

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

A C O M P A R I S O N OP S O M E

P E R F O R M A N C E E V A L U A T I O N

T E C H N I Q U E S .

by

Sabah M* A. Mohamad,

Submitted for the degree of Master of Soience to the
Faculty of Science, University of Glasgow, Department
of Computing Science,

September 1981.

ProQuest Number: 10662695

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uesL

ProQuest 10662695

Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 48106- 1346

In memory of my father and with much gratitude to my mother,
who tau^t me the love of knowledge, started and always encouraged
me in this pursuit, and thus provided the basis for development.
Her efforts and sacrifices can never be fully repaid.

ACKNO\VLSDGEMENTS

I would like to express my deepest gratitude to

Dr. John C. Cavouras

for his time spent in guiding me in this research
and for demonstrating that cooperative research can
be so enjoyable. Without his unfailing energy and
enthusiasm, I would not have been able to complete
this thesis.
I wish to thank

Professor B.C. Gilles

Head of the department of computing science for
giving me the opportunity to carry out this research
in this esteemed department,
I would also like to thank both

Dr. J. Haselgrove and Dr. L, Smith

for their interest in my thesis.

Last, but not least, my thanks are due to the staff
of the Iraqi Ministry of Higher Education and Scientific
Research, who have helped me financially during this period.

Special thanks to my friends Shirley M, Stewart and
Salim A, Al-Salim for their great help in typing this thesis.

Finally, a conductive atmosphere is important for research
and all of the people associated with the Department of
Computing Science at Glasgow University are to be commended
for providing a professional but relaxed environment in
which to work.

il

CONTENTS.
SECTION PAGE NO.

ACKNOWLEDGEMENTS
CONTENTS
ABSTRACT

X

xi
V

CHAPTER 1 : INTRODUCTION 1
1.1. Motivation. 2
1*2. Outline of the Thesis and Summary. 4
1.2.1. Chapter 2, 4
1.2.2. Chapter 3» 5
1.2.3. Chapter 4* 5
1,2.4- Chapter 5* 5
1,2,5* Chapter 6, 6

CHAPTER 2 : COMPUTER SYSTEM DESIGN AND EVALUATION METHODS 7
2.1. Introduction 8
2.2. Analytic Methods. 9
2.2.1. Operational Analysis. 9
2.2.2, Stochastic Analysis. 12
2.2,3* Mean-Value Analysis. 15

2.3* Simulation Methods, 17
2,4* Empirical Methods, 19
2.5, Other Methods. 22
2,5*1* Performance-Oriented Design, 22
2.5*2, Benchmarking. 22

2.6, Conclusions. 24
CHAPTER 3 : THE SIMULATION APPROACH 25

3.1* Introduction. 26
3*2. The GST Simulation Method, 27
3.2,1, Generalities, 27
3*2.2. Model Components. 29
3*2.3. The Selected System of the GST. 29
3*2.4* The GST Components, 30
3*2.4*1* The Workload, 30
3.2,4*2. System Structure. 32
3*2.4*3* Scheduling 35
3*2,4*3*1* The Low-Level Scheduler, 37
3*2,4.3*2, The Short-Term Scheduler, 37
3,2.4*3*3. The Medium-Term Scheduler, 38
3*2.4*3*3.1* The Design of CPU-Manager

Procedure, 39

5*2.4*3«4« The Long-Term Scheduler 40
3,2.4.4* Performance Indices. 40

3.3, Experimentations. 43
3*3*1* Case 1: Effects of Performance Parameter:

Number of Active Users. 45
3*3*2. Case 2: Effects of Performance Parameter:

Number of Tasks per Multiaccess Job. 49
3.3.3* Case 3: Effects of Performance Parameter:

Average Think Time. 32
3*3*4* Case 4: Effects of Performance Parameter;

Mean Interarrival Time. 55
3.3*5* Case 5: Other Effects of Performance Parameter:

No. of Active Users. 58
3.3*&* Case 6; Other Effects of Performance Parameter:

No. of Tasks per Multiaccess Job. 64
3*3*7* Case 7: Other Effects of Performance Parameter:

Avera ge Think Time, 68
3*3*8* Case 8: Other Effects of Performance Parameter:

Mean Interarrival Time. 72
3.4* Aim of Experimentations. ''

CHAPTER 4 : THE OPERATIONAL ANALYSIS APPROACH 81
4.1* Introduction. 82
4.2. Single-Resource Queueing System. 83
4.2.1. Background, 83
4*2,2. Single-Resource Queue. 84
4.2.2.1. Further Notes. 86

4*3* Queueing Network System. 87
4*3*1* Background. 87
4*3*2* The Operational Assumptions. 89
4*3*3* Simple Closed Queueing Network Operational

Analysis, 90
4*5*3*1* The Operational Aspects of the Simple

Closed Queueing Network. 90
4.3*4* Operational Aspects of the Interactive

Computer Systems. 101
4.3*4*1* System Outline, 101
4*3*4*2, The Operational Aspects of a Multiclass

Closed Queueing Network Subsystem, IO3
4*3*4*3* The Operational Aspects of the Overall

Interactive Computer System, I05

IV

CHAPTER 5 î the PERFORMANCE-ORIENTED DESIGN APPROACH
5.1. Introduction.
5.2. Problem Statement and Solution.
5.2.1. The Selected Model,

107
108
109
112

5#3* Optimal lesign of Computer Systems Without
Virtual Memory.

5,4. Optimal Design of Computer Systems With
Virtual Memory,

5*5* The Selected Model Extension.
5*6. Optimal Design of Terminal Computer Systems

Without Blocking,
5.7* Optimal Design of Terminal Computer Systems

With Blocking.
5*8, Further Notes.

CHAPTER 6 : COMPARISONS AND CONCLUSIONS
6.1, Thesis Overview,
6.2. Comparisons of Methods,
6*3* Future Research Work,

REFERENCES
APPENDICES
APPENDIX Al: Some Helpful Statistical Methods,
APPENDIX A2; Abbreviation.
APPENDIX Bl: The representation of a multiclass customer

closed queueing network,
APPENDIX B2; The Algorithm of Calculating the Normalization

Factor of Interactive Computer Systems Models,

113

115
120

122

125
126
130
151
133
139
142
AP.l
AP.2
AP.7

AP.9

AP.18

Abstract

In this thesis we look at three approaches to modelling
interactive computer systems: Simulation, Operational analysis and
Performance-Oriented design* '

The simulation approach, presented first, is applied to a
general purpose, multiprogrammed, machine independent, virtual
memory computer system* The model is used to study the effects
of different performance parameters upon important performance
indices. It is also used to compare or validate the results
produced by the other two methods.

The major drawback of the simulation model (i.e. its
relatively high cost) has been overcome by combining regression
techniques with simulation, using simple experimental case studies.

Next, operational analysis was reviewed in a hierarchical
way (starting by analysing a single-resource queue and ending up by
analysing a multi-class customer general interactive system), to
study the performance model of general interactive systems. The
results of the model were compared with the performance indices
produced using the simulation results.

The performance-oriented design technique was the third
method used for building system performance models. Here, several
optimization design problems have been reviewed to minimize the
response time or maximize the system throughput subject to a cost
constraint. Again, the model results were compared with the
simulation results using different cost constraints.

We suggest finally, that the above methods should be
used together to assist the designer in building computer
performance models.

CHAPTER 1

I N T R O D U C T I O N

1.1, Motivation.
1.2. Outline of the Thesis and Sunmiary.
1.2.1. Chapter 2.
1.2.2. Chapter, 3*
1.2.3. Chapter 4.
1.2.4. Chapter 5.
1.2.5. Chapter 6.

1.1. MotiTatlont

Slnoe the early days of the oomputer industry, there has been
ocnaiderahle interest in the design and performance analysis of
systems. The goal has most often been to obtain better insight into
their behaviour and to improve their performance.

During the last deoade, we have seen the development of a
large number of oomputer systems. In most oases, these systems have
failed to meet the performance objectives predicted during the initial
design. During the same period, **the complexity of these systems has
increased tremendously with the introduction of multiprogramming,
multiprocessing, virtual memories, etc. It has thus become more
difficult to understand the behaviour of these systems in a qualitative
sense, let alone) .
((/jtuntz 75/))* Hence, the road to understanding the behaviour and
predicting the performance of oomputer systems has been, and still is,
arduous. Many people have realised this and have attempted to
investigate the problem of designing and analysing the performance
of computer systems, and to proceed to develop superior tools. Such
a tool can most generally be represented in the schematic diagram of
Figure 1.1.:

Initial
Design
Parameters
Work
load

Final Requirements

H.W.
parameters

S.W.
parameters

Cost
parameters

Initial
Requirements
(Workload,
System-
families

Selection
of Design
Variables

Constraints
(Technology
...etc.)

System Performance Evaluation
(including Cost Evaluation)

Performance Satisfactory?^^
Yes

J

Possible
System
Families

Available
Budget
Required
Performance

 ̂I*
Model
'selection

*
Selected
Model

Figure 1.1. Schematic Diagram of a General
Tool for Computer System
Performance Design and Evaluation.

The design and evaluation diagram shown represents a
hierarchioal and Iterative process. This process starts by selecting
the initial design parameters (i.e. input performance parameters) and
the initial user requirements and constraints (these may represent the
system families, required cost, technology constraints, required system
cost, etc.). After that the process takes an iterative shape to select
the design variables (these may include many changes in the initial
requirements and constraints). In this selection, the evaluation of
the system cost and performance plays a critical part. The iterative
process will produce several models that satisfy the initial
requirements and constraints. The process then enters a decision area
to select the *best' model among the produced models, depending on the
final user requirements.

The purpose of such system design and evaluation tools is
generally in three parts ((/Lucas 71/))*

* Selection evaluations
Selection evaluation plans to include performance
as a major criteria in the decision to obtain a
particular system from a vendor.

* Performance projection:
Performance projection is oriented towards designing
a new system, either a hardware component or a
software package. The goal here is to estimate the
performance of a system that does not yet exist.

* Performance monitoring:
Performance monitoring provides data on the actual
performance of an existing system. This data can be
used to forecast the impact of changes in the system,
such as a reconfiguration of the hardware or an
improvement in the frequently executed software
modules. Such evaluation may also be concerned
with obtaining a profile of the use of a system, in
order to make strategic decisions, for example, on the
characteristic of a job priority system.

The designed evaluation techniques used for the three purposes
are fully discussed in chapter 2. The selection of a particular
technique(such as Simulation, Benchmarks, Monitors...etc.) depends

on the suitability of that technique for a given purpose.
The concentration on both design and evaluation techniques

is quite important, since it has been proven that "design without
evaluation usually is inadequate" ((/Cantrell and Ellison 68/)).
This combination always provides better systems, better understanding
of the system operations and the effects of each performance factor.
It also helps in tracing the performance bugs. Finally, it removes
the ' faith* concept in designing a computer system. The problem
is a scientific and engineering one only, if it is solved using
both performance design and evaluation techniques.

1*2. Outline of the Thesis and Summaryt

The aim of this thesis is to show that different performance
design and evaluation tools can be combined in such a way as to
help the designer in building better oomputer performance models.
This idea is quite important, since there is ̂ single beat way
to design a computer system.

In this thesis we introduce three modelling techniques
which can be combined to construct a more reliable performance model.
These techniques are;

* Simulation,
* Operational analysis and
* Performance-oriented design.

The above techniques were selected from many available
techniques. The reason for such selection and a brief review of
the available techniques are introduced in the second chapter. In
the next three chapters we introduce each technique seperately.
In the last chapter an implementation of the combined ideas is
given.

The following is a brief summary of the contents of the
remaining chapters of the thesis.
1.2.1. Chapter 2; "Computer Design and Evaluation Methods".

In this chapter the available computer design and evaluation
methods are critically reviewed. These methods are;

* Analytical Methods.
* Simulation Methods.
* Empirical Methods.

According to certain factors a specific set of design and
evaluation methods have been chosen to help the designer to solve

future problems with different levels of details and accuracy. The
methods chosen are:

* Simulation.
* Operational analysis.
* Performance-Oriented design.

1.2*2. Chapter 5: "The Simulation approach".
An ideal simulator should incorporate the software and the

hardware of the system under design. Some researchers call this
incorporation "the forth generation computer system concept". A
general simulation tool (GST) was presented by Cavouras ((/Cavouras 78/))
to represent this aim. The GST is reviewed in a structured way.

Since Simulation is a very expensive approach for system
design and evaluation, we have tried to overcome this by introducing
regression analysis techniques to the results of the Simulation in
order to produce fast l^brid models. This was done through several
case studies and the introduction of an interactive design tool
(XDT) is suggested.
1.2.3* Chapter 4; "The operational analysis approach".

In this chapter we aim to represent a similar general
interactive computer system as the GST introduced in chapter 5 using
the operational analysis technique. For this purpose the operational
analysis technique was critically reviewed. It has then been used
to represent a general multi-class customer interactive computer
system. Many factors have been investigated during the representation
process. These include:

* job flow balance.
* load-dependent behaviour.
* homogenous service times.
* decomposition technique.

Finally, we tried in this chapter to concentrate on the
representation of the effects of both the hardware and software
parameters on the model.
1.2.4* Chapter 5: "The performance-oriented design approach".

In this chapter we have also tried to represent a general
interactive computer system similar to the GST model. This was done
by reproducing the work of several researchers. Several optimization
problems to minimize the response time or maximize the system
throughput of the modelled system, subject to a cost constraint, are
examined.

1.2.5* Chapter 6* "Comparisons and conclusions".
We conclude our research work hy giving an overview of the

work presented and give an example to implement the combining of
the three discussed modelling techniques. Finally, we suggest several
future research ideas and extensions to this work.

CHAPTER 2

C O M P U T E R S Y S T E M D E S I G N

A l l

E V A L U A T I O N M E T H O D S

2.1. Introduction.
2.2. Analytic Methods.
2.2.1. Operational Analysis•
2.2.2. Stochastic Analysis.
2.2.3. Mean-Value Analysis «

2.3. Simulation Methods.
2.4. Empirical Methods.
2.3. Other Methods.
2.5.1. Performance-Oriented Design.
2.5*2. Benchmarking.

2.6. Conclusions.

2.1. Introduction :

For several years immediately following their inv«aition,
computers were almost universally monoprofcrammed.̂ However, it was
soon realised that following more than one program to run concurrently
would result in more effective usage of the system's resources, since
one program could be using one resource, while another program could
be using a different resource. With the advent of operating Systems
to manage concurrently running programs, multiprogramming became a
reality ((/Bouhana 78/)).

In an attempt to understand and quantify resource usage and
concomitant delays that result when programs compete for service in
a multiprogrammed environment, performance analysts have constructed
several representative methods to model oomputer systems. "Studying
these methods are of a vital importance in the system design and
evaluation process" ((/DeCegama 72/)).

Grenander and Tsao ((/Grenander and Tsao 72/)) suggest that
these quantative methods of design and evaluation of computer systems
fall into three categories, namely;

1. Analytical Methods.
2. Simulation Methods.
5* Empirical Methods.

To apply computer performance methods, there are a number of
considerations and problems of which the user must be aware. Different
techniques are required for different computer systems measurement
((/Goh 76/)). Also, there is no single tool or method which is
capable, by itself, of evaluating all elements of a system. The
nature of the questions to be answered will influence the choice of
a technique, or techniques. The user must develop some criteria for
the selection of appropriate performance assessment methods. The
criteria to be considered include ;

* Understandability.
* Cost.
* Degree of resolution (accuracy).
* Ease of parameter optimization or estimation.
* Breadth of applicability.
* Relevance to actual system.

In order to highlight these methods and their differences,
we will try to study them in the following sections.

^ Only one program could be running in the oomputer, and that program
had exclusive use of all the systems' hardware and software resources
for the duration of its running time.

2*2. Analytical Methods: (Non-Deterministic Modelling).

Analytical models represent system performance paramets rs
strictly in mathematical terms. Simpifying assumptions may he used to
avoid unnecessary complexity and to keep the mathematics tractable,
provided that the necessary simplifications of the analytic model
still preserve the important characteristics of the computer system
which is to be evaluated.

Many computer system analysts prefer this approach, mainly
for the following reasons ;

* It is an economical method compared to simulation.
* It can be used to optimise the design variables,

whereas the the number of simulation runs required
to accomplish the same task will be high.

* It is quicker to produce results than by simulation.
This approach, however, may have the following disadvantages:
* Limited in scope.
* Difficult to develop and build.
* Not easy to test the simplification assumptions.
"Queueing theory has been employed widely for the performance

evaluation of various classes of computer systems. The models include
closed and open queueing networks, the treatment of various customer
classes, and approximations which relax some of the restrictions
necessary for the application of queueing theory" ((/Von Mayhauser 79/))
The queueing network theory has been used by all available analytical
methods, namely:

* Operational Analysis.
* Stochastic Analysis.
* Mean-Value Analysis.

Hence, the knowledge of queueing theory is essential in understanding
any analytical tool. This theory was previously investigated by many
researchers and for further information of this theory the reader is
referred to: ((/Kleinrook 75, 76/)) ((/Murdoch 78/)).

2.2.1. Operational Analysis:

"Operational dialysis is a framework for studying the
performance of systems during given periods of time. The system may
be real or hypothetical, and the time may be past, present or future"
((/Buzen and Denning 8O/)).

This kind of analysis was recently invented, about 1976 ((/Buzen 76/)),
to construct a p:ecise mathematical tool to meet the following
objectives:

1« Relate existing measurement data to other quantities that
were not measured but which could, in principle, be
empirically determined.

2. Verify the internal consistency of existing sets of measure
ment data.

3. predict the effect that certain modifications to the
system or the workload would have on measured quantities.

4. Be simple and easy to understand.
5. The tool should be based on testable assumptions.
The general idea of operational analysis (or operational method)

can be shown in the following diagram (see Figure 2.1.):

Step 1;
Initialization.

Step 2:
Defining
Operational
Variables.

Step 3:
Deriving
relationships.

Step 4;
Testing,

Figure 2.1. Operational Method.

step It Initialization.
In this step an observation interval is obtained: an interval

of time during which system behaviour is monitored and measurement
data is collected. The measured or computed quantities within
observation interval are called operational variables.

Step 2: Defining Operational Variables.
Defining the operational variables that directly affect the

performance indices of interest.

Step 3: Deriving Relationships.
The behaviour of the system is specified in this step by

deriving the relationship between the operational variables. These
relationships are represented by mathematical equations.

Step A: Testing.
At this step, the mathematical relationships are tested

against the original objectives.
This method is considered by many researchers as equivalent

or as an alternative to the traditional method of Stochastic analysis
(or Stochastic modelling). ((/Buzen 7 6 /) ((/Duzen 78/)) ((/Buzen 76a/))
((/Denning and Buzen 78/)). Other researchers find that this approach
has several advantages to the traditional approach. These advantages
can be summarised as follows ((/Sevcik and Slawe 79/))*

* Relevance to actual system: The fact that operational
analysis is based on observable quantities and testable
assumptions makes it easier to relate to system measurements.

* UPideratandability; Operational analysis can be understood
, even for large systems.

* Breadth of applicability: Since operational analysis
depends on testable assumptions, it has a wide applicability
as a modelling technique. Its major application areas are
((/Denning and Buzen 78/)):

a. Performance Calculation;
Operational results can be used to compute quantities
which have not been measured.

b. Consistency checking:
A failure of data to verify a theorem or identity reveals
an error in the data, a fault in the measurement procedure
or a violation of a critical hypothesis.

o. Performance Predlotion:
Operational results can be used to estimate perfozrmanoe quantities
in a future time (or indeed a past time) for which no directly
measured data are available.

* Testability of Assumptions: Most of the assumptions of
Stochastic analysis can neither be verified nor disproven
in any finite period. While the assumptions of
operational analysis can, in principle, be tested in
finite time intervals.

However, some researchers do not find this approach suitable
for parameter estimation and anticipated design and modification
((/ifimtz 79/)) ((/Sevcik and Klawe 79/))* Buzen ((/Buzen 79/))
believes that, "the estimation problem is not really an integral
part of either operational analysis or stochastic modelling. It
is crucially important but an entirely separate issue". At the same
time, Buzen believes that the performance analysis offers major
advantages over stochastic modelling in performance prediction.

Operational analysis may use queueing theory, in which
case it is called Operational queueing network theory ((/Denning
and Buzen 77/))*

The important reason why queueing theory should be used, is
the speed with which performance, quantities are computed using
queueing network formulae. The operational queueing network theory
may use some assumptions - e.g. flow balance, one-step behaviour and
homogeneity, but these assumptions (as mentioned previously) can be
tested for validity in any observation period.

2.2.2. Stochastic Analysis :

This analysis depends on queueing theory: it considers the
system as consisting of service centres among which customers
circulate. This analysis may also be called stochastic modelling
or Probabilistic modelling, since the servicing time of a customer
at a servicing centre is taken to be a sample from a specified
distribution and the frequency by which the customer will move to
another servicing centre is controlled by a specified probability
distribution.

Let us now introduce the following:

1. Definition; ((/Ferrari 78/))
A stochastic procesa X(t) is a function of time t whose

values are random variables. The value of X(t) at time t*represents the state of the stochastic process at t « If each
random variable may only take on a finite or a countable number
of values, we have a discrete-state process or chain. Otherwise,
we have a continuous-state stochastic process.

2. Evpothesis t
The behaviour of the real system (or the queueing network

model) during a given period of time Is characterized by the
probability distributions of stoohrtçtîc process if and only if the
following assumptions hold ((/Sevcik and Klawe 79/))*
(a.) Successive service times are independant.
(b.) Successive transitions among service centres are independent,
(c.) The process is ergodio.̂
(d.) The system reaches equilibrium.

3. Condition 1;
If (a) and (b) was assumed oncl if service time distribution at
each centre is exponential then the system state (number of
customers at each centre) is a continuous Markov process.
Note;
Markov modelling is important, because it forms the basis of
elementary queueing theory. Readers not familiar with this theory
are referred to /Kobayashi 78/,

4* Condition 2;
If (c) and (d) were assumed then the system is at a steady-state
equilibrium, and the long term performance measures can be
computed.

Based on the above, we can construct a stochastic model.
Observable aspects of the real system - e.g. states, parameters,
and probability distributions - can be identified with quantities
in the stochastic model and equations relating these quantities can
be derived. Although formally applicable only to the stochastic process
these equations can also be applied to the observable behaviour of
the system itself, under suitable limiting conditions ((/Buzen 78/)).
The parameters of the stochastic process, representing the operation

The system is ergo die means long-term time averages converges
to the mean values for stochastio equilibrium.

of the system, mast he estimated from observations during a finite
time interval. The specific formulae depend on what measurement
data is available and on the amount of detail in the queueing
network model.

In order to validate the model, the estimated parameter
values are plugged into the performance measure formulae, and the
results are compared to the corresponding observed values in the
observation period. The most common purpose for which models are
created is to obtain an indication of how a system will bèhave in
the future, either after its configuration has been altered or its
workload has been changed. In order to accomplish this, it is
possible to employ the same computational formulae as in the
validation of the model, by using modified parameter values in
order to reflect the altered circumstances anticipated in the
future. Once the future values of the model parameters have been
estimated, the obtained formulae are used to calculate the
performance measures. These are then interpreted as equilibrium
performance measures of a stochastic process.

Stochastic analysis has, however, certain disadvantages
((/Denning and Buzen 78/))*
1. It is impossible to validate the stochastic hypothesis and conditions,

hence an analyst can never be certain that an equation derived
from a stochastic model can be correctly applied to the observable
behaviour of a real system.

2. Stochastic analysis is an inductive mathematical tool:(it
estimates unknown values from the projection period from values
observed in the baseline period). Thus, one faces the problem
of uncertainties in estimation of variables. (Note: this problem
is not present in operational analysis, since operational
analysis is a deductive mathematical tool).

3* Stochastic analysis can be applied to study a special class of
computer systems because the type of assumptions used by this
analysis cannot be easily found in real systems (e.g. the
assumptions of equilibrium or stochastic indépendance of
successive service times).

4« Stochastic modelling may not be so easy to understand.
5. Stochastic modelling cannot be relevant to a real system, for

example, in real systems transactions between devices do not
follow Markov chains or processes, and service time distributions
are not generally exponential ((/Ton Mayhauser 79/))*

On the other hand, Stochastic models bestow certain benefits.
Independant and dependant variables can be defined precisely,hypothesis
can be stated succinctly and a considerable body of theory can be
called on during analysis ((/Denning and Buzen 78/))*

Finally, the relationship between Stochastic analysis and
operational analysis is given by figure 2.2, ((/Buzen 78/)).

Operational Variables Stochastic Parameters

Operational
Analysis

Real
System

Modelling ^ Stochastic
ModelAssumptions

1F
Analysis or
Simulation yt

Actual
performance

Ergodic
Theorem

Stochastic
Resultsand law of

large numbers

Figure 2.2. The relationship between operational analysis
and Stochastic modelling.

2.2.5, Mean-Value Analysis;

This is a new mathematical tool, used to calculate some
important performance indices, such as mean response time, throughputs
and queue length in closed queueing networks. A primary advantage
of mean-value analysis over the traditional approach (i.e. Stochastic
Analysis) , is its improved numerical stability ((/Buzen and Denning 80/)
This analysis uses the Sevcik Mitrani ((/Sevcik and Mitrani 78/))
arrival theorem to calculate the mean-value for successively larger
loads N.

Reiser ((/Reiser 79/)) found queueing networks with product-
1 2 form solution remarkably robust with respect to routing and service-

time distributions. This robustness leads to the new mathematical
explanation called Mean-Value Analysis.

"̂Troduct-form solution; gives the joint queue-size up to a normaliz
ation constant. This constant has a simple analytic expression
in the case of open queueing networks but is a sum of product terms
of closed system.
Robust; Statisfièians call a system robust if only the mean enters
into the solution.

Mean-Value analysis uses some basic equations which can be
applied iteratively for any value of N.

let i = device number, K ■ number of devices.
N = number of jobs.

overall mean queue length at device i.
Q, « mean queue length seen by arriving customer at Ai

device i.
R^(N)* mean response time of device i, i * 1,...,K,

given N jobs.
R^(N)» mean response time of the system given N jobs.
X^(N)a mean system throughput given N jobs.
V^« mean number of visits per job to the device i.
S.(N)» mean time between completions when the state of
^ ISthe system^equal to N.

def
(N-1 Sevcik-Mitrani theorem.

Then the basic mean-value equations are

R̂ (S)= 3̂ (1+ ̂ (H-1)) I (1)

and
where i = 1

 .(2)
Using the forced flow law,we get

X^(N)« V^X^(N)forced flow law.
where X^(H)= throughput at device i given N

we_ge^
........ (3)

where i«l,...,E.
Equations(l),(2) and (5) can be used iteratively,once the values V̂
and are given. The iteration begins with N=1 and the boundary
condition Q^(o)=0.

It is clear that this type of analysis uses no normalization
constant to calculate the important performance indices,and hence theqformulae have^simple mathematical structure. This criteria is not
available in the two previous analytical methods,i.e.Operational
analysis and Stochastic analysis.

Some ideas of extending Mean-Value analysis were given by Buzen
and Denning ((/Buzen and Denning 80/)) and by Riser and Lavenberg
((/Riser 8l/)) ((/Riser and Lavenberg 80/)), which the reader is
referred to for farther information.

2,5» Simulation t

"Simulation has been defined as an evaluation and design
technique which represents, by a model, the behaviour of a system
in the time domain. The observation of the behaviour in time of
the systems model, under stimuli generated by a model of the
system's inputs, produces numerical results which may be used in
evaluation studies. A model suitable for this purpose is called a
Simulation model or simulator" ((/Ferrari 78/)) * Simulation is
applicable whenever we have a certain degree of understanding of
the process to be simulated. The ideal simulator should meet
specific requirements ((see/Cavouras and Davis 8l/)).

Simulators can be classified as shown in Figure 2.3*

Degree
of.
Exactness

A
Physical

Scaled
Analogue

Management
Computer

Mathematical

Degree of
Abstraction

Figure 2.3* Classification of Simulation Models.

Simulation models can be thought of(and hence classified)
in a continuous spectrum, starting with exact models of reality and
proceeding to completely abstract mathematical models ((/Shannon 75/))*

Althou^ Simulation is an excellent method, many analysts
avoid it because the development of a good simulation model is often
expensive and time consuming. Many researchers tried to overcome
this problem, using approaches such as the following:

2.

General Simulation Model: ((/Goh 76/))
Here the Idea is to design an extensible" simulation
model as a general simulation model, which can then
simulate any specific models easily.
Structured Approach;
This approach takes the view that the process of
developing a simulation model should pass through
the following stages (see Figure 2.4.) ((/Mirham 72/)) :

Modelling
Goals

5 Inference

2 System
Synthesis

5 Model
verification

4 Model
Validation

System
analysis

Figure 2.4. Simulation Model Development Stages.

