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SUMMARY

In the past diagnostic ultrasound was a relatively under utilised technique in the 

particular field of musculoskeletal imaging. This can be mainly attributed to the 

low frequency transducers available at that time which were inadequate for 

imaging of superficial structures because of their limited resolution. The presence 

of bones in the joint regions also inhibited the imaging of small and physically 

slight structures due to the limited access through small acoustic windows and 

non through transmission of sound waves at bony surfaces. More recent 

developments in transducer technology have managed to overcome many of the 

problems by the construction of ultra high frequency probes with conveniently 

sized footprints.

Their increased resolution has produced considerably better image quality, which 

has led to the detection of many anatomical structures, that had not been readily 

visible in the past. In addition the advanced postprocessing software of the new 

generation of ultrasound scanners has resulted in the ability to produce 

panoramic images over considerable lengths of the body surface displaying the 

topography of many of the underlying structures leading to the development of 

the extended field of view imaging modality. Reconstructed three dimensional 

presentations of various organs or body areas on screen constitutes a very 

recent capability that has the potential of detecting abnormalities and placing 

them in their anatomical context.

The aim of this study has been to present what has been accomplished to date 

with ultrasound in the small animal musculoskeletal field using conventional 

ultrasonographic technology. Using the regions of the shoulder, stifle and tarsal 

joint of live dogs, the aim was to investigate the potential of using very high 

frequency transducers, extended field of view imaging and three dimensional
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technology with a view of identifying the anatomical structures involved and also 

conduct repeated individual measurements with the use of specific anatomical 

landmarks to see if an increase in consistency of results could be achieved. 

Normal adult Greyhound cadavers were initially used with a colour marker 

echocontrast agent to verify that structures imaged were indeed the real 

anatomical structures, but subsequent studies were on live normal Greyhounds 

and some clinical cases with lameness problems. The results of the project 

proved that the quality of images obtained with the use of a 16 and a 22 MHz 

transducers were superior to the ones acquired by conventional scanning so that 

identification of previously difficult structures was successfully carried out on 

screen. Furthermore, the extended field of view modality was a contributor to 

solving problems of topography and repeated identification of landmarks, 

whereas three dimensional imaging revealed in some areas the component 

structures in multiplanar detail.

The conducting of repeated individual measurements of some anatomical 

structures with conventional ultrasound has proved that there was poor 

consistency, so that it would be difficult to estimate differences in size that could 

lead to diagnosis of various physiological or pathologic conditions. The use of the 

ultra high frequency transducers did not contribute to the accuracy, because the 

problems concerning the anglulation of the transducer and the narrow acoustic 

window of the joint remained. Measurements obtained with the use of the 

extended field of view modality when calling up images of specific parts of the 

structure proved to be more accurate and could offer a future potential for the 

monitoring of pathologic and healing processes. Three dimensional imaging 

appears as an exciting and most promising technique that could offer accuracy to 

measurements but needs to be further investigated.
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CHAPTER 1.

INTRODUCTION AND REVIEW OF LITERATURE



1. INTRODUCTION AND REVIEW OF LITERATURE

1,1. General Introduction

The first attempt to use ultrasonography in animals was described in 1956 in 

Colorado, United States of America (Temple et al., 1956). In the beginning of the 

1960's Holmes and Howry (1963) were able to image abdominal organs of dogs 

and cats. By 1966 it was possible to detect pregnancy in ewes (Lindahl, 1966). As 

time passed, it began to be used as an aid for detection of abdominal disease in 

veterinary practice. Koch (Koch and Rubin, 1969) and Rubin (Rubin and Koch, 

1968) first published research on the ultrasonography of the canine eye. It was 

documented that in the early 1970's Helper (1970) and Lamm (1970) managed to 

image beating hearts in canine fetuses.

In the 1980's abdominal ultrasound began to be established as a method for 

diagnosing various abnormalities (Poulsen Nautrup, 2000). For example Dr 

Norman Rantanen and his colleagues at Washington State University began using 

ultrasound to detect abnormalities in different organs of horses (Rantanen, 1981; 

Rantanen et al., 1982). Cartee (Cartee, 1981, Cartee et al., 1980) and Nyland with 

their colleagues (Nyland and Bernard, 1982, Nyland et al., 1981) dealt with the 

ultrasonographic appearance of abdominal disease in dogs and cats.

A literature review illustrated that despite the fact that a considerable amount of 

research has been carried out as far as the examination of equine tendon or joints 

is concerned (Craychee, 1995), ultrasonographic techniques for detecting 

abnormalities of the musculoskeletal system in dogs have not been used widely in 

the past. This has been mainly attributed to the fact that the imaging of small non- 

bony structures which are close to bones is difficult due to the lack of an optimal 

scanning angle (Engelke et al., 2000).



Critics of the techniques concerning human diagnostic imaging declared that 

ultrasound's reliability depends on the sonographer's experience and, 

consequently, this facility is not able to help visualise some structures in areas like 

the shoulder, although it can be used for assessing injuries to the mm. 

supraspinatus, infraspinatus, subscapularis and teres minor and defining 

pathologic conditions of the articular labrum of this joint (Sandriek, 2000). Magnetic 

Resonance Imaging constitutes a considerably higher quality diagnostic means for 

such pathological conditions (Erickson, 1997), which can provide additional 

information for conditions like muscle atrophy, which is important for orthopaedic 

surgeons to organise treatment (Sandriek, 2000).

In small animals, some research has been published concerning examination of 

bones, joints, muscles, ligaments, tendons and the area of the brachial plexus, 

where different abnormal conditions were scanned (Kramer et al., 1997, Kramer et 

al., 1999, Long and Nyland, 1999, Reed et al., 1995).

More recent developments in transducer design in order to allow scanning with 

much higher frequences, as well as innovative developments in signal processing 

and image reconstruction have renewed the interest in small animal 

musculoskeletal diagnostic ultrasound.

Ultrasound extended field of view imaging technology has been able to use high 

resolution real - time imaging capability to produce large field of view images with 

excellent image quality (Weng et al., 1997). It has been able to overcome the 

pitfalls and take advantage of the innovations of both real-time and static B-mode 

scanners (Weng et al., 1997). During the last few years the use of three 

dimensional ultrasonographic techniques has begun to be explored in clinical 

medicine (Campani et al., 1998), as since 1994 appropriate software became 

available and three dimensional images were able to be reconstructed (Campani et 

al., 1998).



1 ■ 2. Scientific Review

1. 2.1. Joints

1.2.1.1. Normal ultrasonographic anatomy:

Ultrasound examination of canine joints has proved to be quite difficult, with 

problems of coupling of the transducer to the body surface, due to the narrow 

acoustic windows provided because of joint size and shape. However, with the 

appropriate joint manipulation both the synovial and the articular surfaces have 

proved to be easily observed, the former being presented as a hypoechoic 

structure with hyperechoic foci and the latter, in the shoulder joint for instance, with 

a convex reflective surface that produces acoustic shadowing (Kramer et al., 

1997).

The ultrasonographic appearance of hyaline cartilage has been observed as a 

hypoechoic line between the more echogenic bones and joint tissue. In cases 

where hyaline cartilage is covered by fluid, a hyperechoic line may be imaged due 

to the acoustic impedance between cartilage and fluid (Erickson, 1997). 

Calcifications of cartilage which can normally be found in its deeper layers (Dyce et 

al., 1987) appear as a hyperechoic line (Erickson, 1997). Fibrous cartilage usually 

appears hyperechoic compared to hyaline cartilage (Engelke et al., 2000), due to 

its percentage of coarse type I collagen fibres versus the latter which contains type 

II collagen fibres, constituting 40% of its dry weight and having a relatively high 

content of water (Junqueira et al., 1995).

1.2.1.2. Joint pathology:

Pathologic conditions, such as joint effusion (Kramer et al., 1997), especially in 

cases of bacterial arthritis (Pedersen et al., 2000), defects of the hyaline cartilage



due to degenerative causes (Kramer et al., 1997), especially in the case of 

osteochondritis dissecans on the humeral head or the femoral condyles (Engelke 

et al., 2000) or cystic lesions have been detected (Beggs, 1998). Joint effusion is 

easily distinguishable owing to the anechoic or hypoechoic areas present in the 

joint cavity, whereas haematogenous or purulent effusions usually contain cell 

structures, that produce hyperechoic reflections (Engelke et al., 2000). Synovial 

cysts have also proved to be easily observable and they usually appear anechoic, 

but they may present with internal echoes, since gelatinous or villous content might 

exist (Beggs, 1998).

Ultrasonographic means have proved to be effective in the diagnosis of synovitis in 

both large and smaller joints located at various depths within the body. The 

distinction between a simple effusion and synovial hypertrophy can be made 

easily, whilst determination of the cause of a synovial swelling is possible, for 

instance between tenosynovitis or peritendinous oedema (Wakefield, 1998).

Ultrasound-guided aspiration of synovial fluid can help the clinician reach an 

accurate diagnosis of several diseases. Ultrasound can also facilitate the practical 

aspect of therapeutic injection of drugs (Long and Nyland, 1999). This constitutes a 

significant aid for the clinician, since the needle can be visualised during the 

procedure and the distribution of any injection performed may be constantly 

monitored (O'Connor, 1998).

Extensive research has shown that ultrasonographically guided needle biopsy in 

humans may be efficiently used both for monitoring and evaluating the progress of 

solid and cystic benign and malignant tumours of joint soft tissues. It has been 

estimated that this procedure is regarded as a risk minimising diagnostic technique 

in order to assess soft-tissue tumours from a cytological or histologic point of view 

(Konermann et al., 2000). Moreover it is more effective in limbs as high frequency 

probes offering better axial resolution can be used (Rubens et al., 1997).

4



Nevertheless, it has been reported that limitations exist in detecting intraosseous 

tumours by this method, since most of the sound waves are reflected by the bony 

structures and, consequently, penetration is very limited (Konermann et al., 2000). 

There still exist some reservations concerning the use of ultrasound, because there 

have been reported some unsuccessful attempts to detect and, consequently, 

intervene in soft tissue lesions using only ultrasonographic means (Rubens et al.,

1997).

(Al Shoulder joint:

1.2.1.3. Normal ultrasonographic anatomy:

A thorough study has been conducted recently into the ultrasonographic evaluation 

of the shoulder joint. The normal anatomical features, including muscles lying 

around the joint (Long and Nyland, 1999), tendons, bursas and, even, layers of 

subcutaneous fat (Forrester, 1998) have been scanned and an accurate 

presentation in B-mode sagittal and transverse images has been achieved (Long 

and Nyland, 1999). High frequency transducers are capable of distinguishing 

between different shoulder structures, but the interpretation of the image display 

depends on the sonographer's skill and experience (Forrester, 1998).

The shoulder joint capsule can be seen deep to the tendons of the mm. 

supraspinatus, infraspinatus and teres minor, although normally does not appear to 

have identifiable characteristics (Long and Nyland, 1999). However, approaching 

the shoulder joint cranially is difficult due to the limited transducer application, 

caused by the protruding greater tubercle. Moreover, an acoustic window cannot 

be found when trying to image the joint caudally and medially, because of the 

limited space and the close fibromuscular connection between the scapula and the 

thoracic wall respectively (Gassner, 2000). The hyaline cartilage has been 

visualised as a thin anechoic line between the humerus and the joint capsule, 

which cannot be detected easily in cases of fluid effusion (Long and Nyland, 1999).



1.2.1.4. Pathology:

It has been demonstrated that there is a possibility of recognising abnormal 

amounts of synovial fluid, distension of the bursa of the tendon of origin of the m. 

biceps brachii, calcification of tendons and loss of normal fibre pattern of muscles. 

It has been illustrated that ultrasonography can be of significant value in identifying 

causes of forelimb lameness due to soft tissue injury (Long and Nyland, 1999).

In cases of bicipital tenosynovitis considerable deviation from the normal 

ultrasonographic appearance may be seen. A loss of imaging of the hyaline 

cartilage (sclerosis of the intertubercular groove) in combination with excessive 

fluid and loss of the normal tendon echotexture are indicative of this pathologic 

situation (Long and Nyland, 1999).

It has been reported that ultrasonographic means are able to detect 

osteochondritis dissecans even at its early stages. The caudal irregularities of the 

humeral head are distinct and, with progression of the disease, infractions of the 

contour of the humeral head take place. Detached cartilage may be viewed as a 

hyperechoic, free objects moving within the joint space, while in cases of 

calcification distal acoustic shadowing is evident. As the disease evolves, reactive 

thickening and joint effusion may be visualised (Gassner, 2000).

Even very small amounts of fluid may be visualised in the subacromial or 

subdeltoid bursa. Occasionally, the m. deltoideus may present with internal 

septations, the anechoic parts of which may mimic a thickened bursa. This may be 

avoided if the structures under suspicion are followed laterally, so that the real 

bursa can be visualised underneath the m. deltoideus and end up at the proximal 

humerus (Zanetti and Hodler, 2000).



(B  ̂Stifle joint:

1.2.1.5. Normal ultrasonographic anatomy:

The ultrasonographic anatomy of the canine stifle has also been published (Reed 

et al., 1995). Both long and short axis ultrasonographic images have been 

recorded concerning most anatomical structures of the stifle. Fascia (although a 

distinction is not always evident), the patellar ligament (Kramer et al., 1999), the 

infrapatellar fat (Engeike, 2000, Kramer et al., 1999), the medial and lateral 

menisci, bony surfaces, normal cartilage, as well as the cranial cruciate ligament 

have been readily observed (Kramer et al., 1999).

A well designed study has shown that medial and lateral menisci can be seen as 

homogeneous, hyperechoic and triangular-shaped tissues in live dogs (Reed et al., 

1995). The use of a stand-off pad improves the imaging of these structures 

(Kramer et al., 1999). The same image has been obtained in human cadavers, 

where intra-articular imaging has proved that the menisci can be visualised in their 

entirety together with other intra-articular structures, such as the cruciate 

ligaments, that cannot be seen easily otherwise and the hyaline cartilage, which 

covers the articular surface (McDonnell et al., 1992). It has been shown that the 

latter produces a well defined hypoechoic line at the level of the boundaries 

between bone and cartilage or cartilage and soft tissues (Reed et al., 1995).

The infrapatellar fat has been viewed as a hyper reflective structure and with 

indistinct margins. There usually exists some fluid between the patella and the fat 

which ranges from hypoechoic to anechoic, whereas, in cases of chronic diseases 

it turns out to be more hyperechoic and inhomogeneous (Kramer et al., 1999).



1.2.1.6. Pathology:

A carefully designed study concerning the human stifle joint has demonstrated that 

in cases of arthritis the cartilage may be affected as well. Arthritis is suspected in 

cases of narrowing of the cartilage in combination with synovial thickening and 

effusion (Aisen et al., 1984). A defect of the stifle cartilage occurring in cases of 

osteochondritis dissecans in dogs has been reported and it has been observed on 

the lateral condyle of the femur, in the form of detached hyper reflective structures 

of various sizes, whilst the surface of the underlying bone appears to have irregular 

margins (Kramer et al., 1999).

Meniscal cysts have been observed successfully by ultrasonographic means. They 

have been imaged as small in size, multilocular and with internal echoes. Their 

detection helps in the diagnosis of partial or full ruptures of the menisci (Beggs,

1998), which, although they are considered to be difficult to demonstrate 

ultrasonographically (Kramer et al., 1999), can be visualised by this way, because 

these cysts are considered to contain joint fluid, that has changed position due to a 

meniscal tear (Beggs, 1998). It should be noted however that this diagnostic 

method must be evaluated carefully since misdiagnosis is frequent (Engeike, 

2000).

Stifle joint effusion can be easily assessed (Kramer et al., 1999). Dilation of the 

suprapatellar recess is evident (Beggs, 1998) and medial displacement of the 

infrapatellar fat body is easily recognised. Cartilage abnormalities due to 

osteochondrosis dissecans can also be diagnosed (Kramer et al., 1999).

Tumours protruding into the stifle joint are easily detectable. They do not usually 

present with the same echogenicity in all their parts, varying from anechoic to very 

hyperechoic. It has been illustrated that tumours in the distal femur have been 

detected ultrasonographically In dogs and have proved to be hypoechoic with
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indistinct margins. Lipomas can also be easily identified as such because of their 

hypoechoic appearance with irregular dots or streaks (Kramer et al., 1999).

(C) Tarsal joint

1.2.1.7. Normal ultrasonographic anatomy:

The normal anatomy of the tarsal joint has been investigated in humans. The 

anterolateral (dorsolateral) pouch of the tarsal joint capsule has been detected 

ultrasonographically In humans, but its boundaries have not been determined with 

accuracy, since the lateral collateral ligament, which constitutes one of them, has 

not been imaged successfully (Friedrich et al., 1993).

1.2.1.8. Pathology:

It has been reported in humans that small amounts of fluid can be found normally 

in the tarsal joint, as well as in the tendon sheaths. But, even when fluid increases 

in asymptomatic patients, it cannot be considered as an abnormal situation as it 

appeared to vary in amount in healthy volunteers (Nazarian et al., 1995). However 

blood effusions due to injuries have been observed due to the convex shape that 

the joint cavity acquires (Friedrich et al,, 1993).

It is important to mention that pathologic situations of most anatomical structures of 

the tarsal joint are prone to misinterpretation if an accurate ultrasonographic 

technique is not applied properly. Both longitudinal and transverse scannings "in 

orthogonal planes" are essential in order to evaluate any kind of deviation from 

normal characteristics (Waitches et al., 1998).



1.2.2. Ligaments

Experimental studies carried out some years ago showed that it was difficult to 

scan ligaments due to their close position to the bone surface (Kramer et al.,

1997). There is evidence however suggesting that it is possible to image them with 

a certain degree of accuracy, although the use of large amounts of acoustic 

coupling gel or a stand-off pad are required in order to optimize the imaging of 

superficial structures (Reed et al., 1995).

Ligaments in the horse seem to be slightiy more echogenic compared to tendons 

with a more homogeneous appearance and a coarser fibre pattern on a long axis 

view (Craychee, 1995).

1.2. 2.1. Pateliar ligament:

It is possible to identify the pateilar ligament in live dogs, appearing as a 

homogeneous hypoechoic to moderately echoic structure, containing parallel 

longitudinal echogenic collagen fibres and having an oval shape when imaged in a 

transverse plane (Reed et al., 1995). It seems, though, to be of lower echogenicity 

when compared to that of the superficial fat lying dorsally (Fornage et al., 1984). 

Both the superficial and deep fascia are able to be visualised cranial to the patellar 

ligament (Reed et al., 1995).

Pathology of the patellar ligament usually includes traumatic injuries (ruptures in 

most cases) followed by haemorrhages, which appear as hypoechoic structures. 

However, in cases of partial ruptures the amount of fluid is less and does not 

produce any acoustic enhancement (Fornage et al., 1984). If the patellar ligament 

has been pulled off the patella, small hyperechoic pieces creating acoustic 

shadowing may be seen, corresponding to patellar fragments. In cases of partial
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ruptures mentioned above a fragment of the tibial tuberosity may be observed 

(Kramer et al., 1999).

Patellar tendinitis can be identified by ultrasonographic means as well as 

calcifications, which are indicative of a chronic pathological condition (Fornage et 

al., 1984). It has been proved that patellar sonographic lesions may be observed 

even in cases of asymptomatic human patients and are related to a greater risk of 

a later incidence of patellar rupture (Cook et al., 2000).

The processes of healing and consolidation of the patellar ligament after rupture 

has taken place can be documented. During the early days of the injury the 

ligament looks thicker and appears with varying echogenicity, while its two parts 

can be distinguished. The ligament thickness decreases during the next six weeks, 

since the fibres obtain a more normal orientation, which results in a normal echoic 

appearance. However some inhomogeneous regions may be detected for months 

(Kramer et al., 1999).

1.2.2. 2. Cranial cruciate ligament:

The cranial cruciate ligament has been imaged ultrasonographically with the dog's 

leg in full flexion, in order to obtain a better acoustic window. It has been illustrated 

that the cranial cruciate ligament appears echogenic, but due to the anisotropy 

artifact it may be imaged as more hypoechoic in comparison with the patellar 

ligament mentioned above, as well as with the surrounding fat (Reed et al., 1995). 

The use of a stand-off pad in large and very large breeds of dogs is not 

recommended due to the creation of reverberation artifacts which can be 

misleading in the diagnosis of pathologic situations of this ligament (Kramer et al.,

1999).
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1.2.2. 3. Caudal cruciate ligament:

The imaging of the caudal cruciate ligament has presented several difficulties 

(Reed et al., 1995). The caudal cruciate ligament has been scanned successfully 

only in large breed dogs that have undergone maximal extension of the stifle joint 

and appears as a hypoechoic round structure. This suggests a difficulty in 

visualizing intra-articular structures of the stifle joint, because the acoustic window 

provided is very narrow (Kramer et al., 1999).

1.2.2. 4. Collateral ligaments of the stifle joint:

The collateral ligaments can be imaged by placing the transducer on the medial or 

lateral side of the stifle joint but, usually, it is not possible to differentiate between 

them and the adjacent subcutaneous tissue (Engeike, 2000) due to their close 

proximity to the underlying bones and their narrow width. The use of a stand-off 

pad has not contributed in that goal. In cases of injuries, though, haematomas 

have been detected by ultrasonographic means (Kramer et al., 1999).

The medial collateral ligament, that extends between the medial epicondyle of the 

femur and the medial border of the tibia (Evans, 1993) has appeared in human 

ultrasonograms as a thin and relatively homogeneous hypoechoic band, whereas, 

it has been imaged as thickened with areas of different echogenicities when injured 

(Lee et al., 1996).
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1.2.3. Muscles

1.2. 3.1. Normal ultrasonographic anatomy:

Real-time ultrasound has proved to be valuable for the assessment of the muscular 

system in dogs (Kramer et al., 1997, Siems et al., 1998, Farrow, 1996). There is a 

potential of viewing the normal appearance of muscle structures, in particular the 

musculotendinous junction, but also the normal fibre pattern and the differing 

echogenicities among the various parts of a muscle and its surrounding tissues, 

such as the connective tissue fascia or subcutaneous tissue (Craychee, 1995). The 

muscle fibres are imaged like a group of parallel orientated hypoechoic "lines" 

surrounded by the hyperechoic perimysium (or intermuscular septum). Meanwhile, 

the whole muscle is surrounded by the épimysium, which is hyperechoic as well. 

Muscles, especially those in contraction, tend to be more hypoechoic than 

subcutaneous fat or tendons (Winter, 1998).

Certain muscles appear to have a characteristic sonographic image. For instance, 

the m. biceps brachii has, according to Engeike and Gassner (2000), "a typical 

fish-bone pattern", whilst the m. infraspinatus appears "with a one-sided, dorsal 

muscle fibre appearance".

1.2.3. 2. Masses:

Ultrasound is considered to be of great value in confirming and diagnosing an 

existing mass, in as much as it could be a normal muscle asymmetry or 

subcutaneous fat (Beggs, 1998). Sonographic classification of muscle masses can 

be made according to the compressibility of the mass, various differing mobile 

echoes within a single structure or the degree of septation and vascular supply. It 

is extremely useful for planning the next steps to be taken by the clinician (Engeike 

and Gassner, 2000).
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1.2.3. 3. Abscesses:

Muscle abscesses have proved to be simple to examine (Kramer et al., 1997). 

Their ultrasonographic appearance varies from a totally anechoic mass to an 

indistinct structure with varying echogenicity (Beggs, 1998). It is possible to 

evaluate both the age and the position of an abscess (Kramer et al., 1997), by 

including the presence of air, cellular debris (Craychee, 1995) or even calcification 

(Engeike and Gassner, 2000). Abscesses of the mm. semimembranosus and 

semitendinosus have been reported in horses (Craychee, 1995). Diffuse 

inflammatory processes, by contrast, can be detected with great difficulty (Kramer 

et al., 1997). Pathologic conditions with similar ultrasonic appearance, such as 

muscle lymphoma or pyomyositis, are more characteristic (Beggs, 1998), but 

muscle atrophy is not easily detectable (Kramer et al., 1997).

1.2. 3. 4. Oedema:

Muscle oedema has been reported to produce a certain sonographic appearance 

in equine subcutaneous tissue, which is attributed to the distribution of fluid in 

adipose tissue. The presence of lymphoedema has also been documented 

(Craychee, 1995).

1.2.3. 5. Foreign bodies:

It has been shown from previous research that foreign bodies can be imaged only 

when their size is larger than 2-3 mm (Kramer et al., 1997). Ultrasonography, 

however, tends to be more effective than radiographic techniques, since more 

materials can be viewed by B-mode echo display systems including wood, pencil 

graphite and plastic. Its value is of great importance, especially in preventing 

complications like osteomyelitis or other infections or even in loss of a limb. 

Furthermore, ultrasonography is able to determine the depth of foreign bodies from
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the skin surface (Shah et al., 1992) and facilitate their surgical removal (Fornage 

and Schernberg, 1986).

1.2 .3 .6 . Hyperextension:

Resultant fibrosis of the m. semitendinosus after hyperextension has been reported 

to have been evaluated ultrasonographically in horses as an accompanying 

important lesion in such cases (Craychee, 1995).

1.2. 3. 7. Ruptures:

According to Farrow, "a complete separation is called a rupture, unless it occurs at 

the origin or insertion of the muscle, in which case it is called an avulsion". 

