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ABSTRACT

The main objective of this thesis is to study singular solutions in the light
of symmetries of ordinary differential equations. The practice of finding and
using symmetries for integration and the use of differential forms in symmetry
methods are introduced. Differential equations admitting singular solutions
are introduced with emphasis on the Clairaut equation and its generalizations.
These equations are investigated from the symmetry point of view with special

attention to the role of singular solutions in symmetry reduction methods.
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1. INTRODUCTION

The purpose of this document is to study singular solutions in the light of
symmetries of ordinary differential equations. Symmetries are a key to solving
differential equations. There are various methods for obtaining exact solutions
of differential equations of a standard type. Most of these methods can be ap-
plied because of the underlying symmetry property of the differential equation
and are in fact special cases of a few powerful symmetry methods. The merit of
symmetry methods is that they can be applied to differential equations that are
of unfamiliar type. Symmetries of a given differential equation are to be found
and can then be used to construct exact solutions.

An introduction to the practice of finding and using symmetries for integra-
tion of differential equations is given by Stephani [21]. In this style the present
document gives an introduction to point symmetries with an emphasis on ap-
plications. Symmetries are introduced by explaining the use of the infinitesimal
generator of point transformations and giving a basic definition of point sym-
metries. Furthermore it is explained how symmetries of first, second and higher
order differential equations can be found. Finally it is illustrated how symme-
tries can be utilized in integration strategies.

Another effective way of investigating differential equations and their symme-
tries as mentioned by Olver [18] is given by using the language of differential
forins. For the study of differential geometry, topology and differential equa-
tions differential forms are a powerful tool [18]. An introduction to differential
forms is given from basic definitions of differential forms as explained by Olver
[18] and Flanders [11]. This is followed by explanations of the Lie derivative
and closed and exact forms which are the key to symmetries as discussed. by
Olver [18].

With emphasis on illustrative applications and examples in the style of Harri-
son [13] it is explained how the language of differential forms can be used in the
theory of symmetries. Simple examples, e.g. ¥ = 0 have been used, since these
are geometrically equivalent to more complicated examples. Some important
concepts of symmetry methods can be explained with the aid of these simple
equations.

The first integrals of y” = 0 are y — pz and p with y’ = p. Any relation between
these integrals is given by F(p,y — pz) = 0 for which a Clairaut equation, an
equation admitting singular solutions, generally given by y = pz + f(p) is an ex-
ample. Considering higher order differential equations y(™ = 0 then the relation
of their first integrals leads to more general Clairaut-type equations. NMotivated
by these findings the strategy for further research is to use the symmetries of
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y™ = 0 to determine the symmetries of differential equations with singular
solutions, in particular the Clairaut equation and its generalizations. This will
give information on the role of singular solutions in symmetry methods.

This is followed by an introduction to differential equations with singular solu-
tions. Special emphasis is on the known example of a Clairaut equation and its
generalizations, given for example in Goursat [12]. It is explained how the solu-
tion of the generalized Clairaut equation can be obtained by the same method
as Clairaut’s equation [22].

This leads to an investigation of the Clairaut equation and generalized Clairaut
equations from the symmetry point of view. Symmetries of the general and sin-
gular solutions of these equations are investigated. To obtain them the findings
related to the symmetries of equations of type y(™ = 0 have been used, e.g.
symmetries for the Clairaut equation can be determined using the symmetries
of y” = 0. It is noted that symmetries of the general solution of a Clairaut
equation are not equal to symmetries of the singular solution. This can be gen-
eralized for higher order equations y{™ = 0 in relation to generalized Clairaut
equations.

Furthermore, it is noted that the symmetries obtained lead to reductions from
y(™ =0 to generalized Clairaut equations. This is followed by an investigation
of how syminetries lead to a reduction of a given system of differential forms. It
is studied in which way the reduced system inherits symmetries of the original
system. This is investigated for systems of differential forms which are equiva-
lent to second and third order differential equations. Finally the findings enable
to investigate singular solutions in regard of symmetry methods for reduction.



2. INTRODUCTION TO POINT SYMMETRIES

This chapter gives an introduction to point symmetries by explaining the in-
finitesimal generator of point transformations and giving a basic definition of
point symmetries. Furthermore it is explained how symmetries of first, second
and higher order differential equations can be found. Finally it is illustrated
how symmetries can be utilized in integration strategies.

2.1 Generators of point transformations

We start with the definition of a one-parameter group of point transformations,
then consider its infinitesimal generator. This is followed by a consideration
of a multiple-parameter group of point transformations and its generators. We
define the normal form of an infinitesimal generator and explain the extension
to derivatives of variables.

2.1.1 One-parameter groups of point transformations

Let 7 5 0 be an open subset of R and € € I be an arbitrary parameter. A point
transformation is defined as a map from points (z,y) into (Z,7) as

o, :R? - R?
(z,y) — (Z,9)

where = Z(z,y,€), § = §{z,y,€). A set of point transformations form a local
one-parameter group of point transformations G, if the group properties are
satisfied, i.e.

e Closure property: For any elements ®., and ®,, of G composition
De, Dy = Dcy ey
is an element of G.
e Associative property: For any elements ®,,, ®.,, ., of G it is true that

‘I’El ) (‘bez ’ q’sa) = (‘Del ’ (Dsz) ’ (I)Ea'

o Identity element: There exists an identity element, which without loss of
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generality corresponds to € = 0, such that for any element ®., of G

&g ., =, - Bo = Po,.

o Inverse element: For any element ®,, of G there exists an inverse element
®_,, in G such that
q)s, ' ‘D—el = ‘PO

2.1.2 Infinitesimal Generator

The action of the one-parameter group of transformations can be interpreted
as motion in the (z,y) plane. An initial point (xq,yo) generates a curve as
the parameter £ varies. For each considered point we obtain a curve which
represents the action of the group which is shown in figure 2.1. The action

Fig. 2.1: Action of the group represented by curves.

of the transformation group is represented by a set of curves, each of which
is characterized by its tangent vectors as shown in figure 2.2. Considering the
field of tangent vectors X the transformation group which takes a point (z,y)
to (Z,9) can then be expressed by an infinitesimal transformation [21], [19]

I

z + £(z,y)e + ...
y+n(z,y)e+ ...

@ R

The infinitesimals £(z,y) and n(z,y) are defined by

oz
g(‘l‘) y) = alfzo
9y

n(z,y) = ¢ l==0-
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Fig. 2.2: Action of the group characterized by tangent vectors.

With these functions an infinitesimal generator can be given as

o a

This infinitesimal generator determines the infinitesimal transformation and also
the one-parameter group of transformations [21], [4], [5].
2.1.3 Generator of multiple-parameter groups of point transformations

Point transformations that depend on more than one parameter can be written
as
an = (5?(.’1?, yv En)a g('za yv En))

where n = 1, ..., N. For each n there exists a generator X,,. These generators
can be linearly combined to obtain

N
X = zaan
n=1

where the a,, are constant coefficients.

Example: The general projective transformations on the (z,y) plane can be
represented by a 3 X 3 matrix

u a b ¢ u
v | =|d e f v
w g h 1 w
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or

ax+by+c
gz + hy+1i
_dztey+ f
T gzt hyti

8
Il

<

where

&

z= ,

U
, T=—, T=—.
w

w

I
&

The infinitesimal generators of the projective transformations in R? are given
by

0
Xy = 68_93
X, = £
X3 = x%
Xy = y(%
Xs = Ic’%
Xo = vy
X; = IZ% + a:ya—y
Xg = a:yai + y2%<

As stated above these generators can be combined to obtain an eight-parameter
generator

2y 0 o 0
X = (a1 + a2z + asy + agzy + asx )£ + (as + a7z + agy + aszy + a4y )bfy

where aj, as, ..., ag are constants.

2.1.4 Normal form of a generator

For any infinitesimal generator there exist coordinates (s,t), called canonical
coordinates, such that it can be transformed to

7]

Xza
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which is called the normal form. In these coordinates the generator acts like a
translation. The visualization in the (z,y) plane shows that the curves which
represent the action of the transformation group are straight lines in coordinates
(s,t) as sketched in figure 2.3. The transformation can be given as

A 4

Fig. 2.3: Action of the transformation group in coordinates (s,t).

t
s+ e

(V- TR

To find these coordinates we start with the generator given in the form

7] o
X =zi) 5 + ()

The new coordinates s and ¢ should satisfy

0 7} 17/ o 17}
This equation leads to a systemn of differential equations to determine s and ¢
Jds Jds
§5, T Gy 1

ot ot
EE +ﬂ% = 0
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Example: Given the generator

The required coordinates (s,1) have to satisfy above stated conditions which
lead to the system of differential equations

3z + yay =1 (2.1)
ot ot
:E% + ya—y- = 0. (2.2)

From (2.2) we get that ¢t can be written as a function of y/z such as p(y/z),
and (2.1) leads to s = 1 In(zy) + ¥(v/z).
2.1.5 Extension of generators

Before applying to a differential equation a point transformation has to be ex-
tended to its derivatives which is done by

L g _ y(03/9y) + (95/02) _

—_ /
Y T 3T y(6z)dy) 1 (0/07) =v(@y.9.e)
L/ d?}, o~ 7]
7 = ===y y e
x

The extension or prolongation of the point transformation to the derivatives
leads to the extension of the infinitesiinal generator

E) E)
X = E(w,y)gag + n(x,y)a—y

up to the nth derivative

e} ] , 0 .
X =§(z,y)a—x+n(z,y)_+n 3y 4o 4™

To obtain the 7/, ..., n(") we consider the previous representation of the action
of the one-parameter group of transformations.

= z+E&(z,y)e+ ...
=yt

8

<

‘We can extend to the derivatives

gl

Il

¥+ (z,y,y)e+ ...

g(n) = y(n) + T](n)(z: y)y/) rty y(n))e + et
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The 71, 77, ..., n™ are defined by

oy
n = Eh:o
. 8y
n™ = = le—o.
Therefore we can write
dy  dy+edn+.. dn  ,d€
G T drveaer. VTt V@It
~(n—1 n—1 : -1 n—1
UM L el e AN B P
dz dz +ed€ + ... dz dz
The 7, 7/, ..., n™ are obtained as
dn  ,dg
! — 1 _ . I_
o= dz Y dz
dn(m—1) de¢
n - 4 —ymE
K dx y dz’
The expression for (™ can be rewritten as
dr dne
n - 271 _ 85
" dzv Y dzn
_ dnn d'nyl , dnE ("+1)
- dz"_dzng_ydz_”-i-y ¢

and the formula for the extension can be written as
0 = L~ ye) + ytmt e
dz™
which is independent of y(*+1),

2.2 Symmetry definition
A given point transformation
Oc(z,y) = (Z(z,y,¢),4(z, y,¢))
is a symmetry transformation of an ordinary differential equation
H(z,y, 9., y™) =0

if the form of the differential equation does not change, i.e. whenever y = f(z)
is a solution, so is § = f(Z) where (Z,9) = ®.(z,y). The infinitesimal gener-
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ator X forms an algebra of symmetries for the ordinary differential equation
H(z,y,9',...,y™) = 0 if both

XH(z,y,y,....y™) =0
and
H(z,y,y,..,y™) =0

hold. If the highest derivative of the differential equation can be isolated such
that
y™ =w(z,y,y, .,y Y)

then H(z,vy,y’, ...,y(”)) = 0 can also be written in form of a linear differential
operator

7] 0 7]
Af =(m=+v - +y'5=+ . 4w

9
Ox dy Oz y(n-1) )/ =0

where f(z,y,v",y", ...,y D) = const. is an integral. The equations
Af=0

and
y(n) —w

are equivalent. A is called the characteristic vector field of the equation. The
generator X is a symmetry if

Af=0= A(Xf)=0
holds. Since XAf = 0 we can write
[X,A]lf =(XA-AX)f=0.

