
 
 
 
 
 
 
 

https://theses.gla.ac.uk/ 
 
 
 

 

Theses Digitisation: 

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ 

This is a digitised version of the original print thesis. 

 

 
 
 
 
 
 
 

Copyright and moral rights for this work are retained by the author 
 

A copy can be downloaded for personal non-commercial research or study, 

without prior permission or charge 
 

This work cannot be reproduced or quoted extensively from without first 

obtaining permission in writing from the author 
 

The content must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the author 
 

When referring to this work, full bibliographic details including the author, 

title, awarding institution and date of the thesis must be given 
 
 
 
 
 
 
 
 
 
 
 
 

 
Enlighten: Theses 

https://theses.gla.ac.uk/ 

research-enlighten@glasgow.ac.uk 

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk


The Use of Multi-level Modelling to Investigate 

the Hydrodynamic Function of 

Polyurethane Prosthetic Heart Valves

Gillian Maureen Bernacca PhD, DipCB

This thesis is submitted for the degree of MSc in the University of 

Glasgow and is the composition of the named author. 

Research was conducted in the Department of Statistics.

©Gillian M Bernacca, September 2001



ProQuest Number: 10753942

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10753942

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



GLASGOW
UNIVERSITY

.LIBRARY:

Th£S>is 11766 'C o  f i



Acknowledgements

I would like to acknowledge the support of Professor DJ Wheatley in 

providing financial support for the study, as well as the resources of the Department 

of Cardiac Surgery to carry out the research for the project. Thanks are due to Miss 

Anne McGarrity for manufacturing and testing the valves used in the project. 

Thanks, also to my supervisor, John McColl of the Department of Statistics for his 

insights and encouragement.

1



Abstract

This thesis applies multi-level statistical modelling methods, which have been 

developed and mainly used for analysis of educational and sociological data, to a 

new type of data analysis problem. There are many engineering problems that have a 

multi-level structure, which cannot be easily analysed by conventional methods. The 

particular problem investigated here is the statistical comparison of prosthetic valve 

hydrodynamic function data. Such data has, until now, been presented in a subjective 

way, with selection of valves for demonstration of the desired behaviour. Few 

attempts have been made at objective analysis of such data.

The data presented here derive from experimental polyurethane valve 

designs. Of these, two design configurations have the same leaflet polyurethane 

material and different physical valve designs. The other design configurations use 

one of the physical engineering valve designs, but fabricate the leaflets out of one of 

four different polyurethane materials. Data were collected for seven different 

measures of hydrodynamic function, over a series of five different applied flow rates.

The first section of the thesis examines random regression analysis of the data 

using summary measures to compare two designs. Data were transformed as required 

to approximate assumptions of normality and equal variance using a natural 

logarithmic transformation. It was possible to discriminate the two designs on the 

basis of several hydrodynamic function measures. However, the data were pooled 

from iterative testing into individual valve regressions (n = 6 for each design), so 

information about the test reproducibility was lost. The data from each individual 

valve regression parameter estimate was pooled to provide a mean value to represent 

each design. Thus information about valve-to-valve reproducibility was lost. 

Correlation of residuals from the same test run means that the assumption of
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independence that underlies ordinary regression analysis is not likely to be valid in 

this case. The first two designs had common regression slopes, but this is unlikely to 

be the case for all design configurations and would create problems with the random 

regression method. The data structure, therefore, has a hierarchical nature with test 

iterations nested within individual valves, and individual valves being members of 

specific design configuration groups. This data structure suggests that a multi-level 

modelling approach might provide useful insights, by permitting the simultaneous 

comparison of the regression lines, accounting for both “different intercepts” and 

“different slopes”, as well as the data hierarchy. The ability of the multi-level 

modelling approach to use all the information available for a valve should give more 

power to detect differences between valve types.

The multi-level approach is described with reference to various applications 

of the methodology. The method is then applied first to a single valve design, 

followed by comparison of the two designs used for the random regression approach 

initially investigated. The multi-level approach increased the power of discrimination 

compared with the random regression approach, so that more hydrodynamic function 

measures demonstrated significant differences between designs. The precision of 

estimation of the variances was improved in the two-design model compared with 

the single design model, probably as a result of the greater numbers of valves 

available for analysis. The analysis was then extended to include five different design 

configurations. The analysis was also modelled to include different slope parameters 

as well as different intercept parameters, with design included as a fixed parameter in 

the model. The outcome of the multi-level modelling is described for each 

hydrodynamic function measure investigated. The most important measures of valve 

performance (mean pressure gradient across the open valve, energy losses during
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forward flow and maximum effective valve orifice area) were capable of successful 

discrimination among all the valve designs. Variance estimates were also obtained 

that would enable an estimate of the acceptable degree of variation allowed for any 

valve within a design or for the repeatability associated with the hydrodynamic 

function testing itself. These estimates are likely to be underestimated in the present 

study due to small numbers of valves available, but still provide a useful indicator of 

variability. Some measures were affected by profound differences in valve design 

response to the function testing. In particular, regurgitation, leakage, energy losses 

while the valve is closing and while the valve is closed. In these cases, two designs, 

L4 and L5, were made from materials of much higher modulus than the other 

designs, and also had somewhat thicker leaflets. These factors, in combination, 

produced valves, which had a different pattern of response to the function testing for 

these specific measures. In these cases, separation of the designs might improve the 

modelling, with the three similar designs (GE, LE and LL) included in a separate 

model. The modelling might be further improved by the inclusion of influential 

covariates, for example material modulus or leaflet thickness.

In conclusion, multi-level modelling has been successfully applied in a novel 

scientific arena, to an engineering problem. The method has enabled discrimination 

of different valve designs by any of several hydrodynamic function measures and 

allowed a statistical assessment of their relative performances.

4



Table of Contents

Page

Chapter 1 Introduction 14

Chapter 2 Polyurethane Prosthetic Heart Valve Assessment 18

2.1: Hydrodynamic Function Testing 19

2.2: Factors Influencing Hydrodynamic Test Results 21

2.3: What Does the Valve Development Scientist Want to 

Know from Hydrodynamic Function Testing? 24

2.4: The Valve Data Available for Analysis 25

Chapter 3 Regression Analysis of Hydrodynamic Function Data 28

3.1 Regression Analysis by least squares 28

3.2 Data handling 31

3.3 Regression analysis of valve hydrodynamic parameters 37

3.3.1 Mean pressure gradient 3 7

3.3.2 Regurgitant flow 39

3.3.3 Leakage flow 40

3.3.4 Energy Losses during Forward Flow 44

3.3.5 Energy Losses during Valve Closing 45

3.3.6 Energy Losses when Valve is Closed 47

3.3.7 Effective Orifice Area at Maxima 49

3.4 Summary 50

Chapter 4 Evaluation of the Linear Regression Approach 52

Chapter 5 A Multi-level Modelling Approach to the Analysis 58

5.1 General principles of multi-level modelling 58

5.2 Applications of multilevel modelling 59

5



5.3 Multilevel regression modelling 65

5.4 Use of Residuals 71

5.5 Summary 72

Chapter 6 Multi-level Modelling of Hydrodynamic Function Data 73

6.1 Valve design LE 74

6.1.1 loge{mean pressure gradient} 75

6.1.2 lo g e  {regurgitation} 77

6.1.3 leakage 78

6.1.4 loge{energy loss in forward flow} 78

6.1.5 energy loss closing 79

6.1.6 energy loss closed 79

6.1.7 effective orifice area at maxima 80

6.1.8 Summary of multi-level modelling for 81 

design LE alone

6.2 Multi-level model with two valve designs, 81 

LE and GE

6.2.1 loge {mean pressure gradient} 83

6.2.2 lo g e  {regurgitation} 84

6.2.3 leakage 85

6.2.4 loge{energy loss in forward flow} 87

6.2.5 energy loss closing 88

6.2.6 energy loss closed 89

6.2.7 effective orifice area at maxima 90

6.3 Summary of multi-level regression model as a 91 

means of comparing two valve designs

6



6.4 Multi-level model with five valve designs 93

6.4.1 lo g e  {mean pressure gradient} 95

6.4.2 loge {regurgitation} 101

6.4.3 leakage 104

6.4.4 loge{energy loss in forward flow} 109

6.4.5 energy loss closing 113

6.4.6 energy loss closed 116

6.4.7 effective orifice area at maxima 120

Chapter 7 Analytical Value of the Multi-level Modelling Approach 125

7.1 The fixed parameter estimates 126

7.2 The random parameter estimates 133

Chapter 8 Conclusions and Future Directions 138

References 141

Appendix 146

7



Index of Tables

Chapter 2 

Table 2.1 

Chapter 3 

Table 3.15

Valve Leaflet Properties

Page

26

38Regression parameter estimates for each valve design 

(loge {mpg} regressed on loge {RMS flow}, 

sample mean (s.d.))

Table 3.16 Regression parameter estimates for each valve design 39

(loge {regurgitant flow} regressed on loge {RMS flow}, 

sample mean (s.d.))

Table 3.17 Regression parameter estimates for each valve design 41

(leakage flow regressed on loge {RMS flow}, sample mean (s.d.))

Table 3.18 Regression parameter estimates for each valve design 42

- quadratic fit (leakage flow regressed on loge {RMS flow}, 

sample mean (s.d.))

Table 3.19 Regression parameter estimates for each valve design 45

(loge {energy losses during forward flow} regressed on 

loge {RMS flow}, sample mean (s.d.))

Table 3.20 Regression parameter estimates for each valve design 46

(energy losses during valve closing regressed on 

loge {RMS flow}, sample mean (s.d.))

Table 3.21 Regression parameter estimates for each valve design 47

(energy losses when valve is closed regressed on 

loge {RMS flow}, sample mean (s.d.))

Table 3.22 Regression parameter estimates for each valve design 49

(effective orifice area at maxima regressed on

8



lo g e  {RMS flow}, sample mean (s.d.))