Ruptures, as in the case of the part of the m. gracilis inserting onto the tuber 

calcanei in racing dogs, especially Greyhounds, may occur (Hermanson and 

Evans, 1993). Farrow implies that "contemporary classification schemes describe 

muscle tears as being mild, moderate or severe in degree" (Farrow, 1996). 

However, most of the studies carried out concerned cattle, sheep, horses and of 

course humans. Two dimensional, real-time ultrasonography can facilitate the 

estimation of such cases and, furthermore, can be used for avulsions (at the origin 

or insertion of muscles) (Farrow, 1996). This is significant, because such 

conditions are able to cause serious problems with the animal's movement 

(Vaughan, 1979).

1.2.3. 8. Muscle contractures:

Contractures of the mm. infraspinatus, supraspinatus, gracilis, semimembranosus 

and quadriceps femoris have been reported in dogs causing subsequent 

lameness, while producing a characteristic sonographic image. The m. 

infraspinatus especially appears with a fibrous induration imaged at the acromion
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level, but, in general, the scanning of a contracted muscle in a longitudinal plane 

reveals inhomogeneous echogenic muscle lesions (Engeike and Gassner, 2000).

1.2. 3. 9. Haemorrhage:

It has been pointed out that haemorrhage into muscles can be relatively easily 

observed, especially after severe traumas or sequential to bleeding disorders. 

Differing degrees of echogenicity can be estimated according to the stage of 

organisation of haematomas and the frequency of the transducer. Subsequent 

muscle enlargement can be imaged and various patterns of echogenicity are 

distinguishable in cases of chronic or recurrent injuries. Haemorrhage of the mm. 

semimembranosus and semitendinosus has also been reported in horses 

(Craychee, 1995).

1 .2 .3 .10 Muscle healing:

Extensive research has shown that the whole process of muscle healing, after a 

traumatic or post-operative rupture may be documented (Kramer et al., 1997, 

Siems et al., 1998). The different echogenicities associated with scar formation and 

reconstruction of muscle tissue, including organisation of haematomas, have been 

explored (Kramer et al., 1997, Siems et al., 1998, Farrow, 1996). This is of 

particular interest because true muscle regeneration requires almost ideal 

conditions in order to occur properly and, as a result, mostly includes connective 

tissue creation (Vaughan, 1969).

1.2.3.11 Tumours:

Ultrasound can be generally accurate in determining muscle tumours, especially 

when they have a respectable size (Farrow, 1996). Their inter- or intra- muscular 

position can also be determined (Gerwing and Kramer, 1995). Furthermore, a
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distinction between benign and malignant characteristics can be recognised 

ultrasonographically (Craychee, 1995), although the distinction between cystic and 

solid masses could be misleading, since a benign tumour, for example, may 

appear with a solid and indistinct echotexture. In those cases a fine needle 

aspiration can be performed successfully despite the high risk prevalence (Beggs,

1998).

1.2.4. Tendons

The normal sonographic anatomy of tendons has been observed (Farrow, 1996, 

Kramer et al., 1997). Ultrasonography is considered to be a more accurate 

diagnostic method than Magnetic Resonance Imaging in several situations and, 

especially, in assessing areas of differing texture within an injured tendon and even 

slight abnormalities (Waitches et al., 1998).

1. 2. 4. 1. Normal ultrasonographic anatomy:

Using repetitive long axis and transverse scans, it has been shown that tendons 

are highly echogenic structures owing to the high levels of collagen that they 

contain (Craychee, 1995). The numerous hyperechoic lines are due to the strong 

acoustic interfaces between collagen bundles and endotendineus septa within a 

tendon. It has been well documented in human medicine that tendons deriving 

from a single muscle appear with a homogeneous echogenicity, whereas, tendons 

which are formed from the insertions of more than one muscle (i.e. the common 

calcaneal tendon or the tendon of the m. quadriceps femoris) usually have a 

different echotexture, resulting from the various heads of the muscles participating 

in their formation. A final common trunk can also be seen in their distal part 

(Martinoli et al., 1999).

It has been shown that tendons lying close to each other can be distinguished
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ultrasonographically by a hypoechoic interface resulting from the imaging of their 

tendon sheaths. Meanwhile, sesamoid bones which lie inside tendinous structures 

(Martinoli et al., 1999), e.g. fabellae in the medial and lateral head of the m. 

gastrocnemius, as well as in the tendon of the m. popliteus (Evans, 1993), can be 

visualised. Furthermore, the musculotendinous junctions have been able to be 

distinguished. More specifically, the tendon attachments to muscles are more 

gradual compared to those concerning bones, which are more prominent and 

include a narrow hypoechoic zone corresponding to fibrocartilage (Martinoli et al., 

1999).

Tendons are usually surrounded by a paratenon or a synovial sheath, the latter 

being constituted by two layers, an internal visceral and an external parietal layer 

connected between each other with a mesotendon, that provides adequate blood 

supply. It has been shown in human orthopaedics that ultrasonographic means are 

able to distinguish those two layers as hypoechoic lines separated by an anechoic 

surface, which represents a slight amount of fluid existing within the mesotendon 

space (Martinoli et al., 1999).

The tendon of the m. biceps brachii has been detected by using a 10 MHz probe 

as a homogeneous hyperechoic structure (Long and Nyland, 1999) lying in the 

intertubercular groove of the humerus (Hermanson and Evans, 1993), which in the 

musculotendinous junction is converted to a hypoechoic structure corresponding to 

the muscle fibres. The bursa of the tendon of the m. biceps brachii has also been 

visualised by researchers in its distal part as a fluid-filled pouch, with a small 

amount of anechoic fluid being also detected at the level of origin of the tendon of 

the m. biceps brachii on the supraglenoid tubercle (Long and Nyland, 1999); in a 

transverse view this offers the more characteristic image of the tendon of the m. 

biceps brachii appearing as a round or oval structure surrounded by the joint 

capsule sac (Engeike and Gassner, 2000).

The tendon of the m. supraspinatus has been imaged as a short tendon with a
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broad insertion, lying almost underneath the patient’s skin (Long and Nyland,

1999). The tendon of the m. infraspinatus has also been seen as a long 

homogeneous structure inserting at the lateral aspect of the distal part of the 

greater tubercle (Long and Nyland, 1999; Hermanson and Evans, 1993).

The tendon of the m. extensor digitorum longus has been detected in the canine 

stifle joint by means of a stand-off pad. Its exact location has been determined, as 

well as the soft tissues surrounding it (Kramer et al., 1999).

The common calcaneal tendon can be easily imaged, owing to its length, although 

a stand-off pad is almost always necessary. A hypoechoic area may be seen just 

proximal to the calcaneal tuberosity, since all the tendon fibres, that constitute the 

insertions of various muscles, do not insert with the same angle (Gassner and 

Engeike, 2000) but they do this in a curved path (Bertolotto et al., 1995). This 

necessitates the change of the angle in order to achieve an optimal view (Gassner 

and Engeike, 2000).

The subcutaneous and calcaneal bursae cannot be imaged, unless they become 

oedematous. Moreover, fat surrounding both the tendon and the adjacent bones 

appears hypoechoic and with indistinct margins. The bone surfaces of the tibia, the 

calcaneus and the talus are viewed as highly reflective structures causing acoustic 

shadowing (Gassner and Engeike, 2000)

1.2. 4. 2. Ruptures:

Tendon ruptures differ from strains in that the latter term usually refers to 

microscopic tissue damage, which is not able to be detected clinically, 

radiologically or surgically (Jozsa and Kannus, 1997). Both partial or complete 

rupture of a tendon may occur (Kramer et al., 1997) as a result of a trauma or a 

weight overload (Martinoli et al., 1999) and have been reported for the common 

calcanean tendon in beagles and spaniels, especially those which are permanently
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kept in cages (Jozsa and Kannus, 1997). In either case, an accurate sonographic 

view has been obtained in dogs (Kramer et al., 1997), whereas in humans 

intracapsular ruptures of the tendon of origin of the m. biceps brachii and 

discontinuity of the common calcaneal tendon fibres in partial ruptures have been 

most frequently reported to be detected by scanning (Jozsa and Kannus, 1997).

It has been proved that degenerative or minor traumatic conditions already pre­

exist in most cases of tendon ruptures, which offers an explanation to spontaneous 

ruptures of apparently unknown origin. Metabolic changes due to underlying 

systemic diseases, such as systemic lupus erythematosus, are considered to be 

responsible for tendon ruptures without previous traumatic incidence. Patients with 

a previous history of endotendinous steroid injections have proven to be prone to 

ruptures as well. It has been illustrated that scanning techniques are able to 

identify tissue changes resulting from degenerative causes, and in combination 

with the possibility of differentiation between partial and complete tears, can 

provide the clinician with extremely useful information with regard to treatment 

(Martinoli et al., 1999).

It is documented that to diagnose a full rupture it may not be necessary to evaluate 

it ultrasonographically, because the clinical appearance is characteristic (Waitches 

et al., 1998). In cases of complete rupture an ultrasonogram can reveal a full 

disruption of tendon fibres (Martinoli et al., 1999) with the two parts of the tendon 

hyperechoic and in some cases thickened as the case of rupture of the tendon of 

origin of the m. biceps brachii (Gassner and Engeike, 2000) and a subsequent 

development of a hypoechoic haematoma or even granulomatous tissue. The 

absence or presence of these characteristics are indicative of the time passed 

since the rupture occured (Martinoli et al., 1999).

In the case of a complete rupture of the tendon of origin of the m. biceps brachii the 

intertubercular groove is empty, but, in the mean time, the paratenon, the synovial
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sheath and, sometimes, even granulomatous tissue may mimic the presence of a 

real tendon structure (Gassner and Engeike, 2000).

Partial ruptures, conversely, are more common and difficult to diagnose, which 

necessitates the need for ultrasonographic evaluation (Waitches et al., 1998). They 

are characterised by the disappearance of the classic fibrillar pattern in the 

ruptured part and the preservation of it in the intact part of the tendon (Martinoli et 

al., 1999). The common calcaneal tendon has been reported to be thickened in 

that specific area, whereas a hypoechoic surrounding area appears when effusion 

in the tendon sheath exists. Tendon fragments are imaged, according to the 

authors, as "club-like and shaggy" (Gassner and Engeike, 2000).

When the tendon sheath is ruptured as well, the amount of fluid usually found in 

cases of simple rupture appears to increase and a larger haematoma is produced, 

which is ultrasonographically detectable with irregular and indistinct margins. The 

two parts of the tendon must be defined carefully, because they might be found at 

various distances from the injury site (Martinoli et al., 1999).

1.2. 4. 3. Avulsions:

Chronic tendon avulsions can be diagnosed by means of ultrasound scanning and 

other diagnostic methods (Jozsa and Kannus, 1997), while sonographic 

assessment of avulsion of the tendon of the m. gastrocnemius has been reported 

(Farrow, 1996). Cases of avulsions of the tendon of the m. biceps brachii are 

characterised by hypoechoic areas due to oedema or haemorrhage. Tendon 

displacement is very often evident, whilst bone fractures are very frequently 

visualised within the tendon. Haematomas may be imaged under the periosteum in 

the fracture area. The sonographic image of a fractured bone with differences 

between the echotexture of the cortex and the spongiosa is detected (Gassner and 

Engeike, 2000).
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1.2. 4. 4. Tendinitis:

Tendinitis has been reported being imaged with a varying appearance. In cases of 

equine acute tendinitis the sonographic characteristics constitute an image of 

decreased echogenicity (Craychee, 1995). The tendon is enlarged and looks 

inhomogeneous with focal hypoechoic regions (Martinoli et al., 1999), while its 

sheath contains more fluid than normal. Conversely, chronic tendinitis appears with 

a thickening, inhomogeneity and decreased echogenicity of the affected tendon 

(Craychee, 1995), as well as loss of specular echoes. Such lesions can be 

detected ultrasonographically also in older patients (tendinosis), but it has not been 

clarified whether they are a result of age or a forthcoming rupture (Martinoli et al.,

1999). In either case, it has been proved that ultrasound is highly reliable In 

detecting sequel conditions (e.g. calcifications parallel to the tendon fibres - 

Engeike and Gassner, 2000), even minor ones (Craychee, 1995) or ruptures of the 

subacromial bursa (Martinoli et al., 1999).

1.2. 4. 5. Calcifications:

Calcifications of the tendon of the m. supraspinatus have been well documented in 

dogs. Various focal hyperechoic regions representing calcification, creating 

acoustic shadows in the far field can be imaged, indicating the presence of 

calcified tissue. Acoustically mixed lesions have been reported to be seen in cases 

of trauma of the m. supraspinatus (Long and Nyland, 1999). When calcifications 

are imaged in an acute phase they are usually accompanied by oedema, whereas 

when they appear inside the tendon they may have either a focal or a diffuse 

appearance and sometimes do not cause an acoustic shadow (Engeike and 

Gassner, 2000).

Calcifications of the tendons of the mm. supraspinatus, infraspinatus, 

subscapularis and teres minor have been reported in humans despite the difficulty
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sometimes encountered in their location. They usually form hyperechoic foci that 

are more easily detectable by ultrasonographic means rather than fluoroscopy 

(Farin et al., 1995).

1.2 .4.6. Tenosynovitis:

Modern equipment has made it possible to image even slight abnormalities to the 

paratenon and the synovial sheaths (Martinoli et al., 1999). As far as the former 

structure is concerned, peritendinous fluid in combination with thickening of the 

tendon and peritendinous structures and formation of fibrous tissue are the main 

ultrasonographic findings encountered. Synovial inflammation is characterised by 

thickening of the synoviai sheath and production of excessive amounts of fluid. 

Imaging with high resolution transducers has shown that fluid echogenicity can 

vary from totally anechoic to hyperechoic and with a flocculent appearance. In 

hypertrophic synovitis hypoechoic villous protrusions can be detected among the 

fluid effusion, whereas in cases of calcifying tendinitis the bones involved appear 

with bony.irregularities (Martinoli et al., 1999).

1.2.4. 7. Intertubercular groove osteophytes:

They are usually produced as sequels of degenerative lesions, calcifications or 

calculi embedded in the intertubercular groove. In short axis views the groove 

seems to lose its round pattern, while the edges of the groove fall into it and 

produce acoustic shadowing. Acute lesions are followed by the presence of fluid. 

The humeral surface becomes more irregular and different degrees of echogenicity 

are encountered (Engeike and Gassner, 2000).
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1.2. 4. 8. Dislocation:

Dislocation usually takes place in tendons that are surrounded by synovial sheaths 

and constitutes the sequel of injury, which is usually confirmed by the detection of 

peritendinous effusion (Martinoli et al., 1999). Dislocation of the tendon of the m. 

flexor digitorum superficialis has been reported, being assessed sonographically In 

dogs, especially for confirmation of diagnosis made by palpation of the affected 

region (Farrow, 1996).

Dislocation of the tendon of the m. biceps brachii can be easily identified in dogs 

(Kramer et al., 1997). A flattened intertubercular groove and a defective transverse 

ligament are considered as the most important predisposing factors (Josza and 

Kannus, 1997). It usually happens medially in humans and the transverse ligament 

tends to remain intact. However, it is reported that the ligament is torn in some 

cases and the tendon of the m. biceps brachii is displaced superficial to the tendon 

of the m. subscapularis, which can lead to a safe ultrasound diagnosis, since the 

intertubercular groove is found to be empty and the tendon is in a medial position 

(Martinoli et al., 1999), usually at the groove edge or on the lesser tubercle 

(Engeike and Gassner, 2000). Ultrasound techniques on the other hand can offer 

the potential for misinterpretation in cases of synovial debris remaining in the 

groove (Martinoii et al., 1999). Entrapment of joint mice in the sheath of the tendon 

of the m. biceps brachii has been imaged in dogs as well (Kramer et al., 1995).

1.2.4. 9. Oedema:

Peritendinous oedema can be evaluated readily by ultrasonographic means, since 

oedematous fluid lends itself well as a fluid-soft tissue interface, helping in normal 

displaying of the tendon, but allowing the paratendon to be imaged separately from 

the skin. Peritendinous oedema and in a similar way, peritendinous haemorrhage 

of the tendon of the m. flexor digitorum superficialis has been recorded in horses 

(Main, 1995).
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1.2.4.10. Tendon healing

Real-time ultrasound can be extremely useful in the estimation of tendon healing. 

Repetitive scans can allow a successful monitoring of the healing process and the 

time required to obtain full tendon reconstruction (Kramer et al., 1997), or, 

conversely, deterioration of a lesion (Craychee, 1995). Generalised tendon 

thickening, scars and granulomatous tissue can easily be imaged with ultrasound, 

especially in the case of the common calcaneal tendon. Such processes are 

extremely helpful in cases of older common calcaneal tendon tears which cannot 

be easily diagnosed clinically due to the time interval between the accident and the 

possible diagnosis (Jozsa and Kannus, 1997). Therapeutic results of anti - 

inflammatory drugs and exercise protocols can be assessed with ultrasound 

(Craychee, 1995).

1.2.4.11. Postoperative evaluation of various tendons:

Wound healing after surgical repair can be accurately estimated by means of 

ultrasonographic procedures. It has been shown in human postoperative scans 

that the tendons of the mm. supraspinatus, infraspinatus, subscapularis and teres 

minor usually appear hyperechogenic and thinner compared to their contralateral 

tendons (Martinoli et al., 1999). The acromion is imaged as a less smooth and 

homogeneous surface, whereas, the echogenicity of the tendon of the m. 

supraspinatus is abnormal in relation to the contralateral one (Mack et al., 1988). In 

addition, postoperative imaging of the common calcaneal tendon has revealed that 

the tendon appears enlarged and without the classical fibrillar echotexture 

(Martinoli et al., 1999).

Suture remnants are often easily distinguishable (Craychee, 1995), even after 

extremely long periods of time (e.g. years). The latter are visualised as bright 

specular reflections producing a comet tail artifact or an acoustic shadow (Martinoli 

et al., 1999).
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Tendon reconstruction can be monitored with ultrasound (Craychee, 1995). A 

degree of normal fibre echotexture of the common calcanean tendon may be seen 

six weeks after the operation (Engeike and Gassner, 2000). It has been reported, 

though, that " the normal longitudinal oriented echostructure cannot be detected 

during the first 6 months after rupture" and it is doubtful whether a full histological 

recovery may be obtained in the following years (Rupp et al., 1995).

1.2.4.12. Tumours:

It has been illustrated that primary tendon tumours, although rare in general, 

usually occur around tendon sheaths. They tend to be anechoic, but sometimes 

expand within the tendon substance and render it prone to spontaneous rupture 

(Martinoli et al., 1999). Extremely hyperechoic areas corresponding to calcifications 

have been reported in tumours of the tendon of the m. biceps brachii (Engeike and 

Gassner, 2000). Ultrasound is capable of determining the exact location of a 

tendon tumour effectively (Martinoli et al., 1999).

1.2.4.13. Limitations:

It is important to comment on the limitations of ultrasonography in the diagnosis of 

specific pathologic conditions, such as tendon microtears. A decreased echogenic 

appearance is not always able to indicate whether a minor tendon disruption or 

another lesion (e.g. tendon oedema) is present, which indicates the necessity of a 

concurrent clinical evaluation in order to decide upon the healing progress and 

further prognosis (Craychee, 1995).
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1.2.5. Errors in Measurements

It is well known that conventional ultrasound is widely used in order to evaluate the 

size of or the changes to an organ during a disease process (Riccabona et al., 

1995). In recent times, three dimensional ultrasound has been investigated as to its 

potential in clinical use for this purpose, by questioning that its measurements are 

reliable and valid (Farrell et al., 2000).

Reliability refers to the ability of a trial to present the same results in the same 

subject of study repeatedly, which is best known as intra-rater reliability. When the 

same results are produced by different observers, who follow the same procedure, 

then the term "inter-rater reliability" can be used. Furthermore, validity of a test 

refers to the degree of success where the taken measurement coincides with the 

true or definitive result produced with a widely recognised reference test (Farrell et 

al., 2000).

The reliability and validity has to be taken into account, because errors in distance 

measurements usually occur. These are observed in all ultrasound images and are 

dependent on the nonzero size of the image pixels, the specific image-acquisition 

process utilised and are different for each image processing system (Goldstein,

2000).

Image pixelation errors can occur when the operator selects two image pixels on 

the screen in order to take a distance measurement. Taking into account that the 

echoes are displayed on the screen in the form of discrete square pixels and their 

amplitude is expressed by various degrees of gray colour, it can be easily deduced 

that the smallest unit of length that is able to be measured is the pixel width, which 

is displayed with a uniform shade of gray. Errors can also be made in cases of 

wrong caliper orientation by the operator himself or herself (Goldstein, 2000).
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It has been reported that if the operator takes many measurements from a frozen 

image and averages these results, then this may lead to higher accuracy. But even 

better results can be achieved if an individual ultrasound image is taken for each 

distance measurement, because in this case they will be independent of pixel size 

(Goldstein, 2000).

Ultrasound-specific errors may also occur, since some anatomical features (in this 

case mentioned as targets) are not placed in the imaging plane properly 

(Goldstein, 2000). According to the same author, "they are due to target 

misregistration and edge shifting".

When the acoustic velocity between adjecent tissues is not 1540 m/sec, or when 

the sound beam does not travel in a straight line (usually because of reflection, 

refraction or reverberation artifacts) then the target will not appear on the screen in 

the right way but, in most cases, errors due to the above are minimal (Goldstein,

2000).

Nonzero lateral beam width (which implies worse lateral resolution) may hinder the 

imaging of the real edge of some structures, by shifting its position towards a 

region with weaker echoes. According to Goldstein, "the image gray scale is 

proportional to the logarithm of the echo amplitude, so the low amplitude image tail 

edge extends further from the true edge than its high amplitude peak" and "there 

are more digital gray levels at low echo amplitudes". These constitute the two main 

factors for edge shifting ultrasound-specific distance measurement errors.

Distance measurements taken with the use of 2D ultrasound are considered to 

have an overall accuracy within 2% of the actual length, whereas the same 

percentage for volume measurements with 3D ultrasound devices lies between 5 

and 20% for regular shaped organs (Farrell et al., 2000). The latter kind of 

measurements turns out to be extremely inaccurate in cases of irregularly shaped 

or too large to be imaged in a limited field of view structures (Riccabona et al.,
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1995). But, in general, 3D ultrasound is considered to be of equally high reliability 

with 2D ultrasound as far as distance measurements are concerned and of 

superior validity for volume measurements (Farrell et al., 2000).

The use of a measurement protocol has been suggested in order to minimize 

ultrasound-specific errors. The use of the same transducer for the same distance 

measurement and the selection of a standardised frequency range can be useful. 

Moreover, the placement of the organ to be observed in the centre of the image 

plane, or in a parallel or, at least, standardised angle to the pixel lines is expected 

to improve the measurement's precision. The adjustment of image magnification 

into at least one half of the image field of view is expected to contribute to the 

higher accuracy of measurements. Finally, the proper adjustment of gain for the 

display of a uniform gray scale image at the point where the measurement is about 

to be taken can be helpful (Goldstein, 2000).
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2. PHYSICAL PRINCIPLES

2.1. Physical properties of ultrasound

The transducers used in diagnostic ultrasound contain one or more crystals with 

piezoelectric properties. It has been quoted in several books in the literature that 

the term "piezo" derives from the Greek word meaning pressure. However, it 

should be spelt as "pieso", which corresponds to the actual meaning of pressure in 

Greek (piesi), rather than "piezo", which stands for the Greek verb meaning press. 

In either case, it represents the ability of these crystals to produce an electric 

current when deformed by returning echoes and, conversely, to undergo 

mechanical transformation, in case of a transmission of an electric current (Ginther, 

1995).

Diagnostic ultrasound is based on the pulse-echo principle. This can be explained 

by means of the following example:

The pulse corresponds to a shouting "Hello" of a man standing on one side of a 

canyon towards the other. That pulse travels at the speed of sound (340 m/sec) 

and hits at the opposite side of the canyon. It then turns back to the man who 

emitted the sound at the same speed and, consequently, he hears the echo 

(Bartrum and Crow, 1977).

If the man mentioned above had a stopwatch, he would be able to calculate the 

distance to the other side of the canyon, if he measured the time required for the 

echo to come back to him. He could then work out the distance using the following 

equation: d = v x t/2 ,

where v is the speed of sound and t the time that has passed between the 

emission of the sound and the return of the echo to the man (Bartrum and Crow, 

1977).
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Ultrasound uses approximately the same model: A short pulse leaves the 

transducer and travels through the body tissues at a specific speed, until it 

encounters a reflective surface. The pulse returns back to the transducer and the 

scanner calculates the time that has passed and is able to find out the distance 

that has been covered by the echo pulse. The co-ordinate for the reflective surface 

is then displayed on the screen in the form of a dot and its position is indicative of 

the distance the ultrasound pulse and the returning echo has travelled (Bartrum 

and Crow, 1977) (Fig. 2.1.).

Some useful terms commonly used in diagnostic ultrasonographic imaging are 

described below:

Amplitude refers to the loudness of the sound waves (Ginther, 1995) and is the 

peak pressure or height of the wave compared to the resting value (Meire and 

Farrant, 1995).

Frequency represents the number of vibrations or oscillations of the sound source 

per second (Meire and Farrant, 1995).

Wavelength is the distance the wave travels during a single cycle. The wavelength 

is calculated by dividing the velocity by the frequency (Poulsen Nautrup, 2000).

