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1.

D E C L A R A T I O N

This thesis describes research carried out in the Centre 

for Respiratory Investigation, Glasgow Royal Infirmary, under the 

supervision of Dr. F. Moran and Professor E.M. McGirr. Certain 

of the results contained have been presented to learned societies - 

Physiological Society, Medical Research Society, Scottish Society 

Jbr Experimental Medicine, Institute of Mathematics and its Applications 

The basic claims to originality are in the development of new 

methods of assessment of respiratory gas exchange. In particular

techniques to analyse gas exchange in non steady-state conditions 

have been developed. A simulation study of the importance of 

Taylor dispersion in the lung has also been undertaken. A special 

purpose analogue computer has been constructed for educational 

purposes.



11 .
ACKNOWLEDGEMENTS

An interdisciplinary thesis of necessity involves people 

from different disciplines. I have been particularly fortunate 

in having extremely good colleagues during this work.

I am particularly indebted to Dr. F. Moran. The origins 

of this project are related to his vision and he, at all times, 

has been a source of considerable support. I am grateful to 

Dr. D. Murray-Smith, who has involved himself in those aspects of 

the work related to parameter estimation. Dr. M. Hooper and 

Mr. W. Nixon have been interested in the numerical solution of 

the distributed model which is described in this thesis.

Within the Centre for Respiratory Investigation I am grate

ful to Dr. R. J. Mills and Mr. W. Gray who have collaborated in 

the experimental work. The development of on-line computing 

techniques was achieved by Dr. I. Logan.

I am grateful to my secretaries Miss I. Adams, Miss A. Roy 

and Mrs. M. Murray.

During my period in this work I have been supported by the 

Anderson Fund, Glasgow Royal Infirmary and by the Wellcome Trust, 

to whom I am indebted. I am also extremely grateful to the 

Scottish Home and Health Department who provided computer 

facilities.



Ill

To Fran

This thesis is dedicated to my wife, who although 
initially sceptical about a medical graduate becoming 

involved with mathematics, gave her support unselfishly.



ABSTRACT iv .

This thesis is concerned with an approach to the assessment of 

respiratory gas transport in individual subjects, which is based on 

the techniques of mathematical modelling. The general mathematical 

modelling approach to a physiological system while similar to that for 

a physical system is sufficiently different to warrant discussion 

(Chapter 1). Models have been frequently employed in the study of 

respiratory gas transport and the different models are reviewed in 

Chapter 2. A method of characterising these models is suggested.

Many of the models consist of simple algebraic equations which des

cribe steady-state conditions. An extension to these models to 

quantify ventilation-perfusion distribution is presented (Chapter 2 

and Appendix 10). The main deficiencies of steady-state models are 

the restrictions which they impose on experimental conditions both 

limiting the information content of the experiment and making it 

difficult to perform tests on certain subjects. A new approach to 

the measurement of respiratory gas exchange is suggested based on 

dynamic as opposed to steady-state models and using the techniques 

of parameter estimation. The necessary experimental and computing 

techniques have been developed and details are presented in Chapter 3. 

The feasibility of this approach is proved by application to the study 

of inert gas wash-out experiments (Chapter 4). While this method of 

analysis can utilise the within-breath detail of the expired concen

tration measurements, the physiological mechanisms underlying this 

aspect of function are not fully clarified. An investigation of one 

of the relevant mechanism (Taylor diffusion) using a distributed 

model is also presented in Chapter 4. The techniques of dynamic 

modelling are applied to the development of a new non-invasive method 

for the measurement of cardiac output and CO 2  lung volume. (Chapter 5) . 

Models can also be of value for educational purposes and a special 

simulator of gas transport is presented in Appendix 4.



INTRODUCTION

Many of the applications of mathematical techniques in 

medicine and physiology are unrelated to the solution of medical 

problems. This is hardly surprising since the primary motivation 

of the person who is trained in the physical sciences must be related 

to his own discipline.

This thesis involves an interdisciplinary approach to the 

assessment of respiratory gas exchange in human subjects. It is 

written by a practicing respiratory clinician, who, during the course 

of the work which is described, became familiar with certain areas of 

mathematics.

This thesis is directed primarily to the medical reader.

The organisation of the thœis is thought to be appropriate to this 

purpose. (A physical scientist should be able to gain useful 

information from the text if he has a basic grounding in respiratory 

physiology). The main literature reviews (Chapter 1 and 2) contain 

descriptions of the general mathematical modelling approach to 

physiological systems and detail the methods of mathematical des

cription of respiratory gas exchange which have been employed.

The remaining chapters contain therefore literature surveys of the 

physiological literature related to particular application areas.

It is hoped that the mathematical aspects of the work are presented 

in such a way that they can be understood by the average medical 

reader. In certain parts of the thesis the units which are used 

for partial pressure are mmHg, thereby facilitating comparison with 

other published work.
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1.1. INTRODUCTION

Conventional tests of respiratory gas exchange (see Table 1) 

which are used widely in clinical practice are carried out under 

steady-state conditions, i.e. when the ventilation of the subject 

under test is constant. Such conditions may be difficult to 

achieve in practice particularly in studying patients who may be 

distressed. Performance of these tests necessitates collection 

of expired gas and hence the attachment of experimental equipment 

to the patient being studied. These tests are more applicable 

therefore to subjects accustomed to such abnormal breathing 

conditions, e.g. "trained" subjects in physiological laboratories.

Test
Source of Further 

Details

Analysis of inert gas wash-out tests Chapter 4.
Measurement of alveolar-arterial differences Chapter 2.
Measurement 

perfusion 
space etc)

of degree of ventilation- 
mismatching (physiological dead

Chapter 2.

Measurement of transfer factor for carbon 
monoxide (some methods of)

Chapter 2.

Measurement
principle

of cardiac output using Pick Chapter 3.

TABLE 1

Another important disadvantage is that with steady-state tests 

only a limited part of the patient's total performance can be studied. 

An analogy is examination of the performance of a car which is limited 

to study while it is running in a steady-state with a constant speed. 

More information can be obtained by studying the response to controlled 

changes in input, thereby inducing transients in the system. There 

are many examples in engineering practice where analysis of data



collected during transients allows facts to be determined about 

the system under test which could not be obtained from steady- 

state studies.

Even with such restrictions steady-state tests may reveal

abnormalities at an earlier stage of disease than is possible by

other means^ and may help to distinguish between otherwise similar
2 3groups of patients with chronic obstructive airways disease.'

Steady-state conditions are necessitated not by the experimental 

procedures but rather by the methods of mathematical analysis of the 

data. Such analyses are based on steady-state mathematical models. 

(These models are described in more detail in Chapter 2.3 of this 

thesis.) Mathematical methocfe exist, however, to analyse data 

collected in non-steady-state conditions.

In this thesis, the foundations are developed of a new 

approach to the testing of respiratory gas exchange based on dynamic 

as opposed to steady-state models. The use of such dynamic models 

removes the necessity of having to establish steady-state conditions 

in subjects inexperienced in respiratory function testing. Further

more, the information content of any individual test may be increased 

since the clinical respiratory physiologist can study the response of 

the abnormal lung to controlled changes in input.

1.2. STAGES IN MODELLING

In using mathematical models for the study of physiological

systems the approach in any particular study is dictated largely by

the intended use of the fully developed model. In general, however,
4the modelling process can be divided into four stages:-

(1) Formulation of model;
(2) Simulation;
(3) Validation of model;
(4) Application.



3.

1.3. FORMULATION OF THE MODEL

One must first decide the physical structure which will 

form the basis of the model and then derive the equations which 

describe its performance, usually employing some initial 

simplifying assumptions. This approach is widely used in the 

physical sciences although the term mathematical model is generally 

avoided.

In writing down even a simple equation to describe the 

motion of a body falling under the action of gravity we are 

establishing a mathematical model which will give values for the 

position and velocity at any point in time. The accuracy of these 

values depends both on the validity of the !bws and on the assumptions 

which are made concerning the effect of any friction on the falling 

body.

A similar approach can be applied to physiological systems 

using a number of simplifying assumptbns to reduce the problem to 

one which can be handled mathematically. These assumptions are 

often based on intuition rather than on experimental proof, and it 

is particularly important, in applying mathematical models to 

physiological systems, to be aware of the assumptions upon which the 

model is based.

Consider the following model of the kidney. The creatinine 

clearance measurement which is commonly used in clinical practice is 

based on a mathematical model of the kidney as a simple filter. The 

assumptions upon which the mathematical formula for the creatinine 

clearance is based are:-

(1) creatinine is neither secreted or reabsorbed in the 
renal tubules ;

(2) the plasma concentration is contant throughout the day;



(3) the glomerular filtration rate is constant throughout 
the day;

(4) each nephron has the same glomerular filtration rate; 

it is the last of these assumptions which is perhaps least often 

appreciated by those using the creatinine clearance measurement.

Although the first two assumptions can be verified 

e x p e r i m e n t a l l y ^  ^ assumptions (3) and (4) are in a strict sense 

invalid. In particular assumption (4) will be quite invalid when 

a pathological process effects the nephrons unequally as in most, if 

not all, cases of chronic pyelonephritis. The creatinine clearance 

is in fact a measure of the performance of the 'lumped' system, i.e. 

considering the kidneys as one uniform organ (Fig. 1) and as such 

gives an average value of the glomerular filtration rate in the 

nephrons. 'Lumped models' such as this which disregard differences

between the component functional units of an organ or system are used 

commonly in medicine.

The creatinine clearance illustrates an important principle 

in the modelling of biological systems; the use of simplifying 

assumptions which are in a strict sense invalid allows development 

of a relatively simple mathematical model, which includes the 

essential features of the system. Hence a relatively simple method 

of functional assessment is obtained which is of value in clinical 

practice.

1.4. CATEGORIES OF MODEL

Models can be divided into several categories (see Table 2).



Category of model Type of mathematical 
description.

Method of solution 
of equations.

Steady-state models Algebraic equations Simple algebraic 
manipulation.

Dynamic models:
(a) Lumped, time- Ordinary differential Analytical methods.

invariant, linear equations. Graphical methods.
(b) Lumped, time- Ordinary differential Computer-based

variant, linear equations. methods.
(c) Lumped, non Ordinary differential Computer-based

linear equations. methods.
(d) Distributed Partial differential Computer-based

equations. methods.

TABLE 2

a) Steady-state Models

Steady-state models are used widely in physiology and medicine 

Steady-state models represent conditions in a system only when the 

variables of the system do not change with time, i.e. they describe 

a condition of equilibrium. The principal advantage of steady- 

state models is that they lead usually to systems of algebraic 

equations which are solved easily.

b) Dynamic Models.

Dynamic models allow change in the system variables with 

time and are of more general importance and value than the steady- 

state representation. Dynamic modelling techniques have been

applied mostly to the study of physical systems, e.g. industrial
9 10chemical processes, nuclear reactors etc..

In modelling dynamic systems there are quantities which are 

regarded as INPUTS, i.e. the stimulus to the system, and quantities 

which are regarded as OUTPUTS, i.e. the actual system response.



BLOOD

LUMPED
GLOMERUL FILTER

URINE

FIGURE 1

Lumped parameter model of 
the kidney. The glomeruli 
are represented as a simple 
filter.



In physiological systems the input and output of the system are 

in general not defined clearly since the systems are closed. In 

constructing a model, therefore, of a physiological system one has 

to decide which variables can be regarded as inputs and which as 

outputs. Such a decision is based on the intended application 

of the model and the experimental feasibilities. Thus the same 

physiological variables may in some circumstances be regarded as 

an input and in others as an output (see Table 3) .

System Under Study Input Variable Output Variable

Respiratory gas exchange Ventilation Alveolar or 
arterial partial 
pressures of 
oxygen and CO^

Respiratory mechanics Pleural pressure Ventilation

Respiratory control 
system

Arterial partial 
pressures of 
oxygen and CO^

Ventilation

TABLE 3

Certain of the techniques of dynamic modelling are restricted 

in use to a limited class of systems - those which are regarded as 

linear and time invariant.

Definition: A linear system is one which obeys the principle of

super-position : - the response y(t) of a linear system due to several 

inputs (t) ,x^(t),...,x^(t) acting simultaneously is equal to the sum 

of the responses of each input acting alone. That is if y^(t) is

the response due to the input x^(t) then

y(t) = ^  y^ (t) 
i

(see Fig. 2)



P R I N C I P L E  OF  SUPERP OSIT ION

Y(t) G(t) H(t)X(t)

a X ( t ) + b G ( t )

L I N E A R  S Y S T E M

FIGURE 2

Diagramatic representation of the principle of 
superposition. If an input to a system X(t) 
induces an output Y(t), and an input G(t) induces 
an output H(t), then a system is linear if and 
only if an input aX(t) + bG(t) induces an output 
aY(t) + bH(t). a & b are arbitary constants.
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Definition; A time invariant system is one in which the observed 

performance of the system does not depend on the time at which the 

observation took place.

Physiological systems are often non-linear and time variant, 

e.g. many biochemical reactions involving enzyme kinetics or 

saturation phenomena do not satisfy the principle of superposition.

In construction of models of physiological systems, however, it is 

often assumed that the system is linear, i.e. there is IMPLICIT 

LINEARITY in the model. A typical example of this is the model 

of peripheral resistance in the vascular system (analogous to Ohm's 

Law in electric circuit theory).

Linearity should not be assumed but rather the system should 

be shown experimentally to satisfy the principle of superposition.

The experimental proof of superposition involves introducing 

controlled changes in the input to the system (test signals) (see Fig.3) 

and observing the subsequent response (see Fig. 4,5).

1.5. FORMULATION OF DYNAMIC MODELS

The variables in a physblogical system vary not only with 

respect to time but also at any instant may have different values at 

different points within the system (i.e. the independent variables 

are time and the spatial coordinates). A model of such a system 

(a DISTRIBUTED PARAMETER MODEL) is described by PARTIAL DIFFERENTIAL 

EQUATIONS. Distributed parameter models have been used little in

physiology. Construction of the partial differential equations of 

these models is based on the appropriate physical laws and associated 

equations. (Partial differential equations and their construction 

is considered in more detail in Appendix ic) .
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The mathematical description of the system may be simplified 

by considering the system as if it consisted of a number of distinct 

components, at all points within which the variable of interest is 

considered to be identical at any instant in time. Such a "lumping" 

process reduces the number of independent variables to one, i.e. time, 

and leads to what is known as a LUMPED PARAMETER MODEL. Such models 

are described by systems of ORDINARY DIFFERENTIAL EQUATIONS (O.D.E.) 

which are an order of magnitude more easily solved than partial 

differential equations. The distinct components are called 

COMPARTMENTS. A compartment can thus be defined as an anatomical 

or conceptual space in which at any instant of time a particular 

physiological variable is considered to be identical at all points 

within that space.

In general, therefore, mathematical models of biological 

systems represent simplications of reality. Such simplifications 

have to be chosen carefully since the model must retain the essential 

features of the system being studied.

Models of physiological systems can be considered at 

different structural levels. The form of simplification or model 

reduction depends on which type of model is being considered.

The function of metabolic systems, e.g. albumin, glucose, 

sodium, potassium etc. is dependent upon a large number of different 

organ systems. In such models simplification initially takes the 

form of representing each extremely complex organ system as a single 

compartment. Even with such "lumping" the model structure is still 

large. (Fig.6). Further model reduction is based on neglecting 

those compartments that are thought to have little effect on the 

system's performance during the time course of the experiment being 

modelled.
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T E S T  S I G N A L S

I mp ulse

Step Function

Sinusoid

FIGURE 3

Diagramatic representation of some of the 
commonly used test signals. The induced 
time variation in the input follows one of 
the patterns shown.
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3 0 -

.IQ- 20 -

04
5 6 7
W.R.
3 8 3

(k(^m/min)
200
TIME 

. (sec) 6 0 120 180 6 0 120 180

FIGURE 4 . a

Responses in ventilation and heart-rate to two different 
magnitudes of step work load in subject R.W. (from study 
of Fujihara et al.^^) The data at top left of the 
figure are for change in ventilation (L/min) and on the 
right for change in heart-rate (beats/min) from initial 
steady-state values. The step-changes in work load are 
shown at the bottom of the figure. The continuous and 
dashed lines through data are the step responses pre
dicted from previously measured responses to impulse 
stimuli. The system satisfied the principle of 
superposition. For further details see Fujihara et al. 
(Symbols:- • on-response for large step; O off-response
for large step; X on-response for small step; A off- 
response for small step.)

11
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20 ■

• •

1 3 0 0 -
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200 -
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TIME
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FIGURE 4.b

Similar study tj^that shown in Figure 4 (from work of 
Fujihara et al. ) but with response to two different 
ramp stimuli. (Ramps shows at foot of figure). The 
data for change in ventilation (L/min) are on the left 
with change in heart-rate (beats/min) on the right.
The lines through the data are ramp responses predicted 
from measured impulse responses. There is good agree
ment between measurement and prediction and the principle 
of superposition is satisfied. (For further details see 
original publication of Fujihara et al.^^)
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CORTISOL
SECRETION

RATE
(VOAnin)

4-

gkCTH](xu/im)
MMUTES

FIGURE 5a

Response of adrenal cortex, as measured in adrenal vein, to 
a step change in ACTH concentration in adrenal arterial blood. 
On increasing the ACTH an overshoot in cortisol secretion rate 
above the final steady-state value is seen. For further 
details see Li & Urquhart.^^
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FIGURE 5b

Response of adrenal cortex, as measured in adrenal vein, 
to much larger step change in ACTH concentration in 
adrenal arterial blood than that used in experiment, 
the results of which are demonstrated in Fig.5a.
The response does not have the same features, in 
particular the overshoot is not seen. There is a 
saturation phenomenon in the performance of the gland. 
The adrenal cortex is a non-linear system. (For 
further details see Li & Urquhart.^^)
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If one is interested, however, in studying the function of an 

individual organ a more detailed model of the system is required.

In such a model the organ is considered to consist of a number of 

components which are often anatomically distinct and have different 

physiological functions. Such models have been constructed for a

large number of different physiological systems such as the cardio-
14-29 30-49vascular system, respiratory system, (excluding here models

of gas transport which are considered in detail in Chapter 2), renal

system^^ metabolic and endocrine systems^^ (The references

listed are not intended to be an exhaustive list but rather to give

the interested reader an introduction to the different subject areas).

Models have been used to describe physiological processes at different

levels of complexity down to the "unit processes" of biochemistry such

as the Krebs cycle and closely related metabolic pathwaysY^ A

special computer language has been developed for the simulation of
84such complex chemical systems. In addition to these specific 

examples there are several more general sources of information 

related to mathematical modelling of physiological systemsf'^^ 104.

Once the structure of the lumped parameter model has been 

decided the equations which describe its performance are derived, 

usually employing some initial simplifying assumptions. It is 

seen that in both the stages of formulation of model structure and 

of derivation of the model equations assumptions are necessitated.

1.6. FORMULATION OF ORDINARY DIFFERENTIAL EQUATIONS

An ordinary differential equation can be regarded simply as 

an equation containing derivatives. Although a derivative has a 

precise mathematical definition (see Appendix LA) a derivative with 

respect to time represented by the symbol is in physical terms a 

rate of change.
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Functional Model of Albumin Metabolism
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FIGURE 6

Outline of possible structure for model
13.of albumin metabolism (From Carson et al ).
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Ordinary differential equations like dynamic systems are 

classified into linear and non-linear types, a linear ordinary 

differential equation being defined as one which is first degree 

in the dependent variables or their derivatives. Thus the

general ordinary linear differential equation, which is illustrated 

here with the independent variable time (t), has the form

.n j^-l
— ^  ai(t)— + ............ a (t)y(t) =G(t)(l.l)
at" ^ dt"-i

The input-output relationship of systems described by such equations 

are linear since the principle of superposition can be shown to be 

obeyed. There is thus correspondence between the concepts of 

linearity as applied to systems and to differential equations.

A subclass of the class of linear differential equations

are those with constant coefficients. (That is a.(t) - a ^(t) in1 n-1
equation 1.1 are replaced with constants A^-A^_^). Such equations 

describe linear time-invariant systems. The prominence of this 

latter class of systems in the theoretical aspects of this subject 

is not related to their prevalence in real life systems (e.g. most 

physiological systems are neither linear nor time invariant) but to 

the fact that linear O.D.E.s with constant coefficients are solved 

easily mathematically.

In physiological systems the formulation of an ordinary 

differential equation is often based on mass balance consideration. 

For example if a compartment X has three inputs of mass (i^,!^,!^) 

and two methods by which mass is lost from X/Ô^,Ô 2 ) (See Fig. 7) 

then the differential equation describing the performance of X 

is of the form
dMv • • • • •

—  = Il + Iz + I; - - O, (1.2)
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where Mx is the mass of the material being studied in X

is the rate of change of this mass in X 

Models of physiological systems may often be formulated using simple 

principles.

A simple example of this is a differential equation to

describe the volume changes in the urinary bladder. Initially

we will consider the case when the urethral sphincter is closed.

While the urethral sphincter is closed, the volume of urine in the

bladder increases as a result of the addition of urine to the bladder

from the ureters. Thus the rate of change of the volume of urine 
dVin the bladder must equal the sum of the flow rates (F^ and F^) 

of urine down each ureter, i.e.:-

dV^  + F 2  (1.3)

When the urethral sphincter is open there is not only addition of 

urine to the bladder from the ureters, but also loss of urine down 

the urethra. As a first approximation we shall assume that the 

rate of loss of urine down the urethra is directly proportional to 

the volume of urine in the bladder i.e. the bladder's performance is 

now described by the equation:-

E  = ?! + ^2 - kv (1.4)
Rate of change Addition from Loss down 
of volume ureters urethra

(K is constant of proportionality and is positive)

The model could be made more realistic by using a more sophisticated

expression for the iste of flow down the urethra which took account

of the probable non-linear relationship between the flow rate and

bladder volume, and the degree of abdominal musculature activity.

In the absence of more precise information this could be modelled
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3

O

Ô .

1

FIGURE 7

Diagramatic representation of a
single compartment (X) with three
inputs of mass (Î ,I ) and two i 2 J .
methods by which mass is lost (O ,0 ).
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at present as an arbitrary function G, when G is a function of 

volume of urine in the bladder (V), urethral sphincter tone (T), 

and abdominal musculature activity (M), i.e.:-

^  = Fi + F2 - G(V,T,M) (1.5)

The form of G could only be ascertained by experiment.

If the urethral sphincter remains open (e.g. with a catheter in situ)

a steady state will eventually be reached in which the volume of the

bladder will be constant as the flow into the bladder is balanced

exactly by the flow out. In the steady-state condition there is
dVno change in bladder volume and hence —  is zero. Thus equation (1.4) 

would simplify to

^ ^2 (1.6)
K

It is thus seen as indicated earlier that steady state conditions 

are described by algebraic equations.

In many circumstances derivation of differential equations 

is not as simple as the example used would tend to indicate. In 

such cases the derivation of the differential equation is achieved 

using the precise mathematical definition of a derivative. (For an 

illustrative example see Appendix IB).

Although in general physiological systems are described by 

non-linear equations, they may often be approximated over a limited 

range of operation by linear equations. Such linearisation of

non-linear equations is e.g. employed in the construction of the 

differential equations in radioisotope tracer studies. (The 

linearisation process is presented mathematically in Appendix ID).

Such linearisation is important practically since it converts

equations which can only be solved by computer methods to those in

which one is able to write down in mathematical terms the exact solution.
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1.7. CONSTRUCTION OF BLOCK DIAGRAM

When the complete set of equations describing the system has 

been established it is possible to express the information contained 

in the equat±>ns in the form of a block diagram. The block diagram 

is built up from the separate equations describing the system. For 

example in the bladder example the information contained in equation (1.3) 

could be represented in block diagram form as in Fig. 8. The 

diagram can easily be extended to represent equation (1.4) (Fig.9).

Since integration is the mathematical operation which is the
dVinverse of differentiation, by integrating with respect to the

variable t we obtain the variable V. The operation of integration 

is represented by a block of type shown in Fig. lOA. Multiplication 

by a constant is also easily represented (Fig. lOB) and these 

additional blocks can be combined with the summing element to close 

the loop and produce a block diagram which contains all the 

information expressed in the separate equations (Fig. 11).

1.8. SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

The solution of an ordinary differential equation, when the 

independent variable is time, is a function of time. Although 

mathematical methods, (analytical methods) exist for the determination 

of the exact nature of this function such methods can be applied 

only to a restricted class of equations. Linear equations with 

constant coefficients can always be solved by mathematical means 

as can some types of linear time-variant or non-linear equations.

The exact solution of a differential equation depends on 

the state of the system at zero time, i.e. on the INITIAL CONDITIONS.

Of the methods available for analytical solution of O.D.E.s 

the LAPLACE TRANSFORM method is the most convenient.
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d V  
dt

FIGURE 8

Block diagram representing equation 1.3.
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KV

H Y
dt

FIGURE 9

Block diagram representing equation 1.4.
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FIGURE 10a

Block diagram representation 
for integration with respect 
to time.
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KV

FIGURE 10b

Block diagram representation for 
multiplication by a contant (K).
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KV

FIGURE 11
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In Laplace transformation functions are converted from

functions of time to functions of a new variable S (complex frequency) 

using the conversion formula that given f(t) its Laplace Transform F(s)

rf(t)_______ LT____________  ̂ je^^f(t)dt = F(s)
"o

The particular property of the Laplace Transform which is of value 

in this application is that the Laplace Transform of a derivative 

is given by

df LT S F(s) - f(o)
31  -------------------------------- ^

It is seen that the initial condition f(o) (the value of the function 

f at time t = o) appears explicitly in the transform.

Applying this transformation to an O.D.E. allows the solution 

as a function of s to be obtained easily using the simple rules of 

algebra. The solution of the equation as a function of time is 

then found by using the reverse process to Laplace Transformation - 

the INVERSE LAPLACE TRANSFORM for which several methods exist.

Thus for example applying this method to equation (1.4) 

dv—  = F + F - kv (1.4)dt 1 2
where F^ and F^ were constants

^  ' --- — ------ > sV(s) - v(o)dt
F^ LT ^ F^/s

F 2 LT  ̂Fg/s

-kv_____ LT______^ -kV(s)

i.e. SV(s) - v(o) = F^/S + F /S - kV(s)

which becomes

V(s) = ^1 ^2 - (F^ + F^) +v(o)
k(s + k) (s+k)
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and on taking the Inverse Laplace Transform we obtain:-

- VLIi
k k

The solution contains the exponential function e Exponential

functions arise commonly in the solution of this class of differential 

equations.

In physical terms the solution of the equation allows us to 

predict the volume of urine in the bladder at any time t from an 

arbitrary starting point (when the volume is v(o)).

1.9. SIMULATION

In many physiological models, however, analytical methods are 

not applicable and one has to have recourse to computer based methods 

of solution.

a) Analogue Computation

For dynamic models the electronic analogue computer is suitable, 

This differs from the digital computer in that numbers are represented 

in an analogue machine by a voltage. While the digital computer 

performs its calculations in a step by step fashion the analogue 

computer operates in terms of continuous variables and is, therefore, 

more effective for most types of simulation.

Programming an analogue computer is easy in principle since its 

operational units (see Table 4) correspond to the elements of a block 

diagram. One of the operational units is an integrator, which 

provides the mathematical operation of integration and makes the 

analogue computer suited to the solution of ordinary differential 

equations. The interconnections which are required to be made 

between the units of the computer to obtain a solution of the 

equations forming the model are represented in a "patch diagram".
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This diagram will correspond to the block diagram of the system 

model. There is thus a very direct and useful relationship 

between the operational units in the analogue simulation and the 

structure of the model. Most machines of this type have,

however, limited facilities for the accurate generation of complex 

time varying functions and pure time delays.

The deficiencies of the analogue computer can be overcome by 

using a hybrid c o m p u t e r T h e  digital computer part of the hybrid 

system can be utilised for function generation and the simulation of 

time delays. Analogue computation is considered in greater detail 

in Appendix 2.

b) Digital Simulation.

Digital computer solution of ordinary differential equations

is implemented generally using a mathematical (numerical) technique

for integration. A number of these techniques exist^^^ and the 

physblogical modeller has the choice of constructing his own 

programme to implement the method or using a standard software 

package available on a central computer library.

Particularly useful software packages are high level 

simulation languages, e.g. C.S.M.P. (continuous system modelling 

p r o g r a m m e ) I n  these languages the programme statements represent 

the various steps which are required for solution of the model 

equations, i.e. each statement corresponds to an element in the 

block diagram (see Appendix 3).

1.10. "BLACK-BOX" MODELS

In certain applications a model of the detailed structure of

each component of the system may not be required but rather a

mathematical description of its overall performance, i.e. the
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relationship between system input and system output.

A commonly used method of describing this relationship is

the TRANSFER FUNCTION. This function of the Laplace variable s(G(s))

relates system input to system output by the formula

TRANSFER FUNCTION G(s) = L Z r. output ̂L.T. of system input X(s)

if the initial conditions in the system are zero. One method of

obtaining the transfer function is by measurement of the system

output after introduction of a standard input into the system whose

Laplace transform is known (e.g. impulse, step, or ramp function).

Transfer functions can only be obtained for linear time-invariant

systems, and this concept has had limited application in physiology

(for examples see references 108, 109). It can prove useful in

obtaining knowledge of the effect of dynamics of measuring systems

on data which have been obtained experimentally.

1.11. PARAMETER ESTIMATION

The performance of any of the types of mathematical models, 

which have been described, depends upon the numerical values of the 

constants in the model equations. Such constants or PARAMETERS 

represent propertieè of the physiological system being studied.

At its simplest level, if a model is being used in 

simulation studies, such constants may be assigned appropriate 

physiological values. Most physiological modelling is of this 

type.

In applying models to measurement, however, use can be made 

of the techniques of PARAMETER E S T I M A T I O N . I n  one 

approach to tdie experimental evaluation of model parameters (the
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so-called model reference approach) the model and system are 

subjected to the same input and their outputs are compared directly 

at each instant of time (Fig.12). The discrepancy between the 

output of the model and the measured output of the system can be 

expressed as an error function. Minimisation of this error 

function by appropriate adjustment of model parameters may yield 

measures of the corresponding physiological quantities.

1.12. VALIDATION OF THE MODEL

The validity of the proposed model and the circumstances in 

which it can be applied are established by comparing sets of values 

MEASURED in the real system with values PREDICTED by the model.

With dynamic models one uses several forms of test input to cause 

the system to respond dynamically. Ideally not only should the 

model and system performance be seen to be in reasonable agreement, 

but also the estimated parameters of the model should agree with 

independently made direct measurements of these physiological 

properties. In many physiological systems this type of validation 

is not possible since parameter estimation may be the only feasible 

method of measurement. In such circumstances one should confirm 

that the same parameter estimates are obtained with different test 

inputs.

The modelling process as outlined in this chapter is 

summarised in Figure 13.

1.13. APPLICATIONS OF MATHEMATICAL. MODELS

When a model has been constructed and verified experimentally 

it can be utilised in a number of important ways.
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s ystem  o u t p u t

INPUT fO P C iN O

MODEL OUTPUT

PAPa m ETE* a d j u s t m e n t  l o o p

p a r a m e t e r  c h a n g e

C A LC U LATIO N

FIGURE 12

Schematic diagram representing the model 
reference approach to parameter estimation.
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1.13. a) Indirect Measurement of Physiological Variables.

The numerical values of the constants which appear in the 

equations of many of the models of physiological systems are often 

inaccessible to direct measurement. Techniques for estimation

of the parameters of a model may provide, therefore, an indirect
/

method of measurement of physiological quantities.

In certain cases parameter estimation by graphical means 

is possible. This is used particularly in the mathematical 

models which are the basis of many of the tests in which radio

isotopes are used.

In use of more complex dynamic models simple graphical 

techniques are not appropriate and computer based methods have 

to be applied. The application of these methods to models of 

respiratory gas exchange is considered in this thesis.

b) Hypothesis Testing/Experimental Design.

A hypothesis can be regarded as an "intuitive model" which 

is generally presented in non-quantitative terms. By converting 

a hypothesis to the equivalent mathematical model, the experimenter 

can examine the hypothesis in more detail than is possible without 

recourse to mathematical description (see Fig. 14a). A critical 

examination using a mathematical model and the experimental 

findings together may provide support for the hypothesis or lead 

to its rejection or modification. Rejection of the hypothesis 

may lead to the proposal of a new hypothesis or to improvement of 

the model.

Figure 14b represents the inverse situation in which the 

hypothesis arises from observation made on the model. The model 

is thus being used in a predictive fashion and new experiments 

must be developed to provide the essential supporting eidence.
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The optimal design of experiment for testing a particular 

hypothesis may be determined by simulating a number of possible 

experiments in a system model.

c) Educational Role.

Physiological systems are usually both complex and dynamic; 

the function of any individual component in the total system may 

be affected by changes in the others. It is often difficult for 

the student to understand the overall effect of a change in a 

single variable. Models of physiological systems can, therefore, 

be used as an educational aid. Implementation of a model of 

respiratory gas exchange for this purpose is described in Appendix 4.



C H A P T E R  2

MATHEMATICAL MODELS OF RESPIRATORY GAS TRANSPORT.
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CHAPTER 2. MATHEMATICAL MODELS OF GAS TRANSPORT

2.1. INTRODUCTION.

There are several different approaches to the construction

of mathematical models of gas transport. These approaches can be

categorised by the method which is used for mathematical description

of ventilation (V). Ventilation is a continuous time varying

process which contains irregularities due to voluntary effects as
115well as some small recurring changes in rate and depth.

Methods vary from those in which time averaged ventilation 

is used in algebraic equations, to those in which the precise form 

of ventilation is used in the numerical solution of ordinary or 

partial differential equations.

The different approaches to construction of models of 

respiratory gas transport are considered in this chapter and 

summarised in Table 2.1.

Description of Ventilation Type of Equation Method of Solution
of Model Equations

Time-averaged ventilation.

Breath-by-breath tidal 
volume.

Constant unidirectional 
flow rate.

Instantaneous inspiration/ 
expiration with 
inspiratory & 
expiratory breath-holds,

Algebraic equation. 
Steady-state model.
Difference equations.

Algebraic
manipulation.

Algebraic
manipiation.

Ordinary differential Analytic solution, 
equation.

Ordinary differential Analytic solution, 
equation.

Continuous time-varying V. Ordinary differential No general analytic

Continuous time-varying V 
& considering events 
spatially within the 
lung.

equation.
Partial differential 

equation.

solution possible. 
Numerical methods. *

* Computer based methods 
of solution.

TABLE 2.1.
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2.2. BASIC UNITS.

a) Prior to study of the mathematical descriptions of 

alveolar-capillary gas exchange, familiarity with the standard 

units and symbols is essential. In the earlychys of respiratory 

physiology there was a lack of agreement on appropriate symbols, 

which adds to the difficulty in understanding the early papers on 

this subject. This problem was remedied at the 1950 Atlantic 

City Convention (Pappenheimer, 1950)^^^ when a standard system of 

units and symbols was introduced (Table 2.2.).

QUANTITY SYMBOL UNITS

Partial pressure P mm.Hg. or kilopascal (kPa)
Volume of gas V Litre
Fractional

concentration
F Dimensionless

Volume flow rate V Litre/min.
Concentration of gas 

species in liquid
C ml. of gas at STPD/100 ml. 

of liquid
Solubility in blood a Vol. of gas at STPD/Vol. 

of liquid/Atmosphere of 
pressure.

SUBSCRIPTS

UPPER CASE LETTERS 
(For gas phase)

LOWER CASE LETTERS 
(For blood phase)

I Inspired a Arterial
E Expired V  Mixed venous
A Alveolar

TABLE 2.2

Summary of symbols agreed at Atlantic 
City Convention, 1950.^^^



41.

The equations of alveolar-capillary gas exchange are 

concerned with the transport of gaseous mass either by convection 

or diffusion or a combination of both. In the 1950 system 

amount of gas is represented by a volume expressed at a set 

condition of temperature, pressure. It has been suggested more 

recently^^^ that amount of gas should be expressed in moles and 

concentration in moles/litre. Although this new system of units 

is as yet not universally accepted it is probable that it will 

replace the 1950 system of units. The new system of units is 

detailed in Table 2.3, and compared with the 1950 system. Since 

these conventions do not cover all symbols used in this thesis, 

all symbols are listed for completeness in Appendix 5.

b) Gas Phase:

In the gas phase, concentration in the 1950 system of 

units is expressed as a fractional concentration F (volume of gas 

species under consideration/volume of gas medium). The conversion 

of a fractional concentration to a partial pressure is a simple 

matter of proportionality as described by Dalton's law. Thus if 

the fractional concentration of a gas species x is Fx, the total 

pressure P, the partial pressure exerted by this gas (Px) is

Px = Fx.P

In the new system of units in which amount of a gas is 

expressed as moles and concentration as moles/litre, the relationship 

between concentration and partial pressure is defined by the 

introduction of a capacitance coefficient 3 which is defined as the 

increment of concentration (AC) per increment of partial pressure (AP); 

i.e. 6 = AC/AP
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-1 -1 3 has the units of (moles)(litre) (pressure) . The

concept can equally be applied if the medium is gaseous or liquid.

In the gas phase 3 will be identical for all ideal gases since from

the ideal gas law

PV = MRT

where P is pressure, V volume, M quantity of substance, R the 

gas constant, and T absolute temperature; 

i.e. Ap = ~ ^ T

AC 1,
Â F  = /RT

i.e. 3 = ^/r t  for all ideal gases

c) Liquid Phase:

In considering the carriage of gas in a liquid, respiratory 

physiologists utilise frequently the concept of tension where 

tension of any gas (x) in a liquid is defined as that partial pressure

of X in a gas mixture which if exposed to the liquid would not resit 

in any net exchange of the gas (x). Thus if a gas and liquid 

mixture are equilibrated the partial pressures of the component are 

considered identical in the gas and liquid media. The tension of 

gas in a liquid thus defined is related to concentration. For 

gases which simply dissolve in the liquid media, this relationship 

is linear.

In the 1950 system of units, quantity of gas in the liquid 

is expressed as a volume at STPD and the linear relationship is 

described by the Bunsen solubility coefficient* (volume of gas at 

STPD/unit volume of solvent/atmosphare of pressure).

* An alternative coefficient which is used occasionally is the 

Ostwald coefficient in which the value of gas dissolved is not 

expressed at STPD but at the conditions of temperature and 

pressure at which solution took place.
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Alternatively if the quantity is expressed in moles then the 

relationship is described by the capacitance coefficient.

For the two important respiratory gases oxygen and carbon 

dioxide which combine chemically with blood there is not a simple 

linear relationship between tension and concentrtion in blood.

The non-linearity of this relationship leads to certain 

biological advantages but complicates the understanding and 

mathematical analysis of respiratory gas exchange.

2.3. STEADY-STATE MODELS.

a) Introduction.

In the construction of steady-state mathematical models 

single values are assigned to expired, alveolar, arterial, and 

venous partial pressures, tidal volume and minute ventilation.

Such models neglect, therefore, any temporal variation in 

respiratory gas exchange and describe the time-averaged 

performance of the system. In performing tests which are 

based on these models some variables are measured continuously 

and averaged, whereas others are sampled at variable time intervals.

The use of such models can, therefore, in theory lead to significant 

inaccuracies although this problem has been little studied.

Nevertheless despite these obvious limitations tests based on 

steady-state models are used widely.

b) Basic Equations.

The equations of alveolar-capillary gas exchange are all 

based on the principle of conservation of mass. Thus in 

considering the transfer of a gas x from the atmosphere to the 

lung -

MX = VjC^x - VgCgX (2.1)
(moles/unit Amount Amount

time) inspired expired
(All equations are expressed where appropriate in the new system of units.)
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In general because during normal breathing more

oxygen is taken up per minute than carbon dioxide produced.

A similar expression as (2.1) describes the transfer of 

gas between the lung gas and blood

MX = Q (C^x - C-x) (2.2)

The equating of equations (2.1) and 2.2) form the basis 

of the Fick method of measurement of cardiac output.

In the practical applications of these equations expired 

ventilation (V^) is measured generally by collection of the 

expired gas for a known period. Although inspired ventilation 

could be measured directly it has been standard practice to calculate 

inspired ventilation from the measured expired ventilation and 

measured inspired and expired concentrations of nitrogen, using 

the assumption that in steady-state conditions there is no net 

transfer of gaseous nitrogen between the lung and atmosptere.

i.e. = VgCgN, (2.3)

''l = ‘2.4)

(This relationship is known as the Haldane transformation and 

its validity is considered in the next section.)

c) Steady-State Equality of Respiratory Gaseous Nitrogen 
Transport.

The assumption that the volume of nitrogen inspired per

minute is equal to the volume expired was based originally on

the view that gaseous nitrogen was not involved in metabolic

processes but was merely a diluent of atmospheric gas. (For
119history of early work in this area see Dudka et al. )

The conventional view was challenged by Costa^^^ who 

proposed that gaseous nitrogen represented an excretory pathway 

at the end stage of amino—acid metabolism, and found in support
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of this assertion that a measured positive nitrogen balance could 

occur without commensurate gain in body weight.

This work stimulated direct measurement of respiratory 

nitrogen exchange, in particular by the group in the Human 

Environment Research Unit, University of Illinois, who demonstrated
119a small uptake of nitrogen in fasting subjects (mean of 0.027 L/min),

significant excretion of nitrogen following a protein meal (of the
122order of 0.1 L/min) and higher outputs of nitrogen during mild

123exercise (average 0.217 L/min). The magnitude of the nitrogen

exchange is such that significant errors would result from use of
124the Haldane transformation and led these workers to propose

125methods to obviate this difficulty.

The size of the measured nitrogen exchange is surprising

and approaches in certain conditions the same magnitude as the

volume of carbon dioxide excreted. The evidence is moreover

conflicting, other workers having demonstrated nitrogen excretion

in resting fasting subjects^^^' There is a large individual

variability in the results. The literature has been reviewed 
127by Fox and Bowers who showed that of the 101 determinations of

nitrogen exchange which have been reported in resting fasting man,

44 indicate nitrogen retention and 57 nitrogen production.