Chapter 6

Table 6.1 Valve Design LE, Parameter Estimates (e.s.e.) 75

Table 6.2.1 Parameter estimates for loge{mean pressure gradient} 83

Table 6.2.2 Parameter estimates for loge{regurgitation} 84

Table 6.2.3 Parameter estimates for leakage 85

Table 6.2.4 Parameter estimates for loge{energy loss in forward flow} 87

Table 6.2.5 Parameter estimates for closing energy loss 88

Table 6.2.6 Parameter estimates for closed energy loss 89

Table 6.2.7 Parameter estimates for effective orifice area at maxima 90

Table 6.4.1.1 Parameter estimates for loge{mean pressure gradient} 97

Table 6.4.1.2 Intercept and slope parameter estimates for 99

loge {mean pressure gradient}

Table 6.4.2.1 Parameter estimates for loge{regurgitation} 101

Table 6.4.2.2 Intercept and slope parameter estimates for loge{regurgitation} 102

Table 6.4.3.1 Parameter estimates for leakage 105

Table 6.4.3.2 Intercept and slope parameter estimates for leakage 107

Table 6.4.4.1 Parameter estimates for loge{energy loss in forward flow} 110

Table 6.4.4.2 Intercept and slope parameter estimates for loge{energy loss in 111

forward flow}

Table 6.4.5.1 Parameter estimates for closing energy loss 114

Table 6.4.5.2 Intercept and slope parameter estimates for closing energy loss 115

Table 6.4.6.1 Parameter estimates for closed energy loss 117

Table 6.4.62 Intercept and slope parameter estimates for closed energy loss 118

9



Table 6.4.7.1 

Table 6.4.7.2 

Chapter 7 

Table 7.1

Appendix 

Table 3.1

Table 3.2

Table 3.3

Table 3.4

Table 3.5

Table 3.6

Table 3.7

Table 3.8

Table 3.9

Parameter estimates for effective orifice area 121

Intercept and slope parameter estimates for effective orifice area 122

<juo (e.s.e.), the level 2 estimate of variance on the intercept 135 

parameter of the model: IGLS compared with RIGLS

Estimates, bo and bi, for valves GE and LE fabricated from 146

Estane, loge{mean pressure gradient} data (n=10 iterations)

Estimates, bo and bi, for valves GE and LE fabricated from 147

Estane, loge{regurgitant flow} data (n=10 iterations)

Estimates, bo and bi, for valves GEnd LE fabricated from 148

Estane, leakage flow data (n=10 iterations)

Estimates, bo and bi, for valves GE and LE fabricated from 149

Estane, loge{energy losses forward flow} data (n=10 iterations) 

Estimates, bo and bi, for valves GE and LE fabricated from 150

Estane, energy losses closing data (n=10 iterations)

Estimates, bo and bi, for valves GE and LE fabricated from 152

Estane, energy losses closed data (n=10 iterations)

Estimates, bo and bi, for valves GE and LE fabricated from 153

Estane, mean effective orifice area data (n=10 iterations)

Estimates, bo and bi, for valves GE and LE fabricated from 154

Estane, loge{mean pressure gradient} data (n=5 iterations)

Estimates, bo and bi, for valves GE and LE fabricated from 155

Estane, loge{regurgitant flow} data (n=5 iterations)

10



Table 3.10

Table 3.11

Table 3.12

Table 3.13

Table 3.14

Estimates, bo and bi, for valves GE and LE fabricated from 156

Estane, leakage flow data (n=5 iterations)

Estimates, bo and bj, for valves GE and LE fabricated from 158

Estane, loge {energy losses forward flow} data (n=5 iterations) 

Estimates, bo and bi, for valves GE and LE fabricated from 160

Estane, energy losses closing data (n=5 iterations)

Estimates, bo and bi, for valves GE and LE fabricated from 162

Estane, energy losses closed data (n=5 iterations)

Estimates, bo and bi, for valves GE and LE fabricated from 164

Estane, mean effective orifice area data (n=5 iterations)

11



Index of Figures

Chapter 2

Figure 2.1 

Figure 2.2

Chapter 3 

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Chapter 4 

Figure 4.1

Chapter 6 

Figure 6.1

Typical Polyurethane Valve

Overview of Hydrodynamic Function Test Rig

(aortic position in foreground, mitral position behind)

Page

19

19

31

32

Mean Pressure Gradient vs RMS Flow, showing 

non-linearity and heteroscedasticity

Natural logarithmic transform of Mean Pressure Gradient vs 

RMS Flow: regression is linear, some heteroscedasticity remains 

Plot of Standardised Residuals vs Fitted Values for log 33

transformed Mean Pressure Gradient Data

Normal Probability Plot of Standardised Residuals for log 33

transformed mean pressure gradient data

Regression lines plotted for energy loss when valve is 48

closed vs loge {RMS flow} for design GE (solid line) 

and design LE (dotted line), 5 replicates of each valve.

Figure 4.1 Comparison of mean pressure gradient vs RMS flow 53 

for 4 different types of valve: a tilting disk mechanical valve; a 

bileaflet mechanical valve, a GE design valve and an L4 design 

valve (all valves are within the nominal size range 23-5mm)

Normal Probability Plot of standardised level 1 residuals for

lo g e  {mean pressure gradient} 76

12



Figure 6.2

Figure 6.3

Figure 6.4

Figure 6.5

Figure 6.6

Figure 6.7

Figure 6.8

Figure 6.9

Figure 6.10

Figure 6.11

Plot of Standardised level 1 Residuals vs Predicted Values for 

loge {mean pressure gradient} 77

Normal Probability Plot of standardised level 1 residuals for 

loge {mean pressure gradient} for five designs, level 1 residuals 

on intercept parameter 95

Standardised Residuals vs Fitted Values for loge{mean pressure 

gradient} for five valve designs 96

Predicted regression lines for all valve designs for 99

loge {mean pressure gradient} regressed on loge {RMS flow}

Predicted regression lines for all valve designs for 103

loge {regurgitation} regressed on loge {RMS flow}

Predicted regression lines for all valve designs for leakage 107

regressed on loge {RMS flow}

Predicted regression lines for all valve designs for loge 112

{energy loss in forward flow} regressed on loge {RMS flow}

Predicted regression lines for all valve designs for closing 115

energy loss regressed on loge {RMS flow}

Predicted regression lines for all valve designs for energy loss 118

when the valve is closed regressed on loge {RMS flow}

Predicted regression lines for all valve designs for effective 123

orifice area regressed on loge {RMS flow}

13



Chapter 1: Introduction

Experimental work on prosthetic heart valves has been increasing over the 

last fifty years. There are large numbers of people throughout the world who require 

replacement of a heart valve due to disease or congenital abnormality, involving 

primarily the aortic or mitral valves. Today there are several types of valve available 

for clinical implantation. These include mechanical valves manufactured from 

materials such as titanium and pyrolytic carbon, or porcine aortic or bovine 

pericardial valves derived from animal sources or human grafts. All these various 

types of valve suffer different problems and none is the ideal valve to implant in all 

clinical circumstances. In general terms, mechanical types of valve are very durable 

but can be relatively damaging to the blood. Patients in receipt of mechanical valves 

must also be maintained on anticoagulant therapy, which has its own hazards, 

including spontaneous bleeding episodes or, if insufficient, thromboembolic events. 

Bioprosthetic valves are kinder to the blood although more susceptible to relatively 

early failure (Giddens et al, 1993; Chu et al, 1984).

Most of the differences between these two types of valve are design- and 

material-related. The mechanical valves are manufactured from materials such as 

titanium and pyrolytic carbon. These materials are very durable, but inflexible. The 

designs are of two main types, either a generally circular tilting disc, or a bileaflet 

design with semi-lunar leaflets. Both designs result in the leaflets opening directly in 

the blood flow field, with mechanical hinges. The interference with the blood flow 

field, with rigid materials and high velocity jets occurring in the flow field, causes 

significant blood trauma, which must be controlled by anticoagulants. The 

bioprosthetic valves are usually manufactured from a porcine aortic valve or from a
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material such as bovine pericardium. In both cases the valve design imitates some 

features of the native human aortic valve i.e. the trileaflet structure, with a central 

flow orifice. The leaflet materials are also relatively soft and flexible, producing low 

shear stress and minimal interference with blood flow. They do not, generally, 

require the use of long-term anticoagulants. However, they are subject to relatively 

early failure due to primary tissue failure of the leaflet material, or failure secondary 

to calcification and tissue overgrowth of the leaflets causing stenosis of the valve. 

These types of bioprosthetic valve failure are accelerated in younger patients, and 

these valves are generally reserved for use in elderly patients.

This present situation is not ideal. In certain situations, the use of a 

mechanical valve is undesirable, but there may be no satisfactory alternative, 

particularly if the patient is young. In many countries, it may be possible to carry out 

the primary surgical procedure, but there may be inadequate facilities to ensure safe 

follow-up to administer and monitor medications. There has been much interest in 

developing a better option than the currently available types of valve prosthesis.

The use of polyurethanes has been under investigation for this application for 

several years (Herold et al, 1987; Hilbert, et al, 1987; Jansen & Reul, 1992; Bernacca 

et al, 1995; Mackay et al, 1996a; Mackay et al, 1996b; Bernacca et al, 1997a). The 

advantage of these materials is the possibility of combining the best qualities of the 

two major types of commercially-available valve. This is due to the possibilities of 

chemical engineering of the polyurethane to achieve a particular material behaviour, 

the removal of biological variation inherent in animal-derived valves, and the 

retention of the flow characteristics of the bioprosthetic valve designs.

The assessment of prosthetic heart valves in development requires a number 

of widely recognised procedures including fatigue testing of valves to determine
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durability, blood compatibility testing, and valve function testing. This last is the first 

stage of functional screening once a whole valve has been made and consists of a 

standard set of hydrodynamic function tests that examine the ease of opening of the 

valve and the efficiency of its closure. Clinically, it is desirable for an open valve to 

display the lowest possible mean pressure gradient with the highest possible flow 

through the valve, particularly at low cardiac output. Hydrodynamic function testing 

can discriminate well among differing valve designs, but has, until now, been used in 

a purely subjective way to describe one design as “better” than another, on the basis 

of the position of lines on a graph, representing a functional relationship, such as the 

variation of mean pressure gradient across the open valve with flow through the 

valve. This subjectivity is undesirable, particularly as such discrimination is often 

made on the basis of only one or two selected valve tests and may not represent 

either the typical performance of a valve design or a true difference between valve 

designs. There is one published instance of an attempt to characterise the pressure 

gradient/RMS flow curves obtained from hydrodynamic function testing of valves 

(Barbaro et al, 1997). In this case, the aim was to compare two different 

hydrodynamic function test rigs and two mechanical valves of differing designs were 

used. Each valve was tested in each rig with three test replications, over four cardiac 

outputs. After applying a logarithmic transformation to the data, a multiple 

regression model was fitted.There was no significant effect of choice of test rig 

within this model. These authors considered the use of regression coefficients to 

characterise valves. However, although the manufacture of mechanical valves is 

more precise than other types of valve, it is questionable whether two different 

valves are sufficient to validate their findings. They further made a presumption of 

similarity between the two sets of results and the statistical modelling applied was
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probably inadequate to demonstrate any “true” differences that might have been 

otherwise discovered. There seems to be no published example of a satisfactory 

statistical assessment of valve function enabling valve comparisons to be made with 

any degree of confidence.