Ve locity refers to the speed of the wave and depends on the physical 

characteristics of the medium in which ultrasound travels, such as elasticity and 

density (Ginther, 1995). Sound velocity is constant in similar body tissues (1540
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Fig. 2.1. Comparison of the reception of echoes from audible sound and diagnostic 
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m/sec in soft tissues) (Nyland et a!., 1995), yet is different when a sound beam 

encounters lung tissue (600 m/sec due to the air in the tissue) or bone (4080 

m/sec) (Ginther, 1995). Sound velocity has a relationship with frequency and 

wavelength, which is shown in the equation:

Velocity (m/sec) = Frequency (cycles/sec) x Wavelength (m)

(Nyland et al., 1995).

Intensitv is indicative of the ultrasound volume that reaches the transducer and 

consists of the peak pressure or height of a wave (Poulsen Nautrup, 2000).

Sound waves are a series of repeating pressure waves, that can be represented as 

sine wave forms. A single wave moves along the horizontal axis representing the 

time, starting at zero, reaching a peak, returning back to zero and continuing to a 

negative value before reaching zero again. A continuous wave consists of 

subsequent single sine waves (Bartrum and Crow, 1977).

2.2. Interaction of ultrasound with tissues

Ultrasound beams are attenuated as they pass through the different body tissues 

(Nyland et al., 1995). This appears to have a negative effect on the image 

produced during scanning, especially when gain and time-gain compensations 

are not applied (Nyland et al., 1995, O'Brien, 1998). Attenuation is a result of 

sound beam absorption, reflection and refraction or scattering (Nyland et al., 

1995, Ginther, 1995).

Absorption:

Absorption refers to the conversion of sound to heat (Nyland et al., 1995). It 

results in the reduction of beam strength (Farrow, 1996). The phenomenon can 

be used in therapeutic ultrasound as the basis for ultrasound diathermy.

33



Intensities used in diagnostic ultrasound are not thought to cause significant 

thermal effects (Ginther, 1995) (Fig. 2.2.).

Reflection:

Reflection occurs when a sound beam encounters a tissue interface at a right 

angle, resulting in a returning of it towards the transducer (Ginther, 1995) (Fig.

2.2.). Different kinds of tissue produce different degrees of reflection (known as 

acoustic impedance) of the sound beam (Nyland et al., 1995), which expresses 

the interaction of the transmission of the sound beam between two tissues with 

different molecule connection and elementary substance inertia. The acoustic 

impedance (Z) is calculated by multiplying the tissue density (p) with the 

propagation velocity (c): Z = p x c (Poulsen Nautrup, 2000).

Acoustic impedance results in an impairment of image quality of the structures 

lying underneath (Nyland et al., 1995).

If there are only minor differences in the acoustic quality of neighbouring tissues, 

it is possible to image structures at considerable depth, but with bone and gas, 

which have a very high and low acoustic impedance, respectively, there is an 

inability to image structures deep to these types of tissues or areas. The latter 

badly affects B-mode images, which makes diagnosis very difficult to almost 

impossible (Nyland et al., 1995).

Refraction:

When sound beams fall onto an interface in a direction other than a perpendicular 

one, the reflected echoes will not return to the transducer in a direct way. The 

sounds that are not reflected will continue their route to the next medium with an 

altered direction. The phenomenon mentioned above is referred to as refraction 

of the sound beam (Poulsen Nautrup, 2000).
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Scattering:

Scattering occurs when the ultrasound beam encounters interfaces that are 

irregular, smaller than the ultrasound beam (Ginther, 1995) and lie at various 

angles. This may hinder interpretation, since there are echoes missed by the 

crystal, which leads to a lesser image quality as far as the normal anatomy is 

concerned (Nyland et al., 1995) and thus potential confusion by considering 

normal structures as pathologic findings. At the other extreme, scattering can 

prove to be useful in helping the clinician to differentiate between various organs 

due to alternative tissues that might constitute their components. These tissues 

are able to produce a characteristic scattering pattern for each organ. In 

conclusion, scattering has to do with diffusely reflected sound waves due to small 

uneven interfaces (Poulsen Nautrup, 2000) (Fig. 2.2.) in contrast to refraction, 

where sound beams encounter large interfaces at an angle other than a right one.

Resolution:

Resolution of ultrasound systems refers to the ability of the machine used to 

distinguish details between two reflectors located close to each other. It is usually 

defined as axial and lateral, according to the reflectors' position in relation to the 

ultrasound beam axis (Ginther, 1995).

Axial resolution is related to the frequency of the transducer (Ginther, 1995). There 

is an indirectly proportional relationship between the frequency of the ultrasound 

and the wavelength of the sound waves. The higher the frequency the shorter the 

wavelengths produced and, consequently, the better the resolution (Nyland et al., 

1995). This is extremely useful for the detection of tissues lying close to each other 

in the axial plane (Ginther, 1995), as they are not included in the same wavelength. 

With a longer wavelength they would appear on the screen as a single structure.
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Using high frequencies, however, causes a limitation to imaging at increasing 

depths, due to the fact that the ultrasound beams are absorbed much more 

rapidly in this case.

In the opposite plane, Nyland et al. define lateral resolution as "the ability to 

resolve adjacent points perpendicular to the axis of the sound-beam". It refers, 

consequently, to the diameter of the ultrasound beam, which varies with the 

transducer frequency, as well as the distance from the transducer (Nyland et al., 

1995). Lateral resolution can be useful in detecting slight differences in tissue 

structures of the same level, as far as the beam is focused on the region of 

interest for optimal results (Fig. 2.3.).

Beam focusing:

The ultrasound beam usually has the shape of the piezoelectric crystal (Meire and 

Farrant, 1995). The part of the beam which is located nearer to the transducer is 

called the near field (Ginther, 1995) or Fresnel zone (Meire and Farrant, 1995), 

whereas its distal part is called the far field (Ginther, 1995) or Fraunhofer zone 

(Meire and Farrant, 1995). The near field usually has the same width as the sound 

beam, resulting in optimal lateral resolution. The sound beam normally tends to 

diverge from its straight orientation when emitted by a piezoelectric crystal 

(Ginther, 1995) (Fig. 2.4.).

The location of the transition between the two zones is represented by the 

equation: d = r 2 / L

where d is the length of the near field, r is the transducer radius and L is the 

ultrasonic wavelength (Hankaga, 1995). If the transducer size is increased, the 

boundary between the near and far fields will be further from the transducer 

(Bartrum and Crow, 1977). This appears to have an impact on the lateral 

resolution, which may be overlapped by focusing the ultrasound beam at the 

desired depth (Ginther, 1995).
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Fig. 2.4. The two sections of a sound beam from a non focused transducer.

39



Beam focusing refers to the narrowing of the distance between the constituents of 

a beam profile, which increases lateral resolution at a certain depth. Focusing 

falls broadly into two major categories, known as fixed and dynamic focusing 

(Ginther, 1995).

Fixed focusing occurs mainly in cases of mechanical sector transducers, which 

are able to focus the beam according to their physical shape. There can be an 

improvement, as far as the results in focusing of the ultrasound beam are 

concerned, if concave or convex lenses of appropriate material are used in front 

of the transducer. By these ways the ultrasound beam is focused at a certain 

depth, which cannot be altered by the ultrasonographer, necessitating switching 

between two or even more different probes for differing depths (Meire and 

Farrant, 1995).

Dynamic focusing, on the other hand, refers to the varying focal distances that 

can be achieved electronically (Ginther, 1995), by delaying the firing of certain 

elements, that can be altered according to the desired depth that the 

ultrasonographer wishes to focus at (Meire and Farrant, 1995). Dynamic focusing 

may occur either automatically or after the operator's intervention, but it results in 

providing ultrasonic imaging with a slower frame rate, which might be of great 

importance in cases of imaging moving structures (Ginther, 1995).

2.3. Ultrasound image artifacts

Artifacts produced in ultrasound diagnostic procedures usually occur due to the 

phenomena mentioned in the previous section. Their presence Is very important 

for the sonographer, since with prior knowledge he or she can either reach a 

diagnosis more easily (e.g. cystic calculi by means of detection of acoustic 

shadowing) or misinterpret artifactual images for abnormal tissue (Penninck 

1995, Kirberger, 1995).
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Acoustic shadowing:

One of the most common artifacts and one that can cause major interference in 

musculoskeletal ultrasonography is acoustic shadowing. There is no transmission 

of sound through some tissues due to the total reflection of the ultrasound beam 

and a degree of absorption of the sound by the reflecting structure (Ginther,

1995). The field deep to the reflective surface seems anechoic on the screen, 

since no image can be displayed, although some reverberation echoes could 

appear in that particular area. Distinct shadowing, however, can only be 

distinguished in cases where the highly reflective tissue is similar or greater in 

size than the width of the ultrasound beam (Kirberger, 1995) and is located near 

the focal zone of the transducer (Penninck, 1995).

This artifact is observed, in cases where the ultrasound beam encounters gas, 

mineral elements, usually calculi or bones or even fluid-filled structures. When 

there is a significant difference in acoustic impedance at the interface between 

two tissues of different echogenicities, as in the case of soft tissues and bowel 

gas, most of the ultrasound beam is reflected (Ginther, 1995) and reverberation 

artifacts may occur at the same time (Penninck, 1995). When ultrasound waves 

meet bone or other calcified structures, the acoustic shadow is distinct and clear 

and can help in the identification of these structures but also impedes imaging at 

longer distances.

Edge-shadowing :

An acoustic shadow may be seen distal to fluid-filled structures (for example the 

gallbladder) due to the different acoustic velocity between the rounded structure 

and the surrounding tissues, resulting in refraction and reflection of the ultrasound 

waves at their margins. The reflecting beam does not return to the transducer 

since the reflecting surface is not perpendicular to the beam (Kirberger, 1995),
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while the refracted one is addressed to another part of the screen. Moreover, 

changes appear to occur in the diameter of the ultrasound beam owing to the 

focusing action and the difference in velocity when passing through fluid 

(Penninck, 1995).

Reverberation echo:

This kind of artifact refers to the presence of reflective signals coming back at the 

transducer, which leads to the apparent imaging of a single structure repeatedly 

at longer distances and with decreased intensity (Goddard, 1995). It usually 

happens in areas where the beam may encounter a strong interface between two 

tissues of large acoustic impedance mismatch. Once the signal has been 

reflected back to the transducer the signal processor assumes that it has travelled 

once and then for the same time again through the body tissues in a greater 

depth misinterpreting, consequently, the signal as originating from a point twice 

as deep as the original soft tissue-air interface. For that reason the signals appear 

equidistant (Ginther, 1995). The amplitude of the repetitive echoes is weaker 

(Kirberger, 1995) and, consequently, each image in sequence diminishes in 

intensity (Ginther, 1995).

Another distinguishing feature of reverberation artifacts constitutes their parallel 

orientation to the reflective interface, especially when they originate from highly 

reflective tissues, such as gas or bone. In this case, reverberation artifacts may 

appear in the acoustic shadow created, or in the non echogenic fluid in cases of 

fluid - filled structures (Ginther, 1995).

Reverberation artifacts occur frequently even when bones are placed further than 

the displayed depth (Ginther, 1995). Consequently, in cases where bones are 

quite close to the region of the body being scanned, (ie. joints) this kind of artifact 

constitutes a limitation to the imaging of such structures.

42



Reverberation artifacts may also be observed in cases of inadequate contact of 

the probe with the patient's skin, of trapped air between the probe and the contact 

surface or of lack of contact with the entire transducer footprint. They lead to a 

decrease of the image quality displayed on the screen (Poulsen Nautrup, 2000).

Comet tail artifact:

A characteristic example of the reverberation artifact is the comet tail artifact; it is 

produced by small, highly reflective interfaces such as metal objects or gas 

bubbles (Penninck, 1995). The greater the attenuation and the broader and more 

perpendicular the interface, the more intense the comet tail artifact (Kirberger,

1995). Its homogeneous streak is due to reverberation echoes coming from both 

the reflections between the transducer and the metallic object and the 

reverberations being produced from the object itself. Comet tail artifacts usually 

diminish in intensity on the image produced by real-time ultrasound (Farrow,

1996). Bones tend to produce comet tail artifacts, which make visualisation of 

adjacent soft tissues difficult.

Mirror-image artifact:

Mirror-image artifacts are produced by rounded, strongly reflective interfaces such 

as the diaphragm-lung interface (Kirberger, 1995). Sound reflected from this 

structure does not return directly to the transducer, but it is reflected by another 

interface and then turns back. The processor assumes that sound can only travel 

in a straight line and, thus, contributes to the interpretation of time delay by 

displaying the echo signals as if originating beyond the original interface 

(Penninck, 1995). Mirror-image artifacts should, therefore, always be considered 

in cases of detecting an abnormal finding behind a strongly reflective and 

absorptive interface.
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Acoustic enhancement:

This is an artifact concerning an increase in amplitude due to intervening tissues 

of low echo reflection (Kirberger, 1995). The ultrasound is not absorbed to the 

same degree when travelling through a fluid-filled structure as it would be 

travelling through tissues located at the same depth, but not beneath the cystic 

structure (Ginther, 1995). This may be observed when imaging synovial sheaths 

especially in cases when they are extensively fluid-filled (Main, 1995). It is helpful 

in distinguishing cystic structures from solid, hypoechoic masses, e.g., tumours, 

abscesses or granulomas; it can also be observed, however, in areas of 

hyperechoic masses of low attenuation and, thus, constitutes a diagnostic 

Inconvenience for the clinician (Penninck, 1995), especially when using high 

frequency transducers (Ginther, 1995).

Specular reflections:

They appear in cases where an ultrasound beam impinges at right angles to a 

structure that is smooth, regular-shaped, fluid-filled and wider than the beam's 

width. A portion of the beam is reflected back to the transducer, whereas the rest 

goes through the interface. If the beam strikes a second smooth interface, then 

another portion of it will be reflected. The interfaces displayed on the screen 

seem hyperechoic. Underneath the deeper interface, the artifact of distant 

(acoustic) enhancement Is created (Ginther, 1995), because there Is minimal loss 

of energy as the ultrasound beam passes through fluid-filled structures (Fig. 2.5.).

When the beam meets the interface at an angle other than 90°, the pulse is 

reflected in such a way that the angle of reflection equals the angle of incidence 

(Ginther, 1995). The pulse does not return to the transducer, resulting in 

misinterpretation of the interface since it is not detectable by this way (Meire and 

Farrant, 1995). In that case the transducer's position must be changed (Ginther,
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1995) in order to image this structure. Only in cases of a right angle of the sound 

beam towards the reflecting interface is it possible for the reflected component to 

coincide with the route of the incident beam. Consequently, the amplitude of the 

returned echo is very dependent on the orientation of the sound beam towards 

the interface (Taylor, 1978).
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Nonspecular reflections:

They appear when the ultrasound beam faces a rough interface, that is smaller 

than the beam. They are created even in cases, where the beam does not meet 

interfaces perpendicularly and are displayed on the screen as structures of 

differing echogenicities; consequently, soft tissues lying close to each other might 

be distinguished due to their own pattern, texture or speckling. In addition 

nonspecular reflections displayed on screens do not always reflect real tissue 

structures. As a result, the different echotextures that different kinds of tissues 

give are those which determine most times the characteristic appearance of an 

organ in real-time ultrasound imaging (Ginther, 1995) (Fig. 2.5.).

The intensity of nonspecular echoes is independent of the angle of the sound 

beam in as much as the latter surrounds the interface. But, still, the intensity of 

nonspecular echoes is less than specular ones, since the interfaces are smaller 

and are not able to reflect a large proportion of the sound beam (Bartrum and 

Crow, 1977).

Anisotropv:

The imaging of characteristic echotexture of tendons is directly related to the 

angle at which the transducer is being held (Craychee, 1995). It has been 

reported to be degraded in cases where the ultrasound beam is not perpendicular 

to the imaged tissues (Penninck, 1995). This is an artifact occurring when the 

transducer is not placed orthogonal to the structure imaged and, consequently, it 

appears hypoechoic (Winter, 1998), which may lead to the loss of imaging details 

and, sometimes, to false diagnosis of a tendinous disease (Martinoii et al., 1999).

A misleading image of a tendon can be observed in cases of an oblique position 

of a tendon in correlation to the skin surface (Martinoii et al., 1999). A stand-off
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pad can be useful in preventing the beam's obliquity (Penninck, 1995), because 

otherwise an anisotropy artifact could be misdiagnosed as tendinitis (Winter, 

1998). Nevertheless, a real tendinitis can be distinguished if the lower 

echogenicity observed is combined with an increase in the volume of the tendon, 

the latter appearing rounder than usual in cross section (O' Keefe and Mamtora, 

1992). A clinician should move the transducer accurately in order to avoid a 

confusion of this kind. The latter is suggested, especially in cases of imaging the 

long head of the biceps tendon (Winter, 1998).

2.4. Transducers

Uitrasonographic equipment used to be poor in its ability to detect disorders of 

the musculoskeletal system. This had an impact on the research performed in 

this particular field of ultrasound knowledge.

The transducers used in practice emitted a specific frequency, which determined 

the resolution of the ultrasound waves. The higher the frequency the better the 

resolution and also the better the view of superficial tissues (Nyland et al., 1995). 

It is therefore essential to match the type of the transducer used to each case 

examined (Meire and Farrant, 1995). Muscles and especially tendons however 

can be situated in both superficial and deeper surfaces; consequently, the need 

for the use of different frequencies in order to better visualise the structures 

around joints is of great importance.

In the past the frequency emitted by an individual transducer could not be altered 

by the ultrasonographer, as changing of the frequency usually required a 

simultaneous change of the transducer (Nyland et al., 1995).

There are currently however transducers able to have a multifrequency operation. 

This results in obtaining the maximum resolution (thus, the best quality) for a
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given depth with a transducer. There is also a possibility of the clinician 

determining the focal point depth and obtaining the best resolution in different 

tissue depths (Nyland et al., 1995).

Mechanical sector scanners were widely in use until recently for ultrasound 

imaging. The beam was produced in accordance with the movement of the 

piezoelectric crystal (usually vibration). Despite their reasonable price and the 

ability of producing high frequency sound waves (Nyland et al., 1995), their use 

turned out to be limited, because they were greatly at risk to damage at frequent 

intervals.

Different kinds of array transducers (transducers that contain a large number of 

piezoelectric elements) are mainly used in small animal practice. Both seem to 

have advantages and disadvantages, which are listed below (Evans and 

McDicken, 2000);

Such transducers are preferred by the clinicians for use in practice since they do 

not have moving parts and the position of the focused beam may be electronically 

controlled and, consequently, moved fairly quickly. Moreover, the large number of 

elements is compatible with current computer technology which makes beam 

guidance easier (Evans and McDicken, 2000).

Array transducers may, on the other hand, require the addition of cylindrical 

lenses so that the sound beam focuses in the out-of-plane direction. Furthermore, 

it has proved more difficult to produce very high frequency array transducers 

(Evans and McDicken, 2000).
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Linear array transducers:

Linear array transducers are characterised by the parallel arrangement of crystals 

along the transducer surface. Both the examining region and the image displayed 

on the screen are rectangular (Ginther, 1995). This means that the scan lines are 

organised in a vertical, linear and parallel way (Poulsen Nautrup, 2000) (Fig.2.6.).

This kind of transducer is valuable in that it can offer a large field of view even in 

superficial tissues (Barr, 1990); consequently, it can be useful for musculoskeletal 

system imaging. This is also supported by the narrow space between 

piezoelectric crystals providing emission of closely situated sound beams and, 

thus, a fine view of anatomical details (Ginther, 1995). Moreover, a linear array 

transducer does not have moving parts that could be subject to damage, which 

reduces their maintenance cost (Boyd, 1995).

Linear transducers require however an extensive area of contact with the body 

(Barr, 1990) which could be problematic for the imaging of extremities. This kind 

of limitation can be seen even when shorter and smaller transducers are used 

(Poulsen Nautrup, 2000).

Curved linear or curved arrav transducers:

Curved array transducers appear to be a combination of linear and sector 

transducers (Poulsen Nautrup, 2000). They appear to have piezoelectric crystals 

positioned in a linear array, but they have a convex rather than a flat footprint 

(Barr, 1995). They are different from linear probes in that their crystals are 

arranged in a curved arc-like line. The beam focusing is electronic (Poulsen 

Nautrup, 2000).

in this way, the field of view is increased and contact with the skin surface may be 

facilitated on some occasions (Evans and McDicken, 2000). Their main
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advantage remains their good near field resolution with the simultaneous use of a 

smaller footprint (Poulsen Nautrup, 2000).

zz  crystals

Linear Transducer

mechanical movement of crystals

fan shaped beam

single oscillating crystal

Sector Transducer

Fig. 2.6. Range of real time transducers.
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Sector transducers:

Sector transducers are characterized by the use of a smaller footprint in order to 

acquire approximately the same image lengthwise as by using a linear array 

transducer (Ginther, 1995).

They are small, easy to use and by offering a smaller footprint and a fan-shaped 

field of view allow imaging of more structures (Barr, 1990), as well as the ability to 

image through narrow spaces, e.g. through the intercostal spaces (Ginther, 1995) 

by producing a wedge shaped display (Boyd, 1995).

However, they can suffer from poorer resolution, resulting in lack of precisely 

identifying different organs and tissues (Barr, 1990) especially in the near field 

(Boyd, 1995). This occurs at that level because of the scan line density and the 

narrow field of view at that level (Fig. 2.6.). Moreover, their use in the 

ultrasonography of superficial tissues turns out to be limited because of the 

necessity for the use of a stand-off pad (Poulsen Nautrup, 2000).

Phased array transducers:

Phased array transducers are characterised by the presence of a number of 

crystals in stable positions being activated sequentially (Barr, 1995). Their image 

quality is considered to be slightly inferior to that produced by linear transducers, 

since it is not easy to steer a beam without loss of energy due to the letter's 

transmission to different directions than the main ultrasound beam (Evans and 

McDicken, 2000). Furthermore, they are considered to be too expensive to be 

utilised in general small animal practice.
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Two dimensional phased arrav transducers:

Two dimensional phased array transducers are responsible for the production of 

three dimensional scans, that constitute a brand new field in ultrasonographic 

imaging. They provide beam forming and steering in both elevation and azimuth, 

which helps provide flexible orientation of scan planes (Whittingham, 1997). They 

are difficult to produce in as much as multiple connections have to be made to the 

piezoelectric elements. Three dimensional imaging is still in its infancy, since 

problems like the long echo-collection time from a tissue have not been overcome 

yet (Evans and McDicken, 2000).

Annular arrav transducers:

Annular array transducers can achieve symmetrical electronic focusing about the 

axis of the transducer (Evans and McDicken, 2000). This can be accomplished by 

the spherical shape of the transducer that produces a small circular beam. 

Focusing, occurs in all planes about the beam's axis for fine tissue quality 

throughout the image. Higher frequency probes may be used without a loss in 

penetration. By going to a higher number of rings (six to eight), remarkable control 

of tissue slice thickness and signal quality may be accomplished.

Because the image sector is steered mechanically, there is no off-axis reduction of 

the effective area of a transducer's transmit and receive surface at the edges of the 

sector as with linear phased arrays. Since the transducer is disc-shaped, larger 

effective areas of a transducer's transmit and receive surface with many rings can 

be designed that still have small contact areas.

Their main disadvantage is that they are required to function mechanically in order 

to scan a field of view (Evans and McDicken, 2000).
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The deficiency in imaging deeply positioned structures close to each other using a 

sector type transducer can be addressed by the introduction of convex 

transducers. They are able to provide a combination of offering a small footprint as 

well as high resolution almost equal to that of a linear array transducer (Ginther, 

1995) by having the piezoelectric crystals placed in such an order that reduces the 

contact surface required with minimal image distortion (Boyd, 1995).

The use of transducers offering smaller footprints and producing higher 

frequencies even up to 15-20 MHz has helped to reduce the limitations previously 

existing in musculoskeletal imaging. To date ultrasonography has been reported to 

be less accurate than arthrography, it has been proved to be difficult to use 

ultrasound to estimate abnormalities in the articular surface of the shoulder joint 

(Long and Nyland, 1999).

2.5. Scanning units

Display systems

Bi-stable svstems: The bi-stable system preceded the gray-scale image display, 

which was first applied in 1974. Its major disadvantage proved to be that any echo 

below the given threshold disappeared, so that the image produced provided 

information concerning only organ boundaries and strong reflectors (Meire and 

Farrant, 1995).

Gray-scale svstems: All modern ultrasound equipment uses gray-scale imaging. 

This refers to the range of intensities displayed on the screen according to the 

signal strength of the echoes: Weak echoes are represented with dark gray colour, 

whereas stronger echoes appear light gray. Extremely strong echoes originating 

from e.g. soft tissue-gas or soft tissue-bone interfaces are represented with white 

colour and non echogenic fluid-filled structures appear black on the screen 

(Farrow, 1996).
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Display format:

There exist three basic display formats:

A-mode (amplitude mode): A-mode is now rarely used, except in cases of 

ophthalmic examinations and other applications requiring precise length 

measurements (Meire and Farrant, 1995), such as echoencephalography (Poulsen 

Nautrup, 2000). The echo's origin and strength are represented on the screen as 

spikes protruding from a baseline, where the transducer's location was represented 

at the far left of the baseline with increasing depth along the baseline to the right. 

The position of the spike represents the depth from which the echoes are derived, 

whereas the height of the spikes shows the intensity of the signals (Nyland et al., 

1995).