Since [X, A]f = 0 and Af = 0 have the same solutions, they may differ only by
a factor of the form A = A(z,y,v’, ..., y™ V) Therefore the symmetry definition
can be written as

[X,A] = M.

By using again the condition XH = 0 and taking H = y(™ — w we get another
useful formulation of the symmetry definition. Since the extended generator has
the form

) ) ) 8
X = E(I,y)gg +77(95,y)6—y +n' 55+ .+ 7 ')W

oy’
the equation Xw = Xy leads to the symmetry definition

Xw= n(").
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2.3 Finding point symmetries

This section gives an introduction to how point symmetries of a given differ-
ential equation can be found. This is explained and illustrated by examples
more specifically for first and second order differential equations. A more gen-
eral outline is given for finding point symmetries of higher order differential
equations.

2.3.1 Lie point symmetries of First Order Differential Equations
A first order differential equation given by

Y = w(z,y)

has a symmetry

. 1o} 15]
X = E(w,y)a + n(x,y)gg

if the symmetry condition Xw = n{™ as mentioned in the previous section is
satisfied, i.e.
7] o
Xw=(f—+n—)w=n
w (Eaz +n8y)w n
must hold. This condition can be written in terms of £ and 7 as

Ew,z + E,:cw + E,yw2 =Nzt NyWw — Wy

[21], [9]. In fact the number of solutions for the above equation is infinite,
however, there is no systematic method to find them. Symmetries of simple
structure can often be found by inspecting a given differential equation.

Example:  Given the first order differential equation

!

Yy =zy.
The symmetry condition is here

€y + Eaay + €,3°Y° = 1o +nyTy — N7

This equation is satisfied for example for £ = 1/z and n = 0 which correspond

to the symmetry generator
10
T x0x’

2.3.2 Lie point symmetries of Second Order Differential Equations

A second order differential equation given by

/i

y ! = w(xl y’ y’)
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has a symmetry
7] é) 0]
X — i . / nN_~
E(I,y)az +n(x,y)ay +7'(z,y,y )ay'
provided that the following condition is satisfied

— 9 ., a ,/6 7/
Xw-(65+na—y+nay,)w—n~

Written in terms of £ and 7 this condition becomes
Wity = 20z = 3Y'y) — W — w1~y e + Y (Ny — €x) —y*EQ]+
Nzz + y/(277,zy —€oz) + y’z(n,yy =26 4y) — y’sf,yy =0
[21], [10].
Example:  Given the second order differential equation
y' =0
then the condition for symmetries is
Nz + V' (May = Eaz) + Y2 (Myy — 2izy) = ¥ 6y = 0
froin which follows that £ ,, = 0 and 7, = 0. Hence € and 7 have the form

£ = alz)y + B(z)
n="(y)z +6(y).

Equating to zero the coefficients of y" and y' gives 7,y — 26y = 0 and € 25 —

2n 2y = 0 which leads to

7' (y)z +8"(y) - 2/ (z) =0

o’ (z)y + B"(z) = 27'(y) =0
from which we obtain ¥”(y) = 0 and " (z) = 0. Therefore we get
= cx+ce
C3x2 +csT +cp

= cy+ey
= cly2 +cry +cg

o R ™ R
I



2. Introduction to Point Symmetries 21

resulting in the eight-parameter generator of the projective transformations in
R? as mentioned in a previous section

2 0 2 9
X = (a1 + a2z + a3y + a4y + asz )a + (ag + a7z + agy + aszy + asy )é—y-

2.3.3 Lie point symmetries of Higher Order Differential Equations

To find symmetries of higher order differential equations one proceeds similarly
to the case of first or second order differential equations. It can be stated that
an nth order linear differential equation has at least an n-parameter group of Lie
point symmetries. However with increasing n the method described for second-
order differential equations becomes more and more complicated. Therefore it
can be easier to try to obtain simple structured symmetries by inspecting the
given differential equation. Symmetries most often consist of the forms 8/9z,
z8/8z, 8/8y, yd/8y and azd/dz + Byd/dy.

2.4 Integration strategies

Symmetries of a differential equation can be utilized for finding its solutions.
This section explains how syminetries can be used to solve first order differential
equations. Moreover it is explained how symmetries can be used to achieve a
reduction of a differential equation.

2.4.1 Solving First Order Differential Equations

A first order differential equation is given by

v =w(z,y)

or
0 7]

Af = (5 +wz)f =0

Its symmetry generator is

14] 0
X = 6(%:(/)55 +n($,y)5g-

The solution can be given using a line integral

dy —wdzx
z, = — = o = constant
o(z,y) / o ¥

since
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Example: Given the differential equation

;L 1
Voo ey
and the symmetry generator
1o/ 0
X=—-z—+—.
oz + Oy

Using the statement above, the solution can be obtained by
dy — (- sr=7 )da

B / - (~2)(~z7e=)

/eyd;r: + (ze¥ + 1)dy

ze¥ +y

e(z,9)

I

[21], [15].

2.4.2 Reduction of Higher Order Differential Equations

An nth order differential equation given by
v =w(z,y,y, .y Y)

or
o 0 o ..
Af—(a+y6—y+..,+wa—y(n_—l))f_0

can be reduced to a differential equation of order n — 1 by using a symmetry.

Suppose a symmetry generator is given in normal form

7]
X—g.

The differential equation can then be transformed to
sM™ =a(t,s, s, .., s
and the symmetry condition now reads

XLD:ELDZO.

Os

This shows however that @ does not depend on s and is therefore

s =o(t, s, ..., sY)
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a differential equation of order n — 1 for s’ [21], [1]. This procedure may be
repeated whenever we have a symmetry of the reduced equation, finally resulting
in a first order differential equation, though there is no guarantee that any
reduced equation will have such a symmetry.

Example: Given the differential equation

and the symmetry generator

The generator can be transformed to its normal form using t = yz® and s = Inz
which brings the differential equation to the form

s = —t2s" + 30ts" — 117
which is a first order differential equation
u = —v?ud + 30vu® — 1142

forv=_tand u=s[21].

2.4.3 Integration Strategies for Second Order Differential Equations

As shown in the previous section a first order differential equation with a sym-
metry can be solved by using a line integral. This section explains integration
strategies for a second order differential equation given by

/i

v = w(z,y,9)
o o ,0 @
Af = (= +y 5+ +wz—)f(z,y,v) =0.

I=(5 Y5y ay')f( v,9')
If it has a two-parameter group of transformations, then the two generators can
be used to solve it in different ways. Two integration strategies for second order
differential equations are illustrated as follows.

First integration strategy

One integration strategy is to transform the given generators of a second order
differential equation to a simple form. This procedure has several cases.
Given the differential equation and its symmetry generators

o 17}
X, = §1a—z +Tlla_y
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0 0
Xo = fom 4+
2 &2 e + 72 By
and
_| & m
&

There are four cases to be distinguished:

o [X1,X2]=0and A#£0
The generators can be transformed to X; = % and Xo = % and the
differential equation becomes s” = &(s’).

e [X1,Xz]=0and A=0
The generators become X; = -63—3 and X, = t% and the differential equa-
tion becomes s” = &(t).

o [Xl,Xz] = Xl and A 75 0
The generators can be transformed to X; = 73% and X, = t% + t% where
the differential equation will be s = %s,)

L [Xl,Xz] = X1 and A=0
The generators become X; = a% and X = s% with " = s'G(¢).

Example: Given the second order differential equation

g3
2y
with the symmetries

X1 = y— f—
1 y@y +y 5y

1o}

Xy = —.

2 Oz

The generators X; and X7 commute and A does not vanish
[X1,X2] =0, A= -y

This is the first case which is described above from which follows that there are
coordinates s(z,y) and ¢(z,y) for which the generators take the normnal form
and the differential equation can be written as s” = @(s’). It is known that
these coordinates must satisfy

Xit=0 Xot=1

and
X18:1 XgS:O .
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Therefore s and t can be obtained as

—md d
t:/ mdz + & v_,

A
5= / Medz — 2dy _ In
A Yy
This transforms the given equation into
1
n_ -0
$' =358

which is of the form s = &(s’) as stated above.

Second integration strategy

A second integration strategy is given by transforming the given generators
into normal forms in the space of first integrals. If a second order differential
equation is given as

15}

0 g
Af = (a + yla—y +w($,‘y,’y')a—y,)f =0

then a first integral is given by

dz dy dy
1 v w

& m m

where
1 ¥ w
A=|& m n |#0
& m m
since
Ap=0

is satisfied. Using ¢ as a new variable instead of y’ will lead to the differential
equation Ay = (53; + ' (z, v, ga)a%) and the solution 1 can be obtained by

dy —y'(z,y, p)dz

¥(zy0) = m — &y’

This solution is given in terms of z,y and ¢ and can be set to a constant to get
y = y(z, @0, o). If the symmetry generators satisfy [Xi, X2] = O then another
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first integral would be given by

dr dy dy

!

1 ¢y w
& m M
v(z,y,v) = /-—2——;——2

Example: Given the differential equation
v 3Y"
2y
We know that the symmetries X; = ya% + aiy' and X, = % commute. For the
second integration strategy we need A as described above

132
Ly 3% 1,
A=10 y y |=-3¥"
1 0 0
Then we get the solution ¢ from
dz dy dy
3 ’2
1 y/ 2 y’;'

1 Yy
= /(ldas + 2? - 2y—,2dy')

= a:+4l—yl
Yy
and v from
dr dy dy
3 2
1oy g%

1 0 0
¥(z,9,y") = /—A——

1 1
~3>dy + 2—dy’
/( ;W y,y)

= —3lny+2lny.