The reported results could be due to measurement errors

associated with measuring a small difference between large volumes,
128as was suggested by Herron et al. The magnitude of the "measured"

nitrogen exchange would thus be expected to be higher if the volumes 

were larger, e.g. during exercise, as is indeed the case. The 

effect of measurement errors is minimised by reducing the volume 

fraction of nitrogen in the inspired gas mixture. In an 

elaborate series of experiments in which subjects breathed a gas
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mixture containing 0.15% for 2.5 - 12 hours the measured

nitrogen exchange ranged from -0.003 to +0.008 L/min^^^ it

is thus highly unlikely that the magnitude of the true exchange

of gaseous nitrogen is such that significant errors result from
128 129use of the Haldane transformation. '

d) Functional Compartments in the Lung.

Equations (2.1) and (2.2) describe the transfer of a gas 

species (x) between lung gas and atmospheric gas, and lung gas 

and pulmonary capillary blood respectively. If the pulmonary 

component of this model is to be considered in more detail it 

is necessary to study the basic structure of the lung.

As a first approximation the lung can be thought to 

consist of two types of structure:-

( 1) Conducting airways. A "non-reacting" dead space.

( 2) Alveoli

and a possible "lumped" model structure is illustrated in Fig.2.1. 

Although this model seems initially a simplification of reality 

which is too gross to be of value, one can distinguish readily 

in measured expired concentration data,dead space and alveolar 

components. Even with such a simplified model structure 

additional assumptions are necessary to allow formulation of 

equations, viz.:-

a) gas flow takes place down the airways with a flat velocity 

profile, i.e. "plug-flow".

b) volume change is restricted to the alveolar compartment.

c) single numerical values can be assigned to the partial 

pressures in both compartments.

Steady-state equations whose derivation is based on this 

structure will, therefore, not only represent a time averaged



48.

DEAD SPACE

ALVEOLAR
c o m p a r t m e n t

FIGURE 2.1

A simplified lumped parameter model of the lung. 
The lung is represented as a single dead space 
compartment with volume and a single alveolar 
compartment with volume V^. Gas transfer takes 
place between the alveolar compartment and blood 
stream. The dead space is assumed to be rigid 
with a compliant alveolar compartment.
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mean but also a volume averaged mean (within a lung unit and 

between the large number of functional units).

The Bohr equation^^^ is one of the frequently used basic 

equations of alveolar-capillary gas exchange. The equation 

simply proportions the expired gas mixture between its dead 

space and alveolar components:

V i *  = V l = ‘ + ‘'"t - W  ‘2.5)
Mixture Dead space Alveolar 

component component

and converting to partial pressures we have

V S ^  = ''d V  + ‘2-6)

Another important basic equation is the alveolar air

equation. The history of the development of this equation has
150 131been presented by Otis and Nunn.

In the alveolar compartment of the model illustrated in

Figure 2.1 the oxygen and carbon dioxide partial pressures are

interrelated. The most simple form of this relationship arises

when the subject is breathing 100% oxygen since under these

circumstances

P^Og + P^CO^ = P^Og = B - 47.0 (mm.Hg.) (2.7)

When the subject is breathing air, however, the relationship

is more complex and is established by use of the respiratory

exchange ratio (R) where R is defined by
VCOg CO 2  output/minute

^ VO 2  O 2  uptake/minute (2.8)

In the gas phase the transfer from the alveolar compartment

I S

VCO2 = V^F^COj - (V^-fV^lF^CO, - fV^F^CO;
Expired Inspired from Inspired from 

atmosphere dead space
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(fractional concentration is used here as it offers certain

advantages in derivation of this equation)

likewise

VO 2  = (V^ - fV^)F^ O 2  + - VgF^ O 2

In order to simplify these expressions the concept of alveolar 

ventilation (V^) is introduced where

= V, - %

VAe = \  - %

The alveolar ventilation so defined is not the actual volume of 

gas entering the alveoli but rather the volume of atmospheric 

gas. The effect of this change of variable is to remove further 

consideration of dead space volume or concentration.

In the general case since the oxygen uptake is

not invariably equal to the carbon dioxide output. In order to 

negotiate this consideration the standard method of derivation of 

the alveolar air equation utilises the assumption, which is 

discussed in the previous section, that there is no net nitrogen 

exchange.

1 . e

i.e. Va  = Va / a“ 2

b u t F^N^ = (1 -  F^°2 -  FaCO^)

F i«2 = - ^ ° 2  - ^=°2>
I.e.

Va, = Va, <̂ -V2 - V°2>
(l-F^Og - F^CO^)

It is common practice to call alveolar ventilation and delete

the subscript E. Thus we have
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and

VCO., =  V F C O , - V *'a°2 ■ . F C O ,
2 ^ -a -F7o^ - F^cd^ )- : 2

• •» a-4 l - W  ™

hence we have

F^CO, - ‘̂ :V 2  7 ^ - 2 )
R = (1-Pi°2 - ^I=°2> "'I"2

( I - V 2  ■ ^ A ™ 2 *
(l-F^Og - F^COg) ' ^I°2 ' ^A°2

(It should be noted that since R is a ratio, the expression is 

now independent of the volume of the transport medium).

By algebraic manipulation of the equation and converting where 

appropriate to partial pressures

P o, = '^I ° 2  + V ° 2 - ^ ° 2 ‘̂ -'̂ > + PlC° 2  - V ° 2  (2 .1 0 )
F^COg (l-R) + R

A commonly used special case of equation (2.10) occurs when P^CO^ = 0.0. 

In this case the equation reduces to
P CO

V 2  = V 2  + V ° 2 - V 2 - ^ - ^  ‘2.11)
In this derivation of the alveolar air equation the Haldane

tran^rmation is used. A form of the alveolar air equation which

is not based on the assumption of no net exchange of inert gas was
132presented by CSszowka & Farhi. Solution of the equation requires

knowledge of the mixed venous partial pressures of inert gases.

As indicated, the derivation of these equations is based on

gross simplifications of reality. There are several component

processes, involved in the transport of respiratory gases between

the atmosphere and arterial blood. Each component may be
133regarded as imparting a resistance to gas transport and
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contributing to the overall tension differential between

inspired gas and arterial blood i.e. ( I - a ) a n d  (a-IjDCOg.

Such resistances are accentuated in disease processes. The

various components in the overalltransport process have been
133categorised by Hills:

Airway convection.
Airway diffusion.
Membrane diffusion.
Plasma convection.
Erythrocyte diffusion.
Chemical reaction.

with additional resistances due to

Shunt, i.e. right to left shunting.
Distribution component.

Descriptions of these component processes by means of

algebraic equations is considered in the next three sections.

e) Airway Convection/Diffusion.

Transpat. of gas from the mouth to the alveolar membrane

is a complex process. Flow in the larger airways may be turbulent

during periods of peak-flow even at rest, with linear velocities of

gas flow in excess of 230 cm/sec and Reynold's numbers of the order

of 2000 . In the lower airways where gas flow would be expected to

be laminar (Reynold's numbers of the order of lO) laminar flow is

interrupted at branch points, re-established in the distal airways,

and secondary motions occur^^^ Utilising the anatomical data of

Weibel}^^ and Horsfield & Cumming}^^ the calculated linear
138velocities of gas flow in the terminal airways are such that the 

main mechanism for transfer of gas to the alveoli is gaseous 

diffusion.

Such a complex process requires for its description a 

distributed model. Such models are discussed in Section 2.8 of 

this chapter, but the complexities are such that a complete

134
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mathematical description of the events is not possible at this
4.- 139time.

In the steady-state approach it is assumed that inspired

gas is transported to the alveoli by convection. For carbon

dioxide transport

VCO2 = V,C^CO^ - (Vj-fV,)CjC02 -

= V A e S g V ° 2  - (2.12)

and for oxygen

= VA^ggPiO, - Va^B^P^O^ (2.13)
«

may be eliminated using the variable R. Since

VC°2 VAEBgPAC°2 
" to, - VA;B P;02 -Va e 6„Pa°2

In derivation of these equations it is assumed that the 

concentration of dead space gas which is re-inspired is identical 

to alveolar gas. Thus application of these equations to 

individual gas exchange units is equivalent to assuming that each 

unit has its own separate dead space.

f) Membrane/Erythrocyte diffusion.

The process of diffusion can be described by Fick's Law 

which states that the flux of a gas species i (ML) across an 

area of an infinite plane under a concentration gradient ^^i is
3 X

given by

” i = - (2.15)

where d^is the coefficient of diffusion. This law only applies

however to mixtures of two gases, to diffusion of the gas in only
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one direction, in one phase and in a steady-state, i.e. when

the concentration at each point is constant. When more than

two gases are present, as in the lung, the governing equations

are the more complex Stefan-Maxwell equations although use of

Fick's law does not lead to serious inaccuracies in normal air
140breathing conditions.

Despite the restrictions implicit in equation 2.15 it is 

the basis of the mathematical description of diffusion across the 

alveolar-capillary membrane.

For a gas, C can be replaced by partial pressure p such

that
3Pi

aPand if — ^  is approximated by ^  where Ap is the partial 

pressure difference between two peints which are separated by a 

distance X, then
AP

i 1 ^ XM, = - Ad^Bi ~  (2.16)

In study of diffusion across the alveolar-capillary membrane Ap 

is taken to be the difference in tension between alveolar gas 

and pulmonary capillary blood and X the thickness therefore of 

the alveolar-capillary membrane.

Thus for a small length (dl) of an individual pulmonary 

capillary in a small time dt the flux of a gas species i is given 

by

 i(P, -PL)dldt (2.17)
X ^

where S is the unit surface area of pulmonary capillary, P^ the 

tension in that section of pulmonary capillary blood, and = d^B^, 

In studying alveolar-capillary diffusion in man the use of 

carbon monoxide as the test gas offers advantages because of its
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high affinity for haemoglobin (about 220 times that of oxygen),

141a fact first realised by Bohr. If it is assumed that the

rate of combination of CO with haemoglobin is instantaneous 

then equation 2.17 for CO can be written as

f^COdldt (2.18)X A

By assuming that a) the shape and dimensions of capillaries are 

uniform; b) erythrocytes travel through all capillaries at same 

rate; c) alveolar PCO is constant; d) resistance to gas transfer 

across the membrane is constant and uniform along the capillaries, 

and by integrating along the length of the individual pulmonary 

capillary and summing with respect to all n pulmonary capillaries 

then the amount of CO transferred in the lung from alveolar gas to

pulmonary capillary blood in small time dt is given by

-  - C O  1P_COdl dt

where 1 is the length of the pulmonary capillary.

Thus in any unit time the flux of CO across the membrane (MCO) is 

given by

M C O = | Y c q P^CO (2.19)

where A is the alveolar surface area and = nlS.
AYThe constant CO is known as the diffusing capacity (D CO) or 
X ^

transfer factor (TF^^). Thus

- - C O A
Techniques of measurement of the transfer factor vary in the

142method used to estimate P^CO. (For details see Forster, Bates
 ̂ ^143 _ ^ 144.et al. Cotes ).
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Combination of CO with haemoglobin is not an instantaneous 
145process and the diffusing capacity as defined by equation (2.20) 

146can be shown to represent the summed effects of resistance of

the pulmonary membrane to diffusion and of the red cells to the

upta)te of CO. The proof of this (after Roughton & Forster^^^)

is detailed below. The rate of formation of COHb (v) in the

pulmonary capillary at any point depends on the partial pressure

of CO in the pulmonary capillary plasma

i.e. V  = 6 P COc
where 0 is a constant which itself depends on oxygen tension.

Equation (2.17) can also be applied to carbon monoxide.

Thus for a small length (dl) of an individual pulmonary capillary 

in time (dt)
SY

MCO - (p^co - P^CO)dldt

Assuming no change of the mass of CO in plasma (<1% of CO is carried 

in plasma)

^""co  (P,CO - P CO)dldt = 0P CO a dldtX A c c

where a is the cross sectional area of the capillary.

Thus P_COA
P CO = 1 + 8aX 

SY
(The subscript CO is omitted after Y ) . 
i.e. for a small length of capillary dl

æ o  = ^  ’ dldt
SY

Integrating along the capillary and summing over all n capillaries
n

MCO = >
j=l

(1 - ^  ) dl
SY

dt
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PL CO (1 - , 0aX )dtX A 1+ SY

but nlS = A and D = AY/X where D is defined to be the membrane M M
component of the diffusing capacity 

i.e.

MCO = D P  CO M A 1 - SY+8aX 
SY

SŸ"

dt

= D P^CO dt / (1 + GaX )M A

= V a “  ^ >

= V a “  / (1 + )

when is the volume of the blood in the pulmonary capillaries = anl 

But

MCO = D^P^CO dt (see equation 2.20)

(2.21)
i.e. 1 _ 1 1

Dt Dm  0Vc

g) Distribution Component.

A similar set of equations to those presented in 2.3.(e) 

can be developed to describe the transfer of oxygen and carbon 

dioxide to and from the blood perfusing pulmonary alveoli.

Thus for an individual pulmonary unit (k)

= L ‘V°2 - Lk“2> (2-22)
or VCO^^ = L | 2 S “ 2 - ^(^Ak“ 2>l

It is assumed that the end-capillary tension is identical 

to alveolar partial pressure and related to concentration of 

carbon dioxide in end-capillary blood by an arbitrary function f. 

(This notation is preferred to use of a capitance coefficient for
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CO^ in blood since the latter tends to suggest a constant

relationship). The function f is in effect the CO^

dissociation curve. Computational work has been simplified

greatly by provision of standard easily programmed methods
147both for the CO^ dissociation curve and oxygen dissociation

148 curve.

For oxygen

V °2k (2 -23)
From equating equations (2.22) and (2.12) and replacing 

by the expression in (2.14)

AK/ Qk

By rearrangement of this equation and replacing by

Cv=°2 - ^ " ’Ak=°2>
gtPA^Oj'-C-O^ (2.24)

= g- [ V ° 2  - ^ ( V ° 2 > ]  Pl°2 + [S°2 - 5 <"a k °2)] ^ “ 2
'“Ak= °2-L°2 + L “ 2 - V ° 2 (2.25)

In the case where P^CO^ = O this simplifies to

V^K/r
1

Qk
(2.26)

Such equations are presented in more detail along with graphical
149representations in the excellent treatise of Rahn & Fenn and 

by Otis^5°"

Thus for any given input conditions in the inspired gas 

(P CO ,P O ) and in the mixed venous blood (C-CO , C_0 ) the-L 6 6 V 6 V 6
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alveolar partial pressures of oxygen and carbon dioxide are 

determined by (the ventilation-perfusion ratio). This

relationship is best expressed by the ventilation-perfusion line 

(Fig. 2.2).

Construction of the line ^31#152 based on the recognition 

that in a steady state the blood R equals the gas R where the blood 

R is as defined in equation 2.24 and gas R is calculated from use of 

the alveolar air equation (2.10).

In manual construction of the line^^^' an R value is

chosen and the gas R line which radiates from the inspired gas 

point is constructed (see Fig. 2.2). The loci of points on this 

line describe all possible combinations of pO^ and pCO^ that could 

exist in the gas of an alveolus with that R value. The corresponding 

blood R curve is also drawn, and the point of intersection of these is 

on the V^/Q line.

Non-linearity of the blood R curve (equation 2.24) as a 

function of p O ^ , pCO^ makes the problem of identifying the point 

of intersection of the corresponding blood R curve and gas R line 

a trial and error procedure. Manual construction of the line 

for any particular subject is, therefore, tedious and may be 

inaccurate.

Methods fcr construction of the line using a digital computer

have been described^^^'^^^ The first uses a procedure similar

to the manual method, in that points on the line are identified by

searching along a gas R line for the point of intersection with
132the corresponding blood R curve. The other method treats

V /Q as the "independent variable". Thus the problem is to 
A
find the PO^ and pCO^ that are associated with a given Va/Q.

This is inefficient since it incorporées a search procedure in 

two-dimensional space.
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FIGURE 2.2.

Diagramatic representation of the ventilation- 
perfusion line. Each point on the line for 
an individual subject corresponds to a 
ventilation-perfusion ratio. The line is
between the mixed venous çoint V(V/Q = O) and 
the inspired gas point I(V/Q ). Points 
on the line are at the point of intersection 
between the gas R line and blood R curve.
(For more details, see text). In the computer 
programme described in the text points on the 
line (b) are identified at specific values of 
pO^(a).
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In a computer programme developed by the author, the 

method is based on eliminating the variable

By substituting for R in equation 2.10, R as defined in 

equation 2.24, we obtain a function of (P^O^rP^CO^) which is

+ P^CO,.F^O^(I-Vb) + P,CO^ - P,CO,
^A°2 ■ F^CO^fl-a/b) + a/b = O

where a = C-COg - fCP^CO^)

b = g(P^O^) - C_0^
e.g,

P C  a + P CO F O (b-a) + (P CO -P CO )b 
V 2 ---------------------f^CO-̂  (b-a) + a-----------------  = °  (2-27)

Thus for a defined value of P^0_ the problem of identifying a point

on the V^/Q line reduces to obtaining the value of P^CO^ which is

the root of this equation. The function defined by equation (2.27)

has a discontinuity when

F^COg(b-a) + a = O

Thus for values of P 0_ close to P_Ci when b and a will be close toA 2 V 2
zero, the root of the equation will be close to this discontinuity

(see Fig. 2.3). Since most numerical methods of root finding 

require as starting conditions knowledge of points on either side 

of the root, the discontinuity presents practical problems in 

implementation of such methods. This problem has been overcome 

in the programme which has been developed (see Appendix 6 ).

Two different numerical methods for root-finding have been 

investigated - régula falsi}^^ and bisection^^^ (See figs. 2.4 and 2.5

respectively). The bisection method proved to be more efficent than

the régula falsi in terms of speed (see Table 2.4).
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FIGURE 2.3

Graph of function as defined by equation 2.27 at
The and P^CO^ used in thisof 40.5 mmHg. 

calculation were 150.0 and 0.0 respectively with
P-0 of 40.0 and P-CO of 46.0. The function has a 
V  2 V  2

discontinuity at the pCO^ marked by the dashed line. 
The root of the function Ües close to the mixed
venous pCO^.
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FIGURE 2.4

The method of régula falsi for finding the root of a 
function. The method is iterative and each iteration 
begins with points on either side of the root. In the 
example shown the method is at its second iteration with 
the two points being B & C. On each iteration the point 
at which the line between these points cuts the abcissa 
is identified and the function evaluated at this point.
A new point D is thus obtained and one of the previously 
used points (B or C) is discarded such that the two new 
points are still on either side of the root. In the 
example shown C would be discarded and the two points B 
& D used in the next iteration.
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FIGURE 2.5

The bisection method for finding the root of a 
function. The method is iterative and each 
iteration begins with points CA & B) on either 
side of the root. The interval on the 
abcissa between the points is halved CC) and 
the function evaluated(Dl. The original point 
on the same side of the root as D is discarded (A) 
and the process repeated with the new points (D & B)
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INPUT P^Og REGULA FALSI BISECTION

Root (P^CO^) Number of 
iterations

40.07 43.76 13 43.76 23

71.29 38.60 36 38.60 21

129.69 17.34 73 17.34 15

TABLE 2.4.

In the programme which has been developed a number of points 

(60, or lOO, or 150) on the ventilation-perfusion line equally 

spaced in terms of P^Og between P^Og and P^Og are identified and 

V^/Q calculated. The programme lists these points with associated 

values of V /Q, P O^, P CO (in mm.Hg.) and C O^, C^CO (in ml.
/ \  A  ^  A  ^  V_ir ^  ^

STPD/lOO ml. blood) (See Table 2.5). The programme has the facility 

for graphing the V^/Q line.

In computer models of gas transport the most common 

application of the ventilation-perfusion line is to obtain values 

of P O , P CO and hence C O ,  C CO associated with a specific 

V^/Q for a specific set of input conditions. In one approach to 

this problem^^^ a time consuming method is used in which given a 

V^/Q, an R value is' chosen, the corresponding gas R line searched 

for the point of intersection with the corresponding blood R curve, 

V^/Q at this point calculated and if not within a specified value 

from the given V^/Q, an updated estimate of R made, and the process 

repeated.

For this application of the ventilation-perfusion line the 

author has used interpolation between points identified previously. 

Such points will be unequally spaced, however, with respect to
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V e ^A°2 V ° 2 ^C°2 C^CO

0.046 35.08 40.44 15.51 47.75
0.189 39.67 39.65 17.33 47.23
0.319 44.25 38.96 18.79 46.77
0.433 48.84 38.35 19.92 46.39
0.534 53.43 37.81 20.75 46.06
0.627 58.01 37.32 21.36 45.77
0.715 62.60 36.85 21.80 45.50
0.802 67.19 36.38 22.13 45.25
0.894 71.78 35.89 22.39 44.98
0.994 76.36 35.37 22.58 44.71
1.106 80.95 34.81 22.74 44.41
1.236 85.54 34.18 22.86 44.09
1.390 90.12 33.47 22.97 43.71
1.579 94.71 32.66 23.06 43.28
1.816 99.30 31.70 23.14 42.77
2.126 103.88 30.58 23.21 42.16
2.547 108.47 29.22 23.28 41.41
2.855 111.03 28.34 23.31 40.91
3.075 112.57 27.75 23.33 40.57
3.330 114.11 27.12 23.35 40.20
3.626 115.65 .26.43 23.37 39.79
3.976 117.19 25.69 23.39 39.35
4.394 118.73 24.88 23.41 38.85
4.902 120.27 24.00 23.43 38.30
5.530 121.81 23.03 23.45 37.68
6.326 123.35 21.97 23.47 36.99
7.366 124.89 20.79 23.49 36.19
8.773 126.43 19.48 23.50 35.28

10.777 127.97 18.02 23.53 34.21
13.837 129.51 16.38 23.55 32.95
19.033 131.06 14.52 23.57 31.42
39.628 132.60 12.41 23.60 29.53
62.032 134.13 9.96 23.63 27.09

193.248 135.16 8.10 23.64 24.95

TABLE 2.5
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V^/Q. (In the digital computer programme more points are 

identified at higher values of V^/Q when the difference in V^/Q 

between points equally spaced with respect to is larger.)

As a result of the unequal spacing of points certain of the commonly 

used methods of interpolation are inappropriate and Lagrangian 

interpolation is used^^^ The results of using this approach are 

illustrated in Table 2.6.

V^/Q Actual PCOg Interpolated PCO^ Actual PO^ Interpolated PO^ 
  (mm.Hg)  (mmHg)______ (mm.Hg. ) (mm.Hg. )______

0.179 39.71 39.71 39.34 39.34
0.368 38.70 38.70 46.15 46.15
0.628 37.32 37.32 58.06 58.06
1.304 33.86 33.86 87.68 87.68
3.478 26.77 26.77 114.91 114.91
5.488 23.09 23.09 121.71 121.73
9.631 18.81 18.80 127.16 127.18

TABLE 2.6
Comparison of PCO^, PO^ values for a given V /Q obtained 
by interpolation between sixty points identified on a 
V^/Q line and those obtained directly by an alternative 
method.

In applying- these equations to individual pulmonary units 
the presence of a common dead space is neglected. In effect the

concentration of gas inspired (c^) into a pulmonary unit (i) is

given by

C; =VDi/''T, + Cl'l-VDi/ VTi) (2.28)
and leads therefore to a new system of equations. (For details 

see Ross and Farhi^^^.) Since for different pulmonary units V^/V^ 

are unequal, the alveolar PO^ and PCO^ are not determined, therefore.
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by only V^/Q.
There is moreover evidence for collateral ventilation in 

159human lungs i.e. gas transfer between adjacent lung regions,

and the influence of this on gas exchange in dogs has been studied

experimentally^^^' (for a review article on collateral

ventilation see Macklem^^^). Collateral ventilation is neglected

in the standard analysis of ventilation-perfusion distribution

which is presented here but is considered in the computer aided

calculations of West^^^

Steady-state equations are also used to analyse experimental

data to obtain information on abnormalities of ventilation-perfusion

distribution. The most widely used analysis is the "Riley Analysis"
164named after its originator. In this method a three compartment

alvadar model is used (see Figure 2.6). Expired gas is thus

considered to be made up of three components, i.e.

V C- = V C + V  C + { V -  V - V )C
T = ">ANAT I °ALV I ^ ^ANAT °ALV

and by letting
V = V + V
^PHYSIOL ^ANAT ^ALV

VD C - C- P - P-PHYSIOL ^ IDEAL E ^ IDEAL E
V C - C P - P ( - 9 )T IDEAL I IDEAL I

Arterial blood is a mixture of two streams - from the shunt

and from the ideal compartment, i.e.
• •
Og/Q = (CIDEAL - Ca)/ (^IDEAL - ^v) (2.30)

In application of this method it is assumed generally that PaCO^ 

is identical to P CO since a right to left shunt of blood-1- L)-KA11 ^
produces little effect on the end-capillary pCO^. (The arterio

venous partial pressure difference for CO^ is relatively small.)
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i d e a l "
a l v e o l a r
c o m p a r t m e n t

w a s t e d
V E N T I L A T I O N '

W A S T E D
P E R F U S I O N

FIGURE 2.6.

164Three compartment model of Riley et al.
The model consists of a ventilated and perfused 
compartment ("ideal" alveolar compartment), a 
ventilated but unperfused compartment (physiological 
dead space), and an unventilated and perfused 
compartment (venous admixture).
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Equation 2.29 can thus be used to calculate physiological dead 

space. Ideal alveolar PO^ is calculated from the alveolar air 

equation and substitution of the derived and measured oxygen 

values in equation 2.30 allows calculation of (the venous

admixture). A more exact approach to the analysis is to regard 

arterial PCO^ as only an initial estimate of ideal pCOg and to 

continue to update this estimate to allow for the effects of 

calculated venous admixture on end-capillary pCO^. Such a 

method of "successive approximations" is implemented easily on 

a digital computer but makes no appreciable difference to the 

results unies is large (>20%).

Although the Riley analysis has proved of clinical value 

and has been applied widely there are, however, important theoretical 

limitations. The physiological dead space for carbon dioxide is 

an underestimate of excess ventilation to units which are relatively 

overventilated^^^ since such units are able to transfer CO^ 

relatively well. Furthermore, the formulation of the equations 

is such that there is direct dependence between the magnitude of 

the calculated ratios - venous admixture (Q^/0^) and physiological 

dead space ( V ^ / V ^ j T h e  calculations are sensitive to small 

errors in measurement. In the error analysis of Kelman^^^ random

errors in simulated measured data with 1% coefficient of variation 

led to estimates of Qg/Q^ which ranged from 10 - 28%.

An alternative approach is to consider the lung as if it 

consisted of a number of compartments in parallel. The minimum 

number of compartments which can be used is two (see Figure 2.7) 

and the author has investigated the application of such a model to 

measurement of ventilation-perfusion distribution using simultaneous
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ARTERIALVENOUS

SHUNT

FIGURE 2.7

A model structure with two ventilated and 
perfused compartments (1 and 2), an 
anatomical dead space, and a right to left 
shunt.
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analysis of oxygen and carbon dioxide transferl^^ (See Figure 2.8). 

The analysis is complicated, however, by the non-linear time 

varying relationship for oxygen and carbon dioxide between partial 

pressure and gas concentration in blood, and because of the effect 

of other factors, e.g. diffusion impairment, on the transport 

process.

A more profitable approach is to study the exchange of

inert gases. Inert gas exchange in an individual pulmonary unit

in steady-state conditions can be shown theoretically^^^ to be

related to the ventilation-perfusion ratio of that unit and to the

solubility of the gas. Results obtained from analysis of the

overall pulmonary exchange of two inert gases in terms of a two

compartment model depend to a large measure on the solubilities

of the gases which are usedl^^ A more ambitious approach is to

use a fifty compartment model^^^ to analyse the simultaneously

measured steady-state exchange of six gases with a wide range of

solubilities, thereby obtaining knowledge of the relative

distributions of ventilation and perfusion. Such a method

would seem likely to yield non-unique results and has stimulated 
172 173discussions. ' An example where four different distributions

can be obtained from the same set of measured data has been 
174presented. Nevertheless use of data from simultaneous study of

exchange of many inert gases must give more information about the 

relative distribution of ventilation in relation to perfusion.

Ventilation and perfusion may also be maldistributed in 

relation to diffusing capacity, this representing another source 

of inefficiency in pulmonary gas transport}^^'^^^ Such a 

distribution effect may lead to errors in the measurement of transfer 

factor and this problem has been studied theoretically by several
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FIGURE 2.8

Application of two compartment model which is shown in 
Figure 2.7 to the analysis of respiratory gas exchange, 
for a subject with chronic obstructive airways disease 
who was in respiratory failure. (P^02 = 41.3 mm.Hg.,

~ 59.6 mm.Hg.). The airways obstruction was 
severe (FEV^ g = 1.0 L ) . The shunt is assumed to be 
3% of the cardiac output. The analysis shows that 
the lung could be considered to consist of two venti
lated and perfused compartments with ventilation- 
perfusion ratios of 0.49 and 6.36 with 17% and 83% of 
the ventilation and 70% and 27% of the total pulmonary 
blood flow respectively. The details of the analysis 
procedure are presented in Appendix 10.
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177-182 authors.

In order to quantify the relationship between perfusion 

and diffusion consider a small length (31) of capillary (k) . For 

a gas i for which there is a linear relationship between 

concentration and tension in blood, at any point 1 along the 

capillary,

[p^(l + dl) - P^(l)'j ^  (P^i - b a d ) (2.31)

where symbols are as defined for equation (2.17) 

i.e. P. (1 + dl) - P. (1)
 SÏ —  = ' V  -

in the limit as dl ^ O

The solution of this equation yields

-Sd. 1
P. (1) = (P_i - P i )  e + P i (2.33)

1  V  A  O X  A

Thus making the same assumptions as were made for the derivation 

of (2.19); for a homogenous lung

P^(c) = f p ^  - PftlJ e - -57^ + P^i (2.34)

where P^(c) is the end-capillary partial pressure, and is defined 

in Section 2.3(f).

A rearrangement of this equation yields

(P^i - P^L)
D, = 0 6, logi ^^i ^e (P^i - P^i) (2.35)

In the derivation of this equation it is assumed that at any point 1 

along the capillary, P does not vary with time, i.e. it describes a
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steady-state condition. For an alternative derivation of the 

equation, see Piiper et al.

In these equations or Q can be replaced by the transit 

time t through a single capillary.

where V is the volume of blood in the capillary or

• ■ 4
since it is assumed in the derivation of (2.34) and (2.35) that 

all capillary paths are identical.

For carbon monoxide P_CO = O and thus equation (2.34) 

reduces to

P CO = (l-e~ p COC A
D

and VCO = Q 3 ^  (1-e ^^/BcgO) (P^CO)

If one regards the same process as a purely diffusion limited process, 

as in equation 2.20

VCO = D P CO app A

where is the apparent diffusing capacity.

Thus ^ ,•
D 1 - e  CO 3co

For small values of D /OR (CO.I) D is close to the true DCO CO app
(for details of numerical calculations see Piiper & Sikand )

which is the case in the normal lung (for a homogenous lung

Dc o /Q3c o  approximately 0.01). Thus significant differences

between D and D for carbon monoxide can only result from app
changes of several orders of magnitudes in the distribution of 

perfusion to diffusion capacity, as is confirmed by the theoretical
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182studies of Chinet et al using multicompartment models. This

is not the case for the oxygen diffusing capacity^^^'^^^ although

the difference between the apparent and true diffusing capacity is

reduced if the oxygen uptake is increased^^^

The apparent diffusing capacity for carbon monoxide as

measured by steady-state methods is more sensitive to changes in

the distribution of ventilation relative to diffusing capcity^^^'^^^

as is illustrated below.

For a single pulmonary unit j ,

VCO. = Pa 1 L j * j

(The subscript CO is omitted for both and P^ in this section).

The apparent diffusing capacity for the whole lung (D^ app) 

is given by:- . n

V  ■ t o
where P^ is some weighted mean of the individual P^ , i.e.

/___ 3
j=l

where for all j

and

thus

0 ^ f(j) ^ 1 

n
1 f(j) = 1 
j=l

3=1  ̂ 3=1 :
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where g(j) is the fraction of the diffusing capacity in the 

unit. Thus differences between Dapp and D depend on the method 

of obtaining P^.

In practice the measured value is likely to be a mean 

value weighted with respect to the ventilation of the individual 

units (i.e. f(j) is the relative ventilation of the unit.)

For this case for an increase in P the ratio g(j) to f(j) will
j

decrease since for any unit

Bgf(3) V,

and

P_.
Pa .«2

1 -P1 N 2  - V = g(j)DPA (2.38)

g(j) _ 3gv
Ï Ô T  ■ - A

p_N,
(2.39)

: " I" 2

Thus the effects of increasing maldistribution of diffusion in 

relation to ventilation is increasing underestimation of the true 

diffusing capacity. The magnitude of this effect is illustrated

in studies with multi-compartment models.182
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2.4. BREATH BY BREATH MODELS.

In the steady-state models which have been described in

the previous sections temporal variations in respiratory gas

transport are neglected. A first approach to considering the

time dependence of gas exchange in the lung is to construct models

on a breath by breath basis tlareby allowing prediction of variables

at breath (n) from knowledge of their state at breath (n-1).

Thus constancy within one breath cycle is still assumed.

Such an approach has been used particularly in the

description of the wash-out of inert gas from the lung, e.g. nitrogen

during a period of breathing 100% oxygen. (Such models are considered

in greater detail in Chapter 4).

The basic form of this type of model is illustrated in the 
184work of Darling et al, describing the wash-out of nitrogen from

the lung, and based on the model structure which is shown in Figure 2.1.

At the start of the wash-out process and at end expiration the

mass of nitrogen in the alveolar compartment is given by V C *
^ (O) 2

and in the dead space V^C^ . Following the subsequent 

inspiration of oxygen

, „ V a(0)«2 + V a(0)'̂2 + <V''d> = i'̂2

since C^N^ = O this becomes

C N., ^ ^D*^A(0)^2

i.e. at the end of the first expiration the alveolar nitrogen

concentration C N is given byA U ;  2 ^

Ca(i)N2 = v T i n ^ v X ’
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where V = V VL A + D
By assuming that is constant, and that is invariant 

from breath to breath the alvedar concentration at the end of 

expiration during the n ^  breath can be predicted from using

the relationship

Ca(n)"2 = (2-41)

where W = . and is called the alveolar dilution ratio.

The assumption of a constant is an unnecessary simplification 

but one which reduces the computational task. Its effect on the 

accuracy of analyses based on such an approach is considered in 

Chapter 4.

The variable time is thus represented in these models by 

breath number. Since duration of a breath is itself variable 

such an approach is not applicable in situations where there are 

time dependent gas transport processes such as diffusion across the 

alveolar capillary membrane. These methods have thus limited 

applicability.

2.5. MODELS WITH UNIDIRECTIONAL FLOW RATE.
42,44-49In the simulations which have been used to study

the respiratory coritrol system another approach is adopted and time 

is considered explicitly as a variable. The lung component of the 

"controlled plant" is represented commonly by a single compartment 

ventilated with a constant unidirectional stream of gas and of fixed 

volume (See Fig. 2.9). Additional simplifications which are 

employed are : -

a) The events of the respiratory cycle are ignored.

b) The dead space is assumed equal to zero.
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ALVEOLAR 
COMPARTMENT

V i - >
DEAD SPACE

V e

FIGURE 2.9 
Model with unidirectional 
ventilation. The inspired 
ventilation (V^) is distributed 
between the alveolar compartment 
and dead space.
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c) The respiratory exchange ratio (R) is assumed 

to be constant and equal to one.

d) Gas tensions in the lung are assumed to be

uniform and equal, at every instant, to that

of arterial blood and expired gas.

Thus for any gas (x)

d(V^C^x)

dt = V;C;X

Rate of change Addition 
of mass of gas from 
in lung atmosphere

Los s to 
atmosphere

Q(C-x - C^x) (2.42)

Addition (or loss) 
to pulmonary 
capillary blood.

I.e.
dP X

Q(C.x - f(P^x))

dVsince  A = O (single compartment is assumed to have constant
dt

volume) .

Assuming = V, we obtain

dP3gV^ A X  = 6gV(P X  - P x) + Q (C x - f (P x) )A ■ • I A V  Adt
(2.43)

In the case in which V is assumed constant this is a first order 

differential equation in which the only non-linearity is the function f. 

Thus for gases which do not react chemically with blood (or for carbon 

dioxide where a linear approximation to the dissociation curve is used), 

equation (2.43) is a first order linear, differential equation with 

constant coefficients of the form -



62.

dt ^l^A “ *2
where K = PgV + Qgb

V a

= BgVP^x + QC_x

V l

for which a solution can be obtained by analytical methods.

P^x(t) = +(P^(0) -K^)e"^l^ (2.44)

where P^^O) is the partial pressure in the alveoli at t = O and 

K 3  = K^/K^.

In such simulations C-x is not regarded generally as a 

constant but is itself obtained by solution of one or more 

differential equations describing the tissue stores. (Models 

of tissue stores are considered in more detail in Chapter 5).

Modifications of this approach have obviated the need for 

assuming that = V^, by summing the magnitudes of oxygen, carbon 

dioxide, and nitrogen transport as calculated from such equations 

in order to obtain a relationship between and

Although in the original model of this type it is assumed 

that the dead space is of zero volume such an assumption is not 

strictly required since the constant unidirectional ventilation 

can be alveolar ventilation as defined previously (see Fig. 2.9).

The main advantage of this approach may seem to be that an 

analytic solution to equation 2.43 is possible. In the simulations 

of the respiratory control system in which such models have been 

used, however, other components of the simulation have necessitated 

use of computer based methods of solution. The equations described 

have thus been solved using analogue or digital computing techniques.
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The simplifications are such that this approach has 

limited applicability to analysis of experimental data. It
looneglects, as was pointed out by Yamamoto and Raub that 

breathing consists of breaths.

The approach has been applied^^^ to the analysis of data 

from nitrogen wash-out experiments. In this case since there 

is negligible flux of nitrogen across the alveolar-capillary 

membrane, and the inspired partial pressure of gas is zero. 

Equation (2.43) reduces therefore to

dt A 2 (2.45)

I
for which assuming V is constant the solution is

P.N (t) = P  e(- ''/v t) (2.46)
(O) *

A method of measurement of cardiac output, which is based on
186parameter estimation applied to this type of model has also 

been implemented (for more details see Chapter 5).

2.6. -INSPIRATION/EXPIRATION AS AN INSTANTANEOUS PROCESS.

In studying diffusion across the alveolar-capillary membrane, 

models are used in which ventilation is considered to be instantaneous, 

and uptake of gas to take place in a breath holding period between 

inspiration and expiration. Such models are applied to the analysis 

of single-breath experiments. The breath in such experiments 

contains an inspiratory breath-hold thus reducing the inadequacy of 

the mathematical description.

The basic equation for this type of model is that derived 
187originally by Krogh which describes the transfer of carbon 

monoxide from the alveolar compartment of the model structure
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represented in Fig. 2.1. For conditions in which there is no 

mass transport by any mechanism between the alveolar compartment 

and dead space

I.e. since

dV^C^CO A A
dt = - DP COA

dVA = O
dt

V dP CO A A
dt

-D P* CO A

thus P^(t)CO

and

= P

(2.47)

(2.48)
(O)

e V g A log
P, CO 

(O)
P, CO 

(t)
(2.49)

Assuming that expiration is instantaneous P^(t) can be

measured directly. If it is also assumed that mixing between

inspired and alveolar gas is identical for an inert insoluble gas
188 189(helium) and carbon monoxide, then P CO can be calculated '

(O)
since for instantaneous mixing between inspired and alveolar gas 

P.

and

CO (V + V ) = (V - V ) P CO 
(O) ^

^  Pi»*
(O) , o

Since helium is virtually insoluble P^He is time invariant during 

the breath hold and hence can be measured directly.

Thus

P* CO 
(O)

= P^CO
P He A
P^He

Application of equation 2.49 to data obtained during a 

single breath of a gas mixture containing carbon monoxide and 

helium, the breath containing a long breath hold, allows, therefore, 

an estimate of D.
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The time t in equation 2.49 is the breath-holding time.

188 189It was defined originally ’ to be from the start of

inspiration until that point on expiration when P^CO is measured.

The assumption of instantaneous inspiration and expiration leads

to errors in the estimation of D which will become more marked if

inspiration or expiration is prolonged, leading in the one case to
190an underestimate and in the other an overestimate of D.

191An extension of this analysis considers the case where 

inspiration and expiration are not assumed to be instantaneous but 

rather the inspired or expired ventilatory flow rates are assumed 

to be constant. Application of the analysis to experimental data 

gives estimates of D which are unaffected by the duration of 

inspiration or expiration.
192This approach has been extended to the study of steady- 

state uptake of carbon monoxide. The subjects who were tested 

had to breathe in time to a metronome with rapid inspirations and 

expirations which were separated by either inspiratory or 

expiratory breath-holds.

The single breath method of measurement of trasfer factor 

is also affected by maldistribution since equation 2.49 describes 

the homogeneous lung. Unlike the steady-state methods of 

measurement, as described in Section 2.3 (g), the single breath 

method is affected by maldistribution of inspired ventibtion or 

diffusing capacity in relation to alveolar volume}^^

Models of this type have also been used to study the
193process of diffusion in the gas phase in the terminal lung unit.

In this work it is assumed that the total resistance to diffusion 

is located at a boundary in the lung airways, and the presence of 

a dead space is neglected. There are thus two compartments in
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in the model - tidal volume, and alveolar compartment - both of 

which are treated as being well stirred with uniform concentration. 

Thus during any breath holding period, for a gas x

(2.50)MX = (P^x - P ^ )

dxAwheiE K is a constant of diffusbn and will be equal toX ^ X where

dx is the diffusion constant for the gas, A the area of the boundary,

and X the distance over which diffusion takes place. P x is theT
partial pressure of gas in the tidal volume compartment.

Since the model is used to study inert gas wash-out the 

inspired gas does not contain any of the gas under study, i.e.

