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FOREWORD

The work discussed in this thesis aimed to investigate the

interstellar polarization law [p^^/Pmax = exP^“ ^ An2(^max/^)J and

the behaviour of its characteristic parameters, K and X , in bothmax
simple and complex cloud situations, i.e. for stars exhibiting rota

tion of polarization position angle, 0(X).

As the law is difficult to deal with analytically, the work is

here mainly based on numerical investigations.

Chapter 1 contains a general review of starlight polarization 

including intrinsic linear and interstellar linear and circular forms 

but the main theme concentrates on interstellar linear polarization.

In Chapter 2 existing data have been refitted to the interstellar 

polarization law using the method of the least squares.

In Chapter 3 a numerical investigation has been made of the effect

that noisy data have on deduced parameters such as K and XJ r max

Chapter 4 contains a brief review of data for stars showing 0(X)

with discussions of the different cloud models, especially Martin's

Two-Cloud model.

In Chapter 5 numerical investigations are presented of the Two- 

Cloud model with analysis of the results for different configurations 

of the two clouds. A general summary is placed at the end of the 

thesis.



CHAPTER 1

HISTORICAL REVIEW OF INTERSTELLAR POLARIZATION

1.1 Introduction

1.2 Interstellar Polarization

1.3 Wavelength Dependence of Interstellar Polarization

1.4 Intrinsic Polarization



1.1 Introduction

The study of the polarization of starlight is a relatively new 

facet to astrophysics. The fact that starlight can be polarized in 

general was discovered independently and simultaneously in 1948 by 

Hall (1949) and Hiltner (1949a). At the time of the announcement of 

the discovery, although the investigation was related to polarization 

engendered within stellar atmospheres (intrinsic effects), it was im

mediately apparent that the polarization was produced in the inter

stellar medium by the passage of the light through dust clouds. Since 

then observational polarization studies have become more diverse with 

later discoveries related to intrinsic effects within stellar atmo

spheres which triggered off the original research. However, knowledge 

of interstellar polarization here is still important so that its con

tamination can be subtracted, allowing proper modelling of the intrin

sic effects.

It can be fairly stated that much of our knowledge of the proper

ties of interstellar dust grains and their distribution in the galaxy 

comes from polarization measurements in association with spectrophoto- 

metric data. The first measurements of polarization involved the 

linear form but more recently, with improved techniques, circular 

polarization is now included in the study.

The theme of this thesis will concentrate on two aspects of 

interstellar polarization, viz,

(i) The general form of the wavelength dependence,

(ii) The behaviour of the form in complex cloud situations.

Under (i) we shall investigate the way in which the deduced para

meters describing the wavelength dependence may be affected by noisy 

data and under (ii) we shall look at the behaviour of the wavelength



dependence of polarization in the two-dust-clouds situation, i.e. in 

circumstances where dispersion of the position angle is evident.

1.2 Interstellar Polarization

Prior to the discovery of interstellar effects there had been a 

few specialised stellar polarimetric investigations; a noteworthy 

example is Babcock's (1947) investigations of stellar magnetic fields 

through the Zeeman effect and its associated polarization. A great 

impetus occurred through the theoretical work of Chandrasekhar (1946) 

on radiative transfer. His analysis predicted that for early-type 

stars, in which the electron scattering is the source of opacity, 12 

percent of the light emanating from a given point at the stellar limb 

might be plane polarized, with the electric vector parallel to the 

limb. This polarization might be detected in a binary situation when 

the early-type component is occulted by the late-type companion.

The investigations carried out independently by Hall (1949) and 

Hiltner (1949a) were directed to look for the effect predicted by 

Chandrasekhar, but instead their investigations led to the discovery 

that the light of the majority of distant stars is generally partially 

plane polarized; the degree of polarization is well correlated with 

distance modulus and interstellar absorption lines Dr bands so indica

ting an interstellar origin. These studies introduced a new means of 

investigating the interstellar medium.

Large numbers of stars, mainly 0 and B type, have now been obser

ved for this effect (see for example Hiltner (1951a, 1954a, d, 1956)). 

From such measurements the galactic structure dependence of polariza

tion can be investigated. All the data show that the amount of pola

rization decreases rapidly with increasing galactic latitude. The 

galactic longitude dependence of polarization for stars further than



several hundred parsecs may be represented by a double sine wave with 

minima at galactic longitudes 50° and 230° (Hall and Serkowski (1963)), 

which are approximately the directions of galactic spiral arms as 

determined by Morgan, Whitford and Code (1953). More recently all the 

available data on the interstellar linear polarization have been com

piled by Mathewson and Ford (1970). More than 7000 stars are included 

in both northern and southern hemispheres, with the direction and mag

nitude of the polarization plotted on a map with galactic co-ordinates 

as shown in Fig. 1.1. This work and its developments still remains 

paramount, for example in searching for regions with systematic pola

rization alignment or the variation of the degree of alignment with 

galactic longitude. A well defined region with the degree of alignment 

parallel to the galactic plane is found at about 130° longitude which 

is interpreted as due to looking across a spiral arm. On the other 

hand the random alignment seen near 80° longitude has been interpreted 

as due to viewing along the magnetic lines of force in a spiral arm 

but Verschuur (1974) suggests that this random alignment is due to a 

local disturbance associated with the Cygnus X-l source.

1.3 Wavelength Dependence of Interstellar Polarization

Investigations to see whether there is any wavelength dependence 

of interstellar polarization, p(X), commenced in the late 1950's when 

Behr (1959a) made observations of seven stars using three bands at 

wavelengths XX 3710, 4300 and 5160. He found that for all the observed 

stars, except a Cyg, the polarization in the ultraviolet is slightly 

smaller than in the blue and for some stars the polarization in the 

yellow is smaller than in the blue while for others it was larger. The 

polarization variability for the star y Cas was also observed by Behr 

(1959b) which is direct evidence for intrinsic polarization (an aspect 

which will be considered later in this chapter). By extending the
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wavelength coverage, Gehrels (1960) obtained a remarkable curve for 

p(A) from an average of eight stars; the curve had a flat maximum 

near X = 6.500 A, decreasing sharply towards longer and gradually 

towards shorter wavelengths as shown in Fig. 1.2. (N.B. p is plotted

against 1/X).

Subsequent to the discovery of p(X), it had been realised that 

under certain conditions one should find a dependence of the position 

angle of the polarization on wavelength (see Serkowski (1962) and 

Treanor (1963)). Treanor's prediction was: "If the existence of a

colour dependence of polarization on particle size is accepted, 

physical situations will undoubtedly arise in which this will entail 

also a colour-orientation dependence. The most easily envisaged case 

is one in which starlight passes through two successive clouds with 

different orientation of the dust particles relative to the line of 

sight and different mean projected particle size." The evidence 

associated with this prediction was first detected by Gehrels and 

Silvester (1965). More detailed discussions on this effect are 

deferred to Chapter 4.

As a continuation of the study, the wavelength dependence theme 

was extended by Coyne and Gehrels (1966) through a survey of eighteen 

stars over a broad range of wavelengths (0.3 - l.Oy). The general 

form of the p(X) curve was observed and later confirmed by another 

survey made for thirty-three 0 and B type stars (Coyne and Gehrels

(1967)).

The survey was later extended to the southern hemisphere and ob

servations were made by Serkowski and Robertson (1969) in the UBV bands 

(Pu> Pg> Py) for stars with large interstellar linear polarizations 

to study the distribution on the sky of the ratios such as p^/pg.
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Fig. 1.2 Observed percentage of interstellar 
polarization as a function of the 
inverse of the wavelength as observed 
by Gehrels. (Ref. FI.2)



Well defined regions on the sky are found with the ratio smaller than 

the median value, which was considered to be 1.055, and others are 

apparent with a systematic larger ratio. The largest values of the 

ratio are found in the relatively nearby associations in Orion and in 

Ophiuchus —  Upper Scorpius, and among the more distant stars the only 

large region with predominantly high values of the ratio occurs at 

longitude 290° - 345° (including the association I Ara).

Further observations of the wavelength dependence were made by 

Coyne and Wickramasinghe (1969) for early-type stars in the wavelength 

range 0.3 - 0.9y and they produced a grain model to fit the observa

tions. Their best model fit consisted of a thin graphite disk with 

radius of 0.5y embedded in a dielectric oblate spheroid with semimajor 

axis a = 0.3y and semiminor axis af with values of f for the best 

fit given by 0.7 < f < 0.8. From all the measurements of p(A) it was

found that there was a maximum value for the polarization, p , at amax
particular wavelength, ^ x » A survey was made for all the available 

data on p(A) by Serkowski, Mathewson and Ford (1975) (afterwards refer

red to as SMF) to investigate the behaviour of A over the sky. Wellmax
defined regions are found with A less than the median value, whichmax
was taken to be 0.545y, and other regions with A larger than thismax
median value as shown in Fig. 1.3 which is based on values for about

350 stars. The largest and best defined region of low A lies alongmax
the galactic equator at longitudes 115° - 150° and for high A at 

longitudes 295° - 350° and it is found that the largest values of Amax
are observed for these relatively nearby stars in Upper Scorpius and 

Orion which are characterised by a large ratio (R) of total to selec

tive interstellar extinction and also with large P-./p,, ratio (seeV D
Serkowski and Robertson (1969)); the linear size of regions with 

similar p(A), i.e. with similar average size of dust grains, is about
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150pc this being approximately the size of large clouds of inter

stellar medium as derived by Scheffler (1967). The conclusion from 

this survey was that in general the nearby stars have considerably

larger X than the stars more distant than 0.4 kpc. This can be° max
explained on the basis of a selection effect whereby the closer stars,

for which polarization is so large that X can be determined easily, r max J

are often seen through a relatively dense dust cloud and it was shown

by Carrasco, Strom and Strom (1973) that the size of dust grains and

X seem to be larger in the more dense dust clouds, max

Serkowski (1973) noticed that the shape of the wavelength depen

dence of interstellar polarization seems to be the same for all stars 

when it is normalised. By plotting the ratio Px/Pxmax a6a^nst t îe 

ratio ^/X^ax f°r aH  stars, a single curve results which is well 

described by the empirical formula:

PX/pm ax = exp[-K £n2(Vax/x)]   1.1

where K = 1.15 for the best fit. This relationship is referred to as 

"Serkowski's Law".

