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"Will the present configuration of the solar system be
preserved for some long interval of time? Will the planets
eventually fall into the Sun or will some of the planets _
recede gradually from the Sun so that they no longer belong
to the solar system? Will any planet approach another planet
and form a binary system revolving around the Sun like the
Earth-Moon system or become more eccentric or more inclined
to the ecliptic, and break the present configﬁration of the
solar system?...... All these questions are called vaguely
as the stability in celestial mechanics,

The question has long been an acute problem in celestial

mecha.nics; R RN o"

Hagihara (195T7)

°g
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PREFACE

' In this thesis the stability of many-body systems is examined.
This is a problem whid;alﬁhoughrit has beén:studiéd_by celestial
mechanics for over 300 yeérs, stiil evades general solution. A new
approach to the problem is adopted. Instead of seeking a definite
"yes or no" answer to the problem'ke require only that it should be
possible in a purely empirical and probabilistic way to predict for
how long a time systems will exist before unstable behaviour is
manifested i.e{ a close approach between bodies occurs(or becdmes
probable due to orbits crossing over) or one of the bodies escapes
the system. ’

In Chapter 1 a general review of the present status of the
problem of the Solar System's stability is given along with brief
descriptions of methods by which stability ﬁay be investigated.

Since Hill's method is used extensively in succeeding chapters of

the thesis, Chapter 2 deals with the use of the zero-velocity surfaces
of the restricted three-body problem and zero-velocity curves of the
planar general three-body problem in studies of stability.

Parameters are sought in Chapter 3 which have a physical
significance for the stability of hierarchical dynamical systems,
such as the Solar System, triplé stellar systems, etc., These ¢
parameters are a measure of the disturbance of the orbits of a
hierarchical system by the mutual pertufbations of the bodies in the
system. The ¢ parameters are then examined by the use of the zero—
velocity curves of the planar general three-body problem to test their
applicability to stability considerations (Chapter 4). The analytical
stability criterion afforded by the zero-velocity curves is refined
in Chapter 5 so that the effect of all the orbital parameters on the
Hill stability of coplanar hierarchical three-Body systems may be
assessed prior to carrying out a numerical investigation,

By using extensive sets of numericgl iptegrations it is demonstrated
in Chapter 6 that the e parameters ﬁay:be used to predict how stable
a three-body system is, in the sense of stating'for how long a time
systems may be expected to continue before instebility sets in. The

use of the ¢ parameters as a tool to predict the amplitude of the



variations in semi-major axes and eccentricities of these systems is
'demonstfated in Chapter 7. The four—boay'préblem is briefly considered
in Chapter 8 té showAthat.sibilar resuits may be derived for these
systems. | | '

Thé validity of the ¢ parameters as a true measuré of the
disturbance, due to perturbation by other bodies in the systém, is
éonsidered fér the planetary case of.hierarchical n-body systems in
Chapter 9. Also in this chapter a new set of generalised e parameters
are determined which allow consideration of more complex hierarchical
systems such as - the sextuple Castor system, other multiple stellar
systems, hypothetical planets of multiple stellar systems,etc.

Chapter 1C includes a brief review of the work of the thesis
and suggests a few interesting lines for future research.

The original work of this thesis is contained in Chapters 3 to 9
and also Appendices A to F. The results of Appendix C have been
published in Celestial Mechanics . The contents of Chapters 3 and k4
constitute one paper which is in press and is to be published in
the same journal. Chapter 5 (along with Appendix A) contains the
results of a paper which has been accepted for publication. Of the
remaining parts of the thesis Chapter 6, Chapter 9 (along with

Appendices E and F) and Appendix D are in preparation as papers.
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SUMMARY

The question of whether the Solar Syétem is stablé or not has been
investigated by mény reéearchers since thé beginnings of celestial
mechanics, with the formulation of the law of gravitation by Newton, -
up.until the present day. As-yet, even after some 300 years,

_celestial mechanics is unable to give a definite answer to this
question. However throughout the studies which have been made there
are strohg indications that, among the major bodies i.e. the planets
and (the majority of) satellites, the orbits are stable.

Dynamicallsystems, such as those occurring in nature, may be
broadly classified into two types: (i) those which contain large
numbers of bodies, the gravitational attraction of the whole system
dominating the movement of each of the bodies and (ii) those which
contain relatively few bodies where the particular interactions
of one body with each of the others is important. This thesis
considers only the latter type: these are hierarchical systems
where the orbits of the system are arranged so that close approaches
of one body to another may be prevented e.g. the Solar System, triple
stellar systemé, etc.

The concept of stability which is used in this thesis is that
there should be no collisions between bodies within a hierarchical
dynamical system, neither should any bodies escape the system, |
Haviné fulfilled these conditions a system may be called "stable".
In other words we require a maintenance of the status quo with the
orbits in the system being executed over many revolutions with only
periodic'changes in the semi-major axe;, eccentricities and inclinations
defining the osculating orbits; secular changes in these orbital
elements should be absent.

To investigate the stability of these systems empirical stability
parameters are derived which are representative of the disturbances
on the orbits of a hierarchical system due to the other bodies
vhich are present. These parameters are obtained in the following
manner., The equafions of motion of the masses making up an n-body
dynamiéal system are expresséd in the Jacobian coordinate system,

An expansion of the force function then gives rise naturally to a set



xiv

(n-1)(n=2) dimensionless parameters, the € parameters, representative
of ‘the ‘'size of the perturbatiohs on fhe osculatiné Keplerian orbits

6f fhe varioﬁs ﬁodies in thé system. In'the case where there are only
thrée bodies the relationship betweén theée € parameters and the
analytical stability criterion eﬁplbying the zero-velocity curves

of the coplanar general threé-body froblem is examined. It is shown

' that the stability, in the sense of the zero-velocity éurves of the
pfoblem being open or closed and thus whether an exchange between
bodies is possible or not, is dependant, in a very simple fashion,

on the magnitude of the ¢ parameters. The analytical stability
criterion involving the use of the zero—velocity curves of the

general three-body problem is then refined in order to take account
of all the orbital parameters relevant to coplanar hierarchical three-
body systems prior to a numerical investigation of the coplanar,
corotational hierarchical three-body problem with initially ecircular
orbits.

By means of this numerical investigation it is demonstrated that
the ¢ parameters can be used to both predict how stable or unstable
a three-body system is, in the sense of the number of orbits it may
be expectéd to execute.before instability sets in, and also to predict
the variations in semi-major axes and eccentricities of the system's
constituent orbits. The effect commensurabilities in mean motion’
have on the stability of these systems is also demonstrated. It is
shown how systems which are unstable can extend their predicted
"lifetime" if they are close to a commensurable situation. Stable
systems have their variations in semi-major axes and eccentricities
greatly magnified by the presence of commensurabilities.

This numerical study was continued into the four-body problem.
Although only a brief consideration was given to the problem it is
apparent that results, similar to those obtained in the three-body
case, may be derived.

The applicability of the ¢ parameters fo the planetary case of
the hierarchical many-body problém is also considered by application
of another expansion of the fbrce function which takes into account
the smallness of the planetary masses with respect to the central

mass; namely the Sun. It is thus shown that the ¢ parameters are
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truly representative of the disturbances‘on the planetary orbits over
a SufficientlyAwide range of the semi-major axes of the hierarchical
planetary mény—body problem., - h

Another coordinate systém is then developed which is applicable
to all types of hierarchical system, including the type exemplified
by the sextuple Castor system and similar multiple stellar—systems,
Using this coordinate system a more general set of ¢ parameters aie
developed and the perturbations on the orbits of a system, such as

that of Castor, are considered.,
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Miranda

Oberon

Frontispiece The equator of the planet Uranus is inclined at 97° 53!
to its orbital plane. The five satellites - Miranda, Ariel, Umbriel,
Titania and Oberon - move in the equatorial plane of the planet.

Their orbits, which are nearly circular, are thus presented at various

angles to the Earth as the planet revolves about the Sun. In 1966 the

system was presented edgewise to us : in 1987 the system will be seen
"flat on".

In this view, and the accompanying diagram, we see that the

satellites’ orbits are well-spaced, are arranged in a definite order

and do not cross : this is the hierarchical structure typical of many
naturally occurring dynamical systems e.g. the Solar System, triple
stellar systems, etc.

The photograph above is an infrared composite taken at the

Mauna Kea observatory, Hawaii (see Sinton, 1972).



CHAPTER 1  STABILITY IN DYNAMICAL SYSTEMS

1.1 The Stability of the Solar System

The family of bodies associated with the Sun, known to us as the

Solar System, consists of many thousands of bodies. The major components,

“apart from the Sun itself, are the nine major planets and some thirty-

odd satellites. Among the lesser components may be found the asteroids,
which are largely concentrated between the orbits of Mars and Jupiter,
the comets, estimated to exist in millions by some authorities and the
uncountable number of meteors which travel round the Sun in swarms.
In addition there are also the rings of Jupiter, Saturn and Uranus and
the interplanetary medium.

Observation of this system shows it to possess characteristic
properties. The planets, without exception, revolve sbout the Sun in
the same direction. The system possesses a hierarchical structure in

that the orbits are well-spaced and are arranged in a definite order
(Fig.1.1).

LR B R S =Sun
* . Asteroid zone’ .° .'5 = Mercury
' TeosLLEs = Yenus
P3P ® = Earth
o’ = Mars
Jupiter
Saturn
Uranus
Neptune
Pluto
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Fig. 1.1




Further, excepting the orbits of Mercury and Pluto, all have small
eccentricities and inclinationsf In only one instance do the orbits
of any two planets cross, this being the case with Neptune and Pluto.
However in this exceptional case there is reason to'believe (Cohen
and Hubbard, 1964, 1965; Williams and Benson, 1971) that there are
additional dynamical characteristics which allow these two bodies to
avoid close encounters which would otherwise lead to the disruption
of the Neptune-Pluto system. N

The satellite systems too follow this broad pattern although
there are exceptions. The outermost satellites of Jupiter (JXII,
JXI, JVIII and JIX) and Phoebe, the outermost satellite of Saturn,
move in a retrograde fashion. In the former case there is a strong
possibility that these bodies are captured asteroids (Bailey 1971,
1972) and may therefore not be permanent features of the system.

Roy and Ovenden (1954, 1955) pointed out that the occurrence of
near commensurabilities in mean motions within the Solar System is
greater than one would expect on a purely random basis, suggesting
that a mechanism exists able to produce such resonant states.
Commensurabilities, such as exist in the solar system, may be divided
into two broad types viz. hard and soft. The former is exemplified
by the Titan-Hyperion (4:3), Neptune-Pluto (3:2), Enceladus-Dione (2:1)
and Mimas-Tethys (2:1) resonances: in such cases a critical argument
exists and there are grounds for believing the dynamical situatioﬁ
is one of'stability. On the other hand a soft commensurability may
be exemplified by Jupiter-Saturn (5:2) and Uranus-Neptune (2:1) where
the existence of the commensurability-does not seem to be essential
for the maintenance of stability.

If we now however turn our attention to the asteroids we find
in many cases orbits of certain semi-major axes are avoided. Upon
examination it is found that such distances would give rise to mean
motions commensurable with that of Jupiter. In Fig.l.2(a) (due to
Hagihara, 1957) the distribution of asteroids with respect to their
mean motions about the Sun in seconds of arc per day is plotted:

The orders of the commensurabilities are marked along the top of the
diagram. The notable feature of the diagram is the gaps in the

distribution arising at mean motions commensurable with that of Jupiter,






L
the so-called Kirkwood gaps. Furthermore there is a sharp cut off in

asterolid numbers beyond the 2:1 commensurability, the so—called Hecuba

Gap and a cluétering of asteroids at the 3:2 and 1:1 commensurabilities,

_ respectively the Hilda and Trojan groups. The feature of avoidance

of certain commensurable orbits is repeated on a smaller scale in the

Saturnian ring system Fig.1.2(b). The three innermost satellites of

' Saturn are massive enough and close enough to the ring system to

disturb its constituent particles. The division between rings A and B
- Cessini's division - occurs at distances which offer orbits commen-
surable with those of Mimas, Enceladus and Tethys in the ratios 2:1,
3:1 and kb:1 respectively. The other boundary between the rings B and C
- Encke's division — results in a 3:1 commensursbility with Mimas.
Further faint divisions have also been observed within rings A and B.
Comets generally follow orbits of high eccentricity and inclination
and are, in this respect, different from the planets. There are several
occasions on record where cometary orbits have been suddenly and drama-
tically changed by planetary encounters. For example, Brook's Comet
(1889V) had a period of revolution 29.2 years, its orbit lying outside
that of Jupiter. After a close approach to Jupiter on 20, July 1886
the period had changed to 7.10 years, the orbit lying wholly within
that of Jupiter. Similarly it might be expected that meteors will have
their orbits severely changed at planetary.encounters, the event héwever
being unobservable, except if the meteor enters the Earth's atmosphere.
It is possible that the interplanetary medium may give rise to
temporary features associated with planets. A faint glow, called the
Gegenschein, is observed in the night sky opposite the Sun: it is
possible this glow could be the reflection of sunlight from particles

which are trapped at the L, collinear equilibrium point of the Earth-

Sun system, which is on thg far side of the Earth from the Sun. It
has been argued that interplanetary aﬁd meteoric particles may be
temporarily trapped in this position. However, since such particles
would be at a position which is essentially a point of unstable equi-
librium they would, due to perturbation by the Moon and other planets,
gradually be lost from the éystem, the aggregation of particles having
to be continuously supplemented. This case may be contrasted with the

Trojan asteroids which are at a pdsition of stable equilibrium namely



the triangular Lagrange configurations with Jupiter.

A1l the bodies in the Solar System are thus observed to be
continually uﬁdergoing changes in their orbits due to their mutual
gravitational attractions. We have seen that in some cases the body
may have its orbit changed drastically, as in the case of some comets.

There are grounds for believing that the outermost satellites of

'Jupiter may be captured asteroids.. The asteroids themselves, in

certain cases, if they indeed originally formed a uniform distribution

between the orbits of Jupiter and Mars, seem to have undergone sub-—

stantial changes resulting in the avoidance of certain commensurabilities.

The explanation of the Gegenschein as particles '"trapped" at the
collinear equilibrium points is another temporary situation. What of
the other members of the system? Will the present configuration of the
planets in relation to the Sun, and the satellites with respect to
their parent planets, be preserved for an astronomically long time?

Is there any evidence to suggest the permanance or otherwise of the
orbits of the major bodies of ﬁhe solar system?

Using records from ancient Babylonia eirca. 500 B.C. up to the
present day it is possible to observe the planets in time as well as in
space. Data on the movements of the five anciently—-known planets -
Mercury, Venus, Mars, Jupiter and Saturn - in the form of cuneiform
tablets show that the planetary orbits were not substantially different
from the present day ones. By studying the lunar observatories of
megalithic man another 2.5 millenia earlier it is seen that the Moon
was moving in the orbit lunar theory predicts for this period. The
contemporary solar observatories lend weight to our theories which
give the changes in the obliquity of the ecliptic.

The three outermost planets — Uranus, Neptune and Pluto - the
satellites of the planets and the asteroids are all of much more
recent discovery and it may be thougﬂt that their history cannot be
so well documented as that of the above bodies. However if it is
considered that the relevant unit of time is the period of the object
sbout its primary then we see this is by no means the case. In
Table 1.1 are presented all the known satellites and planets in the
solar system along with the number of periods completed since discovery:

in some instances a second figure is given derived from numerical
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Mercury
Venus
Earth
Mars
‘Asteroids
Jupiter
Saturn
Uranus
Neptune
Pluto

Moon

Phobos
Deimos

Jupiter V

I
IT
IIT
Iv
VI
VII
X
XIIT
VIII
IX
XT

CXII

Janus
Mimas
Enceladus
Tethys
Dione
Rhea
Titan
Hyperion
Iapetus
.Phoebe

Miranda
Ariel
Umbriel
Titanis
Oberon

Triton
Nereid

¥ Cohen, Hubbard and Qesterwinter's numerical integration

YEAR OF DISCOVERY PERIOD

Before 2000
11]

n
"

©1801
Before 2000
"
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Before 2000
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1938
1951
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1846
1949

Table 1.1
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k.6
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integration experiments by Cohen, Hubbard and Oesterwinter (1967).
Inspection of the table reveals that in many cases several thousands
of orbits have been observed to be completed. During this time the
changes'in the orbits have been in accord with general perturbation
methods. The semi-major axes, eccentricities and inclinations have
undergone periodic variations, secular trends being absent. This
lends weigﬁt to the idea that sudden, far-reaching changes in the
orbits are unlikely, at least within the next few revolutions.
Beyond the data of Table 1.1 there is no further observational
information on the dynamics of the system which can be pui forward
in support of the stability of the Solar System. Thus the questions .

asked earlier remain unanswered.

1.2 Definitions of Stability

The problem of the stability of the Solar System has been studied
by many astronomers since the time of Newton. It is therefore not
surprising that there are many different definitions of stability
which are applicable to dynamical systems. It is conceivable then
that one particular system may be stable according to one definition
but unstable acéording to another.

Consider the example of an asteroid in orbit about the Sun in
the absence of any perturbing bodies. The asteroid will then execute
a Keplerian ellipse, described by the usual constant orbital parameters
815 €95 il’ wys Ql, T, s&ys, about the Sun and will have a position
in this orbit given by the true anomaly £ If we then displace the
asteroid by a small amount in its orbit resulting in a new set of
elements 8ys €55 iz, Wy 92, T, with the new position given by fé we
may ask the following question: Given that all the quantities denoted
suffix."e" differ by only a small amount from those denoted suffix "1"
at some initial time then will that difference remain small for all
time? Put another way the question is asking if the two asteroids
will always remain close to each other in space? The answer to this
question is obviously "no", since at some‘subsequent time the asteroids

will be separated by a distance roughly equal to the major axis of

either of their orbits (assuming a, = a, and e, and e, are small).



However, if we require for stability that the general shape and
orientation 6f the orbits should not differ by much at any time, that
is we do not consider fi, Ié the ppsitionsnof the asteroids in the
two orbits, then the answer would be "yes" and the system is stable.

It is therefore imperative that a good clear definition of what
is meant by stability is given at the outset of any discussion.

"Is the Solar System stable in the sense that no collisions
can occur and no major body will escépe the system?" is the question
around which Laplace formed his definition of stability. Many such
qualitative questions may be asked. They all relate to the basic idea
that the "status quo" of the dynamical system will be maintained.
In the case of the solar system these qualitative definitions of stability
preclude the possibility that the ordering of the orbits or hierarchy
of the system, can be disrupted. For example, the system may only be
called stable if the orbit of Saturn, for example, always lies between
the orbits of Jupiter and Uranus. Pluto is, of course, an exceptional
case which does not come under the scope of such a definition except
inasmuch as Pluto is never found to lie between Neptune and the Sun.

Laplace himself made one of the earliest attempts to study the
stability of the Solar System. He found that in the first-order solution
of the Lagrange planetary equations governing the motion of a perturbed
planet no secular terms appearoin the expressions which yield the changes
in the semi-major axes. This result implies that each planet is
restricted to an annulus about its present orbit. The width of the
annulus depends on the magnitude of the periodic variations in the semi-
major axis. The main point is of course that no annuli cross and that
all are of small width in comparison to the distance between planetary
orbits, thus rendering collisions between bodies and escapes impossible.
The second-order theorem was considered by Poisson, the third-order
theorem by many others and at present the state of the problem, which
is still a burning issue in celestial mechanics, is that if the
expansions are done in a specific fashion then no secular terms
appear to any order (see Message, 1978).

The approach of Laplace was generalized by Newcomb (1876) who
showed that purely periodic solutions with secular terms in the angular

variables could be found to satisfy the n-body problem where the central
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mass is large compared to the others, the others moving in almost
circular coplanar orbits about the large mass. Questions of the
convergence or divergence of the tfigonometrical series obtained were
left open until Poincaré at the end of the 19th century showed that in
general such series were divergent, thus demonstrating that such
approaches were inapplicable to the question of the long-term stability
of the solar system.

In any event these results are Qalid only inasmuch as the assumptioné
upon which they are based are valid. In the physics of the problem it
is assumed that the planets and Sun may effectively be replaced by point
masses which exhibit only Newtonian gravitational forces. This is
obviously not the case since in many systems the long-term evolution'
is affected by other factors. For example the Moon's orbit about the
FEarth is affected by tidal forces, and general relativistic effects
play a role in the advance of perihelion of the planets orbits, these
being strongest in the case of Mercury. All these effects are not
negligible over astronomically long time scales such as the age of the
Solar System - 5.109 years.

There are many other definitions of steability, a few of which are
mentioned below and will be expanded upon in succeeding pages. In
Section 1.3 we discuss the part resonances plsy in maintaining stability
vhere it seems, on a superficial level, that the system is unstable. .
Section 1.4 is devoted to the brief consideration of the closely related
topic of periodic orbits. These have been used extensively, since.the
recent introduction of fast and efficient computers, to map out regions
Bf phase—-space where such orbits are linearly stable. By this means
statements may be.made about the stability of general orbits which lie
in the viecinity of the periodic solutions. In recent years Arnol'd
(1963), Kolmogorov (195L4), Moser (1973) and Siegel and Moser (1971) have
shown that the approach taken by Laplace and Newcomb can, under certain
circumstances, give rise to convergent series (see Section 1.5).

Again resulting from the advent of computers is the application of
special perturbation methods to the stability of dynamical systems

(Eee Section 1.6). In this case a particular set of masses with given
initial conditions are integrated ﬂumerically over a sufficiently long
period of time in order to be able to make statements about the stability

of the orbits comprising the system.

[
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.Discussion of one particular method of investigating stability,

due to Hill (1878), is deferred until Chapter 2 in order to deal with
it more fully since the concept will occur in later chapters of the

thesis. Hill's original theory was apﬁlied-by him to the Earth-Moon-

'Sun system in order to study the stability of the Moon's orbit.

Originally applied to the restricted three-body problem, the concept
has of late been generalized to allow study of the general three-body
problem (cf. Zare, 1976). .

1.3 Resonances and Small Divisors

As was mentioned above in Section 1.1 the occurrence of commen-
surabilities in mean motion in the Solar System is greater than one
would expect through random effects (Roy and Ovenden 1954, 1955).
Goldreich (1965) proposed a mechanism whereBy such commensurabilities
could be arrived at from initially non-commensurable states. A pair
of satellites under their parent planet's tidal forces will change
their semi-major axes so that, even if the ratio of the mean motions
was originally irrational, it will not only have a chance to become
rational i.e. a.commensurability will result but, having attained that
state, the commensurability will persist as the orbits continue to
evolve. - *

Given certain assumptions, he showed that if two satellites Si
and S_ are in orbits of semi-major axes a; and a, respectively with
a; < a about a planet P, tidal forces will act upon Si to a greater
extent than upon So' This results in Si spiralling outwards faster
than So' The system P—Si—so may eventually reach a commensurable
situation. Having reached this state the system will be stabilized
due to the highly non-linear nature of the gravitational n-body problen.
Considering this system of P-Si-So let us now take the situation when
Si and So are in conjunction on one side of the line passing through
the sphelion of the orbit of-So (see Figure 1.3). Due to the asymmetry
of the orbit of So with respect to the conjunction line energy will be
transferred from S0 to Si' The net exchange of energy results in the

orbital period of each satellite changing so that, supposing they were

formerly in exact resonance, they no longer will be. This occurs in a
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APHELION OF QUTER SATELLITE
I

|
| . LINE OF CONTUNCTION

Figure 1.3 If two satellites are in exact resonance, and
their conjunction is on the right side of the dashed line in
the diagram, energy is transferred from the outer to the
inner body.

APHELION OF OUTER SATELLITE
| .

| LINE OF
CONTUNCTION

Ve
/' |

Figure 1.4 Transfer of energy from the outer to the inner body
causes the period of the outer to shorten and the inner to lengthen.
Therefore, the line of conjunctions drifts to the left. To the left
of the dashed line the energy flow is reversed and so the drift of
the line of conjunctions is slowed down, halted and reversed.
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systematic fashion causing the line of conjunctions to drift in space
(Fig.1.4) until it lies on the other side of the apse line of So'

The process will then be reversed, Si giving up energy to So’ and the
drift halted. This is repeated until the line of conjunctions drifts
| back to its original position-énd the cycle is restarted. The motion
of the system is distinctly different from a superimposition of two

" two—body motions the resonance having changed its character completely.

Although it is clear that resonance plays a large part in the
stability of some parts of the Solar System problems do occur in
general perturbation theory due to resonances. The trigonometrical
series which are used to represent the motion of the planets in general
perturbation theory are generally made up of an infinite number of
periodic terms. Each of the terms of such series involves a linear
combination of the fundamental frequencies of the system. Upon the
integration of these‘terms to obtain a solution, the linear combinations
of frequencies then appear as divisors in the terms of the equations.
The difficulty arises since all possible linear combinations of the
frequencies may appear and thus even if the ratio of any of two
fundamental frequencies is <rrational the ratio may be closely approximated
by a rational. Hence "small divisors" appear factoring certain terms,
greatly magnifying the effect these terms have on the motion of the .
bodies (see Brown, 1896; Plummer, 1918; Smart, 1953; Brouwer and
Clemence, 1961). o

Foruinstance suppose ny and ng are.the mean motions of Jupiter and
Saturn about the Sun respectively. Then terms will be continually
having multipliers.of the form nS/(ilnJ * iens) or nJ/(iln + izns)

produced by the integration (i are positive integers). In general

1
the greater il and i2 the Smaliergwill be the coefficient of the
term; however if we consider the case of Jupiter andSaturn we see
that this is not always the case. The ratio of the fundamental
frequencies in this case is 0.40268677 which is approximated to about
one half of one per cent by the ratio 2/5 or to about one part in'lO5
by the ratio 60/149. Thus it is found that deviations from the purely

elliptic motion of Jupiter.and Saturn are greater than we might expect.
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1.4 Periodic Orbits and Linear Stability

A further approach to the conéept of stability in dynamical systems
is that of periodic orbiﬁs. Within the last hundred years, in the
restricted three-body problem, and more recently in the general problem,
many investigators have explored the existence of families of periodic
orbits. The reason for such searches is threefold:

(i) The conjecture of Poincaré states that given any solution to
the equations of motion of a dynamical system then it is possible to
find a periodic solution which is as close as we please to the original
for all time. Thus periodic orbits have a possible application as
reference orbits.

(ii) Since many dynamical systems are found in nature to exhibit
resonances, periodic orbits have, in this instance, a direct relevance
to the stability or instability of such systems.

(1ii) Finally, it is possible to obtain and classify such periodic
solutions since they may be found readily by analytical-numerical or
numerical techniques, the integration time required being simply the
period of the particular solution sought. In such a way it is possible
to obtain a "global picture" of all possible periodic solutions in any
given problem and hence through considering the stability of the orbits
map out regions of stability or instability. '

Since Poincaré (1895) set out his classification of the periodic
orbits of the restricted problem into three types many have turned-
their attention to the search for families of periodic orbits.

