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Abstract

In this thesis we look at three approaches to modelling 
interactive computer systems: Simulation, Operational analysis and 
Performance-Oriented design* '

The simulation approach, presented first, is applied to a 
general purpose, multiprogrammed, machine independent, virtual 
memory computer system* The model is used to study the effects 
of different performance parameters upon important performance 
indices. It is also used to compare or validate the results 
produced by the other two methods.

The major drawback of the simulation model (i.e. its 
relatively high cost) has been overcome by combining regression 
techniques with simulation, using simple experimental case studies.

Next, operational analysis was reviewed in a hierarchical 
way (starting by analysing a single-resource queue and ending up by 
analysing a multi-class customer general interactive system), to 
study the performance model of general interactive systems. The 
results of the model were compared with the performance indices 
produced using the simulation results.

The performance-oriented design technique was the third 
method used for building system performance models. Here, several 
optimization design problems have been reviewed to minimize the 
response time or maximize the system throughput subject to a cost 
constraint. Again, the model results were compared with the 
simulation results using different cost constraints.

We suggest finally, that the above methods should be 
used together to assist the designer in building computer 
performance models.



CHAPTER 1

I N T R O D U C T I O N

1.1, Motivation.
1.2. Outline of the Thesis and Sunmiary.
1.2.1. Chapter 2.
1.2.2. Chapter, 3*
1.2.3. Chapter 4.
1.2.4. Chapter 5.
1.2.5. Chapter 6.



1.1. MotiTatlont

Slnoe the early days of the oomputer industry, there has been 
ocnaiderahle interest in the design and performance analysis of 
systems. The goal has most often been to obtain better insight into 
their behaviour and to improve their performance.

During the last deoade, we have seen the development of a 
large number of oomputer systems. In most oases, these systems have 
failed to meet the performance objectives predicted during the initial 
design. During the same period, **the complexity of these systems has 
increased tremendously with the introduction of multiprogramming, 
multiprocessing, virtual memories, etc. It has thus become more 
difficult to understand the behaviour of these systems in a qualitative 
sense, let alone ) .
((/jtuntz 75/))* Hence, the road to understanding the behaviour and 
predicting the performance of oomputer systems has been, and still is, 
arduous. Many people have realised this and have attempted to 
investigate the problem of designing and analysing the performance 
of computer systems, and to proceed to develop superior tools. Such 
a tool can most generally be represented in the schematic diagram of 
Figure 1.1.:

Initial
Design
Parameters
Work
load

Final Requirements

H.W.
parameters

S.W.
parameters

Cost 
parameters

Initial
Requirements
(Workload,
System-
families

Selection 
of Design 
Variables

Constraints 
(Technology 
...etc.)

System Performance Evaluation 
(including Cost Evaluation)

Performance Satisfactory?^^ 
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 ̂I*
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'selection
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Selected 
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Figure 1.1. Schematic Diagram of a General 
Tool for Computer System 
Performance Design and Evaluation.



The design and evaluation diagram shown represents a 
hierarchioal and Iterative process. This process starts by selecting 
the initial design parameters (i.e. input performance parameters) and 
the initial user requirements and constraints (these may represent the 
system families, required cost, technology constraints, required system 
cost, etc.). After that the process takes an iterative shape to select 
the design variables (these may include many changes in the initial 
requirements and constraints). In this selection, the evaluation of 
the system cost and performance plays a critical part. The iterative 
process will produce several models that satisfy the initial 
requirements and constraints. The process then enters a decision area 
to select the *best' model among the produced models, depending on the 
final user requirements.

The purpose of such system design and evaluation tools is 
generally in three parts ((/Lucas 71/))*

* Selection evaluations
Selection evaluation plans to include performance 
as a major criteria in the decision to obtain a 
particular system from a vendor.

* Performance projection:
Performance projection is oriented towards designing 
a new system, either a hardware component or a 
software package. The goal here is to estimate the 
performance of a system that does not yet exist.

* Performance monitoring:
Performance monitoring provides data on the actual 
performance of an existing system. This data can be 
used to forecast the impact of changes in the system, 
such as a reconfiguration of the hardware or an 
improvement in the frequently executed software 
modules. Such evaluation may also be concerned 
with obtaining a profile of the use of a system, in 
order to make strategic decisions, for example, on the 
characteristic of a job priority system.

The designed evaluation techniques used for the three purposes 
are fully discussed in chapter 2. The selection of a particular 
technique(such as Simulation, Benchmarks, Monitors...etc.) depends



on the suitability of that technique for a given purpose.
The concentration on both design and evaluation techniques 

is quite important, since it has been proven that "design without 
evaluation usually is inadequate" ((/Cantrell and Ellison 68/)).
This combination always provides better systems, better understanding 
of the system operations and the effects of each performance factor. 
It also helps in tracing the performance bugs. Finally, it removes 
the ' faith* concept in designing a computer system. The problem 
is a scientific and engineering one only, if it is solved using 
both performance design and evaluation techniques.

1*2. Outline of the Thesis and Summaryt

The aim of this thesis is to show that different performance 
design and evaluation tools can be combined in such a way as to 
help the designer in building better oomputer performance models.
This idea is quite important, since there is ̂  single beat way 
to design a computer system.

In this thesis we introduce three modelling techniques 
which can be combined to construct a more reliable performance model. 
These techniques are;

* Simulation,
* Operational analysis and
* Performance-oriented design.

The above techniques were selected from many available 
techniques. The reason for such selection and a brief review of 
the available techniques are introduced in the second chapter. In 
the next three chapters we introduce each technique seperately.
In the last chapter an implementation of the combined ideas is 
given.

The following is a brief summary of the contents of the 
remaining chapters of the thesis.
1.2.1. Chapter 2; "Computer Design and Evaluation Methods".

In this chapter the available computer design and evaluation 
methods are critically reviewed. These methods are;

* Analytical Methods.
* Simulation Methods.
* Empirical Methods.

According to certain factors a specific set of design and 
evaluation methods have been chosen to help the designer to solve



future problems with different levels of details and accuracy. The 
methods chosen are:

* Simulation.
* Operational analysis.
* Performance-Oriented design.

1.2*2. Chapter 5: "The Simulation approach".
An ideal simulator should incorporate the software and the 

hardware of the system under design. Some researchers call this 
incorporation "the forth generation computer system concept". A 
general simulation tool (GST) was presented by Cavouras ((/Cavouras 78/)) 
to represent this aim. The GST is reviewed in a structured way.

Since Simulation is a very expensive approach for system 
design and evaluation, we have tried to overcome this by introducing 
regression analysis techniques to the results of the Simulation in 
order to produce fast l^brid models. This was done through several 
case studies and the introduction of an interactive design tool 
(XDT) is suggested.
1.2.3* Chapter 4; "The operational analysis approach".

In this chapter we aim to represent a similar general 
interactive computer system as the GST introduced in chapter 5 using 
the operational analysis technique. For this purpose the operational 
analysis technique was critically reviewed. It has then been used 
to represent a general multi-class customer interactive computer 
system. Many factors have been investigated during the representation 
process. These include:

* job flow balance.
* load-dependent behaviour.
* homogenous service times.
* decomposition technique.

Finally, we tried in this chapter to concentrate on the 
representation of the effects of both the hardware and software 
parameters on the model.
1.2.4* Chapter 5: "The performance-oriented design approach".

In this chapter we have also tried to represent a general 
interactive computer system similar to the GST model. This was done 
by reproducing the work of several researchers. Several optimization 
problems to minimize the response time or maximize the system 
throughput of the modelled system, subject to a cost constraint, are 
examined.



1.2.5* Chapter 6* "Comparisons and conclusions".
We conclude our research work hy giving an overview of the 

work presented and give an example to implement the combining of 
the three discussed modelling techniques. Finally, we suggest several 
future research ideas and extensions to this work.
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2.2. Analytic Methods.
2.2.1. Operational Analysis•
2.2.2. Stochastic Analysis.
2.2.3. Mean-Value Analysis «

2.3. Simulation Methods.
2.4. Empirical Methods.
2.3. Other Methods.
2.5.1. Performance-Oriented Design. 
2.5*2. Benchmarking.

2.6. Conclusions.



2.1. Introduction :

For several years immediately following their inv«aition, 
computers were almost universally monoprofcrammed.̂  However, it was 
soon realised that following more than one program to run concurrently 
would result in more effective usage of the system's resources, since 
one program could be using one resource, while another program could 
be using a different resource. With the advent of operating Systems 
to manage concurrently running programs, multiprogramming became a 
reality ((/Bouhana 78/)).

In an attempt to understand and quantify resource usage and 
concomitant delays that result when programs compete for service in 
a multiprogrammed environment, performance analysts have constructed 
several representative methods to model oomputer systems. "Studying 
these methods are of a vital importance in the system design and 
evaluation process" ((/DeCegama 72/)).

Grenander and Tsao ( (/Grenander and Tsao 72/)) suggest that 
these quantative methods of design and evaluation of computer systems 
fall into three categories, namely;

1. Analytical Methods.
2. Simulation Methods.
5* Empirical Methods.

To apply computer performance methods, there are a number of 
considerations and problems of which the user must be aware. Different 
techniques are required for different computer systems measurement 
((/Goh 76/)). Also, there is no single tool or method which is 
capable, by itself, of evaluating all elements of a system. The 
nature of the questions to be answered will influence the choice of 
a technique, or techniques. The user must develop some criteria for 
the selection of appropriate performance assessment methods. The 
criteria to be considered include ;

* Understandability.
* Cost.
* Degree of resolution (accuracy).
* Ease of parameter optimization or estimation.
* Breadth of applicability.
* Relevance to actual system.

In order to highlight these methods and their differences, 
we will try to study them in the following sections.

^ Only one program could be running in the oomputer, and that program 
had exclusive use of all the systems' hardware and software resources 
for the duration of its running time.



2*2. Analytical Methods: (Non-Deterministic Modelling).

Analytical models represent system performance paramets rs 
strictly in mathematical terms. Simpifying assumptions may he used to 
avoid unnecessary complexity and to keep the mathematics tractable, 
provided that the necessary simplifications of the analytic model 
still preserve the important characteristics of the computer system 
which is to be evaluated.

Many computer system analysts prefer this approach, mainly 
for the following reasons ;

* It is an economical method compared to simulation.
* It can be used to optimise the design variables, 

whereas the the number of simulation runs required 
to accomplish the same task will be high.

* It is quicker to produce results than by simulation.
This approach, however, may have the following disadvantages:
* Limited in scope.
* Difficult to develop and build.
* Not easy to test the simplification assumptions.
"Queueing theory has been employed widely for the performance

evaluation of various classes of computer systems. The models include 
closed and open queueing networks, the treatment of various customer 
classes, and approximations which relax some of the restrictions 
necessary for the application of queueing theory" ( (/Von Mayhauser 79/)) 
The queueing network theory has been used by all available analytical 
methods, namely:

* Operational Analysis.
* Stochastic Analysis.
* Mean-Value Analysis.

Hence, the knowledge of queueing theory is essential in understanding 
any analytical tool. This theory was previously investigated by many 
researchers and for further information of this theory the reader is 
referred to: ((/Kleinrook 75, 76/)) ((/Murdoch 78/)).

2.2.1. Operational Analysis:

"Operational dialysis is a framework for studying the 
performance of systems during given periods of time. The system may 
be real or hypothetical, and the time may be past, present or future" 
((/Buzen and Denning 8O/)).



This kind of analysis was recently invented, about 1976 ((/Buzen 76/)), 
to construct a p:ecise mathematical tool to meet the following 
objectives:

1« Relate existing measurement data to other quantities that 
were not measured but which could, in principle, be 
empirically determined.

2. Verify the internal consistency of existing sets of measure
ment data.

3. predict the effect that certain modifications to the 
system or the workload would have on measured quantities.

4. Be simple and easy to understand.
5. The tool should be based on testable assumptions.
The general idea of operational analysis (or operational method) 

can be shown in the following diagram (see Figure 2.1.):

Step 1;
Initialization.

Step 2: 
Defining 
Operational 
Variables.

Step 3: 
Deriving 
relationships.

Step 4; 
Testing,

Figure 2.1. Operational Method.



step It Initialization.
In this step an observation interval is obtained: an interval 

of time during which system behaviour is monitored and measurement 
data is collected. The measured or computed quantities within 
observation interval are called operational variables.

Step 2: Defining Operational Variables.
Defining the operational variables that directly affect the 

performance indices of interest.

Step 3: Deriving Relationships.
The behaviour of the system is specified in this step by 

deriving the relationship between the operational variables. These 
relationships are represented by mathematical equations.

Step A: Testing.
At this step, the mathematical relationships are tested 

against the original objectives.
This method is considered by many researchers as equivalent 

or as an alternative to the traditional method of Stochastic analysis 
(or Stochastic modelling). ((/Buzen 7 6 / ) ((/Duzen 78/)) ((/Buzen 76a/)) 
((/Denning and Buzen 78/)). Other researchers find that this approach 
has several advantages to the traditional approach. These advantages 
can be summarised as follows ((/Sevcik and Slawe 79/))*

* Relevance to actual system: The fact that operational 
analysis is based on observable quantities and testable 
assumptions makes it easier to relate to system measurements.

* UPideratandability; Operational analysis can be understood
, even for large systems.

* Breadth of applicability: Since operational analysis
depends on testable assumptions, it has a wide applicability 
as a modelling technique. Its major application areas are 
((/Denning and Buzen 78/)):

a. Performance Calculation;
Operational results can be used to compute quantities 
which have not been measured.

b. Consistency checking:
A failure of data to verify a theorem or identity reveals 
an error in the data, a fault in the measurement procedure 
or a violation of a critical hypothesis.



o. Performance Predlotion:
Operational results can be used to estimate perfozrmanoe quantities 
in a future time (or indeed a past time) for which no directly 
measured data are available.

* Testability of Assumptions: Most of the assumptions of 
Stochastic analysis can neither be verified nor disproven 
in any finite period. While the assumptions of 
operational analysis can, in principle, be tested in 
finite time intervals.

However, some researchers do not find this approach suitable 
for parameter estimation and anticipated design and modification 
((/ifimtz 79/)) ((/Sevcik and Klawe 79/))* Buzen ((/Buzen 79/)) 
believes that, "the estimation problem is not really an integral 
part of either operational analysis or stochastic modelling. It 
is crucially important but an entirely separate issue". At the same 
time, Buzen believes that the performance analysis offers major 
advantages over stochastic modelling in performance prediction.

Operational analysis may use queueing theory, in which 
case it is called Operational queueing network theory ((/Denning 
and Buzen 77/))*

The important reason why queueing theory should be used, is 
the speed with which performance, quantities are computed using 
queueing network formulae. The operational queueing network theory 
may use some assumptions - e.g. flow balance, one-step behaviour and 
homogeneity, but these assumptions (as mentioned previously) can be 
tested for validity in any observation period.

2.2.2. Stochastic Analysis :

This analysis depends on queueing theory: it considers the 
system as consisting of service centres among which customers 
circulate. This analysis may also be called stochastic modelling 
or Probabilistic modelling, since the servicing time of a customer 
at a servicing centre is taken to be a sample from a specified 
distribution and the frequency by which the customer will move to 
another servicing centre is controlled by a specified probability 
distribution.

Let us now introduce the following:



1. Definition; ((/Ferrari 78/))
A stochastic procesa X(t) is a function of time t whose

values are random variables. The value of X(t) at time t*represents the state of the stochastic process at t « If each 
random variable may only take on a finite or a countable number 
of values, we have a discrete-state process or chain. Otherwise, 
we have a continuous-state stochastic process.

2. Evpothesis t
The behaviour of the real system (or the queueing network 

model) during a given period of time Is characterized by the 
probability distributions of stoohrtçtîc process if and only if the 
following assumptions hold ((/Sevcik and Klawe 79/))*
(a.) Successive service times are independant.
(b.) Successive transitions among service centres are independent, 
(c.) The process is ergodio.̂
(d.) The system reaches equilibrium.

3. Condition 1;
If (a) and (b) was assumed oncl if service time distribution at 
each centre is exponential then the system state (number of 
customers at each centre) is a continuous Markov process.
Note;
Markov modelling is important, because it forms the basis of 
elementary queueing theory. Readers not familiar with this theory 
are referred to /Kobayashi 78/,

4* Condition 2;
If (c) and (d) were assumed then the system is at a steady-state 
equilibrium, and the long term performance measures can be 
computed.

Based on the above, we can construct a stochastic model. 
Observable aspects of the real system - e.g. states, parameters, 
and probability distributions - can be identified with quantities 
in the stochastic model and equations relating these quantities can 
be derived. Although formally applicable only to the stochastic process 
these equations can also be applied to the observable behaviour of 
the system itself, under suitable limiting conditions ( (/Buzen 78/)).
The parameters of the stochastic process, representing the operation

The system is ergo die means long-term time averages converges 
to the mean values for stochastio equilibrium.



of the system, mast he estimated from observations during a finite 
time interval. The specific formulae depend on what measurement 
data is available and on the amount of detail in the queueing 
network model.

In order to validate the model, the estimated parameter 
values are plugged into the performance measure formulae, and the 
results are compared to the corresponding observed values in the 
observation period. The most common purpose for which models are 
created is to obtain an indication of how a system will bèhave in 
the future, either after its configuration has been altered or its 
workload has been changed. In order to accomplish this, it is 
possible to employ the same computational formulae as in the 
validation of the model, by using modified parameter values in 
order to reflect the altered circumstances anticipated in the 
future. Once the future values of the model parameters have been 
estimated, the obtained formulae are used to calculate the 
performance measures. These are then interpreted as equilibrium 
performance measures of a stochastic process.

Stochastic analysis has, however, certain disadvantages 
((/Denning and Buzen 78/))*
1. It is impossible to validate the stochastic hypothesis and conditions, 

hence an analyst can never be certain that an equation derived
from a stochastic model can be correctly applied to the observable 
behaviour of a real system.

2. Stochastic analysis is an inductive mathematical tool:(it 
estimates unknown values from the projection period from values 
observed in the baseline period). Thus, one faces the problem 
of uncertainties in estimation of variables. (Note: this problem 
is not present in operational analysis, since operational 
analysis is a deductive mathematical tool).

3* Stochastic analysis can be applied to study a special class of 
computer systems because the type of assumptions used by this 
analysis cannot be easily found in real systems (e.g. the 
assumptions of equilibrium or stochastic indépendance of 
successive service times).

4« Stochastic modelling may not be so easy to understand.
5. Stochastic modelling cannot be relevant to a real system, for 

example, in real systems transactions between devices do not 
follow Markov chains or processes, and service time distributions 
are not generally exponential ( (/Ton Mayhauser 79/))*



On the other hand, Stochastic models bestow certain benefits. 
Independant and dependant variables can be defined precisely,hypothesis 
can be stated succinctly and a considerable body of theory can be 
called on during analysis ((/Denning and Buzen 78/))*

Finally, the relationship between Stochastic analysis and 
operational analysis is given by figure 2.2, ((/Buzen 78/)).

Operational Variables Stochastic Parameters

Operational
Analysis

Real
System

Modelling ^ Stochastic
ModelAssumptions

1F
Analysis or 
Simulation yt

Actual
performance

Ergodic
Theorem

Stochastic
Resultsand law of 

large numbers

Figure 2.2. The relationship between operational analysis 
and Stochastic modelling.

2.2.5, Mean-Value Analysis;

This is a new mathematical tool, used to calculate some 
important performance indices, such as mean response time, throughputs 
and queue length in closed queueing networks. A primary advantage 
of mean-value analysis over the traditional approach (i.e. Stochastic 
Analysis) , is its improved numerical stability ((/Buzen and Denning 80/) 
This analysis uses the Sevcik Mitrani ((/Sevcik and Mitrani 78/)) 
arrival theorem to calculate the mean-value for successively larger 
loads N.

Reiser ( (/Reiser 79/) ) found queueing networks with product-
1 2 form solution remarkably robust with respect to routing and service-

time distributions. This robustness leads to the new mathematical
explanation called Mean-Value Analysis.

"̂Troduct-form solution; gives the joint queue-size up to a normaliz
ation constant. This constant has a simple analytic expression 
in the case of open queueing networks but is a sum of product terms 
of closed system.
Robust; Statisfièians call a system robust if only the mean enters 
into the solution.



Mean-Value analysis uses some basic equations which can be
applied iteratively for any value of N.

let i = device number, K ■ number of devices.
N = number of jobs.

overall mean queue length at device i.
Q, « mean queue length seen by arriving customer at Ai

device i.
R^(N)* mean response time of device i, i * 1,...,K, 

given N jobs.
R^(N)» mean response time of the system given N jobs.
X^(N)a mean system throughput given N jobs.
V^« mean number of visits per job to the device i.
S.(N)» mean time between completions when the state of 
^ ISthe system^equal to N.

def
(N-1 Sevcik-Mitrani theorem.

Then the basic mean-value equations are

R̂ (S)= 3̂  (1+ ̂ (H-1)) I .......  (1)

and
where i = 1

   .(2)
Using the forced flow law,we get

X^(N)« V^X^(N) ....forced flow law. 
where X^(H)= throughput at device i given N 

we_ge^
........  (3)

where i«l,...,E.
Equations(l),(2) and (5) can be used iteratively,once the values V̂  
and are given. The iteration begins with N=1 and the boundary 
condition Q^(o)=0.

It is clear that this type of analysis uses no normalization
constant to calculate the important performance indices,and hence theqformulae have^simple mathematical structure. This criteria is not 
available in the two previous analytical methods,i.e.Operational 
analysis and Stochastic analysis.



Some ideas of extending Mean-Value analysis were given by Buzen 
and Denning ((/Buzen and Denning 80/)) and by Riser and Lavenberg 
((/Riser 8l/)) ((/Riser and Lavenberg 80/)), which the reader is 
referred to for farther information.