P^x = O . Thus at any time t after the start of the breath-hold, 

the mass of gas x in the tidal volume compartment is that which 

has been transferred from the alveolar compartment,

" « a . . . . . . . .
1. e ,

P^ (O) is the partial pressure of the gas x in the alveolar

compartment at the start of the breath-hold. V and V areA T
assumed to be constant.

dP_ XThus ■ -'«'V -'V’ (2.52)

I.e. dPAX = -K
dt VAgg

1 + A
V_ A g T

Solution of this equation gives

P^(0) X
V

V. e -
K

i V g  V '
(2.53)

where V = V + V L A T

P_(t)x
P,(0)x

\  ''t 1 — e —
- ' ' A S g  j (2.54)
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The authors compared experimental data from the wash-out of helium 

and sulphur hexafluoride to that predicted by equation 2.54.

2.7. MODELS WITH TIME-VARYING VENTILATION (DYNAMIC MODELS)

In terms of the model structure illustrated in Fig. 2.1, 

the respiratory cycle can be regarded to consist of three separate 

stages (Table 2.7) if ventilation is considered,as it is in 

actuality,as a time varying process.

STAGE CONDITION
t

1. Inspiration of dead space V ^ O & T V^dt < V
gas to alveoli

2. Inspiration of atmospheric V > O &
gas to alveoli

3. Expiration V < O

t = t^ is start 
of inspiration.

TABLE 2.7

Stages of respiratory cycle. It is assumed that 
there is "plug-flow" through the dead-space.

From the principle of conservation of mass, it is seen 

that for a gas which is soluble in blood but does not react 

chemically with blood

■ • • .
- dt - = (2-55)

(For derivation of this equation see Appendix IB) .
If t = t defines the start of inspiration

r "  •Sĵ  — 1 for V O and j VdtcV^; S^ = O otherwise
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I;Sg = 1 for V ) O and I Vdt ̂  V^; Sg = O otherwise

and Sg = 1 for v < O = O otherwise

If it is assumed that = P^, that the variation in due to the

difference in gas flux to and from the blood can be neglected

(i.e. dV^ = V) and that at the start of inspiration P^ = P^ then 
dt

, Vg - V  + ÔSb'P; - '’a> <2-56)
dt

S = 1 V O and j Vdt ̂  V^; S = O otherwise

For an insoluble gas

dP^ = SV(P^ - P^) (2.57)
dt

whereas if the gas combines chemically with blood (e.g. oxygen or 

carbon dioxide) then

= s'vB (Pj -  P&) + Q
dt - * 2 < V  (2.58)

where f^ and f^ are functions relating partial pressure and

concentration in mixed venous and arterial blood respectively.

In the special case of carbon dioxide the relationship

between concentration and partial pressure can be approximated by

a linear relationship of slope 3, . . and thus
I (COo )

= SVBg(P, -  p^) + SGbicOg) (^v -  (2 -59)

In derivation of these basic equations for dynamic models of gas 

transport it is assumed that for gases which are in solution in 

lung tissue^^at there is identity between the partial pressure of 

the gas species in lung gas and that in lung tissue. For such

gases the in equations 2.56, 2.58, 2.59 is an effective lung

volume and includes not only the gas volume contained in alveoli 
but also the mass of the gas species in pulmonary tissue expressed
as an equivalent gas volume. It is also assumed that there is no
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difference in partial pressure between end-capillary blood and 

alveolar gas, that there is plug-flow through the dead space, 

and that pulmonary capillary blood-flow is constant.

The history of development of such dynamic models is 

considered in the next section of this chapter, as are modifications 

to these basic equations.

It should be emphasised that for each system of algebraic 

equations for steady-state models there is a corresponding system 

of ordinary differential equations for the equivalent dynamic model. 

Since in dynamic models ventilation is considered as a cyclic 

process it may be necessary to make additional assumptions in 

derivation of the equivalent dynamic equations.

For example for the three compartment model of Riley 

(Figure 2.6) the equivalent dynamic equation for the "ideal" 

alveolar compartment is

V  ft * * * * r  -I
1 9 d T  “ (2.60)

when subscript 1 relates to the- "ideal" alveolar compartment and 

k is the fraction of ventilation to this compartment.

In this dynamic model with cyclic ventilation assumptions 

have to be made about the distribution of dead space gas which is 

re-inspired. It is here assumed that dead space gas is 

distributed to the two compartments in proportion to their 

ventilation.

During expiration gas which enters the dead space passes 

through it and is expelled to the atmosphere until time t = t*

E
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and t = tg defines the start of expiration. During this phase 

of the respiratory cycle the partial pressure of gas entering 

the dead space is

P^(t) = k P^(t) + (1-k) Pgft)

where subscript 2 relates to the alveolar dead space compartment. 

If it is assumed that gas flow through the dead space has a 

square wave front with no mixing in the dead space then in phase 1 

of the next respiratory cycle gas leaving the dead space to enter 

the alveolar compartment has partial pressure

P^(t) = k P ^ ( t - X )  + (l-kjPgtt-X) (2.61)

where \  ±s a. flow-dependent time delay defined by the equation

- ^ V X

where t = t^ is the start of inspiratbn.

Similarly for the alveolar dead space compartment

V dP • •2__2 = S^(l-k)V(P^-P2) + S^Vd-k) (P^-P^) (2.62)
dt

2.7(b). DEVELOPMENT OF DYNAMIC MODELS.

Models such as those described by equations (2.56 - 2.59)

were used originally by Chilton & Stacy Chilton et al}^^ and
197Dubois et al. The term "effective alveolar volume" is

introduced by these authors to take account of the gas which is 

present in lung capillaries and lung tissue in addition to that 

present in alveolar gas. The authors to a large extent used 

analytical methods for solution of the model equations.

Analytical methods can be applied in certain specialised cases:-
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(a) Breath-holding

For breath-holding V = 0 and

[ ' . ' V  -dt 3 9

For those gases where C- = a + bP-, C = a + b P  = a + b P
V  v a a A

this reduces to
dPA Qb

(P- - PJ (2.63)dt V^3 V AA g

(For the analysis of oxygen transport Chilton et al^^^ assumed that 

C^ is constant i.e. haemoglobin is fully saturated, and that C- is 

constant, thereby simplifying the analysis.)

Equation (2.63) can be solved analytically to give

r  -n Qb= Pv - Pv - ̂ A<°j " - VT (2.64)—• A g

(b) Inspiration (V constant) (Phase II of respiratory cycle)(V=K) 

® A^ABgdT = - V  + Gb(P; - p,) (2.65)

which is of the form

dPA + C P^ = Co (2.66)dt "1 A ■ "2

where CL = ^  + Qb
'̂ A VaBg

and C, = K P + 2Ë. P- 
V g

for which the analytical solution is
-(K3 + Qb)

P a U )  = C 3  + (P^(o) - C 3 >e  a -   t (2.67)

k b  P, + QbP-
^3 = KBg V -gb ' ' (2-681
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A relatively crude numerical method was also employed by Dubois 
197et al,

198A similar approach has been used by Yamamoto although
199the equations are formulated as integral equations. Nye used 

equation 2.58 and a numerical method of solution to investigate 

the effects of different patterns of ventilation on respiratory gas 

exchange. Two varieties of model are used, non-homeostatic, in 

which the mixed venous concentration and alveolar ventilation are 

fixed, and homeostatic in which the arterial pCO^ is adjusted to 

a piHdetermined value by alteration of tidal volume. Various 

patterns of breathing were investigated - early vs. late peak 

expiratory flow, early vs. late peak inspiratory flow, influence 

of frequency and of relative durations of inspiration and expiration, 

These exerted minimal effect on the efficiency of gas transport at 

low levels of oxygen uptake.

With numerical methods of solution of such equations 

additional refinements to the model can be incorporated.

Murphy^^^'^^^ considered the case where Q is not assumed to 

be constant but rather pulsatile. Q is, therefore represented as 

a function of time, the form of which is such that there are 

pulsations in Q at the same frequency as the heart beat. The 

presence of a pulsatile blood flow produces small cardiogenic 

oscillations in the predicted alveolar partial pressure.

Similar forms of functions have been used in the analysis 

of Flumerfelt & Crandall^^^ and Lin & Shir?^^ In these analyses 

there are more detailed descriptions of flow and diffusion in 

pulmonary capillaries and they are considered in a later section 

of this chapter. (Section 2.8 c).
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In another more complex model describing alveolar- 
204capillary diffusion the author distinguishes between two 

different physiological mechanisms through which pulsatile blood 

flow may be mediated - pulse velocity and pulse recruitment.

In the former capillary blood volume is constant and the blood 

velocity through the capillaries is pulsatile, whereas in the 

latter the velocity is held constant and the capillary volume is 

varied.

The effect of phase differences between ventilation and 

blood flow has also been studied^^^ although in this study it is 

assumed that they can both be described by sinusoidal functions 

at the same frequency. In more recent work the description

of gas stored in lung tissue and pulmonary capillaries has been 

improved. In the first place it is possible to consider lung 

capillary volume independent of lung volume. In the work of 

Meade et al^^^ this is achieved by making the assumption that 

mixed venous blood achieves instant equilibrium for carbon dioxide 

with alveolar gas. (This assumption is not stated explicitly by 

the authors.) Thus the net transfer of CO^ from capillaries 

into alveolar gas in the time At is

V bP*(t + At) - V bP^(t) - QbAtfp-(t) - P^ (t)l C A > c A V  A J
and thus for the alveolar compartment

S (V^P^)(t + At) - 6 (V^P^)(t) = AtVP^B - V bP^(t + At)+ g A A g A A D g c A
VcbP^(t) + QbAt Q'-(t) -

Dividing by At and taking the limit as A t O  this becomes
d(V P ) . gp

g - V^b + Qb (P. - P^)

(V^ here is the gas and lung tissue volume).
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Expanding the derivative on the left hand side and assuming that 

.
= V this becomesdt

dP Qb
^  = V (P^- p^) + Bg (P.- p^)

bV
Thus

ef f g

It is thus evident that this approach produces no change in the

analysis and results.

Other workers have not used the assumption of instantaneous

equilibrium in the pulmonary capillaries but rather have described

explicitly the process of gas transfer between alveolar gas and

pulmonary capillary blood. Such models consider partial pressure

in the pulmonary capillary as a function therefore not only of time

but also of distance along the capillary and are thus discussed more

properly in the section on distributed models (Section 2.8c).

Lung tissue has also been considered explicitly in certain 
.207models. Yamamoto & Hori analysed a model in which the three 

components - alveolar gas, lung tissue and pulmonary capillary blood 

are in series. As a result of the lumped nature of the model it 

is again necessary to assume that the partial pressure in pulmonary 

capillary blood is that of arterial tJood, i.e. the mass balance 

equations are 

Alveolar Space
dP

(Pp- p^) (2.69)

Lung Tissue

(p^- Pp) + Kp,(P_ - Pp) (2.70)

Pulmonary Blood
dPS V  ̂ a S Q ( P .  - P ) + K  ( P - P )  (2.71)c cL — ^  = c V a pc p a
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S represents solubility of the gas under study, K ^ ,  are

rate constants, V is the pulmonary capillary blood volume, and cL
the subscripts p & c refer to lung tissue and pulmonary capillary 

blood respectively.
204In the model of Hlastala the relationship between CO^

flux between capillary blood and lung tissue (VCO^) and CO^ flux
. 1between lung tissue and alveiar gas (V CO^) is given by

V CO^(i) - V C0.(i+1) (2.72)
<ko^ (i) = vco^ti)» ------

where time is divided into small increments (At) , and the subscript i

refers to the i ^  such increment. The volume of CO^ in lung tissue

(V C0_) at any time is defined by
VpCO.d) = S p C O , V p  (2.73,

where V & S are as defined previously, and P-CO,^ the mean pCO_ in p p c Z z

the pulmonary capillaries.

The description of mixing between inspired gas and alveolar

gas has also been refined. In the earliest models it is assumed

that gas is convected through the dead space with a square wave front.

In order to simulate an increased mixing process between inspired and
204dead space gas Hlastala assumes that the partial pressure of the 

gas which enters the alveoli from the dead space during inspiration

r .P (t) = P for V^dt < V _  - 50D, D I D
^ >'o

P - P
+ --Ï56--A

V^dt - + 50

for - 50 ̂ Vjdt $ + 50
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and P (t) = P for \ V dt > V + 5 0  I \ I D

where P^ is defined to be the partial pressure of gas in the dead

space at the end of the previous expiration.

- C ‘
E

X hwhere t is such that V dt = V E I D

Such a description corresponds to linear mixing between atmospheric 

gas and dead space gas from an inspired volume of 50 ml less than 

the dead space to 50 ml greater than dead space volume.

A more complex descrgtion is used by Lin & Curaming?^^

Dead space volume is considered to be time variant and alveolar 

ventilation is thus defined by

V^(t, = V(t) - U.74)

The time variation of dead space is obtained from an analysis of

a distributed model of gas transport carried out by one of the 
209authors, in which concentration of gas in the lung is considered 

not only as a function of time but also as a function of distance (x) 

from the mouth. From concentration profiles calculated from use of

this model, dead space is defined to be
V (t) = r* C(x,t)- C

I _ A(x)dx (2.75)

where A(x) is the cross-sectional area of the airways at any point, 

and X the alveolar-capillary membrane. This definition in essence 

considers any complex concentration profile in the airways as one in
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which there is a sharp boundary between inspired and alveolar gas.

The position of this imaginary boundary is such that the lung

will contain the same total amount of that gas species 
X X* X

^ ' f  C(x)A(x)dx = f C A(x)dx + ( C,A(x)dx
o

f C A(x)dx + r C: A(x]1 T J
where x = x* represents that boundary.

^X X *  X X *

i.e. \ C(x)A(x)dx = C \ A(x)dx + j C  A(x)dx - I C A(x)dxJ J J•'o ' o ■'o -'o

I A(x)but 1 A(x) =

and therefore
XJ (C(x) - C^)A(x)dx =

thus giving equation (2.75).

The calculations carried out using this approach show that
dVoCt)

at the start of inspiration V^(t) = O as V(t) = . This is

also the case with the more basic models. In late inspiration as 

V(t) falls (a sinusoidal V is used) V^(t) may actually exceed V(t) 

since dead space volume is reduced as a result of diffusional 

processes. The difference this refinement makes to the results 

is minimal during normal breathing as is seen from the calculations 

of these authors.
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2.8 DISTRIBUTED MODELS OF GAS TRANSPORT.

a) A review of previous models of gas transport in the airways.

In the models which have been discussed so far in this

chapter a lumped parameter approach has been employed, but as

indicated in Section 2.3 (e) the complex process of gas transport

in the airways can only be described by distributed models.

The first approach to this problem was that of Rauwerda^^^

who modelled diffusion in the terminal lung unit, which is

represented by a closed cylinder of length 0.7 cm. Diffusion in

such a structure occurred rapidly in relation to the breath cycle.

This geometric structure is, however, inappropriate as is seen
211from comparison with the anatomical data of Weibel (see Fig. 2.10). 

A second model considered by Rauwerda^^^ was a closed truncated cone, 

the geometry of which is equally inappropriate.
212Gumming et al. investigated a number of geometric structures 

and found that the result obtained as to the rapidity of diffiaon 

depended on the form of geometry chosen. All models are, however, 

relatively poor representations of the actual structure (see Fig. 2.10) 

These workers used convoient mathematical structures, i.e. 

convenient from the mathematician's view point, and were limited by 

the use of analytical techniques to solve the diffusion equation.

More appropriate geometric structures have been used more

recently (see Fig. 2.10) and computer-based numerical methods for
213solution of the diffusion equation.

The first attempt to study simultaneously convection and
214diffusion is that of Gumming et al. The diffusion equation is

solved numerically, with convection being considered to result in 

a moving boundary between a region in the airways in which 

convection is assumed the only transport process and the terminal
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FIGURE 2.10
Comparison of structures of various models, which 
have been used to describe gas transport in airways.
with anatomical data (A) of Weibel. 211

shown are those of Rauwerda, 210 Gumming et al.
The models 

212

and LaForce & Lewis, 213 This figure is taken from 
224the review of Chang et Farhi.
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lung unit in which only diffusional transport occurs.

Equations which have included explicitly both convection

and diffusion have been solved numerically but only for limited
215regions of the bronchial tree. In the work of Paiva the

last thirteen generations of the bronchial tree are modelled with

the entry to the model therefore being situated 1.6 cm. from its

extremity. Baker et al^^^ modelled conversely the earlier

generations of the bronchial tree (0-17) with the volume of

generations (18-23) being lumped together into a single well-stirred

alveolar compartment. One of the main deficiencies of these

analyses is that a constant value for the diffusion coefficient

equal to that for molecular diffusion has been used whereas there

is strong theoretical and experimental evidence^^^ that the

effective diffusion coefficient varies markedly in the presence of
209convection (Taylor diffusion). It has been suggested that

Taylor diffusion is the dominant transport mechanism in generations

eight to twelve.

Certain preliminary results for a model of the complete

bronchial structure were obtained using an analytical method by 
222Pedley. It is assumed in this analysis that at any point in

the bronchial tree the product of total cross-sectional area and 

the effective diffusion coefficient is constant. Such an 

assumption is justified on the grounds that it is approximately 

correct for the extremities of the model (the trachea and twenty- 

third generation) and there is great uncertainty about the 

intermediate region due to the complex flow and concentration 

profiles which are found}^^ Pedley's analysis has also been
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223.used in the more detailed studies of Davidson.

The deficiencies of these previous analyses have been
224listed recently in a review by Chang and Farhi (see Table 2.8). 

The author ïhs developed an analysis which corrects for most of 

these deficiencies, and the model of gas transport which is 

employed considers simultaneously convection and diffusion in 

the entire bronchial tree. In this analysis it is assumed that:-

a) the lung is a symmetric branching structure;

b) the airways are compliant, their compliance being 

proportional to the surface which is alveolated;

c) radial mixing between the gas in alveolar ducts 

and alveoli is instantaneous;

d) the effective diffusion coefficient is enhanced in 

the presence of convective flow.
225The increased mixing due to cardiac action is neglected,

as is the detailed anatomy of the terminal lung unit. The latter
220—228has been considered in a number of analyses which have been

restricted to description of events in only the terminal lung unit.

This model is presented briefly in this section.

b) A model of convection and diffusion in pulmonary airways.

The lung is represented as a regular dichotomy of airways.

Each of the 2^ branches of the generation (0*za23) is taken

to have identical dimensions, so that the position of any point

in the airways is then characterised by its axial distance x from

the origin of the trachea. Associated with each axial distance

X  are the properties of the appropriate generation (such as number

of branches, branch diameter, total cross-sectional area of airways
211and number of alveoli) as given for example by Wiebel or any 

other morphometric data that is appropriate to a symmetrical
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ASSUMPTIONS EMPLOYED IN MATHEMATICAL ANALYSES 
OF GAS TRANSPORT

1) Airways are rigid and have constant volumes.

2) Flux across the alveolar wall is unimportant.

3) Diffusion alone is the mechanism for gas mixing in the
alveolar region of the lung.

4) There is a Æationary"front" of inspired gas termed by some 
as a diffusion front.

5) The diffusion front is a square one, i.e. concentration is 
initially uniform over the cross section of the front.

6) Only axial diffusion is significant.

7) Only two gases are involved in the diffusional process.

TABLE 2.8
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branching model. The equations of this model are developed 

below.

(1) Cross-sectional areas A and A .------------------------  A T
The cross-sectional areas of all the airways at distance

X are summed to give a combined airway area A^ (x,t).

Clustered about the terminal airways are alveoli which

contribute to the total lung volume. To allow for this a total

cross-sectional area A^(x,t) is introduced, such that the difference

A^(x,t) - A^(x,t) corresponds to the volume of alveoli in unit

length of airway.

To simulate the expansion of the lung during respiration

these cross-sectional areas are considered to fluctuate about a

mean value A,, (x) lo
A^(x,t) = A^^(x) (L - f(x)b(t)) (2.76)

where I = A (for "airways") or T (for "total"), b(t) is an

oscillatory function of time, and f(x) is a "flexibility function".

In the simplest form of the model, b(t) may be a sinusoidal function

b coswt with b and w chosen to give the desired tidal volume and o o
respiratory frequency. The flexibility function f(x) takes

account of the varying fractional expansion that occurs at different

axial distances x.

The particular form of Equation 2.76 neglects the axial
229distension during respiration for which there is evidence but

to take account of this would require a considerable increase in

mathematical complexity, without affecting radically the velocity

distribution in the lung. Even with this simplification, there
229 230is a lack of experimental evidence on the precise form of f(x). '

It is, however, expected that expansion of the lung occurs largely 

in the alveolated region and f(x) is therefore set equal to the
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211fraction of the airway surface alveolated as given by Weibel .

This corresponds to putting f(x) = O for the first sixteen 

generations after which it increases to 1.0 for the 20th and 

succeeding generations. Preliminary results suggest that this 

simulation is relatively insensitive to the precise form of f(x).

(2) Gas partial pressure p .

The transport of a particular gas constituent is 

considered in terms of its partial pressure p(x,t) varying axially 

with X and during the breathing cycle with time t. This partial 

pressure p(x,t) will be the mean value, averaged over any radial 

variation across a branch.

Variation of pressure p with time occurs due to convection 

(at velocity u(x,t) through airway area A^(x,t)), due to diffusion 

(effective diffusion coefficient D(x,t)) and due to gas transfer 

through the alveolar membrane, giving respectively the three terms 

on the right-hand side of equation (2.77).

^  ^ (2.77)

(For derivation of this equation see Appendix l.C).

To solve the equation for p, all the other quantities 

appearing need to be specified, as well as the initial conditions 

p(x,t =0) and the boundary conditions p(x = 0,t) and p (x = L,t) 

during breathing, where x = L corresponds to the extremity of the 

lung model.

(3) Convective flow velocity u.

If it is assumed that the net effect of diffusion, and 

gas transfer of all the gas constituents present makes a much 

smaller contribution to the convective flow velocity than the



105.

variation in lung dimensions, then
L

u(x,t) = A (2.78)

(4 ) The effective diffusion coefficient D.

The molecular diffusion coefficients for the respiratory

gases in air are known. ^mol however, only the appropriate

diffusion coefficient in the absence of convective fbw, whereas in 

fact during normal breathing, flow velocities of 250 cm/s (and 

Reynolds numbers of about 2000) are attained. In these circumstances, 

radial concentration and velocity gradients develop which affect the 

net axial diffusion rate, as measured relative to the average flow 

velocity. In conditions of steady laminar flow, for Reynold's 

numbers up to about 1500, the appropriate diffiâon coefficient D is 

given by the Taylor-Aris equation^^^'^^^

dZ*:D(x,t) = D +mol 192 D , (2.79)mol
where d(x) is the diameter of the individual airways at axial 

distance x, and u(x,t) is the convective flow velocity at that 

instant, averaged across the airway. Both u and d vary, but 

under typical lung conditions, the second term on the right-hand 

side of Equation 2.79 (the "radial-diffusion" correction) dominates 

the first for the first thirteen generations, i.e. for all but the 

last 1.4 cm of an axial length of about 26 cm.

This form of the effective diffusion coefficient applies 

only to conditions of steady laminar flow with diffusive equilibrium 

established. In other situations a more correct form of the 

expression is
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° = °1 + °2 = °mol + 192

where the added coefficient a in the Taylor-Aris term may be less

than 1. In the first place this happens when turbulent flow
219develops (Reynold's number. Re > 1500) and therefore at brief 

moments of peak flow during normal breathing when Re approximating 

2000 are found in the upper airways, a transitory and spatially 

limited reduction of a will occur.

The effective diffusion coefficient is also reduced when 

radial concentration and/or velocity gradients are developing near 

the start of a tube. The Taylor-Aris theory was originally 

considered for laminar flow through infinite cylindrical tubes. The

necessary extensions to the Taylor-Aris theory have been studied
 ̂ 219 ^ 220,221,231,232experimentally and theoretically. Flint and
219Eisenklam showed experimentally that in the laminar flow regime,

the effective diffusivity falls below the Taylor-Aris value for flow

through tubes of finite length/diameter ratio. This conclusion is

supported by the theoretical work of Gill et al. who calculated the

dispersioncf matter in various circumstances: where the flow velocity
231is initially zero but develops towards an equilibrium flow pattern,

220where the flow velocity is fluctuating with time, and where initially
221the concentration varies radially in a non-equilibrium pattern. The

results are analytically complex, and often involve the sums of infinite 

series, but when evaluated they support the general conclusion that if

gradient then the Taylor diffusivity is initially zero, but rises

3 pa disturbance abolishes the concentration gradient or the velocity

to its full value as the flow equilibrates. The situation obtaining 

at bifurcations of lung airways^^^ defies an exact analysis, but the 

conclusions are expected to be similar. These imply that the 

coefficient a in equation 2.80 can be considered time dependent being
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near zero at a junction, rising linearly with elapsed time from leaving

the junction and levelling off to 1.0 as equilibrium is approached.

An alterative empirical form of the effective diffusion
233coefficient is that obtained by Scherer et al. from measurement

of the dispersion of benzene vapour in a five generation glass

reconstruction of the bronchial tree, i.e.

D = D , + 0.36 ul (for inspiration) (2.81)mol

D = + 0.12 ul (for expiration) (2.82)

The lower value obtained for the effective diffusion coefficient for 

expiration is thought to be the result of the increased radial mixing

which occurs during expiration due to the complex flow patterns
^135produced.

(5) Initial conditions.

The solution of equation (2.77) requires that the initial 

value of the partial pressure p is specified throughout the ling.

If the volume of gas in the lung is distributed over the axial 

length x from the origin at the trachea, the major part lies in 

the last few centimetres (X-̂ L) . The initial gas content of the 

lung expressed as JpdV will be reasonably correct provided a typical 

value is given to the partial pressure of gas in the alveoli. With 

this proviso, the results of the calculation are found to be relatively 

insensitive to the initial partial pressure distribution assumed. A 

pressure that is initially uniform at a typical alveolar value is 

adopted. This is in good agreement with the situation found at the

end of one breathing cycle, and the calculations begin at an instant 

just prior to the start of inspiration.

(6) Boundary conditions.

To specify the solution of equation (2.77) uniquely, the 

boundary conditions at x = O and x = L need to be specified:
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(a) At X  = O . During inspiration the partial pressure p(x=0,t) 

is that of the inspired gas. During expiration p(x = 0,t +T) 
is calculated on the basis of information at the previous timestep 

using the approximation

A ^ ( x = 0 , t  +T ) A^(x=0,t) +T-^ (x =0,t)

^  < V P >  + Û  (2-83,

where the expression enclosedj^ ^ i s  evaluated at x = O, and time t. 

The alveolar absorption term in equation (2.77) is negligible near

X  =  O .

(b) At X  = L . At any point in the model the net flux of gas, G, is 

given by

G(x,t) = Aup - A D ^  (2.84)

This is the sum of convective and diffusive terms. At x = L, the 

convective flow velocity u is zero. In order that G(x = L,t) = 0  

at all times the boundary condition

( ) = 0  (2.85)
X = L

is imposed in all cases.

The equations of this model can be solved using a numerical

differencing method. (This aspect of the work has been carried out by

my collaboiaior, Dr. Michael Hooper). Results using this model give

insight into the effect of Taylor diffusion. These results are

presented as part of the discussion in Chapter 4 of this thesis and
401

are presented elsewhere. The model has also been formulated

such that the measured flow velocity at the trachea, i.e. u(0,t) (e.g. 

obtained from experimental data) can be incorporated directly in the 

model since the flow velocity at different x may be related to u(0,t) 

by
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109.

^A.^^(x')f(x')dx' J2.86)
A^(x,t) Vf

where Vf =
rL

A (x')f(x')dx' To

rt
and b(t) = b(t=0) - u(o,t )A^(o,t )dt

Vf
(2.87)

This will allow direct comparison between experiment and model.

(c) Distributed models of diffusion across the alveolar capillary 
membrane.

DistrLbuted models have also been applied to the description 

of gas transfer across the alveolar-capillary membrane. Such models 

in general describe the homogenous lung and the same assumptions are 

made as for the derivation of equation (2.19).

For a single capillary path and for a gas for which the 

relationship between tension and concentration in blood is linear, 

consider a small length of capillary Al. For that small length of 

capillary in a small increment of time At:-

Mass change = Addition by blood-flow convection - Loss by blood-flow 

convection + addition by diffusion.

i.e.

AlAC(t+At,l) - AlACC-t,l) = u(t,l)AtAC (t,l) - u (t, 1+A 1) A tAC (t, 1+A 1)

+ d . AIAt(P^-P^(t,D) (2.88)unit A L
where A is the cross-sectional area of capillary

u(t,l) the velocity of blood.flow at time t, length 1.

^unit diffusing capacity of the capillary per unit length.

But assuming that all n capillaries are identical (length = L) and

that D is distributed uniformly along each capillary then

d .^Ln = D unit

and AnL = V^

i.d. ^unit = D 
—  ^
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Thus by dividing equation (2.88) throughout by AL, At and A and

taking the limit as Al"*0 and At-*0 we obtain

sc Sc (2.89)

D por alternatively since C = ^b C

SP SP (P -P )D
-SE + "(t) -SÎ = %  <2-90'b C

234This equation is derived fully by Crandall and Flumerfelt and

a method of solution described.

For oxygen and carbon dioxide the equation is complicated 

not only by the non-linear relationship between tension and 

concentration, but also by the chemical reaction of these gases in 

blood. In this case, since

. 9P . i £  = i £  ^
9t 3p * 3t ' 91 9p * 91

equation (2.89) can be written

'"c + u(t, . < V " c ' 09t 91 — -—  -----  (2.91)
Vc

where D is as defined in equation (2.21).

Since 9 is dependent on P^,D is a function of P^ as was considered
235originally in the analysis of Staub et al.

234-239In most work in this area a special case of equation (2.91)

is used in which pulmonary-capillary blood flow is considered

constant. There will, therefore, be steady-state conditions with 

concentration at any point in the capillary invariant with time, i.e.

dl ---    (2.92)
C

Alternative forms of this equation are

f  <2-93'

(u = —  , V = LnA) which is identical to equation (2.32) and nA C
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c
(dl = udt)

Numerical methods of solution have been applied to solution of

equation (2.94) for oxygen and carbon dioxide although in earlier

work there is reliance on graphical methods^^^'^^^'^^^The solution

for this equation indicates that diffusion impairment has significant
238 239effects on both carbon dioxide and oxygen transfer. '

The alveolar partial pressure in the equations in this section 

is considérai generally to be constant. It is, however, possible^^^'^^^ 

to couple the partial differential equations which describe gas 

transfer across the alveolar-capillary membrane with the ordinary 

differential equations which are detailed in section 2.7. The 

basic dynamic model equation for oxygen (equation 2.58) will 

become

^  = SV (P -P ,Adl (2.95)
I c
y o

where the last term describes the total flux of oxygen across 

the alveolar-capillary membrane.
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1.12.
CHAPTER 3. APP^.ICATION OF DYNAMIC MODELS OF PULMONARY GAS

EXCHANGE TO MEASUREMENT /METHODS.

3.1. INTRODUCTION.

With steady-state models the parameters to be measured can

be obtained directly by manipulation of t:he algebraic equations

forming the model. For example in measurement of cardiac output
242 •(Q) using the Fick principle Q is obtained directly from 

equation (3.1) after substitution of the measured variables

MO^ = Q (C^Og - CTO^) (3.1)

With dynamic models such simple substitution is impossible 

and use must be made of parameter estimation techniques!^^

One approach (t±ie model reference approach) (see Figure 12, Chapter 1) 

was considered briefly in Chapter 1.11.

In applying this approach to dynamic models of pul men rry ,̂ as 

exchange, the input of tlie system is the mass flow rate of the gas

species under study which enters the alvc.̂ ol.ar compat tment (i.e. I he

term CvT^ in the equations which were described in Chapter 2.7).

One of the outputs of the system is the partial j ressure of 

alveoia-r gas. Thus the model reference approach can be applied 

since V (flow-rate of gas at the mouth), (partial pressure of 

inspired gas), and (alveolar partial pressure, which is assumed 

to be identical to the partial pressure of end expiratory gas) are 

all measurable directly by non-invasive methods. The lung has 

thus a particular advantage in tliis respect since the inputs and 

outputs to most other physiological systems are inaccessitte to 

measurement.

Comparison of the measured variables with the corresponding 

model prediction has to be carried out iteratively with different 

sets of model parameter values. An efficient computational method
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for solvilion of 1 he model equafiruis with input quantities o])taiimd 

continuously by direct measurement is, therefore, essential.

3.2. SOLUTION OF MODEL EQUATIONS.

In tlie general case there are no simple analytical solutions 

for the equations of dynamic models. In certain special cases 

solutions can be obtained by analytical means, e.g. when V = O 

(breath-holding), V = constant, or V = a+bt (linear approximation 

to ventilatory flow). (See Chapter 2.7b). In order, therefore, 

to obtain solutions of these equations in the general case in 

which V is a continuously measured quantity, various methods of 

cciq)uter solution h w e  been investigated,

a) Analogue-computation.

The electronic analogue computer, which was described in 

Chapter 1.9 and in more detail in Appendix 2, provides i:he 

sirup! est method of solution. The circuit diagram for solution 

of equation (2.57) is shown in Figure 3.1, in which iTie corupcjncnts 

are indicated diagramtically by standard symbols (for deiails of 

standard symbols see Table 1.4.) The technique can be applied 

easily^to the solution of equations when the inputs are the 

electrical signals representing the measured ventilatory flow (V) 

and inspired gas partial pressures (P^J. Furthermore because of 

the time-scaling facilities of the analogue computer the equations 

can be solved much faster than real-time. This is particularly 

useful in this application since the equations of the model have 

to be solved repetitively with different sets of parameter values.

As discussed in Chapter 1 the analogue computer has certain 

limitations. Moreover, the expertise required of the operator 

would be a limiting factor in applying routinely techniques which 

are based on analogue computation. Digital computer methods have 

also, therefore, been investigated.
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S C A L I N GF A C T O R

_ J G A T E

+ 1

FIGURE 3.1.

"Patch” diagram for solution of equation 2.57. 

The symbols are the standard ones for 

individual components of the analogue computer 

(See Table 1.4)
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b) ni gi 1 al-co.iipuLal i o n .

Although a nuiiibor of staiid.ud methods exist for the numerical

solution of differential equations, and are readily available in

high level simulation languages (see Appendix 3) those require an

unacceptably long conq tation time and for this reason an alternative

method of computation has been developed. In the basic dynamic

equation for carbon dioxide (2.59) it is the terra SVB (P -P ) whichg I A
presents difficulties in attempting to obtain a solution by analytical 

methods. If this terra is replaced by a constant (K) then a new

equation is obtained:-

' ^Pb(CO^) "9 +

which reduces to

n.2)

1 •where K is a constant and = K + o3, , ^ . Fu.kdCOg) V
This latter equation is in a forra solved readily by analytical 

me I hods. The approach gives rise, tht r.efore to an approximate

iterative solution of the form:-

P^(n+l) . Qg—  J, » ‘'a*'» - Q»^CO-

-Q(3b(œ^))
e (3.3)A g

where time t is divided into a number of equal intervals and P^^n)

is the P^ at the n^^ such interval. The value of K (and hence K^)

can be updated at each time step using sampled values of V(t) and

P^(t) measured experimentally. The complete response is generated

by repeated application of this equation. The accuracy of the

solution generated in this way depends upon the sampling interval.
#

It has been shown that in the special case where V is simulated by 

a sinusoidal signal of appropriate amplitude and frequency that a 

solution accurate to 0.5% after 30 breaths may be obtained using a 

sampling interval given by T = O.Ol Tin where Tin is the mean period
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(jf I breath. This methoci hows Lidvani ages over the use of a 

high level simulation language since it is faster in operation 

and can be implemented on a small computer.

3.3. EXPERIMENTAL SYSTEM.

The experimental system which has been used in this work is 

shown diagramtiacally in Fyure 3.2, and tlie real experimental 

system is shown in Figure 3.3. The individual components in the 

system are discussed below,

a) Measurement of gas flow-rate.

In the experiments to be described the jbject breath,es through 

a two-way valve-box with smaj1 dead space and low resistance (the 

type and manufacturer of each item of ec^uipment used in this work 

is shown in Appendix 7).

The inSj,)i red and expired clow rat , s of gas at e vieast., .-,l 

independently by means of pneumotachographs. The voltage outputs 

from the associated micromanometers are summed electronically 

using a small analogue computer before input to the computer .ystem. 

The solution of the equations of these dynamic models requires only 

the accurate measurement of inspired flow and the identification of 

•ero flow points. There is thus no requirement for accurate 

measurement of expired flow therebye avoiding the problem of 

calibration of the expired pneumotachograph.

The inspired pneumotachograph is calibrated daily over the 

range of flow rates 0 - 2  L/sec, over which it has a linear response. 

Calibration is carried out by blowing gas through a rotameter and 

pneumotachograph in series from a vacuum cleaner, the speed of 

which can be infinitely varied. The calibration of the rotameter 

was checked by blowing gas through it at several constant flow
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LOGIC 
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TO
DIGITAL
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AIR

SUBJECT
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MIXTURE

M ASS 
SPECTROMETER

FIGURE 3.2

Schematic diagram of experimental system, 
For further details see text.
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FIGURE 3.3.

The experimental system.
The large instrument on the left is a four channel 
respiratory mass spectrometer. The cabling on the 
wall behind this instrument connects the es^erimental 
transducers on-line to the computer system in a 
separate room. The micromanometers are situated on 
the trolley in front of the subject.
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rates ind measnring 1 o volume of the el fluent gas in a known 

time by moans of a Tissot spirometer of lOO L. capacity,

b) Measurement of partial p ressure of gases under study.

Gas concentrations are measured continuously at the mouth 

using a 'espiratory mass spectrometer. (In the initial stages 

of this work an AEI MS4 was used, but in later stages a quadrupole 

mass spectrometer type MGA 7 (Centronics) has been used).

Transport delays are inherent in high speed gas analysers 

such as the mass spectrometer which is in contrast to the 

measurement of respiratory flow which is virtually instantaneous. 

Reference l o tlie txnlations of : he dynamic 'od, Is eveals the 

necessity for simultaneous 1 ime cor>*espondence of tl e ce: pi.red 

I low and gas partial pressures. This is achieved by d.jl aying 

Ihe earlier sig'ls to synchronise all ihe measured data.

I his .work typical tr\.n:Sĵ .wrt ilel lys are 300 m.^oc for I he MS4 c, id 

30 msec for the MGi007 with, in addition, 0O% respoii::e I imes of 

40 msec and 80 msec respectively.

The delay time and response time of the mass spectrometer

are measured daily using a similar method to uhat described in 
243Gumming and Jones. A gas mixture containing argon is passed

through a small me^al tube Into vA'ich the ĵ .robe of the mass 

spectrometer is inserted and the partial pressure of argon is 

measured. A small current is passed from a battery supply through 

the probe of the mass spectrometer and the metal tube. On at.iiupt 

removal of tlie mass spectrometer from the metal tube a step change 

in argon concentration is applied at the sample point and the 

circuit is broken. The output of the mass spectrometer and 

event marker are displayed on an UV recorder from which the delay 

time can be measured.
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Multi hoad ipiijnotic lape rrroiders and r-loctromecham’cal

systems for producing time delays for this application have been
244described previously. Time delays of varying luration are

generated easily in the digital computer when digital computation 

is being used.

For the analogue solution of the equations an analogue

simulation of a transport delay has been employed and a fourth-
^ 245order Fade approximation v..is chosen (for circuit diagram see

Figure 3.4) and implemented on a small analogue computer. Tn

order to check hat the circuit produced no significant

altenuation of i he flow signal, a numbei of i xp'criTji n1 s we re

carried out in which «'ompari sens were made liet ween 1 he integrals

over he experiment of inspired flow and ihe delayed flow signal.

Tn these expérimentas the subject breathed air from a Oouglas bag

: o t hat the total inspired ventilation during ihe e qieriment

( ould bo measured and this was ccmpcired with inspi i.ed vrnlilai ion

as calculated from integi a1:i on of the delayed flow signal. l:'he

Douglas bag was filled using a known volume of air from a Tissot

spiromtTter prior to tshe experiment and the mnaining air re turned

to the spirometer on completion of the test. BoUi the inspired

component of the flow signal and the same signal delayed by

300 msec were integrated using an analogue computer. Using

the logic facilities and comparators of this computer the integrators

were held in the hold mode, i.e. inoperate, during expiration.

Experiments were carried out while thie subjects were breathing

normally and repeated during voluntary hyperventilation. The

difference between the total inspired ventilation as measured

directly, by means of integration of the flow signal and by integration

of delayed flow signal were not significantly different from zero

(see Table 3.1(a)and (b)).
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INPUT

P
OUTPUT

Q ■o-

1 L - < q - o  = L -

FIGURE 3.4
"Patch" diagram for fourth-order Fade delay 

circuit, which has been used in this work.
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‘i’he  f l o w  s i - i jn a l  am i t h a t  tin] ayo d  by  300 msec a r e  <hcwn

ijraphi ca 1 ly in Figure 3.5.

For the application of dynamic motiels it is necessary

t:o obtain, for those gases being studied, the partial pressures

of gas at conditions of full saturation with water-vapour at body

temperature. The water-vapour pressure at the mouth is

continuously variable from the order of O.BOkPa during inspiration
245to 4.92kPa during expiration.

It is possible to measure the water vapour pressure at the

mouth directly ai:d thereby calculate tlie paitial pressure

of any gas (x) at conditions of full, saturation wi t.h wnlec . ,.,.,1:

at 3/°C(PgX) from the partial pressure as moasurcni at the mouth

(P x) ra
i.e. - p p  . ( s m  (3.4)

m 2
I’his is, however, not an accurat e meth'^d. I'n the first ins I nice 

the respiratory mass spectrometer has dii.fer ont dynamic proper I ies 

with respect to water vapour l.han otlmr gases due 

to the slower transit of water vapour along t he sampl i.ng tube. 

Furthermore there is a continuous change in the viscosity of the 

gas being sam%3led as a result of the cont.inuous change in water- 

vapour pressure at the mouth. This leads to alteration in t.he 

pressure in the sample chamber and consequently variation of flow 

into the ion source (for further details see Fowler, 1959)?^^

An alternative procedure is to manipulate the out,put data 

from the mass spectrometer, i.e. the partial pressures of the gases 

being studied, to obtain their dry gas fractional concentration.