Amongst early pioneers in this field were Darwin and Stergren. Since
the advent of fast and efficient digital computers in the early 1960's
many comprehensive studies of periodic orbits have been made cf.

Hénon (1965a,b; 1966a,b), Broucke (1968), Hénon (1969), Rabe (1961,1962),
Deprit and Henrard (1965, 1967), Markellos (1974 a ,b) and many more.

Having obtained a periodic solution its stability may be
investigated by the methods of linear stability analysis. Stability,
in this sense, may be described rather loosely as the ability of an
érbit to resist change if a small alteration is made to the orbit at
any time. Poincaré was the firstrto formalize the method and to

introduce characteristic exponents into the description of the stability
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of linearized dynamical systems. An important feature of the analysis

- to note however is that if the linearized system is unstable then likewise
the original (non-linearized) system will be unstable. The reverse,
unfortunately, is not true. If the linearized system exhibits stabilit&

it does not then follow that the original system is stable: it might
exhibit unstable behaviour, due to terms of higher order neglected in
the linear treatment, when the imposed perturbation is large enough.
Second order methods have been devisea to try to take account of this;
however, this is still not sufficient since the third and higher order
terms may produce instabilities.

Thus it is doubtful if the use of periodic orbits can shed light
on the long-term stability of the Solar System. Clearly its main
relevance lies in the consideration of parts of the Solar Systenm

where there exist almost periodic motions. Here conclusions can be
drawn if we consider the stability of periodic orbits in the vicinity
of the real solution (cf. Wiesel, 1980).

1.5 The Kolmogorov—Arnol'd-Moser Theory

In recent years Kolmogorov and Arnol'd working in the USSR and
Moser in the USA made a significant advance in understanding the
stability of dynamical systems ;uch as the Solar System (see Arnol'd,
1963; Kolmogorov, 1954; Moser, 1973; Siegel and Moser, 1971). They
found that approaches such as those due to Laplace, Lagrange and Poisson
could, under certain circumstances, give rise to convergent series.

The restrictions on their theory may be briefly summarised as follows:
(i) The perturbations within the system have to be sufficiently
small i.e. a large central mass with several small planets in revolution

gbout it. _

(ii) The natural frequencies of the system have to be such that
their ratios are poorly approximated by rational numbers. With these
two conditions satisfied the perturbation theory gives rise to convergent
series.

Unfortunately however, when we turn out attention to the real Solar
System, we find that the planets and satellites have masses which are

too large so that the question of the stability of the Solar System is

o
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outwith the scope of KAM Theory. The question of the rationality or

otherwise of the ratios of natural frequencies is impossible to answer
since they cannot be measured to infinite accuracy. However, it is
found that most choices of natural freéuencies would fall within the
scope of the theory, in the senseé that it is unlikely to select at
random a set which is unsuitable for its application. This gives us
hope that the real values observed in the Solar System also satisfy the
requirements. ‘ 7
Although the KAM Theory fails to aﬁswer the question of the
stability of the Solar System it is nevertheless probable that the
theorems are valid for a larger range of perturbations since the limits

set are only a sufficient and not a necessary condition.

1.6 Special Perturbation Methods

Having failed to answer the question of the stability of the
Solar System through general perturbation methods we now consider
what may be gained through the application of special perturbation
methods. Special perturbation methods involve the numerical integration
of the equations of motion of some dyhamical system in one form or
another in order to study the variations of the orbital elements of
a resl system over time scale; greater than those for which they have
been observed or, alternatively, to set up hypothetical systems which
could otherwise not be studied.

Possibly among the most noteable studies done along the former
lines were those carried out by Cohen and Hubbard (1965), Cohen, Hubbard
and Oesterwinter (1967, 1972).. In the first mentioned study the authors
numerically integrated the equations of motion for the orbits of the
five outer planets. The integration spanned a time of 120,000 years.

They discovered a critical argument
oy = Hp = 2y -,

where A is the mean longitude, 4f is the longitude of perihelion and
suffices P and N denote Pluto and Neptune respectively. The value of
Oy librates sbout 180° with an amplitude of 76° in a period of 19670
years resulting in the closest approach of Neptune and Pluto being some
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18 astronomical units. Their later study in 1967, when they used
improved elements forAthe orbit of Pluto, resulted in the revision
of the amplitude of the libration to 80° with the period being 19440
years.

The latter study involved a numerical integration of the equations
of motion for the five outer planets over a span of lO6 years — the
integrations were carried out forward and backwards for 5.105 years
from the epoch Jan. 6.0 1941. Throughout these integrations it was
found thaf no secular trends were present in any of the orbital
elements a, e, i of the outer planets (cf. Fig. 1.5). The 900 year
oscillation résulting from the 2:5 commensurability in mean motions
of Jupiter and Saturn is evident in the plots. Similarly the plots
for Pluto show a strong modulation of the variations in the elements
with a period of 19500 years. It was however possible considering the
plots of the elements i and e that these two elements had secular
trends in the case of Pluto. Williams and Benson (1971) carried out
a numerical integration of Pluto only over a period of ha5.106 years,
assuming that the remaining four outer planets' orbits were known,in
order to resolve this problem. They used the method of Gauss secular
variations to eliminate the short period terms, finding that the
argument of perihelion librates about 900 with an amplitude of 2)°
in a period of 3-995.106 years.

Although such methods involving the elimination of short period
terms are suspect for considering the long term stability of the ..

Solar System it is remarkable to compare such a theory with the actual

"values obtained by a numerical integration of the exact equations of

motion. In Figure 1.6 we see that the results of Brouwer and Van
Woerkom (1950) agree well with those of Cohen, Hubbard and Oesterwinter
(1972). .

This approach while not proving the stability of the Solar System
is strongly suggestive that major changes in the planetary orbits are
at the least very unlikely over the next few revolutions of the bodies.

The stability of the Sun-Jupiter—-Saturn system has been studied
by Nacozy (1976, 1977). Systems involving the Sun and augmented
Jupiter and Saturn masses were intégrated numerically. It was found

that if the masses of the two planets exceeded about thirty times
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their present values then secular trends entered the semi-major axes
and eccentricities reéulting in the escape of Saturn from the system in
th years.or less. This“result suggests that the preseht values for
these planets' maéses lie well within the region required for stability.
As was mentioned above, special perturbation methods allow us to
construct and examine hypothetical dynamical systems: for example
triple stellar systems (Fig.1l.T7(a)), inferior planets in double star
systems (Fig.1l.7(b)) and superior planets in double star systems
(Fig.1.7(c)) have been examined by Harrington(1972,1977). ( In each
of these diagrams the arrows show the direction of motion with respect
to the mass—centre of the binary i.e. the point denoted "C". ) Harrington
found that in general the stability of equal mass triple stellar systems
depends on whether the revolution is corotational (Arrow "1" in Fig.1.8)
or counter-rotational (Arrow "2" in Fig.l.8) and the ratio of the
pericentre distance of the outer orbit to the semi-major axis of the
inner orbit (respectively distances AC and BC in Fig.1l.8). It was found
that this ratio must be at least 3.5 for corotational orbits and at least
2.75 for counter—-rotational orbits to ensure that the binary retains its
identity and the third mass always remains at a more remote distance from

the other two. Inferior and superior planets were found to be stable

Q= Star
C = Mass-centre of

close binary

Fig. 1.7(a)




p————

Star
Planet
Mass—=centre of

star and planet

Fig. 1.7(b)

.0‘
]

Star
Planet
Mass—centre of

double star

Fig. 1.7(c)

81,55,53 denote stars

C is the mass—centre of

the close binary

A'is the position of

the pericentre of S3

Fig. 1.8
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in general if the ratio of the semi-major axes of the binary components'

orbit to the pericentre dis£ance of the outer component is of the

order 1/4 to 1/3 regardless of whether the orbits are corotational or
commter-rotational. By studies such as these it is possible to study

 the likelihood of the existence of what might be termed more "exotic"

types of dynamical systems.

1.7 Sumary

Despite the vast amount of effort which has been expended in thé
prdblem of the stability of the Solar System it is nevertheless a
fact that celestial mechanies is still unable today to answer the
question in any definite way. There are however strong suggestions
through all the methods of considering stability outlined above that
the Solar System is stable. It seems extremely unlikely that the
Solar System should suffer any dramatic alteration in its main
structure, viz. the orbits of the planets and majority of satellites,
within any short time scales.as indicated, for example, by the work of
Cohen, Hubbard.and Oesterwinter. However, at the present moment,
celestial mechanics can make no comments on the history of the Solar

9

System over the longer time scale of 10” years since the beginnings

" of the éystem.
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CHAPTER 2 THE EFFECT OF INTEGRALS ON POSSIBLE SOLUTIONS OF THE
THREE-BODY PROBLEM

2.1 Introduction

General perturbation methods having failed to demonstrate the
stability of the Solar System, a valuable advance in the problem was
made by Hill (1878). Hill applied his method to the Earth~Moon-Sun
system and showed that, under the assumptions that the Moon's mass
was negligible and the Earth's orbit about the Sun was circular, the
Moon could not escape from the vicinity of the Earth. (A direct
corollary of this fact is that the Moon could at no time in the pastA
have been captured by the Earth, excepting for the intervention of
another body, gross changes in the mass of the Earth or Sun or the
effects of tidal friction). Hill's method is essentially the approach
of the circular restricted three-body problem where the Jacobi integral
(see for example Danby,1962; Szebehely,1967; Roy,1978) exists
giving rise to the concept of zero-velocity surfaces. The technique
is equally applicable to the case of a planet of negligible mass in an
orbit about both massive bodies or in an orbit about the more massive
of the two bodies as well as the case of the satellite in orbit about
the less massive of the two bodies.

In recent years use has been made of the integrals of angular
momentum and energy in the general problem of three~bodies by a number
of authors including Bozis (1976), Golubev (1968), Marchal and Saari
(1975), Smale (1970) and Zare (1976, 1977). Essentially the approach
is one of bifurcation theory. Zare used the product ¢2?H, in which
¢ is the angular momentum and H the energy of a coplanar three-body
system. He showed that statements could be made about the stability
of any given three-body system in terms of the possibility or impossibility
of an exchange between bodies i.e. an interplay situation (see Szebehely,
1971) by considering the value of c2H for that system in a fashion
gimilar to the zero-velocity curves of the coplanar restricted three-
body problem. (see Szebehely, 1977, 1978; ~ Szebehely and McKenzie,
1977a,b; Szebehely and Zare, 1977). The method is applicable to

three-body systems where the bodies are arranged in the following
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fashion: two of the masses move in disturbed Keplerian orbits with

respect to their common mass—centre while the third mass moves in an

orbit outwith and not crossing the orbits of the former two masses.

For valuées of c2H less than a cértain eritical value it is found that

the arrangement of binary and external third mass is assured permanence,

it being impossible for the third mass to come between the components

of the binary or one of the binary components to recede beyond the external

mass. The status quo of the system will then be maintained.

2.2 The Surfaces of Zero Velocity in the Circular Restricted
Three—-Body Problem

As a step towards understanding the general problem of three-
bodies a great deal of study has been devoted to the circular restricted
three-body problem. The problem is defined as follows. Two masses -
the primaries — move in undisturbed circular orbits about their common
mass—centre. A third body - a particle of infinitesimal mass - moves
under the influence of these two, its mass however being so small as
not to disturb the primaries' orbits. The problem is: given the
position and velocity of the particle at any instant, with respect to
the primaries, to find its position and velocity at any subsequent
time.

The complexity of the problem has thus been reduced from the
solution of nine second-order differential equations to the solution
of three such equations i,e. a reduction from 18th to 6th order has
geen effected. (A further reduction to a system of the Uth order
may be gained through consideration of the coplanar circular restricted
three~body problem which is, as the name suggests, the case when the
particle moves in the plane of the primaries' orbits). All the ten
previously available integrals of the general problem have been lost
in this process. However, Jacobi (1836) showed the existence of an
integral of the motion which is of much use in considering the stability
of the orbit of the particle. Stability here implies that the particle
m;y not move from the viecinity of one of the primaries to the other
i.e. interplay is forbidden.

Let the primaries P and"P2 (see Fig.2.1) be in circular orbits

1
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Figure 2.1 The primaries, denoted Pl.and P2, move in circular

orbits with respect to their common mass-centre C. The masses of P1

P2 are m, and m, such that m, m, = 1-u:u where y g 1. A particle of
infinitesimal mass, denoted Q, moves under the influence of the primaries
but does not affect their motion. The axes £, n, ¢ constitute a non—
rotating coordinate system with its origin at C. The x,y,z axes rotate
gbout the z—axis such that Pl and P2 alwaysllie on the x—axis. The
g-axis and z-axis are not shown in the diagram but are at "right angles

to the page".
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about their common mass-centre C and further let the ratio of their
masses ml:m2 be denoted by i—u:p where u £ %f Since they are executing
circular orbits their separation is constant, which constant we will
take as the unit of distance. Further, let the unif of time be chosen

so that G, the constant of gravitation, is unity. Then since we have

n2 a3 = G(m.l + m2). (1)

it follows that the angular velocity of the bodies is also unity.
The equations of motion of a particle Q, under the gravitational forces
of P, and P, are now required. Let P, and P, have coordinates
(El, N> cl) and (52, No» cz) in a non-rotating coordinate system with
its origin at C. Let the coordinates of Q be (&,n,z ), then the

equations of motion are

. £-E E,mE
& =@ -=3 + w3 (2)
1 2
- ny~M n,"N
n = (1-p) 13 + q 23 - (3)
a1 T5
. [ A S 4
z. = (1-w) 13 P 23 (4)
T3 >
N \
where r, = [ (51'5)2 + (nl—n)z + (Cl‘C)2.]2

g}
1

o = [(gr02 + ()2 + (50210 |

and (gl, nl: cl) .and (£29 n23 Ca)
Without loss of generality we may suppose the motion of the primaries

are known functions of time.

to be wholly in the E&n—plane, so that Ty =Ly = 0.

A new set of coordinates x,y,z is now defined with the same
origin C as the previous set and the z-axis coineciding with the
g-axis, but rotating sbout the z—axis at an angular velocity unity
ggch that the primaries always lie on the x—axis. Pl then lies at a
‘ 1 = 5 Ft x2 =1- u, y2 =2z, = 0. The
equations of motion of the particle must now be transformed into the

pbint x T My Y Sz < O and P

new coordinate systen.



If o is the angle ¢Cx at any time t then the relationship
. between (&,n,z) and (x,y,z) is

3 cosg =—-sing O x-]
n = sin g cosg O (6)
C 0 0 1 ZJ

"However it is noted that since n = d8/dt = 1 in the chosen units

then we have 6 t. More exactly, 6 = t + constant, however the

constant may be set zero without loss of generality. Using Equation

(6) the derivatives E, n, L may be obtained in terms of x,y,z, and
their first and second- derivatives. Substituting the results for
these into Equations (2), (3) and (4) we obtain

(¥ - 2y - x) cost - (§ + 2x - y)sint

= (-0 27 * w¥2 " Fleost +[1-p  u [sint  (Ta)
r:?i I'-g r I'3
1 T2

(% - 2& - x) sint + (y + ox - y)cost

X, - X X, - .
_ 1 2 sint -| 1- cost
ol i e o R ™
1 2 1 2
and
o l- V
Z = -[;ﬂ +§3]z , | (7e)
1 2
| 1
where Lor, = [(x -x)2 + y? + Zz]
Dt eyt e ] (®
r2=[(x2~x) +y4 + 2z J
<
xl = -
and X5 =1~y .

Multiplying Equation (T7a) by cost and (7Tb) by sint and adding,

Equation (9) is obtained. Similarly Equation (10) may be got by
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multiplication of (Ta) by (- sint) and adding (Tb) multiplied by cost.

These two together with Equatibn (Tc) comprise the equations of motion

of the particle Q in a rotating coordinate frame viz.
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. . U
k- = 2 (9)
. . oU
Ly +2x = 3y (10)
3 = & (12)
90z
where U = M o+ y2) I S "R T (12)
rl r2

_rl=[(xl—x)2 + y2 +zz-_-l%
r2=[(x2—x)2 + y2 +zz_]%
X, = -y

and X, = 1=,

Multiplying Equations (9), (10) and (11) by x, y and z respectively
we obtain

3V .x +3U .§F +3U.% (13)

XX +yy + 2z = 3 5y -2
which is a perfect differential since U # U(t). Integrating Equation

(13) once we obtain C, Jacobi's Integral,

c=x%+y2+ p(dzu) , 2u (x2 + y2 + z2), (14)
r r

1 2
or

C=20- (2 +32 + 22), (15)

Since x2 + y2 + 22 is clearly positive for real values of %X, ¥ and %
it is obvious that C € 2U at all times.

Supposing now that the particle's velocity is zero then we have

2 +y2 +2(1-H) +24 =cC. (16)
1 T2

Equation (16) defines a set of surfaces in x,y,z coordinate space for
any given constant C. The significance of these surfaces is due to
the fact that motion of the particle can only occur in the regions
where 2U > C (see Equation (15)). Thus boundaries have been set in

X,¥»2 coordinate space which limit the regions of space within which
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the. particle, with given Jacobi Integral, C, can be at any time.
We now proceed to briefly examine the nature of these surfaces.

If we consider the intersection of the above mentioned surfaces
with the‘x,y-plane a set of curves are obtained giving limits on the
regions a particle can occupy in the coplanar case of the circular
restricted three-body problem (see Fig. 2.2(a) - (f)). The regions
where the pérticle is forbidden to move are shaded. The reason for
the shape of these curves may be explained as follows.

Commencing with C = C, >>1 it may be seen from Equation (16)

1
that such a large value of C can be obtained when x2 + y2 is large

or either of r > is small. The former of these results in the

1° T
large external circle of the forbidden regicn. The latter result in
two ovals about the masses m1 and m,., the larger oval being around

the larger mass (Fig. 2.2(a)).If a particle then has initial conditions

resulting in a value of C equal to C, then it will be trapped inside

one of the ovals or outside the exteinal circle for all time. If C
is decreased to 02 it is found that the two ovals have a common

A (Fig.2.2(b)). Further reduction to C = C
results in the ovals coalescing to form a "dumb-bell" shape (see

Fig.2.2(c)). In this situation the particle, if inside the "dumb-bell",

tangent at the point L 3

is free to move between the primaries; if the particle is outside the
external circle then the situation is as before. As C decreases, to
Ch say (Fig. 2.2(d)), then the dumb=bell has a common tangent withythe

external region at a point L This point is situated to the far Side

3.
of m, avey from m, . When this join at L3 "breaks" as C is decreased

the particle is free to move between the primaries and also to wander
into the external region and vice versa. Continuing to C5 (Fig.2.2(e))
a similar joining occurs at Ll to the outside of the larger mass m, with

the neck joining the inner region to the outer via L, increasing in size.

3
At- C = C6 the size of the forbidden regions has reduced still further
leaving only "islands" about the points L, and L5 (Fig. 2.2(f)). These

islands will vanish at the Lh and L_ points as C is decreased still

>
further. Sections through the zero-velocity surfaces in the xz— and
yz— planes are shown in Fig.2.3(a,b) for the same values of Jacobi's

integral.



AFigure_s 2.2 The zero-veloci.ty curves of the
circular restricted three-body problem.
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Figure 2.3(a) Section through the zero—-velocity surfaces
of the circular restricted three-body problem in the
xz—plane.

Figure 2.3(b) Section through the zero-velocity surfaces
of the circular restricted three-body problem in the
yz-plane,
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Now the points L., L L3, Lh’ L. are double points where the

2’

. >
partial derivatives of the function

20 - C

‘f='x2+‘y2+2(_l§‘_‘ll+2£ _C

1 )

?9U/3z = O which since

vanish. Hence at these points 3U/3x = 3U/dy
i=3§= z=0 by definition on the zero velocity curves results through
.Equations (9), (10) and (11) in x, ¥, -z being zero. There are no
resultant forces on the particle and these points are the familiar
Lagrange equilibrium solutions.

The importance of the Lagrange solutions in sf;ability considerations
derives from the fact that the values Cz, Ch’ C5 determine whether the
zero—velocity curves are open or closed in any given system. There are
three cases to consider depending upon whether the particle is in orbit
about one or other primary or about both. _

(i) P,-Q-P, - This is the case of a (massless) planet in an
inferior orbit about the larger star in a double star system (u < 3) or
in an inferior orbit, with a disturbing planet, about the Sun (u << 3).
The particle is orbiting my and if its initial conditions dictate a
value of C greater than or equal to 02 then it is forever trapped
within the zero-velocity oval about m,. If Ch < C < C, then it could

1 2
transfer to an orbit about m, or an interplay situation could arise
whereby the particle alternates between m, and m, . When C < Ch then

the particle may escape from the viecinity of the primaries altogether.
(ii) P,-Q-P
orbit about a planet (u<<3) or a (massless) planet in orbit about the

-~ This is the case of a (massless) satellite in

lesser component of a binary star system (U.§ 1). The discussion of
this case is identical to case (i).

(iii) Pl - P2
about either a double star system (u < 2) or a Sun-Planet system (u <<3).

- Q - Here the (massless)body is in a superior orbit

It is only necessary for stability in this case that C 3 Ch' Since
the particle is outside the external circle it is not important for

its stability that the ovals about m, and m, should be separate. If

however C < Ch then the particle ﬁay enter the region of the primaries.

It is clearly possible to use the initial conditions X,y ,z,X,y,2

to determine whether the zero-velocity surfaces are open or closed.
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However, if instead we express the rotating coordinates in terms of the
elements of some osculating orbit about either m, (case (1)), m, (cgse
(ii)) or m and m, (case (iii)) we may determine limiting values of
the semi-major axis of the particles orbit, for particular values of u
and the other orbital parameters e.g. eccentricity and inclination,
such that an interplay situation cannot arise.

Clearly then this would give us the opportunity of immediately
recognizing whether real three-body systems which included a body of
negligible mass were stable in the sense that exchanges (of the particle)
between bodies was not possible. This may be applied to many cases
apart from the Earth-Moon-Sun system e.g. Jupiter-Satellite-Sun,
Sun-Asteroid-Jupiter, etc. In all these cases however the eccentricity

of the primaries' orbit is neglected.

2.3 A Discussion of the Elliptic Restricted Three-Body Problem

In the previous section it was demonstrated how the zero—velocity
surfaces of the circular restricted three-body problem could be used
to determine the stability of orbits when one of thé masses in a three-
body systen is'negligible. The technique has been used widely in other
investigations.. Hagihara (1952) applied the Jacobi integral to the
satellites in the Solar System other than the Moon. There is a sharp
cut—-off in asteroid numbers beyond semi-major axes of 4 A.U.: Kuiper
(1956) explained this by considering that asteroids within this semi-
major axis (given they have orbits of small eccentricity and incli;ation)
‘are enclosed within the ﬁero—velocity oval sbout the Sun (cf. Figure
2.2(a)). Hence he concluded that these asteroids must always have been
there since the time when the Jovian and Solar masses stabilized at their
present values. The stability of planetary orbits in binary star systems
has been studied by Huang (1960). The zero—velocity surfaces have been
used extensively in the study of the transfer of matter between the
componenfs of a close binary star (cf. Kopal, 1956; Strohmeier, 1972;
Roy, 1978). Szebehely and Evans (1980), discussing the capture of
the Moon by the Earth, concluded, on the basis of a circular restricted
three-body model, that a reduction of around 37% in the Solar mass is
required to "open" the zero-velocity curves thus allowing capture to

occur,.
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However, all these applications and the results derived therefrom
are valid only inasmuch as the circular restricted three-body problem
is a valid model of the system under investigation. Since in general
~real systems exhibit eccentricities in their orbité-it might be supposed
that a better model would Be the elliptic restricted three-body problem.
This problem is identical to the circular case excepting that the primaries’
relative orbit is now a Keplerian ellipse. Formal expressions for the
Jacobi integral and the angular momentum integrals of the elliptic
restricted problem were derived by Ovenden and Roy (1960). It wes

shown that certain functions arose in the expressions for 'these integrals
vhich were dependant upon time through the coordinates of the infinitesimal
particle. Thus although at some initial epoch t = 0 a result could bé
derived showing the system to be stable this result could not be applied
over arbitrarily long time Scéles. At a lster time t = tl the zero-
velocity surfaces may bear no similarity to the initial set of surfaces.

In summary it may be said that although the initial conditions allow the
construction of a set of zero-velocity surfaces which will be little
different from the surfaces as obtained through application of the

circular case if the eccentricity of the primaries' relative orbit is
small, this does not allow one to identify the surfaces of the circular
problem with those of the elliptic problem for all time. In order to

make the comparison the values of the sbove-mentioned time dépendant
functions would have to be known for all time.

Hill in his lunar theory (1905) pointed out that his result on
the stability of the Moon's orbit about the Earth rested on neglecting
the eccentricity of the Earth's orbit about the Sun. He went on to
obtain the actual motion of the Moon from an intermediate orbit - a
periodic solution of the circular restricted problem. This is
essentially analogous to obtaining the values of the unknown time
dependént functibns.

No additional information can therefore be gained through the use
of the zero-velocity surfaces of the circular restricted three-body
model since it is as easy to obtain the positions of the particle
at subsequent times as to evaluate the unknown time dependant functionms.
No rigorous results concerning the satellites of the Solar System may

be derived from the circular restricted three-body problem; asteroids



34

may wander from the asteroid belt due to the eccentricity of Jupiter's
orbit; it is not necessary to invoke & loss in soiar mass of 37% to
allo& capfure of the Moon sinée the Earth's orbit is eccentric, etc.
Since binary stars have orbits of considerable eccentricity it is
therefore necessary to resort to means other than the circular restricted

three-body problem to study them.

2.4 Zero-Velocity Curves in the Coplanar General Three-Body Problem

Zare (1976) established regions of possible motion for dynamical
systems possessing time-independent Hamiltonians or possessing
Hamiltonians reducible to that form by means of integrals of the motion
using only extended point transformations. He applied his method to
the coplanar general three-body problem and derived zero-velocity
curves which may be used to make statements concerning possible con-
figurations of the three-bodies applicable for all time. The parameters
found to control the opening and closing of the zero-velocity curves
are the masses and the integrals of angular momentum and energy. The
derivation of these zero-velocity curves is given in the following pages.

Following Whittaker (190L4), the motion of three bodies is supposed
to take place in a plane: it is required to reduce the equations of
motion of the system to a Hamiltonian system of the lowest possible
order,

Let the masses be denoted W, My, Oy and let their coordinates with
respect to fixed axes in the plane of motion of the bodies be (ql,q2),
(q3,qh) and (qs,q6) respectively. The momenta p; are defined as follows

p; =m 4. i=1,....6 (17)

where k denotes the greatest integer in 3(i+l).