2,5» Simulation t

"Simulation has been defined as an evaluation and design 
technique which represents, by a model, the behaviour of a system 
in the time domain. The observation of the behaviour in time of 
the systems model, under stimuli generated by a model of the 
system's inputs, produces numerical results which may be used in 
evaluation studies. A model suitable for this purpose is called a 
Simulation model or simulator" ( (/Ferrari 78/)) * Simulation is 
applicable whenever we have a certain degree of understanding of 
the process to be simulated. The ideal simulator should meet 
specific requirements ((see/Cavouras and Davis 8l/)).

Simulators can be classified as shown in Figure 2.3*

Degree
of.
Exactness

A
Physical

Scaled
Analogue

Management
Computer

Mathematical

Degree of 
Abstraction

Figure 2.3* Classification of Simulation Models.

Simulation models can be thought of( and hence classified) 
in a continuous spectrum, starting with exact models of reality and 
proceeding to completely abstract mathematical models ((/Shannon 75/))* 

Althou^ Simulation is an excellent method, many analysts 
avoid it because the development of a good simulation model is often 
expensive and time consuming. Many researchers tried to overcome 
this problem, using approaches such as the following:



2.

General Simulation Model: ((/Goh 76/))
Here the Idea is to design an extensible" simulation 
model as a general simulation model, which can then 
simulate any specific models easily.
Structured Approach;
This approach takes the view that the process of 
developing a simulation model should pass through 
the following stages (see Figure 2.4.) ( (/Mirham 72/)) :

Modelling
Goals

5 Inference

2 System 
Synthesis

5 Model
verification

4 Model 
Validation

System
analysis

Figure 2.4. Simulation Model Development Stages.

Stage 11 System Analysis.
The initial stage of development, during which the 

salient components, interactions, relationships and dynamic 
hehaviour mechanisms of a system are isolated.
Stage 2: System Synthesis.

The stage of development, during which the model of the 
system hehaviour is organized in accordance with the findings 
of the proceeding system analysis stage, and during which 
appropriate data is delineated and collected.
Stage 3 : Verification.

The third stage of development, during which the



model's responses are compared with those which would have 
been anticipated if the model's structure was prepared 
as intended.
Stage 4: Validation*

The stage of development during which the responses 
emanating from the verified model are compared with 
corresponding observations of, and measurements from, 
the actual system in order to establish the verisimilitude 
of the model and the modelled system.
Stage 5 : Inference •

The final stage of development, concerned with the 
definition of experiments with, and comparison of the responses 
from the verified and validated model.

The structured approach represents a modelling method, which 
again requires a 'good* design methodology. Cavouras ((/Cavouras 78/)) 
argued that his Simulation modelling methodology (or approach) is 
more realistic than the available methodologies. Cavouras' approach 
is mainly based on the fundamental requirement that a simulation 
tool should have the same logical structure as the software being 
modelled, and the method proposed was to embed the supervision 
of a computer operating system in a simulation of its environment, 
so that the overall system performance can be measured by direct 
experimentation ( (/Cavouras and Davis: 8l/) ),

Simulation provides an accurate model, but it may require 
an inordinate cmount of time for the determination of the system 
performance. In the same sense, simulation is very expensive, 
especially when we want to use it to optimise the future behaviour 
of a system. There is, in fact, very few models which tried to 
overcome the optimization problem, for example the SOERT (System 
and Computer Evaluation and Review Technique) simulator ((/ihrer 67/))#

2.4* Empirical Methods :

These methods represent an alternative to the modelling 
techniques described by the last two sections• These methods are 
appropriate when performance data of (an) actual system(s) are 
available. Statistical methods use these data to forecast future 
performance.

Empirical performance results can be obtained through 
measurements .Measurements may be from an actual system or from 
a model of a system. The collection of these measurements can 
be performed with hardware monitors, software monitors and



accounting packages.
The need for performance measurements can arise out of 

different situations. Lucas ((/Lucas 7l/)) suggested three general 
reasons for undertaking performance evaluation (i.e.modelling and 
measurements), namelyt

1. Selection Evaluation - choosing from a set of new possible 
alternatives » which system best meets a user's cost / 
performance specifications*

2. Performance Projection - estimating the performance 
of a system which is not yet implimented, i.e.an aid 
in the system design.

). Monitoring - forecasts the impact of possible changes 
of the software components or the user load applied 
to the system, i,e. system tuning or balancing.

Approximately, the same reasons were presented by Grenander 
and Tsao ((/Grenander and Tsao 72/)).

The major applications of performance measurements are 
summarized as follows ((/Buzen 77/))*

a. Accounting;
Since the changes for running a program are typically 
based on the resources used by that program, sub-routines 
for measuring CPU time, l/O operations, memory requirements, 
and so on, are an integral part of most accounting packages. 
In addition, using measurements as inputs to changing 
algorithms, accounting packages often make basic 
measurements of data available in row form for other 
purposes.

b. Trend Analysis;
Many data processing centres maintain graphs or tables 
of performance measurement data which has been aggregated 
on a daily, weekly or monthly basis. Data of this kind 
can be of great value to managers and planners who wish 
to examine trends in workload growth, identify peak periods 
and cycles, and attempt to determine when a system is'run
ning out of capacity*, (in the sense of requiring an 
upgrade in order to maintain acceptable levels of service).



o. Tuning;
Careful examination of measurement data often leads 
to the discovery of imbalances and ineffioiences within 
a system. Frequently, these problems can be readily 
corrected, and a dramatic improvement in overall 
performance can be obtained. This, is generally the 
case when gross imbalances are found in the loads on 
different x/o devices or channels, and when Inefficient 
search algorithms (e.g. linear search) are replaced by 
more efficient algorithms, 

d. Evaluation of Changes;
The use of measurement data for trend analysis and 
tuning leads, naturally, to a desire to use measurement data 
for the evaluation of various changes to a systems hardware, 
software or workload. For example, managers and planners 
often need to determine the performance impact of 
changes such as installing a higher performance CPU, 
more main memory, or larger discs. Similarly, system 
programmers involved in tuning may be interested in the 
performance impact of a new swapping algorithm, et change 
in the ammount of memory allocated to the operating 
system, or reassignment of priority levels among various 
classes of work.

However, it is often difficult to obtain accurate measurements 
of a particular quantity of interest due to inadequate system 
instrumentation, or due to gross interference caused by the 
measurement technique ((/Adams 78/))#

It has been suggested that the best way to use measurement 
as a system evaluation technique is to connect both measurement and 
evaluating models (simulator or analytic model) in one process. This 
has been employed by Hoetzel ((/ifoetzel ll/)) in his meta-system 
(see Figure 2.5)# (next page)

The reader interested in measurement techniques is referred 
to ((/Goodman 72/)) ((/Brad 7l/)) ((/Ohouinard 76/)) ((/Calingaert 67/)) 
(.(/Kim'bleton 72/)) ((/ffilliams 72/)).
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2*5» Other Methods:

To complete the list of the techniques used in design, 
measurement and evaluation we have to include:

2,5*1* Performance- Oriented Design Technique.
2,5.2. Benchmarking Technique•

2,5*1, Performance-Oriented Design Technique:
This has heen summarized hy Sigmon ((/Sigmon 79/)) as follows: 
This method can he used to aid computer science designers, 
hy generating initial system designs for an iterative design 
process or hy allowing the investigation of many different 
system configurations, quickly and inexpensively. The design 
models are hased on queueing networks upon which an 
optimization problem has heen superimposed. The objective 
of these optimization problems is to optimize a system 
performance index, such as throughput, subject to a cost 
constraint.
In fact this method is not quite new, since the idea of 

using optimization in system design has heen used hy several researchers 
((/Decegama 70/)) ((/Irani and Uppal 72/)),
2.5,2, Benchmarking Technique:

Benchmarking represents another alternative to modelling 
which has heen in use since the earliest days of computing.

Benchmarking can he regarded as a performance 
calculation proceedure in which the system itself performs



the calculation by actually processing the workload on the 
hardware under the control of the software. The reader is 
referred to ((/Benwell 75/)) and ((/Sime 75/)) for more 
details.
Performance-Oriented design is a good way to estimate the 

future design aooording to many given constraints, such as cost, 
workload, technology.••etc. The only problem of using this method 
is that we have to choose a limited number of design variables to 
keep the optimization problem mathematically tractable.

Benchmarking has major difficulties ( (/Buzen 77/) ) and it 
is considered impractical.

The following diagram (figure 2.6) lists the available 
design and evaluation tools:
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2.6. Conolusion:

Tn this chapter several design and evaluation methods were 
introduced, and it was argued that each method has its own 
characteristics and advantages, therefore there is no single best 
way to design and evaluate a computer system. In fact, a designer 
should deal creatively with the problems he faces.

Due to the enormous task facing a system designer, it was
decided to concentrate on a few important design and evaluation
tools that can help the designer to attack the problem, on any 
level of detail and accuracy he wishes.

The selected design and evaluation methods are*
* Simulation.
* Operational Analysis.
* Performance-Oriented Design.

The selection has been made according to the criterion
and factors mentioned in Section 2.1., except for the cost factor
of the simulation technique which is quite an expensive method.
This problem will be overcome in the third chapter, by combining 
the simulation with the regression analysis to produce lower cost 
models.

The selected methods will be studied in the following chapters.
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5 • Introduction :

Broadly speaking, the performance of a computer system is 
determined hy its hardware (speed, capacity,...etc.), the demand (job 
types, arrival patterns,.. .etc.) placed on it and by scheduling 
strategy employed (the order in which jobs are executed) ((/Coffman 
and Matrani 75/))* These three important performance elements 
represent the characteristics of the system hardware and software.
Thus, any ideal system design and evaluation tool should include 
these characteristics.

Jfciny of the existing tools, however, do not represent the 
software and hardware system characteristics. As an example, the 
conventional analytic annroach which views computer systems as 
configurations of static hardware resources (CPÜ*s, memories, l/o 
channels and devices) and user jobs or tasks as dynamic entities 
that flow through these configurations. This approach ignores the 
important characteristics and effects, especially those of the software. 
Moreover, some analytic researchers ( (/Kumar and Gronsalves 79/)) try 
to solve the problem of the software representation by reversing the 
conventional approach —  they view a computer system as a configuration 
of static software modules, and the processors that execute this soft
ware the dynamic entities that flow through this configuration. But 
again, this idea cannot lead us to construct an ideal tool. What we 
actually need is a tool which can incorporate the software and the 
hardware of the computer system at the same time. Some other 
researchers go further and represent the incornoration level as a 
fourth generation computer system concept ((/Rakoczi 69/)).

The incorporation level has been solved using simulation 
techniques which can represent the same logical structure of the 
software being modelled, and its hardware. Simulation offers a way 
to evaluate a system with relative accuracy prior to its development.
By varying design parameters, the system designer can hope to identify 
potential bottlenecks, avoid costly design mistakes and estimate some 
of the guess work of identifying the most suitable system solution.
Many researchers ((/Von Mayrhauser 79/)) ((/Ferrari 78/)) find 
simulation a very expensive approach if used as a tool for system 
modifications and evaluation. Thus we will try in this chapter to 
overcome this problem by combining the regression analysis techniques 
with the simulation to produce simple hybrid models.



Moreover, designing a very detailed simulator which satisfies 
the requirements of an ideal design and evaluation tool is not an easy 
task. We find it is more convenient for the purpose of this research 
work, to use an available ideal simulator. In fact, this type of 
simulator was presented by Cavouras ((/Cavouras 78/)) in which the 
supervisor of a computer system was embedded in a simulation of its 
environment so that the overall system performance can be measured by 
direct experimentation. Hence, we can consider this simulator as a ^ 
model to a fourth generation oomputer system, since it incorporates 
the software and the hardware of the system being modelled. Besides 
that, it has been argued that this simulator satisfies the ideal and 
evaluation tool requirements ((/Cavouras and Davis 81/)).

For the above reasons we have chosen Cavouras * simulation tool 
as a basis to study the simulation design and evaluation techniques. 
This simulator will be called, throughout our research work, ^neral 
Simulation ̂ ool (GST).

The next section of this chapter requires a knowledge in 
operating systems, and for this purpose the reader is referred to 
((/Hansen 75/)) ((/Bayer, Gratam and Seegmiiller 78/)) ((/Watson 70/)).

3.2. The GST Simulation Methods ((/Cavouras 78/))

3.2.1. Generalities s
The GST represents a method of constructing a tool for general 

purpose,multiprogrammed, virtual memory computer system. The GST 
consists of a two level simulation; a simulation within a simulation. 
The inner simulation models the execution of the user processes. The 
outer simulation is partly driven by the former and partly by itself 
(includes the interrupts and the system processes) to model the overall 
behaviour of the system (see figure 3.1.).

GST Overall Structure
Overall GST Tool (i.e. Kernel Interface)

Outer Simulation
Inner Simulation 
1 2  3 4

Figure 3.1* The GST Design and Evaluation Tool.



GST Routines:
1: Remove and insert in event list.
2t Remove and insert in an interrupt list.
5* Interrupt event routines.
4; Dispatcher.
5* A re-entrant coroutine program for all user process with its own 

"remove and insert in event list(s)" routines.
6t One coroutine for each system process (some of these coroutines 

are exact replicas of the corresponding system processes).
7* A routine which traps primitive calls and schedules events.

In general, GST is based on the concept of replicating the
real system supervisor by embedding it in a simulation of its 
environment so that the overall system performance can be tested by 
direct experimentation.

Briefly, GST consists of the following modules:
1, An uninterrupted kernel interface which has one-to-one 

correspondance with the real system events (traps and 
interrupts).

2. A re-entrant coroutine program which independently models 
the execution of all user processes.

5. A set of coroutines, one for each system (supervisor) process 
in the system.

4. Routine which accepts (traps) primitives (supervisor) calls 
from the above coroutines and converts them into scheduled 
events before returning to the overall system simulation in
1. above.
The above four modules, in fact, represent the software part 

of GST (i.e. the operating system), which consists mainly of a kernel 
and a set of processes (supervisor and user), communicating and 
synchronised by message passing. The kernel and supervisor processes 
are asynchronous monitors ((/Wettatein and Merbeth 80/)) in charge of 
particular resources. The hardware part was represented in GST by 
selecting typical computer system hardware configurations. In the 
meantime, GST provides a very structured scheduling system in which 
the processes can compete for resources in a highly organized 
environment. Scheduling is a very vital subject, and it represents 
one of the important parts of the software components which is usually 
missing in conventional approaches. Hence, this subject deserves more



attention and we will try to highlight on the scheduling facilities 
available in GST.

3*2.2. Model Components;
The complete description of a system model consists of the 

following types of information ((/Hellerraan and Conroy 75/))*
1. Workload Description.
2. System Structure.
3* Scheduling.
4* Performance Indices.
The workload description states how jobs are to be character

ized, for example, by arrival and required execution times. By system 
structure, it is meant the individual resources and the paths by which 
jobs may be moved into, out of, and within the system. The scheduling 
rules specify how jobs are selected for movement within the system. 
Common examples include PCFS (First come, ^irst ̂ erved) aaid SXi^ 
(Shortest execution f^st ̂ erved). Performance-Indices define one or 
more ways in which the * goodness' of the system is, to be measured or 
judged. Hence, we will try to follow this classification in describing 
the GrST model.

3.2.3. The Selected System of the GST;
The general system to be studied and modelled supports a number 

of terminals. Each of these place'•'» noo-computational load and many 
i/o operations. This is a virtual storage system which could be paged 
or segmented. Demand paging is used to move required portions of a 
user's address space into main storage. A page fault occurs if the 
referenced page is not in main storage.

The paging is done from drum and disc. The system also 
maintains some waiting queues that are available to each system device. 
The degree of multiprogramming is limited or affected by the working 
sets of processes. This is done to avoid thrashing. The jobs in the 
system may have different . priorities, which can be class«fW in 
the system input parameters. Also, the jobs may have different sizes. 
The ratio of the response time to think time is assumed to be small 
since we assume the system is fast and powerful.

The overall hardware configuration consists of typical disc, 
drum, operator console, terminal interface, channels, main store and 
CPU (with up-to-date facilities). As mentioned previously, our 
overall software consists of a kernel and a set of processes (i.e.



supervisor and user). The system configuration is shown in figure 3*2. 
and some device characteristics are given hy table 3*1*

TerminalsOi

o

Disc Drum n r
Channels Operator Console

Main Store*
__"

k
r

CPU

Figure 3*2. The Selected Interactive GST Hardware Configuration

Device
Name

Transfer Time 
(m secs./byte)

Seek Time 
(m secs.)

Latency Time 
(m secs.)

Record Size 
(Bytes)

Drum 8.333e-4 0.000 8.000 32767
Disc 3*533e-3 7*300el 1.200el 32767

Table 3*1* Characteristics of Devices.

5*2.4* The GST Components;
3.2.4*1* As mentioned in section 3*2*2. , the GST consists of the 

following components t 
The Workload r

The GST treats a computer system in a heavy workload situation. 
This means that there are always jobs waiting outside the system. 
Whenever a program finishes, a new job arrives. It has been assumed 
that a typical program alternates between service at the GPU and at 
one of the l/O devices. After a service at the CPU, the program is 
either finished or it requires service at l/O device. The input jobs 
stream is considered as poisson distribution. The mean-interarrival 
time is a variable of the tool.

The workload is specified by many parameters, such as job 
size, number of interactions, scheduling parameters,..etc. Hence, it
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is difficult to specify the performance indices that affect the 
workload.

Number of jobs is considered to be a very large integer, 
otherwise the simulation program will consider it as a termination 
factor instead of the given simulation period,

3,2*4,2. System. Structure t
GST has the same software and hardware structure as the 

system being modelled. A typical system software is the operating 
system. Hence, GST operating system consists of a kernel and a set 
of processes (supervisor and user) communioating and synchronised by 
message passing.

The supervisor is constructed in a hierarchical way. It 
consists of several layers ; each layer contains one or more of such 
supervisor processes and each level implements a more convenient 
virtual machine for higher level processes. A process at a particular 
level operates in terms of virtual resources at lower levels and is not 
aware of what other processes and virtual resources exist at the san  ̂
or higher layers. In other words, a process at one level is restricted 
to call upon processes at lower levels only. Figure 3*3, illustrates 
the layout of the various layers.

The flow of processes inside the system is determined by the 
operating system structure and the relative priorities of these 
processes. Several queues are available in the tool (mainly for each 
supervisor process) which acts as another source for organising the 
flow of the processes inside the system. From figure 3*3* the GST 
consists of the following layers and processes;

a. The Kernel;
The major interface between the basic machine hardware 

and the operating system is provided by the kernel which 
is the innermost layer of the nucleus of the executive.
The kernel is not just a monitor — it is the only resident 
program which runs in Friveleged mode with interrupts 
inhibited ((/Lister 75/))* The kernel provides the 
following functions to the rest of the supervisor — 
short-term scheduling, virtual processors, protection 
(capabilities), interrupt handling, l/O scheduling and 
control, synchronisation and communication primitives 
and dispatching.

b. The Executive;
The executive consists of a set of monitors which have
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been structured in a uniform way. The monitors provide 
the service offered by the executive* These monitors 
are:

1. Store manager:
This monitor constructs a one-level virtual store from 

the two-level physical store* The store manager is invoiced 
by the process creator and the 0H7 manager, when a process 
is created and deleted respectively* It is also invoked 
when a page or segment fault occurs* The store manager 
invokes the disc and the drum managers.

2* Process management: (process scheduler or medium-term
scheduler or CPU manager)

It is responsible for allocating the processor between 
the active processes. This process is invoked by the 
process creator to allocate or delete process descriptors 
when a process is created or deleted. It is also invoked 
to perform medium-term scheduling (i.e. prepare the 
dispatcher list). Also, it is invoked by the job (long
term) scheduler to report on resource utilization and 
system response.

5* The device managers:
These monitors perform the actual input and output, 

thus hiding the actual physical l/o devices from processes* 
There is one supervisor process corresponding to each of 
the physical l/o devices and each such process synchronises 
its activities with the interrupts from its associated 
device, which are converted to messages sent to it by the 
kernel. There is also a terminal system manager which 
provides the interface for processes to communicate with 
the outside world through terminals. All l/O requests 
have to go through the appropriate device manager.

4* File monitor:
The file system monitor is concerned with the physical 

features of the file system, namely,
* Auxiliary storage management.
* Physical organization and access methods.
* Access control verification*
* Basic file system, and
* Symbolic file system*

The file system is modelled in a very simple fashion. 
Its function is to accept requests from other processes



and to send messages to the Disc Manager to satisfy these 
requests.

5, Process creator:
This simple monitor provides the facilities to create 

and destroy processes. It is invoked hy the job scheduler 
and by any other parent process. This process invokes the 
OFU manager, store manager and disc manager.

6. Job scheduler;
This monitor provides the long-term scheduling function, 

job initialization, accounting and preallocation of some 
system resources such as files. The job scheduler invokes 
the operator's console, the process creator and CPU 
manager. It is in turn invoked when a multiaccess user 
arrives at the system.

7* The CPU manager:
This monitor (also known as ALP manager or medium- 

term scheduler) calculates the priorities of the eligible 
processes.

c. User Processes:
This layer includes the user program and their run

time monitors. Each user process works in synchronisation 
with the lower level processes that it invokes.

3.2.4*3* Scheduling:
Scheduling strategies are evolved to solve problems of 

selection in operating systems. There are many examples of scheduling 
in all operating systems, some of them being ((/landly 7l/))*

* Allocation of time to processes.
* Allocation of peripherals to processes.
* Allocation of core store to processes.
* Choosing the next task for an output device.
* Choosing the next job to be run.
* Allocation disc space to users.
The GST scheduling system consists of the following four levels:
1. Low-level scheduler (the dispatcher).
2. Short-term scheduler.
3* Medium-term scheduler,
4* Long-term scheduler.