Stage 11 System Analysis.
The initial stage of development, during which the

salient components, interactions, relationships and dynamic
hehaviour mechanisms of a system are isolated.
Stage 2: System Synthesis.

The stage of development, during which the model of the
system hehaviour is organized in accordance with the findings
of the proceeding system analysis stage, and during which
appropriate data is delineated and collected.
Stage 3 : Verification.

The third stage of development, during which the

model's responses are compared with those which would have
been anticipated if the model's structure was prepared
as intended.
Stage 4: Validation*

The stage of development during which the responses
emanating from the verified model are compared with
corresponding observations of, and measurements from,
the actual system in order to establish the verisimilitude
of the model and the modelled system.
Stage 5 : Inference •

The final stage of development, concerned with the
definition of experiments with, and comparison of the responses
from the verified and validated model.

The structured approach represents a modelling method, which
again requires a 'good* design methodology. Cavouras ((/Cavouras 78/))
argued that his Simulation modelling methodology (or approach) is
more realistic than the available methodologies. Cavouras' approach
is mainly based on the fundamental requirement that a simulation
tool should have the same logical structure as the software being
modelled, and the method proposed was to embed the supervision
of a computer operating system in a simulation of its environment,
so that the overall system performance can be measured by direct
experimentation ((/Cavouras and Davis: 8l/)),

Simulation provides an accurate model, but it may require
an inordinate cmount of time for the determination of the system
performance. In the same sense, simulation is very expensive,
especially when we want to use it to optimise the future behaviour
of a system. There is, in fact, very few models which tried to
overcome the optimization problem, for example the SOERT (System
and Computer Evaluation and Review Technique) simulator ((/ihrer 67/))#

2.4* Empirical Methods :

These methods represent an alternative to the modelling
techniques described by the last two sections• These methods are
appropriate when performance data of (an) actual system(s) are
available. Statistical methods use these data to forecast future
performance.

Empirical performance results can be obtained through
measurements .Measurements may be from an actual system or from
a model of a system. The collection of these measurements can
be performed with hardware monitors, software monitors and

accounting packages.
The need for performance measurements can arise out of

different situations. Lucas ((/Lucas 7l/)) suggested three general
reasons for undertaking performance evaluation (i.e.modelling and
measurements), namelyt

1. Selection Evaluation - choosing from a set of new possible
alternatives » which system best meets a user's cost /
performance specifications*

2. Performance Projection - estimating the performance
of a system which is not yet implimented, i.e.an aid
in the system design.

). Monitoring - forecasts the impact of possible changes
of the software components or the user load applied
to the system, i,e. system tuning or balancing.

Approximately, the same reasons were presented by Grenander
and Tsao ((/Grenander and Tsao 72/)).

The major applications of performance measurements are
summarized as follows ((/Buzen 77/))*

a. Accounting;
Since the changes for running a program are typically
based on the resources used by that program, sub-routines
for measuring CPU time, l/O operations, memory requirements,
and so on, are an integral part of most accounting packages.
In addition, using measurements as inputs to changing
algorithms, accounting packages often make basic
measurements of data available in row form for other
purposes.

b. Trend Analysis;
Many data processing centres maintain graphs or tables
of performance measurement data which has been aggregated
on a daily, weekly or monthly basis. Data of this kind
can be of great value to managers and planners who wish
to examine trends in workload growth, identify peak periods
and cycles, and attempt to determine when a system is'run
ning out of capacity*, (in the sense of requiring an
upgrade in order to maintain acceptable levels of service).

o. Tuning;
Careful examination of measurement data often leads
to the discovery of imbalances and ineffioiences within
a system. Frequently, these problems can be readily
corrected, and a dramatic improvement in overall
performance can be obtained. This, is generally the
case when gross imbalances are found in the loads on
different x/o devices or channels, and when Inefficient
search algorithms (e.g. linear search) are replaced by
more efficient algorithms,

d. Evaluation of Changes;
The use of measurement data for trend analysis and
tuning leads, naturally, to a desire to use measurement data
for the evaluation of various changes to a systems hardware,
software or workload. For example, managers and planners
often need to determine the performance impact of
changes such as installing a higher performance CPU,
more main memory, or larger discs. Similarly, system
programmers involved in tuning may be interested in the
performance impact of a new swapping algorithm, et change
in the ammount of memory allocated to the operating
system, or reassignment of priority levels among various
classes of work.

However, it is often difficult to obtain accurate measurements
of a particular quantity of interest due to inadequate system
instrumentation, or due to gross interference caused by the
measurement technique ((/Adams 78/))#

It has been suggested that the best way to use measurement
as a system evaluation technique is to connect both measurement and
evaluating models (simulator or analytic model) in one process. This
has been employed by Hoetzel ((/ifoetzel ll/)) in his meta-system
(see Figure 2.5)# (next page)

The reader interested in measurement techniques is referred
to ((/Goodman 72/)) ((/Brad 7l/)) ((/Ohouinard 76/)) ((/Calingaert 67/))
(.(/Kim'bleton 72/)) ((/ffilliams 72/)).

OutputUser Tasks

Modifications
System

Designers

Measurements

Computer System

Trial Modifications

Figure 2*5, The Meta-System.

2*5» Other Methods:

To complete the list of the techniques used in design,
measurement and evaluation we have to include:

2,5*1* Performance- Oriented Design Technique.
2,5.2. Benchmarking Technique•

2,5*1, Performance-Oriented Design Technique:
This has heen summarized hy Sigmon ((/Sigmon 79/)) as follows:
This method can he used to aid computer science designers,
hy generating initial system designs for an iterative design
process or hy allowing the investigation of many different
system configurations, quickly and inexpensively. The design
models are hased on queueing networks upon which an
optimization problem has heen superimposed. The objective
of these optimization problems is to optimize a system
performance index, such as throughput, subject to a cost
constraint.
In fact this method is not quite new, since the idea of

using optimization in system design has heen used hy several researchers
((/Decegama 70/)) ((/Irani and Uppal 72/)),
2.5,2, Benchmarking Technique:

Benchmarking represents another alternative to modelling
which has heen in use since the earliest days of computing.

Benchmarking can he regarded as a performance
calculation proceedure in which the system itself performs

the calculation by actually processing the workload on the
hardware under the control of the software. The reader is
referred to ((/Benwell 75/)) and ((/Sime 75/)) for more
details.
Performance-Oriented design is a good way to estimate the

future design aooording to many given constraints, such as cost,
workload, technology.••etc. The only problem of using this method
is that we have to choose a limited number of design variables to
keep the optimization problem mathematically tractable.

Benchmarking has major difficulties ((/Buzen 77/)) and it
is considered impractical.

The following diagram (figure 2.6) lists the available
design and evaluation tools:

Queueing
theory Available

Tools

Analytical
Method
(Deterministic
Modelling)

Mean
Value

Operational
Analysis

Stochastic
Analysis

Performance-
Oriented
Design Method

Simulation
Method

Helpful
statistical
methods

Empirical
Method
(Non«*Deterministio
Modelling^

Physical
Scaled
[Analogue
I Management
[Somputer

^ Benchmarking

Measurements
Mathematics

Optimization
Theory

Figure 2.6i The Available Tools of
Design and Evaluation.

Hardware

Software

[— •Hybrid

2.6. Conolusion:

Tn this chapter several design and evaluation methods were
introduced, and it was argued that each method has its own
characteristics and advantages, therefore there is no single best
way to design and evaluate a computer system. In fact, a designer
should deal creatively with the problems he faces.

Due to the enormous task facing a system designer, it was
decided to concentrate on a few important design and evaluation
tools that can help the designer to attack the problem, on any
level of detail and accuracy he wishes.

The selected design and evaluation methods are*
* Simulation.
* Operational Analysis.
* Performance-Oriented Design.

The selection has been made according to the criterion
and factors mentioned in Section 2.1., except for the cost factor
of the simulation technique which is quite an expensive method.
This problem will be overcome in the third chapter, by combining
the simulation with the regression analysis to produce lower cost
models.

The selected methods will be studied in the following chapters.

CHAPTER 3
T H E S I M U L A T I C L N A P P R O A C H

5.1. Introduction.
5.2. The GST Simulation Method.
5.2.1. Generalities.
5.2.2. Model Components.
5.2.5. The Selected System of the GST.
5.2.4* The C^T Components.
5.2.4*1. The Workload.
5.2.4.2. System Structure.
5.2.4*3* Scheduling.
5.2.4*3*1* The Low-Level Scheduler.
5*2.4*3*2. The Short-Term Scheduler.
5.2.4.5.3* The Medium-Term Scheduler.
5.2.4.5.5.1. The Design of CPU-Manager Procedure.

5.2.4*3.4* The Long-Term Scheduler.
5.2.4.4. Performance Indices.

5.5* Experimentations.
5*5*1* Case 1; Effects of Performance Parameter: number of

Active Users.
5.5*2. Case 2: Effects of Performance Parameter: number of

Tasks per Multiaccess Job,
5.5*3* Case 5 : Effects of Performance Parameter : Average

Think Time.
5.5.4* Case 4î Effects of Performance Parameter: Mean

Interarrival Time.
5.5*5* Case 5; Other Effects of Performance Parameter: No.

of Active Users.
5*5*6. Case 6: Other Effects of Performance Parameter : No.

of Tasks per Multiaccess Jobs.
5.5*7* Case 7: Other Effects of Performance Parameter:

Average Think Time.
5.5.8. Case 0: Other Effects of Performance Parameter:

Mean Interarrival Time.
5*4* Aim of Experimentations.

5 • Introduction :

Broadly speaking, the performance of a computer system is
determined hy its hardware (speed, capacity,...etc.), the demand (job
types, arrival patterns,.. .etc.) placed on it and by scheduling
strategy employed (the order in which jobs are executed) ((/Coffman
and Matrani 75/))* These three important performance elements
represent the characteristics of the system hardware and software.
Thus, any ideal system design and evaluation tool should include
these characteristics.

Jfciny of the existing tools, however, do not represent the
software and hardware system characteristics. As an example, the
conventional analytic annroach which views computer systems as
configurations of static hardware resources (CPÜ*s, memories, l/o
channels and devices) and user jobs or tasks as dynamic entities
that flow through these configurations. This approach ignores the
important characteristics and effects, especially those of the software.
Moreover, some analytic researchers ((/Kumar and Gronsalves 79/)) try
to solve the problem of the software representation by reversing the
conventional approach — they view a computer system as a configuration
of static software modules, and the processors that execute this soft
ware the dynamic entities that flow through this configuration. But
again, this idea cannot lead us to construct an ideal tool. What we
actually need is a tool which can incorporate the software and the
hardware of the computer system at the same time. Some other
researchers go further and represent the incornoration level as a
fourth generation computer system concept ((/Rakoczi 69/)).

The incorporation level has been solved using simulation
techniques which can represent the same logical structure of the
software being modelled, and its hardware. Simulation offers a way
to evaluate a system with relative accuracy prior to its development.
By varying design parameters, the system designer can hope to identify
potential bottlenecks, avoid costly design mistakes and estimate some
of the guess work of identifying the most suitable system solution.
Many researchers ((/Von Mayrhauser 79/)) ((/Ferrari 78/)) find
simulation a very expensive approach if used as a tool for system
modifications and evaluation. Thus we will try in this chapter to
overcome this problem by combining the regression analysis techniques
with the simulation to produce simple hybrid models.

Moreover, designing a very detailed simulator which satisfies
the requirements of an ideal design and evaluation tool is not an easy
task. We find it is more convenient for the purpose of this research
work, to use an available ideal simulator. In fact, this type of
simulator was presented by Cavouras ((/Cavouras 78/)) in which the
supervisor of a computer system was embedded in a simulation of its
environment so that the overall system performance can be measured by
direct experimentation. Hence, we can consider this simulator as a ^
model to a fourth generation oomputer system, since it incorporates
the software and the hardware of the system being modelled. Besides
that, it has been argued that this simulator satisfies the ideal and
evaluation tool requirements ((/Cavouras and Davis 81/)).

For the above reasons we have chosen Cavouras * simulation tool
as a basis to study the simulation design and evaluation techniques.
This simulator will be called, throughout our research work, ^neral
Simulation ̂ ool (GST).

The next section of this chapter requires a knowledge in
operating systems, and for this purpose the reader is referred to
((/Hansen 75/)) ((/Bayer, Gratam and Seegmiiller 78/)) ((/Watson 70/)).

3.2. The GST Simulation Methods ((/Cavouras 78/))

3.2.1. Generalities s
The GST represents a method of constructing a tool for general

purpose,multiprogrammed, virtual memory computer system. The GST
consists of a two level simulation; a simulation within a simulation.
The inner simulation models the execution of the user processes. The
outer simulation is partly driven by the former and partly by itself
(includes the interrupts and the system processes) to model the overall
behaviour of the system (see figure 3.1.).

GST Overall Structure
Overall GST Tool (i.e. Kernel Interface)

Outer Simulation
Inner Simulation
1 2 3 4

Figure 3.1* The GST Design and Evaluation Tool.

GST Routines:
1: Remove and insert in event list.
2t Remove and insert in an interrupt list.
5* Interrupt event routines.
4; Dispatcher.
5* A re-entrant coroutine program for all user process with its own

"remove and insert in event list(s)" routines.
6t One coroutine for each system process (some of these coroutines

are exact replicas of the corresponding system processes).
7* A routine which traps primitive calls and schedules events.

In general, GST is based on the concept of replicating the
real system supervisor by embedding it in a simulation of its
environment so that the overall system performance can be tested by
direct experimentation.

Briefly, GST consists of the following modules:
1, An uninterrupted kernel interface which has one-to-one

correspondance with the real system events (traps and
interrupts).

2. A re-entrant coroutine program which independently models
the execution of all user processes.

5. A set of coroutines, one for each system (supervisor) process
in the system.

4. Routine which accepts (traps) primitives (supervisor) calls
from the above coroutines and converts them into scheduled
events before returning to the overall system simulation in
1. above.
The above four modules, in fact, represent the software part

of GST (i.e. the operating system), which consists mainly of a kernel
and a set of processes (supervisor and user), communicating and
synchronised by message passing. The kernel and supervisor processes
are asynchronous monitors ((/Wettatein and Merbeth 80/)) in charge of
particular resources. The hardware part was represented in GST by
selecting typical computer system hardware configurations. In the
meantime, GST provides a very structured scheduling system in which
the processes can compete for resources in a highly organized
environment. Scheduling is a very vital subject, and it represents
one of the important parts of the software components which is usually
missing in conventional approaches. Hence, this subject deserves more

attention and we will try to highlight on the scheduling facilities
available in GST.

3*2.2. Model Components;
The complete description of a system model consists of the

following types of information ((/Hellerraan and Conroy 75/))*
1. Workload Description.
2. System Structure.
3* Scheduling.
4* Performance Indices.
The workload description states how jobs are to be character

ized, for example, by arrival and required execution times. By system
structure, it is meant the individual resources and the paths by which
jobs may be moved into, out of, and within the system. The scheduling
rules specify how jobs are selected for movement within the system.
Common examples include PCFS (First come, ^irst ̂ erved) aaid SXi^
(Shortest execution f^st ̂ erved). Performance-Indices define one or
more ways in which the * goodness' of the system is, to be measured or
judged. Hence, we will try to follow this classification in describing
the GrST model.

3.2.3. The Selected System of the GST;
The general system to be studied and modelled supports a number

of terminals. Each of these place'•'» noo-computational load and many
i/o operations. This is a virtual storage system which could be paged
or segmented. Demand paging is used to move required portions of a
user's address space into main storage. A page fault occurs if the
referenced page is not in main storage.

The paging is done from drum and disc. The system also
maintains some waiting queues that are available to each system device.
The degree of multiprogramming is limited or affected by the working
sets of processes. This is done to avoid thrashing. The jobs in the
system may have different . priorities, which can be class«fW in
the system input parameters. Also, the jobs may have different sizes.
The ratio of the response time to think time is assumed to be small
since we assume the system is fast and powerful.

The overall hardware configuration consists of typical disc,
drum, operator console, terminal interface, channels, main store and
CPU (with up-to-date facilities). As mentioned previously, our
overall software consists of a kernel and a set of processes (i.e.

supervisor and user). The system configuration is shown in figure 3*2.
and some device characteristics are given hy table 3*1*

TerminalsOi

o

Disc Drum n r
Channels Operator Console

Main Store*
__"

k
r

CPU

Figure 3*2. The Selected Interactive GST Hardware Configuration

Device
Name

Transfer Time
(m secs./byte)

Seek Time
(m secs.)

Latency Time
(m secs.)

Record Size
(Bytes)

Drum 8.333e-4 0.000 8.000 32767
Disc 3*533e-3 7*300el 1.200el 32767

Table 3*1* Characteristics of Devices.

5*2.4* The GST Components;
3.2.4*1* As mentioned in section 3*2*2. , the GST consists of the

following components t
The Workload r

The GST treats a computer system in a heavy workload situation.
This means that there are always jobs waiting outside the system.
Whenever a program finishes, a new job arrives. It has been assumed
that a typical program alternates between service at the GPU and at
one of the l/O devices. After a service at the CPU, the program is
either finished or it requires service at l/O device. The input jobs
stream is considered as poisson distribution. The mean-interarrival
time is a variable of the tool.

The workload is specified by many parameters, such as job
size, number of interactions, scheduling parameters,..etc. Hence, it

CM

I
I
CQCO
mQ)
s
%U
i
t43-
S
a
01
E4

5
09
(D0909I
taI
I

§I *
II

II
ho 09CQ 0)
T* 09> 03
N o0) oA, o
CO &

I

&
§I

iS

1"

o

A

III
CM

II
I
K\ iT\ VO

CM

00

s-pI§pI
0)

I— 1

s

ov

hf\

aIs
CM

1 X— s09 PA Oo COp•H "S kCO o0)
Oi a09 u

O oiH pA •H •HiH A, rHP 8 •H
H o -P•H o

VO

09mtotoI%
to0)
sI&II
CM

â

is difficult to specify the performance indices that affect the
workload.

Number of jobs is considered to be a very large integer,
otherwise the simulation program will consider it as a termination
factor instead of the given simulation period,

3,2*4,2. System. Structure t
GST has the same software and hardware structure as the

system being modelled. A typical system software is the operating
system. Hence, GST operating system consists of a kernel and a set
of processes (supervisor and user) communioating and synchronised by
message passing.

The supervisor is constructed in a hierarchical way. It
consists of several layers ; each layer contains one or more of such
supervisor processes and each level implements a more convenient
virtual machine for higher level processes. A process at a particular
level operates in terms of virtual resources at lower levels and is not
aware of what other processes and virtual resources exist at the san ̂
or higher layers. In other words, a process at one level is restricted
to call upon processes at lower levels only. Figure 3*3, illustrates
the layout of the various layers.

The flow of processes inside the system is determined by the
operating system structure and the relative priorities of these
processes. Several queues are available in the tool (mainly for each
supervisor process) which acts as another source for organising the
flow of the processes inside the system. From figure 3*3* the GST
consists of the following layers and processes;

a. The Kernel;
The major interface between the basic machine hardware

and the operating system is provided by the kernel which
is the innermost layer of the nucleus of the executive.
The kernel is not just a monitor — it is the only resident
program which runs in Friveleged mode with interrupts
inhibited ((/Lister 75/))* The kernel provides the
following functions to the rest of the supervisor —
short-term scheduling, virtual processors, protection
(capabilities), interrupt handling, l/O scheduling and
control, synchronisation and communication primitives
and dispatching.

b. The Executive;
The executive consists of a set of monitors which have

4k

been structured in a uniform way. The monitors provide
the service offered by the executive* These monitors
are:

1. Store manager:
This monitor constructs a one-level virtual store from

the two-level physical store* The store manager is invoiced
by the process creator and the 0H7 manager, when a process
is created and deleted respectively* It is also invoked
when a page or segment fault occurs* The store manager
invokes the disc and the drum managers.

2* Process management: (process scheduler or medium-term
scheduler or CPU manager)

It is responsible for allocating the processor between
the active processes. This process is invoked by the
process creator to allocate or delete process descriptors
when a process is created or deleted. It is also invoked
to perform medium-term scheduling (i.e. prepare the
dispatcher list). Also, it is invoked by the job (long
term) scheduler to report on resource utilization and
system response.

5* The device managers:
These monitors perform the actual input and output,

thus hiding the actual physical l/o devices from processes*
There is one supervisor process corresponding to each of
the physical l/o devices and each such process synchronises
its activities with the interrupts from its associated
device, which are converted to messages sent to it by the
kernel. There is also a terminal system manager which
provides the interface for processes to communicate with
the outside world through terminals. All l/O requests
have to go through the appropriate device manager.

4* File monitor:
The file system monitor is concerned with the physical

features of the file system, namely,
* Auxiliary storage management.
* Physical organization and access methods.
* Access control verification*
* Basic file system, and
* Symbolic file system*

The file system is modelled in a very simple fashion.
Its function is to accept requests from other processes

and to send messages to the Disc Manager to satisfy these
requests.

5, Process creator:
This simple monitor provides the facilities to create

and destroy processes. It is invoked hy the job scheduler
and by any other parent process. This process invokes the
OFU manager, store manager and disc manager.

6. Job scheduler;
This monitor provides the long-term scheduling function,

job initialization, accounting and preallocation of some
system resources such as files. The job scheduler invokes
the operator's console, the process creator and CPU
manager. It is in turn invoked when a multiaccess user
arrives at the system.

7* The CPU manager:
This monitor (also known as ALP manager or medium-

term scheduler) calculates the priorities of the eligible
processes.

c. User Processes:
This layer includes the user program and their run

time monitors. Each user process works in synchronisation
with the lower level processes that it invokes.

3.2.4*3* Scheduling:
Scheduling strategies are evolved to solve problems of

selection in operating systems. There are many examples of scheduling
in all operating systems, some of them being ((/landly 7l/))*

* Allocation of time to processes.
* Allocation of peripherals to processes.
* Allocation of core store to processes.
* Choosing the next task for an output device.
* Choosing the next job to be run.
* Allocation disc space to users.
The GST scheduling system consists of the following four levels:
1. Low-level scheduler (the dispatcher).
2. Short-term scheduler.
3* Medium-term scheduler,
4* Long-term scheduler.

These represent a multi-level scheduler system. The first two
schedulers are embedded within the kernel♦ This kernel, in fact,
consists of three modules ((/Lister 75/))*

* The first-level interrupt handler, which performs the

initial handling of all interrupts.
* Procedures which implement the inter-process communication

functions and other primitives. These procedures are
invoked via primitive calls in the processes concerned.

* The dispatcher, which switches the central processor(s)
between processes.

The kernel is automatically entered in any of the following
circumstances ;

i. An interrupt occurs.
il. A process issues a permitive to execute some function

or requesting the use of a priveliged instruction.
The permitives available in GST kernel are:

* SENB-MESSAGE.
* EECBIVE-EVENT.
* BECEIVE-MESSAGE.
* START-PROCESS.
* CREATE-PATH.
* CHARGE-BLIGIBLB-SET-NtJMBER.
* INITIATE-IO.
* ACTIVE-PROCESS.

ABORT.
^ HALT.

Also,, the following subroutines (procedures) are used by the kernel
to collect some important measurements,(e.g. interaction time, time
blocked, time ready...etc.).

* nr-STATISTICS (QUEÜE-MMBER).
* OUT-STATISTICS (QXJEUE-MMBER , TBIE-IN).

How, to give a brief idea of the scheduling environment we
present Figure 3.4. which represents a model of the system operations
in terms of flow of jobs and processes.

Pi'ocess-Scheduler Process-Scheduler
unblock(r)
block(r)block Sohe-

blook(r)
I

dispatch
unblock (r) completed jobspre-empt or

(resume)
egriving jobs

(stopped or runnable)

Figure 3*4. Schematic Diagram of the Scheduling Environment in GST.

Finally, the important data stracturea available in GST are:
1. The process descriptor and the process descriptor table,
2. Message buffers and queues,
5. Job descriptors and the job descriptor table,
as well as several data structures used for memory management. In the
meantime, we will continue to discuss the GST multi-level scheduler in
considerable detail:
3.2*4*3*!# The Low-Level Scheduler (The Dispatcher):

The dispatcher is involved after the handling of an interrupt
has been completed, and to allocate the central processor among the
various processes in the system. Its function is limited to choosing
the next process to be executed from the processor queue (the queue of
eligible processes). The dispatch process can be summarized by the
following algorithm in a Pascal-like notation:
Pt = dispatcher-list-headÎ
if P 0 HIL (* if there is a ready process*) then
begin

if P < > current-process (* the process which was executing
just before the kernel was invoked*)

then
begin (* COHTEXT SWITCHIKG, privileged instructions*)

RESTORE the context of process P;
current-process : ■ P

end;
ENTER (* the current-process, another privileged instruction*)

end;
(* you might want to save the current-time at this point, for latter
calculation of the CPD-idle-time*)
(* idle loop*)
While true ̂ (* or you can use PAUSE (or WAIT) , a privileged

instruction*)
(* Alternatively, a null or waiter process can always be the

last one (the one pointed to by dispatcher-list-tail) on
the dispatcher list, in which case P will (or should be)
always nonNIL, and it will be entered. In this case, the
null process's run time will be equal to the CPU-idle-time
(non-productive rather than idle)*).

3.2.4.3*2. The Short-Term Scheduler:
The functions of this scheduler can be summarized as follows:

1. To allocate resources to processes as soon as they become
available. Scheduling decisions taken at this level

determine the rate at which the system is able to respond
to real time events.

2# The short-term scheduler simulates a virtual machine for
each process and implements the set of primitives which
enable concurrent processes to achieve mutual excusion,
synchronization and communication with one another.

Since this scheduler is invoked whenever an interrupt (internal
or external) occurs, its function should be confined to the examination/
modification of the state of processes and the collection of measure
ments for use by medium and long term schedulers#
3.2.4*3 *3* The Medium-Term Scheduler * (CPU Maziager)

This scheduler performs the following functions:
* Prepares the dispatcher list.
* Processes the events collected by the short-term scheduler.
* Calculates the resource allotment of the processes.
* Reports to long-term scheduler.
The medium-term scheduler is entered whenever a scheduling

event occurs. The primaĵ r scheduling events are:
* Process is created and/or deleted.
* At fixed time intervals.
The above functions are designed mainly to provide high resource

utilization, low response time, high throughput and low overhead times.
The CPU-Manager process can be summarized in the following algorithm:
declarations ;
begin

UJITIAIi-ENTEYÎ (* The initialization (or setting up) of several
important variables, such as free list pointer,
dispatcher list pointer...etc., is performed*)

M&IN-EHTRY; (* In this procedure the following are performed:
A HECEIVB-bVENT permitive is issued specifying
the permonant ports to the job scheduler, store
manager and the process creator process
If activation is received then
MANAGER (* This procedure performs the medium-

term scheduling function*)
else
case message-command of
CEIEATE: begin

(* This entry is invoked whenever the
process creator process requests a
descriptor to be reserved for a process
to be created*)

end;
LOADED* begin

(*This entry is invoked whenever a
process has been created*)
end;

LOAD-FAILED * begin
(*This entry is invoked following
an unsuccessful attempt to complete
the creation of the process
specified in the message*)

end;
REPORT: begin

(*This entry is invoked whenever the job
scheduler inquires on the system load
in order to decide whether or not to
admit a new multiaccess job into the
active job mix*)

end;
DELETE* begin

(*This entry is invoked when the process
creator requests the deletion of the
process specified in the message
identifier*)

end
end (*case*) *)

end (* CPU-Manager *)

3.2.4.3.3*1. The Design of CPU Manager Procedure:
The policy of the CPU Manager procedure chosen in the GST is a

deadline scheduling one. In this policy the process priority is
basically dependent upon an estimate of how long a process will take
and how long it has run. In particular, this deadline scheduling
policy is a policy driven one in which processes are ordered according
to increasing times of their (current) interactions*

The policy functions used in GST are*
a.m̂ V 0 C R < tg

t̂ (a) « j " “iHF̂ V ̂^ ÎNF
^INF’̂ b̂HF V ̂^ ̂ BIF

where R, t , are ail expressed in time units,
are dimensionless and R represents the amount of service received hy
the process. The shape of these policy functions can he shown in
figure 3.5.

(i.e. selfish
round rohin)v

lower priority(critical
time)

t0
FCFS
higher priority

Ast
Assume ;

t

Figure 3 •5» Shape of Policy Function and Critical Times.
For more information about these policy functions refer to

((/Cavouras 78/))* The scheduling is implemented as a dynamic balance
scheduling system (i.e. the load is adjusted according to the existing
equipment or configurations). Again, for further information the
reader is referred to ((/Denning 69/)) and ((/Ootlieb and Schonhach 80/)).

3.2.4*3#4* The Long-Term Scheduler (The Job Scheduler)*
The functions of this scheduler can be summarized as follows*

* To allocate virtual machines to users (jobs) according to
rules laid down by the instalation management.