By comparing models for the interstellar grains Coyne, Gehrels 

and Serkowski (1974) (afterwards referred to as CGS) found that the 

best fit to the observations of p(X) is provided by dielectric cylin

ders of constant "elongation", e, where e = — , a = radius of cylinder
c l

and b = length, having a size distribution similar to the Oort - Van 

de Hulst distribution, with refractive index m = 1.33 and oriented by 

the Davis - Greenstain Mechanism (see Shah (1967), Pig. 50, Greenberg

(1968) Fig. 95). This model fit coincides almost perfectly with the 

empirical curve presented as Equation 1.1. Figures 1.4, 1.5, 1.6 

represent the normalised values for p(X) for all stars observed in 

Arizona (CGS), in Australia (SMF), and for all multicolour polarimetric



ID

Fig. 1.4 The normalised wavelength dependence of
interstellar linear polarization for stars 
observed with the Wollaston polarimeter at 
University of Arizona. (Ref. FI.4)
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Fig. 1.5 The normalised wavelength dependence of inter
stellar linear polarization for stars observed 
with the Siding Spring polarimeter. (Ref. FI.5)
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Fig. 1.6 The normalised wavelength dependence of interstellar 
linear polarization for all multicolour polarimetric 
observations compared with a theoretical model.
(Ref. FI.6)



observations respectively, compared with Equation 1.1 and the theore

tical curves. Fig. 1.6 also includes some observations at the extreme

value of X /X to show the scatter which exists among various stars, max &
The pronounced correlations between X and colour excesses have beenmax
investigated (cf. Serkowski 1968, 1973) leading to the conclusion that

\nax ProPorti°nal to t îe average size of interstellar dust grains

which produce both the extinction and polarization. The relationship

between p (%) and the colour excess E,, „ is shown in Fig. 1.7; the max B-V & >
ratio P> /E^ TT rarely exceeds the value of 9.0 which is represented Amax B-V J v

by the straight line in the figure, the ratio for each star being taken 

as the measure of alignment of the interstellar dust grains by the 

galactic magnetic field.

It has been shown also by Serkowski (1973) and SMF that there is

a correlation between variations in X and variations in the extinc-max
tion law for various regions of the galaxy. By normalising the wave

length scale of the extinction using respective values of X for themax
Perseus — Cepheus and Scorpius regions of the galaxy, the two curves

coincide as shown in Fig. 1.8, which is adapted from Serkowski (1973).

The interpretation of these curves as indicated by Coyne (1974a) is

that both variations in X and in the extinction curves reflectmax
variations in the mean size of the interstellar particles for differ

ent regions. In addition Coyne suggested that X ^ is expected to be 

proportional to the mean value of (m - l)r, where m is the index of 

refraction and r is the mean particle radius, and the normalisation 

of the extinction curves assumes that m is approximately constant with 

wavelength. Therefore the normalisation will not work in spectral 

regions where the extinction is dominated by a strong absorption fea

ture, as is the case in the far ultraviolet where the wavelength depen

dence of extinction is dominated by a strong absorption feature around 

0.22y (Bless and Savage (1972)).
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Perseus - Cepheus 
Xmo,  *  0 .5 2 /.

S co rp iu s
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* m o .  7 0  5 2 /. 
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05 1.5

Fig. 1.8 Wavelength dependence of interstellar extinc
tion for the stars in Perseus-Cepheus and in 
Scorpius.
a. The traditional extinction curves.
b. The extinction curves normalised to Xmax,

the wavelength of maximum polarization. 
(Ref. FI.8)



In the early stages of the investigations into the nature of 

the dust grains many different materials have been suggested as con

stituents of the interstellar medium. This is because the free para

meters defining the size distribution were sufficient to explain the 

observations in the wavelength region from near infrared to near ultra

violet (Greenberg (1978)), but with extended observations in the far 

infrared and the far ultraviolet the situation has become clearer. 

Essentially the materials which have been proposed fall into two main 

categories. These are dielectrics (ices and silicates) and metallics 

(graphite and magnetite).

It can be fairly stated that some restrictions on the type of 

grain material have been placed through the analysis of the observa

tions of interstellar linear polarization. For instance the dielectric 

grains (ices), which are characterised by their refractive index being 

constant (real) in the visible range of wavelengths, have been widely 

considered to be sufficient to interpret the normalised curve of p(A) 

(see CGS).

Interstellar polarization study has been developed by the disco

very of circular polarization (see Martin, Illing and Angel (1972)).

The wavelength dependence of circular polarization in a number of dif

ferent regions on the sky shows that the polarization changes sign at 

a wavelength (A£) almost equal to the wavelength of the maximum linear

polarization (A ). A correlation between A and A should be ex- r max c max
pected as the same grains cause both linear and circular polarization.

The ratio A /A is now considered to be a new tool to investigate c max
further the nature of dust grains (Martin (1972)). All the measure

ments reveal that the ratio A /A - 1. while the theoretical studyc max * J

shows that this ratio approaches unity as the imaginary part of the 

refractive index goes to zero - i.e. for pure dielectric



materials the ratio A /A = 1 .  So with circular polarizationc max r
observations restriction on grain compoaition can be obtained but 

without providing an unique identification. Further restrictions 

should be possible by extending circular polarization measurements 

into the infrared and ultraviolet.

Polarization measurements have also been applied to several 

associations and clusters and these have been reviewed recently.

McMillan and Tapia (1977) made measurements of p(A) for members of 

the Cyg 0B2 association obtaining the standard p(A) curve; ^max 

agreed with the normal extinction law in the region of the association. 

An improved value of the position angles for the association was ob

tained after the subtraction of an assumed uniform foreground polari

zation with the relevant values for A , p and position angle.max max
Coyne, Tapia and Vrba (1979) made measurements for a large number of

stars assumed to be members of the a Per star cluster (a group of

about 200 stars in the spectral range B7 - B9) and of surrounding

stars, but not cluster members, in order to determine p(A) in and

about the cluster. From the obtained values of A they concludedmax '
that the dust grains in the cluster have the same mean size and the 

same mean size dispersion as the grains of the average interstellar 

medium. The data of this study have been combined with all the pre

viously published data on this cluster (see Kruszewski (1963), Appen- 

zeller (1971) and Markannen (1971)) in order to make better estimates 

for the parameters characterising the cluster, such as its size, mass, 

distance, etc. From these parameters they concluded that a magnetic 

field of about 1 x 10-l+ G is necessary to produce the observed 

polarization.

Challenges to the general universality of Serkowski1s Law (Eq. 1.1) 

have been made recently. Codina-Landaberry and MagalhSes (1976) suggest



that K may vary from star to star; a value of K = 1.15 gives the 

best fit for the set of stars considered as a whole but it does not 

yield the best representation of the wavelength dependence for each 

treated separately. Their approach has been to compute X , pTHcLX m^x
and K where K was allowed to be a free parameter for each star. A 

range of values of K were obtained implying differences in the shape 

of the p(X) curves. Figures (1.9) and (1.10) represent the curves for 

two stars with the values of K = 0.19, K = 1.47 respectively. The 

figures include also the observational and theoretical curves based 

on the value of K = 1.15. They conclude that for some stars, the 

dust size varies along the line of sight with changes in alignment so 

affecting the value of K. Their interpretation is prehaps premature 

in that the star sample is small and no reference is made to the range 

of values of K for a control set of stars in the simple cloud situa

tion.

Another defect of the universality of Serkowski's Law seems to 

appear in the infrared. Recently Dyck and Jones (1978) have applied 

spectropolarimetry in the infrared to seven stars. They found that 

their extended measurements did not match the extrapolation of opti

cal band measurements which had been fitted to Serkowski's Law with 

K = 1.15, with the polarization tending to decrease much less rapidly 

at wavelengths longward of ^max than predicted by the formula.

Infrared measurements have been pursued by Wilking, Lebofsky, 

Martin, Rieke and Kemp (1980) (afterwards referred to as WLMRK). 

Measurements have been made for 24 stars and by combining these with 

previous optical data they confirmed the observations by Dyck and 

Jones that infrared values do not match values predicted by the 

Serkowski formula as fitted to optical data. In applying the 

Serkowski Law to their complete data for optical and infrared wave-
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Fig. 1.9 Wavelength dependence of linear polarization 
of HD 22253 compared with Serkowski’s Law 
for K = 1.15 and K = 0.19. (Ref. FI.9)
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Fig. 1.10 Wavelength dependence of linear polari
zation of HD 183143 compared with the 
calculated curves for K = 1.15 and 
K = 1.47. (Ref. 1.10)



lengths, they allowed K to be a free parameter and claim that by doing

this p and X are better defined particularly for cases where max max
X lies at near infrared wavelengths. They conclude that there is a max
strong correlation between X and K, as shown in Fig. 1.11, with themax
normalised polarization curve apparently narrowing as ^max increases. 