There is a need for objective testing of a valve design in terms of its 

hydrodynamic performance, so that each design may be described in terms that 

define not only whether it is better than another design, but also how great that 

improvement is. The current study focuses on the problems of discriminating 

hydrodynamic function behaviour in a series of polyurethane valve designs, using, 

initially, two design variants. The study is later expanded to include two different 

valve designs and four polyurethane materials.
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Chapter 2: Polyurethane Prosthetic Heart Valve Assessment

Polyurethane valves have been under development for many years, and 

several research groups have produced designs that have excellent hydrodynamic 

function and good long-term durability as assessed by in vitro laboratory fatigue 

testing (Jansen & Reul, 1992; Bernacca et al, 1997a). There have, however, been 

problems when the valves have been implanted into large animal environments, due 

to biodegradation of the polymer structure. This has resulted in a lack of further 

development of such types of valve into the clinical environment to date. This 

situation is in the process of changing, as there are now polyurethane variants 

available which have altered chemistry with proven biostability in long-term implant 

situations (Rhodes et al, 1999; Gunatillake et al, 2000; Martin et al, 2000). This has 

revived interest in polyurethane valve development and focussed research effort on 

the necessity of discriminating among various similar polymer formulations in terms 

of various aspects of their function when manufactured into a prosthetic heart valve 

(O’Connor et al, 2000; Bernacca et al, 2000; 2001).

The great majority of polyurethane valves that have been researched use a 

variation of a three-leaflet design, similar to the natural aortic valve (Figure 2.1).

This design has an open central orifice, which ensures the possibility of good flow 

characteristics, with no obstacle to blood flow within the flow field. The secondary 

advantage of this design is the lower likelihood of causing damage to the blood cells. 

A potential consequence is the possibility of using such valves without long-term 

anticoagulants and hence improving the quality of life of the recipient.
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Figure 2.1 Typical Polyurethane Valve

2.1: Hydrodynamic Function Testing

The primary method o f assessing flow characteristics o f a valve is by in vitro 

testing using a rig, which emulates the left side o f  the heart with built-in compliance 

to mimic the effects o f the patient’s peripheral circulation. The rig is designed with a 

“mitral” and an “aortic” valve position (Figure 2.2).

Figure 2.2 Overview of Hydrodynamic Function Test Rig 

(aortic position in foreground, mitral position behind)
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Different valve test centres use similar types of rig, based around the same 

type of fluid pumping system. The data are generated from the input of a series of 5 

equivalent cardiac outputs applied to a valve mounted in a pulsatile flow simulator. 

These cardiac outputs are generated by a computer-controlled sinewave input to a 

pump, by controlling the frequency and displacement of the pump piston. The test 

fluid is saline. Valve function is assessed by measurement of the flow of fluid 

through the valve and the pressure gradient across the valve, using flow and 

differential pressure transducers. The data are collected using a computer programme 

designed for the purpose, as the flow and pressure waveforms throughout the valve 

functional cycle. A number of parameters of valve function are then calculated 

including:

♦ Root Mean Square flow through the valve,

♦ mean pressure gradient across the open valve,

♦ regurgitant flow through the closing valve,

♦ leakage flow through the closed valve,

♦ energy losses during forward flow,

♦ energy losses during valve closing,

♦ energy losses while the valve is closed and

♦ the maximum effective orifice area achieved by the valve.

All these parameters are assessed over the range of five applied flow rates, 

(3.6, 4.9, 6.4, 8.0 and 9.6 l.min'1 equivalent cardiac output) for every valve, using 

frequencies of 60, 70 or 80 beats per minute with pump displacements delivering 60, 

70, 80, 100 or 120ml in fixed combinations for each equivalent cardiac output. This
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provides a range of flow input that is approximately equivalent to physiological flow 

ranges and forms that would be expected in valve recipients. Data is acquired over 

between 20 and 40 functional valve cycles, dependent on flow rate, and an averaged 

pressure and flow waveform is calculated by the data processing software. Pressure 

difference and RMS flow are measured from the start of forward pressure to the end 

of forward pressure. Regurgitant flow is measured from the end of forward pressure 

to the end of forward flow. Leakage flow is measured from the end of forward flow 

to the start of forward pressure. Energy losses are calculated by integrating the 

pressure difference x flow, with respect to time. Effective orifice area at maximum is 

calculated as Peak Forward Flow/{V(Peak Forward Pressure) * 51.6}.

All valves are tested under similar conditions in the mitral simulation 

position. A standard mechanical valve is placed into the aortic simulation position of 

the rig and the rig is operated at a mean aortic pressure of 95mmHg. The pressure 

transducers are zeroed and calibrated at each test setting applied.

2.2: Factors Influencing Hydrodynamic Test Results

There are a number of mechanisms introducing random error into the results. 

These include errors in the response of the pressure transducers and the flow probe, 

the initial calibration of the system, as well as operator variation in defining start and 

end points within the dataset critical to the data calculation. These random errors 

would be expected to conform to a normal distribution. They are important when 

comparing data generated from different sources and for the setting of quality control 

parameters in valve testing. These sources of error are assessed in this study by 

multiple repetitions of testing on each individual valve.
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Serious errors are obvious as soon as the data are calculated, e.g. introducing 

the wrong pump frequency or displacement, and the test should then be repeated.

There are several valve-related factors which influence the test results, many 

of which specifically apply to polyurethane-type valves. The first of these is the 

specific design of the valve. Even within a tri-leaflet design, there are many possible 

variations with a wide range of possible effects on hydrodynamic function. For 

example, a short free edge length will not permit the valve orifice to open as widely 

as a longer free edge length. The design must also take account of the specific 

material properties. In the first instance, this effectively means the Young’s modulus 

of the material, i.e. how stiff the material is. A low modulus material is more flexible 

than a higher modulus material and, therefore, easier to open as a valve leaflet 

material, in most design conformations. A low modulus material may also be capable 

of producing a valve with a larger orifice, as the material may be able to open wider 

by stretching slightly. From the point of view of hydrodynamic function, it may be 

desirable to utilise a low modulus material, but other considerations, such as long­

term durability, may result in a higher modulus material being preferred (O’Connor 

et al, 2000). Higher modulus materials, while being more difficult to open, may 

allow faster closure (Bernacca et al, 2000; 2001). The thickness of the valve leaflets 

also has a major influence on the hydrodynamic test results, with thicker leaflets 

producing much higher transvalvular pressure gradients and energy losses (Bernacca 

et al, 1997b, Bernacca et al, 2000; 2001).

The consistency of valve manufacture is also important in minimising 

variability in valve testing. Valve leaflets are dip-coated onto a frame from a polymer 

solution, and the valve is dried overnight in an oven under a controlled nitrogen 

atmosphere. It is important that the dipping and drying conditions are carefully
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controlled in order to produce leaflets of uniform thickness distributions. If, for 

instance, the drying valve is not positioned accurately into the oven, the resulting 

valve may have leaflets of differing thickness. This may also result from dipping into 

an inadequately mixed polymer solution.

Once the valve leaflets have dried, the valve is removed from the former and 

the leaflets cut to form the free edge of the valve. This cutting step introduces some 

variability into the precise length of the leaflets, from base to free edge. Again, 

valves are checked and those with obvious flaws rejected. There may, however, be 

sufficient variation remaining among valves to account for part of the difference in 

performance among valves of the same design and material, particularly in terms of 

regurgitant and leakage flow, and hence energy losses during closing and when the 

valve is closed. This arises from potential differences in the degree of closure 

possible for an individual valve, as well as the time taken during the valve cycle to 

reach full closure.

Leaflet thickness is mapped over 16 specified points on each leaflet. If the 

three leaflets do not have similar thickness distributions, the valve is rejected. If such 

a valve, with heterogeneous leaflet thicknesses, were tested hydrodynamically, it 

would be likely to demonstrate inefficient opening, with perhaps only two leaflets 

opening at low flow rates. In all valves of this type the thickness distribution over the 

valve leaflets is not uniform. The leaflets tend to be slightly thicker towards the 

leaflet-frame junction. This differential thickness is more apparent the thicker the 

leaflet is. Localised thickening of the leaflet, depending on its position, may affect 

the hydrodynamic function of the valve. For example, localised thickening close to 

the commissural region of the valve may prevent full opening of the valve compared 

with a valve that has thinner leaflets in this region. This in turn would produce higher
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pressure gradients, reduced flow through the valve, and reduced effective orifice 

area. Different valve designs will also produce somewhat different leaflet thicknesses 

and thickness distributions due to geometry effects influencing polymer run-off 

during valve drying.

2.3: What Does the Valve Development Scientist Want to Know from 

Hydrodynamic Function Testing?

The first item of information required is the ability to discriminate effectively 

among valves made of the same materials in the same way. This is a critical quality 

control function, which enables the rejection of valves that do not fall within a 

specified parameter set. In order to perform this function it is necessary to be able to 

define a parameter set that describes a particular valve design formulation.

Second, it must be possible to decide whether one valve design is better than 

another or whether a single design performs better when made using one material 

rather than another. Again, it is necessary to define a parameter set that describes the 

valves of interest.

Once this degree of objective discrimination is feasible, then investigation of 

the influence of other factors such as leaflet thickness and thickness distribution 

becomes possible.

The availability of objective assessment of valve hydrodynamic function 

would avoid the present situation in which valve performance is subjectively 

assessed by simple observation of graphical data. A limited portion of such data are 

generally selected for demonstration, due to the confusion created by plotting too 

many data on a single graph, and the viewer/reader may be easily influenced by 

selection of particular examples of valves, which demonstrate the effect desired by
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the researcher. Objective testing that used all available valve data, defining valve sets 

by parameter values, would avoid such subjective assessment and provide an 

invaluable tool for the valve developer.

2.4: The Valve Data Available for Analysis

There is a practical consideration that must be addressed when collecting 

hydrodynamic test data. The testing itself is relatively time-consuming, with five 

separate tests necessary for the simplest set of data for a single valve. Answers are 

required quickly so that design variations may be rejected or accepted for further 

evaluation. This sets a practical limit on the amount of testing that it is feasible to 

perform in order to evaluate any valve design.

A preliminary study was carried out to evaluate the degree of discrimination 

possible over a specified number of test repetitions of a single valve. For this testing, 

two valve designs were used (design GE and design LE). These were similar 

trileaflet designs with minor differences in leaflet geometry. Each design was 

manufactured into valves using a single polyurethane (Estane 58315, BF Goodrich) 

of relatively low Young’s modulus. This material has been extensively researched 

and its properties and behaviour in this application are well known (Bemacca et al, 

1995; 1997a; 2001). Six valves were manufactured in each design, under the same 

conditions, in parallel, to produce two sets of valves with similar leaflet thickness 

distributions. Each valve was tested ten times. No valve was tested more than once 

on any one day.

Further testing was performed using engineering design L, with six valves 

manufactured in each of three further polyurethane materials of differing 

composition and modulus properties. The four materials used for valve manufacture
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have different mechanical properties. In particular there is a wide range of material 

stiffness. The materials are described in Table 2.1, below.