* Establishment of the identity and authority of users, the
input and analysis of their requests*

* The initiation and control of users computations.
* Accounting users’ resource usage.
The long-term scheduler is invoked when a job enters or leaves

the system. The GST policy of the multi-access long-term scheduling
can be summarized as follows:

The job scheduler used here is simple. There is a specific
mavlTmim number of terminals on the system at any time.
This number, a say, is fixed or the operator of the
computer system can set a limit on the total number of
users allowed to dial into the system.

3.2.4.4* Performance Indices;
A performance index is a descriptor which is used to represent

a system’s performance or some of its aspects ((/Ferrari 78/)). In
GST we can identify three kinds of performance indices (or parameters).
The input parameters corresponding (in general) to the workload,
internal parameters corresponding to system hardware variables and
output parameters corresponding to the user-oriented and system-
oriented performance indices of interest to evaluators.

The GST performance indices can be classified as in figure 3,6.
In the following the reader is assumed familiar with ((/Rytheway 80/)).

Figure 5.6: The GST Performance Parameters and Indices.

* The abbreviation used in the relation matrix can be found in
abbreviation appendix A.2.

J£FP

PDZ

MSI

NBB

MRT

R ST -1 PIT -

PT RSR

UPP nrn Ÿ*Ui

EARÜP

MNEBST

HOTEBRT

NPPAS NJS

MJP.

KPP

oo g»
4 P 4
m H i 0 *
B H *
CD 03c4* 4
(D (D
4 (D

f t

§

hj H W03 3 %
4 H* 0303 cf ft"R H* (D
CD Oa ac+* M
Ct> H-
4 NCQ oacfH*O3

aoPi 4j HCD oa 3M 4 W03 3►4 B cf03 CD4 ct-03 CD
B 4<D CQH-(D4 O03 4

h j
CD

% g g
O 4

03 * 3
a 3
CD 4 *3 cho CD

CD 4Q>H3pi OH- 4O0301

M hj3 »4J H Pi 4oa M 3 H* 034 3 4- o S0) ty CD CO CO o3 3 4 03 4- 03CD c+ 3 CD (-3H- 03 4CD M CO4CO 033pi

3•5• Experimentations :

The aim of this section is to use the GST as an aid to generate
an analytical performance prediction tool. This will he attempted
using regression analysis techniques in which the results of several
tests on the GST are modelled, using the regression analysis techniques
to produce several hybrid models. The hybrid models (i,e, equations)
represent the result of combining the simulation technique (using the
GST) and the regression analysis techniques. Hence, we may call the
analytical performance prediction tool as Simulation/Regression tool.
This tool can offer a number of advantages — in particular the
following benefits*

* By combining simulation and regression analysis techniques,
the advantages of both modelling techniques may be exploited,

* It enables the analyst to obtain approximate solutions,
* It requires substantially less main memory space and central

processor time than the GST. Hence, it is less expensive.
* It can predict the effects of the changes over the limited

simulation time given by the GST.
The number of tests (and hence the number of hybrid models)

necessary will depend on the number of variables (i.e. performance
parameters and indices) and on whether the analyst decides to use a
classical approach or a fully factorial consideration of all the
variables, For the purpose of our research experiments, the classical
approach has been used. All the variables are properly controlled, no
two variables being allowed to change in ai^ one test. For the purpose
of the second approach, the reader is referred to ((/Baird 62/))
((/Cox 58/)) ((/Kempthome 52/)).

The reader should also note that the variables used in the
simulation/regression tool is a subset of those used in GST, The
subset chosen represents the variables of an interactive computer
system.

The tests will be performed using several case studies (see
the following sections). All oases have been analysed under heavily
loaded system conditions. A heavily loaded condition is likely to
happen after a long run of the GST, To achieve this, we have selected
the simulation time to be long enough (specifically, simulation time »
35 min,),
The case studies presented in this section are*
* Case 1* Analysis of response time vs, no, of users,

CHJ busy time vs, no, of users and
interactive throughput vs, no, of users,

* Case 2: Analysis of response time vs. no. of tasks/user interaction,
CPU busy time vs, no. of tasks/user interaction,

and interactive throughput vs. no. of tasks/user
interaction.

* Case 3* Analysis of response time vs, average think time,
CPU busy time vs. average think time and

interactive throughput vs, average think time.
* Case 4«Analysis of response time vs, mean inter-arrival time,

CPU busy time vs. mean inter-arrival time and
interacive throughput vs, mean inter-arrival time,

* Case 5* Analysis of degree of multiprogramming vs, no, of users,
drum utilization vs, no, of users,
disc utilization vs, on, of users,

terminal connect time vs, no, of users,
no. of multiaccess jobs processed vs. no. of users and

ratio of simulation time to real time vs, no, of users,
* Case 6* Analysis of degree of multiprogramming vs, no, of tasks/

user interaction,
drum utilization vs. no, of tasks/

user interaction,
disc utilization vs, no, of tasks/

user interaction,.
terminal connect time vs, no, of tasks/

user interaction,
no, of multiaccess jobs processed vs, no.of tasks/

user interaction,
and ratio of simulation time to real time vs. no, of tasks/

user interaction,
* Case 7* Analysis of degree of multiprogramming vs. average think time,

disc utilization vs. average think time
drum utilization vs, average think time

termj.nal connect time vs, average think time
no, of multiaccess jobs processed vs. average think time

and ratio of simulation time to real time vs. average think time,
* Case 8: Analysis of degree of multiprogramming vs, mean interarrival

time,
disc utilization vs, mean interarrival

time,

drum utilization vs. mean interarrival
time,

terminal connect time vs. mean interarrival
time,

no. of multiaccess jobs processed vs.mean interarrival
time,

and ratio of simulation to real time vs. meam interarrival
time.

The simulation/regression tool should be constructed using the
method followed in the above mentioned case studies. For further
information the reader is referred to section 3*4.

The reader is also referred to Appendix A.I. for further
information on the regression analysis and some other helpful statistical
methods ((/Sprangins 79/)) ((/Rehmann and Gangwere 68/)) ((/Gomaa 76/)).
3*3.1. Case It Effects of performance parameter: number of active users.

The run of the GST was made in this case varying the workload
from 16 to 48 active users in steps of 8. Refer to table Cl.l and
graphs Cl.l, Cl.2, Cl.3, C1.4» Cl.5 and Cl.6.

The relationship between the parameter, number of active users
(m) and the selected performance indices (i.e. average response time (R),
CPU busy time (PBT) and interactive throughput (x)) can be constructed
from the direct graphs (Cl.l, Cl.2, and Cl.5) using regression analysis
(curve fitting) and under heavy loaded system condition (i.e. simulation
time = 35 rains.) These relationships represent simple hyhnld models
which can be expressed using the relational graphs (Cl.4* Cl.5 and Cl.6)
and table Cl,2.

Performance
Index

Relationship
Equation

Regression
Constant
Values

Graph.
No,

Equation
Number

Average
Response
Time (sec.) •

R = a F a * 5,00
b = 0,02

Cl,4 El,l

CPU Busy
Time (fo)

PBT=a+blnM a = -5.7
b = 0.32

Cl.5 El,2

Interactive
Throughput
(Processes/
mint)

X=a+blnM a = 0,91
b =* 0.41

Cl.6 El,3

Table No, Cl.2

fwH>r]
HHIM&
Wt>É|;

IkwUekwi ptRFMtrtAMCE P5RW\rVE;TBR: Wo. Of Aĉ 've. Users .
16 I H S % MO M2

fUftp̂ K
'Twnc
rSec.̂

5 33% 3.30 3.Ml 3-31 6/-55
10 3. Si 5.44 6.64 6-14
li W . 13 5,61 6. 6 & "9- 65 %-64 .
±£> 3 • 1S 5.55 T-. 15 ^.96 4-6%

. 15 4.90 4.1% 6.6S 6-13 10.50
00 y.%1 6> .40 6.6 1 &.05 \O.4O
35 >.I0 9 .If % ■ 4.H O tl

CRÜ.
Busa
Tme
*Vp.T)
(V O

■— 5 - O T
#.14 fT.11-36

0. T. .rim-
n-4fe

jZiZL- 16 .%1.
— .̂”TV
13-91

W# I.
It-OM 11.94

CîT;-
16 D9

— r.%!_ 11-90
10 W-ll 3.A-06 iq.\% 3-990 14-42 14.24 11.42, 1499 1495 30.34
15 \0.53 \%.16 34.9% 2\.39 31.04 16.45 31-31Si.31 3'-34
10 14.9-3 194 14.H? l\.b3 30.44 29.66 3LD% 35.11 14.21
Iff 4.59 IS .50 15.63 3.4.16 3.\.\M 31-46 24.9% 3L14 36.64 14.90
30 &/?$ 3-3-35 14 '4& 30.̂ 9 13.DO 3\.9& %)5% 309% 395% IA.40
35 %.W) 11-36 \q.Mq 14.u 10-64 30-91 3\.b\ 11-14 394} 24.05

chve
5 a-&o 3.. % Q 1.60 -3-00 a-40_______

10 1. é>û 1-90 3.3Û 1 qO 2-9D
15 £. 16 -3 '3 .. 3.06..... 3.\3 3L.49
ID 105 :_.%o 3-10 3.00 2-64
IS Ï.1& 2.6% 3-11 -3..O0.... & S3
30 1. to 1-66 2.-43 2.96 1-95

f as 1.4 2.50 i.-49 2 .3% x ^ s r
TAELE No. Cl.l

s
•H

OJr/1G
â
Q)

«

1
Graph nc
Cl.l

-------------------- L_,

* 0 48 M—/
//

1 !
1 i

— f—

/f

I 1 /'
/

/
40M

ijÎ' _______ < - f i , / 32M

■ i\ / T T ,
- /

MM

_ . i / . r ~ r] / '
r /

HjWA-

- f

U

• f j
\
1i

i

> o

Fk • OO kS

O

i
Graph nc
Cl.2

iii
1

! 1 T ■ "'

i ! ,i"""
48 M
40 M

i ^
I,»r—

32 Mj
-24 M

---- L i e M

1
1

i - i

S irau1at ion Time (ninl) Simulation, Time (min.)

Graph no,,
01.3

00

V.ac
P-

P
t v-vj P
P
E-i

I

CO

J L

X -40M

5 10 15 20 25 50̂ 35
Simulation 'limé (rain.) ►

o
r -

(U
E c

■H VJO
.'Eh

o
« I T

PA
O

t=>

o
O r o

1
Gra

G
ph no.
1.5

1
i

I 1
! !f i

-ja+ b In M !

? -
! ■' ! /

/ 1 ! / ■ T
1 i

1'
! ' A I
\ /

f' / !
/

!
!

/' it : > :
11 1

i
j t 1 1 i

ICC

(M

4̂8M'■24M

0\
Q1o0)CQ
>-(Ü

E
•H
Eh VO

0)wcoA01
0

P i

0)
tz KV
ti

0)
>

M

Graph no. 1 f//
/

0 1 . 4
Î

t1.1 ! i:I 1 ----j---

a L . e #

.r*. 0 . 9 0 y

! ijA :.-'•r r r i -1

i i :' 1
^ 1 1

i ; !: - ..
• ■ j

i
! I1 j

11

i 1 i i 1t
8 I6 24 52 40 48 56

No. of active users(Terminal?).
M

Graph no.
Cl.6

juMXat a+D

t C\J

No. of activ'e users(Terminals
16- 24 32 40- 48 6̂ m

No. of active users (Terminals),3—

Conclusions ;
* The effects of the parameter,number of active users on the selected

performance indices are modelled. The models can be used to predict
the future changes*

* For 'good' average response time keep the number of users below 44
active user.

* The CPU is not over-utilized even for 48 active user.
* The average interactive throughput shows a slight increase with the

increase of active users in the system.

3*3*2. Case 2: Effects of performance parameters No. of tasks per
multi-access job.

The second case study addresses the effects of varying the
average number of tasks per multiaccess job (TSM) on the selected
performance indices (i.e. average response time (r), CPU busy time (PBT)
and interactive throughput (X)). The inxn of the GST was made in this
case varying the workload from 1 to 4 tasks per multiaccess job in step
of 1. The number of users has been fixed to 32 users.. Refer to table
02.1 and graphs 02.1, 02.2, 02.3, 02.4, 02.5 and 02.6.

The relationships between the parameter, no. of tasks per
multiaccess job and the selected performance indices can be constructed
from the direct graphs (02.1, 02.2 and 02.3) using regression analysis
and under heavy loaded system condition. These relationships represent
simple hybrid models which can be expressed using the relational graphs
(C2.4, 02.5 and 02.6) and table 02.2.

Performance
Index

Relationship
Equation

Regression
Constant
Values

Graph No. Equation No.

Average
Response
Time (sec.)

a = 4.83
b = 0.20

02.4 ■ E2,l

CPU busy
time (Yo) PBT = k k = 97.83 02.5 ■ E2,2
Interactive
Throughput
(processes/
min.)

X»a+blnTSM
a = 2.04
b-= 0.64 02,6 E2,3

Table no* 02.2

Conclusions t
* The effects of the parameter, number of tasks per multiaccess job on

the selected performance indices are modelled. The models can be
used to predict the future changes.

* The average response time is increased sharply by the increasing no.
of tasks per unit of time in a multiaccess job.

* The number of tasks depends on what the user wants to do. For ov/r
experiments, we will keep the number of tasks per multiaccess job
equal to 3*

* The average number of tasks per multiaccess job has no effect on the
CPU busy time.

* The average interactive throughput is affected slightly by the no. of
tasks per multiaccess job.

PSKFMtrtAKltE RWJArt&TBR; Wo. Û f Per H u fc a e L ^ iîo tm v > - ls<«uir«

5 .■̂ ‘1
6 .%"a_
3L^Si

B Z d l S S53 15
44.1JV30 .3043.Mi

^9.5 iHO-02 54.5534 .44
4%.|% 55.3435 34.46 53.43 I. so
3. .509L .̂ LO

i .00 2..802- -So Z .’goZ.OO 3L.30

TAELE No. C2-1

,o\
COÜmto
c~-a>6•HÊH vo

(UCOc m0ft03(UPh
(Uto hT\C3
0)>< CM

M

. Graph no,
G2.1

i I /
4TSM

i. 1 // ,3TSM_ i _ L . 1 . 1'j-
: / //t/. . L l 1 4 - STSM

1
4 /

/
/

L !
1TSM

i / V , i1
' / / H
/

1 1 !

Graph nc
'■ 02.2

■

w 1— t —

r
I 1 I_ L 1 I 1
I 1 ! 1 1

1 V.I !■ i 1J
11

!1

.. . iaTSM 1
(--- 1., . i 1 TSM 1

' 1 1 i
:— — natsMl'

1 —i* ■— ••jSTSMj j
oi.mulaoion Time (miru) S iitiulat ion Time (min.)

Graph no
02.4Graph no

02.3
t̂sm
IJSM

HH
■H

^ i

■p

VO

OJ

10 15 20 25 30̂ :
3imn 1 at ion Time '(I'lin.) ► I 2-- • 3 T S M ^

JïTo. of tasks per' multladceas^ jobo----- ------- • — L.. , «MMi.

Graph, no
02.6

Graph no
02.5

0.99
M

O OJ

*P
(0 Mo -cf
COPk • OO rr>

M

TSM 4
No. of tasks per multiaccess' No. of tasks .per multiaccess .job

3,5,3. Case 3: Effects of performance parameter: Average think time.
The third case study addressed the problem of effects of

varying the average think time (TH) on the selected performance indices
(i.e. Average response time (r), CPU busy time (ËBT) and interactive
throughput (x)). The run of the GST was made in this case varying the
workload (i.e. using TH) from 10 to 40 secs, in step of 10. Refer to
table 03,1 and graphs 03.1, 03,2, 03,3, 03*4, 03.5 and 03,6.

The relationships between the parameter, average think time and
the selected performance indices can be constructed from the direct
graphs (C3,l, 03,2 and 03.3) using regression analysis and under heavy
loaded system condition. These relationships represent simple hybrid
models which can be expressed using the relational graphs (03.4, 03.3
and 03.6) and table 03.2.

Performance
,Index

Relationship
Equation

Regression
Constant
Values

Graph Ho. Equation No,

Average
Response
Time (sec•)

R=a+b TH
a =3 10.35
b *»-»0,09

03,4 E3,l

OHJ busy
time (fo) "^=a+b TH a 3* 67.09

b = -O.49
03,5 E3,2 ,

Interactive
Throughput
(Processes/
min.)

X*a+b TH
a » 3.41
b = -0,02 03.6 35,3

Table no. 03,2

Conclusions:
* The increase in average think time gives us a »good* response time

but reduces the average interactive throughput. Barber ((/Barber 79/))
in his research work proves that the average think time can be kept
within a certain effective average. This can be done by decreasing
the faulty transactions (i.e. increasing operator productivity),

* For the purpose of our experiments we will fix the average think time
at 30 secs.

* The increase of average think time decreases the CHJ busy time. In
particular, it increases the processor ideal time. This could be of
benefit when the processor is bottlenecked.

* The effects of the parameter, average think time on the selected
performance indices are modelled. The models can be used to predict
the future changes.

P&RFMtM/WC£ 01RAMI6TGR : IRc TfvînK Tvmea r i a s
2.25
5.41 5.456.6* L . 0 3

Ù . ,4...91--Z2
6 . % 0
5 . %3l

53-3)2 R IO 54.44 Ib-Sl15.14
y|.60 4H-4Î

4;.51 ij0.4\31-.43
44.&6

X\ ,00
10.35 14.4410.644%.b3
1-40
2. So
1 •4 6

__ à£
H 3 5

TABLE ÎÎO. C3.1

1
Graph no,

' C3.1
11

1
! /

/ /
20TH
30TÎH

M ! / / /'/
//

1 r ? , f -
IS.."

k /
40TH

I !'■■ ..

i / /fi!
/'• 7
1

!

\
' j

j

0
i

0r
00

OJs 0<0Eh
> 0to inrsm 0
t=)
P4 00 m

0CM

0H

0

i
Graph n<

03.2
0.

1Ii 1! i

i _ J - : T “ .10TH

I / / '— ■ 20TH
30TH- - - - i- - - -
40TH

V
- - -

i
.... .. -I i

!
I

- 1■ ! i i
Simulation Time (miru)

3 To 15 20 c5
Simulation Tirae_(min.,)

Graph no
05.5 Graph no

03.4
CMH
M
JH

M101VI

201H

\TR

’;0.89
VO

m

10 15 20 25 30 ̂ :
Simulât!on t ime' (li'lih•) ► 20. TH

Averaga think time (Sec.)

Graph no
03.5

Graph no
0 3 , 6

$. ̂ t m
2 «I 0.960.91

-pW H
CO

TH
Average think time (Sec,) Average think time (Sec*)_

5•5*4* Case 4: Effects of performance parameter: Mean interarrival time*
This case addresses the effects of varying the mean interarrival

time (X) on the selected performance indices (i.e. average response
time (r), CPU hnsy time (PBT) and interactive throughput (X)). The
run of the GST was made in this case varying the workload (i.e. using
X) from 15 to 60 in step of 15* Refer to tahle C4*l and graphs 04*1,
04.2, 04.3, C4.4, 04*5 and 04*6*

The relationships between the parameter, mean interarrival time
and the selected performance indices can be constructed from the
direct graphs (04*1, 04*2 and 04*5) using regression analysis and under
heavy loaded system condition. These relationships represent simple
hybrid models which can be expressed using the relational graphs (04*4»
04*5 and 04*6) and table 04*2*

Performance
Index

Relationship
Equation

Regression
Constant
Values

Graph No. Equation No.

Average
Response
Time (sec)

rT bX R= ae
a = 13*49
b = -1.87 04.4 E4,l

CPU busy
Time {fo) PBT = a+bX

a = 55*58
b = —0.26 04*5 E4,2

Interactive
Throughput
(processes/
min.)

X = ae^
a = 3*75
b —0.09 04.6 E4,3

Table No. 04*2

Conclusions :
* The effects of the parameter, mean interarrival time on the selected

performance indices are modelled. The models can be used to predict
the future changes,

* The increase of the mean interarrival time decreases the average
response time and decreases the average interactive throughput.

* Increasing the mean interarrival time decreases the CPU busy time.
This may be of benefit to the system if the CPU was bottlenecked.

* For the purpose of our experiments we will fix the average mean
interarrival time to 15 secs.

PERM).
UrtMce
W W ».r '

/Tfm#
(min 3

P&RFMthVWCE PARAM6TBR: InW an-Val T i V i t .

y 5 3 0 4 5 6 0

TtaM
(Scc..^

B 3.44- 3 .1 4 3 - S } 2..82.
10 5-15 .^•38 : ^ . i \
IB 6 .05 4 - 8 5 _ 4 &5 2 . 6 5 — -----^

;.?R 5". 54 3 . 0 3
15 .. 5 .S 5 ■ 5.11 4 - 3 } ___-— " '
00 S .a i 6 i ; 6. 40 5 . % i
35 ^ .c)3 6. 01 5 6 .6? f m m m m

C R Û .
B vUM

T m e

P.x]
< 7 0

o T.
53.31

RT.
i;.io

O.T.
q.&L

f'T ,
l&.l-S

o.x
6 .?"6

_r —
15.84

D_.n»_
11.94

f?r%
S.iH

V* u. —r?.X,

10 y \ . 6 D 14.56 10-&5 10.15 61 2 14.16 S0.51 511
15 33.43 Ï7.64 14- U lA.5/ 1 2 5 11.51 6.50
20 U . 2 é tb.55 13.0% .40 25-03 68.15 1-50
15 3 }.i5 15.24 I L . 61 Z-S.Î1 Jl.11 2b 40 66.05 1-15 -— ^
3D 33.04 1&.63 \W.b4 24.30 13.11 63.%6 m.45
35 3?.oi t i . r t 1S.42 1 1 .0& 14.1} 18.01 éû-5} 11.3?

cfrac

/m h ,)

B 9.6A 1 -10 A. _ _ \ .g<2 ___----------
10 - - 2 . 2 0 1 .3 0 l ."&0 \ . 4 ô ———
15 2 .0 6 1 .60 1*2X> . \ . 66 ___——̂
10 3.2Z) 1 - 4 5 1_.\5 --------- - ^
15 -_._ 2.11 2-94 1 4D _ Î_.M. _.—'—- ^
30 2..4S 2 -1 6 1 . / 6 9_. 2.6 __—-------- -
3 5 1 . 4 } 1 . .65 Z . 5 1

TABLE No.

l
Graph no
OA.l

«

1 !
■ 1 t

1 1
..—•iîsX

I !
j
i /

; i L /
! i y I .^

,6oX
âoX

-*■
7 > r

i /
p** '

(/
t

/

/
il

///
tr

k'""
f

!
“ "T ■"■

i

i i

OC~-
oE O•H <0

EH

> o
Ui LP0w o
1=>
PH oO rf>

i

Graph nc
' 04.2

.

1
i
!t
i

i

t

_ ! _ ! , . j _ _ 11 1 J - -y f H
^ 1 - T ^

i ! 1 i i

Simulât ion TÏme^înïi^) Simulation Time (min.)

tocGraph no C4*3 Graph noCMM
M

H
H - a«e

w

CM VO

CM

H

10 15. 20 25 30̂ :
Simulat ion -Time (üiin,) ► Mean Intet'arrivai Time)

Graph no
04.5

Graph no
04.6

oM
O43'

" it.OEBr * 'a . + [b>X.
|r̂ n l.OC

p 1.00
•p

o
CO

J fo
CM

H

Me an _In t e~r ar r iv al T ime , a é) Mean Interarrival Time^secT)

3*3*5, Case 5: Other effects of the performance parameter: Active
number of users.

In this case, we will try to analyse the effects of the perfor
mance parameter, active number of users (M) on new selected performance
indices (i.e. effective degree of multiprogramming (\̂), disc utilization
(DU),drum utilization (DRU), terminal connect time (TOT), ratio of jobs
processed to no. of active users (RJU) and ratio of simulation time to
real time (RSR)). This can be achieved by running the GST with a
workload from 16 to 48 active user. Refer to table 05.1 and graphs
05*1» 05.2, 05.3) 05.4) 05*5) 05*6, 05.7) 05*8) 05.9) 05.10, 05.11 and
05*12.

Table Uo. 05.1.
0 i
X-aelK-X

J - . :

u

TPtc, ̂ rforrrvaf̂ ĉ RxnamtVer Î JVumbfij- o f AcJt\^ U^ers .
It ^ 4 32 4 0 4 8

Dejre.e

(.'!>)

5 511. 64 21.26 21 .56 2.\-5l
\0 . 2 2. 31. 64/ 36.47 4 1.23 41.15 34- %6 43.15 47. 7V 59-57-10 2.4 - 4^ 3.5.45 46. %f 41 . 3,52.5 c u .^\ 3?.41 4 7.15 5 6 . 6 % 64.9830 X I . 0 % 3?. 43 vs.-39 5&. 63. 6?.9835 34.60 VS-81 6 0 . 1 0 •9-0 - \V

O'&jiLe.

VCc>t\
(' M

5 J2.U.C-, .14.06
urum 13 rum

m l 4.45 — _
74.11

Jorv.to_1 -4 1 ...JDjLiC „
97. II

... ...
y-37

\0 .35.03 0.44 22 31 a -23 as-51 6 .50 3.6* &I.2.4 3. S5
i5 0-40 94 -&1 1-4% 89.23 3.SO 33.50 5.13 &0.7] 1
% 0 3Z.2) SH.V'f 1-64 S9.H> "7.61 3?7f S’. 44 44- ̂ 2. 6 66
%S 0.2.4 1-3 6 89-92 4.04 SJ-07 6.61 94.K 6.4/
SO Z? .I D 1.13 6.%4 Sz.94 6.25 17.60 7-35
35 til.41 33.4& 1.05 89.99 6.54f %2.4I 6 .01 1^2.5g ■7-61

CortrtfcA"

frSccs ̂
pfirv̂ T)

S* 9x> \ 2-PM % G O 2.0 4 2̂:7 4
10 -̂ 14 . 2.46 244 24 6
*5 303 343 34 3 3 % 3 3 0
ID 4SI 45) 516 520 444
V 3 543 526 5 W 660
2 0 544 644 6ZZ 716 3 : ^ ____ ’

.643.. . 34^ 260 g7-%.

o(

(

5 I \ 1 \ 1
\ 0 4 ? 5 5 S !
15 6 10 4 % ^ !
10 4 13 IS 13 11
is U 13 2-1 15
30 \ % . __ _ _2 § 26 ._..... .. 2-1
35 2-e> . 31.... 3 ' 2'% _ . ^ L 3--------- !

of ,
Tïme

5 2-2-^ 1. 6& 2. 16
10 1. sf 1.44 \.4% \-5<T ____

f 15 1-47 1.15 i. 4 2 1-37
1 10
1 0-5

2.62
2.-^3

1 -<47
2. -06

1 -3S
1-3 7.

4 0
1.40

1-2 3
\.%1

r # -I -15
2 .£7?̂
2. m

1 .34
1-42.

1.3̂ 7
1-40

1 -24

Ien
*+̂
«
S'

II

Grai
I

1
)h no. 1
'5.5

■ , 'r... 1'

1 1
1 •
1L...j ! •
1

!'i
//

/ /
48M 10 M

! 1 (
ty

T~/.

/
32M

I i' i / / A v ~
24M

1 I ! 1 / /
i L _ K i

16M

8
8
§CM
OOM

o

5 Ï Ô 1 5 2 0 , 2 5 50̂ _35
S imul at ion Time (miii*) ^

1
Graph no,

nc C . / 24M

.......i1 ! '̂ hh
! I i

/ /

i 1
!1
!

/

y 48 M

!1
/

!h
T
i)

' i

ill
lit

— — f-/J 16 M—i i ; fj
ih r1 i /

; /
: /!
i / y .

u i

» r____ j : / ;/' / / /—

^ : : Æ /

i
i

~ ~ jr
7 I i

■f 7 : : 1
5 10 15 20 25 50 55
Simulation Timg ('min,') »

The relationships "between the parameter, active no. of users and the
new selected performance indices can he constructed from the direct
graphs (from 05.1 to 05.6) using regression analysis and under heavy-
loaded system condition. These relationships represent simple hybrid
models which can be expressed using the relational graphs (from 05.7
to 05.12) and table 05*2.