They have quantified the relationship by modifying the Serkowski Law 

to:

= exp[~1.7 X £n2( ^ ~ ) ]    1.2p-v r L max X JAmax

The drawn line in the figure represents the least squares best 

fit (the stars with rotation of position angle were excluded) and is 

defined by:

K = (-0.002 ± 0.07) + (1.68 ± 0.013)X   1.3max

According to the revised formula of Serkowski's Law the broaden

ing of the p(X) curve is now associated with decreasing ^max values. 

The shape of the curve according to the authors is related to the 

physical properties of the interstellar grains; a narrowing of the 

curve may reflect a narrowing of the size distribution of the grains 

or an increasing of the real part of the refractive index or the 

grain shape becoming more spherical.

It is the aim of the first part of this thesis (Chapter 2) to

investigate further the nature of this correlation between K and X ,max
with discussions based on the mathematical behaviour of the law rather 

than on its astrophysical interpretation.

1.4 Intrinsic Polarization

As was mentioned earlier in this discussion, the first detection 

of intrinsic polarization was reported by Behr (1959b) who observed
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Fig. 1.11 A plot of K against Xmax for 24 stars 
by WLMRK. (Ref. FI.11)



the polarization variability of the early-type star y Cas, so opening 

up a new avenue of astrophysical research. Polarization variability 

studies have been expanded by the discovery of the intrinsic polariza

tion associated with the eclipsing binary star 8 Lyr by Shakovskoj 

(1962a, 1964). This has been confirmed by Appenzeller (1965) and 

Serkowski (1965) and other eclipsing binaries are now known to display 

intrinsic effects.

Coyne and Gehrels (1967) have observed the intrinsic variability 

effect for seven objects from their survey of 33 stars. Four are 

spectroscopic binaries, e.g. <J> Per with a period of 127 days, showing 

variation in polarization of the order of 0.2% ± 0.02% occurring over 

a similar period; furthermore this star exhibits a rotation of the 

position angle with wavelength of the order of 30°.

It is now found that nearly all stars showing emission lines in 

their spectra, such as Be stars and shell stars, exhibit intrinsic 

polarization (see Coyne and Kruszewski (1969)). Theoretical studies 

of Be stars by the above authors suggest that the observed wavelength 

dependence of these stars is due to a combination of electron scatter

ing, hydrogen absorption and hydrogen emission in the circumstellar 

envelopes. This suggestion has been supported by Capps, Coyne and 

Dyck (1973) in.their observations of the Be-shell star £ Tau. Pola

rization observations of such stars provide constraints for the models 

of the stars and are useful to the physical understanding of circum

stellar envelopes, e.g. their electron densities and temperatures.

The rotation of position angle with wavelength, 0(A), characterises 

the presence of intrinsic polarization in combination with inter

stellar polarization (Poeckert (1975), Coyne (1974b)). Detailed 

analysis of 0(A) allows the two polarizations to be separated (Coyne 

and McLean (1975)).



Other characteristics have been observed which are associated 

with intrinsic polarization and are considered as indicators for 

intrinsic effects in addition to those outlined above. McLean and 

Clarke (1979) have summarised the characteristics as follows:

1. Variability of the observed polarization (p, 0) with time.

2. A wavelength dependence of the degree of polarization p(A) 
very different from that for pure interstellar scattering.

3. Variation of polarization position angle with wavelength, 
0(A), since this is not normally expected from simple 
interstellar clouds.

4. Changes in the observed polarization (p, 0) across discrete 
spectral emission or absorption features of stellar origin.

As suggested by the authors, the most common feature associated 

with intrinsic polarization is its time variability.

Fig. 1.12 (taken from Coyne and McLean (1975)) shows the wave

length dependence of the normalised curve of intrinsic polarization 

for the star <{> Per compared with the theoretical model of Capps, Coyne 

and Dyck (1973).

Such a review of intrinsic polarization and its characteristics 

is useful even though the remainder of the work in this thesis deals 

with interstellar polarization. Generally for any study of inter

stellar polarization of starlight one should consider the possibility 

that intrinsic effects might be present in the sources. In the re

mainder of this thesis it can be assumed that every effort has been 

made to exclude any intrinsic effects present among the data of 

interstellar polarization.
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Fig. 1.12 Wavelength dependence of the normalised intrinsic
polarization of <j) Per compared with the theoretical
model of Capps, Coyne and Dyck (1973). (Ref. FI.12)



CHAPTER 2

REASSESSMENT OF THE INTERSTELLAR POLARIZATION LAW

2.1 Introduction

2.2 Analysis of the Data



2.1 Introduction

Interstellar polarization provides supplementary evidence to 

extinction that the light from stars is affected by interstellar 

grains. An important requirement to produce the polarization is that 

the grains must be elongated to some degree and that there must be 

some alignment mechanism, the most favoured at present being paramag

netic relaxation as proposed by Davis and Greenstein (1951). In 

principle, polarization studies can provide information about the 

properties of the grains such as their size, shape, refractive index, 

etc. In addition they also allow investigations of the galactic 

magnetic field and galactic structure.

The analytic formula for the linear polarization (Serkowski's

Law, see Eq. 1.1) has been a landmark in the development of polariza

tion studies. It provides a good fit to observations within the wave

length range (0.3y - l.Oy) and has been proved to be a useful tool in

the reduction and interpretation of observations of p(X) for stars

with widely differing values of X (0.4y - 0.8y) and differingmax
values of p . I n  addition the parameters which characterise the max
Law (p , X , K ) have been related to the properties of the dust max max
grains. The observations of the variability of X , for instance,

J max
from one star to another are related to studies of grain size and 

composition in the galaxy, the efficiency of the alignment mechanism 

as a function of grain size and the geometry of the alignment, and 

these are in turn important for studies of the nature and evaluation 

of the interstellar medium (see Carrasco, Strom and Strom (1973) and 

Martin (1974)).

More recently, as mentioned in Chapter 1, the universality and 

exactness of the Law has been questioned (see Codina-Landaberry and 

Magalhaes (1976) and WLMRK), and a correlation is found by WLMRK



between X and the constant K for combined data (optical and max
infrared) represented by:

K = 1.7 X ,max

putting the Law in a new form (see Eq. 1.2). The following section 

describes the procedure of the analysis for further investigations of 

this new correlation with the optical data of polarization from 

existing catalogued measurements.

2.2 Analysis of the Data

Since the discovery of the wavelength dependence of interstellar 

linear polarization (see Gehrels (I960)), two groups of workers have 

carried out systematic investigations with measurements over the 

optical range of wavelengths. As a result of their studies two cata

logues have emerged. The first one provides data for stars, mostly 

in the southern hemisphere, measured in four colours UBVR (see SMF) 

while the second catalogue provides data for stars, mostly in the 

northern hemisphere, measured with filters within the range of wave

lengths 0.3y - l.Oy (see CGS) [the seven-colour measurements will be 

considered here]. In order to investigate any possible correlation

between K and X for SMF and CGS data, it is necessary to make amax
reappraisal of the data.

We first deal with SMF data. Although it is not expected that

accurate values of K would ensue from four colours only, it was thought

that from a large number of stars, any correlation between K and X& J max
might still be detectable.

The data tables presented by SMF do not provide the individual 

values of K directly so the basic measurements which are presented in 

Table 3 of that paper were used in the calculations.



Not all the stars in the catalogue have been considered and 

selection was found to be necessary. Only stars with complete four- 

colour (UBVR) polarimetric data and (B - V) colour index values (so 

allowing the effective wavelengths of BVR to be determined) were used 

those stars which have been designated by SMF as displaying intrinsic 

polarization or dispersion of the azimuth of vibration were rejected. 

(Their Fig. 10 summarises this latter group of stars and is reprodu

ced in Chapter 4 as Fig. 4.1). Moreover the data in their Table 3 

represent the measurements for each star on different nights but do 

not provide the individual errors, so that the mean was calculated 

for each star without weighting. There may, therefore, be slightly 

different values used in this study from those originally used by 

SMF but systematic differences are not expected. The effective wave

length for the U-band was taken to be constant as (U - B) data were 

not available; on the other hand the effective wavelengths for BVR 

bands for each star were calculated according to the following 

formula given by SMF:

X_1ef f = X _1 - (B - V)Ko B

where 1^ = 0.06, 0.025, 0.012, X ~ l = 2.23, 1.86, 1.44 for BVR

respectively (see Table 4 of their paper).

The method of the least squares solution which minimises the

sum of the squares of the residuals of the measurements, so providing

the best values for p , X and K, has been used to refit the datamax max
to Serkowski's Law. In allowing K to be a free parameter, limits 

were set so that its values were within the range (0.2 - 1.7). The 

following is an outline of the procedure of the method.

The formula for Serkowski's Law is:



— 2—  = exp[j-K Jln2(- m̂ aX')]   2.1
^max

(According to Serkowski's original work K = 1.15 for all the stars).

By taking the natural logarithm of both sides of Equation 2.1 we 

obtain:

Jin p = tn p - K( Jin X - Jin X) max max
2

Jin p = Jin p - K Jin2 X + 2K In X Jin X - K Jin2 X max max max

Jin p + K Jin2 X = Xl + X2 Jin X ............... 2.2

where
X, = Jin p - K Jin2 X ............... 2.31 max max

X„ = 2K Jin X   2.42 max

Equation 2.2 was solved for each star by least squares for the

unknowns X^ and X^ using the above range for K(0.2 - 1.7) and then the

values of p , X were determined from Equations 2.3 and 2.4. max max

The number of stars available for analysis following the applica

tion of all the criteria described above was 107 (the values of K and

X are summarised in Appendix 1). Fig. 2.1 presents the X , K max o r  max
values for these stars. Without more specific analysis at this stage, 

it is impossible to comment on how much the spread in the values is 

due directly to the noise on the polarimetric measurements and how 

much it is due to a natural dispersion caused by differing interstel

lar conditions along the line of sight to each star. Evaluation of 

the mean value of K gives approximately 1.15 as obtained by SMF and 

since used by many workers in the field.