Taking ¢ and ¥ as constants leads to the solution

a

y=—

DR
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2.4.4 Integration Strategy for Second Order Differential equations with more
than two Point Symmetries

A second order differential equation can have up to eight Lie point symmetries
and if there is a two-parameter group of transformations the solution can be
found via line integrals as shown in the previous section. A differential equation
may admit a group of symmetries that does not contain a a two-parameter
group of transformations. This is the case if the Lie group has the commutators
[X1,X2] = X3, [X2,X3] = X1 and [X3,X1] = Xo. Then another strategy
should be used. Since there is a linear relation

X1+ peXo + usXs+vA=0
the equation can be written as
X1 = (2,9, 9) Xo + (2,9, ¥) Xs + v(z,9.9)A

where ¢ and 4 are first integrals which satisfy Ay =0 and Ay = 0.

2.5 Summary

In this chapter we have given the definition and properties of point symme-
tries. Methods how to find symmetries of a given differential equation have
been explained and illustrated with examples. Finally it has been shown how
symmetries can be used in integration strategies. The use of symmetries for
the integration of differential equations has the benefit that they make it pos-
sible to have a systematic approach. Therefore, symetries can also be used in
computerized integration procedures.



3. INTRODUCTION TO DIFFERENTIAL FORMS

Another way of investigating differential equations and their symmetries is given
by using the language of forms. This chapter gives an introduction to differential
forms from basic definitions. The exterior derivative and closed and exact forms
are explained. Although the theory can be developed quite generally we will
restrict definitions and examples to low values of the degree of the form, because
of the applications we have in mind.

3.1 Definition of Differential Forms

This section gives a definition of differential formns by first defining alternating
p-forms. Contraction and wedge-product are explained, leading to the definition
of differential forms.
3.1.1 Alternating p-forms
Let V' be an n-dimnensional vector space over R. A map
n: VP> R
is then called alternating p-form if it has the following properties (8], [11]:
e 7 is p-linear, that is linear in each argument

e 7 is alternating, that is for 1 < ¢ < 37 < p it satisfies
n(vlv"'vvi)"'1vjv"'1vp) = _n(vlv"'1U‘i—1vvj)vi+1v"':Uj—17viavj+la*-*:Up)-

A 1-form 7 : V + R satisfies the conditions for a general linear map. For all u
and v of V and all a of R

o n(u+v) =n(w) +n(v)

* n(av) = an(v).

The set of all linear maps 7 : V — R is called the dual vector space to the vector
space V and denoted V*.



3. Introduction to Differential Forms 29

3.1.2 Contraction of a differential form

The contraction of a differential formn is an operator denoted by |. If 7 is a
p-form and v € V, then v|n is a (p — 1)-form defined by

('UJW)('Ul, V2, 'U(p—l)) = T](’U, V1,02, ’Up)-
Examples:
e 7 is a one-form: v|n = n(v)
e 7 is a two-form: (v|n)(v1) = n(v,v1)
e 7 is a three-form: (v|n)(v1,v2) = n(v,v1,v2)

3.1.3 The wedge-product A of alternating p-forms

Let V be a real vector space and let n be a p-form and w a g-form. Then the
wedge product of 7 and w defines an alternating (p + ¢)-forin.

Examples:

e for p =0: let n = ¢, then
nAw = cw

e forp=1and g =1:
(m Aw)(vy, v2) = n(v1)w(vz) — n(v2)w(v1)
e forp=2andg=1:
(n Aw)(vy, v2,v3) = n(v1)w(v2, vs) — n(v2)w(vr, vs) + N(vs)w(vi, v2)
o forp=2and g =2:

(77 /\w)(Uh V2,3, U4) = T](vl,vz)w(%, U4) + 17(03,1’4)14)(01, Uz) - 1](1)1,113)(41(’02, v4)
—1(v2, va)w(v1,v3) + n(v1, va)w(vz, va) + n(vz, v3)w(vy, v4)

Let ey, ..., e, be a basis of the n-dimensional real vector space V. Then a basis
for the dual vector space V* is given by 4!, ....,6™ where éi(ej) = ;5.

The alternating p-forms §% A .. Af% with 1 <i; < ... < ip < n are a basis of
the space of p-forms on V and each alternating p-form can be written as

n= E ai i, 0" AL A, a;,..i,€R
1<i1<..<ip<n

with Aiy .4, = 1](6,'1, ...,eip).
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3.1.4 Differential forms on an n-dimensional manifold

A differential form of degree p or p-formn 77 on the n-dimensional manifold M is
given by the map

n:M-T(|J (TrM))
€M

see 18], [14]. Each z € M has an alternating p-form
Nz (TeM)P — R.
Let P be a point in R™. Then a differential form at P is an expression
Zaydmhl Adzh A Adzhe

where the ay are constants and H is the multi index hy, ..., hp.
Let U be an opeun subset of R™. A p-forin on U is obtained by choosing a p-form
at each point of U. Hence a p-form 8 has the representation

6= Zay(zl, ooy Tp)dz™ Adzh2 A A da
where ap (21, ...,Z,) are smooth functions on U.

The wedge-product on differential forms
Let M be an n-dimensional manifold. Then the wedge product of differential

forms on M is the map
r+q

P g
A /\ X /\ — /\ .
It is defined for each point z € M by

MAW)z =N Aw,.

For each real vector space V' the direct sum
o p
p=0

is a graded algebra under the wedge product A. The wedge product is
e associative: (N AW)AE=nA(wAE)

e anti commutative: n Aw = (=1)P%w A7 for n from A7 and w from A”.

Examples:

A differential 1-form on R3 is an expression

a = A(z,y, z)dz + B(z,y, 2)dy + C(=z,vy, z)dz.



3. Introduction to Differential Forms 31

A differential 2-form on R® is an expression

B = F(z,y,z)dy Adz + G(z,y,z)dz Adz + H(z,y, z)dz A dy.

Their wedge-product is the 3-form

aAfB=(AF + BG + CH)dz ANdy ANdz.

3.2 Exterior Derivative

This section gives the definition of the exterior derivative, illustrated by exam-
ples.
3.2.1 Definition
The exterior derivative is a map
P p+1

VA

[20]. Tt takes a p-form © to a (p + 1)-form d©. If 6; and 6, are p-form and
g-form respectively

d(6; + 63)
d(91 A 02)

dfy + do,
dé, NGy + (—1)P01 Adbs.

I

Examples:

The exterior derivative of a function f(z,y, z) in R3 results in a 1-form and is

given by
_9f of of
df = axdz—l- 8ydy+ azdz

Given a 1-form F(z,y,z)dz + G(z,y, z)dy + H(z, y, z)dz, then its derivative is
a 2-form given by

d(Fdz+Gdy+Hdz) = (G, —F,)dzAdy+(H,—G,)dyAdz+(F,—H,)dzAdz.

The exterior operator d applied to a 2-form results in a 3-form which is an
expression f(z,y,z)dz A dy A dz, generated by

d(Fdy Ndz + Gdz Adz + Hdz Ady) = (F; + Gy + H,)dz Ady Adz.

For each p-form @ it is true that

d(dé) = 0.
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For example if a 0-form is given by a real valued function f(z,y,2) this means
d(df) = 0, which can be shown by

d(df) - (fy:r - fzy)dx /\dy + (fzy - fyz)dy ANdz + (fzz - fzz:)dz Adz =0.

Considering the example of a 1-form § = Fdz + Gdy + Hdz then d(d§) = 0,
because

d(df) = Gz, — Fy, + Hyy — Gz + Foy — Hyyldz Ady Adz = 0.

3.2.2 Closed and exact forms

A closed form is a differential p-forin « satisfying
do = 0.
An exact form is a differential formn (p + 1)-form o satisfying
a=df
for some p-form (3. Hence, each exact form is closed, because
do = d(df) = 0.

However, closed does not imply exact.

3.3 Differential Equations in the language of forms

A differential equation can be formulated by a set of differential forms, proceed-
ing as follows. The derivatives of the dependent variables are to be defined as
new variables. If the given differential equation is linear in the highest deriva-
tive, then it can be given as a set of quasi-linear first order differential equations
from which relations between the differentials can be obtained. These relations
will lead to the set of differential forms, representing the original differential
equation as a differential ideal I < A with df C I.

Example:  Consider an ordinary differential equation y”’ = s(z,v,v’,y").
Then an equivalent set of first order equations is

dy  dp _ dw
d:z: _p1 d.’E = uw, d(E - 3($,y,P,w)~

From the relations dy = pdz, dp = wdz and dw = sdx the equivalent system
of 1-forms can be obtained as

6, = dy-—pdx
6y = dp—wdz
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03 = dw—sdzx.

For the differential equation A = 8, + pdy + wd, + s0,, the above forms then

satisfy
Al6y = Al6, = Al63 = 0.

This system is closed, because

ddy = —dpAdzr=dzNb,
dfy = —dwAdz=dxN0;
dfs = —dsAdx =sydx A0+ s,dz AOy + s,dx AG3.

3.4 Summary

In this chapter we have given an introduction to differential forms from basic
definitions. The basic concepts of wedge product, exterior derivative and closed
and exact forms have been explained. Differential forms are a powerful tool
for the study of differential equations. Their utilization is illustrated in the
following chapters.



4. DIFFERENTIAL FORMS AND SYMMETRIES

This chapter is an introduction to how the language of differential forms can be
used in the theory of symmetries. The Lie Derivative will be defined. It will be
explained how forms can be used to find symmetries. Furtherinore there will
be detailed illustrations regarding concrete systems of forms. Simple equations
have been chosen because Clairaut and generalized Clairaut equations will be
treated as reductions of these simple systems.

4.1 Definition and Properties of Lie Derivative

The Lie derivative of an object o describes the infinitesimal change along a path,
deterinined by a vector field V. It is denoted as Ly (o).

Lie derivative of vector fields: 1f V and W are vector fields on M then the Lie
derivative of W with respect to V is in coordinate representation

.9 o o
Lv(w’%) = (v’w,} _wjvv_; )

ozt

where (-),; = 325 (-). Hence the Lie derivative of a vector is again a vector and
is denoted by the Lie bracket of V and W

LV(W) = [V7 W]

Lie derivative of functions: The Lie derivative of a function or 0-form f is then
the directional derivative with respect to V'

Lyf=V]df =v'f,.

Lie derivative of differential forms: Let o be a differential form and V be a
vector field on M, then

Ly (o) =V|(do) + d(V]o).
The Lie derivative of a p-form ¢ is again a p-form.
Further properties:

Ly(ao + bw) = alLy(o)+ bLy(w)
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Lv(do‘) = dLv(O')
Ly(oc Aw) (Lvo)Aw+ o A(Lyw)
Ly(W]o) [V,W]jo + W](Lvo)

I

where a and b are constants.