' PEHPO'Rj;iANCE ’
INDEX

RELATIONSHIP
equation

REGRESSION 1 GRAPH >
1 NO. . EQDATIOÎÎ 1

NUIJBER

DEGREE OF Y c a t k M a= s.\îL,
b— ̂"3̂ 6

cs.q-

DISC
UTILIZATION di.s. Q.Sl, 4 £-0.0̂ dL»O.COO\V . C5.S E-1,5

1 DRUM
• UTILISATION a-vt> in H G\ X - 60

b=. 1-.33 C M E1,t
TERMINAL
CONNECT TIME TcTo. a +\> h di sq\b. ID

b - \0 • V\ C5:.io E1 , ^
RATIO OF JOBS R3l)= 4 4^ -fin H

<=! . . , .

cA= S 4 5
b = — 0 . ̂ 3 C5.l\ E 1 , S

mTIo 6P SIW.
TIME TO REAL b = — 1.43 C5.ll 1

TABLE No. C5-2

Graph no, j
nr, *7 1 1Cv*7 ;
. . ! !
1 i 1 1 ': 1 i : 1

: ! ! i i i

! 1 ! i 1- ' ' i ! ■'! ̂ ; 1 ; 1 1
a+ t>*M j 1

/// r

' ' 0 ; I 1 /3 i « I' nn . t X 4 ̂ ..i " ^ r T ”
‘ ! ^

y
y i r

r / 4t
" i X' y ,
f ,/ 1 / i3 / _ .

1 j
i

: ' J ^
11

I 1
' ̂ 1

!:]

I□ eg H

M
OH

I

00

f-
co•H
•H M •H ■P

i:
Al.

1
Graph no, j

- C5.8 - 1...
. . 1 ‘! - i 1 i- • t
1 1 i 2'
DD- a,i-râ,M-id„“ .+ aj i \ a /C ^ “ *X i

f

: i y
i y

\ i

! / r : }j ,
iy i i 1

? : : r !V “■ -1
1

i I

i

’ :i ' ' ■ 1 1 '

No, of active usersC.Te2?minals),
1

1 t
Graph no.

., . 1

1 i
1 •
i

I1
j

.... i /

! i . i
///

•: i i 1 /
DRÜ = a+b.ln1 ^ 1
.■p \ m 0.187

K / !
1-----Ji 1 " V#jW (

; ■ ! i !

M i /I

: i ! / i 1
1 _. U-

: / i!
:___ i

1

1 / 1 ̂ i i

16 24 32 40 48

'\
. i

t "4
Graph no.

1 \ l ■'
05*.10 -

... .1 \ 1 i
_ . ! _ ! \ i !
_ 1 . .!. \ i

' 1 ! \ i \ 1
 ̂BSS‘- a + b.liV i
■ 2 •' - i \i i

■ ! ^ r 0'91 i \ !

; : : i y
■ ; M !

i l l
■ :

, i i i 1 i
M 8

-a.2_" r.+ n irri n g a-yo Z'rPja-y»TTn‘n Q ,Q ̂ .No.. of aot jjy.ta 11RAT3(Tfi-rmt n q 1 d

Graph no
C5.ll

Graph no
G5.12

EJU "* a +o
0.85

0.J6
•H

in

VO

o o54 O rf\ oc.

tH

(Terminals T,No_, of active users T T n . n f . a n t e T > T r > ^ r > a 1 q A - ,

Conclusions :
* Since the effective degree of multiprogramming increased with the

increasing number of active users in the system, this means we need
to consider two things:
1. What is the maximum degree of multiprogramming that the avail

able main memory capacity can hold?
2. What is the best scheduling policy that ensures the system

performance will not be degraded with a given degree of multi
programming (i.e. no thrashing for example)?

The above considerations will be one of our future research interests.
* It seems in GST the disc is bottlenecked, since it approximately

reaches its maximum utilization point. But as soon as it reaches
M* (see graph no. 05.8) , a degradation in the disc utilization
occurs, and at the same time the drum started to be utilised more
and more. , the drum is still under-utilized.

Ratio of simulation time to real time represents an important cost-
performance factor, since by this ratio we can calculate the real
time required to perform the actual tasks given to the computer
system. Hence, the maximum acceptable ratio should be 1# In GfST
the ratio = 1 when number of active users equal $0 (see graph C5*10).
The ratio of jobs processed per no. of active users decreases with
the increasing no. of active users in the system* That means the
system productivity decreases with the increasing no. of active
users in the system.
The effects of the parameter, number of actve users on the new
selected performance indices are modelled. The models can be used
to predict the future changes.
For the purpose of the next experiments, the direct graphs will not
be drawn, since it can be directly constructed from the first table
in these experiments.

5.5.6. Case 6tOther effects of the performance parameter: No. of tasks
per multiaccess job.

This case study addresses the effects of varying the average
no. of tasks per multiaccess job (TSM) on the new selected performance
indices (i.e. effective degree of multiprogramming (î), disc utilization
(Dïï), drum utilization (DRU), tezmnnal connect time (TOT), no. of multi
access jobs processed (MJP) and ratio of simulation time to real time
(RSR). This can be achieved by running the GST with a workload of
average no. of tasks per multiaccess job from 1 to 4 in step of 1.
Refer to table C6.1 and graphs 06.1, C6.2, C6.5, C6.4, C6.5 and 06.6.

Table No. C6.1
It,-j-r-f i .

3 o».Ç T îiü H-r4o^»v=r,ce Vkrcxn\e.\-er : Wo. of kisks muU.ac^eiS

4 1 3 4 /

Dĉ r«-€.

H«\vl

C'/O

5 1% . Î.Ç l ^ . O l 21. 16 i-l- 46 /
10 31 .35 36 .1? 31.1-g j /
15 3ii 42 L\0> 4 3 . IS 4 4 .4 4 y
iO 3% 4 8 4 5 . Si 4 1 ' 5 1 /
15 .3 3 41 .^5 41. %1 /
ZÙ 3 5 q^ .6,4 V 8 . 60 . 4S /
35 W O '34 H

~T\72'T~' "
5 ,0 3 4 %. "4 & y

OéJ<LC

U^iV'ïa-
V»&t\

(' M

5 Sl.O&l O'OO 9 TAS 0.261
JiCMIÏi_

4.45
TTtsivL,

&Z.M
Brum
D ' 4 r .

c>ruoA

\o) '44 $6.33 1-64 88.52 6.56 1.4.96 1 . 3 5
15 sy.ïo X - W j 9 .5 ^ 3 . 1 4
%0 S535 Z'il 1 .6 / 86-13 3 . 3 9
15 26.51 5361 \ '41 81.^2 l.û»4 3.13
30 U .3H 2'1% %6.M 2.46 6 .84 36-54 3-14
35 U^Tù 1.35 3616 3-11

CoAlVSt-V

(Sexi
VAT)

S' K 5 1. <=><£> M 6 y f
10 113 2-44 2 .44 2.56
15 334 341 3=fX 336
10 6 /6 5 1 3
IB 5 9 8 6 1 1 n o 51 f
20 6 4 5 6Z2- <6 44

"9 9 0 .. 1 4 , 1 , 14 %

Nluir\\iCr
o f

HvP? access
job» 1
proo^à
C

5 / / 1 1
10 H 5 5 -...-
15 9- 4 %
10 lA 1? 15 ' 16
l5 2.3L 2.3 2 3 i l _

20 1? Z6 2 6 16
353 0 31 11

o f
5 2.49" Z -ZCD \. bS 2 . 3 3
10 1-44 1 . %z 1

1 15 ̂ *S2 1 -13 1-25 1 .1(0 y
I 10
1 2l5

1 ' M
/ .

1 .4 4
\ . ?,g"

(-35
1.31

»'6s n
1.6%

— ^ —

(30
■ ^5

» • &2
1 ' «3 .

1 • 1 5
1 .

1-39
1.42

1 .4 0
1 . 9 4

Graph no
C6.2Graph no

06.1

c

c

ocv
HH

O 1 2_______ 3 ^ 4
No. of tasks per multiaccess jobNo. of tasks per multiaccess, job

Graph no
06.4

Graph no
06.5

MM

i aSR;« a » b.TSM

I__VO

M

■H
-P

M
H

Ï 2 3 T%Ri 4 ———..— .— ..p,No. of tasks per multiaccess job
-L ̂ ̂ TSM 4

No, of tasks per multiaccess job

QO! 1 t
__1 '1 I - *- ' •. - ‘ I ! ■

Graph no. ! ;; I ' i ni 1 L i ̂ . ; !; i 1 1i iTCT m 8 + |b TSI
I loi i .

i. ; Cr •IdTTTl1 ! : !: ' 1 I ! ; ; 1 1__1
’ ;

— -
1 i ! 1i i 1!1■ : : I

, i i M

i
\ '
k'wrOO•rs 8

nd0)ratn0)i
Üo
UP4
rOO

o
«HO
. 'o
3

! ' I 1 ! ! - — —

—

Graph no. i106.6
■; . 1. !i: ! 1 : !

! MJP - a-f b. TSMI ' l l
! ;_2 -10.801 !i ; i I i! :
! ‘ 1i ‘ 1 1 1
! ' i; i i !

i i !: ! Î
1

, i i ! ,
Tâfl

Ho. of tasks ner multiaccess nob.

The relationships between the parameter, average no. of tasks per
multiaccess job and the new performance indices can be constructed from
table C6.1 using regression analysis and under heavy loaded system
condition. These relationships represent simple hybrid models which
can be expressed using the relational graphs (from C6.1 to' C6#6)fand
table C6.2.

PEEPOMANCË-^
irJDEX

1 RELATIONSHIP
equation

REGRESSION
C O ÿ ^ ^

Il • GRAPH
NO. EQUATION

NIUvIBER

DEGREE OF in TBH a=u 40.4}
\>& C & l

DISC
utilization a &%

= O*^ \ C6.1
DRUM
UTILIZATION ^ -vk in Tst^ A-

b\ C A 3 B U
TEH.MINAL
CONNECT TIME TCT:=A+t>tSH I?8

b> = — 4 '&0 C 6 4
1̂0. OF JOBS
PROCESSED MXpÆsatV) T s H h * O • 4C7 a . 5

'ÏÏHTÔ ÜT-' S K ü;
TIME TO REAL a* \'

3 — û»0^ 1 1

TABLE No.

VP t

Cone lus Aona t
* The analyst will realize that this parameter slightly affects all

the new performance indices (\pf DU,DRU,TCT,MJP andRSR)#
* The same parameter (i.e. average no. of tasks per multiaccess job)

also has slight effects on the previous performance indices (R, X,
PBT). Hence, the increases of this parameter will not directly
affect the computer system performance. This is quite important,
since this parameter depends on the user (see graphs C2.4, C2.5 and
C2.6).

* The effects of the parameter, average no. of tasks per multiaccess
job on the new selected performance indices are modelled. The
models can be used to predict the future changes.

3.5*7* Case 7: Other effects of the parameter: Average think time.
This case study addresses the effects of varying the average

think time (TE)on the new selected performance indices (i.e. V', DU,
DRU, TOT, MJP and RSR). This can be achieved by running the GST with
a workload of average think time from 10 to 40 secs in step of 10.
Refer to table 07*1 and graphs 07.1, 07*2, 07.3, 07.4, 07,3 and 07.6.

Table No. 07.1

’JLacÜC'X
i ^

J l i

T̂ ui. Ttrfo/-mor̂ cjt ; >4vfc/ĉ« fbnk Arinrui ({.Th)\
10 Sei-. ZO S ec.. ''ÎjÔ Sec.. 46? 2ec.. X

Dĉ r«-€.

HvAV'i -

01

5 iz. 0% %\ .59 2 1 • % ZL12- /
VO 38.\S 3 4. &Ü 3.6,44 y
15 42 4 3 . 4 1 43.15 4̂ 3 *13 y
5.0 46.(4 45.%t </5.3P y
15 4?.5 / ^?-l5 4?'/% y
ZÙ 4 3 . 4 1 4^.3? _ 48-Z7 y
35 44.14 4%.33, 4&.%t 4%.44 y

D à/l ce

V.'on

5
_U\3C. urum

/■7&
orurrt
444

-Uijtifc™. DrwtW
4.45 44.53

■prv*m_1.12
_DLit. Çifvltï>

\D <gZ-l2 I Ml 35.06 Z»6I Sg.5% 80-12 2..1H
15 %.45 4-75 54.65 3.42 l>Sû 82.62 2.82.
%0 «4.57 4.41 â5,48 3.14 ^.47 ^3.75 Z7S
15 3.41 3.06 S1.42 4.04 83-42 Z5I
30 4-23 ^4.45 3 .5e b.39 â|.47 2:64
35 U M 5.35 4̂.641 346 84.41/ <i.54 84.14 y/

lervnîMl
CortCificV

('fSics
per VAT)

S' ïé>=t If3 . 2^0 %3i
10 2S4 3-44 14 4 164
15 ^ai 3?6 349 HP6
00 S12 4S4 6)6
15 n 60Z 570 55f
20 66? b%u 631

... ? 6T*

NJutn\ier
oC

jot» t
(

5 I .. “1 “.... I 1 y
10 é 6 E 4 -- y
45 la lo 4 i y
0Û \L 14 15 13 ... r
Os -2.1 23 .n 2<0 j y
30 33 ^6 _ ^4 .. . y
35 24 3 1 _ . 2.̂ y

of

Tîme

5 \. 34 ?-̂ of ... & .11 y
10 \. 5Z \.65 7 . 4 3 \.41
15 I.5S h ZS 1-78 1

41
1-43

1.54
\ - 54

125
1. 39. ^

80 i
\ - S4 ^ -------- 1

k #
\.M1 .
\.MZ

\ '5T?
1,61

,JJ5---
/.

1 • 31
\ .83 ■- t

i
Graph nOo j
07,1 " r~"
, J
t : !
i l l f 1 ' i

U L ! J
M M ,

-.... .. . s/̂ —. «1 1 "h m#- ■ jT" ■ OT
' ! 2 i I r . Ow79 1

! ! ; .1 I
i > i i
1 : ; ! 1

ir! ' !’ :
C-- j.---

i; " i' ;

:

: : i ^ t !

. 1 1 : i 1 ̂ : 1 i

3
Q

O
O
H

O
1pv

O

r"'.0
of*-co‘H o

-P uo
ciN■HtH o•H "V
P o!o
CO

A o
oCvJ

oM

o

- • : 1
Graph no, j

07,2 ;
. , i

M i -1

I I I !
- -L- J i -

! J L l _« w - a i
1 i i i !
! ' • ! ! ’

. • - 0,75 ■ ' ! — 1-
i 1 ! i 1 ■ !
1 : ! 1 1 i
! ‘ ! 1 ; :

i ----

f 1
1 1

i ■
1 1

10 20 30 TH 40| 10 20 50 TH 40
Average think_tirae (sec.). nAyfirage. t,.b.ixi,lc tdme(sec.)-

Graph no
07,4

Graph noo
07,3O OJ M

MM
OM

rH
DRÏÏ k a +1 "b 1% TE RSk =• ai 4* h pji TEft

i" 0.8b

VO-P

M

10 20 30 Ti
Average think time (sec.*5

10 20 30 TH
Average think time(secD

/

Graph no
C7.5 Graph no

C7.6o

ÜHH

MkP - & + In ïâiO

5 8g ̂
O O 54 O N-\ • o

C\J
oM

10 20 4C IQ Ï 40
•

10 __________
Average think time(sec.in

The relationship between the parameter, average think time and the new
performance indices can he constructed from table 07*1 using regression
analysis and under heavy loaded system condition. These relationships
represent simple hybrid models which can be expressed using the
relational graphs (from 07*1 to 07*6) and table 07*2,

PERPO^ÎANCË“'
IÎ1DEX

RELATIONSHIP
EQUATION

REGRESSION .GRAPH
NO.

EQUATION
NLU.3SR

’ DEGREE OP
MULTIfüpGBA-

<Kz 44 .
ba — O ' 0 \ C 7 . 1 63,M

DISC
u t i l i z a t i o n

i)TH a 2, s.%.
b=. O' C 7 - 1 63,5

DRmi
UTILISATION D R O •=- q=:

t> =. -—Of 4 0 C ^ 3 63,6
TERMINAL
CONNECT TIME TCT- a tb TH \ . 43 E3,9
No. OP JOBS
PROCESSED

as 0 ' ̂ 4
b J - 402 C 7 . 5 63.&

Mi'iô 'OP lîiinî;
TIME TO REAL R5R,=.d^'ol2ntS a =. 0.(43

b := D 1 0 4 1 £3,1
TABLE No.

/ I

Conclusions:
* Increasing the parameter, average think time, shows no major

effects on the new performance indices, except it decreases the
no* of jobs processed (see graph 07*6)• But this parameter, as we
have seen in case 5» causes considerable changes to the average
response time and the interactive throughput (see graphs 03*4 and
03.6)# Hence, we may consider that the users behaviour can affect
the system performance, since the above parameter (TH) is a user-
oriented factor* Although, fixing the average think time in the
GrST to 15 secs* is a very reasonable decision for the interactive
system which supports a number of terminals* The reasons for
considering it so are:
1. Customers requests require considerable use of resources and

this makes response time long*
2. Customers can stack requests. That is, while a customer is

waiting for the system to respond to one request, he can make
additional requests.

3* Many computer systems support graphic terminals, in which
customers interact with these terminals, mainly by means of
lightpen, which is used to pick items on a menu and to pick
lines on the drawings* This can be done very quickly, and so
tends to keep user think time low.

* The effects of the parameter, average think time on the new
selected performance indices are modelled* The models can be used
to predict the future changes.

7 2

3.3,8, Case 8; Other effects of the performance parameter: mean
interarrival time.

This case study addresses the effects of varying the mean
interarrival time on the new selected performance indices (i.e.ÿ,
DÏÏ, DRU, TCT, MJP and RSR), This can be achieved by running the GST
with a workload of mean interarrival time from 15 to 60 secs, in steps
of 15# Refer to table 08,1 and graphs 08,1, 08,2, 08.3, 08.4, 08.5
and 08,6.

Table Ho. 08.1

j # ! 5 3 0 5 «C
ITTT

4 6
6.4310

15 M3 . l6
15-03 If . SJ

32.10 22. .44
10 4 5 . %\
X S 44- 15 4 ^ ‘72.

2.4-32 22-40
34-;& 2?.4?42. 34 37- 03 •31.64 ZS5 ijU'IO 3% .41 34 . IS

■DUtr ünio.4-46 Plsc. if ru
634? 0.00 53 33 Dfv,mD-OC7 Z5Z355ZZZ

\0 Sa-52 6-50 ?l43 Û.54 b.bZ 44.S4 o . oo
15 %4.3R f -S O 15.;% i.m; &4.50 54.55 0-04
2-D %?.4? 9'6I 1ÛH4 0 -u
3.5 74 .K I. ;s 44.% ^.05 i8.0<y: 0.4S
30 Sf.Si g 1 .31 l->0 7^.(7 1-OS 7I.?3 0 . 68

??.b81 1.4 2 73 .?310 -43^y
Z

35

10
15
20
V S
3035

10
15
10
15
30
3&
5
10
16

10
15

r~30"

g>9fi4| 6-51
loo
244
Z41-
'5“l 6

—

IS

_3.t__
)-6%_ 1-43
I -3 5
1.35
|.3=t
I '&±_f. 42-

2..15

2.4 T

4 S4
7 0 5

/Z
rr~
2-é,

2 - 31

I 2..T4"
1-00
1 -4 fcë'
\ q 4
1 • 59

2/b
26 3
2 5 1
3 4 4
4 Z S
6/4

z y ___21
.....-
g . 25
3 . 65
Z - S O
2-^4
1.-
2 .14

233
 ,g:3.,e

3 IQ
3?J
4 Z V
..60..3L

r j

4. IS
3.9 7
3 -06
a. .71
Z.J5 0
Z-36

/
/

Z

/z

_Graph no
C8.1

Graph no
C8*2

H

rH O

VX3

O -
o

HH

MeA .n TntA T g r ? i^rg.1 f a o rMe an—In-t-ea?<a;rriv al- -Time (sec.)

<M Graph no
G8.4

Graph no
08.3

M
H ~ E

!RSR 4 a + hX

VO
- p

n
+»

M

15 — ■ 50______ 45 ^ 6 0
Mean Interarrival Time^sec.). 15 .. _

Mean Interarrival Time(se_G,.)

Graph no
08.6Graph no

08.5

q

MJP•H

VÛ

O

.5 8g
0) O • o

M

10
_ ivle_an Interarrival Time(sec.). ■Majg-Ti Tnt T i.-n,e (-.ae r; .

The relationships between the parameter, mean interarrival time and
the.new performance indices can be constructed from table 08.1 using
regression analysis and under heavy loaded system condition. These
relationships represent simple hybrid models which can be expressed
using the relational graphs (from 08.1 to 08,6) and table 08.2.

PERÊOHIÎÀNCE^'
INDEX

r RELATIONSHIP
EQUATION

REGRESSION 1 GRAPH
NO.

EQUATION
NIRSER

’ DEGREE OP
MDLTI%B0P2A- 4 - X 53.

t) ~ ^ • 33 C % A E 4 ; 4
DISC
UTILIZATION 00 = Q t jGn \ ok= \ 10.45

y % C g - 1 E 4) 5
DRUM
UTILISATION

A — 1-%
\»ss — H*\‘3 c & . g

TERAÎINAL
CONNECT TIME Qr \05S.51

b=i -WD. 52. c & . y
No. OP JOBS
PSOCESSED V\1p a Ok 4=- 3t' ^ b — “ 2-. C g - 5 E 4 , &

iül'iO OP SIMU.
TIME TO REAL Q S. — 0 * 40

. V? » 0 * 6^ 1 6 4 , 4 1

TABLE No.

/o

Conclusions :
* The mean interarrivai time (for a poisson input distribution stream)

is an important factor of a specified workload in the GST. The
effects of increasing it give us the following situations:

* It decreases the effective degree of multiprogramming.
* It decreases the disc and drum utilization.
* It reduces the ratio of simulation time to real time, and

therefore the cost.
* It reduces the multiaccess jobs in the system.
* It reduces the terminal connect time.

The increase.of this parameter also has the following effects (see
Case 4)*

* It decreases the response time.
* It decreases the interactive throughput.
-For the purpose of our experiments, we have selected a

reasonable value of the mean interarrival time equal to JO secs.
* The effects of the parameter, mean interarrival time on the new

selected performance indices are modelled. The models can be used
to predict the future changes.

/D

3.4, Aim of Experimentations:

Through the previous case studies, we have built several
simulation/regression analysis models for many performance indices
with different given input parameters. These models specify the
behaviour of GST by changing a single-input parameter.

The prime aim of these experiments is to construct a
general model to represent the whole performance behaviour of the
computer system which has been simulated using the GST.

Several researchers have tried to construct general models
representing the behaviour of a system, but most of them found this
task very difficult. Hence, most of the models existing in the
literature are of components or subsystems of a computer system. In
particular, a large number of models exist for:

* Memory management ((/Denning 70/)).
* i/o ((/Koffraan 69/)).
* CPU scheduling algorithms....etc, ((/Kleinrock 64/)).

Some of the existing models are not really reliable. For
example, consider the’throughput model’ built by Gaver ((/Gaver 67/)),
for which Penichel and Grossman ((/Penichel and Grossman 69/)) claim
that ”it is greatly to Gaver’s credit that this work was published
and we consider his results are strictly negative". Different
researchers propose different methods in order to solve the problem
of constructing a general model of a computer system. These include:

* Parameter identification method: ((/Kimbleton 72/))
((/Bose and Warn 75/))

In-this method only a small number of performance parameters
and indices are identified. The identification process rule
states "The selection of parameters depends upon which of them
strictly affects the computer system behaviour".

* Hierarchical method: ((/Sekino 72/))
In this method, the identification of parameters and indices
breaks into several modules. These modules are arranged
hierarchically.

//

The general process of onr method is given hy figure 5«7*
This process can he performed on the parameter identification
method*

GSTor

Trial Changes

Proposed
System

Analyst(s)
Factorial
Experimentations

Experimentations

Measurements
of Actual
System

Select
Input
Parameters

Man-Machine
Interface

Build
Relation
Matrix

Figure 3*7 : Schematic Diagram of the Experimentations Aim*

The steps for building our general model can be summarized
as follows:
1* Perform all case studies*
2* Build the Relation Matrix (i*e* model all the single parameter

changes)
3* Perform factorial experiments (or case studies) on the given

Matrix (i.e* Model all the multiple parameter changes)*
The general model may contain a further extension (or step),

in which the analyst can study the behaviour of the system in an
interactive way* This extension can be done through a very simple
program (i*e* Man-Machine Interface) using the relation matrix and the
factorial experimentation rules. In this case, we may call the general
model an interactive design tool (IDT)* The first step can be done by
performing the same method as the previous case studies for all
selected parameters. The step of building a relation matrix follows

7 8

the experimentation, step (i.e, performing all the case studies).
It organizes the access to any hybrid model required. The hybrid
models are a result of several case studies. The relation matrix
has the following shape (see figure $.8).

Performance Index (l)

\ p

K
R p er X 4^

. . .

DU DRU T tr HIP RgR POT WPT WST vuTTvoolojdrT

H E1.1 yg. EM EM ' a ,5 EM E1,1 £3,10 El,f t 0,13 0,14 0,15

E2,3 E1,H E2,5 E2,t E^? EÎ.3 0 ,1 £2,10 £2,11 E:,ft rtB 0 ,4 £1,15
TH E M E M E3^ E M £3,5 E3,t EM EM EM £3,10 £3,11 Eg,12£3,13 E'3,1HD.1Ï

X E V EH,3 EH,H EH,5 E4,t EH,? £4,% EHA EH,ic£4,11 £H,ft £4,8 EH,1‘ :%15
HPT E5; EM EJ,H EM £5,1 E5,? £5,1 Em £5,10 £5,1) £5,12 £ % q :5,h £5,15
MSI tS '' E M Et,3 Et,H £4,5 £4,4 £4,3 E4.Î £6,1 £4,10 Et,i(£4,12 £4,43 £4,4 Et,15

EM Em E M EM I I I E?,t £7,1 E V E?,w £1,11 £7,13 0,H E?,15

S P l l%\ E M EM E2,H E?,5 E i,4 E M E ^ m E%,u £«,12 01,13 E%M £1,15

h h i 5 ; EtH 0,5 0.4 E t? £M £3,1 £1a El,ft El,» Ei ;3 EIvH£4,15

EW Qoa B0,4 fio3 00,t E®,? Bq? Bq i Bn® £14« Bqtt E)9'3Em £10,15

HSL E-W/̂ E"a EH,H E il̂ Eti,4 £11,-3 01,1 Eii,\c £■11,4101,1Î&?3 01,1101V,15

F P l EiiA Ell,5 Eft,4Bl,TEftA01,1£*!,«=ETH'4 Eft," Oijtl0'2,k612,15
ST EBA E% 9%SEl̂ 4 El3,? BM £13,1 £13,10B̂ ii £13,» BV1 03,15
SOF Ew,\ EW,3B%HEihsElĤ £mBHAB%19H,«Eh,»£w,a B V e v Eih,is

Em E%,3 Bm 05,4 05,3 £B,2 E m £16,10Es,ii El5^ 05,8 05,10 05,15

H 6R Elb^ E\t;3 W 04,5 Bb,4 Eiii? £14:5 9H1 Eit̂ ic 04,11 £lt,s 04,13 04/ 014,15
HÛR Em B3.H Efi.b 07,303,1 03,1 B?,K £l?,ii ER,\ El?,f Ei?,15

CST EftAE:l% E^,4 E|%?£)^ 6s, K E&» B i ,k 6i,ü 0 y 6(1,15
PIT &tA 6h,3 Eftjt £H,4 E M Sft̂ DM Gdf£%'i & i,'i,0 1 / 01,15

FCT e% E%)&PHW E%? 00^ &p,1 £20,k€»>'i E20,fl 6°-i;0c,k4 0 ^5

hj

!Ich
y

l
Figure 3*8: The Relation Matrix R(I» J)*

* The abbreviation used in the relation matrix can be found in
abbreviation appendix A.2.

8U

The third step will be left as future research work.
Finally, the general model or the interactive design tool is a direct
result of the simulation/regression tool, and therefore it has the
same advantages (see section 3*3)*

For more information about the GST, the reader is referred to
the enclosed simulation program of the GST. The program has has been
written using the programming language C ((/Kemighan and Ritchie 78/))
which may be considered as a better language to implement the GST,
than the original language (a subset of PL/1), especially under our
host computer system VAX II/78O. The new implementation of the GST
has been achieved by Cavouras ((also see section 6.2/Cavouras 78/))*
More information of how we can construct a similar simulator, the
reader is referred to ((/Lindstrom and Skansholm 8I/)).

CHAPTER 4

T H E O P E R A T I O N A L A N A L Y S I S

A P P R O A C H

4.1* Introduction.
4.2. Single-Resource Queueing System.
4*2.1. Background.
4*2.2. Single-Resource Queue.
4*2.2.1. Further Notes.

4*5* Queueing Network System.
4*3*1* Background.
4.3*2. The Operational Assumptions.
4•■3*3* Simple Closed Queueing Network Operational Analysis.
4.3#3*1* The Operational Aspects of the Simple Closed

Queueing Network.
4.3*4* Operational Aspects of the Interactive Computer

Systems•
4.3,4.!. System Outline.
4*3*4*2* The Operational Aspects of a Ifiilti-Class Closed

Queueing Network Subsystem.
4*3*4*3* The Operational Aspects of the Overall

Interactive Computer System.