B-mode (brightness mode): B-mode results in the display of the echoes returning 

to the transducer as dots whose brightness (scale of gray) corresponds to the 

amplitude of the echo and whose position reflects the depth of the structure that 

emitted the echo and lies within the beam's axis (Nyland et al., 1995). A strong 

signal produces a bright dot, whereas a weak signal will be converted to a darker 

dot (Herrtage, 1998). The B-mode system is usually displayed with the transducer 

surface to the top of the screen and the depth of the underlying tissues increasing 

to the bottom of the screen (Nyland et al., 1995).

M-mode (motion model: M-mode is used for echocardiography in order to evaluate 

the heart's physical shape and functions (Farrow, 1996). A single line of B-mode 

dots with the same rules applying for gray-scale imaging is displayed against time 

on the screen (Nyland et al., 1995). M-mode has proved to be extremely useful for 

precise cardiac chamber and wall measurements, as well as motion 

measurements with time (Farrow, 1996). This is achieved by displaying the depth 

(or height) of structures in the vertical axis and the time in the horizontal axis 

(Poulsen Nautrup, 2000).
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Real-time ultrasonography

Real-time refers to the ability of visualising motion on the ultrasound image 

appearing on the screen (Farrow, 1996). Reai-time B-mode scanners can produce 

a moving image of cross-sectioned organs (Nyland et al., 1995). This kind of image 

is the result of successive complete sweeps of beams across all the piezoelectric 

crystals which are known as frame rate (Ginther, 1995). Sound pulses are sent and 

echoes come back to each element sequentially until a sector or rectangular image 

is formed (Nyland et al., 1995). Each line remains on the screen until it is renewed 

by the following sweep of the beam. Twenty to fifty images per minute may be 

displayed on a scanner screen (Poulsen Nautrup, 2000). Echoes originating from 

deeper structures need more time to return to the transducer and this results in a 

slower frame rate (Nyland et al., 1995).

Ultrasound controls

It is well known that the optimal image quality Is obtained when the ultrasound 

machine used is efficient enough to either increase the intensity of the sound beam 

or decrease very strong echoes originating from the near field. The main purpose 

is to acquire a uniform image brightness in all fields of view (Nyland et al., 1995). 

The power or intensitv control modifies the electrical current applied to the 

transducer and arranges the intensity of the echoes produced. If it is increased, it 

may result in the amplification of most of the returning echoes. Consequently, the 

power control must be arranged to be as low as possible in order to achieve the 

best degree of resolution in combination with minimal artifacts (Nyland et al., 1995) 

especially in the case of the current study which dealt with the imaging of 

superficial structures. Latest research, though, has shown that in canine and feline 

ultrasonography, where the use of 5 or more MHz transducers is very common, a 

high adjustment of the intensity control up to 100% may be required in order to 

display an image (Poulsen Nautrup, 2000).
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The time-gain compensation control refers to the concept of adding selective 

amplification to small distant echoes to compensate for tissue attenuation (Bartrum 

and Crow, 1977). It can be explained by means of a simplified graphical 

representation of the amplitude of echoes from interfaces spaced evenly 

throughout the depth of a field of view. Time-gain compensation controls first apply 

to the near field of view (Nyland et al., 1995), where the pulse remains strong in 

superficial tissues (Meire and Farrant, 1995) and they usually function to decrease 

strong echoes arising from these tissues (Nyland et al., 1995) or provide no further 

adjustment (Poulsen Nautrup, 2000). Furthermore, the second part of time-gain 

compensation control, known as slope delay control, begins to be set at any depth 

beyond which the time-gain compensation controls increase the intensity of weaker 

echoes since the time required for their return to the transducer is now more.

The far gain control refers to the ability of some scanners to adjust any weaker 

echoes coming from any depth beyond that controlled by the slope rate control 

(Nyland et al., 1995). In this study near field and slope rate controls were of major 

importance, since a variety of structures with different echogenicities had to be 

imaged on the screen, which resulted in a great degree of attenuation of many 

echoes.

The zoom or image magnification control refers to a selection of a part of the 

screen by the operator and the placement of a "box-shape" construction, the area 

inside which may be enlarged with the help of another control of the keyboard 

(Farrow, 1996).

The gain control is responsible for equal amplification of all returning echoes from 

every depth of the imaging field. Extremely high or low gain settings might lead to 

loss of image quality (Poulsen Nautrup, 2000).

The echo enhancement control results in the increase of the intensity of separate
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weak echoes making the structures appear more prominent (Poulsen Nautrup, 

2000).

"The difference between the weakest and the strongest registered echo intensity is 

called the dynamic range" according to Poulsen Nautrup. The greatest range 

should be used for abdominal scannings, whereas a middle range is adequate for 

echocardiography (Poulsen Nautrup, 2000).

Extended field of view:

This refers to a recently developed facility, which displays expansive planes of 

various organs in real time (Ghate et al., 1999), by using specialised computer 

processing via software aigorithm (Fornage et al., 2000). These panoramic images 

visually link continuous organs into one image, eliminating the need to mentally 

piece together a picture of anatomical structures, as is currently required with 

conventional ultrasound systems (Ghate et al., 1999, Weng et al., 1997). 

Furthermore, it enables the operator to safely conduct measurements of large 

structures that do not fit on the monitor and, thus, be confident in evaluating organ 

size (Fornage et al., 2000), since results of measurement testing have 

demonstrated a remarkable accuracy (+_ 5%) (Weng et al., 1997). This may lead 

to more easily understood images of the anatomical relationship of structures than 

with a series of conventional ones (Deane, 2000). Another great advantage 

constitutes the ability to scan a volume of slices and post-scanning reconstruct 

slices in any way desirable (Beissert et al., 1998).

Imaging using an extended field of view system is thought to be of benefit in the 

examination of large organs and masses (e.g. spleen, liver, fetus position and 

volume of the placenta), extended vascular structures (e.g. the extent of venous 

thrombi, aneurysms of the aorta), musculoskeletal injuries (e.g. tendon ruptures 

and the surrounding inflammation), the side-by-side comparison of paired organs
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from one image or large pathologic volumes (e.g. ascites, pleural effusion, 

peritoneal tumours, retroperitoneal masses) (Beissert et al., 1998). This may be 

accomplished by allowing the imaging of surrounding tissue and architecture, 

which enables the detection of subtle lesions due to the image contrast (Ghate et 

al., 1999). The fact that the operator can image the organs of interest by free-hand 

scanning should also be taken into account (Hara et al., 1999).

The size of the anatomical structure that can be imaged in a single extended field 

of view scan is limited by the memory of the scanner and depends on the type of 

the probe and the depth and width of the field of view. The computer compares the 

image of the current frame with that of the previous frame, which enables the 

accurate positioning of the current frame in relation with the previous ones 

(Fornage et al., 2000). Other limitations of extended field of view imaging capacity 

consist of movement artifacts (which are mainly encountered in organs like the 

heart), the need for long surfaces for transducer contact, as well as limitations that 

also exist for conventional imaging, such as the need for clipping and lack of 

imaging due to strongly reflecting surfaces - bone and air. Its very high cost owing 

to the optimal quality computer system required is considered to be daunting for 

many practitioners (Beissert et al., 1998).

Three dimensional ultrasonic imaging

The three dimensional reconstruction of ultrasound images has become a 

widespread option in ultrasound equipment (Downey et al., 2000) and this main 

attribute is the fact that the clinician is able to directly visualise the anatomical 

structure under examination in all its three dimensions, rather than subconsciously 

convert them from individual two dimensional images. Several clinical applications, 

for example to the liver, the gallbladder and some central and peripheral vessels in 

humans have been described (Campani et al., 1998).
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There are several advantages of a three dimensional ultrasound facility over the 

two dimensional equivalent. Three dimensional images can be obtained by a single 

sweep of the ultrasound beam across organs, so that the exact position and 

relationship of various anatomical structures can be determined easily and quickly. 

The above is important, taking into account the fact that the clinician who uses two 

dimensional ultrasound needs more time and mental effort in order to acquire 

multiple two dimensional images back and forth across the organ of interest and 

then develop a three dimensional impression of the underlying anatomy or 

pathological condition (Downey et al., 2000).

Sometimes the patient's anatomy or positioning makes it impossible to orientate 

the transducer for optimal visualisation between two structures. However, three 

dimensional ultrasound allows unrestricted access to an infinite number of viewing 

planes (Hamper et al., 1994).

Three dimensional images are better suited in order to monitor postoperative or 

healing effects, by enabling the comparison of two full data sets over time. Using 

two dimensional ultrasound does not guarantee standard patient positioning and 

imaging technique which are necessary for a reliable follow-up (Downey et al., 

2000).

This recently developed technique enables the image produced to be displayed in 

various ways and processed for quantitative volume estimates (Downey et al., 

2000) with just a single sweep of the sound beam (Farrell et al., 2000). There exist 

three different image displays which can be used to acquire more information 

about a diagnosis. Their value is evident in cases of confirmation of normal 

conditions, when a risk of recurrence of a specific problem is raised (Farrell et al., 

2000).
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The multi-planar display is able to process 3 orthogonal planes in the same time, in 

order to produce a volume image on the screen. Then it can be displayed in every 

axis desirable including the third dimension. This is responsible for the ability to 

rotate the stored volume in every dimension desired making sure that the object of 

interest is imaged in the best way so as to make a diagnostic interpretation (Farrell 

et al., 2000).

The surface mode can produce an almost photographic image of the features 

present on a structure's surface (Farrell et al., 2000).

The transparent display is able to provide the clinician with an accurate view of a 

three dimensional aspect of hyperechoic structures, for example the fetal skeleton 

(Farrell et al., 2000).

The use of three dimensional ultrasound to measure organ volumes has been 

applied to various organs in humans, including fetal organs. Its effects are superior 

compared to those acquired by conventional ultrasound, because the latter tends 

to give inaccurate readings for either distance or volume results when the object of 

interest tends to be irregular (Farrell et al., 2000). The clinical utility of three 

dimensional ultrasound is increased with accurate measurements, because there 

exists increased reliability and standardisation of measurements, which would 

improve the confidence on serial measurements (Riccabona et al., 1995).

The role of three dimensional ultrasound has proved to be valuable in biopsy 

procedures. The exact needle position in relation to the lesion is accurately 

determined. Furthermore, the volume data obtained can be stored with information 

about an anatomical region, including pathological details. This feature seems very 

promising for the future, since these data may be obtained and studied years later 

without any loss of quality (Welsmann, 2000).
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Limitations of three dimensional ultrasound do exist. Most of them refer to the time 

required to store images or retrieve them from the optical disk and the 

reconstruction time of the three dimensional scene display, which is more than that 

required for a conventional scanner. This additional time may prove to be annoying 

to ultrasound users who are accustomed to having the images appear on the 

screen instantaneously. Furthermore, many of the viewing programmes require a 

sophisticated image manipulation in order to achieve high quality images (Downey 

et a!., 2000).

Operators should be alert in order to avoid artifacts created by false settings of 

surface-rendering and volume-rendering algorithms. They should be able to review 

the original raw data to clarify any possible abnormalities (Downey et al., 2000).

Three dimensional ultrasound may sometimes be confusing in the diagnostic 

process, in as much as it may eliminate image artifacts which occur with 

conventional scanning and are extremely helpful in the confirmation of a diagnosis 

(e.g. acoustic shadowing in the case of calculi) (Downey et al., 2000).

A previous argument against three dimensional scanning was the fact that all of the 

then current three dimensional ultrasound data acquisition equipment (e.g. 

transducers) were more cumbersome than conventional ultrasound equipment 

(Hamper et al., 1994).

The fact that three dimensional ultrasound images are effective in showing the real 

extent of lesions especially when the maximum amount of normal tissue 

surrounding them is included should also be taken into account. But this larger 

data inevitably requires more computer memory, storage capacity and faster data 

processors. Furthermore, larger data sets can be affected by motion and 

reconstruction artifacts and transmitting them over networks can be time 

consuming (Downey et al., 2000).
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CHAPTER 3. 

MATERIALS AND METHODS



3. MATERIALS AND METHODS

3.1. The animals

Cadavers

A number of adult, normal cadavers were used for operator training at the start of 

the project. The dogs were selected as belonging to the Greyhound breed, which 

ensured the minimum amount of fat or adipose tissue. They were chosen as in 

good physical condition and with no known abnormalities, having been received by 

the Department of Veterinary Anatomy from Dogs and Cats' Homes where they 

were euthanased for reasons unrelated to the current project.

In order to further validate the scan planes concerning the imaging of the various 

anatomical structures for the project, one Greyhound was selected for studies 

where an echo contrast agent was used.

Live animals

(AlAnimals used for the project

Five Greyhound dogs, which were housed in the Glasgow University Small Animal 

Hospital and facilitated student work, were used for this study. The group 

contained adult, normal animals that ranged from six to ten years of age and were 

both neutered males and intact females.

In the initial training stages the dogs were used to establish imaging of the scan 

planes and anatomical structures. Once confidence had been ensured, two dogs 

were selected for more detailed study. The study was to Include measurement of 

individual structures, which made the small number of selected dogs suitable for
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repeatability of measurements. One of these animals was a 9 year old neutered 

male Greyhound dog, which had no previous history of shoulder, stifle or tarsus 

joint abnormality or any other musculoskeletal disorders and was in good health 

and condition. The other dog selected was a 10 year old neutered male Greyhound 

dog, that was chosen for the same reasons as mentioned above. Nevertheless, it 

had to be withdrawn during the examination procedures, since it developed 

pathology of the shoulder joint.

(B) Animals used as clinical cases

Five dogs that were referred to the orthopaedic department of the Glasgow 

University Small Animal Hospital with suspected pathology of the musculoskeletal 

system were used for this study. These animals were examined within the period of 

May 2000 to January 2001 and were retained as in-patients during the period of 

examination. They will be listed in detail in chapters 4 and 5.

3.2. The scanning units

Four ultrasound systems were used in this study; the Toshiba Justvision Imaging 

Scanner (Toshiba Medical Systems, Crawley, UK), the Toshiba Corevision Imaging 

Scanner (Toshiba Medical Systems, Crawley, UK), the Dynamic Imaging Diasus 

(Dynamic Imaging Limited, Livingstone, Scotland, UK) and the Siemens Sonoline 

Elegra Ultrasound System (Siemens Medical Systems, Erlangen, Germany).

Toshiba Justvision 200 was a portable ultrasound machine. It was chosen when 

working with the cadavers at the preliminary stages of the project. The cadavers 

had to be dealt with in the Laboratory of Veterinary Anatomy, which made the use 

of a portable scanner more suitable than that of a non-portable one from the Small 

Animal Hospital.
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This scanner was a high quality B-mode ultrasound machine, that had a small 

parts preset facility, making it appropriate for musculoskeletal imaging. This 

enabled the acquisition of optimum images, and, by using a consistent set up, the 

imaging of the same scan planes was readily repeated. It possessed a freeze 

mode, a magnification or zoom control and gain setting control.

A 7.5 MHz convex linear transducer was used with the Toshiba Justvision 200 

ultrasound machine. It had 192 lines of information suggestive of the potential for a 

high quality image and its range of frequencies varied between 5 and 8 MHz.

Toshiba Justvision 200 allowed the recording of two dimensional ultrasound on 

video tapes. It had also the capability of using a thermoprinter, so that the 

sonographer could obtain prints of the organs of interest. The scans of the cadaver 

selected were recorded on SVHS video tape using a VCR video recorder 

(Panasonic) with piayback facilities. For documentation a thermal printer (Sony UP- 

811) was connected to Toshiba Justvision and selected frames were printed on 

thermoprint paper.

Toshiba Corevision was located in the Smali Animal Hospital and was used in the 

initial stages of training in order to become familiar with the normai anatomical 

scan planes. It was also used for measuring the dimensions of various anatomicai 

structures, as well as for the imaging of the five clinical cases used in the study.

This machine constituted a high quality B-mode scanner, which was able to 

provide digital image processing in order to deliver clear and sharp images. It was 

equipped with a small parts preset, which was indicative of the potential for an 

advanced quality imaging which could be reliable enough for consistently repeated 

scan planes. Its depth of field could reach up to 24 cm and it could produce 63 

frames per second.
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A 5 to 8 MHz electronic linear array transducer with 192 lines of information and 45 

mm of active length and 9 mm of active width was used in the Toshiba Corevision 

system. This transducer was used as emitting a frequency of 8 MHz for the 

musculoskeletal work.

Scans taken with the use of Toshiba Corevision were recorded on SVHS video 

tapes with the use of a Sony SVO-9500 MDP video recorder. A Sony UP-850 

thermoprinter was also utilised so that the sonographer could obtain prints of the 

organs of interest. Measurements of structures were carried out with the help of 

electronic calipers which could be manipulated from the keyboard. Frames of 

measurements of the structures of the three joints involved in the study, performed 

with Toshiba Corevision were also saved in digital form, which ensured the best 

possible quality of photographs.

Dynamic Imaging Diasus constituted a recent scanning development specially 

designed for musculoskeletal ultrasonography. This machine was used for imaging 

of the normal anatomical structures in live Greyhounds, as well as for the 

conduction of measurements where appropriate. Although this machine offered the 

potential for ultra high resolution and, thus, accuracy in the diagnosis of 

musculoskeletal disorders, it was not possible to scan the clinical cases referred to 

the Small Animal Hospital, because it was on loan from the manufacturers. 

Therefore, the time limits for the conduction of this present study with Diasus were 

narrow.

Dynamic Imaging Diasus offered better resolution due to the use of very high 

frequency transducers, although its depth of view was inevitably limited to 10 cm 

and it could produce 30 frames per second. Its image quality was considered as 

optimal for recent advancement in ultrasound imaging.
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The two linear transducers used for the current study with Dynamic Imaging Diasus 

were technically advanced, with their frequencies ranging from 8 to 16 MHz and 10 

to 22 MHz respectively, both with an active length of 26 mm. Both had 128 crystal 

elements and their penetration depth was limited to 60 and 40 mm respectively, but 

with increased resolution due to the high frequencies. The 8 to 16 MHz transducer 

was used for normal anatomical imaging and measurements, whereas the 10 to 22 

MHz was used under certain circumstances for the imaging of very superficial 

structures, such as the common calcanean tendon, which lay just underneath the 

skin in the talocrural region.

The Diasus imaging scanner contained a computer PC hard disk, which was able 

to save images and allow their downloading to floppy disks for further studying. As 

a result, all the images of anatomical structures were saved in the Diasus hard disk 

and downloaded to floppy disks. Where required, the images containing 

measurements were saved by this method.

The Siemens Sonoline Elegra Ultrasound System is a machine with very high 

computer specifications, which explains its use in this project for the advanced 

imaging of anatomical structures and measurements using extended field of view 

and three dimensional ultrasound capabilities. Access to this particular scanner 

was restricted, but, when available, was used for scanning of some clinical cases.

The Siemens Sonoline Elegra Ultrasound System had been designed in order to 

offer signal processing, flexible electronics and high quality display. High speed 

computation and processing power had made the development and 

implementation of sophisticated image processing algorithms for data sampling 

and signal management possible. This highly sophisticated machine had been 

equipped with the extended field of view facility, a major development in ultrasound 

technology that acquired and displayed expansive image views of internal organs 

In real time, allowing, thus for an overall estimation of the diseased structure. 

Moreover, three dimensional ultrasound offered the ability to acquire imaging
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information in two planes simultaneously and reconstruct the third dimension. The 

system software was completed with applications and transducer-specific imaging 

presets. The Siemens Sonoline Elegra system also provided custom imaging 

presets. This allowed the user to construct a constant foundation of predefined 

Imaging parameters for a specifically-targeted study.

The transducer used with the Siemens Sonoline Elegra Ultrasound System was a 

linear transducer with a frequency range between 5 and 12 MHz and 40 mm of 

active length and 5 mm of active width.

The Siemens Sonoline Elegra ultrasound system offered video recording facilities 

(Sony SVO-9500 MDP video recorder), thermal printing (Sony UP-850) as well as 

computing facilities that allowed the loading of stored software upgrades and the 

ability to save patient information and images into optical disks.

3.3. Examination procedures

3.3.1. Cadaver work

The Greyhound cadaver selected for evaluation of scan planes by use of the 

echocontrast agent was positioned in right lateral recumbency and clipped over the 

left shoulder, stifle and tarsal joints. Hair was removed and the forementidned 

regions were cleaned with spirit in order to dissolve any existing grease on the 

skin. Acoustic coupling gel (Henleys Medical, Herts, UK) was then applied to 

facilitate adequate contact between the transducer and the skin.

An aqueous solution of dye and spherical albumin microcapsules with a diameter 
of 7 |im was prepared and drawn into a syringe with a hypodermic needle. The

microcapsules have been used experimentally as an echocontrast agent as they 

produce hyperechoic signals when injected into the body tissues, which are then
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imaged with B-mode ultrasound. When the structure of interest was located 

ultrasonographically, the needle of the syringe was guided to the structure and 0.1 

ml of this particular solution was injected into the precisely selected structure in the 

cadaver.

The trunk and limbs of the cadaver were frozen with the joints extended so as to 

simulate a normal standing position. Subsequently, the trunk and the pelvic region 

with the appropriate limbs were sectioned through the limbs in order to establish 

the validity of the injection sites as correct anatomical structures. The right limb 

was sectioned in long axis and the left limb in short axis and sections were made at 

1 cm intervals in the regions of interest. Their cut faces were photographed and 

these photographs were compared to the ultrasound images that were recorded at 

the time of the injection.

The structures where echocontrast agent was used were:

Left forelimb - Shoulder joint:

M. supraspinatus at the level of the middle of the spine of the scapula and at the 

level of the musculotendinous junction.

M. infraspinatus at the level of the middle of the spine of the scapula (Fig. 3.1.a., 

3.1 .b.) and at the level of the musculotendinous junction.

Tendon of origin of the m. biceps brachii at the level of the intertubercular groove 

(Fig. 3.2.a., 3.2.b.)

M. teres minor at the level of the acromial process as it lay deep to the m. 

deltoideus

Left hindlimb - Stifle Joint:

Patellar ligament 

Cruciate ligaments

Tendon of origin of the m. extensor digitorum longus
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Left hindlimb - Tarsus joint:

Common calcaneal tendon at the level of the bifurcation of the lateral saphenous 

vein (Fig. 3.3.a., 3.3.b.)

Common calcaneal tendon at the level of the calcaneal tuberosity

3.3.2. Live animal normal anatomicai scanning

Normal anatomy scanning was then performed in order to verify what structures 

could be imaged with each ultrasound machine that was available. The dogs were 

positioned in right lateral recumbency and clipped at the regions of the left 

shoulder, the left stifle and the left tarsus region. Clipping was kept to a minimum 

and was not repeated every day, due to the high sensitivity of the skin of the 

Greyhound breed and to aesthetic reasons. Spirit and acoustic coupling gel were 

applied onto the surfaces to be scanned. The room was darkened so that a wider 

range of gray-scale image could be visualised to result in optimal image quality and 

assessment (Fig. 3.4.).

The normal anatomical structures that were scanned were the same with all the 

three machines used for the project. Scan planes were taken with Toshiba 

Corevision of the mm. supraspinatus, infraspinatus, deltoideus, biceps brachii and 

teres minor as far as the shoulder joint was concerned. The patellar ligament, the 

infrapatellar fat pad, the tendons of origin of the m. extensor digitorum longus and 

the tendon of insertion of the m. quadriceps femoris and the abaxial aspects of the 

menisci were visualised. Imaging of the cranial cruciate ligament was attempted 

with Diasus and Elegra systems. The common calcanean tendon with 3 different 

layers was also able to be imaged. The use of a stand-off pad was considered 

necessary for the initial identification of very superficial structures of the stifle and 

tarsal joints, such as the patellar ligament, the tendon of origin of the m. extensor 

digitorum longus or the common calcaneal tendon.
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Diasus as a high resolution machine made for accurate imaging of very superficial 

regions or structures of similar echogenicity and provided the operator with high 

quality images on screen. Consequently, more anatomical structures were able to 

be visualised in detail.

In the shoulder joint, the mm. supraspinatus, infraspinatus with its bursa 

surrounding its tendon, the acromial and scapular part of the m. deltoideus, the m. 

biceps brachii with the bursa (synovial sheath extension of the joint capsule) 

surrounding its tendon of origin and the shoulder joint capsule and joint space were 

successfully visualised with the 16 MHz probe.

Imaging of the stifle joint comprised the visualisation of the m. quadriceps femoris 

with its bursa, the patellar ligament, the infrapatellar fat, joint fluid, the tendon of 

origin of the m. extensor digitorum longus with its synovial pouch, the medial and 

lateral collateral ligaments, the cruciate ligaments and the abaxial aspects of both 

menisci with great accuracy with the 16 MHz transducer. A stand-off pad was used 

in order to obtain images of very superficial structures, such as the collateral and 

patellar ligaments, the menisci and the tendon of origin of the m. extensor 

digitorum longus.

The common calcanean tendon was imaged both with and without the use of a 

stand-off pad with the 16 and 22 MHz probes. The synovial bursa that lay 

underneath the tendon proximally to the calcaneal tuberosity was able to be 

detected.

3.3.3. Extended field of view imaging

With extended field of view imaging the transducer used with the Siemens 

Sonoline Elegra scanner was a linear format of 12 MHz frequency. As with all 

linear formatted transducers the foot print was rectangular in shape. To create an
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extended field of view image the transducer was generally drawn over the body 

surface so that the length of the footprint travelled in the long axis proximal to distal 

over the required distance to produce an extended panoramic image. This could 

extend up to 30 cm, but was usually curtailed to fit the structure under 

investigation. As the transducer travelled over the body surface the extended 

image could be seen being built up on the screen.

