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CHAPTER 1

INTRODUCTION

1.1, Outline of the Problem

There are many problems in science in which
experimental data may for theoretical reasons best be

represented by linear combinations of exponential of

the form
hg)
Y(ti)/\-/ f(ti) = 2 ICI‘ exp ("'o‘r ti)
r=1 A

(1.1.1)

in which y describes a decay-type process and t
represents measurement made at equally or unequally

spaced time intervals,

These problems are classified into three cases

.(Willers, 1948):

(i) whenever decay-type processes are involved,
such as radioactive processes, e.g. the
absorption of gamma rays by lead, quoted as
an example in Guest (1961). The probleums
also arise where radioactive material is
used to trace the behaviour of a biological

syétem°




(ii) in decay-type process with damped oscillations,

such as charging processes,

(iii) with phenomena, which arise by separations of
purely periodic processes whose periods do
not have integral ratios, such as brightness
fluctuations of variable stars, or oscillation

processes,

The features of these cases are, in the first
case the exponents o(r are all real, while in the second
and the third case, they may be complex or purely

imaginary.

In many cases we do not know the zero line to
which the procesé decays, so there will be a term
t = 0, which belongs to the value &{ = 0, so we add

an extra term (constant) to (1.1.1), which becomes
n

yiar 3 = cg + E c,. exp (- a(rti), for

=1

i =1(1)N and N > 2n + 1

It is desired to fit the set of equations (1.1.1)

l, tzno--ltN where

N > 2n, In determining the parameters ¢, and o‘zﬂ

to N observations of y at times t

where these parameters or their combinations have




physical or biological significance, it is not
sufficient that the set of equations (1.1.1) merely
approximate closely to the data, but it is necessary
that the parameters be accurately estimated and

that estimates of the errors of the parameter be

.obtainedo

Our interest is the investigation of the
decay-type problem. This problem is demanding
much attention in t@e medical field especially in
the use of tracers %g biological systems (Berman
and Schoenfeld, 1956; Glass and Nordin, 1963;

. Glass and De Garreta, 1967; Robertson, 1962).

An experiment usually involves injecting radioactive
tracers in biologicél system, and then determining
the amount of radioactive substance (yi) as a
function of time (ti). From the collected data

one tries to draw conclusions about the system;

that is, the number of compartments (exponents)

involved, how they are interconnected and how

accurately they can be estimated.

A two compartment systeﬁ which deals with
the use of labelled uric acid to estimate the

compartment size and turnover of uric acid in man




(Glass et al., 1968) has been investigated. The

details of this study will 'be given later.

The major difficulties in exponential curve
fitting problems are that we are dealing with a series
of mon-~linear equations and that the data are only
approximating the function y(t) 6ver a finite range
in t. Lanczos (1957), has pointed out that there
are a numbef of simple and straightforward mathematical
solutions to the exponential fitting problem, but
unfortunately enormous practical problems arise when

they are applied to experimental data from physical

.or biological sources, The main reason for this is

the exceedingly noneorthogonal behaviour of the
exponential functions,. In most cases the accuracy
required is far beyond that usually available. The
high correlation between the exponential functions
makes the matrix involved in estimating the required

parameter illeconditioned (see Chapter 5),

In practice it is found that in most biological

systems the noneorthogonality of the exponential functions

is evident, i.e. that the data is represented by the
equation (1.1.1) in which the ©&{*s do mnot differ

from one another by order of magnitude, If this dis




the case that the &{'s do differ from one another,
then the exponents are reasonably orthogonal, and the
solution can be determined to a feasonable'degree of
accuracy. Indeed the "peeling off technique!" is
quite satisfactory in this case (see Section 1.3) and

can be applied.

1,2, The Two Compartment System

Let Vi be the amount of
bstance in compartment i and )
su . p -—“—2-]_&-\.
}.V .$ t be the amount of v vl
i, J Py .
substance going from compartment 1 13¢

i to compartment j in time S t,
further let v, be the amount ' 01
of labelled substance in

compartment i,

Then if the fraction of substance going from
compartment i to jJ is the same for labelled or
unlabelled substance, Z-J.vjﬂ’ t is the amount of
labelled substance going from compartment i to j

in time % te




Hence considering labelled substance, we have

B _ _ _
v:L + 12v2S t ?‘lelgt %‘lvl t = v1 +Svl,

2+ )v%t-— 7‘v2$t=v2+8v2

v 21V1 12

and VO + %lvl& = VO +SVO,

from which we obtain

dv

-1 = 12Va = ( '731 MR YRALTE
dt
dv, _ D P,
2 = 21¥1 - T2V2>
dt
dav
0 = 01'1
dt

These equations form a set of first order differential

. equations and their solution may therefore be written

as

vi(t) = A;,; exp (- D(l t) + A, exp (-0(2 t),

(r1.2.1)



where

A - %1“’ >21 - ol Ay
1

7E
(1.2.2)
and
Ay, = ( Py + él" A 1)a,
P
12
(1.2.3)

Usually the ekperimental data are measures of
the concentration of wmlabelled substance v,(t) as a
function of time, Then it is required to fit a sum
of exponential to the data, and so obtain values of

{

the constants A and 0(2 and from these to

o1’ %020 B

determine the parameters of the model >Bl’ 7}2 and
él’ A more detailed description and discussion of

the model will be given in Chapter 7.

In this thesis we mneed to provide some fit if
at all possible, Frequently an experimenter would

know ratios of exponentials involved and would Kknow



the accuracy of observations, in which case our

objectives are:

(2)

(b)

(c)

(a)

- (e)

1.3,

each
idea
will

data

to devise a satisfactory method to fit

exponentials,

to determine accuracy of results corresponding

to given accuracy of data,

&8
to see any modifications, ime. change of

- time interval could make fitting more accurate,

to see the significance of weighting factors

in least-squares applications,

to determine the number of exponents from

a particular set of data,

Previous Methods

A number of fitting procedures are possible,
resulting in different solution, The main

is to establish a practical procedure which
produce the best approximation for fitting the

of each kind of experiment taking into

consideration the type of experiment and also the

statistical errors of the fitted parameters,



We will now describe two existing methods.

(1) Graphical Peeling Off Method

This method (Perl,.1966) is the most common one
and-is used to resolve a decay curve into its components
using a graphical ﬁrocedure° Here the data are plotted
on semi~log paper and the curve resolved by repeated

subtraction of straight lines,

The method is certainly the easiest to perform,
it may be considerably refined by using a least-
squares procedure to fit straight lines, and some
error estimation becomes available, The difficulty
in this method is inhergﬁkd in the subtraction
procedure where some of the new generated y's become
negative and their logs become imaginary, although
when the decay ratios of the exponentials are widely
separate (low correlation), so that the effective
range of values of t determine only omne component,

this does not usually occur,.

(ii) Prony'!'s Method

Another mathemati%ﬂappfoach to this problem

“has been suggested by Prony (Hildepbrand, 1956),

In this method the function is given in equidistant



values (v,,t;), where t, = t_ + ih, for 1 = 0(1)N.

If we write x_= exp(—alrh), r = 1(1)n, then

the set of equations (1.1.1) will become

PO | i i
i—alxl"'azxzoocoooo.-. +anxn,

(1.3.1)

where a_=c_ exp (- & _t
T r

r O)'

If further, we let X, be the roots of the

equation

x +Vx UD....CBOO'S....’!‘Vn:o,

(1.3.2)

then the observations fi are related by the difference

equations

iv +f. V + S & & & & 8 C 0 & 0 + l i+n

fi+n+1
(1.3.3)

where i = 0(1)N - n.
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There are thus (N - n + 1), such equations
which can be solved for the n quantities V9 Vpoesaos

A using the method of least-squares provided

N>/2n-— 1.

The algebraic equation (1.3.2) may then be
solved to determine the values of X and hence
D(r(‘*r = - 1n xr/h), and finally the values of the
coefficients from (1l.3.1) by using least-squares

method.

The limitations of this method are that it
requires equal intervals of time and, more important,
that the errors in the observations will add errors
in the difference equations, The results from
Prony's method are usually erratic (Hildewbrand,
1956), the o('s were often negative or complex

instead of positive values needed by the experiment.

1.4, Least-Squares Solution

Let us assume that we have N+1 pairs of
measured values (yi,ti), where i = 0,1,...,N,
We know it is rarely possible to fit these values,

so we expect to have a set of residuals or



12

differences

<
|

vy, - £(t,) f 0
| o (1.4.1)

. between the observed values and the calculated omnes,

Some measure of the residuals and an estimate
of the unknown parameters are required to fit the
measured values, There are different approaches to
this problem such as the least-squares, the maximum
likelihood ana the minimum variance methods. These
methods are described in many text books including

Guest (1961), Fraser (1951), Scheffe (1958).

If we consider that ¥ 's are elements of a
vector, then as Froberg (1964) has mentioned, we
want to find an apprdximation that makes these
elements small, so the most natural measure is some
characteristic of the vector norm. Then we get
the principle that the approximation should be
chosen so that the norm of this residual's vector
is minimized. The norm we should use depends
‘on the nature of the problem., If we use the

Euclidean norm, we get the least-squares method



but if on the other hand we use the maximum norm,

we obtain the Chebysev approximation method.

For simplicity and because of statistical
considerations (see 2.3) we will use the least-squares
procedure in our investigation, The least-squares
principle which was proposed by Legendre (1805) and
subsequently by Gauss (1809) and Léplace (1811),
states that "of all poésible solutions, the most
safisfactpry is that which renders the sum squares

of the errors a minimum". -

If we let the set of equations (1.1.1) take

"the form

1
Yy ~7 fi = Z Co ¢r( o‘r’ti)
r=1
(1.4.2)

and assume that the functions ¢r(a(r,ti) are
completely knowqﬁmwﬂﬁor N values of t, we have a
set of N linear equations. If N is equal to mn,
then there is a uniﬁue solution (Lanczos, 1957)
providing the determinant of-tﬁe system is not
equal to zero, There is one set of values Cqo

Chy essy Cp that will satisfy the above equations



If N is less than n then there are less equations
than unknown parameters and in general there is an
infinite number of solutions, each of which represents
a curve passing through the given points, In this
case the problem ismcompletely determined and we can
not find a single best fit, unless we have some extra

information.

If N is greater thanm n, then in general there is
no solution, In this case the least~sqguares makes
it possible to have a best solution for the system,
The problem in these circumstances is exactly the
linear regression problem which has been studied in

many text books, e.g. Guest (1961).

On the other hand if the functions ¢r(o(r,ti)
in (1.4.2) are not known, where these-functi&ns are
non-~linear in the unknown parameters p(IShm\@he
solution of these equations introduces a more
difficult problem, This can be solved by changing

the variables or using appfoximation methods based

on Taylor's series expansion (Guest, 1961),

We may note that in the case of changing the
variables, the transformed observations must be

weighted even if the original observations were of

14



all equal weights (Chapter 4), We shall refer to

these weights and their estimation in Chapter 4.

The important features of the nonelinear work
will be presented in Chapter 2 where two methods
based on some modifications of Newton~Raphson procedure
are discussed and applied to the exponential fitting.
We are able to provide.an estimation of the standard
errors of the estimated parameters. The study of
special cases and uniqueness for some other cases

are included in Chapter 3.

The most important point in our objective stated
in Section 1,1, is the modification in spacing of the

observations, which is analysed in Chapter 5.

A description of the programs involved in the
calculations of the numerical work is given in

The practical application of this research

is given in Chapter 7.