4.2 Using differential forms to find symmetries

Consider an ordinary differential equation F(z,v,v’,...,y™) = 0. It can be
formulated using the language of differential forms. Then the equation is rep-
resented by a set of forms,

6, = dy-—pdz
0, = dp—wdz
0n+1 = dF

To obtain the syminetries of the given set of formms a vector field V has to be
found that determines a flow under which the ideal of forms 8; is invariant. This
is the case when

e the Lie derivative of 6; vanishes, Ly8; = 0, or

e the Lie derivative is linear in the forms 6;, 1 = 1,...,n, that is

Lv6; =Y M6,
J

where the )] are general functions.

Then the vector field V represents the direction of an infinitesimal symmetry
transformation.

4.3 Symmetries of First Order Differential Equations

4.3.1 Symmetries of F(z,y,p) =0
A general first order differential equation is given by F(z,y,p) where p = y'. It
is equivalent to the system
61 = dy-—pdz
0 = dF.

The system adinits a symmetry

8 8 E
= — — P—
V=Xgo+Yg+ Py
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where X, Y and P are functions of z, y and p, if V satisfies the symmetry
conditions

Lyv6; = Aubi+ M2
Ly6r = X101 + A220s.

4.3.2 Symmetries of p = f(z,y)

A first order differential equation where the highest derivative can be isolated is
given by F(z,y,p) = p — f(z,y) = 0 with p = ¢//. It is equivalent to the system

0, = dy-— fdz.
The system admits a symmetry

3 E
VX5 tYg

where X and Y are functions of z and y, if V satisfies the symmetry condition
Ly, = M6
from which we get

Ly6, = VJ (d:l: N df) + d(Y — fX) 161
(—foX = f,Y — [ Xy + Ya)dz + (Y, — fX,)dy = —fhde+ X

which determines A; =Y, — fX,. Therefore we get
Xfo+Yfy =Y = fYy + f(Xz + fXy) =0.
4.3.3 Symmetries of y' =0
The first order differential equation given by v’ = 0 is equivalent to the system
6, = dy.
The symmetry condition above is then
0 = Y.

The general solution of y' = 0 is known to be y = I, where I is a constant. A
general symmetry is given by

0 o
V = a(x,I)Ez + 0'1([)5
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Note that aa%Jﬁl = 0 is true for all a so a(z, y)a% is the characteristic symmetry
which can be neglected. The symmetry condition is then

Ly6, = M6
which gives
doy = \dI
leading to the conditions
o1 = A
Ul,z = 0

which are satisfied for any function (). This determines the general symmetry
* )
V= 01+

3y

where o} is an arbitrary function of y.

4.4 Symmetries of Second Order Differential Equations

4.4.1 Symmetries of F(z,y,p,w) =0

A general second order differential equation is given by F(z,y,p,w) where p =
vy, w =y’ It is equivalent to the system

6, = dy-—pdx
0 = dp—wdzx
03 = dF.

The system admits a symmetry

7] 0 0 o}
V~X'8;+Y5;+P5;+Q%
where X, Y, P and Q are functions of z, y, p and w, if V satisfies the symmetry
conditions

Ly6; = X101 + A262 + A363
Lyv6; = A6 + A2262 + 2303
LyvOs = A31601 + A3262 + A3303.

4.4.2 Symmetries of w = f(z,y,p)

A second order differential equation where the highest derivative can be isolated
is given by F(z,y,p,w) = w— f(z,y,p) = 0 with p = ¢/, w = y". It is equivalent
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to the system

0, = dy—pdzx
02 = dp—fdz.

The system admits a symmetry

7] o] 7]
V=X—+Y—+P—
Jz + 6y+ Op

where X, Y and P are functions of z, y and p, if V satisfies the symmetry
conditions

Lv6y = Aubr + Ai262

Ly6; A2161 + A2202

from which we get
Lyv6, = VJ (dl A dp) + d(Y — pX) = A1161 + Ai262
= (-P+Y: —pX;)dz + (Yy —pXy)dy + (Y, — pXp)dp + (Yo, — pX.,)dw
= (=pAi1 — fA2)dz 4+ (An1)dy + (A12)dp
which determines P as
P=Y, + p(Yy - ny - Xz) + f(Yp - po)~
We also get

Ly, V|(dz Adf) + d(P — fX) = Aa101 + A2202
(—fa:X - ny - fpp - fXx + Pz)dl' + (Py - ny)dy + (Pp - pr)dp

(=pA21 — fAzz)dz + (M21)dy + (A22)dp

I

which determines Agy = Py — fX, and Ayp = P, — fX,,. Therefore we get

Xfz+Yfy+Pfy—Po—pPy— [P+ [(Xs +pXy+ fXp)=0.

4.4.3 Symmetries of y" =0

The second order differential equation given by y” = 0 is equivalent to the
system of

6, = dy—pdz

92 = dp.

The symmetry conditions above are then

P = Y.+p(Y,-pX, - Xz)



4. Differential Forms and Symmetries 39

0 = P, +pP,

Suppose that X and Y depend only on z and y, then the system breaks into
components

0 = sz
0 = —Xpz+2Y
0 = —-2Xyz+7Yy
0 = Xy
with the solution
X = aizy+ay+ as3z? + a4z + as
Y = aszy+asz+ary’ +ary+as
where aj, ..., ag are constants. This is the eight-parameter group of point

symmetries of ¥/ = 0. If we want to get not only point symmetries, a different
approach is needed. A general solution of y” = 0 is known to be y = Iz + I,
where I; and Iy are constants, and the space of solutions is therefore given in
coordinates

y = hLz+ 1
P = 11.

Changing coordinates from (z,y,p) to (z,Iy = p,l2 = y — pz) transforms the
above system into

61 Id11+d12
6, = dl.

Symmetry condition for a general symmetry

19] 15] 5]
V= 0‘(1,11,12)a Jr<‘»'1(11,12)6—11 +0'2(11,12)6—I2

with oz, I, Iz)% as the characteristic part is then

Lv6, = Anbi+ A
Lyv0; = A2161 + Az20s.

For 6; this gives
zdoy + doy = ()\111‘ + )\lg)dfl + (Au)dlg
leading to the conditions

zoy 02, = Anz+ A2
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oy, +o2, = An
:ZIO'I,I+0'2,I = 0.

For 65 this gives
doy = (Mo1z + Aa2)dly + (Mo1)dly

leading to the conditions

o1, = Auz+ Az
o1, = An
Oz = 0

which are satisfied if oy and o are arbitrary functions of I; and I. Transforming
back to coordinates (z,y,p) determines the symmetry V = Xa% + Ya% + P§-p
as the general symmetry

6] 14]
V= (01x+02)8—y +013—p

where 07 and o3 are arbitrary functions of p and y — pz and X = 0.
Note that a symmetry

1s] 1s]
V= X(z,y)% + Y(z,y)a—y

has the same action on solutions of a given differential equation as
[Y(z,y) — X(z,y)p] EW
V =[Y(z, X(z, .
Yy Yy Y

Since o, and o3 are arbitrary, the symmetry generator above includes cases in
which Y (z,y,p) = o1z+09 is linear in p and can be written as Y (z, y) — X (z, y)p.
Then the admitted syminetry

0

is a point symmetry.

4.5 Symmetries of Third and Higher Order Differential Equations

4.5.1 Symmetries of F(z,y,p,w,s) =0

A general third order differential equation is given by F(z,y,p,w,s) = 0 where
p=1v,w=1y"and s = y'”. It is equivalent to the system

6, = dy-—pdzx
6, = dp—wdzx
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03 = dw—sdz
0y = dF.

The system admits a symmetry

0 0 o 7] a
V=X—+Y—+P—+Q—+5—
Oz + dy + dp + Ow + Os
where X, Y, P,  and S are functions of z, y, p, w and s, if V satisfies the
symmetry conditions

Lv6; = A1+ 262 + A136s + A1464
Ly, = A1+ Aoafa + Aa3fs + Apay
Lvf; = 3161 + A3202 + A3303 + A3sby
Ly8y = A1+ Ag262 + Mgabz + Agaby.

4.5.2 Symmetries of s = f(z,y,p,w)

A third order differential equation where the highest derivative can be isolated
is given by F(z,y,p,w,s) = s — f(z,y,p,w) = 0 where p = ¢/, w = 3" and
s = y". It is equivalent to the system

6, = dy-—pdx
6, = dp-wdz
93 = dw-— fd:l:

The system admits a symmetry

1o} a 7] 17}
V=X—+4Y—+P—+Q—
Oz + Oy + Op + Ow
where X, Y, P and 2 are functions of z, y, p and w, if V satisfies the symmetry
conditions

Lvo: = Aubi+ Ai2fs + Ai36s
Ly6; = A21601 4 Ag2f + A23bs
Lyv6s = A3161 + A3202 + X336
from which we get
Ly, = VJ (d:c A dp) + d(Y —pX) = A6y + A12602 + M36s
(—P + YI —‘pXI)d:L' = (—p/\u —U)Alz - f/\lg)d.ll
+(Yy —pXy)dy + (Y —pXp)dp +(A1)dy + (Ar2)dp

-|'(Y“J —pr)dw +(/\13)dw



4. Differential Forms and Symmetries 42

which determines P as

P=Y, +p(Y, —pXy — Xz) +w(Yp —pX,) + F(Yo — pX.).

We also get
Lyby = V](dz Adw) +d(P —wX) = X1+ Aa262 + Azabs
(=04 P, —wX.)dz = (—pla —wlaz — fAes)dz
+(Py —wXy)dy + (P, —wX,)dp +(A21)dy + (Aa2)dp
+(P, —wX,)dw +(A23)dw

which determnines 2 as
Q=P +p(Py —wXy) +w(Pp —wX, — Xz) + f(Py —pXu)-

Finally, we get

Lybs =V]|(dzAdf) +d( = fX) = X3161 + X3202 + A3a63
(—fIX _fyy_fpp_fw —er+nx)dI = (_p)\31 _"J)\BZ _f)\SS)dI
+(Qy - ny)dy + (‘Qp - pr)dp +()\31)dy + (/\32)dp

+(Qu — fXu)dw +(A33)dw

which determines A3y = Qy — fXy, da2 = 0, — fX, and A3z = Q, — fX..
Therefore we obtain

X fot Y [yt Plpt Qf—Qn —pQy —wQp — [+ F(Xe4pXy+wXp+ fX,) = 0.

4.5.3 Symmetries of y"' =0

The third order differential equation given by y"’ = 0 is equivalent to the system

6, = dy—pdz
6, = dp—-wdz
63 = dw.

The symmetry conditions above are then
P = Y,+p(Yy—pXy, — Xz) +w(¥, — pX,)
N = Po+pPy—wXs) +w(P—wX, — X;)
0 = Q74 p0y +wl),

which leads to a system of PDEs.
A general solution of ¥’/ = 0 is known to be y = %le2 + I,z + I3, where I, I
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and I3 are constants, and the space of solutions is therefore given in coordinates

= 1111'2-{-]2.’1:—{-13

2
p = L+l
w = 11.