There was a time limit during which the information could be acquired and the 

image processing could cope only if the movement was even in pace without 

hesitation or major deviation from a straight line across the body surface. In other 

words the imaging processing could not cope with sharp curvatures or erratic 

movement such as when encountering bony prominences. It was therefore 

necessary to explore the region with real- time B-mode initially to plan out the best 

track for the transducer and then make a practice run before recording for 

extended field of view imaging.

it was possible to make images for extended field of view by moving the long face 

of the footprint in short axis but due to the small areas involved in the dog limbs 

this did not prove an asset for providing additional information. Once the extended 

field of view image had been acquired on the screen it was frozen and was then 

available for closer examination. This could be done by looking at the entire 

panoramic view or by placing a cursor at a selected anatomical landmark, the 

single original image frame from that spot could be called up on the screen and 

examined in detail with measurements being made if required.

The mm. supraspinatus and infraspinatus in the shoulder joint, the patellar 

ligament in the stifle joint and the common calcaneal tendon in the tarsal joint were 

able to be represented on extended field of view images.
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3.3.4. Three dimensional scanning

To produce three dimensional images the same transducer was used as with 

Siemens Sonoline Elegra extended field of view, but in this case the transducer 

was drawn over the body surface with the short dimension of the footprint (the 

width) travelling proximal to distal along the long axis. With the transducer 

travelling thus it accumulated information in two planes simultaneously and this 

information was stored and then processed to create the co-ordinates for the third 

dimension. Once this was accomplished the area under investigation was 

displayed on the screen as a reconstructed volume sample in gray scale. As with 

extended field of view collection, the transducer movement was time limited and 

intolerant of erratic or hesitant movement. There was an alternative method of 

moving the transducer whereby it could be rocked gently through an arc on the 

body surface and thus gathered information which created a wedge shaped 

reconstructed volume sample for three dimensional examination. This was of 

greater use when imaging joint spaces such as the stifle joint. If the reconstructed 

sample contained information extraneous to the structure under investigation it was 

possible to eliminate this unwanted material using an electronic scalpel package 

whereby a line was drawn around the unwanted area and it was eliminated from 

the reconstruction.

Once a suitable reconstructed volume sample had been acquired it could be 

rotated in any of the three planes allowing viewing of all three faces. The volume 

sample could then be sliced in any of the three planes so that cross sections from 

proximal to distal face, lateral to medial face and dorsal (or coronal) sections from 

dorsal to ventral face could be made and each slice viewed individually. It was 

possible to identify a precise area of interest on one of the plane slices and by 

moving a cursor through it view the area of interest simultaneously in the other two 

planes. It was also possible to again identify a precise area of interest and centre 

the cursor on that area and by rotating the cursor through 360 degrees, view slices
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of that area one at a time at all angles in all three dimensions. These techniques 

were utilised to investigate structures, such as the m. biceps brachii and its tendon 

of origin, the mm. supraspinatus and infraspinatus and the stifle joint.

3.3.5. Live animal measurements of anatomical structures

A number of the anatomical structures surrounding the three joints under review 

were considered to be of more clinical importance than others and, in some cases, 

it was thought to be appropriate to measure their dimensions. The dimensions of 

the structures selected were repeatedly measured. Each measurement took place 

on a different day, with the prospect of finding out the potential for consistency on 

successive measurements. Five sessions took place for all the three joints under 

review using all the three scanning machines which were available.

The left limb was chosen to be scanned, with the dog in right lateral recumbency. 

There was a prospect of measuring the normal anatomical structures on the right 

limb, if a consistency in successive measurements of the left limb was proved. The 

lack in such led to the omission of conducting measurements on the right limb.

Specific anatomical landmarks were used in order to ensure that the 

measurements of the anatomical structures involved were taken at the same place 

each time. The use of a stand-off pad was not considered necessary for the 

measurements. The results for each structure were tabulated and the 

measurements for each structure using different scanners were investigated to 

prove any degree of consistency on repeated examinations. The average, the 

median, the standard deviation and the margins of error of the average for the 

confidence coefficients of 0.90 and 0.95 were calculated for each set of 

measurements taken with all the three scanners.
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3.3.5.1. Shoulder Joint:

M. supraspinatus: Depth measurements were taken in a short axis view at the level 

of the middle of the spine of the scapula (Fig. 3.5.) and depth and width 

measurements were conducted at the level of the musculotendinous junction 

proximal to the greater tubercle of the humerus (Fig. 3.6.) with the Toshiba 

Corevision and Dynamic Imaging Diasus. Depth measurements were taken from 

long axis extended field of view images with Siemens Sonoline Elegra. The site for 

measurement was selected and the individual frame for that site was called up on 

the screen and the measurement was taken (Fig. 3.7.).

M. infraspinatus: Depth measurements were taken in a short axis view at the level 

of the middle of the spine of the scapula (Fig. 3.8.) and depth and width 

measurements were conducted at the level of the musculotendinous junction 

proximal to the greater tubercle of the humerus (Fig. 3.9.) with the Toshiba 

Corevision and Dynamic Imaging Diasus. Depth measurements were taken from 

long axis extended field of view images with Siemens Sonoline Elegra using the 

technique already described (Fig. 3.10.).

M. biceps brachii: Three measurements were obtained, two of them having been 

taken in a long axis view and the third in a short axis view. The depth of the tendon 

was measured at the level of the intertubercular groove (Fig. 3.11.) as well as at 

the level of the curve through the intertubercular groove towards the cranial surface 

of the humerus (Fig. 3.12.) with the Toshiba Corevision and Dynamic Imaging 

Diasus. The dimensions of the tendon were then measured in a short axis view 

(Fig. 3.13.) with the Toshiba Corevision and Dynamic Imaging Diasus.

Measurements with Siemens Sonoline Elegra were not able to be taken in 

extended field of view images, because a consistent and continuous sweeping of 

the transducer along the tendon could not be accomplished. This was due to the 

curvature of its position on the cranio-medial aspect of the humerus.
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M. teres minor: Depth and width measurements were taken when imaging the m. 

teres minor in a short axis view. The transducer was placed at the level of the 

acromial process at an angle perpendicular to the axis formed between the 

supraglenoid tubercle of the scapula with the olecranon of the ulna (Fig. 3.14.) with 

the Toshiba Corevision and Dynamic Imaging Diasus. Measurements with 

Siemens Sonoline Elegra were not taken in extended field of view images, 

because of the small size of the muscle and its deep position.

3.3.5.2. Stifle joint:

Patellar ligament: The depth of this structure was measured in two standard 

locations, both of them in a short axis view: the former was distal to the patella 

(Fig, 3.15.) and the latter proximal to the tibial tuberosity (Fig. 3.16.) with the 

Toshiba Corevision and Dynamic Imaging Diasus. Depth measurements with 

Siemens Sonoline Elegra were taken in long axis extended field of view images 

and the individual frame was assessed and used for measuring (Fig. 3.17.).

M. extensor digitorum longus: This tendon of origin was imaged in a short axis view 

and depth and width measurements were taken at the level of the extensor groove, 

which lay laterally on the cranial part of the tibia (Fig. 3.18.), with the Toshiba 

Corevision and Dynamic Imaging Diasus. Measurements (depth measurement) 

were not taken in extended field of view images with Siemens Sonoline Elegra 

because of the relatively small size of the tendon of origin.

3.3.5.3. Tarsal joint:

Common calcaneal tendon: The tendon was imaged and three depth 

measurements were taken for its three layers at the level of the bifurcation of the 

lateral saphenous vein (Fig. 3.19.) and proximal to the calcaneal tuberosity (Fig.
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3.20.) both in a short axis view with the Toshiba Corevision and Dynamic Imaging 

Diasus. Depth measurements were taken in long axis extended field of view 

images with Siemens Sonoline Elegra using a selected individual image frame to 

make the measurement for the tendon in its entity, because the technique could 

not be applied successfully for each one of the layers (Fig. 3.21.).

3.3.6. Clinical cases

Five dogs that had been referred to the orthopaedic section of the Small Animal 

Hospital were used for this study (Table 3.1.). They had a clinical work up, which 

included physical examination, radiography, and in some cases arthroscopy and 

scintigraphy. These examinations were carried out by other members of staff and 

only the ultrasonography was carrried out by the researchers involved in this 

project.

CASE AGE (yrs) WEIGHT (Kg) BREED SEX
1 4 19 Border Collie EF
2 5 35 Weimaraner NM
3 8 32.5 Greyhound NM
4 2.5 51 Rottweiler EM
5 10 32 Labrador NF

EF: entire female, NF: neutered female, EM; entire male, NM: neutered male

Table 3.1. Age, weight, breed, and sex distribution of the 5 clinical cases
presented.

The ultrasonographic examinations carried out were limited to the field of interest 

relevant to the clinical condition. The presentation of these clinical cases will be 

given in Chapters 4 and 5.
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Fig. 3.1.a. Short axis view of the m. infraspinatus at the level of the middle of the 

spine of the scapula of a cadaver scanned with Justvision and a 7.5 MHz convex 

linear transducer. The hyper reflective spine of the scapula with anechoic acoustic 

shadowing distal to it appears to the right of the picture. The injected echocontrast 

agent is represented by a hyperechoic dot surrounded by an anechoic area lying to 

the left of the scapular spine and superficial to the hyperechoic line corresponding 

to the perimysium that appears in the middle of the muscle.
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Fig. 3.1 .b. Gross anatomy cross section of the left shoulder region of a Greyhound 

cadaver. The scapula with mm. supraspinatus and infraspinatus appear in the 

centre at the top of the picture and the echocontrast agent that has been injected 

in the muscles is displayed as a yellowish dot in the fleshy m. infraspinatus to the 

left of the scapular spine.
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Fig. 3.2.a. Short axis view of the tendon of origin of the m. biceps brachii at the 

level of the intertubercular groove of a cadaver scanned with Justvision and a 7.5 

MHz convex linear transducer. The hyper reflective intertubercular groove is 

displayed in the mid field with the tendon running over it being represented as a 

rounded hyperechoic structure to the left of mid field. The injected bolus of 

echocontrast agent is seen as a hyperechoic area lying on the superficial surface 

of the tendon.
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Fig. 3.2.b. Gross anatomy cross section of the left shoulder region of a Greyhound 

cadaver. The humerus is displayed on the top left with the tendon of origin of the 

m. biceps brachii appearing as a rounded structure on its medial surface. The 

yellow dye with echocontrast agent is visible on the superficial surface of the 

tendon and within the m. teres minor that lies on the caudal lateral surface of the 

cross sectioned humerus.
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Fig. 3.3.a. Short axis view of the common calcanean tendon at the level of the 

bifurcation of the lateral saphenous vein of a cadaver scanned with Justvision and 

a 7.5 MHz convex linear transducer. The tendon appears in the top centre of the 

image and the injected echocontrast agent is represented by a hyperechoic dot in 

the tendon substance at 1 o'clock on the tendon circumference.
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Fig. 3.3.b. Gross anatomy cross section of the left tarsal joint of a Greyhound 

cadaver. The tibia and fibuia lie in the iower field, whereas the common calcaneal 

tendon is to the top of the picture with the injected dye and echocontast agent 

lying within its substance.
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Fig. 3.4. Researchers involved in the project scanning a Greyhound with the 

Diasus scanner. The dog is in right lateral recumbency and the transducer is 

applied to the prepared clipped area of the shoulder joint.

84



Fig. 3.5. Depth measurement of the m. supraspinatus of the left forelimb of a dog 

at the ievel of the middle of the spine of the scapula in short axis view scanned with 

the Diasus scanner and a 16 MHz linear transducer. The linear hyper reflective 

spine of the scapula with an anechoic area of acoustic shadowing distai to it is 

imaged on the left and the muscle is displayed from left to right. The skin iies to 

the top of the image and the m. omotransversarius immediately deep to it.
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Fig. 3.6. Depth and width measurements of the m. supraspinatus of the left 

forelimb of a dog at the level of the musculotendinous junction in short axis view 

scanned with the Diasus scanner and a 16 MHz linear transducer. The muscle 

appears in the centre of the image.

86



Fig. 3.7. Extended field of view image of the m. supraspinatus in the left forelimb of 

a dog using Elegra with a 12 MHz transducer. The panoramic view is displayed to 

the right of the picture with a box cursor placed over the area of interest for 

measurement. A single frame from that area of interest is displayed on the left with 

electronic measurement markers set at the superficial and deep surface of the 

muscle to give a measurement of depth of that muscle at that point.
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Fig. 3.8. Depth measurement of the m. infraspinatus of the left forelimb of a dog at 

the level of the middle of the spine of the scapula in short axis view scanned with 

the Diasus scanner and a 16 MHz linear transducer. The linear hyper reflective 

spine of the scapula with an anechoic area of acoustic shadowing distal to it 

appears on the extreme right with the muscle being displayed from left to right.
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Fig. 3.9. Depth and width measurements of the m. infraspinatus of the left forelimb 

of a dog at the level of the musculotendinous junction in short axis view scanned 

with the Diasus scanner and a 16 MHz linear transducer. The muscle is displayed 

on the right of the screen and the hyper reflective greater tubercle of the humerus 

with an anechoic area of acoustic shadowing distal to it lies to the bottom of the 

image.
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Fig. 3.10. Extended field of view image of the m. infraspinatus in the ieft forelimb of 

a dog using Elegra with a 12 MHz transducer. The panoramic view is displayed to 

the right of the picture with a box cursor placed over the area of interest for 

measurement. A single frame from that area of interest is displayed on the left with 

electronic measurement markers set at the superficial and deep surface of the 

muscle to give a measurement of depth of that muscle at that point.
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Fig. 3.11. Depth measurement of the tendon of origin of the m. biceps brachii of the 

left forelimb of a dog at the level of the intertubercular groove in long axis view 

scanned with the Diasus scanner and a 16 MHz linear transducer. The 

hyperechoic tendon lies on the hyper reflective intertubercular groove with an 

anechoic area of acoustic shadowing distal to it, that corresponds to the bottom of 

the picture.
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Fig. 3.12. Depth measurement of the tendon of origin of the m. biceps brachii of the 

left forelimb of a dog at the level of the curve in the long axis view scanned with the 

Diasus scanner and a 16 MHz linear transducer. The hyperechoic tendon is 

displayed in the mid field on top of the hyper reflective humerus at the level of the 

curve. An anechoic area of acoustic shadowing distal to the humerus corresponds 

to the bottom of the picture. The anisotropy artifact is evident along the tendon.
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Fig. 3.13. Depth and width measurements of the tendon of origin of the m. biceps 

brachii of the left forelimb of a dog at the level of the intertubercular groove in short 

axis view scanned with the Diasus scanner and a 16 MHz linear transducer. The 

hyperechoic tendon is displayed in the hyper reflective intertubercular groove with 

an anechoic area of acoustic shadowing distal to it.
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Fig. 3.14. Depth and width measurements of the m. teres minor of the left forelimb 

of a dog in short axis view scanned with the Diasus scanner and a 16 MHz iinear 

transducer. The moderately hypoechoic muscle is displayed in the middle of the 

screen with the hyper reflective greater tubercle of the humerus on the right with an 

anechoic area of acoustic shadowing distal to it.
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Fig. 3.15. Depth measurement of the patellar ligament of the left pelvic limb of a 

dog distal to the patella in short axis view scanned with the Diasus scanner and a 

16 MHz linear transducer. The hypoechoic patellar ligament lies to the top with the 

echogenic infrapatellar fat in the mid field.
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Fig. 3.16. Depth measurement of the patellar ligament proximal to the tibia! 

tuberosity of the left pelvic limb of a dog in short axis view scanned with the Diasus 

scanner and a 16 MHz linear transducer. The hypoechoic patellar ligament iies to 

the top with the echogenic infrapatellar fat in the mid field.
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Fig. 3.17. Extended field of view image of the stifle joint using Elegra with a 12 

MHz transducer. The panoramic view is displayed to the right of the picture with a 

box cursor placed over the area of interest for measurement. A single frame from 

that area of interest is displayed on the left with electronic measurement markers 

set at two positions on the patellar ligament. The markers are measuring the 

thickness of the patellar ligament at its origin from the patella to the right and its 

insertion onto the tibial tuberosity to the left.
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Fig. 3.18. Depth and width measurements of the tendon of origin of the m. extensor 

digitorum longus of the left pelvic limb of a dog at the level of the extensor groove 

in short axis view scanned with the Diasus scanner and a 16 MHz linear 

transducer. The round hyperechoic tendon lies on the top of the picture in the 

hyper reflective extensor groove with an anechoic area of acoustic shadowing 

distal to it.
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Fig. 3.19. Depth measurement of the common calcaneal tendon at the level of the 

bifurcation of the saphenous vein of the ieft pelvic limb of a dog in short axis view 

scanned with the Diasus scanner and a 16 MHz linear transducer. Its three 

hyperechoic layers are displayed on the left of the picture.
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Fig. 3.20. Depth measurement of the common caicaneai tendon at the level of the 

calcaneal tuberosity of the left pelvic iimb of a dog in short axis view scanned with 

the Diasus scanner and a 16 MHz iinear transducer. Its three hyperechoic iayers 

are displayed on the left of the picture.
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Fig. 3.21. Extended field of view image of the common calcanean tendon using 

Elegra with a 12 MHz transducer. The panoramic image is displayed to the right 

with a box cursor placed over the area of interest for measurement. A single frame 

from that area of interest is displayed on the left with electronic measurement 

markers set at the point of the musculotendinous junction to measure the thickness 

of the muscie at that point.
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CHAPTER 4. 

RESULTS



4. RESULTS

4.1. Cadaver work

The comparison of images using echocontrast agent with anatomical sectioning 

correlated well and gave confidence in identification of specific structures. This was 

of particular use in the case of multiple structures, such as the common calcanean 

tendon.

4.2. Live animal normal anatomical scanning

Various anatomical structures were able to be visualised with all the three scanners 

used in the study.

4.2.1. Shoulder Joint:

M. supraspinatus: The m. supraspinatus was successfully visualised underneath 

the m. omotransversarius. It was imaged as a moderately hypoechoic structure both 

in iong and short axis with Corevision. A hyperechoic line represented the 

perimysium, which divided the entire muscle into two parts. Finely hyperechoic 

areas representing collagen bundles were scattered throughout the parenchyma. 

The épimysium was imaged as a smooth hyperechoic iine surrounding the entire 

muscle. The muscle structure became more hyperechoic as the transducer moved 

towards the tendon, which appeared homogeneously hyperechoic, the collagen 

bundles surrounding it being represented in this way.

The use of Diasus enabled accurate imaging of the m. supraspinatus both in long 

and short axis, due to the high resolution that the high frequency probe offered. The 

images produced revealed a moderately hyperechoic structure, that had 

hyperechoic dots scattered around the parenchyma, but were distinct and their
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margins well defined. The perimysium and épimysium were imaged as hyperechoic 

lines around the muscle bundles and the whole muscle itself (Fig. 4.1.). The tendon 

of insertion of the m. supraspinatus appeared brightly hyperechoic on the screen, 

due to the near optimum resolution.

When imaged with the extended field of view system of Elegra, the m. 

supraspinatus appeared as a complete structure on the screen in long axis. It 

looked hypoechoic with bright echoes in its parenchyma. The perimysium was not 

evident and only the presence of the hyperechoic épimysium was confirmed. The 

short hyperechoic tendon of insertion was accurately imaged on most of the scans 

performed (Fig. 4.2.).

The m. supraspinatus was a suitable structure for producing three dimensional 

volume samples and thus the muscle belly could be investigated in multiple planes 

and the tendon of insertion viewed in three dimensions. The dorsal (coronal) plane 

had the poorest image quality but it was of use to register the position of the tendon 

relative to the bone surface.

M. infraspinatus: The m. infraspinatus was clearly imaged both in long and short 

axis with Toshiba Corevision. It appeared as a moderately hypoechoic structure 

with hyperechoic dots scattered throughout the parenchyma. The perimysium, 

which divides the muscle into two parts, was evident as a smooth hyperechoic line 

when imaged both in long and in short axis. The épimysium of the entire muscle 

appeared to be of the same echogenicity. The m. infraspinatus appeared to be 

more hyperechoic when it was imaged at the level of the musculotendinous 

junction. Its tendon was hyperechoic (which corresponded to the higher 

echogenicity of the collagen layers surrounding it) when imaged in long axis. Its 

point of insertion was also accurately detected. The infraspinous bursa was not 

consistently visualised.
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Imaging with Diasus revealed a more detailed view of the m. infraspinatus both in 

iong and in short axis. The entire organ was viewed as a homogeneousiy 

hypoechoic structure with precisely defined hyperechoic foci around the 

parenchyma. The perimysium was detected as a hyperechoic line, as weil as the 

épimysium (Fig. 4.3.). The tendon of insertion appeared hyperechoic and ciearly 

defined, whereas the infraspinous bursa was able to be visualised as a small 

anechoic round structure, lying beneath the tendon (Fig. 4.4.).

Extended field of view imaging with the Elegra Ultrasound System revealed the 

muscle as an entity on the screen in long axis. The muscle was imaged as a 

hypoechoic structure with hyperechoic foci scattered in the parenchyma. The 

perimysium and épimysium were both visualised as smooth hyperechoic lines 

extending throughout the entire muscle. The tendon of insertion was imaged 

inserting onto the greater tubercle of the humerus. The infraspinous bursa was not 

consistently visualised (Fig. 4.5.).

Imaging in three dimensions to create a volume sample was also possible with the 

m. infraspinatus thus allowing reviewing of the structure in multiple planes.

M. deltoideus: Both parts of the m. deltoideus were visualised both in long and short 

axis with Corevision as moderately hypoechoic structures overlying the m. 

Infraspinatus. Hyperechoic dots were scattered around its parenchyma.

imaging with Diasus revealed a more detailed presentation of the same muscle 

both in iong and short axis. Better resolution resulted in the accurate imaging of 

both parts, as well as of their junction (Fig. 4.6.).

M. deltoideus was not visualised with the Eiegra System, because of the inability to 

image the whole muscle with only one sweep of the ultrasound beam.
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M. biceps brachii: The m. biceps brachii was visualised as a longitudinal hypoechoic 

structure in iong axis, being the continuation of its tendon of origin, which was able 

to be imaged with Corevision. The tendon was visualised as a linear hyperechoic 

structure lying in the intertubercular groove and at the curve formed by the greater 

tubercle of the humerus when imaged in iong axis views. It should be mentioned 

that the structure appeared more hyperechoic at the points where the transducer 

was placed perpendicular to the tendon. Ail other regions looked more hypoechoic 

without being pathologic, because of the anisotropy artifact, which could not be 

avoided, even when the Diasus scanning machine was used. It could also be 

imaged in short axis views in the intertubercular groove as a round hyperechoic 

structure surrounded by a small amount of fluid, that represented its synovial 

sheath.

The tendon of origin of the m. biceps brachii was clearly imaged both in long and 

short axis with Diasus scanner, its high echogenicity due to the highly reflective 

collagen bundles both in iong and short axis was evident (Fig. 4.7., 4.8.). The 

synovial sheath of the tendon contained a small amount of anechoic fluid and was 

imaged in fine detail (Fig. 4.8.). The transverse humeral ligament was also able to 

be detected as a small moderately hyperechoic linear structure that held the tendon 

in the intertubercular groove (Fig. 4.9.).

There was some difficulty in imaging the tendon of the m. biceps brachii with the 

extended field of view modality, due to its medial position and the curved path 

required to be taken by the transducer to acquire images, but with practice an 

extended field of view could be built up, which had the benefit of demonstrating the 

topography of the tendon in the groove but the tendon detail did not match up to 

that acquired with Diasus.

A three dimensional volume of the proximal end of the belly of the muscle lying 

against the bone cortex and the tendon of origin running through the intertubercular
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groove was produced and the detail of the tendon in the groove with its surrounding 

sheath was able to be followed in multiple planes (Fig. 4.10., 4.11., 4.12., 4.13.,

4.14., 4.15., 4.16., 4.17., 4.18.).

M. teres minor: The m. teres minor was detected with Corevision, although its size 

Is considered to be small. It was detected distocaudally on the scapula and was 

covered by the mm. infraspinatus and deltoideus. Its imaging in iong axis was not 

consistent during ail scannings, because of its size, whereas its imaging in short 

axis proved to be easier. It appeared as an opposite triangular structure with 

moderate to low echogenicity and hyperechoic dots around its parenchyma.

The same muscle was visualised with greater accuracy in short axis with Diasus. Its 

margins and hyperechoic dots were defined with greater accuracy due to the near 

optimal resolution of the scanning machine (Fig. 4.19.). Imaging in long axis was 

not consistent, in as much as the size of the muscle proved to be a handicap in it, 

even though the resolution of the used transducer was much better than that of the 

one used with Corevision.

The m. teres minor proved to be difficult to visualise with the extended field of view 

modality because of its small size.

As this muscle lay deep to the m. deltoideus it was difficult to create a volume 

sample with the three dimensional modality for the muscle alone without using 

extensive scalpel facility to take out extraneous muscle from the sample. This made 

it unproductive to use the three dimensional modality for this muscle.

