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Chapter 1

Introduction

As the LHC continuously refuses to supply exciting new resonances, the high

energy physics community places their hope in the intensity frontier to �nally break

the Standard Model. Subtle di�erences between experimental measurements and

Standard Model predictions are the new rock and roll. As collider experiments

collect more data and measurements become more precise, theorists must keep up

the pace and improve predictions.

This thesis focuses on the study of calculating form factors for semileptonic

b → c transitions. These transitions occur between hadrons, bound together

by Quantum Chromodynamics (QCD). At the con�nement scale (∼ 1GeV),

perturbation theory breaks down due to con�nement, and the only sensible option

is to compute the path integral directly, i.e., via Lattice QCD.

The b quark is di�cult to deal with on the lattice, due to its mass being be-

yond the momentum cuto� imposed by most computationally feasible lattice

spacings. Quark masses roughly equal or greater than the momentum cuto� mean

discretization e�ects become too large to control. We calculated b → c form

factors using two approaches to dealing with the heavy b quark, one employing a

non-relativistic action for the b (NRQCD), and the other using a relativistic action

with masses between the c and the b mass and extrapolating upwards to the b

mass (Heavy-HISQ). The main take-home from this thesis is the following: when

it comes to semileptonic form factors; NRQCD is on shaky ground, and

Heavy-HISQ is an excellent way to live. If it can be computationally a�orded,

heavy-HISQ is the superior of the two approaches.

Using NRQCD, we attempted to compute form factors for the B(s) → D(s)lν

decays. In NRQCD, �avour-changing current operators are made of an in�nite

series of terms in powers of the b-quark velocity v, each requiring their own
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2 Chapter 1. Introduction

normalisation via perturbative matching to continuum QCD. It was discovered

during this work that subleading terms in this series that contribute away from zero

recoil infact have a large contribution. Since the perturbative matching calculations

for these terms have not been performed, this makes it very di�cult to obtain

b → c form factors at competitive precision using the NRQCD approach (existing

results are at the few-percent level).

The NRQCD approach could in principle be saved by �nding non-perturbative

normalizations of these large subleading terms in the current. I investigated a

way of achieving this by comparing NRQCD lattice data to pre-existing and more

reliable Heavy-HISQ lattice data, with limited success.

To sidestep the problems with NRQCD, we focused instead on the Heavy-

HISQ approach. With this, we successfully calculated the Bs → D∗s lν axial form

factor at zero recoil. This demonstrated the power of heavy-HISQ and laid the

groundwork for a study of both Bs → D∗s lν and B → D∗lν form factors away from

zero recoil, which are now underway. We also calculated Bs → Dslν form factors

throughout the full physical range of momentum transfer. These studies, when

combined with future experimental data of the Bs → Dslν and Bs → D∗s lν decays,

will supply new tests of the Standard Model, and new channels to determining the

CKM parameter |Vcb|.

All work reported in this thesis was performed using gluon �eld ensembles

courtesy of the MILC collaboration, accounting for dynamical up, down, strange

and charm quarks in the sea [7, 8]. We computed correlation functions using a

combination of the MILC code, and HPQCD's NRQCD code.



Chapter 2

Motivation & Tools from the

Continuum

In this chapter, I lay out the physics context of this work and some theoretical

machinery that was useful for this work. This section consists of a de�nition and

the empirical status of the Standard Model. Then, I will expand on the details of

the speci�c sector we are interested in - the �avor sector and the CKM matrix.

I will also summarize some physics machinery useful for this work, namely QCD,

chiral symmetry, and e�ective �eld theories for heavy quarks.

2.1 Testing the Standard Model

The Standard Model of Particle Physics (SM) [9�11] is, so far, the most successful

theory for describing fundamental particles and their interactions. It is an e�ective

Yang-Mills quantum �eld theory. It is most succinctly de�ned by listing its sym-

metries, �eld content, and the irreducible representations (irreps) of the symmetries

that those �elds transform under. Below I follow the discussion in [12].

The symmetries are the following. The Lorentz group SO(3, 1), the group of

coordinate transformations that leave the Minkowski metric invariant, which can be

decomposed into SU(2)l × SU(2)r (left-handed and right-handed). We denote an

irrep as (a, b) where a is the σz eigenvalue under SU(2)l transforms, and b is that

of SU(2)r. Then there are internal local gauge symmetries:

SU(3)C × SU(2)L × U(1)Y , (2.1)

irreps of which we denote with (x, y, z), where x, y label the SU(3)C and SU(2)L

irreps and z is the charge under U(1)Y . The subscript C stands for color (cor-

responding to the strong nuclear force), L denotes the weak nuclear force, and Y

denotes hypercharge.

The �eld content is: gauge bosons for each of the above gauge symmetries, each

transforming in the adjoint of their corresponding symmetry and in the (1/2, 1/2)

3



4 Chapter 2. Motivation & Tools from the Continuum

irrep of the Lorentz group, denoted Bµ, Wµ, Gµ respectively. There are 6 SU(2)L

doublets in the (1/2, 0) Lorentz irrep; the left-handed fermions:

Q1,2,3 =

(
uL

dL

)
,

(
cL

sL

)
,

(
tL

bL

)
, (3,2, 1/6) (2.2)

L1,2,3 =

(
νe,L

eL

)
,

(
νµ,L

µL

)
,

(
ντ,L

τL

)
, (1,2,−1) (2.3)

and 9 SU(2)L singlets in the (0, 1/2) Lorentz irrep; the right-handed fermions:

uR1,2,3 = uR, cR, tR , (3̄,1, 2/3) (2.4)

dR1,2,3 = dR, sR, bR , (3̄,1,−1/3) (2.5)

eR1,2,3 = eR, µR, τR , (1,1,−1). (2.6)

We have also listed the SM gauge irreps next to each de�nition. There is also in

principle a further set of right-handed SU(2)L singlets, νR1,2,3 = (νe,R, νµ,R, ντ,R),

but these are singlets of the entire SM gauge group so in a phenomenological sense

are very much `not there'. There is also a Lorentz scalar SU(2)L doublet, the Higgs

H, in gauge irrep (1,2, 1/2) [13�15]. H obtains a vacuum expectation value under

∼ 200GeV and causes a breaking of the above gauge group to SU(3)C × U(1)E ,

where U(1)E is the electromagnetic gauge group mediated by the photon.

There is at present no con�rmed evidence of physics beyond the SM (or new

physics), besides the presence of neutrino (ν) masses [16]. However, there are

a number of problems with the SM that heavily imply that there must be new

physics. Among the most famous sources of concern are:

• Dark Matter & Dark Energy - an estimated 96% of the content of the

universe is dark matter [17] and dark energy [18, 19], that does not interact

with the SM gauge group (only via gravity), so cannot be explained by the

SM.

• Matter/Antimatter Asymmetry - the SM requires there to be an equal

amount of matter and antimatter in the universe, however, we observe a mas-

sive dominance of matter over antimatter [20].

• Neutrino Oscillations - di�erent species of neutrinos oscillate into each other
over time implying neutrino masses. Neutrino masses cannot be naturally

included in the SM.
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• The Hierarchy Problem - the SM is `�nely tuned', the chances of the

Higgs taking its current vacuum expectation value is estimated to be one in

∼ 1032 [21�23]. A more natural value for the vacuum expectation value would

be at the same energy scale as the Planck mass.

In a sense, the central goal of particle physics is currently to pin down evidence

against the SM. Only once we have detailed knowledge of how it breaks down will

we be able to uniquely determine a new theory of fundamental physics.

There are many promising approaches to achieve this. They are traditionally

separated into

• The Energy Frontier - explore the highest possible energies reachable with

accelerators, directly looking for new physics via the production and identi�-

cation of new states of matter.

• The Cosmic Frontier - use the universe as an experimental laboratory and

observatory, taking advantage of naturally occurring events to observe indica-

tions of new interactions.

• The Intensity Frontier - use intense sources of particles from accelerators,

reactors, the sun and the atmosphere to make ultra-precise measurements and

�nd subtle deviations from SM predictions.

The work in this thesis contributes to the third approach.

2.2 Flavor-Changing Charged Currents

The SM tests relevant to this work are on quark �avor-changing interactions. Here I

will detail the parts of the SM relevant to these interactions, following the discussion

in [12].

The SU(2)L gauge symmetry of the SM is mediated by the vector boson W =

W 1τ1 +W 2τ2 +W 3τ3, where τi are the three SU(2) generators acting on the SU(2)L

doublets de�ned in the last section. It is convenient to rede�ne the �elds W =

W+(τ0 + iτ1) + W−(τ0 − iτ1) + W 3τ3. W±,W 3 are the stationary states at low

energies due to electroweak symmetry breaking.

The part of the SM Lagrangian that describes the coupling of W± to fermions

is given by

LFCCC =
e√

2 sin θW

(
ūiL /W

+
diL + d̄iL /W

−
uiL + ν̄iL /W

+
eiL + ēiL /W

−
νiL

)
, (2.7)
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where e is the electron charge, θW is the Weinberg angle (a parameter of the SM),

and /W = γµWµ where γµ are members of the Cli�ord algebra acting on fermion

spin components. The indices i, j label quark �avor. To understand the interactions

these terms cause we must also consider the mass terms for the fermions:

Lmass = yuij

(
v√
2

)
ūiLu

j
R + ydij

(
v√
2

)
d̄iLd

j
R + yeij

(
v√
2

)
ēiLe

j
R + (h.c.). (2.8)

These terms come from the coupling of the fermions to the Higgs �eld, where the

Higgs has taken a vacuum expectation value v at low energies. yu,d,eij are the Yukawa

matrices, parameterising the coupling of the fermions to the Higgs. The absence of

right-handed neutrinos forbids an analagous term for neutrinos.

Due to the nondiagonal mass terms, i.e. terms in Eq. (2.8) that couple di�erent

�avors, the fundamental fermion �elds are not stationary states. To obtain more

useful �eld de�nitions, one rotates the �elds to diagonalise these terms

ψLi → Lψijψ
L
j , ψ

i
R → Rψijψ

j
R, (2.9)

where ψ = u, d or e, and we choose Lψij ,R
ψ
ij according to

Lψ †yψRψ
(
v√
2

)
= Mψ, (2.10)

where Mψ is diagonal. This results in diagonal mass terms. However, this also has

the e�ect of making couplings in LFCCC non-diagonal:

LFCCC =
e√

2 sin θW

(
Vij ū

i
L /W

+
djL + V ∗ij d̄

i
L /W

−
ujL + ν̄iL /W

+
eiL + ēiL /W

−
νiL

)
. (2.11)

V is the famous Cabibbo�Kobayashi�Maskawa (CKM) matrix [24, 25], consisting

of parameters that must be �xed by experiment. V = Lu †Ld is by construction a

unitary matrix (V †V = (Ld †Lu)(Lu †Ld) = LdLd † = 1).

There is no non-diagonal �avor structure in the last two terms because we have

rede�ned the neutrino �elds: νL → Le †νL, absorbing the rotation of the eL �elds.

This can be done with impunity due to the lack of neutrino mass terms. While

the SM does not include neutrino mass terms, it has in fact been experimentally

con�rmed that neutrinos have mass. It is however known that these masses are

extremely small in comparison to the scales of the SM (mν / 0.05eV) [16]. Any

e�ect this could in principle have via lepton �avor-changing would be much smaller

than the current sensitivity of any experiment.
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Figure 2.1: The �avor-changing charged current vertex.

Another useful rede�nition is to collect the left-handed and right-handed fermion

�elds into Dirac spinors ψ:

ψ = ψL + ψR , ψL =
1

2

(
1− γ5

)
ψ , ψR =

1

2

(
1 + γ5

)
ψ. (2.12)

In terms of Dirac spinors, LFCCC can be written as

LFCCC =
e√

2 sin θW

(
VijJ

ij
µ W

+µ + V ∗ijJ
ij †
µ W−µ + LiiµW

+µ + Lii †µ W−µ
)
, (2.13)

Lijµ =
1

2

(
ν̄iγµe

j − ν̄iγ5γµe
j
)
,

J ijµ =
1

2

(
ūiγµd

j − ūiγ5γµd
j
)
≡ V ij

µ −Aijµ .

J ijµ is known as the Flavor-Changing Charged Current (FCCC). It is often broken

up into the vector and axial-vector components, Vµ and Aµ respectively. These two

componets can be categorised according to their transformations under the Lorentz

group. Vµ is labelled 1−, where the 1 represents its total spin, and the − represents

its negative parity P : Vµ → −Vµ. Aµ is instead labelled 1+, due to its positive

parity P : Aµ → +Aµ.

We can now turn to the physical consequences of LFCCC. The interactions given
in this part of the Lagrangian describe a quark changing �avor while emitting a

W± boson (Fig. 2.1). The propensity for �avor i to decay into another �avor

j is governed in part by energy constraints and in part by the associated CKM

element Vij . These quark-level interactions mediate meson decays, namely leptonic

and semileptonic decays, described in Sec. 2.2.2.

The deviation of Vij from a unit matrix breaks some of the symmetries of the

SM. LSM−LFCCC has the property that one can independently rephase each of the

quark �elds, qi → eiθiqi, a global U(1) symmetry for each quark �avor. This implies,

via Noether's theorem, that the number of quarks of each �avor, Ni, is conserved.

However, LFCCC breaks this symmetry U(1)6 → U(1). There is only a remnant

symmetry of transforming all �avors by the same phase. Individual quark �avor

number is no longer conserved, but overall quark number is.
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Figure 2.2: A sketch of the unitarity triangle.

Since there is no o�-diagonal �avor structure for the leptons, the equivalent global

U(1)6 symmetry for the leptons survives in the SM. Individual lepton �avor number

is conserved. This property of the SM is referred to as lepton �avor universality.

2.2.1 CKM Matrix Unitarity

The exact values of the CKM matrix elements are of interest in the search for new

physics. The CKM matrix is unitary by construction. However, we may discover

that the values we measure experimentally do not combine to produce a unitary

matrix. This would be evidence that the elements we are measuring, in fact, compose

a submatrix of a unitary matrix larger than 3 × 3. This would imply the presence

of further, heavier quark generations. Below once again I follow [12].

The assumption of unitarity in V :

V ∗jiVjk = δik, (2.14)

imposes 9 constraints on the CKM elements. Each of these constraints gives a test

of the SM. If one of these constraints is found to be violated, this would represent

evidence of new physics. The most studied constraint is given by taking i = 3, k = 1:

VudV
∗
ub

VcdV
∗
cb

+
VtdV

∗
tb

VcdV
∗
cb

+ 1 = 0. (2.15)

This can be visualized as a triangle (known as the unitarity triangle) on the complex

plane, as shown in Fig. 2.2.

For unitarity, the triangle must close, in other words, α+ β + γ = π. Hence one

test of CKM unitarity is to measure these angles

α = arg

(
− VtdV

∗
tb

VudV
∗
ub

)
, β = arg

(
−VcdV

∗
cb

VtdV
∗
tb

)
, γ = arg

(
−VudV

∗
ub

VcdV
∗
cb

)
. (2.16)
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Figure 2.3: Exclusion regions for the vertices of the CKM triangle from various

measurements, coutresy of the most recent PDG update [3].

These angles can be constructed from measured CKM elements. They can also

be measured directly from certain processes, for example γ can be measured by

studying B → DK decays [26,27]. The unitarity triangle also contains information

about CP-violation from �avor-changing charged currents. The Jarlskog invariant,

a measure of CP-violation, is proportional to the area enclosed by the triangle.

The most recent PDG update [3] reports the following averages for the measure-

ments of CKM elements:

|V | =




0.97446± 0.00010 0.22452± 0.00044 0.00365± 0.00012

0.22438± 0.00044 0.97359+0.00010
−0.00011 0.04214± 0.00076

0.00896+0.00024
−0.00023 0.04133± 0.00074 0.999105± 0.000032


 . (2.17)

The averages given here are consistent with unitarity in all avaliable tests. The

element we are most interested in in this thesis is |Vcb| = 0.04214± 0.00076, this is

the second least precise of the determinations at present. The angles of the unitarity

triangle currently satisfy α + β + γ = (180± 7)◦. Increasing the precision of CKM

determinations is necessary to provide more stringent tests of CKM unitarity.

2.2.2 Weak Decays

I now move on to the methods of determining CKM elements, following discussion

in [28]. At the con�nement scale (∼1GeV and below), quarks are con�ned by QCD



10 Chapter 2. Motivation & Tools from the Continuum

Figure 2.4: Leptonic decay of meson M at tree level in the electroweak coupling.

in hardons. At these energies, the dynamics of quarks are only experimentally ac-

cessible by probing the dynamics of hadrons. CKM matrix elements are determined

by studying hadron decays.

First some de�nitions of hadron classi�cation. Hadrons are categorized into

mesons (charged with one valence quark and one valence antiquark) and baryons

(three valence quarks). The entirety of this thesis is concerned with mesons. Mesons

are categorized in terms of the �avors they are charged under and their represen-

tations under the Lorentz group. We use the same notation as for the quantum

numbers of the weak currents; L± where L denotes spin and ± denotes parity. In

this thesis, we are concerned mostly with pseudoscalar (0−) and vector (1−) mesons.

Weak decays of mesons are categorized according to the �nal products:

• Leptonic: meson→ leptons.

• Semileptonic: meson→ meson+ leptons.

• Hadronic: meson→ mesons.

• Oscillation: meson→ meson.

All of these types of decay are dependent on CKM elements so can in principle

to be used for studying them. We are most interested in the �rst two, leptonic and

semileptonic, so will give detail of such decays here.

Fig. 2.4 shows a generic leptonic decay at tree level in electroweak coupling

(virtual quark and gluon lines are implicit). The corresponding amplitude is given

by

M =

(
ie√

2 sin θW

)
Vq1q2〈lν̄|LlµDµν

W Jq1q2ν |M〉, (2.18)

where DW is a free W± propagator, |M〉 is the ground state of the meson M , and

|lν̄〉 is a lepton-antineutrino state. We are using the notation Llµ = Lkkµ , where l
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indexes the kth charged lepton. If the momentum of the meson, p2, is much smaller

than the W mass squared, one can integrate out the dynamics of the W resulting

in Fermi e�ective theory:

(
ie√

2 sin θW

)2

Dµν
W (p2) =

(
ie√

2 sin θW

)2( −igµν
p2 −M2

W

)

=
i

M2
W

(
ie√

2 sin θW

)2

︸ ︷︷ ︸
≡−2

√
2GF

gµν +O
(

p2

M4
W

)
. (2.19)

ThenM can be factorised;

M' −2
√

2GFVq1q2〈lν̄|Llµ|Ω〉〈Ω|Jq1q2 µ|M〉. (2.20)

〈Ω|Jq1q2µ |M〉 is a non-perturbative quantity, since it concerns the transitions of a

strongly coupled bound state (QCD at the con�nement scale). We know that it

has a Lorentz index µ, and the only Lorentz vector in the system is the meson's

4-momentum pµ. So we de�ne

〈Ω|Jµq1q2 |M〉 = pµfM , (2.21)

where fM is a Lorentz invariant known as the decay constant of the meson M , and

encodes all non-perturbative information in the amplitude.

By taking the modulus squared ofM and integrating over all allowed momenta

of the �nal state, one �nds the decay rate of the process;

Γ(M → lν̄) =
G2
F

8π
f2
Mm

2
`MM

(
1− m`

M2
M

)2

|Vq1q2 |2 . (2.22)

m` here is the mass of the �nal state charged lepton. In order to �nd |Vq1q2 |,
one requires both a measurement of Γ(M → lν̄), and a value for fM . fM can be

computed in a lattice QCD calculation.

A similar story accompanies semileptonic decays. A typical semileptonic decay

(at tree level in the electroweak coupling) is depicted in Fig. 2.5. The amplitude is

given by

M =

(
ie√

2 sin θW

)
Vq1q2〈M ′, lν̄|Jq1q2µ Dµν

W Llν |M〉 ,

' −2
√

2GFVq1q2〈M ′, lν̄|Jq1q2µ Ll µ|M〉 ,
' −2

√
2GFVq1q2〈lν̄|Ll µ|Ω〉〈M ′|Jq1q2µ |M〉, (2.23)
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Figure 2.5: Semileptonic decay, M →M ′lν̄, at tree level in electroweak coupling.

where on the second line we have integrated out the W propagator by using the

same expansion as in the leptonic case, and on the third line we have factorised

the QCD part from the electroweak part. The matrix element 〈M ′|Jq1q2µ |M〉 is a
non-perturbative quantity. Unlike in the previous case, there are a number of ways

one can choose to parameterise this matrix element, and appropriate choices vary

depending on the quantum numbers of M and M ′. Of interest to us are the cases

where M is a pseudoscalar meson 0−, and M ′ is either pseudoscalar or vector 1−.

In the pseudoscalar→pseudoscalar case, only the vector component of the cur-

rent survives in the matrix element, 〈M ′|Jq1q2µ |M〉 = 〈M ′|V q1q2
µ |M〉. 〈M ′|Aq1q2µ |M〉

vanishes since this does not respect the parity invariance of QCD (it has negative

parity). The most popular parameterisation of 〈M ′|V q1q2
µ |M〉 is

〈M ′|V q1q2
µ |M〉 = f+(q2)

[
Pµ + pµ −

M2 −m2

q2
qµ

]
+ f0(q2)

M2 −m2

q2
qµ. (2.24)

M,Pµ are the M -meson mass and momentum and m, pµ are the M ′-meson mass

and momentum. f0(q2) and f+(q2), known as the scalar and vector form factors,

encoding all non-perturbative information. We now have non-perturbative functions

of q2 rather than a single number. q2 = (P − p)2, the momentum carried away from

the meson by the W , has an allowed range of values if the �nal states are on-shell

(obey the classical dispersion relation):

m2
` ≤ q2 ≤ (M −m)2. (2.25)

By integrating |M|2 over all �nal lepton and neutrino momenta, one �nds a di�er-

ential decay rate,

dΓ

dq2
(M →M ′lν̄) =ηEW

G2
F |Vq1q2 |2

24π3M2

(
1− m2

`

q2

)2

|p| × (2.26)

[(
1 +

m2
`

2q2

)
M2|p|2f2

+(q2) +
3m2

`

8q2
(M2 −m2)2f2

0 (q2)

]
.
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ηEW accounts for electroweak corrections due to diagrams where photons or Zs are

exchanged in addition to a W−, as well as the Coulomb attraction of the �nal-state

charged particles [29�31]. p is spatial momentum of the M ′ state. Once again,

to deduce |Vq1q2 |, one requires both the decay rates dΓ/dq2, and the form factors.

To precisely determine the form factors requires a Lattice QCD calculation, since

this is the only avaliable approach to calculating non-perturbative observables from

�rst principles with a systematic understanding of uncertainties (another approach

is QCD sum rules, for example see [32]).

In the pseudoscalar→vector case, both the vector and axial-vector components

of the current survive in the matrix element. A common choice of parameterisation

is

〈M ′(ε)|V µ
q1q2 |M〉 = i

√
MmhsV (w)εµναβ ε

∗νv′αvβ, (2.27)

〈M ′(ε)|Aµq1q2 |M〉 =
√
Mm [hsA1

(w)(w + 1)ε∗µ− (2.28)

hsA2
(w) ε∗ · v vµ − hsA3

(w) ε∗ · v v′µ].

v = P/M and v′ = p/m are the 4-velocities ofM andM ′ respectively. ε is the polar-

ization of the vector mesonM ′. w = v ·v′ is known as the recoil parameter, this is an

alternative to q2 often used in heavy quark e�ective theory. hV (w), hA0(w), hA1(w),

and hA2(w) are the form factors accounting for the non-perturbative physics. The

decay rate is given by

dΓ

dw
(M →M ′lν̄) =

G2
Fm

3|ηEWVq1q2 |2
4π3

(M −m)2
√
w2 − 1χ(w)|F(w)|2, (2.29)

where F(w) is a linear combination of the form factors and χ(w) is a known function

of w (both given in e.g. appendix G of [33]).

At the zero recoil point, where q2 is maximized at q2
max = (M −m)2, (correp-

sonding to w = 1), a single form factor contributes:

F(1) = hA1(1). (2.30)

However the di�erential decay rate vanishes at w = 1. A common approach to

determine |Vq1q2 |, for example used to �nd |Vcb| via the B → D∗lν̄ decay, is to �nd

|F(1)Vcb|2 at zero recoil by extrapolating from experimental data at non-zero recoil,

and combining this with a lattice QCD determination of hA1(1). This method is

used since lattice results for the form factors have only been available at zero recoil,

lattice calculations become more complicated away from zero recoil.
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2.2.3 b→ c Transitions and |Vcb|

The family of weak decays that have attracted the most attention are decays of

B-mesons (pseudoscalar mesons containing a valence b and u, d, s or c quark), due

to their rich variety of decay products.

The b can decay into either a c or a u quark via the �avor changing charged

current. In this thesis we are interested in the b→ c transition, with an amplitude

proportional to the CKM element |Vcb|. In this section, I'll give a brief overview of

how this is calculated and the value's current status.

B meson decays can be measured in a number of experiments. There are two

so-called b-factories, the Belle (II) experiment at the KEKB collider in Japan, and

the BaBar experiment at the PEP-II collider at SLAC in the US. These are e+e−

colliders, that collide with an energy tuned to the mass of the Υ(4s), an excited

state of the Υ meson (a 1− state with b̄b valence quarks). The Υ(4s) has a large

branching fraction into a BB̄ pair, the decays of these can be measured with large

statistics. B decays can also be measured in proton colliders, like at the LHCb

experiment at CERN. Measurements from LHCb have poorer statistics but cover a

larger range of the phase space of �nal states, due to the variance of momenta in

the initial state protons.

So far 3 approaches to determining |Vcb| have been carried out:

• B → D∗lν̄ decay rate measurements are extrapolated to zero recoil to deter-

mine |VcbhA1(1)|. Then dividing out hA1(1) from a Lattice calculation, one

�nds |Vcb|.

• B → Dlν̄ decay rates are measured throughout q2, and combined with f0(q2)

and f+(q2) from lattice calculations.

• B → Xclν̄ decay rates are measured (where Xc is all possible charmed �-

nal state mesons), this is used to constrain elements in the operator product

expansion, a method �rst devised in [34,35].

The �rst two are referred to as exclusive and the third inclusive. A selection of the

most accurate examples of each method of determination is given in Fig. 2.6.

This �gure tells a story of the recent history of |Vcb|. Determinations from B →
D`ν have been consistent with, but not as precise as, the other two methods. Until

recently, there was a∼ 3σ tension between determinations from theB → D∗`ν decay

and inclusive decays. A possible explaination of this tension appeared when concern
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37 38 39 40 41 42 43 44
|Vcb| × 103

B → Xc, PDG Average

B → D∗, w = 1, Fermilab/MILC + Grinstein & Kobach (2018)

B → D∗, w = 1, Fermilab/MILC + HFAG (2015)

B → D, w = 1, Fermilab/MILC + HFAG

B → D, w ≥ 1, Fermilab/MILC + HFAG

B → D, w ≥ 1, HPQCD + BaBar

Figure 2.6: Di�erent determinations of |Vcb|. Points labelled w = 1 are determina-

tions from extrapolating measurements of decay rates to the zero recoil point and

combining them with a lattice determination of the form factor at zero recoil. Points

labelled w ≥ 1 are results from using a combination of both branching fractions and

lattice form factors through some range of w. The �rst name mentioned in the

labels give the source of the lattice form factors, and the second gives the source of

the experimental data (e.g. the HPQCD+BaBar point used form factors from the

HPQCD collaboration and data from the BaBar experiment). The highest point

in red is from [36], the second and third highest from [37], fourth from [38], �fth

from [39]. The bottom point is from the PDG [3], using data from the ALPEPH [40],

Belle [41], BaBar [42,43], and CLEO [44] experiments.
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was raised about the method of extrapolating experimental data forB → D∗lν̄ decay

rates to the zero recoil point (w = 1) [39, 45,46]..

The Heavy Flavor Averaging Group HFAG (Now HFLAV) determination of

|VcbhA1(1)| in 2015 parameterized the form factors in the extrapolation using the

CLN parameterisation [47]. It has become clear that the constraints imposed on the

form factors in the CLN parameterisation are not justi�ed. In [39,46], the results of

an extrapolation using the CLN parameterisation were compared to results from a

more general, model-independent parameterisation, the BGL parameterisation [48].

It was found that they di�ered by 3.5σ. Since BGL is model independent, one may

consider this the more reliable result.

The |Vcb| result using BGL to extrapolate the decay rates is given in the green

point on Fig. 2.6. Hence, if this work is to be trusted, the long-standing |Vcb| tension
has been resolved.

There are however a number of other reasons to be interested in studying |Vcb|.
It constrains one side of the unitarity triangle via the ratio |Vub|/|Vcb|, so it is one of
the bottlenecks for precise tests of CKM unitarity. It is also a dominant uncertainty

in the determination of the CP -violation parameter εK (that is currently at tension

between the SM and experiment, see for example [49] where a 4σ tension is reported).

2.2.4 Flavor Anomalies & Lepton Flavor Violation

The SM can be tested by studying semileptonic decays more directly, without any

consideration of CKM elements. CKM-independent observables can be constructed

by taking ratios of branching fractions for decays with common CKM dependence.

Then, form factors from lattice QCD can be used to form pure SM predictions of

these ratios and compared to purely experimental measurements. Such comparisons

have uncovered a number of tensions between the SM and experiment.

The ratios are de�ned by

RXq =
Γ(Bq → Xqτντ )

1
2 [Γ(Bq → Xqeνe) + Γ(Bq → Xqµνµ)]

, (2.31)

where Xq is any meson with valence quark content of xq̄. The numerator and

denomenator will have a common factor of |Vbx|, so cancel in the ratio.

There is currently tension between SM and experiment in RD and RD∗ :

RD∗ |exp = 0.306(13)stat(07)sys , RD∗ |SM = 0.258(5), (2.32)

RD|exp = 0.407(39)stat(24)sys , RD|SM = 0.299(3). (2.33)
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Figure 2.7: R(D(∗)) determinations from SM and measurement [4]. One can see

from this that the SM prediction (the small blue ellipse) is inconsistent with the

experimental average (the �lled red ellipse).

The expermental values are the HFLAV averages, from BaBar [50,51], Belle [52�55],

and LHCb [56�58] data. The value for RD∗ |SM is the average of results from [45,59,

60], using a combination of light-cone sum rules and form factor constraints due to

heavy quark symmetry. The RD|SM value is the average of results from [45, 60, 61],

which used lattice form factors from [36,37].

A joint analysis of RD and RD∗ by HFLAV shows the combined tension to have

a signi�cance of 4.0σ (see Fig. 2.7). Clearly more precise experimental results are

necessary to either con�rm or dismiss this anomaly. While the SM values are cur-

rently much more precise than the experimental ones, further work on the theoretical

results is necessary. More independent calculations are required to make the SM

numbers more robust, such that if this tension ever hits 5σ, we can be con�dent

that it is due to new physics and not some underestimated SM systematic.

There are also tensions in the quantitites [62]

RK(∗) =
Γ(B → K(∗)µ+µ−)

Γ(B → K(∗)e+e−)
. (2.34)

LHCb measured RK between 1 and 6GeV, and found a disagreement with the SM

value [63,64] of 2.6σ [65]. LHCb also measured RK∗ in 2 bins (0.045 < q2 < 1.1GeV2

and 1.1 < q2 < 1.6GeV2), and reported disagreement with the SM prediction [66�73]
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of 2.1-2.3σ and 2.4-2.5σ respectively [74].

Each of these anomalies points to one potential new physics scenario: lepton

�avor violation (LFV). This is a breakdown of the lepton �avor universality in the

SM discussed earlier in this section. A consequence of LFV would be that the

di�erent lepton generations would no longer have the same coupling to gauge �elds.

For example, imagine couplings like Uij ē
i
L
/W

+
νjL, where Uij is unitary but non-

diagonal, then the di�erent lepton generations would have di�erent couplings to W .

This can lead to a modi�cation of the B → D(∗)`ν and B → K(∗) l̄l decays rates by

di�erent amounts depending on the lepton �avors in the �nal state, resulting in the

ratios RD(∗) , RK(∗) deviating from the SM prediction.

There are broadly speaking two ways one can explain LFV. The �rst is to posit

that there are in fact right-handed neutrinos, νR, and neutrinos have Dirac mass

terms mν̄LνR (from a coupling to the Higgs). Then, the argument preventing the

presence of non-trivial lepton �avor structure in LFCCC breaks down, we obtain an

equivalent of the CKM matrix for leptons (the Pontecorvo-Maki-Nakagawa-Sakata

(PMNS) matrix). Lepton �avor violation is then mediated by the W . Neutrinos

have in fact already been shown to have mass, the PMNS matrix exists, and its

elements have been measured. However, as mentioned already, these e�ects would

be extremely small due to the extremely small mass of the neutrinos. Experiments

have looked for evidence of W -mediated LFV processes, τ → µγ and µ → eγ,

and they found upper bounds for their branching fractions of 4.2 × 10−13 [75] and

3.1× 10−7 [76] respectively.

Besides there being no evidence for W -mediated LFV, this picture of neutrino

masses is not very aesthetically satisfying. It requires unnaturally small Yukawa

couplings between the Higgs and the neutrinos. The second, much more popu-

lar approach to explaining both LFV and neutrino masses is the existence of new

particles.

In the face of evidence against the SM, the most general way to parameterise

the space of possible new physics models is to study the Standard Model E�ective

Theory (SMEFT) [77]. In this approach, one introduces higher dimension, non-

renormalisable operators to the SM (the SM has only dimension 4 operators), and

impose a hard momentum cuto� Λ. Then the SMEFT is

LSMEFT = LSM +
∑

i

c
(5)
i

Λ
O(5)
i +

∑

i

c
(6)
i

Λ2
O(6)
i + ... (2.35)

where {O(d)
i } is the set of dimension-d operators that satisfy the symmetries of
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the SM, and {c(d)
i } are coe�cients to be measured, known as Wilson coe�cients.

Wilson coe�cients di�ering from the SM expectation can be evidence that the SM

must be augmented with new �elds at energies above Λ. The quantum numbers of

the associated operators gives information about the quantum numbers of the new

�elds.

One can �t the avaliable B → D(∗)lν̄ and B → K(∗) l̄l data to predictions from

SMEFT, in order to infer the Wilson coe�cients neccesary to explain the anomalies.