4.1. Introduction t

Operational analysis represents a new approach to the problem
of analysing system performance during time periods of interest
((/Buzen 77/)). This approach has been developed by Buzen ((/Buzen 76/))
and extended by Denning and Buzen ((/Denning and Buzen 77/)) to apply
to queueing networks, especially in the context of the study of the
performance of multiple-resource computer systems. This approach is
quite attractive for the reasons mentioned in the first chapter.
Although operational analysis remains a recant approach to performance
evaluation ((/Sevcik and Klawe 79/))# many researchers are trying to
extend this subject and develop it in order to build an ideal design
and evaluation tool ((/Bouhana 78/)) ((/Roods 79/)) ((/Sofri 79/))
((/Bryant 79/)) .((/Denning and Denning 79/))* These researchers have
tried to put some missing links to the available operational analysis
by comparing it to the traditional approach (i.e. Stochastic modelling).
This is quite important as a first step, since the results of the
operational analysis can be validated easily using the traditional
approach. But, we believe that the research work in this subject
should move a step further by adding new and powerful facilities to
this type of analysis. The extensions or additions may consist of the
following levels i

1. The representation level;
At this level, several software components should

be represented. Examples of these components will be the
operating system modules, by which we can study the:

* efficiency of memory management.
* effects of job scheduling.
* effects of CPU scheduling.
* effects of resource and queue management.

2. The mathematical level:
At this level, new mathematical structures should be

added to the operational analysis. This step was started
by Bouhana ((/Bouhana 78/)) in which he added the matrix:
algebra to the operational analysis body. The new math
ematical structures will increase the efficiency of this
type of analysis*

In this chapter, we will try to use operational analysis to
represent the same system as the GST (see chapter 5) • The research
will be concentrated on interactive computer systems and closed
queueing networks. For this purpose, queueing theory has been used to

represent structured operational models. A structured model is a
description of the actual system components and their connections
(structural models are most frequently represented by block diagrams.
The level of detail in a block diagram can easily be varied, since
individual blocks can, in turn, be further laid down as self-contained
block diagrams) ((/Svobodova 76/)).
The operational models will be introduced as follows :

* Single-Resource Queueing System.
* Queueing-Networks.

4*2. Single-Resource Queueing System:

4*2.1. Background;
In queueing theory, the term queue is a synonym for the

waiting line that forms in front of a service facility or server. The
entities in a queue are generally called customers (jobs, tasks or any
logical entities that can conceptually generate a request for service).
A single-resource queueing system is often called an isolated queue.
An isolated queue consists of the following attributes ((/Bouhana 78/)):
* Arrival process:

The arrival process describes the protocol according to which
customers arrive at a queue with their requests for service.

* Scheduling discipline:
The scheduling discipline describes the protocol according to

which customers receive service. An example, of common scheduling
discipline is:

* Pirst-Cpme-Pirst-^erved (PCFS) and
* ^ooessor Sharing (PS)
* Jtost-Cpme-First-^erved (LCFS)
* Rçund-Rpbin (RR) .

* Service-Time Distribution:
After a customer has progressed through a queue, the time that

he is in service varies according to his need for service. The
distribution of time that a server allocates to a customer in a
single visit is called the service time distribution.

* Deuarture Process:
The departure process is similar in concept to the arrival

process, except that it cannot be arbitrarily specified.
An additional aspect of queues is the multiplicity of the

server. If there is only one server present in a queue, then the queue

o * +

is said to have a simple server* If however, a queue leads into a
service facility that has more than one server, then the queue is said
to have multiple servers. Figure 4«1* shows a typical simple server
isolated queue with its attributes. Also, we may call this type of
queue a non-pre-emptive single-resource queueing system.

Service Data Distribution.

Scheduling Discipline
Arrival
Process Departure Process

Figure 4*1# Simple Server Isolated Queue.

4*2.2. Single Resource Queuet
A single resource queueing system, with one queue and a server,

is observed for an interval (0,T) . Figure 4*1* shows this type of
queue. The behaviour of such queues were studied using operational
analysis techniques by ((/Denning and Buzen 78/)) ((/Buaen and Denning
80/)).

To show how operational analysis can be used to construct a
performance model of the'non-pre-emptive* single resource queueing
system, let us define its basic operational quantities*

n » number of jobs present in the system at time t, Oi$t< T.
T =» length of the observation period*
A » number of arrivals *
B ** total busy time (time during n>0 and B ̂ T).
C *» number of completions oo curing during the observation period.
W a area under the graph n(t) during the observation period.
In terms of these basic quantities the following derived

operational quantities are defined*
X =» a/T, the arrival rate (customers/second..).
X =» g/T, the output rate (customers/second).
ÏÏ =» B/T, the utilization(fraction of time system is busy).
R ■ W/C, the average of time accumulated in the queue per

completed customer.
S =» B/C, the mean service time per completed customer,
n s* W/T, the mean queue length of the queue.
The basic quantities (A,B,C,W) are typical of "raw data"

collected during an observation, and the derived quantities (X,X,ÏÏ,R,
S,n) are typical of "performance measures". All these quantities are
variables which may change from one observation period to another.
But, to construct the relations that must hold in every observation
period, regardless of the values observed, we need to derive new
equations. These equations are called operational laws.
Now, the following equations represent some of the operational laws*

* utilization law*
Since

— ^ C * XT
and S «]

(
hence
but since

then

i.e. SX

* Little*s law*
Since

n
and X

w/t
C/T

but R » W/C

B = SC

B - SXT

SX

is the utilisation law.

W
c

nT
XT

“I
i.e. n « EX is Little's law.

Using the above operational laws and operational quantities,
with specific testable assumptions we can construct many operational
theorems. As an example, if we assume that the number of arrivals is
equal to the number of completions during the observation period.
This assumption is called .lob flow balance, that is, if we assume:

A = 0
then, we can construct the Utilization Theorem as follows:

since A = 0
, A = X t

and C = jCD then X = X
and since U = 8X then

sX is the Utilization Theorem.

4.2.2.1. Further Notes:
An isolated queue is not the only type of single-re source

queueing system. Examples of single-resource queueing systems are
given in figures 4*2., 4«3* and 4*4*

Pre-emptions

Server

4 1 %2
Server

1

Figure 4*2: Pre-emptive Single-Resotirce
Queueing System.

Figure 4*3: Two-level Fore
ground-Background
Single-Resource
Queueing System.

(35)

H-1

Server

Figure 4*4: N-Level Foreground-Background Single Resource
Queueing System. (FB̂)̂

These types of single-re source queueing systems have been
intensively studied using the traditional approach (i.e. Stochastic
Modelling) by many researchers ((/Takacs 63/)) ((/Sstrin and Kleinrock

o /

67/)) ((/MoKirmey 69/)) ((/Coffman and Denning 73/)) ((/Pujolle and
Sonia 79/)). But none of these researchers tried to represent them
using operational analysis* The of the above systems
is out of the scope of this thesis*

4.3, Queueing Network System*

4*3.1, Background;
So far, we have studied a single resource queueing system

which may, in fact, represent a single input/output device or central
processing unit within a computer system. A model of the entire
computer system can he developed by connecting single-resource queueing
systems in the same way as connecting the devices of an actual computer
system configuration.

Queueing networks have become a widely used analytic tool
for multiple resource computer system peirformance studies ((/Denning
and Buzen 77/))* "Far several years, queueing theory has been
developed ((/Jackson 57, 63/)) ((/Grordon and Newell 67/)) ((/Saskett,
Ohandy, Muntz and Palacois 75/)) mainly depending on stochastic
modelling techniques. The theoretical approach, however, has proved
to be very difficult to use in practice, because many of its assumptions
such as equilibrium and stationary conditions, cannot be proved to hold
by observing the system in a finite time period. Sence, a new research
approach which is called operational queueing network was introduced
((/Denning and Buzen 78/))* The operational approach leads to the
same mathematical equations as the traditional approach (i.e. stoch
astic modelling). These equations can be derived in a very simple way
depending on testable assumptions.

Queueing networks can be classified according to the following
factors: ((/Kienzle and Sevcik 79/))
1. Model Structure*

Describes the number of service centres and the manner in
which customers flow among them. We distinguish the following:
* Single server model (possibly with feedback loop).
* Cyclic queueing model.
* Central server model.
* A centralized model.
* General queueing network.
* Hierarohical queueing network.

2. The Arrival Process*
This process indicates the manner in which new customers come

oo

into existance# A model is classified as*
* Closed (fixed number of customers in each routing chain).
* Open (arrivals and departures in all routing chains).
* Mixed (some routing chains are open and some are closed).

3, The Workload Classes;
This indicates groupings of customers that are statistically

indistinguishable. Possibilities are*
* single class model.
* multiple class model.
* multiple class model with class changes.

4. The Queueing Disciplines*
We can distinguish the following*

* Station balanced disciplines (these include processor sharing
(PS), pre-emptive last come first served (PLCPS) and no queueing).

* Class independent work conserving discipline (this includes
PCPS).

* Strict priority disciplines (these are based on computer classes).
* Gteneral disciplines (these are mixed disciplines of the above

strategies).
5* The Service Demand Description;

Can be specified as either,
* A workload vector (the mean total service required by the

customer of a class at each device is stated) or,
* A routing matrix (indicates the movements of customers and the

distribution of service times for each class at each device).
6. The Server Characteristics;

* load-independent servers, and
^ Load-dependent servers•

Finally, queueing networks models may ha va one of the following
characteristics((/Chandy and Sauer 78/)) :

* Tractable Solution*
Those models which can be analyzed to give exact (as

opposed to approximate) solutions in an*adequately* short time.
* Intolerably Slow Solution:

Those models which cannot be analyzed in an ’adequately*
short time to give exact solutions.

* Unsolved;
Those models for which there is no known method of analysis

guarranteed to give exact results.

89

The vast majority of queueing network models used for estimating and
predicting computer system performance are of the tractable category.
Many researchers have, however, tried to use the second and third
categories with one of the following*

* Using approximate solution techniques.
* Using a simple, tractable model to obtain bounds for the

performance measures of a more complex model.
* Using simulation tools specifically designed for the

solution of complex queueing models.
For the purposes of this chapter, we will now try to introduce

tractable operational tool which can analyse the behaviour of the
closed queueing networks, in order to model the interactive computer
systems •
4.3*2. The Operational Assumptions*

The following assumptions should be considered when an
operational queueing network model is under construction*
1. The network should be operationally connected. This means that a

customer must eventually be able to travel from any server to any
other server in the network.

2. Each server has a finite mean service time.
3. A customer cannot be either enqueued or in a service at more than

one server simultaneously (apart from this assumption, there is no
OPU-l/O overlapping).

4. No customer waits in front of an idle server.
5. No blocking (i.e. no part of the system can block progress in

another part).
6. A customer incurs no delay in travelling between servers.
7. The rules governing the routing of customers through the network

do not change with the passage of time.
8. Servers do not interfere with each other in the sense that the

mean service time of a server does not depend on the number of
customers enqueued or in service at any other server. This is
called the homogeneity assumption.

Some other assumptions will be introduced and defined in the
next section. These assumptions are:

* Glasses of customers.
* Job flow balance.
* State transition balance.
* One step behaviour.
* Load-iniependent or load-dependent assumptions.

iJ \J

These are the only assumptions needed to construct any
operational queueing network model. These are all testable
assumptions.
4.3.3. Simple Closed Queueing Network Operational Analysis:

A closed queueing network is one in which a fixed number of
customers travel among the servers. One way of allowing customers to
’arrive' and * depart' in a closed network is to designate a single
existing server as the network’s conceptual entry and exit portal.
A loop is placed on the designated server. Whenever a customer
traverses the loop, he conceptually exits the network, changes identity,
and re-enters the network as a new customer. Such a scheme models the
real-world situation in which there is a continual backlog of jobs
waiting to enter a computer system.

A simple example of a closed queueing network is the cyclic
model, shown in figure 4.5. ((/Chandy and Sauer 78/)).

First-Server Second-Server

d d Q - J

Figure 4.-51. The Cyclic Queueing Network Model (CQNM).

Customers arrive at the first of two (or more) queues, and
after completing service from the last queue, they may re-start in the
first queue and so on. Not all queueing networks are as simple as the
one above; they can become arbitrarily complicated as the number of
servers and the paths increase. However, the analysis of this type of
queueing network will give a good introduction to the analysis of a
complicated closed queueing network which is required to model the
interactive computer systems. Another example of a closed queueing
network is the Central Server Model (CSM) ((/Buzen 7l/))*

4.3.3*!* The Operational Aspects of the Simple Closed Queueing Network;
Suppose that a closed queueing network such as CQNM or CSM is

measured during an observation period of length T seconds and that the
following data are collected for each device i:
T : Observation time, where O ^ t ^T.
n̂ (̂t) : The operational state of the device i at time t, where

0 ̂ n^ ̂ N (*an operational state of a device i is the number

y I

of oustomers either enqueued or in eervioe at a device i and
at time t*).
(* if we consider there are M-server a in the closed queueing
network then:

M represent the total number of customers
i=l B^(t) = N the queueing network*),

A^(n) * Number of arrivals to the ith device that find Uĵ (t) = n,
where 0 ̂ n < N.

G. .(n) : Number of times a customer requests service at device j ̂J immediately after completing a service request at device i,
where n^(t) = n, 0 < n ^ N .

Tĵ (n) : Total time during which n^(t) « n, O ^ n ^ N,
We may also treat the ’outside world* as a device "0", in
which case we can define:
A^j(n) t number of customers whose first service request is for
de-^oe j when Uĵ (t) « n, 0 ̂ n < N*
Ĉ (̂n.) * number of customers whose last service request is for
device i.
We may assume also, that C^^(n) =*0 and it is possible that

0 for any device i since a customer could request
another burst of service from a device which had just completed
a request from that customer.

The following grand totals are defined:
C^(n) - § Gĵ j(n) , total number of request completions at device i,

when n^(t) » n,o<n^N.
N

C. = %] 0.(n) , total number of request completions at device i.
 ̂ n-1, ^

N—1
A. = 22 A(n) , total number of arrivals at device i.
 ̂ n=0

N
T. = T] T. (n) , the busy time.

Given these basic quantities, the following derived operational
quantities are defined:

S^(n) =» , mean service time at device i when n^(t) = n.
^ (defined only if C^(n)>0).

Y^(n) = , arrival rate at device i when n^(t) =» n,
 ̂ (defined only if T^(n)>0),

= T^(l) + T^(2) +...+ T^(N), total busy time of a device i.

B,2 » , mean service time at device i.
BiU. = , utilization of device i.1
A

Y. " , overall arrival rate at device i.

^i " "̂ î ®i “ ^i^^)) * restricted arrival rate at device i.
Q (defined only if T^(n)<T^).

- -"g-" , output rate of device i. ^
 ̂ (*i.e* output rate from the

îf̂ ̂ system *)
^ T^(u) , job-seconds of accumulated waiting time at device i#

n«l
, mean queue length of device i.

Hi = * mean response time per completed job.

/ X Ti(*)P^(n) a* ^ , device i queue total distribution where
A.(n) “ “

P (n) a ---- , device i queue arrival distribution where ^A. A.
Q n a 0,..#,N—1.

P- (n) a ̂device i queue completions distribution where
■Î i n a: 0,... ,N—1#

(* C^(n+l) is used to define P̂ because Pq (u), refers
to the queue size just after^a completion whereas C(n)
refers to the queue size just before a completion *)

« (^) ^ ^ij(^) ' routing frequency (^specifies the fraction
 ̂ n«l of request completions at device i which are

followed immediately by requests for device j*)
Using the above operational quantities we can construct the following
operational laws:
* U. « 8.x. (* Utilization law *)i 3. i '
* Ri « (* Little's law *)

* R = /J u S. (nj Pm (n-1) (* response time law *)
^ ̂ ^i

M
* = 23 (* output flow law *)

i=l
N

* S. = V Pp (n-1) S. (n) (* for defined S. (n) *)
 ̂ nal î ̂ ^

N
* =» 2 Pĵ (n) / S^(n) (for defined Sĵ (n))

n«l

« N-1* ® Z] (for defined Yĵ (n))
n«0
rO* ï± / q - 1 / (1 - P(H)) (if 3i(H) < Tj.)

» P (n) = P^(n) (Yĵ (n) / ̂) (if T^(n) defined)

Now, using the above quantities and laws we can construct many-
operational theorems by imposing some additional simplifying assumptions
on the system. These assumptions will yield a tractable operational
analysis. These assumptions are:
1. Job Flow Balance:

For each device i, the overall output rate is eq-ual to
the overall input rate to device i. When a system conforms to
this assumption, the quantities X^ are called device throughputs.
This is equivalent to assuming that the total number of arrivals

is equal to the total number of completions Ĉ , or that the
initial state n^(o) is the same as the final state n^(T).
Expressing the balance principle as an equation,

C. « A. (* Job flow balance assumption *)a 0

Also, 0. (n) « V ^ Gii(a)
^ % 1 "Wo

r t
But q^j « from this quantity we may derive,

M

Now di-viding by the time interval and employing the definition
Xf « /T , we obtain the job flow balance equations.

where j = 0,.*.,M

The job flow balance equations have no unique solution in
closed networks ((/Denning and Buzen 78/)). These equations can
be used, however, to derive other important quantities and laws.
For this purpose, define:

y _ — the mean number of completions at device i
A for completion from the system.

or 4 (* this is also called visit ratio i.e. mean
^0 number of visits per job to device i *)

Now, since / T
we can derive the following law;

X, /X, Forced Flow Law.i i " o
This law states that flow in any one part of the system determines
the flow everywhere in the system.

On replacing each X^ with in the job balance equations,
we obtain the visit ratio equations:

or
M

ij

visit ratio
equations

The solution of the above equations is always possible if
the assumption of connective structure (i.e. connected network)
was valid ((/Denning and Dozen 78/)). ÏÏsing the visit ratio,
operational quantity and some other parameters, we can determine
all the performance quantities. The visit ratio represents a
workload parameters.

The computation of some performance quantities using the
visit ratio, are given as follows:
* Response Time

Let =» X̂ Ĥ (*from Little *s law *)
(^forced flow law *)

%
V o

then
i iT o

and

• o
1=1

This new law is called the
General Response Time Law.

Note:
We can derive the response time (in an interactive system)
formula directly from Little’s law.

i.e. R • C^X^
But the response time in any interactive system is the

time spent in the wait-thihk cycle. This means the interactive
response time is R + Z (where R is the system response time and Z
is the think time). Also, the parameter Q, in the interactive

yü

systems specifies the number of users observed in the wait-think
cycle, say M customers. Hence, Little’s formula can be re-written
as follows*

M - (z + a)
R = - Z I is the response time law.i.e.

* Utilization; Since ■ V^X^
then, ~ Y y V

and since

i.e.

u ,- V i
x,s. Si?
1̂",1 r

®i?i we will assume these ratios are the
same for all N.

This assumption is used to study the system bottlenecks. Device i
is saturated if its utilization is approximately lOOJîé.
If » 1, the Utilization Law implies that

\ - VSi
Hence, for any device i, there should be U^ ̂ 1 and X^^ . Let
the* subscript b refer- to any device capable of saturating as N
becomes large. Such devices are called bottlenecks because they
limit the system’s overall performance. Since the ratios U./U.1 j
are fixed, the device i with the largest value of will be the
first to achieve 100^ utilization as N increases. Thus we see that
whenever device b is a bottleneck,

V l " - - » V m .
Hence bottlenecks are determined by device and workload parameters.

2. State Transition Balance;
The number of entries to each state is the same as the

number of exits from that state during the observation period.
Using this assumption we can establish the state space balance
equations.

Since
n^ - the operational state of the device i (i.e.
number of customers either enqueued or in service at
device i).

we can define
n « (n^,ng,...,n^) is the operational state of the
system (or system state space).

:9u

and,
a.... r(n,m) - C(n,m) / T(n), the transition rate from state

n to m is the number of transitions per unit time while
n is occupied# C(n,m) denote the number of one-step
state transitions observed fPom n to m. The one-step
state transition (from n to m) means the system moves
from state n to state m without passing through any
observable intermediate state#
Now, let:
P(n)=* P(n^,n2,.#*,n^) is the fraction of total observation
period T, that the system is in state (n^,n2»**#,n̂)#
P(n) « T(n) (from the definition) *

T
b....i.e. T(n) » P(n) T

With the flow balance principle we can write the
conservation of transition equations:

0......^^^C(k,n) « ̂ 1 C(n,m) for all n.
î$om a, b, 0, we obtain the state s-paoe balance equations;
2 2 ?(k) r(k,n) = P(n)|^r(n,m)
K m
for all n in which r(n, *) is defined.

This assumption is quite important, since the job flow is
insufficient to find flows in a closed network or to compute response
times accurately. These quantities depend on how customers distribute
throughout the network. The state transition balance considers the
problem of customer distribution and therefore, it will give more
accurate results throughout the calculations of the performance
quantities.

5# One Step Behaviour;
The only observable state changes result from a single customer

either entering the system or moving between a pair of devices in the
system, or exiting from the system. This means that n^(t) can only
change in steps of - 1. There is, at most, one arrival or one
completion at any instant ; no arrival coincides with a completion.

If n^(0) w n^(T) at any device i in the system, and if n^(t)
can only change in steps of - 1 at any device i in the system, then
A. - C. and also the number of transitions from state n to state n + 1 X i
must equal the number of transitions from state n + 1 to state n *

. . A^(n) = C^(n + 1) n » 0,...,N - 1
combining this observation with the preceding definitions, gives

p. (n) = P_ (n) a * 0,...,N - 1

Thus, the arriver*s distribution and the completer's
distribution are identical whenever flow balance and one-step are
satisfied.

Finally, using the above assumptions we can derive the
recursive laws;

P^ (n) « Yĵ (n) S^(n) P^ (n) ...First Recursive Law.

Pĵ (n) «* Y^(n - 1) S^(n) Pĵ (n - l) ...Second Recursive Law.
4# Homogeneity;

To apply the first and second recursion laws, it is necessary
to measure or estimate the values of Y^(n) for n - 0, 1,...,N - 1 and
S^(n) for n * l , 2,..., N. In some cases, the number of independent
variables can be reduced significantly by making one or both of the
following assumptions:

T(0) = Y(1) = ... « Y(N-1) » constant....a^
8(1) ■ 8(2) = ... = S(N) = constant....a^

Using a^ and a^ with the following laws ;
V?!" V (1 PiW) .

Pi(n)n=l
we obtain;

, similarly using â and
n8. » 2 P« (n-l) Y. (n) we obtain

 ̂ n«l i
S^(n) -
Equation a^ is called the assumption of Homogeneous arrivals;

it asserts that the arrival rate is independent of the queue size n.
Equation a^ is called the assumption of Homogeneous Services (EST) ;
it asserts that the mean time between completions is independent of n.
These equations are examples of general operational techniques of
simplifying problems by introducing homogeneity assumptions that allow
a set of conditional rates to be replaced by a single, unconditional
value ((/Buzen and Denning 80/)). We may also define a Routing Homo
geneity as follows;

yo

The routing frequencies for a given total load (N) are
independent of the system’s state and device homogeneity as the output
rate of a device is determined completely by its queue length, and is
otherwise independent of the system’s state,

4.3.5,2. The Operational Solution of the Simple Closed Queueing Network;
A queueing network will have a tractable solution if one or

more of the following conditions are met ((/Chandy and Sauer 78/)) :
1. State Space Size;

The state space balance equations can be mechanically
generated and numerically solved in an adequately short amount
of time.

2. State Transition Structure;
The state transitions are such that recursive techniques may

be used to obtain the fractions of time of a few states and then,
the queue length distributions can be expressed in terms of these
states•

3. Product Form;
The equilibrium state fraction of time distribution consists

of factors representing the states of the individual queues, i.e.
p(n̂ ,.,...,n̂) = (1/g) P(n^).....P(n^) is the fraction of time that
the ith queue is in,state n^ and P(n^,...,.,n^) is the fraction of
time that the network is in state (n^,*...,n^). Where G is a
normalization constant chosen so that the. fractions of time sum
to one.

The tractable solution can be obtained through homogenecvs
assumption since homogeneity is often a reasonable approximation
((/Denning and Buzen 78/)). Also, Denning and Buzen prove that any
closed queueing network, such as the cyclic queueing network, has a
tractable solution, since the operational solution can be represented
as a product form solution;

P(n^,ng,.... * jUjj) = P̂ (n̂) ^2^^2^
where the factor for device i is;

F^(n) = f 1 n 0
(x“ Sĵ (n) (n-l) ...3̂ (1) n > 0

and G is a normalization constant. The S^(n) are the service functions.
The are a solution of the job flow balance equations, for closed
system

To simplify the above operational solution we may use the
assumption of homogeneous service (HBT) (i.e. Ŝ (?i) = Yor all n).

The operational solution for P(n) is mathematically neat hut not
obviously useful* We will try to introduce its uses with a closed
system like the cyclic model as summing the last simplification was
included.
Let F represent maximum no. of customers.

M ” ” " " devices*
Few, to compute the normalization factor we follow the

algorithm developed hy Buzen ((/Buzen 7l/)) ((/Buzen 73/)); the
algorithm fills in numbers in a two-dimensional matrix g. The columns
of g correspond to devices, whereas its rows correspond to loads*

DEVICES
0 1*••••••*•**m-l m«

L
0
A
D
S

0
1

n

g(n, m-1)

F‘

The computation starts with I’s in the first row and 0‘s in
the first column below the first row. A typical interior element is
computed from:

g(n,m) » g(n,m-1) + g(n-l,m),
where Y^ « Ŝ . The normalizing factor (constant) G- is g(F,M). It
can be computed in 2MF arithmetic operations * The complete algorithm
to compute G is given in Appendix B*

The results of the important system performance indices using
the operational solution are:

* Cî (n) = Y^ proportion of time n^;^ n.

* » 0̂ (1) - Y. , Utilization.

, system throughput,

I V V

= E ^ length of device i.

4.5.5*5# Example t
Assume a simple closed queueing network was given as follows

(see figure 4*6*)*

M =* 2 , N « 2
19

Si=5
Vg" 4

5

o
Figure 4*6

we had:
^1 “ ^1^1 ~ ^^35 seconds#
Yg » 7g8g = 1.33 seconds.

The tahle below shows the matrix g for loads N « 1,...,5 ((/Denning
78/))! 0 1 2

0 — 1.00 1.00
1 0 6.33 7.67
2 0 40.1 50.3
3 0 454 321
4 0 1609 2037
5 0 10190 12906

Matrix g
For exemple when N ** 2 then,

X^(2) - - 7.67/50.3 - .152
The mean queue length at device i when E=2 is :
- 2

(6.33) (7.67) + (6.33)2(1.00)
50.3« 1.762.

The utilization of device 1 when N = 2 is :

lU I

- 0-95*

4-5*4* Operational Aspects of the Interactive Computer Systems;
4.5.4,1* System Outlinet

A typical modem large-scale interactive computer system is
depicted in figure 4*7* The entire system is composed of a processing
system and a finite population of terminal users. Each of these users
thinks for a while and then requests a computation (hereafter called a
transaction) to he performed hy the processing system, hy typing a
command line at his terminal. The transaction thus requested, is
received and placed in the eligible queue until main memory availability
permits its admission for service.

Requested ÎT Terminals
Completed TransactionsTransactions

Trivial Transactions

Multiprogramming of Degree q

Ron-Trivial
Transactions

Eligible

Thinking

Multiprogrammed

I.
Figure 4*7$ Interactive Computer System (Schematic Diagram)

The processing system consists of a central processing unit
(CPU) and a two-level virtual-memory consisting of a primary memory
(pm) as the first level and a large secondary memory (SM) as the
second. Transactions receiving service are said to he in the multi
programming queue, while a customer is said to he "thinking" from the
time his transaction is completed until he has entered the next one.

The system may classify the customer transactions as either
trivial" or "non-trivial" • Those of the first case are admitted for
immediate service « In the second case, a transaction may have to wait
in the eligible queue* Transactions may be further classified into
different transaction classes*

The maximum number of jobs simultaneously cycling inside the
nniltiprogrammed state is called the degree of multiprogramming and
should be carefully determined by considering, at least, the transact
ion's demand for ÎM space and the total size of PM space available to
customer transactions* In this chapter the computer system is assumed
to use a constant degree of multiprogramming equal to q.

The operational queueing model (see figure 4*8#) used in this
study characterizes requests by their alternating use of the central
processing unit (OPU) and various input-output devices * At the end of
each interval of CPU processing, transactions (i.e* processes) move to
one of the peripheral devices.