Table 2.1: Valve Leaflet Properties

Design Polyurethane Modulus (MPa) Mean (95%CI) Valve 

Leaflet Thickness (pm)

GE Estane 16.2 88-93

LE Estane 16.2 79-83

LL Lycra 8.5 91-95

L4 EV3.34 32.5 134-140

L5 EV3.35 63.6 110-115

Of the five design variants, two differing physical designs are used with a 

single material. The mean leaflet thickness is similar for each valve group, and these 

would be expected to produce similar hydrodynamic function. Design G, however, 

has slightly better opening characteristics than design L. All other materials were 

tested in design L. The increasing modulus is likely to be associated with worsening 

hydrodynamic function, as the valve leaflets become harder to open with the stiffer 

materials. In theory, this may be compensated to some degree by altering the leaflet 

thickness. Lycra has a similar thickness distribution over the leaflets to the Estane 

valves, although the increase compared with design L in Estane may be sufficient to 

affect hydrodynamic function. This should be compensated to some degree by the 

lower modulus of Lycra compared with Estane.

The higher moduli of EV3.34 and EV3.35 would tend to produce valves with 

relatively poor hydrodynamic function. It is uncertain as to which factor, modulus or 

thickness, would have the greatest influence on this. However, previous research has
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suggested that the extremely high modulus of EV3.35 cannot be adequately 

compensated by reducing leaflet thickness, at least in this design (Bemacca et al, 

2000; 2001). Unfortunately, due to practical difficulties in working with limited 

quantities of two experimental polyurethane variants (EV3.34 and EV3.35), it was 

not possible to produce sets of valves more closely matched in leaflet thickness 

across design variants. This does not detract from the potential of the analytical 

methodology for comparing valve types.

Testing in this phase was repeated five times for each valve, again with no 

valve being tested more than once in any one day. These data were compared with 

the first five test repetitions available on the first two data valve data sets. Selection 

of the first five data sets was made in consideration of the possibility of functional 

changes in the material performance with repeated testing. It is known that 

polyurethanes have time-dependent properties such that, in long-term fatigue testing, 

for instance, the modulus of the material drops slightly, as well as a tendency for the 

material to plasticise in solution. The consequence of this behaviour is an increased 

material flexibility. This effect is likely to be small over a small number of flexions 

of the valve leaflets; however, it may vary according to the material used, so that 

selection of a specified set of data repetitions is preferred, rather than a randomised 

selection among all the tests performed.
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Chapter 3: Regression Analysis of Hydrodynamic Function Data

The two valve designs (G and L), both with Estane leaflets, as described in 

Chapter 2, were initially evaluated using a linear regression analysis for ten iterations 

of the tests on each valve. The amount of testing required to complete ten iterations 

is impractical for routine use, therefore the analysis was repeated using five iterations 

to determine whether sufficient discrimination could be achieved with fewer 

iterations on each valve.

It is known that over a continuous cycling period, polyurethane valve leaflets 

accommodate to the applied stress. It has also been shown that a polyurethane 

material demonstrates a fall in Young’s modulus, during hysteresis testing applied at 

similar stress conditions to a functioning heart valve. This fall in modulus may be 

detected over a relatively small number of cycles, depending on the material 

(O’Connor et al, 2000). There is, therefore, the possibility that the hydrodynamic 

function of a valve may alter with increasing cycling, hence it was decided to select 

the first five iterations of each valve data set for the second analysis.

3.1 Regression Analysis by least squares

The application of a least squares regression analysis to the data from an 

individual valve should permit the description of the valve properties by an intercept 

and slope. Valve designs may then be compared by analysing intercepts and slopes 

for samples of valves of the different types.

The initial model is of the form

Y, = fio + P\Xi + 8i
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where the 7, correspond to the hydrodynamic test parameter data (e.g. mean pressure 

gradient) and the X t to the RMS flow data, Po is the intercept on the y-axis, Pi is the 

slope of the line and £\ are the amounts by which 7, deviates from the population 

regression line. Po and Pi can only be determined exactly using all possible 

occurrences of Y and X, hence estimates of these parameters, b0 and bi respectively, 

are determined from the sample data for the valve.

There are good experimental reasons for using the measured function, RMS 

flow, as the independent variable. We could use the assigned cardiac output applied 

by the pump, but this is not the flow that is directly delivered to the valve. Various 

factors influence the flow at the valve, both valve- and test rig-related. The RMS 

flow varies slightly with valve design, but more so with the test position used for the 

rig (here the mitral test position was used, but the aortic position may also be used 

and, in some circumstances will be preferred). The use of RMS flow as the 

independent variable gives a better picture of the real differences among valves 

tested than would the use of the applied flow. The conventional display of 

hydrodynamic function data, for these reasons, uses RMS flow as the "x" co-ordinate 

on graphs displaying the relationship with e.g. mean pressure gradient. The use of the 

RMS flow as the independent variable is acceptable from the statistical point-of-view 

as its variance is always very small compared with the variance of the dependent 

variable, although this does have some implications for the interpretation of the data 

that will be discussed later. For example, the residuals within a test run are likely to 

be positively correlated, violating the assumption of independent errors.

The initial analytical series involved 2 valve designs tested in the same 

material. There were 10 iterations of the test for each valve and a total of 6 valves of 

each type tested, initially, giving n = 60 datasets for each valve type. The second

29



analytical series used the first five test iterations of the 2 valve designs denoted 

above, giving n = 30 datasets for each valve type. The aim of this second analytical 

procedure was to ensure that the amount of testing for future valves could be reduced 

without undue loss of statistical power.

The Ordinary Least Squares (OLS) estimators for the slope, fij, and intercept,

Po, are

ft s „ /  <ZX,Y,-nXY)
1 “  /S L  -  „

( £ x , 2 - « x 2)

and

b0 = Y - b xX

These estimators rest on the assumptions that €i, s2  sn are independent and

identically distributed random variables, each with mean 0 and variance, o*(>0). 

Standard methods of inference within the model assume additionally that each £\ ~ 

N(0,cf). However, it is the case that, even when these assumptions are not rigorously 

met, any least squares estimator is better than any other unbiased linear estimator, 

sinceit will produce an unbiased estimate with minimum variance (Silvey, 1975). In 

this situation, however, the estimated standard errors associated with the estimated 

regression parameters may not be correct.

All regression analyses were performed using Minitab for Windows version 

12. All the regression data are tabulated in Appendix 1. Tables 3.1-3.7 contain data 

for ten iterations on each valve; tables 3.8-3.14 contain data for five iterations on 

each valve.
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3.2 Data handling

The mean pressure gradient vs RMS flow plot is non-linear (figure 3.1). The 

simplest analytical approach to attempt to deal with this is to transform the data to 

achieve linearity, prior to applying a least squares regression analysis to the data. The 

data also demonstrate a non-constant variance or heteroscedasticity, violating one 

assumption of the model above. Data transformation may also improve the variance 

homogeneity. Data were analysed for each valve individually.

Figure 3.1 Mean Pressure Gradient vs RMS Flow, 

showing non-linearity and heteroscedasticity
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300 400100 2000

RMS Flow (ml/s)

Various transformations were applied to the data, including reciprocal, square 

root and square transformations. However, the best fit was obtained with a 

logarithmic transform. A simple linear regression analysis, using the model described 

above, was applied to the log-transformed data: X f = loge RMS flow; Yt = loge {mean 

pressure gradient}. The fit appeared linear, although there was substantial deviation 

from the assumption of equal variance, notably at the lowest equivalent cardiac 

output (figure 3.2).
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Figure 3.2 Natural logarithmic transform of Mean Pressure Gradient vs RMS 

Flow: regression is linear, some heteroscedasticity remains
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A plot of the standardised residuals vs the fitted values (figure 3.3) indicated an 

improvement in the assumption of equal variances. The S-shaped curvature of the 

normal probability plot of the residuals (figure 3.4) suggests a degree of under­

dispersion of the data. This may be caused by positive correlation between residuals 

from the same test run, when the measured function, RMS flow, is used as the 

independent variable. This can produce a residual plot with short tails, as seen here. 

Hence Normality does not hold for this measure, although the residuals distribution 

is symmetric. Given the symmetry of the distribution and a reasonable number of 

observations, the Central Limit Theorem would justify the use of standard 

confidence intervals and tests.
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Figure 3.3 Plot of Standardised Residuals vs Fitted Values 

for log transformed Mean Pressure Gradient Data
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Figure 3.4 Normal Probability Plot of Standardised Residuals 

for log transformed mean pressure gradient data
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A similar logarithmic data transformation was also required for the variables 

regurgitant flow and energy losses during forward flow, in order to achieve a 

plausible linear model: in these cases the normal probability plot was acceptable, 

with no evidence of serious deviation from normality and little evidence of under­

dispersion of the data. A satisfactory fit was achieved for leakage flow, energy losses 

during valve closing, energy losses when the valve is closed and maximum effective 

orifice area without transformation of the Y data.

It was clear, however, that the assumption of constant variance did not 

generally hold for these data. The principal cause of unequal variances is likely to be 

the relatively low signal :noise ratio in the differential pressure transducer at low 

cardiac output when the measured differential pressure is low, and the largest 

variance tends to be in the data for a cardiac output of S.bl.min'1. There is also a 

tendency to increased variance at the highest cardiac outputs, probably due to 

increased “noise” in the valve leaflet motion at high fluid throughput. A differential 

weighting according to applied cardiac output would allow greater weight to be 

placed on the data with the lowest variance, when estimating the regression 

parameters. Weighted Least Squares is a modification of Ordinary Least Squares that 

can improve estimation when error variances are not uniform or errors are correlated 

(Silvey, 1975).

Weighted Least Squares (WLS) Regression is more easily explained using 

matrix notation (Draper & Smith, 1998). Thus the basic model described above may 

be written as

Y = X j3 + s  where E(s) = 0, V(s ) = <j 2I  and £ ~ N ( 0 , c r 2I)

The vector b is the estimator of the vector P  and contains the two parameter 

estimators, bo and bj. In this case, the least squares estimators are given by
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b =
b * *

0 = ( X X ) ~ xX  Y, and the fitted values are Y = X b
b] _ ~  ~

Weighted Least Squares is used in situations in which y ^  ^  <j2I  » but 

diagonal with unequal diagonal elements, so that Ordinary Least Squares (OLS) is no 

longer optimal. It is necessary to transform the original model, in order to find a new 

model that satisfies the assumptions of OLS, i.e. that the variance matrix V is equal 

to Ic? and that the errors approximate a Normal distribution, ~N(0, Io2). Matrix 

theory shows that it is possible to find a nonsingular, symmetric matrix, P, such that 

P ’P = PP = P 2 = V. Now, let the random vector,/ = P~X e,  with 

E ( f ) = 0. Then E ( f  /  ) = V( f )  , where the expectation is distinct for every term in 

the square n x n matrix /  /  . It follows that V( f )  = E ( f  f  ) = E(P~] s  s  P ~l) , 

since (P ~!) ’ = P ' 1. By rearrangement, this becomes

P~lE(££  )P~] =P~lPPP~lcr2 =Icr2- It also follows that / ~ N ( 0,/c r2) since 

the elements of /  are linear combinations of £ , which is itself assumed to be 

normally distributed.