Joint space: The shoulder joint capsule was able to be detected in long axis with the 

Diasus scanner. That was due to the high resolution of the scanner which enabled 

the imaging of small structures with significant accuracy. The shoulder joint capsule 

was imaged as a thin hyperechoic line lying over the head of the humerus that 

defined the longitudinal anechoic joint space (Fig. 4.20.).
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Due to the narrow acoustic window offered at this joint by the overhang of the 

acromial process and the proximal extent of the greater tubercle laterally and the 

layers of muscle medially it proved to be difficult to obtain any size of image with the 

extended field of view and three dimensional modalities.

4.2.2. Stifle joint:

M. quadriceps femoris: The insertion of the m. quadriceps femoris onto the patella 

was imaged in long axis with Corevision. The mm. vastus medialis, vastus lateralis 

and rectus femoris, which form three of its components, were visualised as 

hypoechoic structures by the use of a stand-off pad, because they lay very 

superficially. Their merging towards the patella and thus the patellar ligament 

produced a hyperechoic image.

Mm. vastus medialis, vastus lateralis and rectus femoris were visualised both in 

long and short axis with Diasus as moderately hypoechoic structures, which then 

turned to more hyperechoic ones, merging onto the patellar ligament (Fig. 4.21., 

4.22.). The almost round anechoic bursa lying underneath the m. quadriceps 

femoris was successfully detected (Fig. 4.23.).

This muscle was not imaged in Its entity with extended field of view Elegra System, 

since it would not be possible to image all the components of the muscle from their 

origin to their insertion with a single sweep of the transducer.

Patellar ligament: The patellar ligament was successfully visualised as a moderately 

hyperechoic structure, due to the presence of the parallel longitudinal echogenic 

collagen fibres. Its shape was linear when imaged in long axis with Corevision. The 

structure looked more hypoechoic when imaged in short axis and was oval shaped. 

A stand-off pad enabled the imaging of the origin of the patellar ligament in the 

patella (being in fact the tendon of insertion of the m. quadriceps femoris) and its 

insertion onto the tibial tuberosity.
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The patellar ligament appeared as a moderately hyperechoic structure both in long 

and short axis with Diasus. Hyperechoic dots corresponding to the collagen fibres 

were more distinct and accurately presented on the screen. It was clearly 

distinguished from the overlying skin, as well as the infrapatellar fat (Fig. 4.24.).

The patellar ligament was successfully visualised in iong axis with the extended 

field of view Elegra system, as a moderately hyperechoic structure originating from 

the patella (being the continuation of the tendon of the m. quadriceps femoris 

) and inserting onto the tibial tuberosity (Fig. 4.25).

The patellar ligament was successfully visualised in three dimensional images. The 

whole structure was able to be rotated together with the structures lying beneath 

(infrapatellar fat and cruciate ligaments) and be presented on screen in ail the three 

planes (Fig. 4.26., 4.27., 4.28., 4.29., 4.30.).

Infrapatellar fat: The infrapatellar fat was imaged as a hyper reflective structure both 

in long and short axis with Corevision. Its margins were poorly defined in the far 

field.

The same structure was more precisely defined as a hyperechoic structure lying 

deep to the patellar ligament both in long and short axis with the Diasus scanner. 

The hyperechoic dots representing fatty tissue were more distinct.

This particular structure was visualised in long axis with extended field of view 

Elegra System, while imaging the patellar ligament. It looked moderately 

hyperechoic as described with the previous machine (Fig. 4.25.).

M. extensor digitorum longus: The tendon of origin of the muscle was imaged with 

Corevision. It could be visualised in short axis views. Long axis views were not 

consistent, because of its superficial position at the extensor groove. They could 

only be obtained with the use of a stand-off pad. The tendon of origin was imaged
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as a hyperechoic structure iying within a hyper reflective surface, corresponding to 

the extensor groove.

The tendon of origin of the muscle was optimally imaged with Diasus. The tendon 

was abie to be followed through its iong axis as a moderately hyperechoic linear 

structure. Its best point for imaging was between the lateral epicondyle of the femur 

and the extensor groove of the tibia (Fig. 4.31.). The synovial pouch of the 

meniscotibial portion of the stifle joint capsule (the so called capsular synovial bursa 

or, in some texts, the synovial sheath, as it curves around the tendon) that 

corresponds to the tendon was detected when the structure was imaged in long 

axis (Fig. 4.32.).

The tendon of origin of the muscle was not imaged with extended field of view 

Elegra system. This occured because of its relatively small size.

Cruciate ligaments: These structures were not clearly imaged using Corevision, but 

with Diasus they were apparent when the joint contents were imaged in long axis 

with the transducer placed over the patellar ligament or slightly lateral to it with the 

joint in strong flexion. Deep to the patellar ligament lay the infrapatellar fat, which 

became more hyperechoic as it lay deep within the joint. Deep to it the cruciate 

ligaments were seen as hypoechoic bands running across the iong axis of the joint. 

The cranial cruciate ligament was more readily imaged as it originated from cranial 

on the tibiai plate and it could be followed as it ran towards the intercondylar space 

of the femur. The caudal cruciate ligament was only partially imaged as it crossed 

over the cranial ligament in the mid Joint space but its attachments on the tibial plate 

and femur were not imaged. With Diasus the ligament appeared to be hypoechoic 

but with a linear fibre pattern (Fig. 4.33.).

With extended field of view imaging it was possible to image the entire joint space in 

long axis so that interpretation of topography was made easier with the other units.
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In this case the cruciate ligaments were imaged in the same scan plane as they 

crossed in mid Joint appearing as hypoechoic linear areas iying deep to the 

hyperechoic fat pad (Fig. 4.34.).

With three dimensional imaging a wedge shaped volume sample was created and 

the cruciate ligaments were visualised deep within the reconstructed sample and 

thus could be serially sliced and rotated to observe their form in three planes (Fig.

4.26., 4.27., 4.28., 4.29., 4.30.).

Collateral ligaments: An attempt was made to image the medial and lateral 

collateral ligaments with Corevision in long axis. Their imaging was not consistent, 

because of their close proximity to the underlying bones and their narrow width. 

They were more successfully imaged with the use of a stand-off pad as 

homogeneous hypoechoic bands.

The medial and lateral collateral ligaments were more accurately imaged in long 

axis with the Diasus scanner. They were presented as moderately hypoechoic 

structures lying between the skin and the bony components of the stifle joint. The 

medial collateral ligament fused with the medial meniscus and the joint capsule 

(Fig. 4.35.). The lateral collateral ligament was imaged passing over the tendon of 

origin of the m. popliteus, as it crossed the joint cavity (Fig. 4.36.). Their origin from 

the medial and lateral epicondyle of the femur and their insertion to the medial tibial 

condyle and the fibula respectively was observed.

These structures were not able to be imaged with extended field of view with the 

Eiegra scanner, because of their small size.

Menisci: The menisci were able to be imaged with Corevision in long axis. The 

imaging of both medial and lateral menisci was facilitated by the use of a stand-off 

pad. They were both imaged as homogeneous, hyperechoic and triangular shaped
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structures lying between the femur and the tibia. They were not able to be imaged 

in their entity, because of the extremely narrow acoustic window provided within the 

joint space.

A more accurate presentation of menisci was obtained with Diasus scanning 

system in long axis. Their margins were defined more precisely. More hyperechoic 

dots appeared from their parenchyma (Fig. 4.35.).

Extended field of view Elegra System only images in extended sweeps of a 

transducer. Menisci were too small structures to offer a target for this type of 

imaging.

4.2.3. Tarsal Joint:

Common calcaneal tendon: The common calcanean tendon has contributions from 

several muscle groups, including the m. gastrocnemius, which is located on the 

caudal aspect of the stifle and tibia and the mm. biceps femoris, semitendinosus 

and gracilis, which arise from further proximally in the limb. These fuse to form the 

main two components of the tendon before inserting onto the proximal aspect of the 

calcaneus where the common calcaneal tendon terminates. The tendon of the m. 

flexor digitorum superficiaiis is located caudaliy and passes over the caudal aspect 

of the calcaneus immediately below the skin surface before continuing distally into 

the pes.

The common calcaneal tendon was imaged both in long and short axis with 

Corevision. All the tarsal muscles forming the tendon were visualised as successive 

layers of hypoechoic linear structures. The périmysia and epimysia surrounding 

them were represented as smooth hyperechoic lines. The three layers of the 

common calcanean tendon, the most superficial of it corresponding to the m. flexor 

digitorum superficiaiis, the deeper one to the m. gastrocnemius and the deepest to

111



the mm. semitendinosus, gracilis and biceps femoris, were aii visualised in long axis 

as linear hyperechoic structures. When imaged in short axis, they were presented 

as oval structures.

When imaging with Diasus proximal the caudal aspect of the calcaneus appeared 

as a smooth, slightly convex, hyperechoic line with distal acoustic shadowing when 

imaged in long axis (Fig. 4.37.). The tendon of the m. flexor digitorum superficiaiis 

could be visualised as a hyperechoic band running across the calcaneus between it 

and the skin surface as it continued distally. The component of the common 

calcanean tendon arising from the medial head of the m. gastrocnemius could be 

visualised immediately deep to the tendon of the m. flexor digitorum superficiaiis as 

a narrow, hyperechoic band with a prominent linear, fibrous pattern. It could be 

followed to the caudal proximal aspect of the calcaneus where it inserted and was 

separated from the tendon of the m. flexor digitorum superficiaiis at this point by a 

bursa. The section of the common calcanean tendon formed from the remaining 

components was visualised deep to this and could be followed distally towards the 

calcaneus but it inserted onto the medial aspect of the proximal calcaneus and so 

the angle of the transducer had to be altered in order to visualise its point of 

insertion. There was a second bursa between these two components of the 

common calcanean tendon. The tendon was imaged both in long and short axis 

(Fig. 4.38., 4.39., 4.40., 4.41.).

The common calcaneal tendon was imaged in long axis with an extended field of 

view system and the entire structure from the musculotendinous junction to the 

insertion on the tuber calcanei could be seen on the one screen. The three 

hyperechoic layers were present on the screen, but the small bursa lying deep to 

the tendon could not be visualised on the panoramic view, but when individual 

frames were called up for the distal insertion the bursa was evident as an anechoic 

space deep to the tendon.
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Acquiring a three dimensional volume for the tendon was possible but difficult due 

to the narrow width of the structure and the tendency of the transducer to slide off 

the linear axis and as the detail proved by Diasus was so effective, the three 

dimensional modality did not further contibute to examination for detail.

4.3. Measurements:

The results of the five measurements taken for each anatomical structure of the 

three joints under investigation were tabulated and processed with basic statistical 

methods. Advanced methods did not take place, because of the small number of 

measurements, which constituted a handicap for their high degree or reliability. The 

average, the median and the standard deviation (mentioned in the tables as St. 

Dev.) as well as the 90% and 95% margins of error (mentioned in the tables as 90% 

ME and 95% ME respectively) of the five individual measurements were calculated. 

The average refers to the sum of values divided by the number of values. The 

median refers to the middle value; half the values are smaller and half are larger. 

The standard deviation indicates how closely a set of observations cluster round 

their mean. The margin of error for the estimate mean (that is, the average of the 

current measurements) can be computed for any confidence coefficient, it helps the 

researcher to conclude that the average has a certain value and he is 90% or 95% 

confident (because these are the most frequently calculated confidence coeficients) 

that this average is within the limit calculated and, therefore, there is a probability of 

10% or 5% that a certain value is outwith those limits (Table 4.1., 4.2., 4.3., 4.4.,

4.5., 4.6., 4.7., 4.8., 4.9., 4.10., 4.11).
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From the observation of the statistical results for each of the measurements that 

were held the following conclusions can be made:

The comparison between the average and the median can offer an indication about 

the shape of the distribution of the observations. If there are outlying observations 

only in one direction the distribution is said to be a skewed distribution. If these are 

small, the distribution is skewed to the left and, then, the average is smaller than the 

median. On the contrary, if the outstanding values are large, the distribution is 

considered to be skewed to the right and the average is larger than the median. A 

symmetric distribution is one in which the distribution has the same shape on both 

sides of the mean.

Most of the results in the current study, concerning Corevision and Diasus 

scanners, were either skewed to the right or skewed to the left, which indicates the 

presence of outstanding values among the 5 measurements. Consequently, 

consistency in measurements is excluded in those cases. Symmetrical distribution 

was observed and the values were equally distributed. As a result, the comparison 

between the average and the median cannot be of great value to this particular 

study.

The observation of the values of the standard deviation and the margins of error for 

each of them in correlation to the average suggests a significant difference between 

the potentials of the transducers and the software facilities of the three scanners 

used in this study. The scanning technique proved to be abie to influence the 

statistical results and, thus, the accuracy of measurements.

The results obtained by Corevision suggest a scattered distribution of the values, 

which has contributed to large numbers of the numerical summaries mentioned 

above. With the possible exception of the measurements concerning the patellar 

ligament, it is proved that conventional ultrasonography cannot provide the clinician
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ligament, it is proved that conventional ultrasonography cannot provide the clinician 

with the ability of performing consistent measurements for the specific anatomical 

structures. This may be attributed to the difficulty in orientating the angle of the 

transducer and detecting exactly the same one repeatedly in all sessions. 

Moreover, the poor resolution results in the lack of definition of the margins of each 

anatomical structure, which is extremely important in the case of small or physically 

slight structures. This also happens because of image pixelation errors that take 

place when measuring structures on screen.

The transducer used when scanning with Diasus has smaller active length, which 

makes it less cumbersome and easier to handle by the operator, and higher 

resolution, because of the higher frequency. The results obtained, though, prove 

that the aforementioned advantages over Corevision are not sufficient in order to 

acquire consistency in repeated measurements. The angling of the transducer 

cannot be alike in all individual sessions, which inhibits the display of the various 

anatomical structures in the same way each time. Furthermore, the large number of 

bony prominences, in combination with the narrow acoustic windows of the joints 

under investigation, constitute obstacles that cannot be totally overcome even when 

a high resolution transducer is used.

When the results obtained with the Elegra transducer when the extended field of 

view capability was applied are observed, the difference in consistency is evident. 

The values of standard deviation and of the margins of error are very small, which 

indicates a small distribution of the values around the average and, thus, a potential 

for consistency on individual sessions. It is proved that when anatomical landmarks 

are spotted with the extended field of view modality, and had the potential of calling 

up that particular single original image frame, consistency can be obtained since 

they can be found on repetitive sessions.
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4.4. Clinical cases

4.4.1. Case 1

Subject: Border Collie, 4 years old, entire female. Weight 19 kg.

History and clinical signs:

The dog sustained bilateral fractures of unknown origin of the radius and ulna 11 

days prior to the ultrasound examination. Furthermore, there was a swollen left 

shoulder with crepitus elicited medially on palpation.

Radiography:

The thoracic radiographs that were performed gave indication of mild 

pneumomediastinum.

When the radius and ulna were radiographed, a left comminuted radial fracture in 

the distal third with minimal overriding and displacement was observed. In addition, 

a right oblique ulnar fracture and a comminuted radial fracture in the middle of the 

diaphysis had taken place. Soft tissue swelling was present in both legs.

As far as the left shoulder joint was concerned, a mild subluxation was detected, 

but it was thought that it could have been positional (Fig. 4.42.). A separate bone 

fragment on the medial aspect of the glenoid tubercle could be seen (Fig. 4.43.).

Postoperative radiographs revealed the presence of a Dynamic Compression Plate 

on the cranial aspect of the left radius which was placed there after ulnar 

osteotomy. A Dynamic Compression Plate was also put on the cranial aspect of the 

right radius. Excellent alignment had taken place on both.
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Radiological diagnosis: Fracture of the radiUS and ulna.

Differential or additional diagnoses: Shoulder subluxatlon and chip fracture.

Ultrasonography:

Right limb: The tendon of origin of the m. biceps brachii was imaged in the 

intertubercular groove with a minimum of fluid in the bursa surrounding it.

Left limb: The tendon of origin of the m. biceps brachii was imaged in the 

intertubercular groove but the groove was disrupted and round hyperechoic bone 

fragments, that created acoustic shadowing, were visualised around the lesser 

tubercle. The bursa of the tendon was distended with anechoic fluid. The 

moderately hypoechoic transverse ligament was intact, but a hypoechoic area was 

detected superficial and medial to it, overlying the transverse ligament (Fig. 4.44., 

4.45.).

Ultrasonographic diagnosis: Fracture involving the lesser tubercle and the

intertubercular groove of the left limb, which could be causing instability of the 

tendon of origin of the m. biceps brachii.

Further examination and treatment:

The dog was operated on and an 8 hole Dynamic Compression Plate was placed in 

the right fracture (3.5 mm), as well as a 7 hole Dynamic Compression Plate in the 

left fracture after ulnar osteotomy (3.5 mm). The dog was treated with carprofen 

and cephalexin for two weeks after the operation and was kept in the Glasgow 

University Small Animal Hospital for postoperative care for three weeks. As far as 

the dog's left shoulder was concerned, no special treatment was performed, but 

both its forelegs were dressed for one week and the left one continued to be 

dressed using a gutter splint for a month.
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The dog was admitted to the Small Animal Hospital three weeks later, since it was 

still lame on the left forelimb. The left shoulder was painful in flexion and extension, 

as well as on palpation.

Radiography:

A mineralised fragment was detected 0.5 to 1 cm medial to the lesser trochanter of 

the left shoulder. It was clearly seen on skyline view with a corresponding lucent 

zone in the region of the lesser trochanter. A rim of sclerosis was also detected 

medial to this. The edges of the fragment were not sharply defined, confirming that 

it was not a recent fracture.

Postoperative radiographs showed that a lag screw was placed from medial to 

lateral in the lesser trochanter. Moreover, a screw and a washer were placed from 

medial to lateral in the proximal third of the humeral diaphysis for relocation of the 

tendon of the m. biceps brachii. Gas was detected in subcutaneous tissues.

Radiological diagnosis: Fracture of the lesser tubercle of the left shoulder.

Differential or additional diagnoses: Not recent fracture. Reduction and fixation with lag 

screw. Relocation of the tendon of the m. biceps brachii.

Ultrasonography:

The left shoulder of the dog was scanned. The m. supraspinatus was imaged 

proximal to the shoulder joint. Hyperechoic bone fragments that caused acoustic 

shadowing were detected at the level of the joint space. The tendon of origin of the 

m. biceps brachii was imaged in the intertubercular groove and was intact and of 

normal echogenicity, but its attachment on the supraglenoid tubercle was 

hyperechoic. The bursa of the tendon of origin of the m. biceps brachii was
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distended with anechoic fluid. When imaging towards the lesser tubercle, 

hyperechoic bone fragments that caused acoustic shadowing, as well as an 

anechoic interval, representing the interrupted contour of the hyperechoic and 

highly reflective intertubercular groove surface on the medial aspect, were 

observed (Fig. 4.46.).

Ultrasonographic diagnosis: Fracture involving the lesser tubercle and the 

intertubercular groove of the left limb, which could be causing instability of the 

tendon of origin of the m. biceps brachii.

Arthroscopy:

Arthroscopy of the left shoulder was indicative of an angled and possibly torn 

appearance of the medial glenohumeral ligament.

Arthrotomy:

A fracture of the lesser tubercle was observed. It was reattached to its normal 

position with a 3.5 mm long screw and washer. The tendon was ruptured and was 

adhered to the intertubercular groove. A tenodesis was performed with a 3.5 mm 

long screw.

Further treatment:

The dog was kept under restricted exercise for a week in the Small Animal Hospital 

and was treated with carprofen for 6 weeks and a combination of amoxycillin and 

clavulanic acid for 10 days. It was then dismissed with directions for limited 

exercise to the owner. A re-examination was suggested in 6-8 weeks. The case is 

still ongoing.
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4.4.2. Case 2

Subject: Weimaraner, 5 years old, neutered male. Weight 35 kg.

History and clinical signs:

The dog slipped while running 3 weeks before referral. It became lame and was 

radiographed by the referring vet, who suggested a detached tendon of origin of the 

m. biceps brachii and was treated with carprofen and rest. The clinical examination 

which was held at the Glasgow University Veterinary Hospital revealed lameness 

on the right forelimb, some muscle wasting over the right shoulder and pain on 

shoulder extension and flexion.

Radiography:

On both elbow radiographs no specific abnormality was detected.

On shoulder radiographs the right supraglenoid tubercle was irregular and mottled. 

Patches of new bone in the right intertubercular groove were imaged (Fig. 4.47.). A 

smooth osteophyte was detected on the medial humeral head on the right (Fig. 

4.48.).

An arthrogram was also performed showing a narrowed contrast column through 

the right medial bursa of the tendon of origin of the m. biceps brachii. Contrast 

agent was present medial and lateral to the distal scapula and acromion, whereas 

irregular filling defects were presented throughout (Fig. 4.49.).

Radiological diagnosis: Bicipital bursitis
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Ultrasonography:

The tendon of origin of the right m. biceps brachii was found to be thickened and 

hypoechoic compared to the left one. The synovial bursa was thickened and 

hyperechoic and was filled with echogenic material. The joint capsule was 

thickened as well (Fig. 4.50.).

The tendon of origin of the left m. biceps brachii was imaged more clearly. Some 

bright echoes were observed in the tendon. The bursa was clear (Fig. 4.51.).

uitrasonoaraphic diagnosis: Tenosynovitis on the right side.

Fluid analysis:

No bacterial presence was detected.

Further examination and treatment:

The dog was discharged and the owners were advised to treat the dog with 

carprofen, a combination of amoxycillin and clavulanic acid and keep it under 

restricted exercise.

Since no improvement took place, the dog was admitted one week later for 

arthroscopy.

Arthroscopv:

The examination showed severe synovitis, as well as a partial detachment from the 

supraglenoid tubercle of the tendon of origin of the m. biceps brachii. The tendon 

appeared abnormally thinned.
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Further examination and treatment:

The joint was thoroughly flushed with approximately 1 litre of fluids and the dog was 

discharged on carprofen and Cosequin ® (feed additive), as well as restricted 

exercise.

The dog was rechecked in three weeks' time and it was found to have improved 

significantly. The owners were advised to build up lead exercise over the following 

four weeks and to continue administering Cosequin ® (feed additive).

However deterioration occured three weeks later, sufficient to indicate the necessity 

for an arthrotomy.

Arthrotomy:

Tenodesis and transposition of the tendon of origin of the m. biceps brachii took 

place. The wound was covered and two post-operative radiographs were taken to 

confirm the positioning of screws.

Further examination and treatment:

The dog was using the leg well post-operatively and so was discharged the 

following day. The owners were asked to restrict it to short lead walks and give him 

cephalexin and carprofen. The sutures were removed after a couple of weeks and 

on a further examination that took place a week later its condition was significantly 

improved.

Outcome:

Subsequently the dog made an uneventful recovery.
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4.4.3. Case 3

Subject: Greyhound, approximately 8 years old, neutered male. Weight 32.5 kg. 

History and clinical signs:

An haematology and biochemistry test done in September showed that the dog 

was neutropenic and had mild hypocalcaemia. A month after this examination the 

dog was found to be neutropenic and leukopenic and it was decided that it could 

not be used as a blood donor any more. 30 days later it presented as lame on its 

left fore and it exhibited pain in its shoulder at the region of the deltoid rim. There 

was also a graze on the medial aspect of the right metacarpus. It was decided to 

treat the dog with meloxicam (Metacam ®) until further diagnostic procedures took 

place.

Radiography:

There was a reduction in opacity of the left proximal humerus with a mottled 

appearance and multiple punctate lucencies were observed. The caudal bone 

cortex had a thinning and ragged appearance and in the associated area. There 

existed irregular new bone formation. There was a separate region of irregular 

mineralisation of approximately 1.5 cm in length located in the soft tissue adjacent 

to the greater tubercle (Fig. 4.52.).

Radiographic diagnosis: Bone tumour. Primary osteosarcoma most likely. 

Ultrasonography:

A hyperechoic lesion was detected at the level of the musculotendinous junction of 

the m. infraspinatus. The head of the humerus had an irregular and mottled
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appearance, whereas the cortex of tihe humerus deep to m. deltoideus was raised 

and roughened as well (Fig. 4.53., 4.54., 4.55.), The bursa of the tendon of origin of 

the m. biceps brachii was dilated and filled with moderately hyperechoic material 

(Fig. 4.56.). Calcified lesions were detected near the tendon of origin of the m. 

biceps brachii in the intertubercular groove.

Ultrasonographic diagnosis: Bone tumour.

Further examination and treatment:

It was decided that the dog should not go under further treatment and, so as not to 

suffer any more pain, was euthanased. A post mortem examination was performed.

Post mortem examination:

A soft mass of 1.5 inches long by 1 inch wide was present attached to the caudal 

aspect of the cranial metaphysis of the humerus, medial to the intertubercular 

groove. The periosteum was seen to be lifted off by the mass. Haemorrhage 

extended for about 0.5 inch into the bone marrow (Fig. 4.57.).
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4.4.4. Case 4

Subject: Rottweiler, 2.5 years old, entire male. Weight 51 Kg.

History and clinical signs:

The dog presented lame on both its front legs, the right one being worse. 

Medication with meloxicam (Metacam ®) and carprofen did not help the dog. The 

left shoulder was painful on extension, whereas the dog showed mild discomfort on 

right elbow flexion.

Radiography:

Radiographs showed mild osteoarthritis of both elbows. Moreover, a cluster of 

small, well defined mineralised opacities was observed forming a line overlying the 

cranial aspect of the greater tubercle of the humerus (Fig. 4.58.).

Arthrography:

Arthrography confirmed that these were outwith the normal appearing bursa of the 

tendon of origin of the m. biceps brachii.

Radiographic diagnosis: Soft tissue mineralisation possibly of the m. supraspinatus. 