The equations of motion are

R ) : S
q'i = api s pi aqi 1 19--'036 (18)

where

1

1 2 2 2 2y .1 2 2
H=>=(pf +p;) + (p5 + 1)) + 5= (pZ + p) -
2m1 1 2 2m2 3 L 2m3 5 6

G m, m2 - G m.2m3 - G mim1 (19)<

r I‘3l

12 To3
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is the Hamiltonian of the systen,
2 2
= - . - 2

rys = [ (ag - q552 + (g - 992" (20b)
and

rpy = [ (a5 - a2 +(ag - 9)7]? . (200)

Equations (18) are a system of the 12th order. By means of the
integrals of motion of the mass-centre the order of the system may be

reduced to eight. The extended point transformation defined by the

equations
oW ' oW .
. o= = N p. - —' 1=l,'o-’6 (21)
where

’

W=pjaf +pya5 *+Ppga3 *+pq Hpy tpgt ps)qg

+ (p, + ), +pg) O (22)

is performed on the variables,. . In this notation (qi,qé) are the
coordinates of m, relative to axes through my parallel to the original

fixed axes, (qé, qﬁ) are the coordinates of m, with respect to the

2

same axes and (qé, qé) are the coordinates of m_, with respect to the

3
original set of axes. Now (pi, pé), (pé, pﬁ) are the components of

2
momentum of the whole system.

momentum of m; and m respectively, (pé, pé) being the components of

On substituting the new variables it is found that qé and qé do
not appear in the expression, they are therefore ignorable coordinates.
The corresponding integrals, the components of momentum of the mass-

centre of the system, are

pé = constant pé = constant.

Without loss of generality we may assume pé = pé = 0, that is the

coordinates and momenta are expreésed with respect to the (stationary)
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mass—centre of the system. Removing the accents from the new variables

the equations of motion become

. _ oM SR : S
qi api ° Pi aqi 1 = 1,.-.,)4 (23)
where
1 1 2 2 1 1 2 2 1
H=[— +—](p +p)+["‘-+—-](p + py) + = (p,p, + p,D))
k2ml 2m3 1 2 om, 2m3 3 h m, 13 2%
G mlm2 -G m2m3 -Gm ml (oh)
I‘12 1‘23 1‘31
2 2.2
rip = [lag = a0 +(ay - )] (252)
1
_ 2 293
1
- 2 2.3
and T[99 (25¢)

A further .extended point transformation defined by

W A -
q = p; s P; = 3q§ i=1,...,k , (26)

where

W= plqi cos qi + qui sin qﬁ + p3(qé cos qﬁ - qé sin qﬁ)
! . 4 14 14
+ Ph(qQ sin q) + g cos qh) (27)

is performed on the system. The interpretation of the new coordinates
is as follows: qi is the distance | ﬁ;m3| H qé and qé are
projections of m2m3 gn and perpendicular to ﬁ§m3 respectively; qﬁ
is the angle between mm, and'the original x—axis. The new cgmponents
of momenfa are as follows: Py is the component of m, along m3m1;

Pp and g

pﬁ is the angular momentum of the system.

are the components of m2 parallel and perpendicular to ﬁ;ﬁlg

The equations of motion, when expressed in terms of the new

variables are
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('1" = =, , .' = -, 1= l,...,h (28)
where \

0 N I S WA SR A S S R N PO
" ’{aml * 2o ] (By *qr2P3% = Bpdy ~ By)i+{g Yo | (P * 23)
1l P! ' ) ' G mm, _Gu,m

q; 12 Y23
_Gnm o
__r3.l (29)
31
= [(q! "2 2 %
r12 = [q-l - q2) + q3 j (308')
To3= [ *43 ] (300)

Since qﬁ is not contained in the expression for H, qi is an ignorable
coordinate. The corresponding integral is pﬁ = constant (c say), which
may be interpreted as the angular momentum of the system. Removing

the accents on the variables we than have a system of the sixth order

viz.
. _ 2H . _ _3H .
q. = s b. = s 1=1,2,3 (31)
1 ap; 1 qu
where
1 1 1
H=|— p, + =( - o)’y +
[le ]{ 1 i P39y ~ Poly } m2 2m3 (P% * p%)
' Gnm Gm.m
1 . P 12 2 3
+ ~— {p.p, - -3(p,a, - pa,-¢c)} - -
my 1*2 N 3% 2%3 i o3
- Gm
~31 (32)
31

and T)ps Tpgs Ty are as given by Equations (30) removing the accents.
Having followed this procedure Zare (1976) then introduced the

variables n and z as follows
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n=x-lfiy=_q'_2+133_ (33a)
94 9 |
z =q (33p)
and i= /1.

This set of variables specifies the scale (z) and configuration (n)
of the triangle formed by the three bodies., Zare further stated

and proved the following theorem:

"Tf H(q,p) <s a quadratic polynomial in the momenta, p, and its
Hessian, 32H(q,p)/3p? , is positive definite, then there is a unique
function H*(q) such that for all q ¢ R™

H*(q) ¢ H(q,p) | (T1)

and the projection of the submanifold of the state of motion for a
given value of H on the configuration space is given by

.M(q) =H - H¥(q) 2 O. " _ (T2)

In this theorem Equation (T1) is analogous to the result in the circular
restricted three-body problem that 2U > C at all times and Equation
(T2) is analogous to the result (cf. Equation (15)) that

(x2 +y2 +22) =20~-C 20 .

vhere C (a constant) takes the place of H (also constant), and 2U the
place of H*(q). _ '

Since the Hamiltonian defined in Equations (32) and (30a,b,c) does
not depend on the time explicitly and satisfies the requirements of
the asbove-quoted theorem the equations

BH

api =0 i=1,2,3 (34)

have a unique solution, which may be expressed, in terms of the

varisbles defined in Equations (33), as follows:
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m m ’
py= L p - (1+;§)°—z‘1’1 N R R DI ED
. Where . ' -1
(1+=3) (=2 +32) - 2x + (142 (36)
V= = - :
o T

By constructing H*(q) and forming M(q) as given in Equation (T2) it may

then be shown that the regions of possible motion are given by

2
Hi2 + Gb (n)z - e (n) 3z O (37)
where M= m, + m, + m3 |
m,.m m,
o 31 ln1 In_ll
¢ (n) ={mm +mnmn|2+amn | —l|2 yt
o 371 T MlgIniTT My in ]

and it may be noted that co(n) and bo(n) are both positive functions.

The Equation (37), along with Equations (38), represents regions
in the three—dimensional space (x,y,2z) where motion is possible. These
regions may be projected onto the complex n-plane in order to obtain
limits on the possible configurations irrespective of the scale of the
system. For a region of possible motion we require that the scale, z ,
be a real quantity, therefore, forming the discriminant of Equation (37),

it is required that

A(n) = 6> p2(n) +2Mc’H e (n) 20,  (39)

It is in this Equation that the important parameter c*H first appears.
Considering Equation (39) it may be seen that if H > O then all
configurations, n, are possible since A(n) > O in any case. If
H > O then the scale is restricted by ,
- Gb (n) + {a(n) }?
2H

> (ko)

z 2
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in the case H = 0 there 1s a restriction that

2
z 5 ¢ M co(n)

_ . (k1)
2 Gb (n) '

The interesting cases, as far as stability is concerned, arise
wvhen H < 0.. Here all configurations are not possible since A(n) may
be positive or negative depending on the values of c?H and the masses.

The scale is restricted in the following fashion

.Zl £z & z2 s ]
T
where 2 = -G bo(n) + {A(n) }?
, 2H (42)

]

- _ 2

and 2, = G bo(n) {a(n) }

2H

are the roots of the quadratic Equation (37). It is now possible

to plot in the complex n—plane the curves for which "A(n) = 0. It

is found that this divides the complex N -plane in a similar fashion to the

separation of the x,y-plane of the restricted problem by the zero-velocity

curves into regions where motion is or is not possible. There are regions

wvhere A(n) is negative and consequently such configurations are forbidden '

and regions where A(n) is positive allowing these ranges of configuration.
The Figures 2.4(a-c) reproduced from Zare's paper show how the

regions of possible configurations change as ¢?H is increased from

initially large negative values. As the value of c?H is increased from

- jt is found that triply, doubly, simply and un-connected forbidden

regions appear. A triply connected region is sufficient to preclude an

exchange of bodies occurring and in some cases only a doubly connected

region would be necessary. The critical values of c?H where the zero-

velocity curves open or close are those of the collinear equilibrium

solutions (asin the case of the restricted problem) and by considering

the value of c?H for a given system it may be demonstfated whether an

exchange of bodies is possible or not.



L1

[]
o ....
uy

NEENENy
M L "x n
) .l g l. .I ..
r Y = T v [
-1.50  -1.00 -Bso  Poo .o0sa, 100 Jiso 2.00 2.50
u

Figure 2’h(a)

Figures 2.1 Regions of forbidden configurations for G = M = 1,

m =2m, =m, = 0.4, (a) ¢2H = -0.025, (b) c?H = -0.0225
and (c¢) ¢2H = -0.0215.

<



2.00

W NuENN
.lll'...... Ry, vy
.l.. “uy
" o .,
" 9 )
w® ] LI
" ’ L4
. x
N =
» =
» g ; '.
" o .
. »
. ]
o
w .
] ...llllu'.-. LLLLLLT T [ ]
X " u ' "
[ ] u .. a
 § x ] | ]
. x n .
2 g ... «
-1.10  -0,70 -0.30 °]0.10 50 0.50 1.30 4-70 2.10
l. .‘ .. a
u
Xy e ..l. “u, ot
. .‘l.“;.. alk "-....'.‘.- .
. -
»
. 3 ;
n -
1] .
l. .
l- .'
[} Q [
] 0 u
... ’;- .-.
", | ..--
"uy, L
. »
g -."'llnnnullll"'...
Figure 2.4(b) - o :
o
Q
o
.....llilllllllu...-.
l"O. Tu,
. n ey,
. - u
. . .
l. .. <
. .
n
. 5 ®
a .;‘ n
» n
. " [
wuanvg ey
] 4 ul ny
» - " S ...'l. .-"'. "ln.. "
TL N . ] x =
" LT ugk
o
°
-1.20  -0.80 -0.40 bloo 0.40 0.80 1.20 1-60 2.00
¥y
LRl o " at"n
| ] L™ n n? L™ "
s 2l n® : . a® x
"suaaaqQer C"mgggguuns®
. .
n g - .
a -
] ' n
" n
. .
" o "
- n .
» . .
s, T : ot
» ot
au, .
LY ™ gal u
o FRoupnppannnsn?
©
Figure 2.4(c) w.




43

2.5 Application of the Zero-Velocity Curves of the General Three—Body

Problem to Stability Considerations.

As was shown in the previous section the regions of possible motion

are defined by F(n,z) > O where
F(n,z) =Hz2 + Gb (n)z - oM c (n)
ns o' " 2 SN’ o

all the quantities retaining their previous meanings. The projection
of these regions onto the complex n-plane gives all the possible

configurations independant of the scale through the relation

aln) =a2 bg(n) +2 M c2H ¢ (n) 3 0.

a4

The parameter c2H then controls whether the zero-velocity curves,
in the configuration space, are open or closed.

In the same way as the critical values of the Jacobi integral
are associated with the Lagrange equilibrium solutions of the circular
restricted problem, the critical values of c2H detefmining the opening
and closing of the zero—velocity curves in the general three-body
case may be obtained from the equilibrium solutions of the general
problem. The critical values of c2H are associated with the singularities
of the manifold F(n,z) = 0, corresponding to the equilibrium solutions

(ef. the double points Ll""’L in the restricted problem where the

>

partial derivatives of the function f = 2U - C vanish). The singularities
‘are further defined by

OF _ 3F _ OF . OF _
5z = 0 and on = ax + i Sy 0. (43)

From the first of Equations (43) a value z = z may be derived where

J== 8 (hk)
2H

It can then be shown, substituting Equation (44) into Equation (37),

fhat

F(n, z.) = - i—H A(n) (45)
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end Ee-ip ST RBW] (46)

which demonstrates that the singularities of the manifold F(n,z) may
"be identified with the singularities-of its projection on the complex’
n-plane i.e. the three relations Equations (43) and F(n,z) = O may be
_replaced through the two Equations (L45) and (L6) by

a(n) =0, —Aln) =0. . (7)

From the first of Equations (47) we obtain
: 2
G2 bo(n)

2 = o ———meee
c°H 2 (n) °

(48)

which if substituted into the second of Equations (47) results in

my (1=[n| ™) + my(|n=1]™ -|n | 3[n-1]2 )]" *
[ 3 2 , (49)

) -3 -1 -3 =
- = + Y 2 - = %
[ =102 mg o)™ =12 P2 )] (1) = 0%
In order to find the real roots of Equation (49) which correspond to

the collinear equilibrium solutions let n = 1 +pwhere p is positive

and real. Equation (49) then becomes
’ 5 L 3 -
(m3 +m)p +(3m3 + 2m1)p +(31n3 + ml)p
. 2 = ( = .
- (3m, + m )p2-(3m, + 2m,)p (m,* m) =0 (50)
This equation has one positive root p where p is the ratio

¥Clearly |n|= ln-ll = 1 1is a solution of this equation. It corresponds

to the triangular equilibrium configurations with c¢2H = (c2H)y= (c?H)s=
- & (mm, +mm + )3 . If ¢%H > (c%H)y, = (c2H)s th forbidd
oy (mgmy +mpm, +mmy)3 . c c¢“H)y = (c“H)s then no forbidden

configurations exist.
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|m;m2| : lm;ﬁll when the bodies are in a collinear equilibrium
configuration in the Qrder m3m1m2f . Two other values of p may be
obtained arising from the other distinct orderings of the masses

321
through Equation (48), remembering that n = 1 + p: let these be

denoted (c2H);, (c2H),,(c?H)4 according as (c2H) s (c2H),s (c2H)3< (c2H),

mmm and mmm. . Three critical values of c2H may then be obtained
3T

= (c2H)s* (where (c2H), and (c2H)g are as defined in the above

footnote).

Summing up, if c2H in a real three-body system is less than (or
equal to) (c2H); then the forbidden regions are triply connected and under
no circumstances can there be an exchange of bodies. If (c2H)1< c2H
< (c2H)2 then the forbidden region is doubly connected; this is a
sufficient condition to preclude an exchange of bodies only if one of the
three bodies lies outside the central "dumbbell” (cf. Figure 2.4b).
If c2H >(c2H)2 then an exchange of bodies may take place in any event.

2.6 Summary

Zare (1976, 1977) has shown that an approach similar to that applied
in the circular restricted three-body problem can yield regions of possible
motion for the coplanar case of the general problem. The opening a.nd
closing of the forbidden regions 1s governed by the critical values of
c*H obtainable from the collinear equilibrium solutions. o
If we consider now a hierarchical three-body system, that is,‘bne

which consists of a binary component, involving m, and m,, with an

external mass m_ in orbit sbout the binary at some greatir distance

than [mzm2|, thenﬁstatements may be made sbout this system's stability.
In the case where the value of c2H for the system is less than (or
equal to) (c2H);, as obtained by the above procedure, then the system

is stable in the sense that the binary will always maintain its identity
and mg cannot come in between oy and m,.
then it is sufficient for such stability that c2H g (c2H),.

When m3 is the smallest mass

#The values of c2Hi, i=1,2,3,4,5 may be identified with the values of
the Jacobi integral at the L2’L3’L1’Lh’LS equilibrium positions in the
restricted problem respectively (see Figs.2.2(a) - (f)).
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More detailed consideration will be given.to the opening and
closing of tﬁe zero-velécity curves 1in later chéﬁtérs Qhen the work
of several authors (Szebehély, 197T; Szebehely and McKenzie, 197Ta,b; ‘

-Szebehely and Zare, 1977; Szebehely, 1978) in the field of stability
in hierarchical three-body systems will be briefly reviewed. The
method will also be applied to an investigation of the suitability of

certain stability parameters to be derived in the next chapter.



CHAPTER 3  STABILITY PARAMETERS FOR HIERARCHICAL DYNAMICAL SYSTEMS

3.1 Introduction

The general problem of celestial mechanies is concerned with the -
determination of the relative motion of n bodies attracting one another
.according to the law of gravitation. Since the problem is not soluble
certain limitations and assumptions must be made.

The first simplification we make is in treating all the bodies
according to the Newtonian law of gravitation and thus neglect any
general relativistic effects. Having done this only point masses
are then considered i.é. we neglect any effects due to the finite
sizes, ifregularity of shape or non-uniformities in internal distri-
bution of mass of the bodies. This is reasonable since it is observed
that bodies in the solar system, excepting certain satellites and
asteroids, deviate little from spheres and in general do not have
gross anomalies in the internal distribution of their constituent
matter. Bodies with spherically symmetric mass distributions may be
exactly represented by point masses.

Secondly only systems which exhibit a hierarchical structure are
examined. Evans (1968) described the hierarchical arrangement of
bodies by means of "mobile diagrams" (see Figures 3.1(a) - (c¢)). In
planetary systems the characteristic hierarchy is demonstrated by .
each successive member being further from the parent star than its
previous heighbour. The orbits are well-spaced and do not cross
(Fig.3.1(a)). Similar structure is generally to be observed in
satellite systems. They may however be included on the one diagram
with the planets.(Fig.B.l(b)). Multiple star systems arrange them-
selves in a variety of hierarchies: there are the binary and triple
star systems, as well as quadruple systems allowing two possible
arrangements (Fig.3.1 (¢)). Notice that the quadruple star system,
may be arranged in a fashion similar to planetary systems (Evans'
Hierarchy (3)) or can form into two binaries which are in orbit about
their common mass—centre (Evans! Hierarchy (2)). Star systems of
higher multiplicity may bevmade up in successively more complex forms.

Due to the arrangement of the bodies of the Solar System in a
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Binary

Triple

/J_—,T‘—'—' Quodruple thierarchy 3

(c)

Quodruple : hierarchy 2

Figure 3.1 Evans mobile diagrams for (a) planets
(b) planets and satellites and (¢) multiple stellar

systems.,

hierarchy'it is possible to subdivide this many-body system into two
main classes of problem. These may be individually treated by the
problem of three (or more) bodies. The lunar theories are particular
examples of the ﬁhree-body problem where the motion of the Moon about
the Earth is examined, including the disturbing effect of the Sun but
neglecting the effect due to the other planets. Planetary theories
have been evolved to examine the motion of several small bodies sbout
a large central mass as is the case with the planets and the Sun. Here
the mutual perturbations of the small bodies are taken into account.
These two problems are both ;ases of the three (or more) body
problem; the division is 6n1y made on the grounds of observational
evidence and the convenience of anglysis of the problem. In the

remaining sections of this chapter a set of parameters are sought for,
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vhich it is felt ha&e a physical meaning for the stability of hierarchical
- dynamical systems. Stability in this sense requires that the system

does not undergo any exchange of bodies, escapes or collisions. This

is essentially the maintenance of the "status quo" as mentioned in

Section 1.2.

3.2 Lunar Theory - The Disturbing Furiction

Following Brown (1896) we consider the forces present in the problem
of three-bodies in the case of the Earth-Moon-Sun system. Two methods
are adopted: the accelerations due to the forces acting on the Sun and
Moon relative to the Earth are found first, secondly the accelerations
due to ﬁhe forces acting are obtained relative to the Earth, for the
Moon, and relative to the mass-centre of the Earth-Moon system for

the Sun.

(1) The Forces Relative to the FEarth

Let E, M, S and C be the positions of the Earth, Moon, Sun and

mass-centre of the Earth-Moon system respectively (see Fig.3.2).

Figure 3.2 Forces acting in the Earth-Moon-Sun system.
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Further, let the masses of the Earth, Moon and Sun be Tps Ty and M,

respectively, and the mutual distances ME, SE and SM be denoted r, r!'

and A.

The forces acting are as shown on the diagram and hence

-the accelerations due to the forces, relative to the Earth, are as

follows:

On the Moon

g + M in the direction ME

r2
Mo "nooon " M
A2
Mo " " " SE
T2

On the Sun

g + Mo in the direction SE
r’2

mM n " cn SM

ra

mb\d_ n n 11 m

72

If we consider the Earth as the origin of a set of rectangular

axes and let (x,y,z) be the coordinates of the Moon and (x', y', z')

the coordinates of the Sun and L, M, N, L', M', N' the accelerations

acting on the Moon and Sun relative to the Earth referred to these

coordinate axes then

VL___‘_mE+mM.2C__MQoX"X'
r2 r A2 A
Mot Mg | & EM . X'-x

and IL's—-—"— = -
r'2 ' A2 A

¥o- X (1)

(2)

with similar expressions for M, M' and N,N',

Putting
F=mE+mM +Me MQ.I’.}E'
r A r r'?
eand o o Mgt mp omy my zZ
r' A r r2
where r.r' = xx' +yy' + zz' ,

(3)

()
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L=gl L M=g ., N=il o
: (5)
F! oF! ‘IF!
—t t = 9 S
L .axl -] M ayi ° N BZ! '

F and F' are the force functions for the motions of the Moon
and Sun with respect tothe Earth. These expressions for F and F' are
general in nature and are applicable to any system of three masses,
We now proceed, in the light of certain observations, to simplify the
solution of this problem.

To find the motion of the Moon about the Earth it is assumed
that the motion of the Earth about the Sun is known i.e. x', y', 2'
are known functions of time. Equation (L) giving the functional form
of F' demonstrates that the motion of theSun is dependent upon the
coordinates of the Moon as we would indeed expect. Considering only
the first term in the expression for F' viz. (Me+ mE)/r' would result
in the motion of the Earth about the Sun being an undisturbed Keplerian
ellipse. Of the other two terms clearly oy g.g'_/r?' is the larger
since r << A , A and r' being the same magnitude. This term arises
from the force ‘mM/rz acting on E and if the motion of the Sun were

referred to C this term would not have appeared. Thus we consider:

(ii) The Forces acting on the Sun relative to C and the Moon
Relative to the Earth

°s

- Clearly EC= ™ . EM

Ty * My
and therefore the acceleration of C relative to E is mM/(mE + mM)
times that of M relative to E. Hence the force on theSun relative to
C parallel to the x-axis is L' - mML/(mE + mM) which by Equation (2)

is equal to

Mottt my [T B omex | g
myoemg | |
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Iet £, N, T be the coordinates of the Sun referred to a set of
_axes, origin at C, which are parallel to the original set x, y, z.

Let SC = p. - Then

A
£= x! "mM o Xy
Ty + My
ne oy -2 ik ' ()
mg * By
Mg My )
Therefore x' - x=§ - % - X, ete. (8)
m + m,
. Y2 f 12 )
and r'2 = g+mM i I M A ;+mM -z
Lg * My J Dp * My oy + My
Y2 12 ]
A2 = £ - mE X +| n- g 2 I I e Z
mg + my vy mg + my
7 / J
Putting ' M9+ m, + Iy ( mE my 3\
o= = 2Ly
| mg + oy
where r' and p are expressed in terms of X, ¥y, Z,Esnsz - The partial
derivatives 3¢'/3z. 30'/3n» 80'/dg Wwill be the forces acting on
the Sun relative to C in the directions £, n, z.
Again replacing x', y', z' in Equation (1) by their values given
by Equations (8) we obtain
. + )
I = _EZ M. x +M£(E_EE__.-X],_M03{€+.E_M___-X (12)
[

2 3
oo AT mptmy ) T Dyt
again with similar expressions for M and N. The forces L, M, N may

therefore be derived by partial differentiation with respect to x, ¥y, z

of the force function

(9)

2
.(10)
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o = ETTM Mo IET™M . Mo TET ™M

r A n, r' my,

A(x’y’z’g’n’ﬁ) a‘nd r' = r'(X3Y’Z’£’n’C)‘

(13)

where A

It is a relatively simple exercise to show that ¢' differs

little from (My+ my + m,)/p . We have

m,

2m, "2
r'2 = p2+ M rp cosg + —AL—--. r2 (1)
np + oy np + My - ‘
wvhere ¢ is the angle MGS,
whence
2
PR & -L * £ cosp + 'mM—'— by P (cosg) +....(15)
T mptmy pP m +my | o

where Pn(x) is the Legendre polynomial of order n in x: in this case

P(x) = } (322 - 1),

Similarly
2 $2 :
1.1, E 2ot [ 2 P2 b (cose) 4....(26)
A p m, +m, p? mg + my| o3

and therefore

o' = ggg;fiL:;EM . !l + EELEEL-- 2 P2(cose) +oeaeo| o (1T)

p (mg + my)2 p2

Now the ratio ri:p differs little from 1:400 at any time and the
ratio my g is approximately 1:80 resulting in the ratio of the first
to second terms being approximately 107:1. Thus the second term is
negligible and the motion of the mass-centre of the Earth?Mbon system
relative to the Sun is very closely approximated by an undisturbed
Keplerian ellipse.

With the assumption that the motion of C about S is elliptic and
therefore a known function of time the force function ¢ may then be used
to obtain the motion of the Moon. In practice however it is easier

to use the function F, the corrections required to relate F and % are
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easily obtainable to sufficient accuracy and need not concern us here.
It may be seen in Equation (17) that the term . mEmM/(mE + mM)z.rz/p2
is a measure of the "disturbance" of the Moon on the orbit of the
mass-centre of Earth;Moon system“about the Sun normalized to the two-
body forces acting between the Earth-Moon system and the Sun. This
measure is very small and consequently the actual orbit will not
deviate far from an undisturbed Keplerian ellipse. It would clearly
be possible to operate on @ in a manner similar to that done on &'
and obtain a measure of the disturbance of the Sun onthe Moon's orbit
about the Earth. The measure of disturbance in this case would
obviously be found to.be much larger than the effect of the Moon on the

Sun's orbit about C.

3.3 Planetary and Lunar Theory — A Brief Comparison

As was mentioned sbove the division between the planetary and
lunar theories is one of convenience only, both being examples of the
n-body problem (n > 3). The need for different‘analytical procedures
arises through the distinct differences between fhe arrangement of
the two types of system.

On considering the Moon in revolution about the Earth (or indeed
any satellite about its parent planet) disturbed by the Sun it is
immediately apparent that the ratio of the semi-major axis of the lunar
orbit to that of the Earth-Moon system about the Sun is very small.
Therefore, when expanding the disturbing function, we should clearly
expand first in terms of this small ratio in order to reduce the
nunber of terms we require to take in the expansion. Having done
this we would then expand in terms of the (small) eccentricities and
inclinations. ,

The case of two mutually perturbing planets in orbit about the Sun
is different. Here the ratio of the semi-major axes of the planetary
orbits may be close to unity; for example in the case of the Earth
and Venus this ratio is 0.723. Therefore since the orbits of the
planets are generally of small eccentricity and inclination - generally
even smaller than in the case of satellites - the expansion in terms

of these quantities is done first. The functions ¢ and &', derived
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in the previous section, may be directly carried over to the planetary
" case if we allow m, to be the mass of the Sun (M), m, the mass of the
inner planet (mi) and Mgthe mass of the outer planet (mb). Making

- these alterations and including the term in r3/p3 Equation (17)*becomes

M+m +m Mmi r2 .
R 1+ = P,(cose) +
0 (M + m.)2 p2
+ Mmi (M - ml) !_3_ P3 (COSG)"'--""' (18)
3

., (M+m)3 o
vhere r,p,6 and Pn(x) have their previous meanings.