These represent a multi-level scheduler system. The first two 
schedulers are embedded within the kernel♦ This kernel, in fact, 
consists of three modules ((/Lister 75/))*

* The first-level interrupt handler, which performs the



initial handling of all interrupts.
* Procedures which implement the inter-process communication 

functions and other primitives. These procedures are 
invoked via primitive calls in the processes concerned.

* The dispatcher, which switches the central processor(s) 
between processes.

The kernel is automatically entered in any of the following 
circumstances ;

i. An interrupt occurs.
il. A process issues a permitive to execute some function 

or requesting the use of a priveliged instruction.
The permitives available in GST kernel are:

* SENB-MESSAGE.
* EECBIVE-EVENT.
* BECEIVE-MESSAGE.
* START-PROCESS.
* CREATE-PATH.
* CHARGE-BLIGIBLB-SET-NtJMBER.
* INITIATE-IO.
* ACTIVE-PROCESS.

ABORT.
^ HALT.

Also,, the following subroutines (procedures) are used by the kernel 
to collect some important measurements,(e.g. interaction time, time 
blocked, time ready...etc.).

* nr-STATISTICS (QUEÜE-MMBER).
* OUT-STATISTICS (QXJEUE-MMBER , TBIE-IN).

How, to give a brief idea of the scheduling environment we 
present Figure 3.4. which represents a model of the system operations 
in terms of flow of jobs and processes.

Pi'ocess-Scheduler Process-Scheduler
unblock(r)
block(r)block Sohe-

blook(r) 
I

dispatch
unblock (r) completed jobspre-empt or 

(resume)
egriving jobs

(stopped or runnable)

Figure 3*4. Schematic Diagram of the Scheduling Environment in GST.



Finally, the important data stracturea available in GST are:
1. The process descriptor and the process descriptor table,
2. Message buffers and queues,
5. Job descriptors and the job descriptor table,
as well as several data structures used for memory management. In the 
meantime, we will continue to discuss the GST multi-level scheduler in 
considerable detail:
3.2*4*3*!# The Low-Level Scheduler (The Dispatcher):

The dispatcher is involved after the handling of an interrupt 
has been completed, and to allocate the central processor among the 
various processes in the system. Its function is limited to choosing 
the next process to be executed from the processor queue (the queue of 
eligible processes). The dispatch process can be summarized by the 
following algorithm in a Pascal-like notation:
Pt = dispatcher-list-headÎ
if P 0  HIL (* if there is a ready process*) then
begin

if P < > current-process (* the process which was executing
just before the kernel was invoked*) 

then
begin (* COHTEXT SWITCHIKG, privileged instructions*)

RESTORE the context of process P; 
current-process : ■ P

end;
ENTER (* the current-process, another privileged instruction*)

end;
(* you might want to save the current-time at this point, for latter 
calculation of the CPD-idle-time* )
(* idle loop*)
While true ̂  (* or you can use PAUSE (or WAIT) , a privileged 

instruction*)
(* Alternatively, a null or waiter process can always be the 

last one (the one pointed to by dispatcher-list-tail) on 
the dispatcher list, in which case P will (or should be) 
always nonNIL, and it will be entered. In this case, the 
null process's run time will be equal to the CPU-idle-time 
(non-productive rather than idle)*).

3.2.4.3*2. The Short-Term Scheduler:
The functions of this scheduler can be summarized as follows:

1. To allocate resources to processes as soon as they become 
available. Scheduling decisions taken at this level



determine the rate at which the system is able to respond 
to real time events.

2# The short-term scheduler simulates a virtual machine for 
each process and implements the set of primitives which 
enable concurrent processes to achieve mutual excusion, 
synchronization and communication with one another.

Since this scheduler is invoked whenever an interrupt (internal 
or external) occurs, its function should be confined to the examination/ 
modification of the state of processes and the collection of measure
ments for use by medium and long term schedulers#
3.2.4*3 *3* The Medium-Term Scheduler * (CPU Maziager)

This scheduler performs the following functions:
* Prepares the dispatcher list.
* Processes the events collected by the short-term scheduler.
* Calculates the resource allotment of the processes.
* Reports to long-term scheduler.
The medium-term scheduler is entered whenever a scheduling 

event occurs. The primaĵ r scheduling events are:
* Process is created and/or deleted.
* At fixed time intervals.
The above functions are designed mainly to provide high resource 

utilization, low response time, high throughput and low overhead times. 
The CPU-Manager process can be summarized in the following algorithm: 
declarations ; 
begin

UJITIAIi-ENTEYÎ (* The initialization (or setting up) of several 
important variables, such as free list pointer, 
dispatcher list pointer...etc., is performed*) 

M&IN-EHTRY; (* In this procedure the following are performed:
A HECEIVB-bVENT permitive is issued specifying 
the permonant ports to the job scheduler, store 
manager and the process creator process 
If activation is received then 
MANAGER (* This procedure performs the medium- 

term scheduling function*)
else
case message-command of
CEIEATE: begin

(* This entry is invoked whenever the
process creator process requests a
descriptor to be reserved for a process 
to be created*)



end;
LOADED* begin

(*This entry is invoked whenever a 
process has been created*) 
end;

LOAD-FAILED * begin
(*This entry is invoked following 
an unsuccessful attempt to complete 
the creation of the process 
specified in the message*) 

end;
REPORT: begin

(*This entry is invoked whenever the job 
scheduler inquires on the system load 
in order to decide whether or not to 
admit a new multiaccess job into the 
active job mix*) 

end;
DELETE* begin

(*This entry is invoked when the process 
creator requests the deletion of the 
process specified in the message 
identifier*) 

end
end (*case*) *) 

end (* CPU-Manager *)

3.2.4.3.3*1. The Design of CPU Manager Procedure:
The policy of the CPU Manager procedure chosen in the GST is a 

deadline scheduling one. In this policy the process priority is 
basically dependent upon an estimate of how long a process will take 
and how long it has run. In particular, this deadline scheduling 
policy is a policy driven one in which processes are ordered according 
to increasing times of their (current) interactions*

The policy functions used in GST are*
a.m̂  V  0 C  R <  tg

t̂  (a) « j " “iHF̂  V   ̂^  ÎNF
^INF’̂ b̂HF V  ̂^  ̂ BIF



where R, t , are ail expressed in time units,
are dimensionless and R represents the amount of service received hy 
the process. The shape of these policy functions can he shown in 
figure 3.5.

(i.e. selfish 
round rohin)v

lower priority(critical
time)

t0
FCFS
higher priority

Ast
Assume ;

t

Figure 3 •5» Shape of Policy Function and Critical Times.
For more information about these policy functions refer to 

((/Cavouras 78/))* The scheduling is implemented as a dynamic balance 
scheduling system (i.e. the load is adjusted according to the existing 
equipment or configurations). Again, for further information the 
reader is referred to ((/Denning 69/)) and ((/Ootlieb and Schonhach 80/)).

3.2.4*3#4* The Long-Term Scheduler (The Job Scheduler)*
The functions of this scheduler can be summarized as follows*

* To allocate virtual machines to users (jobs) according to 
rules laid down by the instalation management.

* Establishment of the identity and authority of users, the 
input and analysis of their requests*

* The initiation and control of users computations.
* Accounting users’ resource usage.
The long-term scheduler is invoked when a job enters or leaves 

the system. The GST policy of the multi-access long-term scheduling 
can be summarized as follows:

The job scheduler used here is simple. There is a specific 
mavlTmim number of terminals on the system at any time.
This number, a say, is fixed or the operator of the 
computer system can set a limit on the total number of 
users allowed to dial into the system.

3.2.4.4* Performance Indices;
A performance index is a descriptor which is used to represent



a system’s performance or some of its aspects ((/Ferrari 78/)). In 
GST we can identify three kinds of performance indices (or parameters). 
The input parameters corresponding (in general) to the workload, 
internal parameters corresponding to system hardware variables and 
output parameters corresponding to the user-oriented and system- 
oriented performance indices of interest to evaluators.

The GST performance indices can be classified as in figure 3,6. 
In the following the reader is assumed familiar with ((/Rytheway 80/)).



Figure 5.6: The GST Performance Parameters and Indices.

* The abbreviation used in the relation matrix can be found in 
abbreviation appendix A.2.
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3•5• Experimentations :

The aim of this section is to use the GST as an aid to generate 
an analytical performance prediction tool. This will he attempted 
using regression analysis techniques in which the results of several 
tests on the GST are modelled, using the regression analysis techniques 
to produce several hybrid models. The hybrid models (i,e, equations) 
represent the result of combining the simulation technique (using the 
GST) and the regression analysis techniques. Hence, we may call the 
analytical performance prediction tool as Simulation/Regression tool. 
This tool can offer a number of advantages — in particular the 
following benefits*

* By combining simulation and regression analysis techniques, 
the advantages of both modelling techniques may be exploited,

* It enables the analyst to obtain approximate solutions,
* It requires substantially less main memory space and central 

processor time than the GST. Hence, it is less expensive.
* It can predict the effects of the changes over the limited 

simulation time given by the GST.
The number of tests (and hence the number of hybrid models) 

necessary will depend on the number of variables (i.e. performance 
parameters and indices) and on whether the analyst decides to use a 
classical approach or a fully factorial consideration of all the 
variables, For the purpose of our research experiments, the classical 
approach has been used. All the variables are properly controlled, no 
two variables being allowed to change in ai^ one test. For the purpose 
of the second approach, the reader is referred to ((/Baird 62/))
((/Cox 58/)) ((/Kempthome 52/)).

The reader should also note that the variables used in the 
simulation/regression tool is a subset of those used in GST, The 
subset chosen represents the variables of an interactive computer 
system.

The tests will be performed using several case studies (see 
the following sections). All oases have been analysed under heavily 
loaded system conditions. A heavily loaded condition is likely to 
happen after a long run of the GST, To achieve this, we have selected 
the simulation time to be long enough (specifically, simulation time » 
35 min, ),
The case studies presented in this section are*
* Case 1* Analysis of response time vs, no, of users,



CHJ busy time vs, no, of users and 
interactive throughput vs, no, of users,

* Case 2: Analysis of response time vs. no. of tasks/user interaction,
CPU busy time vs, no. of tasks/user interaction,

and interactive throughput vs. no. of tasks/user
interaction.

* Case 3* Analysis of response time vs, average think time,
CPU busy time vs. average think time and

interactive throughput vs, average think time.
* Case 4«Analysis of response time vs, mean inter-arrival time,

CPU busy time vs. mean inter-arrival time and 
interacive throughput vs, mean inter-arrival time,

* Case 5* Analysis of degree of multiprogramming vs, no, of users,
drum utilization vs, no, of users,
disc utilization vs, on, of users,

terminal connect time vs, no, of users,
no. of multiaccess jobs processed vs. no. of users and

ratio of simulation time to real time vs, no, of users,
* Case 6* Analysis of degree of multiprogramming vs, no, of tasks/

user interaction, 
drum utilization vs. no, of tasks/

user interaction, 
disc utilization vs, no, of tasks/

user interaction,. 
terminal connect time vs, no, of tasks/

user interaction, 
no, of multiaccess jobs processed vs, no.of tasks/

user interaction, 
and ratio of simulation time to real time vs. no, of tasks/

user interaction,
* Case 7* Analysis of degree of multiprogramming vs. average think time,

disc utilization vs. average think time
drum utilization vs, average think time

termj.nal connect time vs, average think time
no, of multiaccess jobs processed vs. average think time

and ratio of simulation time to real time vs. average think time,
* Case 8: Analysis of degree of multiprogramming vs, mean interarrival

time,
disc utilization vs, mean interarrival

time,



drum utilization vs. mean interarrival
time,

terminal connect time vs. mean interarrival
time,

no. of multiaccess jobs processed vs.mean interarrival
time,

and ratio of simulation to real time vs. meam interarrival
time.

The simulation/regression tool should be constructed using the 
method followed in the above mentioned case studies. For further 
information the reader is referred to section 3*4.

The reader is also referred to Appendix A.I. for further 
information on the regression analysis and some other helpful statistical 
methods ((/Sprangins 79/)) ((/Rehmann and Gangwere 68/)) ((/Gomaa 76/)). 
3*3.1. Case It Effects of performance parameter: number of active users.

The run of the GST was made in this case varying the workload 
from 16 to 48 active users in steps of 8. Refer to table Cl.l and 
graphs Cl.l, Cl.2, Cl.3, C1.4» Cl.5 and Cl.6.

The relationship between the parameter, number of active users 
(m) and the selected performance indices (i.e. average response time (R), 
CPU busy time (PBT) and interactive throughput (x)) can be constructed 
from the direct graphs (Cl.l, Cl.2, and Cl.5) using regression analysis 
(curve fitting) and under heavy loaded system condition (i.e. simulation 
time = 35 rains.) These relationships represent simple hyhnld models 
which can be expressed using the relational graphs (Cl.4* Cl.5 and Cl.6) 
and table Cl,2.

Performance
Index

Relationship
Equation

Regression
Constant
Values

Graph.
No,

Equation
Number

Average 
Response 
Time (sec.) •

R = a F a * 5,00 
b = 0,02

Cl,4 El,l

CPU Busy 
Time (fo)

PBT=a+blnM a = -5.7 
b = 0.32

Cl.5 El,2

Interactive 
Throughput 
(Processes/ 
mint )

X=a+blnM a = 0,91
b =* 0.41

Cl.6 El,3

Table No, Cl.2
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16 I H S % MO M2

fUftp̂ K
'Twnc
rSec.̂

5 33% 3.30 3.Ml 3-31 6/-55
10 3. Si 5.44 6.64 6-14
li W . 13 5,61 6. 6 & "9- 65 %-64 .
±£> 3 • 1S 5.55 T-. 15 ^.96 4-6%

. 15 4.90 4.1% 6.6S 6-13 10.50
00 y.%1 6> .40 6.6 1 &.05 \O.4O
35 >.I0 9 .If % ■ 4.H O tl

CRÜ.
Busa
Tme
*Vp.T)
( V O

■— 5 - O T
#.14 fT.11-36

0. T. .rim-
n-4fe

jZiZL- 16 .%1.
— .̂”TV
13-91

W# I.
It-OM 11.94

CîT;-
16 D9

— r.%!_ 11-90
10 W-ll 3.A-06 iq.\% 3-990 14-42 14.24 11.42, 1499 1495 30.34
15 \0.53 \%.16 34.9% 2\.39 31.04 16.45 31-31Si.31 3'-34
10 14.9-3 194 14.H? l\.b3 30.44 29.66 3LD% 35.11 14.21
Iff 4.59 IS .50 15.63 3.4.16 3.\.\M 31-46 24.9% 3L14 36.64 14.90
30 &/?$ 3-3-35 14 '4& 30.̂ 9 13.DO 3\.9& %)5% 309% 395% IA.40
35 %.W) 11-36 \q.Mq 14.u 10-64 30-91 3\.b\ 11-14 394} 24.05

chve
5 a-&o 3.. % Q 1.60 -3-00 a-40_______

10 1. é>û 1-90 3.3Û 1 qO 2-9D
15 £. 16 -3 '3 .. 3.06..... 3.\3 3L.49
ID 105 :_.%o 3-10 3.00 2-64
IS Ï.1& 2.6% 3-11 -3..O0.... & S3
30 1. to 1-66 2.-43 2.96 1-95

f as 1.4 2.50 i.-49 2 .3% x ^ s r
TAELE No. Cl.l

s
•H

OJr/1G
â
Q)

«

1
Graph nc 
Cl.l

-------------------- L_,

* 0 48 M—/ 
//

1 !
1 i

— f—  

/f

I 1 /'
/

/
40M

ijÎ' _______ < - f  i , / 32M

■ i\ / T T ,
- /

MM

_ . i / . r ~ r  ] / '
r  /

HjWA-

- f

U

• f j
\
1i

i

> o

Fk • OO kS

O

i
Graph nc 
Cl.2

iii
1

! 1 T ■ "'

i ! ,i"""
48 M 
40 M

i ^
I,»r—

32 Mj
-24 M

---- L i e  M

1
1

i - i

S irau1at ion Time ( ninl) Simulation, Time (min.)



Graph no,, 
01.3

00

V.ac
P-

P
t v-vj P
P
E-i

I

CO

J L

X  -40M

5 10 15 20 25 50̂  35
Simulation 'limé ( rain.) ►

o
r -

(U
E c

■H VJO
.'Eh

o
« I T

PA
O

t=>

o
O r o

1
Gra

G
ph no.
1.5

1
i

I 1
! !f i

-ja+ b In M !

? -
! ■' ! /

/  1 ! / ■ T
1 i

1'
! ' A I
\ /

f' / !
/

!
!

/' it : > :
11 1

i
j t 1 1 i

ICC

(M

4̂8M'■24M

0\
Q1o0)CQ
>-(Ü

E
•H
Eh VO

0)wcoA01
0

P i

0)
tz KV
ti

0)
>

M

Graph no. 1 f//
/

0 1 . 4
Î

t1.1 ! i:I 1 ----j---

a L . e #

.r*. 0 . 9 0  y

! ijA :.-'•r r r i -1

i i :' 1
^  1 1

i ; !: - ..
• ■ j

i
! I1 j

11

i 1 i i 1t
8 I6 24 52 40 48 56

No. of active users(Terminal?).
M

Graph no. 
Cl.6

juMXat a+D

t C\J

No. of activ'e users(Terminals
16- 24 32 40- 48 6̂ m

No. of active users (Terminals ),3—



Conclusions ;
* The effects of the parameter,number of active users on the selected 

performance indices are modelled. The models can be used to predict 
the future changes*

* For 'good' average response time keep the number of users below 44 
active user.

* The CPU is not over-utilized even for 48 active user.
* The average interactive throughput shows a slight increase with the 

increase of active users in the system.



3*3*2. Case 2: Effects of performance parameters No. of tasks per 
multi-access job.

The second case study addresses the effects of varying the 
average number of tasks per multiaccess job (TSM) on the selected 
performance indices (i.e. average response time (r ), CPU busy time (PBT) 
and interactive throughput (X)). The inxn of the GST was made in this 
case varying the workload from 1 to 4 tasks per multiaccess job in step 
of 1. The number of users has been fixed to 32 users.. Refer to table 
02.1 and graphs 02.1, 02.2, 02.3, 02.4, 02.5 and 02.6.

The relationships between the parameter, no. of tasks per 
multiaccess job and the selected performance indices can be constructed 
from the direct graphs (02.1, 02.2 and 02.3) using regression analysis 
and under heavy loaded system condition. These relationships represent 
simple hybrid models which can be expressed using the relational graphs 
(C2.4, 02.5 and 02.6) and table 02.2.

Performance
Index

Relationship
Equation

Regression
Constant
Values

Graph No. Equation No.

Average 
Response 
Time (sec.)

a = 4.83 
b = 0.20

02.4 ■ E2,l

CPU busy 
time (Yo) PBT = k k = 97.83 02.5 ■ E2,2
Interactive 
Throughput 
(processes/ 
min. )

X»a+blnTSM
a = 2.04
b-= 0.64 02,6 E2,3

Table no* 02.2

Conclusions t
* The effects of the parameter, number of tasks per multiaccess job on 

the selected performance indices are modelled. The models can be 
used to predict the future changes.

* The average response time is increased sharply by the increasing no. 
of tasks per unit of time in a multiaccess job.

* The number of tasks depends on what the user wants to do. For ov/r 
experiments, we will keep the number of tasks per multiaccess job 
equal to 3*

* The average number of tasks per multiaccess job has no effect on the 
CPU busy time.

* The average interactive throughput is affected slightly by the no. of 
tasks per multiaccess job.
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3,5,3. Case 3: Effects of performance parameter: Average think time.
The third case study addressed the problem of effects of 

varying the average think time (TH) on the selected performance indices 
(i.e. Average response time (r), CPU busy time (ËBT) and interactive 
throughput (x)). The run of the GST was made in this case varying the 
workload (i.e. using TH) from 10 to 40 secs, in step of 10. Refer to 
table 03,1 and graphs 03.1, 03,2, 03,3, 03*4, 03.5 and 03,6.

The relationships between the parameter, average think time and 
the selected performance indices can be constructed from the direct 
graphs (C3,l, 03,2 and 03.3) using regression analysis and under heavy 
loaded system condition. These relationships represent simple hybrid 
models which can be expressed using the relational graphs (03.4, 03.3 
and 03.6) and table 03.2.

Performance 
,Index

Relationship
Equation

Regression
Constant
Values

Graph Ho. Equation No,

Average 
Response 
Time (sec•)

R=a+b TH
a =3 10.35 
b *»-»0,09

03,4 E3,l

OHJ busy 
time (fo) "^=a+b TH a 3* 67.09

b = -O.49
03,5 E3,2 ,

Interactive 
Throughput 
(Processes/ 
min. )

X*a+b TH
a » 3.41 
b = -0,02 03.6 35,3

Table no. 03,2

Conclusions:
* The increase in average think time gives us a »good* response time

but reduces the average interactive throughput. Barber ((/Barber 79/)) 
in his research work proves that the average think time can be kept 
within a certain effective average. This can be done by decreasing 
the faulty transactions (i.e. increasing operator productivity),

* For the purpose of our experiments we will fix the average think time 
at 30 secs.

* The increase of average think time decreases the CHJ busy time. In 
particular, it increases the processor ideal time. This could be of 
benefit when the processor is bottlenecked.