15
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CHAPTER 2

LEAST=SQUARES SOLUTION

' n
2.1. General Formulation for y, .o f;, = E c. ¢>r(o(r’ti)
. r=0

The fitting of exponentials may be treated as a
case of the general problem of fitting observations to

a function
n
YiN fi = Zr—o CI‘ ¢)r(o<r’ti)’

involving a linear combination of functions ¢r(o(r,ti)
each containing a parameter o{, Proceeding in the

normal way of least-squares, we set
n 2
S = ZEL— wi[yi -2 o Pl ty) ]
i=1 _ r=0
(2.1.1)

and to determine the unknown parameters cr and o{ T

we require to minimize S obtaining

N D
,bs =~ 2 }:i:-_-__::wi {Yi B chr qbr(dr’ti}éz(dS’ti) -

7O g

(2.1.2)

(



ht4

17

and

";:(S = - 2 °si-wi[ Yiv - Z_Cr ¢r(dr’tiﬂ7ﬁs,(e<s,ti) .

S

(2.1.3)

where ¢s(°‘s’ti) = ‘_—;——bo—‘—-— sbs(a(s,ti), for s = 0(1)n,

We have a set of non-linear equations to solve
for the parameters Dlo,lxl,..., a‘nf The presence
of the 8{ 's in non-linear form presents great difficulties
in solving the problem., The equations must be solved
iteratively, From the review of Powell (Walsh, 1966),
there is a number of iterative techniques for solving
the non~linear problems. The nature of the problem
and what information we have got about it, will determine
our.choice of®an iterative procedure which could be

possible,

The solution of the ﬁon—linear problem is no
longer necessarily unique and although in most practical
cases, we have found the solution unique, we cannot
prove this, Some comments on uniqueness are given in

Chapter 3.
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We are going to use the three methods in our
solution; two of them are based on the use of
generalized NewtoneRaphson iterative technique,
which‘is given in many text books including Modern
Computing Methods (1962); The third method is

developed by Berman et al. (1962),

(i) 1Two Stage Minimization Method

In this method, we first minimize S (equation
2.1.1) with respect to the c's (equation 2.1.2),
On substituting the values of the c's in S, we obtain
: which is a function of the Xrg only. This may

therefore be minimized with respect to the & o

giving

¥
Vs _ s L, ®s D °q _ s ,
ok, B, R,
since
085 _ o, for all 2.

Do
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We therefore have a set of non=linear equations

to be solved only for the o(r, namely

n N) / . N /
%:acr 23'_':]'_Wi ¢r( dr’ti) gbs( ’(s’ti) =i:=1'wi ¢r(dr’ti)yj

where the dash denoted differentiation with respect

to o‘r’ and in which the c, are functions of the

“ 0

r

These equations may be solved iteratively by

Newton-Raphson as will be shown in detail later,

(ii) One Stage Minimization Method

In this method we estimate the coefficients
in the same way as in the first method, then

applying Newton~Raphson method to 2(n+1) equations,

namely

1§__=-ziwi[y. Z.cfz(d ]96 (K grts),

Qe
s

(2.1.4)




and

J
wn
1
1
M=
B
1
s
I
™
HO
*
%
e—J
N
X

’Bds i=1

(2.1.5)
for s = 0(1)n.
giving
Vs Vs G, s («
e C + —I’.’:O,
D¢ c c ¥ :Z:j “Qc 0k

8 r=0 8 r r=0 s r

(2.1.6)

and

%C + - ’328 .gdr= ]
L e 0L .

for s = 0(1)n.

By solving these equations, we can determine
the corrections Sc's and sd's. Then adding the
| %K's to the initial values of the o 's and iterating

until the maximum correction is very small.

20
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(iii) Berman's Method

In this method (Berman et al., 1962), the

coefficients are estimated from the set of equation

(2.1.1) by using the least-squares method as we
did in the previous method, then determining the
correction for the parameter by using a Taylor
expansion and the least-squares method in the

following way.

n
Considering f; = :‘&:_,:0. c., ér(dr’ti)} the
solution corresponding to a leaste-square fit, fio

may be related to the calculated function fi by

2n+1)' 2(n+
0 T '6 1
B0 T B 2 R (5

=,
nn
ol ®)

+ e 6 e 0

(2.1.8)

where

Ao s

xo to xn = co to cn and xn+1 to x2(n+1)



Approximating (2.1.8) with only the first order

. term, we get

2(n+1)
0 ﬁ)f
f - f, = -2-: ,
i 1 j=0 Fax Sx

then applying the least-=squares procedure to the new

"sum squares of residuals

'NZWi[Yi - £ —Z(nf) R 0 x ]

1 JO ?X

e
[}
ot

(2.1.9)

where vy is the best available estimate for fi

A set of normal equations may be generated
from equation (2.1.9) and a least-squares solution

for the sxj ‘may be obtained.

22



2.2, Formulation for Exponentials

We will now give details of the methods as they
formally apply to exponentials, expressing these in

matrix terms which are appropriate for computation.

o
The sum squares of the residuals which will

L3

s
now be minimized aomse

N M)
S =Z.wj¥ri - Zc:rexp(—.:{r ti) ]2, where o(o?,o,

i=1 r=0

n
M=
Z
4p

j=1 11 ° (2.2.1)

It will be convenient to use the following

notations: -

N N
8, = iz—]_wi exp(=( '(r +"s)ti)’ ar'-'-'EWiYi exp(-&’(r ti)
. N N
br,s = j_leiti exp(~( a(r +e(s )ti), br = izz;witiyi eXp(-o(I t

23

*

)

i
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d
r

N N
Y .t ? , Y b2 |
S =.i—1witi' exP("("Jr +el )t;), d.= i__lWiti v; exp(=ol, ty),

N : N
g, = iz_lwivi exp(—t’(r ti) sy P, = Zwiviti eXP(""(r ti)’

N .
. .
and q = E{lwiviti exp(-a(r.ti), for r and s = 0(1)n.

We may note that ﬁhen r f s

iéjzlﬁ = = b 0% = - b :B_EELE = = d
- r,s '’ - r - - r,s
’aD(r '3a(r r ¢
ra];
and (a L. dr .
&r

(i) Using Two Stage Minimization

The unknown parameters Cy» Cq2 ees, C©  MOW can
be determined from the set of equations (2.1.2), which

can be written as

Ac = a, (2.2.2)
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where A is a square symmetric positive definite matrix
with elements a, v © and a are vectors with elements
L

c. and a_ respectively.

Applying the generalized Newton-Raphson procedure

to the set of equations (2.1.3), taking into account

the variations of the cn. with respect to the 0(r, we
obtain
n n n n n
- - o4
R L A LA 2 2N
s=0 sS=0 _s8=0 k=0 s=o0

dc

=]

= b ’
’af(k * «k r

(2.2.3)
for r = O0(1)n.

AR

(a ’
dk

(2.1.2) with respect to the X 's, then we get

To determine we differentiate equation




ify :;:k, then (2.2.4) becomes

n

EE:T c L
ar’s —’.-_?i..._s_.. - br’k ck ? e -

: N, ’
but if r = k, then (2,2.4) becomes -

n
S ——— .
s=0 ’a D( k s=0

. (2.2.5)

It will be convenient to express the set of

equation (2.2.3) in matrix terms,

(ck - Z - BH) §A&

il
I
o

(2.2.6)

where C, B and H are square matrices with elements

>
b and h _ respectively; h = S

d = 2
r,s’ "r;s , r,s "b’(r

and H is determined from the set of equation (2.2.5)

which is (in matrix terms) AH = BK - V, where K and
V are diagomnal matricés with elements c. and P.

respectively; .Z is a diagonal matrix with element

’ n
“© %s - T _ -
E ay i b,s% = Pr,x°% - Px =

0

-
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qr,COA_(the correction vector) and P are vectors with

elements Sp{r and P_, .

Equation (2.2.6) may be solved to determine the
correction vector gﬂl.and this will be added to the
’ bhe mibad
fimieebrod vector offvalues of the o{'s and the iteration

is repeated until the maximum absolute value of S is

very small,

(ii) Using One Stage Minimization Method

\
The coefficients are determined from equation

(2.2.2). For the corrections of the coefficients

.and the exponents, we have

0s

Qc = Z(ar’o CO + al’lcl + e 00 eea + a ,ncn - ar),
T .
(2.2.7)
kg D 23
=2 br r '’ =2 br s’
@ 2 ’ ?c 0 ’
r r s
s = 2(b_ - c_b (b. .cn + b_ .c
/Bls’&* - T T,r r,0°0 r,l 1 Foeee #
r T

) ),

c
r,n n



and

%

DR DA,
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1l

- 2 c b ’
S r,s

= - 2 Cr(br,oco + br,lcl + soes + br,ncn [nd br),
(2.2.8)
= 2 Cr( dn,r r dr,OcO + dr,lcl + eea + d ,ncn"dr)
= 2 c_c. d , for r and s = 0(1)n.
r's r,s

We may substitute these values into the equations

(2.1.6) and (2.1.7), then we obtain

X 5;¢==z, (2.2.9)



where X is a square symmetric matrix with elements

2
X | = 2 °s x is a vector with elements c
ik ?J{fbxi:/
’ A
°0 ey CI’]’ p(oy 0(1:~ LEC LN

l, Cl!
n’ S X is a column vector

for the corxjections with elements (a' Co» %cl, eeoy

$cn, Gl or $& 15 o+es8  and z is the column

vector with elements z,_ = - :g S for k and j
| *k
= 0(1)(2n+1), and can determine the corrections c.,

and %k& from these equations and proceed as we did
r .

in (i).

(iii) Using Berman's Method

. The coefficients are determined from (2,2,2) .
as in the previous methods, To determine the

corrections, we have
n

£, = I c exp(.- A _.t,), for i = 1(1)N

1 r=0

Differentiating fi with respect to . and OLr, we get

. :"’a fi
e,

= ot exp (-ol{fti)o

= G%P;v{('_-drti) and W = - o i

29



30

Substituting these values in equation (2.105), we

obtain
N ' n . 2
R =E Wi‘:yi - g(l - tiSdr)qr + S c. exp( - o(r,ti)]

(2.2.10)

Applying the least-squares method to equation (2.2910),

we get

> - N n - - |
cZw...- - t. 84 Je+ Qc exp(-d t.
D(5d,) "o il 2 (s S, exp(-A ¢
exp(—o{r ti) = 0

that is to say

n N ~ ; .
. SE:OSCS ;wi exp(-( &, + & )t;) - SZ; c S« Z- woty g

—
-

exp(-( &z +da)ty) =1 o




n N _ n
SZ—OSCS i-1 W:i.ti exp(=( dr + o s)ti) - g).cs S“sx

N
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i=1

for all values of r, where 25 and 25 are given
' Cp 730(r

by (292.7) and (2.2.8). The above equations may be

expressed in matrix terms such as

- Q 8q = h. (2.2.11)

where Q is a square symmetric matrix equal to

A . B
?
B C

5&1 is a column vector for the corrections, with

elements S Co,. s 01, ea e %Cn' - Cégoy — 01541)

o ey = cnge(n and h is the column vector with elements

1708 1 @8 1L @S 1. S
= 2 s = 2 3 eeey = O y 2 ’
ﬁaco ?c ' D c 0 '3‘&0
1
%01?8 ’ I I ] QS ’
DA e, YA

2 L
fwiti exp(~( o r e<s,)ti) B 2c_, 0«



AT,

Berman has used the approximations —— and
£ £ f Ao
At t D% T .
E:Z*~ instead of ———— and E;Z—m for his solution.
T Cr T

These approximations in fact are not reliable in the
sense that the errors in the observations will add
errors in the difference equations and this could
cause the ill-conditioning af the matrix which was

involved in the solution of the parameters,

It can be shown that all the three methods
ultimately converge at the same rate but that the

rejente
initial rates of conveﬁ?éﬁﬁmyary considerably,
This will be illustrated by the artificial_and
experimental data which we have fitted in Chapter

7o

2.3. Uncertainties in the Parameters

The least~SQuares solution of ¢ has the
following properties (Plackett, 1960, and Draper,
1966)«

(i) The vector c¢ which will minimize the sum
squares of the residuals does not depend
on any distribution properties of the

errors.