Consider a dry gas mixture containing nitrogen, carbon 

dioxide, oxygen and argon, the total pressure of the mixture 

being B, then : -
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DELAYED

DELAYED

/

Figure 3.5 (a) and (b)

CAPTION

Comparison of measured flow-rate (V) at mouth and that 

delayed using fourth-order PadI delay circuit, at two 

different respiratory frequencies. In the middle of 

the diagrams is a time marker at one second intervals.
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'',,2 ' "C02 ' " 0 2 ' ^AR " ’
.IIKÎ P, f P  ̂i P  l-P1̂ 2 LÛ2 O 2 AR

If becansG of chaj.-jes in the viscosity in the s.iinpi ing

Lube 1 he total pressure in the sampling ciiainber is loss (say B^) 

then the indi.vi lual measured partial pressures (P^x) will fall

' "roj'- ■= P0 2 '

(A similar argument can be applied to saturation of the dry gas 

mixture with water-vapour, 1h'^roby reducing the pressure from 

B !o (B-PH^O) ) .

'lie s. 1 0 pj(->i_ < a t.Lonat o ^all .% i 11 occur in etth m;. sin d

psttial pressure, siin'e F .3 = P and F . B^ - P^
X X X  X

’■ ^x B— ■= -- K f':)r all g - .es.
P B

X

d .us at the ^rcsr.ure B ' the following j el at icnslri p holds for

the ;:.u n of all ilie mass spi ctrometer outpul.s yP^ ;
/. *

K ̂ P ^  - ^P - constant
/  _ X  /  . X

By automatic scaling in the mass spectrometer such that the sum

of all the ou!.i-)Uts is held constant : he mass spectrometer oul^mts 

ire proportional io KP^ ̂ ^  Thus the output is directly 

proportional to F^ since

1 1  1F - P  = P ^ = K PX X  X B X
b b ' ■

The automatic scaling facility is present in the quadnapole mass 

spectrometer and uti1isation of this obviates problems with 

varying water vapour pressure, allowing direct measurement of F^ 

and hence P^ at conditions of full saturation with water vapour 

at 3 /°C since P -- F (B-5.25kPa).
X  X
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Tho : I h( "1 has however praotica] difficulties. Tn Ihe

t'ÎTst place the gain on each channel of the mass spectz' inel er must 

be set accurately, using a digital voltmeter, so that the output 

fLcm that channel represents tlie correct proportion of the total. 

The total signal available in this mode cannot exceed 10 volts 

which implies a limitation on the maximum voltage outputs from 

channels measuring gases in low concentration and hence on the 

accui cy with which they can be set.

A more flexible approach can be implemented on a digital 

computer. Using the symbols as before it is seen that:-

 __________  = _ Fx
i- P^C02 + + P^AR f FCO^.B^ f FO^.B^ + . R.B^

= Fx

Thus measurement of F can be obtainc^l wi I hout Ihe
X

restriction of ensuring that the gain of individual channels 

needs to be limited or accurately adjusted. For breathi iig of

atmospheric gas it can be assumed that F ^  ' 0.009 thereby 

necessitating only the measurement of the other three gases. L’he 

summation which is required is carried out digitally after logging

by the computer system. This approach has been di .ccib/'d
, 249previously.

3.4. EXPERIMENTAL METHODS.

In the experimental work to be described (Chapters 4,5)

Ihe standard experiment consists of four distinct phases. Data 

input to the computer system during the initial phases (zero and 

calibrate stages) is used for subsequent normalisation of the 

voltage output from the transducers during the actual test procedure
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The test ijrc^cmlure i.IsGlf consists of two phases. The onset of

the u.M'Ojid phase is associated with a step change in tlie coj-ccntrations

of the inspired gas mixture.

Subsequent discussion of experimental methods is related to 

the t:\ae of computer system which is used,

a) Analogue computatio n .

Data froin the transducers is recorded on a maynetic-tape 

loop at a speed of 3^ ips. The electronic sura of the flow signals 

from the individual pneumotachographs is input to a fourth order 

Fade delay circuit on a small analogue compniter. The output from 

this computer is recocdid on the i:ape-loop.

The zero and calibrate phases of the experiment are 

"marked" on ihe tapeloop by recording a series of digital logic 

pulses from a specially constructed mul i i vilir at o r .

The voltage output of each of the transducers is scaled 

prbr to tocording to be in the range 0-1 volt.

The t (vt al length of experiment, which can be recorded -it 3% ips 

i.s of the order of 3 minutes.

For subsequent analysis the recorded data is input to 

another analogue computer. During replay of the zero and 

'alibrate phases the analogue rrmputer is held automatically 

inoperate by use of logic facilities in the computer which recognise 

the presence of the digital logic pulses on the magnetic tape.

During this period the operator .adjusts potentiometers for the 

necessary normalisation of the signals. The signals are 

amplified by the computer to lie in the range 0-10 volts. The 

tape is replayed at a speed of 30 ips (i.e. x 8 real time).
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b) Oi.yil îl ( ;oinĵ'iit,al .i on .

For digital cc.'mpnt<c. ion data fj.oii tho l.r.snrduci-rs .'oc 

input on-line to a PDF 11/45 computer system (see Figure 3.6) 

through analogue-digital convert.ors. Data are sampled normally 

at 30 samples/s.

Prior to carrying out any experiment certain basic 

information is input interactively at a kt. y board to the data 

logging programme (see Figure 3.7).

Communication between 1 he computer system and the 

. xper i men I or is achieved using a specially » nst.rucled i nt < f f.n e 

by )ncans of wh id: the cxperimi.nta-r i nui « ute-À Io the tl d a b ,ging 

programme which phase of the experiment is current.

Tn the zero phase of the exp< rini. n1. the compuit.-r r« ads 

i'i ve hundred saj.iplos on tcich ijqait < l.anjie I of data 3i d t.at cuts 

ihe average voltage at the keyboard. T’ais:-

RbADY TO ZFRÜ

r.HAN.bhlL VO I. T MAE
tl. -  it. < o  8
CM 0. 201
OX 0. 105
NI -0. 097

['HTM OK? ÜK
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Figure 3.6

Picture of the PDF 11/45 computer system, which has 
been used in this work. The computer is interfaced 
directly to the experimental system (Fig. 3.3).
The cabling which connects the computer to the 
experimental transducers is seen on the wall to 
the left of the picture.
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i n f o im a t   ̂o n . Responses by  c o m p u te r  

s y s te m  a r e  u n d e r l i n e d .
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The operator has the facility to repeat the zero phase, 

if this is required.

A similar procedure is implemented when calibrate 

signals are input to tl.a digital computer. The values obtained 

during these phases are used by the computei software for subsequent 

normalisation of the measured data.

During the test procedure normalised sampled data is stored 

on a temporary disc file. The operator indicates to the software 

the start of the second phase of the test using the specially 

constructed interface. This sample nirher is stored by i l,e 

programme and is used in later processing of the data. ''"he ? ration 

of the experiment is specified by the operator prior to its 

commencement and is, thereafter, under programme control. After 

the experiment is completed the data, which is stored on I he 

temporary disc file, is converted to physiological units and 

scaled into integer form for permanent storage in a file on 

magnetic tape. Storage in integer form reduces the storage 

requirements. The scaling factor is different for each measured 

variable and is specified within the programme. Data in all 

input channels is synchronised by correcting for the known inherent 

delay in gas analysis. A number of characteristics of the stored 

data is contained in the initial record of this file (see Table 3.2). 

The variables which have been measured are identified by 2 letter 

identifiers viz. 'FL' for ventilatory flow rate, 'CA' for PCO 2 '

'OX' - pOg, 'NI' - pNg, 'AR' - partial pressure of argon, 'SU'- 

partial pressure of sulphur hexafluoride, 'OT' - partial pressure 

of unspecified inert gas.
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DATE OF EXPERIMENT
BAROMETRIC PRESSURE
AMBIENT t e m p e r a t u r e

SAMPLING FREQUENCY
NUMBER OF CHANNELS OF INPUT

TWO LETTER IDENTIFIERS FOR EACH CHANNEL
SAMPLE NUMBER ASSOCIATED WITH 
CHANGE TO PHASE 2 OF EXPERIMENT.

TOTAL NUMBER OF SAMPLING PERIODS DURING EXPERIMENT.

Software has also been dbveloped^^^ for graphing the 

stored data on an ordinary X/Y recorder. Data is output to the 

recorder through digital to analogue conversion channels. The 

software is flexibie and allows for either graphing of all 

measured data (see Figure 3.8) or for more detailed inspection of 

a portion of the logged data (see Figure 3.9 ). This last 

fcicility is particularly valuable in investigating artifacts in 

tlie measured flow data (see Figure 3.10).

Prior to utilising i he stored data for parameter esti mat ion 

it is pre-processed. This software identifies initially the start 

of each inspiration and expiration and stores the relevant sample 

nuiiibers for use in the parameter estimation programmes.

Recognition of these is complicated by noise in the measured flow 

signal, some of which is mechanical in origin, being generated by 

oscillation of the respiratory valves. Problems have also been 

encountered due to Ihe presence of swallowing. The data is 

filtered, therefore, prior to pre-processing using a simple low pass 

filter. The algorithm (see Figure 3.11) which is used for



Figure 3.8
Computer graph of measured data (flow and pCOg).
The volume is calculated by the computer software
from integration of the flow signal (for details see text).
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Figure 3.10
Computer graph of small portion of flow data. In the 
first breath the subject has inspired again after flow 
rate approached zero.
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THRESHOLD
0-0

Figure 3.11

Schematic diagram illustrating algorithm for detecting 
start of breath. The method looks initially for positive 
"threshold" of 0.15 L/sec. and backtracks to previous zero 
cross-over. This obviates difficulties caused by noise in 
flow-signal which would lead to spurious breaths being 
recognised if only zero cross-overs were identified.
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,)( i i 'Mi o f  1 ho s t a r t  o f  i n - o i r a t i o n  an d  e x p i r a t i o n  s o a  rch ,  s

initially fer " i hre:diold" vaincs (o.g. O. il» t/soc) and Lhon for

fho nearest precodijig points at which a zero cross-over occurs.

The volume inspired and expired in each breath is calculated. rhe

expired flow signal is uncalibrated but the programme carries out

a very approximate normalisation of expired flow data by scaling

such that the total volume expired in the test is equated with the

total volimie inspired, using only complete breaths in the calculation.

The start of the cnd-tidal part of each expiration is detected when

'ho integral of expired flew oxcecvls a volume whi «h is chosen i> ticr-

vely by the . xpeyi monter. A suitable i ni ti al î slp ma' e of ibis

•'ol uiiio is twice the known volume of the anatomical dead space ''or the
251■ abject. (There is experimental evidence that in normal subjects 

i’ dea<l smace is almost »:1 eared completely by this peint.) '' iphics 

oi l ware is available for the exp -t imenter to c'!,e(̂'k the i;ay i.n which 

1 he piLogramme has detected the mid-tidal par t of each breal h (s;»e 

tig. '.12). The pu.^gr.imme creates a separate disc file for e.-ch 

l.jcatli containing Lhe end-tidal samples for the gas under study. These

files are of course of variable length. This programme wh iI'h s been

written by i:he author is discussed in more detail in Appendix 8.

Software is also available for extracting from any set of 

input data a standard experiment, i.e. when the number of breaths 

in each of the two stages of the tests are defined.

The processed data is analysed subsequently by the parameter 

estimation software. The analysis programme is particular to a 

given application. The complete software system is summarised in 

Figure 3.13.
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Figure 3.13

Diagram of complete computer software system 
which has been developed for this work.
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CHAPTER _4_. APPLICATION OF THE TECHNIQUES OF DYNAMIC MODELLING 
TO THE ANALYSIS OF INERT GAS WASH-OUT TESTS.

4.1. INTRODUCTION:

Inert gas wash-out tests are used in clinical practice to

study and quantify maldistribution of ventilation. (For reviews
252 253on early work on this subject see Fowler (1951), Bouhuys & Lundin,

254and Bouhuys. ) In these tests the subject, who is being studied,

inspires a gas mixture other than air and the wash-ln to or wash-out

from the lung of an inert insoluble gas is measured. In the tests
. . . , , 184,255,256 . ^which are used commonly the inspired gas is pure oxygen

jd ihe wash out of resident nitrogen is studied. Alternatively

gas mixtures which contain other inert and relatively insoluble 
257 258gases, e.g. helium or argon can be used. The wash-in to the 

1 u'lg or subsequent wash-out from Mie lung, on returning i o Lrr Uhing 

.,ir is measured.

The t est procedures can bo divided into two typos:-

a) Single-bieath tests.

b) Multiple-breath tests.

In Ihe single breath tests the subject inspires only <me

breath of non-atmospheric gas and the wash-out of inert gas is studied

during this brr-ath. In the standard procedure the test breath

consists of a maximal inspiration of oxygen followed by a maximal

expiration. The expired nitrogen concentration is measured

continuously. From theoretical considerations it is anticipated

that in a normal homogenous lung, the nitrogen concentration during

the last part of the expirate (alveolar component) should be

constant. This alveolar plateau has, however, a slight slope even 
259in normal subjects. The magnitude of this slope is increased in

259subjects with respiratory disease. There has been much discussion
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as to the nature of the pathophysiological mechanisms which produce 

the variation in nitrogen concentration during the last part of 

expiration. Some workers propose that the main mechanism is 

asynchronous emptying of different pulmonary units which contain
254 259 260different concentrations of nitrogen, i.e. parallel inhomogeneity. ' ' '

Other groups argue, however, that the slope reflects the existence

of concentration gradients in the terminal airways (series inhomogeneityf}^'^^^

This debate is considered in more detail in a later section of this

chapter (4. 4 ). The value of the single breath tests as an

epidemiological tool lias been stressed recently^ 2,263 one

can obtain simul tant-ous measu r t-mont s from this simple test of

maldistribution of ventilation, total lung capacity, and closing

volume.

The null.ipl.o breath tests can be <1i /iiled i s! .> c . a d  - ’•> >iit

and open-circuit methods. In closed-circuit ■ I ’ ods <pi i ̂ ibr H i on

of an inert gas with lung gas is studied in a closed spiron.cder 
264•'yr.tem. In open-ciicuit tests the subject 1 a ealhes a m n -

atmospheric gas for the duration of the test, and the breath by breath 

fall in nitrogen concentration is studied. There are several 

methods to analyse data from open-circuit tests. Those are 

discussed in the next section of this chapter.

4.2. STANDARD METHODS OF ANALYSIS OF OPEN-CIRCUIT _MjJLT LPLÆ- 
BREATH TESTS OF MALDISTRIBUTION OF VENTILATION.

In the methods of analysis of data from open circuit tests

there are two basic types of variables
a) Raja: Variable, which is 

used to describe the wash-out process in an INDIVIDUAL lurvg unit.

b) Weighting Function by means 

of which the mathematical descriptions of the individual units are 

c(jinbi.ned to give an overall description of the wash-out process in Ihe lung.
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a ) Rale Variab1 e ^ .

Although there are many different rate variables Uiese can

be divided into two different classes. An example of each type

of rate variable was given in Chapter 2.4 and Chapter 2.5. In the

first group the wash-out process is considered as a function of

breath-number, whilst in the other as a function of time. In the

derivation of both of these descriptions it is assumed that

ventilation is constat. In the application of these analyses to

individual pulmonary units it is necessary to make assumptions about

I’le distribution of dead space gas. The problem is simplified by

making the assumption that each unit has a separate dead space.

Thus the presence of a common dead-space is generally ignored.

Many different forms of rate-variable have been suggested

(:>ee Table 4.1). All i.ai.e variables aie equiva.leni , tow. n-r, i f

I'Oth tidal volume and frequency are constant. This is shown in the

work of Rossing^^^ in which simple formulae are derived translating

uiy one rate variable into any other.

The assumption of constancy of ventilation is unrealistic.

It is not possible, however, to obtain a general xesuit to indicate

Ihe magnitude of error introduced into data analysis by this

simplifcation. Certain special cases of non-constant ventilation
272have been studied using simulation methods by Scheid & Piiper.

The results indicate that at least in the cases studied this 

assumption does not cause significant errors in the analysis. The 

problem of ventilation being time variant can be obviated by 

considering in the analysis that concentration is a function of total 

volume expired from time t = O, rather than of breath number or of 

time!?]' 274
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The woiijhling functions which are employed are also of 

two types - discrete and continuous,

b) D iscrete Weighting Function.

With discrete weighting functions the lung is considered 

to consist of a finite number of units or compartments which are 

arranged generally in parallel. In the breath to breath models 

(Chapter 2.4) it was shown that for a single pulmonary unit (i)

c. N = w "c N (4.1.)
l(n) 1 (0 )

In the work of Fowler et al a two compartment model is vised.

For the single compartment (i) assuming that there is no common 

dead space

1 1  1 1  D. 1 11

Since in a nitrogen wash-out test = O

=Ê. = = A .  ‘W  (4.2)
^ V -------T.1

For a two compartment system

V C- + V C- 
C -  = h  h  h

®  v ' ^ T V
h  h

V (V -V )T n V V n T D
l-e- Cg = _ 1 _______ W, q  (O) < V  + h  "2 (O)-— 2 _ 2

" V? + y, ' 1  ■ 2 V
1 2 T, V + V ^2

1 2

= r^W^"c^ (O) + r^Wg^C^ (O) (4.3)

V - V T. D.where r. = 1  1

With the small number of parameters a method of graphical aialysis 

is used to determine the values of 4n this melhod

g is plotted against n :- n
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log C- = log Cr W ^ C  CO) f r W "c (O) ) (4.4)
n 1 2

Assuming that the concentration of nitrogen in

compartment 1 will fall to a negligible level when there is still

significant amounts of nitrogen in compartment 2. During this

period of the experiment

log Cg = log (O + (O))
n 2

= nlog r_W_C (O)
z z 1̂ 2

Thus the value for ^ -^ 2 be obtained from the slope of a line

drawn through the terminal part of the graph. For the earlier

part of the experiment, if is known

log Cg = log (r^W^^C^ (O) + known quantity)
n 1

and thus r^W^ can be obtained similarly. Since at n = O, = 1

the values of r^ and can be obtained from the inteicepts of the

two linear portions of the graph. (See Fig. 1, Fowler et al^^^).

rhe analysis of nitrogen wash-out data is complicated by

the transfer of nitrogen from body stores to the atmosphere during

the test. The magnitude of the transfer of nitrogen across the

alveolar-capillary membrane is small but its importance increases

relatively as the nitrogen concentration in the lung falls. Formulae

have been given by different a u t h o r s ^ t o  correct experimental

data for the evolution of tissue nitrogen. It is adequate, however,

t.o consider the correction as being constant.

Other workers have used a similar approach to Fowler et al

but have modelled the lung with more than two compartments.
277Parameter estimation methods have been employed. Rossing et al 

found that all curves which are obtained experimentally could be
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described adccjuately with at most four compartments Attempts

by this group to solve for twenty to thirty compartments were

unsuccessful as non-unique estimates of parameters were obtained.
278Hashimoto et al used a six compartment model but added the

constraint that each compartment had equal ventilation, i.e.

V^-V^ . The probclm of parameter estimation reduces, therefore,

to^finding the volume of each of the six compartments.

Models with the compartments arranged in series will behave

identically to the models which have been discussed in this section^
279Camming has suggested recently that a simple change of variable

in the analysis obviates this difficulty. Tn this work ihe was]: -out

curves, now called decay curves, are plotted as the volimie of nitrogen

remaining in the lung against tujnover of original volume. The

turnover is defined i o bo unity when the total ventilai ion f rr :n f he

start of the test is equal to the lung volume. It is claimied to

be possible to identify from decay curves the contributions of

parallel and stratified iiihomogeneity to the incomplete mixing of

inspired gas. On the basis of this work it is proposed tliai: the

principal abnormali.ty in chronic obstructive airways disease is

stratified inhomogeneity due to impaired gaseous diffusion in Ihe 
279, 280terminal airways. ' Tn simulation studies carried out by

J. Lewis in collaboration witli the author^^^ the "decay curve" is

demonstrated to have limited capability of distinguishing parallel

from series model structures.

One of the main limitations of the inert gas wash-out test

is the ability to detect units with long time constants, i.e. low
282ventilation to volume ratios. Tn the work of Nye it is pointed 

out that to identify such units would need longer experiments than 

those which are usually conducted and hence greater sensitivity in
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ilie inoasurcineiit of gas coriCfiitrat.i o n . The analysis of

experimental dai.a into discrete compartments will be significantly

in error if many such units exist.

The lung in reality consists of a continuum of units each

with an associated rate variable. The compartments which are

obtained from data analysis are conceptual rather than real entities.

The detection of the true nature of the distribution of units by the

compartmental approach is limited and many different disbibutions

can be represented adequately by the same two compartment model.
283Van In'ew demonstrated curves which were made of eight exponential

temns but were analysed satisfactorily by a two compartment m,;del.

c) The Work of Briscoe, Cournand and associates.

The discrete compartment analysis of inert gas wash-out

data lias been applied to the study of disease parti cubirl y by

Briscoe, Cournand and associates. The basis of this work is

analysis of the nitrogen wash-out curve into two components - a
284slow space and a fast space. The work has been extended to

consider the relative distribution of perfusion to Uiose two spaces.

Initially it was assumed that perfusion is distributed in proportion 
285to lung volume. Calculations, of a predicted alveolar-arterial

difference for oxygen on the basis of this assumption gave poor

agreement in the individual subject between prediction and the

measured alveolar-arterial difference?^^ A graphical method

was substituted to obtain directly the perfusion of each space
287from the measured arterial saturation and consumption.

On the basis of such studies it has been suggested that results

from this method of data analysis revealed differences between

patients with pure chronic bronchitis and patients with pure 
288 289emphysema^ '' More recent work has, however, failed to
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2 D O■lemonstrato ' uch a difforence. rho apparent difference is likely

to be duo to the fact that cardiac output was not measured directly
290tut assumed to be 5.0 L/min in all subjects.

The method of analysis has been extended to consider the

distribution of the diffusing capacity between the two spaces.

Arterial blood gas tensions, oxygen uptake and carbon dioxide output

are obtained at different inspired oxygen concentrations (.e.g. air,

24%, 30%) in the subject under test. The method of partioning the
291,292diffusing capacity is a graphical one ' and is based on i lie

type of equation described in Section 2.8(c) .The method has been
293applied to patients with emphysema and th'.̂ ''C v ith the a K e o h i C -

294capillary block syndrome. On tlie basis of these studies it is

suggested that the predominant mechanism causing hypoxaemia in

pat ient-S with pure emphysema is a 1 cjw t ranafer 1 actor ' n ! i'e i s
293vc^ntilated lung spaces,

d) Continuous Weighting Functions.

The lung in reality consists of a large number ot rus, I ' :>eal 

units. For a single pulmonary unit, using the concept of a tutrn- 

over rate^^^(seo Table 4.1)

C (t) ~ C e (it is assumed that for all units
1 (O)

(O) =  (O) ) .A . A
1

thus

A
i-.l i

C h . -  \)  S

if the lung consists of N units. By grouping those units

together with tlie same time-constant

s  I T '  »C-(t) ^ /  c (O) I /_. k k e
k O  \n -1 Vy

where for each value of k i.hc-re are M(k) units



i.e. Cp(t) -= I (O) C(k) G ^^dk (1.5)

where G (k) is the continuous weighting function or distribution

function and is defined by
M(k))G(k) = \

k k
M=1

The concept of a continuous weighting functbn can be applied with

other forms of the rate variable.

With this approach the problem is to find, for an individual

subject, the correct form of G(k).

G(k) may be assumed to have a certain known analytical >'Of;m.
277In the work of Rossing et al, it is assumed that the dist.r i bullion

function is a gemma distribution and the problem of data analysis

veduc(.‘S, therefore, to finding the three parameters of ihe dis: - i but-1 o n .

The weighting function which was proposed by Gomez^^^ can also be shown^^^

to be a gamma distribution of log(It^) where ^ i s  specific t idal volume

as defined in Table 4.1. Despite the greater flexibility of the
277gamma distribution Rossing et al suggest that it is easier for most 

biomedical investigators to interpret parameter values :>olat(jd to a 

normal distribution, and use a continuous weighting function which 

is either a single normal distribution or the sum of two such 

distributions.

Attempts have also been made to obtain G(k) without assuming 
271a definite analytical form. Equation 4.5 is seen to be the same

form of expression which was used to define the Laplace Transform (see 

Sectn. 1.8) and contains a type of integral known as the Laplace 

Integral. G (k) can be obtained by inversion of the integral,

although inversion by numerical methods is known to be affected by
295 271numerical instabilities. In the work of Nakamura et aI ilie
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296 297intégral is inverted using a limit described by Post and Widder

(-1)" /n'
G(K) = lim — r  (I) c'"' [”/k] ...  ̂ wheren >00

! C — ( t)
c(n)^^n^Kj ĵ g the n ^  derivative of the measured function C =

271 ^In this work the limit is approximated by taking n = 1 whereas in

.application of the same technique to the study of ventilation-perfusion
298distribution n = 5 is used. This method of approach has been studied

299theoretically in simulation studies by Peslin et al. It is shown that

using measured data containing noise the limit cannot be evaluated for n

giĉ .at.er than 2 because of the necessity for high order numerical

di i Terentiation . At low values of n the estimates of the . h,j, ael eri sti cs

of trial distributions are poor, e.g. mode underestimated by 50%. The

.method has limited resolving power in terms of detecting the bimodal

naiure of trial distributions. For cxa.iiplo with n - 5 Uve .lel’i' 1 will

only detect -the presence of two distributions if the mean of r.na is at

least 3.7 times the mean of the other. This approach has thus been

little used in clinical respiratory physiology.

e) Model s with Ct ,: )on Dead Sp  i c e .

in the models which have been discussed in ttii s chapter, each

pulmonary unit is assumed to have an independent dead space. A common
300dead sp.ace was incorporated in the models of Weber and Bouhuys and 

Wise and D e f a r e s W e b e r  and B o u h u y s s t u d i e d  a model with continuous 

unidirectional ventilation and compared model predictions with experimental 

data both with and without added external dead spaces. A cyclical 

ventilation model is used, however, by Wise and Defares?^^ In the 

work of Nye^^^ an assessment is made as to the error which is produced 

in data analysis by neglecting the presence of a common di Mti .space.

The error is large when ventilation is minimally maldistributed but 

becomes of negligible proportions when maldistribution of ventilation 

is large. The presence of a c:cmmon dead space tends to reduce the
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«li f f et. once in nitiogen wash-out bci.veen different units by slewing 

I ho wash-out process in fast spaces and increasing ihe rate of wash

out in slower spaces.

Attempts to analyse data using models with a common dead space
^ 302,303,304  ̂ ^ ^ ^  ̂ 302have been made. In the work of Paiva and Domeester an

extremely complex model is used with sixteen compartments and incor

porating both common and individual dead spaces. A parameter estimation 

method is employed but no information is given as to the uni(lueness or 

otherwise of the parameter estimates. The authors cominent on the fact 

that with such a large number of parameters one can adjust a great 

number of different functions to fit the expertmen1al dit a . A b ss 

elaborate model is used by Sai.del et al.^^^ The model has five ccirnpart- 

ments - two "alveolar units" each with a separate dead space and a

common dead space. The uniqueness of the parameter » ' h' nit us >vh i oh
304are obtained with this model is not discussed. It h.̂ s br,.-n show'n, 

however, that it is not possible with the information ava i1able in the 

nitrogen wash-out test to < stimate uniquely the parameters for l.his 

five compartment model. It is possible to obtain unique estimates

for the parameters of a reduced model with two alveolar units, ind
^ ^ 304.a common dead space.

4.3 DYNAMIC MODELLING APPROACH

a) Models

The dynamic modelling approach to the analysis of inert gas 

wash-out tests represents an extension to the methods which have been 

reviewed in this chapter. The basic equation for a single unit is 

similar to that given in Chapter 2 (equation 2.57)

For a single pulmonary unit i

dPAl
bi-dt " SjK.V f .qK.V(P^-P^.)
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•̂t
wi i-re S, - I K V >, o and i K.Vdt < V .1 1  Jo 1 Di

= O otherwise

J b 'Sy = 1 % O and j K^Vdt :>

- O otherwise

Models can be constructed with or without common dead-spaces.

Tn the case of a multi-compartment model with common dead space 

can be defined as for the dynamic representation of the Riley model 

(Chapter 2, equation 2.61). 

i.e.

i

where X is a flow-dependent time delay defined by the equation

t
|Vj.|dt - v^ldt

y tI  ̂ I-X

where t = t^ is the start of inspiration.

For dynamic models the weighting factors (K^) may not be simple

constants but rather functions of time i:o allow for the known phase

differences between different pulmonary units consequent to variations
260in mechanical properties.

To test the feasibility of applying this approach to analysis 

of argon wash-out tests, an experimental study has been carried out 

in normal subjects. In this study a simple model which describes 

the homogenous lung has been used.

b ) Parameter E ^ imation

For the homogenous lung

VA'U-A = SV(Pi - Pft) (4.6)
“ a t
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uid îlipfc is only one parameter to be estimated. Use has been

made of a method of continuous parameter a d j u s t m e n t . S u c h  

methods can only be applied in circumstances where there is a small 

number of parameters.

The first requirement to apply any parameter estimation method is 

a measure of goodness of fit between the model prediction and measured 

response. In the methods which employ continuous parameter adjustment 

the measure of goodness of fit (criterion function) is the square of 

the difference between model prediction Y^(h/Q_) and measured response 

Yg(t). The process of squaring the difference ensures that the error 

is always positive and equal weight is, theiofore, given i o p<;sii i^e 

and negative errors, i.e.

J - e^(t,Q) 

where J i s the criterion function and

e(t,_g) : vYg(t) - Y^^(t,Q_)) is ihe or for.

In the analysis of argon wash-out data the criterion function 

cannot be evaluated continuously but only during the end-tidal part 

of each breath.

The model prediction Y^^(t,Q) depends on Uie numerical values for 

the constants in the model equations. This is represented by Q the 

vector of parameters. For each parameter q^ a parameter sensitivity 

can be calculated at each moment of 1:ime to give knowledge of the 

magnitude of the influence of the parameter on the model's response. 

This is achieved by differentiating the criterion function J with 

respect to the parameter. Thus

= 2 o ? °  = - 2e
Sir

The partial derivatives -1-—  are known as par.vmei.er sensitivityd3i
^ ,. 308functions.

The principle of parameter csl imation is to adjust the parameters 

such as to minimise the c;rit('“r î i n function. When the error is at a
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mi ni mum estimates of the parajieters aie obtained. tn the continuous 

case adjustment of the parameter .is arranged to be proportional not 

only to the magnitude of error but also to the magnitude of the 

sensitivity function

i.e. *̂̂ i ^^m (g is an arbitary gain constant > O)

For iarger values of error the rate of adjustment is high whereas 

near the optimum setting the error is small and the parameters will, 

therefore, change more slowly. The gain constant g^ is chosen by a 

ir-ial and error procedure. T.argor values of gain " ?y ca e- e ■:,•••! -b i 1 ity 

wjii.le small values of gain may give unacceptably slow convi rge u.e.

In the analysis of argon wash-out data there is only oiie p-.oajneter 

(i/VA) and hence only one parameter sensitivity function. The 

V q'i.j ! i on of the )\3si c model is

sv ,

and by differentiating with respect to 1/VA we obtain

_ d 
,1/V, 3t

(P^ is now considered as a function of t and 1/V^^

i.e. _d 
dt

^--7 is 1:he parameter sensitivity function. As a result of the 
 ̂ / A
limited capacity of the available on-site analogue computer the second

a hterm of the equation was approximated byMyy-Ey where M is an arbitrary 

constant. Such an approximation has been shown using a larger 

analogue computer not to effect the final estimate of 1/V^ but the 

rate of convergence to the optimum value.



! 5 5 ,

I’lio adjni'l.mr nt of liio pnmmi.er 1/V^ is such that

p
——  (1/v^) = “ Ke (k >o ) (io8)

A

The three equations, 4.6, 4.7, 4,8 can be solved using an 

analogue computer. The 'patch' diagram for tlris solution is shown 

i.n Fig. 4.1. The details of derivation of this patch diagram and 

implementation on an analogue computer are discussed in Appendix 2. 

The initial value of in the alveolar compartment of the model was 

such that it corresponded to the measured end-tidal argon partial 

p.recsurc in the last breath of the wash-in of argon.

c ) E xperimen t a l _S tu dj e ̂

The experimental studies were carried out in tvamty-five 

subjects. All subjects were .on : voters. he aii th rop iiic 

data of each subject are shown in Table 4.2 . In the experi

ments which were performed the subjects inspired a gas mixture 

(. ontaini ng approximately 80% argon until equilibrium was reached 

between the inspired and alveolar concentrations of argon. At this 

point the subjects returned to breathing room air. The experiments 

were conducted as described in Chapter 3.4(a). The data were 

recorded on a magnetic tape loop. Recording of the experimental

data was commenced shortly before the end of the period of the wash-

in of argon. At the end of the argon wash-out test the subject was 

asked to expire maximally so that the subject's expiratory reserve 

volume could be measured. The functional residual capacity w.is also

measured in each subject using the standard closed-circuit helium 
264dilution mei.hod. A measurement of expiratory reserve vol uiue was

obtained at the end of this test.
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S C A L I N G
F A C T O R S Y S T E M

MODEL
OUTPUTM E A S U R E D O F F S E T

O F F S E T C O S T S T E M  -RUT

L O GI C A L
•a n d’
G A T E

1  C O E F F I C I E N T  
U  D ET E R M I N IN G  POI NT  OF 
J  E N D - T I D A L  S A M P L I N G

■> A R A M E T E R  L  
A D J U S T M E N T  
GAIN FACTOB

FIGURE 4.1

"Patch" diagram for solution of equations 
4,6, 4.7 and 4.8. The value of the parameter 
1/V^ is obtained as the output of integrator 5. 
In the diagram shown the condition which is used 
to detect the end-tidal part of each breath is 
that y  Vdt during expiration is greater than an 
arbitary volume. This volume is set by the 
operator using the potentiometer shown.
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The * P' >v.:^ontal da la weio analysed (soo Fig. 4.7) asing

IhG parameter estimation inettiod which is described in the previous

section and implemented on an analogue computer.(Fig. 4.1). The

dead space of the subject was assumed to equal the expected body

weight in pounds. (This relationship is demonstrated in the work 
logof Radford ). The agreement between the prediction of alveolar 

argon partial pressure of a model with the optimum lung volume and 

measurement is good, (see Fig. 4.3).

There is no significant difference between the estimates 

of lung volume which are obtained by parameter estimation and those 

by the closed ci/.cuit Iielium dilut ion .ùeth.od a tter currtu/tion lo 

the same end-expiratory volume (see Table 4.3). There Is a 

lij.ear relal.ionship betUL^en the results from hhese methods of 

TT/'arui eruent. The slope of this m l  at i onshi p is not signil. < . : y

ditfejent from uni ty (See Fig. 4.4).

The analysis of argon wash-out data using the method of 

par,joeter estimation should be unaffected by variat ion in the 

visit, i 1 ation of tlie subject. this is demonst rated by a study 

(see Fig. 4.5) in one subject who carried out two argon wash-out 

tests. In one of these the vent.ilation was regular but erratic 

in I he ot her. There is good agreement between model predict (on 

and measurement in both cases and the same result for lung volume 

was obtained (2.17L and 2.18L respectively).
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SUBJECT SEX AGE U1lT_GHT (Ib) EXPECTED

1 EM F 23 127 130

2 MS F 24 120 121

3 EG F 24 144 129

4 GB M 29 152 172

5 FD M 26 150 160

6 FM M 42 190 192

7 RJM M 42 147 140

8 GC F 19 128 118

9 JMcK M 23 140 149

10 RMcC F 40 136 1 49

11 JDHB M 54 154 165

12 AS F 24 136 -

13 ML F 25 108 1 ;.'5

14 KK M 29 153 161

15 MK F 31 113 125

16 AR F 24 133 132

17 RB M 28 - 149

18 JW M 33 147 155

19 JS F 39 121 130

20 DM M 10 71 72

21 JS M 12 77 34

22 AMS F 13 92 99

23 CW M 27 152 157

24 JMcE M 23 168 167

25 JMcK M 24 145 153

TABLE 4.2

The sex, age, weight and expected weight of each 
subject Wiio took part in these studies. The 
expected weight is derived from knowledge of the 
subject's age, height and sex^OS
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kPa

MODEL

SYSTEM

kPa
ERROR

a s

LUNG VOLUME

FIGURE 4.2

Outputs from the analogue computer during solution of 
equations 4.6, 4.7, 4.8. At the top of the figure is 
the comparison between model prediction of alveolar 
partial pressure of argon (MODEL) and that measured 
experimentally (SYSTEM). Since measurement is made at 
the mouth the model and system should only agree during 
the end-tidal part of each breath. The end-tidal argon 
partial pressures show an exponential type decrease during 
the wash-out. The initial part of the experimental data 
is from the end of the wash-in during which the model is 
held in "initial condition" mode. The second line of 
the figure (ERROR) is the difference between model and 
system computed during the end-tidal part of each breath. 
The last line of the figure is the parameter (LUNG VOLUME), 
Since it is the inverse of lung volume which is the 
parameter the scale goes from oo at the bottom to 1.5L 
at the top. The value of lung volume is updated on each 
breath to minimise discrepancy betweaimodel and system.
The experimental data are recorded on a magnetic tape 
loop and computation can be repeated. In the example 
shown the lung volume parameter is such that during the 
second computation there is good agreement between model 
and system. The signals between the two sets of data 
are the zero and calibrate signals.
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80

kPa

FIGURE 4.3

Comparison of model prediction of alveolar partial pressure 
of argon during a wash-out with that obtained experi
mentally, once the parameter (1/V^) is at its optimum 
value. The measured inspired partial pressure of argon 
is zero. There is good agreement between model prediction 
and measurement during the end-tidal part of each breath. 
The initial part of the record is the end of the period 
during which argon is washed into the lung. The model 
is held at an initial alveolar partial pressure until the 
start of the wash-out.
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SUBJECT FRC

MODEL
KRV 

t'O >EL
FRC

HETdUM
'̂RV

HELIUM
FRC

CORRECTED
FRC

llELlUf

1 EM 3.39 1.88 3.05 1.72 3.23 3.05

2 SMK 3.05 1.55 2.72 1.41 2.72 2.91

3 EG 3.22 - 3.36 - 3.22 3.36

4 GB 4.16 2.53 4.06 2.32 4.06 3.95

5 FD 4.79 2.05 4.74 2.02 4.76 4.74

6 FM 4 . 30 2.68 4.86 2.95 4.57 4.86

7 RJM 2.15 0. 74 2.21 0.88 2.29 2.21

8 GC 1.70 1.12 1.85 1.01 1. 59 1.88

9 JMcK 2.78 1.87 2.94 1 .95 2.86 2.94

10 RMcC 3.22 1.88 3.67 1.91 3.25 3.67

11 JDHB 3.03 1 .44 3.00 1.55 3.14 3.00

1 2 AS 2.65 1 . 30 2.92 1.24 9. 59 ' 2.92

1 3 '•1L 2.30 1 . 17 1 . 83 0.86 1.99 ) . 83

14 KK 3.67 2.37 3.91 2.73 4.03 3.91

1 5 :-K 2.03 1 .03 1 .75 0.84 1 .e4 1 . 7 5

1 6 AR 2.45 L. 36 2.55 1 . i2 2.41 2.55

17 KB 3.46 2.04 3.03 1.85 3.27 3.03

18 aVJ 3.76 2.29 3.91 2.40 3.87 3.91

1 9 JS 2.92 L. 13 2.89 1 .24 2.83 2.89

20 DM 1.48 0.52 1.32 0.44 1. 40 1.32

21 JS 1.54 - 1.33 - 1.54 1. 33

22 AMS 1.43 1.13 1.65 1.02 1.32 1.65

23 cw 4.60 3.07 4.19 2.92 4.45 4.19

24 JMcE 4.18 1.99 3.39 1.85 4 .04 3.39

25 JMcK 3.23 1.93 2.61 1.43 2.73 2.61

TABLE 4.3.

The uncoj reefed functi onal resi dual capacity (FRC) from
analysis of argon wash-out (FRC model, column 2) is obtained 
by addition of 1 bo ost i mated volume of the alveolar compa rtment 
(V^) and pje "-..“I- 1 ul x ice volume. This FRC is corrected to
the same  ̂nd ( xpir. 1 , , y level (FRC corrected) as tliat during i.he
moa--ur eLn nt of h rc i.,y Uie closed-ci ecui t helium mei hod .
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TABLE ^ 2 -  (Caption continued) .

The correction is made by subtracting the difference
between the measurements of expiratory reserve volume
(ERV , - ERV , . ) from FRC model. In subjectsmodel . helium in whom a satisfactory measurement of expiratory
reserve volume was not obtained, the difference lias been
assumed to be zero.
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5-0

FRC 
M O D E L  L.

4-0

3-0

2-0

10

4-030 50
(FRC HELIUMlL.

FIGURE 4.4

Comparison of lung volume as estimated by the 
use of parameter estimation (FRC MODEL) with 
that obtained by the closed circuit helium 
dilution method. The line shown is the line 
of identity.
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l i t r e s
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FIGURE 4.5 (a)

For caption see Fig, 4,5 (b)
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FIGURE 4.5 (b)

Comparison of model prediction and measurement 
during two argon wash-out experiments in the 
one subject. (For details of interpretation of 
records, see caption Fig. 4.3) In these graphs 
the volume of each breath is also shown, being 
represented by the height of the spikes at the 
bottom of the figure. In the first experiment 
(Fig. 4.5 (a)) the ventilation is relatively con
stant in contrast to the erratic ventilation in 
the second experiment (Fig. 4.5 (b)). There is 
good agreement between model prediction and 
measurement in both cases and the same result for 
lung volume was obtained.



4.4. FUTURE P'-’OSPKC rs FOR THE USE OF _  MODFT,^
IN THIS ^^EA.

The division of wash-out tests into single-breath, using 

^formation within a breath, and multiple-breath, using one data 

point per breath, is an unnecessary simplification. In multiple- 

breath tests the changing slope of the alveolar plateau within 

the individual breaths throughout the test should provide additional 

information. The dynamic modelling approach will allow utilisation 

of information within a breath to quantify abnormality. The problem 

as to what factors are principally responsible for the inconstancy 

of the alveolar plateau is, however, one of the large unresolved 

problems in respiratory physiology.