Terminals

Think States

Chain 1:
Trivial Jobs
(or transactions)

Memory
Wait Queue

Chain 2:
Non-Trivial Jobs
(or Transactions)

Mam
Memory

1
Computer Subsystem

~]

J - i

L
Allocate Memory Release Memory

Figure 4*8 * Interactive Computer System (Queueing Network Diagram)

l U j

The operational aspects of the above interactive system will
be analysed in this chapter using approximation techniques. There are
two major approaches to approximate solution, aggregation (decomposition)
and diffusion ((/Courtois 75/)) ((/Chandy and Sauer 78/))• The reason
for using approximation techniq.ues is the difficulty of representing
the effects of virtual memory in any queueing network. ”The most
important applications of approximation have been for virtual memory,
blocking and other behaviours which cannot be represented directly in a
queueing network model’̂ ((/Denning and Buzen 78/)).

The system can be extended easily to deal with scheduling
strategies. For this purpose we recommend the work of Brad ((/Brad 77/))

To analyze the interactive computer system given in figure 4*8.
we will analyze the system in two steps (see figure 4*9*):
1. The multi-class closed queueing network subsystem.
2. The overall interactive system using decomposition techniques.

M-N Thinkers

Memory
Queue

W Active Jobs
Closed Queueing
Network
Subsystem
(with multiclass
customers)

M Terminals
2 Think Time

Figure 4*9* General Terminal Model With Memory.

4*3,4*2* The Operational Aspects of a Multi-Class Closed Queueing
Network Subsystem:

The operational aspects of a multiclass closed queueing network
was first studied by Roode ((/Roode 79/))» iu which it was called the
multi-class operational analysis.

l U H *

The representation of imiltiolass subsystem is given in
appendix B#2, along with the calculation procedure of the normalisation
factor.

Briefly, we can formulate the important performance indices.
For more information the reader is referred to Roode ((/Roode 79/))#
* The Utilization:

_ R N—m" T z: I JM),% ■ Q(H,M,R) ^ ^ p g(N-m,P,M-l,E)

* The Average Queue Lengths;

% R ” gTnTm ^) ^ ^(&R ^ (̂P,R-1) g(N-m,M-l,R).m=l P=0

(continued overleaf)

l U O

* The Average Response Time at Centre Ms

* The Average Request Throughput Rate at Centre Mi

%MR " T̂ MR / ̂
4.3.4.3. The Operational Aspects of the Overall Interactive Cumputer

System;
in the previous section, the closed queueing network subsystem

allowed any number of customers to circulate in it. This is not realistic
however, when the number of terminals is quite large. Usually a computer
system will only allow a certain number of jobs in the subsystem,
consisting of the CPU and l/o devices. All other requests for service
which have not yet been allotted main memory (and thus are denied access
to the subsystem) have to wait outside until jobs depart and main memory
becomes available for them. It is assumed that their queue is served on
a First Come First Served basis.

Performance measures for the interactive system (cf. figure 4*9)
are best computed using the decomposition technique. The calculation
can be performed depending on two factors:

1. The number of terminals.
2. The degree of multiprogramming.
We present the perfommice measures (indices) calculated using

the first factor ((see/Denning and Buzen 78/)). For the second method
the reader is referred to ((/Ton Mayrhauser 79/))*

Consider, each of the M terminals has think time Z. The number
of active jobs is denoted by N, and the number of thinking terminals by
M - N. The closed queueing network subsystem has K devices with homo
geneous service times and visit ratios independent of R.

By treating the terminals as a "device” whose service function
is z/n when there are n thinkers, we can employ efficient computational
procedures to compute a normalizing constant for this system ((/Williams
and Ehandiwad 76/))* The algorithm fill in a matrix h.

1 0 6

0 1<
DEVICES

.k-1 k...., K

N
Q.
0
F h(m-l, k)T :
E m-1
R _M
I
N
A
L
S

h(m, k-l) h(m, k)

The Matasix h

h(M, K)

When the computation of the normalization constant has been
finished, the performance measures can he computed from the formulae
helow;

* Throughimt ;
« ■ - 1 ^

* Reanonse Time:
R(M) . I0C(M) - Z

* Mean Active Load;
N » M - Z X(M). ,

Finally, many other aspects of̂ înteracti.ve computer system can
he represented using operational analysis technique. For this purpose
the reader is referred to ((/Salho and Denning 79/)) ((/Denning 80/))
((/Slutz and Traiger 74/))*

lu /

CHAPTER 5

Î H B P E R F O R M A B C E - O R I E H T E D

D E S I G N A P P R O A C H

5.1* Introduction.
5.2. Problem Statement and Solution.
5.2.1. The Selected Model.

5*5. Optimal Design of Computer Systems Without
Virtual Memory.

5.4* Optimal. Design of Computer Systems With
Virtual. Memory.

5.5. The Selected Model Extension.
5.6. Optimal Design of Terminal Computer Systems

Without Blocking.
5*7* Optimal Design of Terminal Computer Systems

With Blocking.
5.8* Further Notes.

l U O

5 • 1 • Introduction t

The approaches discussed in the previous chapters for the
investigation of interactive systems have utilized either analytic
or simulation techniques. But none of these methodŝ models, however,opcan answer the questions posed hy the prohlem^prediction and dynamic
control of the new systems. Some of these questions are;

* What is the optimum segment size into which programs and
data are divided for multiprogramming?

* What are the input variables that define the system
environment?

* What are the control variables that determine the system
performance?

* What is the sensitivity of the system performance to
changes in the control and/or the input variables?

* How does the computer deal with its changing environment?
Are the control mechanisms adaptive or do they have a
fixed structure?

* How does the computer leam to adapt to its environment?
* When does it pay to have an adaptive control system?
* What is the way to measure or estimate the input parameters?
* What is the most eoonomical system configuration, that will

do the required job?
*■ What is optimum?
To the beat of my knowledge, none of the analytic models

discussed in the previous chapters can answer all these questions.
**The estimation problem is not really an integral part of either
operational analysis or stochastic modelling** ((/Buzen 79/))* With
respect to simulation models, it has been pointed out by Nielsen
((/Nielsen 67/)) that the existing models are both too costly and
inadequate to solve the apparently simple problem of optimum system
configuration, let alone the problem of determining optimum prediction
and control. In the same paper, he develops a reasonably detailed
simulation model to analyse the performance of the IBM 56O/67 time
sharing system for different configurations and different omounts
of overload.

The model presented in that paper and the corresponding
results were considered of value to gain insight into the problems
of hardware configuration and software modification for a given set
of input parameters, but they cannot be used for dynamic control and
prediction when the input parameters change* And this is true for

any simulation model*
Due to these shortoomings and the complexity of real systems,

neither analytic nor simulation models alone can solve the problem
of the optimum control of the system*

Host mathematical models which are quite close to reality are
based on the implementation of the optimization models in queueing
theory ((/Trivedi and Wagner 79/)) ((/Kinioki 78/)) , whereas some
researchers use a different approach ((/Decegama 72/))*

Queueing models which employj^ptimization technique are called
prescriptive queueing models. Prescriptive queueing models are of
two types ((/Gupta and Yerma 80/)) t

* Static (design) models*
* Dynamic (control) models.

In static (design) and dynamic (control) models, we optimize longterm
average criteria such as cost or profit dependent and independent of
time respectively. The latter models are sometimes dependent of the
system state too* The static (design) models are often called
Performance-oriented design models ((/Von Mayhauser 79/)) * These
models will be critically reviewed in this chapter*

The construction of Dynamic (control.) models can be performed
using the following fundamental approaches ((/Decegama 70/)) *

* Determine in advance the optimum settings of the control
variables for each different expected and possible
configuration, and have the operator initiate the switching
from one control mode to another at predetermined times or
in emeganoies*

* Let the system sense the environmental changes and switch
automatically to the proper control mode*

Optimization theory plays a key role in producing optimal
designs from the performance-oriented design models* For a fuller
treatment of optimization theory and methods, the reader is referred
to ((/Walsh 75/)) ((/Adby and Dempster 74/)) ((/Crottfried and
Weisman 75/)) ((/Lenberger 75/)) *

5»2* Problem Statement and Solutions

When a computer system is planned, the designer goes through
three stages to find the system configuration which meets the user
requirements and does not exceed a specific upper cost limit.
Figure 5* !• shows these stages ((/see/Von Mayhauser 19/))*

n o

start
Workload'

Possible
System
FamiliesFunctional

Specifications

Performance
Specifications

Available
Budget

Performance
Evaluation

Change
Performance
Specifications

Change
Cost
Specifications

Change
Component
Specifications

Figure $.1. Design Stages.

The above Design stages are are a combination of hierarchical
and. iterative design methodology. This methodology requires the
following steps:

I*. Characterization of the anticipated workload.
This is quite a difficult task ((/Ferrari !&/))• It can,
however, be studied indirectly by providing an evaluation
of the sensitivity of the optimal configuration with
regard to changes to the workload parameters.

2. Derivation of functional specifications using the workload
model and the specification of the general computer system
family. The computer system family, for simplicity, will
be of fixed type. Hence, these fixed types should be
quite general.

3. Selection of the optimal configuration using performance
and cost measures to assess the quality of the solution.
The selection procedure is shown in Figure 3.2. and
requires certain input parameters. The selection
procedure determines, at best, an optimal solution for
the model. The optimization is, however, as valid as its
input parameters.

J11

rWorkload

Lperfonoanoe measure

System model-̂

Cost measured

Design Decision

Figure 3*2. Cost/Performanoe Optimal Design.

The decision process will lead to a possible system design.
The desirable tool that helps in making decisions (i.e. Performance-
cost evaluation tool) depends upon three factors:

* Mathematical formulae for performance measures.
* Cost function.
* Workload parameters.
These factors specify the optimization problem. Such a tool

is called performance-oriented design tool ((/Sigmon 79/))*
Performance-oriented design produces systems whose performance
objectives can be guaranteed to be met when the system is built
((/Craham 78/)), In important aspect of. this approach is to be able
to show that the resulting solution to the optimization problem will
be a globally optimum solution.

We will try to present in this chapter several performance-
oriented design models for computer systems. In all cases, the
computer system is modelled via an operational queueing network
((or an exponential queueing network (Markovian queueing network))),
The optimization problems which are established, seek to maximize
the throu^put or minimize the response time of the modelled system
subject to a cost constraint. The decision variables for these
design models include such items as the speeds of the devices, the
capacities of the devices and a file assignment. For each problem
it has been proven that any locally optimum solution is indeed
a globally optimum solution thus guaranteeing the optimality of
the design.

n z

5*2.1. The Selected Model:

The selection of a general queueing network model, suitable
for modelling multipcogrammed computer systems, is quite important.
The selected model will be used by the performance-oriented design
method to construct several design optimization problems. Such a
general queueing network model was introduced by Buzen ((/Buzen Jl/)),
and was called the Central Server Model (CSM). Since 1971» this model
has been utilized as an analytic tool to evaluate the performance of
computer systems. The CSM is indeed a realistic and cost effective
means for performance evaluation of computer systems ((/Hughes and
Moe 75/)) ((/Rose 78/)) ((/Ciammo Figure 5*5» shows the
structure of CSM:

n = degree of multiprogramming

New -program oath

Figure 5.5* The CSM
The, central server Model incorporates hardware, software and

workload aspects of an actual system ((/Kinioki 78/)). These aspects
have been extensively analysed by Ton-Mayrhauser ((/Yon-Mayrhauser 79/))
The model has been used by many researchers to construct several
optimal computer system designs ((/Trivedi and Wagner 79/)) ((/Trivedi
and Kinicki 78/)) ((/Kinicki 78/)) ((/Sigmon 79/)).

In this chapter we will present the optimization problems
introduced by Sigmon ((/sigmon 79/)) using the CSM* We will also
introduce further extensions, especially in the area of the
optimization of the design of interactive computer system.

113

5*3* Optimal Design of Computer Systems Without Virtual Memory x

The selected computer system model (i.e* CSM) operating in a
multiprogramming environment without virtual memory, where each active
program's address space resides in main memory until its completion,
was studied by ((/Buzen 73/)) and developed to permit some scheduling
discipline, such as PS and pre-emptive DCFS by ((/chandy, Howard and
Towsley 77/)) • The problem was represented as an exponential queueing
network. This representation was used by Sigmon ((/Sigmon 79/)) to
construct a design optimization problem which can be summarized as
follows X

* Let all service facilities operate under a PCFS scheduling
and their service time distribution is negative exponential,
with mean service rate M^ (i » 0,.....,m).

* Let n be a fixed degree of multiprogramming.
* is probability that upon completion of service at the

CPTT the program terminates and a. new program enters the
system via a new program path.

* P̂ (i » 1,. . . ,m) is the probability that upon leaving the
CPU a program will next require service at the ith l/O.

* System throughput « , where is the utilization
of CPU.

* Let
t̂ be the average number of program visits to the ith
facility.

be the total number of work units prooessed by a
program at ith facility,

then the _o* average number of instructions executed are -r—Clby the CPU between two l/O requests^
and _

I"the number of information units are “ transferred
between the ith facility and main memory per unit.

* The speed of ith service facility (b̂) is

i 14

Ji where i »

* Now the throuriiuat aa a function of the speed of service
facilities (h^’s) can he computed as followsi

’ - W o -
where

n - r sj£i£=ii
° ° G (F; n)

(ŒL n. m V
n r. ̂ * E n, = n)
ŒL n . m
n r . : , I:
j-O 3-0

F - (fo ' V

1 * » •••»
Fo 1 Jb

o" 1̂0 '

^1.. 5... p
1Ï"'% ’ % f i*l, • • • ,ni. J

y I V>ftody ■ is^left^eigen-veotor of the
transition probability matrix of CSM. Since
y is determined only to a multiplicative
constant, we choose y^* 1.

The above design problem of Buzen ((/Buzen 73/)) and Kleinrock
((/Kleinrook 76/)) has been expressed as an optimization problem by
(Trivedi and Kinioki ((/Trivedi and Kinioki 78/)) as follows:

They assumed that the cost of the computer system is
approximately the sum of the individual component costs and the main
memory cost. The cost of each component is expressed in terms of a
continuous power function of the device speed and the cost of main
memory is assumed to be a linear function of n.

The aim is to maximize the system throu^put,
T (b ; n) or alternatively, minimize
Z (b ; n) where Z (b , n) is the reciprocal of the throughput.

In order to simplify the mathematical calculations ((/sigmon 79/))*
the decision variables of Z were changed from b to r.

115

Minimize Z (r , n)
subject to

/J v«o m / P.J. \<̂ i
°o (t V) + 2 °i V' o o' 1 »» 1 11
where

and
Ci y la positive real numbers#

i.e. maximize the throu^put by determining the specific device speeds
depending on the given fixed system topology, fixed degree of
multiprogramming and a workload description (in terms of P^'s and
t^ , (i » 0,...,m)).
The solution of the above design problem was given by Trivedi

and Wagner ((/Trivedi and Wagner 79/))» in which they proved that i±. is
a convex programming problem. Hence, this problem has the useful
property that any locally minimal solution is indeed a global optimum.

5.4.' Optimal Design of Computer Systems With Virtual Memory; ̂

To represent a virtual memory system using the selected model
(i.e., CSM) the following are assumed ((/Sigmon 79/)):
either, another l/O device is added to the system to handle the paging

traffic,
or, all paging l/o is handled by one of the existing l/O devices

whose capacity has been increased.
This design problem can be represented as an optimization problem
as follows :

Let
* The total l/O activities consist of two parts - paging

i/o and all other l/o.
* The average CPU burst between two paging l/o requests

be given by the system lifetime function e t

e ^ or e (mem) where M represents total
ammount of main memory and n is the degree of
multiprogramming.
Since M is fixed, then for simplicity the lifetime
function can be reduced to e(n).

lit»

* The average CPU burst between two non-paging l/O requests
* - - % r -

* The average CPU burst is then :
1 « + 1

E(n) e(n) W

■- e(n) W J
* Sinoe is the total number of instructions to beo

executed per program, then

t.-A , .
° B(n)

but P » — therefore,

o
Also the non-paging l/O devices branching probabilities
are:

Pi - p.\
o

Similarly, as in the non-virtual memory problem, we can define
the optimization problem as follows :

minimize Z(r, n)
subject to

°b (T#— / + E Oi (+ mrn(n) <: bdbqbt,
Where ^ ^ ̂

r^ > 0 , i"0,l,*.*,m and
Of , «i are positive real numbers*

The only difference between the previous two design models is
in the characterization of the workload. In particular, the branching
probabilities in the virtual models are functions of the degree of
multiprogramming, n, instead of being fixed.

Additionally, we can calculate using the virtual memory model,
the CPU overhead ^nerated by the page fault handler as follows:[t o]- Jg + I r7^ I PHP

where

[^)] is the ntunher of page faults that were generated and

EHF is the number of instructions executed by the page
fault handler.

The above design optimization problem proved by Sigmon
((/Sigmon 79/)) to be a convex optimization problem.

Using the above design methods, a decision as to whether to
use virtual memory or not can be taken. A particular advantage of this
tool is that it provides a simple and inexpensive method of gaining
insight into a large number of different system configurations
operating under varying workloads and constrained by different cost
estimates. The following example showing the difference between the
virtual memory optimization problem and the non-virtual memory
optimization problem is given by Sigmon ((/Sigmon 79/)) #
Example t

This example demonstrates how a decision can be taken on
whether to use virtual memory or not.

The performance-oriented method will be used as a tool to aid
the designer to take such a decision. The comparisons will be based
on the following models:

1. a multiprogrammed computer system without virtual memory
and having three l/O devices.

2. a multiprogrammed computer with virtual memory and having
three l/O devices one of which handles both paging and
non-paging l/O.

For more information about this example see section 2.5* of Sigmon
research work ((/Sigmon 79/))*

The model parameters are given in tables $.1. and 5.2*
Figure 5*5* shows the graphs of optimal throughput versus

dollars spent on main memory for the non-virtual memory and the virtual
memory with three l/o devices. The dashed lines represent the results
from the non-virtual model and the solid lines those from the virtual
model with three l/o devices. The results from two total system
budgets and for the three values of the page fault handler overhead
PFH are plotted on the same graph. Each point of the virtual model's
curves was obtained by choosing the optimal point after a discrete
search over n, the degree of multiprogramming, was performed. The
small numbers written beside each point of the virtual model's curves
are the optimal degrees of multiprogramming.

118

N
tn

o

Total Budget
no, 2

*-PHF=100G0
— PH?=500C'
— P3F=0

CMII
S LPHP^IOOOO
% E ?=5000

: UPEF-O
Total Budget

no, 1

50 100 150 200 250 3CC 550 400 0 50c
Dollars spent on main inencry(in thousands).

Figure 5.5 : Throughput vs. dollars spent on nain rnenory/fo;
the non-virtual memory(dashed lines) and the
virtual modela

Table 5.1, : Input Parameters for the System Without 3Sl̂ tual.J<femory and
Three l/O Devices.

i Device
Name Ji ^i Pi Gi %i

0 CFO 400,000 20 0.05 1,147,855 0.55509
1 Drum 10,000 10 0.50 1,452,664 1.00000
2 Disc 1 6,000 6 0.50 707,648 0.67290
5 Disc 2 5,000 5 0.15 707,648 0.67290

Notes; 1.
2.
5.

4.

Memory Price $1 / 52 - bit word.
Budget, 1000,000 - ̂2000,000, with 250,000 increment
Amount memory required by each program in the active
set « 50,000 words.
n (degree of multiprogramming) - | MM/50000 where
 ̂MM is amount of money spent on main memory.

Table 5.2.; Input Parameters for System With Virtual Memory and
Three l/O Devices. ■'

i Device
Name Gi “i

0 CPU 400,000 * 1,147,855.00 0.55309
1 Paging

Drum * * 2,865,528.00 1.00000
2 Disc 1 Ü.O06 é 707,̂ 48.00 0.67290
5 Disc 2 . 5.000 3 707,648.00 0.67290

Notes: 1.

2.
3.
4.
5.

6.

CPU burst between page faults is represented by
e(mem) =* a rnern̂ where a - 4*69 and b « 2.88 (this function
called life-time function).
Memory Price $1 / 52 bit word.
Budget, f 1000,000 - $2000,000 with 250,000 increment*
PPH » 0, 5000 and 10000.
n is given on the graph near each point as optimal
degree of multiprogramming.
Budget 1 = $1,250,000 and Budget 2 = $1,750,000.

* these values are dependent on n and the life-time function.

li£.U

Here, it seems that for all three valiæs of PFH, the virtual
curve lies completely above the uon-virtual curve. Thus, for this set
of values for the model parameters, we conclude that virtual memory
will yield a performance increase when the paging l/o is handled by an
existing l/o device.

The Selected Model Extension:

The goal of developing GSM was to make that model applicable
to the optimum design of a terminal oriented computer system. The
computer system family under investigation consists of a number of
terminals (m in this case) connected to a central subsystem (of.
figure 3.6.). The queueing network model for this system family
represents the m terminals as a multiple server node with multiplicity
m connected to a CSM which models the central subsystem (of. figure 3*?*)

'erminar

CSM
Figure 5.6. Interactive System

'Terminal!

Central
Computer
Subsystem

with m Terminals. Figure 5.7. General Terminal Model.

The workload description of the terminals is condensed in the
average think time Z, i.e. how much time elapses on average, between
the return of a request from the CHJ to the terminal until a new
request is issued from the terminal to the CPU. This is the time
the user spends to prepare and to input messages. Since there are m
terminals, the maximum degree of multiprogramming is m. There is no
queue at the terminals. It will take a certain time R, to process the
user request in the submodel. Since the model of the subsystem is of
the central server type, all assumptions and restrictions mentioned in
section 3.3. of this chapter will apply. Figure 5.8. shows the terminal
central server model (TCSM). The parameters M̂ , (i = 0,1,...,k)
correspond to those in section 3*3* Instead of taking the new program
path which models the arrival of a new program, the processed request

IZ I

now retxims to the terminal and after a delay of Z seconds that
terminal issues a new request# The johs will he distributed in this
model between the terminals and the CSM# When there are m-n jobs
(i.e. user or customers) thinking, then n jobs are being processed in
the CSM. This means that the degree of multiprogramming in the GSM
varies between .0 (all terminals thinking) and m (all terminals have
issued requests and are waiting for an answer).

CHJ

Figure 5#8. Terminal Central Server Model (TCSM).

The number of terminals, m, can be quite- large. The number of
active jobs in the computer depends on the amount of main memory
available for these jobs. In many applications not all m programs
will fit into main memory. Therefore it is more realistic to assume
that the degree of multiprogramming in the subsystem is at most n ^ m.
In the model this results in the formation of an additional queue Qg in
front of the submodel (figure 5*9*)• The subsystem blocks jobs from
entering,wken the maximum degree of multiprogramming is reached.
Figure 5« 10. shows the detailed terminal model with blocking and a
central server ' subsystem (TBCSM). The dashed box marks the CSM
submodel with degree of multiprogramming of at most n. Whenever a new
terminal request is issued and the maximum number of jobs is in the CSM,
the request queues at^Q^ departure of a job from the GSM. Then the job
is loaded into main memory# There is no swapping# Once a program has
been loaded, it will stay in main memory until it terminates#

The optimal design of the TCSM and TBCSm models have been studied
intensively by Von Mayrhauser ((/Von Mayrhauser 79/)) and we will, in

the next sections summarise their findings #

Subsystem

Figure 5*9* General Terminal Model With Blocking.

n=*maxlraum degree of multiprogramming

CHJ

__AI____
Figure 5.10. Terminal Central Server Model With Blocking (TBCSM).

5.6. Optimal Design of Terminal Computer Systems Without Blocking:

This section Investigates the form and the characteristics of
the response time function and Its gradient for the TCSM and presents
the objective function and constraints formulae for the design
optimization as a non-linear minimization problem.

The TCSM falls Into the category of Jackson's model ai^ the
solution technique by Klelnrock ((/Zlelnrook 75/)) can be used to
derive a closed form solution,

let
* n. » number of customers at service centre 1, i = 0,...,

k + i.
k + 1

n^ a m where m is number of terminals.

* the transition probability matrix for the TCSM is given
by P “ (Pĵ j) (x “ 0; * # # ÿk + Ij j " Oy.«*|k + 1)

* the relative thronghpnts are the elements of the left
eigen-veotor of Py a solution of y - yp. The relative
utilizations are given by

x^ « — (i « 0,...,k) and x^^^ - z respeotive-
 ̂ 1-ly, where y^ is the relative throughput and jjî is the

average service time for device i. z is the average think
time at the terminals. p p^
For this model y =* (i » 1) is a left eigen-

. 0 0 0 vector. -D p
1 1 kThis makes x = (-g-jj- , "khe

corresponding relative utilizations.
* The probability that there are n^ customers at device i

(i a 0,..., k + 1) can be expressed as :
1 k n̂

P (n̂ , + i) ' 0 I

The last factor represents the terminal node. The sum of
the Uj ^3 (j ■ 0,.,., k + 1) has to be m. S^(x) is the
normalization constant which ensures that all
probabilities sum up to one. S^(x) is given by

^ n. _ “ k+l
i?o % T T

where
\ = • f “ = (" o ' " " ° k + l) 1 j

0=0
Substituting the expression which relates x^ to and
î* becomes*

. p, n, ,“k+l
■? &m

If the relation between the mean service time ̂ and
the workload parameter (the average l/o service time
of device i, i.e. the number of words per l/o transaction)
and the device speed b. is employed, namely

1 î— a — then the normalization constant transforms
H °i ̂ ̂ into*

* The CHJ utilization (Û) is given by;

* The system throughput (i.e. the average rate of flow of
programs from the CHJ to the terminals) can be expressed

I (x.m) .

* The TCSM response time is a function of throughput:

® - -

E (x,m) * m — - z

i.e. E is a function of device speeds, also for any
utilization vector x the corresponding device speed can
be computed using the following formulae:

^ ^
Now, the optimization problem, namely the minimization of the

response time for the TCSM subject to budgetary constraints, can be
specified. The decision variables are the speeds of CHJ and secondary
devices. The cost constraint for the TCSM is specified as follows:

I . «i
i-0 °i\ ^ °rel

where
°rel * “tot - “sys (“tot = ^ “sys ^="1°

system cost).
b^ = the speed of the device i.
c'̂ = positive constants.

(i.e. The system cost depends on component speeds).
Since device speeds and relative utilizations are related, the

cost constraints transforms into:

where j

o
I .P. a.

0̂ « ĉ ("p ') » j " l,..*,k.

and is now dependent on the relative utilization vector x * The response
time function can now he minimized with respect to the relative
utilizations subject to the above cost constraint, m, the number of
terminals, and z, the average think time at the terminals are constants.
This means that any solution which minimizes the reciprocal throughput
also minimizes the response time. To conclude, the TCSM optimization
problem can be stated as follows ;

\ (*)minimize f(x)
V i

subject to ^
1

Xf > 0
Ci > O'
œ > 0

i * 0,1,...fk.

This problem represents a constrained non-linear optimization
problem which can be solved with any of the constrained optimization
techniques available. One of them, the Lagrange multiplier method,
requires the gradient of the objective function. For further
information the reader is referred to ((/Ton Mayrhauser 79/))*

5*7* Optimal Design of Terminal Computer Systems With Blocking:

Dsually, a computer system will only allow a certain number of
jobs in the subsystem consisting of the CPC and the l/o devices. All
other requests for service which have not yet been allocated main
memory (and thus denied access to the subsystem) have to wait outside
until jobs depart and main memory becomes available for them. It is
assumed that their queue is served on a 'first come first served'basis.
The number of jobs in the subsystem depends on the amount of main
memory available. This, in turn, is a question of budget or rather

of how much of the budget should be spent on buying main memory.
The computer system model used to investigate the blocking

phenomenon was introduced in section 5.5. As for TCSM, the performance
measure which is used as the objective function for the optimization
problem is the system response time. The cost function of the TBCSM
was augmented by a linear term which represents the cost of main
memory.

Now, compared to the TCSM discussed in the previous section,
the TBCSM has an additional queue between terminals and the GSM
subnetwork, since admission to the CSM is restricted. No more than n
jobs are allowed inside the CSM. If the terminals issue more than n
requests, those which cannot enter the GSM subnetwork have to queue
for admission to it.

Performance measures for this model are best computed using
the technique of decomposition as in ((/Courtois 75/))» When no
blocking occurs, the normalization constant is computed as:

m i _m-i
H (x,m) = E n %(j)i»0 j=l (m-i)l

where x(i) is the reciprocal CSM throughput for the GSM with degree of
multiprogramming i. Moreover, x(i) is the reciprocal throughput when
the terminals have issued i requests to the CSM subnetwork.

Since the CSM is able to accomodate all active requests, its
reciprocal throu^put is given by x(i). Now, in the terminal system
with blocking, the highest degree of multiprogramming in the CSM
subnetwork is n. This means that, even though more than n requests
are issued, the subsystem only processes n jobs at a time and its
reciprocal throughput x(i) is given by:

^ (i) “1 v^n) for i > n
The normalization constant for TBCSM is given by:

n i m-i n m i-n „m-i
E (x,m,n) = E n x(j) + 11 %(j) E x(n) -

i=0 j»0 (m-i).I j*l i=n+l (m-i) I
using

P. = C(x,i,k) the normalization constant becomes:

rx(i) for i < n

n ^ ^ , \i-n m-i
e(x,i,k) -— + G(:c.".k)̂ E(m-i)! (m-i)!