In [78] it was found that RD(∗) can be explained with the d = 6 operators:

(c̄γµPLb)(τ̄ γ
µPLντ ), (c̄σµνPLb)(τ̄σµνPLντ ), (τ̄PLc

c)(b̄cPLντ ),

(τ̄ γµPRb)(c̄γ
µPLντ ), (τ̄ γµPLb)(c̄γ

µPLντ ), (τ̄PRc
c)(b̄cγµPLν), (2.36)

where PL/R = (1±γ5)/2, ψc = −i(ψ̄γ0γ2)T and ψ̄c = −i(γ0γ2ψ)T . In [62], a similar

process found the operators neccesary to explain RK(∗) :

(s̄γµPLb)(ēγ
µe), (s̄γµPLb)(µ̄γ

µµ)

(s̄γµPLb)(ēγ
µγ5e), (s̄γµPLb)(µ̄γ

µγ5µ) (2.37)

This information, along with constraints from other measurements, strongly reduces

the space of possible new physics models that could produce these anomalies. Hot

topics include Leptoquarks, Z ′ models, and partial compositeness [62,78�80].

2.3 Strong Interaction Physics

The work of this thesis is essentially quantifying the e�ect that the strong interaction

has on branching fractions for semileptonic decays. The strong interaction and the

observed pattern of hadrons can be explained with QCD. In this section, I review

the fundamental theory and the force's physical features.

2.3.1 Quantum Chromodynamics

QCD is an SU(3) Yang-Mills gauge theory. The Lagrangian is derived by requiring:

• Nf fermion �elds transforming in the fundamental representation of the SU(3)

gauge group.

• Invariance under that gauge group.

• Renormalizability of all interactions.
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Figure 2.8: The relationship between scale Q and the strong coupling constant αs,

from the PDG [3].

From these we �nd [12]:

LQCD =
∑

i

q̄i(i /D −mi)qi −
1

4
TrGµνG

µν − g θ̄

64π2
εµνρσTrGµνGρσ (2.38)

Dµ = ∂µ − igGµ , Gµν = [Dµ, Dν ].

qi = (qi,r, qi,b, qi,g) are the Nf fermions, vectors in color space, transforming under

qi(x)→ Λ(x)qi(x) , q̄i(x)→ q̄i(x)Λ†(x), (2.39)

where Λ(x) is an SU(3) matrix acting on the color space. Gµ are the su(3)-valued

gluon �elds, transforming under the gauge group like

Gµ(x)→ Λ(x)Gµ(x)Λ†(x)− i

g
[∂µΛ(x)]Λ†(x). (2.40)

g is the coupling constant of the theory, often expressed instead as αs = (g/4π)2. θ̄

has strong experimental bounds on its size, to the extent that for our purposes that

term can be neglected [81].

The most notable feature of QCD is due to the running of αs [82]. Unlike

in quantum electrodynamics where the coupling increases with energy scale, the

coupling of QCD decreases as energy scales increase. This is referred to as asymptotic

freedom. A corollary is that at low energies the coupling becomes strong. At energies

around or below ΛQCD ∼ 0.5GeV, αs becomes too large to be a good expansion

parameter, and perturbation theory becomes unreliable for making predictions.
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At large αs, quarks and gluons become strongly interacting. This is believed

to be the source of con�nement, the mechanism that binds quarks together into

hadrons.

Broadly speaking there are two approaches to making predictions in QCD at low

energies:

1. Chiral perturbation theory - an e�ective theory of hadrons with the same

symmetry properties as QCD.

2. Lattice QCD calculations - solve the path integral by brute force, eliminating

the need for an expansion in αs. This is covered in chapters 3 and 4.

2.3.2 Chiral Symmetry

Here I follow the discussion in [83]. In the limit of mi → 0 ∀i, QCD develops two

new global symmetries between the �avors:

qi → exp(iθVa λ
ij
a )qj , (2.41)

qi → exp(iγ5θ
A
a λ

ij
a )qj , (2.42)

where λa are U(Nf ) generators. They are labelled U(Nf )V and U(Nf )A respectively,

standing for vector and axial-vector.

From Noether's theorem, each generator of these symmetries implies a current

that is conserved in the massless limit:

V a
µ = q̄γµλaq , Aaµ = q̄γµγ5λaq . (2.43)

The (partial) conservation of these currents in quantum mechanics is captured

by the Ward identities. There is an in�nite number of possible Ward identities, but

for the purpose of this work, we only need to consider the most simple of them.

Consider the partition function for QCD:

Z =

∫
[dψdψ̄dA]eiS[ψ,ψ̄,A], (2.44)

where [dψdψ̄dA] represents the functional integral over quark, antiquark and gauge

�elds. Consider performing a shift of the integration variables of the form (2.41),

and allow the parameters θa to be local, θa = θa(x). The partition function becomes

Z =

∫
J [dψdψ̄dA](1 + iδS)eiS[ψ,ψ̄,A] . (2.45)
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J is the Jacobian of the measure [dψdψ̄dA] under the coordinate transform

(2.41). In many cases, J will be non-trivial, due to either regularization schemes

that don't respect the symmetry or quantum anomalies. The symmetries we are

concerned with here are anomaly free, so J = 1.

The e�ect of the local version of Eq. (2.41) on the action is

δS =

∫
d4xθa(x) [∂µV

µ
a (x)− iq̄(x)[λa,M ]q(x)] , (2.46)

where M = diag(mu,md,ms, ...) acts on �avor. Removing Z from each side of

(2.45), setting the arbitrary functions θa(x) to 1, and removing the spacetime inte-

gral results in

∂µ〈V µ
a 〉 = i〈 q̄[λa,M ]q 〉, (2.47)

where 〈〉 represents a quantum expectation value, the state the expectation value

is taken in need not be speci�ed since the above derivation does not assume any

particular state. Repeating the above steps with the vector chiral transform replaced

with the axial-vector chiral transform, one �nds

∂µ〈Aµa〉 = i〈 q̄{λa,M}q 〉. (2.48)

(2.47) and (2.48) are examples of Ward identities, they describe the (parital) con-

servation of the chiral currents. (2.47) is often referred to as the Partially Conserved

Vector Current (PCVC) relation, and (2.48) the Partially Conserved Axial Current

(PCAC) relation.

A useful theorem [84] is that partially conserved currents (currents that become

conserved when some parameter in the theory vanishes, like V µ
a and Aµa) require no

renormalisation in any regularisation scheme. The conserved or partially conserved

current Jµa has a corresponding charge Qa(t) =
∫
d3xJ0

a (x, t) that is the generator of

its corresponding symmetry transform on Hilbert space. In this case, these charges

are members of the Lie algebra of the symmetry group:

[Qa(t), Qb(t)] = ifabcQc(t) , (2.49)

where fabc are the structure constants of the algebra. Under some regularization,

change in regularization scheme, or running of scale, each operator in the theory

may require multiplicative renormalization Qa → ZQQa. Eq. (2.49) demands that

ZQ = 1 in all cases. So J0 obtains no renormalisation, and if the regularization is

Lorentz invariant, this carries on to Jµ.
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Since one can transform any �avor into any other �avor via the chiral U(Nf )

generators, one can build currents charged with any combination of �avors from

linear combinations of V µ
a and Aµa :

V µ
ij = q̄iγ

µqj , ∂µ〈V µ
ij 〉 = i(mi −mj)〈Sij〉 (2.50)

Aµij = q̄iγ
µγ5qj , ∂µ〈Aµij〉 = i(mi +mj)〈Pij〉 (2.51)

where we have de�ned Sij = q̄iqj and Pij = q̄iγ
5qj , the scalar and pseudoscalar

densities. The non-renormalisation of V µ
a and Aµa carry on to V µ

ij and A
µ
ij , and onto

the operators (mi −mj)Sij , (mi +mj)Pij via the Ward identities.

The partially conserved currents V ij
µ and Aijµ are the same currents that feature

in the matrix element of leptonic and semileptonic decays in Sec. 2.2, and their ex-

pectation values appear in amplitudes for leptonic and semileptonic decays. Hence,

the fact that these can be related to alternative expectation values via ward iden-

tities, and that they obtain no renormalisation, is very useful in the calculation of

these amplitudes.

2.4 Heavy Quark Physics

Quarks with mass mQ � ΛQCD are referred to as heavy quarks. Charm and bottom

quarks are considered heavy: ΛQCD/mc ∼ 1/4, ΛQCD/mb ∼ 1/14. This separation

of scales can come in very useful. They mean one can integrate out some degrees of

freedom at mQ, and still have a good description of the dynamics at ΛQCD. This

philosophy gives rise to Heavy Quark E�ective Theory (HQET) and Non-Relativistic

QCD (NRQCD). Below I will summarise the aspects of this theory most relevant to

our work.

2.4.1 HQET

HQET [85] is an e�ective �eld theory with the cuto� at the heavy quark mass

mQ, and operators organized in a series in ΛQCD/mQ. Since at the b (and c) mass

QCD is perturbative (αs(mQ) � 1), one can match HQET to perturbative QCD

at mQ, then run the couplings of HQET down to produce useful predictions at the

con�nement scale.
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HQET Lagrangian

Here is the derivation of HQET for a single heavy quark interacting with gluons,

following [86] (the generalization to many �avors is straightforward). The fermion

part of the Lagrangian is

LQCD = Q̄(i /D −mQ)Q , (2.52)

where Q is the heavy quark �eld and D is the covariant derivative (Eq. (2.38)).

De�ne the heavy quark velocity v according to v = pQ/mQ. Split Q into �heavy�

(H) and �light� (h) components:

Q = eimQv·x(h+H) : h =
1

2
e−imQv·x(1 + /v)Q, (2.53)

H =
1

2
e−imQv·x(1− /v)Q , (2.54)

with the important property

/vh = h /vH = −H. (2.55)

In terms of these new �elds the Lagrangian becomes

LQCD = ih̄(v ·D)h− H̄(i(v ·D) + 2mQ)H + ih̄ /D
⊥
H + iH̄ /D

⊥
h , (2.56)

where D⊥ = D − v(v ·D) are the components of D perpendicular to v. A physical

interpretation of the de�nition of h in Eq. (2.53) can be seen by acting a spatial

derivative on the de�nition of h, and by recognising ∂Q = −ipQ, ∂h = −iph, we
�nd that

pQ = mQv + ph. (2.57)

Since ph � pQ, we see that the quark's momentum is dominated by its mass (the

quark is close to on-shell), and the h �eld represents perturbations around on-shell

due to interactions with the lighter degrees of freedom at ΛQCD.

From the Lagrangian (2.56), we see that h is a massless �eld and H has a mass

of 2mQ. From this Lagrangian we can derive an equation of motion for H:

(i(v ·D) + 2mQ)H = i /D
⊥
h, (2.58)

with the solution

H =
1

i(v ·D) + 2mQ
i /D
⊥
h =

1

2mQ

∞∑

n=0

(−i(v ·D))n

2mQ

/D
⊥
h. (2.59)
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By substituting this into the Lagrangian (2.56) we arrive at

LHQET = ih̄(v ·D)h− h̄ /D⊥ 1

2mQ

∞∑

n=0

(−i(v ·D))n

2mQ

/D
⊥
h. (2.60)

Since we expect v · D ∼ ΛQCD, we can interpret the in�nite sum as a series in

ΛQCD/mQ, and truncate it at some order.

Leading order HQET exhibits new symmetries not present in full QCD, known

as the heavy quark symmetries. Since mQ is not present in the leading order La-

grangian, there is a �avor symmetry - a set of N heavy quarks with the same v can

be mixed via an SU(N) symmetry. Similarly, due to the absence of spin-mixing

matrices, a heavy quark has an SU(2) spin symmetry. At leading order a heavy

quark in a meson behaves like a static color charge, the dynamics at ΛQCD are not

a�ected by its mass or spin.

I will now use HQET to derive a useful theorem used in our work, following the

proof given in [87].

Luke's Theorem

Luke's theorem [88], which can be derived from the Ademollo-Gatto (AG) theorem

[89], tells us the leading order heavy quark mass dependence of form factors. First

I will derive the AG theorem.

Consider the transition amplitude

〈α|Qa|β〉, (2.61)

where Qa is a conserved charge associated with some global symmetry G, and |α〉
and |β〉 belong to some irrep of G, R(G). Imagine explicitly breaking the symmetry

with a term like Lbreak = λObreak. The states |α〉, |β〉 are asymptotic states of

the complete lagrangian including the symmetry breaking. The breaking causes the

states to mix with states in other irreps of G:

|β〉 = cββ |β′〉+
∑

m

cβm|m′〉 (2.62)

〈α| = c∗αα〈α′|+
∑

n

c∗αn〈n′|. (2.63)

|α′〉, |β′〉 are pure R(G) states, and |m′〉, |n′〉 are purely in some other irrep R′(G).
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The transition amplitude becomes

〈α|Qa|β〉 =c∗ααcββ〈α′|Qa|β′〉
+
∑

m

c∗ααcβm〈α′|Qa|m′〉

+
∑

n

c∗αncββ〈n′|Qa|β〉

+
∑

m

∑

n

c∗αncβm〈n′|Qa|m′〉. (2.64)

Since |m′〉 is purely in a di�erent irrep to |α′〉, Qa|m′〉 has no overlap with |α′〉.
Similarly for |n′〉 and |β〉. Hence the second and third terms in Eq. 2.64 vanish.

Now consider the order of the coe�cients cnm. We can assume that cnm = O (λ) for

arbitrary n,m 6= α, β, since switching o� the symmetry breaking by setting λ = 0

should cause |α〉 and |α′〉 to coencide. Then, using the normalization of the states
∑

n |cαn|2 = 1, we �nd cαα =
√

1−O (λ)2 = 1 + O
(
λ2
)
, and similarly for cββ .

Applying this to the two surviving terms in Eq. (2.64), we end up with

〈α|Qa|β〉 = c+O
(
λ2
)
, (2.65)

where c 6= c(λ). This is the AG theorem: if the current Qa and the symmetry

breaking term Obreak act orthogonally on the states, the transition amplitude can

have at most a second order correction in the symmetry breaking parameter.

Now we can apply this to HQET to produce Luke's theorem. Consider a transi-

tion including two heavy quarks (b and c). The theory is now HQET with two heavy

quark �avors, h = (b, c). Luke's theorem applies the AG theorem to the breaking

of the �avor and spin symmetry at leading order HQET. First consider the �avor

breaking. By unpacking the 1/m-order terms in the Lagrangian (2.60), we �nd the

leading order �avor breaking term to be

(
1

2mb
− 1

2mc

)
1

2
h̄σz /D

⊥2
h, (2.66)

where σz is the third pauli matrix acting on �avor. These terms cause states like

that of a B-meson, |B〉, to mix with other states |n′〉 in di�erent irreps of the �avor

symmetry. Consider for example the B → D decay at zero recoil. Since this is

mediated by a generator of the �avor symmetry, the AG theorem leads to

〈D|c̄γµb|B〉√
MBMD∗

= ξ +O
((

1

2mb
− 1

2mc

)2
)
, (2.67)
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where ξ is some b- and c-mass independent number. This motivates a new parame-

terisation of pseudoscalar-pseudoscalar transition amplitudes alternative to (2.24):

〈M ′|V q1q2
µ |M〉√
Mm

= h+(w)(v + v′)µ + h−(w)(v − v′)µ , (2.68)

since Eq. (2.67) implies a form of h+(1) [90]:

h+(1) = ηV

(
1− lP

(
1

2mb
− 1

2mc

)2
)

+O
(

1

mn
cm

m
h

, n+m ≥ 3

)
. (2.69)

ηV is a matching factor between QCD and HQET, and can contain logarithms of

heavy masses. The factor lP is a free non-perturbative parameter that must be �xed

by some non-perturbative calculation e.g. a lattice QCD calculation.

Another decay that the AG theorem can be applied to is the B → D∗ decay. At

zero recoil, the amplitude of this decay is 〈D∗|c̄γµγ5b|B〉. The operator here is not
only a generator of the �avor symmetry but also of the spin symmetry, so we must

also take spin breaking into account. The leading order spin breaking terms are

1

2mc
h̄cγ

µγνGµνhc +
1

2mb
h̄bγ

µγνGµνhb . (2.70)

So by an analagous argument to that of the B → D case, we end up with

〈D∗|c̄γµγ5b|B〉√
MBMD∗

= ξ +O
((

1

2mb
− 1

2mc

)2
)

+O
((

1

2mc

)2
)

+O
((

1

2mb

)2
)
.

(2.71)

This carries onto the form factor hA1 at zero recoil [90]:

hA1(1) =ηA

(
1 +

lV
(2mc)2

+
lA

2mbmc
− lP

(2mb)2

)
(2.72)

+O
(

1

mn
cm

m
h

, n+m ≥ 3

)
.

where ηA is again a matching factor between HQET and QCD, and lV,A,P are non-

perturbative quantities.

2.4.2 NRQCD

An e�ective �eld theory closely related to HQET is Non-Relativistic QCD (NRQCD)

[91,92]. This di�ers from HQET only by the power counting; instead of organizing

terms in the Lagrangian according to their order in ΛQCD/m, the terms are organized

in terms of powers of the heavy quark's spatial velocity v ∼ |p|/m. NRQCD is

derived with the following process [93]:
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• Separate the quark and antiquark components of the heavy quark. Since a non-

relativistic fermion is decoupled from its antiparticle, our action only requires

to describe the top two components of a Dirac spinor. De�ne the antiquark-

free 2-component spinor h via the Foldy-Wouthuysen transformation ψ → h =

eγ·D/2mψ [94]. This acts to remove the γ ·D term from the Dirac part of the

Lagrangian, which is the only part that couples the fermion to the anti-fermion

(at leading order in 1/m).

• De�ne power-counting by considering the expected expectation values of op-

erators for heavy mesons [95]. The three relevant scales concerning the heavy

meson are M , p ∼ Mv and EK ∼ Mv2, where M is the meson mass, p the

spatial momentum and EK the kinetic energy. By relating operators to these

three scales, we can deduce their order in v. Start with the normalization of

a scalar current:

〈M |
∫
d3xh†(x)h(x)|M〉 ∼ 1, (2.73)

where |M〉 is some heavy meson state. Since we expect the meson state to be

localized in a region of size 1/p, we can assert that

∫
d3x ∼ 1

p3
. (2.74)

From this and (2.73), we �nd h ∼ p3/2 ∼ v3/2. The order of the derivative

operator can be deduced from

EK = 〈M |
∫
d3xh†(x)

D2

2M
h(x)|M〉, (2.75)

to be D ∼ v. Following such a chain of arguments, we can deduce the order

in v of any operator.

• The Lagrangian to O (vn) is then simply all of the operators satisfying the

symmetries of QCD of order below vn, with some Wilson coe�cients [95]. To
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O
(
v6
)
[93]:

LNRQCD = h†

(
iD0 +

D2

2m
+ c1

D4

m3
+ c2g

D ·E−E ·D
m2

+ c3ig
σ · (D×E−E×D)

m2
+ c4g

σ ·B
m

+ f1g
{D2, σ ·B}

m3
+ f2ig

{D2, σ · (D×E−E×D)}
m4

+ f3ig
2σ ·E×E

m3

)
h

+ d1
(h†H)(H†h)

m2
+ d2

(h†σH) · (H†σh)

m2

+ d3

∑

a

(h†T aH)(H†T ah)

m2
+ d4

∑

a

(h†T aσH) · (H†T aσh)

m2
. (2.76)

E and B are the chromoelectric and chromomagnetic �elds, T a are funde-

mental representation of the SU(3) color generators, and H is the antiquark

components of the heavy quark. c1,2,3,4, f1,2,3, d1,2,3,4 are Wilson coe�cients,

that can be �xed by perturbative matching to full QCD at the cuto� (the

heavy quark mass, where QCD is perturbative).
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Chapter 3

Lattice Quantum

Chromodynamics

At low energies QCD becomes non-perturbative. In other words, the coupling αs

becomes O(1), and an expansion in αs (as in perturbation theory) will not be

dominated by the leading orders. In order to calculate observables of low energy

QCD (like hadronic form factors), we require an alternative to perturbation theory.

The expectation value of an observable O in QCD can be expressed as a path

integral [96]:

〈O〉 =
1

Z

∫
[dGdψdψ̄]O eiS[G,ψ,ψ̄], (3.1)

where G is the gauge �eld, ψ̄(ψ) are the (anti)fermion �elds, S is the classical

action, and [dGdψdψ̄] denotes integration over all con�gurations of the gauge and

fermion �elds. Z is the partition function. In the perturbative approach, we would

expand exp(−interacting part of S) resulting in a power series in the gauge coupling

populated by Feynman diagrams.

We must instead carry out the integral directly by numerical brute force. Since

it is not numerically feasible to carry out an in�nite number of integrals, one must

approximate spacetime as a discrete 4-dimensional lattice with spacing a between

lattice sites, �nite spatial volume L3
x = (aNx)3 and �nite temporal extent Lt = aNt

(Nx,t ∈ N). The functional integral can be replaced with [97]
∫

[dGdψdψ̄] =
∏

n

∫
dU(xn)dψ(xn)dψ̄(xn), (3.2)

where n is a 4-vector with integer components labelling the sites, and xµn = anµ

where nµ ∈ N. This has a second bene�t which is to naturally regularize the theory

with a momentum cuto� Λ ∼ π/a. The gauge �eld has been replaced with the gauge
link U , to be de�ned in the following section.

Typically one uses lattices that have periodic boundary conditions in the tempo-

ral direction, i.e ψ(x+ aNtt̂) = ψ(x). This reduces unwanted e�ects in expectation

31
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values of operators due to the �nite temporal extent. In all the work in this thesis,

we use periodic temporal boundary conditions.

To avoid having to integrate over imaginary numbers (equivalently to avoid the

scourge of the sign problem [98]), one also performs a Wick rotation [99]. This is

the rede�nition t → it, which changes the metric from Minkowski to Euclidean,

and changes the weight of the integral exp(iS)→ exp(−S). This is valid since one

can rotate the contour of an integral over t from the real line to the imaginary line

without crossing any poles. This has the advantage that it turns the quantum path

integral into simply an average in statistical mechanics, this means we can apply all

of the machinery of statistical mechanics to computing expectation values.

To obtain the `real world' result for some expectation value, where real world

means a = 0 and volume=∞, one must perform the path integral at a number of

di�erent a values, and then extrapolate the results to a = 0.

One must choose a discretized version of the QCD action, one that becomes

continuum QCD in the a → 0 limit. This is far from a trivial step. There is an

in�nite number of choices of lattice actions that become QCD in the continuum

limit. There therefore is a huge literature of di�erent choices of discrete lattice

actions.

This chapter is dedicated to motivating and detailing the choices of discretized

action used in the work of this thesis.

3.1 Lattice Gauge Fields

The discussion of this section follows chapter 5 of [97]. Imagine attempting a naive

discretization of the QCD action. Derivatives can be replaced with, for example,

∂µf(x)→ 1

2a
(f(x+ aµ̂)− f(x− aµ̂)) , (3.3)

where µ̂ is the unit vector in the µ direction. The quark kinetic part of the QCD

action, q̄ /Dq, becomes

1

2a
q̄(x)γµq(x+ aµ̂)− 1

2a
q̄(x)γµq(x− aµ̂)− igq̄(x)Gµ(x)γµq(x). (3.4)

This is no longer invariant under gauge trasforms (2.39), for example the �rst term

would become q̄(x)Λ(x)†γµΛ(x+ aµ̂)q(x+ aµ̂). The �nite distance between lattice

sites force us to think more carefully about the interpretation of gauge symmetry

on a lattice.
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Formally speaking, a gauge �eld is a connection on a �bre bundle. We will

unpack what this means. At each spacetime point x, there is a space of possible

colour vectors that a quark �eld q(x) could be, call it Vx. Vx is a �bre. Spacetime is

called the base space in this context, there is a �bre at each point in the base space.

The problem with our non-gauge-invariant terms above is that we are trying to

compare colour vectors in di�erent �bres. To compare colour vectors at two di�erent

�bres, one must parallel transport the vector from one point to another, according

to some rule of how it should change. Such a rule is called a connection. In our case

the parallel transport is a Wilson line:

W (x, y) : Vy → Vx,

W (x, y) = Peig
∫
dc ·G , (3.5)

where c is some curve between x and y, and P orders the operation of the gauge �eld

G on the �bres, i.e. it operates at x �rst and y last. A Wilson line transforms under

the gauge group like W (x, y)→ Λ(x)W (x, y)Λ†(y). This means that operators like

q̄(x)W (x, y)q(y) are gauge-invariant, re�ecting the fact that the color vector q(y)

has been parallel transported into the same �bre as q̄(x).

On a lattice, the natural degrees of freedom are no longer the elements of the Lie

algebra, Gµ, but Wilson lines connecting adjacent lattice sites, also known as links:

Uµ(x) ∈ SU(3) : Vx → Vx+aµ̂ , (3.6)

that gauge transform like

Uµ(x)→ Λ(x)Uµ(x)Λ†(x+ aµ̂). (3.7)

Then, a bilinear of color vectors at any two points can be made to be gauge invariant

by including a path between them made of links. For example;

q̄(x)Uµ(x)q(x+ aµ̂) → [q̄(x)Λ†(x)](Λ(x)Uµ(x)Λ†(x+ aµ̂))[Λ(x+ aµ̂)q(x+ aµ̂)]

= q̄(x)Uµ(x)q(x+ aµ̂). (3.8)

The q̄ /Dq term in the QCD Lagrangian can then be represented on the lattice in

a gauge invariant way by

1

2a
q̄(x)γµ(Uµ(x)q(x+ aµ̂) + U †µ(x− aµ̂)q(x− aµ̂)) . (3.9)

If one de�nes the links in terms of the the continuum gauge �elds Gµ via

Uµ(x) = exp

(
igaGµ

(
x+

aµ̂

2

))
, (3.10)

then (3.9) takes the correct form in the continuum limit, i.e. it becomes q̄ /Dq+O
(
a2
)
.
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Figure 3.1: Depiction of color spaces (�bres) at two points in spactime (base space)

with the value of the quark �eld q represented at each point as a color vector,

and the connection W (x, y) needed to compare the two color vectors. A gauge

transform changes the two vectors in di�erent ways, so for the comparison to be

gauge independent the connection must also transform appropriately.

Figure 3.2: Depiction of a gauge invariant quark bilinear, connected by a Wilson

line made of gauge links.

3.1.1 The Gauge Action

We must design a pure gauge part of the action in terms of link variables. It is clear

that the only gauge invariant operator that depends only on the link variables are
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closed loops of links, as in Fig. 3.3.

Figure 3.3: The elementary plaquette.

This brings us basically all the way to a legitimate lattice gauge action. The

simplest lattice discretisation of the Yang-Mills action is the real part of the smallest

possible closed loop of gauge links:

SG = − 1

g2

∑

x

∑

µ6=ν
Re Tr(1−�µν(x)), (3.11)

�µν = Uµ(x)Uν(x+ aµ̂)U †µ(x+ aν̂)U †ν (x). (3.12)

�µν is called the elementary plaquette. In the continuum limit this action reduces

to

SG =
1

4

∫
d4xTrGµνG

µν +O
(
a2
)
, (3.13)

as required.

In fact, any closed loop reduces to the Yang-Mills action in the continuum. This

can be seen intuitively, taking the continuum limit means shrinking any closed loop

into an in�nitesimally small point. We can choose a gauge action made of any

combination of closed loops, so what is the optimal choice?

3.1.2 Symanzik Improvements of the Gauge Action

Any lattice action is admissible for a calculation as long as it reduces to the QCD

action in the continuum. This gives us a lot of freedom in how we chose our lattice

action.

This freedom can be exploited in order to push expectation values of observables

on the lattice closer to their continuum values (reduce the `discretisation e�ects').

This program is known as Symanzik improvement [100].
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In general, a sensible lattice action can be written as [101]

S =
∑

i

ciOilat = z0({ci})Scont + a2
∑

n=1

zn({ci})Sn , (3.14)

where Scont is the continuum action. We are free to choose any {ci} such that

z0({ci}) = 1. In every example we are concerned with, O (a) terms are absent, so we

ignore them here (the arguments presented here carry straightforwardly to situations

with O (a) corrections). A fundemental postulate of the Symanzik approach is

that improvement of one observable (removal of discretisation e�ects) results in

improvement of all other observables. With this in mind, a reasonable approach is:

• Choose some set of lattice operators {Oilat} of mass dimension matching the

order of a you want to remove. The number of operators required, N , is

the number of allowed irrelevant operators in the continuum theory at that

dimension. This is because, formally speaking, one needs N tunable ci values

in order to tune N zn({ci}) values to zero.

• Inspect the continuum limit of the lattice action to �nd z0({ci}), enforce
z0({ci}) = 1.

• Choose some observable O that can be calculated in both the lattice and

continuum theory. Use the remaining freedom in {ci} to remove the leading a

dependence in 〈O〉 order by order in perturbation theory. i.e., if we write the

expectation value as

〈O〉 =
∑

n,m

a2ng2m〈On,m({ci})〉, (3.15)

then this amounts to demanding that 〈O1,m({ci})〉 = 0, for as many m's as

possible.

Applying this to pure QCD, this procedure results in the Lüscher-Weisz action

[102]. First consider the number of operators required. In continuum pure QCD,

the only dimension 4 operator is TrGµνG
µν . There are no dimension 5 operators,

hence there can be no O (a) contribution to the continuum limit of a lattice action.

There are three independent dimension 6 operators:

TrJµνρJµνρ, TrJµµρJννρ, TrJµµνJµµν , (3.16)

Jµνρ = [Dµ, Gνρ] .
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Figure 3.4: Terms additional to the elementary plaquette in the improved pure QCD

action.

Hence we require 3 extra operators in the lattice action to be tuned in order to

remove the three contributions from the a2 terms in Eq. (3.14). The simplest choice

is to take the plaquette action (3.12), and add all possible Wilson loops contanining 6

links. This set consists of three families related by hypercubic invariance, rectangles

(a), parallelograms (b) and chairs (c), depicted in Fig. 3.4.

So the new lattice action is

SG =− 1

g2

∑

x

∑

µ 6=ν
( c0Re Tr(1−�µν(x)) + c1 Re Tr(1−�aµν(x))

+
∑

ρ6=µ,ν
( c2 Re Tr(1−�bµνρ(x)) + c3 Re Tr(1−�cµνρ(x)) ) (3.17)

where �a,b,cµν(ρ) are the Wilson loops in �g. 3.4. Expanding this in small a, one �nds

the function z0({ci}), setting this to one we �nd the condition [101]:

c0 + 8(c1 + c2) + 16c3 = 1. (3.18)

The rest of the freedom must be �xed by comparing observables in the lattice and

continuum theories. In [103] for example, by matching the gluon propagator between

the two theories, one constrains the coe�cients further to �nd

c1 = − 1

12
, c0 − 8c3 =

5

3
. (3.19)

These are tree-level relations, so will only prevent lattice artifacts up to O (αs).

For better improvement, one must compare observables that are sensitive to loop

corrections. A popular choice of observable is the static quark potential V (L), this

is the potential energy between two static color charges, as a function of separation

L between them.
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This procedure is a�ected by the presence of fermions, so it has been performed a

number of times to accommodate di�erent fermion discretizations. In this thesis we

report results using the Lüscher-Weisz action for gauge �elds and Highly Improved

Staggered Quarks (de�ned in Sec. 3.2). The coe�cients {ci} were �xed at one-loop

in [104] in this context to be

c0 =
5

3
+ ( 0.237088(46)− 0.1008(34)Nf )αs +O

(
α2
s

)
, (3.20)

c1 = − 1

12
+ (−0.025218(4) + 0.0110(3)Nf )αs +O

(
α2
s

)
, (3.21)

c2 = 0 + (−0.04418(4) + 0.0016(3)Nf )αs +O
(
α2
s

)
, (3.22)

c3 = 0. (3.23)

Since these have been tuned to remove a2 e�ects up to αs, lattice artifacts in ob-

servables computed using this action will be of size O
(
a2α2

s

)
, so we say this action

is O
(
a2αs

)
-improved.

3.2 Lattice Fermions

Putting fermions on the lattice create a much larger host of complications than

gauge �elds do. There exist a diverse array of approaches to dealing with fermions

on the lattice adopted by di�erent collaborations. Di�erent actions are suited to

di�erent types of applications. The plethora of fermion actions are necessitated by

the famous doubling problem, which I will describe below, following [105].

Before beginning the discussion of fermion discretisations, I will de�ne some

common notation used for gamma matrices in this context. The Euclidian gamma

matrices are de�ned to obey

{γµ, γν} = 2δµν . (3.24)

These have the useful property γ2
µ = 1. The full set of spin-mixing matrices can be

labelled according to

γn =
∏

µ

(γµ)nµ , nµ = Z2. (3.25)

We implicitly understand the product to be ordered such that µ = 0 is the rightmost

factor and µ = 3 is the leftmost factor. There are 16 such matrices representing

corners of the hypercube. One can also use a general site vector xµ to label the

matrix, then γx = γn where nµ = (xµ/a)mod 2. It is straightforward to show that

for any n; γ†nγn = 1. We also de�ne γ5µ = iγ5γµ, and γ5n =
∏
µ(γ5µ)n.
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3.2.1 The Naive Fermion Action & the Doubling Problem

The interacting Dirac action is most naively discretised with

SF =
∑

x,µ

ψ̄(x)γµ∇µψ(x) +m
∑

x

ψ̄(x)ψ(x) , (3.26)

where ∇µ is the gauge covariant �nite di�erence operator,

∇µψ(x) =
1

2a

(
Uµ(x)ψ(x+ aµ̂)− U †µ(x− aµ̂)ψ(x− aµ̂)

)
. (3.27)

SF is invariant under a so-called doubling symmetry, which is generated by

ψ(x)→ Bµψ(x) ≡ (−1)xµ/aγ5µψ(x), (3.28)

ψ̄(x)→ ψ̄(x)B†µ ≡ (−1)xµ/aψ̄(x)γ†5µ. (3.29)

The product space of these form a group of 16 elements {Bζ}, labeled by vectors ζ

with ζµ ∈ Z2 (e.g. the element B0B1 is labeled by ζ = (1, 1, 0, 0)).