Discussion of this is polarised unnecessarily into a 

debate between those who propose that 'parallel inhomogeneity' is 

I'e ma ill mechanism and those who propose "series inhrmogeneity".

This subject was introduced briefly in the first section of this 

chapter.

If tlie slope of the alveolar plateau is to be related to 

"parallel inhomogeneity", two conditions need to be met:-

a) the concentration of inert gas is different in different 

lung units;

b) these units empty asynchronously, (often called sequential 

ventilation).

The lung is in reality a highly assymraetric structure.

(The asymmetry has been quantified in detailed anatomical studiesl^^ ) 

The anatomical asymmetry will lead to condition (a) being fulfilled 

both due to unequal distribution of dead space gas and unequal 

distribution of alveolar ventilation. Units can furthermore 

differ in mechanical properties, i.e. their resistance and
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ronipT iancG. Thl s will of fen both the amplitude arid phase 

of their relative ventilations. This has been studied using 

mathematical models^GO'^S related experimental results.

Differences between the function of different lung regions 

can be demonstrated experimentally. ' 14,315,330 ^his is 

explained by the effects of gravity leading to less negative

pleural pressure at the base of the lung^ ° and more distended
322alveoli at the apex. There is also evidence, at least in

dogs, of different intrinsic elastic properties in the upper and 
323,324lower lobes. The different behuviour of 1 he upper a n d

lower lobes is most marked at low lung volumes due 1o the n.ui 1incarity

of the pressure volume relationship?^"^ ' Closure of units in the
327-329lower zones occurs at low lung volujTtes. The differences in

the pattern of ventilation be t ■ n pper d i , e r t hes is red

by the inspirtory and expiiatory flow-rales?^'  ̂ .’he distribution

of inspired gas at low flow rates is determined primarily by the

relative compliance of lung regions?^^'^^^'^^^ ^t high flow rates

the relative resistance of different airways is important.

The ventilation to volume ratio diffère.ace between upper

and lower lobes will not of itself cause inconstancy of the alveolar

plateau. There is a need for condition (b) 1o be satisfied.

Sequential ventilation is demonstrable even during tidal breathing

but is a small order effect?^^

Much of the slope of the alveolar plateau arises, 'h(;refore,

from other factors. Significant slopes in inert gas concentration

during expiration can be demonstrated in small airways both in man^^^'^^^ 
339and in dogs. (The latter using a modification of the technique of

341retrograde catheterisat ion. ) These studies suggest that tbe

inconstancy of the alveolar plateau arises mainly from differences 

within units subtended by airways wliose diameter is less than 3 mm.
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Tlie demonstration of significant slopes in small airv.’ays 

does not of itself add weight to eitlier a "parallel" or "series" 

argument.

For the variation of the alveolar plateau at the mouth to 

reflect series inhomogeneity it is also necessary for two conditions 

to be met;-

(a) gradients in concentration must exist in terminal lung units 

even at the end of inspiration;

(b) such gradients must not be abolished by convection during

expiration, i.e. they must be demonstrable at the mouth.
^ 212,21 5,216,226,227Evidence from simulation studies would suggest

that condition (a) but not condition (b) is fulfilled.

Supporters of tlie concept of "parallel inhomogeneity" 

employ models which assume that gas transport in tbe ai rw.yys is 

solely convective. Supporters of "series inhomogeneity" utilise 

models which assume equal convection to all lung units.

It is evident both theoretically and experimentally t.hat 

the truth is unlikely to lie on either side. Indeed in the complex 

transport in the lung it is impossible to separate so completely the 

linked processes of convection and diffusion.

The most rational approach to this problem i s to construct 

models which incorporate all mechanisms. This necessitates use of 

models which combine descriptions of pulmonary mechanics and gas 

transport. Such "multiple models" are used in the study of cardio

vascular p r o b l e m s ! ^ ' T h e  application of more complex models will 

require increased information content in the experiment. Practical 

considerations indicate that such models will have to be 1umped 

rather than distributed models. It is, therefore, necessary to 

consider tlje importance of the distributed phenomena such as 

effective diffusion and convection in airways.
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4.5 THE IMPORT.ANCE uE TAYT.cR inSP-'HSrON / A SIMUKATTON STUDY.

a ) Introduction.

In Chapter 2.8 a distributed model of gas transport in the

airways was described. This model incorporated both convection

and Taylor diffusion. The development of lumped parameter models

to analyse detailed measurements within a breath will be difficult

if Taylor diffusion is an important mechanism.

The existing experimental evidence as to its importance

is conflicting. Since in laminar flow diffusion increases with

molecular weight (being inversely related to molecular diffusivity)

evidence of its presence has been sough! with experl.mts using

inert gases of different diffusivities. An increase in the

steady-state uptake of carbon monoxide has been demonstraled when

a highc r d e n s i  ty i iiei : ;as ! etl ur ht xai’ )r i de , Spt as >  ̂ .red
345with helium, He) is also present. This increase is more marked

at higher ventilations. Likewise a larger inspiri^d arterial

,',e‘̂s\]rta difference - r oxygen has hern deronsi ̂  at, d n dcags wL.-n
344the lighter gas, helium, is substituted for nitrogen. The

f'xplanation of these results is inought to be (enhanced dif fa'ion as

a result of Taylor dispersion.

Conversely a number of oxperijuents using gases of different 

diffusivities indicate the limiting role of molecular diffusion.

Sulphur hexafluoride is washed out slower than helium from excised
193 400dog lobes and slower than hydrogen in man. Single breaths of

gas mixtures containing helium and SF6^^^ or neon and SF6^^^ indicate

that grcaier amounts of the dense gas are expired in early expiration

with increased ainounts of the light gas in late expiration. Such

differences are abolished by breath holding.

The results from simulations studies using the model which

was described in Chapter 2.8 tend to support the view that Taybrr
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diffusion is rel atn vely unimp>oT tant.

b) Simulation Studies.

In these studies a lung model which is based on the data 
211of Weibel is used. Since this data corresponds to a lung at

three-quarters of full inflation, the dimensions are scaled to

give an equivalent functional residual capacity of 2.4L. The scaling
229is consistent with physiological studies. The data for the first

four generations are not scaled, however, giving a lung model
215similar to that studied by Paiva.

A sinusoidal flow rate is used in these studies su.;h that 

the tidal volume is 0.5L and respiratory frequency 15/min. Cj-diac 

output is taken to be 5L/min.

In Figure 4.6 the partial pressure of CO^ is shown as a 

^unction of x every O.^S during a breathing cycle. Cci is le 

plotted both for the cases in which Taylor diffusion is omitted or 

incorporated in an unmodified form. This corresponds to the cases 

in which a in equation 2. 80 is et equal to O and 1 respectively.

The steep PCO 2 pressure gradient is convected towards the alveoli 

during inspiration (0-2S) and towards the origin of the model during 

expiration (2-4S). Only during early inspiration (times less 

than 0.8S) and early expiration (2.0 - 2.88) does the value of a 

have any effect on the pCOg curves. The convection of the pCOg 

gradient towards the origin of the model during expiration produces 

the expired concentration curve shown in Figure 4.7. The larger 

effective diffusion in the upper airways when the Taylor contribution 

is included produces a small but significant change in the shape of 

the expirate, but does not cause any significant increase In tl.e 

amount of CO^ expired at the end of expiration ( less than 3%) .

The similar graphs for oxygen are shewn in Figures 4.8,4.9.
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FIGURE 4.6.

Partial pressure profiles of pCOg throughout 
the lung model at ten equally spaced intervals 
of 0.4 sec during a single breath. Numbers 
one to five correspond, therefore, to inspiration, 
and six to ten inclusive are during expiration.
The continuous lines are the cases when a = 1 
and the dotted lines are when a = O. At most 
times during the breath tJiere is no significant 
difference between the profiles for a= 1 and 
a = O in which case only one profile is shown.
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FIGURE 4.7

Comparison of model prediction of pCOg at 

X  = O in the model in the cases in which 

a = 1 (continuous line) and a = O (dotted 

line).
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FIGURE 4.8

Profiles of pO^ throughout the lung during a 

single breath of atmospheric gas. The 

symbols are as in Figure 4.6.
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FIGURE 4.9

The model prediction of pO^ at x = O during 

a single breath of atmospheric gas. The 

dotted curve corresponds to the case when 

a = O and the continuous line to a = 1.
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Aija.in i >10 Uiihuticod dii.fusjon v/i i h a 1 producc?s no i nry e ;:-fj in 1 he 

c.îlcnleted oxygen uptake of the blood.

The results of a simulation of a single breath nitrogen 

test are shown in Figure 4.10. Tn this simulation tlie breatii of 

oxygen is of O.SL volume. The effect of a is only evident on 

the partial pressure curves during e rly inspiration and early 

expiration. The corresponding effect on the expirate is shown 

111 Figure 4.11. The inclusion of Taylor diffusion <ij, not 

significantly alter the amount of nitrogen "washed-out" of 1 he 

lung at end exp ' ru I ion. Thus the value of has \o « : Ft ct on 

he ea Icul a ted \olame < f the id sp c(' "sing I i:o  ̂ ’ ■ , : , : pi e!

This is also reported by Lacquet et .al

c) Discussi o n .

Tn ' hr i ulatioi : v.Mi h 'oi ' . Ll>ed - n - , i, .us

section the inclusion of Tayi.or d Iff usion m..id - .10 si jir t i r uit 

alterat ion to gas uptuike or output, or to the magro in le <jf d--od

pace. Thcs.- simulai ions c.* carrit d out. wll.h a o' _ ' •’.30

equal to unity giving i i.o before ,'e m ixinjum poLisJoT (.1 •. .jf

Taylor diffusion.

The inclusion of Taylor diffusion loes produce cerl .In 

effects on concent.ration profiles in the lung during the respiratory 

cycle. Such effects, are, however, only demonstrable during early 

inspiration (t<0.8S) and early expiration (2.0- 2.4S). During 

early inspiration (t<0.8S) the pressure gradients are in the airways 

where Taylor diffusivity is high. The effects of this high 

diffusivity on the p(x,t) curve can be soon in Figures 4.6, 4.8, 4.10. 

During the remainder of insplrcition there is no sign! fit .ut o) I Fori nee 

in the p(x,t) curves for a - O or 1. Early In expiration (2,0-2.43 in 

these simulations) the gradients are again in t ho region in which
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FIGURE 4.10

Partial pressure profiles of pN^ in the lung 

during a single breath (tidal volume = 0.5L) 

of 100% oxygen. The symbols etc are as in 

Figure 4.6.
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FIGURE 4.11 

Comparison of model prediction of pN^ at 

X = O during a single breath of 100% O^ in 

the cases in which a = 1 (continuous line) and 

a = O (broken line).
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i f et - 1 , î.lie r.xylor-Af tli f fus. i vi Ly is high. The j< a] t-fnt

effect on the p(x,t) curves can be seen. Dnrijig tJie r» mainier of 

expiration the gradients have largely been convected out of the 

lung, and the value of ot is not expected to have an effect on the 

p(x,t) curves.

Quantitative differences in the , CO^ and results are 

related to the different molecular diffusion coefficients and to the 

different concentration gradients between inspired and alveolar gas.

The relative lack of effect of Taylor di ffusicai as cfrapared 

to its magnitude is explained by:-

(1) The Taylor-Arts effect, proportional to the -̂ f ite i'' w 

velocity becomes negligible for generation numbers Z > 12, si.uue for 

these generations the flow velocity u is very small, Tti t s res ilts 

in 1 re bci I g a region in the lung where moh .’u].,̂ r di ffusion is the 

■ 1 min.-nit traijspoi't : rchani sm.

(2) For the upper airways Z\12, the Taylor-At is diffusivity can be 

very large at peak flows (e.g. two hundred ü  ic's larger : i nc 1 ecular 

diffusivity) but: at such times 1 he large flow c^.nvf’cts gui -ly he 

prê -' ure gradient, through which diffusion operates cub of i o 

airways.

(3) Since the total cross-sectional area of the lung rapidly i ui rr̂  es

with distance from the trachea after the twelfth generation the

flow velocity must decrease rapidly. Thus, during inspiration, 

gas which is dispersed ahead of tdie mean conv<ctive flow enters 

initially the region where the flow velocity is low. Thus this 

gas becomes effectively stationary, whereas tlie remainder of 1 he 

inspired concentration front cont.inues to be convected. There is 

a resultant reduction in the degree of dispersion and an i ncrease 

in the concentration gradient in this region. Thus although

Taylor diffusion alters the concentration pr<Tfi 1 es in the upper n’ . ys ,

this is not reflected by alterations in tlie concentration profiles (n



1 79,

the termina 1. airways. Gas lias Lo be transported across i be 1 il ter 

region to enter or be removed from the alviiii. The variation in 

velocity within the bronchial tree will tend to have the opposite 

effect during expiration, i.e. increase the degree of dispersion.

The effect of variations in convective velocity at different

points on a concentration gradient on the apparent degree of
402 233dispersion was neglected by Engel et al. and by Scherer et al.

who attributed the spread of a gradient to diffusion alone.
34 5It might bo expected^ that variations in the t idal 

volume or breathing frequency will modify U jg magnitude of "Ire 

eff(ct of Taylor diffusion since an i ncrrase in either o f : hone will 

increase the flow velocity and hence the Taylor Aris di tfusi ri ty. 

However, this increased flow veloi.-i i,y will decrease the time : hat

LliC pressure gr idit nt s in tin’ upper airways ind ti c e  Ihe t i ,ie

ava.uLable for tiie enhanced di 1 f usion to act. Tn s i mal .j i ion 

studies, variations in tidal volume and frequiMn:y ^,oducc no added 

effect of Taylor diffusion on overall gas flux as compai d lo the

case with only m«d .calar d i i fus i on.

The main conclusion from these simulations is Irhat Taylor 

diffusion has little effect on the efficiency of gas exchange.

This is contrary to the suggestion of Kvaloet al?^^ All the

experiments which have indicated an important role for Taylor 

diffusion have measured the relative transfer of gas into the 

arierial blood in different breathing conditions (e.g. with heavy 

gas as compared to light gas in the lung). This is in contrast 

to those experiments which suggest the limiting role of molecular 

diffusion in which only relatively insoluble gases are studied. It 

is possible that in tdie first type of experiment other factors 

are operative. For example the change in breathing conditions may 

alter the relative distribution of ventilation-to-perfusion. The
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conclusions which are drawn frcni lliesci simulai ions will o .iffected

by the validity of the model, Tiie symmetrical nature of the

model may be of particular importance. It is conceivable that in

pathways with different geometries, for example pathways with

shorter transit lengths, Taylor diffusion is more important. It

is to be emphasised, however, that the conclusion is reachtMl from

simulations in which the effect of Taylor diffusion is maxi mi sed (a-1)).

The main effect of Taylor-Aris diffusion in the lujvj,

therefore, is to alter the distribution of gas in the -̂r .liiways

(Z < 12) relative to molecular diffusion. The-re is a ct • al ! - nt

effect (during expiration) on the pajt i ial pre;; -ure cur ye j :r.<-.t

time at the origin of the model. The di stribui ion of Ihe «xpi/ate

is affected but not the amount expired. (Note ttie.t the ' i,gr il 
c  •VVdt gives only the , 'Uvecl i vc contribat ion to Ihe '’w .  ;] o

case with a = 1 there is a igiiificnit ditfusive < a , « : t du! i a to the

total flux at the origin of the model.) Nt u un <rits of expired

conctujtrati on of gases at the mouth resemble mo re do 'c l y  t’,e

predicted results wi h ot -- O. As indicated in G’-', pl.t r 2 'he complex

flow v_onditions in the lung imply that a wil 1 be less ' nan l.O

throughout most of the region in which Taylor diffusivity is operat ive.

The magnitude of a cannot be (Obtained from n.atheinatical analysis

since the problem for the lung is too complex. There is a need for

further experimental work both in man and in more realistic structural
233models than that employed by Scherer et al. It may be hat even

the detail of the expired concentration curve i s relatively unaffected 

by Taylor diffusion.
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•1.G C O N C L U S I O N

The teclinique of dynamic modelling has been applied successfully 

to the analysis of inert gas wash-out experiments. Most methods of 

analysis of such experiments assume a constant ventilation. Methods 

which are based on parameter estimation techniques are seen to be 

applicable even in situations in which the ventilation of the subject 

is erratic. These studies have been carried out in normal subjects. 

The alveolar plateau in such subjects is flat, whereas in patients 

with respiratory disease there is a significant slope. S ’milar 

t(>chniques could be applied to such patients by employing avr■ ig:ng 

: ,'chniques over the alveolar pxri i ion of the cxpirote. ’’l.e t i'ne 

variation of the partial pressure of the expirate throijg’nout i he 

wash-out experiment would m e m  lo present, however, an :ddit i onal 

'v .irce of experimental iiiformal. ion. There is a leed '‘or re 

complex models whi c'h incorporate both "parallel" and "series" 

i nh< ogoneity to analyse this data. TnvfXit Lgations with a 

distributed model of gas transport in airways indi ca I es tihat 

Tuylor diffusion does not produce significant effects on overall gas 

trc.sport. It miy, however, alter the shape of t:he x^Tired 

concentration curve. There is a need for furtber experimental 

studies to elucidate this role of Taylor diffusion as a step in the 

development of more complex lumped parameter models. Such models 

will contain more parameters and hence increase the difficulty of 

applying parameter estimation methods. Parameter estimation has 

been applied to the estimation of four parameters in a model of 

carbon dioxide transport. This is discussed in the next chapter.
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C H A P T E R  5

A DYNAMIC. MODEL OF CARBON DIOXIDE 

TRANSPORT.
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CHAPTER 5 . A DYNAMIC MODEL OF CO  ̂ TRANSPORT.

5.1. INTRODUCTION:

In this chapter the techniques of dynamic modelling are 

applied to the study of carbon dioxide transport. Carbon dioxide 

is exchanged between peripheral tissues and the atmosphere. The 

model which is used is more complex than that for an inert, 

insoluble gas. The complexities are related to the storage of 

carbon dioxide in lung tissue, to the peripheral stores of carbon 

dioxide in other tissues, and to the non-linear relationship 

between tension and concentration in blood. The structure for 

the lung component of the model is that which was shown in Fig. 2.1. 

The equations for a model describing carbon dioxide transport were 

considered briefly in Chapter 2 (equation 2.59). There are a

larger number of parameters in these equations as compared to the 

model with a single parameter which was discussed in the previous 

chapter. The problem of parameter estimation is, therefore, 

more complex.

5.2. STORAGE OF CARBON DIOXIDE IN LUNG TISSUE:

The lung is known to contain more carbon dioxide than

could be accounted for by simple solution of CO^ in pulmonary
347extravascular water. This carbon dioxide is present in

several forms - disscJved CO^» carbonic acid, and bicarbonate.
348,349Experimental evidence, which has been obtained by

infusion of radio-active labelled bicarbonate and carbon dioxide 

into the pulmonary artery, suggests that interconversion between 

the various forms is rapid. The rapidity of the chemical reaction
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is related to the presence in the lung of the enzyme, carbonic

anhydrase. This enzyme has been demonstrated to be present in

blood—free lung tissue?^^'^^^ The interconversion between the

various forms is altered by administration of a carbonic anhydrase

inhibitor?^^' The pulmonary membrane is thought to be
348,349impermeable to bicarbonate. CO^ diffuses readily

through the membrane, combines with water in the lung tissues

to form carbonic acid which instantaneously dissociates into hydrogen

and bicarbonate ions. The presence of significant amounts of

carbon dioxide in the lung, in additon to that present in alveolar
353gas, buffers the changes in alveolar pCO^.

The amount of CO^ in the lungs of man has been measured 
354by Sackner et al, using a plethysmographic technique, and by

Hyde et al^^^ using an indicator dilution method with a stable

isotope of CO^ (^^COg). There is reasonable agreement between

the results. The results of these studies have been expressed

as the slope of the linear relationship between amount of CO^

(ml of CO^fSTPD) in pulmonary tissue, excluding the amount in the

pulmonary capillaries, and the tension of CO^ in mmHg) .

The mean of the results in 5 subjects are 1.32 ml of CO^/mmHg

and 1.41 ml of CO^/mmHg respectively. There is, however, a

large variability between individuals in the amount of CO^ present
355in pulmonary tissue. In the study of Hyde et al values

range from 151 to 255 ml of CO^(STPD). This variability is not

related directly to body-size since the results after standardisation
2for surface area of each subject vary from 104 ml/m of surface 

2area to 164 ml/m . One can anticipate that, on average, a

subject with a lung volume of 3.0L will have 150 ml of CO^ in 

alveolar gas, 200 ml in pulmonary tissue, and 50 ml in
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pulmonary capillary blood.

In modelling carbon dioxide transport the "store" of

COg in lung tissue can be considered separately from that in

lung gas (see Section 2.7b). The process of equilibration,

however, between pulmonary gas and surrounding tissue is rapid.

Studies have been carried out in dogs to quantify this 
352 3 5 7equilibration time using infusions of ether and bicarbonate into 

pulmonary artery. Ether is used to enable correction of the 

bicarbonate results for a circulatory delay. The mean time 

for evolution of 50% of CO^ from bicarbonate (relative to ether) 

in these studies is 0.44 sec. Thus the equilibration is 

sufficiently rapid that for practical purposes equilibrium can 

be assumed to be instantaneous between alveolar gas and pulmonary 

tissue. This corresponds to using the concept of an equivalent 

lung volume^^^'^^^'^^^ which contains components from both lung 

tissue and lung gas.

5.3. TISSUE STORES OF CARBON DIOXIDE;

There is approximately 100 litres of carbon dioxide stored 
358in an average man. The amount of carbon dioxide stored in

individual tissues is variable. One of the largest stores of

carbon dioxide is in bone, in the form of carbonated
44In the early mathematical models of tissue stores a single

homogeneous tissue compartment is used. Experimental studies^^^

of total changes in carbon dioxide stores and arterial pCO^ dirLng

hyper and hypoventilation indicate the presence of multiple tissue

compartments with different time constants. Models with multiple
358tissue compatments were introduced by Farhi & Rahn. Each
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compartment represents a specific tissue, e.g. muscle, and is 

considered to be "well-stirred". The parameters for each 

compartment are its volume, perfusion, CO^ production, and slope 

of the dissociation curve relating concentration of carbon 

dioxide in the tissue to tension. Data for these parameters is

given in the original r e f e r e n c e , a l t h o u g h  it is incomplete.

Tissues with a small perfusion relative to the amount of carbon 

dioxide stored will show slow dynamic responses to changes in 

state. This type of model gives reasonable agreement with data 

from experiments of long duration. There is poor agreement with 

experimental data^^^' from dynamic studies whose duration is 

less than fifteen m i n u t e s . C h a n g e s  in arterial 

and venous pCOg are faster than that predicted by this model.

These fast changes have led to the concept of an immediate carbon 

dioxide storage space, which was measured using labelled carbon 

dioxide^^^C^^COg). Initially it was proposed^^^'^^^ that

the presence of a fast tissue space for carbon dioxide is related 

to a diffusion barrier between intracellular and extracellular 

spaces. An alternative hypothesis^^^'^^^'^^^ is that COg 

hydration is slow in certain tissues, particularly muscle. Models 

which incorporate both mechanisms have been s t u d i e d . T h e  

experimental data^^^ can be accounted for by either hypothesis.

There is supporting evidence, however, for the hypothesis that COg 

hydration is slow. It takes 30 minutes of carbon dioxide 

inhalation for muscle bicarbonate to increase measurably.

There are negligible amounts of carbonic anhydrase in muscle.

The lack of carbonic anhydrase results in a low slope of the 

dissociation curve in tissue. Each tissue can thus be considered 

to have an "effective tissue volume" which is defined as



effective tissue volume = tissue volume x
187.

slope of dissociation curve (tissue) 
slope of dissociation curve (blood)

These more sophisticated models predict the Icnown results 

as obtained e x p e r i m e n t a l l y , R e a s o n a b l e  agreement between 

model prediction and measurement for short duration experiments is 

obtained, however, using a single tissue compartment with a small 

effective tissue v o l u m e . S u c h  a model structure is used in 

this chapter since all experiments are of the order of 90 seconds 

duration following a step change in carbon dioxide concentration in 

the inspired gas.

5.4. RELATIONSHIP BETWEEN THE CONCENTRATION AND TENSION OF 
CARBON DIOXIDE IN BLOOD.

The biochemical processes which govern the transport of carbon
371dioxide in blood are complex (for useful reviews see Davenport,

372 373Roughton, Van Slyke. ). Carbon dioxide is transported

in several different forms. It dissolves in plasma and a small

amount of this is converted to carbonic acid, which in turn dissociates

into hydrogen and bicarbonate ions. The largest fraction of carbon

dioxide diffuses into erythrocytes. The enzyme carbonic anhydrase

is present in red blood cells in a high concentration. Thus

significant amounts of hydrogen and bicarbonate ions are formed here.

The hydrogen ions combine with the protein, i.e. haemoglobin, therebye

buffering any change in intracellular pH. Bicarbonate ions diffuse

from the erythrocytes into plasma since a concentration gradient is

established. Electrical neutrality is maintained by a corresponding

"shift" of chloride ions into the cells. Carbon dioxide also

combines chemically with the amino groups on certain proteins, in
374particular haemoglobin, to form carbamino compounds, i.e.

R-NHg + CO2 ^  —  R-NHCOÔ + H"*"
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The relative amounts of carbon dioxide in different chemical forms 

in blood are shown in Table 5.1.

Total CO 2  in 1 litre of blood 21.53

Plasma
Total CO 2  in plasma 15.94

As dissolved CO 2  0.71

As bicarbonate ions 15.23

Red Blood Cells
Total CO 2  in red blood cells 5.59

As dissolved CO 2  0.34

As Carbamino compounds 0.97

As bicarbonate ions 4.28

TABLE 5.1.

The distribution of carbon dioxide (mmoles) as transported 
in one litre of arterial blood. The data are taken from 
Davenport?^! The original source of data is Henderson?^^

The transport of carbon dioxide is linked with the transport 

of oxygen. For a given PCO 2  more carbon dioxide is carried in 

blood with a low oxygen content than in blood fully saturated with 

oxygen. (This difference has become known as the Haldane effect) .

The biochemical basis is that reduced haemoglobin forms more 

carbamino-Hb and is also a more effective buffer of hydrogen ions?^^ 

There are two main approaches to the mathematical description 

of the relationship between concentration and tension of carbon 

dioxide in blood. In one approach a description is developed from 

the basic physico-chemical equations which are incorporated in a 

computer subroutine^^^'^^^'^^^ The alternative is to fit a
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function to published experimental data which give the relationship

between concentration and tension. There is a wide variety of

such functions used in simulations of carbon dioxide transport

(see Table 5.2).

The main sources of, and the original data are summarised
382in Table 5.3. The data of Henderson et al are derived from

studies on the blood of one man (A.V. Bock). The data of Dill
383et al are published in the form of a nomogram and represent the

average of studies in twelve healthy subjects. The data which are
384presented by Dittmer and Grebe are the average of the data in

the literature.

Over the range of interest (30 ^  pCOg ^ 60 mmHg) the

relationship can be approximated by a linear function (see Fig. 5.1

and Table 5.4). There is little difference between the slopes of

the straight line fit to different data and at different oxygen

saturations (see Table 5.4'. The slopes which are shown in

Table 5.4 are for oxygen saturations of 95% and 70% corresponding

to arterial and mixed venous blood respectively. The intercepts

of the linear functions are different for mixed venous and arterial

blood (see Table 5.4). This is related to the Haldane effect.

This difference is neglected in many of the simulations of carbon 
dioxide transport.^4,195,197,198,202,286,380.

This published data can only be applied to subjects whose

biochemical status is similar with respect to several variables,

e.g. serum protein, chloride, and bicarbonate concentrations.
395Indeed, it was appreciated at an early point that the relationship 

between concentration and tension of carbon dioxide in blood is 

different in different subjects. Of particular importance in
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Pq O ( m m . Hg. )

FIGURE 5.1

Graphs showing relationship between carbon 
dioxide concentration in blood (Cqqo/ ml.STPD./lOO ml, 
of blood) and tension (pCO^,minHg) at two different 
oxygen saturations (70 & 95%). Over the range of 
interest 30 ̂  pCO ^  60 the relationship is seen to 
be approximately linear.



TABLE 5.2.

191

Reference Animal Species Description

Grodins et al44

Trueb et al 37

DuBois et al 197

Chilton & Stacy 195

Yamamoto 198

Lin & Gumming 208

Man

Dog

Man

Man

Man

Man

Cc02 “ ^ bPcOg
b = 0.00425

CO 2
= (0.149-0.145S)P, 0.35

CO 2

S = Saturation (Oxygen)

Cc02 "  ̂+ bPco2
b = 0.00425

Cc02 “ ̂  bPc02
b = 0.00714

Cc02 = ^ + bPco2
b = 0.00714

'CO' = a + bPCO'

Flumerfelt & Crandall 202

Milhorn & Pulley 237

379Visser

Kim et al 380

Meade et al 206

Man

Man

Man

Man

Man

b = 0.0063

CçQg ~ 0.01097 -

'CO 2 = aP
O .0002256Pcon+0.000001749Pqc 

2
CO' b(Pc02)

- /  1001 + cPcOg
(a,b,c are functions of oxygen 
saturation)

CcOg = 0.3478 + 0.0045 P^q -̂
0.065S 

S = Saturation (Oxygen)

OCO 2  = ^ + bPC02
b = 0.0047

CO' CO 2

aPcO? + ^

a = 1.255; b = 0.0357
Different functions which have been employed to relate 
concentration of carbon dioxide in blood (C^Q^ L(STPD)/L) 
to tension (mmHg) , in simulations of carbon dioxide transport.
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causation of this variability is the variability of haemoglobin

concentration. The important role of haemoglobin in carbon

dioxide transport has been discussed, both in buffering the

change in intracellular pH and in the formation of carbamino- Hb.

The relationship between concentration of carbon dioxide and tension

in blood has a low slope in subjects with anaemia^^^ and an increased
397slope in subjects with polycythaemia. The effect of haemoglobin

concentration on the slpe of the linear relationship between
398concentration and tension has been investigated by Peters et al, 

over a wide range. The oxygen capacity of the bloods which were 

studied ranged from 2.65 to 28.7 vols% (i.e. haemoglobin concentrations 

of 1.98G% to 21.42G%). The slope was demonstrated to be related 

linearly to oxygen capacity of the blood and hence to haemoglobin

concentration, i.e.
Slope L/L/mmHg = 0-334 capacity + 6.3

30 X  100.0

= 0.448 Hb. conc. + 6.3
30 X  100.0

The slopes have been calculated using this relationship for a number

of different haemoglobin concentrations and are shown in Table 5.5.

For a useful discussion of the effect of biochemical variables on

the mathematical description of the carbon dioxide dissociation 
399curve see McHardy.
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TABLE 5.5.

Haemoglobin Concentration 
G/100 ml of blood

Slope of linear relationship 
between CcOg (L(STPD)/L blood)
and Pcog (mmHg).

10.0 0.00359

11.0 0.00374

12.0 0.00389

13.0 0.00404

14.0 0.00419

15.0 0.00434

16.0 0.00449

17.0 0.00464

The slope of the linear relationships between 
carbon dioxide concentration (L(STPD)/L blood) and 
carbon dioxide tension (mmHg) , at several different 
haemoglobin concentrations. The slopes are 
calculated from the relationship described by 
Peters et a l . 398
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5.5. MODEL OF CARBON DIOXIDE TRANSPORT.

The model of carbon dioxide transport which is used in this 

chapter is based on a lung model with dead space and alveolar compartments 

(see Fig. 2.1), with the tissues being represented as a single "effective" 

tissue compartment with volume . It is thus assumed that the

dissociation slope for CO^ in tissues is identical to that in blood.

The circulatory delay between the tissues and lung is not modelled.

The volume of the alveolar compartment (V^) is the "equivalent" lung 

volume. The model is described by two equations, whose form is 

similar to those described in Chapter 2.7 and derived in Appendix l.B. 

i.e.
dP
T- = SV6g(P -P ) + Q(f, (P-) -f_(P_))dt I A 1 V  2 A

but f^(P-) = a_ + bP-CO^ (see section 5.3)

^2 " "a +

where b is the slope of the linear relationship between concentration 

and tension of carbon dioxide. Other symbols as defined in Chapter 2.

i.e.
dP

\  ® = SVSg(Pj-P^) + Qb(P^-Pft) + Q(a; - a^) (5.1)

V b*^TCTC = A - 0 b ( P ^ -  P^) - 0(a- - a^) (5.2)

It is assumed that P^^ = P-.

The equations are solved using the approximate numerical 

technique which is described in Chapter 3.2(b).
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The equations contain a number of unknown parameters, i.e.;-

Q Cardiac output

Lung volume

M Metabolic production of CO^

V Tissue volumeTC
In addition values have to be assigned to the initial values of 

and P ^  at time t = O and to the volume of the anatomical dead space. 

Dead space volume and P^^o) are measurable directly. To 

calculate P ^  (O) it is assumed that at time t = O, the tissue 

compartment is in a steady-state, i.e. dP . It is not

assumed that there is a steady-state in the lung. This does not

represent, therefore, a limitation to the experimental procedure.

dt

I.e.

M -Qb(P^(0) - P^(0)) - Q (a- - a^) = O

Thus a value can be assigned to P_^ (O) if M,Q/P^(0) are fixed. 

The paracBter estimation problem is, therefore, to estimate the 

unknown parameters Q,V^,M,V^^.

5.6. OUTLINE OF EXPERIMENTAL PROCEDURE.

The experiments vtt.ch are described in this chapter were 

carried out in four healthy subjects. The volume of the anatomical 

dead space for each subject was obtained as described in Chapter 4. 

All subjects are non-smokers. The physical characteristics of each 

subject are listed in Table 5.6. Experiments were carried out at 

rest and during exercise. The experiments which were performed
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involve a perturbation so that the dynamic response of the carbon 

dioxide transport system can be examined. Each experiment consisted 

of an initial period (30 secs) in which the subject breathed air, 

followed by a period breathing a gas mixture containing 5% carbon 

dioxide (90 sec duration). The details of the experimental 

procedures are considered in later sections of this chapter. The 

experimental methods were discussed in Chapter 3.

TABLE 5.6.

in this chapter.

* Includes small instrumental dead space.

abject Sex Age > 
(yrs)

Ht.
m.

wt.
Kg.

Surface
Area

2m

Haemoglobin 
Concentration 

g/lOO ml.

Functional
Residual
Capacity

L.

Volume 
Anatomical 
Dead Space* 

L.

II F 23 1.64 68.6 1.75 12.3 1.4 0.150

RMcC F 43 1.68 59.5 1.67 12.4 3.6 0.175

JU F 48 1.60 50.9 1.51 14.5 2.2 0.150

WG M 30 1.82 70.0 1.90 15.4 3.8 0.190

Physical *characteristics of the subjects; who

took part in the studies which are described
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5.7. PARAMETER ESTIMATION PROCEDURES.

The problem of estimation of four parameters is more complex 

than the single parameter case, which was discussed in the previous 

chapter. Continuous parameter estimation t e c h n i q u e s ^ ^ ^ ' a r e  

inappropriate and the alternative discrete methods are used.

Discrete methods of parameter estimation involve a criterion 

function J which is the total error between model prediction and 

measurement during the complete experiment i.e.

r'" 2J = I e (t,2^)dt 
^ o

where T is the duration of the experiment and

e(t,Q) = Yg(t) - y^^t,Q)

is the error, i.e. difference between model prediction y (t,Q) andm —
measurement y^tt). 2  is the vector of parameters.

The discrete methods of parameter estimation involve 

optimisation procedures which adjust the parameter values {Q) such 

as to obtain the minimum of J. There are two different classes of 

optimisation procedure. Direct search methods involve a search, 

according to a specified algorithm, to find this minimum. The 

function J is evaluated at different points in parameter space, i.e. 

with different values of the parameters. The search procedure 

moves to a new point such that the value of J is reduced and the 

search recommenced. Gradient methods carry out a similar

procedure but the gradient of the function J is evaluated at each 

point as well as the function itself. Thus these methods utilise 

information on the slope of the surface J.

Both types of optimisation method can determine only a local . 

minimum, i.e. a point which is a minimum with respect to its immediate 

surroundings but not necessarily the overall minimum (global minimum). 

It is, therefore, useful if it can be established that the function 

is unimodal, i.e. it has only one minimum over the range of interest
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of the parameter values.

Error surfaces are one means of investigating' the shape of 

the function J but can only be used to consider J as a function of 

two variables. In estimation problems involving a large number of

parameters such surfaces allow inspection of the surface J in the plane 

of two of the parameters. Error surfaces can be drawn as contour 

plots consisting of contour lines joining points of equal error drawn on 

a 2 parameter space. Such a plot is generated by calculating the 

value of J at each point on a grid over the parameter space and using 

an interpolation technique to find points of equal function value?^^

An example of such a surface for the parameter estimation problem

which is described in this chapter is shown in figure 5.2. The

surface is seen to be unimodal.

Before applying optimisation methods it is useful to obtain 

information on the effect of individual parameters on the model's 

performance. This can be achieved by carrying out a number of

different simulations of a standard experiment with different values

of the parameters. The experiment which has been simulated consists

of an initial five breaths of air (P^COg = 0.0) followed by a step 

change to an inspired gas such that the inspired partial pressure of 

carbon dioxide (P^CO^) is 21.0 mmHg (2.78kPa). Simulations

have been carried out in which each of the parameters (Q,V^yM,V^^) 

have been varied in turn over the range of interest with all other 

parameters fixed. These simulations indicate the effect of cardiac 

output (Fig. 5.3), lung volume (Fig. 5.4) and metabolic production 

(Fig. 5.5) . The model has a distinct sensitivity to these 

parameters. There is little interaction between the effects of the 

parameters. The model's performance throughout the simulation is
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FIGURE 5.2

Error contour plot in the plane of the 
two parameters Q(L/sec) and V^(L). Each 
line on the plot represents a line of iso
error. The ninimum is at a lung volume 
of 4.0L and cardiac output 0.08 L/sec.
The lines at the periphery of the plot are 
of higher error. The error contour plot is 
seen therefore to represent a valley-shaped 
surface.
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TIME SECONDS

FIGURE 5.3

Demonstration of effect of variations in cardiac output 
parameter on model's response. The experiment which 
is simulated consists of an initial period of air- 
breathing followed by a step-change to breathing gas 
mixture containing 3% CO^. Five different simulations 
are shown in which the cardiac outputs of the model are
3.5, 4.5, 5.5, 6.5, 7.5 L/min respectively with all other 
parameters being constant throughout all the simulations. 
The main effect of the cardiac output parameter is seen to 
be on the later part of the transient.
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40
TIM E SECONDS

FIGURE 5.4

Demonstration of effect of variations in lung 
volume parameter on model's response. The 
same experiment is simulated as for Figure 5.3. 
Five different simulations are shown in which 
the lung volumes of the model are 2.5, 3.5, 4.5,
5.5, 6.5L respectively with all other parameters 
being constant throughout all the simulations. 
The main effect of this parameter is on the 
early part of the transient.
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FIGURE 5.5

Demonstration of effect of variations in metahdic 
production parameter on model's response. The 
same experiment is simulated as for Figure 5.3.
Five different simulations are shown in which the 
metabolic production is varied from 0.15 L/sec to 
0.35 L/sec in increments of 0.05 L/sec with all 
other parameters being constant throughout all the 
simulatbns. Alteration of this parameter affects 
the entire model response.
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affected by the value of metabolic production. The initial part 

of the transient response to the step-change in inspired pCO^

is dependent on the value of lung volume. The later part of

the transient is sensitive to cardiac output.

Simulations of the model's performance with different 

values of the tissue volume parameter indicate that the model 

is much less sensitive to this parameter. Any effect of

variation in tissue volume is demonstrated at the end of the 

transient.

Initially, therefore, parameter estimation has been

applied to the estimation of three parameters (Q,V^,M) with

tissue volume being considered fixed. Investigation of different

optimisation procedures as applied to this problem indicates that
387the two methods (the Rosenbrock method and the Davidon-Fletcher-

388 389 386Powell ' method)are the most efficient. (For useful
390 391reviews of optimisation methods see Adby & Dempster, Box et al,

392 393 394 387Dixon, Powell, White ). The Rosenbrock method is a
388 389direct search method and the Davidon-Fletcher-Powell ' is a 

gradient method. The details of the theoretical basis of

these methods and their implementation are presented in Appendix 9.

Optimisation which is carried out with different tissue 

volumes indicates that the estimates of the other three parameters is 

dependent on the value of tissue volume (see Table 5.7). There

is, futhermore, a distinct minimum in the criterion function at a
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TABLE 5. 7

Tissue Volume Optimum Parameters

Subject
WG 3.0

4.0
5.0
6.0
7.0
8.0 
9.0

10.0
20.0
30.0
40.0

Cardiac
Output
L/min

7.56
7.40
6.74
6.29 
5.88 
5.60 
5.38 
5.21 
4.55 
4.36
4.29

Lung
Volume

2.03
2.75
3.22
3.62
4.00
4.24
4.52
4.73
5.55
5.78
5.90

Metabolic
Production

L/min

0.223
0.236
0.241
0.245
0.248
0.249
0.250
0.251
0.254
0.254
0.254

Criterion Function

mmHg*

0.6225
0.4327
0.3881
0.3850
0.3928
0.4023
0.4110
0.4185
0.4525
0.4631
0.4682

Subject
RMcC

3.0
4.0
5.0
6.0
7.0
8.0 
9.0

10.0
20.0
30.0
40.0

4.46
3.73
3.24 
2.93 
2.81 
2.67 
2.58 
2.53 
2.32
2.25 
2.22

4.68
5.67
6.31 
6.72 
6.91 
7.08 
7.23
7.32 
7.77 
7.84 
7.90

0.197
0.207
0.211
0.213
0.214
0.214
0.215
0.215
0.217
0.218
0.218

0.3097
0.2662
0.2686
0.2743
0.2791
0.2827
0.2856
0.2879
0.2982
0.3014
0.3030

Effect of tissue volume parameter on estimates of other parameters 
and on criterion function for experiments which were carried out 
on subjects WG and RMcC. The experiments were carried out at 
rest. Each experiment consisted of a period (30 secs) breathing 
air followed by a step change to a gas mixture containing 5% CO^ In 
the simulation of the model's performance, a value of 0.0045 L/L/mmHg 
is used for b, and a value of 0.0129 L/L for the difference between 
the intercepts of the linear relationships between CO^ concentration 
and tension in mixed venous and arterial blood. The Rosenbrock 
method of optimisation is used. Variation in tissue volume is 
seen to affect the estimates of the other three parameters. There 
is a distinct minimum in the criterion function at a tissue volume 
of 6.0L for subject WG and 4.0L for subject RMcC. The criterion 
function is the mean of the square of the differences in mmHg^ between 
model prediction and measurement during the end-tidal part of each 
breath.
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certain tissue volume (see Table 5.7). This minimum in the 

criterion function occurs at the same tissue volume in different 

experiments in the same subject at rest (see Table 5.8). The 

same phenomenon is found in optimising experimental data which 

are obtained in studies during exercise (see Table 5.9).