The full line with negative slope corresponds to the least 

squares solution of the best straight line and is expressed by:
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K = 1.186 - 1.002Q - 0.5)   2.5max

This correlation (later shown to be significant) appears to have been 

overlooked by Serkowski and associated workers. More importantly, the 

form of the correlation is significantly different from that obtained 

by WLMRK (1980) which shows an opposite sense of the slope (see 

Fig. 1.11).

In order to test the significance of the negative slope evalua

ted above, a statistical procedure, which is described by Young (1962), 

has been applied to the data. Calculations were performed for the 

gradients of the least squares fitted line to K as a function of Xmax
(the full line) and X as a function of K (the reciprocal of themax
first gradient), and then taking the square root of their product we

get the correlation coefficient. The value obtained is then compared

with Table VII (values of the correlation coefficient for different

levels of significance), from Fisher and Yates (1963). This exercise

indicated that there is an approximately 95% confidence level on there

being a correlation between K and X in the form presented above.& max r

In order to investigate further the reason behind this newly

discovered correlation, we have considered CGS data as well, covering

the wavelength range from approximately 3300 to 9500 X. The basic

measurements are not presented in CGS so we referred to the papers

listed in the last column of Table II. The data were taken from the

following papers: Coyne and Gehrels (1966), Coyne and Gehrels (1967),

Coyne and Wickramasinghe (1969), Serkowski, Gehrels and Wisniewski

(1969) and Coyne (1974b). (N.B. most of the data presented in these

papers are already weighted).

Selection of the stars was based on conditions that they should 

have accurate polarimetric measurements for seven colour bands. Stars



known to have intrinsic polarization or those listed by Coyne (1974b) 

as displaying dispersion of the azimuth of vibration were rejected.

The same procedure of the least squares solution has been applied to 

the selected stars and the number of stars now available for correla

tion analysis is 73. (The values of K and X are summarised inmax
Appendix 2). The values of X and K are displayed in Fig. 2.2 andmax
the full line with positive slope is the least squares solution of the 

best straight line and is expressed by:

K = 1.01 + 2.83(X - 0.5)   2.6max

The form of correlation between K and X obtained from thesemax
data is significantly different from the previous one for UBVR bands. 

From the statistical test, outlined above, the level of confidence 

for the above correlation is 99.9%, this being strongly significant.

The question immediately arises as to why there is a change in

the form of the correlation (from negative to positive) between K and

X as the wavelength range is extended. With this in mind and as max
a check, the data with seven-colour measurements were reduced to four

with the chosen colours being closest to the UBVR bands and the same

analytical procedure was applied to the data. By this selection 62

stars were available for analysis. (Appendix 2 includes the values

of K and X for these stars). The values of X and K for these max max
stars are displayed in Fig. 2.3. The data revert to show a negative 

slope and the full line is the least squares solution of the best 

straight line expressed by:

K = 1.10 - 1.24(X - 0.5)   2.7max

The above correlation is with 95% confidence which is almost 

similar to the correlation obtained directly from SMF data depicted 

in Fig. 2.1.
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Comparison between the values of K obtained by using seven wave

lengths (K^) with those values for four wavelengths (K^) showed a big 

difference for most of the stars. Fig. 2.4 shows the relationship 

between and ; the full line is the least squares solution of the

best straight line expressed by:

K. = 0.92 + 0 .42(K - 0.8).... ..................  2.84 /

while the broken line represents the perfect correlation (K^ = K^).

In a similar way the values of X have been compared for the two sets J max
of data and showed slight differences for most of the stars. These are 

displayed in Fig. 2.5 with the full line being the best straight line 

expressed by:

\nax, = 0.52 + 1.05(^max_ - 0.5) ................. 2.94 7

while the broken line again represents the perfect correlation, the two

lines being close.

A group of stars near the Orion Nebula for which the polarization

measurements were made by Berger (1977) has also been considered. The

basic measurements are represented in Table 1 of the above cited paper.

Similar results were obtained by applying the same procedures to the

data, i.e. a positive slope (+ 0.96) between K and X ensued when themax
broadest wavelength coverage was used and again a negative slope (- 0.31) 

resulted when the data were reduced to four-colour values closest to 

UBVR.

Such an outcome of the correlation between K and X being depen-max
dent on the wavelengths of the data points raises many questions. Might

not the new interstellar polarization law proposed by WLMRK (1980) (see

Eq. 1.2) be the natural outcome of the choice of a particular filter

set and not need any astrophysical arguments to describe its form? The

various correlations above might ensue if the form of Serkowski's Law
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is not sufficiently good to describe the shape of the normalised 

interstellar polarization law accurately over wide wavelength ranges, 

perhaps being dependent also on where ^max is placed relative to the 

range.

The figure relating with (see Fig. 2.4) shows that the K 

values are noisy. The parameter K is a very sensitive indicator of 

the half-width of the p(X) curve. For values of p(X) which carry the 

usual experimental noise, then we expect the determined values of K 

to reflect this noise. A question to be investigated is "What value 

of noise might we expect on K for given noise values on p(X)?" In 

addition, we might also consider the possibility of there being natu

rally occurring correlated biases between the derived values of para

meters such as K and X . For example, since the number of datamax
points on the p(X) curve is low (typically 4 or 7) there is a reason

able chance that, for any one star, the measured values might have 

deviations which give a positive (or negative) bias to the p(X) curve 

with respect to the true curve for that star; this of course affects 

the determined value of K but it may also affect the determined value 

of Xmax

Estimates of the expected scatter in the values of K according 

to noise values on p(X) are difficult to obtain analytically but can 

easily be assessed by numerical methods.

The following chapter describes the procedures which have been 

applied to the data to investigate the effects of noise on the deter

mined values of K and X and to investigate the possibility of forcedmax
correlations occurring between these parameters and how these depend

on the value of X relative to the wavelength range of the data set. max



CHAPTER 3

A NUMERICAL INVESTIGATION OF NOISY POLARIMETRIC DATA

3.1 The Computer Programme Scheme

3.2 Analysis of Simulated Noisy Data



3.1 The Computer Programme Scheme

With the notion that noisy data by their nature might provide 

correlations between the characteristic parameters of the interstellar 

polarization law, K and ^max» a computer programme was written to 

investigate the idea. The following is a description of the scheme 

whereby artificial data (with noise) are generated and then analysed 

by fitting them to the Serkowski Law.

For convenience, it is assumed that the Serkowski Law with the 

value of K = 1.15 is the true representation of the situation (any 

other chosen value of K or even the use of the newly proposed law of 

WLMRK for this exercise would not alter the generalities of the con

clusions here). The computer programme allows the choice of Pmax an<3 

\nax an(* t^8 se^ect -̂on wavelength values corresponding to filter 

sets so that any measurement situation can be reproduced. A value for 

the amplitude of a random noise function can also be set. When the 

programme is run, the perfect values of p(A) for the chosen wavelengths 

are calculated and then each value is modified by adding a generated 

noise value (a positive or negative number). When the set of noisy 

p(A) values is complete giving data for a pseudo-star, values of K,

p and X are then determined by the normal least squares tech- max max n
nique (see Section 2.2).

In order to see how the scatter in K and X behaves, the promax
gramme is allowed to free-run 100 times as though a given star with

given equipment had been measured independently 100 times. By then

changing the p , X values over a wide range and repeating the max max
exercise for each set of values, selections from the engendered cal

culations can be used to mimic any real data set. (The amplitude of 

the noise function must be set to provide scatter similar to that of 

the real observations).



3.2 Analysis of Simulated Noisy Data

Firstly, noisy data were generated and analysed for the four

colour bands (UBVR) with three values for X occurring in differentmax
parts of the above range (0.4, 0.5, 0.6y). The behaviour of the de

rived values of K and X were then investigated when the data weremax
made noisy. The p value was set to be equal to 3.0% for all themax
stars with a standard deviation of a single p(X) measure being approxi

mately 0.04%. The three sets of determined values of K and X aremax
displayed in Fig. 3.1.

It is obvious from the figure that not only are the values of K

noisy, as is to be expected, but that there are correlations between

the deduced values of K and ^max» the form being dependent on the true

value of X . For a X value in the blue part of the spectrum the max max r r
deduced values of K and X are related by a positive slope while formax J r r

X in the red part of the spectrum there is a negative slope, max

Scatter in the derived X values for the central X value ismax max
much less than for X values either in the blue part or in the redmax
part of the spectrum while the scatter in K is almost the same for

the above three values of Xmax

The overall correlation between K and X for a set of starsmax
will depend on the distributions of the true values of X for the r max
stars and on the magnitude of the noise on the K values, i.e. on the

size of the polarimetric noise relative to the p value.max

More general consideration of the figure would suggest that an

overall correlation will ensue if X is given a cut-on or cut-offmax
value. If, for example, the lower limit of X occurs in the bluemax
for which there is a positive slope relating K and X (e.g. seemax
left hand side of Fig. 3.1) then if these data are mixed with other
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data with larger X values, the overall correlation between K andmax
X will tend to be forced at right angles to the positive slope, max
i.e. the overall correlation will have a negative slope. The problem

for this simulation study is one of getting the right mix of stars in

terms of their true X values and their relative polarizationmax
noises.