Changing coordinates from (z,y,p,w) to (z,[} = w, o = p—wz, I3 = y+%wz2 -

pz) transforms the above system into

1
6 = §x2d11+:rd12+d13
0y = zdly +dI,

0; = dI.

Symmetry condition for a general symmetry

0 9] 7]
V= 01(11,12,13)6—11 +02(II’I2’13)8_12 + 03(11,12,13)8—13

neglecting the characteristic part, is then
Ls6; = o]df; +d(V]6;) = Ainf1 + Ai2f3 + AizO3

fori=1,2,3.
For 6; this gives

1 1
§x2dcrl + zdog + dog = ()‘11512 + A2z + Ais)dly + (A + Aig)dlz + (M1)d]s

leading to the conditions

1 1

2 2
7% oL +zo2y +o3, = /\1151' + A2z + A3
1

2
5:1: o115, tzoa g, +035, = A11Z + A12
1

2
5% o1, +z02 1, +03 1, = An

1

3x2 O15+x09,+03, = 0.

&

For 6 this gives
1
zdoy 4+ dog = (21 512 + A2z + Ap3)dly + (Aa1z + Aaz)dla + (Ao1)dls
leading to the conditions

1
zoyr, +o2,, = A2t 5-’52 + A2z + o3
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zo, +02, = AT+ A
zoy g +0o2,, = An
oy z+o2, = 0.

For 63 this gives
1
doy = (Aa1 5:152 + Az + Aga)dly + (a1 + As2)dla + (As1)dls

leading to the conditions

oL = )\31%I2 + X327 4 A3z
o, = AnzTH+ A

o1, = A;

o1z = 0

which are satisfied for oy, o2 and o3 as arbitrary functions of I, I and I3.
Transforming back to coordinates (z,y,p,w) determines the symmetry V =
Xa% + Ya% + Pa% + Qg% as the general symmetry

1 e} a 17}
V = (30’11‘2 + o2z + Ua)a—y + (alz + Og)a—p —+ 0’1%

where 01, 02 and o3 are arbitrary functions of w, p —wz and y + %wxz —pz and
X =0.

Point symmetries are given if Y (z,y,p) = %0'11‘2 + 02z + 03 is linear in p and
can be written as Y (z,y) — X(z,vy)p.

4.5.4 Symmetries of F(z,y,v',y",..,y™) =0

A general nth order differential equation is given by F(x,y,y",v",...,y™) =0
and is equivalent to the system

0, = dy—ydzx
0 = dy —y'dx
Ont1y = dF.

The system admits a symmetry

8 & ., 8 .0
—xL vyl vy iy®
V=X 4 Y g Y g e Y gL Y o
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where X, Y, Y’,..., Y™ are functions of z, y, v',..., y™, if V satisfies the
symmetry conditions

Ly, A1101 + A28z + -+ Mng1)Ons1)

LvOmiy = Annift + Amanz + o + A1) (4 1) Ot 1)

4.5.5 Symmetries of y(") =0

The nth order differential equation given by y(™ = 0 is equivalent to the system

01 = dy—vydz
0, = dy —y"dz
Omsny = dy™ ).

The method used for second and third order equations can be continued for
higher order equations. The general solution of y(™ = 0 is known to be

1 e 1 e 1
y= mfll‘ 1+m[21 2+...+§In_2x2+In_lx+In
where I), I, ... I, are constants, and the space of solutions is therefore given

in coordinates

1 1 1
y = L L2244 pzi a4 1
y e R s TR TR A L s
1 1
"= e 2V L 4T, _
O R o
y("_z) = Lzxz+4+ 1D
y o=

Following the method used for lower values of n we then find a general symmetry

1 1

vV = n—1 n—1 -
(———(n_l)!dll‘ +—(n_2)!0'23: + +0‘(n))6y
+...

%] 17}
o1z +02) 5 rmsy + 91 5
where 01, 09, ..., 0(n) are arbitrary functions of
L = y»b

I, = y"?-Ia
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1
I; = y("_s) - —27[11'2 — Iz

1 n-—1 1 n—2

1
I, = y+ mh.’z "I(n—2)z2 — I(n—l)-'r'

—mlzl' —'—'2

4.6 Summary

This chapter introduced to a method to find symmetries using differential forms.
The method was illustrated for simple examples of the form y(™ = 0. Their
symmetries could be determined and these results are useful for further investi-
gations oun differential equations with singular solutions.



5. CLAIRAUT AND GENERALIZED CLAIRAUT EQUATIONS

This chapter gives an introduction to differential equations with singular solu-
tions. Special emphasis is on the known example of a Clairaut equation and its
generalizations, as we aim to consider generalized Clairaut equations as reduc-
tions of equations y(") =0.

5.1 Clairaut equation
A Clairaut equation is a first order differential equation given by
F(z,y,p) =y —azp—f(p) =0

with p = y’. The method to find solutions for this kind of equation is described
for example in [12] and [16]. Differentiating leads to

dp ’
0=—
Pzt o)
which is satisfied if either
. %ﬁ =0or
e z+ f'(p) =0.

Consider the first case, if gg = 0 is true, then a general integral is given by
LT

y=cz+ f(c)

where ¢ is a constant. This solution describes a family of straight lines. If
z + f'(p) = 0 is true, then another solution can be given by the two equations

z+ f'(p)
pz + f(p)-

0
Y

Eliminating p leads to the envelope of the straight lines represented by the gen-
eral solution [6], [7]. This solution cannot be obtained by choosing a particular
value for the constant ¢ and is therefore called a singular solution.

Example: An equation is given by

F(z,y,p) =y —pz — (1/2)p* =0
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. Differentiating gives
0= u{x+p)

where i = ~ . If w = 0, then y = cix + @ where c| and ¢4 are constants
satisfying F(x,c1X + Q,ci) = 0. Therefore we get the solution

y=cx+ (1/2)c2

where c is a constant. This is the general solution. Another solution is obtained
by x+p = 0 which inserted into the original equation gives y +x2—(1/2)(—)2 =
0 which gives another solution as

y=-(1/2)x2.

This solution is a singular solution as it is not part of the general solution.
Figure 5.1 shows some general solution curves and the singular solution of the

example equation.

Fig. 5.1: General and singular solution of y —px —(1/2)p2 = 0.

5.2 First order generalized Clairaut equation

5.2.1 Generalized Clairaut equation F(p,y —px) = 0

A generalized Clairaut equation is given by F(j>,y —px) = 0. Using the same
method as described above and differentiating the equation leads to
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Example: An equation is given by
F(x,y,p) = (y-px)2-p2= 1

Differentiating gives
0= u>x(y - lox) + p)

where i = *2. If u = 0, then y = cyx + @ where ¢| and Q are constants
satisfying F(x,c\x -f @,ci) = 0. Therefore we get the solution

(y —cx)2—c2=1

where c is a constant, which is the general solution. Another solution is obtained
by x(y —px) +p which leads to a singular solution

y2+x2=1

which is the unit circle as illustrated in figure 5.2 along with some general
solution curves.

Fig. 5.2: General and singular solution of (y —px)2—p2= 1.

5.2.2 Gomsat}d generalized Clairaut equation

Generalizing the preceding example, a generalized Clairaut equation is described
by Goursat [12]. Consider a curve for which the product of the distances from
two points F and F' to its tangent is equal to a constant b2. The distance
between the points F and F' shall be 2¢, and the points shall be on the x-axis
as shown in the sketch in figure 5.3. An equation

y —px = k = const
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Fig. 5.3: Sketch of Goursat’s generalization.
represents the tangent. The distances d; and d; from the points F} = (—c,0)
and F; = (c,0) to the tangent are

L el T el i |
p?+1 vp?+1

Setting the product of the distances to a constant gives

d

didy = b
|k — c*p?|
p?+1

Suppose that Fy and F, are on the same side of the tangent we get b% = %;%ﬁ
and because k? = (y — pz)? we get the equation

(y —pz)? = *p® = B3 (1+p7).
The equation reduces to a Clairaut type equation of the form

y =pz £ /b2 + a?p?

where a? = b% + ¢?. The general solution is given by the family of straight lines

y=Czx+Vb?+a2C2
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The singular solution is determined by

y —pi:—yjb2+ a2p2 = 0
o
X+ —,. P — 0
\Jb2+ a2p2

from which we obtain a solution as the equation of a general ellipse

as illustrated in figure 5.4.

Fig. 5.4: Ellipse for a = 3 and 6=2.

Goursaty 2nd generalization: Goursat [12]also mentions another example of
generalizing a Clairaut equation. It is givenasthe system

I
=]

F(y —px, 2 —qx,p,q)
G(y —px, z —qx,p,q) = 0

where p = y’' and ¢ = z'. Differentiating these equations w.r.t. x gives the

relations
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5.3 Second order generalizations of Clairaut equation

5.3.1 Generalized Clairaut equation F(y + %xzw —pz,p —wz,w) =0

A generalized Clairaut equation is given by
12
F(y+ T W —pr,p—wz,w) =0

where p = v’ and w = y”. Similarly to treating first order generalizations, we
differentiate the equation which leads to

1
F(y-l—isczw—px,p—wa:,w) =0
oF 1
%(y-l—izzw—pz,p—wx,w) = 0.

Example: An equation is given by
L o
F:y-!-;a: w—pz+p—wz+ f(w).

Differentiating leads to

0:5(%x2—z+w)

4

where s = %. Ifs =0, theny = %clxz +cox+c3 and ¢, cg and c3 are constants

satisfying F(z, 3c122 + ez + c3,c1z + ¢2,¢1) = 0, i.e.

1
-2-cf+62+63=0

must lold. The famnily of parabolas given by y = %clzz + coz + c3 is the

general solution. The general solutions in the (z,y,p)-space are given by the
two-parameter family

1
= cfz-1)+ Ecl(zz —c1)

P ce+cr1z.

If %zz —z 4+ w = 0 then we get a first order differential equation
1o, 13 14
—px — = -z —=z* =0
Yy+p—px 21 + 2:5 Sm
which can be integrated and the singular solution is then

1 4 1, 1 1 1 const

y:(l—z)(ﬂz - 3% —gz—gm)-kl—_—z.
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5.4 Higher order generalizations of Clairaut equation
Higher order generalized Clairaut equations are given by
F(L,I,..,I,)=0

where the I, I, ..., I, are given by

o=y
Iz = y("_2) — Il.’ZI
1
I; = y(n—3) - ‘2‘le2 — Iz
I _ (n—4)__lI 3__1_1 2_1
4 = Y 3 1z D) 2T 3T
1 _ 1 _ 1
]n = y+ m]lln 1_ (71——2)!121.71 2_ = §I(n—2)12 — I(n—l)l"

A Clairaut equation is the special case where n = 2. The general solution can
be given as

C1
n—1)

Cln—
(o 2)152 + C(n-1)T + Cn.

c2 n—1
(n_2)!m + ..+ o

V=1 Tz +
Note that the I3, Ig, ..., I, are integrals of y(™ = 0. Singular solutions appear
in higher order generalizations and can be investigated similarly to the case of
a Clairaut equation [17].