Also, applying g
Uo « (i#8# CPU utilization) and

m' '
T(x,m) » (i.e. system utilization)

the response time for the TBCSM is given by

R(x,m,n) . m g - z
m-i ' '

Now, to study the minimization of the response time for the
TBCSM subject to budgetary constraints, we need to formulate an
optimization problem. The decision variables are the speeds of the
CPU and the secondary devices. In addition to these, there is a new
decision variable, the maximum degree of multiprogramming in the CSM
subsystem.

Let is the cost of main memory,mem
If the maximum degree of multiprogramming is n, an amount of

n Ql has to be spent on memory. Then, the cost constraint which will mem
be used for TBCSM is given as follows:

k
i5o '̂ î i ®mem ̂ ^ ^rel

Where andOî^ (i = 0,...,k) are the cost coefficients for
the devices and b^ (i =» 0,...,k) are the component speeds.

But since b^ and xj are related, the cost constraint can be
transformed into, (where X means the utilization of ith device) :

k 1 /
ĵ ̂Xj ̂ °mem ̂ ^ °rel

% ■ < < ̂ -

Hence, the following optimization design problem can be stated:

minimize f (x,n)

rzis

\ (x.n)
■m

subject to
“ M + «mem " “rel

with k
0 (x) «1 (-^)
x^^O, o i ^ ^ O f i = 0,.. ,k.
n>0 integer.

To simplify the optimization problem we may consider n as a
fixed variable and the above optimization problem is reduced tot

H (x,n)

subject to
“(*) ^ “as,

where
o, *0 - — 0 ndev rel mem

> 0,a > 0, 0̂ > 0
and hence it can be solved with any of the constrained optimization
techniques available. Again, for more information the reader is
referred to ((/Von Mayrhauser 79/))»

5.8» Farther Notes:

The performance-oriented design models that have been
presented in this chapter, could be developed into very useful
analytic tools to aid in computer system design. This work
represents a review of the research carried out by a group of
researchers, mainly Trivedi, Kinicki, Von Mayrhauser, Wagner and
Sigmon, at Duke University. "There are countless possibilities
for extending these models to provide more realism and for developing
new, more comprehensive design models"((/Sigmon 79/))# lu particular,
the optimal design of the storage hierarchies aid the optimal design
of batch and interactive computer systems so that to maximize
reliability, subject to cost and performance constraints, is possible
((/Trivedi 80/)). It is also possible to develop this method of
design as an interactive design tool (i.e. to construct automated
design optimizer) ((/Von Mayrhauser 79/))*

The author proposes to extend this method further in a more

simple way, using the operational analysis approach instead of the
exponential queueing network (i.e. Stochastic) modelling, together
with optimization theory and techniques. Such an extension will
allow us to solve more complicated design problems and is suggested
for future research work.

l O U

CHAPTER B

C O M P A R I S O N S A N D C O N C L U S I O N S

6.1. Thesis Overview.
6.2. Comparison of Methods.
6.5. Future Research Work.

l O I

6.1. Overview:

In this research work we have presented a number of ways of
building system performance models. The first method was based on
simulation techniques. Â simulation model may model a computer system
at almost any required level of detail. Many simulation models
represent computer systems in considerable detail. In these oases,
especially with the General Simulation Tool (GST) the greatest drawback
is the relatively high cost.

A more promising alternative is to combine simulation with
different modelling techniques to produce hybrid models of computer
system performance* This was done by regression techniques with
simulation techniques (see section)• A regression model is
a fast statistical model of computer system performance which relies
on workload and performance data collected from the system being
evaluated ((/Grenander and Tsào 72/)). However, it has the
disadvantage of not being capable of modelling logical and structural
relationships in the system. Simulation does not suffer from this
limitation, but a simulation model which produced results similar
to a regression model would probably need to model the system in
considerably more detail, and consequently be more expensive to
implement. By combining simulation and regression techniques, the
advantages of both may be exploited. The regression models were
constructed using simple case studies. These case studies will
produce a relation matrix in which all the performance parameters/
indices equatioxis are contained. These equations are quite simple
and may be used to construct an interactive design tool (IBT) •

The second method of building system performance models
was based on operational analysis techniques. These techniques
were selected from different available approaches, such as stochastic
modelling and mean-value analysis. The selection was done according
to certain factors, such as:

* tJnderstandability.
* Cost.
* Degree of resolution.
* Ease of parameter optimization or estimation.
* Breadth of applicability.
* Relevance to the actual system.

Operational analysis is based on the premise of testability.
All the basic performance quantities - utilization, completion rates.

mean queue size, mean response time, load distributions - are defined
as they would be in practice, from data taken over a finite period.
The analyst can test whether the basic assumptions - flow balance,
one-step behaviour, and homogeneity - hold in any observation period.
The operational laws are identities among operational quantities. They
are a consistency check - a failure to satisfy an operational law
reveals an error in the data. They simplify data collection by showing
alternatives for computing performance quantities ((/Denning and
Buzen 78/)).

In practice, errors from these assumptions are not serious.
Even when the additional assumption of homogeneous service time is used
to simplify the analysis further, these models estimate utilizations,
throughputs and system response times typically within 10 % and mean
queue lengths and device response times typically to within 50 /o
((/Giammo 76/)).

Using the operational analysis approach we tried to represent
the behaviour of a general interactive computer system. This approach
can be combined with the simulation (using GST) approach to produce
other hybrid simulatioia/operational analysis models (see the following
section). Furthermore, in the operational general model of the
interactive computer systems we have tried to show the effects of the
changes of some system software.

Performance-oriented design was the third method of building
system performance models. This method has been introduced, due to
the shortcomings concerning the ability of parameter estimation or
optimization. It is in the realm of inductive mathematics, whereas
operational analysis is a branch of deductive mathematics ((/Denning
and Buzen 78/)). With respect to simulation models, the existing
models are both too costly, and inadequate to solve the apparently
simple problem of optimum system configuration ((/Nielsen 67/)).The.
P̂erformance-oriented design method solved this problem using
optimization theory and techniques. Several optimization and design
problems have been introduced to minimize the response time or
maximize the system throughput of the modelled system subject to
a cost constraint.

Our experience with the above methods has shown that there
is no single best way to design a computer system. A 'good' computer
system designer must creatively deal with the problems of the intended

system users, the problems of technology from which the system will be
built, and the problems of the people who will implement his design.
It is an artistic blend of theory, engineering and pragmatism which
will allow him to produce a system which meets the functional,
performance and cost specifications from which he began.

This is not an easy task and the basic conclusion of this
thesis is that all three methods presented above should bevicombined
in such a way as to help the designer in building computer performance
models. An implementation of this idea is given in the following
sections•

6.2. Comparison of Methods:

The performance evaluation and design methods presented have
largely been compared by introducing each of these models serparately.
One important concept must, however, still be discussed. This is
the validation and prediction of the models produced by the : abo^ methods.
Validation refers to extensive testing of a model to determine its
accuracy in calculating performance measures. Prediction refers to
using the validated model to calculate performance measures for a
time period (usually in the future) in which the values of parameters
required by the model are uncertain.

These will be examined in the following, using the simulation/
regression models as prediction models and the interactive operational
analysis models and interactive performance-oriented design models as
validation models. The prediction models will be compared with the
validation models and the results will be plotted on a graph which will
show how far the results of the validation (i.e. operational models
or performance-oriented design) models differ from the very detailed
results produced by the prediction (i.e. simulation/regression) models.
In other words, the results of the simulation/regression models which
have been argued to be realistic and correct ((/Cavouras 78/)) will
be used to validate the results produced by the operational analysis
models and the performance-oriented design models. Figure 6.1.
illustrates the steps followed in our validation and prediction
scheme.

Cost Constrain

Modifications

Operational
Model

Simulation/
Regression
Model(s)

Performance-
Oriented
Design
Model

Valid 1?

Valid 2?

Performance
Indices

Figure 6.1* Performance validation - Prediction scheme
""""""""" of the presented évaluation and design methods.

First, the anaJ^st runs the selected Performance Parameters
on the simulation/regression models (the prediction models). He then
collects (measures or calculates) the performance quantities such as
throu^put and response time and also the parameters of the devices.
After that, the analyst applies the same selected performance
parameters to the operational model and compares the results against
the collected performance quantities. If, over many different
observation periods, the computed values compare well with the
collected values, the analyst will come to believe that the
operational model is good. Thereafter, he will employ it confidently
for predicting future behaviour and for evaluating proposed changes in
the system being designed. Similarly, the collected performance
quantities can be compared with the results obtained from the
performance-oriented models using the same selected performance
parameters and different cost constraints.

The comparison of the different models is done concurrently
with their modification and analysis. In this, new assumptions can be

added to the modelled system (using operational analysis or
performance-oriented design techniques). Such assumptions typically
include that device and workload parameters do not chatte unless they
are explicitly modified. Thou^ such assumptions are usually
satisfactory, they can lead to trouble if a given change has side
effects, for example, increasing the number of time-sharing terminals
may unexpectedly reduce the batch multiprogramming level even though
the batch workload is the same.

Based on the comparisons and modifications, several different
case studies can be carried out in order to analyse the three methods
- simulation/regression, operational analysis and performance-oriented
design - using the same supplied performance parameters and different
total cost values. These case studies will be called Erediotion-
Validation examples and include the following:

* Response time vs. No. of terminals Prediction - Validation
example.

* Response time vs. think time Prediction - Validation example.
* Response time vs. devices speeds Prediction - Validation

example.
* Response time vs. degree of multiprogramming Prediction -

Validation example.
in order to demonstrate the approach, one example will be

studied in the following section* To analyse the other exEunples
would require repeating the same procedure for a number of sets
of given performance parameters.

Prédiction-Validation Bxample.

In this example we will study the effects of changing the
maximum no. of terminals upon the system response time, using the
three methods introduced in the previous chapters. Figure 6,2. shows
the graphs produced by these methods using the same selected performance
parameters given by Cavouras ((/Cavouras 78/)). (see Table 6.1.)

The simulation/regression model graph has been plotted using
the following equation. For further details the reader is referred
to case study no. 1 chapter

where ;
R represents the average response time.
M represents the no. of terminals.

l O O

a,b are positive constants:
a » 5.00
b » 0.02

The operational model graph has been plotted using:

X - Z

where :
_ U h(M-l.g)

Z h(lI,K)

M » no. of terminals,
X * no. of devices. (** 5)
Z " average thinking time. (» 30 seconds)
h(. , .) - a normalization factor calculated using the

algorithm of Williams and Bhandiwad ((/Williams and
Bhandiwad 76/)).

Finally, the performance-oriented design graphs have been
plotted using the following optimization problem (see Von Mayhauser 79)*

min f„ (x,n) * — — —

subject to
C(x) 4 0^^^

where
^dev * ̂ rel " ̂ msm % n
\ > 0 0 , Q i > 0*

The three graphs show many differences, in important one is
that the values of the response time produced by the simulation/
regression model are higher than the values (at most) of both the
operational model and the performance-oriented design model. The
reason for this difference is due to the fact that the simulation/
regression model takes into account the overhead time spent in the
system. It is also clear from the performance-oriented design model
that increasing the total cost spent, will yield better response time.

Due to the mathematical structure of both the operational and
performance-oriented models, hardware effects (such as the maximum num
ber of terminals) or software effects (such as the degree of
multiprogramming) can be easily computed. This is of great importance

fo /

/V

^ i 1 at ion/ — •
ücgreosion Model r ;
Oporaticnal Ana: Model

o

■Perforriiance-Orientec]
iDesiijn Mod els. . :cr>

/ 1/00

I . Cost .no. p>£ 2 Mit
' ^^x^dollaro

tn

1.5"Mio
dollars

Cost no. 5=2.5 i;

168 24
W. of active users(Terminals)

Fi/?i.ire 5.2. ; Response time Vs. No. of active users (Terminals)
prédiction-validation grapl» .

Number of
Active
Users

Response
Time
Simulation
/Regression
Method

Response Time of Performance-Oriented
Design Method

Response
Time of
Operational
Analysis
Method

Cost 1 Cost 2 Cost 3

16 6.89 4.21 1.91 1.12 2.96

24 8.08 5.81 2.23 1.21 4.13

32 9.48 7.82 3.19 1.52 6.12

40 11.13 10.47 4.12 1,62 10.98

48 13.06 13.82 5.32 2.22 18.87

Table 6.1: Response Time vs. no. of Active Users (Terminals) under
" the Three Performance Evaluation Methods.

I V#

for studying and analysing the 'behaviour of the system according
to the parameters changes. It will provide the designer with more
speed and more information about the best system design which can
be produced within a certain cost limit.

To conclude, the idea of comparing different evaluation
methods always provides better information about the computer system
required to be designed.

6.3. Future Research Work:

Throughout this thesis we have suggested several areas of
possible refinements and extensions to this work. The possible
areas are virtually unlimited. Possible topics include the following*

* The effects of different scheduling disciplines on the
important performance parameters. This problem can be
studied in detail using the simulation technique.
Specifically, we can use GST to study several policy
functions ((see/Cavouras 78/)). This problem can also
be studied using performance-oriented design techniques.
For this purpose we suggest to generalize the work"of
Mahl ((/Mahl 70/)), Badel and Leroudier ((/Badel and
Leroudier 78/)) and Gotlib and Schonbach ((/Gotlib and
Schonbach 80/)). The Mahl approach depends only upon
the optimization technique. He defines an economic
function which can be maximized by selecting a certain
set of jobs to enter the main memory (i.e. the set of
active jobs) depending on a specific scheduling discipline.
The approach of both Badel and Leroudier, and Gotlib and
Schonbach is a simulation approach.

Similarly, the effects of the scheduling disciplines
can be studied using the operational analysis technique.
For this purpose we suggest to use the idea of Brad
((/Brad 77/)) as the base for that analysis.

Again, the results of modelling the scheduling
disciplines derived from the three methods can be compared
and analysed for further design and evaluation.

* Studying the effects of different designs of the storage
subsystem, using the three design and evaluation methods.

: 4 u

For this purpose, we suggest to modify the general
simulation model (QST) in order to implement different
storage subsystem designs. For the performance-oriented
design method we suggest to modify the research work of
((/Trivedi and Sigmon 8l/)), ((/Chow 74/)), ((/Grecsei and
Lukes 74/)) and ((/Ramamoorthy and Chandy 70/))* The
results obtained after implementing different storage
subsystem designs, using the three different methods,
can be compared for more information.

* Studying the errors that are due to the approximation
methods or assumptions which have been used to produce
both the operational models and performance-oriented
design models. This type of analysis is called sensitivity
analysis ((/Buzen and Denning 8O/)).

* Further studies in models’ validity. For this purpose we
suggest to use the measurement techniques on an actual
system. This idea may involve constructing a sampling
software monitor. The results of this monitor will be
used to validate the models produced by the three design
and evaluation methods. We may also use the research of
((/Kumar 8O/)) as the base of this work.

* Constructing a general interactive design tool (GrIDT.)
based upon the three design and evaluation methods. This
tool should include graphical facilities.. The abstract
idea of such a tool is given in Figure 6.3* The idea
involves constructing three interactive design tools and
a selection procedure. The selection will be based on
the advantages of each particular design tool, for a
given design problem. For the purpose of constructing
the GZDT, we may use the BESTl design tool introduced by
Buzen ((/Buzen, Goldberg,Langer,Lentz,Schwah^,Sheets and Shum 78/))

* Further investigation to add new powerful mathematical
structures to operational analysis. This idea was originally
started by Bouhana ((/Bouhana 78/)) in which he implemented
the theory of matrices within operational analysis.

* Studying the effects of program behaviour using the three
design and evaluation methods. Some necessary modifications
should be added to these methods. For the operational
analysis part we may use the work of ((/Denning 8O/)) and
((/Slutz and Traiger 74/)) as a base for these modifications.

* Further studies should be carried out to implement the user

I

Operational
Tool

Figure 6•3* General Interactive Design Tool (GIDT)

Simulation/
Regression
/Fool J

Select
Method

User
Interface

effects, especially with the interactive computer system models* For
this purpose, new performance parameters should he added* Examples
of user effects include their productivity and satisfaction. For
the purpose of implementation we might he ahle to use the work of
((/Barher 79/)).
Using the performance-oriented design technique we aim to represent
a. general interactive computer system, hased on the idea of multi
customer classes* We also aim to represent in such a system the
cost of each component as a function of their characteristic
parameters. Finally, we may increase the resolution power of the
workload in that system.

It is believed that in this work the hasic framework of
computer design and evaluation techniques has been provided. This is
hut a start in a relatively new area. There are countless
possibilities for extending these methods to provide more realism
and for developing new, more comprehensive design models. The path
to further knowledge awaits our exploration.

REFERENCES

/Adams 78/: J*C. Adams "Performance Measurements and Evaluation of
Time-Shared Operating Systems" Ph.D. thesis, University
of Edinburgh 1978.

/Adby and Dempster 74/* P.R. Adby and M.A.H. Dempster "Introduction
to Optimization Methods" John Wiley and Sons,
N.Y. 1974.

/Badel and Leroudier 78/* M. Badel and J, Leroudier "Optimal Multi
programming: Principle and Implementation"
IRIA, Laboria, Le Chesnay, France, report
no. 276, 1978.

/Baird 62/: "Experimentation" Prentice-Rail 1962.
/Balbo and Denning 79/* C. Balbo and J.P, Denning "Homogenous Approx

imations of General Queueing Networks" 4th
Int. Symposium of Modelling and Performance
Evaluation of Computer Systems, Prepints,
Vienna, Austria, Feb. 19791 PP.333-354.

/Barber 79/* R.E. Barber "Response Time, Operator Productivity and
Job Satisfaction" Ph.D. Diss, New York University 1979*

/Baskett, Chandy, Muntz and Palaoois 75/* P. Baskett, K. Chandy,
R,. Muntz and J, Palaoois "Open, Closed and Mixed
Networks with Classes of Customers" JACM, vol.22,
no.2, April 1975, PP.248-260.

/Bayer, Graham and Seegmuller 78/: R. Bayer, R.M. Graham and G, Seeg-
imiller "Operating Systems:Advance Course" Springer-
Veriage N.Y., 1978.

/Benwell 75/* N Benwell (ed.) "Benchmarking" Halsted Press Wiley,
N.Y. 1975.

/Bock,Yancy and Judge 73/* M.E.. Bock, T.A. Yancy and G.G. Judge
"The Statistical Consequence of Prelim
inary Test Estimators in Regression"
The J. of American Statistical Assoc.
No.68,March 73, PP.IO9- U 6.

/Bose and Warn 75/* J.W. Bose and D.R* Warn "A Straightforward Model
for Computer Performance Prediction" ACM Computing
Surveys, vol. 7, no. 2, 1975, PP.73-93.

/Bouhana 78/: J. Bouhana "Operational Aspects of Centralized Queueing
Networks" Ph.D. thesis, University of Wisconsin-Madison
1978.

/Box and Jenkins 70/: G.E.P. Box and G.M. Jenkins "Time Series Analysis
: Forecasting and Control" San Francisco, Holden-
Day Inc. 1970.

/Brad 71/* Y. Brad "Performance Criteria and Measurements for a Time
Sharing System" IBM Sys. J. 10,1971, PP.193-219.

/Brad 77/: Y. Brad "The Modelling of some Scheduling Strategies for
an Interactive Computer System" Proc. of Int. Symposium
on Computer Performance Modelling, Measurements and
Evaluation, Yorktown, Heights, N.Y., Aug.1977, PP.113-137.

/Bryant 79/* R. Bryant "A Critique of Operational Analysis of Computer
Systems" Workshop on the Theory and Application of
Analytical Models to ADP Systems Prediction, University
of Maryland, March 1979.

/Buzen 71/* J.P. Buzen "Queueing Network Models of Multiprogramming"
Ph.D. thesis, Dev. Eng. and Applied Physics, Harvard
University, May 1971.

/Buzen 73/: J.P, Buzen "Computational Algorithms for Closed Queueing
Networks with Exponential Servers" CAGM 16, 9, Sept. 1973
PP..527-53I.

/Buzen 76/: J.P. Buzen "Fundamental Operational Laws of Computer
System Performance" Acta-Informatica, 7, 1976, PP.167-182 .

/Buzen 76a/: J.P. Buzen "Operational Analysis: the Key to the New
Generation of Performance Prediction Tools" Proc. IEEE
COMPCON, 1976, PP.166-171.

/Buzen 77/: J.P. Buzen "Principles of Computer Performance Modelling
and Prediction" State of Art Report on Performance
Modelling and Prediction, Infotech, Ltd. U.K. 1977,
PP. 5-18.

/Buzen 78/: J.P. Buzen "Operational Analysis: an Alternative to
Stochastic Modelling" Proc, Int. Conf. Performance of
Computer Installations. 1978, PP.175-194*

/Buzen, Goldberg, Langer, Lentz., Schwenk, Sheets and Shum 78/: J.Buzen,
R. Goldberg, A. Langer, E. Lentz, H. Schwenk, D. Sheets
and A, Shum "Best 1- Design of a Tool for Computing System
Capacity Planning" National Computer Conference, 1978,
PP. 447-455.

/Buzen 79/* J.P. Buzen "The Predictable Problem" Computing Surveys,
Vol.11, no.l, March 1979, PP. 70-72.

/Buzen and Denning S O / s J,P, Buzen and P,J. Denning "Operational
Treatment of Queue Distributions and Mean-
7alue Analysis" Computer Performance, vol.l,
no.l, PP. 6-15. IPC.

/Blytheway 80/: A.J. Blytheway "On the Proper Treatment of Measurement
Data" Computer Performance, Vol. l.,no.l,, PP.28-36.

/Calingaert 67/: P. Galingaert "System Performance Evaluation: Survey
and Appraisal" CACM 10, January 1967» PP.12-18.

/Cantrell and Ellison 68/; H.N. Cantrell and A.L. Ellison "Multi
programming System Performance and
Analysis" APIPS, I968, PP.213-221.

/Cavouras 78/: J.C. Cavouras "The Development and Application of a
Method for Producing Software Tools for Computing
System Design" Ph.D. thesis, Glasgow University, 1978»

/Cavouras and Davis 81/; J.C. Cavouras and R.H. Davis "Simulation
Tools in Computer System Design Methodologies"
BOS Computer Journal, vol.24, no.l, 198I.

/Chandy, Howard and Towsley 77/: K.M, Chandy, J.H. Howard and D.P.
Towsley "Product Form and Local
Balance in Queueing Networkŝ ' JACM
24, 2, April 1977» PP.256-263.

/chandy and Sauer 78/: K.M.Chandy end C.H. Sauer "Approximate Methods
for Analysing Queueing Network. Models of
Computing Systems" ACM Computing Surveys, vol.
10, no.3, Sept. 1978, PP.28I-317.

/Chouinard 76/: P.L. Chouinard "The Statistical Estimation of Through
put and Turnaround Functions for a University
Computer System" Ph.D. Diss. University of Illinois 76.

/Chow 74/: O.K. Chow "On Optimization of Storage Hierarchies" IBM
Journal of Research & Development, îfey 1974» PP.194-203.

/Coffman and Matrani 75/: E.G. Coffman Jnr. and I. Mitrani "Selecting
a Scheduling Rule that meets Aprespecified
Response Time Demands" Proc. ACM SIGOPS.
1975, PP. 187-191.

/courtois 75/: P.J. Courtois "Decomposihility, Instabilities and
Saturation in Multiprogramming Systems" CACM vol.18,
no.7, July 1975, PP.371-577»

/Cox 58/: D.R. Cox "Planning of Experiments" Wiley, 1958.
/Decegama 70/: A.L. Decegama "Performance Optimization of Multiprogra-

-mming Systems" Ph.D. thesis, Carnegie)Mellon University
1970.

/Decegama 72/: A.L. Decegama "A Methodology for Computer Model
Building" AFIPS, 1972, PP.299-310.

/Denning 70/: P.J. Denning "Virtual Memory" ACM Computing Surveys,
Vol.2, no.3, PP.153-189.

/Denning and Buzen 77/* P.J. Denning and J.P, Buzen "An Operational
Overview of Queueing Networks" in Infotech
State of Art Report on Performance Modelling
and Prediction, U.K. 1977, PP.75-108.

/Denning and Buzen 78/: P.J. Denning and J.P*...Buzen "The Operational
Analysis of Queueing Network Models" ACM
Computing Surveys, vol. 10, no.3, Sept. 1978,
PP. 225-261.

/Denning and Denning 79/* P.J. Denning and D.E. Denning "Operational
Analysis of Data Sampling Problem" Tech.
Report no. CSD-TR-302, Purdue University,
April 1979.

/Denning 80/: P.J. Denning "Working Sets Past and Present" IEEE Trans
on Software Engineering, vol. SE6,no.l, Jan. 1980
PP. 64-84.

/Estrin and Kleinrock 67/* 0. Estrin and L. Kleinrock "Measures, Models
and Measurements of Time-Shared Computer
Utilities" Proc. ACM National Meeting 1967
PP.85-95.

/Penichel and Grossman 69/: R.R. Fenichel and A.J. Grossman "An Ana
lytic Model of Multiprogramming Model"
APIPS 1969, PP. 717-721.

/Ferrari 78/: D. Ferrari "Computer Systems Performance Evaluation"
Prentice-Hall, Inc., 1978.

/Gaver 67/* D. Gaver "Probability Models for Multiprogramming Computer
Systems" JACM, V0I.I4 , no.3, July 1976, PP.425-438.

/Gecsei and Lukes 74/* J. Gecsei and A. Lukes "A Model for Evaluation
of Storage Hierarchies" IBM Syst. J., no.2,1974
PP.163-178.

/Giammo 76/: T. Giammo "Validation of a Computer Performance Model of
the Exponential Queueing Network Family" Acta
-Informatics 7, 2,1976, PP.137-152.

/Goh 76/: T.N. Gch "Computer System Simulation" m.Sc. thesis. University
of Glasgow 1976.

/Gomma 76/: H. Gomma "A Modelling Approach to the Evaluation of
Computer System Performance" Ph.D. thesis, Imperial
College of Science and Technology, 1976.

/Sotlieb and Schonbach 80/: C,0. Gotlieb and A, Schonbach "System-
Oriented Macro-Scheduling" Technical
Report no. CSRG-113, University of
Toronto, May 1980.

/Gottfried and Weiaman 73/* B.S. Gottfried and J, Weismen "Intro
duction to Optimization Theory" Prentice-
Hall, Englewood Cliffs, New Jersey, 1973»

/Graham 78/; B.S. Graham "Queueing Network Models of Computer System
Performance" ACM Computing Surveys 10,3, Sept. 1978,
PP.219-224.

/Grenander and Tsao 72/: V. Grenander and R. Tsao "Quantative Methods
for Evaluating Computer System Performance:
A Review and Proposals" Statistical.Computer
Performance Evaluation, W. Preiberger (ed.)
Academic Press 1972, PP.3-24»

/Gupta and Verma 80/: P.K. Gupta and R.K. Verma "Optimal Resource
Allocation in a Complex Queueing System" Math.
Operations forsh. Statist., Ser. Optimization,
Vol.11, 1980, no.3,PP»507-512.

/Hansen 73/* P.B. Efeinsen "Operating Systems Principles" Prentice-Hall
Inc., N.Y. 1973.

/He Herman and Conroy/: H. He Herman and T.P. Conroy "Computer System
Performance" McGraw-Hill, N.Y. 1975»

/Hofri 79/* M. Hofri "On Modelling for Performance Evaluation of
Computing Systems Operational Analysis" Dept, of Computing
Science, Technion 1979»

/Hughes and Moe 73/ * P.H. Hughes and G .A. Moe "A Structural Approach
to Computer Performance Analysis" APIPS 1973,
PP.109-119.

/ihrer 67/* P.C. Ihrer "Computer Performance Projected Throt^h
Simulation" Computer & Automation, April 1967, PP.24-28.

/Irani and Uppal 72/: K.B. Irani and I.S. Uppal "Performance Analysis
and Optimization of Computer Systems Using
Markovian Models" First USA-JAPAN Computer
Conference 1972, PP.145-152.

/Jackson 57/* J,R. Jackson "Networks of Waiting Lines" Oper. Res.
No. 5, 1957, PP.5I8-52I.

/Jackson 63/: J.R. Jackson "Jobshop Like Queueing Systems" Manage.
Sci., no.10, 1963, PP.131-142»

/Kachhal 74/* S.K. Kachhal "Configurational Optimization of Computer
System" Ph.D. thesis. University of Minnesota, 1974»

/Kempethome 52/: 0. Kempthome "The Design and Analysis Experiments"
J. Wiley, 1952.

/Kernighan and Ritchie 78/: B.W. Kernighan and D.M, Ritchie "The C
Programming Language" Prentioe-Hall,
N.J. 1978.