32



33

(i1) The elements of ¢ could be expressed as a

linear function of the observations Y9 yz,

¢ o 0y YN L d

(iii) If M is the variance-~covariance matrix of

the vector c, then

Moo= —S AT,

N -« (n+1)
where the diagonal terms of M provide the
variance of c, the off diagonal terms provide
the covariance between the elements of ¢ and

N-(n+l) is the number of degrees of freedom,

(iv) The least-square estimate of ¢ is better
than-any other unbiased estimate of ¢, in

the sense that it has the least variance.

To justify (4iii), let us consider equation

(2.2.2) which is
Ac = a = EWy,

wvhere A = EWE and E is a matrix with elements

/
e ; = ©Xp (- o(sti) for s = 0(1)n, E is the

transpose of ‘E, W is a diagonal matrix for the
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weights with element Wy and y is a column vector for

the observation y,. From (ii) we have
' -1 -1 -1
0r= Aro aO+Arl a1+ teaeo e e +Arn an,
N
I P R :
- i_l WiYi[ AI‘O uo + Arl ul + s e a8 cse + Arn ug’
3
= W.V.Z_,
jog 1i7iTr
where
n
-1
u, = exp(- & t,) and z_ = ZS—O AL Ugs

. s N 1 5 Eimes
Then the variance of c * Z wf %, # variance of
1 - i=1
3 . R . F .
w , 1f z 4is independen f vy . .
i Yi T 19 t of y's and WSy, is

=Y

calculated with equal weights.

-1

Now c A a .

-1 =1l E
AT EWy = (AT BW?)(W2y),

il

then WiZ, is equal to the diagonal elements
i=1 . .
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S T NS, B | -1\
of (AT"EW?)(ATTEW?) which is equal (AT "), hence

variance (cr) = A"t S5 >

™' N - (n+1)

-1 S
and covariance (c_,c_ ) = A_ ————— ¢
r’ 5 rs N o (n+l)

Some writers, e.g. Berman (i962), have applied
similar results to the case of exponential fitting,
treating the coéfficients and the exponents separately.
It is clear, however, that the coefficients c. and
the exponents O(r are related and that any estimates
of uncertainties shquld be based on that fact,. In
these circumstanceé, more accurate estimates can be
obtained from considering the matrix which is involved

in determining the corrections S . and S t(r.

The two stage minimization method does not
provide these éstimates, since it treats the
coefficients and the corrections for the exponents
separately (the matrix to determine these corrections

is not symmetric), but the one stage minimization

gives these estimates, where variance (S:ﬂﬁ = XS?
: : -1
S/(N=(2n+1)) and covariance (S X 55 %xk) = Xjk s/

(N~-(2n+1)), for j and k = 0(1)2n+1, We use these
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estimates foxr the measure of the uncertaintiés of the
parameters whén we use the two stage minimization
mel’chod° In the case of Berman's method we obtain
the estimation of the uncertainties where variance
( S qj) = Qgg s/(N-(2n+1)) and oovériance ( s'qj,g qk)
- Q'J:l{;_ $/(N-(2n+1)), for j and k = 0(1)2n+1.

xThe accuracy of our estimate as detailed above

has been demonstrated by fitting artificial data

(Chapter 7).
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CHAPTER 3

STUDY OF PARTICULAR CASES

3.1. Introduction

It has been pointed out (Cornfield st et al.,
1960), that the solution of the non-linear equations
for the fitting of exponentials by leastnsquafes are
not mnecessarily unique. The analysis showed that,
in the case of two exponentials, there existed at least
one other stationary point which was not a true

minimum,

In this chapter we will discuss the problem of
uniqueness. To our knowledge the problem has mnot
been solved at the present time, and the work given
here may assist towards the general solution. In

particular the result of €ornfield is explained.

3.2. Single exponential»

We shall begin with: the study of the simple case

of fitting a single exponential with no constant term,

ioea Yi” &exp (""b ti), (302.1)

Clearly we can take a logorithmic transformation




with appropriate weights (see also 4.2), i.e. we
could fit “

Iny = 1na -bt,
a normal linear regression. The solution for this
problem is unique} this suggests that for general
case, the solution may be unique; at least with

weights w, proportional to 1/yi2

An altermative approach for uniqueness 'is as
follows. The sum squares of residuals of (3.3.1)

will be

S = ﬁ%:: wi(Yi - a exp (-btin. (3.2.2)
i=1

By the usual least-squares method we may obtain

the coefficient a , i.e.
N N
a = E Vi¥i exp(—btiZ// E Wi exp (—2bti), (3.2.3)
i=1 i=1

This value of a may be substituted in (3.2.2)
R
giving S(b) = S(b,a(b)), which is a function of b
o
only. The minimum function S(b) with respect to b

may be studied.
We have

L
db fab_ da db ~ "9b '’ 2a !
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x
so that S has a minimum for the same value of b

as S, Further

¥
2 _'3 2 db ?
db b<  “dboa

53 = 2a E«i(yi - a exp(-—bti)) t, exp (—-bti) , (3.2.7)

_3,_% _ 'Z‘.:iti exp(~bti)[yi - 2a e_xp(—bti-}l/ﬁi exp(-2bt, ).
135_ =Z"_iti' exp (—bti) [Yi - 2a exp (-—bti)] ,

ek 2a zwiti exp (-b‘bi) 2a exp (—bti) - ¥iac-

— | 2 | ‘
5 = ZaZW\.r'iti exp (-bti) 2a exp (-bti) - vy
[’ 2
A}
- Witi exp (-—bti) 2a exp.(-bti) - V3 ]/ﬁic—z}«:p(—btj

It is required to show that dzs is positive
db

L]

N

when b has the root given by equation (3.2.4) or

alternatively that dS changes sign from -ve to +ve.
: db




We find that we can only establish this for the case
when the observations y; are given by an exponential,
i.e. when

A

y; = & exp (—bO ti)

In this case equation (3,3.2) will be
A .
a = a 2 u, exp ((b - bo)tiy/z:;i,

‘where u; = w, exp (- 2 bti).

Substituting the value of Vi and a in equation

(3.2.4) we obtain
-

1 [}E; t, exp ((b-b )t ) - ;E‘_ exp((b-b )ti‘

oa 'at) i o 4
N - _ A
= a 2 ui(ti-t)(zi-Z) = a Cov (ti,zi),

where zi= exp((b-—bo)ti),-‘i =in;§gi/2_’ui,“£ =Zliti/Zu

and Cov (ti,zi) is the covariance between ti,'zi.

Now if b = bo (the optimum value of b), then
®S _@; if b is less than b_ then©S is less than
o b . ° . 3b
zero, since Z4 decreases with ti and if b is greater‘

| than bo, then—aS is greater than zero, since Z4
b

increases with ti. Thus there is b = bo, say, for

which S(bo) is less than S(br) where b does mot equal
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In the general case, where the y's are not given
exactly by exponential value but have some error, this
suggests that only one solution exists and is unique.
We examined this numerically by calculating the fit of
various sets of data which had been deliberately

artificially rounded to ranging accuracy.

Ten artificial decay observations we generated

from the curve

y; = aexp (-bt,),

where a = 10.0 and b = O.4, for t = 0 (1) 9.

The observations were then rounded to (i) 5,
(4i) 4, (44i) 3, (iv) 2, (v) 1 place (s) after the
decimal point. These five sets of data (table'(l))
were then fitted using the method above. The results

are given in tables (2) and PFigures1).

We may noté€from these results when b is equal
to zero, -~ that the coefficient is equal to the
mean of the observations, the sums squéres of the
residuals is eqﬁal to the sum square of the déviations-
from the mean, the first and second dirivatives are
less than zero. When b tends to infinity the coefficien

tends to Yo the sum squares of the residuals is equal

10
2 yzi, the first and the second derivatives tend to
i=2




-t

0.0
1.0
2,0
3.0
h,o
5.0
6.0
7.0
8.0
2.0

v (5dp)
10. 00000

6. 70320
h.ho329
3,011 94
2.01897
1.35335
0.907183
0.60810
0.4k0762
0.27324

éxponential curve y(t)= 104Cexp(~0.4%) ,

v (bdp)
10, 0000

6.7032
b Lho33
3.0119
2,0190
1.3534
0. 9072
0, 6081
0.4076
0,2732

Table (1)
Ten observations generated from the single

v (3dp)
10.000

6. 703

L, Loz .

3.012

2.019

1.353
0, 907
0. 608
0.408
0.273

y (2d p)

10,00
6.70
b, hg
3,01
2,02
1.35
0. 91
0. 61
0.1
0.27

42

v (1dp)
10.0

6.7
h.§
3.0
2.0
1.4
0.9
0.6
0.h
0.3

~ with 5,4,3,23nd 1 declmal place (s) accuracy .



Tables 2
The tabulation o the cocefficient , the sum squares of
residwls , the flirst derivative and the second derivative
fOI; varioug values of the exponent (EXPO) ,using the data of
- Table (1) . The minimum sum squares of résid*aals of 4.8 xp-11
Of Table 2(1) in the case of data accurate to 5 deciml places
as one woﬁld’ expect , mxeh smller than for example the

corresponding 3.6 »-3 of Table 2(v) for data accurate to
1 deciml place .
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*],0000
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FIRST DERs
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=399484
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SECOND DER,
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3498023

wdo]922

ndell36
al3,9129
306366
n393373
»3¢0384

" m247523.
w244851

n212392
w«w2eQ{53
w]led]25
w[06296
=]ed650
w]eldi72

wlal846

m} 20686
955885
w8¢6310
«74771°
w740007
wbe308])
=546859
mSe{267
wd¢b238
ndel713
w3764}
323974
30672
w2e7665
=«2¢5Q01]3
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+2.9770
¢5,42908
744230
+849745
+9 49978
*]e06479
+141052
*le¢laol
“le1d}9
+1a1472
+101475
+141445
«]41392
+1g1325
«]o1251
$lell72
*14]1093
*+141014
*]1.0938
“140865
+1 40796
+10730
+]¢0669
+]10612
+1¢0540
+140511
¢1s0448
+]140424
+140386
¢],0351
*14Q031°9
+] 40290
*140Q264
*1,0239
140217
+1.0197
*1,017°9
«]+0152
+140147
+1.0133
*1.0121
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«Q
+«Q
+0
+0
+0
*]
+]
& ]
*]

+ 1.

+1
+1
+}
+1
«1
+1
+1
+1

¢l

+1
¢!
!
+]
*1
“1
+1
+ 1
+]
+1
+1
+1
+1
¢!