5.5 Summary

In this chapter we investigated the Clairaut equation and explained how the
general and singular solutions can be obtained. We introduced generalizations of
the Clairaut equation and determined general and singular solutions for example
equations with low order. Finally we outlined higher order generalized Clairaut
equations.



6. SYMMETRIES OF CLAIRAUT AND GENERALIZED
CLAIRAUT EQUATION

In this chapter Clairaut and generalized Clairaut equations are investigated
from the symmetry point of view. Their symmetries are determined by using
findings of the previous chapter. Symmetries of the general and syminetries of
the singular solution of a Clairaut-type equation are distinguished.

6.1 Symmetries of a Clairaut equation

6.1.1 General Symmetries of a Clairaut equation

For determining the symmetries of a Clairaut equation we look at the equation
y” = 0 and its symmetries. As mentioned in a previous chapter it has the
general integral y = I1x + I so that I} = p and Iy = y — pz. The characteristic
vector field is

1o} 0

XC:E+p3_y

which satisfies Lx, 6 = 0 for 8 = dy — pdx. We know that syinmetries of y” = 0
are all vector fields of the form

1o} 15} 14}
04(11,1'2)6,—11 +ﬁ(11’12)6_12 +’Y(r,11,12)£

where v(z, I1, I2)9; is the characteristic part. We look at the symmetries gen-
erated by 5371 and (—9‘?—2.

6—?1 generates the symmetry:
L >L+e, o1
ie.

pP=pt+te = p -p=e¢
y —p'z’'=y—pz = ¢ —y=p(' —z)+ez

op =k, 0y = pdz + ez’
0 '6+(‘+)6+6 x6+a+:'cX
— = I— T+2)—+ s~ =2— + — c-
ETR 9z P gy op oy op
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6%2 generates the symmetry:

L -1, > 1+e¢

ie.
p’=p = p'-p=0
y—pd'=y-pr+te = Yy -y=p(a'-1)+e
op=0,0y = pér+e
0 0 1o} 4]
= = G (pi 4 1) = — + 32X,
ol i TG =5, 1

Any AX, is a symmetry and {A\X.|\ a function} is a Lie algebra ideal inside
{0]Ls0 =0 (mod @)}. So the characteristic symmetries can be factored out
to leave the noncharacteristic symmetry algebra [2], [3].

0 4]
Ol(-’hlz)a—l1 +[5(11,12)6—12

where Iy = p, I = y — pz, 6—’?1 ~ xa% + 3%, ai,z ~ 6%' These symmetries
permute elements of the general solution and the characteristic symmetries map
each particular solution to itself.

Solutions to y” = 0 are all the straight lines in the (z,y)-space. They lift to
straight lines in the (z,y, p)-space where p is the slope of the lines in the (z,y)-
space.

A Clairaut equation is given by y — pz = f(p). In coordinates Iy, I5 this is
f(I1) = I,. It is a choice of a one-parameter family of lines from the two-
parameter general sotution of y” = 0. Syminetries of a Clairaut equation are
therefore either the characteristic symmetry X or symmetries which permute
members of the one-parameter family. Such a symmetry has the form o =
a% + ﬂgfj[-z- and must satisfy o(f(I;) — I2) = 0.

This leads to af’ = 3, hence we get o = a(% + f’(Il)a;?z)A Inserting the
symmetries generated by 6;?1 and 6—‘?2 we get

0 o
Uza((z-l-f/)a—y‘l'a—p)

which generates the flow

z+ f'(p)

Il
—

Hence we have
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Yy rot + f(t+po) +a, a=uyo— f(po)
p = t+po

which represents the map

T z T
Y — y+azt+ flp)—flp—t) | =1 9
P t+p P

Then the general solution y = cz + f(c) with p = ¢ will be mapped into
y+at+ fe) - fle—t) =cz + f(c)

which leads to
y=(c—t)z+ flc—1t).

Hence the symmetry permutes the members of the general solution.
Considering also the characteristic part, then symmetries of a Clairaut equation
are given as

o} , o}
AX, +O¢(6—11- +f (11)6—1;-
which equals
1o} 0 N O 1o}
)‘(—3; +P6—y) +a((z+ f )6_y + 6_p)"

6.1.2 Symmetries of the singular solution of a Clairaut equation

In forms the Clairaut equation F = y—pz — f(p) = 0 is equivalent to the system
© given by

6, = dy-—pdzx
6 = —(z+ f(p))dp.

© has rank less than 2 when z + f/ = 0. An ideal is given by the reduced system
O = (~(z + f'(p))dp).

A quotient ring is the quotient of a ring and one of its ideals [23]. Considering
© and the ideal ©' then the quotient ring is denoted as ©/©’. It has elements
of © where ©' = 0. This is the case if

ez+ f #0and dp =0 or
e z+ f/=0and dp #0.

If dp = 0, then p = ¢, where c is constant and 8/(p = c¢) has then elements of
(dy — cdz). This system is closed. Since d(y — cz) = 0, a general solution is
given by y —cz — f(c) = 0.

Ifz + f' =0, then ©/(z + f' = 0) has elements of {(dy + pf”dp). This system
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is also closed. Because of d(y +pf’ — f) = 0, a singular solution is given by

y+pf ' —f = const.
z+f = 0.

As shown in the previous section symmetries of a Clairaut equation F(z,y,p) =
y —pz — f(p) = 0 are given by

o a

= n_ —_.

o=allz+ 5+ 5,)

Singular solutions of Clairaut are given by the two conditions:

F(z,y,p) = y-pz—f(p)=0
OF
a—p(w,y,P) = —z—f'(p)=0.

However, whilst
nO 8 y /
U(F):{(Z+f)a—y+a—p}pi($+f)+(—x“f):0

the action of o on G, F is

oF N N
0($)={(x+f)8_y+6_p}F”_ —f"(p) #£0.

But o is an equivalence class of vector fields in the factor algebra, so some A X,
can be added to it. Therefore we get

(0 + AX)(F) = o(F) + AXo(F) =0

and
oF, N0 e 7] 8 ,
(0 + /\Xc)(a) = {(z+f )5; t5t Mzz +pa—y)}(——m ~ f'(p))
= —f"p) - X
This is equal to zero for A = —f”(p). Hence we can specify the symmetries as
1o} o a o}
—_— ! __ = g = __
o+/\Xc—(m+f)ay+ap A +pay)

from which we obtain

) a o
_ II_ I_ II___ .
f8x+(z+f pf)ay+8p

as the symmetry of the singular solution.
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Example: Let F be given as the Clairaut equation F(x,y,p) =y —px —\p2m
Figure 6.1 shows the general solution lines in the (x,y,p) space. The projection

Fig. 6.1: General solution in (x,y,p) space.

onto the (x, y) planeshowsthe singularsolution as illustrated in figure 6.2. The
singular solutionisgiven ifF = 0 and Fp = —x —p = 0 issatisfied.Symmetry
of the singular solution is

The symmetry conditions are satisfied because V(F) = 0 and V(FP) = 0.

6.2 Symmetries of F(p,y —px) —0

6.2.1 General Symmetries of F(jp, y —px) = 0

Given the first order differential equation F(p,y —px) = 0 or F{I\,I2) = 0 in
coordinates /1, /2. It is equivalent to the system of 1-forms

61 - dy —pdx
e2 = d{F).
A symmetry has the form cr = £ and must satisfy a(F(li, 12)) = 0.
Therefore we get /? = —a-py- leading to a = —py~-"). The symmetry o
is then given as
ca=a((x - — )—+ —)

Fh'dy dp
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Fig. 6.2: Singular solution in (x,y,p) space,

which generates the flow

x =0

Fii
YT YRS
)4 = 1

Considering the characteristic part, then the symmetries of F(p,y —px) = 0 are
given by
« .t «<m/,ul,)(£
which is equal to
5 5 F/l. 9 5
A<al +V +a(py ~pxWx ~Wjd~y + dj'
6.2.2 Symmetries of the Singular Solution of F(p, y —px) = 0

Singular solutions of F(p, y —px) = 0 are given by the two conditions:

F(p, y —px) 0

dF
— (py-px) = 0.

Let Fit be denoted as F\| and Fi2 as F2. A symmetry
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applied to the first condition gives

F 0

’ _ 0 B F_
U(F) = {(I— E)a_y + a_p)}F_Fl —EFQ —0.

But for the second condition we get
oF, F,,. 0 1o} B F
U(a—p) ={(=z - 7oyt a_p')}FP =F,- F2F1,z #0

Because o is an equivalence class of vector fields in the factor algebra, some A X,
can be added to it. This leads to

(0 +AX)(F)=0(F) + MX (F)=0

and
F .0 o o 1o}

- E)a_y ta T Maz +P5§)}(Fp)

F
(z - F:)pr + Fop + MFpz + pFpy).

(o + Axcx%g) = {=

This is equal to zero for

(x_%)pr+FPP

A=—
Foz + pFpy

Therefore the symmetry of the singular solution can be given as

N F o 8
a+)\Xc—z\a+(x—F2+/\p)a—y+%

for the above M.

6.2.3 Symmetries of Goursat’s generalization

Goursat’s generalization of the Clairaut equation is given by y = pz++/b2 + a?p?.
This is equivalent to the system © given by

6, = dy—pdz
2
—(z+—mFyap

VI + a2

As shown in a previous section symmetries of a general Clairaut equation y =
pz + f(p) are given by o = (z + f’)a% + ?}a_p- Therefore symmetries of Goursat’s
generalization should be determined by

02

a’p 0 0

[ R + J—
N +a2p2)5y dp

c=(z+
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where any characteristic symmetries /\(5‘95 + pa%) can be added. It must satisfy
the symmetry conditions

Ls61 = X161+ 26, (6.1)
L,6; = Ag101 + A220s. (62)

Regarding 6.1 we get

a?p B a?b? + alp? — alpt

/b2 4 a2p2) - (b2 + a2p2)(3/2)

o](~dp Adz) +d(z + dp = A116h + Ai262

which is satisfied for

Air = O
a2b? + alp? — atpt

A pr .
12 z(62 + a2p2) 7D 1 aZp(b2 + a’p?)

Considering 6.2 we get

a2p a2b? + a%p? — ap?

v Tt aen

ol(dpAdz) +d(—(z + dp = X101 + 202

which is satisfied for
A = 0
a2b? + a*p? — atpt
(b2 + a2p?)B3/?) + a2p(b? + a2p?)