We now return to the original matrix-format model, Y - X  0+ £, and 

multiply throughout by the matrix P'1 to give P~lY = P~xX p  + P~l £ . OLS theory 

can now be applied, since E(P~l e) = E ( f )  = 0 , and V( f )  = Icr2.

Estimates of the weights required for each valve were acquired by inversion 

of the variance estimates ( s 2, i = 1,2 ...5) for each cardiac output, followed by 

normalisation by the largest inverted variance (Draper & Smith), giving estimated
A

weights, Wi. These weights are entered into the matrix P '7, and OLS applied as 

before. In this case, the matrix of parameter estimators, b = (X  V~l X)~x X  V~x Y  ,
A

and the residuals are given by p~] (Y -  Y) . Even in situations in which
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V( f )  * l a 2, the OLS estimators of /? are unbiased (as are the WLS estimators).

The WLS estimators should, however, be more precise than the OLS estimators.

Weights were calculated for each individual valve, at each cardiac output, for 

each measured hydrodynamic parameter, for both ten and five replications of the 

tests. Weighting derived as described was applied to the data. The analysis was 

repeated giving a weighted least squares regression. In the majority of cases, this 

procedure gave satisfactory behaviour of the normal probability plots and the 

residual vs fitted value plots. In a few cases, a quadratic fit model seemed to give a 

marginally better fit to the data,

/?2 x ,2 + * (

with parameter estimates bo, bj and 62 derived in a similar way to that described 

above in section 3.1.

The quadratic fit was also applied in the cases of leakage flow, energy losses 

during valve closing and energy losses when the valve is closed. A weighted 

quadratic fit was further applied to the datasets using five replications only.

In several cases, large standardised residuals were observed. The data were 

re-examined, but no errors were detected in the data collection. The data were not 

regarded as experimentally unusual and were therefore retained in the statistical 

analysis. Adjusted R values are given as measures of the goodness of fit of the 

regressions. R is defined as the Residual Sum of Squares (RSS) divided by the 

corrected Total Sum of Squares (cTSS), subtracted from 1. The adjusted R is 

defined as

(R S S ) l (n -p )  ,
(cTSS)/(n-l )

( " - ! )
(«-p) , where n is the number of

observations and p is the number of parameters to be estimated.
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Means of regression parameters were compared between the two designs, 

using a t-test (SPSS v9.0 for Windows, SPSS Inc.)

3.3 Regression analysis of valve hydrodynamic parameters

In general, for all measures of hydrodynamic function, there was no apparent 

improvement in the goodness of fit (R ) or precision (standard error) of parameter 

estimation gained from the weighted regression analysis compared with the 

unweighted analysis. This finding is contrary to expectations and may be an artefact 

of the relatively small numbers of valves and replications available for analysis. It 

may be that the sources of variation among the different valves are not identical thus 

influencing the effects of weighting in some individual valves. In addition, the 

estimated standard errors obtained from the ordinary least squares regression will not 

be correct, since the model does not match the true variance function, so this could 

also explain the apparent lack of improvement in precision using the weighted 

analysis.

3.3.1 Mean pressure gradient

The regression data for ten (Table 3.1) and five (Table 3.8) replications of 

each valve test are tabulated in Appendix 1. For design GE (valves designated gl-g6) 

and design LE (designated 11-16), the mean values (standard deviation) for the 

intercepts and gradients of the six regression lines are tabulated below (Table 3.15).
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Table 3.15 Regression parameter estimates for each valve design 

(loge {mpg} regressed on loge (RMS flow}, sample mean (s.d.))

design replicates bo unweighted bi unweighted bo weighted bi weighted

GE 10 -6.33 1.55 -6.42 1.57

(0.25) (0.04) (0.28) (0.05)

5 -6.32 1.55 -6.46 1.58

(0.34) (0.06) (0.28) (0.04)

LE 10 -5.93 1.55 -5.92 1.55

(0.33) (0.04) (0.37) (0.05)

5 -5.85 1.54 -5.90 1.55

(0.28) (0.04) (0.33) (0.04)

There was no significant difference on average, between the gradients of the 

regression lines for the two designs, whether 10 or 5 replications were considered. 

Over ten replications, the difference between the mean unweighted intercepts for the 

two valve designs was significant (p = 0.035). The difference between the mean 

intercepts of the two designs was even more significant after weighting the 

regression fit (p = 0.025).

The differences between the two designs were similar when only five 

replications of the data were considered. The mean unweighted and weighted 

intercept parameters of the regression fit were, again, significantly different between 

the two designs (p = 0.026 and p = 0.011, respectively).

In all cases, the intercept for design GE was significantly lower, on average, 

than for design LE. This implies that design GE has better valve opening
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characteristics than design LE, over the whole range of applied cardiac outputs. A 

lower mean pressure gradient (and hence a lower loge {mean pressure gradient}) 

across the open valve indicates that less force is required to open the valve leaflets 

and/or that the open valve orifice is relatively large.

The regression fit was good, with the adjusted R being greater than 98.6 in 

all cases, regardless of weighting.

3.3.2 Regurgitant flow

The regression data for ten (Table 3.2), and five (Table 3.9) replications of 

each valve test are tabulated in Appendix 1. The mean values (standard deviation) for 

the intercepts and gradients of the six regression lines are tabulated below (Table

3.16).

Table 3.16 Regression parameter estimates for each valve design 

(loge {regurgitant flow} regressed on loge {RMS flow}, sample mean (s.d.))

design replicates bo unweighted b] unweighted bo weighted b] weighted

GE 10 1.16 -0.02 1.19 -0.03

(0.19) (0.02) (0.16) (0.01)

5 1.19 -0.03 1.21 -0.03

(0.21) (0.03) (0.16) (0.02)

LE 10 1.12 -0.02 1.11 -0.03

(0.20) (0.03) (0.25) (0.04)

5 1.16 -0.04 1.11 -0.04

(0.17) (0.03) (0.24) (0.05)
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Several of the bi estimates (the gradients of the regression lines) were not 

significantly different from zero. Otherwise there was a slight trend towards a 

decreasing slope with increasing cardiac output. There was no significant difference 

on average, between the gradients of the regression lines for the two designs. There 

was no significant difference on average between the intercepts for the two designs, 

whether an unweighted or weighted model was used. The increased number of 

replications did not affect the comparison of the two designs.

The regression fit was extremely variable, with the adjusted R ranging from 

-4.2 to 44.6 in the unweighted model, and from -4.3 to 53.2 in the weighted model, 

for 5 replications.

The experimental measurement of flow is less precise than the measurement 

of differential pressure due to the peculiarities of the individual transducer designs. 

The actual regurgitant flow volume is small (generally less than 5ml) and the 

measuring system is not capable of distinguishing small differences in flow volume. 

The measuring difficulties are likely to exceed any real differences between these 

two particular valve designs, given the design similarity and the common leaflet 

material.

3.3.3 Leakage flow

The regression data for ten (Table 3.3) and five (Table 3.10) replications of 

each valve test are tabulated in Appendix 1. The mean values (standard deviation) for 

the intercepts and gradients of the six regression lines are tabulated below (Table

3.17).

Several of the b\ estimates (the gradient of the regression lines) were not 

significantly different from zero. Otherwise there was a slight trend towards a
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decreasing slope with increasing cardiac output. There was no significant difference 

on average, between the gradients of the regression lines for the two designs.

Table 3.17 Regression parameter estimates for each valve design 

(leakage flow regressed on loge (RMS flow}, sample mean (s.d.))

design replicates bo unweighted bi unweighted bo weighted b] weighted

GE 10 4.06 -0.69 3.85 -0.65

(0.71) (0.10) (0.95) (0.15)

5 4.24 -0.73 3.85 -0.66

(0.83) (0.12) (1.34) (0.21)

LE 10 4.84 -0.75 4.84 -0.76

(0.25) (0.04) (0.35) (0.06)

5 4.83 -0.74 4.49 -0.69

(0.43) (0.11) (0.78) (0.14)

There was no significant difference between the intercepts of the two designs, 

whether an unweighted or weighted model was used. The increased number of 

replications did not affect the comparison of the two designs.

The regression fit was extremely variable, with the adjusted R ranging from 

32.8 to 79.5 in the unweighted model, and from 5.9 to 85.5 in the weighted model, 

for 5 replications.

An unweighted quadratic model was applied to these data for both 10 and 5 

replications. The fit, as judged by the adjusted R2, was improved, to range from 47.4 

to 88.9 for the individual regressions with 5 replications. There was little practical
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difference in the conclusions to be drawn from the unweighted quadratic fit and a 

weighted quadratic fit. The weighted fit should provide more precise estimates, but 

any benefit may be concealed here because of the small numbers of valves available 

for testing and the small numbers of replicate analyses made. A difference could be 

detected between the two designs using the quadratic fit. Again, mean parameter 

values (Table 3.18) were compared using a t-test.

The differences between the two designs were significant for each mean 

parameter estimate, bo, bj and b2 , with p = 0.002, p = 0.004, p = 0.004, respectively 

for ten replications. Differences for five replications were not significant.

Table 3.18 Regression parameter estimates for each valve design - quadratic fit 

(leakage flow regressed on loge (RMS flow}, sample mean (s.d.))

design replicates bo

unweighted

bo

weighted

b,

unweighted

bi

weighted

b2

unweighted

b2

weighted

GE 10 22.16

(3.15)

-7.84

(1.29)

0.70

(0.13)

5 24.56

(7.25)

25.75

(7.50)

-8.74

(3.02)

-9.23

(3.10)

0.79

(0.30)

0.83

(0.31)

LE 10 28.96

(1.62)

-10.30

(0.66)

0.94

(0.06)

5 29.94

(2.54)

31.32

(8.02)

-9.02

(3.75)

-11.23

(3.23)

0.98

(0.10)

1.03

(0.32)
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Similar considerations apply to the measurement of leakage flow through the 

closed valve as to regurgitant flow (see section 3.3.2, above). The measurement of 

leakage flow has an added complication, however, in that it is highly dependent on 

the accuracy of cutting the leaflets. It can be seen from the tabulated data above that 

the standard deviations of the mean parameter estimates for design GE are greater 

than those for design LE. Leaflet cutting is a skilled task, originally performed by 

hand, and later with the aid of a manually rotated dermatome blade. This latter 

development has improved the consistency of the cutting process, but there remains 

considerable variability that can be attributed to this process, particularly affecting 

the leakage flow. If, for example, the leaflets are cut a little low, then a flow path 

becomes available when the valve is closed, for backwards flow through the closed 

valve, and leakage flow increases. Minor differences in valve design may also affect 

the ease with which leaflet cutting can be achieved. It is likely that the increased 

variability associated with design GE is associated with the leaflet cutting procedure. 