.l

+1

¢l

+1
+!
*l
+1
.1l

SeS5e0F RESH

902829
407927
+]e738]
+3:¢3864
+545706
«2¢0670

-whe 6495

+]e2238
«]28073
203774
©249161
+3¢4155
+3¢8733
+402%00

$406677

+5:0090
+5¢3171
“545947
+5¢8449
+6540702

" $60273]

+604559
+6e6205
+5¢7689
«5e2025
+730230
+74]1317
4702297
+74318]
+723%79
+7e4699
¢+7¢5349
+7¢5%36

L e7eb4bb

*+7e56%44
*747377
747767
+7¢8120
+7¢843%
+7¢8728
+748988

" ‘ ® 13 x5 Bu
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+1
+1
¢
+0
"5
*0
+0
+1
+1
*1
+1
+1
+1

*]

+1
+]

*

+1
+]
+1
¢
*]
+1
*]
*1
+1
v1
!
+1
*1

«]

+1
*]
¢1
+1
+
+1
+1
¢!
1
+1

‘Table 2(iv)

FIRST DERs
mn4e7028 n #2
w3gF464 n &2
-211500 n *2.
w7 eb326 n ¥}
w5435 n w2
*306665 3 +|
+5¢258] n ¢}
*547982 n #|
+5¢8}06 u ]
+5058638 » ¢
$50]978 n ]
447867 n ¢}
403699 n ¢}
+309677 p +}
+3¢5904 p )
€3¢2420 ¢ »|
“209236 n %]
©2046345 0 ¥
+2¢3730 p +]
“2¢]372 n |
109248 p e
107333 p ¢}
$1e5620 0 ¢
+104075 p |
+1e2686 u ¢
*{e1437 3 )
+]1e¢0314 »n +}
+9¢3034 n +0
8043939 a +0
745750 ¢ «0
*5¢8375 2 -4Q
+6¢173] n %0
+505742 n +Q
540344 p +0
+4¢5476 ¢ 0
*441085 0 0
+327123 1 +0
343547 g +0
+3¢0319 » +0
+2:7405 ¢ 0
*204773 p +0Q

SECOND DER,

322722
*+146096
+127]53
140446
+542545
©2¢4006
©9¢4735
+241605
w]e4835
342288
39733

wndel858
m4ell18]
©30908]
w3 b325

©»3¢3338

, =»3:0354
w2 7497
m2 948208

»2:2373
=2¢0136
=1e81]1
»]e6284
m]14640
wle3163

w}e}838

w]e0649
nGe5825
=8246258
n747673

mbe99b6

wbe3046

~5456828
.=n591239

w4deb213

wdegl b9}

n~3e¢7622
343957
»3¢0656
#207682
245000
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EXPO,

0,000
0:100
04200
0:300
0.400
. 04500
0:600
0:700

C.800 .

- 04900
14000
1ei00
1+200
19300
1400
f+500
1600
1¢700
{1e800
14900
2000
24100
2+200
2¢300
L¢400
24500
245600
2¢700
€:800
24500
J3¢000
‘31100
3200
34300
3:400
. 34500
J:¢600
3700
J:¢800
34900
4,000

COEFFJCIENT

¢2¢98Q00 » 40
*5'2940 g +0
+744257 n +0
*849767 n <0
+9¢9995 n +0
+]100650 o ¢}
+14¢1054 » +|
*+141292 n #|]
+1¢1420 »n +]
*1e1473 2 ¢}
$1eld476 n 1|
+1e1445 p. +|
“«]¢1392 »n #1
141326 5 #1
#lel251 »n #]
*lel173 2 ¢}
+1¢1093 » *1}
*12s1015 9o #1
10938 p +1
*] 208565 2 +1
*]1 40796 » ¢
160731 n +1}
h]1e0669 v ¢}
140612 o +}
+1¢0560 » »|
140511 n *)
+1¢04466 n +}
v140424 0 +|
+1.0386 -4 *1
+10035] n ¢
#[.0319 ] *l
+1¢0290 pn @]
¢l 402464 n +}
140239 n +|
+]1 00217 n ¢}
140197 n #}
*1 0179 » #}
+1e¢0162 p |
«140147 5 |
“«]140133 2 +1
*1:0%21 r +]

SeSe¢0F RES:

942716
497834
+1e7327
+3¢3662
+346245

%290859

+b2 5784
+1e2274
+1.8113
203819
2049209
+3¢44205
*«345785
+4:2954
*446733
+540148
«543230
+5¢6007
+528510

 +620764

+6e2794
*hHedb22
*+b5eb269
vhe7752
+5e5089
+740295
+7.1382
+792362
+7¢3246
+7e4044
+704764
+7+5414
+7¢600!
+7¢6531

" +747010

747442
+74¢7833
+7+8186
*748505
+7+8793

. *7.9054
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-—Table 2(v)

+l
+!
+!
+0
«3
+0
+0
1

*1

+]
*1
+1
*1
+1
*1
+1
*!
* 1
+1

"ol

+1
*1
+]
+1
+]
+]
*1
vl
+«1
*l
vl
+]
*1
+1
*1
+1
R
+1
+1
+1
+1

497024
«3e9430
w20 ]46]
w7eb6036
3736

- 346787

*5e2662
+548038
+5¢8149
+545672
+5¢2006
*+44789])
*4¢3720
2309696
$3¢5920
+3¢2434
*2¢9248
“24¢46355
“2¢3739
*2e]379
¢149255
«}ae7343
+1e5624

4104079

v]1e2689
+101440
*+]40316
+9:3051
«843953
*7e¢5762
«be8385
*be 738
+545749
+540349
4054380
+441088
+3¢7]26
*343549
34032
$2¢740%
«204774

FIRST DER.

uU M ¥ 8 ¥ ¥ 35 O € M ¥ 15 X 85 8 3 23 ¢ 2 8% M M ¥ B 8 82 83 5B 3 3 BB G 3 K83 TS X 5

«3e¢2333
«leb]14
+1e¢7148
+]1¢0435
¢54246]
+203953
©944422
+291423
w!{e4943
w342357

«389780

491893
n4e1210

w3e9{06
w306348

«3¢3358

, wJ3e0372

w2e7813
w2e4843

w2e2386
mde0147

=1e8120
u116291
m]ledbdd

=le3l69?

ulelBdl

w]l30653

vwD¢5858
n8¢6285
w707695
whe9985
wbe306 |
w506840
541249
wdob22]

=4e1698

w3e7627

m3439562
- m3a06860

wn2e76235
«2¢5003

M OES IE IS B W X Y I M O I XS W M TS &5 T OIT S W K O 1SN X IO W L KW W OIS N W I IO

SECOND DER,



| Figures 1
'I'hé results of Tables 2 being plotted , where Figure 1(1)
corresponds to Table 2(1) and so on . The cuwves A , S , F1 and
F2 represeht the coefficient , the sum squares of residwmis , the
first and the second derivatives respectively (the sca ling factors

are 1/2 , 1/20 , 1/100 and 1/400 for A,S,Flgnd F2 respectively ).
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Zero. 1f tl is greater than zero, then when b tends
to infinity, the coefficient will tend to infinity and
the sum squares of the residuals will tend to

?Ef Yiz'

i=2

3.3. Single exponential plus constant term

In this case we have the curve,

'y; = &  + ay exp (abti) + Uy,

Again by the least-squares method we may

determine a and a_, from

o 1 .
2
S = :Zj wi‘:yi - a_ -~ a; exp (-btifil , (3.3.1)

i.e. from the equations.

pos

s L], )] -
— = -2 [ w, Ly;-8a -a; exp (—bti) = 0,

== Zj‘
—_ -2 W,
rbal i

Lyinao—al exp(—bt;iexp(—bti) = 0, (3.3.2)
Those values of ay and a; may be substituted in

: *
(3.3.1), giving s(b) = s(b, ao(b), ay (b)), which is a
function of b only. The minimum function S(b) with

respect to b may be studied.




A5

We have

.
ds s s %% s P _es
@ =ob *Fa_ ¥ Tab *ga; =

db ~b’

since” ?S ='3S
"3a0 a,

&
= 0, so that S has a minimum for

the same wvalue of b as S,

Further
,- .
azs ™25 @25  dao , “@3s . dal
ab? b2 P50 _ db Db a, db

1 “Pg

28, ’-ab =‘Z-\Ti[(yi‘—ao) _alexp ("bti)] t exP(—bti){’ (3-3-3

1

From equation (3.3.2) we have

2, = (s, - w8y} Tor, exp(-2m)
i = wi(yi ao) exp( bti) wiexp( thi)'

Now suppose in the perfect f£fit that

A\
yi - aQ = al exp (-boti),

then al will become

ay = 21 fu'i exp ((b--—bo)Ati)/ Zui,

where‘ui = W; exp (—thi).

Substitutiﬁg the values of a;, and vy, - a in
: L

equation (3.3.2) we obtain
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where =.
i

Hence we obtain the same result as in 3.2.

3.4, Two exponentials

Cornfield amd et al. (1960) have pointed out
that the least-squares method has several unusuél
features when applied to¢ linear combinations of
~exponentials. They have proved that in the case
of fitting two exponentials, there exists at least
one other stationary point which was not a true
minimum but a saddle point. This can be

conveniently studied in same manner as Section 3.2.
For the data

y; = @& exp (—uti) + b exp (uvti), (3.4.1)

we wish to minimize
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) | 2
Z‘Wi[yi - a exp (—uti) - b exp (-vti)] E

We may solve for a and b by the normal least-squares
procedure for linear regression, so that

a = det a/det .nd b = det b/det, where

2 wiyi exp(—uti) X TZT;iexp(~2vti) —2 WiYieXP(—Vt:

x :Z:H-exp (-(u+v)ti),

z LA exp(-vti) x :waiexp(-Zuti) ~‘2w&yiexp(—ut:
x :Ziw. exp (- (u+v)t )

and det z Wy exp(-2ut, ) z W, exp( 2vt, )

Y;Z;i exp(—(u+v)ti)].

det a

det b

. Substituting these values of a and b in S, giving
S (u,v), which is then a function of the exponents u
and v only. This is cl%;gly symmetric in u and v so

that the normal gradient ( o ) to the line u = v

must be zero.. However as v tends to u, the expression
&

for a and b become undfermined, and we must therefore

proceed in the usual way to determine the limit of

these expressions. We find after much algebra
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1 o T (-ut,) t ( ;)
flsa (det b) = wiyi exXp A-uby Vi i exp {-2u i
- ; ?iyiti exp (uuti) X z W, exp(~2uti),

. R 2
1 = - - :
2/au2 (det a + det b)_ = WY, exp ( uti) witiexp( 2uti)

- Eiyitiexp(—uti) Witiexp(—Zuti

2
-L,a (det) = E exp(-2ut, ) Zw £, 2%ex (-2ut.)
2/ 2 i i i~y %P i

- (Z;itiexp(-Zuti)jz,

and the sum squares of the residuals will then tend

in this case to

N 2
S = Tw.[_y—k—kt ex -ut, ] |
sy 3% 1 ( 177, i) P ( 1) ’

2 D2

. _
where kl = —— (det a + det b)/ 5 (det),

"1.12 fau

“o L)
and  k, =33 (det b)éa-:-% (det).

If u, sefy, is the value of u which gives the

minimum- value of S, then “@ (dek b) tends to zero
. /amu

and S(u,u) tends to S(uo). This implies that the

exponential (k.-k_t.)exp ~ut,) tends to the single
1 2°4i7 i



L

exponential kl exp (—uti).

We can also show that if v tends to zero then

the original sum squares_of residuals of the double

2
exponentials will tend to S = w y.-a exp(-ut,)-b
P i i i

.

i.e. a sum squares of residuals of single exponential

pPlus constant term.

We havé shown that under certain conditions,
namely tﬁat y is exactly the sum of two exponentials
y; = @& exp (—uoti) + b exp (—vot), then there is a
minimum on the line u = v at u = u, and a minimum on
the line v = o at u = . It can also be shown that
on any line u cos @ + v sin © = o, there is only one
minimum, We have not been able to demonstrate the
unique existgnce.of the absolute minimum u = u_,

o

v o= V.3 but these results support this view.

