made in the text are reproduced
in this appendix for the convenience of the reader so that he is not required
to refer to the original papers.
The derivation of the saturation equations in sections (1), (2], (3) and
(4) below is described by the authors (9), section (5) gives the equation for Va
published already (12), section (6) repeats the equation of Kell and Whalley (11}

and section (7) gives the h-p-s equation of this paper.
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APPENDIX 2

Chebyshev polynomial

The function Tr(x) is the Chebyshev polynomial (or T-polynomial) of rth
degree with x normalised in the range -1 Zx 1. The first two T-polynomials
are T (x) = 1 and T. (x) = x,

o 1"

The remaining T-polynomials are calculated using the recurrence relation

Tn(x) = 2xT &) - T o ().
Hence T, (x) = %% - 1 3 To(x) = b - 3x ; ete.
In a Chebyshev series of the form
n
- \ 4
y—rzoarTr (x) (1)

the a,6 are the Chebyshev coefficients, and the prime indicates that the first

term of the sum is to be halved. Hence (1) can be written

1

= 3a_ +
y =za, T4

1 Tl(x) + a2T2 x) + ....anTn(x).

Summation
There is a simple method for the summation of a Chebyshev series, which

has the advantage of keeping round-off errors to a minimum.

The values bn’ bn—l’ bn—2’ ceenns bO are formed successively from
br =2 br+l - br+2 T A, bn+l = bn-|-2 =0
-1 -
Then _ y = 3(by - b))
Derivatives

On differentiating y with respect to X iIn equation (i) we obtain

1

VAT
o T r(x)

&
'I
LI e

where A = A + 2ra
T r
and A = A =0
- .
A description of Chebyshev polynomials is given in Chapter 8 of Modern

Computing Methods, 2nd edition (N.P.L. Notes on Applied Science, No.l6,

H.M.S.0., 1961 ).
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Abstract

Equations specifying the dynamic viscosity of compressed water and
steam are presented. In the temperature range O °c to 100 °C the location
of the inversion locus Gggf = 0) is defined for the first time with some
precision., The low pressure steam results are recorrelated and a higher
inversion temperature is indicated than that previously accepted. From
100 °c to 600 °C values of viscosity are derived up to 3.5 kilobar and
between 600 °C and 1500-°cC up to 1 kilobar. All the original observations
in the gaseous phase have been corrected to a consistent set of densities
and deviation plots for all thelhew corfelafioné aré given.

Although the equations give values within the tolerances of the Inter-
national Skelieton Tables it is clear that the range and tolerances of the
latter could with some advantage be revised to give twice the existing
temperature range and over ten times the existing pressure range at low

temperatures, A list of the observations used and thelr deviations from the

correlating equations is available as a separate publication.
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Introduction

The first Skeleton Table (1) of the coefficient of viscosity of water

and steam, covering ranges of pressure and temperature to 800 bar and 700 OC,
were published by the Sixth Intermational Conference on the Properties of
Steam in November 1964. This table was drawn up on the basis of observations
existing in 1962 and did not take account of work published later, in
particular that of Latto (2) and Ray (3) at the University of Glasgow and

that of Tanaka and associates (%) at the Resources Research Institute, Saitama,
Japan, In view of this and as recently as 1966 the author (5) reviewed old
and new sources of experimental work and by means of new correlating equations
extended the upper limits of pressure and temperature to 1000 bar and 1000 °c.
These new equations were marginally better than those appended to the Skeleton
Table, if only, because the transition from the compressed water region (< 350 °e)
to the supercritical steam region (> 375 °C)was improved.

The need to review yet again the current status of the viscosity of

water and steam stems primarily from the observations of Bett and Cappi (6)

and Horne and Johnson (7) on compressed water in the range O °¢c to 100 °c

and the high pressure observations of Dudziak and Franck (8) in the vange
_1680 to 560 °C, These works enable the upper pressure to be raised to

10 kilobar in the rvange O °C to 100 °C and to 3.5 kilobar in the range

100 °C to 600 °C. At the same time it was decided to take the opportunity

of revising all the older, and recognised, high pressure steam observations

and relating them to one another throﬁgh a consistent set of densities

derived from the formulation of Juza (9). Account has also been taken of

the measurements of Rivkin and Levin (10) in the low pressure region (< 300 °e)
although the viscosity of superheated steam between 300 °c and #00 °C remains
ill-defined due to the absence of experimental work.

1. Compressed water at sub-critical temperatures (< 375 °c)

The need to recorrelate the observations in the liquid phase stems from
the recent work of Horne and Johnson (7), Dudziak and Franck (8) and Bett

and Cappi (6), the latter contribution being especially important. Unfortunately,



o
these new observations are not of equivalent quality or quantity; in the
temperature range being considered there are only 20 effective observations
from the work of Dudziak and Franck and an uncertainty of about + 5% has to
be attached to each. The observations of Bett and Cappi cover the temperature

range from O °C to 100 °C and up to 10 kilobar whereas the observations of

Horne and Johnson cover only the temperature range from O °c to 20 °C and up
to about 2 kilobar, Further, the observations of the former, made with a
falling cylinder viscometer, exhibit a higher reproducibility than those of
the latter, made with a rolling ball viscometer. A preliminary examination
of these two sets of data in their common range from O °c to 20 °c shows
that agreement is best at the upper and lower limits of temperature and that
the greatest discrepancy occurs in the middle of the range.

The development of a new correlation for the liquid phase has to vesolve
a numberof problems which may be summarised as follows:

1) The new data, referred to above and discussed very briefly,

is relative. In the works of Bett and Cappi and Horne and Johnson

b

the experimental results are expressed in the form 1 where ﬁp is . i
the viscosity at some pressure, p, and Hy is the viscosity at atmos-
pheric pressure at the same temperature. Dudziak and Franck related
theilr obéervations to the values at 800 bar in the International
Skeleton Table, which does not now reflect the current state of
knowledge.

A new equation for the one atmosphere - saturation line has to
be devised since neither that appended to the IST nor that derived
by Bruges (5) reflects the recognised values with sufficient precision.
Any new equation must reflect the value of 1002 x 10_6 kg/m s for the
dynamic viscosity of liquid water at one atmosphere pressure.

(2) The new data has to be merged with the older data which was
veviewed by Bruges (5) and includes the following leading ﬁérks,

Swindells, Coe, and Godfrey (11l), Schmidt and Mayinger (12),

Moszynski (13), Tanaka (4) and Weber (14).
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(3) Towards the critical point the values given by any new
correlation have to coincide more or less with the correlations
of Rivkin (15) which, in turn, agree very well with the IST
values. Fupther, Rivkin estimates the value of viscosity at
the critical point itself to lie between 40,2 x lO_Gand 41.8 x lO—ekg/m s.
Since equation 6, below, gives a value of 41.4 x lO-6 kg/m s
at the critical point this was accepted as the end value for the
saturated liquid line, thus relating the liquid values to the
vapour values,

) The data of Bett and Cappl define very clearly the locus
of the quantity %%f = 0. Previously, the inversion temperature,
Qo’ was assumed to be independent of p, and, in fact, Weber
estimated that viscosity was independent of pressure at 32 °c
or 305 OK. The value was used by Kestin (16) in a correlation
appended to the Skeleton Tables and later Bruges (5) used a value
of 311 OK, in both instances the viscosity was expressed as a
function of pressure and temperature. However, it is not possible
to modify the previous approach<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>