Commonly, the variation in cutting noticeably affects one leaflet on a valve more 

than the remaining two leaflets. A consequence of this is likely to be a sensitivity of 

the measured leakage flow to the orientation of the valve in the test rig, and this 

sensitivity is likely to be greater for more leaky valves. Therefore, while it is 

apparent that in the current comparison, five replicates are insufficient to provide a 

significant separation of the two designs, it is likely that an improved leaflet cutting 

technique currently in development, would reduce the variance associated with this 

measurement and offer the possibility of separating the designs with fewer 

replications.
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3.3.4 Energy Losses during Forward Flow

The regression data for ten (Table 3.4) and five (Table 3.11) replications of 

each valve test are tabulated in Appendix 1. The mean values (standard deviation) for 

the intercepts and gradients of the six regression lines are tabulated below (Table

3.19).

There was no significant difference on average, between the mean gradients 

of the regression lines of the two designs, whether a weighted or unweighted model 

was applied.

Over ten replications, the difference between the mean unweighted intercepts 

was significant (p = 0.029). There was little practical difference in the conclusions to 

be drawn comparing the unweighted and weighted fits: as before, the weighted fit 

should provide more precise estimates, but any benefit may be concealed here 

because of the small numbers of valves available for testing and the small numbers 

of replicate analyses made. The differences between the two designs were similar 

when only five replications of the data were considered. The intercept estimates of 

the unweighted regression model were, again, significantly different between the two 

designs (p = 0.021).
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Table 3.19 Regression parameter estimates for each valve design 

(loge (energy losses during forward flow} regressed on loge (RMS flow},

sample mean (s.d.))

design replicates bo unweighted bi unweighted bo weighted bi weighted

GE 10 -5.27 1.55 -4.86 1.68

(0.21) (0.03) (0.21) (0.04)

5 -5.28 1.76 -4.92 1.69

(0.30) (0.05) (0.35) (0.06)

LE 10 -4.84 1.55 -4.41 1.68

(0.35) (0.06) (0.36) (0.05)

5 -4.83 1.76 -4.67 1.73

(0.26) (0.04) (0.65) (0.12)

The regression fit was good, with the adjusted R being greater than 98.7 for 

five replications, considering unweighted data. Design GE with significantly lower 

intercept estimates is, again, defined as the better valve design in terms of this 

hydrodynamic function measure.

3.3.5 Energy Losses during Valve Closing

The regression data for ten (Table 3.5) and five (Table 3.12) replications of 

each valve test are tabulated in Appendix 1. The mean values (standard deviation) for 

the intercepts and gradients of the six regression lines are tabulated below (Table

3.20).
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Over ten replications, there were no significant differences on average, 

between the slope or intercept estimates of the two designs. As before, there was no 

difference in outcome using a weighted regression model.

Table 3.20 Regression parameter estimates for each valve design 

(energy losses during valve closing regressed on loge (RMS flow},

sample mean (s.d.))

design replicates bo unweighted bi unweighted bo weighted bi weighted

GE 10 -10.35 9.03 -11.87 9.17

(5.36) (1.45) (12.31) (2.85)

5 -9.32 8.78 -11.46 9.21

(6.57) (1.59) (11.02) (2.36)

LE 10 -9.95 8.53 -10.13 8.46

(4.01) (0.92) (4.11) (1.07)

5 -7.11 8.05 -8.14 8.23

(5.59) (1.23) (6.00) (1.38)

Similar results arose from consideration of five replications of the data. 

Several intercept parameters were themselves not significant, although the adjusted 

R2 was greater than 59.4 for all valves, considering five replications. Considering ten 

replications, however, there appears to be an anomalous dataset (11), which produced 

an individual R of 4.3. Weighting the data did not affect the outcome of the analysis. 

A quadratic fit on ten replications produced an improvement (as expected) in R , but 

did not enable separation between the two designs. Considering five replications, the
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unweighted quadratic fit appeared to separate the two designs on the basis of the 

average values of bo (p = 0.006), and the parameter estimates bj (p = 0.008) and 62 (p 

= 0 .010).

A similar consideration of sources of error applies to the calculation of 

energy losses during valve closing as for regurgitant flow (see 3.3.2 above).

3.3.6 Energy Losses when Valve is Closed

The regression data for ten (Table 3.6) and five (Table 3.13) replications of 

each valve test are tabulated in Appendix 1. The mean values (standard deviation) for 

the intercepts and gradients of the six regression lines are tabulated below (Table

3.21).

Table 3.21 Regression parameter estimates for each valve design 

(energy losses when valve is closed regressed on loge {RMS flow},

sample mean (s.d.))

design replicates bo unweighted bj unweighted bo weighted bj weighted

GE 10 54.62 -8.32 54.04 -8.23

(9.41) (1.41) (11.44) (1.87)

5 56.74 -8.79 51.59 -7.85

(10.33) (1.60) (16.90) (2.71)

LE 10 72.58 -10.83 71.37 -10.62

(8.96) (1.10) (12.85) (1.86)

5 74.37 -11.09 73.61 -11.09

(4.43) (0.75) (10.07) (1.54)
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Over ten replications, there were significant differences between both the 

slopes (p = 0.006) and the intercepts (p = 0.007) of the two designs. As before, there 

was no difference in outcome using a weighted regression model.

Similar results arose from consideration of five replications of the data (p = 

0.003, p = 0.010, respectively for unweighted data). The adjusted R was quite 

variable ranging from as low as 29.3 to 78.9 for unweighted data. A quadratic fit 

produced a small improvement (as expected) in R , and confirmed that there was a 

significant separation, on average, between the two designs. The two regression lines 

are plotted for 5 replications of each design (figure 3.5). It may be clearly seen from 

the plots that design GE has significantly lower energy losses when the valve is 

closed than design LE at all relevant cardiac outputs.

Figure 3.5 Regression lines plotted for energy loss when valve is closed vs loge 

{RMS flow} for design GE (solid line) and design LE (dotted line), 5 replicates

of each valve.
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The energy losses while the valve is closed are subject to similar sources of 

variability as the regurgitant and leakage flows. However, the leakage flow is 

relatively small and moderated somewhat by the more accurate pressure 

measurement in the calculation of the energy losses (even although the valve is 

closed and the pressure averages zero, there is some pressure fluctuation which 

contributes to the calculation). This may explain the improved discrimination 

between the two designs using the closed valve energy losses as compared with the 

leakage flow data.

3.3.7 Effective Orifice Area at Maxima

The regression data for ten (Table 3.7) and five (Table 3.14) replications of 

each valve test are tabulated in Appendix 1. The mean values (standard deviation) for 

the intercepts and gradients of the six regression lines are tabulated below (Table

3.22).

Table 3.22 Regression parameter estimates for each valve design (effective

orifice area at maxima regressed on loge {RMS flow}, sample mean (s.d.))

design replicates bo unweighted b] unweighted bo weighted b] weighted

GE 10 -0.18 0.32 -0.14 0.31

(0.12) (0.03) (0.10) (0.02)

5 -0.19 0.32 -0.15 0.31

(0.16) (0.04) (0.12) (0.02)

LE 10 -0.32 0.30 -0.33 0.30

(0.11) (0.01) (0.11) (0.02)

5 -0.32 0.29 -0.34 0.30

(0.10) (0.02) (0.16) (0.03)
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Over ten replications, there was no significant difference on average, 

between the slopes of the two designs, whether a weighted or unweighted model was 

used. Similar results were obtained using five replications.

Differences between the intercepts of the two designs did not quite reach 

significance using unweighted data (p = 0.051). Using a weighted regression model 

improved the discrimination of the intercepts of the two designs (p = 0.011).

Similar discrimination of the intercepts was achieved considering five 

replications of the data (p = 0.107 for the unweighted model; p = 0.036 for the 

weighted model). The adjusted R was greater than 82.0 in all cases.

The results imply a difference between the two valve designs, with respect to 

the orifice area achieved at maximum pressure and forward flow, with design GE 

having a larger flow orifice than design LE. The larger orifice allows a greater 

volumetric flow through the valve and is preferable to a smaller valve orifice.

3.4 Summary

The two valve designs were analysed using linear regression analysis, applied 

to each valve individually, over 10 or 5 iterations of the test. No significant 

differences were detected between the mean slopes of the regressions, with the 

exception of the hydrodynamic function measure, energy losses when the valve is 

closed. Significant differences between the two designs were detected for mean 

pressure gradient, energy loss during forward flow, energy loss when the valve is 

closed and effective orifice area at both 10 and 5 iterations of the test, for the mean 

intercepts of the regressions. For these hydrodynamic parameters, therefore, and with 

at least 6 valves of each design, it seems that 5 iterations of the test data are 

sufficient. The variability associated with regurgitation and energy loss through the 

closing valve suggests that these may be hydrodynamic parameters of the valve

50



function with very low discriminating power between designs. Leakage through the 

closed valve provided inconsistent discrimination, and was only capable of detecting 

a statistically significant difference between the two designs using a quadratic 

regression model: discrimination here may be improved, however, by improvements 

in the valve manufacturing process to improve consistency in the leaflet trimming 

procedure.

The data examined here were pooled from the iterative tests into individual 

valve regressions. Thus the information about the reproducibility of the testing 

procedure was lost. The data for each regression parameter estimator for each valve 

was pooled to provide a mean value to represent each design. Thus information about 

individual valve variability within each design was lost. The two designs addressed 

here had similar regression slope behaviour, but this is unlikely to be the case for all 

designs studied, so that a further complication of a mixed regression model may be 

encountered where intercept and slope parameters may or may not be similar.

In general, valve design GE has a significantly better hydrodynamic 

performance than valve design LE.
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Chapter 4: Evaluation of the Linear Regression Approach

Linear regression analysis has the value of enabling a specific mathematical 

description of the behaviour of a specific valve or set of valves. Thus any specific 

valve design may be described in terms of its hydrodynamic function by the average 

intercept and slope estimates of the regression line obtained from a specified measure 

of the hydrodynamic function at a series of applied flow rates, across a sample of 

individual valves. It is apparent from the data that there are differences between the 

two valve designs already considered that seem to be greater than differences among 

valves of a single design or among repeated analyses of a single valve. However, 

random regression analysis does not easily allow these differences to be quantified in 

terms of their statistical significance.

The data presented here provide 5 serial outcome measures for each 

hydrodynamic function measure calculated, for each individual valve. The data could 

have been compared at each applied cardiac output, but there are serious problems 

with such an approach (Matthews et al, 1990). In scientific terms, any variation in 

performance between valves over cardiac output is not observed effectively. It is 

fundamental to the evaluation of a valve that its performance over the whole range of 

cardiac outputs of interest can be compared with other valves. In statistical terms, the 

serially collected data will not be independent of each other so that the value at the 

lowest cardiac output influences subsequent measures at higher cardiac outputs. Such 

a statistical evaluation may be performed at any single cardiac output using analysis 

of variance for comparison of multiple valves. This approach would suffice for 

conditions in which the designs being compared were of “different intercept” but 

“same slope”, such as seems to be the case for the first two designs compared for
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most hydrodynamic function measures, in which the leaflet material is the same in 

each valve type, but the engineering design of the valves is slightly different. 