As previously, these results suggest that for
y subject to error, i.e. y; = @ exp(—uoti) + b exp
(-voti) +oes, with some conditions on the errors e,

there is a unique absolute minimum within the region

-bounded by the lines u = v, v = o. This hypothes;s

was again tested numerically. A set of data (table
wos
(lB)%generated from the curve



y(t) = 6.0 exp(—vt) + 4.0 exp(-ut),

for v =5, u=121andt =0 (0.3) 2.7.

- The observations were then rounded to

6, 5, I, 3‘and 2 decimal places.

The sum squafes of the residuals was then
calcu1a$éd.for v = 0(0.5)7.0 and u = 0(0.5)7.0
(Figure 2(i)) and was also p}otted (Figure
2 (ii) for the data with 6 decimal places

accuracy).

We may note that the minimum value of the
sum squares of the residuals is at v = 5, u = 1

5

and v = 1, u = 5, and it is equal to 8.26 x 10~
(for data with 6 decimal places), 2.48 x 10-’1l
(forvdata with 2 decimal places). = The minimum

on the line u = v at u = 1.5 is 1.44 and the

minimum on the line v = 0 at u = 2.0 is 0.54,
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b y(&p) - y(5dp) y (4ap) y (3dp) y (2ap
0.0 10;000000 10. 00000 10. 0000 10. 000 10,00
0.3 5.337428 5.33743 5.337T4 5.337 5.34
0.6 3.492020 3.49202 3.4920 3.492 | 3.49
0; 9 2, 484856  2.48486 2.4848 2,485 2.48
1.2 1.816079  1.81608  1.8161  1.816 1.8
1.5 1.3409%2  1.34099  1.3410 1,301 1.34
1.8 0. 9922883 0. 99229 00,9923 0.99%2 0. 99
2.1 . 0,.734846 0;731485 0,7348 0.735 | 0.73
2,4 0. 544332 0.54433 0, 5443 0. 544 | 0, 54
2.7 0;394242 0.39424 0,3942 0.394 0.39
Table (3)

Ten observations generated from the
double exponential curve
| | v({) = 6.0 exp(-St);ﬂL.O exp(-t) ,
with 6 , 5 , 4 , 3 and 2 @eciml places .




Figures 2
In Figuwe 2(1) , the sum squares of residwls is tabulated
for v=0(0.5)7.0 and uw=0(0.5)7.0 , ﬁsing the data o Table (3)
of 6 decinnl places accuracy .
In Figure 2(11) , some of the tabulated values are plotted
( the scaling factors for v and u are equal £to1/10 ) , The minlmum

valug o the sum squares o residwls isequwal to 8.26 »~5 at v=0,5 ,

uw=0.1 and v=0.1 , u=0.5 .
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figure 2(ii)




CHAPTER 4

WEILGHTING FACTORS

L,1. Introduction

Frequently the coﬁditions of an experiment are
such that certain values of the observations (yi)
may be less reliable than others. In this case
greater weights should be given to the measurements
of higher reliability. This can be done either by
transformations of the data or by associating weight
with each observation, the weights form a square
diagonal matrix of order N (the number of obéervations),
with positive non-null diagonal elements, the jth

element being the weight associated with the observation

yj‘

During the investigation of many seté of
experimental and artificial data, several points
concerning the weighting factors arose,. The relative
accuracies of data in exponential curve Ffitting are
due to the different sampling techniques and measurement
procedure used, In practical cases two different
procedures are adopted, which we designate as sampling

over fixed counts (see Section 4.,2) om sampling over

6%
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fixed periods of time (see Section 4,.3). Artificial
data have also been introduced to the study of the
exponential curve fitting problem, mnotably by Lanczos
'(1957). Since the acéuracy éf the results depends
significantly upon the weights used (see Chapter 7),

it is essential that simulated artificial data should
correspond to the correct sampling procedure, This

may not in general be the case, and thmes artificial oalbe

Wﬂmv\HLH—bd subject only to normal round-off error; this is

therefore also discussed (Section 4,4),

4.2, Sampling over fixed number of counts

When the time interval is chosen so that the
number of observations (pulses) is the same in all

cases, we have distribution of %, where % is the

measured time to observe N pulses,

The probability that the Nth pulse arrives in
time t to t + dt is equal to the probability of N=1

pulses arriving in time t. to t multiplied by the

(o)

probability of a pulse arriving in time t to t + dt,

which is (Pt)N"l exp(~ pt) x Pdt

(N-1) !
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o2
_\(e6)Y exp(-pt)
We may note that the mean = dt, which
(N=-1) 1
o
PN | N
is equal to = ; .
(N=1) t p*t

The distribution of

o

T

_ (2)N oxp(-pt)

g is - B(g)ds,

where B(g)dg = Pat .
(N-1)
(¥ J
Qo
. N, N1 A
Mean of -Ig = g B(g)dg = % x Pt exp(-pt) z N p,
(N-1) 1 N-1
o
¢ o
. 2
and the variance of % = - gz B(g)dg - (%?l) .
o
= 127 P 6" lexp(apt) . _ (NP )2,
k (N=1) 1! N-1
o
= (X 2 x o .
T 'Nel N=2

Thus for constant N, the square root of the variance
»

is proportional to the mean,

i.e.

the relative error is



constant and is accurately equal to 1/square root of

(N=2).

So in this case when we have measurements which
are collected over a fixed number of counts, we multiply
each term by weight proportional to the inverse of the

variance,

Hence in our curve fitting problem we minimize
T PR S
S = : > vy - c. exp (- r?ti) ,
i=1 v r=0

Data coliected in this way may also be dealt with
by applying a logarithmic transformation. The sum

squares of the residuals will then be

N

p .
S = E Wi (2n y; - in fi)z, (4.2.1)

i=1

N
. . 2
and to first order this sum is equal ;_1 wi(yi - fi) R
where Wy o= wiyiz, And in particular if the original

’
data had equal weights, then w, are unequal.

The detailed derivation is as follows.




If we comnsider vy o= fi = Vi where the v's are
assumed to be very small compared with the y's, then
In y; - 1n f; = = 1n (fi/yi). Taking only first

order terms in series expansion of - 1n(fi/yi), we

get
11’] Yi - 11‘] fi - Vi/y. + 2(V /Y ) + * 85 0
’b’vi/yi = (yi - fi)/yi

therefore equation (4.2.1) will become

ZW(Y - ) , (h.2,2)

3 Y T y.2

If we did not apply the transformation, the

sum squares of the residual was
N
S:_.- ( ) (k.2.3)
W, y. - . .2.3
i=1 + .l + ’

Comparing the equations (4.2.2) and (4.2.3),

then we obtain

/
w, 2 2
1
S ) (yi - fi) = E wi(yi - fi) ’
Vi

67
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Hence the effect of the transformation on the
data collected over fixed number of counts is that

. /
the new transformed weights (w,)are equal to unity,

since w, = 1/'1 and wl = W 2 21
i = Yy i 5 W3Yy F e

h,3.~ Sampling over fixed periods of time

Suppose the probability that an event takes

place in time t to t + dt is p(t)dt.

Let p(t + (r-1)dt) = p,, for r=1(1)n, then in
time t to t + T, where T = n dt, the distribution of

events given by g.f (generating functions), (Aitken,

1962) is

-

n
g'f = (dt) (plT + ql)(pzT + q2) + ees + (pnT + ql’]) k)

where q(t)dat = 1 - p(t)dt,

(1) Assume that p is constant over the interval t
to t + T. The distribution is then the Binomial
Distribution with g.f = (1 + Pdt(T-1))", ‘and the

f.m.g.f (factorial moment generating function) is
Wheve g1

PTayn ' ince T = n dt. The f.m.g.f

fom.g.f = (1 + 5




will tend to exp(pTa), as n tends to infinity, and
this is a Poisson Distribution, then the mean is

equal to pT and the variance p2T2 + pT - p2T2 = pT.

(ii) Assume that p is not constant. This is a
Poisson Binomial Distribution, with factorial moment

generating functions (Aitken, 1962).
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f.m.g.f = (1 + p,dt a)(1 + p, dt a)+ oo.. +(1 + p, dt a),

n ) , Dol n
=1+laS pidt>+a E pidt E p‘:i dt + ....
i=1

i=1 J=i+1
Hence the mean . E Py dt,

and u, (second factorial moment about the origin)

2 ‘Zp dt'z:p dt.

J i+l

Let us consider the case where p = exp (- bt),




then we have

t4+T

exp (-bt) dt,

u, (the mean)

ot

= A% ['exp (7bt) f §xp (—b(t + T);]J,

t+T ‘ t+T
/ .
u, = 2 exp (-bt) dt exp (-bt) dt,
t
t+T |
= 2 S exp (-bt) dt % ‘jexp (-bt) - exp (-b(t + T{},
“t
‘ | . 2
= = exp (-bt) - exp (-b(t + T))] ,
b2 |
2
= ul y
. . 4
since u, (the variance) = u, - u,° o+ ug,




then u, = u this means that the variance dis equal

2 1’

to the mean.

We may note that in the finite case for the

Poisson Binomial Distribution
u2 = 2 (p1p2 + plp3 e plpn + p2p3 + s eees + p2pn

+ e s s +pn-1 pn)’

" 2 n 2
=( E pi) - épl’

i=1 i=1
whence

n n n n

2 2 2
u=(2—:p) —ZP.-(ZP)+ZP
2 i=1 t i=1 1 i=1 1 i=1 i’




i
)
o
—
o

- pi)’

n
- 2L v o
£ 711

In the limiting case, as dt tends to zero, we

have
t+T
u, = S ( exp(-bt)dt - exp(-2 bt)(dt)z)
t
t+T
= T exp (-bt) dt
t
= % (1 - exp(-BF)) exp (-bt),

as previously obtained.

This does not work for the assumption that p(t)

is constant unless we use the following integration
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method
Integral is

t+T i t+T

/
u, = 5 f(tl)dtl ‘f'(tz) dt,,
t t
t+T t+T
= S at, S f(tl) :f‘(t2) dt,,
t t

and is over the shaded area (Figure? ).

Llearly we may write

, t+T t+T t+T t+T
u, = S dt, S f(tl)f(tz)dtz + f dtlj f(tl)f(tz)dtzo
t t) t ty

By changing the variables in second term, we get

/ t+T t+T . t+T t+T

u, = j at, j f‘(tl)f(tz)dtz + f at,, f f(tl)f(tz)dtl
’ t t
2

t t, |



T4

&m?

t+T

44T 1

Figuwe (3)




£4T t+T . |
= S dt, 5 dt, f(tl) f(tz)
t t .
t+T ' t+T
= j £(t,) dt, f(tz) dt,,
t t
t+T 2
= [j £(t) dt ]
h ..
t+T
/ 2
Now  u, = £f(t) dt , so that u, = uy
t
/
hence u, = u - u 2 + u = u
whe 2 2 1 1 1

Hence this is true for any form of f£(t).

So in this case when we have measurements which
are collected over a fixed period of time, we multiply
each term by weight proportioﬁal to the inverse of the
variance, so that each variable.is distributed with

same variance.
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Data collected in this way may also be dealt
with by applying a square root transformation. The

sum squares .of the residuals will then be

- £.%) . (4.3.1)
i=1

But the original sum squares of the residuals is

j%j 2
S = Wi (Yi - fi) ? R

(4.3.2)

Comparing the equations (4.3.1) and (4.3.2) we

obtain

N / % % 1 R 1 1 2
E 2 wi(yi - fi ) E wi(yi - fia) (Yi2 + fiz) ’
i=1 .

i?l




Hence the effect of the transformation on the
' /
data collected over fixed periods of time is that Wy

is equal to unity since w, = 1/yi.