* The effects of the parameter, average think time on the selected 
performance indices are modelled. The models can be used to predict 
the future changes.
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5•5*4* Case 4: Effects of performance parameter: Mean interarrival time* 
This case addresses the effects of varying the mean interarrival 

time (X) on the selected performance indices (i.e. average response 
time (r ), CPU hnsy time (PBT) and interactive throughput (X)). The 
run of the GST was made in this case varying the workload (i.e. using 
X) from 15 to 60 in step of 15* Refer to tahle C4*l and graphs 04*1,
04.2, 04.3, C4.4, 04*5 and 04*6*

The relationships between the parameter, mean interarrival time 
and the selected performance indices can be constructed from the 
direct graphs (04*1, 04*2 and 04*5) using regression analysis and under 
heavy loaded system condition. These relationships represent simple 
hybrid models which can be expressed using the relational graphs (04*4» 
04*5 and 04*6) and table 04*2*

Performance
Index

Relationship
Equation

Regression
Constant
Values

Graph No. Equation No.

Average 
Response 
Time (sec)

rT bX R= ae
a = 13*49 
b = -1.87 04.4 E4,l

CPU busy 
Time {fo) PBT = a+bX

a = 55*58 
b = —0.26 04*5 E4,2

Interactive 
Throughput 
(processes/ 
min. )

X = ae^
a = 3*75 
b —0.09 04.6 E4,3

Table No. 04*2

Conclusions :
* The effects of the parameter, mean interarrival time on the selected 

performance indices are modelled. The models can be used to predict 
the future changes,

* The increase of the mean interarrival time decreases the average 
response time and decreases the average interactive throughput.

* Increasing the mean interarrival time decreases the CPU busy time. 
This may be of benefit to the system if the CPU was bottlenecked.

* For the purpose of our experiments we will fix the average mean 
interarrival time to 15 secs.
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3*3*5, Case 5: Other effects of the performance parameter: Active 
number of users.

In this case, we will try to analyse the effects of the perfor
mance parameter, active number of users (M) on new selected performance 
indices (i.e. effective degree of multiprogramming (\̂ ), disc utilization 
(DU),drum utilization (DRU), terminal connect time (TOT), ratio of jobs 
processed to no. of active users (RJU) and ratio of simulation time to 
real time (RSR) ). This can be achieved by running the GST with a 
workload from 16 to 48 active user. Refer to table 05.1 and graphs 
05*1» 05.2, 05.3) 05.4) 05*5) 05*6, 05.7) 05*8) 05.9) 05.10, 05.11 and 
05*12.
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The relationships "between the parameter, active no. of users and the 
new selected performance indices can he constructed from the direct 
graphs (from 05.1 to 05.6) using regression analysis and under heavy- 
loaded system condition. These relationships represent simple hybrid 
models which can be expressed using the relational graphs (from 05.7 
to 05.12) and table 05*2.

' PEHPO'Rj;iANCE ’ 
INDEX

RELATIONSHIP
equation

REGRESSION 1 GRAPH > 
1 NO. . EQDATIOÎÎ 1 

NUIJBER

DEGREE OF Y c a t k M a= s.\îL, 
b—  ̂"3̂ 6

cs.q-

DISC
UTILIZATION di.s. Q.Sl, 4 £-0.0̂ dL»O.COO\V . C5.S E-1,5

1 DRUM
• UTILISATION a-vt> in H G\ X - 60

b=. 1-.33 C M E1,t
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CONNECT TIME TcTo. a +\> h di sq\b. ID 

b - \0 • V\ C5:.io E1 , ^
RATIO OF JOBS R3l)= 4 4^ -fin H

<=! . . , .

cA= S 4 5 
b = — 0 . ̂ 3 C5.l\ E 1 , S

mTIo 6P SIW.
TIME TO REAL b = — 1.43 C5.ll 1

TABLE No. C5-2
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Conclusions :
* Since the effective degree of multiprogramming increased with the 

increasing number of active users in the system, this means we need 
to consider two things:
1. What is the maximum degree of multiprogramming that the avail

able main memory capacity can hold?
2. What is the best scheduling policy that ensures the system 

performance will not be degraded with a given degree of multi
programming (i.e. no thrashing for example)?

The above considerations will be one of our future research interests.
* It seems in GST the disc is bottlenecked, since it approximately

reaches its maximum utilization point. But as soon as it reaches 
M* (see graph no. 05.8) , a degradation in the disc utilization 
occurs, and at the same time the drum started to be utilised more 
and more. , the drum is still under-utilized.



Ratio of simulation time to real time represents an important cost- 
performance factor, since by this ratio we can calculate the real 
time required to perform the actual tasks given to the computer 
system. Hence, the maximum acceptable ratio should be 1# In GfST 
the ratio = 1 when number of active users equal $0 (see graph C5*10). 
The ratio of jobs processed per no. of active users decreases with 
the increasing no. of active users in the system* That means the 
system productivity decreases with the increasing no. of active 
users in the system.
The effects of the parameter, number of actve users on the new 
selected performance indices are modelled. The models can be used 
to predict the future changes.
For the purpose of the next experiments, the direct graphs will not 
be drawn, since it can be directly constructed from the first table 
in these experiments.



5.5.6. Case 6tOther effects of the performance parameter: No. of tasks 
per multiaccess job.

This case study addresses the effects of varying the average 
no. of tasks per multiaccess job (TSM) on the new selected performance 
indices (i.e. effective degree of multiprogramming (î ), disc utilization 
(Dïï), drum utilization (DRU), tezmnnal connect time (TOT), no. of multi
access jobs processed (MJP) and ratio of simulation time to real time 
(RSR). This can be achieved by running the GST with a workload of 
average no. of tasks per multiaccess job from 1 to 4 in step of 1.
Refer to table C6.1 and graphs 06.1, C6.2, C6.5, C6.4, C6.5 and 06.6.
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The relationships between the parameter, average no. of tasks per 
multiaccess job and the new performance indices can be constructed from 
table C6.1 using regression analysis and under heavy loaded system 
condition. These relationships represent simple hybrid models which 
can be expressed using the relational graphs (from C6.1 to' C6#6)fand 
table C6.2.
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* The analyst will realize that this parameter slightly affects all 

the new performance indices ( \pf DU,DRU,TCT,MJP andRSR)#
* The same parameter (i.e. average no. of tasks per multiaccess job) 

also has slight effects on the previous performance indices (R, X, 
PBT). Hence, the increases of this parameter will not directly 
affect the computer system performance. This is quite important, 
since this parameter depends on the user (see graphs C2.4, C2.5 and 
C2.6).

* The effects of the parameter, average no. of tasks per multiaccess 
job on the new selected performance indices are modelled. The 
models can be used to predict the future changes.



3.5*7* Case 7: Other effects of the parameter: Average think time.
This case study addresses the effects of varying the average 

think time (TE)on the new selected performance indices (i.e. V', DU, 
DRU, TOT, MJP and RSR). This can be achieved by running the GST with 
a workload of average think time from 10 to 40 secs in step of 10. 
Refer to table 07*1 and graphs 07.1, 07*2, 07.3, 07.4, 07,3 and 07.6.
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The relationship between the parameter, average think time and the new 
performance indices can he constructed from table 07*1 using regression 
analysis and under heavy loaded system condition. These relationships 
represent simple hybrid models which can be expressed using the 
relational graphs (from 07*1 to 07*6) and table 07*2,
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Conclusions:
* Increasing the parameter, average think time, shows no major 

effects on the new performance indices, except it decreases the 
no* of jobs processed (see graph 07*6)• But this parameter, as we 
have seen in case 5» causes considerable changes to the average 
response time and the interactive throughput (see graphs 03*4 and 
03.6)# Hence, we may consider that the users behaviour can affect 
the system performance, since the above parameter (TH) is a user- 
oriented factor* Although, fixing the average think time in the 
GrST to 15 secs* is a very reasonable decision for the interactive 
system which supports a number of terminals* The reasons for 
considering it so are:
1. Customers requests require considerable use of resources and 

this makes response time long*
2. Customers can stack requests. That is, while a customer is 

waiting for the system to respond to one request, he can make 
additional requests.

3* Many computer systems support graphic terminals, in which 
customers interact with these terminals, mainly by means of 
lightpen, which is used to pick items on a menu and to pick 
lines on the drawings* This can be done very quickly, and so 
tends to keep user think time low.

* The effects of the parameter, average think time on the new 
selected performance indices are modelled* The models can be used 
to predict the future changes.
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3.3,8, Case 8; Other effects of the performance parameter: mean 
interarrival time.

This case study addresses the effects of varying the mean 
interarrival time on the new selected performance indices (i.e.ÿ,
DÏÏ, DRU, TCT, MJP and RSR), This can be achieved by running the GST 
with a workload of mean interarrival time from 15 to 60 secs, in steps 
of 15# Refer to table 08,1 and graphs 08,1, 08,2, 08.3, 08.4, 08.5 
and 08,6.
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The relationships between the parameter, mean interarrival time and 
the.new performance indices can be constructed from table 08.1 using 
regression analysis and under heavy loaded system condition. These 
relationships represent simple hybrid models which can be expressed 
using the relational graphs (from 08.1 to 08,6) and table 08.2.
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Conclusions :
* The mean interarrivai time (for a poisson input distribution stream) 

is an important factor of a specified workload in the GST. The 
effects of increasing it give us the following situations:

* It decreases the effective degree of multiprogramming.
* It decreases the disc and drum utilization.
* It reduces the ratio of simulation time to real time, and

therefore the cost.
* It reduces the multiaccess jobs in the system.
* It reduces the terminal connect time.

The increase.of this parameter also has the following effects (see 
Case 4)*

* It decreases the response time.
* It decreases the interactive throughput.
-For the purpose of our experiments, we have selected a 

reasonable value of the mean interarrival time equal to JO secs.
* The effects of the parameter, mean interarrival time on the new 

selected performance indices are modelled. The models can be used 
to predict the future changes.
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3.4, Aim of Experimentations:

Through the previous case studies, we have built several 
simulation/regression analysis models for many performance indices 
with different given input parameters. These models specify the 
behaviour of GST by changing a single-input parameter.

The prime aim of these experiments is to construct a 
general model to represent the whole performance behaviour of the 
computer system which has been simulated using the GST.

Several researchers have tried to construct general models 
representing the behaviour of a system, but most of them found this 
task very difficult. Hence, most of the models existing in the 
literature are of components or subsystems of a computer system. In 
particular, a large number of models exist for:

* Memory management ((/Denning 70/)).
* i/o ((/Koffraan 69/)).
* CPU scheduling algorithms....etc, ((/Kleinrock 64/)).

Some of the existing models are not really reliable. For 
example, consider the’throughput model’ built by Gaver ((/Gaver 67/)), 
for which Penichel and Grossman ((/Penichel and Grossman 69/)) claim 
that ”it is greatly to Gaver’s credit that this work was published 
and we consider his results are strictly negative". Different 
researchers propose different methods in order to solve the problem 
of constructing a general model of a computer system. These include:

* Parameter identification method: ((/Kimbleton 72/))
((/Bose and Warn 75/))

In-this method only a small number of performance parameters 
and indices are identified. The identification process rule 
states "The selection of parameters depends upon which of them 
strictly affects the computer system behaviour".

* Hierarchical method: ((/Sekino 72/))
In this method, the identification of parameters and indices 
breaks into several modules. These modules are arranged 
hierarchically.
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The general process of onr method is given hy figure 5«7*
This process can he performed on the parameter identification
method*

GSTor

Trial Changes

Proposed
System

Analyst(s)
Factorial
Experimentations

Experimentations

Measurements 
of Actual 
System

Select
Input
Parameters

Man-Machine
Interface

Build
Relation
Matrix

Figure 3*7 : Schematic Diagram of the Experimentations Aim*

The steps for building our general model can be summarized 
as follows:
1* Perform all case studies*
2* Build the Relation Matrix (i*e* model all the single parameter 

changes)
3* Perform factorial experiments (or case studies) on the given 

Matrix (i.e* Model all the multiple parameter changes)*
The general model may contain a further extension (or step), 

in which the analyst can study the behaviour of the system in an 
interactive way* This extension can be done through a very simple 
program (i*e* Man-Machine Interface) using the relation matrix and the 
factorial experimentation rules. In this case, we may call the general 
model an interactive design tool (IDT)* The first step can be done by 
performing the same method as the previous case studies for all 
selected parameters. The step of building a relation matrix follows
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the experimentation, step (i.e, performing all the case studies). 
It organizes the access to any hybrid model required. The hybrid 
models are a result of several case studies. The relation matrix 
has the following shape (see figure $.8).
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Figure 3*8: The Relation Matrix R(I» J)*

* The abbreviation used in the relation matrix can be found in 
abbreviation appendix A.2.
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The third step will be left as future research work.
Finally, the general model or the interactive design tool is a direct 
result of the simulation/regression tool, and therefore it has the 
same advantages (see section 3*3)*

For more information about the GST, the reader is referred to 
the enclosed simulation program of the GST. The program has has been 
written using the programming language C ((/Kemighan and Ritchie 78/)) 
which may be considered as a better language to implement the GST, 
than the original language (a subset of PL/1), especially under our 
host computer system VAX II/78O. The new implementation of the GST 
has been achieved by Cavouras ((also see section 6.2/Cavouras 78/))* 
More information of how we can construct a similar simulator, the 
reader is referred to ( (/Lindstrom and Skansholm 8I/)).
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4.1. Introduction t

Operational analysis represents a new approach to the problem 
of analysing system performance during time periods of interest 
((/Buzen 77/)). This approach has been developed by Buzen ((/Buzen 76/)) 
and extended by Denning and Buzen ((/Denning and Buzen 77/)) to apply 
to queueing networks, especially in the context of the study of the 
performance of multiple-resource computer systems. This approach is 
quite attractive for the reasons mentioned in the first chapter.
Although operational analysis remains a recant approach to performance 
evaluation ((/Sevcik and Klawe 79/))# many researchers are trying to 
extend this subject and develop it in order to build an ideal design 
and evaluation tool ((/Bouhana 78/)) ( (/Roods 79/)) ((/Sofri 79/)) 
((/Bryant 79/)) .((/Denning and Denning 79/))* These researchers have 
tried to put some missing links to the available operational analysis 
by comparing it to the traditional approach (i.e. Stochastic modelling). 
This is quite important as a first step, since the results of the 
operational analysis can be validated easily using the traditional 
approach. But, we believe that the research work in this subject 
should move a step further by adding new and powerful facilities to 
this type of analysis. The extensions or additions may consist of the 
following levels i

1. The representation level;
At this level, several software components should 

be represented. Examples of these components will be the 
operating system modules, by which we can study the:

* efficiency of memory management.
* effects of job scheduling.
* effects of CPU scheduling.
* effects of resource and queue management.

2. The mathematical level:
At this level, new mathematical structures should be 

added to the operational analysis. This step was started 
by Bouhana ( (/Bouhana 78/)) in which he added the matrix: 
algebra to the operational analysis body. The new math
ematical structures will increase the efficiency of this 
type of analysis*

In this chapter, we will try to use operational analysis to 
represent the same system as the GST (see chapter 5) • The research 
will be concentrated on interactive computer systems and closed 
queueing networks. For this purpose, queueing theory has been used to



represent structured operational models. A structured model is a 
description of the actual system components and their connections 
(structural models are most frequently represented by block diagrams.
The level of detail in a block diagram can easily be varied, since 
individual blocks can, in turn, be further laid down as self-contained 
block diagrams) ((/Svobodova 76/)).
The operational models will be introduced as follows :

* Single-Resource Queueing System.
* Queueing-Networks.

4*2. Single-Resource Queueing System:

4*2.1. Background;
In queueing theory, the term queue is a synonym for the 

waiting line that forms in front of a service facility or server. The 
entities in a queue are generally called customers (jobs, tasks or any 
logical entities that can conceptually generate a request for service). 
A single-resource queueing system is often called an isolated queue.
An isolated queue consists of the following attributes ((/Bouhana 78/)):
* Arrival process:

The arrival process describes the protocol according to which 
customers arrive at a queue with their requests for service.

* Scheduling discipline:
The scheduling discipline describes the protocol according to 

which customers receive service. An example, of common scheduling 
discipline is:

* Pirst-Cpme-Pirst-^erved (PCFS) and
* ^ooessor Sharing (PS)
* Jtost-Cpme-First-^erved (LCFS)
* Rçund-Rpbin (RR) .

* Service-Time Distribution:
After a customer has progressed through a queue, the time that 

he is in service varies according to his need for service. The 
distribution of time that a server allocates to a customer in a 
single visit is called the service time distribution.

* Deuarture Process:
The departure process is similar in concept to the arrival 

process, except that it cannot be arbitrarily specified.
An additional aspect of queues is the multiplicity of the 

server. If there is only one server present in a queue, then the queue
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is said to have a simple server* If however, a queue leads into a 
service facility that has more than one server, then the queue is said 
to have multiple servers. Figure 4«1* shows a typical simple server 
isolated queue with its attributes. Also, we may call this type of 
queue a non-pre-emptive single-resource queueing system.

Service Data Distribution.

Scheduling Discipline
Arrival
Process Departure Process

Figure 4*1# Simple Server Isolated Queue.

4*2.2. Single Resource Queuet
A single resource queueing system, with one queue and a server, 

is observed for an interval (0,T) . Figure 4*1* shows this type of
queue. The behaviour of such queues were studied using operational
analysis techniques by ((/Denning and Buzen 78/)) ((/Buaen and Denning 
80/)).

To show how operational analysis can be used to construct a 
performance model of the'non-pre-emptive* single resource queueing 
system, let us define its basic operational quantities*

n » number of jobs present in the system at time t, Oi$t< T.
T =» length of the observation period*
A » number of arrivals *
B ** total busy time (time during n>0 and B ̂ T).
C *» number of completions oo curing during the observation period.
W a area under the graph n(t) during the observation period.
In terms of these basic quantities the following derived 

operational quantities are defined*
X =» a/T, the arrival rate (customers/second..).
X =» g/T, the output rate (customers/second).
ÏÏ =» B/T, the utilization(fraction of time system is busy).
R ■ W/C, the average of time accumulated in the queue per

completed customer.
S =» B/C, the mean service time per completed customer, 
n s* W/T, the mean queue length of the queue.
The basic quantities (A,B,C,W) are typical of "raw data"



collected during an observation, and the derived quantities (X,X,ÏÏ,R, 
S,n) are typical of "performance measures". All these quantities are 
variables which may change from one observation period to another. 
But, to construct the relations that must hold in every observation 
period, regardless of the values observed, we need to derive new 
equations. These equations are called operational laws.
Now, the following equations represent some of the operational laws*

* utilization law*
Since

— ^  C * XT
and S « ]

(
hence 
but since

then 

i.e. SX

* Little*s law*
Since

n
and X

w/t
C/T

but R » W/C

B = SC

B - SXT

SX

is the utilisation law.

W
c

nT
XT

“I
i.e. n « EX is Little's law.

Using the above operational laws and operational quantities, 
with specific testable assumptions we can construct many operational 
theorems. As an example, if we assume that the number of arrivals is 
equal to the number of completions during the observation period.
This assumption is called .lob flow balance, that is, if we assume:

A = 0
then, we can construct the Utilization Theorem as follows: 

since A = 0
, A = X t

and C = jCD then X = X
and since U = 8X then

sX is the Utilization Theorem.



4.2.2.1. Further Notes:
An isolated queue is not the only type of single-re source 

queueing system. Examples of single-resource queueing systems are 
given in figures 4*2., 4«3* and 4*4*

Pre-emptions

Server

4 1 %2
Server

1

Figure 4*2: Pre-emptive Single-Resotirce 
Queueing System.

Figure 4*3: Two-level Fore
ground-Background 
Single-Resource 
Queueing System. 

(35)

H-1

Server

Figure 4*4: N-Level Foreground-Background Single Resource 
Queueing System. (FB̂ )̂

These types of single-re source queueing systems have been 
intensively studied using the traditional approach (i.e. Stochastic 
Modelling) by many researchers ((/Takacs 63/)) ((/Sstrin and Kleinrock
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67/)) ((/MoKirmey 69/)) ((/Coffman and Denning 73/)) ((/Pujolle and 
Sonia 79/)). But none of these researchers tried to represent them 
using operational analysis* The of the above systems
is out of the scope of this thesis*

4.3, Queueing Network System*

4*3.1, Background;
So far, we have studied a single resource queueing system 

which may, in fact, represent a single input/output device or central 
processing unit within a computer system. A model of the entire 
computer system can he developed by connecting single-resource queueing 
systems in the same way as connecting the devices of an actual computer 
system configuration.

Queueing networks have become a widely used analytic tool 
for multiple resource computer system peirformance studies ((/Denning 
and Buzen 77/))* "Far several years, queueing theory has been 
developed ( (/Jackson 57, 63/)) ((/Grordon and Newell 67/)) ((/Saskett, 
Ohandy, Muntz and Palacois 75/)) mainly depending on stochastic 
modelling techniques. The theoretical approach, however, has proved 
to be very difficult to use in practice, because many of its assumptions 
such as equilibrium and stationary conditions, cannot be proved to hold 
by observing the system in a finite time period. Sence, a new research 
approach which is called operational queueing network was introduced 
( (/Denning and Buzen 78/))* The operational approach leads to the 
same mathematical equations as the traditional approach (i.e. stoch
astic modelling). These equations can be derived in a very simple way 
depending on testable assumptions.

Queueing networks can be classified according to the following 
factors: ((/Kienzle and Sevcik 79/))
1. Model Structure*

Describes the number of service centres and the manner in
which customers flow among them. We distinguish the following:
* Single server model (possibly with feedback loop).
* Cyclic queueing model.
* Central server model.
* A centralized model.
* General queueing network.
* Hierarohical queueing network.

2. The Arrival Process*
This process indicates the manner in which new customers come
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into existance# A model is classified as*
* Closed (fixed number of customers in each routing chain).
* Open (arrivals and departures in all routing chains).
* Mixed (some routing chains are open and some are closed).