These results suggest that the information content in the 

experimental data is sufficient to allow estimation of the four 

parameters. The input disturbance applied experimentally is 

not a pure step-function as there are additional random 

fluctuations due to variations in ventilation.

The criterion function which has been used in these 

optimisation studies is the integral of the square of the 

diffaence between model prediction and measured pCOg at the mouth 

during the end-tidal part of each breath. Thus the information 

which is obtained experimentally is not just the breath by breath 

changes in pCO^ but also the change in pCO^ within the breath.

There is a steeper slope in the alveolar component of the expired 

concentration record for carbon dioxide as compared to that for an 

inert insoluble gas (for discussion of the latter, see Chapter 4). 

This steeper slope is related mainly to the continuing evolution 

of carbon dioxide from the lung into a reducing lung volume 

during e x p i r a t i o n . T h e  slope is steeper during exercise.

The model also predicts a slope in the end-tidal PCO 2  and an 

increase in this slope during exercise. Application of the model 

to exercise conditions may lead, however, to inappropriate estimates 

of parameters (see Table 5.10).
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Tissue Volume

Experiment 1

Experiment 2

3.0
4.0
5.0
6.0
7.0
8.0 
9.0

10.0
20.0
30.0
40.0

3.0
4.0
5.0
6.0
7.0
8.0 
9.0

10.0
20.0
30.0
40.0

Cardiac
Output
L/min

5.19
5.25
5.02
4.82
4.65 
4.58 
4.29 
4.23
3.65
3.54
3.54

5.71
5.75
5.52
5.26
5.01
4.79
4.63
4.47
3.87
3.74
3.66

TABLE 5.8

Optimum Parameters Criterion Function
Lung Metabolic

Volume

2.69
2.74
2.99
3.28
3.49
3.63
3.85 
3.97 
4.51 
4.72
4.86

2.83
2.71
3.03
3.38
3.64
3.89
4.02
4.15
4.81
4.96
5.06

Production
L/min

0.202
0.212
0.219
0.224
0.227
0.230
0.230
0.231
0.233
0.234
0.237

0.206
0.214
0.222
0.229
0.232
0.234
0.235
0.236
0.239
0.240
0.240

mmHg

0.6109
0.2879
0.1659
0.1252
0.1164
0.1212
0.1280
0.1370
0.1940
0.2174
0.2336

0.7726
0.3339
0.1800
0.1325
0.1254
0.1331
0.1453
0.1585
0.2399
0.2704
0.2861

Effect of tissue volume parameter on estimates of other parameters 
and on criterion function for two experiments performed on same 
subject (II) at rest. Experimental details and simulation/ 
optimisation details as in Table 5.7, A minimum in the
criterion function occurs at a tissue volume of 7.0L in both cases.
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TABLE 5.9

Tissue Volume

Subject II
3.0
4.0
5.0
6.0
7.0
8.0 
9.0

10.0
20.0
30.0
40.0

Cardiac
Output
L/min

8.89
9.58
9.79
9.85
9.64
9.41
9.18
9.05
7.75
7.12
7.07

Optimum Parameters Criterion Function

MetabolicLung
Volume

4.26 
3.85 
3.83 
3.94 
4.06 
4.14 
4.23
4.32 
4.89
5.26
5.33

Production
L/min

0.628 
0.631 
0.640 
0.651 
0.659 
0.664 
0.668 
0.672 
0.684 
0.687 
0.689

m m H g

2.992
2.196
1.810
1.631
1.553
1.527
1.528 
1.542 
1.731 
1.825 
1.873

Subject RMcC

3.0
4.0
5.0
6.0
7.0
8.0 
9.0

10.0
20.0
30.0
40.0

7.70
7.55
7.19
6.84
6.54
6.30
6.18
5.98
5.41
5.25
5.16

3.54
3.67
3.86
4.11
4.32
4.48
4.58
4.73
5.24
5.40
5.44

0.530 
0.541 
0.548 
0.554 
0.558 
O. 560 
0.563 
0.564 
0.569 
0.571 
0.570

2.894
2.357
2.177
2.119
2.105
2.106 
2.113 
2.121 
2.181 
2.206 
2.219

Effect of tissue volume parameter on estimates of the other three 
parameters and on the criterion function for experimental data 
obtained during exercise in two subjects RMcC and II. Details
as in caption for Table 5.7, Exercise was carried out on a
bicycle ergometer. A minimum in the criterion function is 
demonstrated at tissue volumes of 8.0L for subject II and 7.0L 
for subject RMcC. These values are higher than the corresponding 
values at rest (see Table 5.7 and Table 5.8)• The fit between 
model prediction and measurement is not as good as that obtained 
at rest (higher values of criterion function).
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The estimation algorithm is attempting to fit the model to the

This

leads to a low estimate of lung volume. This problem is overcome

measured steep slopes in end-tidal pCO^ (see Fig. 5.6)

if the model's performance is compared with the average pCOg during

the end tidal part of each breath (see Table 5.10) 

criterion function J is

Thus the

J =

m(i)

11

m(i)
^  PCO^odel

_________
m

where there are n breaths in the experiments. m is a function of 

i (breath number) and is the number of samples measured during the 

end-tidal part of each breath.

With certain measured data this chemge in the criterion function 

produces an insignificant effect on parameter estimates both in studies 

at rest (Table 5.11(a)) and during exercise (Table 5.11 (b)). In

other cases there is a significant difference in the parameter 

estimates. It is not evident in what way these data sets are

different. In view of this uncertainty and the uncertainty as to

the mechanisms determining the nature of the expired concentration 

profile (see Chapter 4) the criterion function which utilises the

average end-tidal pCOg is used hereafter.
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CO m

CO
CO
m

Comparison of prediction of model with optimum parameters of alveolar pCO. 
and measured pCO^ at the mouth. The two should be in agreement during 
the end-tidal part of each breath. For other details see text.
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TABLE 5.11(a)
Studies at Rest

Subject Experiment Criterion Optimum Parameters
Function Cardiac Lung Metabolic Tissue

Output Volume Production Volume
L/min L L/min L

II 1 No averaging 4.78 3.58 0.231 6.44
II 1 Averaging 4.66 3.63 0.230 6.40

II 2 No averaging 4.36 3.48 0.226 6.61
II 2 Averaging 4.36 3.51 0.227 6.73

RMcC 1 No averaging 3.71 5.63 0.207 4.06
RMcC 1 Averaging 3.73 5.42 0.201 3.58

RMcC 2 No averaging 4.13 5.04 0.217 3.73
RMcC 2 Averaging 3.48 5.75 0.216 3.90

WG 1 No averaging 6.59 3.38 0.243 5.39
WG 1 Averaging 5.61 4.85 0.252 7.26

Comparison of parameter estimates as obtained using two different 
forms of criterion function. The studies were carried out at 
rest. One form of criterion function involves"averaging" the 
pCO^ values during the end-tidal part of each breath before 
calculation of the square of the difference between model and 
system. In the simulation of the model's performance a value
of 0.0045 L/L/mmHg is used for b, and a value of 0.0129 L/L for 
the difference between the intercepts of the linear relationships 
between CO^ concentrtion and tension in mixed venous and arterial 
blood. The optimisation which is used is a combination of the
Davidson-Fletcher-Powell method for the initial phase of 
optimisation followed by a change to the Rosenbrock method.
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5.8. Effect of Various Assumptions.

A number of assumptions have been made both in deriving 

the equations for the simple model of carbon dioxide transport 

and implementing parameter estimation techniques. A small 

number of studies have been conducted to ascertain the likely 

effect of such assumptions on parameter estimates. These 

studies are described in this section.

(a) Lung Volume.

In the results which have been presented lung volume 

has been regarded as a fixed parameter. Thus the variation of 

lung volume during the respiratory cycle has been neglected. The

lung volume increases during inspiration and decreases during

expiration

For inspiration t t t

V^(t) = V^(o) + j" Vdt - ^ VOgdt + I VCO^dt
^o <̂ o *̂ o

where o represents the beginning of inspiration. (A similar

expression can be written for expiration). The difference

between the last two terms (oxygen uptake and CO^ output) is

small. (Of the order of 5 ml per breath.) Thus

V^(t) = V^(o) + I Vdt (5.4)
Jo

During expiration only an approximate measurement of V is obtained. 

(See Chapter 3).

A number of different sets of experimental data have been 

analysed with V^(t) fixed and as in equation 5.4, to investigate 

the importance of incorporating the time variation of V^. The 

parameter which is estimated in the case in which V^ is time 

variant is V^(o) - the volume of the lung at the start of 

inspiration. The lung volume of the model is reset to V^(o)
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at the start of each breath. Incorporation of the time variation 

in in the model has only a small effect on parameter estimates 

both at rest (Table 5.12(a)) and on exercise (Table 5.12(b)).

There is a significant difference in the estimates of lung volume 

in both cases. Time variation in lung volume is thus incorporated 

into the model but the relatively small order of its importance is 

not such that accurate measurement of expired flow is required.

(b) Dead Space.

In applying parameter estimation to this model it is 

assumed that the volume of the anatomical dead space can either be 

measured d i r e c t l y o r  estimated from the subject's weight?^^ 

Studies (Table 5.13(a) & (b)) of the effect of variations in dead 

space volume on parameter estimates indicate that the model is 

relatively insensitive to this. Any inaccuracies, therefore, 

in the measurement of dead space volume should not alter 

significantly the parameter estimates which are obtained.

(c) Linear Description of CO^ dissociation curve.

A linear description is utilised for both the relationships

between the tension of CO^ and concentration in arterial and venous

blood. The relationships have the same slope (b) but different

intercepts (a^ and a- respectively). The parameter estimates

are unaffected by a significant alteration in the difference

between a^ and a_. (See Table 5.14(a) and (b)). The estimates

of Q and V„ are such that the products Q x b and V x b are Tc Tc
constant. This is to be expected from the formulation of the 

equations. Alterations in b have, however, no significant 

effect on the estimates of the other two parameters.
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STUDIES AT REST

SUBJECT

II

II

RMcC

RMcC

WG

WG

AVERAGE

AVERAGE 
DIFFERENCE

OPTIMUM PARAMETERS
EXP. LUNG CARDIAC LUNG METABOLIC TISSUE
NO. VOLUME OUTPUT VOLUME PRODUCTION VOLUME

L/min L L/min L
1 Fixed 4.66 3.63 0.230 6.40
1 Variable 4.53 3.41 0.226 6.22

2 Fixed 4.36 3.51 0.227 6.73
2 Variable 4.20 3.19 0.221 6.52

1 Fixed 3.71 5.63 0.207 4.06
1 Variable 3.50 5.22 0.198 3.61

2 Fixed 3.48 5.75 0.216 3.90
2 Variable 3.29 5.49 0.213 4.14

1 Fixed 5.61 4.85 0.252 7.26
1 Variable 5.69 4.47 0.248 6.55

2 Fixed 5.98 5.33 0.229 5.14
2 Variable 5.92 4.94 0.225 4.95

Fixed 4.63 4.78 0.227 5.58
Variable 4.52 4.45 0.222 5.33

0.11 0.33 0.005 0.25

SIGNIFICANCE OF 
DIFFERENCE BY 
PAIRED t-test

N.S. p<0.001 N.S. N.S,

Comparison of parameter estimates as obtained (a) assuming that 
lung volume is invariant and (b) that lung volume varies throughout 
the breath due to ventilation. Data obtained at lest is used in 
this study. Each experiment consisted of a period of air 
breathing (30 sec. duration) followed by a step change to breathing 
a gas mixtrure containing 5% CO^ (90 sec. duration). The parameter 
estimation method used is a combination of the Davidon, Fletcher, 
Powell & Rosenbrock methods. The estimates have been compared 
using a paried t-test.



STUDIES ON EXERCISE

TABLE 5.12 (b)
218.

DIFFERENCE

SIGNIFICANCE OF 
DIFFERENCE BY 
PAIRED t-test

,005<p<.01 .00Kp<.005 NS

SUBJECT EXP. LUNG CARDIAC LUNG METABOLIC TISSUE
NO. VOLUME OUTPUT VOLUME PRODUCTION VOLUME

L/min L L/min L
II 1 Fixed 10.26 3.71 0.651 7.20

1 Variable 10.90 3.09 0.658 6.84

II 2 Fixed 9.71 3.17 0.772 8.89
2 Variable 10.48 2.70 0.790 8.40

RMcC 1 Fixed 12.50 6.43 1.042 11.15
1 Variable 12.88 5.59 1.056 10.46

RMcC 2 Fixed 6.05 4.33 0.549 7.25
2 Variable 6.32 3.57 0.549 6.58

WG 1 Fixed 8.65 5.94 0.946 6.34
1 Variable 8.79 4.77 0.969 5.74

WG 2 Fixed 7.67 4.86 0.697 6.23
2 Variable 7.91 4.38 0.725 6.33

AVERAGE Fixed 9.14 4.74 0.776 7.84
Variable 9.54 4.02 0.787 7.39

AVERAGE -0.41 0.72 -0.012 0.45

NS

This is identical study to that presented in Table 5.12(a) 
The experimental data used, however, wezs collected 
during exercise on a bicycle ergometer.



TABLE 5.13 (a)

STUDIES AT REST

OPTIMUM PARAMETERS
DEAD CARDIAC LUNG METABOLIC

NO. VOLUME

TISSUE
SUBJECT EXP. SPACE OUTPUT VOLUME PRODUCTION VOLUME

L L/min L L/min L

II 1 0.130 4.82 3.63 0.237 6.83
1 0.150 4.66 3.63 0.230 6.40
1 0.170 4.42 3.57 0.220 6.06

II 2 0.130 4.61 3.46 0.235 7.00
2 0.150 4.36 3.51 0.227 6.73
2 0.170 4.10 3.43 0.214 5.85

RMcC 1 0.155 3.92 5.61 0.211 3.91
1 0.175 3.71 5.63 0.207 4.06
1 0.195 3.60 5.04 0.189 3.20

RMcC 2 0.155 3.74 5.80 0.226 4.30
2 0.175 3.48 5.75 0.216 3.90
2 0.195 3.51 5.76 0.210 3.60

WG 1 0.170 5.88 4.54 0.254 6.80
1 0.190 5.61 4.85 0.252 7.26
1 0.210 5.67 4.57 0.254 6.49

WG 2 0.170 5.92 5.21 0.231 5.37
2 0.190 5.98 5.33 0.229 5.14
2 0.210 5.86 5.56 0.225 5.01

AVERAGE Vd -0 .020 4.81 4.71 0.232 5.68

^D 4.63 4.78 0.227 5.58
Vd K) .020 4.52 4.65 0.219 5.04

AVERAGE V^-0 .020 0.18 0.07 0.005 0.10
DIFFERENCE , ._ V +u D .020 0.11 0.13 0.008 0.54

SIGNIFICANT DIFFERENCES
BY PAIRED t-test

V -0.20 D
V^+0.20

N.S. N.S. .005<p<.0l NS
N.S. N.S. N.S. .005<p<.01

Study of the effect of alteration in the volume of anatomical dead 
space on estimates of the parameters. Parameter estimation was
carried out with 3 dead space volumes - the known dead space for 
the subject (V^ ) , V^-0.02L, V^ + 0.02L. Data obtained at rest
were used in these studies. Whilst this magnitude of alteration 
in dead space vciume produces a change in the parameter estimates, 
this change is significant only for metabolic production (comparing 
results for V^ - 0.20 & V^) and tissue volume (comparing results 
for Vp & V^ + 0.20). For the cardiac output parameter, a change 
in dead space volume of the order of 12% produces a change in the 
estimate of cardiac output of the order of 3.5%.
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Subject Exp. No Optimum Rrameters
Volume Cardiac Output Lung Metabolic Tissue

L Volume Production Volume
L/min L L/min L

II 1 0.130 10.22 3.66 0.653 7.26
1 0.150 10.26 3.71 0.651 7.19
1 0.170 10.25 3.74 0.646 7.12

II 2 0.130 9.72 3.19 0.778 9.15
2 0.150 9.71 3.17 0.772 8.88
2 0.170 9.65 3.22 0.770 9.00

RMcC 1 0.155 12.49 6.13 1.032 10.90
1 0.175 12.50 6.43 1.042 11.15
1 0.195 12.53 6.58 1.044 11.20

RMcC 2 0.155 6.11 4.25 0.553 7.82
2 0.175 6.05 4.33 0.549 7.25
2 0.195 5.98 4.42 0.548 8.04

WG 1 0.170 8.49 5.73 0.937 6.21
1 0.190 8.66 5.96 0.947 6.44
1 0.210 8.76 5.95 0.953 6.36

WG 2 0.170 7.45 4.56 0.687 6.00
2 0.190 7.67 4.86 0.697 6.23
2 0.210 7.79 5.00 0.702 6.29

AVERAGE ''d - 0.020 9.08 4.59 0.773 7.89

''d 9.14 4.74 0.776 7.86

''d + 0.020 9.16 4.81 0.777 8.00

AVERAGE DIFFERENCE
(Compared to V^)

''d - 0.020 0.06 0.15 0.003 0.03

Vo + 0.20 0.02 0.07 0.001 0.14

SIGNIFICANCE OF DIFFERENCES BY
PAIRED t-test. N.S N.S. N.S. N.S.

Similar study to that in Table 5.13(a). Data which have been used
here were collected during exercise. Alteration of dead space volume
has no significant effect on parameter estimates in this case. The
magnitude of the alterations in the cardiac output parameter are of a
smaller order than at rest. This is related to the larger ventilations
of the subjects during exercise. .
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TABLE 5.14 Ca)

OPTIMUM PARAMETERS

SUBJECT EXP.
NO.

a — — a V  a

L/L

CARDIAC
OUTPUT
L/min

LUNG
VOLUME

L

METABOLIC
PRODUCTION

L/min

TISSUE
VOLUME

L

II 1 0.0 4.66 3.64 0.230 6.40
1 0.0129 4.66 3.63 0.230 6.40

II 2 0.0 4.37 3.50 0.227 6.72
2 0.0129 4.36 3.51 0.227 6.73

RMcC 1 0.0 3.73 5.48 0.201 3.61
1 0.0129 3.73 5.42 0.201 3.58

RMcC 2 0.0 3.48 5.74 0.216 3.88
2 0.0129 3.47 5.75 0.216 3.90

WG 1 0.0 5.73 4.78 0.251 6.99
1 0.0129 5.61 4.85 0.252 7.26

WG 2 0.0 5.76 5.66 0.230 5.35
2 0.0129 5.98 5.33 0.228 5.14

AVERAGE 0.0
0.0129

4.62
4.63

4.80
4.75

0.226
0.226

5.49
5.50

AVERAGE
DIFFERENCE 

SIGNIFICANCE OF

-0.01 0.05 0.0 -0.01

DIFFERENCE BY 
PAIRED t-test

N.S. N.S. N.S. N.S.

Comparison of parameter estimates as obtained (a) neglecting the 
Haldane effect, a- - a = 0.0 and (b) assuming that the difference 
between the intercepts of the linear functions relating concentration 
of C0_ to tension in mixed venous blood (a_)and arterial blood (a ) is 
0.012^ L CO^ (STPD)/L. Data obtained at^rest are used in this study.
Each experiment consisted of a period of air breathing (30 sec. duration) 
followed by a step change to breathing a gas mixture containing 5% CO^
(90 sec. duration). The parameter estimation method used is a combination 
of the Davidon, Fletcher, Powell & Rosenbrock methods. The estimates 
have been compared using a paired t-test. N.S. is no significant 
difference.
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OPTIMUM PARAMETERS
SUBJECT EXP. a- - a CARDIAC LUNG METABOLIC TISSUE

NO. — ---- — OUTPUT VOLUME PRODUCTION VOLUME
L/L L/min L L/min L

II 1 0.0 10.29 3.73 0.652 7.20
1 0.0129 10.27 3.73 0.652 7.25

II 2 0.0 9.74 3.17 0.772 8.85
2 0.0129 9.71 3.19 0.773 8.89

RMcC 1 0.0 12.00 6.43 1.043 11.12
1 0.0129 12.54 6.41 1.042 11.12

RMcC 2 0.0 5.97 4.38 0.550 7.66
2 0.0129 6.01 4.35 0.549 7.58

WG 1 0.0 8.72 5.84 0.944 6.28
1 0.0129 8.66 5.96 0.947 6.44

WG 2 0.0 7.65 4.83 0.696 6.21
2 0.0129 7.69 4.80 0.696 6.23

AVERAGE 0.0 9.06 4.73 0.776 7.89
0.0129 9.14 4.74 0.776 7.92

AVERAGE
DIFFERENCE -0.08 -0.01 0.0 -0.03

SIGNIFICANCE OF
DIFFERENCE BY N.S. N.S. N.S. N.S.
PAIRED t- test

Identical study to that presented in Table 5.14(a).
Data were collected, however. by measurement
during controlled exercise.
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5.9 Measurement of Cardiac Output at Rest

Studies have been carried out in the four subjects while 

seated. The subjects refrained from drinking tea or coffee for the 

two hours before the start of the experiment. Prior to the start 

of the test the subjects were instructed to empty their bladder.

Each subject sat quietly for twenty to thirty minutes before 

measurements were made. The experiment was repeated up to a 

maximum of six times in each subject.

Each experiment consisted of several phases. The initial 

phases of the experiment consisted of inputting zero and calibrating 

signals to the computer system. This was described in detail in 

Chapter 3. After the subject was connected to the measurement 

system (see details in Chapter 3) the subject's expired ventilation 

was collected in a Tissot spirometer for one minute. The expired 

ventilation was then directed into the room using a valve system 

and the spirometer emptied. A further two-minute collection of 

the subject's expirate was performed. Thereafter logging by the 

computer system of ventilatory flow rate, partial pressures of COg, 

and was commenced. After thirty seconds the subject was 

switched to breathing a gas mixture containing 5% CO^ and logging of 

data was continued for a further 90 secs. Throughout the experiment 

the subject was connected to an electrocardiogram and the point at 

which the subject began to breathe the gas mixture containing COg 

noted. Heart rates were measured over three thirty second periods - 

(a) while breathing air; (b) after the start of CO^ breathing;

(c) just prior to the end of the experiment. When the experiment 

was complete the relevant concentrations of the gas in the Tissot 

spirometer were measured using the mass spectrometer. The measured 

data were analysed using the computer software and results obtained
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for cardiac output, lung volume, metabolic production, and 

tissue volume. A graph of the optimised model prediction of 

pCOg as compared to the measured pCOg for one of the experiments 

is shown in Figure 5.7.

The results from these studies are presented in Table 5.15 

(a,b,c,d). Each table contains the measured heart-rates during 

each of the three periods for each experiment. The minute 

ventilation (V^), carbon dioxide output (VCO2 )t oxygen uptake (VO^) 

and respiratory exchange ratios (R) as measured from the collected 

expired ventilation are shown. The parameter estimates for each 

of the four parameters are tabulated. The stroke volume is calculated 

from the cardiac output and heart-rate during the first period.

The cardiac index can be calculated from knowledge of the 

cardiac output and surface area of each subject. Using the mean 

of all the measurements the results are:- 2.9 (subject II),
22.7 (subject RMcC), 3.0 (subject JU) , and 3.1 (subject WG) .(ir̂  1/min/m ) 

In two of the subjects (II, JU) there is good agreement 

between the metabolic production as measured by collection of the 

expired gas and that obtained by parameter estimation. The 

mean of the differences are 0.014L^^nà* 0.009L^^e*spectively. There

is no significant difference in these results by a paired t-test.

In RMcC the mean of the differences is 0.026L{™&jut the results are 

not significantly different. In WG, however, the results from 

parameter estimation are higher consistently as is confirmed by a 

paired t-test (p<0.001).



FIGURE 5.7
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OÔ
Comparison of prediction of model with optimum parameters of alveolar pCO^ and 
measured pCO^ at the mouth (system). There is seen to be good agreement 
during the end-tidal part of each breath.



TABLE 5.15 (a)

SUBJECT II Laboratory Temperature = 22.5 C.

Run Heart Rate/min VCO, VO,
2 2 L/min

2
L/min

2
L/min

1. 93 94 90 8.79 0.251 0.249 1.01
2. 98 98 88 7.36 0.223 0.272 0.82
3. 94 92 92 7.18 0.218 0.265 0.82
4. 91 94 92 7.38 0.233 0.294 0.79
5. - - 90 6.86 0.215 0.267 0.81
6. 92 96 94 6.47 0.199 0.266 0.75

OPTIMISATION RESULTS

Run

1.
2.
3.
4.
5.
6.

Cardiac Output 

L/min

5.0 
5.6 
5. 3
4.8
4.8
5.1

(Stroke 
Volume) 

m l .

(54) 
(57) 
(56) 
(53) 
(53)*
(55)

Lung
Volume

L.

3.7
3.3
3.4
3.1
3.4
3.2

Metabolic
Production

L/min.

0.267
0.286
0.228
0.221
0.215
0.210

Tissue 
Volume, 

L.

10.7
12.1
7.3
7.5
7.1
6.0

Mean 5.1 (55) 3.4 0.238 8.5

Coeff. of 
Variation 6.1% 3.0% 6.2% 13.1% 28%

For details see text.

Calculated from measurement of heart-rate during CO^ breathing.
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TABLE 5.15 Cb)

SUBJECT RMcC Laboratory temperature = 24.5 C

Run Heart Rate/min 
1 1 1

KL/min
VCO 2 

L/min
VO;

L/min
R

1. 78 84 82 5.74 0.159 0.191 0.83
2. 76 82 84 6.76 0.175 0.210 0.83
3. 78 82 84 6.82 0.165 0.184 0.90
4. 80 82 86 6.87 0.183 0.206 0.89
5. 78 82 84 7.20 0.194 0.231 0.84

OPTIMISATION RESULTS

Run

1.
2.
3.
4.
5.

Cardiac Output 

L/min

4.7
4.0
5.1
4.8
3.9

(Stroke 
Volume) 

m l .

(60)
(53)
(65)
(60)
(50)

Lung
Volume

L.

5.6
5.4
5.3
5.1
5.0

Metabolic
Production

L/min.

0.204
0.204
0.174
0.217
0.209

Tissue 
Volume, 

L.

4.7
4.8 
4.5
4.1
4.2

Mean 4.5 (58) 5.3 0.201 4.5

Coeff. of 11.6% 
Variation

10.5% 4.5% 8.1% 6.8%

For details see text.
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SUBJECT J.U.

TABLE 5.15 (c)

Laboratory temperature = 23.0°C

Run Heart Rate/min V VCO. R
1 2 2 £

L/min L/min L/min

1. 116 106 106 7.79 0.220 0.303 0.73
2. 96 98 100 5.56 0.168 0.235 0.72
3. 96 94 94 5.28 0.172 0.226 0.76
4. 94 94 94 5.75 0.187 0.244 0.77
5. 98 96 96 7.85 0.257 0.285 0.90

OPTIMISATION RESULTS

Run Cardiac Output

L/min
1. 5.9
2. 3.9
3. 3.8
4. 3.7
5. 5.5

(Stroke 
Volume) 

m l .
(51)
(41)
(40)
(39)
(56)

Lung
Volume

L.
3.7
2.8 
2.8
3.3
3.3

Metabolic
Production
L/min.
0.264
0.173
0.167
0.195
0.255

Tissue 
Volume, 

L.
7.7
3.4
3.1
3.9
6.6

Mean 4.6 (45) 3.2 0.211 4.9

Coeff. of 23% 
Variation

16.8% 12.1% 21.8% 42%

For details see text.



229.

TABLE 5.15 (d)

SUBJECT WG Laboratory temperature = 26.0 C,

Run Heart Rate/min VCO, VO,
2 2 2 E

L/min L/min
2.

L/min

1. - 88 88 7.05 0.193 0.246 0.79
2. 88 87 88 6.83 0.195 0.275 0.71
3. 87 90 87 6.36 0.193 0.270 0.72
4. 88 88 88 6.77 0.196 0.259 0.76
5. 87 86 86 6.43 0.188 0.275 0.68
6. 86 86 86 6.92 0.197 0.278 0.71

OPTIMISATION RESULTS 
Run Cardiac Output

L/min

(Stroke 
Volume) 

ml.

Lung
Volume

L.

Metabolic
Production
L/min.

Tissue
Volume.
L.

1.
2.
3.
4.
5.
6.

5.9
5.5
5.4
5.7
6.7 
6.2

(67)
(63)
(62)
(65)
(77)
(72)

4.5
3.6
3.7 
5.1 
5.0 
4.3

0.248
0.225
0.215
0.225
0.226
0.237

6.6
4.1 
4.0
5.3
5.4
5.2

Mean 5.9
Coeff. of 8.2% 
Variation

(68)
8.6%

4.4
14.4%

0.223
4.6%

5.1
18.9%

For details see text.
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5. 10. Measurement of Cardiac Output During Exercise.

Similar studies have been carried out in three of the 

subjects during graded exercise on a bicycle ergometer. Collection 

of the expired ventilation was commenced after the subject had been 

pedalling for two to three minutes. Heart-rate was not measured 

during these experiments. The experimental details were as 

described previously. The results are presented in Table 5 J6 (a,b,c).

There is no significant difference by a paired t-test between 

the results for metabolic production as obtained using parameter 

estimation and by direct measurement. The mean of the differences 

between the paired results are O.OL^^Àubject II) , O.OOBL^^subject RMcC) 

and 0.039L^?su6ject WG).

The results for cardiac output are as expected correlated 

with the measured oxygen uptake. The correlation coefficients are

1.00 (p<0.001, subject II), 0.92 (0.00l<p<0.01, subject RMcC), and

0.88 (0.02<p<0.05, subject WG). For the grouped data the 

relationship between cardiac output and oxygen uptake can be 

represented by a line such that

Q = 4.59VO2 + 5.94
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TABLE 5.16 (a)

Subject II Laboratory Temperature = 27.1 C.

Run Load
kpm/min L/min

VO 2

L/min
VCO 2  

L/min
R

1. 150 17.02 0.721 0.619 0.86
2. 150 17.81 0.777 0.670 0.86
3. 300 22.91 1.000 0.928 0.93
4. 300 24.00 1.043 0.932 0.89
5. 200 19.29 0.914 0.704 0.77

Optimisation Results

Run

1.
2.
3.
4.
5.

Cardiac
Output
L/min

11.1
11.4 
13.2
13.5
12.5

Lung
Volume

L.

3.1
3.2
3.1
3.2
3.2

Metabolic
Production

L/min.

0.613
0.676
0.954
0.836
0.776

Tissue
Volume

L.

12.1
9.4
8.6

11.0
10.1

For details see text.
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Subject RMcC Laboratory Temperature - 28.0 C,

Run Load ''e V°2 VCO 2 R
kpm/min L/min L/min L/min

1. 100 12.18 0.563 0.445 0.79
2. 100 11.19 0.526 0.426 0.81
3. 150 14.59 0.636 0.547 0.86
4. 150 15.07 0.658 0.558 0.85
5. 250 16.46 0.770 0.662 0. 86
6. 250 17.85 0.790 0.668 0.87

Optimisation Results

Run

1.
2 .
3.
4.
5.
6 .

Cardiac
Output
L/min.

7.4
6.9
8.8
7.7
9.2
10.1

Lung
Volume

3.9
3.5
4.2 
4.0
4.5
4.2

Metabolic
Production
L/min.

0.434
0.407
0.507
0.571
0.648
0.693

Tissue
Volume

L.

7.1 
5.5 
6.8 
7.4
6.2 
6.9

For details see text.
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TABLE 5.16 (c)

Subject WG

Run Load VO 2 VCO 2 R
kpm/min L/min L/min L/min

1. 150 13.77 0.690 0.577 0.84
2. 150 - - - 0. 80
3. 300 16.70 0.926 0.726 0.78
4. 300 18.13 1.009 0.838 0.83
5. 450 20.60 1.202 1.005 0.84
6. 450 22.24 1.329 1.067 0.80

Optimisation Results

Run Cardiac Lung Metabolic Tissue
Output Volume Production Volume,
L/min. 2* L/min. 2*

1. 8.0 1.9 0.533 5.0
2. 7.5 3.4 0.508 4.3
3. 8.2 4.6 0.687 4.5
4. 9.6 3.8 0.753 6.1
5. 9.9 4.9 1.000 6.3
6. 9.8 5.2 1.045 8.6

For details see text.
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5. 11. DISCUSSION

Application of the techniques of dynamic modelling to the

study of carbon dioxide transport leads to a non-invasive method

for the measurement of cardiac output and the carbon dioxide lung

volume. Other non-invasive methods of measuring cardiac ouput,

which are based on the analysis of gas exchange have utilised

generally the Fick principle (see Chapter 3.1).
• VxI.e.

403 404 405(For useful reviews see Hamilton, Butler, Farhi & Haab

Guyton, Jones & Coleman^^^).

Methods which have used soluble inert gases^^^' are

based on the assumption that, while breathing the foreign gas and

during the initial phase of the experiment, C- is zero. Other

variables can be measured directly.

For carbon dioxide C- has to be estimated by other means.

This can be done using a rebreathing procedure in which gas in the

lung is equilibrated momentarily with mixed venous blood. P-OOg

is obtained either from the exponential change of P^COg during
409 410rebreathing or from the equilibrium plateau of pCO^ in the

rebreathing bag. Both techniques have been applied to the
411-415measurements of cardiac output. The "plateau method" is

416said to give more reproducible results. Cardiac output can also

be obtained directly from the rate of rise of pCOg in the rebreathing 
417bag. Measurements using the rebreathing method are complicated

by the fact that equilibrium is not established between venous pCO^
418and alveolar pCOg. (The so-called upstream difference).

Mixed venous pCO^ can also be estimated from a breath-holding

procedure?^^ The theoretical basis is that the magnitude of the

Haldane effect is such that when the instantaneous respiratory exchange
379ratio is 0.32, the mixed venous pCO^ is equal to the arterial pCO^.
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419,420This technique has been applied to studies during exercise
421but is inapplicable at rest.

Techniques involving parameter estimation have also been 

applied previously in the non-invasive measurement of cardiac output.

A model of the type described in section 2.5 of Chapter 2 is used by 

Maloney^^^ In this technique only one parameter (cardiac output) 

is adjusted. (Other parameters - tissue volume, metabolic 

production, CO^ lung volume, and initial tissue pCOg - are fixed.)

The experimental data are collected during a steady-state. Sensitivity 

analysis indicates that the result for cardiac output is dependent on 

the choice of values for the other parameters, particularly on the 

choice of initial tissue partial pressure. An incorrect choice of

tissue pCO^ leads to errors in cardiac output estimates of the order

of 15%.
378A more complex model is employed by Homer and Denysyk to

predict changes in alveolar pOg, pN^ and pCO^. The criterion 

function which is used is the weighted sum of the differences between 

model prediction and measurement of pOg, pNg, pCO^. The experiment 

which is empiyed is rebreathing of gas mixture containing 15% CO^ and 

15% O^, for 30 seconds. The sensitivity studies which are shown in 

Fig. 5.3 indicate that, for pCOg, the model has only a low sensitivity 

to cardiac output during the first thirty seconds following induction 

of a transient. Similar studies for oxygen, indicate very low 

sensitivities to cardiac output during transient states. Nitrogen 

is virtually insoluble. Thus in this method of measurement results 

will be determined almost completely by the carbon dioxide component 

of the model. In the model which is used the dead space is treated 

as a well-stirred homogenous compartment. The effect of this 

simplification is not assessed by the authors.
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The results which are obtained by the present method are

within the expected range for subjects at rest (see Table 5.17).

The results which are quoted in this table are for subjects while

seated. Differences between subjects are in part related to

size differences. Results can be normalised by calculating the

cardiac index (cardiac output/surface area) although use of this
422ratio has been criticised by Tanner on theoretical grounds.

Although there is still significant variability between subjects

sixty-one percent of the results for cardiac index from the

studies which are shown in Table 5.17 lie between 2.5 and 3.5 L/min/m'

Thus the results which have been obtained by this non-invasive method

are in good agreement with published data.

In assessing the reproducibility of measurement of cardiac

output by the type of experiment which has been described, there is

a significant biological component in the measured variability.

This is most obvious in the results for J.U. In the first

experiment both the heart-rate and cardiac output are high. This

may be related to anxiety. After the fifth experiment the subject

stated that she had felt uncomfortable during the test and both the

measured cardiac output and minute ventilation were increased.

Previous studies of reproducibility of measurement of cardiac

output by the standard Pick method have assessed reproduciblity by

comparing the results of duplicate measurements. The results are

expressed as the mean and standard deviation of the differences

between the two measurements. Analysis of the present data using

both the results at rest and exercise show comparable reproducibility

to the Pick method (see TSole 5.18). In the study of Selzer and 
429Sudrann reproducibility is expressed as the relative error, i.e. 

the difference between the two measurements/average of the two
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measurements. The mean relative error in this study was 8.6%.

If the data from our new method of measurement is analysed in this 

way the mean relative error is 7.6%, i.e. slightly better than the 

Fick method.

The measurements of cardiac output during exercise show as 

expected a correlation with the oxygen uptake. The linear relationship 

which is demonstrated between cardiac output and oxygen uptake is 

similar to that obtained in other studies (see Table 5.19).

The estimates of metabolic production which have been 

obtained by parameter estimation agree in all but one set of data 

with those obtained independently. The explanation for the 

discrepancy with this set of data is not clear. There is no 

evidence that during parameter estimation a local and, therefore, 

false minimum was detected. The metabolic productions as obtained 

by steady-state gas collection seem low for a subject of this size.

The estimated carbon dixide lung volumes for all subjects are

as expected greater than the corresponding inert gas lung volume.

At rest the comparable figures are 3.4L and 1.4L for subject II,

5.3L and 3.6L for subject RMcC, 3.2L and 2.2L for J.U., 4.4L and

3.8L for subject WG. These estimates are lower than would be
355 354expected from the data of Hyde et al., and Sackner et al.

This may be related to the assumption of instantaneous equilibrium

between alveolar gas and lung tissue.

The estimates for tissue volume show, as would be expected

from the relatively low sensitivity, the highest coefficient of

variation. The estimates are, however, of the correct order of
364magnitude as compared to published data. The fast space for

364carbon dioxide can be related to the extracellular fluid space 

with a volume of 17.OL. This is composed on average of 5.0L of
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blood and 12.OL of water. Thus if the dissociation slope of the

tissue compartment is assumed to be 0.0045 L/L/mmHg its volume should 

be
5.0 X  0.0045 + 12.0 x  0.0007 ^V  = -------- ^3545--------  =

The estimates of tissue volume which have been obtained are 8.5 (II), 

4.5 (RMcC), 4.9 (JU), and 5.1 (WG). (in litres).
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Reference

Astrand et al 430

Astrand et al430

Bevegard et al426

431Donald et al

Holmgren et al432

Holmgren et al 
433

432

Julius et al

Reeves et al434

TABLE 5.19

Age
yr.

No. Sex

19-33 11 F

21-30 12 M

23-41 10 M

9 F

21-52 16 (M,F)

16—40 14 M

16-25 4 F

18-34 18 (m,F)

19-44 10 M

Cardiac Output 
Regression Equation 

L/min

^ = 5.48 + 5.34 V0_

Q = 4.34 + 5.22 VO 2

Q = 4.63 + 5.75 VO 2

Ô = 7.61 + 5.28 VO 2

Q = 6.93 + 5.34 VO 2

Q = 6.93 + 5.74 VO 2

Q = 6.34 + 6.17 VO 2

Q = 4.2 + 6.3 VO 2

Q = 3.95 + 5.88 VO 2

Published data for relationship between cardiac 
output and oxygen uptake during submaximal 
exercise. The data is taken from Altman &
Dittmer.435



C H A P T E R  6

CONCLUDING REMARKS.
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CHAPTER 6 . RECAPITULATION AND PROSPECT.

The starting point of the work described in this thesis was 

the belief that current methods of analysing respiratory gas exchange 

could be improved by improving the techniques of mathematical treatment 

of measured data.

The initial work was an extension of the available methods for 

studying ventilation-perfusion distribution. (See Chapter 2).

There are existing methods based on studies with inert gases, but em 

attempt was made to base the work on the more readily available data 

for oxygen and carbon dioxide transport. The analysis is complicated 

by the need to incorporate the oxygen and carbon dioxide dissociation 

curves, so that it was necessary to develop an efficient method for 

construction of the ventilation-perfusion line for the individual subject. 

The analysis itself was empirical in type and was based on finding the 

point of correspondence between the minima of two error criterion 

functions (see Appendix 10) . The method was used to analyse data 

collected during steady-state studies.

It became clear that the limitations of this approach included 

difficulties in establishing steady-state conditions, particularly in 

dyspnoeic subjects, and the restricted information content imposed by 

the steady state conditions was developed. This was based on 

dynamic models consisting of ordinary differential equations rather 

than the more familiar algebraic equations of steady-state models.

Both analogue and digital computing methods were applied to the 

solution of these equations. Experimental methods for application 

of these techniques were developed together with the necessary computer 

software (see Chapter 3). The software, which incorporates facilities 

for synchronisation of the measured data, breath detection, and detection 

of the end-tidal sections, is of general use for on-line studies with a
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respiratory mass spectrometer. A complete set of graphics facilities 

is included.