A2z =

Symmetries of the singular solution of an equation y = px + f(p) are given by
o5 = —f”b% +(z+f —pf”)a% + a% as mentioned in a previous section. In the
case of Goursat’s generalization we then get

a?b? + a'p? — oipt

~ a?p a2 alp? —alpt O 0
o5 = —( (b2 + a2p2)@/2)

/62 + a2p? P+ a2p?) 6D )(’-)_y+6_p

as the symmetry for the singular solution.

a
)&+(CE+

6.3 Symmetries of F'(w,p —wz,y + %wﬁ —pz) =0

6.3.1 General Symmetries of F(w,p —wz,y + %wxg —pz) =0

For determining the symmetries of the Clairaut equation we started by consid-
ering the symmetries of y” = 0. Similarly we now look at y”" = 0 to determine
the symmetries of the generalization

1
Flo,p —wz,y + gws® —pz) =0
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y""" = 0 has the general integral y = %lez—}-fgl‘-l-];; sothat 1 =w, Iy = p—wzx
and Is =y + %wzz — pz. The characteristic vector field is

2.0 8
€7 Oz pBy w@p'

Symmetries of "/ = 0 are all vector fields of the form

4] Io} 1s] a
04([1,12,13)5}; +ﬂ(ll’12’13)5T; + ’7(11,12,13)5]—3 +5(€8,11,12,13)5—I:

where §(z, 1,5, 13)0; is the characteristic part. We look at the symmetries
generated by %, 6;?2 and %.

% generates the symmetry:

L mh+te, h-1, I3 13

w=wt+e = W —-w=c¢

p—uwr'=p-wz = p-p=wlr -z)+tex

1 1 1 1
y + §w'z'2 —-pr=y+ §wz2 —pzx = Yy —y= §w(r' —z)2 4 p(a’ — )+ 361’2.
Hence
w = €
Sp = wlzr+ex
1
by = poz+ Eem’z.

Then we get
0 '6+('+1ac2)6+(z‘+z)6+a
= = I T 4+ — — w — 4+ —
ol oz~ PET " Mgy ' Ow
,0 8

120 20,0 Lux
2 Sy Z@p B T

3 .
B generates the symmetry:

L oI, I, =1 +¢,I3 = 13
ie.

w=w = W -w=0

p -t =p-—wzte = p-p=w(@ -z)+e¢
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1 1 1
v+ 5we? —pa =yt qwa’ —pr =5 Y -y =gu@ —2)’ +ple’ —2) +ed

2
Hence
ow = 0
bp = wiz+e
dy = pdz+ex.

Then we get

.0 . 0 . a
— = z—z-+(px+:c)a—y+(wx+l)£

7] o .
= Za—y+a—p+£.xc

) .
37; generates the symmetry:

L-5L, =1, I3—>I3+¢

w=w = Ww-w=0

p -t =p-wzr = p -p=w(z -z

1 1 1
y’+5w’z'2—p'2':y+ waz—px-i—e = y'—y:Ew(x’—w)2+p(;c’—x)+e.

Hence
bw = 0
op = wiz
dy = poz+te.

Finally we get

s .8 8 o 8
oL, = igg TPEH NG+ (Wilg =5+ d

The characteristic symmetries can be factored out to leave the non characteristic
symmetry algebra.

19] 5] d
04(-’1,]2,13)5H + ﬂ(fl,fz,ls)a—[2 + 7(11712713)6—]3

where [y =w, I =p —wz, I3 =y+%wz2—pm and % ~ %:cza% +za%+5%’
2 242 0 0
ol Oy dp? OI3 9y *
Given an equation F(w,p —wz,y + %wﬁ —pzx) = 0or F(h,I,I3s) = 0in
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coordinates I, I» and I3. It is a choice of a two-parameter family of parabolas
from the three-parameter general solution of y"/ = 0. Symmetrles are either the
characteristic symmetry X, or symmetries of the form o = am + [5’3,2 + 7613
and must satisfy o FS:Il,Ig,Ig) =0.

This leads to v = e8P and we get

_ 7] +8 4] aFy + gF, 0
7= %5 " e Fy 0l
equal to
1, aF) + BF;, O 7] )
o= (aix + Bz — ———Fa—)a—y- +(a:1:+/3)ap +aaw

Considering the characteristic part, then symmetries of F(w,p —wz,y+ %wwz —

pr) =0 are

OéF] +5F2 8
AX. +Cl +ﬁ3]2 —F3 a—]:;
equal to
17} a 0 1 2 ) OtFl-i-ﬁFg 17} a2
A(ax+p8y+w5;)+(a§z + Bz — )— (ax+ﬂ)5+a%

6.3.2 Symmetries of the Singular Solution of F(w,p —wz,y + jwz? —pz) =0

Singular solutious of F(w,p—wz,y+ %wzz —pz) = 0 are given by the conditious:

Flw,p —wz,y+ %wzz -pz) = 0
OF 1,
2 w,p— Zwz? — = 0.
55 (WP —wz,y + Jwzt —p)
Applying symmetry
9 aF, + BF, &
7= +ﬁ oL, I ol
to the first condition leads to
o o) aFy —f—ﬂFz aF) + BF;
F)={o— _ = F = oF Fpb————=F3;=0
o(F) {a811+ﬁ612 oA } aFy + BF; i 3
and is therefore satisfied. However
OF o 8 aF + ,6F2 aFy + F;
g _enTin e PR e 40
a( ap) {e ol =+ oL A }F =aF11+8F12 2 1,3 #
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Because o is an equivalence class of vector fields in the factor algebra, some AX,
can be added to it. The first condition is then still satisfied

(0 + AX)(F) = o(F) + AX.(F) = 0.

For the second condition we get

OF 1 Fi +8F,. 8 ) E)
AL + P + ) HE)

3z "Pay T
which is satisfied for

(Oz%a:2 + Bz — %)Fw + (az + B)F.p + aF,.
sz+pFwy+WFup '

Symmetry of the singular solution is then

1, oF; + BF,. 8 8 0 8 P
(a2x + Sz 7, )a—y+(az+ﬁ);§5+a%+)\(5;+pa—y+w6p)

for the above .

6.4 Symmetries of Higher Order Generalized Clairaut Equations

The method introduced to determine symmetries of F(y — pz,p) = 0 and
Flw,p —wz,y + %wmz —pz) = 0 can be applied to higher order generalized
Clairaut equations. Symimetries of a generalized Clairaut equation

F(11)127 ’In) =0

where the Ih, I», ..., I, are
no= yt~v
I, = y(n—Z) _ Il T
1 1 1
I, = PR e — Lt S Y A A
n y+(n_1)!11$ =) 2T 5in-27 1L

are then obtained as

0 aFltabi+. tan)Fn-1y 0
RIEY A Fm ol

o= a]—+a2——+...+a(n_

o6 oI,

where a1, a2, ... @(n) are arbitrary functions of I, I, ... I,.
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6.5 Summary

In this chapter we have investigated the Clairaut equation and its generaliza-
tions. Their symmetries have been determined for the Clairaut equation and
first and second order generalizations. This was generalized for higher order
generalized Clairaut equations by using characteristic symmetries of y(™ = 0.



7. SINGULAR SOLUTIONS AND REDUCTION USING
SYMMETRIES

Symmetries can be useful in achieving a reduction of order of a given differential
equation. In this chapter we investigate the method of reducing the order and
take results of the previous chapters into account, in particular the knowledge
we gained concerning syminetries of equations with singular solutions.

7.1 Symmetries and Reduction

We first look at the reduction of order in general to gain more understanding
on the reduction procedure regarding systems of differential forms. This will be
illustrated with examples of known cases.

7.1.1 Reduction of a system © = {61,03)
Let © be a system of forins and © = (#;,0,) be closed under d. Suppose it has

symmetries 7 and 0. Choosing 6; = 6 such that TJé = 0 and assuming o6 # 0
then we obtain the reduced system ©’ = (6) which we shall show to be an ideal
of ©.
The two symmetries 7 and ¢ form a Lie algebra, hence their commutator is a
linear combination

lo,7] = cio + cot
where c¢; and cp are structure constants. Either both structure constants are
zero or one or both are non-zero. The symmetry generators can be transformed
so that only two distinct cases have to be considered:

[o,7] =T
o, 7] =0.
We can choose 6 so that Tjé = 0. The definition of d@ of a 1-form 6 is
df(o,7) = o(6]7) - 7(8|0) — 6][0, 7]

Here we have dé(a, 7) = —7(0]o). Therefore it can be shown that o is also
symmetry of the reduced system (6).

oldf +d(c]6) = Ai161+ Ai2f
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7|(0]db) + 7]d(c]6) = Iu(r]61)
dé(o,7) +7(c)6) = Au(7)61)
0 = )\11(TJ01).

d6 = w A g holds. © =< 8 > is a differential ideal of © with symmetry o. The

form ﬁé is then closed, since

6, 1 1 I
A5) = 5% el Ad
- (—aﬁ{mé)déﬂmé)/\é}
- _(ajle’)z {o|(6 AdB)} = 0.

7.1.2 Known cases for the reduction of © = (6y,0,)
Let a system be given as © = (dy — pdz,dp).

Example I:  Suppose the systemn has the symmetries

'r:ya—y +P%
and
0'"2
T Oz

where [0, 7] = 0. To satisfy 8|7 = 0,  can be chosen as
6 = pb1 — y9; = pdy — ydp — p*dz
Then o = 8, is a symmetry for 6 since L,0 = 2pdp + d(—p?) = 0. A form
;% = —%dy + ;y,‘;dp+ dz
is then closed, because of
2

d(aJé

1 1
)= 5dpAdy+ —dyAdp =0.
p P

An ideal of © is then the reduced system

©' = (8 = pdy — ydp — p*dz).
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Example II: Let the system have the symmetries

0 17}
_ ’ v . Y
=@+ )5+ 5
and
L0
=3

where [0, 7] = 0. To satisfy 6]7 = 0, 6 can here be chosen as
=61 - (z+ f'(p))b2 = dy — pdz — (z + f'(p))dp.
Then o = 9§, is a symmetry for 6 since Ly8 = 0. The form
2
o]

is then closed, because d(ﬁa) = 0. An ideal of © is here the reduced system

= (z+ f'(p))dy + dp

Dl

©' = (6 = dy — pdz — (z + f'(p))dp).

7.1.3 Reduction of the system © = (61,0;) in invariant coordinates

In invariant coordinates I; = y — pz and Iz = p the above system is given by
© = (dI1,dI;) where the symmetries are

0 19)
T= 71(11’12)8_11 +Tz(11,12)8—12

and P 9
o= 0'1(11,12)5; +0'2(II:I2)6—12'

We now reconsider the examples above in invariant coordinates.