The physical signi�cance of this symmetry can be seen when we study its e�ect

on the action. First, notice that

Bµψ(x) = γ5µ

∑

k

ψ̃(k)ei(k+π
a
µ̂)·x (3.30)

= γ5µ

∑

k

ψ̃
(
k − π

a
µ̂
)
eik·x, (3.31)

where {k} is a discrete set of 4-momenta, with kµ = π/anµ, nµ ∈ [1, Nµ]. The action

in momentum space can be written as

S =
∑

k

¯̃
ψ(k)M(k)ψ̃(k) . (3.32)

After the operation of Bµ it becomes

S →
∑

k

¯̃
ψ(k)γ5µM

(
k +

π

a
µ̂
)
γ5µψ̃(k) . (3.33)

Since we know S is invariant under this transformation, it must be true that

γ5µM
(
k + π

a µ̂
)
γ5µ = M(k), and therefore

M−1
(
k +

π

a
µ̂
)

= γ5µM
−1(k)γ5µ. (3.34)

This is the doubling problem. M−1 is the momentum space propagator for the

fermion �eld, so Eq. (3.34) shows that the spectrum of the fermion is periodic, with
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a period of π/a. We expect a pole in M−1(k) where k ∼ m, where m is the pole

mass of the fermion. But due to (3.34) there will now be a second pole at m+ π/a.

Generalizing this argument to all elements of the doubling symmetry, we see that

M−1
(
k +

π

a
ζ
)

= γ5ζM
−1(k)γ5ζ . (3.35)

This leads to 16 poles in the fermion spectrum, one for each ζ choice, therefore 16

distinct excitations. We call these excitations tastes.

One can isolate a single taste by a block-scaling procedure. De�ne

ψ(ζ)(xB) =
1

16

∑

δxµ∈Z2

Bζ(xB + δx)ψ(xB + δx). (3.36)

To understand why this only contains one of the tastes, �rst consider the ζ = 0

case. This would only contain the original non-doubler taste since all other poles

at |k| ∼ π/a have been integrated out. For ζ 6= 0, the Bζ operator pushes the

ζ doubler to where the ζ = 0 taste originally was in k space, then the blocking

procedure integrates out the rest.

3.2.2 Staggered Quarks

There are a number of solutions to the doubling problem. The most straightfor-

ward is to modify the action to push the mass of the unwanted tastes above the

momentum cuto�, preventing it from in�uencing the dynamics. These are called

Wilson-type fermions [106]. However, actions of this type explicitly break Chiral

symmetry. Among other issues, this causes additive renormalization of the fermion

mass, immensely complicating renormalization procedures.

Another approach, known as staggered fermions [107], partially resolves the dou-

bling issue while retaining a remnant chiral symmetry. The work presented in this

thesis makes extensive use of the staggered formalism.

Staggered fermions are de�ned via the following. Rede�ne the �elds according

to

ψ(x) = Ω(x)χ(x), (3.37)

where Ω(x) = γx. In terms of the new spinor variables χ(x), the naive action given

in Eq. (3.26) becomes

SF =
∑

x,µ

χ̄(x)(αµ(x)∇µ +m)χ(x) (3.38)
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where αµ(x) = (−1)
∑
ν<µ x

µ/a. The action is now diagonal in spin, leading to 4

grassman variables with identical actions and identical coupling to the gauge �eld.

As a result, χ propagators (on �xed gauge backgrounds) are spin-diagonal:

M−1
χ (x, y) = g(x, y) 1spin, (3.39)

where g(x, y) is a scalar in spin. One need only to include a single component of χ

in a simulation (i.e. �x χ = (χ1, 0, 0, 0)), then they can compute M−1
χ (x, y)[U ] to

obtain g(x, y). Then, using the inverse of Eq. (3.37), g(x, y) can be transformed to

a propagator of the original spinors:

M−1
ψ (x, y) = g(x, y) Ω(x)Ω†(y). (3.40)

This is clearly computationally bene�cial since one only needs to simulate one spinor

component. But also, by only having one spinor component, one reduces the number

propagating degrees of freedom by a factor of 4, cutting the number of tastes from

16 down to 4.

I will show more explicitly how this happens. Consider rewriting an isolated

taste (as in Eq. (3.36)) in the staggered formalism, i.e., in terms of χ;

ψ(ζ)(xB) =
1

16

∑

δxµ∈Z2

Ω(δx)Bζ(0)χ(x+ δx). (3.41)

Recall we set χ(x) = (χ1(x), 0, 0, 0). The product Ω(δx)Bζ(0) is simply a product

of gamma matrices, so can only serve to �scramble� the elements of χ. Then, in the

staggered formalism, all 16 tastes ψ(ζ) amount to only 4 distinguishable fermions:

(χ1, 0, 0, 0), (0, χ1, 0, 0), (0, 0, χ1, 0), (0, 0, 0, χ1) (with factors of (-1) and i).

To obtain a useful new notation for staggered quarks, we can rewrite Eq. (3.41)

as

ψαa(xB) =
1

8

∑

ηµ∈Z2

γαaη χ(xB + aη). (3.42)

ψαa has spin α and taste a. De�ne the spin-taste notation for operators on ψαa

as (γn ⊗ γm), where γn acts on the spin component α and γm acts on the taste

component a.

The �rst operator in the spin-taste notation corresponds to regular spin in the



42 Chapter 3. Lattice Quantum Chromodynamics

continuum. This can be seen by writing the free fermion action in terms of ψαa:

S =
∑

xB ,µ

ψ̄(xB)
[
(γµ⊗1)∇µ +

m

4
(1⊗ 1)

]
ψ(xB) +O

(
a2
)
, (3.43)

∇µψ(xB) =
1

4a

(
Uµ(xB)Uµ(xB + aµ̂)ψ(xB + 2aµ̂)−

Uµ(x†B − aµ̂)U †µ(xB − 2aµ̂)ψ(xB − 2aµ̂)
)
. (3.44)

If we interpret (γµ ⊗ 1) as a gamma matrix acting on spin in the continuum, we

obtain the continuum Dirac action in the a→ 0 limit.

Hence, to reproduce some current ψ̄γnψ in the continuum, one can use ψ̄(γn ⊗
γm)ψ on the lattice, where we have the freedom to choose any γm. In terms of χ

�elds, these look like

ψ̄(xB)(γn ⊗ γm)ψ(xB) =
∑

η,η′

Tr(γηγnγη′γm)χ†(xB + aη)χ(xB + aη′). (3.45)

The n = m case results in local operators in terms of χ, since the trace will vanish

unless η = η′. To build the case with n 6= m, one must use 'point-split' operators,

i.e. χ†(x)χ(x+ δx). Each choice of δx corresponds to a di�erent meson taste, i.e, a

di�erent combination of tastes in the two valence quarks of the meson.

In practice in lattice calculations, the remaining 4-fold multiplicity of tastes is

tackled in 3 steps:

1. Ensure only one meson taste is created and destroyed at the source and sink

of correlation functions.

2. Minimize the interaction between tastes by a modi�cation of the action.

3. Remove contributions of extra tastes in the fermion sea by taking detM →
4
√
detM (the context required to understand this step is elucidated in Sec.

4.1.1).

3.2.3 Highly Improved Staggered Quarks

Step 2 above is the guiding principle for the action we use in much of this work, the

Highly Improved Staggered Quark (HISQ) action [105].

The interaction between di�erent tastes (�taste mixing�) is dominated by the

process in Fig. 3.5, the exchange of single gluons carrying momenta close to ζπ/a.

In HISQ, this is suppressed by modifying the gauge �elds in such a way as to
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Figure 3.5: Taste mixing at tree level.

minimize the coupling between a gluon with momentum ζπ/a and the fermions, in

other words, minimize the vertices in Fig. 3.5.

To this end, one can change the action so that fermions only couple to smeared

gauge links, in which high-frequency excitations have been removed. De�ne the �rst

and second covariant derivative operators:

δρUµ(x) ≡1

a

(
Uρ(x)Uµ(x+ aρ̂)U †ρ(x+ aµ̂)

− U †ρ(x− aρ̂)Uµ(x− aρ̂)Uρ(x− aρ̂+ aµ̂)
)
, (3.46)

δ(2)
ρ Uµ(x) ≡ 1

a2

(
Uρ(x)Uµ(x+ aρ̂)U †ρ(x+ aµ̂)

− 2Uµ(x)

+ U †ρ(x− aρ̂)Uµ(x− aρ̂)Uρ(x− aρ̂+ aµ̂)
)
. (3.47)

With this we can de�ne the smearing operator:

Fµ =
∏

ρ6=µ

(
1 +

a2δ
(2)
ρ

4

)
. (3.48)

HISQ uses two di�erent smeared gauge �elds de�ned by

Xµ(x) ≡ UFµUµ(x), (3.49)

Wµ(x) ≡


Fµ −

∑

ρ6=µ

a2(δρ)
2

2


UFµUµ(x) , (3.50)

where U is a re-unitarization operator, that acts on a matrix A like UA = A/
√
A†A.
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The HISQ action can then be written as:

SHISQ =
∑

x

ψ̄(x)

(∑

µ

γµ

(
∇µ(W )− a2

6
(1 + εNaik)∇3

µ(X)

)
+m

)
ψ(x) ,

(3.51)

where ∇µ(Z) is the covariant derivative (3.27) with gauge links repaced with Z.

ψ(x) are the naive form of the fermions, i.e. ψ(x) = Ω(x)χ(x). This action in

fact not only removes tree level interactions like Fig. 3.5, but also all taste mixing

interactions at 1-loop.

The ∇3
µ term is a Symanzik improvement, it reduces the size of discretisation ef-

fects of observables computed using this action. The value of εNaik is �xed according

to the constraint

lim
p→0

E2(p)−m2

p2
= 1. (3.52)

where E(p) obeys the tree-level dispersion relation from the HISQ action. This

means HISQ fermions obey E2 = p2 + m2 at tree level. Tuning εNaik according to

this constraint gives us the expression [108]

εNaik =
4−

√
4 + 12 mtree

cosh(mtree) sinh(mtree)

sinh2(mtree)− 1
, (3.53)

where mtree is the tree-level pole mass given by the expansion [105]

mtree = m
(

1− 3

80
m4 +

23

2240
m6 +

1783

537600
m8 (3.54)

− 76943

23654400
m10

)
+O

(
m12

)
. (3.55)

3.3 Heavy Quarks on the Lattice

The large hierarchy of di�erent quark masses in nature present a number of further

complications to lattice calculations. u and d quarks cause huge problems due to

how light they are, this will be addressed in Sec. 4.1.2. s quarks are easy (in the

sense tha they're mass doesn't cause complications).

As quarks get heavier, we begin to encounter another problem. Discretisation

e�ects will generally grow like the largest scale in the theory. If the observable

being computed on the lattice is sensitive to the dynamics of a heavy quark of mass
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Figure 3.6: Di�erent scales relevent to non-perturbative physics, and brackets show-

ing the range of scales that typical lattices can resolve. The larger the range of scales

resolved, the more computationally expensive the calculation.

mh, this will contain discretisation e�ects of size (amh)n (where n depends on how

improved the action is). This is essentially due to the de Broglie wavelength of

the heavy quark excitations being close to the lattice spacing, the excitations 'hide'

in-between lattice sites.

How heavy we can go is limited by two factors: the improvement of the lattice

action and the lattice spacing. How �ne we can get the lattice spacing is limited by

computational cost. The physical size of the lattice must always be at least large

enough to �t the lightest degrees of freedom in the system, namely, it must be larger

than the wavelength of pions. This means to get smaller lattice spacing requires

increasing the number of sites on the lattice, hence increasing the computational

costs (details in chapter 4).

In the past, c quarks resulted in uncontrollable discretisation e�ects but now

armed with highly improved actions like HISQ, and very �ne lattices, c physics has

been conquered on the lattice [105, 109�111]. Other approaches besides HISQ are

also capable of charm physics, see for example [112].

Physics of the b quark is less well developed since the b mass is so much heavier

than the c. The b can only be resolved by the very �nest of lattice spacings available,

and using such �ne lattices can be prohibitively costly. Putting a physical b quark

on coarser lattices will create uncontrollable discretization e�ects.

The work in this thesis concerns the decays of mesons containing b quarks. We

approach the issue of the heavy b in two di�erent ways, the heavy-HISQ approach,

and the Lattice NRQCD approach. Since the main results of this thesis come from

our heavy-HISQ studies, I will not go into too much detail in describing lattice

NRQCD.
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Figure 3.7: An extrapolation to mh = mb of the Hs decay constant (where Hs

is a pseudoscalar h̄s meson) [5]. The colorful points are measurements of fHs on

the lattice, the color denotes lattice spacing. The grey band shows the result of a

continuum extrapolation of this lattice data. The x axis, Mηh , is a proxy for the

h-quark mass.

3.3.1 Heavy-HISQ

The heavy-HISQ approach is essentially to model the b with the HISQ action, but

to perform the calculation at a number of unphysically light b masses (that we refer

to generically as heavy h quarks), and extrapolate the results to the physical b mass.

Typically the h masses span most of the region between the c mass and the b mass.

Luckily there exists an e�ective �eld theory for understanding how to perform

such an extrapolation - HQET. HQET gives a framework to describe how observables

depend on masses of heavy quarks, so one can use HQET to derive �t forms of such

an extrapolation.

Heavy-HISQ has so far been used for computing b decay constants and masses

[5, 113, 114]. In [115], the approach was used to determine c and b quark masses

and produce a new determination of αs. A number of heavy-HISQ calculations of

semileptonic form factors are currently underway. The work presented in chapters 6

and 7 adopt the heavy-HISQ approach for computing Bs → D∗s`ν and Bs → Ds`ν

form factors. Besides these, there are also currently ongoing calculations of form

factors for the Bc → ηc`ν, Bc → J/ψ`ν [116], Bc → Bs`ν, Bs → ηs`ν, and B →
D∗`ν decays.
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3.3.2 Lattice NRQCD

The root of the problem of heavy quarks on the lattice is in the rest mass of the quark.

Consider the expansion in momentum p2 of the continuum relativistic dispersion

relation:

ω =
√
p2 +m2 ' m+

p2

2m
− p4

4m3
+ ... (3.56)

The rest mass in the �rst term is the source of the issue, when m > π/a the �rst

term pushes the frequency of excitations ω close to or over π/a.

One could replace the relativistic fermion action e.g. HISQ, with a lattice version

of NRQCD [95]. In NRQCD the b has no rest mass, so b excitations will have

frequencies much smaller than π/a.

Another bene�t of NRQCD is that it does not su�er from a doubling problem

since the doubling problem is a purely relativistic issue (the doubling symmetry

requires 4 component spinors for γ matrices to act on.

The lattice calculations we perform require us to compute propagators for b

quarks on �xed gauge backgrounds. The form of the action allows propagators

Gb(x, t)[U ] to be computed using a simple recursion relation

Gb(x, t+ 1)[U ] = e−aH [U ]Gb(x, t)[U ], (3.57)

which is numerically very fast in comparison to how HISQ propagators are computed

(see Sec. 4.1.2). H is the NRQCD Hamiltonian. In the interest of numerical

stability, the time evolution operator is re-cast as [95]

e−aH =

(
1− aδH

2

)(
1− aH0

2n

)n
U †0(x, t)

(
1− aH0

2n

)n(
1− aδH

2

)
, (3.58)

where n is an arbitrary integer (chosen in our studies to be n = 4), and the Hamil-

tonian has been broken up into a leading part H0 and correction δH. Gb here are

propagators for the 2-component spinor �elds used in NRQCD. We use the O(αsv
4)
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corrected NRQCD Hamiltionian [95]:

aH0 =− ∇
(2)

2amb
, (3.59)

aδH =− c1
(∇(2))2

8(amb)3
+ c2

i

8(amb)2
(∇ · Ẽ− Ẽ · ∇)

− c3
1

8(amb)2
σ · (∇× Ẽ− Ẽ×∇)

− c4
1

2amb
σ · B̃ + c5

∇(4)

24amb

− c6
(∇(2))2

16n(amb)2
, (3.60)

where ∇(2,4) are the second and fourth lattice derivatives, σ are SU(2) matrices

acting on spin, and Ẽ and B̃ are the (Symanzik improved) chromoelectric and

chromomagnetic �elds. The form of ∇(2,4),Ẽ, B̃ were de�ned in Sec. 4.2 of [95] and

improved upon in [117].

The coe�cients {ci} have been �xed via various calculations adopting a number

of methods. The coe�cients of the kinetic terms, c1,5,6, were most recently �xed

by comparing the lattice NRQCD dispersion relation to that of the continuum in

perturbation theory [118]. c2 is a spin-independent term which can a�ect radial

and orbital excitation energies, this is not expected to have as large an e�ect as

the kinetic terms, so is set to its tree-level value of 1. The result of varying c2

on relevant observables was investigated in Sec. IIIC of [119], and the e�ects were

very small. c3 and c4 are spin-dependent terms, which would have a small e�ect on

spin-averaged observables (i.e. all observables computed in this work). c3 is set to

1, and c4 is tuned non-perturbatively, by matching predictions of the �ne structure

of the Υ spectrum from lattice NRQCD to experiment [119].

Another Symanzik improvement is introduced in this context by multiplying the

gauge links by the so-called tadpole factor u0 =
∑

µ,ν〈Tr�µν/4〉. This removes the

tadpole diagrams proportional to a2 that appear in gluon propagators.

There is a limit to how small a lattice spacing can be used while employing the

Lattice NRQCD action. Lattice NRQCD relies on convergent series in inverse b-

mass, in lattice units this becomes 1/(amb). It is therefore necessary for amb to be

suitably larger than one, or equivilantly a > 1/mb.



Chapter 4

Lattice Calculations

The previous chapter focused on how to discretize the QCD action. This chapter is

focused on the practical side of lattice QCD - given a lattice action, how does one

perform the functional integral to determine expectation values?

4.1 Evaluation of Lattice Correlation Functions

All physics of a quantum �eld theory can be extracted from correlation functions. So

a typical lattice calculation involves computing a correlation function (or just corre-

lator) on the lattice, then extracting physical quantities from it. A typical correlator

that is computed on the lattice is a 2-point meson correlator, i.e. 〈Φ(x)Φ†(y)〉 where
Φ is a meson creation operator and Φ† is an annihilation operator. This is a good

working example for showing the steps in a lattice calculation, the generalization to

N -point correlators is reasonably natural.

A creation/annihilation operator for a meson in this context can be any operator

containing the same quantum numbers as the meson one is studying. For example,

the neutral B meson is a pseudoscalar charged with a b and d̄ quark, so a suitable

operator is Φ(x) = b̄(x)γ5d(x). The corresponding functional can then be written

as

C(x, y) = 〈Φ(x)Φ†(y)〉 =

∫
[dψdψ̄dU ]

(
b̄(x)γ5d(x)d̄(y)γ5b(y)

)

× exp


−SG[U ]−

∑

w,z,i

q̄i(w)Mqi(w, z)[U ]qi(z)


 , (4.1)

where we have broken the action up into a gauge part SG[U ], and a fermion part.

Mqi(x, y)[U ] is the Dirac operator for �avour i, and can be seen as a matrix in lattice

site, color and spin.

The integral over fermions can be performed analytically since the fermion �elds

49
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are Grassmann valued. In our example, the result is [96]:

C(x, y) =

∫
[dU ]Tr

(
M−1
b (y, x)[U ] γ5M

−1
d (x, y)[U ] γ5

)

× e−SG[U ]
∏

i

det(Mqi [U ]) . (4.2)

Performing this integral is equivalent to a Wick contraction between the quark

sources and sinks. In the case of two degenerate �avours (e.g. for a neu-

tral pion, an ūu pseudoscalar) a second term would be present. This so-called

`disconnected' term would connect the source to itself and the sink to itself

rather than connecting the source to sink, i.e. the trace would be replaced with

Tr(M−1
u (x, x)[U ] γ5 )Tr(M−1

u (y, y)[U ] γ5 ). In this thesis we will not be concerned

with disconnected contributions to correlators.

The quantinties M−1
qi (x, y)[U ] are propagators of a quark of �avour q on a �xed

gauge background U . For clarity: here U denotes a con�guration of angles com-

prising an SU(3) matrix for each element of the set of all links on the lattice

{Uµ(x)| ∀µ, x}. The trace is over color and spin. The integration over gauge �elds

is generally carried out by an importance sampling method. A �nite ensemble of

gauge con�gurations {Un} is generated by a Monte Carlo Markov Chain (MCMC),

where the probability of a gauge con�guration Un being added to the ensemble is

proportional to

p(Un) = e−SG[Un]
∏

i

det(Mqi [Un]). (4.3)

Once the ensemble is created, the path integral can be approximated by simply

C(x, y) ' 1

N

N∑

n=1

Tr
[
M−1
b (y, x)[Un]γ5M

−1
d (x, y)[Un]γ5

]
, (4.4)

where N is the number of con�gurations in the ensemble. This introduces a statis-

tical error that scales like 1/
√
N . The calculation of the correlation function then

is split into 3 steps:

1. Generate an ensemble of gauge con�gurations {Ui} by MCMC (Sec. 4.1.1).

2. Compute M−1
qi (x, y)[U ] by inverting the Dirac operator on each gauge con�g-

uration (Sec. 4.1.2).

3. Construct the trace in Eq. (4.4), and average over the ensemble. This step is

dealt with in the context of staggered quarks in Sec. 4.1.3.
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4.1.1 Generation of Gauge Ensembles

The calculation requires a number of samples of gauge con�gurations {Un} sampled

from the distribution p(U) de�ned in Eq. (4.3). In this section (Sec. 4.1.1) I largely

follow the discussion given in [97].

The physical interpretation of the determinant in (4.3) is that it accounts for

virtual quark loops in gluon propagators. In the early days of lattice calculations,

this determinant was approximated to 1, since its evaluation was an insurmountable

computational cost, and it was expected that sea quarks had small e�ects on observ-

ables (this is known as the quenched approximation). However, this introduced large

systematic e�ects that could not be well controlled. These days, our computational

ability has improved and sophisticated approaches to computing the determinant

have been developed (e.g. [120]), so we can include it in our calculations.

We will roughly follow the history of gauge ensemble generation, by �rst ignoring

the determinant, and then showing how it is eventually included in the process.

Quenched MCMC

Gauge ensembles are generated via an MCMC, inspired by statistical mechanics.

The distribution exp(−SG[U ]) is suggestive of something like a Boltzmann distri-

bution for a gas of particles, each with some state Ui, in thermal equilibrium. The

ergodic hypothesis states that a single particle in this gas will jump between possi-

ble states over time such that, at any given time, its probability of being in state

Ui is given by exp(−SG[Ui]). In MCMC, one starts with some random state U0,

then repeatedly updates the state according to some update rule or `hopping rate'

p(Ui → Uj).

The hopping rate must be designed to bring the chain into thermal equilibrium

with the correct distribution. A su�cient condition for thermal equilibrium is known

as detailed balance, where the probability of jumps between any pair of states i and

j is equal:

p(Ui)p(Ui → Uj) = p(Uj)p(Uj → Ui) . (4.5)

Hence p(Ui → Uj) must be designed according to the rule

p(Ui → Uj)

p(Uj → Ui)
= exp(−(SG[Ui]− SG[Uj ])) . (4.6)

There are a number of possible choices of how to design p(Ui → Uj). One approach,

called molecular dynamics [121,122] is to model the chain as the trajectory U(τ)
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of a system with Hamiltonian

H(π, U) =
π2

2
+ SG[U ] , (4.7)

where π is a �ctitious momentum conjugate to U . It can be demonstrated that

such a trajectory obeys (4.6) [121]. The trajectory is computed via Runge-Kutta

numerical integration. One may worry about the possibility of �xed points, limit

cycles etc. in the dynamics, which would prevent ergodicity. To avoid this one can

introduce a periodic refreshing step, where π assigned a new value from normally

distributed noise [123,124].

Another problem that can occur in molecular dynamics is when errors in Runge-

Kutta iterations accumulate over time. Diversion from the dynamics enforced by

H(π, U) can ruin the ergodicity of the trajectory. To �x this, one can add a

Metropolis step at regular intervals δτ throughout the evolution [125]. In this

step, one either accepts (continues onto the next stage of molecular dynamics) or

rejects (refreshes π and re-calculates the δτ worth of molecular dynamics), according

to the criterion

• If SG[U(τ + δτ)] < SG[U(τ)], always accept.

• Otherwise, accept if exp (SG[U(τ + δτ)]− SG[U(τ)]) > λ, where λ is ran-

domly chosen from the interval [0, 1].

The metropolis step ensures detailed balance (Eq. (4.6)) is satis�ed even in the

presence of Runge-Kutta errors.

The combination of molecular dynamics, refreshing steps and Metropolis steps

is referred to as Hybrid Monte Carlo [126], and is the basic method of how the

ensembles we use in this thesis were generated. I now address how the determinant

detM is included.

Unquenched MCMC

Simply evaluating detM [U ] directly, given a con�guration U , is prohibitively expen-

sive due to the non-local nature of the determinant. RecallM [U ] is a matrix in spin,

colour, and lattice site, in modern calculations this will have a dimension of order

108. Even holding that much information in memory is not feasible. A solution to

this is to use the Φ-algorithm [120].

First, we replace detM with detM †M . If we were only including u and d quarks

in the sea, this would be �ne since we can approximate u and d to be two degenerate
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�avours, then
∏
q detMq = detM detM = detM †M . In the case of an arbitrary set

of �avours, this requires a correction that will be addressed later. The Φ−algorithm
involves introducing new arti�cial scalar �elds Φ(x) and Φ†(x) via

detM †M =

∫
[dΦ†dΦ] exp(−Φ†(M †M)−1Φ). (4.8)

then one can add Φ†(M †M)−1Φ to SG in the Hybrid Monte Carlo algorithm. The

extra functional integral over Φ,Φ† is easly evaluated, by sampling a vector η from

a normal distribution exp(−η†η), then transforming it to Φ = M †η.

The Rooting Trick

We will now address how to correct for the fact that we have replaced detM with

detM †M in the presence of arbitrary non-degenerate �avours. We have explicitly

doubled the fermions to two degenerate �avours per physical �avour. In the case

of staggered quarks, this is not a huge marginal complication since we already have

four degenerate tastes which we have to deal with anyway. In order to cut down the

number of tastes in the sea, the solution is to take the fourth-root of detM . When

using the Φ-algorithm, this becomes the 8th root of detM †M .

(detM †M)1/8 = (
∏

i

λ2
i )

1/8 = (
∏

i

λi)
1/4 (4.9)

?
= (
∏

i

λ
′ 4
i )1/4 =

∏

i

λ′i (a→ 0).

where λi are eigenvalues of M . On the second line, we have assumed that the

matrix M can be decomposed into four matrices, one for each of the four tastes,

with eigenvalues λ′i which are degenerate in the continuum limit.

This assumption is not rigorously justi�ed in �eld theory, so the fourth-root trick

is a source of controversy. Much has been said about the problems this may cause

in lattice results [127�129], however, these concerns have been refuted [130, 131].

It has been demonstrated that the eigenvalues smoothly become degenerate as one

approaches the continuum limit [132, 133]. There has so far emerged no evidence

that the rooting trick is harmful, observables computed using unquenched staggered

quarks have always agreed with experiment, analytical approaches (e.g. [134]), and

other lattice discretisations.

Introducing the 1/2 or 1/8th root to the determinant requires a modi�cation of

the Φ-algorithm, we can no longer simply sample Φ using Φ = M †η. The e�ective
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action is now SG + Φ†(M †M)−1/8Φ. The root is dealt with by replacing it with a

partial fraction representation [135]:

(M †M)−1/8 ' a0 +

N∑

n=1

an
M †M + bn

. (4.10)

This can only be evaluated by some variation of a conjugate gradient algorithm

(speci�cally a multishift solver [136, 137]). Conjugate gradient will be described in

Sec. 4.1.2. This approach is called the Rational Hybrid Monte Carlo (RHMC)

algorithm.

The Nf = 2 + 1 + 1 MILC Ensembles

In this work, we use ensembles of gauge con�gurations generated by the MILC

collaboration [7, 8]. The ingredients of these con�gurations are

• Gauge �elds obeying the one-loop Symanzik improved Lüscher-Weisz action

described in Sec. 3.1.2.

• Four �avours of quark in the sea, u,d,s and c (with mu = md ≡ ml), hence

the notation Nf = 2+1+1, obeying the HISQ action, described in Sec. 3.2.3.

• Ensemble generated (mostly) using the RHMC algorithm as described earlier

in this section. Some con�gurations on set 3 were instead generated using an

RHMD algorithm - similar to RHMC except with the Metropolis accept/reject

step omitted.

Table 4.1 gives the details of the MILC ensembles that were used in this work.

One may notice that for the majority of ensembles here, the light quarks are much

heavier than in reality. The necessity for this is explained in the next section.

4.1.2 Dirac Operator Inversion

Once the ensemble {Ui} has been generated, to compute the 2-point correlator (4.4)

one must computeM−1[Ui] for each Ui. We have already seen how this can be done

in the case of the �avour in question being governed by the NRQCD action, one can

use the recursion relation (3.57). In the case of relativistic actions like HISQ, there

is no equivalent recursion relation.

M is large but sparse. It technically has O
(
Vol2

)
elements, but for suitably

local actions (like HISQ) it has only O (Vol) non-zero elements. This means it is
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set name w0/a N3
x ×Nt aml0 ams0 amc0

0 very coarse 1.1119(10) 163 × 48 0.013 0.067 0.838

1 coarse 1.3826(11) 243 × 64 0.0102 0.0509 0.635

2 �ne 1.9006(20) 323 × 96 0.0074 0.037 0.440

3 �ne-physical 1.9518(7) 643 × 96 0.0012 0.0363 0.432

4 super�ne 2.896(6) 483 × 144 0.0048 0.024 0.286

5 ultra�ne 3.892(12) 643 × 192 0.00316 0.0158 0.188

Table 4.1: Parameters for the MILC gluon ensembles [7,8]. a is the lattice spacing,

determined from the Wilson �ow parameter w0. Values for w0/a are from: sets

0,1,2 [138], sets 3 and 4 [139], set 5 [140]. The physical value of w0 was determined

to be w0 = 0.1715(9)fm in [141]. Columns 5-7 give the masses used in the action

for light,strange and charm quarks in the sea.

well-suited to the conjugate gradient (CG) algorithm [142] (and its variants),

which has become the most successful approach to computing M−1. However, CG

requires the matrix being inverted to be hermitian and positive de�nite, which is

not necessarily the case for M . We instead invert M †M , which is hermitian and

positive de�nite, then we can recover M−1 by acting M † on (M †M)−1.

The design of CG requires a lot of explanation that I will not go into here. I will

instead brie�y describe the philosophy behind it, and state the algorithm. For a

nice review with lots of detail see [143]. The goal is, given some vector b and matrix

A, to �nd x where

Ax = b . (4.11)

In our case A = M †M and b is a suitably chosen 'source' for the propagator (see

Sec. 4.1.3). This is equivalent to �nding the x = x∗ that minimizes

f(x) =
1

2
xTAx− bTx. (4.12)

A reasonable solution to this problem is something like a steepest descent approach,

where one starts at a random x0, then moves some distance α0 in the direction

r0 = −f ′(x0) = b−Ax0 to x1 = x0 + α0r0. α0 is chosen to minimize x∗ − x1. And

then repeat. This approach has the property that each new step αnrn is orthogonal
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to every other step, this means the algorithm takes a sub-optimal zig-zag path

towards the solution.

CG is designed to take a more direct path, by imposing the condition that the

direction of each step dn = (xn−xn−1)/αn is orthogonal with respect to the metric

A, i.e. dTnAdm = 0 for n 6= m. The CG algorithm is

xn+1 = xn + αndn , where

αn =
rTn rn
dTnAd

T
n

,

dn =




r0 , n = 0

rn + βndn−1 , n > 0 ,

rn = b−Axn ,

βn =
rTn rn

rTn−1rn−1
. (4.13)

One terminates the algorithm when some stopping condition is acheived, namely

when rn < ε where ε is some small number referred to as the error tolerance, or

when some maximum number of iterations has been reached.

The complexity of the CG algorithm is O (c) where c = λmax/λmin is the condi-

tion number of the matrix A. λmax/min are the largest and smallest eigenvalues of

A. The condition number quanti�es the size of rounding errors that accumulate in

iterative processes like CG. In our case where A = M †M ∼ (−i /D + m)(i /D + m),

the condition number is proportional to m−2. Hence, propagators for lighter quarks

are quadratically more expensive to compute than heavier ones. This a�ects the

computation of correlation functions including light valence quarks via M−1
l . It

also a�ects any unquenched calculation with rooting since in that case we must also

perform an inversion to evaluate (4.10).

For this reason, lattice calculations are often computed with unphysically heavy

u/d quarks. Modern lattice calculations have computed observables for a number

of light quark masses and extrapolated downwards to the physical light mass, using

chiral perturbation theory as a guide. In the MILC ensembles we use in this work,

summarized in Table 4.1, all but one have a light mass at around ml/ms ' 1/5,

while set 3 (�ne-physical) has roughly physical light quarks at ml/ms ' 1/30.
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4.1.3 Staggered Correlation Functions

We now turn to how to evaluate traces of quark propagators, as in Eq. (4.2), in the

staggered formalism.

Recall from Sec. 3.2.2, propagators for naive quarksM−1 are related to staggered

propagators g by

M−1(x, y) = Ω(x)Ω†(y)g(x, y). (4.14)

Throughout this section we will keep the gauge �eld dependence of M−1 and g

implicit. By conjugating both sides and using the property of the naive propagator

(M−1)†(x, y) = γ5M
−1(y, x)γ5 one can show that M−1 can also be written as

M−1(y, x) = φ5(y)φ5(x)Ω(y)Ω†(x)g†(x, y), (4.15)

where φ5(x) = (−1)
∑
µ xµ/a.

In this section we will only treat `connected' correlators (i.e. ignoring discon-

nected contributions in the case of degenerate �avors mentioned in Sec. 4.1). The

generalization to disconnected contributions from the below discussion is straight-

forward.