However, it is unsuitable for situations that will arise in which the designs produce 

“different slopes” as well as “different intercepts”. This is likely to be the case when 

comparing, for instance, a mechanical or bioprosthetic valve with the polyurethane 

valves under development (figure 4.1).

Figure 4.1 Comparison of loge{mean pressure gradient} vs Ioge{RMS flow} for a 

for 4 different types of valve: a tilting disk mechanical valve; a bileaflet 

mechanical valve, a GE design valve and an L4 design valve (all valves are 

within the nominal size range 23-5mm)
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In this situation, the relative performance of individual valves varies over the 

range of cardiac outputs. Such a comparison becomes important for validation of the 

design in terms of its performance in competition with existing, commercially 

available valves.
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It is also likely to be the case when materials of higher modulus are used in a 

similar engineering design or for substantially different engineering designs for the 

valve (see figure 4.1, design GE compared with design L4).

In both these cases, the performance of the valve is likely to vary depending 

on the applied flow rate and one valve may perform well at one extreme flow 

condition, but be relatively poor at the other extreme of flow. While it is important 

that the valve will open easily and fully at low flow rates, it is also important that it 

perform well at higher flow rates, when the valve recipient would be more physically 

active, in order to maintain a good quality of life. There may be a trade-off between 

good performance at low flow and the maintenance of performance as demand on the 

heart increases. The analysis of variation approach would require to be applied to 

each flow rate under consideration and viewed as a series of responses, considered as 

a whole. This is a clumsy and inelegant approach, and it is no longer feasible to 

assess the designs in a straightforward, simply defined way. This approach is also 

statistically flawed, as the data are not independent since they derive from the same 

subject. There is a further problem with this approach to the analysis in that the 

applied cardiac output itself does not transfer precisely to flow rate through each 

individual valve. The actual flow through the valve is measured as RMS flow and 

varies according to the properties of an individual valve. The variation in flow for an 

individual valve at any specified cardiac output is relatively small compared with the 

hydrodynamic function measure of interest (e.g. energy loss during forward flow), 

but the differences between applied and measured flow rates indicate that a 

regression approach is preferred whereby the whole range of data available for an 

individual valve is considered to represent the valve performance.
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The data in Chapter 3 have, effectively, been analysed using a two-stage 

process. The first stage calculates an appropriate summary measure of the data (in 

this case, the regression parameter estimates for each individual valve for the 

selected hydrodynamic function measure regressed on the measured loge {RMS 

flow}). The second stage compares the summary measures using simple statistical 

tests (in this case a t-test). This method is recommended to overcome some of the 

problems associated with the first analytical approach described above (Matthews et 

al, 1990), as this approach does utilise the whole range over which the serial 

measurements are collected. However, the situation in the present study raises further 

questions. In this case, the parameter estimates bo and b] tend to be negatively 

correlated. This creates difficulties in comparing valve designs for which the slopes 

of the regressions are significantly different. In this case the model must be extended

to allow statistical inference about (J30l + fiXix) -  (fi0j + PXjx) for some value x, for

any valve types i and j.

The ideal situation would permit the simultaneous assessment of a series of 

valve designs, allowing these to be ranked in terms of their performance, 

highlighting those design combinations which are significant improvements over 

existing valves and other design options. The data available have restrictions 

associated with the difficulty of obtaining large numbers of valves to test and with 

the time required to actually perform the valve hydrodynamic testing. Hence the 

polyurethane valve dataset has repeated values on the valves, limited to five 

iterations for practical reasons. For manufacturing reasons, the numbers of valves 

available for any single design, in any specific size, does not exceed six. 

Consideration of existing commercial valves is even more difficult as often only one
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or two valves may be available due to the high cost of acquiring clinical quality 

valves.

These methods do not allow the straightforward assessment of the variance 

associated with each major source of variability. The variability associated with 

different valves of similar design is “lost” within the overall variance associated with 

the parameter estimates obtained by averaging the data for 6 valves, as is the 

variability associated with replications of each individual valve. In this context, 

variance has a straightforward interpretation in quality assurance terms. Variation 

from test run to test run in the same valve is introduced by the hydrodynamic test rig 

and knowledge of this allows a check on the rig function itself, which shows up as 

variability in test results among valves of the same design. There is significant 

variability in the valve manufacturing process. It is important to be able to describe 

the amount of this variability and, if possible, to achieve measurable improvements 

in the process control.

The data structure, therefore, has a hierarchical nature with test iterations 

nested within individual valves, and individual valves being members of specific 

design configuration groups. This data structure suggests that a multi-level modelling 

approach might provide useful insights, by permitting the simultaneous comparison 

of the regression lines, accounting for both “different intercepts” and “different 

slopes”, as well as the data hierarchy. The ability of the multi-level modelling

A  A

appro92h to use all the information available for a valve (not just ) should 

give more power to detect differences between valve types. A further potential 

advantage of multi-level modelling methods is their ability to handle unbalanced 

datasets. The data available for this study had no missing data. This may not always 

be the case, however, as for designs with extremely good hydrodynamic
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performance, when the material is very flexible and the flow rate is low, it becomes 

very difficult to separate the differential pressure across the valve from zero under 

these conditions and the test software cannot always provide a valid data point. This 

potential missing data problem increases for better valve designs, and complicates 

conventional analytical methods, which depend on the assumption of a balanced 

dataset. Technically, multi-level modelling requires that data be “missing at 

random”, which is not entirely true for these data. However, this is unlikely to 

seriously affect estimation of the parameters, although it may affect their standard 

errors (Omar et al, 1999; Goldstein, 1999; Browne & Draper 2000).
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Chapter 5: A Multi-level Modelling Approach to the Analysis

This chapter describes the principles of multi-level modelling, its applications 

and how it might apply to the present dataset.

5.1 General principles of multi-level modelling

Multi-level modelling was originally developed for the analysis of 

hierarchical data in social sciences, for situations in which data could be grouped into 

categories within which individuals were more similar than between categories, and 

thus data was not entirely independent, as the groupings influenced the behaviour of 

the individuals within the groups.

“Multilevel modelling, also known as hierarchical regression, generalizes 

ordinary regression modelling to distinguish multiple levels o f  information in a 

modeF (Greenland, 2000). This definition summarises the purpose of multilevel 

modelling. The application of such an approach has, in the past, been impractical for 

the ordinary researcher, given the high level of computational skill and power 

required. In recent years, however, new software has become available to tackle the 

problem, making the approach more readily available for general use.

In social sciences these methods have been extensively used for the analysis 

of pupil performance in an educational context (Goldstein, 1999). In such cases, the 

individual pupil may be grouped within a class/teacher and within a school, i.e. pupil 

nested within class/teacher, nested within school. In situations where such groupings 

were ignored, and conventional multiple regression analysis techniques employed, 

“false” significances were attributed to individual pupil performances according to 

teaching styles. Such differences disappeared when the data were re-analysed using 

multilevel techniques, accounting for the group effects within the hierarchy. This
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type of significance finding is a recognised problem of aggregation of data from 

several hierarchical levels, in effect because individuals within a group should 

provide less information to the analysis, because of the within group influences, than 

do completely independent individuals. Thus, the sample size that is utilised for 

significance testing is too high and should more reasonably be that of the higher 

group level rather than the number of individuals, and the resultant standard error 

estimates are too low, producing spurious significances. The statistical power of the 

analysis is reduced (Hox, 1995). Multilevel modelling considers the influences of 

each level of the hierarchy on the performance of the individuals, for instance 

whether the influence of the teacher or the school is greater than individual pupil 

variations over time. Such techniques allow the researcher to obtain statistically 

efficient estimators of regression coefficients, as well as, by considering the grouping 

of the data, allowing the calculation of more accurate standard errors, confidence 

intervals and statistical significance tests. Multilevel modelling also allows the 

relative ranking of members of each level of the group hierarchy in a straightforward 

way (Goldstein, 1999).

5.2 Applications of multilevel modelling

The main area of application has been, as already suggested, in the area of 

social sciences (Hox, 1995; Goldstein, 1999), especially within the analysis of 

educational attainment. Most other published applications involve a philosophically 

similar type of data configuration. There are, currently, no available published 

instances of application of these statistical methods to an engineering problem. 

Greenland (2000) has drawn attention to the fact that multilevel modelling is widely 

used in social sciences, but that it is neither understood well nor generally used in 

health sciences. He makes no reference to its use elsewhere.
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Armstrong et al have applied multilevel modelling methods to the analysis of 

the effects of gender, growth and maturity on peak oxygen uptake (1999) and short­

term power output (2000) of young people. They used the multilevel software 

package, MLwiN, to perform the analysis. The hierarchy was defined as repeated 

measure occasions (level 1) grouped within individual subjects (level 2). Multilevel 

modelling was the preferred method of analysis, given its ability to describe, in 

addition to the mean population response, the variation about the mean at both levels 

of the data hierarchy. Specifically, at level 2, each individual is permitted to have 

his/her own growth rate, varying randomly about the population response, and, at 

level 1, variation in the individual response is observed. A further advantage of this 

method is that a complete dataset is not required, in that the number of observations 

per individual may vary, as well as the longitudinal spacing of the measurements.

The use of multilevel modelling allowed the underlying mean response to be 

described, while, at the same time, demonstrating the considerable variation in 

individual growth rates. Influences of age, gender and maturity on peak oxygen 

uptake were detected by the multilevel modelling approach, which may have been 

masked in previous studies by inappropriate statistical analysis methods or failure to 

consider the influence of all possible covariates.

A second area of research has used multilevel modelling techniques to 

investigate discard rates in commercial fishing and the variables that influence these 

(Tamsett & Janacek, 1999a, Tamsett et al, 1999b). This model was described in two 

ways. The first was a three-level model, with level 1 as discarding rate among trips 

within a level 2 described by a combination of type of fishing gear, port, season and 

area fished, within level 3, the year of study (1999a). The second model allocated 

level 1 as the discarding rate among hauls within level 2 trips, within a combined
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level 3, including vessel, port, fishing gear, season, area and mesh (1999b). The 

analysis was further refined by stratifying the combined levels in each case, as the 

datasets were too small to allow all parameters to be estimated. The stratification was 

also used to suppress bias in the estimates, caused by non-random sampling. This 

research used the software package MLn, an earlier version of MLwiN, referred to 

above. A major disadvantage of this software version was its inability to apply 

weighting to the model. There was variation in both the discard rate and the variance 

of the discard rate with catch size. It was, therefore, desirable to compensate for the 

variation in catch sizes by weighting, in order to suppress bias in the estimates. The 

data analysis in these studies was complicated by large variances and hence poor 

precision of the estimates of discarding. The authors have further work to do to 

determine optimum sampling conditions to improve the quality of the data available 

for this type of analysis: however, multilevel modelling is obviously an appropriate 

methodology to apply to the problem.