Example I: The symmetries 7 and o are then

T= Ilc')ill + Igailz
and 3
o 125]—1‘
6|7 = 0 is satisfied for
6=dl — %d]z
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Then o = —I30,, is a symmetry for 6 since L6 = dI + d(—I;) =0. A form

6 1 I
— = ——dl} + —dI.
0’J0 [2 ! 122 2
is then closed, because
6 1 1
d(—=) = —dIh Ad} + —dI; ANdI; = 0.
(O'JQ) 122 2 ! 122 ! 2

The reduced system ©’ is given as

o' =(0=dl — ?dh).
2

Example II:  Let the symmetries be

0 d
_ Y .Y
T—f(]z)all + oL,
and
_9
T oI

To satisfy 8]7 = 0, 8 can here be chosen as
6 =dlI, — f'(I)dl,.

o = 9y, is a symmetry for 6 because of L,6 = 0. The form § = dI; — f(Ip)dl,
is then closed, because

The reduced system is here
O = (0 =dl; — f'(I)dlL) = (d(I; — f(I3)))

corresponding to a Clairaut equation.

7.1.4 Reduction of the system © = (01,65,03)

In the case of a third order system
© = (61,6,,63)

let © be closed and admit symmetries ¢ and 7. Then we can choose 51 ‘and 9~2
such that 7]6; = 0 and 7|6, = 0. We assume that o]6; # 0 and o8 # 0.
Then the reduced system ©’ = (61,6;) is closed. It is an ideal of © and admits
the symmetry o. As in the second order case this can be shown by considering
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the Lie derivative of 51 and 52 with respect to o.

O’J dél + d(O'Jél) )\lél + /\Qéz + A303

7)(0)db1) + 7]d(c]01) = As(7)03)
dél (U, T) + T(O’Jél) = )\3(7’]03)
0 = )\3(7’]03)

Hence Ly61 = A161 + A1262 and analogically La-ég = /\21@1 + )\2252. Then we
have the reduced system ©’ = (61,6;). It is closed under d.

w11 /\él + wi2 /\ég
wo1 A O1 4+ waa A G2

do,
db,

Il

7.1.5 Known cases for the reduction of © = (6;,6,,63)

Considering the case where the system © is given by

6y = dy-—pdzx
0, = dp—wdzx
63 = dw.

Example I  Let the system admit symmetries o and T given by

9
oz

9.9 .0
yay pc’?p Ow’

o =

T =

6, and 6, can be chosen as

61 = pb —yby — 003 = pdy — p’dz — ydp — ywdz
6y = why + 00y — yb3 = wdy — wpdz — ydw

so that 7] 6, =0 and 7] 62 = 0. Then 6, and 6, admit o and

L6, = 0
L. = 0.

There is a reduced system ©' = (6;,6,) with

pdy — pzdx — ydp — ywdz

6,
6

Il

wdy — wpdx — ydw
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admitting o as a symmetry. Symmetries ¢ and 7 are given by

L8,
- I@y Op
1, , 2] 3] o
T = (Zz +z+f(w))ay+(z+1)6p+8w.

6, and 65 can be chosen as

>
3
Il

6, — (%12 +z+ f(w))f3 = dy — pdz — (%xz +z 4+ f(w))dw

D
)
I

0y — (z 4+ 1)03 = dp — wdz — (z + 1)dw
so that 7| él =0 and 7] 52 = 0. Then 0-1 and 52 admit o as a symmetry and

L6, = 0
L6, =

There is a reduced system ©’ = (él,éz) with

1
61 = dy-—pdr - (5332 +z+ f(w))dw

D
)
Il

dp — wdz — (z + 1)dw
admitting o as a syminetry.

Example II:  As another example we consider now the case of the two symine-
tries o and 7 chosen as

S )
- Ty op

0 2] o

= Fugy t g, T g

where F' = F(z,y,p,w). To satisfy symmmetry conditions F must be of the form
F = ¢i(zp + %) + c2(p + wz) + cay + f(w) where ¢;, ¢z and c3 are constants
and f an arbitrary function of w.

61 and 6, can be chosen as

6, = 6, —F,03 =dy—pdr — (c12* + cpz + f'(w))dw
6y = 0y — F,03 =dp —wdz — (12 4 ¢3)dw

so that 7] 51 =0and 7] 52 = 0. Then 51 and ég admit o as a symmetry and

L,6; = 0
Lo0; 0.
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The reduced system &’ = (51,52) is then

6, = dy—pdz—(c12* +cz + f(w))dw
6, dp — wdz ~ (c1z + c3)dw

admitting ¢ as a symmetry.

7.2 Singular solution and Reduction

This section investigates the role singular solutions play in reductions of a sys-
tem. It is explained how differential equations of the form y("‘) = 0 can be
reduced to Clairaut-type equations.

7.2.1 Singular solution and reduction of a 2nd order system

Given y" = 0, equivalent to ® = (dy — pdz,dp). We know that © has the
symmetry

a o
g = an— -} (F] —ZFz)%

where F' = F(p,y —pz) and F; and F; denote F} = a E and Fy = W This
syminetry can be used in a reduction process. Since
Fy(dy — pdz) + (Fy — zF2)dp = d(F(p,y — px))

the given equation y” = 0 is reduced to a first order differential equation

F(p,y —px) = F(I1,12) =0

where F' is a generalized Clairaut equation. The reduced system representing
F is then

© = (dy — pdz, (F1 — zF3)dp).
Generally, this reduced system has rank 2. However, if (F; — zF3)dp equals
zero, the rank is less than 2. Two cases can then be distinguished:

o Let dp = 0. This leads to a general solution y = ¢z + ¢3, where ¢; and ¢
are constants, satisfying F(cy,c) = 0.

e Let (Fy — zF;) be equal to zero. Then we get z = %l This leads to the
singular solution of F(y — pz,p) = 0 which is given by two conditions

F(y —pz,p) = F(I;,13) =0

and
F

Fz‘

r =
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This leads to a system
Py

dy - d(=)).
(dy—p (F2 )
Symmetries of F(p,y — pz) = 0 have the form
0 0
oc=a((Faz — Fl)a_y - Fga—p).

Hence the equation y” = 0 is reduced to an equation of Clairaut-type with
general and singular solution.

Example : The symmetry

0 9
o= ER —(f'(p) +x)@—p

reduces y” = 0 to the Clairaut equation F = y — pz — f(p) with the general
solution y = ¢z + f(c) and the singular solution

y+pf —f = const
— ’
z = —f.

7.2.2 Singular solution and reduction of a 3rd order system

Given y"” = 0, equivalent to @ = (dy — pdz,dp — wdz,dw). We know that ©
has the symmetry

Since

1 1
F3(dy—pdz)+(Fy—zF3)(dp—wdz)+(F1 —1F2+-2—I2F3)dw = d(F(w,p—wz,y+

7] a 1 e}
oc=F—+ (F2 —IFs)% + (Fl —zFp + Eszg)a

Oy

© can be reduced to a function

which is of second order. The reduced system representing F is then

1
Flw,p —wz,y + Ezzw —pz) = F(I;,13,I3) =0

© = (dy — pdz,dp — wdz, (Fy — zF2 + —;—zQFa)dw).

2

z2w—pz))

This system has in general rank 3. If (F} — zF + %szg)dw equals zero, the
rank is less than 3. Again two cases can be distinguished here.

e Let dw = 0, which leads to the general solution y = %clzz + ez + c3,

where c;, ¢z and c3 are constants, satisfying F(ci, ¢z, c3) = 0.
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7
e Let (F, — zF; + 12%F3) be equal to zero. Then = = @ and

we get the system

VF: —2FF — F
(dy—pd(in F3 2F3Fl)=dp_wd(in,/F2? 2F; )
F3 F.'i

which describes the singular solution.

The equation y” = 0 is reduced to an equation of Clairaut-type with general
and singular solution.

Example : Let F be given as the generalized Clairaut equation
1,
F=y+ 7% w —pr — flw,p — wx).

Then the general solution is y = %cl:cz +caz + f(c1,c2) and a singular solution
is given by the system

(dy —pd(—f2 £/ f2 +2/1),dp —wd(—f2 £ \/ f} + 211)).

Let f be given by f = p — wz — g(w) then the above system is equal to

_ g//(w)
ho= Ty
6 = dp—}—w(%g),(w))dw

Choosing 6; = 6; — 562 and 0, = %02 transforms the system into

6 = dy-Zdp
w
1-—2¢’
Gy = dw+—Tg—((:}2dp
wg" (w)

as a reduced system.
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7.3 Summary

We illustrated that generalized Clairaut equations can be obtained by a sym-
metry reduction of equations y(™ = 0. We transformed an nth order system
where all the solutions are known into a system of order (n — 1) with general
and singular solution. As the reduced system is a generalization of a Clairaut
equation, further symmetries can be determined with the methods used in the
previous chapters.



8. CONCLUSIONS

‘We have studied how symmetries relate to singularities of differential equations
by investigating symmetries and reduction of differential equations to equations
with singular solutions, in particular Clairaut-type equations.

For this purpose we have given an introduction into the practice of finding and
using symmetries for integration of differential equations.

Furthermore, differential forms and the method to use themn in finding sym-
metries of differential equations have been introduced. This method has been
applied to examples of simple structure, that are of the form y™ = 0. Their
syminetries could be determined using functions of their first integrals. Putting
these first integrals in relation leads to differential equations with singularities:
Clairaut and generalized Clairaut equations.

Syminetries of Clairaut-type equations could be derived from the previously de-
termined symmetries of equations y(™ = 0. The general solution of y(™ = 0
includes the general solution of Clairaut and generalized Clairaut equations,
therefore symmetries of both types of equations are the same and are in general
a combination of characteristic and non-characteristic symmetries of y(™ = 0.
These symmetries permute the elements of the general solution.

Symmetries of the singular solution have been considered separately, since sin-
gularity conditions have to be satisfied. These symmetries have been used in
the reduction of the chosen differential equations. A general description how
symmetries can be used to reduce the order of differential equations has been
given. Special cases where symmetries are retained after reduction have been
described in general as well as by regarding known examples.

Applying the reduction method for the previously chosen examples reveals, that
the Clairaut equation and its generalizations can be obtained by reduction of
differential equations of the form y(™ = 0.

It remains to investigate whether any generalized Clairaut equation can be ob-
tained as a reduction of an equation y(™ = 0. Instead of reducing we could
then increase the order of an equation with singular solutions to obtain a simple
equation of the form y( = 0 for which all solutions are known.

Further investigations could also be done by considering other classes of differ-
ential equations with singular solutions. Instead of starting with equations of
the form y{™ = 0, more general equations could be chosen. By considering for
example a differential equation y” = g(z) and putting its first integrals in a
relation we obtain F(p — G',y — pr — G + G'z) = 0, where G"(z) = g(z) for
which the Clairaut equation is a special case.
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