The feasibility of this new approach to measurement was shown 

by application of the technique to analysis of argon wash-out experiments 

(Chapter 4). It was demonstrated that the parameter estimates obtained 

were well correlated with independent measurements of the same variable, 

even when erratic breathing patterns occurred.

The dynamic modelling technique was also applied to study of

carbon dioxide transport (Chapter 5). In this model there were four 

parameters to be estimated, equivalent to lung volume, cardiac output, 

metabolic production of carbon dioxide and "tissue volume". Sensitivity 

studies and other evidence, e.g. error contour plots, suggested that the 

parameter estimates obtained were likely to be unique. Standard 

methods of parameter estimation were employed. (The optimal methods 

of parameter estimation for this particular problem have been

i n v e s t i g a t e d . S t u d i e s  of optimisation results with different

assumptions in the model indicated that the parameter estimates were 

relatively insensitive to certain of these assumptions.

The estimates of cardiac output obtained were of the correct 

magnitude both at rest and on exercise. The reproducibility of the 

method was comparable to that of the standard Fick method. Thus a 

new simple non-invasive method of measurement of cardiac output was 

developed.

In application of these methods to measurement it was necessary 

to use the average end-tidal partial pressure. Thus the full potential 

of this new approach was not realised since the within-breath detail 

of the expired concentration measurements was not exploited. The 

patho-physiological mechanisms which determine the expired 

concentration curve are not known at this time. As a first step
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to investigating this a simulation study of the importance of Taylor 

dispersion in the airways was carried out (Chapter 4).

Although in this thesis a number of new techniques of 

measurement have been developed, there are considerable possibilities 

for further expanding this approach. Snce the available information 

content in experiments is increased it should be possible to identify 

parameters for more complex model structures. The first obvious step 

is characterisation of the way in which gas is handled within the lung 

itself (since gas transfer into blood is ignored in this step). A 

number of available insoluble gases is suitable for this experimental 

work. At a further stage, models will have to be developed which 

incorporate both pulmonary mechanics and gas transport.

The dynamic modelling approach can be extended to the study 

of other aspects of respiration. A particularly fruitful area would 

seem to be the study of the respiratory control system; currently 

available techniques of assessment of respiratory control ignore the 

dynamic aspects of controller function. They are, moreover, 

applicable only to linear systems which the respiratory control system 

is not.

Models can also be used for educational purposes. Because 

the model should demand no special computing ability of the student, 

a special purpose analogue computer operated by dialled controls, has 

been built. Although digital computation is more flexible students 

may find interaction with the digital computer tedious if it involves 

typing. The current availability of micro-processor technology will 

enable construction of special purpose simulators with more elaborate 

models than have been used here, incorporating, for example, gas 

exchange, mechanics and control.



A P P E N D I C E S
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APPENDIX lA. DEFINITION OF DERIVATIVE.

The derivative of a function f of the independent

variable time t at a time t is defined to be the limit ofo
f ( t  + A t ) - f ( t )  . , . , .

o o as A t  te n d s  t o  z e r o .
A t

APPENDIX IB. CONSTRUCTION OF ORDINARY DIFFERENTIAL EQUATION.

Equation 2.55 can be derived using the definition of a 

derivative as given in Appendix lA. The mass of a gas species

i which is present in the alveolar compartment of the lung model 

illustrated in Fig. 2.1, at time t = t^ during phase 2 of the 

respiratory cycle (as defined in Table 2.7), is

and  a t  t i m e  t  = t  + A t  when A t  i s  a s m a l l  in c r e m e n t  o

M(t + At) = V, (t )C! (t ) + AtVC^(t)+ AtQ(C--C ) o A o A o I v a

i.e. M(t + At) - M(t )
- - - At   " VC;(t) + Q (C--CJ

and  t a k i n g  t h e  l i m i t  as A t  ^ O t h i s  becomes

f  = vc^(t) t 6 P - - C J

and hence since M(t) = V^(t)C^(t) and C^ = 6 P_ etcA A A g A

GgdtVP )
—  d F -  = VBgP; t QB^_(P- - P^)
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APPENDIX 1C. CONSTRUCTION OF PARTIAL DIFFERENTIAL EQUATION.

Partial differential equations can be derived similarly.

For a function f of two variables (x,t) the partial derivative of
df_
'xthe function with respect to x is defined as

9f _ lim f (x +Ax,t ) - f(x ,t )
3x Ax + 0    ^ ------- ^ - 2 -  and

3fthe partial derivative with respect to t,T—  is

9f lim f (x , t  + A t )  - f (x ,t )
9 ^  = A t - 0   °  °At

To derive equation 2.77 which describes gas transport in 

the airways consider a small section of airway as demonstrated in 

Fig. I. At time t^Det the mass of gas in a small segment of

length Ax be M(t,x). T h m  the mass present at time t + At, M(t +At,x)

is given by

M(t+At,x) = M(t,x) + u (t,x) ;̂ (t, x)C (t,x) At - u(t,x+Ax)^^t,x+Ax)

C(t,x+Ax)At- (t,x)At + 9C a 
9x A ° (t,x+Ax)At - F*AxAt

where
u(t,x) is the velocity of gas flow at length x in the model 

and time t.

A^(t,x) is the cross-sectional area of airways.

D is the diffusion coefficient.

F* is a function describing transfer of gas across the

alveolar-capillary membrane per unit length per unit time.

but

M(t+At,x) = A%A^(t+At,x) c(t+At,x)

M(t,x) = AxA^(t,x)C(t,x)
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x + Ax

u ( t , x )  p ( t , x ) | \  A ( t x )

Mass M( t,x ) 

u ( t , x - A x )  D( t , x .Ax)  \  A(t  X * A X )

Length Convection Diffusion Area

FIGURE I

Three small segments of airways of length Ax. 
The symbols etc. are explained in text.



248,

where

is the cross-sectional area of airways plus alveoli, 

By forming

M(t+At,x) - M(t,x)
At

At -^O, Ax ->0 we obtain

and taking the limit as

â l ' V »  = i l  + â |

but C = 6 P and if F = F*/g 9 9

a| <V> = Û + a i ' V

APPENDIX ID. LINEARISATION OF A NON-LINEAR EQUATION.

The operation of many non-linear systems can be described

approximately by linear differential equations with constant

coefficients provided that the description is only applied to a

very limited range of the system's performance.

The linearisation process is based on Taylor Series expansion,

For a function f of time t which fulfills the mathematical conditions

of continuity and differentiability the function f can be represented

over a limited region from t = t byo

df(t ) .2
+ o (t-y )"

dt^     o_______o
2: dt^ n!

+ Rn
where R is the remainder n
As n ->• tO R O.n

For the non-linear equation describing the
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motion of a pendulum

+ (g/l) sin6 = O
dt'

where 1 is the length of the pendulum, and g is the acceleration 

of gravity, and 0 is the angle of the pendulum from the vertical, 

For a small operating range around 0 = 0  this becomes

+ (g/l)Zl TT I —  (sin 0)1 j = O

I.e. ^  t ( g / D p  
dt *-

= O

Approximating with only the first term of the expansion we obtain 

the linear equation

20
— 2  + (g/l)0 = O which is valid over a small
dt

operating range around 0 = 0 .
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APPENDIX 2 . USE OF AN ANALOGUE COMPUTER

1. Introduction.

The use of an analogue computer was considered briefly 

in Chapter 1. The practical details of its use are considered 

in more detail in this section. (Most of the standard texts on 

this subject require prior knowledge of electronics.)

2. Concept of a Machine-Unit.

In using analogue computers it is necessary to scale all 

voltages to lie inside a certain defined range, which is specific 

to the computer (commonly ^10 volts). It is more convenient for 

practical scaling purposes, however, to consider this as scaling 

all variables to lie between +1 to -1, where +1 is defined to be 

a MACHINE-UNIT. This not only allows the user to consider 

problems numerically, rather than in voltages, but also the solution 

which is developed for a particular problem is also applicable 

immediately to other analogue computers, where one machine unit may 

correspond to different voltage levels, e.g. 100 volts, 10 volts,

1 volt.

3. Analogue Computer Components.

As indicated in Chapter 1, the analogue computer has a 

number of distinct components, each one of which carries out a 

specific function. In order to programme the computer, the 

components have to be linked by wires (patch-cords) in a pre

determined way. The main components were considered in Chapter 1 
(see Table 1.4).



251.
4. Modes of Operation.

The analogue computer has four modes of operation, which 

are controlled by the operator using panel mounted controls.

These modes are detailed below

Mode Output of 
Integrators

Potentiometer Setting (P.S.) Zero

Function

For manually setting 
potentiometers to the 
required values.

Initial condition

Hold

(I.e.) Starting values For setting problem to 
of variables. initial status.

(H) Output is held For "freezing" operation
constant. of computer so that

current status of problem 
can be examined.

Operate (O.P.) Required 
solution.

Integrators are made to 
operate and the solution 
of the differential 
equation obtained.

5. Solution of a Simple Differential Equation by Analogue Computation.

As indicated in Chapter 1 the main application of the 

electronic analogue computer is in the solution of ordinary 

differential equations.

Consider the following simple equation:-

+ K f  + K V(t) = Adt 1 dt 2
where K^, K^fA are constant. At zero time (i.e. t = O) V(t) = 1 = O.

A patch diagram, which describes the required linkages 

between the computational components, must be developed to programme 

the problem. To aid development of the patch diagram, the equation 

should be reformulated with the highest order derivative on the left 

hand side:-
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■ - ,  Z "  - v ' « >  • *■dt

The derivative terms in the equation are removed using integrator 

units; thus, for example, if the input to an integrator is

its output will be .dt dt
The equation can be solved with the "patch" illustrated

dVin Figure II. The values of V(t) and ^^(t) at zero time are set 

as initial conditions on the integrators. The solution V(t) is 

obtained as an output of the appropriate integrator.

6. Amplitude Scaling.

Problem variables must be normalised so that they fall 

within the range ±1 machine unit. This normalisation or scaling 

of variables presents a problem in analogue computation, but it is 

a problem which is overcome easily if a systematic approach is 

employed. The most logical approach is to establish equality, 

for any problem variable x, between one machine unit (computer 

maximum) and the maximum possible value of the variable xmax

i-e-
X normalised (x )max

The equations are rewritten in terms of these new normalised 

variables. It is more convenient to normalise the equations 

describing the performance of individual amplifiers in the patch 

(the so-called decomposed equations) rather than the differential 

equations themselves.

For the decomposed equations for integrators

~dt output) = algebraic sum of inputs

and for summers

- (amplifier output) = algebraic sum of inputs
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- 1  Ô " ^

d V
dP

2 I.C I.C.

K.

O

FIGURE II

Patch diagram for solution of equation described 
in text. Standard symbols (see Table 1.4) are 
used. The solution (V) is obtained as the out
put of one of the integrators.
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In the example of the previous section the "unsealed" 

patch diagram (Fig. II) contains 4 amplifiers. The decomposed 

equations for each amplifier are:-

J d^V(t)
dt'

3) -K dV(t)
1  dt = -K dV(t)

1  dt

4) d V(t) = K + K V(t) - A
1  dt 2

and on normalising these equations assuming that the maximum values

are

d^V(t)
dt

dV(t)
= 10 ; dt = 10 ; V = lOOmax max

max

we obtain:-
dV
dt norm

r 2  -
1 0

d V
dt^— — norm

d 1-- 1 dVV X 1 0 0dt 1__ 1 norm dt

---

X  lO

X  10
norm

3) - K, dV
dt X 1 0  = _K

norm
dV
dt X  10

norm

4) -Fd^vl X  10 = K, dV ■
dt X  10 + K V

J  2 1 2dt normnorm
X 100 - A.

norm

where represents a normalised variable,norm

This reduces to the final form of the normalised or so called 

MACHINE EQUATIONS.
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Amplifier N o . 

1.

2 .

3.

4.

d
dt

Machine Equation

d'v

norm —  norm

d
'dt Hnorm

-K
1  dt

norm

=  -1 
ÏÔ

= -K.

dV
dt

dV

norm

dtL- _  norm

R v 1

, 2 ■ [sl + 1 0 K_ Vdt L - 2norm norm
A
10norm

The maximum values of each of the variables, which are used in 

this normalisation process, may be estimated in many cases from 

knowledge of the physical problem or differential equation solution, 

The recommended approach in the absence of such knowledge, is to 

carry out trial simulations on a digital computer, e.g. using a 

high level simulation language, to ascertain the likely numerical 

range of the variables.

7. Time-scaling.

A great advantage of the analogue computer is that the 

duration of the computation can be altered by the user. This is 

unlike the digital computer where the computational time depends 

only on the capabilities of the particular computer. The variable 

time in the equations (t) can be replaced by a new variable T = Bt, 

and solution of the reformulated equations can either accelerate or 

slow down the simulation depending on choice of the constant B.
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8 . Logic Capabilities of Analogue Computers.

Modern analogue computers provide logic facilities for 

controlling the mode of operation of individual units or of the 

entire computer. The logic in an analogue computer is standard 

binary logic which is based on the concepts of Boolean Algebra.

Thus logic variables have only two states, either on or off, (1 or O) 

Logic variables are distinct from problem variables.

The logic area of the analogue receives inputs from various 

sources which are monitoring the problem's status in a preset way, 

operates on such logic, and produces logic information to control 

the operation of the computer.

The main logic inputs to the logic area are (a) from signals 

from outwith the analogue computer; (b) from a "clock" in the 

computer atptre-set times and (c) from comparators. Comparators 

are components which compare the relative magnitude of two proUem 

variables (x,y) . If x ̂  y the logic output is on (1) and if x<y 

the logic output is O. The analogue computer has a number of 

components which operate only on logic variables

Uni t Function
And gate Logic output is one if and only if both inputs

to the and gate are one.

Or gate Logic output is one if either of inputs is one.

Complement Logic output is the opposite of input.

Monostable Logic output is "held" unaltered for pre-set
time after input to this unit has changed.

Differentiator Unit recognises changes in logic states.

9. Example of Use of an Analogue Computer in Solution of a 
Lung Model Equation.

In Chapter 4 the application of a continuous parameter
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estimation method to the analysis of inert gas wash-out experiments 

was discussed. The equations to be solved on the analogue computer

were

 ̂ - -A ]dt A

S = 1 for O & 

S = O otherwise

d
dt = sv p - p

L^Vv,. I A_

Vdt X  V,

M  Ü A  
' 'a

(a)

(b)

dC^/VA^
dt = -Ke

9P.
(c)

Following the procedure outlined in this Appendix, the 

first step is preparation of the unsealed patch diagram (Fig. 4.1 

with scaling factor = 1). In this patch logic is generated to 

obtain S in the equations; to control individually the mode of 

the integrator which is integrating V; to control the mode of 

operation of all the integrators collectively; and to sample 

the difference between model and system only during the last part 

of the expiration. The variable S can be generated by opening

(S=0) and closing (S=l) a relay (see Fig. 4 .1) . The operation of

this relay is controlled by logic output from a comparator. This 

comparator compares the integral of inspired flow during each 

repiratory cycle with the pre-set dead space volume. Thus the 

integrator which is integrating the flow signal is controlled to 

operate only during the inspired phase of the respiratory cycle 

and to reset to zero during expiration. The phase of the respiratory 

cycle is determined by another comparator.

Since the experimental data has to be computed iteratively 

the operation of the computer is controlled such that it computes

only during the actual experiment. This is achieved by generating
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logic external to the computer. A rapid series of electronic 

pulses, which are sensed by a differentiator/monostable unit, is 

recorded on the magnetic tape to mark the zero and calibrate 

section, of the experiment. The error function e is generated 

by closing a relay during the last part of expiration. This 

period of the respiratory cycle is recognised when two conditions 

are satisfied; V<0 (by a comparator) and a pre-set time has 

elapsed from the start of expiration. (A comparator and monostable 

in series are used to monitor for this latter condition.)

For amplitude scaling of these equations the following 

problem variables have to be scaled V, P^, — —  , 1/V^, e, and

the measured partial pressure of argon. The following maximum 

values are used:-

V 2L/sec

P P max kPaA A

f A

1/V^ 1 L

e P\max kPaA
Measured argon P^max kPa
partial pressure

Since the data is input to the computer at eight times the speed at 

which it was recorded, the computer time T = l/8 t where t is real 

time. Substituting these values into equations (a), (b), (c)

we obtain



d(P,)norm P^ S(V) x 2.0
^ • ^max = Xd 8 T

d 8 T

norm

(V_)A norm norm

f e  ]  ■ max = S(V) X 2.0 Xnorm [ V '. l
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X P
max

X P.
norm max

SM

norm

9P
X P

max
norm

d 8 T =-K(e)
norm

9P
I IÏ7v^ I

norm
i.e. the equations become in their scaled form

■ ^Amax max

d (P )A norm _ 16.0 x Sx(V)norm
dT (V^)A norm

X (P^-PJI A norm (d)

d
dT

9p .
91/VAj

= 16.0 X  S x (V)norm 
norm

X (P_-P^)I A norm

- SM*
(V%)A norm

9P.
9l/V,

_d .1 / .
dT ^A norm

9P.
=-K* e (91

Va

norm

norm

(e)

(f)

where K* = K x 8  x (P^ ) . K is an arbitrary constant chosen
max

by trial and error.-M* is 8  x M.

Thus the main effect of scaling is to introduce an arbitrary 

scaling factor 16.0 into equations (d) and (e). This scaling factor 

is represented on the patch diagram (Fig, 4.i) and is obtained using 

a potentiometer set at 0.16 and altering, as is possible, the "gain" 

on the associated amplifier such that the output of the amplifier is 

xlOO the input.
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APPENDIX 3. USE OF HIGH LEVEL SIMULATION LANGUAGE.

A number of high level simulation languages exist which 

are relatively simple to programme. One of the most widely used 

languages is CSMP (Continuous System Modeling Program) which was 

developed by the IBM corporation. These languages enable users 

to solve sets of ordinary differential equations simply. The 

program statements are related closely to the formulation of the 

equations. The language provides users with a number of functions 

which can be called in the programme, e.g. integration. CSMP has

several numerical integration routines - fixed step Runge-Kutta; 

Simpson's; trapezoidal; fifth-order Milne predictor-corrector; 

fourth order variable step Runge-Kutta.

In CSMP the programme consists of three sections:- 

Initial All statements in the initial section are executed prior

to the simulation.

Dynamic Simulation section.

Terminal All statements in the terminal section are executed

only at conclusion of the simulation.

The parameter values for the simulation are set in the programme.

The programme has the facility to assign new values to the parameters 

and to repeat the simulation. The compiler sorts the problem 

statements in the dynamic section into the order which is required 

for numerical solution of the equations. The program outputs the 

solution as a plot on a line printer of the chosen variable against 

sample number.

A listing of a programme to solve a differential equation 

which describes the wash-out of an inert gas from the lung is shown.
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The equation is 

dP_
dt =

A

S = 1

(equation 2.57 & 4.6)
„t

V > O & I Vdt >  V
5; D

= O otherwise.

The descriptions on each line are to aid the reader and are not 

part of the programme.

PROGRAMME

ARGON MODEL 

VA = (3.5,5.0,6 .5)

TITLE

PARAMETER

INCON 

IN CON 

CONSTANT 

CONSTANT

CONSTANT

INITIAL

IPA = 600.0 

IVOL = 0 . 0  

PI = 0.0

VT = 0.5, F = 15.0 

VD = 0.150

W = 2.0*3.412*F/60.0 
A = W*VT/2.0

Allows 3 runs of programme 
with 3 different \alues of (L)

Initial condition for P^.

Initial condition for 

Value of PI.
I -

DYNAMIC

Sets \alues for tidal volume and 
respiratory frequency.

Sets volume of dead space.

Calculates appropriate amplitude 
and frequency for sinusoidal 
ventilation.

Dynamic section contains solution 
of equation.

VDOT = A *SINE (0.0,W,0.0) Sinusoidal ventilation,V 
VOL = INTGRL (IVOL, VDOT) VOL = j" Vdt

SO = COMPAR (VOL,VD) SO = 1 VOL ̂  V^.

SP = COMPAR (VDOT,0.0) SP = 1 V D O T ^  0.0.

S = AND (SO,SP) Generates S.

CALC = S * VDOT * (PI-PA)/VA Forms R.H.S. of equation.

PA = INTGRL (IPA,CALC) Obtains PA.

No need for terminal section.
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TIMER DELT = 0.02, FINTIM = 6000.0, OUTDEL = 10.0

Sets:- Time step for calculation (DELT).
Total length of simulation (FINTIM). 
Time step for print/plotting (OUTDEL)

LABEL ALVEOLAR PARTIAL PRESSURE OF ARGON.
Label for plot on line printer.

PRTPLOT (PA) Causes print/plotting of sampled
values of P^.

END 

STOP 

ENJOB.
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APPENDIX 4 SIMULATOR FOR EDUCATIONAL USE.

The observation and manipulation of the performance of 

an adequate model of a complex physiological system may give students 

greater insight into physiology than can be obtained by more 

standard methods of teaching. Respiratory gas exchange is such 

a complex process which students find difficult to comprehend 

completely; in particular they often find difficulty in under

standing the ventilation-perfusion concept. (See Chapter 2).

The main reason for this difficulty is that students have 

to consider simultaneously several inter-related physiological 

variables:- ventilation, dead space volume, perfusion; inspired 

gas concentrations and partial pressures; alveolar, arterial, 

mixed venous partial pressures and related gas contents which 

in the case of carbon dioxide and oxygen involve complex inter

dependent non-linear relationships with the associated partial 

pressures; respiratory exchange ratio, oxygen uptake, carbon 

dioxide output.

A model which simulates ventilation-perfusion distribution 

in the lung must have a minimum of two compartments so that 

ventilation can be maldistributed in relation to perfusion. A 

model (Fig. m j  therefore, which has a common dead space, two 

ventilated and perfused compartments, and a right to left shunt 

has been used to simulate gas exchange for educational purposes.

In addition the model structure may or may not contain a single 

tissue compartment.

Equations of the Model.

In the case where no tissue compartment is included the 

equations of the model are:-
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'A2

b y - p a s s

a r t e r i e sv e in s
t i s s u e s

FIGURE III

Model structure on which the simulator is 
based. The model consists of two ventilated 
and perfused compartments ̂ with volumes 
and , and blood flows Q 2 * There is
a righ^ to left shunt (by-pass). The 
anatomical dead space has volume V q . The
tissues are represented by a single tissue 
compartment.
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Alveolar Compartment 1 .

^ A
''Ai ^  = SlkV fc - '’aJ  + S^kV

' j l H  [ ^ I ' V  -  ^ 2 < \ ]

Where = 1  O & T Vdt <

= O otherwise

f'" •Sg = 1  V.^ o & I Vdt %
/ o

= O otherwise

= function relating mixed venous partial pressure to 

mixed venous gas content

^ 2  = function relating end-capillary partial pressure to

end-capillary content.

(It is here assumed that there is equality between 

end capillary and alveolar partial pressure.)

Symbols as in remainder of thesis, and are summarised in Appendix 5. 

The subscript 1 refers to compartment 1. •

Alveolar Compartment 2 .

V,  _  ..... _ . .Cb
An dt = S^(l-k)V(P^-P^^l+S2(l-k)V(P^-P^^)+èg^ p i ‘V - ^ 2 ‘% > ]

Arterial blood.
ê,f2(-PA,lV2^A;>^^s^ltPy>

Q 1 +Ô+S 3

when is flow rate through right to left shunt.
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Mixed Alveolar Gas.

thus allowing calculation of the alveolar-arterial difference for 

the gas under study (P- - P^).

In the case where a tissue compartment is included the equations 

are almost identical, except that P- is replaced by , (circulatory 

time delay between tissues and lung is not included) and an equation 

for the tissue compartment is added:-

\ c  dt = M - [f, (P^ J - f 2  (P^ j] - 0 2  [f 3 (P?c) - ^ 2  J

when f^ = function relating partial pressure in tissue compartment 

to gas content.

An analogue computer solution of these equations presents 

no particular difficulties and the "patch" diagram is shown in 

Figure IV.

For educational purposes the model simulation should be 

interactive, so that the student can alter the model's performance 

directly and observe immediately the effect of this change. 

Communication between the student and simulation should be simple. 

In the simulations used for teaching in industrial practice, e.g. 

flight-deck simulation, the student is completely unaware that 

there is a computer, and the man-machine interface is an exact 

replica of the flight-deck.

The model of respiratory gas exchange for teaching purposes 

is implemented therefore using a specially constructed simulator 

(see Figure V). This incorpoiztes a special purpose analogue 

computer.*

* Construction of this was completed by an electronics technician, 
Mr. E. Miller.
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ALVEOLAR C O M P  1

i^>— 0 — o - i >
T IS S U E  C O M P

A LVEO LAR  C O M P  2

FIGURE XV

"Patch" diagram for solution of equations for 
simulator. The symbols are the standard ones 
(see Table 1.4). The patch has 3 integrators - 
one for alveolar compartment 1 , one for alveolar 
compartment 2, and one for the tissue compartment. 
In this form of the model it is assumed that

= « 2  = f3 :b are constants.
ftPCOg) = a+ bPCOg where a and
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4%

44 #

%

FIGURE V

Picture of simulator. The front panel has a 
diagram of the model lung. The controls are 
calibrated in physiological units. The simulator 
can be attached to an oscilloscope or chart 
recorder for observation of the temporal changes 
in pCOg.
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The design of the simulator embodies the following features

1. It is constructed from readily available low cost components,

which achieve an accuracy of 1 %.

2. It is compact and suitable for desk-top operation.

3. Use of the simulator does not require knowledge or skill in 

analogue computation.

4. All controls are easily identified and calibrated in appropriate 

physiological units. The controls are placed at anatomically 

appropriate positions on a drawing of the model, similar to 

Figure III which forms part of the front panel of the machine. 

Rotary switches are used for all the controls which are 

associated with representation of the parameter values apart 

from the continuously variable controls for metabolic production 

and mixed venous tension.

5. Time scaling is used to solve the equations in a time much

faster than real time (x 10). By this means the student

can observe more quickly the effect of changing model parameters. 

The ventilation is, therefore, simulated by a sine wave generator, 

the frequency of which is ten times real time (i.e. 3 Herz).

6 . The outputs from the computer are continuous electrical signals

which show the time variation in model variables using an 

oscilloscope or chart recorder. Two output channels are 

available, each output having sufficient positions to provide 

zero & 50 mm. of Hg. CO^ tension calibrating signals, and a 

choice of the CO^ tension in each of the alveolar compartments, 

mixed alveolar CO^ tissue tension and arterial tension.
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7. One parameter in the simulation is fixed and the student

cannot alter this (V^^); in addition the rate of breathing 

is constant although the depth can be varied. The values 

of the remaining parameters are under the control of the 

student

The student can observe by using this simulator both 

dynamic and steady-state aspects of gas exchange. In particular 

the effect of changes on perfusion and ventilation on alveolar 

and arterial pressures can be studied (see Figure VI). The 

mechanism of production of an alveolar-arterial difference for 

carbon dioxide can be investigated.
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A PCO.

4 0 -

3 0 -

20

BLOOD MIXTURE

GAS MIXTURE

TIME
— 1 >
4 MINS

FIGURE VI

Graph, of pCO^ output from simulator of arterial 
pCOg (blood mixture) and of mixed alveolar pCOg 
(gas mixture). In the initial part of the 
record the two alveolar compartments have equal 
blood flows and ventilations. In the later part 
of the record one compartment is hyperventilated 
relative to the other. The development of an 
arterial-alveolar difference for CO^ is seen.
There is a slight switching transient at the point 
at which the parameter values have been changed.
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APPENDIX 5.

SUMMARY OF SYMBOLS WHICH ARE USED IN THIS THESIS.

CHAPTER 1

F^ Flow rate of urine down one ureter.

F 2  Flow rate of urine down other ureter.

G(V,T,M) Arbitary function describing flow of urine down

urethra. This function is a function of volume of 

bladder (V), urethral sphincter tone (T) and tone of 

abdominal musculature (M).

I^ etc. Flux of mass into compartment X.

M^ Mass of material in compartment X.

etc. Flux of mass from compartment X.

x^(t) Input to system.

y^(t) Output of system in response to input x^(t).

y(t) Overall system output.

CHAPTER 2/3

Several symbols in these chapters are subscripted. The subscripts 

are listed separately. Greek symbols which are used are also listed 

separately. The symbols which are used are where appropriate the 

standard ones in use in respiratory physiology. Otherwise the symbols 

are taken from the original publications. A small number of symbols 

are used consequently at different parts of these chapters for different 

variables. This is clearly identified in text and in this list. The 

appropriate page numbers are given for more than one usage of a symbol.
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Symbols Continued (Chapter 2/3)

a Cross-sectional area of individual pulmonary capillary.

A Area of membrane through which diffusion occurs.
Cross sectional area of pulmonary capillary (page 100).

A(x) Cross sectional areaof airways.

A^(x,t) Cross sectional area of airways (excluding alveoli).

A^(x,t) Cross sectional area of airways (including alveoli),

b Slope of dissociation curve for CO^.

b(t) Oscillatory function of time.

B Barometric pressure.

C Concentration of gas species. Moles/L.

d Diameter of individual pulmonary airway.

d. Diffusion coefficient of gas species (i) .

d _ Diffusing capacity of capillary per unit length,unit
D(x,t) Effective diffusion coefficient of gas in airways.

D Apparent diffusing capcity of lung (as calculatedapp
assuming that lung is homogenous).

D^ Diffusing capacity of lung.

D^ Membrane component of pulmonary diffusing capacity.

D , Molecular diffusion coefficient,mol
f Frequency of breathing.

f(x) Flexibility function describing compliance of airways,

f^ Function relating concentration to partial pressure

of a gas species in venous blood, 

f 2  Function relating concentration to partial pressure of

a gas species in arterial blood. 

f(P^C0 2 ) Function relating concentration of carbon dioxide in

arterial blood to alveolar partial pressure.

F Fractional concentration of gas species. L/L.
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Symbols Continued (Chapter 2/3)

g(j) Fraction of pulmonary diffusing capacity in unit.

g^p^O^) Function relating concentration of oxygen in arterial

blood to alveolar partial pressure.

G Conductance of gas species.

K Constant of diffusion between tidal volume and alveolar

compartments, (page 78).

Rate constant of transfer of gas species between

alveolar gas and pulmonary tissue.

Rate constant of transfer of gas species between

pulmonary tissue and pulmonary capillary blood.

1 Length of individual pulmonary capillary.

L Termination of model of pulmonary airways.

M Quantity of an individual gas species.

M Flux of an individual gas species.

n Number of pulmonary capillaries.

P Partial pressure of gas.

P^ Mean "alveolar" partial pressure.

Q Pulmonary capillary blood flow.

Q Blood flow through right to left shunt.

Q Total pulmonary capillary blood flow.

R Respiratory quotient.
Gas constant (page 43) .

S Unit surface area of pulmonary capillary.
Switch function defining stage 2 of respiratory cycle (page 80)

Switch function defining "phase 1" of respiratory cycle.

Switch function defining "phase 2" of respiratory cycle.

Switch function defining expiration.

Slope of dissociation curve relating concentration to 

partial pressure in pulmonary capillary blood.
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Symbols Continued (Chapter 2/3)

T

u(x, t)

U  ( t )

V

Vc

''d

''d a l v

^ANAT

'OpHYSIOL
Vt

V

VCO-

V0 2

v̂ co.

vco„

Slope of dissociation curve relating concentration to 

partial pressure in pulmonary tissue.

Start of expiration.

Start of inspiration.

Transit time through individual pulmonary capillary. 

Absolute temperature.

Transfer factor of lung.

Velocity of gas flow in airways.

Velocity of blood flow along pulmonary capillary.

Volume.

Volume of blood in pulmonary capillaries.

Volume of blood in pulmonary capillaries.

Dead space volume.

Volume of "alveolar" dead space 

Volume of anatomical dead space.

Volume of physiological dead space.

Tidal volume.

Flow rate of gas.

Carbon dioxide transfer per unit time.

Oxygen transfer per unit time.

Flux of carbon dioxide between lung tissue and alveolar 

gas in unit time.

Total amount of carbon monoxide transferred into blood 

in unit time.

Alveolar dilution ratio.

X*

Y

Thickness of pulmonary-capillary membrane. 
Alveolar-capillary membrane (page 88).

Boundary between inspired and alveolar gas.

For individual gas this equals d.1 1
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Symbols Continued (Chapter 2/3) 

Greek Symbols.

e

0

Subscripts.

A eff

D

DA

E

E

g

I

IDEAL

i

Solubility of gas species.
Coefficient for Taylor-Aris effective diffusion term 
(page 97).

Capacitance coefficient for gas species (AC/AP).

Rate of formation of carboxyhaemoglobin per unit time 

per unit plasma tension.

Arterial.

Alveolar
Airway - referring to Area.

Alveolar (expired) (Applied to ventilation).

Effective alveolar (refers to volume) (page 8 6 ). 

Alveolar (inspired) (Applied to ventilation).

Blood.

At conditions of full saturation with water vapour 

at 37°C (refers to partial pressure).

Pulmonary capillary blood.

For mean (partial pressure) in pulmonary capillaries. 

Dead space gas.

Refers to gas passing from dead space to alveoli during 

inspiration.

Expired gas.

Mixed expired gas.

Gas.

Individual gas species.

Inspired gas.

Gas inspired into individual pulmonary unit.

Ideal compartment.

Individual pulmonary unit.
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Symbols Continued (Chapters 2/3)

k Individual pulmonary unit.

L Lung.

m Mouth.

P Pulmonary tissue.

T Tidal volume compartment.
Total cross sectional - refers to airway area (page 94).

V  Mixed venous.

X Individual gas species.

(0) Breath zero / or time zero t = O.

(1) Breath one.

(n) Breath n.

1 Compartment 1 .

2 Compartment 2.

Abbreviations for individual gases.

AR Argon.

CO Carbon monoxide.

CO^ Carbon dioxide.

HE Helium.

H^O Water Vapour.

Nitrogen.

Oxygen.
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CHAPTER 4

Many of the symbols which are used in this chapter are

similar to those used in Chapters 2 and 3. Additional symbols,

redefinition of symbols, subscripts are listed below.

C Compliance of individual unit.

e Error function.

e(t,2.) Error function.

G(k) Continuous weighting function.

J Criterion function.

K Turnover rate.

M 90% wash-out time.

Individual parameter.

2̂  Vector of parameters.

T Time constant.

Half-time.

y (t,Q) Model output, m —
y^(t) System output (measured).

Greek Symbols.

3 Rate constant.

^  Specific tidal volume.

Subscripts.

i Single pulmonary unit.

CHAPTER 5 
Most symbols as in rest of thesis.

a^ Intercept of linear relationship between CO^ concentration
and tension in arterial blood.

a- Intercept of linear relationship between CO^ concentration
and tension in mixed venous blood.

M Metabolic production.
T Duration of experiment.
Subscript TC is for tissue compartment.
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APPENDIX 6 . PROGRAMME FOR CONSTRUCTION OF V/Q LINE.

The listing of the principal subroutines of a programme for 

construction of the ventilation-perfusion line using the method 

which was described in Chapter 2.3(f). The programmes are

written in Fortran but there are some non-standard features due to 

the programmes being written for theEgtran compiler. The main part 

of the programme (the listing for which is not given) carries out 

calculation of minute ventilation, oxygen uptake, etc. from measured 

input data.

The construction of the V/Q line is carried out in subroutine 

SVQ. In this form of the routine 150 points on the line are

identified, 75 of these being spaced equally between P-Og and 

110.0 (miqHq) and 75 between 110.0 and P^O^. Evaluation of the

function whose root is sought is carried out in subroutine FUNCT.

The subroutine SVQ includes facilities for obtaining the root by 

either bisection or régula falsi methods. Much of the initial 

part of this subroutine is to obviate the difficulty which is 

produced by the discontinuity in the function. The calculated

values of V /Q,P CO , C O , C CO along with P O are stored in an
A  A  6 C  ^ C  6 A  6

array.