Ultrasonography:

Both limbs were scanned.

Hypoechoic areas in the m. supraspinatus at the level of the musculotendinous
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junction were found at the right foreiimb. Hyperechoic areas in the m. biceps brachii 

and around its tendon were observed in the intertubercular groove, which were 

suggestive of calcification. The m. infraspinatus was clear. The m. deltoideus was 

scanned as well and some roughening of the humeral cortex was detected deep to 

the muscle.

In the left forelimb, hyperechoic areas at the musculotendinous junction of the m. 

supraspinatus were found, as well as in the m. biceps brachii and around its tendon 

in the intertubercular groove (Fig. 4.59.). The mm. deltoideus and infraspinatus 

were clear.

Ultrasonographic diagnosis: Calcification within the muscle and around the 

musculotendinous junction.

Further examination and treatment:

Conservative management was suggested and the dog was discharged. Re­

examination was suggested after a month. The dog returned to the Glasgow 

University Veterinary Hospital with a report of improvement at the beginning of the 

month, but deterioration by the end of the month. There was definite pain on flexion 

of the right elbow, but there was no swelling or shoulder pain. The same treatment 

was decided to be continued and, if no improvement occured, to perform other 

diagnostic tests.

The dog came back after two weeks and scintigraphy, computed tomography, 

electromyelography and arthroscopy were performed. These tests revealed a 

degree of elbow osteoarthritis, but it proved to be not significant enough to cause 

the extent of lameness the dog showed.

Outcome:

The dog went back home under the same medication and was advised to come 

back in 4 weeks time. The case is still ongoing.
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4.4.5. Case 5

Subject: Labrador, 10 years old, neutered female. Weight 32 kg.

History and Clinical signs:

The dog had a long history of developing lameness over the last six months before 

presentation. During that period the dog became definitively lame on its left fore.

During the clinical examination, pain irritability and local increased temperature was 

observed during palpation. A reluctance to flex and extend the shoulder joint was 

evident.

Laboratory tests:

No specific abnormality was detected on the blood tests performed.

Radiography:

Both shoulder joints appear radiographically unremarkable (Fig. 4.61.).

Radiographic diagnosis: None

Ultrasonographv:

The m. infraspinatus of the left forelimb looked more hyperechoic than usual and 

mineralisation in the form of hyperechoic foci was observed (Fig. 4.61.). The tendon 

of the m. biceps brachii was intact, but the bicipital bursa was dilated and full of 

anechoic fluid. The m. teres minor was unremarkable.

Ultrasonographic diagnosis: Calcifying tendinopathy
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Arthroscopy:

A lot of flocculent fluid was found which rendered the examination inconclusive. 

The joint was flushed.

Further examination and treatment:

The dog was treated with meloxicam (Metacam ®) for a month and no further 

manifestation of the problem was reported.

Outcome:

The dog made an uneventful recovery.
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Fig. 4.1. Long axis view of the left thoracic limb of a dog using Diasus with a 16 

MHz linear transducer. The middle portion of the m. supraspinatus is displayed 

running from right to left through the picture.

1) M. omotransversarius

2) M. supraspinatus

3) Scapula
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Fig. 4.2. Extended field of view image of the left forelimb of a dog using Elegra with 

a 12 MHz linear transducer. The distal end of the m. supraspinatus and its tendon 

of insertion lie from right to left of the picture. The skin with the m. 

omotransversarius immediately deep to it is imaged at the top of the field, proximal 

is to the right, distal to the left and the deeper scapula is in the middle depth of the 

field being imaged as a hyperechoic line with an anechoic area of acoustic 

shadowing distal to it. The greater tubercle is imaged at 9 o' clock with the 

moderately echogenic tendon running across the joint space, which is seen as a 

hyperechoic curved line (humeral head) covered by a layer of non echogenic 

cartilage.
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Fig. 4.3. Long axis view of the left thoracic limb of a dog using Diasus with a 16 

MHz linear transducer. The middle portion of the m. infraspinatus is displayed 

running from right to left through the picture.

1 ) M. infraspinatus 

2) Scapula
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Fig. 4.4. Long axis view of the left thoracic limb of a dog using Diasus with a 16 

MHz linear transducer. The distal portion of the m. infraspinatus is displayed 

running from right to left through the picture. The infraspinous bursa is displayed 

underneath the hyperechoic tendon of insertion, which is imaged on the left of the 

screen.

1) M. deltoideus

2) Infraspinous bursa

3) Tendon of insertion of the m. infraspinatus
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Fig. 4.5. Extended field of view image of the left forelimb of a dog using Elegra with 

a 12 MHz transducer. The distal end of the m. infraspinatus and its tendon of 

insertion lie from right to left of the picture. The skin is imaged at the top of the 

field, proximal is to the right, distal to the left and the deeper scapula is in the 

middle depth of the field being imaged as a hyperechoic line with an anechoic area 

of acoustic shadowing distal to it. The greater tubercle is imaged at 9 o' clock with 

the moderately echogenic tendon running across the joint space, which is seen as 

a hyperechoic curved line (humeral head) covered by a layer of non echogenic 

cartilage.
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Fig. 4.6. Short axis view of the left thoracic limb of a dog using Diasus with a 16 

MHz linear transducer. The portion of the m. deltoideus lying at the level of the 

acromial process is displayed running from right to left through the picture.

1) M. deltoideus
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Fig. 4.7. Long axis view of the left thoracic limb of a dog using Diasus with a 16 

MHz linear transducer. The hyperechoic tendon of origin of the m. biceps brachii is 

displayed running from right to left through the picture in the hyper reflective 

intertubercular groove with an anechoic area of acoustic shadowing distal to it.

1) Tendon of origin of the m. biceps brachii

2) Intertubercular groove
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Fig. 4.8. Short axis view of the left thoracic limb of a dog using Diasus with a 16 

MHz linear transducer. The round hyperechoic tendon of origin of the m. biceps 

brachii is displayed to the right of centre of the picture. A small amount of fluid is 

surrounding the tendon and the hyper reflective intertubercular groove with an 

anechoic area of acoustic shadowing distal to it lies beneath the tendon.

1) Tendon of origin of the m. biceps brachii

2) Intertubercular groove
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Fig. 4.9. Long axis view of the left thoracic limb of a dog using Diasus with a 16 

MHz linear transducer. The hyperechoic tendon of origin of the m. biceps brachii is 

displayed on the left of the picture and its point of insertion is very clearly marked 

on the right. The anisotropy artifact is evident. The anechoic bursa of the m. biceps 

brachii lies around and deep to the tendon in the centre of the image and the 

hyperechoic transverse ligament is displayed superficial to the tendon.

1) Tendon of origin of the m. biceps brachii

2) Insertion of the tendon of origin of the m. biceps brachii

3) Bursa of the tendon of the m. biceps brachii

4) Transverse ligament
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Fig. 4.10. Reconstructed three dimensional volume sample of the m. biceps brachii 

and its tendon of origin as they lie on the proximal humerus of the left leg of a dog 

using Elegra with a 12 MHz linear transducer. The sample is rotated on an 

equatorial axis so that the viewed surface of the cube is the proximal face, to the 

right is medial and to the left is lateral. On this face the skin and subcutaneous 

tissues lie at the top of the field with the m. biceps brachii in mid field and the 

humeral surface in the deep field.
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Fig. 4.11. Reconstructed three dimensional volume sample of the m. biceps brachii 

on the proximal humerus of the left leg of a dog using Elegra with a 12 MHz linear 

transducer. The sample Is rotated in an equatorial plane so that the viewed surface 

of the cube is the distal surface, to the right is lateral and to the left is medial. The 

skin and superficial structures lie at the top of the field, the m. biceps brachii is in 

mid field and the humerus is at the bottom of the field.
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Fig. 4.12. Reconstructed three dimensional volume sample of the m. biceps brachii 

on the proximal humerus of the left leg of a dog using Elegra with a 12 MHz linear 

transducer. The cube is rotated in an equatorial plane so that the viewed surface of 

the cube is the lateral face. The skin and the superficial structures lie at the top of 

the field, to the right is proximal, to the left is distal and the deeper structures are 

towards the bottom of the field. The tendon of origin of the m. biceps brachii is 

imaged as a hyperechoic line running from right to left through the centre of the 

field. The black area at the bottom of the field is due to the acoustic shadow 

created by the humeral body.
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Fig. 4.13. Reconstructed three dimensional volume sample of the m. biceps brachii 

on the proximal humerus of the left leg of a dog using Elegra with a 12 MHz linear 

transducer. The sample is rotated in an equatorial plane so that the viewed surface 

of the cube is the medial surface. The skin and the superficial structures lie at the 

top of the field, to the left is proximal, to the right is distal and the deeper structures 

are towards the bottom of the field. The tendon of origin of the m. biceps brachii is 

imaged as a hyperechoic line running from left to right through the centre of the 

field. At 9 o' clock the tendon is surrounded by the anechoic synovial sheath, which 

connects with the joint capsule. The long surface of the intertubercular groove is 

seen in the lower regions of the field.
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Fig. 4.14. The reconstructed three dimensional volume of the m. biceps brachii and 

its tendon of origin as they lie on the proximal humerus of the left leg of a dog using 

Elegra with a 12 MHz linear transducer is displayed in the upper right and the 

viewed face of the cube is medial. An arrow indicates the area of interest in the 

cube and this area is displayed in three planes including the appearance of the 

tendon of the m. biceps brachii in the intertubercular groove surrounded by the 

anechoic synovial sheath of the joint capsule. Upper left is dorsal (or coronal 

plane), lower left is long axis (sagittal plane) and lower right is short axis 

(transverse plane).
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Fig. 4.15. The dorsal (coronal) plane taken at the point of interest in the 

reconstructed three dimensional volume sample of the m. biceps brachii and its 

tendon of origin as they lie on the proximal humerus of the left leg of a dog using 

Elegra with a 12 MHz linear transducer is indicated in the bottom right. The 

enlarged image is revealed in the centre of the picture with the hyperechoic tendon 

surrounded by the anechoic synovial sheath of the joint capsule.
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Fig. 4.16. The sagittal plane taken at the point of interest in the reconstructed three 

dimensional volume sample of the m. biceps brachii and its tendon of origin as they 

lie on the proximal humerus of the left leg of a dog using Elegra with a 12 MHz 

linear transducer is indicated in the bottom right. The enlarged image is revealed in 

the centre of the picture with the hyperechoic tendon surrounded by the anechoic 

synovial sheath of the joint capsule.
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Fig. 4.17. The transverse plane taken at the point of interest in the reconstructed 

three dimensional volume sample of the m. biceps brachii and its tendon of origin 

as they lie on the proximal humerus of the left leg of a dog using Elegra with a 12 

MHz linear transducer is indicated in the bottom right. The enlarged image is 

revealed in the centre of the picture with the hyperechoic tendon surrounded by the 

anechoic synovial sheath of the joint capsule.
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Fig. 4.18. An eccentric dorsal (coronal) plane taken at the point of interest in the 

reconstructed three dimensional volume sample of the m. biceps brachii and its 

tendon of origin as they lie on the proximal humerus of the left leg of a dog using 

Elegra with a 12 MHz linear transducer is indicated in the bottom right. The 

enlarged image is revealed in the centre of the picture with the hyperechoic tendon 

surrounded by the anechoic synovial sheath of the joint capsule with the 

involvement of the joint space and the humeral articular surface displayed.
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Fig. 4.19. Short axis view of the left thoracic limb of a dog using Diasus with a 16 

MHz linear transducer. The round hypoechoic m. teres minor is displayed on the 

centre of the picture lying beneath the hypoechoic acromial part of the m. 

deltoideus.

1 ) M. deltoideus-acromial part

2) M. teres minor

3) Joint space
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Fig. 4.20. Short axis view of the left thoracic limb of a dog using Diasus with a 16 

MHz linear transducer. The round hyper reflective head of the humerus with an 

anechoic area of acoustic shadowing distal to it is displayed on the bottom of the 

picture lying beneath the anechoic shoulder joint space.

1) Joint space with articular cartilage

2) Head of the humerus
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Fig. 4.21. Long axis view of the left pelvic limb of a dog using Diasus with a 16 

MHz linear transducer. The hyperechoic distal part of the m. quadriceps femoris 

runs from right to left in the picture, merging into the patellar ligament. The round 

hyper reflective patella with an anechoic area of acoustic shadowing distal to it lies 

on the left of the picture.

1) M. quadriceps femoris

2) Patella

3) Femur
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Fig. 4.22. Short axis view of the left pelvic limb of a dog using Diasus with a 16 

MHz linear transducer. The different components of the m. quadriceps are imaged. 

From right to left, the mm. vastus intermedius, vastus medialis, rectus femoris and 

vastus lateralis are displayed at the top of the picture and superficial to the hyper 

reflective femur with an anechoic area of acoustic shadowing distal to it.

1) M. vastus intermedius

2) M. vastus medialis

3) M. rectus femoris

4) M. vastus lateralis

5) Femur
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Fig. 4.23. Long axis view of the left pelvic limb of a dog using Diasus with a 16 

MHz linear transducer. The hyperechoic distal part of the m. quadriceps femoris 

runs from right to left on the picture and the anechoic bursa lies beneath it.

1) M. quadriceps femoris

2) Bursa of the m.quadriceps femoris

3) Femur
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Fig. 4.24. Long axis view of the left pelvic limb of a dog using Diasus with a 16 

MHz linear transducer. The moderately echoic skin is distinguished from the 

hypoechoic patellar ligament. The infrapatellar fat which has bright echoes in its 

parenchyma lies beneath the patellar ligament.

1 ) Patellar ligament

2) Tibial tuberosity

3) Infrapatellar fat
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Fig. 4.25. Extended field of view image of the left stifle joint of a dog using Elegra 

with a 12 MHz linear transducer. The femoral condyles lie to the right, as does the 

hyperechoic patella which is in the near field. The hyperechoic tibial tuberosity lies 

in the left near field. The patellar ligament runs through the near field from right to 

left and is seen as a linear layered echoic structure. The echogenic fat pad is seen 

in the mid field and increases in echogenicity deeper in the joint space. Deep to the 

fat pad the hypoechoic cruciate ligament is imaged in the left running obliquely 

from its tibial insertion into the intercondylar space on the deep right.
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Fig. 4.26. A three-dimensional reconstructed volume sample of the left stifle of a 

dog scanned with Elegra and a 12 MHz linear transducer. The sample is viewed 

from the medial aspect and the patellar ligament lies to the right with the deeper 

structures, e.g. cranial cruciate ligament, to the extreme left. The sample has been 

rotated around a polar axis.
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Fig 4.27. A three-dimensional reconstructed volume sample of the left stifle of a 

dog scanned with Elegra and a 12 MHz linear transducer. The sample is viewed 

from the medial aspect and the patellar ligament lies to the right with the deeper 

structures to the left, e.g. cranial cruciate ligament, which is hypoechoic compared 

to the hyperechoic fat pad. The sample has been rotated about an equatorial axis.
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Fig. 4.28. A three-dimensional reconstructed volume sample of the left stifle of a 

dog scanned with Elegra and a 12 MHz linear transducer. The sample is viewed 

from the medial aspect and the patellar ligament lies to the right with the deeper 

structures to the left, e.g. cranial cruciate ligament, which is hypoechoic compared 

to the hyperechoic fat pad. The sample has been further rotated about an 

equatorial axis compared to Fig. 4.27.
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Fig. 4.29. A three-dimensional reconstructed volume sample of the left stifle of a 

dog scanned with Elegra and a 12 MHz linear transducer. The sample is viewed 

from the lateral aspect and the patellar ligament lies to the left with the deeper 

structures to the right, e. g. cranial cruciate ligament, which is more echoic than in 

figures of the medial aspect. This is due to the anistrophic effect.
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Fig. 4.30. A selected sagittal plane in a reconstructed three dimensional volume 

sample of the stifle joint of a left leg of a dog taken with Elegra using a 12 MHz 

linear transducer is displayed in the upper right. The arrow marks the point of 

interest in the viewed plane and the area of interest is displayed in three planes. 

The left upper is the dorsal (coronal) plane, the left lower is the sagittal or long axis 

plane and the right lower the transverse or short axis plane. The cross shaped 

marker is placed at the cranial cruciate ligament, which is hypoechoic lying deep to 

the hyperechoic fat pad. There is a line of acoustic shadowing running through the 

sample being evident on the dorsal and transverse planes.
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Fig. 4.31. Long axis view of the left pelvic limb of a dog using Diasus with a 16 

MHz linear transducer. The tendon of origin of the m. extensor digitorum longus is 

clearly defined from the overlying skin and it lies between the hyper reflective tibia 

and femur with an anechoic area of acoustic shadowing distal to them. The 

anechoic area on the top of the picture corresponds to the stand-off pad.

1) Skin

2) Tendon of origin of the m. extensor digitorum longus

3) Tibia

4) Femur
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Fig. 4.32. Long axis view of the left pelvic limb of a dog using Diasus with a 16 

MHz linear transducer. The tendon of origin of the m. extensor digitorum longus is 

clearly defined from the overlying skin and it lies over an anechoic area 

representing the synovial pouch of the meniscotibial portion of the stifle joint 

capsule. The hyper reflective femur with an anechoic area of acoustic shadowing 

distal to it lies at the bottom of the picture. The anechoic area on the top of the 

picture corresponds to the stand-off pad.

1) Skin

2) Tendon of origin of the m. extensor digitorum longus

3) Synovia

4) Femur

171



Fig. 4.33. Long axis view of the left pelvic limb of a dog using Diasus with a 16 

MHz linear transducer. The femur and the patella lie to the right, the tibia to the left. 

The infrapatellar fat is clearly imaged becoming hyperechoic in its deeper position. 

Deep to these bright areas of the fat pad lie the cruciate ligaments which are 

crossing over each other, imaging as hypoechoic linear structures with more 

echogenic edges.
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Fig. 4.34. Extended field of view image of the left stifle joint of a dog using Elegra 

with a 12 MHz linear transducer. The femoral condyles lie to the right, as does the 

hyperechoic patella which is in the near field. The hyperechoic tibial tuberosity lies 

in the left near field. The patellar ligament runs through the near field from right to 

left and is seen as a linear layered echoic structure. The echogenic fat pad is seen 

in the mid field and increases in echogenicity deeper in the joint space. Deep to the 

fat pad the hypoechoic cruciate ligament is imaged in the left running obliquely 

from its tibial insertion into the intercondylar space on the deep right.
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Fig. 4.35. Long axis view of the left pelvic limb of a dog using Diasus with a 16 

MHz linear transducer. The medial collateral ligament is fused with the overlying 

skin in the middle of the picture and the hyperechoic triangular meniscus lies 

beneath it between the hyper reflective tibia (on the left) and the femur (on the 

right). The anechoic area on the top of the picture corresponds to the stand-off 

pad.

1 ) Medial collateral ligament

2) Meniscus

3) Tibia

4) Femur
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Fig. 4.36. Long axis view of the left pelvic limb of a dog using Diasus with a 16 

MHz linear transducer. The hypoechoic lateral collateral ligament is distinguished 

from the overlying skin in the centre of the picture and the hyper reflective tibia with 

an anechoic area of acoustic shadowing distal to it is imaged on the left of the 

image. The structure lying deep to the ligament is the tendon of origin of the m. 

popliteus, which separates the ligament from the lateral meniscus.

1) Skin

2) Lateral collateral ligament

3) M. popliteus

4) Tibia
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Fig.4.37. Long axis view of the left tarsal region of a dog using Diasus with a 

16MHz linear transducer. The component layers of the common calcanean 

tendon are displayed from superficial to deep as the tendon of m. flexor 

digitorum superficialis and the tendon of m. gastrocnemius. The contribution 

from the mm. gracilis, semitendinosus and biceps femoris is not imaged in 

this plane. The hyper reflective image of the calcaneus lies to the left and the 

small anechoic round area to the right of it corresponds to the calcaneal 

bursa.

1 ) Skin 2) Tendon of m. flexor digitorum superficialis

3) Tendon of m. gastrocnemius 4) Bursa 5) Calcaneal tuberosity
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Fig. 4.38. Long axis view of the left tarsal region of a dog using Diasus with a 

16MHz linear transducer. The component layers of the common calcanean 

tendon are displayed from superficial to deep as the tendon of m. flexor 

digitorum superficialis, the tendon of m. gastrocnemius lying to the right and 

deep to that the part formed by the tendons of mm. gracilis, semitendinosus 

and biceps femoris. The hyper reflective tibia lies deep to these structures.

1 ) Skin 2) Tendon of m. flexor digitorum superficialis

3) Tendon of m. gastrocnemius

4) Tendon formed by mm.gracilis, semitendinosus and biceps femoris.
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Fig. 4.39. Long axis view of the left pelvic limb of a dog using Diasus with a 22 

MHz linear transducer. The different layers of the common calcaneal tendon are 

clearly distinguished from each other. The skin lies at the extreme top of the image 

and the tendon of the m. flexor digitorum superficialis lies beneath it. The portion 

corresponding to the tendon of the m. gastrocnemius lies deep to the above and to 

the right of the picture, whereas the deepest hyperechoic tendinous portion 

corresponds to the part of the tendon being formed by the tendons of the mm. 

gracilis, semitendinosus and biceps femoris. The hyper reflective area with an 

anechoic area of acoustic shadowing distal to it at the bottom of the image 

corresponds to the tibia.
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Fig. 4.40. Long axis view of the left tarsal region of a dog using Diasus with a 

16MHz linear transducer. A stand-off pad lies most superficially. The 

component layers of the common calcanean tendon are displayed from 

superficial to deep as the tendon of m. flexor digitorum superficialis and the 

tendon of m. gastrocnemius. There is a small anechoic area at the right of 

the tendon representing a portion of the calcaneal bursa. The contribution 

from the mm. gracilis, semitendinosus and biceps femoris is not imaged in 

this plane. The hyper reflective calcaneus lies deep to these structures.

1 ) Skin 2) Tendon of m. flexor digitorum superficialis

3) Tendon of m. gastrocnemius 4) Bursa
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Fig. 4.41. Long axis view of the left pelvic limb of a dog using Diasus with a 22 

MHz linear transducer. The different layers of the common calcaneal tendon are 

clearly distinguished. The skin lies at the extreme top of the image and the tendon 

of the m. flexor digitorum superficiaiis iies beneath it. The portion corresponding to 

the tendon of the m. gastrocnemius lies deep to the above and to the right of the 

picture, whereas the deepest hyperechoic tendinous portion corresponds to the 

part of the tendon being formed by the tendons of the mm. gracilis, semitendinosus 

and biceps femoris. The anechoic area running through the deepest layer of the 

tendon corresponds to the calcaneal bursa.
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Fig. 4.42. Laterai radiograph of the left shoulder joint of the Border Collie, case 1. 

The scapuia is dispiayed in the top right, the shoulder joint space in the centre and 

the humerus in the bottom of the picture. A mild subluxation of the joint is observed 

in the centre of the picture.
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Fig. 4.43. Caudio - cranial radiograph of the left shoulder joint of the Border Coilie 

case 1. The scapula is dispiayed in the top of the image, the shoulder joint space in 

the mid field and the humerus in the bottom field. A separate bone fragment on the 

medial aspect of the glenoid tubercle is imaged in the left of the picture.
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Fig 4.44. Short axis view of the tendon of origin of the m. biceps brachii of the left 

shoulder joint of the Border Collie, case number 1 using Corevision and an 8 MHz 

linear transducer. The round hyperechoic tendon is imaged in the mid field in the 

hyper reflective intertubercular groove with an anechoic acoustic shadow distal to it 

in the right of the picture. The latter structure, though, appears disrupted and a 

round hyperechoic fragment is displayed towards the very right of the picture. The 

synovial sheath that surrounds the tendon appears distended and is filled with 

moderately hypoechoic fluid. Superficially and on the right of it the hypoechoic 

transverse ligament lies intact, whereas on the left a hypoechoic area is evident.
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Fig.4.45. Short axis view of the tendon of origin of the m. biceps brachii of the left 

shoulder joint of the Border Collie, case number 1 using Corevision and an 8 MHz 

linear transducer. The round hyperechoic tendon is imaged in the mid field in the 

hyper reflective intertubercular groove with an anechoic acoustic shadow distal to 

it. The latter structure, though, appears disrupted in the centre of the picture. The 

synovial sheath that surrounds the tendon appears distended and is filled with 

moderately hypoechoic fluid. Superficially and on the right of it the hypoechoic 

transverse ligament lies intact, whereas on the left a hypoechoic area is evident.
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Fig. 4. 46. Short axis view of the Intertubercular groove of the left shoulder joint of 

the Border Collie, case number 1 using Corevision and an 8 MHz linear transducer. 

The image is of the more medial region closer to the lesser tubercle of the 

humerus. The surface of the groove is disrupted and hyper reflective portions of 

bone lie around the area indicating a fracture site.
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Fig. 4.47. Laterai radiograph of the right shoulder joint of the Weimaraner case 2. 