3, The Workload Classes;
This indicates groupings of customers that are statistically 

indistinguishable. Possibilities are*
* single class model.
* multiple class model.
* multiple class model with class changes.

4. The Queueing Disciplines*
We can distinguish the following*

* Station balanced disciplines (these include processor sharing 
(PS), pre-emptive last come first served (PLCPS) and no queueing).

* Class independent work conserving discipline (this includes 
PCPS).

* Strict priority disciplines (these are based on computer classes).
* Gteneral disciplines (these are mixed disciplines of the above 

strategies).
5* The Service Demand Description;

Can be specified as either,
* A workload vector (the mean total service required by the 

customer of a class at each device is stated) or,
* A routing matrix (indicates the movements of customers and the 

distribution of service times for each class at each device).
6. The Server Characteristics;

* load-independent servers, and 
^ Load-dependent servers•

Finally, queueing networks models may ha va one of the following 
characteristics( (/Chandy and Sauer 78/)) :

* Tractable Solution*
Those models which can be analyzed to give exact (as 

opposed to approximate) solutions in an*adequately* short time.
* Intolerably Slow Solution:

Those models which cannot be analyzed in an ’adequately* 
short time to give exact solutions.

* Unsolved;
Those models for which there is no known method of analysis 

guarranteed to give exact results.
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The vast majority of queueing network models used for estimating and 
predicting computer system performance are of the tractable category. 
Many researchers have, however, tried to use the second and third 
categories with one of the following*

* Using approximate solution techniques.
* Using a simple, tractable model to obtain bounds for the 

performance measures of a more complex model.
* Using simulation tools specifically designed for the 

solution of complex queueing models.
For the purposes of this chapter, we will now try to introduce 

tractable operational tool which can analyse the behaviour of the 
closed queueing networks, in order to model the interactive computer 
systems •
4.3*2. The Operational Assumptions*

The following assumptions should be considered when an 
operational queueing network model is under construction*
1. The network should be operationally connected. This means that a 

customer must eventually be able to travel from any server to any 
other server in the network.

2. Each server has a finite mean service time.
3. A customer cannot be either enqueued or in a service at more than 

one server simultaneously (apart from this assumption, there is no 
OPU-l/O overlapping).

4. No customer waits in front of an idle server.
5. No blocking (i.e. no part of the system can block progress in

another part).
6. A customer incurs no delay in travelling between servers.
7. The rules governing the routing of customers through the network 

do not change with the passage of time.
8. Servers do not interfere with each other in the sense that the

mean service time of a server does not depend on the number of
customers enqueued or in service at any other server. This is 
called the homogeneity assumption.

Some other assumptions will be introduced and defined in the 
next section. These assumptions are:

* Glasses of customers.
* Job flow balance.
* State transition balance.
* One step behaviour.
* Load-iniependent or load-dependent assumptions.
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These are the only assumptions needed to construct any 
operational queueing network model. These are all testable 
assumptions.
4.3.3. Simple Closed Queueing Network Operational Analysis:

A closed queueing network is one in which a fixed number of 
customers travel among the servers. One way of allowing customers to 
’arrive' and * depart' in a closed network is to designate a single 
existing server as the network’s conceptual entry and exit portal.
A loop is placed on the designated server. Whenever a customer 
traverses the loop, he conceptually exits the network, changes identity, 
and re-enters the network as a new customer. Such a scheme models the 
real-world situation in which there is a continual backlog of jobs 
waiting to enter a computer system.

A simple example of a closed queueing network is the cyclic 
model, shown in figure 4.5. ((/Chandy and Sauer 78/)).

First-Server Second-Server

d d Q - J

Figure 4.-51. The Cyclic Queueing Network Model (CQNM).

Customers arrive at the first of two (or more) queues, and 
after completing service from the last queue, they may re-start in the 
first queue and so on. Not all queueing networks are as simple as the 
one above; they can become arbitrarily complicated as the number of 
servers and the paths increase. However, the analysis of this type of 
queueing network will give a good introduction to the analysis of a 
complicated closed queueing network which is required to model the 
interactive computer systems. Another example of a closed queueing 
network is the Central Server Model (CSM) ((/Buzen 7l/))*

4.3.3*!* The Operational Aspects of the Simple Closed Queueing Network;
Suppose that a closed queueing network such as CQNM or CSM is 

measured during an observation period of length T seconds and that the 
following data are collected for each device i:
T : Observation time, where O ^ t  ^T.
n̂ (̂t) : The operational state of the device i at time t, where

0 ̂ n^  ̂ N  (*an operational state of a device i is the number
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of oustomers either enqueued or in eervioe at a device i and 
at time t*).
(* if we consider there are M-server a in the closed queueing
network then:

M represent the total number of customers
i=l B^(t) = N the queueing network*),

A^(n) * Number of arrivals to the ith device that find Uĵ (t) = n, 
where 0 ̂  n <  N.

G. .(n) : Number of times a customer requests service at device j ̂J immediately after completing a service request at device i, 
where n^(t) = n, 0 < n ^ N .

Tĵ (n) : Total time during which n^(t) « n, O ^ n ^  N,
We may also treat the ’outside world* as a device "0", in 
which case we can define:
A^j(n) t number of customers whose first service request is for 
de-^oe j when Uĵ (t) « n, 0 ̂  n <  N*
Ĉ (̂n.) * number of customers whose last service request is for 
device i.
We may assume also, that C^^(n) =*0 and it is possible that 

0 for any device i since a customer could request 
another burst of service from a device which had just completed 
a request from that customer.

The following grand totals are defined:
C^(n) - §  Gĵ j(n) , total number of request completions at device i,

when n^(t) » n,o<n^N.
N

C. = %] 0.(n) , total number of request completions at device i.
 ̂ n-1, ^

N—1
A. = 22 A(n) , total number of arrivals at device i.
 ̂ n=0

N
T. = T] T. (n) , the busy time.

Given these basic quantities, the following derived operational 
quantities are defined:

S^(n) =» , mean service time at device i when n^(t) = n.
^  (defined only if C^(n)>0).

Y^(n) = , arrival rate at device i when n^(t) =» n,
 ̂ (defined only if T^(n)>0),

= T^(l) + T^(2) +...+ T^(N), total busy time of a device i.



B,2 » , mean service time at device i.
BiU. = , utilization of device i.1
A

Y. " , overall arrival rate at device i.

^i " "̂ î  ®i “ ^i^^) ) * restricted arrival rate at device i.
Q (defined only if T^(n)<T^).

- -"g-" , output rate of device i. ^
 ̂ (*i.e* output rate from the

îf̂  ̂ system *)
^ T^(u) , job-seconds of accumulated waiting time at device i#

n«l
, mean queue length of device i.

Hi = * mean response time per completed job.

/ X Ti(*)P^(n) a* ^ , device i queue total distribution where
A.(n) “ “

P (n) a  ----  , device i queue arrival distribution where ^A. A.
Q n a 0,..#,N—1.

P- (n) a  ̂device i queue completions distribution where
■Î i n a: 0,... ,N—1#

(* C^(n+l) is used to define P̂  because Pq (u ), refers 
to the queue size just after^a completion whereas C(n) 
refers to the queue size just before a completion *)

« ( ^  ) ^  ^ij(^) ' routing frequency (^specifies the fraction 
 ̂ n«l of request completions at device i which are

followed immediately by requests for device j*) 
Using the above operational quantities we can construct the following 
operational laws:
* U. « 8.x. (* Utilization law *)i 3. i '
* Ri « (* Little's law *)

* R = /J u S. (nj Pm (n-1) (* response time law *)
^  ̂ ^i

M
* = 23 (* output flow law *)

i=l
N

* S. = V  Pp (n-1) S. (n) (* for defined S. (n) *)
 ̂ nal î  ̂ ^

N
* =» 2  Pĵ (n) / S^(n) (for defined Sĵ (n) )

n«l



« N-1* ® Z] ( for defined Yĵ (n) )
n«0
rO* ï± / q  - 1 / (1 - P(H) ) ( if 3i(H) < Tj.)

» P (n) = P^(n) ( Yĵ (n) / ̂  ) ( if T^(n) defined)

Now, using the above quantities and laws we can construct many- 
operational theorems by imposing some additional simplifying assumptions 
on the system. These assumptions will yield a tractable operational 
analysis. These assumptions are:
1. Job Flow Balance:

For each device i, the overall output rate is eq-ual to 
the overall input rate to device i. When a system conforms to 
this assumption, the quantities X^ are called device throughputs. 
This is equivalent to assuming that the total number of arrivals 

is equal to the total number of completions Ĉ , or that the 
initial state n^(o) is the same as the final state n^(T).
Expressing the balance principle as an equation,

C. « A. (* Job flow balance assumption *)a 0

Also, 0. (n) « V  ^  Gii(a)
^ % 1  "Wo

r t
But q^j « from this quantity we may derive,

M

Now di-viding by the time interval and employing the definition 
Xf « /T , we obtain the job flow balance equations.

where j = 0,.*.,M

The job flow balance equations have no unique solution in 
closed networks ((/Denning and Buzen 78/)). These equations can 
be used, however, to derive other important quantities and laws. 
For this purpose, define:

y _ —   the mean number of completions at device i
A for completion from the system.



or 4 (* this is also called visit ratio i.e. mean 
^0 number of visits per job to device i *)

Now, since / T
we can derive the following law;

X, /X, Forced Flow Law.i i " o
This law states that flow in any one part of the system determines 
the flow everywhere in the system.

On replacing each X^ with in the job balance equations, 
we obtain the visit ratio equations:

or
M

ij

visit ratio 
equations

The solution of the above equations is always possible if 
the assumption of connective structure (i.e. connected network) 
was valid ((/Denning and Dozen 78/)). ÏÏsing the visit ratio, 
operational quantity and some other parameters, we can determine 
all the performance quantities. The visit ratio represents a 
workload parameters.

The computation of some performance quantities using the 
visit ratio, are given as follows:
* Response Time

Let =» X̂ Ĥ  (*from Little *s law *)
(^forced flow law *)

%
V o

then
i iT o

and

• o
1=1

This new law is called the 
General Response Time Law.

Note:
We can derive the response time (in an interactive system) 
formula directly from Little’s law.

i.e. R • C^X^
But the response time in any interactive system is the 

time spent in the wait-thihk cycle. This means the interactive 
response time is R + Z (where R is the system response time and Z 
is the think time). Also, the parameter Q, in the interactive
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systems specifies the number of users observed in the wait-think 
cycle, say M customers. Hence, Little’s formula can be re-written 
as follows*

M - (z + a)
R = - Z I is the response time law.i.e.

* Utilization; Since ■ V^X^
then, ~ Y y V

and since

i.e.

u ,- V i
x,s. Si?
1̂",1 r

®i?i we will assume these ratios are the 
same for all N.

This assumption is used to study the system bottlenecks. Device i 
is saturated if its utilization is approximately lOOJîé.
If » 1, the Utilization Law implies that 

\  - VSi
Hence, for any device i, there should be U^ ̂  1 and X^^ . Let
the* subscript b refer- to any device capable of saturating as N 
becomes large. Such devices are called bottlenecks because they 
limit the system’s overall performance. Since the ratios U./U.1 j
are fixed, the device i with the largest value of will be the 
first to achieve 100^ utilization as N increases. Thus we see that 
whenever device b is a bottleneck,

V l " - - »  V m  .
Hence bottlenecks are determined by device and workload parameters.

2. State Transition Balance;
The number of entries to each state is the same as the 

number of exits from that state during the observation period. 
Using this assumption we can establish the state space balance 
equations.

Since
n^ - the operational state of the device i (i.e. 
number of customers either enqueued or in service at 
device i ). 

we can define
n « (n^,ng,...,n^) is the operational state of the 
system (or system state space).
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and,
a.... r(n,m) - C(n,m) / T(n), the transition rate from state

n to m is the number of transitions per unit time while
n is occupied# C(n,m) denote the number of one-step 
state transitions observed fPom n to m. The one-step 
state transition (from n to m) means the system moves 
from state n to state m without passing through any 
observable intermediate state#
Now, let:
P(n)=* P(n^,n2,.#*,n^) is the fraction of total observation
period T, that the system is in state (n^,n2»**#,n̂ )#
P(n) « T(n) (from the definition) *

T
b....i.e. T(n) » P(n) T

With the flow balance principle we can write the 
conservation of transition equations:

0......^^^C(k,n) « ̂  1 C(n,m) for all n.
î$om a, b, 0, we obtain the state s-paoe balance equations;
2 2 ?(k) r(k,n) = P(n)|^r(n,m)
K m
for all n in which r(n, *) is defined.

This assumption is quite important, since the job flow is
insufficient to find flows in a closed network or to compute response
times accurately. These quantities depend on how customers distribute
throughout the network. The state transition balance considers the
problem of customer distribution and therefore, it will give more
accurate results throughout the calculations of the performance
quantities.

5# One Step Behaviour;
The only observable state changes result from a single customer

either entering the system or moving between a pair of devices in the
system, or exiting from the system. This means that n^(t) can only
change in steps of - 1. There is, at most, one arrival or one
completion at any instant ; no arrival coincides with a completion.

If n^(0) w n^(T) at any device i in the system, and if n^(t)
can only change in steps of - 1 at any device i in the system, then
A. - C. and also the number of transitions from state n to state n + 1 X i
must equal the number of transitions from state n + 1 to state n *

. . A^(n) = C^(n + 1) n » 0,...,N - 1
combining this observation with the preceding definitions, gives



p. (n) = P_ (n) a * 0,...,N - 1

Thus, the arriver*s distribution and the completer's 
distribution are identical whenever flow balance and one-step are 
satisfied.

Finally, using the above assumptions we can derive the 
recursive laws;

P^ (n) « Yĵ (n) S^(n) P^ (n) ...First Recursive Law.

Pĵ (n) «* Y^(n - 1) S^(n) Pĵ (n - l) ...Second Recursive Law.
4# Homogeneity;

To apply the first and second recursion laws, it is necessary 
to measure or estimate the values of Y^(n) for n - 0, 1,...,N - 1 and 
S^(n) for n * l ,  2,..., N. In some cases, the number of independent 
variables can be reduced significantly by making one or both of the 
following assumptions:

T(0) = Y(1) = ... « Y(N-1) » constant....a^
8(1) ■ 8(2) = ... = S(N) = constant....a^

Using a^ and a^ with the following laws ;
V?!" V (1 PiW) .

Pi(n)n=l 
we obtain;

, similarly using â  and
n8. » 2  P« (n-l) Y. (n) we obtain 

 ̂ n«l i
S^(n) -
Equation a^ is called the assumption of Homogeneous arrivals; 

it asserts that the arrival rate is independent of the queue size n. 
Equation a^ is called the assumption of Homogeneous Services (EST) ; 
it asserts that the mean time between completions is independent of n. 
These equations are examples of general operational techniques of 
simplifying problems by introducing homogeneity assumptions that allow 
a set of conditional rates to be replaced by a single, unconditional 
value ((/Buzen and Denning 80/)). We may also define a Routing Homo
geneity as follows;
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The routing frequencies for a given total load (N) are 
independent of the system’s state and device homogeneity as the output 
rate of a device is determined completely by its queue length, and is 
otherwise independent of the system’s state,

4.3.5,2. The Operational Solution of the Simple Closed Queueing Network;
A queueing network will have a tractable solution if one or 

more of the following conditions are met ((/Chandy and Sauer 78/)) :
1. State Space Size;

The state space balance equations can be mechanically 
generated and numerically solved in an adequately short amount 
of time.

2. State Transition Structure;
The state transitions are such that recursive techniques may 

be used to obtain the fractions of time of a few states and then, 
the queue length distributions can be expressed in terms of these 
states•

3. Product Form;
The equilibrium state fraction of time distribution consists 

of factors representing the states of the individual queues, i.e. 
p(n̂ ,.,...,n̂ ) = (1/g) P(n^).....P(n^) is the fraction of time that 
the ith queue is in,state n^ and P(n^,...,.,n^) is the fraction of 
time that the network is in state (n^,*...,n^). Where G is a 
normalization constant chosen so that the. fractions of time sum 
to one.

The tractable solution can be obtained through homogenecvs 
assumption since homogeneity is often a reasonable approximation 
((/Denning and Buzen 78/)). Also, Denning and Buzen prove that any 
closed queueing network, such as the cyclic queueing network, has a 
tractable solution, since the operational solution can be represented 
as a product form solution;

P(n^,ng,.... * jUjj) = P̂ (n̂ ) ^2^^2^
where the factor for device i is;

F^(n) = f 1 n 0
( x“ Sĵ (n) (n-l) ...3̂ (1) n > 0

and G is a normalization constant. The S^(n) are the service functions. 
The are a solution of the job flow balance equations, for closed 
system

To simplify the above operational solution we may use the 
assumption of homogeneous service (HBT) (i.e. Ŝ (?i) = Yor all n).



The operational solution for P(n) is mathematically neat hut not 
obviously useful* We will try to introduce its uses with a closed 
system like the cyclic model as summing the last simplification was 
included.
Let F represent maximum no. of customers.

M ” ” " " devices*
Few, to compute the normalization factor we follow the 

algorithm developed hy Buzen ((/Buzen 7l/)) ((/Buzen 73/)); the 
algorithm fills in numbers in a two-dimensional matrix g. The columns 
of g correspond to devices, whereas its rows correspond to loads*

DEVICES
0 1*••••••*•**m-l m«

L
0
A
D
S

0
1

n

g(n, m-1)

F‘

The computation starts with I’s in the first row and 0‘s in 
the first column below the first row. A typical interior element is 
computed from:

g(n,m) » g(n,m-1) + g(n-l,m),
where Y^ « Ŝ . The normalizing factor (constant) G- is g(F,M). It
can be computed in 2MF arithmetic operations * The complete algorithm 
to compute G is given in Appendix B*

The results of the important system performance indices using 
the operational solution are:

* Cî (n) = Y^ proportion of time n^;^ n.

* » 0̂ (1) - Y. , Utilization.

, system throughput,
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= E  ^  length of device i.

4.5.5*5# Example t
Assume a simple closed queueing network was given as follows 

(see figure 4*6*)*

M =* 2 , N « 2 
19 

Si=5
Vg" 4

5

o
Figure 4*6

we had:
^1 “ ^1^1 ~ ^^35 seconds# 
Yg » 7g8g = 1.33 seconds.

The tahle below shows the matrix g for loads N « 1,...,5 ((/Denning
78/))! 0 1 2

0 — 1.00 1.00
1 0 6.33 7.67
2 0 40.1 50.3
3 0 454 321
4 0 1609 2037
5 0 10190 12906

Matrix g 
For exemple when N ** 2 then,

X^(2) - - 7.67/50.3 - .152
The mean queue length at device i when E=2 is :
-  2

(6.33) (7.67) + (6.33)2(1.00) 
50.3« 1.762.

The utilization of device 1 when N = 2 is :
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- 0-95*

4-5*4* Operational Aspects of the Interactive Computer Systems;
4.5.4,1* System Outlinet

A typical modem large-scale interactive computer system is 
depicted in figure 4*7* The entire system is composed of a processing 
system and a finite population of terminal users. Each of these users 
thinks for a while and then requests a computation (hereafter called a 
transaction) to he performed hy the processing system, hy typing a 
command line at his terminal. The transaction thus requested, is 
received and placed in the eligible queue until main memory availability 
permits its admission for service.

Requested ÎT Terminals
Completed TransactionsTransactions

Trivial Transactions

Multiprogramming of Degree q

Ron-Trivial
Transactions

Eligible

Thinking

Multiprogrammed

I.
Figure 4*7$ Interactive Computer System (Schematic Diagram)

The processing system consists of a central processing unit 
(CPU) and a two-level virtual-memory consisting of a primary memory 
(pm) as the first level and a large secondary memory (SM) as the 
second. Transactions receiving service are said to he in the multi
programming queue, while a customer is said to he "thinking" from the 
time his transaction is completed until he has entered the next one.



The system may classify the customer transactions as either 
trivial" or "non-trivial" • Those of the first case are admitted for 
immediate service « In the second case, a transaction may have to wait 
in the eligible queue* Transactions may be further classified into 
different transaction classes*

The maximum number of jobs simultaneously cycling inside the 
nniltiprogrammed state is called the degree of multiprogramming and 
should be carefully determined by considering, at least, the transact
ion's demand for ÎM space and the total size of PM space available to 
customer transactions* In this chapter the computer system is assumed 
to use a constant degree of multiprogramming equal to q.

The operational queueing model (see figure 4*8#) used in this 
study characterizes requests by their alternating use of the central 
processing unit (OPU) and various input-output devices * At the end of 
each interval of CPU processing, transactions (i.e* processes) move to 
one of the peripheral devices.

Terminals

Think States

Chain 1:
Trivial Jobs 
(or transactions)

Memory 
Wait Queue

Chain 2:
Non-Trivial Jobs 
(or Transactions)

Mam
Memory

1
Computer Subsystem

~ ]

J - i

L
Allocate Memory Release Memory

Figure 4*8 * Interactive Computer System (Queueing Network Diagram)
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The operational aspects of the above interactive system will 
be analysed in this chapter using approximation techniques. There are 
two major approaches to approximate solution, aggregation (decomposition) 
and diffusion ((/Courtois 75/)) ((/Chandy and Sauer 78/))• The reason 
for using approximation techniq.ues is the difficulty of representing 
the effects of virtual memory in any queueing network. ”The most 
important applications of approximation have been for virtual memory, 
blocking and other behaviours which cannot be represented directly in a 
queueing network model’̂ ( (/Denning and Buzen 78/)).