2-point Correlation Functions

Consider the generic 2-point correlator; involving two valence �avours a and b, and

spin structure γX and γY at the source and sink:

C(x, y) = 〈Φ†X(x)ΦY (y)〉ψ,U , ΦX(x) =
1

4
ψ̄a(x)γXψb(x) (4.16)

=
1

16
〈Trc,sγXM−1

a (x, y)γYM
−1
b (y, x)〉U

=
1

16
φ5(x)φ5(y)Trs

(
Ω†(x)γXΩ(x)Ω†(y)γY Ω(y)

)
〈Trc

(
ga(x, y)g†b(x, y)

)
〉U .

Trs is a trace over spin and Trc is over color. We have applied Eq. (4.15) to the b

propagator in the last line. To deal with the spin trace, de�ne the family of phases

{φX(x)} according to

Ω†(x)γXΩ(x) = φX(x)γX . (4.17)

For example, if X = 5, then γ†xγ5γx = (−1)
∑
µ xµγ†xγxγ5 = φ5(x)γ5. The map from

X to φX is structure preserving, i.e. if γX = γAγB, then φX(x) = φA(x)φB(x). The
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spin trace becomes φX(x)φY (y)Trs (γXγY ). The remaining trace will vanish unless

Y = X, and is 4 otherwise. We end up with

C(x, y) =
1

4
φ5X(x)φ5Y (y)〈Trc ga(x, y)g†b(x, y) 〉U . (4.18)

We are usually interested instead in the correlation function of a meson in a mo-

mentum eigenstate with spatial momentum p. This will take the form

Cp(t0, t) =
1

N3
x

∑

x,y

eip·(x−y)C(x, t0;y, t)

=
1

4N3
x

∑

x,y

eip·(x−y)φ5X(x)φ5Y (y)〈Trc ga(x, y)g†b(x, y) 〉U , (4.19)

where it is understood that x0 = t0 and y0 = t. In order to evaluate this function, we

must perform inversions to create ga/b(x, y) for each x and y, so 2·Vol2 calculations.
This is prohibitively expensive. The number of inversions can be reduced by using

random wall sources. De�ne

P t0a,p,X(y) ≡ 1√
N3
x

∑

x

eip·(x−y)φ5X(x, t0)ξ(x)ga(x, t0; y) , (4.20)

where ξ(x) is a random �eld of colour vectors, a di�erent �eld for each gauge con-

�guration. This has the property

〈f(x,x′)ξ∗(x′)ξ(x)〉U = δx,x′〈f(x,x′)〉U . (4.21)

Using this property the correlator can be built instead according to

Cp(t0, t) =
1

4

∑

y

φ5Y (y)〈Trc P t0a,p,X(y, t)P t0 †b,0,5(y, t) 〉U . (4.22)

Now all one has to compute is P t0a/b(y) for general y, so 2·(Vol) calculations, a

reduction by a factor of (Vol).

3-point Correlation Functions

The above discussion can be generalized to 3-(or N -)point correlation functions.

Consider a 3-point correlation function, for example encoding an X → Z semilep-

tonic decay via a current J(y):

C(x, y, z) = 〈Φ†X(x)J(y)ΦZ(z)〉ψ,U , ΦX(x) =
1

4
ψ̄b(x)γXψs(x) (4.23)

J(y) = ψ̄b(y)γJψa(y)

ΦZ(z) =
1

4
ψ̄a(z)γZψs(z) .
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We can reduce this in the same way as before

C(x, y, z) =
1

16
Trs

(
Ω†(x)γXΩ(x)Ω†(y)γJΩ(y)Ω†(z)γZΩ(z)

)
(4.24)

× φ5(x)φ5(z)〈Trc gb(x, y)ga(y, z)g
†
s(x, z) 〉U

=
1

4
φ5X(x)φJ(y)φ5Z(z)〈Trc gb(x, y)ga(y, z)g

†
s(x, z) 〉U . (4.25)

We have assumed that TrsγXγJγZ = 4, requiring that each gamma matrix in this

combination has a partner and therefore cancels.

Putting the X-meson into an eigenstate of zero momentum, and the Y -meson

into an eigenstate of momentum p, we get

Cp(t0, t, T ) =
1

4N3
x

∑

x,y,z

eip·(y−z)φ5X(x)φJ(y)φ5Z(z)

× 〈Trc gb(x, t0;y, t)ga(y, t; z, T )g†s(x, t0; z, T ) 〉U . (4.26)

This can be built by �rst creating propagators for the b and s quarks -

P t0b,0,X(y),P t0s,0,1(z). Then, build the a propagator using a so-called extended source:

P Ta,p,ext(y) =
∑

z

P t0 †s,0,5(z, T )φZ(z, T )eip·(y−z) ga(y; z, T ) . (4.27)

We can build the 3-point correlator (4.26) using essentially the same 'tie together'

as (4.22):

Cp(t0, t, T ) =
1

4

∑

y

φJ(y)〈Trc P t0b,0,5X(y, t)P Ta,p,ext(y, t) 〉U . (4.28)

I'll brie�y connect the above discussion to the spin-taste notation introduced in

Sec. 3.2.2. In the above, we have not used any point-split operators. Hence, we

denote these operators in spin-taste notation as (γn⊗γn), where γn is the continuum

spin structure we are aiming for. In the work in this thesis, we will not use any point-

split operators, so the above discussion is su�cient for understanding the methods

used.

Momentum Twist

The way in which spatial momentum is introduced into the correlation functions

requires some explanation. The momentum space 2-point correlation function for

an operator O with momentum p is given by

Cp(0, t) =
∑

x

eip·x〈O†(x, t)O(0, 0)〉. (4.29)
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To introduce p one can add an appropriate phase to the operators:

O(x, t)→ O(x, t)e−ip·x (4.30)

=⇒ C(0, t)→ C(p, t). (4.31)

This generalizes straightforwardly to n-point functions. One can assign the rephas-

ing to any factor in O, for example a fermion operator

ψ(x, t)→ ψ(x, t)e−ip·x. (4.32)

Rephasing ψ is equivalent to introducing a momentum twist to the gauge links [144].

The action of Eq. (4.32) on any gauge invariant quantity is equivalent to

Ui → Uie
iapi (no sum). (4.33)

For example, consider the e�ect this has on the following operator

ψ†(x)Uµ(x)ψ(x+ aµ̂)

→ψ†(x)
(
eiapµUµ(x)

)
ψ(x+ aµ̂)

=ψ†(x)e−ip·xUµ(x)e+ip·(x+aµ̂)ψ(x+ aµ̂) . (4.34)

When computing a propagator ga(x, y), we add these phases to the gauge �elds

which have the e�ect of the �avour a carrying the spatial momentum. This is how

momentum is included in the work of this thesis. We report momentum twist in

units of π/Nx, e.g., a twist of θ in the k direction corresponds to a momentum of

apk = πθ/Nk.

4.2 Analysis of Correlation Functions

Once correlation functions like Cp(t0, t) and Cp(t0, t, T ) have been computed on the

lattice, how can we extract physics from them?

4.2.1 Fitting Correlation Functions

2-point correlators contain information about (amongst other things) masses and

decay constants of the propagating meson. One performs a χ2−�t of the correlator
to a theoretically motivated function of t. To derive such a function, we use a

complete set of momentum p states -

1 =

∞∑

n=0

1

2En
|λn〉〈λn|, (4.35)
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where En are the energies of each state. Inserting this into the correlation function,

and moving from the Heisenberg to Schrödinger picture [145]:

Cp(t) = 〈Ω|Φ(p, t)Φ†(p, 0)|Ω〉

=

Nexp∑

n=0

1

2En
〈Ω|
(
eHt + eH(Tlat−t)

)
Φ(p, 0)

(
e−Ht + e−H(Tlat−t)

)
|λn〉

× 〈λn|Φ†(p, 0)|Ω〉

=

Nexp∑

n=0

(〈Ω|Φ(p, 0)|λn〉√
2En

)(〈λn|Φ†(p, 0)|Ω〉√
2En

)(
e−Ēnt + e−Ēn(Tlat−t)

)

≡
Nexp∑

n=0

|an|2f(Ēn, t) , f(E, t) =
(
e−Et + e−E(Tlat−t)

)
, (4.36)

where Tlat = aNt is the temporal extent of the lattice. I have here set t0 = 0 for

clarity. In practice, one would only use `late time' data, t ≥ tcut for some tcut. In

the late time data the correlator is dominated by the lowest-n terms, since higher

n terms are suppressed by faster decaying exponentials exp(−Ēnt). Hence we can

a�ord to truncate the sum at some �nite number of terms, Nexp.

The �t results in a determination of the parameters an and Ēn. The sum over n

will be populated only by states |λn〉 with the same quantum numbers as Φ, since

〈Ω|Φ|λn〉 vanishes in all other cases. We can then interpret |λ0〉 to be the ground

state of the meson we are studying.

We are maintaining a distinction between Ēn and En here, since these di�er in

calculations involving NRQCD quarks. In NRQCD Ēn is the non-relativistic energy

with leading-v behaviour p2/2m.

In the HISQ case, one can safely interpret these as relativistic energies, Ēn =

En. One can �nd the meson's mass by computing the correlation function at zero

momentum C0(t), the �t parameter Ē0 will equal the mass M . an can be related

to the meson's decay constant. For example for a pseudoscalar meson, using the

de�nition of a meson decay constant (2.21) and the PCAC relation in (2.51), we

�nd

fM = (ma −mb)

√
2

M3

( a0

a3/2

)
, (4.37)

where a and b are the two �avours the meson is charged under.

The above discussion can be straightforwardly generalized to 3-point correlation

functions, from which we are able to extract quantities like the hadronic transition
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amplitudes 〈M ′|J |M〉, from which we can determine semileptonic form factors. The

generalization of the above for 3-point correlators is

C(0, t, T ) =〈Ω|ΦM ′(0) J(t) Φ†M (T ) |Ω〉

=
∑

n,m

(
〈Ω|ΦM ′ |λn〉√

2EM ′,m

)(
〈λn|J |λm〉

2
√
EM,nEM ′,m

)(
〈λm|Φ†M |Ω〉√

2EM,n

)

× f(ĒM ′,m , T − t)f(ĒM,n , t)

≡
∑

n,m

aM ′,nJnma
∗
M,m f(ĒM ′,m , T − t)f(ĒM,n , t). (4.38)

I have suppressed spatial momentum dependence here for notational simplicity. aM,n

will vanish for states |λn〉 that have di�erent quantum numbers to ΦM , similarly

for aM ′,m and ΦM ′ . Non-zero aM,n's will match the analagous parameters extracted

from �tting a 2-point function 〈Φ†MΦM 〉, similarly for aM ′,m's and ΦM ′ . This carries

on to the energies; {ĒM,n} is the spectrum for the M ′ meson, and {ĒM ′m} is the
spectrum for theM . Therefore, we compute and �t the appropriate 2-point functions

to deduce the parameters {aM(′),n},{ĒM(′),n}, then �tting C(0, t, T ) results in an

accurate determination of the remaining free parameters, Jnm. This set contains

the transition amplitude one is interested in 〈M ′|J |M〉, recoginising that

J00 =
〈M ′|J |M〉

2
√
EM,0EM ′,0

. (4.39)

Oscillating States

In the case of staggered quarks, these �t functions must be modi�ed to contain the

e�ects of the oscillating states. The oscillating states are due to propagation of

mesons in the correlator containing the ζ = (1, 0, 0, 0) taste of one of the valence

quarks (in the language of Sec. 3.2.1). No other tastes contribute, since Φ(p, t)

has a 3-momentum �xed at p, which we always take to be small relative to π/a.

Hence Φ(p, t) does not couple to the states at k ∼ (0, π/a, 0, 0), k ∼ (0, 0, π/a, 0)

etc. However, Φ(p, t) can couple to arbitrarily high energy states, so the pole at

k ∼ (π/a, 0, 0, 0) contributes.

How this taste contributes can be seen using the doubling symmetry. I will use

a B meson as an example. We can translate the ζ = (1, 0, 0, 0) pole in momentum

space down to around p by the transform ψl → (iγ5γ0)(−1)t/aψl on the o�ending

�avour, say it is the light quark l. This causes ΦB(p, t) to become

ΦB(p, t) = ψ̄bγ5ψl → i(−1)t/aψ̄bγ0ψl. (4.40)
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The ζ = (1, 0, 0, 0) taste of the l-quark manifests itself as a scalar (0+) meson with

an oscillating phase (−1)t/a.

Accounting for oscillating states modi�es the �t functions to

Cp(t)|�t =

Nexp∑

j=0

|aj |2f(Ēj , t) + (−1)t/a|aj,o|2f(Ēj,o, t) (4.41)

Cp(t, T )|�t =

Nexp,Nexp∑

j,k=0

(
aMj J

nn
jk a

M ′
k f(ĒM , t)f(ĒM

′
n , T − t)

+ aM,o
j Jonjk a

M ′
k (−1)t/af(ĒM,o

n , t)f(ĒM
′
, T − t)

+ aMj J
no
jk a

M ′,o
k (−1)(T−t)/af(ĒM , t)f(ĒM

′,o
n , T − t)

+ aM,o
j Joojka

M ′,o
k (−1)T/af(ĒM,o

n , t)f(ĒM
′,o, T − t)

)
. (4.42)

There is a special case where oscillating states do not contribute. If the two

quarks in Φ(p, t) are degenerate (have the same �avour, momentum etc.) then the

doubling symmetry acts on both of the quark �elds identically. If the meson is a

pseudoscalar, then the e�ect of the doubling symmetry cancels, and no oscillating

states contribute:

ψ̄γ5ψ → (−1)2×t/aψ̄(iγ5γ0)γ5(iγ5γ0)ψ = ψ̄γ5ψ. (4.43)

Bayesian χ2 Fitting

We use the CorrFitter package [146] for performing the χ2 �tting. We adopt a

Bayesian approach �rst introduced in [147]. Given a �t function fρ(x) with param-

eters {ρα}, a set of inputs {xi}, and a set of corresponding observations {yi}, with
a covariance matrix σyij , the �tter minimizes

χ2 =
∑

ij

(fρ(xi)− yi)(fρ(xj)− yj)
(σyij)

2
+
∑

α

(
ρα − ρpriorα

σpriorα

)2

. (4.44)

ρpriorα and σpriorα are the mean and standard deviations of the prior distributions given

to the �t parameters. In our case, xi is the set of times t, yi are the correlators Ci(t),

and ρα are an, En, Jnm. Using this χ2 means we take into account all correlations

between di�erent timeslices t, and between di�erent correlators.

The actual parameters ρα of these �ts are slightly reparameterized from simply

the amplitudes aMj , energies EMj and transition amplitudes Jjk. Instead of energies,

the �t parameters are log(δEMj ), where δE0 = EM0 and δEj = EMj − EMj−1 for
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j > 0. These are the parameters ρ given to Eq. (4.44), this is equivalent to giving

Gaussian prior distributions to these logs. This forbids the ground state energy to

become negative or go arbitrarily close to zero in the �t. Similarly, for the excited-

state di�erences EMj − EMj−1, setting Gaussian priors for log(EMj − EMj−1) enforces

EMj > EMj−1, a large reduction in the space of possible solutions to the �t. Often

the �t is also given log-amplitudes rather than amplitudes as �t parameters. This

also prevents the amplitudes aMj from becoming negative or zero. This is only an

option when both the source and sink of the correlators being �tted have the same

operator, otherwise, aMj are not necessarily positive.

A common problem for large �ts involving many correlators is that the data's

covariance matrix can be somewhat singular (very large condition number) if there

are strong correlations in the data. This makes the inversion of the covariance matrix

(for constructing χ2) susceptible to roundo� error. To address this we impose an

svd cut csvd. This replaces any eigenvalue of the covariance matrix smaller than

csvdx with csvdx, where x is the largest eigenvalue in the matrix. This makes the

matrix less singular. It can be considered a conservative move when it comes to the

uncertainty of the results since the only possible e�ect this can have is to in�ate

those uncertainties.

4.2.2 Signal Degradation

A large obstacle in the analysis of correlation functions is signal degradation [148,

149].

A random variable x has a mean and standard deviation

x̂ = 〈x〉 , σ2 =
1

N
(〈x2〉 − 〈x〉2) , (4.45)

where N is the size of the sample. So the (square of) the signal/noise ratio is

x̂2

σ2
= N

(〈x2〉
〈x〉2 − 1

)−1

. (4.46)

Consider 2-point correlators where x = Φ†(t)Φ(0), and Φ is some meson creation

operator.

In the t→ Tlat/2 limit, 〈x2〉 and 〈x〉 can be written as

〈x〉 =
∑

n

1

2En
〈Ω|Φ†(t)|λn〉〈λn|Φ(0)|Ω〉e−Ent ∼ e−E0t , (4.47)

〈x2〉 =
∑

n

1

2En
〈Ω|Φ†2(t)|λn〉〈λn|Φ2(0)|Ω〉e−Ent ∼ e−E

′
0t . (4.48)
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where we have assumed the ratio of matrix elements and energies are O(1). The

operator Φ2 will contain two quark and two antiquark operators, connected by some

matrices in spin space. Φ2 can create a combination of all possible 2 meson states

where the mesons are made of the available �avours and quantum numbers. For

example, for 2-point D-meson correlators (cd̄ pseudoscalars), E′0 = (Mπ + Mηc).

Plugging E0 = MD and E′0 = (Mπ + Mηc) into Eqs. (4.47), (4.48) and (4.46), we

see that D meson correlators have a signal/noise ratio that degrades like

x̂2

σ2
∝ e−(MD−(Mπ+Mηc )/2)t. (4.49)

In general, a meson with two valence quarks of very di�erent masses will su�er

from a signal degrading exponentially with t. B-mesons su�er more than D-mesons.

Adding spatial momentum to one of the quarks in the meson would have the e�ect of

replacingMD in the above equation with some higher energy ED, thus exacerbating

the problem further.

Signal degradation strongly limits the types of calculations that can be performed

in lattice QCD. In the context of semileptonic decays, it can limit the region of q2

that form factors can be calculated.

I have now introduced all of the relevant machinery for understanding the work

of this thesis. The following three chapters cover research performed over the period

of my PhD.
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Chapter 5

b→ c Transitions with Lattice

NRQCD

This chapter outlines of a number of projects attempted using the NRQCD action

for the b quark. Much of the discussion in this chapter will concern the NRQCD-

HISQ representation of the vector and axial b → c currents, i.e, the current if one

of the quarks obeys NRQCD and the other obeys HISQ. I show here a number of

attempts to improve the normalization of these currents (sections 5.2 and 5.4) and

an attempt at a calculation of the B → D`ν and Bs → Ds`ν form factors (Sec.

5.3).

None of the work in this chapter reached a particularly satisfying conclusion.

The salient result of this work is that using NRQCD for b → c currents away from

zero recoil has some considerable issues.

5.1 NRQCD-HISQ Currents

Here I will de�ne some notation used to describe the NRQCD-HISQ currents. To

construct such a current, both the HISQ c and NRQCD b must be transformed

into 4-component spinors such that they can be contracted with one-another in

the current. The staggered c−quark χc is simply related to the naive spinor ψc

by ψc(x) = Ω(x)χc(x). The NRQCD b, Ψb = (Ψ+, 0), is a 2-component spinor

related to the 4-component spinor ψb via an inverse Fouldy-Wouthuysen transform

ψb = exp(−γ · ∇/2amb)Ψb. (∇ is de�ned here by ∇µψ(x) = (Uµ(x)ψ(x + aµ̂) −
U †µ(x− aµ̂)ψ(x− aµ̂)/2.)

Due to the Fouldy-Wouthuysen transform, a current ψ̄cΓψb (where Γ is some

product of gamma matrices) will be made of an in�nite sum of lattice currents in

terms of Ψb, ψ̄cΓψb ∼
∑

j(1/am
j
b)
∑

k ψ̄cOj,kΨb. However, this is only half the

story - as additional to the contribution from the Fouldy-Wouthuysen expansion,

matching the lattice NRQCD theory to continuum QCD gives radiative corrections

67
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to this series. The result is the series being populated by all operators Oj,k of

dimension −j with the same Lorentz indices as Γ.

So a continuum current Jµ is constructed from a series of the form

Jµ =
∑

j,k

cj(αs, amb)
1

(2amb)j
ψ̄cOj,kµ Ψb , (5.1)

where j sums over powers of inverse b-mass and k sums over all operators of dimen-

sion −j. The coe�cients cj(αs, amb) are �xed by matching appropriate transition

amplitudes in 1-loop continuum QCD and the lattice NRQCD/HISQ theory. The

vector and axial vector currents take the general form [150]:

Jµ = (1 + z
Jµ
0 αs)J

(0)
µ,lat + (1 + z

Jµ
1 αs)J

(1)
µ,lat

+ αs

4∑

n=2

z
Jµ
n J

(n)
µ,lat +O(α2

s, (ΛQCD/mb)
2, (p/mb)

2) , (5.2)

J
(0)
µ,lat = ψ̄cΓµΨb , J

(1)
µ,lat = − 1

2amb
ψ̄cΓµγ · ∇Ψb ,

J
(2)
µ,lat = − 1

2amb
ψ̄cγ·

←
∇ γ0ΓµΨb , J

(3)
µ,lat = − 1

2amb
ψ̄cΓ0∇µΨb ,

J
(4)
µ,lat =

1

2amb
ψ̄c
←
∇µ Γ0Ψb ,

where Γµ is the continuum spin structure (e.g. for Aµ; Γµ = γ5γµ) and p is the

momentum spatial exchange pb − pc. The last two currents J
(3)
µ,lat and J

(4)
µ,lat do not

appear in the temporal current J0, z
J0
3,4 = 0.

A subset of the matching factors {zJµ} have been calculated for Vµ and Aµ

in [108]. In the case where the charm is replaced with an s,u or d quark (therefore

has negligable mass), results for z
Jµ
0,1,2 are avaliable for both Vµ and Aµ. However,

in the b → c case the c mass must be taken into account which complicates the

calculation. In this case, only z
Jµ
0 is avaliable. To sidestep this in studies using

these currents, an extra truncation in the �cross-terms� of the perturbative and

NRQCD series, αsΛQCD/mb and αsp/mb, is added resulting in

Jµ = (1 + z
Jµ
0 αs)(J

(0)
µ,lat + J

(1)
µ,lat) (5.3)

+O(α2
s, (ΛQCD/mb)

2, (p/mb)
2, αsΛQCD/mb, αsp/mb) .

In the work of this thesis, we also compute 〈J (2,3,4)
µ,lat 〉 in the lattice calculation to

check that their magnitude is suitably small such that they can be ignored.

There are a number of orders here to consider, however the main order in which

we will be concerned with is αsp/mb. The normalization of NRQCD-HISQ currents
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have been demonstrated to be robust at zero spatial momentum (see for example

[151]). However it was not yet known (before this work) whether the αsp/mb terms

were negligible.

5.2 Relativistic Normalization of the b → c Temporal

Axial Current

In this small project, we tested to see if a Bc meson containing a HISQ c quark and

an NRQCD b quark obeys a relativistic dispersion relation. The goal of this was to

• Provide a consistency check for the NRQCD-HISQ current truncation and

normalization zA0
0 for the temporal axial current A0.

• If possible, �x zA0
1,2 for the b→ c case by demanding the relativistic dispersion

relation is obeyed.

5.2.1 Calculation Details

To test this process we computed Bc (pseudoscalar meson charged with b and c

valence quarks) 2-point correlation functions on the �ne ensemble (set 2 on table

4.1). The Wilson coe�cients in the NRQCD action, the tadpole improvement factor

u0, and the bare valence quark masses are given in the bottom row of Table 5.1. The

interpolating operators for creating/annihilating the momentum-space Bc meson

take the form

Φ̃α
n(p, t) =

∑

x,x′

e−ip·xψ̄c(x, t)φ
α(x− x′)OnΨb(x

′, t). (5.4)

We chose On to produce the current operators in the NRQCD-HISQ b→ c current

(5.2): O0 = γ0γ5, O1 = −γ0γ5γ · ∇/2mb, O2 = −γ·
←
∇ γ0γ5/2mb. These have the

same quantum numbers as the Bc meson (pseudoscalar with �avor b̄c) so serve as

suitable interpolating operators, but also let us probe the individual pieces of the

NRQCD-HISQ b→ c axial current.

In the NRQCD formalism, we simulate the b at its physical mass. Using physical

mass b quarks cause severe signal degradation (see Sec. 4.2.2). To improve statistics,

we compute a number of correlation functions using a family of smearing functions

φα(x− x′):

φ0(y) = δy0, φr>0(y) = e−|y|/a
r
sm , (5.5)
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where a1
sm = 3a and a2

sm = 6a. The r > 0 smearing functions represent a stationary

c quark with a wavefunction for the c that exponentially decays with the radius

from the b (in practice we implement the reverse - a stationary c surrounded by a

b wavefunction - but this has the same e�ect on the correlation function). Using

these reduces statistical errors in two ways. Firstly, it means we have more sam-

ples. Secondly, the smearing functions increase the overlap with the Bc meson state

〈Ω|Φ̃α
n|Bc〉, which decreases the overlap with excited states, therefore decreasing the

contribution of excited states to the correlation functions. One can then a�ord to

use timeslices closer to the source, therefore increasing statistics further. Note that

in order to use these smearing functions one must �x the gauge of the con�gurations

to Coulomb gauge.

The NRQCD-HISQ correlation functions are then generated using

Cαβnm(p, t) =
∑

x,x′

∑

y,y′

φβ(x− x′)φα(y− y′) (5.6)

〈
Trc

[
g
θp †
c (x′, t;y′, t0)Trs

(
γ5Ω(y′, t0)Ω†(x′, t)γ5OmGb(x, t;y, t0)On

)]〉
.

Trs is a trace over spin and Trc is over color. g
θp
c is a staggered propagator given

momentum twist θp corresponding to a momentum p, and Gb is an NRQCD b prop-

agator. 〈〉 denotes an average over gauge con�gurations. Eq. (5.6) can be arrived

at from 〈Φ̃α
n(p, t0)Φ̃β †

m (p, t)〉, applying the steps given in Sec. 4.1, and converting

the charm proagator to a staggered propagator as in Sec. 4.1.3.

We generated these correlators on 500 con�gurations and 16 choices for t0 evenly

distributed across the temporal extent of the lattice. We obtained correlators at

3x di�erent spatial momenta, ap = 0, 3π(1, 1, 1)/L, 5π(1, 1, 1)/L (L = 32), using

momentum twists θ = 0, 3, 5 in each direction. The resulting correlators are shown

in Fig. 5.1.

These were then �tted to the �t functions

Cαβnm(t)|�t =

Nexp∑

j=0

(
aα,nj aβ,mj f(Ēj , t) + (−1)t/aaα,nj,o a

β,m
j,o f(Ēj,o, t)

)
. (5.7)

See Sec. 4.2.1 for de�nitions of f and Ē. One can recognise that

aα,n0 =
〈Ω|Φ̃α

n|Bc〉√
2EBc

. (5.8)

In the α = 0 case, the matrix elements become 〈Ω|ψ̄cOnΨb|Bc〉. Combining these

as in Eq (5.2) should produce 〈Ω|A0|Bc〉. I will show how these quantities are used

to test the A0 normalisation after a brief detour.
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Figure 5.1: Bc 2-point correlation functions, with the valence charm given momen-

tum twists θ = 0, 3 and 5.

5.2.2 Kinetic Mass

We require a determination of the mass of the meson in our simulation. If we were

using a fully relativistic action, one could simply consider Ē0 (with p = 0) to be the

mass. However, in our case one would expect NRQCD to cause a shift in energy Es

due to the e�ective removal of the rest mass, so

Ē0(p) ≡ Es +
√
p2 +M2

kin. (5.9)

We can deduce Mkin in this case by taking the di�erence of energies at di�erent

momenta δĒ0(p) ≡ Ē0(p)− Ē0(0) and rearranging to �nd

Mkin =
p2 − δĒ2

0(p)

2δĒ0(p)
, (5.10)

which one would expect to be invariant of p. Mkin is referred to as the kinetic mass

of the meson in question.

Using Ē0 results from the �t, we �nd aM θ=3
kin = 2.8394(60), from the θ = 3 point,

and aM θ=5
kin = 2.858(11) from the θ = 5 point. Taking the mean of these we �nd

aMkin = 2.8488(125). (5.11)
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5.2.3 Decay Amplitude Ratios

At leading order in 1/mb and αs, the temporal axial current is recreated using

simply a0,0
0 = 〈Ω|A0|Bc〉/

√
2MBc . Recalling the de�nition of the decay constant for

a pseudoscalar meson: 〈Ω|Aµ|M〉 = pµfM , we see that

a0,0
0 = fBc

√
EBc

2
. (5.12)

Assuming a relativistic dispersion relation E2 = p2 + M2, taking the ratio of a0,0
0

at non-zero and zero momenta results in

a0,0
0 (p)

a0,0
0 (0)

=

√
EBc(p)

MBc

= 1 +
p2

4M2
Bc

+O
(

p4

M4
Bc

)
. (5.13)

This is our probe of the dispersion relation of the Bc meson. We took the

ratio of a0,0
0 �t parameters on the left-hand side, and compare this to the expected

dependence of p2 on the right-hand side. This comparison is shown between the

blue line and the grey dotted line in Fig. 5.2. We have used the kinetic mass (5.11)

for the MBc mass here.
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a
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0 (p)/a

(1)
0 (0)

Figure 5.2: Decay amplitude ratios (colourful points) against the expected relativis-

tic behaviour (grey dotted line and band). Adding the A
(1)
0,lat piece of the current

does not improve the relativistic behaviour of the ratio.
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We gradually add corrections to this ratio by replacing a0,0
0 with

a
(0)
0 (p)

√
2EBc(p) = 〈Ω|A(0)

0,lat|Bc(p)〉 ,

a
(1)
0 (p)

√
2EBc(p) = 〈Ω|(1 + zA0

0 αs)
[
A

(0)
0,lat +A

(1)
0,lat

]
|Bc(p)〉 ,

a
(2)
0 (p)

√
2EBc(p) = 〈Ω|

[
(1 + zA0

0 αs)A
(0)
0,lat + (1 + zA0

1 αs)A
(1)
0,lat

+ zA0
2 αsA

(2)
0,lat

]
|Bc(p)〉 . (5.14)

We have here set the α = 0, n superscripts implicit to make room for the new super-

scripts. The lattice currents A
(n)
0,lat are those de�ned in Eq. (5.2) for the temporal

axial vector case. a
(0)
0 recreates the A0 current to leading order in αs and 1/mb, a

(1)
0

recreates A0 up to order O(α2
s, (ΛQCD/mb)

2, (p/mb)
2, αsΛQCD/mb, αsp/mb), and

a
(2)
0 is up to order O(α2

s, (ΛQCD/mb)
2, (p/mb)

2).

Since the zA0
0 value is immediately avaliable from [108], we can show the result of

taking the ratio a
(1)
0 (p)/a

(1)
0 (0) as the red line in Fig. 5.2. As can be seen here, going

from a
(
00) to a

(1)
0 pushes the ratio in the wrong direction, away from the relativistic

dispersion relation line (the grey dotted line).

We can determine values for
(
zA0

1 − zA0
0

)
and

(
zA0

2 − zA0
0

)
by demanding that

a
(2)
0 (p)/a

(2)
0 (0) = 1+p2/4M2

kin. Then, using the known z
A0
0 values from perturbative

matching we �nd

zA0
1 = −3.746267(44), zA0

2 = −0.000910(36). (5.15)

zA0
1 here is required to be unnaturally large to overcome the suppression of αs and

drag the ratio downwards.

The above analysis shows that the truncation of NRQCD-HISQ temporal-axial

current given in Eq. (5.3) is not su�cient to create a meson obeying a relativistic

dispersion relation. This is perhaps indicative that further orders in the expansion

are in fact important and should be included in lattice calculations.

5.3 B(s) → D(s)`ν Form Factors

I attempted a calculation of the B → D`ν and Bs → Ds`ν form factors, f0,+(q2)

and fs0,+(q2), using the 2+1+1 MILC ensembles, HISQ l,s and c valence quarks, and

an NRQCD valence b quark. This study was similar to previous studies of B → D`ν

form factors [36] and Bs → Ds`ν form factors [152]. The main di�erence between

this and the previous studies was that they used older MILC ensembles that do not

take the charm into account in the sea.
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Set name amval
s0 amval

c0 amval
b0 u0 c1,6 c5 c4 T/a asm/a

0 very coarse 0.0705 0.826 3.297 0.8195 1.36 1.21 1.22 8, 11, 14 0, 2.0, 4.0

1 coarse 0.0541 0.645 2.66 0.8340 1.31 1.16 1.20 9, 12, 15 0, 2.0, 4.0

2 �ne 0.0376 0.450 1.91 0.8525 1.21 1.12 1.16 14, 19, 24 0, 3.425, 6.85

Table 5.1: Parameters used in our calculation. amval
s0 and amval

c0 are the bare masses

of the strange and charm valence quarks, tuned in [153]. amval
b0 is the bare mass

of the valence bottom quark, tuned in [119]. u0 = (Re Tr〈�〉/3)1/4 is the `tadpole

improvement parameter' as used in [119] via a perturbative calculation of the pla-

quette �. {ci} are the coe�cients for the kinetic and chromomagnetic terms in the

NRQCD action (Eq. (3.60)) [154]. {T} is the set of temporal separations between

source (B(s) creation operator) and sink (D(s) annihilation operator). asm are the

radii of the exponential smearing function applied to the B(s) and D(s) creation

operators.

One motivation for this study was to test how far down the q2 range we could

reach with lattice data before the noise in the correlators made the data useless.

Another was to investigate the size and p-dependence on the subleading currents

V
(2,3,4)
µ, lat as one moves away from zero recoil.

This study was not completed on account of two major problems:

• The O (αsp/mb) terms in the vector NRQCD-HISQ current that we must

ignore due to the lack of perturbative normalizations, V
(2)
k and V

(4)
k , turned

out to be signi�cant in magnitude.

• On one ensemble in the Bs → Ds`ν case, there was an anomalous result for

the vector current matrix element extracted from the correlator �ts.

I will give an outline of the calculation here for completeness, but the crucial �ndings

of this section are these two issues.