Now M >> . thus we see that the coefficients consisting of
combinations of the masses are equal to a high degree of accuracy to
the first order in mi/M, this would also be found to hold true for
the higher order terms involving the Ph’ PS’ etc. terms. The
quantities (r/p)® in the expansion will be decreasing as n increases.
However, as was noted above, r/p may be almost unity, therefore a
relatively large number of terms will be required in the expansion.to
give sufficient accuracy - as opposed to the lunar case where r/p
is small. It may similarly be shown that the expansion of ¢ is similar,
terms involving (r/p)n appearing in conjunction with coefficients of
the order mo/M. This is not carried out here since it will be dealt
with more fully in Section 3.6.

It is therefore apparent that in lunar theory the expansion will
involve few terms of rapidly decreasing magnitude whereas in planetary
theory large numbers of terms will be retained all being of similar

magnitude - excepting, of course, for the modifications due to small

-

¥ This expression implies that forces acting on the outer planet are
expressed relative to the mass-centre, of the Sun—-Inner Planet system
and not relative to the Sun itself as is more usually the case. The
difference between the two ways of expressing these forces is less
than in the lunar case since the position of the Sun is very close

to the mass—centre of the Sun-Inner Planet system due to the smallness
of the planetary mass as compared-to that of the Sun.



56

divisors as mentioned in Chapter 1. However even in the planetary

" case the leading term in Equation (18) is the largest and is a measure
of the disturbance of the inner-planet* on the orbit of the outer

“planet. Thus through such expansions - as exemplified in Equations
(17) aﬁd (18) - it is possible to defive parameters which characterize
the "size" of the disturbance of one body on another in a hierarchical

'system.

3.4 Stability in Multiple Stellar Systems

" The remaining case of the hierarchical three-body system not yet
accounted for by the lunar and planetary cases is that of the triple
stellar éystem. This is the case when the three masses are of nearly
equal magnitude. There are many observed cases of triple stellar
system. It is estimated that half of all stars occur in multiple
systems i;e. binary, triple, etc: of these a proportion considered
to lie between 1/4 and 1/3, are triple systems (or higher multiplicity).
The same ratio seems to hold when comparing the number that are
quadruple or higher with those which are triple or more, and so on
(see Batten, 1973). In triple systems it is generally found that .
there is a (relatively) close binary component with a third more remote
component. The binary components execute disturbed Keplerian ellipses
about their common mass-centre with the third star following a disfurbed
Keplerian orbit with respect to that mass-centre. The ratios r/p can
vary grea£ly in this case: the system may consist of a spectroscopic
binary with the third mass in orbit about them resulting in a small
value for r/p, or r/p may be as large as 1/3, this being a rough
upper limit beyoﬁd which the system may exhibit instability (Harrington,
1972). Eccentricities and relative inclinations of the orbits in the
stellar three-body case will in general not be small therefore the

formulations of any general perturbation theory would be facilitated

* More precisely it is the disturbance on the outer planet due to the
Sun and inner planet not being found at their common mass—centre.
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by a "lunar-type" development as in Section 3.2.. The place of the

Earth and Moon wbuld be taken by the binary, the third component
‘acting' as the Sun. If we set Mg = me = my = m in Equation (17),

thus implying equal masses, we obtain

oo 3m |y —J=.-r-2P (cose) + (19)
) o | hvpz_e :

Thus it is seen taking r/p =0.2 as a fypical value that the coefficient
of the P, term in Equation (19) is 1072, ‘This is a measure of the
disturbance of the binary components on the orbit of the third mass
about their common mass-centre. Clearly it is again possible to obtain
the expression for ¢ in order to estimate a measure of the disturbancé
of the third mass on the binary components' relative orbit.

There are no cases observed where the ratio r/p is very small.
This is probably due to two factors. Firstly if p is very large in
comparison to r then the period of the third mass about the mass—centre
of the binary would also be large therefore it is unlikely such a
system would have had a chance to be observed to be a triple system in
the time since such observations began. Secondly, there is obviously
an upper limit to the separation of a binary star due to the disruptive
effect of the "central bulge" of the galaxy. In a similar fashion
the third component of a triple stellar system may be removed from the
system if p is very large.

There are systems in existence.of higher multiplicity. One of
‘the best examples is the Castor system which consists of six stars.
These are arranged in three pairs, as close binaries, their
periods of revolution being 9.2, 2.9 and 0.8 days. The two closer
binaries revolve about each other with a period of sbout 500 years.
The third binary is placed further out and rewolves relative to the
mass-centre of the first two binaries in a period of several thousand
years. - The situation is shown schematically as a "mobile diagram"
in Fig. 3.3. The orbits in the system are all well-spaced and therefore

the disturbance on the relative Keplerian orbits is kept to a minimum.

~
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CASTOR SYSTEM

]

] ]

Figure 3.3

3.5 The Jacobian Coordinate System

A form of the equations of motion of the general n-body problem
is introduced which is of use when considering naturally occurring
systems. The method was originated by Jacobi and Lagrange (see
Plummer, 1918). The equations are applicable to systems which exhibit
a hierarchical structure and consist of relatively few bodies: examples
of such would be the triple stellar systems (or indeed stellar systems
of any multiplicity which exhibit the arrangement of bodies as in Evans'
Hierarchy (3) for the four-body case), planetary systems, and satellite
systems including or excluding the Sun. Systems which are excluded,
or rather where no substantial gain is forthcoming from the use of
such a coordinate system, are loose aggregates of stars such as open
clusters and many-body systems such as globular clusters. These however
are not considered in this work.

Consider the equations of motion of an n-body system with respect
to an inertial reference frame origin O (see Figure 3.4). In the usual
notation '

mE o= LU (=120 (20)

vhere U = -% G I T (k=1,...,n3 2=1,...n; k#2) (21)
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is the force function
- Xi is the gradient operator associated with Bi

m. is the ith mass
) —_—

Bi is the position vector Om:.L
Typ = 'Skzl = By = Rl
G is the gravitational constant

and a dot denotes differentiation with respect to time.

Let us consider that the bodies 1lie in a hierarchicai arrangement
as shown in Figure 3.4, so that successive bodies m, (i = 2,...,n) lie
at greater and greater distances from my sucin that their orbits, taken
with respect to the mass-centre of the previous (i-1) bodies My slyseees

m;_,, do not cross (at least in some initial phase).

We now define the vectors p; 8s follows: fs is the vector from
the mass—centre of the masses My Myseee,ls o to the mass m. as shown
in the diagram. It is then required to express the motion of the
bodies with respect to these new coordinates ;e Notice that whereas
there were n position vectors B. there are only (n-1) vectors £+

Now the mass centre of the first jJ masses ml,...,mj is at a

position given by

B L (22) .
R. = = T 22 e
~ M. k=1 "k A
J
where .
J .
MJ = g W o (23)
k=1
Thus _
Pi = Bi T |
and 1 i-1
£i = B ’; 3 m B (24)
L ke '
giving e
8T B Tw, o Mk (25)
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Figure 3.4 A particular case of the Jacobian coordinate system
where n = 4. (See text for definition of symbols used).
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Multiplying Equation (25) by m. and substituting from Equation
(20) we obtain

- Co- -m i-1
mop, = LU -~ = I JU (i=2,....0). (26)
CoM k=

Supposing §i=(Xi, Yi’ Zi) and p. = (gi, n; s ;i) in the inertial

reference frame, consider the x-component of Equation (26) viz.

. i-1

m, Ei = U _ _1 T E1) .
oA, M, k=l X
This may be rewritten as
- su 05 o =Ly %%
m, Ei = - —-— - —= 5 —_— = . (27)
;X M oy ¥

By Equation (24), noting that k is a dummy suffix,

agi .
3X.
1
ok.
ana . ok
X M
m 1-1
thus m. £, = U r:L+ - I om 1 . (28)
L 3E M2 k=1
i i-1
i-1
Now z m = M. . thus we have, after applying the same
k=1 =1 |
proecedure to the y and z components
m: - M. .
-1 U .
—}—"1-—' : pi = - (1=2,-oo’n) (29)
M. ~ ap.
1 ~l

These are the equations of motion of an n-body dynamical system
in Jacobian coordinates and are thus applicable to hierarchical systems.
Equations (29) form a (6n—-6)th order system, the reduction from the
original 6nth order system being effected by the use of the six centre-

of-mass integrals. We proceed, in the next section, by means of an
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expansion of the force function U in terms of the ratios pi/pj (i=2,.0.,
J=1; J=3,+..,n) to carry out an analysis similar to Section 3.2 in the

case where there are n bodies.

3.6 Expansion of the Force Function of a Hierarchical n—Body

Dynamical System

As was seen in the previous section the form of the equations
of motion of an n-body dynamical system is as follows (cf. Roy (1978,
1979)).

.M. - ' )
i U R | p; = YU (i=2,44.,n0) (30)
M.
i
' n n n
where U = %" G : X = (31)
k=1 2=1 o

kg

is the force function of the problem. In these equations the

definitions of 1, 5 skg and ?kz are as previously given. Now

1

Mi = 3 mj, with m = 0 being definead, Yi denotes the gradient
J=0

operator with respect to 03 with ps being defined as the vector
~ ~

= mi' (Mi—l being the position of the mass—centre of the first
°s
(i-1) masses).

<

Clearly the force function U, can be rewritten in the form

n
U="G £ m B, , (32)
=2 3 L
, -1
B = '
kg

Let the vectors Bg (e=1,...,n) be the position vectors of the
N MASSES Wy sess,M in an inertial reference frame; then clearly, if
we let Bj be the position vector of the centre of mass-of the subsystem

Tyseeesls in the same coordinate system we have
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M,R.= X m R. (34)
- 8=1 '

Using Equation (34) and the equivalent equation involving Bj-l

and subtracting them we derive

- m.

R. R. =

M.
J

B; ~ Bs)e (35)

Summing over j, between the limits k and ¢-1 (k < 2-1), in Equation

(35) yields

nm,
= _ 3 -1 3 _ = _
B1 "B * 73 y (R5 ~ B;4) = 2 (36)
=k J

Now clearly
I T8 T

which upon application of Equation (36) can be rewritten as

2-1
= P - B m. -5
Iee =By "B TRt Bt B A (BT EBy)
. J=k M.
Jd
whence, noting thaf p; = Bi - gi-l’ we have
-1 :
m. °g
I, = P, "0 t I _1 p; . (37)
n kg~ R T Bk FEE £3

vhere we define p; = Q.

—

Thus on constructing (sz . L )"2 we obtain

14
2-1 -1
1 1 |— 2 m.,
= == , |1+ + ¥ I B a- a0 C.. |-24 C +
T Py L ') 5ok hek —'J-———M_Mh 32%hg “jh ke kg
' J
|
2'..1 5

m.

+ 2 T —l a. (C. - a c.)
. M. k k
j=k 3 Je Je _Jl d

where
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p.
R
aij - Pj
- PiPj ..
Cij = (1 <3J) (38)
. P; Pj
and s = lesl

Applying the binomial expansion for (1 + x)

NI

, assuming that

r 12
%
Ko 1< Vik,2 (k < g),
P
L
we obtain, correct to the second order in the q's,
-1 21 | m.
e = |1 -3 g -3 F g . %¢ %z Cn | *
ke Pg jok h=k | M3 Mp I J
-1
m. 3 2 @2
C, + . C.. - C. + = +
* o Mg jﬁk R “Jz(“kz Jk Jz) 2 oy Cky
dJ
w1l (mpom €. € |- 3g,cC
+-§ I by ﬁ'l = * 00 %hy “Jp Thy %L ke
ik n=x | % "
g-i m.
. . C. (39)
j_?_.k j an, Jg
Lemma 1: 21 gl m. o's
—_— — C - . C. =
%g 'k . M. © =
k= pl A L L j=k 3 Je dR
Proof':
1" -1 -1 m.
N .
. Lo oy Gy T I Z x W ey Gy

*¥This condition 1s clearly satisfied for hierarchical systems within
which the bodies are numbered from 1 to n in the above mentioned

systematic fashion (see Section 3.5).

The central mass [ e.g. the Sun

in the case of the Solar System, the larger component of the binary in
a_triple stellar system, the planet in a satellite system (either

is denoted m

including or excluding theSun as a disturber), etc.
and the outermost m_:m, is constrained to be less than m, the remalning
masses being free t0 assume any values. Note also that aj3 < 1(i<J)
i.e. Py < P; where J = 3,e0e50 31 = 2,004, j-1.
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on reversing the order in the double summation (see Fig.3.5), is given

by
gmlomy c, - A1 B c ¥
z —  * O ke PN Rl ﬁ“l sz jg{ x mk. ¢
k=1 Py o= | P T =1
, J
Observing that ¥ m = M. ) {- " —
- 3 ]
(since m, = 0 is defined) and that R
k and J are dummy suffices, the : .
result trivially follows. We may J ) :
note finally that this result is S
independent of the definition of the 4 . .
o and Cij terms, and relies only 5'?. .
upon the definition of Mj’ which fact P 2 kR ; '. t-1
will be made use of in Lemma 2 below. Figure 3.5
Lemma 2: )
2-1 g1 g-1 2-1 T
r x|z $ 2 . o r o 0j E
k=l Py | 2 ek h=k Mo M %58 %he Cihe T gk H, *32%%8 ~ 5ke
N -1 m2 2
=- r i «a. P_(C.)
Po5=1 WM. L 2 A2
dJ
where P2 is the Legendre polynomial of order two in Cjz and
Bisn = 3 Cip O3~ Gy -

Proof: By considering the symmetry of the region of (j,h) summation,

the L.H.S. of the above expression can be rewritten as

-1 g-1 ,j""l ) ‘ 2'..1

m, 2 2

LY x.2i.Tn v E. - % Tk %kp oo
= =k+ = - == -

J p.Q, MJ Mh Je hg “Jhg k=1 Mk Py kkg

2 . -

2~1 2-1 m. -1 -1 .
+3 3z T -:;k- (ﬁl a?z E.52 - I =z -Iik-ﬁ'l .. o, E. '

k=1 j=k P2 1% IV k=1 gmker Py My 9b KR OOKE
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Consider, firstly, the second and third terms in this expression.

" Reversing the order of the double summation in the second of these (as

in Fig.3.5) we obtain

-1 2 ] 1

2 2
1oz (1 [B) 2 s ™| -z ™ %, E
> ‘ Y op) EJJ.Q, k= k=1 M . kk g
d .pz J M Pe
J : :
Upon notin = M., the
pon 1 & 5 e 3> A |
k=1 :
fact that k and j are dummy suffices 1l . . .
and that Eiiz = 2 P2(qi£), these R
may be seen to contribute a term 1 .
: _Ju 0 .
el 2 ‘ o e
R X
- =1 M. qg’ > o .
Py 975 Y AR
Next, considering the first and fourth 2
. ) ] — —
terms above the order of (k,j) summation 1 2 k A
is changed (see Fig.3.6) yielding a Fig.3.6
contribution
-1 -1 j-1 : J-1
1oz B oz mkE_h_u,thjhz" 5 mkuk B, |
=2 M. %2 | k=1 h=k M k=1 L ke
Py J |

which is identically zero by Lemma 1. Hence the required result is
obtained. - ‘ Q.E.D.
Using Equation (39) in conjunction with the results of Lemmas 1

and 2 we have the following simple expression for the B  , correct to the

L
second order in the a's,
2—

. 1 2
By = FQ»k-l mk“"k“kz o (Cgg) - Mk"‘m Py (Cep) | s

which, on substitution into Equation (30), using Equations (31), (32)
and (33), and noting that we defined m, =0andp, =0, gives

n 2-1
m M-_ . . . m :M_ m _ 2
i ll"i:GYi 3 gl el e M1 o g Po (G )| ]-
M ~ &=

p =
2 L k=1 Mk
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Noting that all the p; are independent we thus obtain

i-1 n

p; = GM V. e {1+ = eft P2(Cki) + = eziPQ(Cig,)} (o)
~ pi k=1 . 1=i+l
ki M, |
where € = T Yk ., ki
Mk Mi-l
o— m 3 L - =
i T A%y (i=2,...,0),  (b1)
M,

It may be noted that if i = 2 there is no term contributed from the
first suﬁmaticn; in addition if i = n there is no term contributed
from the second summation as would be expected in the light of the
comments below.

On examination, it can be seen that the first term on the right
hand side of Equation (L40) represents the undisturbed elliptic motion of
the ith mass about Fhe mass—centre of the subsystem of masses o) sMyeees

me_ps while the ekl,e provide a measure of the disturbance of the

Li .
elliptic motion by the remaining masses. Note that ekl (a superscripted
e) denotes the disturbance of the ith body by the kth (inferior) body

i.e. one closer to the central mass, while ¢ . (a subscripted ¢) denotes

the disturbance of the ith body by the gth %;uperior) body i.e. one
further from the central mass. Furthermore, the disturbances in terms
of the é‘s are all normalised with respect to the central "two body"
force i.e. the undisturbed Keplerian motion due to the force between

the mass-centre at M; , and the mass mil

For example in thi case of the Earth—-Moon—-Sun system the disturbance
of the Moon on the orbit of the:Sun relative to the Earth-Moon mass—centre
is characterised by €35 which is approximately T7.94 x 10_8 (as noted in
Section 3.2). The disturbagge of the Sun on the Earth-Moon system's
orbit is characterised by ¢ which is 5.65 x 1073, Thus it is seen
that the disturbance of the lunar orbit is greater than that of the

solar orbit.
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3.7 Discussion

The € parameters derived in the previous section are thought to
have a physical meaning for the stability of hiérardhical dynamical
systems. If we consider stability to be the situation wherein a system
does not undergo an exchange of bodies, no body escapes the system
and no collisions occur, then it may be conjectured that stability will
be assured if the e parameters are sufficiently small. In other words,
small e€'s will result in small perturbations to the orbits and the
orbits may then be constrained to annuli about their initial positions
for very long time scales, that is, it would be extremely unlikely that
the mutual perturbations, characterised by the e's, would be large
enough to result in the disruption of the system.

For instance we see that the disturbance of the Moon on the orbit of
the Sun relative to the mass—centre of the Earth—Moon system is
negligible (e23 = 8.10—8) inasmuch as any changes it will bring about in
the orbit will be very small. However in the case of the disturbance of
the relative orbit of the Earth and Moon‘by theSum,(€32= 6.10-3), this
is not so clear. The question arises "Is the ¢ parameter small enough
to ensure stability of the system?" Clearly, in the case of the Earth
and Moon, the s&stem has been observed to be stable for a long time and

it therefore seems probable that the € 5 parametef is small enough.

In a many-body situation, such as3the planetary and satellite
systems, the e-parameters may be considered jointly. The question ‘may
then be asked, if we neglect the effect of the P, factors, "Is the sum
of the magnitudes of the e parameters small enough for each body such
that each orbit, described by the Ps (i=2,...,n), will not be sufficiently
perturbed so as to cause instability of the system?" Obviously i? the
e's were zero then we could pack the bodies as close as we please in the
hieraréhy, i.e, taking large values for the a's approaching unity, and
the system would remain stable in any case. However supposing the €'s
are greater than zero, then there will be a limit to how closely the
bodies may be packed. Packing them any closer than this limit would

result in the perturbation on the orbits béing so large as to allow

instability of the system to set in. A case may also be envisaged where
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the € parametérs are so large, approaching unity, that even a very
loosely packéd system cannot be stable i,e. the ratio of the disturbing
force to the central "two-body" force is too great.to allow stability.

With these considerations in ﬁind‘the E parameters are examined
in the next chapter with reference to three—body sysfens vhich may
also be examined by the analytical technique of the zero-velocity

curves (see- Chapter 2).
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CHAPTER 4 EXAMINATION OF THE EMPIRICAL STABILITY PARAMETERS IN THE
"THREE-BODY CASE

h,1 Introduction

When the equations of motion of the general n-body problem are
expressed in the Jacobian coordinate system an expansion of the force
function, as was shown in Chapter 3, gives rise to a set of (n-1)(n-2)

ki

dimensionless.parameters denoted € 5, g£,. { 1=2,...,0n3 k = 2,.,.,i-1

(i 23); &=i+1,...,n (i £ n-1) }. l%hese parameters characterise
the size of the disturbance on the various two-body Keplerian orbits of
the system and therefore appear suitable for the discussion of the
stability of hierarchical systems, such as the solar system or triple
stellar systems. The general case of n bodies is particularized, in
Section 4.2, to n = 3 resulting in only two parameters 523, €3¢
The first parameter characterises the disturbance that the bodies my
and m, impose on the Keplerian orbit of ny relative to the mass-centre
of the m., m, system due to their not being positioned at their common
mass-centre; the second parameter characterises the disturbance of mg
on the Keplerian orbit of m, relative to m, . We then proceed in
successive sections of this chapter to assess the suitability of these
parameters for a discussion of stability.

The application of zero—velocity surfaces in the restricted three-
body problem as a tool in investigating the stability of orbits is
well known (e.g. Tisserand, 1889; Szebehely, 1967; Roy, 1978). The
similar result for the general problem, due to Zare (1976, 1977), was
described in Chapter 2. Recently several authors (Szebehely, 1977;
Szebehely and McKenzie,_l977 a,b; Szebehely and Zare, 1977) have used
this concept iﬁ dealing with the stability of hierarchical triple systems
so that the finite mass of each body may be taken into account. These
authors employ the technique of expressing general three-body motion as
& superposition of two two—bédy motions in order to calculate c2H values
for the real system. The c2H value thus obtained is then compared to
the critical values in order to assess stability. Their analysis was
shown to be quite consistent with available numerical studies (Harrington,

1972; Nacozy, 1976).
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In Section L.3 the work of Szebehely and Zare (1977) is therefore
act < acr
Gy = B /a3 is the ratio of the semi-major axes of
inner (ml, m, ) and outer (mass—centre of m, and m,, m3) two-body orbits),

“and y and u3 specify the mass ratios of the system (ml: m2: m3 = 1-yu:

u: u3) It may be noted here that @ = alu, u3) defines a surface in

briefly reviewed. From-this we obtain a stability criterion o

= oy, u3) where

the Ouu3a parameter space —this is called the eritical stability surf&ce
(see Section L4.4). The derivation of this surface involves the lengthy
and repeated solution of a number of high—order polynomial expressions
and therefore tends to obscure the underlying physical processes.
Therefore the parameters e23 and €30 are introduced and the critical
stability surface is transformed from e, = alu, u3) to Cp = a'(e23

it is then found that this latter surface has a particularly simple

s 532) :

shape which permits a simple stability/instability criterion, based

on the sizes of €23 and ¢ to be employed. The dependance of the

32
stability on a still remains but it is probable that this will be less

for a fixed (e23 ) pair, than for a fixed (u, u3). If this is so,

9 €32

then the original three dimensional problem (in Oup_a space) has

3
effectively been reduced to a two dimensional one (in the 0g23 €35 plane).

Having established the stability criterion of Szebehely and Zare

in 0e23¢ 32 23 parameter space we then proceed, in Section 4.5, to compare

it with data on "real" triple systems both actual (e.g. known triple

stellar systems, triple subsystems¥*) and numerically simulated (see
Harrington, 1977; Horedt, et al., 1977; Hunter, 1967). Excellent
agreement is obtained, providing justification that the ¢ parameters are
meaningful for stasbility. In Section 4.6 some general conclusions are
derived and the extension of the criterion to n(> 3) body systems is

discussed.

*¥A triple sub-system or subset of a many-body system (n 2 L4) is defined

as being any group of three bodies whose mutual gravitational forces
constrain the motion so that the system can be considered as two disturbed
binaries e.g. (1) Earth and Moon in rotation about each other and the
Earth-Moon system in rotation about the Sun, (2) Jupiter in rotation about
the Sun and Saturn in rotation about the mass-centre of the Sun—-Jupiter
system. Excluded would be combinations such as the Earth-Moon system
being disturbed by Jupiter.
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4,2 The Empirical Stability Parameters

~ The Equations (3.40) and (3.41) are now specialized to the case
of the three-body prdﬁlem in ordér-to examine the empirical stability
parameters in the light of the work of Szebehely and. Zare (1977).
With n=3, the case of hierarchical three-body systéms (see Fig.h.1), the
set of Equations (3.40) and (3fhl) reduce to

. _ : -:_L_ ) )
g2 CMpXp [ T1Y e B (Gt | ()
- "1 23 1
p3 G M3 s oy {1+ ¢ P2 (023)} (2)
- =
m, M ,
where 23 = 2 zl . a; (3a)
3
M
2
m 3
= 3 . ap3 * (3b)

€32

Y

and all the symbols have their usual meaning. It may be noted that
the ¢23 term is exactly that derived by Brown in his lunar Theory (1896).

" In terms of the individual masses we have

. _ my n, . a2 °v - (ka)
623 = (—-—-——-m " m2)2 .23
and n 3
€3 = 3 . Ay o (¥v)
(m, + m,)
)

The physical significance of the (523,532) is now obvious. €231is a
measure of the disturbance of the third mass by the other two (the
close binary): it must be symmetrical in the masses m, and m, and

2

contains raised to the second power as a direct consequence of

the Newtonian gravitational force law. 5s ON the other hand, which

€
3
measures the disturbance of the binary by the outside mass, contains only

my and g raised to the third power, the disturbance being in the

nature of a differential gravitational force across the orbit of m,
relative to m, .
It 1s worthwhile noting that if m, is moving in a disturbed Keplerian

orbit about m, we may define at any instant a set of elements for an
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3

Figure 4.1 Definitions of quantities in the Jacobian Coordinate
system in the case n = 3.
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osculating orbit viz.. 853 €55 12, 92, Wys T, with the position in this

orbit being given by the true anomaly f2 so that the expression for

Pos at any instant, in terms of these quantiﬁies is

pz—

_ 22y -
o ), (50)
1+ e2 cos f2

Similarly for the orbit of m. sbout the mass-centre of my and m, we

3 2
have )
I Rl U (50)
3 l+e,cos T

3 3

4.3 The Stability of Coplanar Hierarchical Three-Body Systems -

A Review.