As correlations occur between the deduced values of K and Xmax
from the artificial noisy data, it was thought that normal experi

mental noise could be a contributory cause of correlations directly 

obtained for the real data for both four-colour and seven-colour

measurements. Comparisons between the values of K and X from themax
artificial noisy data with those values from the real data have been 

made as follows.

The four-colour data have been considered firstly for which the

values of K and X are displayed in Fig. 2.1 (SMF data) and Fig. 2.3 max
(the reduced CGS data). The X values for the artificial datamax
started at 0.45y and ran to 0.60y with intervals of 0.025y, to give 

values for ^max covering those values provided by the real observa

tions. The p value and the standard deviations were set to be the rmax
same as previously selected, i.e. 3.0% and 0.04% respectively.

The programme was run for each value of seven selected Xmax
values and the first 25 determined values of K and X for each valuemax
have been used for analysis (this selection was assumed to be approxi

mately equivalent to the real data). The 175 values of K and X aremax
displayed in Fig. 3.2. The trend of this simulated data is obvious 

and the bold solid line represents the least squares best fit with 

negative slope and is defined by:

K = 1.17 - 1.23(X - 0.5)   3.1max
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From the statistical correlation test (described earlier in 

Section 2.2) it is found that the above correlation represented by 

Eq. 3.1 is with 99.9% confidence.

By comparing Eq. 3.1 with the equations relating K and X for 

the real data, i.e. Eq. 2.5 and Eq. 2.7, we can see the obvious simi

larity between them.

For the seven-colour data the same values of X have been usedmax
and also the same values for p and the standard deviations to runmax
the programme. The first ten values of K and X for each set weremax
used for analysis and are displayed in Fig. 3.3. The bold solid line 

again represents the least squares best fit with positive slope 

expressed by:

K = 1.16 + 0.69(X - 0.5)   3.2max

The above correlation was found to be with 95% confidence. By 

comparing Eq. 3.2 with Eq. 2.6 which represents the correlation be

tween K and X for the real data (CGS data) we see that both have max
positive slope but differ in value slightly.

We conclude from the above investigation that the noisy data

automatically generate correlations between K and X and that the J max
form of the correlation depends on the position of X relative tor max
the distribution of the effective wavelengths used for measurements 

as well as on the magnitude of the noise on K. In particular we 

have seen that for the four-colour simulation (UBVR), the correlation 

gives a negative slope while for the seven-colour simulation the 

correlation gives a positive slope, so providing an explanation for 

the results already obtained from the real data for the two sets, 

i.e. SMF data and CGS data.
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CHAPTER 4

THE ROTATION OF POLARIZATION POSITION ANGLE WITH WAVELENGTH

4.1 Introduction

4.2 The Two-Cloud Model

4.3 The Stars Displaying 0(X)



4.1 Introduction

Following the prediction made by Treanor (1963) that some stars 

might display dispersion of position angle of interstellar linear 

polarization, 0(A), the effect was first observed by Gehrels and 

Silvester (1965). Confirmation has been provided by Coyne and Gehrels 

(1966) and later by Serkowski (1968) and Coyne and Wickramasinghe 

(1969). Observations of 0(A) are interpreted as being due to the star

light traversing several clouds with different grain alignment and 

different grain size.

With the discovery of interstellar circular polarization (see 

Martin, Illing and Angel (1972)) the observations of 0(A) became more 

relevant to cloud models as both effects relate to the birefringence 

of the interstellar medium. The existence of circular polarization 

in a medium in which the direction of grain alignment changes along 

the line of sight had been suggested earlier by Serkowski (1962).

Hence the birefringence characteristic of the interstellar medium can 

be derived by combined observations of linear and circular polarization. 

(Section 4.2).

In addition observations of such a twisted medium could lead to 

better understanding of the composition of interstellar grains, the 

mean grain size and any changes in these properties along the line of 

sight in addition to developing models of the structure within the 

interstellar medium (Martin (1974)).

The data for 24 stars (in the northern hemisphere) showing signi

ficant dispersion of position angle have been collected by Coyne (1974b) 

(see Table II of that paper). Included in Coyne's list are some stars 

obviously exhibiting intrinsic polarization for which the 0(A) can be 

explained as being due to a superposition of the intrinsic polariza



tion and interstellar polarization, the wavelength dependence of the 

combined vector being controlled by the wavelength dependencies of 

the two components. The late type stars with 0(A) have not been in

cluded in the table as the rotation of position angle may take place 

primarily in their atmospheres or circumstellar dust shells. A plot 

of the magnitude and direction of polarization of the 24 stars in 

galactic co-ordinates has been made. By comparing it with the map of 

Mathewson and Ford (1970) (see Fig. 1.1) it is found that the 0(A) 

effect is quite common near the galactic equator in the range of 

galactic longitudes 130° - 150°. Their polarizations tend to follow 

the overall patterns of the galaxy which in turn means that the mean 

direction of vibration for these stars is mainly determined by the 

interstellar medium.

The 0(A) data have been considered also by Coyne (1974b) in 

combination with the available data of circular polarization and the 

proposed model of changing grain alignment and grain size along the 

line of sight finds support from this analysis. Circular polariza

tion measurements are few and further observations for stars with 

known 0(A) would be extremely useful. In addition to Coyne's 24 

stars, stars in the southern hemisphere have been observed by SMF 

showing 0(A). The curves of 0(A) are represented in Fig. 4.1, but 

it must be noted that the figure includes some stars which are 

intrinsically polarized.

4.2 The Two-Cloud Model

The "Two-Cloud" model has so far been sufficiently satisfactory 

to interpret the observations of 0(A) and interstellar circular pola

rization. (integral equations are really required to describe the 

true situations but the complexity of setting them up and solving
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them has not yet been deemed necessary). Martin (1974, 1978) has 

developed many models for a medium with changing grain alignment in

cluding the two-cloud model which will be discussed more fully here. 

The following is a resume of the model.

It is based on the idea that the initial starlight is unpolarized 

and that two clouds with different dust alignment lie between the star 

and the observer. It is assumed that the formula of the Serkowski Law 

can be applied to each cloud in turn. The subscripts 1 and 2 refer to 

the cloud nearest the star and nearest the observer respectively. The 

ratio of the linear polarization produced by the clouds may be repre

sented by:

P:

"l
r = —    4.1

Pi

and the difference in their position angles may be denoted by:

♦ = e2 - ex ...........................  4.2

Because of the misalignment of the two clouds the resultant pola

rization p^^ is smaller than the value for (f = 0 by a depolarization 

factor D expressed by:

D2 = (1 + 2r cos 2<J) + r2) / (1 + r2) < 1   4.3

and the circular polarization V/l is:

Y  = - Ae2 (p/l)^ sin 2<{> .....................  4.4

Equation 4.4 shows that the wavelength dependence of circular 

polarization is the product of the effects of birefringence of the 

second cloud, Ae2> which is acting similarly to a waveplate, convert

ing the linear polarization into circular, and the dichroism of the



first cloud, (p/l)^. If Cloud 2 is uniform then the factor describing 

the geometry of the alignment in the interstellar medium is:

G = - r sin 2<J> / (1 + 2r cos 2<f> + r2) .........  4.5

G and r will be wavelength dependent when wavelength dependencies 

of linear polarization produced by the two clouds differ.

The observed position angle, 0^, is given by:

tan 2(0 - 0^) = r sin 2<j> / (1 + r cos 2<j>)   4.6

This in turn will be wavelength dependent if r is provided that <J> ^ 0.

By differentiating 0 with respect to wavelength A we obtain:

= 0.5 G d £ n r  / dA........... ......................  4.7d A

or T7 = 0*5 (sin 2<J>) / (1 + r2 + 2r cos 2<f>) .dA aA

If r is evaluated in Eq. 4.7 on the basis of the Serkowski Law

(Eq. 1.1) a valuable formula for the change of grain size along the

line of sight ensues as follows:

W 2 , 1_  X dBs , „
U j  6 I-15 G d X } ..........................

d0 _ Kr (sin 2<J>) . ^ 3 X 2
°r dX A(1 + 2r cos 2<j) + r2) XmaXi

d0From this equation expressing ^  » we see that 0 has a maximum 

when X = °°, <|> = 0, r = 0, or when Vax^ = ^aax^, otherwise the change 

of position angle with wavelength will simply be monotonic. (The 

results of our numerical calculations confirm this).

The above model has been applied to two stars a Sco and o Sco 

for which both linear and circular polarization data are available



and the resulting analysis was sufficiently consistent (see Martin 

(1974)).

McMillan and Tapia (1977) in their survey to investigate p(A) in 

the Cyg 0B2 association have shown that the polarization can be satis

factorily represented by the two-cloud model and claim to have deter

mined the interstellar birefringence of the medium in front of Cyg 0B2 

No. 12. The first cloud which is nearest the star is characterised by 

Pmax^ = 11.3%, \nax^ = 0.49, 0^ = 125°, while the second cloud is 

characterised by Pmax2 = 3.4%, ^max^ = 0.52, 0^ = 57°. By letting f^ 

and f^ refer to \nax^/x and \nax2/x respectively, Equation 25 in 

Martin's (1974) paper has been used to determine the interstellar bi

refringence which is then expressed by the authors as:

-

b(f2) =       4.9
^max2 ^max^ d(f^) sin 2<j)

where q(f2) is the observed circular polarization and d(f^) is the 

standard wavelength dependence of linear polarization in the first 

cloud. The circular polarization measurements at three wavelengths 

for the star No. 12 by Martin and Angel (1976) have been used to cal

culate the values of b(f0). The ratio ^max/x was found to be 1.02 ±2 c
0.05 for the medium in front of this star which is closer to the 

average interstellar mean value than Martin and Angel's value. The 

G parameter was calculated as well and an excellent agreement was 

obtained with those values of Martin and Angel, although the latter 

authors used a different method. Table 6 of that paper summarises 

all the results.