/Kienzle and Sevcik 79/* M.G. Kienzle and K.G. Sevcik "Survey of
Analytic Queueing Network Models of Computer
Systems" Conf, on Simulation, Measurement
and Modelling of Comp. System aug. 1979.
Boulder, Colorado, PP.115-129.

/Kinicki 78/: R.S. Kinicki "Queueing Models for Computer System
Configuration Planning" Ph.D. Diss. Duke University 1978.

/Kimbleton 72/: S.R. Kimbleton "Performance Evaluation-A Structured
Approach" APIPS 1972, PP.411-416.

/Kleinrock 75/* D. Kleinrock "Queueing Systems: Theory" Tol.l, J.
Wiley 1975.

/Kleinrock 76/: L. Kleinrock "Queueing Systems: Computer Applications"
Vol. 2, J. Wiley 1976.

/Koffman 69/* E.G. Koffman "Analysis of a Drum l/O Queue Under
Scheduled Operation in a Paged Computer System" JACM
1969, Vol.16, no.l, PP.73-90.

/Kobayashi 78/: H, Kobayashi "Modelling and Analysis: An Introduction
to System Performance Evaluation Methodology" Addison-
Wesley, 1978.

/Kumar and Gonsalves 79/* B. Kumar and T.A. Gonsalves "Modelling
and Analysis of Distributed Software
Systems".Proc. 7th Symposium on Operating
Systems Principles, Dec.1979, PP.2-8.

/Kumar 80/: S.R. Kumar "An l/O Resource Allocation Methodology for
Performance Evaluation and Enhancement Studies
of Interactive Operating Systems" Ph.D. thesis
Case Western Reserve University, 198O.

/Landy 71/* B. Landy "Development of Scheduling Strategies in the
TITAN Operating System" Software Practice and Experience,
Vol. 1, PP.279-295, 1975.

/Lister 75/* A.M. Lister "Fundamentals of Operating Systems" Macmillan
Press ltd, 1975-

/Luenberger 73/* D.G. Luenberger "Introduction to Linear and Non-
Linear Programming" Addison-Wesley, Reading, Mass.
1973.

/Mahl 70/: R. Mahi "An analytic Approach to Computer Systems
Scheduling" Ph.D. thesis, University of Utah 1970.

/McKinney 69/: M. McKinney "A Survey of Analytical Time-Sharing
Models" ACM Computing Surveys, vol.l, no.2, June 1969,
PP.105-116.

/Mirham 72/; G.A, Mirham "Simulation: Statistical Foundations and
Methodology" Academic Press, N.Y. 1972.

/Murdoch 78/: J. Murdoch "Queueing Theory: Worked Examples and
Problems" Macmillan 1978.

/Muntz 75/: R.R. Muntz "Analytic Modelling of Interactive Systems"
Proc. IEEE, Vol.65, No.6, June 1975, PP.946-955»

/Muntz 79/Î R.R. Muntz "A Predictable Problem" ACM Computing Surveys
Vol.11, no.l, March 1979, PP.70-72.

/Nielson 67/: N.R. Nielson "The Simulation of Time-Sharing Systems"
CACM, July 1967.

/Noetzel 71/* A.S. Noetzel "The Design of a Meta-System" AFIPS 1971,
PP.415-424.

/Pujelle and Soula 79/* G. Pujolle and C, Soula "A Study of Flows in
Queueing Networks and an Approximate Method
for Solution" Atrato, Butrimenko and-'Gelenbe
(eds.) Int. Institute for Applied System
Analysis, North-Holland Pub. Co., 1979,
PP.575-589»

/Rakoczi 69/: L.L. Rakoczi "The Gomputer-Within-a Computer A Fourth
Generation Concept" Computer Group News, March I969.

/Ramamcorthy and Chandy 70/*C.U. Ramamoorthy and K.M. Chandy "Optimi
zation of Memory Hierarchies in Multiprogramming Systems"
JACM, Vol.17, no.3, Jnly 1970, PP. 426-445»

/Riser 79/* M. Riser "Mean-Value Analysis of Queueing Networks: A New
Look at Old Problem" Proc, 4th Int. Symposium on Modelling
and Performance Evaluation of Computer Systems, Vienna
Feb. 1979, PP. 63-77.

/Riser and Lavenberg 8O/: M. Riser and S.S. Bavenberg "Mean-Value
Analysis of Closed Multichain Queueing Networks" JACM,
Vol. 27, no.2, April 1980, PP.315-522.

/Riser 81/: M. Riser "Mean-Value Analysis and Convolution Methods for
Queueing Dependent Servers in Closed Networks" Performance
Evaluation: an International Journal, Vol.l, no. 1, I98I.

/Roode 79/* J. Roode "Multiclass Operational Analysis of Queueing
Networks" Proc. of 4th Int. Symposium on Computer
Performance Measurement, Modelling and Evaluation, Vienna

r » — • — « , , . M . , « ■ w / - - - t w - » - » w » r - , —t - . - — ' i l l ' u r M C TIS IT» O u T iO H | • + ^

of î̂ chbjork. ç+&i4*«s cxt i>»̂ o+ cxo4
O utput trtstoAts'' v?esecvrciU Raport n o ,3 o ? |R.|A

(Feb. 1979). FF. 539*̂ 52.'''̂ '̂ ''*'’
/Sekino 72/: A, Sekino "Performance Evaluation of Multiprogrammed Time-

Shared Computer Systems" Ph.D. thesis, Mass. Institute
of Technology, 1972.

/Sevcik and Klawe 79/* K.C. Sevcik and M.M, Klawe "Operational
Analysis Versus Stochastic Modelling of Computer
Systems" 12 Annual Symposium on the Interface
of Computer Science and Statistic, University
of Waterloo, 1979*

/Shannon 75/: R.E. Shannon "System Simulation the Art and Science"
Prentice-Hall 1975*

/Sigmon 79/: T.M, Sigmon "Performance-Oriented Design Models for
Computer Systems" Ph.D. Diss. Duke University 1979.

/Sime 75/: J.G. Sime "Benchmark for the ICL I9O65 Computer Systems"
Glasgow University, Computing Service, June 1975.

/Slutz and Traiger 74/: D.R. 8lutz and I.L. Traiger "A Note on the
Calculation of Average Working Set Size"
CACM Vbl.17, Oct. 1974, PP.565-565.

/Sprangins 79/: J. Sprangins "Approximate Techniques for Modelling
the Performance of Complex Systems" Computer ■'Languages
Vol.4, PP.91-129, 1979.

/Svobodova 79/* L. Svobodova "Computer Performance Measurements and
Evaluation Methods : Analysis and Applications"
American Elsevier Publ. Co., 1976.

/Takaos 63/: L. Takaos "A Single Server Queue with Feedback" Bell-
System Journal 42, I963, PP.305-519.

/Trivedi and Kinicki 78/* K.S. Trivedi and R.E. Kinicki "Mathematical
Model for Computer System Configuration Planning**
Performance of Computer Installations, D. Ferrari (ed.)
North-Holland, Amsterdam 1978.

/Trivedi and Wagner 79/* K.S. Trivedi and R.A. Wagner "A Decision
Model for Closed Queueing Networks" IEEE Transaction on
Software Engineering, SE-3,4, July 1979, PP.328-332,

/Trivedi 80/: K.S. Trivedi "Designing Linear Storage Hierarchies so as
to Minimize Realibility Subject to Cost and Performance
Constraints" Conf. Proc. of the 7th Annual Symposium on
Computer Architecture, LA BAUDE, May I98O, PP.211-217.

/Trivedi and Sigmon 81/: K.S, Trivedi and T.M. Sigmon "Optimal Design
of Linear Storage Hierarchies" JACM, Vol.28, no.2,
April 1981, PP.270-288.

/Von Mayrhauser 79/* A.E.K. Von Mayrhauser "Performance-Oriented

Design of Interactive Computer Systems" Ph.D. Diss.
Duke University, 1979

/Walsh 75/Î G.R. Walsh "Methods of Optimization" J, Wiley and Sons,
N.Y. 1975.

/Watson 70/1 R.W, Watson "Timesharing System Design Concepts" Mo Craw
Hill 1970.

/Wettstein and Merbeth 80/: H. Wettstein and G. Merbeth "The Concept
of Asynchronization" ACM Operating System
Review, V0I.I4, no.4, Oct, I98O.

/williams 72/: T. Williams "Computer Systems Measurements and Evaluation"
BSC The Computer Bulletin, no.16, Feb. 1972, PP.IOO-IO4.

/williams and Bhandiwad 76/: A.C. Williams and R.A. Bhandiwad "A
Generating Function Approach to Queueing Network
Analysis of Multiprogrammed Computers" Networks,6,1,
1976, PP. 1-22.

jur.o.

APPENDICES.

Appendix A1 : Some Helpful Statistical Methods,

Appendix A2 : Abbreviation.

Appendix B1 : The Representation of a Muticlass Customer Closed
Queueing Network.

Appendix B2 : The Algorithm of Calculating the Normalization Factor
of Interactive Computer Systems Models.

Appendix Al

Some Helpftil Statistical Methods,

1. Regression Methodst
The techniques of regression and correlation analysis are

very useful. Regression analysis takes a set of data and fits it to
an equation whose form is pre-selected by the analyst. Correlation
analysis gives us some indication of how well the data points fit or
cluster around the equation so derived, It is recalled that one
purpose of statistics is to represent many numbers by a few numbers*
One way to do this is to fit an analytic function like a polynomial
to the data. Once this is done, only a few coefficients of the
polynomial need to be stored to represent the data* The problem of
finding equations for the approximating curves that best fit the
given sets of data is called curve fitting. The analyst must select
the curve to be fitted. For reference, we list several common types
of approximating curves and their equations. All letters other than
X and y are constants or parameters and x is the independent variable
((/shannon 1 3 /)) *

Straight line.
parabola or quadratic curve*
cubic curve,
quartic curve,
hyperbola,
exponential curve,
logarithmic,
cubic logarithm.

1. y » a + a_x0 J. 2
2. y =. a x + a x

^ 2 33* y =* a + a_x + â x, 0 J- ^ 2
+ a.,xy

^34. y = a^ + a^x + a^x + a?x^
5. y “ V(®o + a^x) or
6. y = ab or log y = a + a.x

0 ^7. y a log X
8. log y » â + a. log* O X X

ietc Î etc,

+ a.x4+ a^x

To decide which to use, we can examine scatter diagrams and
compare results with the general shapes to the curve given by different
equations; Figure Al.l represents the best fit that can be chosen is
the linear curve.

Figure Al.l Best fit for
a scatter
diagram.

Y

straight line curve

Air'O

To evaluate whether the data are a "good fit" to our line or
equation, we need the concept of correlation# Correlation tells us
how close the data points cluster around the curve or line. While
regression defines a proposed relationship "between the variables,
correlation tells us how good that relationship is# A high correlat
ion "between variables shows that they change their values in a
related manner, but we must realize that this does not prove or imply
a cause and effect relationship# Regression analysis assumes that
there is a cause and effect relationship between the dependent and
independent variables; correlation studies make no such assumption#
Correlation coefficients will range from -1 to +1. A coefficient
of -1 means perfect negative correlation# A coefficient of 0 means
absolutely no correlation, and a coefficient of +1 means perfect posi
tive correlation# The Square of the correlation coefficient is
called coefficient of determination.

Furthermore, the equations used in curve fitting are as
follows Ï
* Linear Regression:

X.

I. .X

* Exponential Curve Fit:

Yi
y = aebx

-►X

JXjr .4

* Loffarlthmic Curve Fit:

b ^ - j l V i l y i .

a = ̂ (lyi - i>LVi)

[t ̂ i V i - i l V i I^iî

y = a + b lux

/
/

/ -----------

/
2r =

t d n è (L W l [l^i - ÏÏ C V ' l

* Power Curve Fit:

(E V i) (L V i)
n

n

a « exp

E (V i) ' - d V i) '

- b E V i
n

2r =
r n v i ^ ^ V i) - (C V i) (E V i
L - n

/
/

y = ax /
/

/

n n

2. Reduction Methods :
"Reduction" is a key word used by several system designers,

since the significance of raw measurements will not be apparent at
the first level of presentation, and their meaning must be extracted
by the application of numerical methods. Reduction can be used in
real time systems, since reduction means storing the measurements
and reduce them later, after the end of the session.K K

(before reduction)

1 2 3 5 6 7

(after reduction)

1 2 3 4 5 6 7
J

Reduction can be performed using a reduction factor as shown
in figure (a) and figure (b), which can be calculated as follows:

r -- (* r is a reduction factor*)

with

^ “ f f
and ^

— V j and k.

We are interested in the minimum value of r, which satisfies
the design requirements, since this is the choice corresponding to
the maximum degree of representativeness,

V Often, reduction means a method of presentation also, "The
form in which results are presented can greatly facilitate (or
confuse) their interpretation" ((/Ferrari ?8/)), One way is to use
a graphical representation, such as Gantt Charts and Kiviate graphs.

Moreover, a convenient and flexible organization for the
collected data may be achieved by storing them into a database and
providing the users with a query language by which they can
interrogate the database and interact with it,

3, Analysis of Variance Methods;
The term analysis of variance designates those data analysis

methods which can be used to estimate the relative influence of
different sources of variation on the values of a performance index.
These methods decompose the total variation of the index into
components which correspond to the sources of variation being
considered. When all the factors in an experiment are quantative,
regression analysis techniques can be applied, otherwise analysis-of-
variance methods should be used.

Finally, there are many other helpful methods we did not
discover so far, for example;
a. Reduction of dimensionality (multivariate methods),
b. Histograms and graphical presentation methods,
c. Time series analysis.
d. Monte-carlo Method,
0, Multiple-regression methods.

etc, for further information the reader is referred to ((/Kobayashi

78/)) ((/Ferrari 78/))((/Box and Jenkins 70/))((/Bock, Yancy and
Judge 73/)).

AP.7

Appendix A2

Abbreviations.

* M = No, of active users (Terminals).
* TSM = Average no. of tasks per multiaccess job.
* TH = Average think time.
* Xa Mean interarrival time.
* MPT = Mean CPU time.
* MSI = Medium scheduling interval.
* MZ =» Memory size.
* SPZ = Segment/Page size.
* MNI =» Mean no. of interactions.
* PWS = Period of working set.
* MSL = Mean value of reference string length.
* PPZ = Fraction of process size.
* ST » Swapping time (i.e. time to move one byte into memory)
* SHF » Scheduling discipline factor.
* PBZ =» Ihysical block size of disc file. v
* MBR « Mean no. of backing store records.
* MDR »• Mean no. of disc file records.
* GST = Context switching time.
* PI = Process invocation time.
* PCT = Permitive call time.
* R =» Average response time.
* PBT =* Average processor busy time,
* X = Average interactive system throughput.
* = Effective degree of multiprogramming,
* DU = Disc utilization.
* DRU =* Drum utilization.
* TCT “ Terminal connect time.
* MJP = No. of multiaccess jobs processed.
* RSR =* Ratio of simulation time to real time,
* POT 5 Processor overhead time,
* WPT - Mean Waiting time in CPU queue.
* WST = Mean waiting time in storage manager queue.
* WTT =» Mean waiting time in terminal manager queue.
* WDT a Mean waiting time in disc manager queue.
* WDRT = Mean waiting time in drum manager queue.

2* r =* Coefficient of determination.

* PT = Processor productive time.
* OT = CPU overhead time.
* RJU = Ratio of jobs processed per no. of active users.
* SO * Simulation option.
* NO =• Number of jobs.
* SP * Simulation period.
* IRN = Initial random no.
* CSP = Collecting statistic period.
* NPB = Number of priority level of batch jobs.
* MRT = Maximum average resonse time.
* MPP = Maximum no. of ports of process*
* PDZ = Process descriptor table size.
* ASIR = Average service time of interrupt routine.
* SDZ = Section descriptor table size.
* ST « Simulation time.
* PIT =» Processor idle time.
* UPD = Utilization time of peripheral devices.
* NPC “ Number of processes created,
* NJS = Number of jobs entered to the system.
* NPP =* Number of processes processed.
* NPPAS = Number and ^ of process abort by the system.
* TSPS = The times spent in each process state.
* KO » Kernel overhead,
* SARUP = Estimation of the average records used by processes.
* MNEBST = Max. no. of entries used by simulation table.
* MNEBRT = Max. no. of entries used by real system table.

Appendix B1

The Representation of a Mnltiolaes cuatomer closed queueing network.

Consider a computer system of M devices (processors, service
centres). Customers in the system may belong to any one of a finite
number of classes. The collection of classes constitutes a class
group (e.g. trivial and non-trivial jobs) which consists of a main
customer class and a number of associated system customer classes.
Let the classes be numbered 1,2,,...R and let

^ir number of customers of class r present at centre i.
R

n^ = X) is the total number of customers present at

AP.9

r=l
M

W =* E n. is the total number of class r customers in the
^ i-i

M
N = n. is the total number of customers in the system.

i=l ^

centre i.
is the ■
system.

Since the subsystem model is represented by a closed queueing network,
H is fixed.

Now, during an observation period (0,T) , the following
operational quantities are collected; ^

Aj^ (n) t number of arrivals of class r customers at centre i,
when n. = n, 0 < n < N.

is ^^ir * number of times a customer of class r requests service
at centre j as a class s customer immediately after
completing a service request at centre i, when
îr. “ 0 < n ^ R.

T (n) I total time during which n, =*n, O ^ n ^ N . ir ^: total busy time of device i for class r customers.
Let, the outside world as centre 0, then

0^^ (n) t number of customers of class r whose first request is
for centre i when « n (no class chants occur on
entry to the system) 0 ̂ n < N.

C?^ (n) s number of class r customers whose last service
request is for centre i, when n^^ =» n (no class
changes occur on exit from the system), 0 < n ^ N .
The number of completions of class r jobs at centre
i when n^^ =• n, is computed ast

M R .
Oi_(n) = E E 0 ^ (n) , 0 < n $ N .^ j=0 3=1

ir

AP.iO

The number of arrivals of class r customers at the
system when = n, 0 n N, is:

°or (")'1=1

Using the above quantities, the following derived operational
quantities are defined;

/ * X^(n) = ÿ , request completion rate for class r customers at
centre i when n ^ - n, 0 < n ^ N.

* P^(n) » " , proportion of time when n ^ = n, 0 ^ n

* 8j^(n) = g , the service function for class r customers at
„ centre i when n. = n.N ir

* C. = ^ 0. (n) , the total number of completions for class rIX "# IX
customers at centre i.

°ir* X = , overall request completion rate for class rir T
B

'ir ~ 0
customers at centre i.

"̂ix* s. = , the mean service time over all class r
ir
B, completions at device i.

* U^^ , the utilization of centre i by class r- customers.
R

* U. = Z U. , utilization of centre i.
 ̂ r=l ^

N
* J. = n T. (n) , job-seconds accumulated at centre i by class r

^ n=l” customers.
— ir* n^^ = -g— , the average number of customers of class r at

- centre i.
ir* R. » TT" f mean response time per request by class r
ir ^ customers at centre i.

* q^^ » (n) , the fraction of completions of class r
ir n=l customers at centre i which are followed

immediately by requests, as class s
customers, for service at centre j.

Using the above quantities, the following operational laws have
been derived: ^

* “ S Pi^(n) X^(n)n»i

" i r ■ tn=l
Now, using the above quantities and laws, we can construct many

operational theorems by imposing some additional simplifying assumptions
upon the system. These assumptions are*
1. Job Flow Balance*

The principle of job flow balance implies the following —
for each centre i, is the same as the total input rate of class r
customers to centre i. Therefore, if job flow is balanced, we refer to
X^^ as the centre throu^puts*

since

^js

°js

A

'ir

i=0 r=l
pjs
ir

^ir Zi»0 fr=l

Z i ^i=0 r=l ^ 'ir

os (n)

hence, dividing by T:

1=0 r=l
,. .where j=0,.. ,M. •'

8=1,..,H.
The above equations are called the job flow balance equations.
The job flow balance equations can also have the following forms

R
i-0 ^ “

f 5 r^ r* r-1 irf ̂r=l ir

M
s:
i»0
Ii=0
X

M
‘ S(X ij»l 8=1 °ir

R 08

Rr
)

hence
^ir - Zi=0 r=l i=0 r=l s=l

os
ir ^irf X3=1 OS

M
X

8=1 i=0 r=l ir
R

i=0 r=l
It is important to note that in these forms the job flow balance

equations have no direct solution for the closed queueing network,
since X is unknown. To solve these equations, let us defines 08

ir
ir X.or

, the flow of customers in class r through centre i
relative to the system throu^put for class r customers.

then

■a.s: • o.<-r

Q
7. = 9 and 7. is the mean number of completions in class rAr V ir

at centre i. This is also called visit ratio of class
r customers at centre i.

Hence, using the above definition we can represent thé job flow
balance equations in a different form which can be solved *

r “ 1} • • • ,H
j *» 0, • •. ,MTor - 1

2. State Transition Balance*
The state of the system is described by a vector:

n - (n̂ , Sg,....
where

Sfli =■ ("ml' “m2’....“mR^’
We define*
T(nJ : the total time during which the network is in state n during

the interval ((0,T)).
• P(n) = , the time proportion for n ,

T where
Zr(n) = 1.
a

k,n,m, * denote distinct system states.
* the number of one-step transitions (i.e. without passing
through any intermediate state) observed from state n to
state m , where

Using the above definitions the job flow balance equations
represent the state transition balance equations where the number of
entries to every state is the same as the number of exits from that
state during the observation period.
i.e# X - Q (k,n) = X%(n,^ for all n.

k m
Define the transition rate from n to m as follows:

Then the state transition balance equations can be written as*
X T(^ H(k,^ = T(n) X
k mor, — —

H P(k) Hfeu) - P(n) Z H(n.,m) k m

AP.13

for all n for which each H(n, .) is defined.
Now, by adding the normalizing condition ̂ . P(n) = 1 and noting that

n
P(n} = 0 for those n not included in the above state balance transition
equations, a unique set of p(n) will satisfy the equations. To show
the solution, we first need to define the following:

Prom the one-step behaviour assumption ((The only observable
state changes result from single customers either entering the system,
or moving between pairs of centres in the system with accompanying
class changes)), we can derive that the neighbour states of n are*

(^21*'"' “m r)4 r

a : (n11***** ^ir ^

Then for all n
(n.11 - 1.

men lor axx n v—
P(s^) H(n“ , n) +1- P (^) ,») '&)i ,r

p(a)
r,s

L
r>3

a(n, n^) + H h(^ n“) + % H(n, n°“)
i,r j,r

The first on the left and on the right correspond to customers
making (i,r), (j,s) transitions; The second terms on the left and the
right correspond to customers exiting the system from centre i; thte
third terms on the left and on the right correspond to jobs entering
the system at centre j. The sums over i and j extend over 1,...,M.
whereas the sums over r and s extend over 1,...,R. For a closed system
such as our interactive system, the second and third terms on the left
and right should be dropped, and q^^ should be increased by q ^ . q̂ .̂

In order to solve the state transition balance equations we
also have to express them in terms of measurable parameter. For this
purpose we should use two new assumptions:
Firstly, the representation of the state transition rate is*

q̂ js (and similarly for other state
-------— ---- transitions)

The two assumptions will help in simplifying the above equations,
assumptions are*

The

First that* i^(n^ , n)
(device homogenity)

ir (̂ ir
^ir^^ir + 1)

AP.14

i,e.. that the rate of state transitions from n^^ to n equals
the rate at which device i throughputs of class r customers equals
Ufr + 1, which immediately go to device j as class s customers
irrespective of the number of class s customers already at device j.

Second that: C^(n^^ + l) = q^® ^̂ ir̂ îr
(routing homogenity)

i.e. the routing frequencies are independent of the state of
the system (but may depend on the load R).
Hence, we can obtain the following homogeneous rates:

* a) = 4 r :j8/Sir(“ir + ̂

* H(r4“.n) sir Ijr
* H(n.n°P = X^^ qi:

where
I

fl if >0
vO if n. = 0ir “ir

The homogenized balance equations are now:

^ _____ :j8

+Z:P(ng) X^^ .
js _ _ „or

Q w "r g

r,8
ROW, consider the ri^t-hand side*
T + % ^ Ijr ' L ^ Ijr Ijr

Sir(“ir̂ , t l % t l Z Ï

i»l r-l̂ ir'̂ îr/ j=0 s=l
M R

I ri=l r«l ^ir^^lr^
and M

jTl

Hence, the state transition balance equations are reduced to*

AP.I5

t * & ’ < ^ >

for all n.

i,jr,s
P(n) ir

i,r ^ir^^ir)
+ X.

Finally, the solution of the above equations ist
M R

P (n) = i Z (n̂)̂
where

^ir (

° îTi
if n. = 0 ir

>ix) { x ("4_) Pi,("4, - 1) if “£r > 0*ir ir ̂ir' ir'“ ir

i.e. P^(nir) . X” U S,^(k), > 0.

G is a normalizing constant given by
M

G = n n F^^ (n̂ ^̂) , where the summation extends over
n 1=1 r=l all possible n.

\ (4 l) . X ^ s/(nf)" • Kn)JS ja' 3a'

“ir

(n. + 1) .. P(n)ir ir ' ir
1 . P(n)^jr Bjr(njp)

For closed queueing networks, these equations do not allow a
unique set of solutions. The analyst can, however, obtain a unique set
of visit ratio data and derive the X^^ by means of an arbitrary
normalization.

The procedure of calculating the normalization factor is given
in appendix B.2.

Now, we can formulate the important performance indices. For
more information the reader is referred to Roode ((/Roode 79/))*
* The Utilization;

N N-m
% - Ô Î T O T t l I b h«(P,E-l) g(N-m,P,M-l,E).

* The Average Gueue Lengths;
ÎT N-m

S r n - W ^ m ^ g(l-m,M-l,E).' ' ' m * * l p = u

AP.16

Calculation of the Normalization Factor of Multiolasa Customer
Closed Queueing Network.

The normalization constant is defined as:

L M R u. .
n n (x.. s..)

^S(N,M,R) i=l i=l
where ^
S(N,M,R) = j 2 ̂ (^ 1 1 * ^ 1 2 * If f 1i=l jti "ij = N & n^j>0 yi,jj
Roode ((/Roode 79/))genBFBllzea the approach followed by Buzen
((/Buzen 73/)), he considers the following function:

m r -i
g(n,ni,r) ^ II II (\ a s. .)

nEs(ïT,m,r) i=l j=l
Then, for m ^ 1 it follows that

V .
s(n,m,r) = C. S. II(x jS .) ^ g(n-p, m-1, r)

p-0 TEsCp.r) j=l ^ ^
where
S(P,r) = (v^,V2,....,v̂)| X Vj = P,Vj ̂ 0 V^|

“ • ■ S (, „) h
Then it follows that

(P.r) = h(m) (P, r-1) + (X_^S^) h^“\p-l, r)
with

h(“)(P,r) - P “ 0,1....,H;Vin.
and
h.(̂) (0,r) = 1 for r = 1,2,...,R; V m;
h(^) (0,0) = 1 , h(^) (p,o) = 0, p :^i .
Thus

g(n,m,r) = ^ h^™^ (P,r) g(n-p, m-1, r)
p=0

and the iterative calculation of g(N,M,R) is completed if we observe
that ;

AP.l?

q V.
g(n,l,q) = n. any q

vES(n,q) j=l
so that
g(n,l,q) = g(n,l,q-l) + (2. 8,) g(n-l,l,q)
with

* n = 1,2,
g(0,l,q) = 1 V q.
In fact this last calculation is unnecessary since
g(n,l,q) = ĥ ̂ (n,q) q = 1,2,.,,,R*

n = 1,2,
Note that in order to calculate the normalizing constant g(N,M,R) we
need only calculate
ĥ (̂p,r), m=l,«.«,M; r=l,***R and P=1,****,N;
g(n,m,E) , n=l,.,.,N; m»2,...,M with
g(n,1,R) =» h(^)(n,R), n=0,l,...,N.

Appendix B2

The Algorithm of Calculating the Normalization Factor of
Interactive Computer System Models.

The algorithm fills in numbers in a two-dimensional matrix g.
The columns of g correspond to devices, rows to loads. The computation
starts with Is in the first row and Os in the first column below the
first row, A typical interior element is computed from
g(n,k) = g(n,k-1) + g(n-l,k),
where Y^ = 7^S^. The normalizing constant G is g(N,K). It can be
computed in 2KN arithmetic operations.
Let Ĝ pD.,,1̂ , initially 0, denote a vector array representing a current
column of g, and let Y ĵ l,,.*K̂ denote another vector containing
Y^S^,.,,,V̂ Ŝ . Then the algorithm is

înitialize^ g[6] ; = 1;
FOR k:=l TO K DO Compute kth column'j-

FOR n:=l TO N DO
IjGlfn-lj contains g(n-l,k);
G '[n] contains g(n,k-l) j-
G [n] ;=G,[n] + Y [k] G ̂ n-1^ ;
When this procedure terminates, G [N] contains the

normalizing constant.