The system can be extended easily to deal with scheduling 
strategies. For this purpose we recommend the work of Brad ((/Brad 77/)) 

To analyze the interactive computer system given in figure 4*8. 
we will analyze the system in two steps (see figure 4*9*):
1. The multi-class closed queueing network subsystem.
2. The overall interactive system using decomposition techniques.

M-N Thinkers

Memory
Queue

W Active Jobs
Closed Queueing 
Network 
Subsystem 
(with multiclass 
customers)

M Terminals 
2 Think Time

Figure 4*9* General Terminal Model With Memory.

4*3,4*2* The Operational Aspects of a Multi-Class Closed Queueing 
Network Subsystem:

The operational aspects of a multiclass closed queueing network 
was first studied by Roode ((/Roode 79/))» iu which it was called the 
multi-class operational analysis.
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The representation of imiltiolass subsystem is given in 
appendix B#2, along with the calculation procedure of the normalisation 
factor.

Briefly, we can formulate the important performance indices.
For more information the reader is referred to Roode ((/Roode 79/))#
* The Utilization:

_  R N—m" T z: I JM),%  ■ Q(H,M,R) ^  ^  p g(N-m,P,M-l,E)

* The Average Queue Lengths;

% R  ” gTnTm ^) ^  ^(&R ^  (̂P,R-1) g(N-m,M-l,R).m=l P=0

(continued overleaf)
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* The Average Response Time at Centre Ms

* The Average Request Throughput Rate at Centre Mi 

%MR " T̂ MR / ̂
4.3.4.3. The Operational Aspects of the Overall Interactive Cumputer 

System;
in the previous section, the closed queueing network subsystem 

allowed any number of customers to circulate in it. This is not realistic 
however, when the number of terminals is quite large. Usually a computer 
system will only allow a certain number of jobs in the subsystem, 
consisting of the CPU and l/o devices. All other requests for service 
which have not yet been allotted main memory (and thus are denied access 
to the subsystem) have to wait outside until jobs depart and main memory 
becomes available for them. It is assumed that their queue is served on 
a First Come First Served basis.

Performance measures for the interactive system (cf. figure 4*9) 
are best computed using the decomposition technique. The calculation 
can be performed depending on two factors:

1. The number of terminals.
2. The degree of multiprogramming.
We present the perfommice measures (indices) calculated using 

the first factor ((see/Denning and Buzen 78/)). For the second method 
the reader is referred to ( (/Ton Mayrhauser 79/))*

Consider, each of the M terminals has think time Z. The number 
of active jobs is denoted by N, and the number of thinking terminals by 
M - N. The closed queueing network subsystem has K devices with homo
geneous service times and visit ratios independent of R.

By treating the terminals as a "device” whose service function 
is z/n when there are n thinkers, we can employ efficient computational 
procedures to compute a normalizing constant for this system ((/Williams 
and Ehandiwad 76/))* The algorithm fill in a matrix h.
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0 1<
DEVICES 

.k-1 k...., K

N
Q.
0
F h(m-l, k)T :
E m-1 
R _M
I
N
A
L
S

h(m, k-l) h(m, k)

The Matasix h

h(M, K)

When the computation of the normalization constant has been 
finished, the performance measures can he computed from the formulae 
helow;

* Throughimt ;
« ■ - 1 ^

* Reanonse Time:
R(M) . I0C(M) - Z

* Mean Active Load;
N » M - Z X(M). ,

Finally, many other aspects of̂ înteracti.ve computer system can 
he represented using operational analysis technique. For this purpose 
the reader is referred to ((/Salho and Denning 79/)) ( (/Denning 80/)) 
((/Slutz and Traiger 74/))*
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5 • 1 • Introduction t

The approaches discussed in the previous chapters for the 
investigation of interactive systems have utilized either analytic
or simulation techniques. But none of these methodŝ  models, however,opcan answer the questions posed hy the prohlem^prediction and dynamic
control of the new systems. Some of these questions are;

* What is the optimum segment size into which programs and 
data are divided for multiprogramming?

* What are the input variables that define the system 
environment?

* What are the control variables that determine the system 
performance?

* What is the sensitivity of the system performance to 
changes in the control and/or the input variables?

* How does the computer deal with its changing environment?
Are the control mechanisms adaptive or do they have a
fixed structure?

* How does the computer leam to adapt to its environment?
* When does it pay to have an adaptive control system?
* What is the way to measure or estimate the input parameters?
* What is the most eoonomical system configuration, that will 

do the required job?
*■ What is optimum?
To the beat of my knowledge, none of the analytic models 

discussed in the previous chapters can answer all these questions.
**The estimation problem is not really an integral part of either 
operational analysis or stochastic modelling** ((/Buzen 79/))* With 
respect to simulation models, it has been pointed out by Nielsen 
((/Nielsen 67/)) that the existing models are both too costly and 
inadequate to solve the apparently simple problem of optimum system 
configuration, let alone the problem of determining optimum prediction 
and control. In the same paper, he develops a reasonably detailed 
simulation model to analyse the performance of the IBM 56O/67 time
sharing system for different configurations and different omounts 
of overload.

The model presented in that paper and the corresponding 
results were considered of value to gain insight into the problems 
of hardware configuration and software modification for a given set 
of input parameters, but they cannot be used for dynamic control and 
prediction when the input parameters change* And this is true for



any simulation model*
Due to these shortoomings and the complexity of real systems, 

neither analytic nor simulation models alone can solve the problem 
of the optimum control of the system*

Host mathematical models which are quite close to reality are 
based on the implementation of the optimization models in queueing 
theory ((/Trivedi and Wagner 79/)) ((/Kinioki 78/)) , whereas some 
researchers use a different approach ((/Decegama 72/))*

Queueing models which employj^ptimization technique are called 
prescriptive queueing models. Prescriptive queueing models are of 
two types ( (/Gupta and Yerma 80/) ) t

* Static (design) models*
* Dynamic (control) models.

In static (design) and dynamic (control) models, we optimize longterm 
average criteria such as cost or profit dependent and independent of 
time respectively. The latter models are sometimes dependent of the 
system state too* The static (design) models are often called 
Performance-oriented design models ((/Von Mayhauser 79/) ) * These 
models will be critically reviewed in this chapter*

The construction of Dynamic (control.) models can be performed 
using the following fundamental approaches ( (/Decegama 70/) ) *

* Determine in advance the optimum settings of the control 
variables for each different expected and possible 
configuration, and have the operator initiate the switching 
from one control mode to another at predetermined times or 
in emeganoies*

* Let the system sense the environmental changes and switch 
automatically to the proper control mode*

Optimization theory plays a key role in producing optimal 
designs from the performance-oriented design models* For a fuller 
treatment of optimization theory and methods, the reader is referred 
to ( (/Walsh 75/)) ((/Adby and Dempster 74/)) ((/Crottfried and 
Weisman 75/)) ( (/Lenberger 75/) ) *

5»2* Problem Statement and Solutions

When a computer system is planned, the designer goes through 
three stages to find the system configuration which meets the user 
requirements and does not exceed a specific upper cost limit.
Figure 5* !• shows these stages ((/see/Von Mayhauser 19/))*
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Figure $.1. Design Stages.

The above Design stages are are a combination of hierarchical 
and. iterative design methodology. This methodology requires the 
following steps:

I*. Characterization of the anticipated workload.
This is quite a difficult task ((/Ferrari !&/))• It can, 
however, be studied indirectly by providing an evaluation 
of the sensitivity of the optimal configuration with 
regard to changes to the workload parameters.

2. Derivation of functional specifications using the workload 
model and the specification of the general computer system 
family. The computer system family, for simplicity, will 
be of fixed type. Hence, these fixed types should be 
quite general.

3. Selection of the optimal configuration using performance 
and cost measures to assess the quality of the solution. 
The selection procedure is shown in Figure 3.2. and 
requires certain input parameters. The selection 
procedure determines, at best, an optimal solution for 
the model. The optimization is, however, as valid as its 
input parameters.
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Figure 3*2. Cost/Performanoe Optimal Design.

The decision process will lead to a possible system design. 
The desirable tool that helps in making decisions (i.e. Performance- 
cost evaluation tool) depends upon three factors:

* Mathematical formulae for performance measures.
* Cost function.
* Workload parameters.
These factors specify the optimization problem. Such a tool 

is called performance-oriented design tool ((/Sigmon 79/))* 
Performance-oriented design produces systems whose performance 
objectives can be guaranteed to be met when the system is built 
((/Craham 78/)), In important aspect of. this approach is to be able 
to show that the resulting solution to the optimization problem will 
be a globally optimum solution.

We will try to present in this chapter several performance- 
oriented design models for computer systems. In all cases, the 
computer system is modelled via an operational queueing network 
( (or an exponential queueing network (Markovian queueing network) )), 
The optimization problems which are established, seek to maximize 
the throu^put or minimize the response time of the modelled system 
subject to a cost constraint. The decision variables for these 
design models include such items as the speeds of the devices, the 
capacities of the devices and a file assignment. For each problem 
it has been proven that any locally optimum solution is indeed 
a globally optimum solution thus guaranteeing the optimality of 
the design.



n z

5*2.1. The Selected Model:

The selection of a general queueing network model, suitable 
for modelling multipcogrammed computer systems, is quite important.
The selected model will be used by the performance-oriented design 
method to construct several design optimization problems. Such a 
general queueing network model was introduced by Buzen ( (/Buzen Jl/) ), 
and was called the Central Server Model (CSM). Since 1971» this model 
has been utilized as an analytic tool to evaluate the performance of 
computer systems. The CSM is indeed a realistic and cost effective 
means for performance evaluation of computer systems ((/Hughes and 
Moe 75/)) ((/Rose 78/)) ((/Ciammo Figure 5*5» shows the
structure of CSM:

n = degree of multiprogramming

New -program oath

Figure 5.5* The CSM 
The, central server Model incorporates hardware, software and 

workload aspects of an actual system ((/Kinioki 78/)). These aspects 
have been extensively analysed by Ton-Mayrhauser ( (/Yon-Mayrhauser 79/)) 
The model has been used by many researchers to construct several 
optimal computer system designs ((/Trivedi and Wagner 79/)) ((/Trivedi 
and Kinicki 78/)) ((/Kinicki 78/)) ((/Sigmon 79/)).

In this chapter we will present the optimization problems 
introduced by Sigmon ((/sigmon 79/)) using the CSM* We will also 
introduce further extensions, especially in the area of the 
optimization of the design of interactive computer system.



113

5*3* Optimal Design of Computer Systems Without Virtual Memory x

The selected computer system model (i.e* CSM) operating in a 
multiprogramming environment without virtual memory, where each active 
program's address space resides in main memory until its completion, 
was studied by ((/Buzen 73/)) and developed to permit some scheduling 
discipline, such as PS and pre-emptive DCFS by ((/chandy, Howard and 
Towsley 77/) ) • The problem was represented as an exponential queueing 
network. This representation was used by Sigmon ((/Sigmon 79/)) to 
construct a design optimization problem which can be summarized as 
follows X

* Let all service facilities operate under a PCFS scheduling 
and their service time distribution is negative exponential, 
with mean service rate M^ (i » 0,.....,m).

* Let n be a fixed degree of multiprogramming.
*  is probability that upon completion of service at the 

CPTT the program terminates and a. new program enters the 
system via a new program path.

* P̂  (i » 1,. . . ,m) is the probability that upon leaving the 
CPU a program will next require service at the ith l/O.

* System throughput « , where is the utilization
of CPU.

* Let
t̂  be the average number of program visits to the ith 
facility.

be the total number of work units prooessed by a 
program at ith facility, 

then the _o* average number of instructions executed are -r—Clby the CPU between two l/O requests^ 
and _

I"the number of information units are “  transferred 
between the ith facility and main memory per unit.

* The speed of ith service facility (b̂ ) is
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Ji where i »

* Now the throuriiuat aa a function of the speed of service 
facilities (h^’s) can he computed as followsi

’ - W o  -
where

n - r  sj£i£=ii
° ° G (F; n)

(ŒL n. m V
n  r.  ̂ * E  n, = n )
ŒL n . m
n  r .  : ,  I:
j-O 3-0

F - (fo '  V

1 * » •••»
Fo 1 Jb

o" 1̂0 '

^1.. 5... p
1Ï"'%  ’ % f i*l, • • • ,ni. J

y  I  V>ftody ■ is^left^eigen-veotor of the
transition probability matrix of CSM. Since 
y is determined only to a multiplicative 
constant, we choose y^* 1.

The above design problem of Buzen ((/Buzen 73/)) and Kleinrock 
((/Kleinrook 76/)) has been expressed as an optimization problem by 
(Trivedi and Kinioki ((/Trivedi and Kinioki 78/)) as follows:

They assumed that the cost of the computer system is 
approximately the sum of the individual component costs and the main 
memory cost. The cost of each component is expressed in terms of a 
continuous power function of the device speed and the cost of main 
memory is assumed to be a linear function of n.

The aim is to maximize the system throu^put,
T (b ; n) or alternatively, minimize
Z (b ; n) where Z (b , n) is the reciprocal of the throughput. 

In order to simplify the mathematical calculations ((/sigmon 79/))* 
the decision variables of Z were changed from b to r.
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Minimize Z (r , n) 
subject to

/J v«o m / P.J. \<̂ i
°o ( t V )  + 2  °i V' o o' 1 »» 1 11
where

and
Ci y la positive real numbers#

i.e. maximize the throu^put by determining the specific device speeds 
depending on the given fixed system topology, fixed degree of 
multiprogramming and a workload description (in terms of P^'s and 
t^ , (i » 0,...,m)).
The solution of the above design problem was given by Trivedi 

and Wagner ( (/Trivedi and Wagner 79/))» in which they proved that i±. is 
a convex programming problem. Hence, this problem has the useful 
property that any locally minimal solution is indeed a global optimum.

5.4.' Optimal Design of Computer Systems With Virtual Memory; ̂

To represent a virtual memory system using the selected model 
(i.e., CSM) the following are assumed ((/Sigmon 79/)): 
either, another l/O device is added to the system to handle the paging 

traffic,
or, all paging l/o is handled by one of the existing l/O devices 

whose capacity has been increased.
This design problem can be represented as an optimization problem 
as follows :

Let
* The total l/O activities consist of two parts - paging 

i/o and all other l/o.
* The average CPU burst between two paging l/o requests 

be given by the system lifetime function e t

e ^ or e (mem) where M represents total 
ammount of main memory and n is the degree of 
multiprogramming.
Since M is fixed, then for simplicity the lifetime 
function can be reduced to e(n).
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* The average CPU burst between two non-paging l/O requests
* - - % r -

* The average CPU burst is then :
1 « + 1 

E(n) e(n) W

■- e(n) W J
* Sinoe is the total number of instructions to beo

executed per program, then

t.-A ,  .
° B(n) 

but P » —  therefore,

o
Also the non-paging l/O devices branching probabilities 
are:

Pi - p.\
o

Similarly, as in the non-virtual memory problem, we can define 
the optimization problem as follows : 

minimize Z(r, n) 
subject to

°b ( T#— / + E Oi ( + mrn(n) <: bdbqbt,
Where ^ ^ ̂

r^ >  0 , i"0,l,*.*,m and
Of , «i are positive real numbers*

The only difference between the previous two design models is 
in the characterization of the workload. In particular, the branching 
probabilities in the virtual models are functions of the degree of 
multiprogramming, n, instead of being fixed.

Additionally, we can calculate using the virtual memory model, 
the CPU overhead ^nerated by the page fault handler as follows:[t o]- Jg + I r7^ I PHP



where

[ ^ ) ] is the ntunher of page faults that were generated and

EHF is the number of instructions executed by the page 
fault handler.

The above design optimization problem proved by Sigmon 
((/Sigmon 79/)) to be a convex optimization problem.

Using the above design methods, a decision as to whether to 
use virtual memory or not can be taken. A particular advantage of this 
tool is that it provides a simple and inexpensive method of gaining 
insight into a large number of different system configurations 
operating under varying workloads and constrained by different cost 
estimates. The following example showing the difference between the 
virtual memory optimization problem and the non-virtual memory 
optimization problem is given by Sigmon ((/Sigmon 79/)) #
Example t

This example demonstrates how a decision can be taken on 
whether to use virtual memory or not.

The performance-oriented method will be used as a tool to aid 
the designer to take such a decision. The comparisons will be based 
on the following models:

1. a multiprogrammed computer system without virtual memory 
and having three l/O devices.

2. a multiprogrammed computer with virtual memory and having 
three l/O devices one of which handles both paging and 
non-paging l/O.

For more information about this example see section 2.5* of Sigmon 
research work ((/Sigmon 79/))*

The model parameters are given in tables $.1. and 5.2*
Figure 5*5* shows the graphs of optimal throughput versus 

dollars spent on main memory for the non-virtual memory and the virtual 
memory with three l/o devices. The dashed lines represent the results 
from the non-virtual model and the solid lines those from the virtual 
model with three l/o devices. The results from two total system 
budgets and for the three values of the page fault handler overhead 
PFH are plotted on the same graph. Each point of the virtual model's 
curves was obtained by choosing the optimal point after a discrete 
search over n, the degree of multiprogramming, was performed. The 
small numbers written beside each point of the virtual model's curves 
are the optimal degrees of multiprogramming.
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Table 5.1, : Input Parameters for the System Without 3Sl̂ tual.J<femory and
Three l/O Devices.

i Device
Name Ji ^i Pi Gi %i

0 CFO 400,000 20 0.05 1,147,855 0.55509
1 Drum 10,000 10 0.50 1,452,664 1.00000
2 Disc 1 6,000 6 0.50 707,648 0.67290
5 Disc 2 5,000 5 0.15 707,648 0.67290

Notes; 1.
2.
5.

4.

Memory Price $1 / 52 - bit word.
Budget, 1000,000 -  ̂2000,000, with 250,000 increment 
Amount memory required by each program in the active 
set « 50,000 words.
n (degree of multiprogramming) - | MM/50000 where 
 ̂MM is amount of money spent on main memory.

Table 5.2.; Input Parameters for System With Virtual Memory and 
Three l/O Devices. ■'

i Device
Name Gi “i

0 CPU 400,000 * 1,147,855.00 0.55309
1 Paging

Drum * * 2,865,528.00 1.00000
2 Disc 1 Ü.O06 é 707,̂ 48.00 0.67290
5 Disc 2 . 5.000 3 707,648.00 0.67290

Notes: 1.

2.
3.
4.
5.

6.

CPU burst between page faults is represented by
e(mem) =* a rnern̂ where a - 4*69 and b « 2.88 (this function
called life-time function).
Memory Price $1 / 52 bit word.
Budget, f 1000,000 - $2000,000 with 250,000 increment*
PPH » 0, 5000 and 10000.
n is given on the graph near each point as optimal 
degree of multiprogramming.
Budget 1 = $1,250,000 and Budget 2 = $1,750,000.

* these values are dependent on n and the life-time function.
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Here, it seems that for all three valiæs of PFH, the virtual 
curve lies completely above the uon-virtual curve. Thus, for this set 
of values for the model parameters, we conclude that virtual memory 
will yield a performance increase when the paging l/o is handled by an 
existing l/o device.

The Selected Model Extension:

The goal of developing GSM was to make that model applicable 
to the optimum design of a terminal oriented computer system. The 
computer system family under investigation consists of a number of 
terminals (m in this case) connected to a central subsystem (of. 
figure 3.6.). The queueing network model for this system family 
represents the m terminals as a multiple server node with multiplicity 
m connected to a CSM which models the central subsystem (of. figure 3*?*)

'erminar

CSM
Figure 5.6. Interactive System

'Terminal!

Central
Computer
Subsystem

with m Terminals. Figure 5.7. General Terminal Model.

The workload description of the terminals is condensed in the 
average think time Z, i.e. how much time elapses on average, between 
the return of a request from the CHJ to the terminal until a new 
request is issued from the terminal to the CPU. This is the time 
the user spends to prepare and to input messages. Since there are m 
terminals, the maximum degree of multiprogramming is m. There is no 
queue at the terminals. It will take a certain time R, to process the 
user request in the submodel. Since the model of the subsystem is of 
the central server type, all assumptions and restrictions mentioned in 
section 3.3. of this chapter will apply. Figure 5.8. shows the terminal 
central server model (TCSM). The parameters M̂ , (i = 0,1,...,k) 
correspond to those in section 3*3* Instead of taking the new program 
path which models the arrival of a new program, the processed request
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now retxims to the terminal and after a delay of Z seconds that 
terminal issues a new request# The johs will he distributed in this 
model between the terminals and the CSM# When there are m-n jobs 
(i.e. user or customers) thinking, then n jobs are being processed in 
the CSM. This means that the degree of multiprogramming in the GSM 
varies between .0 (all terminals thinking) and m (all terminals have 
issued requests and are waiting for an answer).

CHJ

Figure 5#8. Terminal Central Server Model (TCSM).

The number of terminals, m, can be quite- large. The number of
active jobs in the computer depends on the amount of main memory
available for these jobs. In many applications not all m programs 
will fit into main memory. Therefore it is more realistic to assume
that the degree of multiprogramming in the subsystem is at most n ^  m.
In the model this results in the formation of an additional queue Qg in 
front of the submodel (figure 5*9*)• The subsystem blocks jobs from 
entering,wken the maximum degree of multiprogramming is reached.
Figure 5« 10. shows the detailed terminal model with blocking and a 
central server ' subsystem (TBCSM). The dashed box marks the CSM 
submodel with degree of multiprogramming of at most n. Whenever a new 
terminal request is issued and the maximum number of jobs is in the CSM, 
the request queues at^Q^ departure of a job from the GSM. Then the job 
is loaded into main memory# There is no swapping# Once a program has 
been loaded, it will stay in main memory until it terminates#

The optimal design of the TCSM and TBCSm  models have been studied 
intensively by Von Mayrhauser ((/Von Mayrhauser 79/)) and we will, in



the next sections summarise their findings #

Subsystem

Figure 5*9* General Terminal Model With Blocking.

n=*maxlraum degree of multiprogramming

CHJ

__AI____
Figure 5.10. Terminal Central Server Model With Blocking (TBCSM).

5.6. Optimal Design of Terminal Computer Systems Without Blocking:

This section Investigates the form and the characteristics of 
the response time function and Its gradient for the TCSM and presents 
the objective function and constraints formulae for the design 
optimization as a non-linear minimization problem.