In the following section the available data for stars displaying 

0(A) will be analysed with respect to Serkowski's Law.



4. 3 !l*e Star:; i'ispJ.a_yj.ng 8(A)

The singl?. cloud of aligned interstellar grains has base con

sidered largely to interpret the observed polarization for the hund

reds of stars for which the position angle does not vary with wave

length. All the measurements of p(A) for these stars give a maximum 

value of polarization, p , at some wavelength A , within theID^X IU3.X

visible to near infrared of the spectrum; the empirical formula of 

Serkowskifs Law generally gives a satisfactory match for the normali

sed curve of the observations of p(A).

For the stars which display 0(A) (with no apparent intrinsic 

polarization) the model of two clouds with different grain size, dif

ferent A , and grain alignment, as we have seen in Sections 4.1, max
4.2, is accepted as being sufficient for an interpretation. The com

bined effect of two such clouds will undoubtedly affect the value of 

K, this being a measure of the sharpness or halfwidth of the p(A) 

curve. With this in mind it was thought worthwhile to compare the 

values of K for stars which show 0(A) and for those without rotation 

of position angle. The data available for the stars displaying 0(A) 

are contained in two papers, Coyne (1974b) and SMF.. The same procedure 

of the least squares solution which was described earlier (see Section

2.2) has been used to refit the data for these stars to the general 

Serkowski Law, with K as a free parameter (the same range 0.2 -> 1.7 

was allowed for K).

The procedure was first applied to Coyne's data (mainly with

seven colours) with the number of stars for analysis being 19. From

these it was found that the line relating K and A has negative slopemax
with the least squares fit being expressed by:

K = 1.02 - 1 ,27(A - 0.5)   4.10max



We see that the relation between K and A for the above starsmax
shows an opposite slope in comparison with the stars in the single 

cloud situation when measured over the same range of wavelength (see 

Fig. 2.2).

The SMF data are depicted in Fig. 10 of that paper (see Fig. 4.1 

here) with the stars designated by their HD number. Included in the 

figure are some intrinsically polarized stars. These latter stars are 

excluded from the analysis here. The number of stars provided for 

analysis from SMF is 16. These stars have been combined with those 

from Coyne for which the measurements have been reduced to four colours 

closest to UBVR bands. The total number of stars measured in four 

colours and displaying 0(A) is now 31. The slope relating K and Amax
for these stars is negative with the best straight line of the least 

squares being expressed by:

K = 1.11 - 1,52(A - 0.3)   4.11max

Comparisons between Equations 4.10 and 4.11 with the relationships

of K and A for stars not displaying 0(A). have been made as follows: max f  j »

For SMF data the 107 stars for which the K and A values aremax
available have been divided into seven different groups, each group 

consisting of 31 stars, being equal to the number of stars which dis

play 0(A), and the least squares straight line fit was obtained for 

each group. Fig. 4.2 represents these seven lines (solid lines) while 

Equation 4.11 is depicted as the broken line. It is obvious that the 

latter line is displaced from the others showing that these stars 

generally provide lower values of K (less than 1.15). In a similar 

way, a comparison has been made for the stars with seven-colour meas

urements. Here the 73 stars have been divided into four groups, each 

one comprising 19 stars which corresponds to the number of stars with
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0(X) measured over the same range of wavelengths. Fig. 4.3 repre

sents the least squares straight line fit (solid lines) for the four 

groups of stars while the dotted line represents the fit (Equation 

4.10) for the stars with 0(X). We see again how this last line is 

significantly different from stars not displaying 0(A). Low values

of K occur for the whole range of A compared with the normal stars;max
the slope also has the opposite sense.

The change in slope for the seven-colour data for stars showing 

0(A) is difficult to explain on the basis of any cloud model. However 

when the stars are re-examined individually, it is evident that some 

of them carry intrinsic polarization and therefore should not be in

cluded in the overall correlation study. In particular two stars

have extreme values of A with low K value and obviously contributemax J

strongly to the negative slope. Inspection of Table II of Coyne (1974) 

suggests that these stars (HD 10516 and HD 37061) do in fact exhibit 

intrinsic polarization by virtue of 0 being time dependent, 0(t), and 

should therefore be removed from the study. With the exclusion of 

these two stars a reassessment of the correlation between K and Amax
now reverts to show a positive slope expressed by:

K = 1.02 + 0.96(A - 0.5)............................... . 4.12max

The above relationship is represented in Fig. 4.3 as a long- 

dashed line and is obviously showing the displacement from the other 

lines for data without rotation of polarization position angle, giving 

the low values of K.

Three other stars (HD 192422, HD 141637, HD 159176) in Coyne's 

table are also designated as displaying 0(t) and should also be 

ignored. Another star (HD 169454) is listed as showing possible 0(t) 

but it can be noted that it does not provide a value of K in the



0-4 0-5 0-6 \ 0-7
A m a x

Fig. 4.3 The comparison between the best line relating K and Amax 
for stars showing 0(A) (dotted line) and the lines after 
excluding the stars showing 0(t) (long-dashed line and 
short-dashed line) with the lines for different groups 
of stars without rotation of polarization position angle 
(solid lines). These data are for seven-colour 
measurements.



permitted range and has already been excluded automatically. With 

the exclusion of all the stars showing 0(t) the relation between K 

and ^max the remaining stars again has positive slope expressed 

by:

K = 0.98 + 0.13(A - 0.5)   4.13max

The above equation is represented as a short-dashed line in Fig.

4.3 which is based now on only 14 stars and it cannot be expected to

have a high confidence level. Even now, some of these stars may carry 

weak levels of intrinsic polarization but it is assumed that this is 

not affecting the general conclusion.

Thus the overall picture appears to be coherent. For both the 

four-colour and seven-colour data, stars which exhibit 0(A) provide 

a K, ^max correlation similar to stars not displaying the dispersion, 

except that the level of K is reduced.

A simple interpretation for K taking values different from 1.15 

has already been mentioned in terms of the Two-Cloud model. In the 

following chapter we shall investigate the properties of K numeri

cally for this model. This aspect has been neglected in the litera

ture for the development of the model and the new results provide 

means for discussion of the reasons behind the different correlations 

presented in Figs. 4.2 and 4.3.



CHAPTER 5

A NUMERICAL INVESTIGATION OF THE TWO-CLOUD MODEL

5.1 Introduction

5.2 The Two-Cloud Model



5.1 Introduction

The programme described below aimed to calculate the polarization

produced by two clouds with different X and different orientationmax
which has been sufficient so far to model a complex cloud situation.

The data for the resultant polarization were afterwards fitted to the

general formula of Serkowski's Law to see the behaviour of the deduced

characteristic parameters. X and K, over all possible orientations r max r
of the clouds and for a range of cloud characteristics (i.e. \nax^, 

^max^, Pmax^, Pmax^). The following is a description of the model.

5.2 The Two-Cloud Model

The model is based on the same idea as developed by Martin (1974, 

1978) and the same notation for the subscripts has been used, i.e. 

subscripts 1 and 2 refer to the cloud nearest the star and nearest the 

observer respectively. It is also assumed that the initial starlight 

is unpolarized.

The Stokes parameters and Mueller calculus is found to be an 

adequate way to describe the polarization state of the light and its 

behaviour as it passes through media, and has been used by many 

workers in the field of astronomical polarimetry.

Let the Stokes parameters be denoted by I, Q, U, V where:

I represents the intensity 

Q, U represent the components of the linear polarization 

V represents the component of the circular polarization.

(N.B. Other letters are used for labelling the parameters by differ

ent workers (see Table 1.2 of Clarke and Grainger (1971) for more 

details).

These parameters can be grouped together to form a vector known



as the Stokes vector which represents the complete polarization 

characteristics of the light. For the initial light which is un

polarized the Stokes vector is represented by:

I i 1

Q 0 0
= = I

u 0 0

V 0 0

After traversing the first cloud the normalised vector will be:

I 1

Q pn cos 20.

II M 1 > —1 v
-x I 1

u sin 20^

V 0

and after traversing the second cloud the normalised vector will be:

I 1

Q
= (I - A, - A j Pi cos 20^ + P2 C O S 292

U 1 I
P1 sin 20^ + P2 sin 202

V 0

where and are the absorptions produced by the first and second 

cloud respectively. For simplicity it has been assumed that the pola

rized intensity produced by the first cloud is not acted upon by the 

second. If the orientation of the first cloud is taken as reference 

for the system, i.e. 0^ = 0, and by letting 0^ = <f> the algebra is 

simplified and the normalised Stokes vector reduces to:

I 1

Q
= (I - - A^) P1 + P2 COS 2^

u P2 sin 2<J>

V 0



The resultant degree of polarization produced by the effect of 

the two clouds will be:

p = (Q2 + U2)^

p2 = (P^ + P2 cos 2<J>)2 + (p2 sin 2<j>)2
I,

p = (p-ĵ 2 + P22 + 2P^P2 cos 2<J>)2 ......  5.1

The position angle, £, is given by:

p sin 2<J>
tan 2C = -  =

Q  Pi + Po c o s  2<J>

p sin 2$
Hence X, ~ h tan”1 (-------------— )   5.2

P1 P2 C° S *

If the two clouds have identical alignment Equation 5.1 reduces to:

P - Pl + P2

i.e. the polarization produced by the two clouds equals the sum of the 

polarizations produced by each cloud. In addition, X, will go to zero. 