5.3.1 Lattice Setup

Correlation functions were generated on three MILC ensembles, sets 0, 1 and 2 in

Table 4.1. When using the NRQCD action, one is limited to the coarser end of

the spectrum of ensembles. This is because in the a → 0 limit subleading terms in

δH (eq. (3.60)) and J
(n>0)
µ (eq. (5.2)) diverge, since the 1/mb factors are in fact
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proportional to 1/amb, resulting negative powers of the lattice spacing. However,

NRQCD discretisation e�ects are small relative to other discretizations due to the

lack of the b rest mass, so we can a�ord to use coarser lattices. Also, using coarse

lattices means the project is computationally inexpensive since, for example, Dirac

matrices to be inverted are smaller. The bare parameters used to generate the

correlation functions are shown in table 5.1.

We generated 2-point correlation functions for B(s) and D(s) mesons, and 3-

point correlators between B(s) and D(s) interpolating operators with V
(n)
µ currents

inserted for all µ and n = 0, 1, 2(µ = 0) and n = 0, 1, 2, 3, 4(µ = 1, 2, 3). For the

B(s) operator we use exponential smearing functions (like those introduced in Eq.

(5.5)), smearing radii asm are given in Table 5.1.

The B(s) 2-point correlators, C
αβ
B(s)

(t) were generated using Eq. (5.6), with the

charm propagator replaced with a strange or light propagator, and Om = γ0γ5. We

also computed D(s) 2-point correlators at a number of spatial momenta {p} (given
in Table 5.2), generated by

CαβD(s)
(p, t) =

∑

x,x′

∑

y,y′

φα(x− x′)φβ(y− y′)
〈
Trc[g

θp
c (x, t,y; t0)g†l(s)(x

′, t;y′, t0)]
〉
,

(5.16)

where φα(x) are the smearing functions (Eq. (5.5)), gl(s) are light or strange stag-

gered propagators, and g
θp
c is a charm staggered propagator with momentum twist

θp. Trc is over color.

We generated 3-point correlators for each individual piece of the NRQCD-HISQ

current, and each p, using

Cαβ
V

(n)
µ

(p, t, T ) =
∑

x,y,z

(−1)
∑3
k=1 xk/a φα(x− x′)φβ(z− z′)× (5.17)

〈
Trc

(
g
θp
c (x, t0;y, t)g†l(s)(x, t0; z, T )Trs

[
γ0Ω†(y, t)On,µGb(y, t; z, T )Ω(z, T )γ0

])〉
.

On,µ are de�ned by J
(n)
µ = ψ̄cOn,µΨb, where J

(n)
µ are pieces of the NRQCD-HISQ

vector current (Eq. (5.2)).

The list of twists we used on each ensemble is given in table 5.2. Due to the

signal/noise degradation of theD(s) correlators as one adds more spatial momentum,

our lattice data was limited to the high q2 region.
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Set θ |ap| q2[GeV2]

B → D 0 0, 0.74, 1.47, 2.20, 2.94 0, 0.25, 0.5, 0.75, 1.00 11.8, 11.6, 10.8, 9.4, 7.3

1 0, 1.58, 2.24, 4.53 0, 0.36, 0.51, 1.02 11.8, 10.8, 9.9, 5.0

2 0, 1.76, 2.64 0, 0.30, 0.49 11.8, 10.7, 9.3

Bs → Ds 0 0, 0.74, 1.47, 2.20, 2.94 0, 0.25, 0.5, 0.75, 1.03 11.8, 11.6, 10.9, 9.5, 7.6

1 0, 1.10, 2.20, 3.31, 4.41 0, 0.25, 0.50, 0.75, 1.00 11.8, 11.3, 10.1, 8.1, 5.7

2 0 0 11.8

Table 5.2: Momentum twists (and corresponding momenta and q2 values) given to

the charm propagator on each ensemble.

5.3.2 Correlator Fits

We extracted current matrix elements from the generated correlation functions,

via simultaneous Bayesian �ts as described in Sec. 4.2.1. For the set of 2-point

correlators we use Eq. (5.7) (with n = m = 0), and 3-point correlators are �t to

Cαβ3 (t, T )|�t =

Nexp,Nexp∑

j,k=0

(
a
B(s)

j Jnnjk a
D(s)

k f(EB(s) , t)f(E
D(s)
n , T − t)

+ a
B(s),o

α,j Jonjk a
D(s)

β,k (−1)tf(E
B(s),o
n , t)f(ED(s) , T − t)

+ a
B(s)

α,j J
no
jk a

D(s),o

β,k (−1)T−tf(EB(s) , t)f(EM
′∗,o

n , T − t)

+ a
B(s),o

α,j Joojka
D(s),o

β,k (−1)T f(E
B(s),o
n , t)f(ED(s),o, T − t)

)
. (5.18)

We set Nexp = 5 in each �t. We performed a single simultaneous �t containing each

correlator computed for each ensemble, taking into account correlations between all

time slices of all correlation functions involved in the �t.

We set Gaussian priors for the parameters Jjk, and log-normal priors for most

other parameters. Using log-normal distributions ensures energies EMn and am-

plitudes aMn are positive and forbids them from moving arbitrarily close to zero,

improving the stability of the �t. The exception is the smeared amplitudes aα>0
n ,

which can be zero or negative, so we simply set Gaussian priors for these.

Priors for the ground state energies and amplitudes (oscillating and non-

oscillating) are set via an empirical Bayes approach. Plots of e�ective masses and

amplitudes are inspected to �nd reasonable central values of priors (see Sec. 6.2.2
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for de�nitions of e�ective masses and amplitudes). A generic variance of 10% of

the central value is given in all cases. The typical precision of �t results for these

parameters is of order 0.1%, much more precise than their priors. The log of all

excited state energies are given generic priors log(ΛQCD ± ΛQCD/2), where we set

ΛQCD = 0.5GeV. The log of the excited state (non-smeared) amplitudes are set to

log(0.3 ± 0.2). The smeared excited state amplitudes are given priors of 0.3 ± 0.2.

All 3-point transition parameters Jjk are given priors of 0± 1.

We typically set tcut = 3 for 2- and 3-point correlators in the �t on the �ne

ensemble (set 2) and tcut = 2 on very coarse and coarse (sets 0 and 1). For some

speci�c correlators, a larger tcut is necessary to achieve a good �t (χ2/Ndof < 1),

these higher tcut values are always in the range tcut ∈ [2, 8]. An svd-cut is applied in

each �t, with a speci�c choice of cut determined according to what achieves a good

�t. The svd-cut is typically of the order 10−3.

The current matrix element we require can be found via

〈Ds|V (n)
µ |Bs〉|lat = 2

√
MBsEDsJ

nn
00 . (5.19)

5.3.3 Form Factors

We constructed 'continuum' vector currents 〈D(s)|Vµ|B(s)〉 ≡ 〈Vµ〉 from the lattice

expectation values 〈D(s)|V (n)
µ |B(s)〉|lat according to Eq. (5.3), i.e. only including the

�rst two current terms V
(0)
µ and V

(1)
µ . We also computed V

(2)
0 and V

(2,3,4)
k to assess

their size and the validity of ignoring them, this is adressed in Sec. 5.3.4.

We took the average over the spatial currents, resulting in two distinct cur-

rent matrix elements 〈V0〉 and 〈Vk〉. Then, from the de�nition of pseudoscalar-

pseudoscalar form factors (Eq. (2.24)), we �nd (de�ning MB(s)
≡ M , MD(s)

≡ m,

ED(s)
≡ E, and pD(s)

≡ p)

〈V0〉 = f
(s)
+ (q2)

[
M + E − M2 −m2

q2
(M − E)

]
+ f

(s)
0 (q2)

M2 −m2

q2
(M − E),

(5.20)

〈Vk〉 =
|p|√

3

[
f

(s)
+ (q2)

(
1 +

M2 −m2

q2

)
− f (s)

0 (q2)
M2 −m2

q2

]
. (5.21)

By inverting these relations we deduce f
(s)
0,+(q2) from 〈V0〉,〈Vk〉 at the lattice spacings

of each ensemble.

We aim then to extrapolate these form factors to a = 0 and to the full physical

q2 range. We did not obtain any lattice data at light quark masses smaller than
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ml/ms = 0.2 so cannot extrapolate to the physical light mass. In the Bs → Ds`ν

case, the size of such an e�ect is small (see chapters 6 and 7). In the B → D`ν case,

however, this could result in considerable systematic errors.

We parameterised the functional form of f
(s)
0,+(q2) using the BCL parameterization

[155]. This involves �rst de�ning the map

z(q2) =

√
t+ − q2 −√t+ − t0√
t+ − q2 +

√
t+ − t0

, (5.22)

where t± = (MB(s)
± MD(s)

)2 and we choose t0 = t+(1 −
√

1− t−/t+), and

z(q2) has a very small magnitude throughout the entire q2 range, in our case

|z| < 0.032 ∀ physical q2. f
(s)
+,0(q2) can be expressed as a series expansion in z:

f0,+(q2) =
1

P0,+(q2)

K∑

k=0

a0,+
k z(q2)k. (5.23)

We truncate this at K = 2, adding further terms appear to have no e�ect on the

�t. The factors P (q2) are de�ned by

P0,+(q2) =

(
1− q2

M2
0,+

)
. (5.24)

These are required due to subthreshold poles in the crossed channel of 〈D(s)|Vµ|B(s)〉,
which in our case is a W decay into a B∗c meson. The pole is located where the

W has the correct momentum q2 to create the Bc, hence at q2 = MB∗c . This is

not within the q2 range, but can create curvature in f0,+ that can confound the

expansion in z. P0,+ e�ectively removes this pole from the z expansion.

The discretisation e�ects in our form factors are controlled for by modifying

(5.23):

a0,+
n → a0,+

n × (1 + b0,+n (amval
c0 )2), (5.25)

where b0,+n are new �t parameters. amc → 0 in the continuum limit, and, since the

charm mass is the largest scale involved in our calculation, it serves as a good order

parameter for discretization e�ects. Hence, here we are extrapolating in both z and

to continuum simultaneously. {a0,+
n , b0,+n } are all given Gaussian prior distributions

of 0± 1.

5.3.4 Results

The extrapolation of our lattice data to all q2 and a = 0 is illustrated in Figures

5.3 and 5.4. As can be seen here, statistical errors in the lattice data increase
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exponentially with momentum twist (as q2 decreases). Besides this, the very coarse

data su�ers from large discretization e�ects as the twist is increased, pushing the

results upwards.

0 2 4 6 8 10 12
q2[GeV2]

0.7

0.8

0.9

1.0

1.1

1.2

1.3

fB→D0 a ' 0.09 fm

fB→D+ a ' 0.09 fm

fB→D0 a ' 0.12 fm

fB→D+ a ' 0.12 fm

fB→D0 a ' 0.15 fm

fB→D+ a ' 0.15 fm

Figure 5.3: B → D`ν form factors. The coloured points show lattice data, each color

represents an ensemble. The grey band represents the continuum and kinematically

extrapolated result. The red band shows the kinematically extrapolated result at

a ' 0.15fm.

I now go on to discuss the two issues which led me to abandon this project.

Anomalous Results

In the Bs → Ds`ν case I have not include lattice results from the �ne ensemble in

the q2 and a→ 0 extrapolation. This is because the lattice results for f s0 (q2) on this

ensemble are clearly wrong. We have a priori knowledge of what, for example, the

ballpark of fs0 (q2
max) should be from a couple of sources:

• The result should not vary much more than O(a2) (where a is the lattice

spacing) from the same result on other ensembles.

• The result should not vary much more than O(amval
s0 − amval

l0 ) from the same

number on the same ensemble for the B → D calculation (Chiral symmetry).
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0 2 4 6 8 10 12
q2 [GeV2]

0.7

0.8

0.9

1.0

1.1

1.2

1.3
fBs→Ds

0 (q2), a ' 0.09 fm

fBs→Ds
+ (q2), a ' 0.09 fm

fBs→Ds
0 (q2), a ' 0.12 fm

fBs→Ds
+ (q2), a ' 0.12 fm

fBs→Ds
0 (q2), a ' 0.15 fm

fBs→Ds
+ (q2), a ' 0.15 fm

Figure 5.4: Bs → Ds`ν form factors. The coloured points show lattice data, each

color represents an ensemble. The grey band represents the continuum and kinemat-

ically extrapolated result. The red band shows the kinematically extrapolated result

at a ' 0.15fm. Note that the a ' 0.09fm data is not included in the extrapolation,

since this prevents a good �t from being possible, see Sec. 5.3.4.

However, we �nd the �ts to q2
max data on the �ne ensemble produce a result for

Jnn00 that is much larger than what is expected from these considerations. This is

accompanied by the �ts being very unstable, varying by a number of sigmas when

di�erent combinations of data are included, and di�erent hyperparameters (svd-

cut, tcut, etc) are included. A number of tests have been carried out to �nd out

exactly what is causing this issue, but no compelling evidence has emerged for any

explanation. Fig. 5.5 illustrates the situation.

It is worth keeping in mind that NRQCD results have no continuum limit since

the action and the currents are truncated sums of inverse masses in lattice units,

therefore the truncation error grows like a−n as a → 0. What we are seeing here

may be the result of large 1/(amb) and 1/(amb)
2 corrections to the NRQCD-HISQ

current being ignored.
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Figure 5.5: Lattice results for fs0 (q2
max) against a

2. The grey band shows the result

for fs0 (q2
max) computed in chapter 7 using the Heavy-HISQ approach for comparison.

Clearly the result on the �ne ensemble (the black point), and possibly on the coarse

ensemble (the blue point), contain large unknown systematic errors.

Large Subleading Currents

Another problem that has uncovered itself in the NRQCD calculation is large sub-

leading currents. Namely, the pieces V
(2,4)
k of the spatial vector current. We deter-

mined these currents as part of the calculation in order to assess if they are suitably

small such that they can be ignored. These turned out to have a magnitude ∼ 35%

of the leading order.

In Fig. 5.6, we show the ratios of (matrix elements of) NRQCD-HISQ currents

in the Bs → Ds case. All ratios are between the subleading currents V
(n>0)
µ and

the leading order current V
(0)
µ , in order to show the size of the subleading currents

relative to the leading order. V
(1)
µ is included in our result so we do not need to

worry about its size. V
(2)

0 and V
(3)
k are / 10% of the leading order, given that these

also receive O (αs) suppression, their negligence is relatively harmless.

V
(2,4)
k , however, have considerable magnitude. Neglecting them implies a naive

systematic error of O (35%× αs) ∼ 8%. This would prevent any results from our

calculation from being anywhere near competitive. These two currents are of order

αsp/mb, so their magnitude would likely only increase as we move towards q2 = 0.

It should be noted here that it is possible that the contribution from these cur-
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Figure 5.6: Ratios of (matrix elements of) the subleading NRQCD-HISQ currents

V
(n>0)
µ to the leading order current V

(0)
µ , in the Bs → Ds case.

rents turn out to be smaller than ∼ 8%. This is because individual terms of the

NRQCD-HISQ current mix under renormalization, and can cause large cancellations

(see for example [108]). To calculate the e�ect of this mixing would require a large

perturbative calculation however. Since no calculation has been performed, we are

stuck with the large systematic error implied by the large V
(2,4)
k expectation values.

Since the problematic current pieces are exclusively part of the spatial vector

current, we could remove this problem if we did not rely on the spatial vector

current for extracting the form factors. The next section shows our attempt at such

an alternative approach.

5.3.5 Form Factors from V0 and S

Instead of using 〈V0〉 and 〈Vk〉 to extract f (s)
0,+(q2), one could in principle instead use

the combination 〈V0〉 and 〈S〉, where S is the scalar b → c density. The individual

terms in the scalar NRQCD-HISQ current can be related to the temporal-vector

current by using the property γ0Ψb = Ψb. Hence one can write the scalar NRQCD-
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HISQ current as [151]:

S = (1 + zS0 αs)V
(0)

0 − (1 + zS1 αs)V
(1)

0 + zS2 αsV
(2)

0 (5.26)

+O(α2
s, (ΛQCD/mb)

2, (p/mb)
2),

= (1 + zS0 αs)(V
(0)

0 − V (1)
0 ) (5.27)

+O(α2
s, (ΛQCD/mb)

2, (p/mb)
2, αsΛQCD/mb, αsp/mb, ) .

zS0 can be derived from z
Vµ
0 . Hence we already have numerical results for matrix

elements of the scalar current, via the vector current pieces V
(0,1)

0 . The scalar and

temporal vector currents are related at zero recoil via the PCVC relation

(MB(s)
− ED(s)

)〈V0〉 = δm〈S〉, (5.28)

where δm ≡ (mb − mc). Using this one can relate the scalar current to the form

factors, resulting in a new way to extract form factors via 〈V0〉 and 〈S〉:

f
(s)
0 (q2) =

δm

M2
B(s)
−M2

D(s)

〈S〉, (5.29)

f
(s)
+ (q2) =

1

2MB(s)

(MB(s)
− ED(s)

)δm〈S〉 − q2〈V0〉
p2
D(s)

. (5.30)

Care must be taken in choosing what masses to use in δm. One may want to

use the bare valence charm and bottom masses, however these belong to di�erent

regularization schemes (HISQ and NRQCD), so taking their di�erence is not well

de�ned. The solution is to use instead δm = mval
b0 × (1−mc/mb), where mc/mb is

a regularization-independent quantity computed to be mc/mb = 1/4.51(4) in [115].

Results from adopting this alternative approach (in the B → D case) is shown in

Fig. 5.7. One immediately notices that f+(q2) results are diverging in the |pD| → 0

limit. Why this occurs can be seen by inspecting Eq. (5.30). For f+ to remain

�nite, the di�erence between currents on the numerator must tend to zero at the

same rate as p2
D. Our results for the currents 〈S〉 and 〈V0〉 are not precise enough

to produce the delicate cancellation required to accurately determine f+ in the high

q2 region.

A quick summary of the situation. We have 3 currents, 〈S〉, 〈V0〉, and 〈Vk〉. We

require input from two of these currents in order to determine the form factors.

Large contributions to 〈Vk〉 may be being ignored, so at the moment we do not

consider 〈Vk〉 a 'trustworthy' estimation of the continuum spatial vector current.

Using only 〈S〉 and 〈V0〉 leads to a divergence of f+(q2) as q2 → q2
max, so is also
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Figure 5.7: B → D form factors extracted from 〈V0〉 and 〈S〉. The statistical errors
here are not well under control, a continuum and kinematic extrapolation is not

possible using these form factors.

untenable. In the next section, we show an approach we attempted to �nding new

normalizations of these three currents such that all three can be 'trusted' as good

approximations to the continuum current. One could then in principle use these

trustworthy 〈V0〉 and 〈Vk〉 currents to extract the form factors.
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5.4 Non-Perturbative Renormalization Using Bc → ηc

Data

Here we de�ne non-perturbative normalization constants ZJ for the NRQCD-HISQ

currents via

J = (1 + zJ0 αs)(J
(0) + J (1)) +O(α2

s, (ΛQCD/mb)
2, (p/mb)

2, αsΛQCD/mb, αsp/mb)

≡ ZJ(1 + zJ0 αs)(J
(0) + J (1)),

ZJ = 1 +O(α2
s, (ΛQCD/mb)

2, (p/mb)
2, αsΛQCD/mb, αsp/mb). (5.31)

The ZJ factor compensates for the truncation of the series. One can imagine �xing

ZJ by demanding some property of J . One may be concerned that ZJ is dependent

on the spatial momenta in the current ZJ = ZJ(p), however, we will see below that

this variation is a negligable e�ect.

In this section, we outline an approach used to determine ZS , ZV0 and ZVk .

In this process we use NRQCD data from another HPQCD project of determining

form factors for Bc → ηc`ν decays [6]. A schematic of how this is achieved is

given in �g. 5.8. I thank Brian Colquhoun for supplying correlation functions from

their calculation. The current in this calculation is the same as in the B(s) → D(s)`ν

calculation, so normalizations determined using this data can in principle be applied

to the B(s) → D(s)`ν calculation.

Figure 5.8: A schematic of the chain of steps towards normalizing the scalar, tem-

poral vector and spatial vector NRQCD-HISQ currents. Details given in the next

three sections; 5.4.1, 5.4.2 and 5.4.3.

We used the Bc → ηc`ν data here since

• Bc → ηc correlators have much smaller statistical errors. This is because of

the lack of the s spectator quark, degradation of the signal/noise ratio is less

severe (see Sec. 4.2.2).
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• A heavy-HISQ determination of Bc → ηc form factors was also available from

their project [6]. This comes in useful in our approach to the normalization.

All analysis below is performed using data on the �ne ensemble (set 2). In principle,

it could be repeated for any other ensemble on which correlators for any b → c

transition is available.

5.4.1 ZS

We have avaliable to us lattice results for fBc→ηc0 (q2) ≡ f0(q2) for a number of q2

values spanning the entire q2 range (including q2
max and q

2 = 0) from the NRQCD-

HISQ S current on the �ne ensemble. We also have a determination of fBc also

from NRQCD-HISQ lattice currents on the same ensemble. We denote these �nite-

a lattice results as f̂0(q2), f̂Bc . We also have a continuum-extrapolated heavy-

HISQ result for f0(q2)/fBc , for q
2
max and q2 = 0. This is given in the form of this

ratio since discretization e�ects largely cancel in this ratio improving the continuum

extrapolation (see Chapters 6 and 7). The results are

f0(q2
max)

fBc
= 2.104(36),

f0(0)

fBc
= 1.288(42) . (5.32)

Since f0 ∝ 〈S〉, we can assert that f0 = ZS f̂0, i.e., the continuum f0 contains the

normalization that f̂0 is missing. Similarly for f̂Bc and ZA0 . Hence by demanding

that the NRQCD-HISQ �nite-a results match the continuum heavy-HISQ results,

we can �nd, for example

ZS
ZA0

∣∣∣∣
q2max

=
f0(q2

max)/fBc

f̂0(q2
max)/f̂Bc

= 0.995(15). (5.33)

As a test to see if ZS varies with p, we can compare this result to an analagous

approach at q2 = 0;

ZS
ZA0

∣∣∣∣
q2=0

=
f0(0)/fBc

f̂0(0)/f̂Bc
= 0.962(33). (5.34)

A similar approach cannot be applied for ZV0 or ZVk , since f0 has a complicated

relationship to both 〈V0〉 and 〈Vk〉 that varies with q2, so it is not clear how one

attribute discrepancies between f̂0/f̂Bc and f0/fBc to ZV0 and ZVk .

The comparison of these two ratios at q2
max and q

2 = 0 show that any variation is

small in comparison to statistical errors. We can absorb the variation in p into a sub-

leading term in the scalar current by demanding that ZS/ZA0 |q2max
= ZS/ZA0 |q2=0.
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Rede�ne the scalar current according to:

S = ZS

[
(1 + zS0 αs)(V

(0)
0 − V (1)

0 ) + αsz
S
2 V

(2)
0

]
. (5.35)

We can determine zS2 by demanding that ZS does not vary between q2
max and q

2 = 0.

This is equivilant to the V
(2)

0 term absorbing all of the variation in the normaliza-

tion on p, which one would expect since this current is proportional to the spatial

momentum in the c-quark.

By de�ning f̂2 to be f̂0 but with (1 + αsz
S
0 )(V

(0)
0 − V (1)

0 ) replaced with αsV
(2)

0 ,

we can write:

ZA0

ZS
=

(f̂0 + zS2 f̂2)/f̂Bc
f0/fBc

≡
(
ZA0

ZS

)(0,1)

+ zS2

(
ZA0

ZS

)(2)

. (5.36)

With this further de�nition, and demanding that ZA0/ZS |q2max
= ZA0/ZS |q2=0, we

end up with

zS2 =

(
ZA0
ZS

)(0,1) ∣∣
q2=0

−
(
ZA0
ZS

)(0,1) ∣∣
q2max(

ZA0
ZS

)(2) ∣∣
q2max
−
(
ZA0
ZS

)(2) ∣∣
q2=0

= −1.1(1.5). (5.37)

Now that we are able to include V
(2)

0 in the scalar current, we can consider the scalar

current normalized up to O(α2
s, (ΛQCD/mb)

2, (p/mb)
2, αsΛQCD/mb). We can use

S = (1 + zS0 αs)(V
(0)

0 − V (1)
0 ) + zs2αsV

(2)
0 +O(α2

s, (ΛQCD/mb)
2, (p/mb)

2, αsΛQCD/mb)

(5.38)

(Yes, we have not strictly determined ZS in this case, but we will for the vector

currents). The next steps are essentially to match results using the vector currents

to this newly normalized scalar current, meaning the vector currents will be nor-

malized up to O(α2
s, (ΛQCD/mb)

2, (p/mb)
2 , αsΛQCD/mb), hence we then will have

theoretically accounted for the large subleading pieces in the spatial vector current,

since we have accounted for αsp/mb order terms.

5.4.2 ZV0

We normalized the temporal vector current via its PCVC relation with the now

'correctly' normalized scalar current.

This also has the bene�t of partially removing the f+(q2) divergence as p2
ηc → 0

when extracted from 〈V0〉 and 〈S〉. One can see this by inspecting the expression

for f+(q2) in terms of 〈S〉 and 〈V0〉(Eq. (5.30)). As p2
ηc → 0 the numerator becomes
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proportional to δm〈S〉− (MBc −Mηc)〈V0〉, which vanishes when the PCVC relation

is satis�ed. So one would expect if we renormalize one of the currents so the Ward

identity is satis�ed (at q2
max), this divergence should be removed or at least reduced.
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Figure 5.9: Comparison of form factors from 〈V0〉, 〈S〉 and 〈V0〉, 〈Vk〉, no additional

normalizations. The bands show the resuls of �tting the data to the BCL parameter-

ization (5.23), where coe�cients a0,+
n are �t parameters. These bands are intended

simply to guide the eye.

Hence we should normalize the temporal vector current using the already nor-

malized scalar density. So to satisfy the PCVC, Multiply 〈V0〉 by

ZV0 =
mb −mc

MBc −Mηc

〈S〉
〈V0〉

∣∣∣
q2max

= 1.0661(36). (5.39)

This seems to deal with the f+ divergence. Fig. 5.9 compares form factors deter-

mined using 〈V0〉, 〈S〉, and 〈V0〉, 〈Vk〉, before imposing ZV0 , and Fig. 5.10 shows the

same after 〈V0〉 has been multiplied by ZV0 .

Unfortunately, the same technique does not solve the diverging f+ issue in the

B(s) → D(s) case, the statistics are not as good so the divergence is too severe.

5.4.3 ZVk

We can determine a ZVk by demanding that fV0,S0,+ /f
Vµ
0,+ = 1, with the knowledge

that 〈V0〉, 〈S〉 require no further normalization. This can be done with both f+ and
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Figure 5.10: Comparison of form factors from 〈V0〉, 〈S〉 and 〈V0〉, 〈Vk〉, 〈V0〉 is mut-
liplied by ZV0 given in (5.39). The bands show the resuls of �tting the data to the

BCL parameterization (5.23), where coe�cients a0,+
n are �t parameters.

f0, at any q
2;

ZVk = 1 +
fV0,S+ − fVµ+

R+k〈Vk〉
(5.40)

= 1 +
fV0,S0 − fVµ0

R0k〈Vk〉
, (5.41)

where the R's are some kinematic gunk: R+k = (MBc − Eηc)/2MBcpηc/
√

3,

R0k = R+k − (M2
Bc
−M2

ηc)(MBc − Eηc)/2MBcpηc/q
2
√

3. The results are shown in

Fig. 5.11. The fact that these are not varying by a statistically signi�cant extent

in q2 implies that the spatial vector normalization does not vary strongly in pηc .

Hence, since these are all estimates of the same value, we can average over them to

get

ZVk = 1.070(36). (5.42)

When this normalization is given to 〈Vk〉, the Bc → ηc form factors from the two

methods become consistent, see Fig. 5.12.

One could imagine using these normalizations ZV0 and ZVk in the B(s) → D(s)

calculation. The errors of this normalization are around 4%, which would push the
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Figure 5.11: ZVk from constraining form factors to be the same from 〈V0〉, 〈S〉 and
〈V0〉, 〈Vk〉
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Figure 5.12: Comparison of form factors from 〈V0〉, 〈S〉 and 〈V0〉, 〈Vk〉, with 〈V0〉
normalized with ZV0 and 〈Vk〉 normalized with ZVk . The bands show the resuls of

�tting the data to the BCL parameterization (5.23), where coe�cients a0,+
n are �t

parameters.
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�nal results of the B(s) → D(s) study up to the 5 − 10% range. At present this

level of precision is not competitive in comparison to other calculations of these

quantities.

If one chooses to trust the normalization of the scalar current, this analysis shows

that (on the �ne ensemble) the extra normalization required for the vector currents

beyond what is usually implemented is a large e�ect (ZV0 − 1 ∼ ZVk − 1 ∼ 7%).

This would suggest that the currently used truncation of the NRQCD-HISQ vector

current is missing ∼ 7% from the neglected O (1/mb) terms.

5.5 Conclusion of NRQCD Work

As mentioned in the introduction - the main message of this thesis is that using

NRQCD (namely NRQCD-HISQ currents) to compute form factors for b→ c tran-

sitions, is far from optimal.

We rely here on truncations in many di�erent interlocking series

(1/mb, αs, αs/mb, ...), which may leave out important information. The terms

in the series we do have access to rely on perturbation theory via the matching

factors. Some progress was made to normalize currents non-perturbatively in the

above work, but our results fall short of what would be required to obtain precise

continuum results.

I hope that in reading this chapter you experienced a similar feeling of confusion

and anxiety to what I felt as I carried out this work. It was only after many months of

grappling with the problems of these calculations that we decided to put them aside

and attempt instead the heavy-HISQ approach from scratch. Reading the following

two chapters, both dedicated to successful heavy-HISQ studies, will feel like a warm

bath in comparison to the NRQCD experience. The heavy-HISQ approach is in

contrast very elegant, contains far fewer assumptions, and results in cleaner signals.
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Chapter 6

Bs→ D∗s`ν Axial Form Factor at

Zero Recoil from Heavy-HISQ

This chapter concerns the simpler of our two heavy-HISQ studies, the calculation

of the Bs → D∗s`ν axial form factor at zero recoil, hsA1
(1). We give this quantity

the superscript s to di�erentiate it from the quantity more commonly referred to as

hA1(1), the zero recoil axial form factor for B → D∗`ν decays.

I will brie�y review the de�nition of this form factor (at zero recoil) for ease of

reading. The di�erential decay rate for the B̄0
s → D∗+s `−ν̄` decay is given in the SM

by

dΓ

dw
(B̄0

s → D∗+s `−ν̄`) =
G2
FM

3
D∗s
|η̄EWVcb|2

4π3
(6.1)

× (M2
Bs −M2

D∗s
)
√
w2 − 1χ(w)|FBs→D∗s (w)|2.

where w = vBs · vD∗s , vM = pM/MM is the 4-velocity of an M -meson, and χ(w)

is a known function of w (see for example appendix G of [33]). η̄EW accounts

for electroweak corrections due to diagrams where photons or Zs are exchanged in

addition to a W−, as well as the Coulomb attraction of the �nal-state charged par-

ticles [29�31]. The di�erential decay rate for the B0
s → D∗−s `+ν̄` decay is identical.

The form factor FBs→D∗s (w) is a linear combination of hadronic form factors

that parameterize the vector and axial-vector matrix elements between initial and

�nal state hadrons. At zero recoil (w = 1), the vector matrix element vanishes, the

axial-vector element simpli�es to

〈D∗s(ε)|Aµ|Bs〉 = 2
√
MBsMD∗s h

s
A1

(1)ε∗µ , (6.2)

and FBs→D∗s (w) reduces to

FBs→D∗s (1) = hsA1
(1) . (6.3)

Our goal is to compute hsA1
(1).

All we need to do this is the matrix element 〈D∗s(ε)|Aµ|Bs〉 with both the Bs and

D∗s at rest, with the D∗s polarization ε in the same direction as the axial current.

93
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6.1 Motivation

B → D∗lν decays supply one of the three methods used for precisely determining

the CKM element |Vcb| [38, 42, 156�171]. Measurements of branching fractions are

extrapolated through q2 to the zero recoil point to deduce |hA1(1)Vcb|, since hA1(1)

is the only form factor contributing at zero recoil. Then an SM determination of

hA1(1) (via Lattice QCD [33,38]) can be divided out to infer |Vcb|.
A similar process that could also be used to determine |Vcb|, and test the SM, is

B̄s → D∗s`ν̄`. There is at time of writing no published measurements of this decay,

but it is feasible to measure such a decay at a detector like LHCb. This decay is also

attractive from the Lattice QCD side. The absence of valence light quarks means

lattice results have smaller statistical errors, are less computationally expensive, a

simpler chiral extrapolation to the physical light mass, and negligible �nite volume

e�ects. This makes the B̄s → D∗s`ν̄` both a useful test bed for lattice techniques

(that may be later used to study B̄ → D∗`ν̄` decays), and a key decay for future

|Vcb| determinations and tests of the SM.

Chiral symmetry implies that form factors for decays such as Bs → D∗s and

B → D∗ are insensitive to the mass of the spectator quark, implying that form

factors for these two decays are approximately equal [172]. This was seen in the

recent lattice calculation [33] that found hA1(1)/hsA1
(1) = 1.013(14)stat(17)sys. We

can then expect to learn about B → D∗ by studying Bs → D∗s . We perform a

further test of this claim that B → D∗ ∼ Bs → D∗s , in the context of our formalism,

in this study.

Lattice calculations of the B(s) → D∗(s) form factors at zero recoil have so far

been performed by two collaborations. The Fermilab Lattice collaboration pro-

duced hA1(1) in [38]. HPQCD computed both hA1(1) and hsA1
(1) in [33]. The

RBC/UKQCD [173] and LANL-SWME [174] collaborations are also working to-

wards lattice determinations of these form factors.

The presence of heavy quarks is a large consideration in designing a lattice cal-

culation (as discussed in Sec. 3.3). A b quark introduces discretization e�ects of

size (amb)
n where n is a positive integer dependent on the choice of action. To

avoid such potentially large discretization e�ects, most lattice studies (including all

of those mentioned in the previous paragraph), use some EFT approach for sim-

ulating heavy quarks. The Fermilab Lattice, RBC/UKQCD, and LANL-SWME

calculations all used some variation of the Fermilab action [175�177] to simulate c

and b quarks. The HPQCD calculation used the NRQCD action [95] for b quarks.
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To relate the results from these approaches to full continuum QCD, each of

the above studies requires perturbative matching of lattice currents to continuum

QCD. The matching has only been performed to 1-loop, leading to each having

matching errors as a key uncertainty. The use of NRQCD-HISQ currents in the

HPQCD calculation brings in matching errors of O
(
α2
s, αsΛQCD/mb, (ΛQCD/mb)

2
)
.