The study of regions of possible motion (for given initial
conditions) in the coplanar general three-body problem by Zare (1976,
1977) has shown that the stability - as previously defined in Chapter 2 -
is controlled by the parameter c2H, where ¢ is the total angular momentum and H
the total energy of the system. Outlined below are the basic steps of
the pfocedure given in Szebehely and Zare (1977).
That c¢2H should enter natu}ally into the problem follows from
dimensional considerations. Any stability parameter must be dimension-
less and be a function only of the force coupling constant G (dimensions
L3 T—ZM—I), the angular momentum ¢ (dimensions ML?2 T—l),the energy H
(dimensions ML2 T-z), and the total mass M (these latter three quantities
being constants of the motion). From this it follows that stability
is controlled by the parameter c2H/G2M5(cf. Szebehely and Zare, 1977).
Zare (1977) stated the problem as follows
"eeees If the value of c2H is smaller than the value aoriesponding
. fhe primary bifurcation point (c2H)l, two of the bodies form a
binary and the configuration carmot be dis turbed by the third mass.
If (czH)l*chH < (czH)g, where (c2H)2
secondary bifurcation point, - -there will be no exchange between the

bodies if the smallest mass is outside.....”.

corresponds to the
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The primary bifurcation point may be identified as that value of
. c2H [= (c2H)i] when the fofbidden'regions change from being triply to
doubly connect'edT The secondary bifurcation occurs at c2H =(c2H)2
when the transition from doubly to simply connected forbidden regions
takes place. Thus we require to determine the primary or secondary
bifurcation point depending upon certain conditions. Considering the
‘well-known collinear equilibrium configurations: in general there are
thfee possible arrangements of the masses o5 My mg, each of which

will determine the primary, secondary or tertiary bifurcation points -

depending on the relative sizes of the masses, However, since my
and m, are- constrained.to move about each other with the mass my outside,
we have only two remaining possibilities: if m, is not the smallest

3

mass we determine the primary bifurcation point and the masses assume
the order my, min (ml,m2) max(ml,mg). If the masses are then in the
order mgs m,, my i.e. m > my, mg ¢ min(ml,mg) and we define y = m2/
(m1 +m,), Mg = m3/(m1+ m,) we require to solve the following quintic

equation for p:

(u+ u3)p5+(2u+3u3)p“+(u+3u3)93'(3"2u)p2-(3 -ulp -1 =0 (6)
) —
where, if we define |m.3 m,| =1, then |ml m| =op .
If mg is the smallest mass we again solve Equation (6) for p, this
time however obtaining the secondary bifurcation point.

The eritical value of c2H is then obtained from

2 £2
(CZH)cr - G f (D) g(Ql (7)
2(1 + ug)
where G is the constant of gravitation
‘ o (1=p) .
N L 3 u(1-p) (8)
o) =wmg+ Ty T
and gle) = ug + p(10)(140)2 + u(1-w)e? (9)

(cf. Equations (2.38) and (2.48)). It is now possible to define a
measure of stability )

21 - 2

c<H (c H)cr

B = - (10)
(C2H)cr
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where c?H is the actual value for any given system such that if g 3 O
then the triple system is stable (equality implying critiecdl stability),
whereas if g < O thén exchange between bodiés'may occur. The value
of c2H is obtained from the two-body approximation to the thrée-body
"motions (see Szebehely and Zare, 1977) through .

25 i R AGRLE 2|3 3
A L 2z | —Pla s ——Fl G- ) - B o
G2 (l + u3)§

+

1 - e2 1-e2| 3 w2 (1-uPu
—_2 13(1-)3 + 3 3. 4 3

2 1+u ) (1+u )%'
3 3

.[(1— eZ)(l—eZ)}% o3

3
s |1 g) w(amw) ug -1
o (11)
2 1+
3
where a = a2/a s

(a2, e2) refer to the orbit of m, sbout ml; (aj, e3) refer to the

orbit of my about the mass-centre of (ml, m2) and + or - refers
respectively to co-rotational and counter—-rotational motion (although
we consider only the former in the remainder of the chapter).

and e

Thus, from given values of u, u a value for a, o

3 2’ e3’ er?
can be determined such that c2H(a,u, His €5 e3) as derived through
Equation (11) is identically equal to (czH)cr as obtained by solution
.of Equation (6) and application of Equations (7), (8) and (9) i.e.

B= 0. This is interpreted as a critical stability surface in the
parameter space Oup.a such that @ .= a(u, u3) - for a given pair

3
e ,e3 —- is the value of @ which results in critical stability for the

sﬁstem_with mass parameters yu, Mge Ifa < .. then the system is

stable (equality again implying critical stability) and exchange between
bodiesvcannot occur, whereas if a > % then exchange may occur. '
Although these surfaces are of interest in themselves (various cross
sections have been presented, see Szebehely and Zare,1977), we proceed
in the light of physical considerations to modify the problem slightly

(in the next section) and translate the critical stability surface into
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the 0¢23 532a23* parameter space.

4.4 Determination and Modification of the Critical Stability Surface

Referring to Equations (4) it is easily seen that the 23

€
32
parameters, in terms of the dimensionless mass parameters uand u3
become
23 = - 2
g4? = 1 o 12a
u(1-u) 23 (122)
and € = (12v)

- 3
32 M3 ap3 »

These may be taken respectively as a measure of the disturbance

of (i) the elliptic motion of the mass N about the mass—centre of
the binary (1-p,u) by the masses p and 1-p not being found at their
common mass—centre and (ii) the elliptic motion of the masses (l-y4y)
about their common mass—centre by the mass g Thus, it is clearly

reasonable to expect that if the values of ¢23 are sufficiently

s €
small then the elliptic motion will continue largeiﬁ undisturbed for an
astronomically long period of time. This is essentially the approach

that Brown took in his Lunar Theory: he neglected the very small term

m, mM/(inE + mM) r2/p2 in the ei%ansion of the disturbing function and took
the motion of the Sun relative to the mass-centre of the Earth-Moon
system to be exactly elliptic since any disturbances to that motion
would be very small. It is therefore contended that the values ¢23, €35
will throw light on the possible stability or instability of hierarchical
triple systems, and therefore we proceed to find the critical stability

= 1 23 -3 = A
surface @, = (e ,332) in place of a a(p,p3), where as arguments

r
for the function o' we take initial values of ¢23

,932vViZ.
€23 = p(1-p) o? (13a)
and €30 = p3 ER (13b)

the orbits being considered (at least initially) to be circular so

that p2 = a.2 and p3 = a3 .

*¥*Note that the initial value of o,, is being considered here as equivalent
to a, which, considering Equations (5), is certainly true for circular
orbits with which we deal here.
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As a preliminary to the determination of the gcr surface we
examine the behaviour of the surface in OppBa parameter space as
Hsliy 0., If M5 Hgs<S 1 then we can choose the dominant terms in

Equation (6) and derive the expression

(p+ ;;3>p3 -3 = 0 (14)

which has the solution 1
; 'I/é .
p = . o (15)
ut u31

Thus it can be. seen that for small Wslg p >> 1.

If we then consider Equations (8) and (9), neglect terms
involving products of Hslg and approximate 1 + p = p (since p >> 1),
then by Equation (T), on putting Uy = ku, we obtain

- 2
2(c H)cr

= (k +1)3 (16)
a2 113

and similarly Equation (11) (on setting e = 0 and taking the +

=e
2 3
sign for co-rotational motion) can be rewritten, upon neglect of terms

of order p and higher

_ ” . . _1 -
2§C H) = ka +2k2(!§ ..|.k_3 + 1 + 2ka 2 +k.2(]. 15(17)

G2u3
Equating (16) and (17) then yields the equation for Cop
2 ocal- (34 30a + 20 ) (18)
dp TR O, 3+ 3kja, *+2,, +k=0, 1

which has one physical solutioh, ¢ = 1. Thus it is seen that as
U, Mg + 0, .. »+ 1. It can readily be seen by examination of
Equations (13) that L »+ 1 as 523, €35 + 0 also.

Since the expression for the e-parameters involve a it is clear

that, for calculation of the surface o = a'(e23 an iterative

> 532):
procedure is required, commencing with some estimated value. We use
the fact that for small (623, 532) a,. = 1 and commence calculation
of the surface from these small values working towards the larger

values, using previously calculated values of a,,. &8s the first
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approximation in successive calculations. A suitable method of iteration

was\fbund to be as follows:

(i) calculation of values of p.and.p3 from approximate value of
@ =a,. through Equations (13);

(ii) solution of Equation (6) by the Newton-Raphson method to
obtain the only root, p, for the sbove calculated values of HsHg thus

yielding, through application of Equations (7), (8) and (9) a value of
(c?H)

(iii) solution of Equation (11), again by Newton-Raphson procedure -
taking care to choose the "correct" root by considering the continuity

).

of the surface — to obtain a new approximation to Ao = a'(623,s32

This process was repeated toyleld sufficient accuracy in ...
Considering the expression for ¢23- Equation (13a) - we find the
value of @ 1s restricted by the condition that p eR.

Now

€23 = p(1-p)a?

may be recast in the form

w2 -u+ g23 = 0 (19)
u <
which is a quadratic in p which may be solved for given values of ¢23
and o . 'The solution is

1

23}2
1 +[i - he

Y = (20)
2 . -

where the " - " sign is applicable since u g 2. It is thus required

N
for yu to be real that

a 3 2(e29)? . (21)

1
Setting o = 2(¢23)? defines the surface =32 in the 08236320

parameter space. Above this surface, i.es a > 2(:-:43)§ p is less

than 3 and below this surface where o < 2(523)§ it is found that u is

in fact complex thus precluding the existence of any real systems in this
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region. This condition leads to the critical stability surface being
cut off beyond certain values of (é23,e32) outwith which o«  would

not comply with inequality (21). This implies the existence of

3

regions in the .e? -plane where no physically meaningful- value of

»E
32
%Ly exists for such e values and therefore any real system of three

masses, defined by p = n(e?3,a), Hy = u3(e32, @) and a, has its a value
greater than ®p = a(u,u3), and may ‘therefore undergo an exchange of '
bodies. This is &a consequence of the fact that no system may change

from one side of the critical stability surface to the other during

cr
point is discussed further in the next section.

+3 = 1(=23 . 3
the transformation from Oop alu, u3) to a a'(e ,832). this

As a first step the critical stability surface o

or = olus u3)

(see Figure L4.2) was obtained, the eccentricities es and e., being zero.

The equivalent critical stability surface o = d'(€23,€32§ (e2 and eq
again both zero) is shown in Fig.h.3 - the diagram demonstrating the
effect of the cut off of the surface due to inequality (21).

The main difference between these two diagrams may be put as
follows. In Fig.lW.2, which shows the critical stability surface in
Ouu3(xparameter space, it is clear that for all values of kg it is
possible, with sufficiently small a, to arrange that a system with
those mass parameters be stable since the surface extends in 1y, from
10 to 10+m and from 10 . to 101°g(0'5) in u. However, upon ’
examination of Fig.lh+3 we see that the new critical stability surface
in the 0 €23¢_.a parameter space is more restricted. The values of

32
€23 ang 832 can both be very small, i.e. down to 10 , however, if any
possibility of stability is to remain (in the sense of ag acr)’ the
€ values of any system must be less than the cut off values. The

cut off values are defined as those values of g23 where the critical

€
stability surface, Gop = a'(ez3,e32) intersects wigﬁ the surface y = 3
(as shown in Fig.4t.3). This intersection if projected onto the
523,532 ~plane will férm a line which is the boundary between the
region where stability is possible (towards smaller values of ¢23 and
532) and stability is impossible (towards higher values of ¢23 and 532);

ve stress here again that stability here implies closure of the zero-velocity

surfaces and therefore an exchange between bodies is precluded. Thus
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Figure 4.2 The critical stebility surface in 'Ouusd

parameter space.,. (n.b. Origin situated at p = 10_9,

a9

u3 = 10 and o =0 and Op and Ou3 axes! scales are

logarithmic).
<
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Figure 4.3 The critical stability surface in Og23¢

parameter space. (n.b. Origin situated at ¢23= 10_9,

€32
are logarithmic).

32%

= 10—9 and o = O and the 0e23 and O :-:32 axes' scales

°8
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regions in the €23 - plane are determined where it is possible

’€32
to state a priori, without recourse to numerical solution of several
equations, that the zero-velocity curves in a system found in this

- region are open and the system maqy be unstable.

4,5 Real Systems and the Critical Stability Surface

- In this section, in order to demonstrate the benefits of the
alternative calculation of the critical stability surface in the
form dup = a'(ézie32), a change in the presentation of the surfaces
is effected: they are represented as contours of equal L3 in either

the 1, -plane or the e23

H3 €32
triple systems considered in this section (see pp. 84 - 93 ),

-plane. Tabulated below are all the

The systems which we have tsbulated may be divided into three

categories, according to their origin, as follows:

Category A - The Solar System

Category B - Simulated Planetary Systems - from numerical

investigation by other authors

Category C =~ Triple Stellar Systems

Categories A and B can be further subdivided into the following groups:-—

Group Al. - The Planetary System - planet disturbing planet
Group A2, =~ The Satellite Systems - satellite disturbing
satellite

Group A3, - The Satellite Systems — Sun disturbing satellite

Group Ak, - The Asteroid System - planet disturbing asteroid
and

Group Bl. - Superior planet of binary star system

Group B2. - Inferior planet of binary star system

Group B3, - Planetary Systems - planet disturbing planet.
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It may be noted here that some of these groups are essentially the
same., For instance A3 aﬁd B2 afe essentially similar in arrangement
with-a sﬁall mass in orbit about a larger mass being disturbed by a
- large mass at a greater distaﬁce. Theldifference bétwéén the two
arises in the values of Mskg ana o one would expect for each system.
In the former case yu is small (say < 10_3), g being very large
(greater than 105) and o( ~ 10 ) small in order that the satellite
can be stable. The latter case would have a similar p value but ug
would be of order unity resulting in 1 - yu =uy = 1, a double star,
with o being somewhat larger, say O.l. Thus the divisions given
above do not indicate any essential difference between the systems:
the divisions are made solely for clarity of presentation and from
consideration of real systeums.

Further, it is possible, given ranges of the mass parameters,
u and M3s to map out regions of the 323,532—plane where particular
types of system may be found. Considering Equations (13), we have
the following expressions for o, in terms of e23,e32, u and gt

— —

23 3
a = (22a)
| u(1-u)
- e.. 1
and a= | —2 ’s . (22b)
v
| 3 i

Equating these two expressions, a relationship between the e-parameters,
in terms of the mass—parameters, is found viz.
u

log €., = 3 log €23 + log

= 2 3

.——— 3& » (23)
{u(1-u)}
If we then consider a particular type of system and assume that in
: ' . g
such a system My £ U< uu and u3L < u3 < “3u » Where subscripts U

and "L" denote upper and lower limits, we may write
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log €30 = -g— log €23 4 log B 'u3L' 3 ] (2ha)
, _ C | =3
{llu(l— pu)}.. 2
3 [ p3u' )
and log € = =1log €23 + 1log | —2— 3 |. (2kb)

These are the equations of two lines in the 523,532—plane and any
given system which falls into the group defined by the above limits on
p and My will occupy a position on the 523,532—p1ane between these
lines.

For instance if we consider triple stellar systems then we may
2

suppose, in general, that My, = 5.10_2, W, = 3, Map, = 5.10 < and
Mg, = 10, resulting in Equations (25) viz.
3
log €3 = % log €23 - 0.398 (25a)
and 3
log €3 = 2 log €23 + 2,985, (25v)

Thus all triple stellar systems, included in the above range of mass
parameters, will be found in the region of the ¢23 ,332-plane showh
shaded in Fig.Lk.l4(a).

In 4 similar way we may treat the case of planet disturbing planet
- 103 and w = u, = 0. The

3 3L
. lower limits for u and Mg will cause infinities to appear in Equations

(Groups Al and B3): here M, = W

~ (2k4) and we therefore recast these equations as

‘ o -532
log €23 = log uu(l- uu) * 3 log | == (26a)
. . i u3l'
- 3 23
and log e32 . log ”3u + > log o : (26b)
_L(l-uL) :

The first of these may then be rewritten as
log €23 =  log u (1-u) + 2 log a

which results in, applying the limiting case of d =1,



96
log €23 = log o (1-n) , (27)

a vertical line in the 823,é32—plane. In a similar fashion we may

rewrite Equation (26b) as
= +
log €35 - log u3u 3 log «
to obtain, in the limit o =1,
log €3p = log My, (28)

which is a horizontal line in the 323,632—plane. The two lines given
by Equations (27) and (28) provide boundaries in the 52%532-plane within
which any planetary system with p < 10 ° and U3 < 10—3 will be found
(see Fig.h.h (b)). Here it may be noted that systems consisting of

the Sun, a planet and an asteroid will, by virtue of the small mass

of the asteroid, occupy positions in the directions shown by arrows

(i) and (ii) in Fig.4.4 (b). The case of an asteroid in a superior

orbit with respect to the planet where is small occupies the

€
region in the direction of arrow (i), the3§nf6rior case lying in
the region indicated by arrow (ii).

The remaining types of system, the planet ig an inferior or
superior orbit in a binary star system and the case of satellites
disturbing each other or being disturbed by the Sun, are given inog
Figs. h.bk (c) - (£).

It may be noted from the tables that we have included in
Table 4.1 all possible combinations of triple sub-systems in the
solar system. Not only are those which might be termed the dominant
systems included e.g. Sun-Jupiter—Saturn, but also those which at
first glance would appear to have very little bearing on the overall
stability of the system e.g. Sun-Mercury-Mars. This is done partly
for the sake of completeness but also to give.an indication of the
size of the total perturbation from all the other bodies on any one
given body in the system. It may be remafked at this point that

Jupiter has the largest influence, in terms of disturbance as measured
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Figure L. 4 Régibns in the g23,e32—plane occupied by the following systems:
(a) Star-Star-Star ' (d) Planet-Satellite-Sun
(b) Sun-Planet-Planet (e) star-Star-Planet

(e¢) Planet-Satellite-Satellite (f) Star-Planet-Star
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by the € parameters, on each of the planets. Thus if we were to
include only the most dominant perturber of éach planet we would
merely require to consider each planet 'with Jupiter in turn.
Similarly, for completeness, we include all possible combinations
of triple sub-systems in Tﬁble 4,2 for satellites in orbit about their
respective planets. However in their case it may be noted that in
general there is no one body which dominates the system in the way
Jupiter dominates the Solar System.
In Table 4.3 - systems of the type Planet-Satellite-Sun - it is seen
in all cases that the mass of the satellite is negligible since LI
does not vary from satellite to satellite of a system, to the limit of
accuracy given. That is to say, €23 is so small that the orbit of
the mass—centre of the Planet-Satellite system about the Sun is
essentially an undisturbed Keplerian ellipse as in the case of the
motion of the Earth-Moon mass-centre about the Sun (cf. Brown, 1896).
Although LI does not vary from satellite to satellite within a
given satellite system the disturbance of the satellite by the Sun
does, as demonstrated by the €35 values. Clearly the closer the
satellite is to the planet the smaller is the perturbation by the Sun
and the smaller is €3p°
Table 4.4 gives data on asteroids. As mentioned above the small
mass of the asteroid results in small e parameters (small €23 for an

inferior asteroid, small for a superior asteroid) characteristic

€
of negligible disturbances 2§ the planet's orbit. They are, of course,
affected by the neighbouring planets and thus we give details for them
as disturbed by Mars, Jupiter and Saturn. The next two tables (Tables
4.5 and 4.6) give data for numerical experiments by other authors,

and Table 4.7 gives data for eight triple stellar systems taken from
Szebehely and Zare (1977).

Figures 4.5 and 4.6 show respectively the distribution of the
tabulated systems in the u,u3—plane and 323,332-plane with respect
to the contours of equal aop It can be seen that the cut off of
the @, = a'(e23 ,e32) surface (see Section hfh) does to a very large
extent separate the stable systems (stable in the .sense that they

last for a great many revolutions without significant changes in their
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Figure 4.5 The critical stability surface displayed as contours
in the u,u3—p1ane where the symbols have the following meanings:

* Group Al - The Planetary System - planet disturbing planet ce

+ Group A2 - The Satellite Systems - satellite disturbing satellite
- X Group A3 - The Satellite Systems - Sun disturbing satellites

0 Group AL - The Astervid System ~ planet disturbing asteroids

Q@ Group Bl - Superior planet of binary star system

® Group B2 - Inferior planet of binary star system

® Group B3 - Simulated Planetary Systems — planet disturbing planet

*

Group C - Triple Stellar Systems
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constituent orbits) from the unstable: the present method therefore
does allow a‘very simpie‘ériteriénAto be>applied té decide fhe
stability or instability of fhreé-body systems.

At this point we note, however, a slight aisadVantage of the (523;
332) analysis. Whereas in the Mg presentation, the value of q .
above a point (p',u3') in the p, pg~plane was indeed the critical value
of o for (p‘,u3'), this relationship.is lost in considering the

a._ = q'(523,g32) surface since ¢23 and ¢., themselves depend on g,

cr 32
i.e. WsHga are orthogonal but 323,e32,a are not. This is mwt to say

there is not a unique value of g = @, Such that o = a'(e23 ,532)

but merely to say for a given set (523,832 ,a) there are two possible
values of e the first obtained from Aoy = a'(523,g32) and the second
from Oop = a(u, u3) where y = u(523 ,a) and M3 = u3( 332,(;). In

every case, where the system is stable i.e. g < Gop = a'(€23,e32)

is found that o < aly, u3) < o' (23 ). When a system is unstable

s€
32

ioeo oa > acr = a'(€23,£32) then o > a(].l,],l3) > a'(523’€32)u If

a =a,. = a'(623,e32) then Aoy = a'(623,e32) = aly, u3)- The

following argument removes any disadvantage brought in by the lack of

orthogonality of the set ¢23, €305 @e
' 23 - ;
Let ¢23,¢,, be the position of the real system (u,u3,a act) in the

823,232—p1ane. Let ¢23, 232 be the position of the critically stable
system (”’”3’“cr) in the 523,532—plane where Gy = a(u,u3)o
Then by Equations (13) .
. o'co
. g23 %get 12 - €32 %act |3 )
%;—; = ——— H —-_"3— = "'ic'_' . (29)
€ Gop €30 L

There are three possible cases to consider depending on whether the

system is (i) stable (ii) critically stable or (iii) unstable.

"~ Casé (1) @ : _ _
- ! s thus - g23 <}§23 and 532 < 832 s SO
o} Co
“er

that the stable system is moved, during the translation from the
Ouu3a parameter space to the 0623252“ parameter space, relative to
the critical stability surface, to a position where that surface is
higher.
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Case (i1) act 23 223 €
—— —_— = 1, so that.s . = € ‘ and €gp = 6327
%er

Therefore the stable system remains in the same position relative to

" the critical stability surface (as we would expect).

. Case (ii1) ®act .. o -5 -
——— —_— l, xresulting 1n € 35 g23 and €3 > 532
o
cr

so that here the unstable system is moved, relative to the critical
stability surface, to a position where that surface is lower.
Hence it is seen that no system can change from one side of the

critical stability surface to the other during the transformation from

= = 1(-23
o a(u,u3) to o a'(e ,e32) .

Moreover it can be appreciated that there is some degree of sorting

out of the systems depending upon how stable or unstable they are.

4,6 Discussion and Conclusions

In this chapter the aim has been to test the suitability of the
€ parameters for a discussion of the stability of hierarchical many-body
systems by considering the three-body problem which allows the application
of the critical stability surface. This surface, although it is clearly
only rigorous'in the case of three bodies in initially circular, coplanar,
co-rotational orbits, would still appear to have significance when there
may be four or more bodies and small, but nom-zero, inclinations and
eccentricities. For such systems where there is an observable dynamical
hierarchy in operation e.g. in the Solar System, it can surely be said
that for the system as a whole to be ‘stable, each of the three-body
subsets of that system should satisfy (and preferably satisfy well) the
critical stability priterion, i?ef a << “crf- The Jjustification for
this is given in some measure by consideration of the expansion of the
force function given earlier. Considering Equations (3.40) it can be

seen that the disturbances on the Keplerian orbit of the ith mass about

the mass-centre of the first i-1 masses are, to the order given, purely
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additive. Further it is a feature of classical perturbation theory
that to the first order thelperturbations on any body due to any other

bodies' actions are again purely additive. Thus it is contended that

. to this extent a many-body system 7Zs a set of three-hody systems.

The € representation of many-body systems (both real and from
numerical integration studies) and their distribution with respect
to the critical stability contours suégests that for a hierarchical
system to be stable (in the sense of the hierarchy lasting, without
any major change, for many orbits), then the ¢€'s must, for the ith
mass, be constrained in the fashion

<

Bl E < 1 (30)

z + |s . |
k 3 21

where i = 2,000,003 k = 2,004,i-1 (1 3 3); 2 =1+ 1,.0..,0 (1< n-1):

e

cf. Equation (3.40). It is estimated that EF is in the range
1073
surface in the 0e?3¢__a parameter space, for the three-body problem,

32
is rising sharply to attain its highest values i.e. @ 0.9. This

>E > lO_h, since it is in this range that the critical stability

is interpreted in the following qualitative fashion: if the above
condition is satisfied then it is statistically unlikely that the
perturbations would build up sufficiently over an astronomically long
period of time to result in the hierarchical ordering of the system
being destroyed. We note however that in this present chapter we have

plotted only the three-body subsets of many-body systems. Nevertheless

it is clear that the vast majofity of triple subsets satisfy the stability

criterion of Szebehely and Zare well and also lie in the region of the

plane where €23 and €5, are both less than 1073,
Clearly the stability is not solely dependant upon the values of
€23 and €_, but will be affected by the o values. It can be seen

32
from Fig. 4.6 that the majority of real systems congregate around

€ values where the critical stability surface is high i.ef LI 0.8f
3 > 0.8 it is sufficient for the stability
of triple systems that €23 and €5, are both less than 1073 or lO_h.
We note that this is in contrast to Fig.4.5 in which the systems are

Thus, except for extreme a
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plotted in the p,p3—plane with respect to the contours of the Oy =

..a(p,ﬁS) surfaqef. Here there is no clear arrangement of the systems

with respect to the contours.
Although this crude criterion in  is probably sufficient in the-
case of three-body systems, we feel it better to modify it in the light

of the following considerations.

If, in a three-body system, the critical stability criterion of
Szebehely and Zare is satisfied, but only marginally, then it is
possible that, although originally zero, the eccentricities of the
osculating Keplerian orbits of the systems could build up significantly
due to the perturbations which, although not resulting in the violation
of the hierarcny of the three-body system, would put the stability of
a many-body system, which included such a triple subset, at risk due
to the possibility of orbits crossing. Further, if ¢23 and €3p 8Te
small then the perturbations on the Keplerian orbits within the systenm
will be very small. Thus, it is felt that the system could exist close
to the critical stability surface with very small overall changes
occurring in the various Keplerian orbits of the system. On the other
hand, if we consider larger ¢23 and €35 then the system will have to
lie further from the critical stability surface to ensure that the
overall changes in the Keplerian orbits of the bodies are kept minimal.,
The following criterion on the %3 value of each triple subset wiihin

a many;body system is suggested:

23 . o4 <1 (31)

: acr

where a3 is the actual value of p2/p3 for the three-body su'bset,acr

is the corresponding critical value for the three-body subset

and A4 = A (e23,e5,) 14 > 1ase23 and ey > O

’832

Although the analysis was carried out fbr initially zero
eccentricities of the two Keplerian orbits of the three-body system
attention can be drawn to two remarkable systems. The first of these
is the system Saturn-Titan-Hyperion (see Table 4.2, Number 70). There

we see, that, for the masses given, and for circular orbits, the value
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of & is 0786hl. We may assume however, due to the considerable
eccentricity of ﬁyperiqn's orbiﬁ (v Ofl), that a. will be_less than
this value and indeed will be comparable to (and possibly less than)
the actual value for the system. Alternatively, it might be considered

reasonable that the parameter q should be given by

23
' P omex ap(l +eq)
a23 = — = — = 0.92
PH min a‘H(l - eH)

¢

where suffices "I" and "H" denote Titan and Hyperion respectively.