The scapula is displayed in the top right, the shoulder joint space in the centre and 

the humerus in the bottom of the picture. Patches of new bone are displayed at the 

level of the intertubercular groove in the mid field.
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Fig. 4.48. Caudio - cranial radiograph of the right shoulder joint of the Weimaraner 

case 2. The scapula is displayed in the top of the image, the shoulder joint space in 

the mid field and the humerus in the bottom field. A smooth osteophyte is imaged 

on the medial humeral head in the right of the picture.
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Fig. 4.49. An arthrogram of the right shoulder joint of the Weimaraner case 2. The 

scapuia is displayed in the top right, the shoulder joint space in the centre and the 

humerus in the bottom of the picture. Contrast agent is evident in the shoulder joint 

space in the mid field, whereas to the left of it a narrowed contrast column is 

imaged in the bursa of the tendon of origin of the m. biceps brachii. Irregular filling 

defects are present throughout the joint space.
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Fig. 4.50. Short axis image of the tendon of origin of the m. biceps brachii of the 

right forelimb of the Weimaraner, case 2 using Corevision with an 8 MHz linear 

transducer. The tendon is imaged to the left of the mid field of the picture. It 

appears hypoechoic and surrounded by echogenic fluid. The synovial sheath 

appears distended and hyperechoic. A small anechoic area appears on the lower 

left of the tendon. The hyper reflective area with anechoic acoustic shadowing 

distal to it at the bottom of the image corresponds to the intertubercular groove of 

the humerus.
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Fig. 4.51. Short axis image of the tendon of origin of the m. biceps brachii of both 

the right and the left forelimbs of the Weimaraner, case 2 using Corevision with an 

8 MHz linear transducer. The tendon of the left leg appears to the left of the 

picture, the right to the right. The former appears echogenic In the mid field of that 

image with a small amount of hypoechoic fluid surrounding it. The latter is imaged 

to the left of the mid field of that image and appears hypoechoic and surrounded by 

echogenic fluid. The synovial sheath appears distended and thickened. The hyper 

reflective area with anechoic acoustic shadowing distal to it on the bottom of both 

images corresponds to the intertubercular groove of the humerus.
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Fig. 4.52. Lateral radiograph of the left shoulder joint of the Greyhound case 3. The 

scapula is displayed in the top right, the shoulder joint space in the centre and the 

humerus in the centre and bottom of the picture. A reduction on opacity of the left 

proximal humerus with a mottled appearance and multiple punctate lucencies, as 

well as irregular new bone formation is evident throughout the bone surface. A 

separate area of mineralisation is located in the soft tissue on the left of the greater 

tubercle in the upper left of the picture.
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Fig. 4.53. Long axis image taken with Elegra using a 12 MHz linear transducer of 

the musculotendinous junction of the m. biceps brachii of the left shoulder region of 

the Greyhound case 3. The tendon of origin of the muscle is seen running from 

proximal (right) to distal (left) as a hyperechoic broad linear structure in mid field 

and deep to it the cortex of the humeral body appears roughened with bony 

growths protruding from the surface causing areas of acoustic shadowing.
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Fig. 4.54. Short axis image taken with Elegra using a 12 MHz linear transducer of 

the left proximal humeral region of the Greyhound, case number 3. The 

hyperechoic line of the bony cortex is disrupted with abnormal bone growth which 

is raised from the surface of the humeral body.
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Fig. 4.55. Long axis image taken with Elegra using a 12 MHz linear transducer of 

the caudolateral aspect of the left shoulder region of the Greyhound case 3. The m. 

deltoideus is imaged lying superficial to the proximal humeral body. The bony 

cortex lies deep to the muscle and the hyperechoic surface is considerably 

disrupted with raised bony growth producing acoustic shadowing.
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Fig. 4.56. Long axis image taken with Elegra using a 12 MHz linear transducer of 

the tendon of origin of the m. biceps brachii running from proximal (left) to distal 

(right) through the intertubercular groove of the left shoulder region of the 

Greyhound case 3. The hyperechoic tendon is running over the roughened surface 

of the groove which exhibits raised bony growth and disruption of the cortex.
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Fig. 4.57. Pathoiogy specimen of the left humerus of the Greyhound, case number 

3. The bone has been sectioned in a sagittal plane to reveal the infiltration of the 

bony cortex at the proximai extremity by tumour tissue. The surface of the bone is 

roughened and there is disruption of the normai contour of the intertubercular 

groove, which lies to the extreme left and the underlying cancerous bone.
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Fig. 4.58. Lateral radiograph of the ieft shoulder joint of the Rottweiler case 4. The 

scapula is displayed in the top right, the shoulder joint space in the centre and the 

humerus in the bottom of the picture. A cluster of small, well-defined mineralised 

opacities is shown towards the left of the image forming a line overlying the cranial 

aspect of the greater tubercle of the humerus.
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Fig. 4.59. Short axis view of the musculotendinous junction of the m. supraspinatus 

of the left shoulder joint of the Rottweiler case 4 using Corevision and an 8 MHz 

linear transducer. It is displayed on the centre of the picture and it has some 

hyperechoic areas that are suggestive of calcification. The hyper reflective line with 

anechoic acoustic shadowing distal to it that lies beneath the musculotendinous 

junction in the mid field corresponds to the humeral cortex and appears roughened 

with a raised surface.
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Fig. 4.60. Lateral radiograph of the left shoulder joint of the Labrador case 5. The 

scapula is displayed In the top right, the shoulder joint space in the centre and the 

humerus in the bottom of the picture. All appear radlographically unremarkable.
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Fig. 4.61. Short axis image of the tendon of insertion of the m. infraspinatus of the 

left forelimb of the Labrador case number 5 using Corevision with an 8 MHz linear 

transducer. The tendon is imaged with mixed echogenicity in the mid field and 

contains hyperechoic foci that possibly correspond to mineralisation. The hyper 

reflective area with anechoic acoustic shadowing distal to it on the bottom of the 

image corresponds to the level of the shoulder joint space and greater tubercle of 

the humerus.
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5. DISCUSSION AND CONCLUSIONS

5.1. Discussion

Diagnostic ultrasonography for the study of abnormalities of the musculoskeletal 

system in small animals has been a relatively under utilised technique compared to 

its use with other body systems. The reports in the literature all highlight the 

problems presented by the need for the best possible resolution when dealing with 

small or physically slight structures, the anatomical confinement in obtaining 

sufficiently large acoustic windows for the transducer face and the problem of 

orientation of the images received and their placement into the total topography of 

the region under study. With the new breakthroughs occuring in transducer 

technology, image processing and the advent of extended field of view imaging 

with three dimensional capability it is hoped that these problems might be 

addressed to a greater or lesser extent. The purpose of the initial area of work in 

this thesis is to identify what has been achieved with ultrasound to date using 

conventional technology and to see if the problems identified with individual 

anatomical areas can be answered using transducers of higher frequency or 

extended field of view and three dimensional technology.

The cadaver work was an attempt to overcome the uncertainty of ultrasound 

imaging where it is difficult to verify that the image produced on the screen does in 

fact represent the anatomical structure and topographical field of interest. The use 

of the echocontrast agent as a marker has not to our knowledge been previously 

described and coupled with the more conventional anatomical technique of cross 

sectioning frozen material. This proved to be an invaluable technique during the 

process of selecting scanning planes for specific musculoskeletal structures. It is 

anticipated that this will be a useful training tool for future projects.

Once confidence had been built in identifying the structures around the joints under 

investigation, the ability to readily obtain an image and the quality of image
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received were evaluated using the differing imaging modalities. Conclusions were 

then drawn as to the scanning unit and the technique of choice which was 

anticipated that would be most beneficial as a clinical tool for that area or structure. 

Corevision was considered for comparison to be our unit most closely representing 

the conventional ultrasonography used by previous authors (Kramer et al., 1997, 

Kramer et al., 1999, Long and Nyland, 1999), while Diasus and Sonoline Elegra 

with extended field of view and three dimensional capability were assessed as to 

whether they had additional benefit over the conventional technique.

5.2. Shoulder joint:

In the shoulder joint region the m. supraspinatus and its tendon of insertion were 

successfully imaged using Corevision both in long and short axis and the structural 

detail was in agreement with that described by Long and Nyland (1999). With 

Diasus the structural detail especially of the epimysial and perimysial layers and the 

tendinous insertion considerably exceeded that exhibited by Corevision and the 

images of Long and Nyland (1999), which was not unexpected as this was 

comparing a 16 MHz transducer with a 10 MHz used by these authors. The detail 

within the muscle belly with Corevision would be adequate for diagnostic 

assessment of gross muscular change, but it was considered that the use of Diasus 

at the musculotendinous junction and over the passage of the tendon at the distal 

scapula onto the greater tubercle would be necessary to detect subtle changes to 

the tendon. As this muscle is extensive and relatively massive in the Greyhound it 

was difficult to find and then consistently return to re-examine a specific area of the 

muscle using the two previous units.

The extended field of view technique of Elegra allowed a panoramic image to be 

acquired which permitted the specific area of interest to be located consistently and 

thus the individual frames of that spot could be re-examined in detail. This was 

easily accomplished over the muscle belly and most information was received with
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the length of the transducer face being driven in the long axis but when the 

transducer was moved distally into the field of the tendon, it was difficult to continue 

to drive the transducer in the same constant plane due to the curvature of the 

tendon and the bony prominences and so the ability to consistently produce an 

extended field of view image was impaired. With three dimensional acquisition the 

transducer face was driven with its length in short axis and so it was possible to 

collect a volume sample for the muscle belly but again the continuity was lost 

distally due to the bony prominences of the region. It would thus appear that the m. 

supraspinatus is readily imaged through its entirety using conventional transducers 

of 8-10 MHz, but that for fine detail especially of the tendon of insertion Diasus 

would be of great advantage. In cases of lesions within the muscle belly which 

could require regular monitoring for shape and size the added modality of extended 

field of view would be of assistance and a three dimensional volume would allow 

such a lesion to be interrogated in all planes to give further information of changes 

in shape and size.

In the same region but caudal to the spine of the scapula the m. infraspinatus was 

observed using Corevision and the findings of the structure were similar to those of 

Long and Nyland (1999), but the tendon of insertion of the muscle, although 

recognisable as an entity, lacked the fine tissue definition and as with the previously 

quoted authors the bursa lying deep to the tendon was not identified 

ultrasonographically. With Diasus the quality of image was greatly enhanced in the 

muscle belly itself both in long and short axis, but the imaging of the tendon was of 

such a high quality that the linear fibre pattern was evident as was the bursa which 

lay between the tendon and the caudal part of the greater tubercle of the humerus. 

This synovial structure was imaged for the first time using Diasus proving this to be 

of potential diagnostic advantage in shoulder lameness problems.

As with the m. supraspinatus, extended field of view imaging was of great 

assistance when an overall review of the muscle was required, but in this case the
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path taken by the tendon of insertion was straighter and passed over a smoother 

location on the tubercle so that the entire muscle and tendon could be captured in 

one sweep. The accessibility of the complete structure made it possible to acquire a 

three dimensional volume of the muscle with all the advantages of revisiting precise 

areas and examining in multiple planes.

Craniomedial and distal to the shoulder joint the m. biceps brachii was imaged over 

the proximal half of its belly and along its tendon of origin from the supraglenoid 

tubercle. The craniomedial position of the muscle and in particular its tendon of 

origin made transducer size and placement critical in producing satisfactory images. 

The replacement of the compact hyperechoic appearance of the tendon by the 

coarse hypoechoic fibres of the muscle as the transducer passed distally was as 

described by Long and Nyland (1999), as was the recorded appearance of the 

invagination into the intertubercular groove of the joint capsule to form its synovial 

sheath as well. By following the tendon in both long and short axis it was possible to 

comment on the integrity of the tendon and the status of the sheath but fine detail 

was scarce with the Corevision transducer. It took the resolving power of the 16 

MHz Diasus transducer to give sufficient detail to install confidence in defining 

these structures, in as much as the collagenous bundles of the tendon were evident 

and the villous nature of the synovial sheath lining could be seen as well as its full 

extent both in width and length which exceeded the ability of Long and Nyland 

(1999) who were limited to only visualising it near to the musculotendinous junction.

The curvaceous nature of the path of the tendon and its confinement within the 

intertubercular groove made passage of the Elegra transducer in long axis difficult 

thus precluding successful acquisition of extended field of view images. However, 

as the length of the tendon was relatively short, much of the information could be 

seen on screen with a conventional image so that topographical detail was 

simplified. The transducer placement for three dimensional volume acquisition was 

with the transducer face at right angles to the long axis of the muscle and tendon
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and thus it was possible to acquire a three dimensional model of the muscle and 

tendon as it lay against the cortex of the humerus and it could be followed through 

the intertubercular groove to its insertion. This facilitated the sequential and 

multiplanar examination of the tendon relative to the surface of the groove and the 

surrounding synovial sheath. This has immense diagnostic potential for evaluating 

pathology of this relatively commonly affected region.

The m. teres minor and its tendon of insertion were imaged with Corevision lying 

proximolateral to the shoulder joint as described by Long and Nyland (1999), but 

even with Diasus orientation of the muscle was difficult as it lay obliquely across the 

joint and deep to the m. deltoideus. The course of the muscle was relatively short 

and so there was little to be gained by imaging it with extended field of view imaging 

or three dimensional modalities.

An ability to image the joint space and articular surfaces with accompanying 

synovial structures has been described by various authors, Kramer et al. (1997) 

with both a 7.5 or a 5 MHz transducer and Long and Nyland (1999) with a 10 MHz 

transducer. With Corevision the articular cartilage of the joint was imaged as an 

anechoic layer from a more caudo-lateral window and the synovial joint capsule 

could be seen but as with the image reproduced with the previously quoted authors, 

the definition of fine structure was somewhat lacking for making critical assessment 

of health status of the structures. It was not until Diasus with the 16 MHz transducer 

was used that the fine detail of the cartilage contour became evident and also the 

layering of the capsule was truly imaged. Access to the joint through transmission 

of sound was limited by the anatomy of the region and so Diasus proved to be 

much more successful in obtaining joint information compared to the images 

obtained with attempts at extended field of view and three dimensional modalities.
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5.3. Stifle joint:

The region immediately proximal to the trochlear groove of the femur has been 

described by Kramer et al. (1999) and was similar to the findings with Corevision, 

where the heads of the m. quadriceps femoris were imaged as they inserted onto 

the rounded patella. The authors described as a point of interest the indentation of 

the joint capsule but did not separate it from the bursa of deep to the m.quadriceps 

femoris in the distal third of the femur nor the bursae lying deep to the tendons of 

the mm. vastus medialis and lateralis. With Diasus it was possible to image the 

bursa on the femur while imaging in long axis over the midline axial plane, while the 

two small bursae were evident on Imaging to medial and lateral of the axial line. 

The bursae could be differentiated from the proximal excursion of the joint capsule 

as it extended proximal to the trochlear groove. The detail afforded by Diasus also 

allowed recognition of the integration of the various muscular heads to eventually 

form the patellar ligament; this is not being recorded by the other authors.

The patellar ligament has been well documented by Kramer et al. (1999) and Reed 

et al. (1995) and the findings were matched using Corevision but exceeded with 

Diasus as to the detail of the linear pattern of the fibres of the tendon or so called 

patellar ligament. The infrapatellar fat pad was imaged with Corevision with a 

similar lack of demarcation as quoted by Kramer et al. (1999), but with Diasus the 

fat pad was imaged in detail with defined margins and could be followed extensively 

throughout the joint. Due to the length of the patellar ligament it was not possible 

to appreciate its total length from the patellar origin to the tibial insertion on one 

single image frame. This coverage of the total length however was readily achieved 

using extended field of view, which gave useful topographical detail.

Imaging of the medial and lateral collateral ligaments presented a problem to both 

authors who had studied the region using a a 5/10 MHz and a 7.5 MHz transducer 

(Kramer et al., 1999) and a 7.5 mechanical sector transducer (Reed et al., 1995)
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and this was the case when Corevision was used, but with Diasus the collateral 

ligaments were revealed in high detail and the association with the m. popliteus 

laterally and the medial meniscus was evident. Because of the nature of the 

structures extended field of view had nothing further to add to this area.

The cruciate ligaments have been described as being imaged as hypoechoic 

features at depth in the joint space deep to the hyperechoic fat pad on a sagittal 

plane by Kramer et al. (1999) and Reed (1995). This was not achieved in this study 

using Corevision but with Diasus the cranial and caudal cruciate ligaments were 

displayed but with a greater degree of echogenicity than that described by the 

previous authors giving an impression of a linear fibrous nature to the ligaments as 

they traversed the joint space. It was not possible to image the caudal cruciate 

ligament at its tibial attachment.

The menisci were visualised with Corevision as homogeneous triangular structures 

with medium echogenicity in long axis which agreed with the findings of Kramer et 

al. (1999). Both the menisci were observed but only in their abaxial portions and not 

in their entirety, as their caudal extremities were not able to be observed, which 

agreed with the findings of Reed et al. (1995). While imaging the collateral 

ligaments and the menisci the joint capsule was revealed in detail with Diasus and 

could be followed extensively.

The tendon of origin of the m. extensor digitorum longus was not visualised in the 

study performed by Reed et al. (1995) with a 7.5 MHz mechanical sector 

transducer. In a later study of Kramer et al. (1999) the same structure was 

visualised but the distinction between the joint capsule (represented by a tendon 

sheath which forms an invagination of the joint capsule covering the tendon) was 

not achieved. The tendon of origin of the m. extensor digitorum longus was 

accurately imaged both in long and in short axis in this study despite its very 

superficial position. It was imaged both with Corevision and Diasus as a hyper 

reflective surface and its tendon sheath (the so called capsular synovial bursa) was 

able to be differentiated with the superior resolution of the Diasus scanner.
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The imaging for definitive detail of individual structures within the stifle joint was 

best accomplished using Diasus with the 16 MHz transducer but, as the transducer 

was of such high frequency and the foot print was limited in size, it was not possible 

to establish the continuity of the whole joint ultrasonographically. This was where 

extended field of view imaging came into its own especially when the transducer 

was drawn through the long axis of the joint. Thus it was possible to establish the 

entire integrity of the patellar ligament and interpret the intracapsular contents e.g. 

infrapatellar fat and cruciate ligaments as to their spatial relationships. The joint 

also lent itself to the application of three dimensional imaging where the transducer 

travelled rocking in a short arc thus producing a wedge shaped volume sample of 

the joint space which could then be interrogated in multiple planes.

5.4. Tarsal Joint:

The tarsal joint was investigated ultrasonographically from the point of imaging the 

common calcaneal tendon to determine its component make up and its region of 

insertion at the tuber calcanei of the calcaneus. This tendinous structure is a 

complex mixture of the insertions of the m. flexor digitorum superficialis, the two 

heads of the m. gastrocnemius and mm. semitendinosus, biceps femoris and 

gracilis. The division of the tendon into three ultrasonographic layers with different 

points of insertion and two bursal pouches has not been previously described in 

detail nor has the topography of the contributing muscle bundles, but this was made 

possible in this case due to the high resolution produced by Diasus with both a 16 

MHz and a 22 MHz transducer and the use of contrast agent in the cadaver work. 

As this muscular group and tendon is prone to rupture, a detailed evaluation layer 

by layer could be of benefit in monitoring breakdown and repair. The extended field 

of view imaging modality was of assistance in viewing the whole tendon in context, 

but topography did not really present a problem with Diasus due to the superficial 

and palpable position of the tendon which also permitted the use of the 22 MHz 

transducer for fine detail.
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5.5. Measurements

A series of measurements were taken with the transducers of Corevision, Diasus 

and Elegra scanners with the aim of detecting if any degree of consistency could be 

achieved through the repeatability of measurements. This was considered to have 

the potential of offering significant help to the clinician, since by this way differences 

in the size of various anatomical structures could be interpreted and contribute to 

the diagnosis of different musculoskeletal abnormalities.

The results obtained by the use of conventional ultrasound, represented in this 

study by the use of the 8 MHz transducer of Corevision, showed that there cannot 

exist any consistency between individual sessions in the measurements concerning 

the structures of the same joint. The significant differences in the dimensions of the 

different organs suggested that any degree of muscle atrophy or hypertrophy or 

even ligament or tendon thickening or thinning for instance cannot be safely 

diagnosed by this means. The difficulty in reproducing the same angle between the 

structures and the transducer, in combination with the poor resolution that had an 

impact in accuracy of measurements, made the project ineffective.

It was expected that with the help of an ultra high frequency transducer with Diasus 

scanner, which would provide the sonographer with greater accuracy, the same 

anatomical landmarks could be found during each measurement, in order to 

establish accuracy. But this was not achieved, as the whole particular project 

depended much on the angle between the structures and the transducer. The 

problem encountered with Corevision was not overcome, even with higher 

resolution.

Extended field of view was proved capable of providing the sonographer with 

constant anatomical landmarks in order to take the measurements. The calling up 

of a selected frame on the screen when the landmark was spotted was able to
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provide the researchers with accurate measurements in repeated sessions. This 

modality was considered to be promising in order to estimate even slight 

differences in the dimensions of musculoskeletal structures, that may suggest any 

kind of abnormality.

Further research is required in order to assess whether three dimensional 

measurements are able to offer accuracy In measurements of musculoskeletal 

anatomical structures. The machine equipped with this facility was not provided with 

an appropriate measurement package for this kind of measurement and 

consequently, this study was not able to give answers to that.

5.6. Clinical cases

Ultrasonography has proved to be valuable in the diagnosis of various 

musculoskeletal disorders of the dog. It has been useful in the identification of 

lesions that are not visible with radiography. This has been confirmed in a case 

where mineralisation of the m. infraspinatus and dilation of the synovial sheath of 

the m. biceps brachii were detected by ultrasound and were not visible in 

radiographs.

Although arthroscopy was eventually performed in most of the dogs examined, 

since the ultrasonographic findings were not optimal, because the frequency of the 

available transducer was only 8 MHz, it is estimated that it could be avoided if an 

ultra high frequency transducer was used that could provide additional information. 

Consequently, ultrasound seems to have enabled the diagnosis of several 

conditions that previously would have to be detected by invasive methods.

Tenosynovitis constitutes a pathologic condition that cannot be detected by 

conventional radiographic means. Ultrasound has proved to be useful for its 

detection since synovial inflammation is characterised by thickening of the synovial
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sheath and production of excessive amounts of fluid, as was found in the dog with 

tenosynovitis in its right biceps brachii synovial sheath. Imaging with high resolution 

transducers has shown that fluid echogenicity can vary from totally anechoic to 

hyperechoic and with a flocculent appearance (Martinoli et al., 1999). Moreover, 

thickening of the joint capsule has been able to be observed with ultrasound in the 

dog mentioned above, whereas it has not been accomplished with conventional 

radiographic methods. Arthroscopy or arthrotomy usually confirm ultrasonographic 

findings, but their invasive character constitutes a disadvantage as far as the dog's 

suffering and the cost effect are concerned.

Calcifications of muscles and tendons can be detected with accuracy with 

ultrasound. Various focal hyperechoic regions representing calcification, creating 

acoustic shadows in the far field can be imaged, indicating the presence of calcified 

tissue (Long and Nyland, 1999). Furthermore, their exact anatomical location can 

be detected, in contrast with radiography which can only identify their presence, but 

not their exact position in a component of a joint. This became evident in three 

cases, where radiographs were able to testify the presence of mineralisations, but 

the anatomical structures affected were able to be defined by ultrasound.

A clinical case examined with ultrasound proved that hypoechoic lesions that lay 

close to or overlay various anatomical structures of a joint (the shoulder joint in this 

case) could be detected with ultrasound, in contrast with radiography which could 

not provide the clinician with details of that kind.

Ultrasound can also provide information concerning bones. Irregularities of the 

bone cortex can be readily observed on radiographs and many bone abnormalities 

can be diagnosed with radiography with accuracy. In the case of the dog which 

suffered from a malignant bone tumour radiography was required to provide a 

definitive diagnosis, but by using the experience obtained from scanning this case 

ultrasound could provide a diagnosis in future cases.
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5.7. Conclusions

While interest in musculoskeletal ultrasound imaging in small animals has been 

increasing in recent years as the quality of scanners and transducers has improved, 

the advent of ultra high frequency transducers and the extensive increase in 

computer power in post processing images is leading to a renewed interest in 

imaging joint structures, ligaments, muscles and tendons. In this study the use of 

transducers ranging from 12 to 22 MHz greatly enhanced the detailed imaging of 

structures placed around the shoulder, stifle and tarsal joints in the dog. However 

the use of these transducers did not produce an improvement in the ability to 

consistently and repetitively measure the dimensions of these structures. This was 

due to the problems of variation in the operator's skill and interpretation plus the 

problem of angulation of the transducer and overcoming the topography of these 

regions. These problems could be off set by the use of extended field of view 

imaging, where it was possible to be more consistent in revisiting areas of interest 

and to be able to select specific image frames for measurement. Even so, in certain 

areas the anatomy of the region would not allow a panoramic image to be built up.

The most recent development of three dimensional reconstruction would appear to 

have a promising future in musculoskeletal imaging. The benefits of building up a 

large volume sample of an area allows a specific area of interest to be selected and 

then investigated In multiple planes and detail of the structure to be compared in 

three dimensions. Thus structures which run through an area of interest can be 

followed in context to their surrounding topography, which is extremely difficult to 

accomplish with conventional two dimensional imaging with high frequency 

transducers which have relatively small fields of view. Possibly the greatest 

advantage with three dimensional imaging is that once acquired the reconstructed 

volume sample can be stored electronically and revisited for subsequent detailed 

viewing of further areas of interest or the same area of interest for comparison and 

the plane of examination altered to suit the individual case. This ability is not
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available In conventional two dimensional scanning when only the individual slices 

of information in one dimension can be stored for further scrutiny. There is much 

more work to be accomplished in the field of three dimensional imaging with 

exciting discoveries for the future when imaging the musculoskeletal system of 

small animals.
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