4., 4, Sampling over fixed number of decimal places

In this case which is usually for data generated
artificially, the observations have the same number
of decimal places, and the error is rectangularly

distributed with comnstant variance, then the observations

will have uniform weights. So in the case we minimize

N n 2
S = E ‘jy. - z c_ exp (—a( L) .] . '
o] i = r r i

In this case, it is of no advantage to transform

the data.

17
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- CHAPTER 5

OPTIMUM SPACING

5.1. Introduction-optimum spacing in polynom&a&
' regression

If in equations (2.1.2), the matrix of the normal
equations and fhe right hand side are givén exactly,
there are some errors in the numerical solution for the
coefficients. These kind of errors have been
investigated by Wilkinson (1963). When a relatively
small change in the matrix of the normal equations or
the constant term (the-right hand side), causes a
relatively large change in the coefficient vector,‘then
the set of equations (2.1.2) is said to be ill-
conditioned with respect to that solution (Fox and %?ers,
1968). Hartree (1958) has shown that the measure of
ill-conditioning of a system equations can be
determined by the ratio \‘iggz ‘, where L . and L .

in

_ min
are respectively the largest and the smallest latent

roots of the matrix of the equations. If this ratio
equal to unity, then the system is well-conditioned,
but if on the other hand this ratio is large compared

with unity, then the system is ill-conditioned.
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~Plackett (1960), has shown that the ratio

r.m.s, error of elements of«y r.m.s., error of element of A
T.m.s. element of c r.m.s., element of A
-1
norm (A) x norm (A7)

(n + 1)

H

where A is the matrix of the normal equations and c
is the Vvector of the coefficients. The norm condition-
number norm (A) x norm (A_l)/(n+1) can be taken as a

measure of ill-conditioning in the matrix A.

If the functionsﬁﬁ% (¢£r,ti) in (2.1.2) are
highly correlated then the system of equations (2.1.2)
will be ill-conditioned. The extent of this ill-

conditioning may be reduced by re—épacing the observations,

This re—spééing has been examined iﬁ the case of
polynomials, which are of course 1iﬁear in the
uhknown parameters. Considering the polynomial of
' degree n

2 . n
p(t) = a o+ eyt o+ Aty Ll o+ At

for N observations vy, T y(ti), these observations
being uncorrelated variables with random error Vi
namely

y(ti) = p(ti) + vy, 1= 1(1)N, N n + 1.

The‘method of least-squares, gives to determine

the coefficients a , By eeey B
= ' 1 | ’/
a = TWT )~ WY = A~
( ) T = a1 TWY.




8C

In this equation a is the column vector of the

coefficient, A is the square symmetric matrix whose

' %E r, s _
elements are Aq%s =< w;t;7t;,, for r and s = o(1) n,
A_l is the inverse of A, T is the matrix of independent

/

variables, T is the transpose: of T, Y is the column
vector of dependent variables and W is the diagonal

matrix of the weights.

De la Garza (1954) has proved that it is possible
to choose n + 1 distinct values :x.j with ‘xj‘ é.. 1, such
that éﬁx = %%T, and which make the maximum variance of
the fitted values as small as possible. He has called
the matrix é%T the information matrix and iﬁx is the
information matrix of re~spacing.  Guest (1958), further
showed that the values of the independent variables
which will minimize the maximum variance of the fitted

values could be.obtained from the zeros of the d¥frivatives

of Legendre polynomial.

Hoel (1958) has discussed how to choose the wvalues
of the independent variables so that the maximum variance
of the fitted values will be as small as possible by

minimizing the generalized variance given by

/ . ;1
G‘.Vz\XHX‘ ,




81

¥

i.e, the reebtrocal of Vandermonde determinant.
Hoel has shown that the generalized wvariance of the
fitted values of the polynomial p (t) will be
minimized when the generalized wvariance of the
estimates of the coefficient of the polynomial is

minimized.

The previous methods and their properties do
not apply to re-space observations from exponential
functions because of the non-linearity. We may
however use the correlation coefficients between the
functions as criteria for re-spacing these

observations.

5.2. The correlation between the exponential fiunction.

Suppose we wish to fit the curve

y; = ¢, + C, exp (—ulti) + ¢ exp (-unti) Vs

where i = 1(1) N and N Zan + 1.

If we put xr(ti) = exp(—urti), for r = 1(1) n,

then we have from chapter 2

' N N
AN PR SR ENCR RS

C
q ° i=1

where xo(ti) = 1, This equation could take the form
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N

N :§?_ N _ _
? cr wixr(ti) = Z Wiy, or Y =-i C X where
i=1 _ i=1

r=0 r=o

x, = zwixr(ti)/ 2 w, and y = 2 wiyi/ 2 w;, are

the means. This leads mnaturally +to the form
y; =¥ = ¢ (xl(ti) - XQ+A...+ cn(xn(ti)—xn).

Now in the new form (about the mean) the normal

equations will be

" x *
Ac = a |,

= L >
where A . _ = wi(xr(ti) - xr)(xs(ti)—xs)/ LA

Lo Lo, 50/ 2

a = - -

- wolyy=y) (= (t,) - x )/ /. wy,

*
and ¢,k = c.. for r and s = 1(1) n. We may
note that c, is given by c, =¥ - z C,. X..

r=1
If D is a diagonal matrix with elements
1
= . - = 2
D, o= wlle) - R/ Zwt
' »x
A Dt

M =D D .

This matrix is the correlation matrix of

xr(ti). It is a symmtric matrix with diagonal

elements equal to unity, and non-diagonal elements

\
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| , the correlation coefficient between x_(t.)
rys r° o1

and xs(ti).
| &

We may note that A is the covariance between
r,s :
2 .,
xr(ti) and xs(ti), D_~ is the variance of xr(ti) and

”
a, is the covariance between xr(ti) and the y's.

Now the equations to determine the coefficient

Cp3 Cpyeesy Cp will become

-1 - ] -1 _1
D 1 AD 1 D c=1D 1a or Mb = D 1a, if we put
b 213&
The coefficient c.. thus depend upon the nature
of the correlation matrix M. If this matrix is

ill-conditioned, then the solution of the coefficients
cn will be badly determined, It can be shown that
this is the case if the functions xr(ti) are highly
éorrelated. In this case, the best defined §olution
can be obtained by choosing the values of t; such

thaﬁ the matrix M is as well-conditioned as possible.

In the case of two variables, the latent roots
of the matrix M can be shown to be 1 + P, where P is
the correlation coefficient. If we assume the RHS

is subject to error e = klvl + k2v2, where vy and v,




are the latent vectors of M Then the error in b

. is given by

u ob

= e’
i.e. %y - M“le,
| = M—l.(k v, + k_v_)
? 1 2°2/°?
~s 1 . &
] klvl, if Ll._ L2,
L
1
~ L.
1

Then \sbl = (‘-I:l-( + \-1:1-‘ )e and approximately of
1l

ordgr 1 e, and this is equal _1 e, since
L1 l1-p
Ll = 1l-p in the case of two variables.

For functions xr(ti) which are positively

correlated, the measure of ill~conditioning is

therefore
Lmax 1 + P
= —— , where O<P <l,
L . 1 - P
min : .

and clearly we wish to choose the values of ti so
that P be as small as possible. For given forms of

distribution of t, and given function xr(ti), the

i

optimum interval for the two variables case can

therefore be determined.
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where Cov(ul,u2)=

and var(uz) =

85

These calculations were therefore carried out
for the exponentials with x (ti) = exp (-urti), for
different.combination of ul and u2 and different

number of observations either equally spaced, i.e.

t, = o, h, 2h, 3h, ..., (N-1) n,

or exponentially spaced

t; = o, h, 2 h, b h, ..., pN-1 h.

In each case, the corrélation coefficient,
interval hy and its minimum value and the corresponding
value of h (or the optimum interval) could be
determined. These are given in tables 4 to 15, and

graphically in figures £ to f.

In the case of exponentials with equal intervals,
it can be shown that the correlation coefficient
between exp (-u ti) and exp (-u ti) is

1 2

P = Cov(ul,ug)/(var(ul)var(uz))%,

l—exp(—(ul+u2)hN) 1(1—exp(-ulNh))(l-—exp(——uZNh

1—exp(u(ul+u2)h) N(l-exp(—ulh))(l—exp(—uzh))

1—exp(-2ulNh) _ 1—exp(~u1Nh) 2

(

et - : :
l~exp(—2u2 h) N 1-exp(—u2Nh)
l-exp(—2u2Nh) 1 1-exp(—u2Nh) 2
N

l-exp(=-2u,h) 1—exp(—u2h)

2

When N tends to infinity and h does mnot tend to




Tables (4) to (15)
The tabulation of the optimum interval(MININT) and
the coarresponding minimum carre lation coefficient (MINCCR)
between the exponential functions exp(-u;ih) and exp(-uyih) ,
using equal intervals (i=0,1,...,N=1) and exponential intervals

(1=0,1 ,2,22

,...,EN-E) far different combinations of up (BX1)
and uE(EXE) s and different nunber of observations (N) .
2¢ " Table(l4) far EX1=1(1)9 , EX2=2(1)10 and N=5 |,
© Table(5) far EX1=1(1)9 , EX2=2(1)10 and N=10 .
Table (6) far EX1=1(1)9 s EX2=2(1)10 and N=20 .,
“ Table(7) far EX1=1(1)9
Table (8) far EX1=1(1)9

Table (9) for EX1=1(1)9

EX2=2(1)10 and N=30 .

-

EX2=2(1)10 and N=4O ,

-

EX2=2(1)10 and N=50 ,

)

: Table (10) for EX1=1 , EX2=20(10)100 and N=5 .
+ Table (11) for EX1=1 , EX2=20(10)100 and N=10 .
" Table (12) far EX1=1 , EX2=20(10)}100 and N=20 ,
“Tahle (13) far EX1=1 , EX2=20(10)100 and N=30 .
" Table (14) £ o EX1=1 , EX2=20(10)100 and N=ho ,
777 Table (15) for EX1=1 s EX2=20(10)100 and N=50 .
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.Figures (#) to (7‘)
The plotting of the correlatiocn coefficient (p) between

the exponential functions exp(-ujih) and exp(-uEih) as a function
of the interval (h) and the number of observations (N) , where 1=0(1
N-1 .,

Figwe (4) far u= 1 , u= 2 , N=5(5)25 and infinity .

U= )
ﬁ'igur'e(6) far u, = 1, u2=10 s N=5(5)50 and infinity .

| Figuwre (5) for ug= 1 N=5(5)50 and infinity .

-
“»

Figure (7) far uy= 1 u=50 , H=5(5)50 and infinity .

.
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infinity, then p will tend to

noj=

1 x (1_expeu1h))(1—exp(—u2h)il,
1-exp(-(u,+u,)n)
and if h, tends to zero, then p will tend to its
, 1
minimum value which is 2(u1 x u2)2 / (u1 + uz). In
both cases i.e. when N tends to infinity, h tends ko
when Aven

infinity and/Nifinite, h tends to infinity; P will

tend to unity.

5.3, Use of tables

Suppose we have two exponents u; = 1 and
u, = 2 (ul/u2 = 1), and we want to determine the
minimum correlations bedtween exp(—ulih) and

exp(-u,ih), and the corresponding optimum interval

2
h, for i =0, (1) 4 (i.e., 5 observations). . From
table (4), the optimum interval (MININT) is 0.7545

and the minimum correlation coefficient (MINCOR) is

0.9740, for u (EXI) = 1 and u,(EX,) = 2, for equal

t

spacing; and MININT = 0.5352 and MINCOR = 0.,9620,

for exponential spacing.