The TCSM falls Into the category of Jackson's model ai^ the 
solution technique by Klelnrock ( (/Zlelnrook 75/)) can be used to 
derive a closed form solution, 

let
* n. » number of customers at service centre 1, i = 0,..., 

k + i.
k + 1

n^ a m where m is number of terminals.



* the transition probability matrix for the TCSM is given 
by P “ (Pĵ j ) (x “ 0; * # # ÿk + Ij j " Oy.«*|k + 1)

* the relative thronghpnts are the elements of the left 
eigen-veotor of Py a solution of y - yp. The relative 
utilizations are given by

x^ « —  (i « 0,...,k) and x^^^ - z respeotive-
 ̂ 1-ly, where y^ is the relative throughput and jjî  is the

average service time for device i. z is the average think
time at the terminals. p p^
For this model y =* ( i » 1) is a left eigen-

. 0 0 0 vector. -D p
1 1 kThis makes x = ( -g-jj- , "khe

corresponding relative utilizations.
* The probability that there are n^ customers at device i 

(i a 0,..., k + 1) can be expressed as :
1 k n̂

P (n̂ , + i) ' 0 I

The last factor represents the terminal node. The sum of 
the Uj ^3 (j ■ 0,.,., k + 1) has to be m. S^(x) is the
normalization constant which ensures that all 
probabilities sum up to one. S^(x) is given by

^ n. _ “ k+l
i?o % T T

where
\  = •  f  “  =  ( " o ' " "  ° k + l )  1 j

0=0
Substituting the expression which relates x^ to and 
î* becomes*

. p, n, ,“k+l
■? &m

If the relation between the mean service time ̂  and 
the workload parameter (the average l/o service time 
of device i, i.e. the number of words per l/o transaction) 
and the device speed b. is employed, namely 

1 î—  a —  then the normalization constant transforms
H  °i  ̂  ̂ into*



* The CHJ utilization (Û ) is given by;

* The system throughput (i.e. the average rate of flow of 
programs from the CHJ to the terminals) can be expressed

I (x.m) .

* The TCSM response time is a function of throughput:

® - -

E (x,m) * m —  - z

i.e. E is a function of device speeds, also for any
utilization vector x the corresponding device speed can
be computed using the following formulae:

^ ^
Now, the optimization problem, namely the minimization of the 

response time for the TCSM subject to budgetary constraints, can be
specified. The decision variables are the speeds of CHJ and secondary
devices. The cost constraint for the TCSM is specified as follows:

I  . «i
i-0 °i\ ^  °rel

where
°rel * “tot - “sys (“tot = ^  “sys ^="1°

system cost).
b^ = the speed of the device i.
c'̂ = positive constants.

(i.e. The system cost depends on component speeds).
Since device speeds and relative utilizations are related, the 

cost constraints transforms into:



where j

o
I .P. a.

0̂  « ĉ  ( "p ' ) » j " l,..*,k.

and is now dependent on the relative utilization vector x * The response 
time function can now he minimized with respect to the relative 
utilizations subject to the above cost constraint, m, the number of 
terminals, and z, the average think time at the terminals are constants. 
This means that any solution which minimizes the reciprocal throughput 
also minimizes the response time. To conclude, the TCSM optimization 
problem can be stated as follows ;

\  (*)minimize f(x)
V i

subject to ^
1

Xf >  0
Ci >  O' 
œ  >  0

i * 0,1,...fk.

This problem represents a constrained non-linear optimization 
problem which can be solved with any of the constrained optimization 
techniques available. One of them, the Lagrange multiplier method, 
requires the gradient of the objective function. For further 
information the reader is referred to ((/Ton Mayrhauser 79/))*

5*7* Optimal Design of Terminal Computer Systems With Blocking:

Dsually, a computer system will only allow a certain number of 
jobs in the subsystem consisting of the CPC and the l/o devices. All 
other requests for service which have not yet been allocated main 
memory (and thus denied access to the subsystem) have to wait outside 
until jobs depart and main memory becomes available for them. It is 
assumed that their queue is served on a 'first come first served'basis. 
The number of jobs in the subsystem depends on the amount of main 
memory available. This, in turn, is a question of budget or rather



of how much of the budget should be spent on buying main memory.
The computer system model used to investigate the blocking 

phenomenon was introduced in section 5.5. As for TCSM, the performance 
measure which is used as the objective function for the optimization 
problem is the system response time. The cost function of the TBCSM 
was augmented by a linear term which represents the cost of main 
memory.

Now, compared to the TCSM discussed in the previous section, 
the TBCSM has an additional queue between terminals and the GSM 
subnetwork, since admission to the CSM is restricted. No more than n 
jobs are allowed inside the CSM. If the terminals issue more than n 
requests, those which cannot enter the GSM subnetwork have to queue 
for admission to it.

Performance measures for this model are best computed using 
the technique of decomposition as in ((/Courtois 75/))» When no 
blocking occurs, the normalization constant is computed as:

m i _m-i
H (x,m) = E  n  %(j)i»0 j=l (m-i)l

where x(i) is the reciprocal CSM throughput for the GSM with degree of 
multiprogramming i. Moreover, x(i) is the reciprocal throughput when 
the terminals have issued i requests to the CSM subnetwork.

Since the CSM is able to accomodate all active requests, its 
reciprocal throu^put is given by x(i). Now, in the terminal system 
with blocking, the highest degree of multiprogramming in the CSM 
subnetwork is n. This means that, even though more than n requests 
are issued, the subsystem only processes n jobs at a time and its 
reciprocal throughput x(i) is given by:

^ (i) “1 v^n) for i >  n
The normalization constant for TBCSM is given by:

n i m-i n m i-n „m-i
E  (x,m,n) = E  n  x(j)    + 11 %(j) E  x(n)  -

i=0 j»0 (m-i).I j*l i=n+l (m-i) I
using

P. = C(x,i,k) the normalization constant becomes:

rx(i ) for i <  n



n ^  ^ , \i-n m-i
e(x,i,k) -—  + G(:c.".k)̂  E(m-i)! (m-i)!

Also, applying g
Uo « (i#8# CPU utilization) and

m' '
T(x,m) » (i.e. system utilization)

the response time for the TBCSM is given by

R(x,m,n) . m g - z
m-i ' '

Now, to study the minimization of the response time for the
TBCSM subject to budgetary constraints, we need to formulate an
optimization problem. The decision variables are the speeds of the
CPU and the secondary devices. In addition to these, there is a new
decision variable, the maximum degree of multiprogramming in the CSM
subsystem.

Let is the cost of main memory,mem
If the maximum degree of multiprogramming is n, an amount of

n Ql has to be spent on memory. Then, the cost constraint which will mem
be used for TBCSM is given as follows: 

k
i5o '̂ î i ®mem ̂  ^  ^rel

Where andOî^ (i = 0,...,k) are the cost coefficients for
the devices and b^ (i =» 0,...,k) are the component speeds.

But since b^ and xj are related, the cost constraint can be
transformed into, (where X means the utilization of ith device) :

k 1 /
ĵ  ̂Xj  ̂ °mem ̂  ^  °rel

%  ■ <  < ̂ -

Hence, the following optimization design problem can be stated:



minimize f (x,n)

rzis

\  (x.n)
■m

subject to
“ M  + «mem " “rel 

with k
0 (x) «1 (-^)
x^^O, o i ^ ^ O f i = 0,.. ,k.
n>0 integer.

To simplify the optimization problem we may consider n as a 
fixed variable and the above optimization problem is reduced tot

H (x,n)

subject to
“(*) ^  “as, 

where
o, *0  - — 0 ndev rel mem

>  0,a >  0, 0̂  >  0
and hence it can be solved with any of the constrained optimization 
techniques available. Again, for more information the reader is 
referred to ((/Von Mayrhauser 79/))»

5.8» Farther Notes:

The performance-oriented design models that have been 
presented in this chapter, could be developed into very useful 
analytic tools to aid in computer system design. This work 
represents a review of the research carried out by a group of 
researchers, mainly Trivedi, Kinicki, Von Mayrhauser, Wagner and 
Sigmon, at Duke University. "There are countless possibilities 
for extending these models to provide more realism and for developing 
new, more comprehensive design models"((/Sigmon 79/))# lu particular, 
the optimal design of the storage hierarchies aid the optimal design 
of batch and interactive computer systems so that to maximize 
reliability, subject to cost and performance constraints, is possible 
((/Trivedi 80/)). It is also possible to develop this method of 
design as an interactive design tool (i.e. to construct automated 
design optimizer) ((/Von Mayrhauser 79/))*

The author proposes to extend this method further in a more



simple way, using the operational analysis approach instead of the 
exponential queueing network (i.e. Stochastic) modelling, together 
with optimization theory and techniques. Such an extension will 
allow us to solve more complicated design problems and is suggested 
for future research work.
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6.5. Future Research Work.



l O  I

6.1. Overview:

In this research work we have presented a number of ways of 
building system performance models. The first method was based on 
simulation techniques. Â simulation model may model a computer system 
at almost any required level of detail. Many simulation models 
represent computer systems in considerable detail. In these oases, 
especially with the General Simulation Tool (GST) the greatest drawback 
is the relatively high cost.

A more promising alternative is to combine simulation with 
different modelling techniques to produce hybrid models of computer 
system performance* This was done by regression techniques with 
simulation techniques (see section )• A regression model is
a fast statistical model of computer system performance which relies 
on workload and performance data collected from the system being 
evaluated ((/Grenander and Tsào 72/)). However, it has the 
disadvantage of not being capable of modelling logical and structural 
relationships in the system. Simulation does not suffer from this 
limitation, but a simulation model which produced results similar 
to a regression model would probably need to model the system in 
considerably more detail, and consequently be more expensive to 
implement. By combining simulation and regression techniques, the 
advantages of both may be exploited. The regression models were 
constructed using simple case studies. These case studies will 
produce a relation matrix in which all the performance parameters/ 
indices equatioxis are contained. These equations are quite simple 
and may be used to construct an interactive design tool (IBT) •

The second method of building system performance models 
was based on operational analysis techniques. These techniques 
were selected from different available approaches, such as stochastic 
modelling and mean-value analysis. The selection was done according 
to certain factors, such as:

* tJnderstandability.
* Cost.
* Degree of resolution.
* Ease of parameter optimization or estimation.
* Breadth of applicability.
* Relevance to the actual system.

Operational analysis is based on the premise of testability. 
All the basic performance quantities - utilization, completion rates.



mean queue size, mean response time, load distributions - are defined 
as they would be in practice, from data taken over a finite period.
The analyst can test whether the basic assumptions - flow balance, 
one-step behaviour, and homogeneity - hold in any observation period. 
The operational laws are identities among operational quantities. They 
are a consistency check - a failure to satisfy an operational law 
reveals an error in the data. They simplify data collection by showing 
alternatives for computing performance quantities ((/Denning and 
Buzen 78/)).

In practice, errors from these assumptions are not serious.
Even when the additional assumption of homogeneous service time is used 
to simplify the analysis further, these models estimate utilizations, 
throughputs and system response times typically within 10 %  and mean 
queue lengths and device response times typically to within 50 /o 
((/Giammo 76/)).

Using the operational analysis approach we tried to represent 
the behaviour of a general interactive computer system. This approach 
can be combined with the simulation (using GST) approach to produce 
other hybrid simulatioia/operational analysis models (see the following 
section). Furthermore, in the operational general model of the 
interactive computer systems we have tried to show the effects of the 
changes of some system software.

Performance-oriented design was the third method of building 
system performance models. This method has been introduced, due to 
the shortcomings concerning the ability of parameter estimation or 
optimization. It is in the realm of inductive mathematics, whereas 
operational analysis is a branch of deductive mathematics ((/Denning 
and Buzen 78/)). With respect to simulation models, the existing 
models are both too costly, and inadequate to solve the apparently 
simple problem of optimum system configuration ((/Nielsen 67/)).The. 
P̂erformance-oriented design method solved this problem using 
optimization theory and techniques. Several optimization and design 
problems have been introduced to minimize the response time or 
maximize the system throughput of the modelled system subject to 
a cost constraint.

Our experience with the above methods has shown that there 
is no single best way to design a computer system. A 'good' computer 
system designer must creatively deal with the problems of the intended



system users, the problems of technology from which the system will be 
built, and the problems of the people who will implement his design.
It is an artistic blend of theory, engineering and pragmatism which 
will allow him to produce a system which meets the functional, 
performance and cost specifications from which he began.

This is not an easy task and the basic conclusion of this 
thesis is that all three methods presented above should bevicombined 
in such a way as to help the designer in building computer performance 
models. An implementation of this idea is given in the following 
sections•

6.2. Comparison of Methods:

The performance evaluation and design methods presented have 
largely been compared by introducing each of these models serparately.
One important concept must, however, still be discussed. This is 
the validation and prediction of the models produced by the : abo^ methods. 
Validation refers to extensive testing of a model to determine its 
accuracy in calculating performance measures. Prediction refers to 
using the validated model to calculate performance measures for a 
time period (usually in the future) in which the values of parameters 
required by the model are uncertain.

These will be examined in the following, using the simulation/ 
regression models as prediction models and the interactive operational 
analysis models and interactive performance-oriented design models as 
validation models. The prediction models will be compared with the 
validation models and the results will be plotted on a graph which will 
show how far the results of the validation (i.e. operational models 
or performance-oriented design) models differ from the very detailed 
results produced by the prediction (i.e. simulation/regression) models.
In other words, the results of the simulation/regression models which 
have been argued to be realistic and correct ((/Cavouras 78/)) will 
be used to validate the results produced by the operational analysis 
models and the performance-oriented design models. Figure 6.1. 
illustrates the steps followed in our validation and prediction 
scheme.
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Figure 6.1* Performance validation - Prediction scheme 
""""""""" of the presented évaluation and design methods.

First, the anaJ^st runs the selected Performance Parameters 
on the simulation/regression models (the prediction models). He then 
collects (measures or calculates) the performance quantities such as 
throu^put and response time and also the parameters of the devices. 
After that, the analyst applies the same selected performance 
parameters to the operational model and compares the results against 
the collected performance quantities. If, over many different 
observation periods, the computed values compare well with the 
collected values, the analyst will come to believe that the 
operational model is good. Thereafter, he will employ it confidently 
for predicting future behaviour and for evaluating proposed changes in 
the system being designed. Similarly, the collected performance 
quantities can be compared with the results obtained from the 
performance-oriented models using the same selected performance 
parameters and different cost constraints.

The comparison of the different models is done concurrently 
with their modification and analysis. In this, new assumptions can be



added to the modelled system (using operational analysis or 
performance-oriented design techniques). Such assumptions typically 
include that device and workload parameters do not chatte unless they 
are explicitly modified. Thou^ such assumptions are usually 
satisfactory, they can lead to trouble if a given change has side 
effects, for example, increasing the number of time-sharing terminals 
may unexpectedly reduce the batch multiprogramming level even though 
the batch workload is the same.

Based on the comparisons and modifications, several different 
case studies can be carried out in order to analyse the three methods 
- simulation/regression, operational analysis and performance-oriented 
design - using the same supplied performance parameters and different 
total cost values. These case studies will be called Erediotion- 
Validation examples and include the following:

* Response time vs. No. of terminals Prediction - Validation 
example.

* Response time vs. think time Prediction - Validation example.
* Response time vs. devices speeds Prediction - Validation 

example.
* Response time vs. degree of multiprogramming Prediction - 

Validation example.
in order to demonstrate the approach, one example will be 

studied in the following section* To analyse the other exEunples 
would require repeating the same procedure for a number of sets 
of given performance parameters.

Prédiction-Validation Bxample.

In this example we will study the effects of changing the 
maximum no. of terminals upon the system response time, using the 
three methods introduced in the previous chapters. Figure 6,2. shows 
the graphs produced by these methods using the same selected performance 
parameters given by Cavouras ((/Cavouras 78/)). (see Table 6.1.)

The simulation/regression model graph has been plotted using 
the following equation. For further details the reader is referred 
to case study no. 1 chapter

where ;
R represents the average response time.
M represents the no. of terminals.
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a,b are positive constants:
a » 5.00 
b » 0.02

The operational model graph has been plotted using:

X - Z

where :
_ U h(M-l.g)

Z h(lI,K)

M » no. of terminals,
X * no. of devices. ( ** 5 )
Z " average thinking time. ( » 30 seconds )
h(. , . ) - a normalization factor calculated using the

algorithm of Williams and Bhandiwad ( (/Williams and 
Bhandiwad 76/)).

Finally, the performance-oriented design graphs have been 
plotted using the following optimization problem (see Von Mayhauser 79)*

min f„ ( x,n ) * — — —  

subject to
C(x) 4  0^^^

where
^dev * ̂ rel " ̂ msm % n 
\ >  0 0 , Q i >  0*

The three graphs show many differences, in important one is 
that the values of the response time produced by the simulation/ 
regression model are higher than the values (at most) of both the 
operational model and the performance-oriented design model. The 
reason for this difference is due to the fact that the simulation/ 
regression model takes into account the overhead time spent in the 
system. It is also clear from the performance-oriented design model 
that increasing the total cost spent, will yield better response time.

Due to the mathematical structure of both the operational and 
performance-oriented models, hardware effects (such as the maximum num
ber of terminals) or software effects (such as the degree of 
multiprogramming) can be easily computed. This is of great importance
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Number of
Active
Users

Response
Time
Simulation
/Regression
Method

Response Time of Performance-Oriented 
Design Method

Response 
Time of 
Operational 
Analysis 
Method

Cost 1 Cost 2 Cost 3

16 6.89 4.21 1.91 1.12 2.96

24 8.08 5.81 2.23 1.21 4.13

32 9.48 7.82 3.19 1.52 6.12

40 11.13 10.47 4.12 1,62 10.98

48 13.06 13.82 5.32 2.22 18.87

Table 6.1: Response Time vs. no. of Active Users (Terminals) under 
" the Three Performance Evaluation Methods.



I V#

for studying and analysing the 'behaviour of the system according 
to the parameters changes. It will provide the designer with more 
speed and more information about the best system design which can 
be produced within a certain cost limit.

To conclude, the idea of comparing different evaluation 
methods always provides better information about the computer system 
required to be designed.

6.3. Future Research Work:

Throughout this thesis we have suggested several areas of 
possible refinements and extensions to this work. The possible 
areas are virtually unlimited. Possible topics include the following*

* The effects of different scheduling disciplines on the 
important performance parameters. This problem can be 
studied in detail using the simulation technique. 
Specifically, we can use GST to study several policy 
functions ((see/Cavouras 78/)). This problem can also 
be studied using performance-oriented design techniques.
For this purpose we suggest to generalize the work"of 
Mahl ((/Mahl 70/)), Badel and Leroudier ((/Badel and 
Leroudier 78/)) and Gotlib and Schonbach ( (/Gotlib and 
Schonbach 80/)). The Mahl approach depends only upon 
the optimization technique. He defines an economic 
function which can be maximized by selecting a certain 
set of jobs to enter the main memory (i.e. the set of 
active jobs) depending on a specific scheduling discipline. 
The approach of both Badel and Leroudier, and Gotlib and 
Schonbach is a simulation approach.

Similarly, the effects of the scheduling disciplines 
can be studied using the operational analysis technique.
For this purpose we suggest to use the idea of Brad 
((/Brad 77/)) as the base for that analysis.

Again, the results of modelling the scheduling 
disciplines derived from the three methods can be compared 
and analysed for further design and evaluation.

* Studying the effects of different designs of the storage 
subsystem, using the three design and evaluation methods.
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For this purpose, we suggest to modify the general 
simulation model (QST) in order to implement different 
storage subsystem designs. For the performance-oriented 
design method we suggest to modify the research work of 
((/Trivedi and Sigmon 8l/)), ((/Chow 74/)), ((/Grecsei and 
Lukes 74/)) and ( (/Ramamoorthy and Chandy 70/))* The 
results obtained after implementing different storage 
subsystem designs, using the three different methods, 
can be compared for more information.

* Studying the errors that are due to the approximation 
methods or assumptions which have been used to produce 
both the operational models and performance-oriented 
design models. This type of analysis is called sensitivity 
analysis ((/Buzen and Denning 8O/)).

* Further studies in models’ validity. For this purpose we 
suggest to use the measurement techniques on an actual 
system. This idea may involve constructing a sampling 
software monitor. The results of this monitor will be 
used to validate the models produced by the three design 
and evaluation methods. We may also use the research of 
((/Kumar 8O/)) as the base of this work.

* Constructing a general interactive design tool (GrIDT.) 
based upon the three design and evaluation methods. This 
tool should include graphical facilities.. The abstract 
idea of such a tool is given in Figure 6.3* The idea 
involves constructing three interactive design tools and 
a selection procedure. The selection will be based on 
the advantages of each particular design tool, for a 
given design problem. For the purpose of constructing 
the GZDT, we may use the BESTl design tool introduced by
Buzen ((/Buzen, Goldberg,Langer,Lentz,Schwah^,Sheets and Shum 78/))

* Further investigation to add new powerful mathematical 
structures to operational analysis. This idea was originally 
started by Bouhana ((/Bouhana 78/)) in which he implemented 
the theory of matrices within operational analysis.