These values can be graphed subsequently if required. In 

this version of the routine the inspired POg, PCOg are calculated 

to allow for the effects of rebreathing of dead space gas.
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E: G T R A N C O M P I L E R  ' ’ A P k NO#  3 0 2  D A j E  0 7 / 0 3 / 7 3  T P ' ’ E
s u b r o u t i n e  SVQ  

■ L) I M l! N i?ï U M V ( M  /  Y < 30  ) , VQ ( 1 5 0 , 5 )
P U B L I C  V û , V D A N A T , v o l S T | B L O G U B l O G 2 / y / V , i I , Q , C V C 0 2 # C v 0 2 #

I s H U N T f PA02f KK
E O U I V A L E N C E ( V D S , V O A N a T ) M V D O T / V O L S T ) M M , I I ) , ( P A L / ^ A 0 2 )

I ;  ( Y l f B L O G l  )» ( Y 2 , B L 0 G 2 )
P R I  NT l o i

l o i  P O R M A T O H S V Q )  

p H l = Y C  3 0 )  
p H 2 = Y ( 2 6 )
p E T C 0 2 s Y ( 9 > * ( V ( 4 ) - » A 7 , 0 ) / l 0 0 , Q  
I E ( P E T C 0 2 . L E * 0 , 0 0 1 ) P E T c 0 2 = Y ( 1 7 )  

p E T 0 2 = Y ( I 0 ) * ( V ( 4 ) ? A 7 , 0 ) / 1 0 0 $ 0  
l F ( P E T 0 2 . L E , 0 , 0 l ) P E T 0 2 = P A L  
P I 0 2  = Y ( 2 ) * ( V ( 4 ) . , 4 7 , 0 ) / 1 0 0 . 0

C
C
C c a l c u l a t e  n u m b e r  o f  B R E a T h S / M  I f . j UTE 

c
i\ B  = Y ( 4 ) / y ( 5 )

C
C C O R R E C T  F OR D E a d S P A c e  AND C O M P y T E  I n S P I r E d p C q 2
C

P I 0 2 s ( P I 0 2 * ( V P 0 t - N B # V D S ) ^ ' J B * V D S * P E T 0 2 ) / V D 0 T
P I C 0 2 = ( N B * V D S * P E T C 0 2 ) / V D 0 T
W R I T E ( 2 , 1 0 ) P I 0 2 , P I C 0 2

1 0  p O R M A T ( 6 H  P I  0 2 z , F 7 , 3 ,  I o X / 7 H P I C 0 2  = , p 7 , 3 )  
p V C 0 2  = ( Y ( 21  ) + Y ( 2 4  ) ) / 2 . 0
p V 0 2 s ( Y ( 2 2 ) + Y ( 2 5 ) ) / 2 t O
K = 2
S T E P = ( I I 0 , 0 - R V 0 2 ) / 7 5 , 0  
pA02=PV02 
DO 1 0 0  K K = 1 , 1 4 9
l F ( P A 0 2 , G T , I l 0 , 0 ) S T E P = ( P l 0 2 - l l 0 * 0 ) / 7 5 . 0

11 pA02=PA02»STEP
l F ( P A 0 2 r G J * P l O 2 ) G 0 T 0  1 5 0  
A = P I C 0 2  
J “ I
B = P V C 0 2 - . 3  • 0

C '«E W I L L  t e s t  o u r  U P P E R  S T A R y i N ç  V A L U E  F OR R q O t F I  D I N G
C
C I F K I S  1 WE a r e  u s i n g  A M E T H O D  OF F A L S E  P O s U l O N ,  i F  K I S  2 WE ARE
C u S i N G  A m e t h o d  o F B I S E C T I O N
C
C t e s t  t h a t  B I S  n o t  t h e  HOOT

c a l l  F U N C T ( B , P A q 2 ^ P H  1 , P H 2 , P  I 0 2 , P I C O 2 , a  I d ) 
f u n c t b = a i d
b A B S s AB. SI  F U n C T B  )
l F ( B A B S . L T , 0 , 0 0 0 1 ) G 0  TO 2 9

C
C t e s t  T o S E E  I F  F U N C T I O N  E V A L U A T E D  A t B j S  P q S i t i VE

I F ; F u N C T B . L T . O . o O I ) GO TO 12  

GO TO 14
c
c f u n c t i o n  n o t  P o s i t i v e , b i n c r e a s e d  un t i l  i t  i s  p o s i t i v e

12 DO 13 1 = 1 , 3 0 0  

B = B + 0 • 1
c a l l  F U N C T ( B , P A q 2 , P m i , P H 2 , P i q 2 , P I C 0 2 , A I D )  
f u n c t d = a i d

C t e s t  t h a t  WE h a v e  • ' OT h i t  t h e  r o o t

B A B S = A B S ( F U N C T B )
I F ( B A 3 S , L T * 0 * 0 0 0 1 ) 0 0  TO 2 9
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1 F ( F u N C T B . G T * 0 , 0 0 1 > G 0  TO 1 6  
1 3  C O N T I N U E

wRITE(2,450>B,FuNCT8 
4 5 0  f O R M A T ( 1 5 H  S T E P  UP F A I L E D , 1 0 X , 2 F 1 0 » 3 )

GO t o  9o
C
C T E S T  t h a t  B i s  n' OT V E R Y  L A R G E

I 4 I F ( F u N C T B , L T • I 5 0  * 0 ) G q TO 16  
l F ( K t E Q , 2 ) G 0  TO 1 6

C
c F u n c t i o n  p o s i t i v e  a n d  l a r g e  , b  r e d u c e d  u n t i u  f u n c t i o n  s m a l l e r

DO 16  1 = 1 , 2 0 0  

B -  B — 0 • I
c a l l  F U n C T ( B / P A 0 2 , P N i , P H 2 , P I 0 2 , P I C 0 2 / A I C ) )
F U N C T B s A I D

c
c t e s t  t h a t  we  h a v e  N o t  h i y  t h e  r o o t

B A B S = A B S ( F U N C T B  )
l F ( B a B S % L T * 0 * 0 0 0 1 ) G 0  TO 2 9

l F ( F U N C T B . L T . 1 5 0 * 0 ) GQ TO 17

1 8  C O N T I N U E
W R I T E ( 2 , 7 0 0 0 > B , F U N C T B  

7 0 0 0  f O R M A T ( I 7 H  S T E O  d o - "  F A I L E D , i O X , 2 F 1 o . 3 )
GO TO

1 7  I F ( F U N C T B . G T . O • Q O n  GO TO 16  
C t e s t  t h a t  WE H A V E i - 'OT O V E R . S T E p P E D

I F ( F U N C T B . L T , - 0 , 0 0 1 ) G 0  TO 3 5  

1 6  C A L L  F U N C T ( A , P A 0 2 , P H  1 , p H 2 , P I 0 2 , P I C 0 2 , A I D )  
F U N C T A  = A I D 

21  X = F U N C T A * F U N C T B
I  F ( X , G T , 0 . 0 ) GO TO < 0  
1 F ( K , E Q , 2 ) G 0  t o  22
c = b - ( B - a ) » f i j n c t b / i f u n c t b - f u n c t a )
GO TO 2 4 

2 2  C = A * ( B - A  ) / 2 , 0
2 4 c a l l  F U N C T ( C , P A o 2 , P H i / R H 2 , P I 0 2 , P I C 0 2 , a i d )

D= A I D 
P : A B S ( D )
I F ( F , L E , 0 , 0 0 0 1 ) GO T o  3 0
T E S T z F U N C T A * D
l F ( t e s t , g t . o . o > a = l

IF (t e s t .l t .o .o )n = c
I F ( T E S T , G T . 0 . 0 ) F U N C T A = D
I P ( T E S T , L T . 0 . 0 ) F U N C T B = D
U = J + 1
l F ( J . G T , 2 5 0 ) G 0  t o  5 0  

GO TO 21  
2 6  p A C 0 2 = B  

GO TO 3 2  
3 0  P A C 0 2 = C
3 2 P HX z P H < P A C 0 2 /  P H 1 /  P 2 , V 1 ,  Y 2 )

C c a l c u l a t e  C 0 2  A' j D 0 2  C O N T E N T S
C

N'JM; I
c a l l  C O N T 0 ( P A 0 2 , P A C 0 2 , P H X , V ( 5 ) , V ( 7 ) , N U M , S A T R U P V A L U E )
S A T 0 2 = S A T R N
C A 0 2 = v a l u e
N U M = 0

c a l l  C O N T 0 ( P A 0 2 , P A C 0 2 , P H X , V ( 5 ) , V ( 7 ) , N U M , S a T r N , V A L U E )  
C A C 0 2 = V A L U E  
A -  3 • 6 3
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C
C c o m p u t e  V/Q

R V q  = A * ( ( C V C o 2 - C a C 0 2 ) 4 ( C A 0 2 - C V 0 2 ) # ( P i C 0 2 / P I 0 2 > ) / ( P A C o 2 5 . P a 0 2 * P I C 0 2 / pl 102)
GO TO 80 

3 5  wP I T E<  2 ,  6 0 0  ) B , F ' j N C T B  
6 0 0  F O R M A T ( 3 i H  O V E R ; S T E P P E D  F U N C T I O N  N E ü A T I  y E , 5 x / 2F J 0 • 4 )

GO TO 90 
40 w P I T E < 2 , 6 0 )  P A O2 

GO TO 9Q 
50 W P IT E ( 2 , 7  0 ) PA02 

GO TO 90 
60 F O R M A T ( I OH E R ROR 1 ,F7.3)
70 F O R M A T !  )0H E R ROR 2 ,F7.3)
00

5 0 0

C. '  V  K C f T f * J J
W P I T E ( 2 , 5 O 0 ) R V Q , P A Q 2 , P A C 0 2 , C A 0 2 , C A C 0 2 , K k , K , j
F O R M A T  ( 5 X, 5F 1 0. 4 , 4X, 1 3 , 4X, H ,  I 8  )
JL = KK+ l 
V Q ( 1 ,  I ) = 0 • 0 
v Q ( 1,4 ) =pvû2 
y O ( I , 5 ) = p v C q 2  
y O ( J L ' l ) = R V Q  
y o (J L , 2 ) =CAo2 
y Q ( J U »  3 )  =CA C 0 2  
y O ( J L ' 4 ) =PA02 
y o (J L , 5 ) S P A C 0 2  

9 0 C 0 N TI • J U E 
1 0 0  c o n t i n u e

150 C O N T I N U E  
R E T U R 'i 
END

e g t r a n  C o m p i l e r  ma r k ,  n o *  302  d a t e  0 7 / 03/73
s u b r o u t i n e  F u N c T ( 2 , P A 0 2 , P H 1 , P H 2 , P I 0 2 , P I C 0 2 , a I D )
D I ME NS  I o n  y ( 7 ) , Y ( 3 0 )
p U B L i C  C y C 0 2 , C y 0 2 > B L 0 G l , B L 0 G 2 / Y , V , I l  
E Q U i y A L E N C E ( Y l , B L 0 G l ) , ( Y 2 , B L 0 G 2 )
P H Z = P H ( Z , P H l , P H 2 / Y l , Y 2 )

NU M=  1
c a l l  C Û N T 0 ( P A Û 2 , Z , P M  Z i y ( 5 ) , y ( 7 ) , N ' J M , S A T R N , V A L U E )
S A T 0 2 = S A T R N
C Z 0 2 = V A L U E

n u m  = o
C A l L  C 0 N T 0 ( P A 0 2 , Z , P H Z , y ( 5 ) , y ( 7 ) , N U M , S A T R N , y A L U E )
C Z C 0 2  = V A L U E
I F ( C Z û 2 - C V 0 2 * F 0 ^ 0 , 0 )  C Z 0 2 = C Z 0 2 + 0 , 0 0 0 0 0 1
K = ( C y C 0 2 - C Z C 0 2 ) / ( C Z 0 2 - C V 0 2 )
F I C 0 2  = P I C Q 2 / ( V ( 4 ) - 4 7 , 0 )
F I Û 2 = P I 0  2 / ( V ( 4 ) ; 4 7 . 0 )
X = F I C 0 2 » ( 1 . 0 - R ) * R  
I P ( X , E 0 * 0 . 0 ) X = 0 , 0 0 0 0 0 1
A l D = P A û 2 - ( P * P I 0 2 - Z + P l C 0 2 + ( Z * ( l , 0 - R ) « F I 0 2 ) ) / X
r e t u r n

e n d
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t G T R A M  C O M P I L E R  MARK N O .  3 0 2  D A j E  0 7 / 0 3 / 7 3  T l * C
C

S U B R O U T I N E  C O N T o ( M 0 2 , P C 0 2 , P H X # H B , P C v # M U M / S A t R N , V A L U E )
C -------------------------------------------------------
C T H I S  s u b r o u t i n e  C Q j V E R T S  P 0 2  TO C q N t E N J  I F  NUM I ,  OR P C 0 2  TO C O N j E N t  ] 
c T h e  S a t u r a t i o n  i s  r e ’ u r n e d  i n  s a t r n  a n q  t h e  c o n s e n t  i n  v a l u e  
C T H E  S U B R O U T I N E  I S  aN A M A L G A M A T I O N  OF TWO S E P A R A T E  F U N C T I O N S  Q R l G l ' A T E L  

C BY K ^ L M a N  
C

d i m e n s i o n  V ( 7 )
P U B L I C  V
T E M P z 3 7 , o 
A 1 Z - 8 .  5 3 2 2 2 9 E 3  
A 2 = 2 . 1 2 I 4 0 1 E 3  
a 3 = - 6 . 7 0 7 3 9 9 E 1 
A 4 = 9 , 3 5 9 6 0 9 E 5  
a 5 = - 3 *  I 3 4 6 2 6 E 4  
A 6 = 2 , 3 9 6 I 6 7 E 3  
A 7 = _ 6 , 7 I 0 4 4 I E 1

I 0 x = P 0 2 * I O . O * * ( 0 , o 2 4 * (  3 7 , 0 - T E M P > + 0 . 4 0 * ( P H X - 7 . 4 ) + 0 , O A * (  1 . 6 0 2 1  

1 - A L O G  I 0 ( P C 0 2  ) ) )
S A T R N = 1 0 0 * ( X * ( X # ( X * ( X + A 3 ) + A 2 ) + A l ) ) / ( X * ( X * ( X * ( X + A 7 ) + A 6 ) + A b ) + A 4 )

1 5  i F ( N U M # E Q « 0 ) G O  y U 2 0
V A L U E = ( 1 . 3 9 * S A T R N * H B ) / 1 0 0 . 0 + 0 . 0 0 3 * P 0 2  

GO TO 3 o  
2 0  P = 7 , 4 - P H X

p K = 6 . 0 8 6 + 0 , Q 4 2 * P + ( 3 9 . 0 - T E M P ) * ( 0 . 0 0 4 7 2 + 0 , 0 0 l 3 ? * P )
T E M P = 3 7 ,  0  -  T E M P
s O L = 0 . 0 3 0 7 + 0 . 0 0 0 5 7 * T E H P + 0 , 0 0 0 0 2 * T E M p * * 2  
0 O X = O . 5 9 0 + 0 . 2 9 l 3 * P - 0 , 0 8 4 4 » p * * 2  
D R = O , 6 6 4 + O . 2 2 7 5 * P “ O » O 9 3 0 * P * * 2  
D = D O X + ( D R ^ D O X ) * ( l , 0 _ s A T R N / 1 0 0 , 0 )
C P = S O L * P C 0 2 * ( 1 . 0 + 1 ' 0 , 0 * * ( P H X - P K ) )
C C = D *  C P 
p C v 2 = P C v * 0 . 0 I
v A L U E = ( P C V 2 * C C + ( l . 0 _ p C v 2 ) * C P ) * 2 , 2 2  

3 0  R E T U R N
e n d
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APPENDIX 7.

List of equipment which has been used in these studies

Tissot Spirometer lOO litre recording spirometer.

Made by:- G.Plant & Son,
Harborne, Birmingham 17.

(No longer available).

Analogue Computers. TR20 and EAL 380.

Made by:- Electronic Associates Ltd.,
Victoria Road,
Burgess Hill, Sussex.

Pneumotachographs. Disposable Flowhead Type Fl.

Made by:- Mercury Electronics Ltd.,
Pollock Castle Estate,
Newton Mearns, Glasgow.

Micromanometers. Type MDC Range 0.5"Wg.

Made by:- Furness Controls Ltd.,
Beeching Road South,
Bexhill-on-sea, Sussex.

Tape Recorder. 8 -channel Six-speed
FM and Digital Recorder 
Type MR 1200.

Made by:- Epsylon Research & Development Co. Ltd., 
Central Way,
Feltham, Middlesex.

Schulander Micro Gas Analyser Type ES 34.

Made by:- W.G. Flaig & Sons Ltd. ,
Exelo Works,
Margate Road,
Broadstairs, Kent.

Bicycle Ergometer Type AM 368.

Made by:- Elema-Shonander AB,
Stockholm, Sweden.

Lung Volume Spirometer.

Made by:- C.F.Palmer Ltd.,
High Wycombe,
Buckinghamshire.

(No longer available).
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Mass Spectrometers.

(1) M.S.4

Made by:- A.E.I. Ltd.,
Manchester.

(2) Centronics MGA 007.

Made by:- 20th Century Electronics Ltd., 
New Addington,
Croydon.

Digital Computer. PDF 11/45.

Made by:- Digital Equipment Company, 
Maynard,
U.S.A.
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APPENDIX 8  SOFTWARE FOR PRE-PROCESSING OF MEASURED DATA.

In this appendix programme listings are given for the Fortran 

programme to pre-process the experimental data (see Figure 3.13) The 

version of the programme shown here is specific to a data set in which 

only PCO 2  and ventilatory flow have been measured. Synchronisation 

of the data to compensate for the inherent time delay in the mass 

spectrometer is carried out in the data logging programme. The 

main programme - NSTC02 - reads the data from the file which is 

created by the logging programme and stores the data in separate disc 

files related to each of the measured variables. The flow data are 

filtered and corrected to BTPS conditions. This programme has the 

facility for plotting the measured data (programme PLTDAT). In the 

routine NNORM the sample numbers associated with the start of each 

inspiration and expiration are determined and stored in a disc file 

(IBRB.DAT). The volume and minute ventilation of each breath are 

determined. The expired flow is normalised approximately by 

calculating a correction factor such that the total volume inspired 

during the experiment is equal to the total volume expired. The 

sample numbers associated with the start and end of the end-tidal 

section on each breath are calculated as described in the text and 

stored in the disc filé (EBRB.DAT). The important general infor

mation about this data file are stored in the file INDX.DAT. The 

measured PCO 2  values are normalised to BTPS conditions using the 

routine NFILE.
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NSTCÛ2
[' I MENS I ON IR SO .• .• ICRPE •: SO ;• • I FLOW SO ;•.. NRME 2 >

!.. NTEMP'::120::'
BYTE DRTE ( ? > • DRTF IL •: 15 >
c o m m o n ,-■RPER2.-‘BRR.. TEMP.. FSRM. NCHRN,. NRME.. NSW I.. NSRM, KB
COMMON. "RPERS. NPERD
C'RTR NOP. NIP, NPPIN.-l. !.. 0.-’
KB=S

r  -A -j.--A P 'C C i  r ,  T KI >.]Cif.T cr r i c  r -.û  t  q  lt t  i p  

up T TP .; P :■
500 FOPMRTv- 0- N̂Rf'̂ E OF ORTR FILE vCSI FOPMRT) ? ' )

PER:' ' S. 501 ' •: DRTFIL'. I . 1^1. 14.>
501 FOPMRT'14Rl'

DRTFIL' 15 0
r o i  I pj.r.r T r.M ,■ p  p .o t p t i  ji t p p p  i ,

PER[:"'7 :' ' DRTE'. I ' 1=1. ST. SRR.. TEMP.. FSRM.. NCHRN.. (NRME(I), 1=1, NCHRN.:-
.1 , Kj.ri.iT M.rpM pu ..'
cu2!j~l 42''-TEMS'-ll. 4 

0 Spr UP CONSTRNTS FOP -Il TEPINO FLOW 
P=E:-p ‘'--10 0.'FSRM .'
I~1 — 1 p _ p

U P  .= P T  u p  P T I  p.r f:M

■:h LL ^E^^ILvl FLOW OR! ,IEP2, DC ,0,0, "222, 2) 
DEFT NE FILE 1' 3 20- SO u. I YRF 1

C' . 0, 0, "222, 2:r Cl I I •p T I u r c i p p  r u p  1 pp.c.-.
r . P P  T KiP P  T ! E 2'. 120. SO. Ü. 1YRF5 '
-.ppoj'‘S'!" NUMB S.- OF pRTR POINTS'. NP ! S.:' TO MRKE THIS MULTIPLE OF SO
i>.j 'P p  —  j.. j P  p  r ii

1 I'p N̂ 'T 5^ NSRM ̂ NCHRN
N‘='TS = NpTS-M''!0' Nc-T'P, pp ,

C WE CRLCULRTE NUMEEP 0- PECOROS HNO MRKE THIS MULTIPLE OF NCHRN
NPEC-Np-'-S.-'SO
NK'E0.=NPE0--00 - NPEC-.. rJCHRN.
K IP P P U  — i - . i p c r  . I..:!-.UP,.I 

k. I p. T .J - f. j P P  I- ±. p- ip
NSRM=NPTS.-‘NCHRN
t T l I --1

'•'E P'̂ ‘̂0 OR'̂ 'P F-'O'- OPT-! -ILE IN BLOCKS OF NCHRN NUMBERS OF RECORD:
I-, tr. p u r i  r. up. Tp-f.ipnp p p u  p p p c i u

r.ri -..:L U  T M - 1  f.IPPPi
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DO 140 JK=1,NCHRN
RERD<7.. ERF:=767)(IR(I), 1=1, 60)
KILL=KILL+1 
DO 120 Jî=l, S0 
J=JI^S0+(JK-1)

120 NTEMP(J)=IR(JI>
140 CONTINUE

NE BUILD UP RRRRVS "FLOW" ETC. FROM NTEMP
J=1
DO 150 IN=1,SO 
IFLOW<IN)=NTEMP(J)
-T=J+NCHRN
ICRRBv IN >=NTEMPa: >

150 K=K>NCHRN 
FILTER FLOW DRTR 

DO 152 1=2,SO 
152 I FLOW I > = IF I P+FLORT ( I FLOW (I-lV) +Û + FLORT ( I FLOW

WE NOW NORMRLISE Fl OW TO BTPS 
DO 154 1 = 1, SO 

15 3 IFLOT'-:; r* = IF [TO • FLORT* [FLOWvI>> + <eRR-PH2O>+210 0> 
1/ ( BR^-47 0 ■ 272 0-̂  TEMP ; >
WE NOW OUTPUT RRRRVS TO DISC

155 WRITECi JM;-• IFLOW-. L;-, L=l, S0> 
1S5 'HP I" c T M I C R R B  TL. '. L=l, SO > 
240 c o n t i n u e

WE NOW CLOSE THE FILES
REWIND 7 
END FILE 7 
REWIND 1 
END FILE 1 
REWIND 2 
END FILE 2 

220 CONTINUE
WRITETKB.222)

222 FORMRTT'fCHECK PRINT?
c - r  cj r  , .• I  - c- - •  “ • h.j r -1.---

--  -•  T- C  r ,  p. hi Pi T  . Cl -, -,

IF NCK. ECl. ' VE " NPRI N=1 
227 CONTINUE

IF-: NPR IN NE. 1)00 TO 241 
WRITE':’5, 22S):DRTFILTI). 1=1, 14)

229 FORMRT'O’O FILE NRME ,2X,14R1/1X,2B(’-')) 
241 CRLL NNORM'::FMX, NOP, NIP, NPR IN, DRTFIL)

IF':NOP. EO. 0. OR. NIP. EO. 0)G0 TO 700 
S50 CONTINUE 

GO TO 770 
700 CONTINUE
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WRITE*:.KB, 704 /
70<l F0RMRT': - I'NEW RUN >

RERDvKB.222/NRUN 
IFTNRUN. EC. •-NO ' >G0 TO 707 
CRLL DELXvNOP, NIP, 0.:*
NP^'IN=i 
N I P = 1  

N0P=1 
GO TO 227 

707 CONTINUE
CRLL DELXTNOP.NiF,1>

7SO W R I T E 0004
Cr.C'UiûT, ' rr.UTû 0 1  r,T -,
C' cr p  r  . p  C; _ T; T; T '. =' i r i  T

I^ N^LOT NE KE ' :'G0 TO 770
r pi I C'ii>.,. . r,. T'l -iT-.c; ;■

""S7 W^'I^E-:5 1 -I-. N S R W l
7 FOPMRT*:. FRILUPE ON RERD ,I4, NSRM=- 

* ' ■ ’0  C'lN^irUJE
cr > I- ,

IS)

F HER 0 U TINE [:' E L X *. fi F' NIP ITJ T :■
^'EWI ND 1

CTKir. c  T I cr 1I <t I A L_ L_

PAWIN'-* 2
cu r;. CTTi cr ■-•

i - Û I  I r . c r i  C T c r

IF*:; I NT FO. 0
I - Ü I  I r-iCTj c r x c r

r c i i  I r -.c ri C T c r

• r . i -  • r  C '[:'C ' r  . c i T  ■ 

GO "̂ 0 5
•• r - , r  C l  r i i . i  r , c T  - , 

' !_! i~; p F' F: ?•■* ̂*
5 IF* NIP EO * GO TO 10

C C U T K jr, 2  
Ĉ.jr-i CTI_C T;

r  cii I r .c i  C T C . r-,i- c c c c '  -,cix-- -, 
•1 M I -  - , U X  T K l l  1 C  

p C T I jĈ .J

END



J vos 12 00:44 24 12-RUÛ-76 PRÜE
SUBPOUT I NE NNOPM T PMX, NOP, f j 1P, NPPIN, DRTF IL >

BYTE DRTFIL(15)
PERL MÎNYEN
INTEGER EBR, TOTBR, RBR
DI MENS I ON EBRT50, 2>, I B R 50, 2>, NRME (2), RBR(50, 2:) 
DIMENSION I HELP*;; 20 >
00MM0N/RRER2/BRR, TEMP,FSRM,NCHRN,NRME,NSWI, NSRM,KB 
COMMON.-•RPER2.-'NRERD 

DRTR LP, FLMRX/5. 0. 0.-‘
J=1 
NC=0 
LSWI=0 
C0NST=1 0 
SUM1=0 0 
SUM2=0 0
Ih e l =i
WPITEvF.S>

o  c n c M C iT . • i-xuC 'C rcL jrii r-. :̂ ~ v ' . ‘ - ,
p  C p  r, e  ■=! T U p  c  c  

o  p n p M û T  .; P 4  2  .

IF-NPPIN NE 1>G0 TO 15
I .IC 'T T C r. l O CTl -  -. T U C 'C .r

12 - O ^ ’N R T . ' thrc;shos_D=- , F4 2, ' L.'SEC •

WE OBTRIN SRMPi. E NUMBEP RSSOCIRTED WITH STRRT OF ERCH BRERTH 
WPITE/LP. 10>

10 FOPMRT '■ • 0" +ERERTH NO. + + ̂ SRMPLE T INSP > + ++SRMPLE ( EXP > + + + T IDRL VOL ( IN 
ISP) + •+••+)■!IN VEN+-!- +DUR. OF BRERTH+:+:+"' XIX, 12( ' ), 2X, 12( " — " ) . 2X, 11( '

15 CONTINUE
CRLL SETFILTl FLOW DRT , lERR,DC',0)
DEFINE FILE1T7200, 1, LI, IVRRR)

NO IS RCTIVRTOR RND ÎF 1 WE SERRCH FOR INSPIRRTORV 
THRESHOLD RND IF 0 WE LOOK FOR STRRT OF EXPIRATION

r  pi r  I II c i x c  T L j p ' C ' z u n I  r.

ITHPES=IFI ^^HRESf 20000. 0. FM X )
DO 400 JK=1,NSRM
c- cr Cl r. .• 1 TI ' ■•. T cr -r Cl i-.i
IF-ri^SRM LT. -ITHRES 'NC=1
I FT NO. NE. 1) GO TO 400
IF*: I FSRM. LT ITHRES/GO TO 400

HT THIS POINT WE HRYE CROSSED THRESHOLD .tBRCKTRh CK TO FIND ZERO
DO ?E0 L = l. 200 
Lp—,T!: —L
C 'C rc ir. -1 I ci' ■. t c r c c iu
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OO : 44 : 14 H -  h UU—ZS F'Ru E
IF-: I FSRM LE 0)00 TO 270 

2SO CONTINUE
RT THIS POINT NE HRYE FOUND STRRT OF INSPIRRTION
HE ENTER YRLUE IN IE'.R RND DERCTIYRTE SERRCH UNTIL EXPIRRTION.

270 1ER--J. i)=LE
NC=0 

4 00 CONTINUE
TOTBR =J-2
CRLL SETFIL- 2, IBRB. DRT , lERB, ' DC , 0, 0, "222, 2) 
d e f i n e  FILE 2-: 50, 2, U, IVRRBB)

T  r i  T  — T  |-| T  C' C'

T=1 0.'FSRM 
NE NOT! OBTRIN INSPIRED TI DHL VOLUMES

r.n Ü  T T  - 1 T r i T c  c  
TCTiTiC'X—  T C p .  T X  -1_ •
T rr> ir.T c-c-. .■ T ? ■  . -i_ ■
' i"*i I p p

r.ri V Û Û  . 7 -  T c x û c r  X ici-.jr .
M X  — I -.A
C'Cor, 1 I X . 1 rxiTihu
ccror. r i_ M2 ' I FSRM2
cri m . M — . Cl n c i T .  rc-ri-f.vi , x c. .r.* . . ' x p p n p  n  
T C . C l  rit.M 1“ T  Cl M C i V  . Cl MC',' — Cl r,i,| I

l O o  Cl pi.i-- Cl p a r .  v c c p M j - ; .  P R - . ’ . :O000, 0

VOL =VOL-^ ' FLOHi-"^ L0N2 + T.-'2 0 
IF-: I!̂ “‘̂M2 LT. O-'GO TO 202 

200 CONTIN'JE
- n  -| IM 1 — Cl IM1 .i_i..i|-|l

'..inI — '..inI A-1 p n n  n 
T i..'ni — T c T ■ i.,in I •.

i~
C ME SET UP FIRST COL RBR FOR TIDRL VOL
C;

1 p  C'C'C . T X  -1 . —  T i..'ni

C SE'!' UP SECOND COLUMN OF RBR FuR MINUTE VENTILRTION
n

DO 220 1=1 TOTBR
MI NYEN= FLORT-: PBP I.. 1.- .:•. •' ( I BR •:. I +1 ), 1 ) - 1 BR •:. 1,1) ) +T > ) 

l+'SO o
C - P O  T -, —  T C  T '•.■ . M  T f.ji .iCkl .'1 ,Ti p  ,

•-.-,p rnMTTKIIIC

C NE NON OBTRIN S'i'RP̂  SRMPLE NUMBERS FOR EMPIRRTION RND STORE IN
n  c c r n v i r .  r n i  n c  t c - c

J - 1
Kir — n
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ISTRRT=IBR'1, 1'
DO 250 JK=ISTRRT. NSRM
RERD': 1- JK) I FSRM
IFTIFSRM GT ITRRES'N0=1
IF'-:NO NE 1) GO TO 250
IFTIFSRM GT -ITRRESvGO TO 250
DO 220 L=l, 200
LB=JK-L
C'Cor. .• 1 •• I C' •. T C C Ü M

IF'-I FSRM GE 0 :'G0 TO 240 
220 OOMTINUE 
240 IBR': J. 2 '=LB 

J = .T- ^ 1  

NC = 0 
750 CONTINUE

DO 251 1=1. KTOT
--cr 1 I.IO T Xir • T •. . TC-C-.' T , T , T -  1 , Ç' >

0 ME NON CRLCULRTE ERR I RED VOLUMES RND THE TÜTRL EXPIRED VOLUME
r

r  . n  -  P P  TX =: -I X i ' iX O P  

T 'Z X C iP X -  T p p  . J X  v  ;,

T P K ir .— T P P .  T X .1. -1 . -,

T P .-  TX P P  T p r p c  ■. T P K j r , - m C Pi-.i

VOL=0 0
DO 2E0 LZ=IS^RPT.IEND 
M2=L2^1
p p o r ,  .' 1 ••• I X  •. T P C  P M  -I

p p p r . . i -  M X  . r p  :  p h - i  ?

P I  P I .I  -I -  ' C : P P X .  rP C P M - i . I L.'I-, . A P i jt-.jc X ,• r  iT̂ iThP P  p

IF '• h BS '• FLONl .' GT FLMRX ' Fl MRX=RBS FLONi :•
FL0N2=(FL0RT' IFSRM2.'+FMX)+CONST/20000 0 
VOL=VOL- '• FL0N1-FL0N2,' -T.-'2 0 
IFTLSNI EO 1:'G0 TO 254 
IFTIFSRM2 GT 0:'GO TO 2SO 
GO TO 2S0

254 IFTLZ EO TEND OR IFSRM2. GT. 0..-G0 TO 422 
I F ': VOL LT. EVBT ::' Gtj TO 260 
EBR'JZ. 1:'=LZ

r
C NE HRVE FOUND NHERE DERD SPRCE HRS BEEN EXPIRED RND LOOK FOR END 
C OF END TIDhl SECTION

DO 256 MN=LZ. TEND
p p p r ,  . - -1 MM . T P C  P M

T P .  T P C p M  r.X _ “ PiTh .i-p X P

IF MN GE I END'GO TO 11 
256 CONTINUE 
25S EBP ': IZ 2 :'=MN-4 

GO TO 200 
260 CONTINUE 
200 SUM2=SUM2-"V0L 

VnL=V0L+1000 0
T '..'PI - T P  T 'y' , - I. .'PI
r,i i P ' O - - P I  P P X .  T PP . t x . a i  1 -FLORT': IBR' JZ. 1.' ::' .:' + T
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TV=FLORT'. PBR-: JZ.. 1 ) . '1000. 0 
VEN=FLORT<RBR-: JZ.. 2 ) >. '100. 0 
IF YEN GT. 2 O'GO TO 290 
NIP=0
T U P l C .■ T U P l •. — TX

IHEL=IHEL+1 
NR I TE-;: KB.. 2B7)JZ

237 F0B:r-1RT-;•••■ OMIN. VENTILRTION LESS THRN 2. OL ON BRERTH ,14)
290 IF-::NPR IN. NE. D G O  TO 200

NRITE-::LP, 12) JZ, IBR(JZ, 1), IBR(JZ, 2), TV, YEN, DUBR 
12 FORNRTC- -, 6:-:, 12, lOX, 14, IIX, 14, 9X, F5. 2, 12X, F5. 2, 9X, F4. 1)

200 CONTINUE
IF-: NIP EO. I 'GO TO 219
JRND=IHEL-1
DO 216 1=1,JRND
I.IP  T T P  I P  . X -1 -

212 FOPMRT- IFLON DRTR FOP CHECKING THRESHOLD LEVEL XIX.28(--))
WRITE': LP. 214 'IHELP' I :-

214 FOPMRT" OBRERTH NUMBER , 4X, 14 
JON= I BR ':: I HELP -' I ) 1 ) -15
JUN= I BP. ': I HELP-: I :', 1)+15 
Dm 216 J IN-.I ON JUN
PPÜ1.” . . -1 ■ T T K| I p . r  P M

PI J-,.,̂.: pi_r,PT, Tp.roM ,.i FMX:'-' CONS D-'20000 0 
WRITE'- LP. “15 ' TIN FLOW

215 FORMRT*: SRMPLE NUMBEP= . IP lOX, FLOW= ,F6 2)
IF '-JIN NE. IBP- I HELP-: I 1 - .-GO TO 216
I.IP  T T P  . I P

2427 -'''PMRT-'-.15'-- .10- +• ■ 16-.' ) /
"16 CONTINUE

|-.|-| T P  .P Û Ü

21'- CONTINUE
IF-:'LSWI EO 1-GO TO 423

C ' !E OBTRIN RPPROXIMRTE CRLIBRRTING FRCTOR FOR EXPIRED 
C c.KjPijMüTRCHOGPRPH FROM COMP. OF I NSP. -K EXP. VOLS.
I”;

CONST=SUM1.'SUM2 
!..SWI=1r

C IF ^LOW IS PRESENT IN INPUT WE OBTRIN SRMPLE NUMBERS FOR ENDr TTr-.pi .rciMPi p.r
IF -NPP IN NE. 1 -GO TO 75

C
WRITE-: LP. 70 :-

70 FOPMRT-::-'1 • . 24 X. " - END TIDRL SECTIONS + + + X, 25X, 24< - ))
I.IP  T T P  , I p. -rjiTi ..

90 FOPMRT- 0 BRERTH NUMBER-,2X,'STRRT SRMPLE PRRTIRL PRESSURE END
1 - r p M p . i  p  p . p p T T p i  p p p . r . r i  i p p  -,

“-5 CONTINUE
CALL SETFIL-::2 EBPB. DRT' ■ lEPZ, DC , 0- 0, "222, 2)
DEFINE FILE 2-: 50. 2, U, IVRRZ - 
HR I TE- K B 1000 -

1000 ^ORMRT- a ENTER VOLUME OF E: :P FOR END TIDRL (X. XXX) = - )
pppr. .IP. -1 pi iH . p 1. .1 p T 

1 n 1 n p-iPMPT . per X
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U V O S  1 2  0 0 : 4 4 : 2 4  1 2 - R U G - 7 6  PRG E

!“•
C ERROR MESSRGES FROM FRI LURES IN END TIDRL SECTION 
C

422 CONTINUE
NRITEOvE, 4000>JZ

4000 FORMRT( 0CRLCULRTED EXPIRED VOLUME LESS THRN TWICE DERD SPACE ON
1 C'C C P T U  T X  -I

NOP = 0 
GO TO 800

I::
1188 WRITE': KB. 1200 -'.JZ
1200 FOPMRT"-0NO STRRT OF EXPIRRTION FOUND ON BREATH- , 12)

NOP=0 
GO TO 800 

428 CONTINUE

I.IP  K in  1.1 n i  iT P i  IT  p c 'p  T ,- i r .  T P |-  

r ,n 4 2 9  I = 1 . T 0 ^ B ^
1 X 0  U P T  T P .  X T ■. . P P P .  T .  L: . ^  =  1 -

C 'P i.l T K ir. 1

O P U T K j r .  2
C-PU I  KjP, X  

P K jr .  C T I_ P  

P K ir .  P T I  p  2

P K jr .  P T I  p  2

420 CONTINUE
NORMRLFSE RL.L CHANNELS TO BTPS

r  Û p C 'i- iK i p.. T n 'y T r . p  . r  p r -  t  t  r ,k j

"F - NPP IN NE 1"'GO TO 422
WRITE(LP,2001)

2001 F 0 F: M A T • 0 C A R S 0 N D10 X IDE 14 ) )
4 22 CONTINUE

CRLL SE'̂  F IL •: 2. ' UCRRB TMP , IER I, ' DC- , 0 )
•■■•Ê INE f i l e  2' 120, 60, u , IVRRI )
CRLL SET^ILvZ, ' CRPB DRT , lEPJ, ' DC , 0, 0, "222, 2)
r . p p T K ip  P T j_ p  2' 120, 60. U, IVRR.J;:-
CRLL NFI'E^NPERD BRR, 400 0, lOIBR, EBR, NPRIN)
r  P I I r .p  I P T P .  r-.r- • I i r - p p . p  T r . ip  •.

650 CRLL SE^^IL'8, INDX. DRT , lERU, • DC ,0)
WP^E' 8 'BRR, TEMP, FSRM, NCHRN. NRME':. I ), 1=1, NCHRN), NSWI, NSAM, TÜTBR, 1 PI p . r-, p T c T t . T •. r -T -1 1 ■=. .

P P I . I T p.J.X 

P K jr .  P T I_ P  .=;

ni iTPi IT p p p  Tn r. T c r -

■?R: L SE'^^’-L' !■ R8P DAT .. lERV. " DC' , 0, O, "222, 2)
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M  u n e  1 T- 00.44.34 lI-RUG-76 PRGE
DEFINE FILE l'.OO, 2, U- IVRRV..- 
DO 750 1=1. TOTE'R

X C IÜ  I.IP  T T C .  1 T P C -P  r  i- . 1 — 1

PEL'IND 1  

PKjr, p i l e  1  

900 CONTINUE
P P T I  IPKJ

C K ir - ,
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! Y06 00:49:20 13-RUG-7b PRGE 1
SUBROUTINE NF I LE aJRERD, BRR, CÜRR, TOTBR, EBR, NPR IN)
INTEGER TOTBR, EBR
DIMENS I ON NNRT< 60),NGRS(60), NEWG(60),WRT(60),GRSNEW(60),GAS(60) 
DIMENSION EBR*; 50, 2)
LP=5
DO 20 1=1, NRERD
RERD': 2 I ) N G R S L  , L=i, 60)
DO 15 JK=i.60
GRS ': JK ) =FLORT ■ NGRS JK ) > /OORR 
G A S M E N J K  ■ = •: BRR-47 0, BRR+GRS JK )

1 c . TL- , - T P T V .• r.-pPMPl.i . TL--' x f riOP ,
20 Î E*: S ' I ' NEWGvL) L=l, 60)

DO SO 1=1, TOTBR 
LREM1 = M0D": EBP' I • 1), 60.:■
I P P M  — Mûr. .• p p p  . T > pn ■.
NPE01 = ' EBP' I . 1 '-LREMi ).'60+1 
NPE02= •: EBP I . 2 -LPEM2 ).'604-1 
T p . I P P M 1 UP Û -. r.n TÛ
1 P P M  1 -en
N-'E01 = rJPE0l-l 
GO TO 24 

22 I^':;LREM2 NE 0 'GO TO 24 
LPE"2=60 
NPEC2=NRE02-1

24 READ •• S ■ NPE01 "' ' MGAS•' L ' L = l. 60 ,•
L = l, 60.:'

1 :' .'.-'OORR 
GRS2 = FL0RT' NEWGLREM2 .:• ). 'OORR

25 FORMAT: 5X, IS.. IIX, 15, 10X, F4. 1, - :MM. HG. ) , 7X, 15, 7X, F4. 1, " (MM. HG
1. ) •• )
IF 'NPP IN NE D G O  TO S5 

SO WRITE': LP, 25) I, EBR: I, 1), GRSl, EBR( I, 2), GRS2 
S5 CONTINUE 

REWIND 2

p p p r , - ■ Kjppf T' '. . Kipi.ir..
ppp.-i — PI ÛPT. Kjpp.r. I PP

00 S 4 ppuIUD S
P K i r .  P r i  p

p ^ . j r . p  T }_ i

RETURN
END
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APPENDIX 9 . PARAMETER ESTIMATION METHODS.

Parameter estimation methods work by proceeding in an 

iterative manner improving the estimates of the parameters at each 

step. The improvement is such that the error criterion function 

is reduced. Thus at any step a new estimate of parameters (a^^^)

is obtained from the old estimate

Ac+i = 5k A

when ^  represents the direction in which the parameters are changed 

and the distance or amount by which they are changed. a^ etc

are vectors and contain elements therefore of all the parameters to 

be estimated.

In order to implement parameter estimation methods it is

necessary to scale the parameters so that they are numerically similar.

This is achieved for any single parameter a by the relationship
a - a .

“sc = a -a max min

where a is the scaled version of a which is an element in the vector a.

a and a are the minimum and maximum possible value of the min max
parameter as determined in this case by physiological considerations.

There are two main methods used in this thesis. The first of

these (the Rosenbrock tnethod^^^) is a direct search method. The

method operates by taking step lengths AS^, AS^ .........  AS^ along

each of a set of n orthonormal direction vectors S, ,   S in
— 1  — 2 —n

turn. (The initial choice of these vectors is the "coordinate" vectors

for the multidimensional parameter space). From the initial estimate

of parameters a a new estimate is obtained (a, ) where — o  — 1

a = a + AS S.— 1 —o 1— 1
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If t±ie error function at a, is less than at a the new estimate of a.— 1 — o — 1
is retained and the step is termed a success. On the next search

along this direction the size of the step is increased such that

C^^)new = 3.0AS^

However, if the error is greater, a^ is rejected and the step is termed 

a failure. On the next search in this direction the size of the 

step length is reduced, i.e.

This process is repeated until there are consecutive failures in all 

n directions.

At this point a new estimate of parameters is current (a)—  new
A new set of n "axes" are calculated centred on this point. The

first of these corresponds to the direction between the initial a and

(a) . This set of "axes"-orthonormal vectors - are obtained using—  new
the Gram-Schmidt orthonormalisation relationships, details of which

are found in textbooks of linear algebra.

The second method which has been used is the Davidon-Fletcher- 
388 389Powell method. ' This method is a gradient method and calculates

the new direction of search from knowledge of the gradient of the

error surface at any step. The mathematical details of the method are

based on Taylor series expansion for a function of several variables.

For a function of several variables (a. - a )I n  „
, , . , , X  , , D  r -  ,3^J (a + Aa)  = J (i ■

j=l j=l k=l

where Aa = (h - h )—  i n
In matrix notation

T TJ (a_ + ^a) = J (̂ ) + A a + h ^a HA a . ..

where Ĝ  is the gradient vector and ^  the Hessian matrix of second 

derivatives.
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For a quadratic function in which H is constant at all points 

on the surface it can be shown that

Aa = -  ^  ^ C^)

Applying this result leads to a procedure of the form

4c+l = 5 k
where the value of is determined by searching according to a

-1suitable algorithm along the direction -H^ for a minimum.

Clearly in this method the inverse of the matrix of second 
-1derivatives H has to be obtained. In the Davidon-Fletcher-Powell

method an iterative procedure is developed in which an improved 
-1approximation to H is obtained at each iteration.
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APPENDIX 10 COMPARTMENTAL ANALYSIS OF V/Q DISTRIBUTION.

This appendix describes the method of analysis of ventilation- 

perfusion distribution which, is based on the model structure shown 

in Figure 2.7.

For both oxygen and carbon dioxide the arterial blood compo

sition can be considered to consist of three components, i.e. from 

the right to left shunt, from compartment one, and from compartment 

2.
i.e.

= 0CaC°2 ’  K = v“ 2

2 i L ° 2  + - Q^C-O^

where C is the concentration of oxygen or carbon dioxide and Q is 

blood flow. Subscripts refer to compartment I C D  compartment 2(2) the 

right to left shunt (S) arterial blood (a), and mixed venous blood 

(v). The quantities on the right hand side of these equations can 

be measured directly. (In the example shown in Figure 2.8 Q was 

measured by the dye dilution method, Qs assumed to be 3% of cardiac 

output, and P^Og, ^a^^2 measured simultaneously. By converting 

P^On, P CO 9  into the corresponding concentrations (C 0_, C CO?) using 

the standard computer subroutines, C-Og and C-CO^ can be

calculated by application of the Fick principle since VO 2  and VCOg 

were also measured).

Thus

ê U l “ 2 + ? 2 L “ 2 = K,
2 i L ° 2  + 2 2 <=2 ° 2  = L

where and are known.

If arbitary values are assigned to the ventilation perfusion
• • # " #

ratio of the two compartments CV^/Q^ and ^ 1 .0 , and

V 2 /Q 2  > 1 .0 ) C^COg, C^Og, CgCOg and 0 ^0 ^ can be obtained from the
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ventilation-perfusion line for that subject. The equations can 

then be solved to yield and Q^. and can also be obtained

since the ventilation—perfusion ratios of two compartments are known. 

It must be the case however that

and

Qj_ + Q 2  - Q - Sg

V f  +  V 2  =  V

Where V is the measured total ventilation of the two compartments. 

Thus two error functions can be defined:-

= (Q -  -  Q2 -  L ’

and

^ 2  = (V - Vl -

By evaluating the two error functions with large numbers of 

values of and found that for low values of

minima in e^ and e^ can be demonstrated. These minima are small 

and are either zero or close to zero. The minima do not occur 

however at the same value of V^/Q,2 ' By increasing a point

is reached at which the minimum in each of the error functions is 

at the same value for V 2 /Q 2 ' This is taken to be the solution. 

For higher values of one or other of the error functions

does not show a distinct minimum, i.e. with values on either side 

of a minimum.
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