As the number of observations increase we may
note from these tables that the best minimum

correlation coefficients are those corresponding to
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equal spacing. In the case of using exponential
spacing, MINCOR decreases as N increases (1ess than

20), and then starts increasing with N.

If it happens that we want to determine MININT
for combinations (ratios) of EX1 and EX2 which are not
in the tables, for example EX1 = ,1 and EX2 = .2
for N = 5, we still can use these tables-(in this
case table (U4)). From this table MININT for
EX1/EX2 = 1 (where the absolute values for EX1l and
EX2 are 1 and 2) is 0.754%, then MININT for EX1 /
EX2 = % (where the absolute values for EX1 and EX2
are .1 and .2) is 0.7545x10 = 7.545 and the
corresponding MINCOR is the same, i.e. is equal to

0.9740.

In the general case when we have more ,than
two exponentials, we can still use‘the correlation
coefficient criteria in re-spacing the observations
by using MININT which correspond to the largest ratio
of the exponents. This will be shown for Lanczos

data in chapter 7.
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CHAPTER 6

EXPONENTIAL CURVE FITTING PROGRAMS

Programs for the fitting of exponentials in
~accordance with the details of previous chapters
have been written in Algol for the English Electric
(now ICL) KDF9 computero‘ The full specification
and coding of these programs will be found in the
appendix, together with details of other programs

written for the calculations of this thesis.

6.1. General exponential curve fitting programs

Three programs are available for the fitting

of an exponential curve of the form

Y ~C; eXP (-dlt) + ©, exp (- Kzt)+.°°+cnexp(~ dnt),
to m ( ;.Zn) observations Yy tio The prdgrams
determine the coefficients €13 Cpy esesCh, the
exponents 0(1, 0{2,..., '(n and their errors by the

two stage minimization method, one stage minimization

method, and Berman®s method respectively (chapter 2).

Each program allows for sets of data to be

fitted and different weighting factors to be used,
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The programs require initial estimates of
the exponents o(l,.dz, oe ey d‘n' If the
exponent 0(1 is set to zero, then the fit includes

bevw
a constant hesem, i.e, the fitted curve is

Y~ Cl + ¢, exp (~ 9(217) + oces +cl_1 exp (—.ant)o

Failures can occur in the iterations if the
initial estimates of the exponents differ considerably
from the final values, or if "overfitting" is
~attempﬁed, i.e, the attempted fitting of the data
by an exponential curve with too many terms. Thus
checks are included in the programs to ensure that
the expomnents, &'r’ are always positive, and the
linear equations'to determine the corrections to
both the coefficient . and the exponents '(r are
not singular, A check is also provided to see if
sometimes it may happen that the diagonal elements
of the métrix to determine the errors in the

parameters may be negative,

It may happen in the fitting of exponents that
the number of exponents is not known exactly, In

this case, the fitting may be performed for different
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values of n, and an analysis of variance using
F-test (or variance ratio test) berformed to
determine the exact degree in a manner similar to
that usedlfor the fitting of polynomials (Guest,

1961).

A typical scheme of analysis of variance table
for this case is shown in table (16). From
F-distribution tables (table (18) of the
Biomﬁtrika-tables), we could determine the
probability of obtaining value of F greater than

the calculatedg

-

.////f’;:fsl

value m-2

for 2 and m-2 degrees of freedom.

2 Sl

If the probability is less or equal to 0.05, then

one exponential fit is significant. We do the same
S -3
thing for 2 ,m =" 4 see if the probability

2 82

corresponds to this value is mnot greater than 0.05.

Smillie and Anstey (1964) have developed a
method to calculate the probabilities in an
F-distribution by considering a random variable F

in F-distribution with ny and n, degrees of freedowm,
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where ny corresponds to the greater mean sguare

(variance) and n, corresponds to the lesser mean

2
square, Considerimg also the variable
2 % 2 '
(1 - ¢ ) F3 - (1 - )
9 n, 9 ng
1 =
2 1
(557 + 5 ) ®
2 Tl

which is approximately normally distributed with
ze?o mean and unit.variance. If F0 is the
calculated value of F and u_ is the corresponding
value of u, then the probability of obtaining F
greater than Fo is approximately equal to the
probability of obtaining a value of the standard
normal variable greater than u - This .

probability may be approximated by
3 (1 + a X 4+a, X + a;, x +a x

. ‘1
where ‘ x = uo/(z)a

0.230389, a

a, = 0.278393{ a, = 0,000972

3

and a), = 0.078108.
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. The method has been programmed as a

procedure in the general curve fitting programs.

6.2. The estimation of the initial valves of

the exponents program

As we know ﬁewton~Raphson procedure needs
a good initial guess for the exponents to converge
to'the-feqﬁired solution. We tried to use the
graphical procedure . (peeling off 1.3) to estimate
the initial values of the exponents from a set of
data to be fitted. The procedure gave a good
result only when the exponents were very different.
The difficulty in this method is inher%&iﬂ in
the subtraction step which produces a negativé

value of the new y's (1ln of negative value is

imaginary).

We have written a program to calculate the
initial values of the exponents. The results from
this program were better than the results from

the previous procedure.

The program calculates the initial values

of the exponents for the following cases.
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(a) One exponential: in this case the Efurve is

of the form

Y:i. = C exp (—cl‘bi).

Evaluating S =TW:L ‘: y; - ¢ exp(—dti)—]z’ for
different values of /A and choosing the value of

¢7< which gives the minimum value of S as initial
value of the exponent in the general curve

fitting program.

(b) One exponential plus constant term:- now

we have the curve

Yy = © exp(—ollti) + c, exp(-—o(zti)

where A 1 = 0.

' 2
Evaluating S = Zwi {Yi - ¢ exp(-allti)—czexp(-'(zti).‘l

for "(1 = o and different values of & s, until

we Wse
we get the minimum value of S, Uadag this
value of 0(2 and ’(1 = o as initial values for

the general curve fitting program.

(c) Two exponentials, we have the form

yi = © exp(-—t’(lti) - czexp(—o(zti)
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We put 0{1 = r cos X and 942 = r sin x, then

~evaluating

2
S =fwi[__yi - clexp(—:(1ti)~02exp(-l(2ti)-1
for different values of r and x (0 £ x < W/4)

until we obtain-tﬁe minimum value of S, Then
Wl wnes
asiyy the values of °(1 and ‘(2 in the general

curve fitting program.

We may note that if we put x = W /4 then
it is exactly the same as case (a) and if we

put x = o, it is the same as case (b).

(d) Two exponentials plus constant term: There

we have
= -A - -
y clexp( 1ti)+02§xp( t¥2t1)+ cBexp( OQBti)
where “l: 0,9(2 = r cos x and NB = r sin x. Then
evaluating

S =fv’i[yi - clexp(--»(lti)--czexp(»ﬂ(zti)-cgexp(-ABtia2

for different values of r and x and (0 & x&W/k)
WwWe vse
until we get the minimum value of S. Yoy, the

estimated values of 0(2, A and 041 = 0 in the

3

general curve fitting program.
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6.3. The optimum interval and the minimum

correlation program

The program generate tables of the minimum

correlation coefficient between exp(-u ti) and

1

exp(~-u ti) and the corresponding optimum interval

2
for different number of observations and two
types of intervals according to the details of

chapter 5.
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CHAPTER 7

NUMERICAL RESULTS

The programs described iﬁ the previous chapter
have been applied to data of various types, generally
with success, in that the data have been adequafely
represented by exponentials; We will comment here
on three applications, to the artificial data |
described by Lanczos in his criticism of exponential
fitting (Lanczos, 1957), artificial data generated
by Glass appropriate to an experimental situation
énd biological data in collaboration with Glass of
this Uﬁiversity and of the Departmentlof Medical

Physics at Hamersmith Hospital.

71l The artificial data generated by Lanczos

Lanczos (1957) has given an example of a set of
24 decay observations to show the numerical
difficulties which may occur on account of the none
orfhogonal behaviour of the exponential functionso.
These observations which are presented in table 17

(i), were generated from ‘the curve
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t y (6dp) y (54 p) y (4d p) v (2dp)
0.00 2.513400 2.51340 2,5134 2.51
0.05 2,044333 2,04433 2,0443 2,04
0.10 1,668404L 1.66840 1.6684 1.67
0,15 1,366418 1.36642 1.3664 1.37
0.20 1.123232 1.12323 1.1232 1.12
0.25 0,926890 0, 92689 00,9269 0.3
0,30 0.767934 0.767%3 0, 7679 0.77
0.35 0.638878 0.633888 0.6389 0. 64
0.45 0,4L47936 O, 4479l 0.4479 0.45
0.50 0.377585 0.37758 0.3776 0.38
0.55 0,319739 0,31974 0.3197 0.32
0.60 0,272013 0, 27201 0,2720 0.27
0.65 0,232496 0.23250 0,2325 0.23
0,70 0.,199659 0.19966 0.19% 0.20
0.75 0,172270 0.17227 0.1723 0.17
0.80 0,149341 0.14934 00,1493 0.15
0.85 0,130070 0.13007 0.1301 0.13
0,90 0,113812 0.11381 0.1138 0.11
0.95 0,100042 0.10004 0. 1000 0.10
1,00 0,088332 0, 08833 0,0883 0.09
1.05 0,078335 0, 07334 0.0783 0.08
1.10 0,069767 0, 06977 0, 0698 0,07 -
1.15 0,0623R 0,06239 0, 0624 0.06

Tabhle 17(1)
Ianczos data (24 observations) generated from
the demesde exponential curve
vy () = 0.0951 exp(-t)+0.8607 exp(-3t)+1.5576 exp(-5t) ,
with 6,5,4 and 2 decimal places accuracy .
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v(t)=0.0951exp(~t)+0.8607exp(~3t)+1.5576exp(~5t),
and are considered to be accurate to half unit of

the second decimal,

The method which Lanczos has used in fitting
this data is exactly the same as Prony's method
which has been described in section iOBo Lanczos
could not find a three exponentials fit to his data,
but he managed to fit the data to two exponentials,

v(t) = 2,202 exp (~4.45t) + 0.305 exp (~1.58%),
-3

with sum squares of residual equal to 3.89 x 10,

In the application of the léastnsquares
procedure to this datay; it is appropriate to use unit
weights because the only error is due to roundmoff
error (section 4.%4). TUsing the three methods of
section 2.2 we were unable to determine a three
exponentials solution. However we were able to fit

the data to two expomnentials, namely

y(t)qﬁ.105i005§}xp(=(4051i°o6)t)4b°4031°o5iyxpea(10811911)tL
‘using one stage minimization method, with sum squares

of residual equal to 1,14 x 10“h after 5 iterationssg
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y(t)=@°1o5ioo5gkxp(-(u057ioo6)+)+@°uo3i,o5j}xp(u(1°81i,11)t)
using two stage minimization method, with sum squares’

of residual equal to 1,14 x 10"h after 4 iterationsg

y(t)d?oIOSioOSgexp(u(ho57ioO6)t){p.403i,05%kxp(-(lo8110llﬁ),
using Bermant®®s method,; with sum squares of residuals

equal to ;'I..,lzwxcl()mll after 4 iterations,

OQur fit is better than the one obtained by
Lanczos, in the sense that the sum sguares of
r
residuals obtained from ou% fitting is less than

the one given by Lanczos me thod,

If we take the data to greater accuracy to
6, 5 and 4 decimal places respectively (table 17 (1))
instead of the 2 decimal places of Lanczos, we are
able to obtain a three exponentials solﬁtion from
each method. These solutions are presented in

table 17 (i),

We may note from this table that in the two
stage minimization method (T) the convergence was
very slow and 85 iterations were needed to give
accurate solution (using data accurate to 6dp),
Wheré»ﬁhe one stage minimization method (0) took 3

iterations and Berman's method (B) took 2 iterations,
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The reason fér the difficulty in fitting this
data is that.the exponentials, exp (ut), exp (~3t)
and exp (-5t), are highly correlated. This may be
seen by examination of the correlation matrix for
the three functions for the values of t appropriate
to Lanczos data (namely 24 values at interval 0.0%),

which is

1.00000 0.96400 008932;j
0.,96L00 1,00000 0,97908
089329 0,97908 1‘,00000_J

It might be observed that the determinant of
this matrix is 3.,805}:10“1l and the latent roots are
2,8914, 0,10740 and ,001193, so that the matrix is
obviously illeconditioned, The smallest latent
root is-o001193; very approximately therefore we
see that we shall lose about 3 figures in the data
(the reciprocai of this smailéét latent root is
about 900), - This agrees with the difficulty in
fitting the data to 2 decimal plaﬁes or at best 3
signifidant figures, and the accuracy (2 significant

figures) in our fit of the data to 4 decimals,



Table (18)
This table 1s the same as Table (4) , but the number of

observations here 1s equal to 24 .