It is di�cult to estimate the size of matching errors in lattice NRQCD, so to be

conservative a large matching error was assigned to the result. This error contributes

∼ 80% of the full error budget. The use of the Fermilab action in the Fermilab

Lattice calculation leads to O
(
α2
s

)
errors. They avoid this issue to a large extent by

analysing only ratios of correlation functions, however, the matching still contributes

∼ 30% to the �nal error.

In this chapter, we report details and results of the �rst calculation of the Bs →
D∗s form factor at zero recoil using an approach free of perturbative matching.

Since the Bs → Ds form factor is approximately equal to the B → D form factor,

and our results are non-perturbatively renormalised, this calculation can be seen as

a check of the normalisation of the Fermilab Lattice and HPQCD determinations of

hA1(1) that contributed to |Vcb|excl (see Sec. 2.2.3).
Using the heavy-HISQ approach has the added bene�t of elucidating the depen-

dence of form factors on heavy quark masses, meaning we can test expectations from

Heavy Quark E�ective Theory (HQET). In this study, we produce an estimate of

the HQET low energy constants lV,A,P associated with the Bs → D∗s form factor at

zero recoil.

6.2 Calculation Details

6.2.1 Lattice Setup

We used the MILC gluon �eld con�gurations detailed in Sec. 4.1.1 [7, 8]. We used

sets 2-5 in Table 4.1, i.e., the �ne, �ne-physical, super�ne and ultra�ne ensembles.

Table 6.1 gives the valence quark masses we used in the generation of quark prop-

agators. In three of the four ensembles (�ne,super�ne and ultra�ne), the bare light

mass is set to ml0/ms0 = 0.2. The fact that the ml0 value is unphysically high is

expected to have a small e�ect on hsA1
(1), due to the lack of valence light quarks,

and previous experience of the dependence of hsA1
(1) on ml0 [33]. The small e�ect

due to the unphysical ml0 is quanti�ed by including the �ne-physical ensemble with

physical ml0, and corrected for.
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set name amval
s0 amval

c0 amval
h0 ncfg × nsrc T/a

2 �ne 0.0376 0.45 0.5, 0.65, 0.8 938× 8 14,17,20

3 �ne-physical 0.036 0.433 0.5, 0.8 284× 4 14,17,20

4 super�ne 0.0234 0.274 0.427, 0.525, 0.65, 0.8 250× 8 22,25,28

5 ultra�ne 0.0165 0.194 0.5, 0.65, 0.8 249× 4 31,36,41

Table 6.1: Parameters relevent to our calculation. Columns 3 and 4 give the s and

c valence quark masses, these values were tuned in [139] to reproduce the correct ηs

and ηc masses. We used a number of heavy quark masses to assist the extrapolation

to the physical b mass, given in column 5. Column 6 gives the number of gauge

con�gurations (ncfg) and the number of t0 choices (nsrc) used. Column 7 gives the

temporal separations between Bs source and D
∗
s sink, T/a, of the 3-point correlation

functions computed on each ensemble.

We used a number of di�erent masses for the valence heavy quark. This is in

order to resolve the dependence of hsA1
(1) on the heavy mass so that extrapolation

to mh = mb can be performed. By varying the heavy mass both within ensembles

and between ensembles, we can resolve both the discretization e�ects that grow with

large (amval
h0 . 1) masses and the physical dependence of the continuum form factor

on mh.

A considerable bene�t to using unphysically light heavy quarks is that it reduces

the signal/noise degradation in the correlation functions in comparison to using

the physical b mass (as in e.g. the NRQCD approach). When using NRQCD, the

large noise due to the heavy b-quark necessitated the computation of many correla-

tion functions with di�erent smeared operators in order to boost statistics. This is

not necessary in the heavy-HISQ setting, we used only local creation/annihilation

operators.

As detailed in Sec. 4.1.3, staggered correlation functions are built by a combi-

nation of staggered propagators g(x, y) and staggered phases. In this calculation

we only need local (non-point-split) operators, this is an advantage since point-split

operators lead to correlation functions noisier than local operators.

We computed a number of correlation functions on each ensemble. To generate

these correlators we used random wall sources, and used extended sources for the 3-

point correlators, as described in Sec. 4.1.3. First, we computed 2-point correlation
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functions between zero-momentum eigenstates, objects of the form

CM (t) =〈ΦM (t)Φ†M (0)〉 , (6.4)

ΦM (t) =
∑

x

q̄(x, t)Γq′(x, t), .

where 〈〉 represents a functional integral, q, q′ are valence quark �elds of the �avours
the M meson is charged under, and Γ is the spin-taste structure of M . I set t0 = 0

here for notational simplicity. We computed these for all t values, i.e. 0 ≤ t ≤ Tlat.
We computed correlation functions for a heavy-strange pseudoscalar, Hs, with

spin-taste structure (γ5⊗γ5). In terms of staggered propagators, this takes the form

CHs(t) =
∑

x,y

〈
Trc

[
gh(x, y)g†s(x, y)

]〉
, (6.5)

where gq(x, y) is a staggered propagator for �avour q, and the trace is over color.

Here x0 = 0 and y0 = t. We also computed correlators for a charm-strange vector

meson D∗s , with structure (γµ ⊗ γµ), using

CD∗s (t) =
∑

x,y

(−1)xµ+yµ
〈
Trc

[
gc(x, y)g†s(x, y)

]〉
. (6.6)

In order to non-perturbatively renormalise the axial vector current, we computed

correlation functions for two heavy-charm mesons, denoted Hc and Ĥc respectively.

Hc has spin-taste structure (γ5⊗ γ5) and Ĥc has structure (γ5γ0⊗ γ5γ0). Hc corre-

lators are computed using (6.5) (with gs replaced with gc), while Ĥc correlators are

given by

CĤc(t) =
∑

x,y

(−1)x̄0+ȳ0
〈
Trc

[
gh(x, y)g†c(x, y)

]〉
, (6.7)

where we use the notation z̄µ =
∑

ν 6=µ zν . Hc and Ĥc are refered to as goldstone

and non-goldstone pseudoscalars respectively.

The heavy-mass extrapolation requires masses of ηh mesons, heavy-heavy pseu-

doscalars arti�cially forbidden to annihilate. To quantify mistuning of the charm

and strange quark masses, we also require masses for ηc and ηs mesons, identical to

ηh with h replaced c and s quarks respectively. We computed correlators for each

of these, using a spin-taste (γ5 ⊗ γ5), taking the form of (6.5).

We then generate the 3-point correlation functions

C3(t, T ) =
∑

y

〈ΦD∗s (ε)(T )Aµ(y, t) ΦHs(0)〉, (6.8)

Aµ(y, t) = c̄(y, t)γ5γµh(y, t).
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In terms of the staggered formalism, the Hs source is given structure (γ5 ⊗ γ5), the

D∗s sink is given (γµ ⊗ γµ), and the current insertion (γ5γµ ⊗ γ5γµ). In terms of

staggered propagators this is given by

C3(t, T ) =
∑

x,y,z

(−1)ȳµ+z̄µ
〈
Trc

[
gh(x, y)gc(y, z)g

†
s(x, z)

]〉
, (6.9)

where we �x x0 = 0, y0 = t and z0 = T . We computed these for all t values within

0 ≤ t ≤ T , and 3 T values that vary between ensembles, given in Table 6.1.

In the CD∗s and C3 cases, dependant on a polarization µ, we computed the cases

with µ = x, y, z, and took the average over these.

6.2.2 Correlator Fits

We extracted current matrix elements from the generated correlation functions via

simultaneous Bayesian �ts as described in Sec. 4.2.1. We used �t forms given by Eq.

(4.41) for 2-point and Eq. (5.18) for 3-point correlators. We set Nexp = 5 in each

�t. We performed a single simultaneous �t containing each correlator computed

(Hs, D
∗
s , ηh, ηc, ηs, Hc, Ĥc, and 3-point) for each ensemble. We also marginalized out

the highest energy excited states (the Nexp = 5 states) in the interest of speeding

up the �ts.

The marginalization is implemented in the following way. The expected con-

tribution to correlation functions from the Nexp = 5 state is estimated using the

prior distributions of the associated �t parameters. The contribution is then nu-

merically added to the lattice correlation functions being �t, and the �t function

can be truncated at Nexp = 4.

We set Gaussian priors for the parameters Jjk and log-normal priors for all other

parameters. The prior values we chose are summarized below.

log(ẼM0 ) = log((amq0 + amq′0 + aΛQCD)± 2aΛQCD),

log(ẼM, o
0 ) = log((amq0 + amq′0 + 2aΛQCD)± 2aΛQCD),

log(Ẽ
M (o)
i − ẼM (o)

i−1 ) = log(2aΛQCD ± aΛQCD) , i > 0,

log(ã
M (o)
0 ) = Empirical Bayes,

log(ãMi ) = −1.20(67) , i > 0,

log(ãM o
i ) = −3.0(2.0) , i > 0,

Jjk = 0± 1 except for Jnn00 = 1± 0.6 (6.10)
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Ground state energies EM0 were given priors of (amq0+amq′0+aΛQCD)±2aΛQCD,

wheremq0,q′0 are the masses of the �avours the mesonM is charged under, and ΛQCD

is the con�nement scale, which we set to 0.5GeV. For q = h or c, this corresponds

to the leading order HQET expression for a heavy meson mass. In the ηs case, the

prior becomes approximately 2ams0 + aΛQCD ' aΛQCD, which one would expect.

Ground-state energies of oscillaing states, EM,o
0 , are given priors of (amq0 +amq′0 +

2aΛQCD) ± 2ΛQCD. Excited state energy di�erences, E
M (,o)
i − EM (,o)

i−i , i > 0 are

given prior values 2aΛQCD ± aΛQCD. Priors for ground state amplitudes a
M (,o)
0 ,

are set according to an empirical-Bayes approach, plots of the e�ective amplitudes

of the correlation functions (de�ned in Eq. 6.15 below) are inspected to deduce

reasonable priors. The resulting priors always have a variance at least 10 times that

of the �nal result. The excited state log-amplitudes, log(a
M (,o)
i ),i > 0 are given

priors of −1.20(67) for non-oscillating states, and −3.0(2.0) for oscillating states.

The ground-state non-oscillating to non-oscillating 3-point parameter, Jnn00 is given

a prior of 1± 0.6, and the rest of the 3-point parameters Jnnjk are given 0± 1.

The current matrix element we require to �nd hsA1
(1) is given by

〈D∗s(k̂)|Ak|Hs〉|lat = 2
√
MHsMD∗sJ

nn
00 . (6.11)

We performed a number of tests on the �ts to demonstrate the robustness of the

�ts to various hyperparameter choices. Results are given in Fig. 4.2.1. I will refer to

these tests throughout the remainder of this section. In test #2 we loosened priors

to test stability. We tested the e�ects of changing Nexp, to Nexp = 6 in test #3 and

Nexp = 4 in test #4.

To ensure that truncating the sum at Nexp is a good approximation to the in�nite

sum containing all excited states, we only include data with t ≥ tcut and t ≤ Tlat−tcut
in the 2-point case and t ≤ T − tcut in the 3-point case. We can in principle use a

di�erent tcut for every correlation function included in our �t, so must choose a set

{tccut} (where c labels the correlator).
To ensure the optimal choice for the {tccut} set, we employ the scikit-optimize

python package [178]. The process consists of de�ning a function f with an input of

{tccut} and an output of some loss function f . Then, the minimum of f with respect

to {tccut} is found via a Gaussian process. We used the loss function

f({tccut}) = − logGBF + θ
(
χ2 −Ndof

)
ρ
χ2

Ndof
. (6.12)

GBF is the Gaussian Bayes factor corresponding to the comparison between the

resulting model of the �t (the �t function with parameters set by the �t), and a
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Figure 6.1: Tests of the correlator �ts on the �ne ensemble. The left panel shows

Jnn00 at the heavy mass amval
h0 = 0.5. The errors shown here as statistical, estimated

by taking the second derivative of the best-�t χ2 with respect to the �t parameter in

question. At Ntest = 1 we give the �nal accepted result. Ntest = 2 gives the results

when all priors are broadened by 50%. Ntest = 3 and 4 gives the results of setting

Nexp = 4 and 6 respectively. Ntest = 5, 6 gives the results of setting tcut = 2, 4

respectively for all correlators. Ntest = 7 gives the result without marginalising out

the n = 5 excited state. Ntest = 8 gives the result of moving the SVD cut from 10−3

to 10−2.

random model (the �t function with randomly sampled parameters). The second

term gives a strong punishment to �ts with χ2/Ndof > 1. We set ρ = 105, in order

to make the second term of comparable size of the �rst, which for typical �ts we

attempted had a magnitude of order 104. The output of this process is shown in

Table 6.2. A couple of more naive choices for {tccut} are given in tests #5 & #6.

An appropriate value for the svd cut is found by comparing estimates of eigen-

values of the data's covariance matrix between di�erent bootstrap samples of the

data (see Sec. 2.7 of the CorrFitter documentation [146]). Typically the smallest

eigenvalues are sensitive to taking new bootstrap copies, suggesting they are poorly

estimated. A cut is placed such that any poorly estimated eigenvalues are replaced

with more conservative (larger) values. The resulting svd cut varies between ensem-

bles since it depends on the quality of the dataset, but are always of order 10−3.

For example, in �ts to the �ne ensemble correlators, we set the svd cut to exactly
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set name Hs Ds Hc Ĥc ηq A0

2 �ne 2 2 5 5 3 1

3 �ne-physical 4 4 8 8 3 2

4 super�ne 4 4 6 6 3 1

5 ultra�ne 2 8 4 4 2 1

Table 6.2: tcut values used for each correlator on each ensemble. A0 denotes the

3-point correlators. The rest are for 2-point correlators.

10−3. We tested to see if this had any e�ect by also running the �t with svd cut

10−2 in test #8.

We can perform further sanity checks on the �ts by plotting certain functions of

the 2-point correlators. To obtain useful forms, �rst one can approximately �ush

out the oscillating states from correlators by performing a so-called superaverage,

C(t) → [C(t) + C(t + a)]/2. We perform a doubled and symmetric version of this

operator on correlators to obtain

C(t)→ C̃(t) =
1

4
(C(t− a) + 2C(t) + C(t+ a)). (6.13)

We can check the non-oscillating ground-state energy of the correlator by looking

at the large-t behaviour of

Ee�(t) = log

(
C̃(t)

C̃(t− a)

)
. (6.14)

It is straightforward to show from plugging in the �t form for 2-point corrleators

(Eq. (4.36)) that in the large t (but t < Tlat/2) limit, this should tend towards the

ground-state energy for the correlator. One can also construct a similar function for

the amplitude:

ae�(t) =

√
2C̃(t)eEe�(t)t

coshEe�(t)− 1
. (6.15)

The C̃(t)eEe�(t)t factor would produce the correct amplitude (in the large-t limit)

in the absence of superaveraging, and the other factor corrects for the e�ect of

the superaveraging. These functions, for various relevant correlators on the �ne

ensemble, are plotted in comparison with the full �t results in Fig. 6.2.
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Figure 6.2: E�ective energies and amplitudes for Hs and D
∗
s correlators on the �ne

ensemble. The energies are obtained from Eq. (6.14), and amplitudes from Eq.

(6.15). The grey bands give the results of the full multiexponental �t.

A similar approach can be applied to the 3-point correlators. The ratio

C̃3(t, T )/C̃Hs(t)C̃D∗s (T − t) approaches Jnn00 /a
Hs
0 a

D∗s
0 for t � 0 and t � T . This

is illustrated in Fig. 6.3. From inspecting these �gures for 2- and 3-point sanity

tests, one can reassure themselves that the �ts to the correlators are well behaved.

6.2.3 Normalization of the Axial Current

Conserved and partially conserved currents require no renormalization (see Sec.

2.3.2). However, the staggered conserved axial-vector current is not simply (γ5γµ ⊗
γ5γµ), it is a complicated linear combination of many local and point-split lattice

currents. In this study we used only local axial vector currents, this simpli�es the

lattice calculation but creates the need for our resulting current matrix element to be

multiplied by a matching factor ZA to produce the appropriate continuum current.

We found ZA via a fully non-perturbative method [113,179].
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Figure 6.3: Sanity check for �ts to the 3-point correlation functions. This ratio

should approach Jnn00 for t >> 0 and t << T . The grey bands show the result for

Jnn00 from the full Bayesian simultaneous �t for each amh (here they are all bunched

up so appear as a single band). If the T values were larger, one can envision the

data reaching a plateau at the same height as the grey band.

We leveraged the fact that the staggered local pseudoscalar current (γ5 ⊗ γ5),

multiplied by the sum of masses of quark �avours the current is charged under, is

absolutely normalized. We extract from the 2-point Hc and Ĥc correlators the decay

amplitudes 〈Ω|c̄(γ5⊗γ5)h|Hc〉 ≡ 〈Ω|P |Hc〉 and 〈Ω|c̄(γ0γ5⊗γ0γ5)h|Ĥc〉 = 〈Ω|A0|Ĥc〉
from aHc0 and aĤc0 . Then, the normalization for A0 (common to that of spacial axial

currents Ak) ZA, is �xed by demanding that the partially conserved axial current

relation holds:

(mval
h0 +mval

c0 )〈Ω|P |Hc〉|lat = MĤc
ZA〈Ω|A0|Ĥc〉|lat . (6.16)

The ZA values found on each ensemble and amval
h0 are given in Table 7.3.

There is an ambiguity in which mass to use on the right-hand side of Eq. (6.16),

we here use the non-goldstone mass MĤc
, but one could just as well replace this

with MHc . Using MHc here changes ZA only by discretization e�ects, the e�ect on

ZA this causes never exceeds 0.0015% throughout the ensembles and heavy masses.

The choice between these two de�nitions of ZA has a negligible e�ect on our �nal

result for hsA1
(1).
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Set amval
h ZA Zdisc

2 0.5 1.03178(57) 0.99819

0.65 1.03740(58) 0.99635

0.8 1.04368(56) 0.99305

3 0.5 1.03184(47) 0.99829

0.8 1.04390(39) 0.99315

4 0.427 1.0141(12) 0.99931

0.525 1.0172(12) 0.99859

0.65 1.0214(12) 0.99697

0.8 1.0275(12) 0.99367

5 0.5 1.00896(44) 0.99889

0.65 1.01363(49) 0.99704

0.8 1.01968(55) 0.99375

Table 6.3: Normalization constants applied to the lattice axial vector current in Eq.

(6.18). ZA is found from Eq. (6.16) and Zdisc from Eq. (6.17).

We also remove tree-level mass-dependent discretization e�ects using a normal-

ization constant derived in [108,114]:

Zdisc =

√
C̃hC̃c , (6.17)

C̃q = cosh amq,tree

(
1− 1 + εNaik

2
sinh2 amq,tree

)
,

where εNaik is the Naik parameter in the HISQ action and amq,tree is the tree-level

pole mass in HISQ de�ned in Eq. (3.55). The e�ect of Zdisc is very small, never

exceeding 0.2%. Zdisc values on each ensemble for each amval
h0 are given in Table 7.3.

Combining these normalizations with the lattice current from the 3-point �ts, we

�nd a value for the form factor at a given heavy mass and lattice spacing:

hsA1
(1) =

1

3

3∑

k=0

ZAZdisc〈D∗s(k̂)|Ak|Hs〉|lat
2
√
MHsMD∗s

. (6.18)
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6.2.4 Extrapolation to the Physical Point

We now address the extrapolation of the lattice hsA1
(1) values to continuum and

physical b and l masses. In the process of the extrapolation, we also aim to de-

termine the HQET low energy constants lsV,A,P . This process requires a number of

considerations.

1: Heavy Mass Dependence

Our extrapolation in the mh direction can be guided by HQET. The HQET expres-

sion for hsA1
(1) (where here we consider both h and c to be heavy quarks in the

HQET context) is given by Eq. (2.72) from Sec. 2.4.1:

hsA1
(1) = ηA

(
1− lV

(2mc)2
+

lA
2mcmh

− lP
(2mh)2

)
(6.19)

+O
(

1

mn
cm

m
h

, n+m ≥ 3

)
.

Luke's theorem dictates that this form factor has no O (1/mh,c) corrections. ηA

is an ultraviolet matching factor between HQET and QCD, and contains (weak)

dependence on mh.

2: Quark Mass Proxies

Attention must be paid to what to input for the masses mh,c in the above expression

(6.19). Finding continuum quark masses corresponding to lattice bare masses would

be a considerable task. Even if we took this on, what renormalization scheme should

the masses belong to? In HQET, the masses that de�ne the power counting should

be pole masses [180]. Due to renormalons, the de�nition of a pole mass m also has

an ambiguity of order ΛQCD/m [181].

Because of this, we cannot exactly reproduce the HQET expression for hsA1
(1)

(6.19) in our �t. We instead test a number of proxies for the quark masses. Since

we are not exactly reproducing the HQET expression, our results for lV,A,P are not

exact but rather should be interpreted as ballpark estimations.

One possible approach is the following. The quark masses in Eq. (6.19) could

be related to the meson masses (that we have access to via the correlator �ts) using

HQET. To see this, �rst consider the HQET expansion of a heavy-light meson [182]:

MHs = mh, S + Λ̄S +
µ2
π, S − dH(∗)µ2

G,S

mh, S
+O

(
1

m2
h

)
. (6.20)
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where dH(∗) = 1 for pseudoscalar mesons and −1/3 for vectors. Λ̄S , µπ, S , µG,S are

HQET parameters. q labels the light quark in the meson. As already mentioned,

mh is de�ned in some renormalization scheme S, and since the meson mass MHq is

scheme-independent, the HQET parameters must also take on scheme dependence

to cancel the dependence in mh.

A simple rearrangement of the above (6.20) gives us

mh,S = MHs − Λ̄S −
µ2
π, S − dH(∗)µ2

G,S

MHs − Λ̄S
+O

(
1

m2
h

)
, (6.21)

≡ 1

εh, S
+O

(
1

m2
h

)
.

For two heavy-light mesons, for example MHs ,MD∗s , one can show (recognising

that εh ∼ O(1/mh))

1

mh, Smc, S
= εh, Sεc, S +O

(
1

mn
cm

m
h

, n+m ≥ 3

)
. (6.22)

Since we are aiming to �nd the low energy constants in the context of HQET at

order below O(1/mn
cm

m
h , n+m ≥ 3), we can safely replace the quark masses mc,mh

in (6.19) with ε−1
h/c.

For our calculation, we used HQET parameters calculated in [182] in the

minimal renormalon-subtraction scheme: Λ̄MRS = 0.552(30)GeV , µ2
π,MRS =

0.06(22)GeV2 , µ2
G,MRS = 0.38(1)GeV2. We are free to arbitrarily choose this choice

of scheme, since the resulting ambiguity in the masses, ΛQCD/mh,c, are absorbed

into higher orders in the HQET expansion.

Unfortunately, the quark mass dependence in ηA prevents this approach from

resulting in exactly the correct lV,A,P values. ηA contains ratios mc/mh and logs

of mc/mh, that cannot simply be rede�ned in this way such that ambiguities are

pushed into higher orders of 1/mh,c.

We also implement the �t with more simple proxies for mh,c. We tried replacing

mh,c with MHs,D∗s or Mηh,c/2. We �nd the results of the extrapolation are very

insensitive to the choice of proxy (see Fig. 6.9). Therefore in the end, we take

our �nal �t function using the simplest choice of replacing mh,c with Mηh,c/2. This

means we have not inserted any ambiguity due to renormalization scheme choice.

3: Implementation of ηA

ηA accounts for matching between HQET and QCD, and has been computed to

2-loop: ηA = 0.960(7) [183]. It is dependent on mh,c, so one may worry that, if we
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are going to use this expression for the extrapolation in mh, we must account for

the mh dependence in ηA. However this dependence is weak in the region of mh we

are interested in (mc ≤ mh ≤ mb). This can be seen by examining how the 1-loop

expression for ηA varies with mh [184]:

ηA(mh) = 1− αs
π

(
mh +mc

mh −mc
ln

(
mc

mh

)
+

8

3

)
. (6.23)

Fig. 6.4 shows the variation of ηA throughout this range, the value changes by

around 1.5%. The two-loop correction is an order of magnitude smaller than this

[183].
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Figure 6.4: The variation of the 1-loop expression for ηA (Eq. (6.23)) throughout the

mc ≤ mh ≤ mb range. For mb and mc values we used m
MS
b (mMS

b ) and mMS
c (mMS

c ).

For the coupling constant we used αs(
√
mbmc).

We cannot consistently include ηA in our �t function for the continuum and

heavy mass extrapolation since we do not have access to the pole mh,c masses. We

ran the extrapolation using a number of reasonable approaches to estimating the

ηA behaviour and found that the �nal result was very insensitive to our choice of

approach. We implemented the extrapolation with

• ηA = 1,

• ηA =1-loop expression with mc/mh replaced with Mηc/Mηh ,

• ηA = 1 + ρ log(Mηc/Mηh), where ρ is a �t parameter with prior distribution

0± 1.
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The �nal result was stable upon varying these choices (see Fig. 6.9). The last

bullet point, for testing to see if logarithms of mh can be resolved in the data,

resulted in a ρ consistent with zero and a decrease of the Bayes factor for the �t by

a factor of 25. Clearly, the lattice data cannot resolve logarithms in mh.

We choose ηA = 1 for simplicity. The lV,A,P results however are sensitive to the

ηA implementation, since not properly accounting for the mh dependence in ηA can

lead to that variance in mh being absorbed into lV,A,P . This is another reason to

take our lV,A,P results as estimates rather than determinations.

The �t form we used for the full continuum and heavy mass extrapolation of

hsA1
(1) is

hsA1
(1)|�t = 1−

(
1

Mηc

)2

lV +
2

MηhMηc

lA −
(

1

Mηh

)2

lP

+Ndisc +Nmistuning. (6.24)

Ndisc and Nmistuning are nuisance parameters to account for discretization and

mass mistuning e�ects, de�ned in the following subsections. lV,A,P are taken here

as �t parameters with prior distributions 0± 1GeV2.

4: Discretization E�ects

Discretization e�ects in the data are accounted for by including (following the

methodology of [5]):

Ndisc =

2,2,2∑

i,j,k=0 |j+k 6=0

dijk

(
2ΛQCD

Mηh

)i(amval
h0

π

)2j (
amval

c0

π

)2k

. (6.25)

dijk are �t parameters with prior distributions 0±1. We account here for discretiza-

tion e�ects from the two largest scales in the system; the heavy and charm masses.

All discretization e�ects are of even order by construction of the HISQ action.

We tried including extra terms of size (aΛQCD)2,(amval
s0 )2,(amval

l0 )2, but the data

could not resolve e�ects of that size, so it made no di�erence to the �t. We also

tested the e�ects of increasing the number of terms in each sum (see Fig. 6.9), but

the �nal result remained unchanged.

5: Mass Mistunings

Any possible mistuning of the charm mass is automatically accounted for in HQET

part of the �t function (6.24). To obtain the �nal result we set Mηc to the physical

value given in the PDG [3], hence any charm mistuning is removed.
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The strange and light mistunings are accounted for using a formalism introduced

in [139]. To deal with possible (valence and sea) strange mistuing, we de�ne the

terms δ
(val)
s = m

(val)
s0 −mtuned

s , where mtuned
s is de�ned by

mtuned
s = ms0

(
Mphys
ηs

Mηs

)2

. (6.26)

Mphys
ηs = 0.6885(40)GeV is determined in lattice simulations from the masses of the

pion and kaon [141].

We similarly account for (sea) light quark mistuning by de�ning δl = ml0 −
mtuned
l . We can �nd mtuned

l from mtuned
s , by leveraging the fact that the ratio of

quark masses is regularization independent and was calculated in [114] to be

ms

ml

∣∣∣∣
phys

= 27.18(10) . (6.27)

We set mtuned
l to mtuned

s divided by this ratio.

Chiral perturbation theory dictates that perturbations in quark masses cause

linear contributions to the form factor. Hence the full term we include to account

for mistuning is given by

Nmistuning =
cvals δvals + csδs + 2clδl

10mtuned
s

, (6.28)

where cvals , cs and cs are �t parameters with prior distributions 0± 1. We divide all

terms by mtuned
s to absorb any running of the quark masses in δ

(val)
l,s with the cuto�,

that varies between ensembles. The factor of 10 in the denominator is to bring

this term close in magnitude to the chiral perturbation theory contributions that it

represents. We neglect δ
(val) 2
s,l contributions since these are an order of magnitude

smaller and are not resolved by the data.

6: Negligable E�ects

The �nite volume e�ects in our lattice results are negligible. Since the lightest

valence quarks in our simulation are s quarks, the lightest particles that can arise

from loop diagrams in the decay are Kaons. In appendix F of [33], the HMSχPT

�nite volume e�ect on the �ne-physical ensemble, as a function of the lightest meson

appearing in loops, was found (from the formulas derived in [172]). At the Kaon

mass, the �nite volume e�ect is many orders of magnitude smaller than any of our

other sources of error.
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In our simulation we set mu = md ≡ ml, our results do not account for the

di�erence md − mu. We tested for any possible in�uence this has on our �t, by

moving the mtuned
l value up and down by the PDG value for md−mu [3]. The e�ect

was negligible in comparison to the other sources of error.

Since we take the physical result at Mηh = Mηb , the uncertainty in Mηb will

contribute an uncertainty in the �nal result. We use the PDG result for Mηb [3].

However, b̄−b annihilation and electroweak corrections make this somewhat di�erent

to the appropriate value on the lattice. We estimate the corresponding uncertainty

in Mηb to be no greater than ±10MeV. To see how this changes the result of the

extrapolation, we varied Mηb up and down by 10MeV and studied how our �nal

result for hsA1
(1) changes. The change is less than 10−5, which is negligible in

comparison to our other errors.

6.3 Results

6.3.1 hsA1
(1)

The values extracted from 3-point correlation function �ts for hsA1
(1), along with

quantities required for its extrapolation to the physical point, are given in Tables

6.4 and 6.5.

The results of the extrapolation through heavy mass of hsA1
(1) is depicted in Fig.

6.5. By evaluating our �t form (6.24) at a = 0, Mηh,c = Mphys
ηh,c and δ

(sea)
s,l = 0, we

reach our �nal, fully non-perturbative result for the Bs → D∗s form factor at zero

recoil:

FBs→D∗s (1) = hsA1
(1) = 0.9020(96)stat(90)sys . (6.29)

Adding the statistical and systematic errors in quadrature, we �nd a total frac-

tional error of 1.45%. The error budget for this result is given in Table 6.6. The

continuum/quark mass extrapolation had a goodness of �t of χ2/Ndof = 0.16 (for

Ndof = 12).

We include in Fig. 6.5 a determination from the only other unquenched

lattice calculation of this quantity [33]. They report a value of hsA1
(1) =

0.883(12)stat(28)sys. Our two studies, containing independent systematic uncertain-

ties, are in agreement. Their study used the same gluon ensembles, with HISQ s

and c valence quarks, and an NRQCD b quark. Using NRQCD meant they could

perform their simulation directly at the physical b mass. However, the matching
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Set amval
h hsA1

(1) aMHs aMD∗s

2 0.5 0.9255(20) 0.95972(12) 0.96616(44)

0.65 0.9321(22) 1.12511(16)

0.8 0.9434(24) 1.28128(21)

3 0.5 0.9231(21) 0.95462(12) 0.93976(42)

0.8 0.9402(27) 1.27577(22)

4 0.427 0.9107(46) 0.77453(24) 0.63589(49)

0.525 0.9165(49) 0.88487(31)

0.65 0.9246(65) 1.02008(39)

0.8 0.9394(66) 1.17487(54)

5 0.5 0.9143(51) 0.80245(24) 0.47164(39)

0.65 0.9273(62) 0.96386(33)

0.8 0.9422(72) 1.11787(43)

Table 6.4: Values extracted from correlation function �ts for hsA1
(1), along with

masses of the two mesons on either end of the transition. hsA1
(1) values are found

from Eq. (6.18). Errors are statistical.
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Set amval
h aMHc afHc aMηh aMηc aMηs

2 0.5 1.419515(41) 0.186299(70) 1.471675(38) 1.367014(40) 0.313886(75)

0.65 1.573302(40) 0.197220(77) 1.775155(34)

0.8 1.721226(39) 0.207068(78) 2.064153(30)

3 0.5 1.400034(28) 0.183472(62) 1.470095(25) 1.329291(27) 0.304826(52)

0.8 1.702456(23) 0.203407(45) 2.062957(19)

4 0.427 1.067224(46) 0.126564(70) 1.233585(41) 0.896806(48) 0.207073(96)

0.525 1.172556(46) 0.130182(72) 1.439515(37)

0.65 1.303144(46) 0.133684(75) 1.693895(33)

0.8 1.454205(46) 0.137277(79) 1.987540(30)

5 0.5 1.011660(32) 0.098970(52) 1.342639(65) 0.666586(89) 0.15412(17)

0.65 1.169761(34) 0.100531(60) 1.650180(56)

0.8 1.321647(37) 0.101714(70) 1.945698(48)

Table 6.5: Values extracted from correlation function �ts. fHc is the Hc decay

constant derived from Eq. (4.37).

Source % Fractional Error

Statistics & ZA 1.06

a→ 0 0.73

mh → mb, c-mistuning 0.69

l and s mistuning 0.20

Total 1.45

Table 6.6: Error budget for hsA1
(1). The value for statistics & ZA is given by the

partial standard deviation of hsA1
(1) with respect to the lattice data. The value for

a → 0 is the partial standard deviation of hsA1
(1) with respect to priors of the �t

parameters in Ndisc. Similarly for mh → mb, c−mistuning the value is the partial

standard deviation with respect to priors of lV,A,P , and the mistuning value comes

from priors of parameters in Nmistuning.
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NRQCD[1711.11013]
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Mηc Mηb

Figure 6.5: hsA1
(1) against Mηh (a proxy for the heavy quark mass). The grey band

shows the result of the extrapolation at a = 0 and physical l,s and c masses. Sets

listed in the legend follow the order of sets in Table 6.1. The red point represents a

determination of the same quantity from a previous study using the NRQCD action

for the b [33].

of lattice NRQCD-HISQ currents to continuum QCD causes their dominant error.