Therefore we do not expect C to display dispersion unless <J) f 0.

The formula of Serkowski's Law has been applied to determine the 

polarization of each cloud at wavelength points within 0.33y ->■ 0.95y. 

Seven colours were chosen in this range to match Coyne's 7-colour data.

The programme allows the choice of X and p values for each r max rmax
cloud in addition to their relative orientation for evaluation of

Equations 5.1 and 5.2. The X and p values used for this exer- ^ max max
cise provided ratios of ^max^/^max2 = R-̂  = 0.5, 0.57, 0.67, 0.8 and 

Pmax, /Pmax_ = R  = 1 ,  0.5, 0.33, 2, 3. The relative orientation1 2 p
values (<|>) cover the range 0° 90°.

The calculations of the resultant polarization and the correspond

ing position angle in the above wavelength range have been repeated for 

each value of <J) commencing at <j) = 0 with increments of 5°. For each



value of the ratio R. the five values of the ratio R have been usedX p

in the calculations. The evaluated data of C(X) for the whole range 

of X , p and <J> confirmed that the change of the position angleiQdx mdx
with wavelength is monotonic (see Section 4.2, Eq. 4.8).

The same procedure of the least squares solution which has been 

applied previously to the other spectropolarimetric data (see Section

2.2), has been used here to fit the polarization data produced by the 

Two-Cloud model.

Plots of K and X values as a function of <b have been made for max
each value of R^ and for the different values of R^. Figures 5.1, 5.2,

5.3, 5.4 represent the plots of K against <J> for R^ values 0.5, 0.57,

0.67, 0.8 respectively. We see from the figures that the combined

effect of the two clouds dramatically affects the values of K for all

the values of X and p of the two clouds, max rmax

It can be seen from the figures that the values of K are generally 

reduced relative to K = 1.15 for the orientation values ranging approxi

mately from 0 70^, otherwise K takes values larger than 1.15 unless

R = 1. In addition, for this same ratio, we can see the common effect P
from all the figures that K takes the lowest values compared with the

values for the other R values. On the other hand, the K values becomeP
closer to 1.15 as R^ goes to unity. We conclude that the K values show 

dependencies on the clouds' characteristic parameters, i.e. R^ , R^ and 

their relative orientation.

Plots of ^max against <J) are represented in Figures 5.5, 5.6, 5.7 

and 5.8 for the values of R 0.5, 0.57, 0.67, 0.8 respectively. FromA
inspection of the figures, we can see the similarity in the behaviour

of the curves for the above values of R...A

The chief features can be summarised as follows.
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Fig. 5.1 Plots of K values agaimstt the relative orientation (<|>) of
the two clouds for = (0.5 and for Rp = 1, 0.5, 0.33, 2, 3,
as marked on the curves.
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Fig. 5.2 Plots of K values against the relative orientation (<J>) of the
two clouds for = 0.5? and for Rp = 1, 0.5, 0.33, 2, 3, as
marked on the curves.
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Fig. 5.3 Plots of K values against the relative orientation (<f>) of the
two clouds for = 0.67 and for Rp = 1, 0.5, 0.33, 2, 3, as
marked on the curves.
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Fig. 5.4 Plots of K values against the relative orientation (<|>) of the
two clouds for = 0.8 and for R = 1, 0.5, 0.33, 2, 3, as
marked on the curves.



1. When the two clouds are of the same strength, i.e. ^max^ = ^max2 ,

the derived X values are constant with d> for the whole range of max
R . For any particular R ratio, the derived constant value ofA A

X for ^max, = ^maxrt lies within the range of values provided by max 1 2  J

other ratio values given when R ^ 1. In addition this value is

always lower than the mean of the original values of X for themax
two clouds, i.e. ^max. + \nax0

X < (----------  -) .max 2

2. The derived X values are larger than the mean when the strengthmax
of the foreground cloud is greater than that of the cloud nearest

the star, i.e. Pmax^ > Pmax^. These values are increased with

increasing <f> for all the values of R^. On the other hand, the

smaller values of X^ax occur when the strength of the foreground

cloud is less than that of the cloud nearest the star, i.e. Pmax^

^max^, and are decreased with increasing <J> again for the whole

range of R^. We see that these characteristics of the X. A max
behaviour depend on the parameters describing the two clouds.

In summary, we can see that both the deduced K and X are affec- J max
ted by the two-cloud situation and that, in general, for small values

of d>, the K value is reduced and the X value always lies betweenmax J

the original X values for the separate clouds, max

The position angles of the resultant polarization have been analy

sed according to <J>. Here we aimed to investigate which filters are 

perhaps the most appropriate for detecting 0(X) variations at the 

telescope according to the value of <J>.

Firstly we chose two different pairs, the first one corresponding

to the filters 0.943y and 0.429y, (0 - 0.,), and the second correspond1 B
ing to the filters 0.826y and 0.36y, (0 - 0 ). These have been invesR U
tigated with respect to <{> for tlhe value of R. equal to 0.5.A
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Fig. 5.5 Plots of Xmax values against the relative orientation (<j>)
of the two clouds for = 0.5 and for Rp = 1, 0.5, 0.33,
2, 3, as marked on the curves.
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Fig. 5.6 Plots of Xmax values against the relative orientation (<j>)
of the two clouds for = 0.57 and for Rp = 1, 0.5, 0.33,
2, 3, as marked on the curves.
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Fig. 5.7 Plots of values against the relative orientation (<}>)
of the two clouds for = 0.67 and for Rp = 1, 0.5, 0.33,
2, 3, as marked on the curves.
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Fig. 5.8 Plots of Xmax values against the relative orientation (<J>)
of the two clouds for = 0.8 and for Rp = 1, 0.5, 0.33,
2, 3, as marked on the curves.



It was found that (0_ - 0D) gives the larger values for the1 D

rotation for R values 2 and 3, while for the other values of R , i.e.P P
1, 0.5, 0.33, (0 - 0 ) gives the larger values for the rotation ofK U
the position angle with wavelength. The position angle differences 

for the filter pairs therefore depend on the original characteristic 

parameters of the two clouds. We cannot choose filters in advance to 

provide the most sensitive means of detecting 0(A) variations as the 

situation will vary from one part of the sky to another. As a result

we have taken one pair represented by (0 - 0 ) and investigated itI
with respect to <|> for the different values of R.. and R to see gene-A p
rally the behaviour of 0(A).

Figures 5.9, 5.10, 5.11, 5.12 represent the plots of (0 - 0 )X B
against <j) for R.. values 0.5, 0.57, 0.67 and 0.8 respectively.A

We can see from the figures that the largest difference in the

position angle is for R = 1 and this increases with <J> for the differ-P
ent values of R . The similarities in the behaviour of the curves for A
the other ratios of R^ are obvious. They increase with <J> for the range

0 70° and then start to decrease. The smaller values of (0 - 0 )X B
are for R^ = 0.33 and, generally for the lower values of <f>, (0̂ . - 0^)

always lies within the range 0 10°, for the different values of R^

and R .A

We have seen generally the effect of two clouds on the values of

both characteristic parameters of the interstellar polarization law,

i.e. K and A . From the figures relating K with the relative cloud max
orientation, <j>, the values of K are affected in such a way that over 

the greater part of the range of <jf> the K values are always below 1.15 

for the different cloud characteristics. This then provides a general 

explanation for the results obtained directly from the real data for 

the stars showing 0(A). As we have seen, the lines representing the
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Fig. 5.9 Plots of the difference in position angles (0j - 0g), of the 
resultant polarization against the relative orientation (<f>) 
for = 0.5 and for Rp = 1, 0.5, 0.33, 2, 3, as marked on 
the curves.
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Fig. 5.10 Plots of the difference in position angles (0j -
resultant polarization against the relative orientation (<J>) 
for = 0.57 and for Rp, = 1, 0.5, 0.33, 2, 3, as marked on 
the curves.
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Fig. 5.11 Plots of the difference in position angles (0j - 0g), of the 
resultant polarization against the relative orientation (<j>) 
for R\ = 0.67 and for Rp = 1, 0.5, 0.33, 2, 3, as marked on 
the curves.
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Fig. 5.12 Plots of the difference in position angles (0^ - 0g)> of the 
resultant polarization against the relative orientation (<|>) 
for = 0.8 and for Rp = 1, 0.5, 0.33, 2, 3, as marked on 
the curves.



relationship between K and X for the above data are always belowmax
the lines for normal stars.

With the current measurement precision of the p(A) curve it would 

be impossible to use a low value of K for an individual star as being 

indicative of the presence of complex structure in the interstellar 

cloud giving rise to the polarization. However, we have shown that 

for such stars taken as a group, overall low values ensue for K in 

complex cloud situations.



GENERAL SUMMARY

The investigatory research reported in this thesis has been con

cerned with the wavelength dependence of interstellar linear polariza

tion and the form of its normalised behaviour, now referred to as 

Serkowski's Law [P(X)/Pmax = exP (“K &n2 (Xmax/X)^J .