The orbits are almost coplanar and so by the critical stability criterion
the system @muld show instability; but it 2xists. There is however

an additional factor to be taken into account namely the critical
argument 0 arising from the 3:4 commensurability in mean motions n,

and Do, such that

-— _— — o. -~ —. .
) —th 3 Ap — Wy n 18073 hnH 3ng - o v 0

where AH and },, are the longitudes of Hyperion and Titan, while T

T
is the longitude of Hyperion's apse. The amplitude of 6 is about 36°.
This critical argument ensures that the satellites' conjunction line
librates about the moving aposaturnium of Hyperion so that the effective
a

23 er
to ensure obedience of the critical stability criterion. Colombo and

is never more than about 0.78 which must be sufficiently below «

Franklin (1973) have argued that even if Goldreich's tidal mechanism
”is not the cause of the Titan-Hyperion resonance it may have arisen
naturally. In other words, it is possible that Titan and Hyperion were
formed at that resonance and, because it is stable, remained there,
What is being said here in support of Colombo and Franklin's suggestion
is that other pairs of satellites, formed as close together as Titan
and Hyperion are but without the resonance, would have dispersed because
of their inherently unstablé set—up.

The second system of interest is Sun-Neptune~Pluto (see Table 4.8).
it is well known that Pluto's peripelion distance is nearer the Sun

than Neptune's mean radius vector. Up until ten years ago, because of
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the possibility of close approaches of Pluto to Neptune and of the

possibility that a__ = ON/DP > 1 when Pluto was at perihelion,

standard expansion igchniques - such as that dealt with in Chaptér 3
~ in the Jacobi coordinate system = could not be applied to Neptune and
Pluto because of the non-convergence of series involving (pN/pP)i.
In the context of the present study, we would say that the critical
stability criterion for the SunrNeptﬁne—Pluto system would show the
system to be unstable, since ayg can be greater than 3 and indeed
greater than qnity.

It is now known, of course, from the work of Cohen and Hubbard
(1965) that a critical argument

= - - ' o
6 =3Ap - 20 -, v 180

exists which librates about 180° with an amplitude of 76° and period
19670 years, thus ensuring that conjunctions avoid the region of

Pluto's orbit which is closer to the Sun than Neptune. The maximum
effective a

23
that the argument of Pluto's perihelion also librates, a suggestion

is thus never more than 0.75. It is also possible

put forward by Brouwer (1966) who pointed out that a critical argument

' —3 -
6 =3ip - 2)

N~ &

P

should exist ensuring that w =8'- 6 would librate. If so, then the
high inclination of Pluto's orbit with respect to Neptune's could
also increase the stability. Williams and Benson's study of 1971
showed that w did indeed librate about 90° with an amplitude of
approximately 2L°, A

" We now proceed to consider the distribution of certain real cases
of triple system in the 623,232rplane together with the critiecal
stability contours.

Thus far, the findings of this chapter are as follows: the

region of ,523,532-p1ane such that
23 ¢ 103 » 107%
and e < 103 5 107"

32
is a region of high stability in the many-body problem given suitable

values of a23.
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In Fig.h.6 the available data for triple stellar systéms were
plotted. Oﬁ this diagram one coﬁld superimpose the two diagonal lines
shown iﬁ Fig.hfh(é) delimiting the area of the g23 ,532—p1ane within
which triple star systems could exist according to the possible ranges
for the mass—parameters p and uéf

The region of high ¢ parameters would clearly always result in
highly unstable triple systems. Furthermore, the high end of the «
range would similarly produce unstable systems in a great many cases.
The eight asterisks denote the positions of the eight triple systems
given in Szebehely and Zare (1977) — see Table L4.7.

. Apart from the fact that several of these systems are only marginally
stable, the outstanding feature of the distribution is the complete lack
of data for the region of maximum stability i.e. €23 and €., both less

_ 32
than 10 3. There are three possible explanations:

(i) A1l the available data are not plotted.

(ii) There is an observational selection effect making the

observation of triples with relatively large ¢ parameters easier.
(iii) Such systems do not exist.

With respect to the first reason; it is certain that scattered
throughout the literature lie additional data for triple stellar systems:
a future search of the 1itefature would harvest more points, possibly
in the region of high stability: Since however the three masses making
up a stellar system are generally of similar size any shift in the
e23 ,532—plane towards smaller values necessitates finding stellar
systems with small a3 values, possibly spectroscopic binaries with a
third "visual" component.

There could well be an observational selection effect however.

For stellar systems, as was mentioned above, any shifts in the e23,

632—plane are predominantly due to shifts in a The stable region

23°
for triple stellar systems is thus one of low g

therefore if the system (ml,me) is a visual binary this results in a

values, and

large period of revolution for the third star, g

of the binary. Thus for most visual binaries, possessing a third companion,

, about the mass-centre

two centuries of observation may not be long enough to detect the very
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large number of triples which exist. The best hope of finding such
highly stable systems probably lies.in considérihg spectrosco@ic
binaries with a third coﬁpanion so that the périod of thé third mass
is relatively short. ' N t

The third explanation - their'non-existence - implies that for
some reason, triples of this kind cannot exist. As mentioned in Séction
3.4 this is undoubtedly the case for very widespread binaries themselves,
let alone triples, sihce the central mass of the Galaxy itself plays
the part of the third disturbing body rendering any binary star system
unstable if the components are more widely separated than a certain
limiting valué. As an example we may take two solar masses whose

separation r is o times the distance R of the binary from the

23
galactic centre, taken to be th parsecs., The Galaxy's mass may be
taken to be 10ll solar masses.

Now an ¢ parameter may be calculated to characterise the size of

the disturbance of the central mass of the Galaxy on the binary viz.

- 3
€32 7 %3

ISZIUF

11
where m3/M2 = 10

and a3 = r/R. For stability it is required that
< 10 3 50 that

€32
%
Yo |7
w3 = | T | /50,000

Hence r for the limit of stability of binaries in the region of
the Sun is of the order 0.2 parsecs or 40,000 A,U, If for example
we are looking for a triple stellar system whose third body is of the
order 40,000 A.U. from its binary and we wanted it to be in the region
e23 = 1076, =107 3

we would have Go3 n 10 ° and the binary

€
semi-major axis3§o more than 40 A.U. If the binary semi-major axis
is reduced to 4 A,U., with the third body's distance again at the limit
of 40,000 A.U., then dpg =»1o"‘h with ¢23 1078 and g5, o 10712,
There is no way in which such systems could have been detected.

We now look at a similar set of systems, namely the planets of
double stars (see Table hfS). The points in Fig.L4.6 given by numerical

experiments by Harrington (1977) delineate very roughly the boundary of
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the region where stability is assured given suitable G5g for low e23
and €35 ife7 less than 10f3T As can be seen by considering Figs.

4.4 (e) and 4.4 (£) there is considerable scope for planets of binary
sfars to lie inside the stable region of the 623,932—plane. It may '
be noted here that, as shown by Figs. hfh(e) and (f), the small mass
of the planet results in, for an inferior planet, a low €23 and high

23

€355 while ‘a superior planet gives high € and low That is to say

Enns
the planet, in each case, barely disturbs the double siir system's orbit.

Now the detection of planetary systems of stars other than the Sun
is impossible except for the very nearest stars. It is not surprising
then that no points have been plotted in the stable region for real
systems. Some of the remarks made sbout the existence of highly stable
triple systems carry over to this case. For example, if we are dealing
with inferior planets in orbit about one component of a double star
with the 6ther component disturbing them, the limiting separation of
the two stars is again 40,000 A.U. - imposed by the central mass of
the Galaxy -~ in the Sun's neighbourhood. On the other hend a planet
in a superior orbit about a double star may not be placed more than
40,000 A.U., distant from that binary.

It may therefore be concluded that as far as the ¢ diagram and
the perturbation of the Galaxy is concerned, there is no reason why
planetary systems should not eéist in double star systems.

A further system which merits some closer attention is Sun-Jupiter—
Saturn ( see Table 4,1, Number 27). This real system has also been
studied numerically by Nacozy (1976). It is found that, if we plot
the real Sun-Jupiter-Saturn system in the 0¢23 €300 parameter space,
it lies well below the critical stability surface, indicating a good
measure of stability. If however, as was done by Nacozy, the masses
of Jupiter and Saturn are increased and numerical integration tests
carried out, it is found that the system remains stasble until the
masses are both multiplied by a factor greater than 29.25, whereupon
secular trends appear in the orbital elements and the hierarchy of
the system is broken. This systeﬁ of augmented Jupiter and Saturn masses
(see Table hfl, Numbér 2TN), if plotted on the 523,832—p1ane is found

to be above its corresponding contour of the critical stability surface.



Furthermore, as noted in Sec?ion h,S, a shift in,the 523,532—plane
has occurred towards higher ¢ parameters than the real system.

Thus no disagreement is found betﬁeen‘the ﬁresent treatment and that
of Nacozy. '

Cleaily this situation implies that above the critical stability
surface there lie zones of stability which ere not obtainable in the
analytical manner of Szebehely and Zare (1977), i.e. the criterion of
Szebehely and Zare is a sufficient, but not necessary, condition for
stability. The aim of further chapters of this thesis is to.map out
these zones of stability above the critical stability surface - in
the three-body problem — for certain sets of initial conditions.

Lastly, attention is drawn to the numerical integrations of
Horedt, Pop and Ruck (1977). Their numerical experiments involved
work in the restricted and general four-body problem, The data and
results of their four-body numerical integrations have been used by
breaking their systems down into three-body subsets (see Table 4.6).
It is then found that, in Numbers H5 - H13 in the above table, all
the triple sub—systems give points that lie beneath the critical
stability surface. It may be noted however that Horedt, et ql. found
that one of the systems underwent a violation of the hierarchy, in the
sense that the eccentricities of the orbits built up sufficiently to
allow the orbits within the four-body system to cross — an inherently
unstable situation. It is tentatively suggested, at this stage, that
this violation of the hierarchy was due to violation of the criteria
on the € parameters and o valﬁes presented earlier, (Equations (30)
and (31)), whereby, although the triple subsets of a many-body system
are individually stable, it is possible that taken overall the
perturbations could build up statistically resulting in instability.
Later chapters of this-thesis will involve consideration of four-body
systems.

In.the next chapter, however, an improvement is made to the
critical stability criterion of Szebehely and Zare in preparation for
a numerical study of the céplanar general three-body problem in terms

of the €23 and €35 parameters.
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CHAPTER 5 REFINEMENT OF THE SUFFICIENT CONDITION FOR THE STABILITY
' " 'OF .COPLANAR HIERARCHICAL THREE-BODY SYSTEMS :

5.1 Introduction

In Chapter 3 of this thesis parameters were derived which were
considered to be physically meaningful for the discussion of the
stability of hierarchical many-body systems. These parameters arose
through an expansion of the force function of a many-body system, where
the equations of motion are expressed in the Jacobian coordinate system.
The force function was expanded in terms of the ;mall quantities a, .
(i = 2:;;;,n-l; J = 3,0ee,n3 1 < J) where o = pi/pj <1, Py = lgk‘
= IM’k_l mk| and M_, is the position of the mass—centre of the
subset of masses Tyseessly oo For coplanar hierarchical three-body
systems, referred to as CHT systems throughout the remainder of this
chapter, two parameters arose from the analysis - 523~and 632 in the
present notation.

The importance of the parameter c2H in discussion of stability
was demonstrated by the work of Zare (1976, 1977), summarised in
Chapter 2. Further to this Szebehely (1977) and Szebehely and Zare
(1977) showed how a simple criterion could be applied to assess a
measure of stability for CHT systems. This idea was extended to the
concept of the critical stability surface in Chapter L4 whereby, on
this surfaqe, the actual value of c2H - (CZH)act - of a system with

given parameters u, M3 and o or €23 , €35 and o,. (as previously -

23
defined) was equal to the critical value - (c2H)cr. If a system was
represented by a point below the surface then that system could be

said to be stable, inasmuch as an exchange between bodies was impossible;

if above then the system might undergo an exthange of bodies*. The
critical value (czH)cr was obtained, quite rigorously, from the

appropriate collinear Lagrange configuration of the three-bodies; the

¥ This type of stability, where an exchange of bodies is prevented
due to closure of the zero-velocity surfaces, may be referred to
as Hill-type stability, since it was first employed by Hill in his
study of the Moon's motion. '
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actual value (cZH)act was obtained via a two two-body approximation to
the three-body system in that the total angular momentum was taken to

be the sum of the. angular momenta contributed by m, in its orbit about

m, and my in its orbit about M,, with a similar expression for the
total energy. '
In Chapter 4 the stability criterion, employing the above two

two-body approximation, was presented as a surface in the 0g23 €3p On3
parameter space. This surface, defined as @, F a'(523,e32) such

that if a < . the system is stable, was only examined in the case
where the orbits are initially circular. In other words, the osculating
orbit of m, relative to m, was taken to be a circle of radius a, while
the osculating orbit of m, relative to M, was taken to be a circle of

w

radius a3 so that a5g =q = a2/a3, L. being the critical ratio of

2 = (o2
a2/a.3 when (c H)act (e H)cr°

Now, more exactly, we consider a23

through the usual two-body expressions, of (a2, e2,f2) and (a

= 92/p3: Py and py are functions,
30 epfy) -
see Section 4.2, Equations(l,5) - where (ae, a3) are the osculating
semi-major axes of what we may call the (ml, m2) and (MQ, m3) subsystems
respectively, (e2, e3) and (f,, f3) being the eccentricities of and
true anomalies in these osculating orbits. The remaining orbital
parameters are the osculating longitudes of pericentre - (mé, w3).
The ¢ parameters themselves do not take account of any effect on the
stability of (u%,ﬂ%). However, the angle 6, arising naturally during
the derivation of the e's, and defined by cos 6 = 32.33/p2p3, involves
a combination of mz,m3, fé and f3. Because the € parameters appear
to be significant in determining the likelihood of stability, the effects
- on the stability of CHT systems of varying'mz,m3, f2 and f3 should be
investigated. In other words, having obtained an exact expression for
(c2H)act in terms of (ai, ess W £33 i= 2;3) it will be possible
to locate accurately the opening and closing of the zero-velocity
curves in any given problem in terms of. the parameters of the osculating
orbits of the CHT system.

An exact expression.for the value of (cZH)act is derived in Section
5.2 in order to allow the critical stability surface (the critical
ratio of a2/a.3 or p2/p3) to be dete;mined with greater accuracy, for

given values of the orbital parameters €5 e3, Ty n%, f2, and f3.
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(c2H) is thus found to be dependant upon the masses (m m , m,, m3)
and the two sets of (osculatlng) orbltal parameters. Further, in
Section 5 3 the expres51on is used to determine, in a general fashlon,
the effects of the various orbital parameters on (CZH) act @0d thus on
the stablllty.

Numerical results are presented in Section S.h to 5.'?. For
given values of the masses (m s By ) it is demonstrated how stability
in terms of the maximum allowable values of the ratio a / 33, such
that the zero-velocity curves remain closed, is affected by variation
of the orbital parameters €y €55 Wys @3, f, and f (see Sec?ion 5.4).
The results are compared with those of Harrington (1972), which were
derived from numerical integration experiments (see Section 5.5). In-
Sections 5.6 and 5.7 we consider two interesting real cases of CHT system
viz. Sun-Jupiter-Saturn and Earth-Moon-Sun, the latter system being a
borderline case of stability, in the sense of closure of the zero—
velocity curves of the general three-body problem. The masses of these
systems are varied in such a way as to investigate the degree of stability
or instsbility of the real system (cf. Nacozy, 1976, 1977). The results
are compared with those of Szebehely and McKenzie (1977 a,b) and those
given in the above papers by Nacozy.

In Section 5.8 the results are discussed and certain conclusions
drawn, attention Being paid to some of the more important aspects of

the analysis.

5.2 An Exact Expression for the Parameter c2H in Coplanar Hierarchical

Three-Body Systens.

Formulating the equations of motion of an n-body system in the
Jacobian coordinate system it was found (see Section 3.5, Equation (3.29)
and Figure 5.1) that

mi Mi— .
: 6, = v. U i=2,.00sn (1)

where, in the usual notation, m, is the ith mass
i U - :
M. = L m.

. 1 521 J
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e —
M

gy = M m Mi—l being the position of 'Fhe mass—centre
9f.the system qf MasSSEeS My yeee ’mi—l
V. ~ is the gradient operator with respect to 05
1 n n o . L A
U =3 I I ®k™ 35 the force function
k=l #=1 1,
G. =1
—

and Tg = |mkm£| .

To construct the energy integral, H, first form the scalar product

of Equation (1) with 5i’ giving

= é'f V. U. (i =2,.00,n) (2)

Summing over all i1 then results in

n m. M

. n
I 4 5=l p.ep. = I p..V. U (3)
i
which, noting that
. it _ 1 _Q . ‘ E
i -8 = % (g5 - g;) ()
and U = U(pi) is not explicitly dependant on the time (i.e.

the R.H.S. of equation (3) is a perfect differential), results in

n . M.
ml

i-1 4 e e+, _ U
2 Mo ¢ at 8itRi) T G o (5)
1=2 S

Integrating once, the energy integral, H, is obtained viz.
n

H = ;'é hX 1 1=l e o -
i W, Litfi. TV (6)

where U may be determined from the pi(i=2,...,n) by use of Equation

(3.37) which gives the r  in terms of the p..

k4 2i
The integrals of angular momehtum, ¢ , may then be obtained by
forming the vector product of Equation (1) with p; and summing over

all i giving
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noM n
Eoi izl e % p. x V.Ul (7)
=2 M. £i78i T i=2 ™ '
i
Theorem: -
: n
P ! =
i=2 M, Li*8i -
i
Proof: Now we have, by the definition of the P; »
Bi = By TR, (8)

where R. is the position vector of the ith mass in an inertial

coordinate system origin O viz. On., , while

= 1

R. = = L n R, , . (9)
J=1

is the position vector of the mass-centre of the first i masses in the

inertial coordinate system and
i .
M. = I m. (10)
i 520 j

m = 0 being defined.

We may then write

moRy =M R - My R (11) .
and
mops = M(B - By) (22)

with similar expressions for their second derivatives,

Forming the quantities (cf. Plummer, 1918)

o _.-]-. - _ - ) : _ - )
mp By By =g OB oM By ) <O R -, B) (13)

and
m. M. . M- M. LYY
1 1-1 o 1 i-1l = = - =
: W £i*eiT g BT Bl x(B - B,) (b

and then taking Equation (14) minus Equation (13) yields
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nMi g . . 1 - -
W, 0578 Tm B B T g O Mg (B 7 B0
(Bj = Byg) - (M By — M, 5 By o) x (My Ry =My ) R )

(15)

On expanding’ the vector products in Equation (15) and summing over i,

from 1 to n, we obtain

n n

m. M. .
z 1 a-1 o~ » _ z = = =
i= W, fiTBi T R, ¥ R, =1 M1 By X Bjog — MiRix

Remembering that M0 =m = O was defined vwe then have

n

m M n . — s
r _ii-1 “ _ L m R, xR.+M R xR =0, (17)
=2 T M, 01783 T e tero-t BTROTE

which on noting that the second term is zero, since it is the time
derivative of angular momentum expressed in an inertial reference frame,
and the third is zero, since the mass—centre of the system moves with

constant velocity, gives the required result viz.

o onM
o DMy o -
i T omW, Li7Ei T2 (18)
°$
Now Q.E.D.
p. X ps = o= (p. x§)
~l ~l dt ‘~21 ~l (19)
since éi Xéi = 0 , and using Equation (18), we have
n
m. M.
z 1 1-1 d . _
i=p M, at (p; xg;) =0 (20)
Integrating once yields the angular momentum integrals, ¢, viz.
. n -
e= ¥ HMia . (21)
i=2 M, Li* 8i 21



Particularizing to the case n =

m., m

.m:‘;(_ml + m2)
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3 we then obtailn

1l 2 N .
(ml+m2 m, +m, + m,
and '
L] [ ] + L] L]
Hed | 2 5, epp * malmy * m)) b3+ b3 | - U (23)
. m +m, ¥ m +m, tmg T~
where
m m m,m m o : .
u= 22 23, il . (2k)
T2 To3 T31
1
By Equation (3.37); forming scalar products (&l._{kz)z,
Tio T P2 . (25a)
[~ -1
b
N PR SR . U (25b)
= |p 200 Pp e P
23 3 (ml+m2) 2 (m1+m2) Ro 83
) A
m 2 m
= '-2 2 2 + 2 . %
and T 03 Haam 2’2 * () £o. 405 (25¢)
1l 2 1l 2 d
| -

Equations (22) - (25) are general in nature, inasmuch as they are

applicable to non-coplanar motions.

If we now restrict the motion of

the bodies to the g, n—plane then CE and c vanish and we may put-
n
c = Igl .= cpoe Thus the angular momentum integral is given by the
following - '
Ty : my(my +m,)
c = o _V, siny_ +—=————=— p_ V_siny_, (26)
ml‘+m2 2 2 2 m +m,+ g 3°3 3

where 11:2, 1p3 are the angles between 22, é2 and£3,é

and V, = Iéil i=2,3,

respectively,

3

" Then if we define osculating orbits for the orbit of m_, relative

to m:L and m3

2

relative to M, by the elements (;ai, e, W;3 1= 2,3) and

the positions of the bodies in these orbits by £, (i = 2,3), we have the

following standard expressions



1V

2 —_
_ a: (l—ei),
Py % , (27)
) 1+ e. cos £, )
i ' X
M, 1+2e; cos'i‘i +ve§ g
. = - : i = 28
: vl a; 1 -.ef _l 2,3 (28)
1+ ei cos fi
and sin ¥ = 1 (29)
: (1 +e2 + 2e. cos f.)2
1 1 1 1

If Equations (27) - (29) are substituted into Equation (26)

we obtaln
m. m 1 1 n_ (m, + m,) 1’ 1
L2 _, .2 2.3 31 2 By 23
c = I aj(l-e,)°t jas(1-€2)* (30)
(m1+m2) 2 2 (m.l +m, + m3) 3 3 |

where the + or — sign in the equation depends on whether sin ¢2 and
sin ¢3 are of similar or dissimilar sign i.e. whether the orbits are
corotational or counter-rotational.

It is then immediately seen that the angular momentum does not
in fact depend on any elements of the osculating orbit other than (a2,

and (a ) nor does it depend upon the position in the orbit. This

e
3* 73
expression is identical to that obtained by Szebehely and Zare (197T)
using the two two-body approximation to derive c.

Applying Equations (27) - (29) to the energy integral - Equations

(23), (24) and (25) - we obtain, after some simplification,

: 2
- m,m, . m3(ml+m2) l+2e3 cos f3 +eg
= . - 2 C‘c
2y a3 1 e3 :
+
_ m293 . 1 e3 cos f3 .1 m3m1_ 1+e3 cos f3 .1 (31)
a 1 - e? = a 1-e? T 31
3 - 3 Ty 3 3 31
where - a2 713
Tl f%m ;o3 T (m?—-f:—) ap3 €08 8 (32a)
B ?ﬁ ) Nt R —
— 2 — 1
m 2 2 2
- 2 a 2 &, cos @ (32p)
T.. = | 1+ —5——0%23 + 23
31 | (m,+m,) (m,+m,)
2 ] p—
W P2 _ fZ ..l-eg'. j.+e3 cos f3 (33)
23 P3 23 l‘—e3 1+e2 cos f2
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, Pr o
and cos § = =2=23 oo that o (m +f.) - (. +£.),
- p2lp3_ A .22 . 33
We define 6 as the phase angle of the system and also ¢ = m2 - mé,

the initial angular distance between the lines of apses.

Thus, using Equations (30), (31), (32) and (33) an‘exact
expression for c?H may be formed which allows for the dependance of
c2H, and thus the stability of the system, upon factors other than the
semi-major axes and eccentricities of the osculating orbits for given
masses. 1t may also be noted that, as in the analysis by Szebehely
and Zare, the wvalue of ¢2H is not dependant upon the scale of the system,

l1.e. a8, and a3 only occur as the ratio a = a2/a

2 3°

5.3 The General Effects of Orbital Parameters on the Stability

In Section 5.2 an exact expression for c¢2?H was derived in
terms of the osculating elements of a CHT system. It may be remarked
that the value of c2H will be a constant for any given system. c2H
may be obtained from the values of the osculating elements at any instant.
Thus any results obtained in the following sections from initial values
of ¢?H will not be vitiated by the fact that the orbital parameters
vary with time. Introducing normalised masses U and M, into Equations

(30) and (31), we obtain

3

2
(cZH)act = [;(l—u) a%(l-e;)%t k3 1 (l—eg)% jl .

3
+
(1 u3)
.%.l—_ u(l—u) . -l+2e3 cos f3 _ 2uu3 .1+e3 cos f3
3°. 1-e% - 1-e2
L ¢ 3 T €3
' : 23
2(1- +
_ 2(1 U)US . 1 ey cos f3 | (34)
. 2
T3 1 e3
where  l-pip: ug = m) :m, :m, without loss of generality
(u: 0 <y 5 3)

a = 8

2/a3
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L

- 2 2 %
= + (1-p) - 2(1-
Tpy (1 + (1-y) %g . (1-n) ay3 €os 6) (35a)
- 2,2 oy 2
. = - + ) .
and Ty (L +n o 2u o,3 cOoS 8) : (35p)
The quantities denoted ;23 and ;31 are dimensionless: they represent

the dlgtances Thg and r31 in units of p3 l.e. T

o 23 = P3 Tog and

T3l T P3 T3y

Tpgs Ty is

small then (c?-H)act £ 0. This implies a likelihood of stability for the

It is clear from Equation (34) that if one of a,

system, since this actual value of c?H may be less than the critical
value - (czH)cr - obtained from the collinear equilibrium configurations.
The determination of the critical values of c2H will be dealt with in
more detail later in Section 5.4. At the moment we will only concern

ourselves with stability in the case of small o, that is (ml,m forms

5)
a binary system with my orbiting about their mass-centre, stability
implying this hierarchical arrangement remains intact.