Their result contains errors associated with the truncation of the NRQCD-HISQ

current, of sizes O
(
α2
s

)
,O (αsΛQCD/mb) and O

(
(ΛQCD/mb)

2
)
. Adding these cor-

rections in quadrature we �nd a 2.8% error, while their total error is reported as

2.9%. Our result is much more precise since it does not su�er from these large

matching errors.

6.3.2 Implications for B → D∗

Chiral symmetry implies that the Bs → D∗s form factor should be very close to the

equivalent B → D∗ form factor [172]. This was found to be the case in previous

studies (e.g. [33]).

As an additional test of this claim, we obtained lattice data for hA1(1) on the �ne

ensemble, for comparison with the hsA1
(1) data within our formalism. This involved



114 Chapter 6. Bs → D∗s`ν Axial Form Factor at Zero Recoil from Heavy-HISQ

an identical process to that of obtaining hsA1
(1), except with the strange valence

quark replaced with a valence quark of a mass equal to aml0, the sea light quark

mass.

The hA1(1) data is shown in comparison to the hsA1
(1) data in Fig. 6.6. Errors

are statistical. The error on hA1(1) is much larger due to the presence of the valence

light quark. There is no statistically signi�cant di�erence between hA1(1) and hsA1
(1)

here.

3.0 3.5 4.0 4.5
Mηh [GeV]

0.91

0.92

0.93

0.94

0.95

h
(s

)
A

1
(q

2 m
a
x
)[
fi

n
e

]

Bs → D∗s

B → D∗

Figure 6.6: hA1(1) and hsA1
(1) data on the �ne ensemble. Note that on this ensemble

the light quark is not physical, ml/ms = 0.2.

In [33], the ratio between these two quantities was computed - hA1(1)/hsA1
(1) =

1.013(14)stat(17)sys. Multiplying this by our result for hsA1
(1), one �nds a result

consistent with the two previous hA1(1) determinations:

FB→D∗(1) = hA1(1) = 0.914(24). (6.30)

While this result does rely on NRQCD, it in principle su�ers from much smaller

perturbative matching errors. This is because the overall normalization of the axial

vector NRQCD-HISQ current cancels in the ratio hA1(1)/hsA1
(1). Errors due to the

truncation of the NRQCD-HISQ currents in the 1/mb series will remain however.

In Fig. 6.7, we show all current lattice results for hA1(1) and hsA1
(1). In Fig.

6.8, we show lattice data from previous FNAL/MILC and HPQCD studies, along

with their �nal results, and the �nal result of this study, against 'pion mass'. Here
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pion mass refers to the mass of a pion containing quarks with the mass of the spec-

tator quark. Here we can see that the FNAL/MILC lattice data is very �at in the

spectator quark mass, so if they were to extrapolate their data to �nd hsA1
(1), it

would likely be in agreement with our result. Since our result requires no perturba-

tive normalization, while the other two studies do, we can see this agreement as an

important check of the normalization of the previous studies.

0.75 0.80 0.85 0.90 0.95

hsA1
(1) (HISQ,HPQCD)

hsA1
(1) (NRQCD,HPQCD)

hA1
(1) (HPQCD)

hA1
(1) (NRQCD, HPQCD)

hA1
(1) (Fermilab,Fermilab/MILC)

Figure 6.7: h
(s)
A1

(1) from di�erent calculations. Our result is marked

(HISQ,HPQCD). Those marked (NRQCD,HPQCD) are from [33]. The quantity

marked (HPQCD) is the result of multiplying our result for hsA1
(1) with the ratio

hA1(1)/hsA1
(1) computed at [33]. The quantity marked (Fermilab,Fermilab/MILC)

is from [38]. Note that our methodology is very di�erent to that of Fermilab/MILC

in a number of ways, so the comparison between our and their results is a very

robust test.

6.3.3 HQET Low Energy Constants

Our �t of the lattice data to our �t function (Eq. (6.24)) produced the �t parameters

lV,A,P , which as discussed in Sec. 6.2.4 are numerically approximately equal to the
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FNAL/MILC a ' 0.045fm
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FNAL/MILC (final result)

NRQCD (final result)

this work

M 2
π,phys M 2
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Figure 6.8: Lattice data and continuum extrapolated data for three studies of hA1(1)

and hsA1
, against the pion mass. Points labeled FNAL/MILC are from [38], and those

labeled NRQCD are from [33]. The x-axis must be taken with a pinch of salt, the

points at Mπ = Mηs have pions in the sea of smaller masses than Mηs , but we place

them here to signify that the spectator quark has the mass of a strange quark.

low energy HQET constants of the same name. We �nd

lV = 0.71(28)GeV2,

lA = −0.34(32)GeV2, (6.31)

lP = −0.53(34)GeV2.

An estimate from the ISGW model for B → D∗ decays gives [185]

lP ' lV ' 0.39GeV2. (6.32)

These however do not come with any error, preventing a meaningful comparison

between the ISGW model and our results.

6.3.4 Extrapolation Stability

We performed a number of tests of the continuum/heavy mass extrapolation. The

results of each of these tests are given in Fig. 6.9.
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0.82 0.84 0.86 0.88 0.90 0.92
hsA1
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0. Final Result

1. fine removed

2. superfine removed

3. ultrafine removed

4. Highest amhs removed

5. Lowest amhs removed

6. Nnuisance = 3

7. +1/m3
h term

8. ηA = (1 + ρlog(Mηh/Mηc))

9. ηA = η
(1)
A (mc/mh = Mηc/Mηh)

10. A+ 1/mbmc + 1/m2
b

11. εh = 1/MHs

12. εh = 1/mh +O(1/m2
h)

13. Ratio with fHc

Figure 6.9: Results of hsA1
(1) extrapolation tests. Points 1-3 show the �nal result

if data from the �ne, super�ne or ultra�ne ensembles are not used in the �t. Points

4 & 5 points show the result if data at the highest/lowest amval
h0 value on each

ensemble are removed. Point 6, 'Nnuisance = 3' shows the result of truncating each

sum in Ndisc (Eq. (6.25)) at 3 rather than 2. Point 7, '+1/m3
b ' results from adding

an extra term to (6.24) of the form p/M3
ηh

where p is a �t parameter with the same

prior as lsV,A,P . In this case, the Bayes factor falls by a factor of 7, suggesting that

the data does not contain a cubic dependence on the heavy mass. Points 8 & 9 show

the results of the implementations of ηA described in Sec. 6.2.4. ρ is a �t parameter

with prior distribution 0± 1. Including this factor causes the Bayes factor to drop

by a factor of 20, implying that the data cannot resolve logarithms in mh. Point

9 shows the result of using the 1-loop expression for ηA (Eq. (6.23)), with mc/mh

replaced with Mηc/Mηh . Point 10, 'A + 1/mbmc + 1/m2
b ' is the result of replacing

1+ lV /m
2
c in the �t with simply a �t parameter A with prior distribution 1±1. The

fact that this does not a�ect the �t implies that charm mistuning does not strongly

a�ect the extrapolation. Points 11 & 12 show the result of replacing the heavy

mass proxy Mηh/2 with MHs and Eq. (6.21) respectively. Point 13, 'Ratio with

fHc ' is the result of an alternative extrapolation described in Sec. 6.3.4.
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One of the tests requires some explaination, the result of which is given in Fig.

6.9, labelled 'Ratio with fHc '. We performed a continuum/heavy mass extrapola-

tion in the ratio hsA1
(1)/(fHc

√
MHc). fHc is found from �tting the Hc correlation

functions to obtain aHc0 , and using Eq. (4.37). Since we create the Hc mesons with a

local HISQ pseudoscalar current, which is absolutely normalized, no renormalization

of fHc is required here. Details of the extrapolation are given below.

Discretization e�ects cancel to a large extent in this ratio. It however varies

strongly with changing heavy mass. This makes the extrapolation very di�erent

from the extrapolation in hsA1
(1), which has large discretization e�ects but has little

variation in the heavy mass. The two extrapolations have quite di�erent systematics,

so testing their agreement is a stringent test of our formalism.

In order to compare the result of the two extrapolations, we must multiply

hsA1
(1)/(fBc

√
MBc) by fBc

√
MBc . We can use the PDG value for MBc [3]. For

an fBc value, we extrapolate our fHc data to the physical point.

We used a similarly structured �t form for both the hsA1
(1)/(fBc

√
MBc) and fHc

extrapolations. We followed the methodology of [5]. Both extrapolations use a �t

function of the form

�t =A

(
αs(Mηh/2)

αs(Mηc/2)

)6s/25

Mn/2
ηh

2,2,2∑

i,j,k=0

dijk

(
2GeV

Mηh

)i(amval
h0

π

)2j (
amval

c0

π

)2k

×
(
1 +Nmistuning +N c

mistuning

)
. (6.33)

αs(M) is the QCD coupling evaluated at scale M (according to results from [139]

with Nf = 5). s = +1 and n = 0 for hsA1
(1)/(fHc

√
MHc), s = −1 and n = −1

for fHc . The M
n/2
ηh accounts for the leading order dependence of fHc in HQET, and

the αs ratio comes from renormalization group improved matching between QCD

and HQET of fHc . Nmistuning is de�ned in Eq. (6.28). We have introduced a new

mistuning term for the charm:

N c
mistuning = cc

(
Mηc −Mphys

ηc

Mphys
ηc

)
, (6.34)

where Mphys
ηc is taken from the PDG [3], and cc is a �t parameter with prior distri-

bution 0± 1.

A is given prior distribution 0 ± 4GeV3/2 in the fHc case and 0 ± 2GeV−3/2 in

the ratio case. dijk are given priors of 0±2 in all cases except d000 which is set to 1.

The result of the extrapolation of hsA1
(1)/(fHc

√
MHc) at the physical point was

multiplied by our fBcMBc result to obtain a second determination of hsA1
(1). This
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Figure 6.10: hsA1
(1)/(fHc

√
MHc) against Mηh (a proxy for the heavy quark mass).

The grey band shows the result of the extrapolation at a = 0 and physical l,s and

c masses. Sets listed in the legend follow the order of sets in Table 6.1. The black

point shows our �nal result for hsA1
(1) divided by

√
MBc from the PDG [3] and fBc

from our extrapolation of fHc to continuum and physical b mass.

is the result given in Fig. 6.9 labelled 'Ratio with fHc '.

The extrapolation in fHc is shown in Fig. 6.11. We here include the result from

a previous heavy-HISQ determination of fBc on Nf = 2 + 1 MILC ensembles [5].

Our �nal result for this quantity is

fBc = 0.4178(45)GeV . (6.35)

6.3.5 Hs and D∗s Masses

As a further consistency check of our results, we can check if the masses for the

Hs and D∗s mesons, extracted from our correlator �ts, reproduce what we expect

physically.

Fig. 6.12 shows D∗s mass extracted from correlators on each ensemble. Each are

consistent with the experimentally measured D∗s mass (the grey band).

We performed an extrapolation of MHs − Mηh/2 masses to continuum mh =

mb and mh = mc, for comparison with the known value for MBs − Mηb/2 and
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Figure 6.11: fHc against Mηh (a proxy for the heavy quark mass). The grey band

shows the result of the extrapolation at a = 0 and physical l,s and c masses. Sets

listed in the legend follow the order of sets in table 6.1. The red point shows the

result from a previous heavy-HISQ determination of fBc on 2+1 gauge ensembles [5].

MDs −Mηc/2. To perform this extrapolation we use the �t form

(
MHs −

Mηh

2

) ∣∣∣
�t

=

(
+1∑

n=−1

cn

(
Mηh

2GeV

)n)
× (6.36)


1 +

2,2∑

i,j=0

dij

(
amval

h0

π

)2i(
aΛQCD

π

)2j

+Nmistuning


 .

cn are �t parameters. Since the lattice data for MHs −Mηh/2 is close to linear,

priors can be set for c1 and c0 by inspecting the approximate gradient and intercept

of (MHs −Mηh/2) against Mηh . Accordingly c1 is given prior 0.05(5), and c0 is

given 0.5(5). c−1 is given 0 ± 1. dij are given priors 0 ± 1. Nmistuning is de�ned in

Equation (6.28). We tested the e�ect of including O
(
1/M2

ηh

)
and O

(
1/M3

ηh

)
terms,

this does not change the result in any statistically signi�cant way.
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Fig. 6.13 depicts this extrapolation. We �nd

MBs −
Mηb

2
= 0.6588(61)GeV , (6.37)

MDs −
Mηc

2
= 0.4755(37)GeV . (6.38)

As can be seen from Fig. 6.13, both are in agreement with the physical result.
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Figure 6.12: Lattice results forMD∗s−Mηc/2 on each ensemble.The grey band shows

the PDG result [3].

6.4 Conclusions

We have produced a fully non-perturbative determination of hsA1
(1), sometimes

called FBs→Ds(1), using unquenched lattice data from a fully relativistic and highly

improved lattice action, along with an estimation of the low energy constants lV,A,P ,

given in (6.29) and (6.31) respectively. We used gauge ensembles with 3 lattice

spacings, including an ensemble with approximately physical light sea quark masses,

and obtained data corresponding to 12 di�erent heavy quark masses.

This study supplies an independent check of the NRQCD formalism used in

previous HPQCD studies. It is also much more precise, in the case of hsA1
, the total

fractional error has been halved in comparison to the NRQCD determination. The

comparative precision resulting from the heavy-HISQ method suggests that it is well

suited to computing other form factors associated with b-decays.



122 Chapter 6. Bs → D∗s`ν Axial Form Factor at Zero Recoil from Heavy-HISQ

2 3 4 5 6 7 8 9 10
Mηh [GeV]

0.45

0.50

0.55

0.60

0.65

M
H
s
−
M

η h
/2

[G
eV

]
a ' 0.09fm

a ' 0.09fm, amphys
l

a ' 0.06fm

a ' 0.045fm

PDG

Final Result

Mηc Mηb

Figure 6.13: Extrapolation of MHs −Mηh/2 to the physical point.The grey band

shows the result at a = 0 and physical charm, strange and light masses.

This study also clearly demonstrates the power of the heavy-HISQ approach. It

produces a result approximately twice as precise as the NRQCD result and contains

fewer assumptions while being consistent with all other lattice studies of hsA1
(1) and

hA1(1).



Chapter 7

Bs→ Ds`ν Form Factors at All

Physical q2 from Heavy-HISQ

In this chapter, I present the second of our two heavy-HISQ studies, the calculation

of the Bs → Ds`ν form factors fs0 (q2) and f s+(q2) throughout all physical q2, as

de�ned in Sec. 2.2.2. Like for hsA1
(1), I'm giving this quantity the superscript s to

di�erentiate it from the more often referred to form factors for B → D`ν decays.

I brie�y review the de�nition of the form factors here for ease of reading. The

di�erential decay rate for Bs → Ds`ν decays are given in the SM by [3]:

dΓ

dq2
= ηEW

G2
F |Vcb|2

24π3M2
Bs

(
1− m2

`

q2

)2

|pDs | × (7.1)

[(
1 +

m2
`

2q2

)
M2
Bs |pDs |2fs 2

+ (q2) +
3m2

`

8q2
(M2

Bs −M2
Ds)

2fs 2
0 (q2)

]

where m` is the mass of the lepton, ηEW is the electroweak correction [29�31],

q2 = (pBs − pDs)
2 is the momentum transfer, and fs0 (q2), f s+(q2) are the scalar

and vector form factors that parameterize the non-perturbative contribution to the

decay. The allowed range of q2 values if the �nal states are on-shell is

m2
` ≤ q2 ≤ (MBs −MDs)

2. (7.2)

The form factors parameterize matrix elements of the electroweak current between

Bs and Ds states, 〈Ds|(V −A)µ|Bs〉 where Vµ = b̄γµc is the vector component and

Aµ = b̄γ5γµc is the axial vector component. In a pseudoscalar-to-pseudoscalar am-

plitude, only Vµ contributes, since 〈Ds|Aµ|Bs〉 does not satisfy the parity invariance
of QCD. The vector current in terms of form factors is given by

〈Ds|V µ|Bs〉 = fs+(q2)

[
pµBs + pµDs −

M2
Bs
−M2

Ds

q2
qµ

]

+ fs0 (q2)
M2
Bs
−M2

Ds

q2
qµ . (7.3)

123
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Analyticity of this matrix element demands that

fs+(0) = f s0 (0) . (7.4)

Via the PCVC relation;

qµ〈Ds|V µ|Hs〉 = (mh −mc)〈Ds|S|Hs〉 , (7.5)

the form factor fs0 (q2) is also directly related to the matrix element of the scalar

current S = b̄c :

(mb −mc)〈Ds|S|Bs〉 = (M2
Bs −M2

Ds)f
s
0 (q2) . (7.6)

In our calculation we access the form factors by computing matrix elements of the

temporal vector current V0 and the scalar current S. The form factors can be

extracted from this combination using expressions derived from equations (7.3) and

(7.6):

fs0 (q2) =
mb −mc

M2
Bs
−M2

Ds

〈Ds|S|Bs〉, (7.7)

fs+(q2) =
1

2MBs

δM 〈Ds|S|Bs〉 − q2〈Ds|V0|Bs〉
p2
Ds

, (7.8)

( δM = (mb −mc)(MBs − EDs) ).

Our goal is to compute f s0 (q2) and fs+(q2) throughout the range of q2 values

0 ≤ q2 ≤ (MBs −MDs)
2 ≡ q2

max. We extend the range to q2 = 0 in order to take

advantage of the constraint in Eq. (7.4). To achieve this, we compute 〈Ds|S|Hs〉
and 〈Ds|V0|Hs〉 on the lattice, where the Hs meson is at rest and Ds mesons are

given an appropriate array of spatial momenta.

7.1 Motivation

Bs → Ds`ν decays can supply a new method for precisely determining the CKM

element |Vcb|. Determination of |Vcb| in this way requires both a measurement of the

branching fraction and a theoretical determination of the form factors, as explained

in Sec. 2.2.2. To obtain the highest possible precision, data for both the form

factors and branching fractions are required throughout the largest possible range of

momentum transfer. Analogous approaches were already performed using B → D`ν

decays [36,37,42�44,186,187].
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The Bs → Ds`ν decay can also supply a new test of the SM, by comparing the

theoretical and experimental determinations of the ratio RDs , de�ned in Eq. (2.31).

This would be especially illuminating since tension has been found in the intimately

related ratios RD(∗) . The presence or absence of an anomaly in RDs would help to

con�rm or dismiss a new physics explanation for such a family of anomalies.

The Bs → Ds`ν scalar form factor is useful in the experimental extraction of

Bs → µ+µ− branching fractions. Taking a ratio of the Bs → Ds and B → D scalar

form factors gives the so-called fragmentation ratio, the ratio of probabilities of a

b quark hadronizing into a B or Bs meson. In analyses such as [188], Bs → µ+µ−

branching fractions are measured using B+
u → J/ψ(µ+µ−)K+ and B0

d → K+π− as

normalization channels, in this case one requires a value for the fragmentation ratio.

Similar to the B(s) → D∗(s) case, chiral perturbation theory implies that form

factors for Bs → Ds and B → D decays are insensitive to the mass of the spectator

quark, implying that form factors for these two decays are approximately equal [172].

This expectation has been validated by previous lattice calculations, for example

in [189] the ratio of scalar form factors for the two decays at momentum transfer

q2 = M2
π was found to be fs0 (M2

π)/f0(M2
π) = 1.054(50), while [152] found the value

fs0 (M2
π)/f0(M2

π) = 1.006(62). Hence we can expect to learn about B → D form

factors by studying Bs → Ds.

While B → D form factors are currently more phenomenologically useful, Bs →
Ds form factors are more attractive on the lattice QCD side. The absence of valence

light (u or d) quarks means lattice QCD results have smaller statistical errors, are less

computationally expensive, have a more simple chiral extrapolation to the physical

light mass, and negligible �nite volume e�ects. This makes the Bs → Ds`ν decay

a useful test bed for lattice techniques that may be later used to study B → D`ν

decays.

A number of lattice calculations of B(s) → D(s) form factors have already been

performed. The FNAL/MILC collaboration produced B → D form factors on the

Nf = 2 + 1 MILC gluon ensembles using the Fermilab action for b and c valence

quarks and ASQTAD light quarks [37]. They also, in an earler work, computed the

ratio of scalar form factors for Bs → Ds and B → D to obtain the fragmentation

ratio [189]. The HPQCD collaboration computed both B → D and Bs → Ds form

factors on the Nf = 2 + 1 MILC gluon ensembles using the NRQCD action for

the valence b, and the HISQ action for all other quarks [36, 152]. Atoui et. al.

also produced Bs → Ds form factors using maximally twisted Wilson quarks on
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Nf = 2 gluon ensembles [190]. A calculaton of the Bs → Ds form factors by the

RBC/UKQCD collaboration is currently underway [191].

A considerable limitation in the FNAL/MILC and HPQCD studies is the require-

ment for perturbative matching between the lattice e�ective �eld theories and con-

tinuum QCD. FNAL/MILC required a matching that was only available to 1-loop,

resulting in an O(α2
s) systematic error. In the HPQCD calculation, NRQCD-HISQ

currents were truncated, prompting them to report large systematic errors. Besides

the reported errors, as was discussed in Chapter 5, parts of the NRQCD-HISQ vec-

tor current that contribute away from zero recoil have a large magnitude (∼ 30%

of the leading order). The currents used in this study did not take these large sub-

leading currents into account, so the result from this may have large uncontrolled

systematic errors.

Another limitation present in each of the aforementioned studies is that the

lattice data is limited to a region of high q2. To generate lattice points at lower q2,

a large spatial momentum must be given to one of the quarks on the lattice. Due

to signal/noise degradation, adding momentum leads to an exponential increase of

noise in correlation functions. Hence, in cases like B(s) → D(s), lattice data close

to q2 = 0 would be uselessly noisy. Lattice results must be limited to high q2. This

fact necessitates an extrapolation from the data in the high q2 region to the rest of

the physical range. Since there has been some controversy in choices of form factor

extrapolations through q2 recently (for example see [39, 46]), it would be desirable

to instead have lattice data covering the entire q2 range. We can in fact achieve this

with the heavy-HISQ approach. This is because in heavy-HISQ the b quarks are

lighter than physical, this shrinks the q2 range, meaning smaller spatial momenta

are required to cover the range.

7.2 Calculation Details

7.2.1 Lattice Setup

This calculation closely followed the approach employed in our calculation of the

Bs → D∗s axial form factor at zero recoil, given in the last chapter. The main

modi�cations required for this calculation were 1) the form factors are not protected

by Luke's theorem, so a more general �t form for the extrapolation in mh was

required, and 2) to cover the q2 range we gave the charm quark a number of spatial

momentum values via a momentum twist (Sec. 4.1.3) and interpolated the results
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set amval
s0 amval

c0 amval
h0 |apDs | T/a

2 0.0376 0.45 0.5 0, 0.056 14, 17, 20

0.65 0, 0.142, 0.201

0.8 0, 0.227, 0.323

3 0.036 0.433 0.5 0, 0.0279 14, 17, 20

0.8 0, 0.162

4 0.0234 0.274 0.427 0, 0.113, 0.161 22, 25, 28

0.525 0, 0.161, 0.244

0.65 0, 0.244, 0.338

0.8 0, 0.338, 0.438

5 0.0165 0.194 0.5 0, 0.202, 0.281 31, 36, 41

0.65 0, 0.202, 0.281, 0.382

0.8 0, 0.281, 0.382, 0.473

Table 7.1: Simulation details. Columns 2 and 3 give the s and c valence quark

masses, which were tuned in [139]. Column 4 gives the bare heavy quark masses,

we use a number of heavy quark masses to assist the extrapolation to the physical

b mass. Column 5 gives the absolute value of the spatial momentum given to the

Ds meson, using a momentum twist, in lattice units. These values were chosen with

the following rationale: when only 2 are used, these correspond to the q2 = 0 and

q2
max points (except on the �ne-physical ensemble, where we compute at the points

q2
max and q2

max/2). When 3 twists are used, the momenta correspond to q2 = 0,

q2 = q2
max/2, and q

2
max points. When 4 are used, these are points for q2

max, 3q2
max/4,

q2
max/2, q

2
max/4, q

2 = 0. To give the Ds meson these spatial momenta we gave the

charm an appropriate momentum twist in the (1, 1, 1) direction. Column 6 gives

the temporal separations between source and sink, T , of the 3-point correlation

functions computed on each ensemble.

to all q2.

We used the same set of ensembles as in the Bs → D∗s study. In three of the

four ensembles (sets 2, 4 and 5), the bare light mass is set to ml0/ms0 = 0.2. The
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fact that the ml0 value is unphysically high is expected to have a small e�ect on the

form factors, due to the lack of valence light quarks, and previous experience of the

form factor dependence on ml0 [152]. The small e�ect due to the unphysical ml0

is quanti�ed by including a fourth ensemble (set 3) with roughly physical ml0, and

corrected for.

We used a number of di�erent masses for the valence heavy quark amval
h0 . Un-

physically light h-quarks reduce the q2 range, meaning we can obtain lattice data

at both ends of the range while the statistical noise remains under control, unlike

previous studies of these form factors.

As detailed in Sec. 4.1.3, staggered correlation functions are built by a combi-

nation of staggered propagators g(x, y) and staggered phases. In this calculation

we only need local (non-point-split) operators, this is an advantage since point-split

operators lead to correlation functions noisier than those using local operators.

We computed a number of correlation functions on each ensemble. Valence

masses, momenta and other inputs to the calculation are given in Table 7.1. First,

we computed 2-point correlation functions between eigenstates of momentum p,

objects of the form

CM (p, t) =〈Φ̃M (p, t)Φ̃†M (p, 0)〉, (7.9)

Φ̃M (p, t) =
∑

x

e−ip·xq̄(x, t)Γq′(x, t),

where 〈〉 represents a functional integral over all �elds, q, q′ are valence quark �elds

of the �avours the M meson is charged under, and Γ is the spin-taste structure of

M . We computed these for all t values, i.e. 0 ≤ t ≤ Nt.

We computed correlation functions for a heavy-strange pseudoscalar, Hs, with

spin-taste structure (γ5⊗ γ5), at rest. In terms of staggered propagators, this takes

the form

CHs(0, t) =
∑

x,y

〈
Tr
[
gh(x, y)g†s(x, y)

]〉
, (7.10)

where gq(x, y) is a staggered propagator for �avour q, and the trace is over color.

Here x0 = 0 and y0 = t. We also computed correlators for a charm-strange pseu-

doscalar meson Ds, with structure (γµ ⊗ γµ) and momentum p, using

CDs(p, t) =
∑

x,y

〈
Tr
[
g
θp
c (x, y)g†s(x, y)

]〉
, (7.11)

where g
θp
q (x, y) denotes a propagator with momentum twist θp correpsonding to

momentum p. We computed this using a number of twists to produce the range
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of momenta given in Table 7.1. We designed the c propagators to have momentum

ap = |ap|(1, 1, 1), by imposing a twist θ = Nx|ap|/π
√

3 in each spatial direction.

We also computed non-goldstone pseudoscalar heavy-strange mesons at rest, de-

noted Ĥs. These are necessary for extracting the vector current. This has spin-taste

structure (γ0γ5 ⊗ γ0γ5). Ĥs correlators were computed using

CĤs(t) =
∑

x,y

(−1)x̄0+ȳ0
〈
Tr
[
gh(x, y)g†s(x, y)

]〉
, (7.12)

where I use the notation z̄µ =
∑

ν 6=µ zν .

We also computed correlators forHc mesons, heavy-charmed pseudoscalars, using

the same form as the Hs correlator (Eq. (7.10)). This is used to �nd Hc decay

constants, these are useful in our continuum and mh extrapolation.

The heavy-mass extrapolation requires masses of ηh mesons, heavy-heavy pseu-

doscalars arti�cially forbidden to annihilate. To quantify mistuning of the charm

and strange quark masses, we also required masses for ηc and ηs mesons, identical

to ηh with h replaced c and s quarks respectively. We computed correlators for each

of these at rest, using a spin-taste structure (γ5 ⊗ γ5), taking the same form as the

Hs correlator (Eq. (7.10)).

We then computed 3-point correlation functions. We required two sets of such

correlation functions, one with a scalar and one with a temporal vector current

insertion. The �rst takes the form

CS(p, t, T ) =
∑

y

〈Φ̃Ds(p, T )S(y, t) Φ̃Hs(0, 0)〉, (7.13)

S(y, t) = c̄(y, t)h(y, t).

In terms of the staggered formalism, both the Hs source and Ds sink are given

structure (γ5 ⊗ γ5), and the current insertion is given (1 ⊗ 1). We generated these

with staggered propagators using

CS(p, t, T ) =
∑

x,y,z

〈
Tr
[
gh(x, y)g

θp
c (y, z)g†s(x, z)

]〉
, (7.14)

where we �x x0 = 0, y0 = t and z0 = T , and once again the charm propagator is

given the appropriate twist θp. We computed these for all t values within 0 ≤ t ≤ T ,
and 3 T values that vary between ensembles, given in Table 7.1.

To extract the temporal vector current, we required the function

C
pDs
V0

(t, T ) =
∑

y

〈Φ̃Ds(p, T )V0(y, t) Φ̃Ĥs
(0, 0)〉, (7.15)

V0(y, t) = c̄(y, t)γ0h(y, t).
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This was generated using structures (γ0γ5⊗γ0γ5) at the Ĥs source, (γ5⊗γ5) at the

Ds sink, and (γ0 ⊗ γ0) at the current insertion. To achieve this we evaluated

CV0(p, t, T ) =
∑

x,y,z

(−1)x̄0+ȳ0
〈
Tr
[
gh(x, y)g

θp
c (y, z)g†s(x, z)

]〉
. (7.16)

The non-goldstone Ĥs, as opposed to simply Hs, was required here to ensure all

taste structure cancels in the fermion loop.

7.2.2 Analysis of Correlation Functions

We then extracted current matrix elements from the generated correla-

tion functions, via simultaneous Bayesian �ts, as described in Sec. 4.2.1.

We performed a single simultaneous �t containing each correlator computed

(CHs , CĤs , CDs , Cηh , Cηc , Cηs , CHc , CS , CV0) at every mh and every |apDs |, for each
ensemble. This means that our extrapolation to the physical point can take into

account correlations between data at di�erent heavy masses and Ds momenta.

We chose not to perform tuning on {tcut} as was performed in the Bs → D∗s

study. This is because the �ts are much larger than in the Bs → D∗s case (Bs → D∗s

only required data at q2
max), and tuning, which would involve many serial �ts, would

take a prohibitively long time. The tcut's we set are given in table 7.2.

set name Hs Ĥs Ds Hc ηq S V0

2 �ne 2 2 2 2 2 2 2

3 �ne-physical 4 4 4 5 4 2 2

4 super�ne 5 5 5 10 5 4 4

5 ultra�ne 2 2 2 8 2 4 4

Table 7.2: tcut values used for each correlator on each ensemble. S and V0 denote the

3-point correlators with the corresponding current S or V0. The rest are for 2-point

correlators. There is one exception to the values here: on the 3-point correlators on

the ultra�ne ensemble with amval
h0 = 0.8 and q2 = 0, the tcut given here is replaced

with 8,10 and 12 in the T/a = 31, 36, 41 cases respectively. This is due to the

signal/noise degradation from the large Ds momentum causing noise that makes

data close to the Hs source useless to the �t.

These simultaneous �ts are very large. For example, on set 4 (ultra�ne) we
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�t 109 correlation functions to 1080 �t parameters, taking all correlations in the

data into account. Both the stability (e.g. invariance under changes of arbitrary

hyperparameters such as Nexp and tcut) and the speed of such simultaneous �ts take

a hit when there is such a large amount of data and a large number of parameters.

The stability issue is likely due to the size of the covariance matrix for the data,

which must be inverted to estimate χ2. We took two steps toward mitigating this.

The �rst is to impose an svd-cut. The second step we took was to employ a chained-

�tting approach (this was required on the super�ne and ultra�ne data only). We �rst

performed an array of smaller 'individual' �ts, each �tting the correlators relevant

only to one mh and one |apDs | value. In the case of set 4, for example, this results in

11 separate �ts. Then, a full simultaneous �t of all of the correlators was carried out,

with priors set to the results of the smaller �ts. To be conservative we multiplied

these priors by 1 ± 1.5, i.e., the priors end up with over 150% variance. This both

speeds up the full �t and improves the stability of the results. We tested the validity

of the results by varying the additional fractional error between 100% and 200%,

this caused negligible changes in the results. Since we did not need to take this

measure on the �ne ensemble, we performed both a standard simultaneous �t and

chained �ts of this type as a check for the chained �ts. Tests 8, 9 and 10 on Fig.

7.1 show the results of these chained �ts in comparison to the more traditional �t.

The priors for the `traditional' �ts to �ne and �ne-physical (sets 2 and 3) data,

and individual chained super�ne and ultra�ne (sets 4 and 5) �ts, were set up as

follows. We set Gaussian priors for the parameters Jjk, and log-normal priors for

all other parameters. Using log-normal distributions forbids ground state energies

EM0 , excited energy di�erences EMn −EMn−1, and amplitudes aMn from both becoming

negative and moving arbitrarily close to zero, improving the stability of the �t. The

priors we chose are summarized below.

log(ẼM0 ) = Empirical Bayes,

log(ẼM, o
0 ) = µlog(ẼM0 ) ± (σlog(ẼM0 ) × 1.5),

log(Ẽ
M (o)
i − ẼM (o)

i−1 ) = log(2aΛQCD ± aΛQCD) , i > 0,

log(ã
M (o)
0 ) = Empirical Bayes,

log(ãMi ) = −1.9(3.3) , i > 0,

log(ãM o
i ) = −3.0(2.0) , i > 0,

Jjk = 0± 1 except for Jnn00 = 1± 0.5 (7.17)



132 Chapter 7. Bs → Ds`ν Form Factors at All Physical q2 from Heavy-HISQ

1 2 3 4 5 6 7 8 9 10
Ntest

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

J
n
n

00
J

=
S
,

(a
m
h

=
0.