Two aspects have been explored in the work, each based on an 

analysis of catalogued measurements and then complemented by theoreti

cal studies. Firstly, Chapter 2 investigated correlations between K

and Xmax with Chapter 3 exploring their likely cause, and secondly in

Chapter 4 effects on the parameter K when stars are observed through 

complex interstellar clouds were investigated and comparisons made with 

a simple Two-Cloud model as outlined in Chapter 5. Summaries and con

clusions have been made in each of these chapters but a more general 

and unified summary is given here.

When spectropolarimetry is performed with a limited number of

passbands and the measurements then normalised to Serkowski's Law,

correlations appear relating the sharpness (K) of the p(X) curve with

the position of X . These correlations appear to have gone unnoticed max
by the original observers who collected the data, and are reported here

for the first time. Their form depends on the number of passbands used

and on their effective wavelengths.
/

A likely cause for their existence and their variation according 

to the filter set used for the spectropolarimetry is the normal experi

mental noise associated with the measurements. The number of p(X) 

measurements for each star is small and it has been shown that if

noise is present this can affect the deduced values of K and X in 
c max

a correlated way.



For a set of stars with identical true X t correlations betweenmax
K and X will ensue when the data are noisy. For a set of stars withmax
a range of X t the overall correlation between the deduced values of max
K and X depends on the filter set. on the distribution of the Xmax max
values and on the distribution of the p values in association withmax
the magnitude of the noise on a typical single measurement of a point 

on the p(X) curve.

This study has assumed that a normalisation of p(X) curves as 

performed by Serkowski is perfectly legitimate. This, of course, may 

not be the case, particularly if there is structure in the p(X) curve 

as some workers have suggested. Further study is perhaps required here. 

However, even if normalisation is not strictly valid, it would not 

affect the general conclusions arrived at here.

The presence of complicated interstellar cloud structures is 

thought to have been revealed by previous observers from the presence 

of a wavelength dependence of the position angle 0(X) of the polariza

tion. By reassessing these stars which show the effect (excluding 

those which might display the phenomenon as a result of an intrinsic 

polarization) it has been shown that the derived values of K are 

generally smaller than for the more usual interstellar polarization 

as observed for the majority of stars. A study of the Two-Cloud model 

shows why this is so. This exercise has been performed in a more 

meaningful way than by the workers who originally promoted the idea 

that there may be connections between 0(X) and K but did not take 

noise sufficiently into account.

Further study of the behaviour of the interstellar polarization 

law must be undertaken so that more meaningful astrophysical state

ments might be made. At present it would seem that possible correla

tions between K and Xmax which are interpretable on an astrophysical



basis are veiled by noise and a significant increase of measurement 

accuracy is called for before any major advance can be made. Improve

ments could be achieved by increasing the polarimetric accuracy for 

colour systems that have already been used or by providing a larger 

number of passbands. In terms of telescope application, this latter 

suggestion could be realised only by the use of multi-channel detectors 

such as the CCD. Whether or not the necessary polarimetric precision 

can be achieved by these emerging devices is something which will 

hopefully be resolved shortly.



APPENDIX 1

The values of K and Xmax for the 107 stars measured in four colours 
from SMF as calculated according to the scheme in Chapter 2

24398 0.81

max

0.527 102997 1.31

max

0.568
30836 0.96 0.565 105071 1.25 0.584
30870 0.75 0.576 109867 1.02 0.583
32990 1.20 0.568 111193 1.51 0.553
36371 1.11 0.576 111613 0.86 0.594

37350 0.67 0.564 112244 1.35 0.667
37903 0.83 0.864 114886 1.32 0.566
38771 1.47 0.495 118522 1.06 0.576
42087 0.89 0.574 118978 1.51 0.554
42400 1.41 0.509 120908 1.11 0.625

43384 1.05 0.553 122879 1.00 0.612
46769 0.97 0.526 123335 0.95 0.609
47240 1.00 0.520 124195 1.38 0.589
51309 1.41 0.506 124314 0.85 0.583
57623 1.42 0.484 124771 0.71 0.652

58439 0.63 0.578 125788 1.33 0.540
60325 0.63 0.587 129557 1.14 0.603
61827 0.54 0.853 131918 0.90 0.530
65228 1.09 0.509 135240 1.12 0.572
69882 1.66 0.528 135591 1.39 0.574

73882 1.26 0.740 135737 1.55 0.564
74272 1.66 0.594 137709 1.04 0.530
74575 1.31 0.524 139137 0.71 0.595
74956 / 1.26 0.268 139160 0.86 0.577
78785 0.80 0.654 140873 0.70 0.683

79186 0.98 0.517 141637 1.26 0.569
80057 0.73 0.624 142919 1.55 0.547
81471 1.35 0.593 144217 1.22 0.626
83183 1.04 0.575 144470 1.41 0.580
84810 1.03 0.575 145206 1.31 0.568

85656 1.09 0.603 145502 1.60 0.640
85871 0.80 0.544 146323 1.06 0.595
90706 1.03 0.580 147084 0.79 0.784
90772 0.69 0.534 147889 1.53 0.715
91969 1.08 0.522 147932 1.33 0.716

92964 1.29 0.579 147933 1.31 0.668
96918 1.07 0.527 147977 1.07 0.565
98695 1.32 0.594 148379 1.05 0.616
99953 1.14 0.539 149757 1.18 0.587

102839 0.23 0.630 150168 1.16 0.551



Appendix 1 continued

HD max HD K max

150416
150421
150898
154204
157244

1.19
1.07
0.95
0.98
1.42

0.615
0.570
0.600
0.591
0.563

168021
169420
170740
170764
183143

1.41
1.24
0.92
0.87
1.05

0.569
0.667
0.574
0.545
0.564

157599
157999
159176
161592
161840

0.78
1.38
1.67
0.79
1.30

0.611
0.557
0.513
0.642
0.561

183344
187929
188001
190299
193150

0.97
1.17
1.14
0.44
1.42

0.550
0.553
0.580
0.665
0.568

161912
162714
163472

1.18
0.45
1.12

0.552
0.521
0.617

194953
203532
207089
211924

0.99
1.05
1.51
1.03

0.664
0.567
0.501
0.504



APPENDIX 2

The values of K and Xmax for the 73 stars measured in seven colours 
and the corresponding values for the reduced data to four colours from 

CGS as calculated according to the scheme in Chapter 2

7-colour 4'-colour

HD K ^max K ^max

4180 0.47 0.471
4768 0.79 0.477 0.60 0.521
6675 - - 0.22 0.928
7252 1.03 0.505 0.27 0.649
7902 1.28 0.495 0.90 0.514

7927 0.95 0.496 1.15 0.513
8965 1.09 0.502 0.67 0.553
9481 0.90 0.468 1.15 0.475

10898 1.12 0.485 1.53 0.491
12953 0.95 0.549 1.16 0.576

13267 1.20 0.514 0.97 0.533
13379 1.25 0.492 1.43 0.480
13470 1.13 0.503 0.50 0.449
13476 1.22 0.518 1.56 0.502
13854 1.27 0.530 0.73 0.599

14322 0.83 0.492 1.38 0.497
14433 0.91 0.489 1.01 0.506
14489 0.74 0.518 0.61 0.442
15558 1.04 0.517 0.73 0.556
16778 0.79 0.446 1.23 0.467

18326 0.73 0.518 _ —

19441 1.00 0.492 0.85 0.522
20134 0.97 0.465 0.79 0.438
20959 0.73 0.505 1.56 0.489
21291 1.07 0.519 0.93 0.514

23512 1.17 0.508 _ _

23675 1.09 0.493 1.33 0.502
24398 1.57 0.594 1.58 0.566
24432 1.27 0.574 0.91 0.571
24912 1.39 0.552 1.17 0.570

25291 0.49 0.404 0.71 0.412
25443 1.38 0.500 1.18 0.486
29866 0.91 0.608 1.02 0.568
31964 0.78 0.487 - -

32481 1.08 0.555 - -



Appendix 2 continued

7-colour 4-colour

HD K ^■max K ^max

32990 1.11 0.494 1.20 0.483
33203 1.13 0.483 0.48 0.516
34078 1.17 0.532 1.31 0.566
34921 1.31 0.565 - -

35921 1.17 0.583 1.15 0.561

36629 1.11 0.506 0.60 0.534
37202 1.56 0.626 - -

37356 1.35 0.512 1.49 0.485
40111 - - 0.82 0.995
41398 1.03 0.573 1.50 0.578

41637 0.66 0.509 _ _
43384 0.88 0.555 0.45 0.732
43753 0.72 0.560 0.76 0.624
47933/4 1.37 0.657 1.14 0.676
54204 0.65 0.569 - -

54445 1.14 0.539 1.18 0.551
59176 1.40 0.499 - -
61056 1.36 0.547 1.46 0.547
63472 0.79 0.547 - -

83143 1.47 0.541 1.42 0.536

84915 1.28 0.520 1.37 0.556
85859 0.78 0.487 1.28 0.494
92422 1.23 0.533 - -

97770 0.93 0.493 1.40 0.485
144217A 1.25 0.581 0.86 0.636

145502 1.43 0.677 1.56 0.661
161961 0.88 0.445 1.40 0.440
164353 1.15 0.523 0.65 0.581
192163 1.64 0.510 0.54 0.592
192641 0.21 0.307 - -

193237 0.88 0.436 0.84 0.437
193794 0.80 0.500 1.05 0.552
198478 1.00 0.497 1.50 0.521
207260 1.23 0.522 1.11 0.469
208501 1.58 0.553 1.50 0.558

216411 1.40 0.506 1.08 0.513
218323 0.74 0.510 0.35 0.666
224014 0.95 0.549 1.16 0.576
250290 1.27 0.550 0.97 0.614
259143 1.06 0.521 1.03 0.511
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