Any increase in e, or e_ will generally decrease the stability of

such an arrangement wiih givgn a(see Szebehely and Zare, 1977). The
degree of dependance of the stability on e2 and e3 is largely dependant
on the relative sizes of y and M. _

The effect on (czH)act of changing the initial value of 6 is
now considered.

By Equations (34) and (35) it is seen that O enters the expression
for (CZH)act in the form of a cosine function within the expressions
for F,, and ). The effect of 6 on (c*H)act may be obtained by partially
differentiating Fquation (34) with respect to 6. Noting that ¢ # c(g)

we have, dropping the suffix "act",
2.2 = 200 '
20 [C H]. c 96 d (36)

To examine the behaviour of ¢2H with respect to ¢ we require to find
those values of g for which a[czH]/ae = 0, Clearly

l+e, cos T 3; .. or
3 ol .2 3 ©98 13 u 23 1-py %731
o— H = . .
20 [e?H]= c2us 1 -.e§ | 72 88 MY -+ (37)
. 123 37

Upon deriving 3523/86 and a§3l/ae and substituting in Equation (37)

we find that we require
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W(1-4) g,y sin 8| 5 - 25 |= 0, (38)
‘ To3 I3y

so that etther (i) 6 = O or m or’ (11) Tpy = Type
Case (i) In this case 6 = 0 or m and the three bodies are in a

straight line i.e. m,m,m., (6 = 0) or m2mlm3(e =1)

Case (i7) Using Equations (35) we find the angle 8ps at the turning
points,such that

—_)2,2 - - = 2 2
1+ (1-u) afs 2(1 -u) ®y5 COS Op=1 + u ags * 2u ay5 COS O
(39)
that is
cos B, = 3(1 - 2u) a (40)

T 23°*

It is a straightforward, but tedious, matter to evaluate
32[c2H | /36%2and show that case (i) results in minima of ¢2H while
case (ii) results in maxima of c2H with respect to 6. We may
therefore set up the case of least stability for any system with

given (u,u3) and given initial values (a, eys € f2, f3) if we limit

39
the configuration by Equation(L40). This can be considered as a

restriction on ¢ for given (f,, f3) values where

¢ = f3 -f, 2 cos-l[%(l - 2u) a23] . (k1)

- Using Equation (40) to eliminate 6 from Equation (35), we obtain
the expression for the maximum value of (c2H) - (e2H) - for a
act max

CHT system, within the range of O to 27 for 0, viz.

2
(CZH)ma.X= .[u(l—u) o&"’(l~e‘,§)§ +¥3 . (ldeg)z] .

2
(l+u3)2
; u(1-1) _ 1l + 2e3 cosf3 + e3
T T T¥TI
3
-2 .1:3: (l+e3 cos f3) - (42)
T 1 - e%
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where

. _ 1
To=Tyy =1y = (14 u(my) oy ) (43)

The relative sizes of (;CZH)act at the turning values are relevant.
In case (ii) it is clear that since (CZH)act is an even—valued function
of g, the two maxima defined by Equation (L40) have the same resulting
2
value of (c H)actf |
Considering case (i), however, it is necessary to determine
2 3 =0 = 1
whether [(c H)aci:,] 1s larger when ¢ Oor g T e Since 6 only

enters (CZH)act in two terms within H we require to determine the larger

of Hl and H2 whe're
o ]
H o= | F +-=2 (kY)
| T2z ;1 p=o
and . _
n, =&t 4w (5)
| T2z T o= a

Since O < y g 3 there are two possibilities:

(a) if Hy > Hp the configuration m, mym results in the larger value of
2

I (e?H) za.c‘l',l

(b) if Hy < Hy the configuration m2m1m3results in the larger value of

2
| (e H)actl ‘

Now - ) |
H = —_— ., 1o
1 — (l-u)q.23 1 +ua23
and
H, = L PR tod
1+ (l-u)a23 1l -u (123
so that -
H-H, = 2u(l-p) o 1 R S, (46)
172 23 1—(1—ﬁ)za2 1 -2 o2 2
' ‘ 23 W %3



125

Hence H, - H > 0 i.e. the configuration resulting in the more negative

(CZH)act Val%e‘is m, m,m. = unless u = 3, in which case both configurations
result in the same value,

As waé stated by Zafe (1977) the value of c2H controls the opéning .
and closing of fhe zero-velocity curves 6f the problem, and therefore
its value can tell us whether an exchange bétween bodies is possible or
not. The value of c2H to ensure closure of the zero-velocity curves
is again denoted (czH)cr: this is purely a function of the masses.
For any given CHT system to be stable, in the sense of no exchange of bodies
being possible, the value (czH)act must be less than or equal to the
prescribed critical value (czH)cr - equality implying critical stability.

If we consider again the effect of phase angle on (c2H)a we can see

ct
that there are five possible situations (Fig.5.2) for given initial
orbital parameters (a, €y €35 £, f3) and given mass parameters (u,u3)

as follows:
(a) (c2H)act < (CZH)CI'VB : the system is stable for any given value
of 6.

2
(v) (e2H),,
at 6 = # eT the system is critically stable.

g € (c?-H)cr : the situation is as in (a) above, except that

(e) (czH)act < (czH)cr except foT a small range in 6 sbout 8 =16T
vhere (c2H)act > (czH)cr and where subsequently instability may set in.

There are four critically stable configurations.

(a) (czH)act > (c2H)cr except for a small range about 6 = O where
stability is assured.

(e) (°2H)act > (cZH)cr Y0 : the system may exhibit instability at all
initial phase angles.

The parameter (c2H)act-is also dependant on the true anomalies £,
and f3, the degree to which they effect it being dependant upon the
eccentricities e, and e;. To examine the variation of (c2H)act with
respect to f, and f3 we require to calculate (3 (e2H)/ afé)f and
(3 (c?H)/ af3)f'2 where in boﬁh these expressions (a, €55 eB? $) are
held constant.

After some reduction it 1s found that
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l+e_ cos f [iaz e, 8in f
2 _ e
a(c?H) | =c1u(l-p)u3f 3 . 3 ,L_§3 . 2 24 %_; - ~13 }
| af2 f3 l--,_e3 | _ T l+e2 cos fé :r3l . r23
e, sin f .
{ (n a23+cose) a23—EL--—‘2 a,,8ind } . (1)
l+ezcos f2
and
8 - + 2 13
a(czH} =—c2u(l—u)u3 1 ey Ccos f3f [:a23 e3 sin f3 1 11 y
.2 -3 + -3 -3
8f3 . 1 e3 r23 1 e3 cos f3 r31 r23
2
: e, sin T .
. {(ua23 + cos 6)a23 3 3 oy sin 0}
l+e3 cos f3
e .
_ 02u3 3sin £y |4 S l_ u . (48)
T r
+ 2 1
1 ey cos f3 3 3
Examining these expressions it can be seen that if 6 = 0, BT, ™
(n.b. 8 = GT implies r23 = r3l) 1t follows that 1f f2 and f3 take the
values O or/end m then [3(c2H)/ sz:] g, and [a(c2H)/ 8f3j]f are
3 .

both zero. 2

In Chapter 4 the procedure adopted to investigate the stability
of any given system was, for given mass parameters (u,u3), to find the
. - . 2 = (a2
value of the ratio @ a2/a,3 viz. o such that (c H)act (c H)crl}
We may now introduce the parameters f ,f3 and 6 and the eccentricities

e, and e3s which were neglected in Chapter 4, and use a similar

procedure,

We have

(CZH)act = F(y, H3s0s €55 €3, £ f3, 6)
and , ‘

(c?H) . = G(u, nj),

so that we therefore require to find the value top such that

F(HQ u39acr9 e2’ e3’ £, f3a 9) = G(u,us)f

~

If a,

ot is the value of the ratio a2/a3for a given CHT system,

defined by mass parameters p and 3> then, for given values of
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e2,>e3, f2, f3, 6, 1f oot S‘acr then phe system wlll be stable

because the zero-velocity curves are closed. In this case the hierarchy
.(ml, m2) as binary with m3 as external mass will remain intact. The
case a_ ., = acf is referred to as critical stability. If however

ct

@ ct” %or then stability is not assured and an exchange of bodies is

possible., We then see that if aact/ a,. <<l this is analogous to

(cZH)act <<(c2fH)cr i.e. a very stable situation. As increases

.Qact/acr

the system will become less stable until eventually, when aact/ a,,. >> 1

the system is unstable. 7
Figure 5.3 demonstrates the effect of f2 and f3 on the value of
.. for particular values of the mass parameters p and ug and orbital

parameters (e 8).. It may be interpreted as follows.

23 e3’
The equal mass case is considered viz. u = ug = 1, o is taken to
be zero and e, and e3 both have values 0.1. Then over the possible

range of f, and f3 the largest o value occurring is 0.340 and the

smallest is 0.324, This range is split into ten and contours of Ay

are drawn on the f2,f3—plane at the intermediate heights. The contours

are denoted 0.1, 0.2,... etc for increasing values of o for example

cr?
e of the 0.6 contour is

. = 0.324 + 0.6 (0.340 - o.3éh).

It is then seen that the greatest stability occurs at f2 = *7 and f3 =0

i.e. when the (ml, m2) subsystem osculating orbit is at apocentre and
the (M2, m3) subsystem is at pericentre. The least stability is found

= = %+
to be at fé O? f3 .

If the above calculations were repeated to obtain a diagram for

0 = eT, the following situation arises: greatest stability occurs

when the (m.l,m2

at apocentre i.e. f

) subsystem is at pericentre with the (Mz,m3)
5 =0, f3 = i1 , Least stability is then found

at f2 = 7, f3 = 0, The former case results in @, = 0.299 and the
latter a_ = 0.293 in the case with u = My = 3, e, =e;=0.1ande =0
The value 6= 7 results in a similar situation to 6= O (excepting the

subsystem

T.

LI values are reduced slightly) and it is found, admitting values
of 0 other than O, BT’ 7, that the‘changes between the three situations
vary continuously, i.e. the most stable (f2,f3) configurations vary

continuously with 6 ,
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Figure 5.3 Effect of the true anomalies f2,f3 on the stability in terms

of @, the maximum allowable a2/za.3 values., Contours are

~in units of the difference between (a2/a.3)min and (32/a3)ma.x

" which have values 0.324 and 0,340 respectively.
(u=u3=%; e2=e3=0.l,e=0)
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It is clear that if, initially, e = 0, then 6 is still well

=e
2 3
defined. It reduces to the difference in longitudes, L5 and 23 as

measured from some reference direction. @ will then still affect the

stability as demonstrated in the next section.

As was remarked in Section 5.3 a large, negative value of (czH)act

arises when one of a, T3 and 531 is small. This is equivalent to

saying that the mutual distance of two of the bodies is small relative
to the distance of either of these two from the third. Since an exact

expression is used for (CZH)ac and it is not approximated by the use

ar
of two two-body approximations, it is possible that, with certain
configurations, (c2H) is large and negative, but not in a manner

as the external

act
which provides stability of (ml,me) as binary and m

3
mass.
We may define the initial motion of m, to be in an osculating orbit,
with given (ae, €ss . ;f2) abqut m and the motion of m3 to be 1n an

osculating orbit, with given (a.3, e3s
is to be expected that if o is large (= 1) and 6 =0 i.e. ;23

will be greater than m, and m, .

form the binary

m3; f3), about M,. However, it
is small,
the mutual attraction of m, and I

Thus we will have a situation where, in fact, m, and ug
and m, is the external mass. Alternatively, if o is again large but

6 =7, i,e, r,, is small, a similar situation arises: here m, and mg

31 1

 form the binary, m,, being the external mass.
Thus it may be expected that in addition to the region of stability
for a <1 and 0 £ 6 < 27, we way find up to two other regions for which
(CZH)act < (CZH)ci" implying stability when a is just less than unity
and 0 is within a small range of O or 7. We must therefore consider
how the correct (c2H)cr value for each region should be chosen, as
the choice will depend upon the relative sizes of the masses.
There are three possible arrangements of three maéses ih the
collinear equilibrium configuratiqns viz? mmymg, mom,m, and m,mo, .
(In principle there are, of course, six, but the additional three are
merely the "mirror images" of the ;bove). These three arrangements
give rise to three values of (c2H)cr thréugh a functional relationship

vhich has already been described in Chapter 4; however, for reasons
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vwhich will become clear as we proceed, the topic is dealt with again,

in greater detail, in Appendix A. Let these three values be denoted
213, 2 2 2 2 2

(c H)l’ (c H)2 , (e H)3 , where - .Fc H)1 <(e H)2 < (e H)3 .

These are respectively the primary, secondary and tertiary bifurcation

values of c*H.,

For any three-body system, as c2H rises from -~ , we will obtain,
after the manhner of Zare (1976) (see Chapter 2), triply, doubly, simply

and un-connected forbidden regions. The values (c2H). i = 1,2,3 above

correspond respectively to the critical values of czHlassociated with
the transitions from triply to doubly, doubly to simply and simply to
un-connected forbidden regions. A triply connected forbidden region
will always provide a sufficient condition that no exchange between
bodies will occur in a three-body system and, under certain conditions,
only & doubly connected region is necessary.

If we consider the masses above and let ml > m, > m3 then the
ordering, in the collinear configuration, to obtain the primary bifurcation
. . 2
value is m2m3ml(see Appendix A), (c H)2

the orders mlm2m33nd m3mlm2respective1y. We now consider the arrangement

of the masses 'in a hierarchy. Letting (ml, m2) form the binary, m

and (c2H)3 being obtained from

being

3

the external mass, with m, > m, > my, We require the largest possible

value of [(c?H) . | to ensure endurance of this hierarchy. Since mq

cannot lie between o, and m, the primary bifurcation is ruled out and we

seek the secondary bifurcation so that (c2H)cr = (cZH)z.

3 > ml > m2 or ml > m3 > m2 then the choice of the

primary bifurcation is possible, and necessary, to ensure closure of

If, however, m

the zero-velocity curves in the correct manner for stability.

In Figure 5.4 the procedure is again adopted of finding an @,
value for given (u,u3) and (e2, eq L f3,e) as described previously.
The eccentricities e, and €3 however, are set zero and therefore f, and
f3 are redundant. The remaining parameter is then © , which is varied,
a,,. values being determined such that (CZH)act = (CZH)crf This results
in pairs of values (acr, ecr) which may be plotted in polar diagram
form to demonstrate the effect of 6 on the stability. Each area of
the diagram is now considered.separately. .

(i) The central oval encloses a region where g <1 and O < 0 <2r i.e.

the CHT system consists of (ml,mz) as binary and m3 as external mass.
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Within this region the pertinent, critical value of .c2H is given by
3

(cZH)l if p<uy

( CZH)CI'=

(CZH)z if - > 113 3

M= g resulting in (c2H)l = (c2H) Therefore we seek pairs of

2°

values (acr, ecr) such that the system.-with such initial conditions

is critically stable. These points form the central oval-

of the diagrams. If then a system with given initial configuration

(ay, 8) lies within this oval, the system will always remain in the
. . 2 .

form (ml,m2) as binary and m. as external mass since (c H)act will be

less than (c2H) .
cr

3

(ii) The right-hand lobe consists of an area where o < 1 and
- AB < B < +AO where A8 << "/2 i.e. the hierarchy defined by the

gravitational forces will be (m2, m3) as binary and m, as external mass.
Within this region, since m, (= 1~ yu) is never the smallest mass, the

primary bifurcation value of c2H is appropriate viz.

(czH)cr = (czﬂ)l.

In a similar fashion to the sbove we seek pairs of wvalues (a'cr, e'cr)
which will give rise to (czH)act = (c2H)Cr. Once plotted these values
will demércate the region within which the above-mentioned hierarchy is

stable.

(iii) The left~hand lobe is the area where a <1 and m~A6 < 8 < 1 + A@-where

A6 << w/2 i.e, the hierarchy defined by the gravitational forces will

be (ml,m3) as binary and m, as the external mass. Within this region

the (czH)cr value is given by

2 -
, (c H)l if u > Mg
c“H = . .
( )cr. (e2H),. if wmp <y
o 1 M3

which is the reverse of the situation in (i) above. Pairs of values

(a'cr, e'cr) are again sought, this time to delimit the region of

stability for this hierarchy. Unlike.case (ii) above this lobe may not
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be present in all diagrams since for many pairs of (u, u3), a'cr > 1

when © =7 (see (iv) below).

(iv) The region a > 1 is excluded since we are primarily interested in

the stability of the hierarchy (ml,mQ) as binary and wy as external

mass, and in no case can there be such stability if o > 1. The exterior

circle on the diagrams denotes o = 1.

(v) The region o < 1 outwith the areas defined in (i), (ii) and (iii)

above. Nothing can be said about stability in this area by the means
used in this paper, recourse to numerical studies being appropriate.
Thus we have the result: if a CHT system, where (ml,m2) is taken

to be the binary and m_ the external mass, has an initial configuration such

that it is defined b3 an (a,0) point within the central oval then
it is stable in the sense that an exchange of bodies is not possible.
If, however, the initial configuration defines a point within the right-
hand or left-hand lobes (or indeed a > 1) then the given hierarchy is
definitely not stable. Within the remainder of the diagram the question
of stability is unanswered.
However, we now have not only an upper limit on a for stability
(in the sbove-mentioned manner) but also limits on a for the region
where stability is possible, but not assured by analytical means.
Figures 5.4 (a) - (f) present these regions for six pairs of
values (y, p3) in order to indicate the dependance of these regions on
the masses of the system. Table 5.1 is complementary to Figures 5.3:
it gives data on the critical values of a viz. o _, a'cr for 8 = 0,

cr
+ 0 corresponding to these diagrams.

peT
In Figures 5.5 (a) - (f) the equal mass case, viz.p =

g = 2,
is discussed, eccentricities being introduced in order to investigate
the effects of f2 and f3f For example, in Figure 5,5(b) we set

e, = 073, ey = 0.0, so that f3 is indeterminate, f2 being set equal
to 7w. We then construct the (a,8) polar diagram as sbove. Similarly

in Figure 5¢5 (e), we set e, = 0.0, ey = 0.3; £, is then indeterminate.
The situation is restricted still further by allowing only straight line
coﬁfigurations mm i.e. 8 =0, and an (a"f3) polar diagrém is
constructed to show the regions of stability and instability for the

hierarchy of interest.
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Figs. S;h (e) - (£)

Figures 5.4 Effect of phase angle 6 on the stability in terms of

7 .
L and ol for various sets of mass parameters Halsg
as follows: .
(a) u = % » uy =3 _
(b) u = /3 s 113 =¥ °¢
= 3 = = = . 3 >
. () pu=3 , Mg = 1 e, = €3 0; f,, T3 indeterminate
(Auw=3 , =4
7
() u=%, My =1
R s
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31 3T
2 Figs. 5.5(e) - (f) 2

Figures 5.5 Effects of phase angle 6 and true anomalies f2,f3 on the
stability in terms of @ and aé; for equal mass systems,
(a) e, = 0.3, e3 = 0.0; f, =0, fq indeterminate; 0:0g56<2m
b) e, =0, e, = 0,03 =T, indeterminate; 0:056<27w
(b) e, = 0.3, e5 = 0.0; £, =, f; indeterninat 056<2
c) e, =00, e, = 0.3 indeterminate, = 03 06:0g6<2m
()20,303 f, indeterminate, f; = 0; 6:056<2
(a) e, = 0.0, e =0.3; %, indeterminate, £ = 0; 8:0<6<2m
(e) e, = 0.3, e3 = 0.0 6 =03 f3 indeterminate, f2:OSIé<2n
() e, = 0.0, e;.=0.3; 0= 0; f, indeterminate, £4:08f<2n
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We see that in each case of Figures 5.5 we obtain the familiar
central oval vhich ensures the‘stébility Qf the hierarcﬁy, with either
two, onevor no -other regioné wheie the hiérarchy is definitely unstable.
These areas havé the samevinterpretation as those of Figures 5.k.

The shape of the lobe however, in the case of an (a, fi)(i=2’3) polar
diagram, will be different from the shape in an (a,0) polar diagram.

Table 5.2 gives data for critical values of a applicable to Figures 5.5
viz. acr’a'cr for 6 = 0,%6y,,m Where épp?opriate and f, = o, (i=2,3)

where appropriate.

5.5 Comparison of Results with Numerical Integrations

A numerical integrétion study of (equal mass) triple stellar systems
by Harrington (1972) yielded maximum values of the ratio o possible to
ensure the stability of the hierarchy (ml,m2) as binary and my as external
mass. Harrington used various sets of initial conditions for the purposes

of his study. In the present notation these are:

-3 1
e, = 0.3, 0.5 '

w, = 0, /2 (ml,m2) subsystem
fé =0 |

My = 2 7

ey = 0.25, 0.50, 0.75 '(Mz,m3) subsystem
ﬁ3=0, TT/2 ’

f.=n

3 ) - &

where we have omitted any inclinations since the present criterion is

only applicable to coplanar motions, We can however deal with a mutual
inclination of 180° since this implies counter-rotational coplanar motion.
Further, since we derive @ . values for given masses and initial configurétions
we omit his a values chosen for use in his numerical investigation.

For the sake of completeness we also include the following

f2 = w/2,

f3 = 0, =n/2
. 132 = 7

W, =

w
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although we may note that not all the possible sets of initial conditions
torbé derived froﬁ.this éaté>are iﬁdependant. This redundancy arises
fiom-certain symﬁetiies of the equal mass syétem and 1s also due to the
occurrence of (mz,m3,
In Table 5.3(a) we present, for corotational systems, maximal and

. . . . ; . . 2
S f3) in combination to form 6 within (c H)act"

minimal values of @ and also minimal values of a'éf over the possible .

ranges of m2;m3,f2 and f3. We also include, from Harrington's study,
the values of a denoted o and e These are respectively the largest

of the o values chosen by Harrington which gave stability of the hierarchy
and the smallest of his values which produced instability of the hierarchy.
Table 5.3(b) presents similar data for counter-rotational systems.

Harrington (1972) defined stability of a system to mean

"... that there had been no significant change in the elements during

the period of (numerical)integration, particularly in the semi-major
axes or eccentricities; that is, the motion is that classified by

Szebehely (1971) as Class 4 and termed revolution."

We would not therefore expect Harrington's limits on @ for stability
to be exactly the same as those derived in the present study. However,
having said that, it may be seen from Tables 5.3(a) and (b) that in no

case does Harrington's value a, exceed our value (a* ) , that is, it

cr’min

appears that (o' ) gives a useful limit outwith which numerical

cr’min

investigation of the stability of the hierarchy (ml,m2

as external mass is meaningless. Moreover, all his values ag and a,

and (o ) , in the case of corotational motion,
cr’max :

) as binary and my

lie close to (a ) .
cr’min
indicating that there is not a significant region, not included within
the central oval, where stability is possible numerically but not
analytically by the present method. It is to be noted, however, that,
in the case of counter-rotational motion, such a region of significant
size does exist, as demonstrated by the fact that as and a are, in
general, about a factor of 3 or 4 larger than (¢ ) . and (a ) .
: cr’min cr’'max
This is analogous to the case of the circular restricted three-body
problem where, using periodic orbits to map out regions of stability,
it is found that in the corotational case there is only a small region
of stability outside that which is stable due to closure of the zero-
velocity surfaces in comparison to the larger region in the case of

counter-rotational motion.
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5.6 Sun—-Jupiter—Saturn System

Considering Equation (34) we have (as in Section 5.3) a function

F such that

(CZH)act = F(U:U3’as 62,e3?f2,f3,6)

and further, since F is an even-valued function with respect to f2,f3

and 6, we can see that for given values of the remaining orbital

parameters
F(fz) = F( - fé)
F(f3) = F( - f3)
F(e) = F( - o)

so that only the ranges E),ﬂ of the varisbles need be studied, the
ranges (m, 2m) being neglected in what follows. Remenbering that
the critical value of c®H is solely a function of the masses (see

Appendix A), we have, as before,

(c?H) = &(u,ug).

We defined u and Mg sbove as follows,

s T T B

and '113 = —_— .
K m +m,

If we now introduce the factors Yo and Y3 such that

L]

Yo Iy ]

oty B,
Sy .m: ( (49)

m ot Y By

u =

and !
L

it becomes possible to solve for critical values of Y, and Y3 such
that

(CZH)act = (CZH)CI;

or .
F(U'sﬂ'33a’ 92’e3sf29f3s?) = G(p',u'3),
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that is, to find mass parameters (p',u's) above which a given system
defined by various orbital parameters mgy be unstable.

Nacozy (1976) presented a discussion on the stability of the
Solar System based upon work by othér authors and numerical experiments

by himself. In that paper, and a subsequent one — Nacozy (1977),

-he studied the non—-coplanar three-body problem of Sun—Jupiter—Saturn.

For the analysis he presented, the masses of Jupiter and Saturn were
augmented by the same factor y . He ;tudied the stability of the systems
thus set up by integrating two sets of initial conditions for various .
Y values.

These sets of initial conditions were derived in the following
manner from those given by Eckert et gl .(1951) at the epoch of 1940.
One group (set (1) in the notation of Nacozy, 1977) is obtained by |
holding the semi-major axes of Jupiter and Saturn fixed and varying
Y ; the 6ther (denoted set (2)) is obtained by holding the ratio of
the mean motions of Jupiter and Saturn fixed and varying y . In this
way he hoped to gain insight into the validity of his results for many
neighbouring sets of initial conditio;s.

By this means short—-term numerical integrations of the Sun-Jupiter—
Saturn systems, thus set up, may be used to discuss the stability of
the Solar System over a longer time scale (see KNS theory, Nacozy, 1976).
Two critical values of y were found by Nacozy viz. 29.4 and 29.25 for
sets (1) and (2) respectively. For values of y larger than these values
Saturn was ejected from the system in 10,000 years or less after the
system had undergone an exchange of bodies. es

Adapting Nacozy's method to the present treatment, we can derive
;alues of y for the onset of possible instability due to the opening
of the zero-velocity curves. Values of y — ¥y - may be found such
that (c2H)_ |

) crit
ot = (? H)cr i.e.

F(u',u'3,a, e €55 T

5 £350 ) = G(u',u'3)

. Y . m -
where nto= _er J
) + Ycr mﬁ
' Y. I : (50)
p' = —
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i.e. putting Yy = Y3 = Y3 m@,-thand m being the masses of the
Sun, Jupiter and Saturn respectively. The real Sun-Jupiter—Saturn

system (i.e. y = 1) is defined by the following data:

po= 9,569,10"2
gy = 2f865.10

a = 0.5454

e, ='h.8h35.1o'2
e, = 5.5682.10—2.

In Tables 5.4 and 5.5 are presented values of Yeorit for various sets

of f2,f3 and 6 for Nacozy's sets (1) and (2) respectively.

Two points must be stressed here. Firstly, we are assuming that
the mutual inclination of the Jovian and Saturnian orbits is negligible.
Secondly, any Ycrit

derived by Nacozy since we would not expect instability to set in

value derived will necessarily be less than that

immediately upon the opening up of the zero-velocity curves.