5,
q2 m

a
x
)

+1.15

1 2 3 4 5 6 7 8 9 10
Ntest

1.114

1.116

1.118

1.120

1.122

J
n
n

00
J

=
S

(a
m
h

=
0.

8,
q2 m

a
x
)

1 2 3 4 5 6 7 8 9 10
Ntest

1.038

1.040

1.042

1.044

1.046

1.048

1.050

J
n
n

00
J

=
S

(a
m
h

=
0.

8,
q2

=
0)

1 2 3 4 5 6 7 8 9 10
Ntest

0.984

0.986

0.988

0.990

0.992

0.994

J
n
n

00
J

=
V

0
,

(a
m
h

=
0.

5,
q2 m

a
x
)

1 2 3 4 5 6 7 8 9 10
Ntest

0.988

0.990

0.992

0.994

0.996

0.998

1.000

1.002

J
n
n

00
J

=
V

0
(a
m
h

=
0.

8,
q2 m

a
x
)

1 2 3 4 5 6 7 8 9 10
Ntest

0.920

0.925

0.930

0.935
J
n
n

00
J

=
V

0
(a
m
h

=
0.

8,
q2

=
0)

Figure 7.1: Tests on the correlator �ts on the �ne ensemble. Ntest = 1 gives the

�nal accepted result. Ntest = 2 and 3 gives the results of setting Nexp = 4 and

6 respectively. Ntest = 4 gives the results when all priors are given a standard

deviation one and a half times the size of the �nal �t. Ntest = 5 gives the result of

setting tcut = 4 rather than 2 for all correlators. Ntest = 6 gives the result without

marginalising out the n = 5 excited state. Ntest = 7 gives the result of moving

the svd cut from 10−3 to 10−2. Ntest = 8, 9, 10 gives the result of using a chained

�t described above with priors for the full correlated �t given additional fractional

errors of 100%, 150% and 200% respectively.
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Priors for ground state energies log(EM0 ) and amplitudes log(aM0 ) are set accord-

ing to an empirical-Bayes approach, plots of e�ective energies and amplitudes of the

correlation functions are inspected to deduce reasonable priors. The ground-state

oscillating parameters log(aM,o
0 ), log(EM,o

0 ), are given the same priors as the non-

oscillating states, with errors in�ated by 50%. The resulting priors always have a

standard deviation of at least 10 times that of the �nal result. The log of oscillating

and non-oscillating excited state energies, log(E
M,(o)
i −EM,(0)

i−1 ), i > 0 are given prior

values of log(2ΛQCD±ΛQCD). We set ΛQCD = 0.5GeV. The excited state amplitudes

log(aMi ),i > 0 are given priors of −1.9±3.3 for non-oscillating states, and −3.0±2.0

for oscillating states. The ground-state non-oscillating to non-oscillating 3-point

parameter, Jnn00 is given a prior of 1 ± 0.5, and the rest of the 3-point parameters

Jnnjk are given 0± 1.

The current matrix elements we require can be extracted from the �t parameters

via

〈Ds|J |Hs〉|lat = 2
√
MHsEDsJ

nn
00 . (7.18)

7.2.3 Vector Current Renormalization

In HISQ, the local scalar current (1⊗1) (multiplied by the mass di�erence of �avours

it is charged under) requires no renormalization due to its connection to the partially

conserved vector current through the PCVC relation. This is not the case for the

local temporal vector current (γ0 ⊗ γ0). The partially conserved vector current is

a complicated linear combination of many local and point-split lattice currents. In

this calculation we use only the local part of the vector current, this improves the

statistics of our results but creates the need for the resulting current matrix element

to be multiplied by a matching factor ZV to produce the appropriate continuum

current. We found ZV via a fully non-perturbative method [192].

When both meson states in the matrix elements are at rest (the zero recoil point),

the scalar and local vector matrix elements are related via the PCVC relation:

(MHs −MDs)ZV 〈Ds|V0|Ĥs〉|lat(q2
max) = (mval

h0 −mval
c0 )〈Ds|S|Hs〉|lat(q2

max). (7.19)

ZV can be extracted from this relation since the matrix elements are already com-

puted as part of the calculation. Our calculation is self-renormalizing, in the sense

that the normalization can be found at no extra computational cost. The ZV values

found on each ensemble and amval
h0 are given in Table 7.3.
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Figure 7.2: Superaveraged e�ective energies (given by Eq. (6.14)) and amplitudes

(given by Eq. (6.15)) for a selection of 2-point correlators on the �ne ensemble. The

grey bands show the corresponding results for these quantities from the simultaneous

Bayesian �ts. These plots supply a further check of our correlator �ts - results of

the Bayesian �ts are in good agreement with the e�ective energies and amplitudes.

We also removed tree-level mass-dependent discretization e�ects using a normal-

ization constant Zdisc de�ned in Eq. (6.17).

Combining these normalizations with the lattice current from the correlation

function �ts, we found values for the form factors at a given heavy mass, lattice

spacing, and q2:

fs0 (q2) =
mval
h0 −mval

c0

M2
Hs
−M2

Ds

Zdisc〈Ds|S|Hs〉|lat(q2)

fs+(q2) =
Zdisc
2MHs

× (7.20)

δM 〈Ds|S|Bs〉|lat(q2)− q2ZV 〈Ds|V0|Bs〉|lat(q2)

p2
Ds

.

I have here explicitly denoted the dependence of the matrix elements on q2 as a
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Figure 7.3: C̃3(t, T )/C̃Hs(t)C̃Ds(T − t), which should plateau at Jnn00 , in the �ne

ensemble for the J = S and J = V0 cases. The grey bands show the corresponding

results for these quantities from the simultaneous Bayesian �ts. Unfortunately, in

the V0 case the oscillating component dominates the correlation function, preventing

any plateau from being visible.

reminder that the matrix elements have q2 dependence via the Ds momentum.

7.2.4 Extrapolation to the Physical Point

I will now address the extrapolation of the fs0 (q2) and fs+(q2) values to continuum,

physical quark masses and arbitrary q2. We took two complementary approaches to

the extrapolation.

One we refer to as the ratio approach, in which one extrapolates the quantity

Rs0,+(q2) ≡
fs0,+(q2)

fHc
√
MHc

. (7.21)

to the physical point. Discretisation e�ects appear to cancel to a large extent in

this ratio, resulting in a better controlled continuum extrapolation. The value at

the physical point is then multiplied by fBc
√
MBc to isolate the form factors, where

we �nd fBc via a separate extrapolation (detailed in Sec. 6.3.4), and take the PDG

value for MBc [3]. While this approach improves the continuum extrapolation, it

has the downside of introducing errors from scale-setting on account of Rs0,+(q2)

being dimensionful quantities (as opposed to fs0,+(q2) which are dimensionless).
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Set amval
h ZV Zdisc

2 0.5 1.0151(32) 0.99819

0.65 1.0240(37) 0.99635

0.8 1.0368(49) 0.99305

3 0.5 1.0134(24) 0.99829

0.8 1.0348(29) 0.99315

4 0.427 1.0027(25) 0.99931

0.525 1.0059(29) 0.99859

0.65 1.0108(37) 0.99697

0.8 1.0197(49) 0.99367

5 0.5 1.0037(40) 0.99889

0.65 1.0087(46) 0.99704

0.8 1.0160(53) 0.99375

Table 7.3: Normalization constants applied to the lattice axial vector current in

(7.20). ZV is found from (7.19) and Zdisc from (6.17).
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In the other method, that we refer to as the direct approach, one simply ex-

trapolates the form factors to the physical point. The form factors by themselves

have larger discretisation e�ects than Rs0,+(q2), but since f s0,+ are dimensionless, the

results are completely insensitive to scale-setting uncertainty.

We use identical �t functions for both approaches. In the below discussion, we

use the notation F s0,+(q2) to denote either fs0,+(q2) or Rs0,+(q2), depending on the

approach being applied.

Kinematic Behaviour

Our �t form for the extrapolation is a modi�ed version of the Bourrely-Caprini-

Lellouch (BCL) parameterization for pseudoscalar→pseudoscalar form factors [193]:

F s0 (q2)|�t =
1

1− q2

M2
H0
c

N−1∑

n=0

a0
nz

n(q2), (7.22)

F s+(q2)|�t =
1

1− q2

M2
H∗c

N−1∑

n=0

a+
n

(
zn(q2)− n

N
(−1)n−NzN (q2)

)
.

The functon z(q2) maps q2 to a small region inside the unit circle on the complex

plane, de�ned by

z(q2) =

√
t+ − q2 −√t+ − t0√
t+ − q2 +

√
t+ − t0

, (7.23)

where t+ = (MHs + MDs)
2, and we chose t0 to be t0 = 0. This t0 choice means

that at q2 = 0 the �t functions simplify to F s0,+(0) = a0,+
0 . Throughout the physical

range of q2, z is restricted to the range 0 < z < 0.06, resulting in a fast converging

series in powers of z. We truncate at N = 3, adding further orders of zn does not

a�ect the results of the �t.

The factors in front of the sums in the BCL parameterization account for sub-

threshold poles in the form factors due to the production of on-shell Hc0 and H∗c

states in the crossed channel of the semileptonic decay.

To estimate MHc0 , the scalar heavy-charm meson mass, at each of the heavy

masses we used, we leveraged the fact that the splitting ∆0 = MHc0 −MHc is due

to an orbital excitation and therefore independent of the heavy quark mass. This

has been calculated in [194] to be ∆0 = 0.429(13)GeV. Combined with an Hc mass

from our correlators, we can construct the Hc0 mass: MHc0 = MHc + ∆0. We did
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not take the error on ∆0 into account in the �t since the precise position of the pole

has a small e�ect on the �t results.

To estimateMH∗c , the vector heavy-charm mass, we use the fact that the splitting

MH∗c −MHc vanishes in the in�nite heavy mass limit. MH∗c then takes the approxi-

mate formMH∗c 'MHc +O (1/mh). To reproduce this behaviour we use the ansatz

MH∗c = MHc + x/Mηh , and �x x at the physical point to �nd x = 0.508GeV2. To

do this we used the result MB∗c −MBc = 54(3)MeV from [194].

Heavy Mass and Discretisation E�ects

To account for variation in heavy mass and discretisation e�ects in a general way,

we gave the following form to each of the a0,+
n coe�cients:

a0,+
n =

(
1 + ρ0,+

n log

(
Mηc

Mηh

))
×

2,2,2∑

i,j,k=0

d0,+
ijkn

(
2ΛQCD

Mηh

)i(amval
h0

π

)2j (
aEDs
π

)2k

×
(

1 +N 0,+
mistuning,n

)
. (7.24)

To understand this form, focus �rst on the sum. Powers of (2ΛQCD/Mηh) give an

HQET inspired way of quantifying the variation in the results due to the changing

heavy mass. Mηh varies strongly and monotonically with the heavy quark mass, so

acts as a suitable proxy. ΛQCD is the con�nement scale, which we set to 0.5GeV.

The two scales expected to be the largest sources of discretisation e�ects are the

heavy mass amval
h0 , and the energy in the Ds meson, aEDs , especially when it is

given a large spatial momentum. Adding further, smaller scales, like aΛQCD, had

no e�ect on the results.

The coe�cients d0,+
ijkn are �t parameters given prior distributions of 0± 2. In the

ratio case, these carry mass dimension GeV−3/2, hence this prior corresponds to a

prior of 0± (2ΛQCD)−3/2.

To account for any required matching between HQET and QCD, we included a

log term in front of the sum. ρ0,+
n are �t parameters with prior distribution 0± 1.

The fact that fs+(0) = fs0 (0) (⇒ a+
0 = a0

0) is a very powerful constraint within

the heavy-HISQ approach. Since this must be true at all mh, this translates to

constraints in the �t parameters: d+
i000 = d0

i000 ∀ i and ρ+
0 = ρ0

0. We imposed these

constraints in the �t, which serve to stablize the extrapolation in the heavy mass

direction.
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Mass Mistunings

We dealt with possible mistuning in the c, s and l masses in the same way as in the

Bs → D∗s study. We included the terms N 0,+
mistuning,n in each a0,+

n coe�cient, given

by

Nmistuning,n =
cvals,nδ

val
s + cs,nδs + 2cl,nδl

10mtuned
s

+ c0,+
c,n

(
Mηc −Mphys

ηc

Mphys
ηc

)
, (7.25)

where c0,+
l,n , c

0,+
s and c0,+

ci are �t parameters with prior distributions 0± 1. δ
(val)
s,l are

de�ned in Sec. 6.2.4 and mtuned
s is de�ned in Eq. (6.26).

All higher order contributions, like δ
(val) 2
s,l or (Mηc −Mphys

ηc )2 are too small to be

resolved by our lattice data, so are not included in the �t.

Negligible E�ects

Finite volume e�ects are negligible in our calculation, we do not include any as-

sociated error. Finite volume corrections to the B → D`ν form factors in chiral

perturbation theory were calculated in [172]. They found the B → D`ν form factor

at zero recoil, with a lattice size of L = 2.5fm, and pion mass equal to or greater than

physical, never exceeded 10−4. There is no reason to believe changing the spectator

quark from light to strange, and moving away from zero recoil, will increase this

e�ect.

In our simulation we set mu = md ≡ ml, this means our results do not account

for isospin breaking. By moving themtuned
l value up and down by the PDG value for

md−mu, we tested for any signs of isospin breaking having an e�ect on the results.

The resulting e�ect was negligible in comparison to all other sources of error.

Since we take the physical result at Mηh = Mηb , the uncertainty in Mηb will

contribute an uncertainty in the �nal result. We used the PDG result for Mηb [3].

However, b̄−b annihilation and electroweak corrections make this somewhat di�erent

to the appropriate value on the lattice. We estimated the corresponding uncertainty

in Mηb to be no greater than ±10MeV. To see how this changes the result of the

extrapolation, we varied Mηb up and down by 10MeV and studied how our result

at f0(q2
max) changes. The change is never greater than 10−4, which is negligible in

comparison to the other errors.



140 Chapter 7. Bs → Ds`ν Form Factors at All Physical q2 from Heavy-HISQ

7.3 Results

Tables 7.9 and 7.10 in Sec. 7.6 give numerical values for the form factors, the ratios

Rs0,+(q2), and parameters extracted from the correlation function �ts required for

the extrapolations to the physical point.

I will �rst show results from the ratio method, then the direct method. In both

cases, we performed a simpler �t at zero recoil �rst, then a larger �t taking into

account all data throughout q2. In each case, our results are statistics dominated.

The results from the two methods are in good agreement.

7.3.1 Ratio Method

Zero Recoil
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Figure 7.4: Rs0(q2
max) = f s0 (q2

max)/(fHc
√
MHc) against Mηh (a proxy for the heavy

quark mass). The grey band shows the result of the extrapolation at a = 0 and

physical l,s and c masses. Sets listed in the legend follow the order of sets in table

4.1.

We performed an isolated extrapolation of Rs0(q2
max) to the physical point. To

do this we used a simpli�ed �t form for Rs0(q2
max) consisting of the right hand side
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of (7.24),with the index n discarded. We �nd

Rs0(q2
max) =

fs0 (q2
max)

fBc
√
MBc

= 0.843(18)GeV−3/2 . (7.26)

The extrapolation against Mηh is illustrated in Fig. 7.4. As can be seen here, data

for this ratio has a very weak dependence on the lattice spacing. The error budget

for this result is given in Table 7.4.

Source % Fractional Error

Scale Setting 1.35

Statistics 1.07

a→ 0 0.16

mh → mb, 0.87

mistuning 0.72

Total 2.16

Table 7.4: Error budget for Rs0(q2
max). The value for scale setting is given by the

partial standard deviation of Rs0(q2
max) with respect to w0 and w0/a. The value

for statistics is given by the partial standard deviation of Rs0(q2
max) with respect to

the lattice data (with scale setting error subtracted in quadrature). The value for

a → 0 is the partial standard deviation of Rs0(q2
max) with respect to priors of the

�t parameters d0
0jk for i + j 6= 0. Similarly for mh → mb, the value is the partial

standard deviation with respect to priors of d0
ijk for k 6= 0. The mistuning value

comes from priors of parameters in Nmistuning.

We performed a number of tests on this zero recoil extrapolation to test the

stability of our �t form, results are given in Fig. 7.5.

Non-zero Recoil

Fig. 7.6 shows the result of the full extrapolation ofRs0,+(q2) throughout the q2 range

described in Sec. 7.2.4. As the heavy mass increases, the q2 range, 0 < (MHs−MDs)
2

expands.

To isolate the form factors, the resulting functions Rs0,+(q2) were multiplied by
√
MBc (using the PDG value) and fBc from our determination detailed in Sec. 6.3.4.
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Figure 7.5: Results of tests of the Rs0(q2
max) extrapolation. The top three blue

points show Rs0(q2
max) at continuum and physical quark mass, if data from the �ne,

super�ne or ultra�ne ensembles are not used in the �t. The fourth and �fth blue

points show the result if data at the highest/lowest amval
h0 value on each ensemble

are removed. The point labelled Nfit = 3 is the result of extending the sum in

(7.24) such that it truncates at 3 rather than 2 in each of the i, j, k directions. The

point labelled +log(Mηh/Mηc)
2 represents the result of adding a ρ2, nlog(Mηh/Mηc)

2

term in the �rst set of brackets in (7.24), where ρ2, n are new �t parameters with

the same prior distributions as ρn. Similarly +log(Mηh/Mηc)/Mηh shows the result

of adding this term multiplied by ρ2, n. The lowest point shows the result of our

direct extrapolation of fs0 (q2
max) to the physical point, divided by the PDG value for

√
MBc [3] and the result of our extrapolation of fBc to the physical point detailed

in Sec. 6.3.4.

The resulting form factors are shown in Fig. 7.12, against the form factors found

via the direct method.
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Figure 7.6: Rs0,+(q2) = fs0,+(q2)/(fHc
√
MHc) against q

2. The grey band shows the

result of the extrapolation at a = 0 and physical quark masses. Sets listed in the

legend follow the order of sets in table 4.1.

7.3.2 Direct Method

Zero Recoil

We performed an isolated extrapolation of fs0 (q2
max) to the physical point. Once

again, this was performed using a �t function for fs0 (q2
max) consisting of the right

hand side of Eq. (7.24) with the index n discarded. We �nd

fs0 (q2
max) = 0.899(13). (7.27)

The extrapolation againstMηh is shown in Fig. 7.7. The error budget for this result

is given in Table 7.5.

We include in Fig. 7.7 a previous lattice determination of this quantity [152],

shown as a red triangle. Our two studies, containing largely independent systematic

uncertainties, are in agreement. The previous study used the Nf = 2 + 1 MILC

gluon ensembles, with HISQ s and c valence quarks, and an NRQCD b quark.

Using NRQCD meant they could perform their simulation directly at the physical

b mass. However, the matching of lattice NRQCD to continuum QCD causes their
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Figure 7.7: fs0 (q2
max) against Mηh (a proxy for the heavy quark mass). The grey

band shows the result of the extrapolation at a = 0 and physical quark masses. We

also include the result from a previous lattice calculation, which used the NRQCD

discretisation for the b quark [152]. Sets listed in the legend follow the order of sets

in Table 4.1.

Source % Fractional Error

Statistics 1.04

mh → mb, 0.75

a→ 0 0.27

mistuning 0.40

Total 1.42

Table 7.5: Error budget for fs0 (q2
max) found via the direct method. These values are

determined in the same way as for Rs0(q2
max), described in the caption of Table 7.4.

No scale setting error is listed since this is less than 0.01% on account of fs0 (q2
max)

being dimensionless.
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dominant error.

As when using the ratio method, we performed a number of tests on this extrap-

olation at zero recoil, and present results in Fig. 7.8.

Non-Zero Recoil

Fig. 7.9 shows the result of the full extrapolation of the ratio throughout the q2

range described in Sec. 7.2.4.

Fig. 7.10 shows the resulting form factors from the direct approach. In Fig. 7.11

we give an associated error budget for these throughout q2. Statistical errors in fs+

grow in the q2 → q2
max region due to the '�ne tuning' e�ect discussed in Sec. 5.3.5.

The e�ect is not as severe as in the NRQCD case since the lattice data we obtain

for fs+(q2) is much further away from the q2
max point.

We take the results from the direct method as our �nal result, and supply the

ratio method results as a consistency test, since the product of the direct method is

more precise. Fig. 7.12 shows the form factors resulting from the two methods on

top of each other. As one can see from this plot, the results are in good agreement

for all physical q2 values.

In Figure 7.13, we show our �nal results (direct approach) against lattice form

factors determined from the NRQCD calculation mentioned in Sec. 7.3.2 [152]. Our

results are in excellent agreement with the NRQCD calculation, and are more precise

for both fs0 (q2) and fs+(q2) throughout all q2.
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Figure 7.8: Results of tests of the fs0 (q2
max) extrapolation. The top three blue points

show fs0 (q2
max) at continuum and physical quark mass, if data from the �ne, super�ne

or ultra�ne ensembles are not used in the �t. The fourth and �fth blue points show

the result if data at the highest/lowest amval
h0 value on each ensemble are removed.

The point labelled Nfit = 3 is the result of extending the sum in (7.24) such that

it truncates at 3 rather than 2 in each of the i, j, k directions. The point labelled

+log(Mηh/Mηc)
2 represents the result of adding a ρ2log(Mηh/Mηc)

2 term in the

�rst set of brackets in (7.24), where ρ2, n are new �t parameters with the same prior

distributions as ρn. Similarly, the point labelled + log(Mηc/Mηh)/Mηh gives the

result of adding this term multiplied by ρ2, n. The lowest point shows the result

from the extrapolation of Rs0(q2
max), multiplied by the PDG value for

√
MBc [3] and

the result of our extrapolation of fBc to the physical point detailed Sec. 6.3.4.
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Figure 7.9: fs0,+(q2) against q2. The grey band shows the result of the extrapolation

at a = 0 and physical quark masses. Sets listed in the legend follow the order of

sets in Table 4.1.
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Figure 7.10: Final result for fs0,+(q2) against q2 at the physical point .
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Figure 7.11: Error budget for fs0,+(q2) against q2 . Values are determined via ap-

proach explained in the caption of Table 7.4.
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Figure 7.12: Results for fs0,+(q2) against q2 at the physical point, from both the

ratio method and the direct method.



7.3. Results 149

0 2 4 6 8 10 12
q2[GeV2]

0.6

0.7

0.8

0.9

1.0

1.1

1.2
NRQCD [1703.09728]

this work

f s+(q2)

f s0 (q2)

Figure 7.13: Our �nal result for fs0,+(q2) against form factors calculated from a

previous study using the NRQCD action for the b quark [152]. The darker shaded

region of the NRQCD band shows where lattice data was avaliable in that study,

the rest of the band shows the result of an extrapolation in q2 using the BCL

parameterization.



150 Chapter 7. Bs → Ds`ν Form Factors at All Physical q2 from Heavy-HISQ

7.3.3 Unitarity Test

Unitarity and crossing symmetry impose bounds on the coe�cients of the BCL

parameterization of fs0,+(q2), {an} [195, 196]. As another consistency test, we show

here that the coe�cients found in our �t satisfy these bounds.

To obtain bounds on the BCL coe�cients, one must relate them to those of a

di�erent parameterization, that of Boyd, Grinstein and Lebed (BGL) [48]:

f s(q2) =
1

B(z)φ(z)

N∑

n≥0

bnz
n. (7.28)

B(z) is known as the Blashke factor:

B(z) =
z − z∗
1− zz∗

, (7.29)

where z∗ = z(M2
B0
c
) for fs0 , or z(M

2
B∗c

) for fs+. φ(z) is the outer function:

φ(z) = M2−s
Bs

22+p√κnf
[
MDs

MBs

(1 + z)

]s−3/2

×
[

(1− z)
(

1 +
MDs

MBs

)
+ 2

√
MDs

MBs

(1 + z)

]−s−p
. (7.30)

In the fs0 case, κ = 12πM2
Bs
χA, p = 1, s = 3. In the fs+ case, κ = 6πM2

Bs
χV ,

p = 3, s = 2. The quantities χV,A are the once-subtracted dispersion relations at

q2 = 0 for vector and axial b → c currents respectively, computed in [48] to be

χV = 5.7× 10−3/m2
b and χA = 9.6× 10−3/m2

b .

The BGL coe�cients, {bn}, obey the unitarity constaint

∞∑

m=0

|bm|2 ≤ 1 (7.31)

by construction of the parameterization. To see how this applies to the BCL coef-

�cients {an}, one must relate them to {bm} by equating the two parameterizations

to �nd

M∑

m=0

bmz
m = ψ(z)

N∑

n=0

anz
n, (7.32)

where ψ(z) is given by

ψ(z) =
M2

pole

4(t+ − t0)
φ(z)

(1− z)2(1− z∗)2

(1− zz∗)2
, (7.33)
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whereMpole = MB0
c
in the fs0 case andMB∗c in the fs+ case. Expanding ψ(z) around

z = 0, comparing coe�cients of z in (7.32), and imposing the constraint (7.31), we

arrive at a constraint for the BCL coe�cients

B ≡
L,L∑

j,k=0

Bjkajak ≤ 1 , (7.34)

Bjk =

∞∑

n=0

ηnηn+|j−k| . (7.35)

where {ηn} are the taylor coe�cients of ψ(z).

ψ(z) is bounded on the closed disk |z| < 1, so its Taylor coe�cients are rapidly

decreasing. We computed values for Bjk by truncating the sum in its de�nition

(7.35) at 100. These values are given in Table 7.6. With these Bjk values, and the

an coe�cients at the physical point from our �t (via the direct method), we �nd

B0 = 0.0008(15) ,

B+ = 0.0204(66) .

These comfortably satisfy the unitarity bound. Additionally, as discussed in [197],

the leading contributions to B0,+ are of order (ΛQCD/mb)
3 ' 10−3 in HQET. This

expectation is approximately ful�lled by our result.

B00 B01 B02

fs0 0.00186 -0.000258 -0.000703

fs+ 0.00179 -0.000367 0.00108

Table 7.6: Numerical values for Bjk appearing in the unitarity bound for BCL

coe�cients, de�ned in (7.35), for the f s0 and fs+ cases. The rest of the elements can

be obtained from these using the properties Bj(j+k) = B0k and Bjk = Bkj .

7.3.4 RDs

Using our calculated form factors fs0,+(q2), we can produce a new prediction for the

quantity

RDs =
B(Bs → Dsτντ )

B(Bs → Ds`νl)
, (7.36)
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where l = e or µ (the ambiguity between e and µ is negligable in comparison to

the current precision on RDs). As mentioned in the introduction, the analagous

quantities RD and RD∗ are in tension between SM prediction and experimental

measurement. There is, at time of writing, no published measurement of RDs ,

providing an opportunity for lattice QCD to give a clear prediction of the value of

RDs expected by the SM.

Armed with form factors from a lattice QCD calculation, one can immediately

produce an RDs determination by taking the ratio of SM branching fractions (7.2)

between the l = τ and l = µ, e cases. |Vcb| and ηEW cancel in the ratio.

A lattice prediction has already been made in [152] of RDs |SM = 0.301(6). We

here report a new prediction:

RDs |SM = 0.2985(43)stat(27)sys. (7.37)

To arrive at this prediction we averaged over the l = e and l = µ cases. We give an

error budget for this result in terms of errors from our lattice calculation in table

7.7. As a check we also compute RDs using form factors from resulting from the

ratio method to�nd RDs |SM = 0.2999(58).

Source % Fractional Error

Statistics 1.27

Kinematic Interpolation 0.85

mh → mb, 0.74

a→ 0 0.06

Quark Mass Mistuning 0.02

Total 1.70

Table 7.7: Error budget for RDs |SM. Values are determined via approach explained

in the caption of Table 7.4.

7.4 Conclusions

We have produced a fully non-perturbative lattice QCD prediction of the scalar and

vector form factors for the Bs → Ds`ν decay throughout the entire q2 range (Fig.
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7.10, see Sec. 7.5 to reconstruct), and a value for RDs (Eq. (7.37)). Our results

are statistics dominated. In this calculation we used correlation functions from 3

lattice spacings, including an ensemble with an approximately physical light quark

mass, and learned the b-mass dependence of the form factors by obtaining data at

12 di�erent heavy quark masses.

Our results supply an independent check on the NRQCD formalism for computing

pseudoscalar→pseudoscalar form factors. Our results validate the q2-extrapolation

from high q2 lattice data used in the NRQCD case since our formalism produced

lattice data throughout all q2. We have also shown that the systematic error assigned

to the NRQCD results to account for perturbative matching and truncation of the

1/m series in the NRQCD-HISQ current is su�cient. Our results are however more

precise and do not rely on the assumptions implicit in the NRQCD formalism.

Our calculation has shown that a heavy-HISQ determination of the B → D`ν

form factors is very plausible. Such a calculation could use an essentially identical

process as given here, with the strange valence quark simply replaced with a light

one. Perhaps correlation functions from additional ensembles with smaller light

quark masses would be necessary to resolve the dependence of the form factors on

the light mass. Also, more statistics would likely be necessary, since the presence of

a light valence quark increases the noise in the lattice data, and statistics is already

the dominant uncertainty in this calculation.

7.5 Reconstructing Form Factors

This section gives the necessary information to reproduce the functional form of the

form factors through q2 reproduced in this work. We here express the form factors

in terms of the BCL parameterization [193]:

fs0 (q2) =
1

1− q2

M2
B0
c

2∑

n=0

a0
nz

n(q2), (7.38)

fs+(q2) =
1

1− q2

M2
B∗c

2∑

n=0

a+
n

(
zn(q2)− n

3
(−1)n−3z3(q2)

)
,

where the function z(q2) is de�ned by de�ned by

z(q2) =

√
t+ − q2 −√t+√
t+ − q2 +

√
t+
, (7.39)
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and t+ = (MBs + MDs)
2 (one should take the PDG 2018 values for these masses).

For the position of the poles, one can use MB0
c

= 6.70390(80)GeV and MB∗c =

6.28030(80)GeV. The coe�cients a0,+
n found from our �t, along with their covariance,

is given in table 7.8.

a0
0 a0

1 a0
2 a+

0 a+
1 a+

2

0.66097 -0.26421 -0.26158 0.66097 -3.17196 0.10935

0.00016 0.00217 0.00125 0.00016 0.00014 0.00001

0.06838 0.18373 0.00217 0.01578 -0.00031

3.47982 0.00125 0.18432 -0.00606

0.00016 0.00014 0.00001

0.27937 0.09825

4.06414

Table 7.8: Our results for z-coe�cients in the BCL parameterization (7.38). The

�rst row gives mean values, and the rest of the table gives the covarance matrix

associated with these parameters.

7.6 Numerical Values for Lattice Results

In this section we give two tables, consisting of all numerical results for form factors,

ratios Rs0,+(q2), masses, energies and decay constants required for the extrapolations

performed to the physical point. Table 7.9 gives results results relevant to all q2

values, while 7.10 gives results that vary over q2.
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Chapter 8

Conclusions

In this work, we produced the �rst published results of applying the heavy-HISQ ap-

proach to semileptonic form factors. We found a new determination of hsA1
(1), twice

as accurate as the previous result and containing considerably fewer assumptions -

FBs→D∗s (1) = hsA1
(1) = 0.9020(96)stat(90)sys . (8.1)

Future experimental data may be combined with this result to produce a new de-

termination of |Vcb|.
We found Bs → Dslν form factors using heavy-HISQ, also improving on the

precision in comparison to previous lattice results. For the �rst time, we were able

to obtain lattice data spanning the entire q2 range, due to the properties of the

heavy-HISQ method. From these form factors, we found

RDs |SM = 0.2985(43)stat(27)sys. (8.2)

which can be combined with future experimental data to provide a new test of the

Standard Model, namely a new probe into the possibility of lepton �avour violation.

Besides the successes from the heavy-HISQ approach, I have discovered some

problems with using NRQCD-HISQ currents to compute semileptonic b→ c transi-

tions on the lattice. Namely, it was discovered that the expansion of NRQCD-HISQ

currents do not converge very fast. O (1/mb) and possibly O
(
1/m2

b

)
terms are im-

portant for the dispersion relation of heavy-light mesons. So-called negligible pieces

of the spacial vector current have large magnitudes:

V
(2)
k ∼ V (4)

k ∼ 0.35× V (0)
k . (8.3)

I attempted some approaches to non-perturbatively renormalizing the NRQCD-

HISQ currents in order to account for these issues, with limited success.

Heavy-HISQ calculations are more computationally costly than their equivalent

calculations using NRQCD for the b. Taking into account the need for �ner lattices

and multiple data with di�erent mh values, heavy-HISQ costs something of the
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order of 20 times more than NRQCD. However, the cost in human time of NRQCD,

via perturbative matching calculations and larger and less stable correlator �ts, is

clearly larger than for heavy-HISQ. Also, heavy-HISQ does not contain assumptions

of negligible subleading terms in the relativistic expansion or validity of perturbation

theory via the matching.

The dominant uncertainty in our heavy-HISQ results are statistical. Future cal-

culations with this approach must increase the statistics of lattice data to improve

on the results presented here. This means gaining data on more gauge con�gura-

tions, and with more choices of source timeslice t0. This will simply require more

computational resources to achieve.

These two resuls from heavy-HISQ are in strong agreement with all other re-

cent lattice determinations of these form factors and the analogous B → D∗`ν and

B → D`ν form factors. Other lattice determinations use very di�erent methodolo-

gies to the work presented here, compare for example our hsA1
(1) calculation to the

Fermilab/MILC calculation of hA1(1). That calculation used di�erent gauge ensem-

bles (Nf = 2 + 1 MILC), a di�erent action for the b and c quarks (Fermilab action),

a di�erent approach to analyzing correlation functions (double-ratio approach), a

di�erent normalization of currents (perturbative normalization), and di�erent con-

tinuum and light mass extrapolation. The combination of consistent results from

independent studies makes the overall contribution of lattice QCD to b → c form

factors extremely robust.

Further contributions from lattice QCD are necessary in b→ c transitions. The

current precision on |Vcb| is limited in roughly equal part by theoretical and experi-

mental errors, so more precision on b → c form factors is needed to more precisely

determine |Vcb|, and understand the source of the tension in its exclusive/inclusive

determinations. The SM predictions of R(D
(∗)
(s)) are currently much more precise

than the experimental measurements, however more independent SM calculations

of these ratios are necessary to ensure no errors are being underestimated.
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