TUTTTUNUMEERER OF UBSERVAILIONS S 24 - TTEE L Ame - 119

i om e = - .. EGUAL INTERyAL EXPON INTERVAL
MININT MINCOR HINTH HINCGOR
0:321¢ 0¢94%96 0e547%0 09603
O0e2661 Ce3830 044301 0,9073
0,2303 048266 00,3539 Q.8621
042095 07809 £.3097 0+8247
04,1910 0e7434 0.,2725 07938
01739 Qe7123 0.2464 0s7677
0e1658 0e6861 0e2225 047453

. 041877 Ds6639 0.20¢% 047260
Celd0b ‘05445 Cel?14 0,7090
0,1901 0s9822 0e3227 0e9860
01529 0s90155  G.2424 0.9332

- 0,1384 0+8831 0.2165 0.9074
0;1247 0'3534 001980 0;8835
0,1209% 0ed268 0.180¢ Oeg62!
Cell7) 038030 041677 0.8425
Ce1133 0«.7816 04,1550 0.8248
041375 Cs%209 D.230} 0,9929
De1227 0+9720 0,2052 0.9780
00,1177 Ceg498 93,1850 0.9603
00,1125 0e%27! 0s1687 O0es5421

- 0,1073 00409 20,1574 0.5244
00,1019 0e5832 0,1474 0.9074
0.0%964 08638 C.1378 0.8913

00,1145 0e9946 D,1791 0.9957

.. 01077 0,9823 00,1535 C.9860
"0,1C05 0e96458 . 0,1515 0.9737
040931 049500 0.1408 00,9603

- 040856  0.6327 0,1303 00,9467
0,078 09155 O.1219 0,9332
0.0969 CeG964 O0.1488 0e9971

- 040875 049877  0.1371 00,9903 .

- 0,.,0778 026762 01256 0.981]3

. 0407217 0¢%633 L1187 Oeg711

0e0871 Qe6457 ,0!1131 0e9603
....040744 049974 G,1239 049979
S 0.0688 0+69009 Osllb9 0e9929

. 0e08630 O«e9822 Qellll 0e9860
C.0614 Qe9720 010560 09730

 0e0822 029930 0e110} 09985

S 0.0607 0e5931 C,1C48 0e9946
0eNEI3 09862 01001 0e9891
Qe 0539 0e9935 D¢0593 0.9983

 Q,0573 0e9%ds De0547 0.9957

' 0.0552 0+9988 0.089¢

0,99%0

Taple (18) tfmf -
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We may, for this data apply the techniques of
chapter 5 to find the optimum interval, A table
corresponding to the tables of chapter 5 is given
here (table 18) for 24 observations, We note from
the table that for the ratios 1/3, 1/5 and 3/5 the
minimum correlation coefficients afe 0.8830, 00,7809
and 0.9720 respectively, with corresponding intervals
0,27, 0,21 and b.ch Of these minimum correlation
coefficientsy; the largest, and therefore the one
causing the most trouble; is corresponding to the
ratio 3/5, the ratio mnearest to unitys accordingly
this suggests that the interval 0,12 should be choseﬁ
instead of 0,05, - Even in this case, however we
weculd expect difficulty in fitting the data, since
even using the two exponential fit, 1/(1l-p) is equal
to 35 approximately; and we would therefore expect a

loss in accuracy of nearly 2 significant figures,

We may note that in this case (using the optimum

interval which is 0,12), the correlation matrix is

"1 .,00000 0.90648 0.79950 |

—

0.,90648 1.,00000 l0°97198

Lpo79950 0.97198 1qooooo~




v (6&dp)

t v (51p) v (4ap) y (2dp)
0, 00 2,513400 2.513L0 2.5134 2. 51
0.12 1.539665 1.53966 1.5397 1.54
0,24 0, 962896 0. 96290 0.9629 0.96
0.36 0.616108 0.61611 0.6161 0,62
0,48 0, tokoTe 0.40h07 0. 4041 0. 40
0,60 0,272013 0.27201 0.2720 0.27
0,72 0.188110 0,18811 0.1881 0.19
0. 84 0.133664 0.13366 0.1337 0,13
0,96 0,097547 . 0,09755 0.0975 0.10
1.08 0,073039 0, 07304 0.0730 0.07
1.20 0., 056022 0, 05602 0. 0560 0.06
1.32 0, 043931 0,04393 0.0439 0.0U
.44 0.0351h2 0,035114 0, 0351 0,04
1.56 0, 023608 0, 02861 0, 0286 0.03
1,68 0, 023646 0, 02365 0., 0236 0.02
1.80 0, 019800 0,01980 0.0198 0,02
1.92 0.016760 0,01676 0,0168 0,02
2,04 0,014316 0,01432 00,0143 0,01
2,16 0,012319 0,01232 0,0123 0,01
2.28 0.01 0666 0, 01066 0,0107 0. 01
2,40 0, 009280 0,00928 0,003 0, 01
2.52 0. 008105 0, 00811 0, 0081 0,01
2,64 0,007102 0,00710 0, 0071 0.01
2,76 0.006239 0, 00624 0, 0062 0,01
Table 19(1)

The mod&f'igd Ianczos data , using the optimum

interval equwals to 0,12 .

| P
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It might be observed that the determinant of

- this matrix is 30195x10”3

3 with latent roots equal
to 2,7872, 0,20730 and .008529, accordingly since
the reciprocal of the smallest latent root is about
180, we would actually expect a loss of slightly
more than 2 significant figures, in gaining

approximately 1 significant figure by change of

interval,

The data with 6, 5, 4 and 2 decimal places is
gi&en in table 19 (i), = The three programs gave
satisfactory three exponential fits for the data
to 4 or more decimal places (table 19 (ii)), but
again'we could not find a three exponentials solution
to fit the data t0'2 decimal place accuracy, In
this case all three programs gave the same two
exponentials solution, namely
y(t)%?.2291.03@exp(n(4°4hi.05)t)ﬂ?.280i003%exp(-(1°49i°10)t)
L

with sum squares of residuals equal to 2,57x107

after 4 iterations in each program,

As a matter of interest, we also fitted this
data using fewer observations, namely 12 observations
at interval 0,17 and 10 observations at interval

0,20, both these sets of data covering the same



t

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

y (6dp)

2, 513400
1.123232
0, 533784
0.272013
0. 149341
0,088332
0;056022
0.037778

1 0,026806

0, 019800

¥ (5dp)

2,51340
1.12323
0.53373
0.27201
0. 14934
0, 08833
0, 05602
0.03778
0. 02681
0. 01980

y (4ap)
2.5134
1.1232

0.5338

0,2720
0,143
0. 0883
0, 0560
0.0378
0.0268
0,0198

Table 20(1)
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y (2dp)
2,51
1.12
0. 53
0,272
0,15
0.09
0,06
0,0l
0.03
0,02

The nmd%fied IAnczos data , vwsing the optimum

interval equals to 0.2 corresponds to 10 obsevations .
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t y (&dp)

0.00 2,513400
0.17 1.262821
0.34 0;662601
0;51 0.365099
0,68 0.212077
0;85 0.130070
1,02 0.084145
1.19 0,057224

- 1,36 0,080696

1.53 0,030072
1.70 0.022938
1.87 0,017943

The nmdéfied‘lanczos data , wsing the optimum

interval equals to 0.17 correspends to 12 observations .

y (5dp)

2,51340
1.26282
0. 66260
0.36510
0.21208
0.13007
0, 08414
0.05722
0. 04070
0. 03007
0, 02294
0;01794

VUMPY

2,5134
1.2628
0.6626
0.3651
0;2121
0.,1301
0,0841
0.0572
0, 0407
0. 0301
0,0229
0,0179

Table 20(1i1)

y (2dp)
2. 51
1.26
0.66
0.36
0. 21
0.13
0.08
0.06
0,04
0,03
0.02 -

0,02

L0
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range as that of Lanczos, but using a larger interval,
The data and the results are given in tables 20. In both
these cases, the results are more accurate than those
of Lanczos, showing the importance of using the

appropriate intervals,

For this particular ekampl?, however, because
of the strong correlation between the exponentials,
exp (-3t) and exp (~5t), the data will never be fitted
accurately and we must expect to logse about 2
gsignificant figures, Accordingly for data of this
type the observations must be correct to 3 - L
significant figures in order to give a solution at

all accurate,

7e2. Artificial experimental data

Glass and De Garreta (1967) made a quantitive
analysis of exponential curve fitting for biological
applications by generating a large number of sets of
artificial data with controlled random error which

was derived from the formula

- XD . P
Error = 5 X 700 ¥ exact value,

where RND is a random mnormal deviate and p is the
percentage error, The exact values were generated

from the two exponential functions,



y(t) = c, exp (mult) + c_ exp (uuzt),

2
where t = 0(2)20, for three ratios u1/u2 equal to

1/2, 1/3 and 1/4 (the absolute values of u, were

0.2, 0.3, 0.4, the value of uy being fixed at 0.1),
The values of the coefficients were c, = c, = 0.5
and the values of p were 2%, 3%, 5% and 10% for

1 and uzo The observations

were calculated by adding the error to the exact

each combination of u

values. The data thus corresponds to the case of

constant error.

Ten sets of data were fitted by the program
using two stage minimization method, for each
combination of the exponents and error, The data-
were fitted without weights and with the appropriate
weighting factors (proportiénal to the inverse of

the square of observations).

Glass and De Garreta have compared our results
with results obtained from a program developed by
Marguardt (1967) which is written in Fortran V.
This program was used by Glass on IBM 7090 computer,
at Imperial College, London University. In this

program no weights are used and it has the facility
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to estimate the errors in the fitted parameters
(that time our program did not éstimate these
errors)o A simple statistical procedure was used
by Glass to estimate the parameters error by
calculating the standard deviation and the coefficient
variation for the estimates of each of the four
parameters obtained from each set of data, Glass
and De Garreta have pointed out that our results
were better than those obtained by Marquardt in
both cases without using weights or with weights
where in the last case the effect of the weights is
to reduce the parameter error by approximately
one-third. The results are given in table (21),

7.3. Experimental data

'bc.z. 3
The programs have/used to analyse radioactive

uric acid turnover data in two compartment model.
This work is described in detail elsewhere (Glass
et al, 1968, Appendix A) and will be described

briefly here.

The two compartments model of section 1.2, is
appropriate to patients suffering from gout, the

two compartments being uric acid in solution, and
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