Noting the above comments, it may be seen that the values of
Yeorit derived above compare favourably with Nacozy's numerically obtained
values. We obtain 17.61 < Yopit § 23.15 for set (1) and l8.3h-<'ycrit <
24,16 for set (2), the range resulting from the different sets of initial
conditions. As iﬁ Sections 5.3 and 5.4 it is found that the straight
line configuration (6 = O,7) results in the greatest stability, as

revealed by the larger values for vy FPurthermore it again

crit® :
demonstrates that the most stable straight line configuration occurs®

with f, = and £, = 0: that is, with the binary (ml,ma) at apocentre

3
and the external mass my at pericentre with respect to Mé. When 6 equals
BT i1t 1s found that (ml,m2) at pericentre and m3 at apocentre with

respect to M2 gives rise to the most stable situation, although this

. situation is less stable than any of the straight line configurations.

5.7 Earth-Moon—Sun—-System

The Earth—-Moon—-Sun system may be modelled in several different ways.
We could follow Hill and consider it ‘as a restricted three-body problem

and hence neglect the mass of the Moon. In this case it is also essential
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to neglect the eccentricity of the Earth's orbit about the Sun, since
this eccentricity, however small, invalidates the use of the zero-
velocity curves of the (circular) restricted problem (see Chapter 2
and Ovenden and Roy, 1960). Alternatively we could employ the zero-
velocity curves of the general three-body problem. Using Equation (3k4)
and the appropriate value of (c2H)cr we could find several values of

a _, given e, and e_ for the Earth-Moon~Sun system, depending on f.,f

cr 3 273
and 6. If Chot § oo where o is the real value of the ratio

a2/a3, then thztstability of thea:;stem would be assured in that the
Moon would forever be confined to the zero-velocity oval about the
Earth; on the other hand if @ i 7 % then the system is possibly
unstable.

Furthermore, in a manner similar to that adopted in the previous

section, we may solve for values vy of the mass factor y to

examine the changes effected on thecgizbility of the Earth—-Moon-Sun
system by altering the mass parameters defining the system.

The latter method is chosen since it appears, from the previous
sections that Yor is more sensitive than e p to changes‘in the parameters
defining the system. Thisis thenapplied to several different situations.

For the real Earth—-Moon-Sun system the following data have been assumed:

y = 1.218.1072

Hy = 3.330.10°

« = 2.570.10 5 ‘
e, = 5.49.10 2

e = 1.6726.107°2,

We now multiply the masses of the Moon and the Sun by a factor y to
obtain (as in Section 5.6, Equation (50)),
e 3.

v - M
u
3 1+ (Y—l)u

1+ (y-lu

It is found, throughout the possible ranges of T ,f3 and 6 , that if

Yy 2 0.011 then the system is stable, Thisis equivalent to p' = 1.327.10_h

and p’3 = 3.628,10 ', which is readily seen to approximate to a system

of a Saturnian satellite disturbed by the Sun e.g. Saturn-Titan-Sun.
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If we now keep p constant and vary only M3 i.e. Equation (L49)
‘with Yo = 1, we obtain another value of «y_ ., which is slightly higher

than the previous at Yopit < 0.038 (¥ £ T35 8), which is in close

29
agreement with Szebehely and McKenzie (1977Tb) who used the two two-body

4

approximation to obtain (.c?-H)ac The resulting value of p'3 is 1.289.107,

that is to say, if the Sun weretfeduced to a mass of 1,289,10h.(m6 +my),
then the Earth-Moon-Sun system would be stable according to the present
method. -

| T6 examine the effect that the eccentricities have on the stability,
ve set e, = e3 =0, In thié sitﬁation it is found, keeping other

parameters fixed, that -Ycri will vary from 5 to 8 depending upon the

t
value of 6. (n.b. Both lunar and solar masses are again multiplied by
Y.) Similarly we may set y very small, and therefore negligible, again
neglect eccentricities, and thus set up a quasi-circular restricted

problem using the general three-body treatment. The vy values obtained

crit
are similar to the above, again falling in the range 4 to 8. If we then
admit the use of the (small) e value in both the above situations we

derive not dissimilar Yo values and thus find this parameter to have

little effect on the staiiiity. Table 5.6 presents the data for these
four models.

It is then seen that it is the introduction of the true value of eq
which, though small, combined with the‘large Mg alters the value of Yori
significantly, turning what was a borderline case of stability into an

unstable situation. To demonstrate this effect we show in Figure 5.6

(curve (a)) how L is affected by a variation in ¥ when e, =0, ey =
h.8h35.10_2, ug ='10- : fé is then indeterminate and we take f3 =0

and 6 = BT. This is then a system of the type Sun-Planet-Jupiter. We

allow the planet's mass, defined by U , to decrease and calculate critical
values of @ . As a means of comparison we also show the graph of o,

r
when e_, = O (curve (b)) - the other parameters being unchanged. It is

then szen that whereas in the case of initially circular orbits the

maximum allowable a for stability %ncreases asymptotically to the value
0.796, the similar value, obtained when eq # 0, appears to tend to zero
as U > 0, A similar situation would arise if we were to set €5 # 0 and

let + 0.
et Uy _
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(b)
08} -

06 I

(a)
oatl

Figure 5.6 Effect of reduction in y on @, for the cases (a) My = 10—3;
-2 _ A3,
e, =0, e = 4.8435.10 ©; f3 =0, 6= Orp (b) uy =10 7
e, = 0, ey = 0, 6 = eT

This situation is analogous to the case of the circular versus the
elliptic restricted three-body problems, where results obtained from
the use of the zero-velocity curves of the circular restricted problem
cannot be applied to the elliptic problem in any rigorous fashion for

very small eccentricities of the primaries (see Ovenden and Roy, 1960).
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5.8 Discussion and Conclusions

The aim of this chapter has been to investigate the effect of
parameters neglecfed in Chapter 4 on the stability of CHT systems.

The remaining parameters - f2, f3 and ¢ — which are pertinent to CHT

systems, were introduced and their effect on the stability, in

conmbination with e, and eg, Was investigated.

It is clear from the results obtained that any increase in e,

or e, generally results in a decrease of stability (as would be expected)

inasmuch as the maximum allowable value of the ratio a2/a2 for stability,

o decreases.. This is in agreement with Szebehely and Zare (1977).

s
Fﬁither it was found in general that aér is affected up to the order
of 20% by changes in the angular orbital parameters (f2, f3 and ¢ )
the precise percentage change being dependant on the masses of the
system and the eccentricities. It has also been shown that a worst
possible configuration for stability exists which, it turns out, is
very slightly more restrictive on the range of o for stability than
the previous two two-body approximations of Chapter 4 and Szebehely

and Zare (1977). At this particular configuration i.e. 6 = 6_ if, by

T
M3 o = e3 = 0, we would have, by the

method described in Chapter 4 (cf. Equation (4,11)) acr = 0,311 whereas,

way of example, we let y = =3 and e
using Equation (L2), @, reduces slightly to 0,305.

A further consequence is the introduction of another critical
value of a viz. a'cr. This value, taken at 6 = O, will most likely
provide a maximum value of the ratio a such that the hierarchy of .

interest, i.e. (ml,mz) as binary and m., as external mass, could be stable

by numerical integration experiment. %hat is, if a > a'cr (6 = 0),
then the above hierarchy is certainly not stable; the reasoning for
thisbis as follows., Since the mutual gravitational effects of all
three bodies are included in the present expression for (c_:zH)act
(Equation (34)), regions are found near 6 = O and 6 = 7 where a < 1
but the system can no longer be considered as hierarchical and of the
ebove form. The hierarchy has in'fact changed with (m2,m3) becoming
the binary in the region abqut 8= Q: while (ml,m3) is the binary in
the region about 6 = 7.

It is now possiblé to further consider what might happen if
a->’a'cr_(e = 0) but we allow the actual value of 6 to be different

from zero.
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If the existence of stability results in the relative constancy
of the'osculatiné elements of a CHT system, then o wili remain almost
édnstanf for a stable syétem. If éhe "path":of a system in an (&,e)
piotvis coﬁsideréd, it woﬁld;,if'the system:were stable, tend to follow
a circlef: If o > a';r (where a'cr is again the value of d at =0
where (c2H)act = (cZH)cr and “'cr > “cr) then such a circle would
clearly intersect the area which is certainly unstable for the
hierarchy with (mi,m2) as bina.ryf It therefore seems reasonable to
suppose that any system with ¢ > a'cr is unstable no matter what value
 takes. The results derived in Section 5.5 with reference to numerical
integration experiments by Harrington (1972) seem to bear out this point
of view. '

It is clear that contours of equal (c2H)act could be drawn on an
(a,0) diagram - indeed the central oval and the two lobes, right and
left, are examples of such contours. Since c¢?H is a constant for any
given system (once initial conditions have been defined), it follows
that no system would be able to follow such a circular path described
above, since it would in fact be crossing c?H contours. The sbove point
is considered merely to illustrate the probable instability for o > a'cr
for all initial 6 and not just small ranges about O and m. Further, it
may be that a system could possibly be stable and show large variations
in a , provided that these variations were periodic in nature. However
throughout this thesis we are not considering such systems since they
are not generally realised in nature. ‘

It may now be remarked that it is possible to draw several critical
stability surfaces in a manner similar to the previous chapter. . The
important surface, Oy giving an analytical limit on stability for
(ml,mg) as binary snd m3 as external mass may be drawn for different
sets of initial conditions - s €35 f2, f3, 6. These could be presented

in either the OuM_ o parameter space or the 0e23

, 3
noting that o = a2/a3 and 53 =p2/p3 « Furthermore, we could construct

632 a23 parameter space -
surfaces in either of these parameter spaces fqr a'cr tq give the limiting
a outwith which the hierarchy of interest is certainly unstable for

6 =0or 6 =7 - and indeed probably unstable for.the whole range of
initial 6 (see Appendix B). These surfaces however, in the case of
initially non-zero eccentricities, are of dubious value due to the

severe reduction in e arisiné when u and

(ef. Figure 5.6).

3 are widely different
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Let us now consider the real systems dealt with in this chapter.

~ The Yorit values ébtained'in Fhe'case of the Sun-Jupiter—Saturn s&stem
are all, not surprisingly, less than Nacozy's values of Yy = 29.25 or

y =29.h4, They are however cléser-thaﬁ_the.value of 13.65 oﬁtained
by Szebéhély and McKenzie (1977&). "This difference ma& be accounted
for as follows. In the paper by ézebehely and McKenzie the orbits of
Jupiter and Saturn were both taken td be about the Sun and the two
two~body approximatiqn tov(CZH)act was constructed accordinglyf The
present method considers the orbit of Jupiter to be about the Sun with
Saturn in an orbit about the mass-centre of the Sun-Jupiter "binary",
CSJ say. Whereas it is clearly true that the real Saturn does effec-
tively orbit the Sun, it is to be expected that if the masses of both
planets were increased by a factor of 20 the discrepancy between

the Sun—-centred and CSJ~centred orbit would increase and the latter
would be the more appropriate. The difference between the two approaches
is reflected in the discrepancy between the values of Ycrit obtained
in this thesis and the previous value of 13.65.

In Table 5.7 we give approximate values for Yérit for various
methods of considering the Sun-Jupiter—Saturn system. The two two-
body expressions for (c2H)act have been used in the computation of
these figures (as in Chapter 4, Equation (L.11)) to give a comparison
between the figures obtained here&n and those of Szebehely and McKenzie
(1977a). (n.b. The values obtained may be slightly different from
those of the above authors due to small differences in the data
3 +)

The system which most closely resembles those of Section 5.6
in Table 577 is Ref.No.l, the one resembling that of Szebehely énd

defining the system i.e. in Hsligsts €55 €

McKenzie being Ref. No.2. Thus it is seen that the alteration to a
regime with the Saturnian orbit taken relative to the mass—-centre

of the Sun-Jupiter system results in an increase in Yerit from about
14-15 to about 18—19f The latter figures are very close to the Yorit
values arising from the § = eT'configuratiqns in Tables th and 5?53
The remaining increase from 18-19 to 23 or 24 arises from the use of

the exact expression for (CZH)éc and the straight line configuration

t
g =0,
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Of the remaining systems in Table 5.7 Ref. Nos. 3-6 are quasi-
restricted problems in the sense that My has been set negligibly
small in the expressions for (.CZH)ac

and (CZH)cr’ hence e, = 0 out

of necessity. In systems Ref. Nos.7tand 8 the eccentricit?és have
been set Zeré. We may see thén frém the former systéms tﬁat neglect
of the mass of Saturn (or the eccentricity of its orbit) and, by
necessity, the eccentricity of Jupiter's orbit has a significant effect

on y as would be the case in the use of the restricted three-body

prObiZ;f Furthermore, we see that the neglect of eccentricities

in the general three-body treatment also increases Ycrit’ as found

by Szebehely and McKenzie who obtained Yerit = 15f08 for such a system.
This result agrees with our system Ref. No.8. Again the change to a
CSJ-centred Saturnian orbit increases this value by about 5 to 20-21
(Ref.No.T).

This sensitivity is again demonstrated in the application of
this method to the Earth-Moon-Sun system, although the picture hefe
is complicated by the large difference between y and Mg which results
in (c2H)act being very sensitive to ese If we set ey = O then y, ..
will vary, as in the above case, by a factor somewhat -less than 2
viz. y = L-T7. The introduction of the true e. value causes

crit - 3
the y

erit value to decrease to about 10—2. In other words the

previously stable system ( y > 1) has become unstable ( Yori

crit t < 1)

upon the introduction of e In agreement with Szebehely and McKenzie

(197Tb), therefore, we cam?ot decide, on this basis, the stability
or instability of the Earth-Moon—Sun systeﬁ: all that may be said "¢
is‘that the real system is possibly unstable since a > @, ..

Williams (1979), using the (circular) restricted problem of
three-bodies as a model for the Earth-Moon-Sun system, found two
values of Yy for which stability was critical. This wés considered a
case of double bifurcation. If we now consider Figures 5.L(e) and (f)
it is clear that if u3 is increased, ¥ remaining constaﬁt, the
central oval will shrink whereas the right hand lobe will expand i.e.
.. and a'cr both decrease. Iﬁ is now pgésible to envisage the o
meaning of the double bifurcation: ( ¢ = O being assumed at all times
as in Williéms, 1979) commencing with y << 1  the system, with the
Sun's mass much reduced, will be stable since fhe Moon will be contalned

in the central oval. Increasing y the central oval will shrink until
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o =qa 1i,e. = .
act er .. Y Ycrlt

Further increase of y will result in ¢ . <a < a'cr i.e. the system

and the system is critically stable,

is possible unstable, the question of stability or instability being
unanswvered (y = 1, the real system, lies in this range). vy may

., where it is found that a.= a' _, the
rit cr
hierarchy has now changed. The Moon may no longer be considered to

then be increased to Y'c

be in orbit about the Earth. The zero-velocity curves are closed
in such a way as to ensure that the Moon and Sun form a binary which

cannot be disrupted by the Earth. When Y > ¥ this situation

]
. crit
is reinforced. The values obtained by Williams (1979) were Yerit™ 2.5

and Y'crit = 210, The result Y > l’ implying St&bility of

the real system, arises through th:rt:e of the restricted three-body
problem as a model.

It is admissable then to suggest that the Moon may have been
captured by the Earth in the past or may escape in the future as
was noted by Jeffrys and Szebehely (1978). In any event the applicability
of a model involving only point-mass gravitational effects is thrown
into question since the long-term evolution of the system is affected

by other factors e.g. the effects of tidal friction.

°g
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CHAPTER 6 "EMPIRICAL STABILITY REGIONS FOR COROTATIONAL

" COPLANAR HIERARCHICAL THREE-BODY SYSTEMS

6.1 Introduction

In the previous three chapters a set of stability parameters

-has been developed for hierarchical many-body systems arising from

consideration of the dynamics of the froblem (Chapter 3); the
suitability of these parameters for a discussion of stability, in the
three-body case, was examined by the use of an analytical stability
criterion developed by Zare (1976, 197T), Szebehely (1977) and
Szebehely and Zare (1977) (Chapter 4). TFinally, by considering all
the orbital parameters appropriate to the three-body case, the
analytical stability criterion was refined and yielded some further
information in the form of exact lower and probable upper bounds for
the ratio p2/p3 within which it is necessary to seek stability of
hierarchical three-body systems by numerical integration experiments
(Chapter 5). It is the aim of this chapter to study, by means of the
€ parameters, those regions of stability which are outwith the scope
of the analytical critical stability surfaces studied in Chapters L and
5.

The eki,ezi parameters { i = 2,...,0; k = 2,..f,i—1 (i 2 3);
£=1+1,...,n (i £ n-1) }, as has been previously stated, are taken
to characterise the size of the disturbances on the various Keplerian
orbits of the.problem. These parameters are the coefficients of the
leading (disturbing) terms in the expaqsion of the force function for
a hierarchical many-body system where the arrangement of the bodies
in non-crossing orbits of successively larger and larger semi-major
axes allows the equations of motion to be properly written in Jacobian
coordinates, thus permitting the expansion of the force function in
terms of the rgtio of the smaller radius vectors to the larger.
Furthermore these parameters are dimensionless and are normalized to
the appropriate ceﬁtra.l two~body .force.

Now in the three-body- case there ére two Keplerian orbits

defining the initial arrangement of a system: masses m, and m, are

taken to move in disturbed Keplerian ellipses about their common
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mass—-centre, which as before is denoted by M2; the mass m_ is then

3
found at a more remote distance such that its orbit is, at least in

some initial phase, wholly outside the orbits of m and m, relative to

M, (i.e. the pericentre distance of m, from M, is greater than the

3 2

apocentre distance of either m, or m, from Mé). In practice we may

consider that m oz o, without loss of generality, so that in all

cases the apocentre distance of m, from M, is less than the apocentre

1 2
distance of m, from M2 and we then need only consider the latter with
respect to the pericentre distance of m3. The ¢23, €30 parameters

then provide, respectively, a measure of the disturbance on the orbit
of what may be called the (M2,m3) subsystem by m, and m, not being
found at their common mass-centre, M2, and a measure of the disturbance
by m, on the orbit of the (m

3 1
Now if the e parameters were zero for any given system then

R m2) subsystem.

clearly the disturbance produced on the Keplerian orbits of the system
would be nil. As the ¢ parameters are increased, either by an increase
in the mass parameters uE= m2/(m1 + m2)] and p3[ff m3/(m1 + mzfl or
by an increase in Cng (the ratio of, Pos the radius vector of the

‘(ml, m2) subsystem, to the radius vector of the (Mé, m3) subsystem)

Pas
or both , it would be ezpected that the variations on the elements of

the Keplerian orbits of the system would also be increased. It is
considered that the e23, €35 terms characterise the major disturbances

on the orbits of the system; the value of the an3 ratio is only 95
secondary importance. Hence to maintain a constant degree of perturbation
‘systems are studied by holding fixed the 523,e32 values, and choosing

an(initial) a,. value for the numerical experiment.

23
To reduce the number of parameters to an absolute minimum we only

consider, at present, orbits which are coplanar, corotational and

initially circular. We further restrict ourselves by considering only

initial configurations such that w, m, and m lie on a straight line

in that order. >
To delimit the regions of stability outwith the critical stability

surface it is then necessary to find, for a given 823,832 pair, the

largest value of the ratio ¥53s (a23)0 say, in order that the system

defined by (823,832, (a23)o).is just stable. That is to say, a system
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with o, > (a23)o will be unstable and a system with a,, < (a

23 , 23 23)0
will be stable. The unstable behaviour mentioned above may be
exhibited in a.number of ways,describéd in Section 6.2. Also in
this section are defined the sets of initial conditions used to examine
the empirical stability regions, how degrees of stability may be
defined by .which we may state whether one system is more or less
stable than another and what results.might be expected if the empirical
stability regions do indeed exist.

In Section 6.3 the results of several hundred numerical integration
experiments aie,presented in graphical form. It is shown how stability
in general varies as the values of the €23 €30 parameters and the -
o3 ratio are varied; in Section 6.4 special cases of %3 where
commensurabilities exist are studied. Finally in Section 6.5 the
results are discussed, conclusions drawn and consideration given to

systems containing four or more bodies.

6.2 Definitions and Description of the Numerical Experiments

The essential parameters for the stability of hierarchical

three~body systems are considered to be €23 and ¢ If these parameters

are small then it is to be expected that the variziions on the Keplerian
orbits of the (ml, m2) and (M2, m3) subsystems will also be small.

The ¢23 s€35 parameters were defined through the expression of thfa
equations of motion of a hierarchical three-body system in the Jacoébian

coordinate system and an expansion of the force function viz.

52 = GM, 22 [ g"—a {1+ €35 P2(C23) + higher order terms}:, (1)
. . 1 23 .
83 GM3 33 [: 0 {1+¢ P2(023) + higher order termsi] (2)
vwhere m
.523 = ml 2 27 ag3 (3)
(my+m,)
n 3 . R
= T - C W
32 (m,+m,) 23
172

and the other symbols have their usual meanings (see Chapter 4, Section L4.2).



162

It may be seen then that the g23 parameters are the

s€
coefficients of the leading "disturbingézterms in the expansion of
the force function; neglecting the higher order terms the only other.
term present represents the.cential twb—body force, and thus, if the
€'s are small, the motion will continue largely undisturbed given a
suitably small value of ah3e

It may be conjectured that the ‘disturbances, characterised by
the ¢ parameters, are applied in a pseudo—random fashion. The

question of whether a system with given (623,€3 ) is stable or

s Q@
not depends upon whether the variations on the irbii? due to these
pseudo-random disturbances, are large enough to give rise to a
situation where instability sets in. Clearly, of course, the distur-
bances, for any particular system are not applied in a random fashion
since the variations in the semi-major exes and eccentricities will
depend strongly on the fundamental frequencies of the system. However
in a situation where we have no a priori knowledge of what the basic
periods of the system will be, as defined by the masses and the
initial values of the semi-major axes, it may loosely be considered
that there is an element of randomness about the perturbations.
Obviously cases may arise where a commensurability in mean motions
exists which will alter the behaviour of the variations in the orbital
elements of a system. This point will be discussed in greater depth
in Section 6.k, '

Summing up, it is considered that the size of the ¢ parameters
may determine how far the semi-major axes and eccentricities
defining the orbits in a systém may depart from the initial values
by what may be termed a "randém walk" process. Instability or
stability will then depend upon whether this random walk can or can not
lead the system into an unstable configuration.

The systems are examined in terms of the ¢ parameters and the
Oog value? We choose the €'s in preference to the masses, defined by
p and Hs since it appears, on the dynamical grounds outlined above,
that the e's are of more direct relevance to the variations on the
orbits of a system than the actual size of the masses. Hence a

numerical integration experiment will consist of the choosing of a set



163

-

of parameters (623,832, d23) for given eccentricities, longitudes of
pericentre and phase angle (see Chapter 5, Sectiqn 5.2 for definitions),
and carrying the numerical integration forward from these initial
conditions over a specified time interval long enough to examine the
system for possible stability or instability. By studying a group of

systems of. the same g23

s€35 values we may then keep the perturbations
on the orbits largely the same while varying the initial G53 value to
find the largest G5 value, (a23)o say, such that a system will be

)

stable if (initially) a.. < (a The value of (o is not to be

o* 23)0
as determined in Chapters 4 and 5.

. 23
confused here with o, or a

23
23cr
The value dps.p BVE 8 suffictent but not necessary condition that an
exchange of bodies would not occur. As has been remarked previously

it is not expected that instability would set in immediately upon the
opening up of the zero-velocity curves. It may be remembered that
Nacozy (1977) found his value vy, the factor by which the masses of
Jupiter and Saturn must be multiplied, for the onset of instabilit;

to be around 30. However the largest value obtained analytically in
Chapter 5 was around 25: this indicates the existence of a region of
stability which is outwith the scope of the analytical critical
stability surface, as would indeed be expected. The aim of the current
investigation is to determine this region of stability in an empirical
fashign using the € parameters. The value (a23)o is then a necessary
and sufficient condition for stability.

The question of how the stability or instability of a system may
be defined is now considered.

A stable situation may be defined to exist when the Keplerian
orbits of the (m,, m2)and (M, m3) subsystems continue to be executed
throughout the duration of the particular numerical experiment
exhibiting only periodic variations in the semi-major axes and
eccentricities. Secular trends should be absent.

Instability may then occur in one of three ways:

(a) A close approach may occur between two of the bodies in the system,
due to the variations on the initial orbital elements being sufficiently
large, vhich may result in one of the bodies being thrown into a hyperbolic

orbit and escaping the system: this is termed break-up.
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(b) The orbits in the system may undergo secular changes [br possibly
large (amplitude) periodic fluctuations:l in their semi-major axes and

eccentricities so that the pericentre distance of m_ from M, becomes

3 2
less than the apocentre distance of me'from M2. The distance of my
from M2 is always less than the distance of m, from M2 if we prescribe

that m > m, i.e. u 3. Hence we need only consider the distances

M’2m3 and Mém2 to decide if this situation, called cross-over , occurs.

(¢) The third possibility is similar to (a), but is not so severe:
a close approach between bodies occurs resulting in significant non-
reversible (i.e. non-periodic) changes in the semi-major axes and
eccentricities of the orbits of the bodies. For example the mass m,
may, upon a close approach to m

2
long period and large eccentricity, this is clearly not a stable

, be thrown into an orbit with very

situation. This type of occurrence is termed a close encounter.

The degree of stability, which may be called the durability,of
the system is then measured by considering the time it takes for one
of the above possibilities (break-up, cross-over or close encounter)
to occur. The longer the time required, the more durable the system.
If no such occurrence arises the system is termed stable,

A "unit of time" is clearly required to measure the above.

This unit must possess a definite significance for the system under
consideration. Three units of time immediately come to mind:

(i) the orbital period of the (ml, m2) subsystem (ii) the orbital
period of the (M2, m3) subsystem and (iii) the synodic period of the
(ml, m2) and (M2, m3) subsystems. Any other time unit is unsuitable
since it would depend upon the values of the constant of gravitation
and the masses. We choose (iii) above by consideration of the
following example: suppose two planets are moving, in orbits of
small eccentricity, about a central star i,e. 3 and u3 are small.
Further let us suppose o to be very large i.e. approaching unity.
If we commence with the planets in a straight iine on one side of the
star and then set them off in their orbits they will come into
conjunction one synodic period later. Now if this situation was

unstable such that at the initial conjunction one of (a) - (c)
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above occurred we would say that the situation is very unstable.
However, if one of (a) - (¢) occurred on the following conjunction,
oné synodic period later, then it might be remarked that the system
is slightly more durable, it having survived over two conjunctions
rather than just one. Measuring time in units of the periods of
either the (ml, m2) or (Mz, m3) subsystems will clearly not give a
satisfactory picture of this since with a being large, one synodic
period is composed of many (m<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>