*  Studying the effects of program behaviour using the three 
design and evaluation methods. Some necessary modifications 
should be added to these methods. For the operational 
analysis part we may use the work of ((/Denning 8O/)) and 
((/Slutz and Traiger 74/)) as a base for these modifications.

* Further studies should be carried out to implement the user
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Figure 6•3* General Interactive Design Tool (GIDT)
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effects, especially with the interactive computer system models* For 
this purpose, new performance parameters should he added* Examples 
of user effects include their productivity and satisfaction. For 
the purpose of implementation we might he ahle to use the work of 
((/Barher 79/)).
Using the performance-oriented design technique we aim to represent
a. general interactive computer system, hased on the idea of multi
customer classes* We also aim to represent in such a system the 
cost of each component as a function of their characteristic 
parameters. Finally, we may increase the resolution power of the 
workload in that system.

It is believed that in this work the hasic framework of 
computer design and evaluation techniques has been provided. This is 
hut a start in a relatively new area. There are countless 
possibilities for extending these methods to provide more realism 
and for developing new, more comprehensive design models. The path 
to further knowledge awaits our exploration.
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Appendix Al

Some Helpftil Statistical Methods,

1. Regression Methodst
The techniques of regression and correlation analysis are 

very useful. Regression analysis takes a set of data and fits it to 
an equation whose form is pre-selected by the analyst. Correlation 
analysis gives us some indication of how well the data points fit or 
cluster around the equation so derived, It is recalled that one 
purpose of statistics is to represent many numbers by a few numbers* 
One way to do this is to fit an analytic function like a polynomial 
to the data. Once this is done, only a few coefficients of the 
polynomial need to be stored to represent the data* The problem of 
finding equations for the approximating curves that best fit the 
given sets of data is called curve fitting. The analyst must select 
the curve to be fitted. For reference, we list several common types 
of approximating curves and their equations. All letters other than 
X and y are constants or parameters and x is the independent variable 
((/shannon 1 3 / ) ) *

Straight line.
parabola or quadratic curve* 
cubic curve, 
quartic curve, 
hyperbola, 
exponential curve, 
logarithmic, 
cubic logarithm.

1. y » a + a_x0 J. 2
2. y =. a x + a x

^ 2 33* y =* a + a_x + â x, 0 J- ^ 2
+ a.,xy 

^34. y = a^ + a^x + a^x + a?x^
5. y “ V(®o + a^x) or
6. y = ab or log y = a + a.x

0 ^7. y a log X
8. log y » â  + a. log* O X X

ietc Î etc,

+ a.x4+ a^x

To decide which to use, we can examine scatter diagrams and 
compare results with the general shapes to the curve given by different 
equations; Figure Al.l represents the best fit that can be chosen is 
the linear curve.

Figure Al.l Best fit for 
a scatter 
diagram.

Y

straight line curve
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To evaluate whether the data are a "good fit" to our line or 
equation, we need the concept of correlation# Correlation tells us 
how close the data points cluster around the curve or line. While 
regression defines a proposed relationship "between the variables, 
correlation tells us how good that relationship is# A high correlat
ion "between variables shows that they change their values in a 
related manner, but we must realize that this does not prove or imply 
a cause and effect relationship# Regression analysis assumes that 
there is a cause and effect relationship between the dependent and 
independent variables; correlation studies make no such assumption# 
Correlation coefficients will range from -1 to +1. A coefficient 
of -1 means perfect negative correlation# A coefficient of 0 means 
absolutely no correlation, and a coefficient of +1 means perfect posi
tive correlation# The Square of the correlation coefficient is 
called coefficient of determination.

Furthermore, the equations used in curve fitting are as
follows Ï
* Linear Regression:

X.

I. .X

* Exponential Curve Fit:

Yi
y = aebx

-►X



JXjr .4

* Loffarlthmic Curve Fit:

b ^  - j l V i l y i  .

a = ̂  (lyi - i>LVi)

[ t  ̂ i V i  - i l V i  I^iî

y = a + b lux 

/
/

/ -----------

/
2r =

t d n è ( L W l  [l^i - ÏÏ C  V ' l

* Power Curve Fit:

( E V i ) ( L V i )
n

n

a « exp

E ( V i ) '  - d V i ) '

- b E V i
n

2r =
r n v i ^ ^ V i )  - (C V i ) ( E V i
L - n

/
/

y = ax /
/

/

n n

2. Reduction Methods :
"Reduction" is a key word used by several system designers, 

since the significance of raw measurements will not be apparent at 
the first level of presentation, and their meaning must be extracted 
by the application of numerical methods. Reduction can be used in 
real time systems, since reduction means storing the measurements 
and reduce them later, after the end of the session.K K

(before reduction)

1 2 3 5 6 7

(after reduction)

1 2 3 4 5 6 7
J



Reduction can be performed using a reduction factor as shown 
in figure (a) and figure (b), which can be calculated as follows:

r  --   (* r is a reduction factor*)

with

^ “ f  f
and ^

—  V  j and k.

We are interested in the minimum value of r, which satisfies 
the design requirements, since this is the choice corresponding to 
the maximum degree of representativeness,

V Often, reduction means a method of presentation also, "The 
form in which results are presented can greatly facilitate (or 
confuse) their interpretation" ((/Ferrari ?8/)), One way is to use 
a graphical representation, such as Gantt Charts and Kiviate graphs.

Moreover, a convenient and flexible organization for the 
collected data may be achieved by storing them into a database and 
providing the users with a query language by which they can 
interrogate the database and interact with it,

3, Analysis of Variance Methods;
The term analysis of variance designates those data analysis 

methods which can be used to estimate the relative influence of 
different sources of variation on the values of a performance index. 
These methods decompose the total variation of the index into 
components which correspond to the sources of variation being 
considered. When all the factors in an experiment are quantative, 
regression analysis techniques can be applied, otherwise analysis-of- 
variance methods should be used.

Finally, there are many other helpful methods we did not 
discover so far, for example;
a. Reduction of dimensionality (multivariate methods),
b. Histograms and graphical presentation methods,
c. Time series analysis.
d. Monte-carlo Method,
0, Multiple-regression methods.

etc, for further information the reader is referred to ((/Kobayashi



78/)) ((/Ferrari 78/))((/Box and Jenkins 70/))((/Bock, Yancy and 
Judge 73/)).
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Appendix A2

Abbreviations.

* M = No, of active users (Terminals).
* TSM = Average no. of tasks per multiaccess job.
* TH = Average think time.
* Xa Mean interarrival time.
* MPT = Mean CPU time.
* MSI = Medium scheduling interval.
* MZ =» Memory size.
* SPZ = Segment/Page size.
* MNI =» Mean no. of interactions.
* PWS = Period of working set.
* MSL = Mean value of reference string length.
* PPZ = Fraction of process size.
* ST » Swapping time (i.e. time to move one byte into memory)
* SHF » Scheduling discipline factor.
* PBZ =» Ihysical block size of disc file. v
* MBR « Mean no. of backing store records.
* MDR »• Mean no. of disc file records.
* GST = Context switching time.
* PI = Process invocation time.
* PCT = Permitive call time.
* R =» Average response time.
* PBT =* Average processor busy time,
* X = Average interactive system throughput.
* = Effective degree of multiprogramming,
* DU = Disc utilization.
* DRU =* Drum utilization.
* TCT “ Terminal connect time.
* MJP = No. of multiaccess jobs processed.
* RSR =* Ratio of simulation time to real time,
* POT 5 Processor overhead time,
* WPT - Mean Waiting time in CPU queue.
* WST = Mean waiting time in storage manager queue.
* WTT =» Mean waiting time in terminal manager queue.
* WDT a Mean waiting time in disc manager queue.
* WDRT = Mean waiting time in drum manager queue.

2* r =* Coefficient of determination.



* PT = Processor productive time.
* OT = CPU overhead time.
* RJU = Ratio of jobs processed per no. of active users.
* SO * Simulation option.
* NO =• Number of jobs.
* SP * Simulation period.
* IRN = Initial random no.
* CSP = Collecting statistic period.
* NPB = Number of priority level of batch jobs.
* MRT = Maximum average resonse time.
* MPP = Maximum no. of ports of process*
* PDZ = Process descriptor table size.
* ASIR = Average service time of interrupt routine.
* SDZ = Section descriptor table size.
* ST « Simulation time.
* PIT =» Processor idle time.
* UPD = Utilization time of peripheral devices.
* NPC “ Number of processes created,
* NJS = Number of jobs entered to the system.
* NPP =* Number of processes processed.
* NPPAS = Number and ^  of process abort by the system.
* TSPS = The times spent in each process state.
* KO » Kernel overhead,
* SARUP = Estimation of the average records used by processes.
* MNEBST = Max. no. of entries used by simulation table.
* MNEBRT = Max. no. of entries used by real system table.
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The Representation of a Mnltiolaes cuatomer closed queueing network.

Consider a computer system of M devices (processors, service 
centres). Customers in the system may belong to any one of a finite 
number of classes. The collection of classes constitutes a class 
group (e.g. trivial and non-trivial jobs) which consists of a main 
customer class and a number of associated system customer classes.
Let the classes be numbered 1,2,,...R and let

^ir number of customers of class r present at centre i.
R

n^ = X) is the total number of customers present at

AP.9

r=l 
M

W =* E  n. is the total number of class r customers in the 
^ i-i 

M
N = n. is the total number of customers in the system. 

i=l ^

centre i. 
is the ■ 
system.

Since the subsystem model is represented by a closed queueing network, 
H is fixed.

Now, during an observation period (0,T) , the following 
operational quantities are collected; ^

Aj^ (n) t number of arrivals of class r customers at centre i,
when n. = n, 0 < n <  N.

is ^^ir * number of times a customer of class r requests service
at centre j as a class s customer immediately after
completing a service request at centre i, when
îr. “ 0 < n ^  R.

T (n) I total time during which n, =*n, O ^ n ^ N .  ir ^: total busy time of device i for class r customers.
Let, the outside world as centre 0, then

0^^ (n) t number of customers of class r whose first request is
for centre i when « n (no class chants occur on
entry to the system) 0 ̂ n  <  N.

C?^ (n) s number of class r customers whose last service
request is for centre i, when n^^ =» n (no class
changes occur on exit from the system), 0 < n ^ N .
The number of completions of class r jobs at centre 
i when n^^ =• n, is computed ast

M R .
Oi_(n) = E  E  0 ^  (n) , 0 < n $ N .^  j=0 3=1

ir
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The number of arrivals of class r customers at the 
system when = n, 0 n N, is:

°or (")'1=1

Using the above quantities, the following derived operational 
quantities are defined;

/ \* X^(n) = ÿ , request completion rate for class r customers at
centre i when n ^  - n, 0 < n ^  N.

* P^(n) » " , proportion of time when n ^  = n, 0 ^ n

* 8j^(n) = g , the service function for class r customers at
„ centre i when n. = n.N ir

* C. = ^  0. (n) , the total number of completions for class rIX "# IX
customers at centre i.

°ir* X = , overall request completion rate for class rir T 
B

'ir ~ 0
customers at centre i.

"̂ix* s. = , the mean service time over all class r
ir
B, completions at device i.

* U^^ , the utilization of centre i by class r- customers.
R

* U. = Z  U. , utilization of centre i.
 ̂ r=l ^

N
* J. = n T. (n) , job-seconds accumulated at centre i by class r

^  n=l” customers.
—  ir* n^^ = -g— , the average number of customers of class r at

- centre i.
ir* R. » TT" f mean response time per request by class r
ir ^ customers at centre i.

* q^^ » (n) , the fraction of completions of class r
ir n=l customers at centre i which are followed

immediately by requests, as class s
customers, for service at centre j.

Using the above quantities, the following operational laws have
been derived: ^

* “ S  Pi^(n) X^(n)n»i



" i r  ■  tn=l
Now, using the above quantities and laws, we can construct many 

operational theorems by imposing some additional simplifying assumptions 
upon the system. These assumptions are*
1. Job Flow Balance*

The principle of job flow balance implies the following — 
for each centre i, is the same as the total input rate of class r 
customers to centre i. Therefore, if job flow is balanced, we refer to
X^^ as the centre throu^puts*

since

^js

°js

A

'ir

i=0 r=l
pjs
ir

^ir Zi»0 fr=l

Z  i  ^i=0 r=l ^ 'ir

os (n)

hence, dividing by T:

1=0 r=l
,. .where j=0,.. ,M. •'

8=1,..,H.
The above equations are called the job flow balance equations. 
The job flow balance equations can also have the following forms

R
i-0 ^  “

f  5 r^ r* r-1 irf  ̂r=l ir

M
s:
i»0
Ii=0
X

M
‘ S(X ij»l 8=1 °ir

R 08

Rr
)

hence
^ir - Zi=0 r=l i=0 r=l s=l

os
ir ^irf  X3=1 OS

M
X

8=1 i=0 r=l ir
R

i=0 r=l
It is important to note that in these forms the job flow balance

equations have no direct solution for the closed queueing network,
since X is unknown. To solve these equations, let us defines 08

ir
ir X.or

, the flow of customers in class r through centre i 
relative to the system throu^put for class r customers.

then
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Q
7. = 9 and 7. is the mean number of completions in class rAr V ir

at centre i. This is also called visit ratio of class 
r customers at centre i.

Hence, using the above definition we can represent thé job flow 
balance equations in a different form which can be solved *

r “ 1} • • • ,H 
j *» 0, • •. ,MTor - 1

2. State Transition Balance*
The state of the system is described by a vector:

n - (n̂ , Sg,....
where

Sfli =■ ("ml' “m2’....“mR^’
We define*
T(nJ : the total time during which the network is in state n during

the interval ((0,T)).
• P(n) = , the time proportion for n ,

T where
Zr(n) = 1.
a

k,n,m, * denote distinct system states.
* the number of one-step transitions (i.e. without passing 
through any intermediate state) observed from state n to 
state m , where

Using the above definitions the job flow balance equations
represent the state transition balance equations where the number of
entries to every state is the same as the number of exits from that
state during the observation period.
i.e# X - Q  (k,n) = X%(n,^ for all n. 

k m
Define the transition rate from n to m as follows:

Then the state transition balance equations can be written as*
X  T(^ H(k,^ = T(n) X
k mor, — —

H  P(k) Hfeu) - P(n) Z  H(n.,m) k m
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for all n for which each H(n, .) is defined.
Now, by adding the normalizing condition ̂ . P(n) = 1 and noting that

n
P(n} = 0 for those n not included in the above state balance transition 
equations, a unique set of p(n) will satisfy the equations. To show 
the solution, we first need to define the following:

Prom the one-step behaviour assumption ((The only observable 
state changes result from single customers either entering the system, 
or moving between pairs of centres in the system with accompanying 
class changes)), we can derive that the neighbour states of n are*

(^21*'"'  “m r)4 r

a : (n11***** ^ir ^

Then for all n
(n.11 - 1.

men lor axx n v—
P(s^) H(n“  , n) +1- P ( ^ )  ,») '&)i ,r

p(a)
r,s

L
r>3

a(n, n^) + H h(^ n“ ) + %  H(n, n°“) 
i,r j,r

The first on the left and on the right correspond to customers 
making (i,r), (j,s) transitions; The second terms on the left and the 
right correspond to customers exiting the system from centre i; thte 
third terms on the left and on the right correspond to jobs entering 
the system at centre j. The sums over i and j extend over 1,...,M. 
whereas the sums over r and s extend over 1,...,R. For a closed system 
such as our interactive system, the second and third terms on the left 
and right should be dropped, and q^^ should be increased by q ^  . q̂ .̂ 

In order to solve the state transition balance equations we 
also have to express them in terms of measurable parameter. For this 
purpose we should use two new assumptions:
Firstly, the representation of the state transition rate is*

q̂ js (and similarly for other state 
-------— ----  transitions)

The two assumptions will help in simplifying the above equations, 
assumptions are*

The

First that* i^(n^ , n) 
(device homogenity)

ir (̂ ir
^ir^^ir + 1)
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i,e.. that the rate of state transitions from n^^ to n equals 
the rate at which device i throughputs of class r customers equals 
Ufr + 1, which immediately go to device j as class s customers 
irrespective of the number of class s customers already at device j. 

Second that: C^(n^^ + l) = q^® ^̂ ir̂ îr
(routing homogenity)

i.e. the routing frequencies are independent of the state of 
the system (but may depend on the load R).
Hence, we can obtain the following homogeneous rates:

* a) = 4 r  :j8/Sir(“ir + ̂

* H(r4“.n) sir Ijr
* H(n.n°P = X^^ qi:

where
I

fl if >0 
vO if n. = 0ir “ir

The homogenized balance equations are now:

^  _____ :j8

+Z:P(ng) X^^ .
js _ _  „or

Q w "r g

r,8
ROW, consider the ri^t-hand side*
T  + %  ^  Ijr ' L  ^  Ijr Ijr

Sir(“ir̂ , t l  %  t l  Z Ï

i»l r-l̂ ir'̂ îr/ j=0 s=l 
M R

I  ri=l r«l ^ir^^lr^ 
and M

jTl

Hence, the state transition balance equations are reduced to*
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t  *  &  ’ < ^ >

for all n.

i,jr,s
P(n) ir

i,r ^ir^^ir)
+ X.

Finally, the solution of the above equations ist 
M R

P ( n ) = i Z  (n̂ )̂
where

^ir (

° îTi
if n. = 0  ir

>ix) { x ("4_) Pi,("4, - 1) if “£r >  0*ir ir  ̂ir' ir'“ ir

i.e. P^(nir) . X”  U  S,^(k), >  0.

G is a normalizing constant given by 
M

G = n  n  F^^ (n̂ ^̂ ) , where the summation extends over 
n 1=1 r=l all possible n.

\ ( 4 l )  . X ^  s/(nf)" • Kn)JS ja' 3a'

“ir

(n. + 1) .. P(n)ir ir ' ir 
1 . P(n)^jr Bjr(njp)

For closed queueing networks, these equations do not allow a 
unique set of solutions. The analyst can, however, obtain a unique set 
of visit ratio data and derive the X^^ by means of an arbitrary 
normalization.

The procedure of calculating the normalization factor is given 
in appendix B.2.

Now, we can formulate the important performance indices. For 
more information the reader is referred to Roode ((/Roode 79/))*
* The Utilization;

N N-m
%  - Ô Î T O T  t l  I b  h«(P,E-l) g(N-m,P,M-l,E).

* The Average Gueue Lengths;
ÎT N-m

S r n - W ^ m  ^  g(l-m,M-l,E).'  '  '  m * * l  p = u
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Calculation of the Normalization Factor of Multiolasa Customer 
Closed Queueing Network.

The normalization constant is defined as:

L M R u. .
n  n  (x.. s..)

^S(N,M,R) i=l i=l 
where ^
S(N,M,R) = j 2 ̂  ( ^ 1 1 * ^ 1 2 * If  f  1i=l jti "ij = N & n^j>0 yi,jj
Roode ((/Roode 79/))genBFBllzea the approach followed by Buzen 
((/Buzen 73/)), he considers the following function:

m r -i
g(n,ni,r) ^ II II ( \ a s. .)

nEs(ïT,m,r) i=l j=l
Then, for m ^ 1 it follows that

V .
s(n,m,r) = C. S. II(x jS .) ^ g(n-p, m-1, r)

p-0 TEsCp.r) j=l ^  ^
where
S(P,r) = (v^,V2,....,v̂ )| X  Vj = P,Vj ̂  0 V^|

“ • ■ S ( , „ )  h
Then it follows that

(P.r) = h(m) (P, r-1) + (X_^S^) h^“\p-l, r)
with

h(“)(P,r) - P “ 0,1....,H;Vin.
and
h.(̂ ) (0,r) = 1 for r = 1,2,...,R; V  m;
h(^) (0,0) = 1  , h(^) (p,o) = 0, p :^i .
Thus

g(n,m,r) = ^  h^™^ (P,r) g(n-p, m-1, r)
p=0

and the iterative calculation of g(N,M,R) is completed if we observe 
that ;
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q V.
g(n,l,q) = n. any q

vES(n,q) j=l
so that
g(n,l,q) = g(n,l,q-l) + (2. 8, ) g(n-l,l,q) 
with

* n = 1,2,
g(0,l,q) = 1 V  q.
In fact this last calculation is unnecessary since
g(n,l,q) = ĥ   ̂ (n,q) q = 1,2,.,,,R*

n = 1,2,
Note that in order to calculate the normalizing constant g(N,M,R) we 
need only calculate
ĥ  (̂p,r), m=l,«.«,M; r=l,***R and P=1,****,N; 
g(n,m,E) , n=l,.,.,N; m»2,...,M with 
g(n,1,R) =» h(^)(n,R), n=0,l,...,N.



Appendix B2

The Algorithm of Calculating the Normalization Factor of 
Interactive Computer System Models.

The algorithm fills in numbers in a two-dimensional matrix g.
The columns of g correspond to devices, rows to loads. The computation
starts with Is in the first row and Os in the first column below the 
first row, A typical interior element is computed from 
g(n,k) = g(n,k-1) + g(n-l,k),
where Y^ = 7^S^. The normalizing constant G is g(N,K). It can be
computed in 2KN arithmetic operations.
Let Ĝ pD.,,1̂ , initially 0, denote a vector array representing a current 
column of g, and let Y ĵ l,,.*K̂  denote another vector containing 
Y^S^,.,,,V̂ Ŝ . Then the algorithm is

înitialize^ g[6] ; = 1;
FOR k:=l TO K DO Compute kth column'j- 

FOR n:=l TO N DO
IjGlfn-lj contains g(n-l,k); 
G '[n] contains g(n,k-l) j-
G [n] ;=G,[n] + Y [k] G ̂ n-1^ ;
When this procedure terminates, G [ N ] contains the

normalizing constant.