The multilevel approach has also been applied in veterinary medicine to 

investigate lamb growth (Lancelot et al, 2000). In this case, the study investigated 

the effects of a worming treatment given to ewes on the growth of young lambs, pre­

weaning. The authors focus on the use of graphical methods to investigate the 

influence of various factors on growth curves of lambs and, hence to support the 

choice of model definition for the multilevel model. The model was defined at three 

levels: level 1, the lowest level, was village; level 2 was herd and level 3 was 

individual lamb. Models were fitted using restricted maximum likelihood, although a 

specific software solution was not specified. The use of the multilevel approach, in 

this case, identified a significant effect related to the worming treatment that had 

been missed by an earlier study using a cross-sectional ANOVA.
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The multilevel modelling approach, using MLn, has been applied to 

demographic research, for example to investigate fertility among women in 

Bangladesh (Abdullah Khan, 1997). This was a three-level model, with mothers at 

level 1, nested within a regional blocking group at level 2, nested within regions at 

level 3. The data were further divided into four cohorts, encompassing two age 

groups and urban or rural living. A series of eight explanatory variables was also 

considered for inclusion in the model. The likelihood ratio statistic was used to 

determine the inclusion or exclusion of variables into the model and variance 

components analysis was used to determine the relative influences of the different 

levels of the model. The study found that almost all the variance was accounted for at 

level 1, the individual mothers. One conclusion, in this situation, was that a single 

level type of analysis was appropriate, although in the rural cohorts there was some 

variance associated with the level 2 blocks, possibly related to the proximity of a 

block to an urban area. Thus, the single level analysis probably would not produce a 

misleading result overall, but without the multilevel modelling the influence of 

location in some situations would have been missed.

Clinical trials of drugs, especially when repeated measures over time are 

investigated, are often situations in which multilevel modelling could usefully be 

applied. One such study compares methods of analysis of repeated measures, 

considering asthma treatments in children (Omar et al, 1999). The data considered 

are a baseline measurement and four post-randomisation measurements for each 

child. Treatments included one of two drugs or a placebo. Baseline covariates of age, 

height and centre were also available. As is common with clinical trial data, the 

amount of missing data increased with time throughout the study. The study 

considered unweighted and weighted summary statistics, repeated measures
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ANOVA, marginal models based on generalized estimating equations and multilevel 

models using MLn software, and focussed on the value of these methods to the 

medical statistician. The advantage of the summary statistic methods, used in 

Chapter 3 and discussed in Chapter 4, are their simplicity, but they have severe 

disadvantages in that conclusions are based on aggregates of all the data available 

from an individual and the extra value possible from the repeated measures cannot be 

exploited, nor can any effect over time be adequately investigated. Repeated 

measures ANOVA is a more complex analysis, but did produce smaller estimates of 

the parameters and their corresponding standard errors. However, the standard errors 

depend on a correct specification of the covariance structure in the model, and 

between- and within- subject variance components are combined. The marginal 

model produced similar results to the repeated measures ANOVA, but with greater 

standard errors and hence, lower statistical significance of treatment effects. This 

method may be particularly susceptible to effects of relatively large amounts of 

missing data, although all methods assume that data is missing at random. The two- 

level multilevel model, here, considers the repeated measure as nested within subject, 

hence directly allows separation of the variance components. The first analysis, with 

time included as a fixed effect, produced larger parameter estimates and standard 

errors than other methods except summary statistics. The multilevel model was then 

extended to include time as a random effect, i.e. varying among individuals. This 

model produced smaller estimates and errors, similar to the repeated measures 

ANOVA. The study also looked closely at the variance components of the multilevel 

model. As would be expected in this type of study, there was a much larger variance 

between individuals than within individuals, indicating that greater precision of the 

dataset would be achieved, not by increasing the numbers of repeated measures, but
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rather by increasing the numbers of individuals assessed. Although the assumption of 

“missing at random” is probably not tenable for this dataset, comparison of the whole 

dataset with the results obtained for only those individuals with compete datasets 

indicated that the missing data did not significantly influence the conclusions drawn.

Bahmaie et al (2000) have assessed the development of foetal lung tissue by 

volumetric measurement, using 3-dimensional ultrasound, serially throughout 

gestation, from 18 weeks to 41 weeks. In this case, multilevel modelling was used to 

account for correlation between multiple sequential observations on single subjects. 

The paper focuses mainly on the value of the foetal development information rather 

than the usefulness of the multilevel modelling to the specific problems of the 

application.

It is apparent from the literature that multilevel modelling is not only 

appropriate, but also extremely useful in situations where the data structure is 

hierarchical. The technique has largely been applied to large datasets with complex 

explanatory variable effects. The present application is much simpler, conceptually, 

but, nonetheless, does have a hierarchical structure appropriate to multilevel 

modelling methods. The potential advantage of these methods for the analysis of 

valve performance is the possibility of directly assessing the variance components at 

each level of the hierarchy. This would allow the possibility of assessing the 

variability of the test method, the variability of the valve manufacturing process, as 

well as the mean differences among valve types. In the future, it should also be 

possible to investigate covariate influences such as Young’s modulus of the material 

or leaflet thickness effects. In the present study, there were insufficient numbers of 

different valve types and manufacturing limitations, which prevented consideration 

of these effects. All these levels of variance are important in terms of the valve
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assessment process. Quality control limits may be addressed for valve testing and for 

valve manufacture, allowing precise setting of rejection criteria. The relative 

performance of a variety of valve designs may also be directly assessed over the 

whole range of physiological flow rates. The dataset for valves is much smaller than 

other data types addressed in the literature, but has the advantage of relative 

simplicity and a lesser degree of individual variation, which will compensate to some 

degree for the lesser amount of data. It is likely, however, that the small amounts of 

data will reduce the power of the analysis to detect differences and adversely affect 

the precision of variance estimates.

5.3 Multilevel regression modelling

The multilevel regression model is also known as the “random coefficient 

model”, the “variance component model” and the “hierarchical linear model”. The 

model assumes a hierarchical structure to the data with a dependent variable 

measured at the lowest level of the hierarchy, with explanatory variables, as required, 

defining the various levels of the hierarchy. Published explanations of the model 

define the terms as used in social sciences. The model will be explained here with 

reference to the current problem, using one example typical of the current study, 

although other models will be fitted (see Chapter 6). Theoretical background was 

obtained from Hox (1995) and Goldstein (1999). Specific descriptions of procedures 

applicable to MLwiN, the multi-level modelling software available to the project, 

were obtained from Rasbash et al (2000). The simplest multilevel model contains 

two levels, with level 1 nested within level 2. In the present study level 1 refers to the 

test run replicates and level 2 to the individual valves of one particular design. We 

have an appropriate dependent variable ‘Y’, e.g. loge {mean pressure gradient}, and 

the “explanatory” variable X, loge {RMS flow}. This allows us to describe a
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regression equation, similar to the simple linear regression situation o f Chapter 3:

Yi= P * j+ fr jX t +e() {5-1}

In this case, the subscript, j, applies to the level 2 valves (j = 1__6) and the

subscript, i to the level 1 replicates (i = 1... .5). fioj is the intercept term, fiij is the 

gradient of the regression line and Sy is the residual error term. The additional 

subscript, j, introduces the assumption that each level 2 valve has a different intercept 

and slope coefficient. Similarly to the simple regression situation, £j, the random 

error terms, are assumed to ~N(0, cre ).

To formulate a true two-level model from the model described above, the 

coefficient terms must be transformed into random variables, i.e. the coefficients for 

the population of all valves of a particular design have a distribution with associated

thmean and variance. Thus, for the j valve in the sample,

A j = A + uo j, P\ j = P \ + u\ j

in which uoj and w/, are random variables (residual error terms), with distributions 

~N(0, (7 uq2) and ~JV(0, <j u j 2 ) ,  respectively, and covariance, cov (%, ujj) = <j u o i - These 

error terms are assumed to be independent of the errors at level 1, Sy.

We can rewrite equation {5.1} as

Yt=Pi> +Pix ij+ (u0j + uijx ij + s ij)> var(£ij) = {5.2}

Thus we have expressed our response variable as the sum of a set of fixed (fio +

PiXy), and a set of random (uqj + ujjXy + sy) terms in the equation. In this two-level 

model, we require to estimate two fixed {fio, fii) and four random parameters {<j uo , 

cru]2, Choi and cre2). The equations {5.1} and {5.2} allow for both different intercepts
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and different slopes at level 2. In the situation where the assumption of equal slopes 

holds, the slope parameter is common to all valves of this particular design and the 

equation simplifies to

Yij =  A + A ^ / / + (“oy+*//)> var(£„) = cr; {5.3}

Here, only two random parameters require estimation, < ju o  and oe , in addition to the 

fixed parameters.

The set of covariance matrices for all levels of the analysis is defined as Q =

{Qi5 Q2,  }. For the example in which both intercepts and slopes are random, and a

level 2 unit has two level 1 units, the matrix Q2 is the covariance matrix of the 

random intercept and slope at level 2. The matrix Qj is the covariance matrix for the 

set of level error terms, which has, here, a single variance term.

The covariance matrix
A B
B C

for the random vector (Yjj, Y2J) is defined,

where

4  = k .  + 2cr»0i X1J + ffl\ xh + }

B  =  k o  +  (*1 J  +  X 2 J  ) +  v t l h S l j  }

C  =  k o  +  2cr»0lX2j + <*l\x l j  + v ]  }

giving
(A B' . f n .

= x , n 2x  + i , and
,B c ,

J 1  J



The multilevel software available for the current study was MLwiN version 1.10, 

which uses the Iterative Generalized Least Squares (IGLS) method as the default 

method for analysing data. The mathematical descriptions above, under this 

methodology, may be generalized as described below.

We begin by considering the model described in equation {5.3} above, the 

simple two-level, common slopes model. MLwiN attaches an xo term to the Po 

intercept parameter in the model, which is defined as a constant vector term (a 

column of ‘l ’s), which, in this software package, explicitly models the intercept. 

From knowledge of the values of the variances, the variance-covariance matrix at 

level 2, Q2, can be constructed. The normal Generalized Least Squares estimation 

procedure can then be applied to calculate the fixed coefficient estimator

p  = ( x TSi-'x)~' X tQ -'Y  , {5.4}

where

1 * 1 1 > n '

1 * 2 1 T 21

: : 7  =  < :

1 x i j  , y u .

with J  level 2 units and /  level 1 units in the j-th level 2 unit. This procedure gives 

maximum likelihood estimates provided the residuals are Normally distributed. The 

estimation procedure is an iterative one, beginning from ‘reasonable’ estimates of the 

fixed parameters, generated from an ordinary least squares fit to the data (i.e. the fit 

obtained if the intercepts were common, as well as the slopes), giving the estimator
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of the fixed coefficient, p  . The “raw” residuals are then calculated as

A  ( 0 )  A  ( ° )

- P \  v

Written as vector notation, the vector of raw residuals is: Y  = l y {j J . Q2 is the

 T

expected value of the cross-product matrix, Y Y and the relationship between the 

vector transformations of these matrices may be expressed as a linear model:

_ 2 

Yu

y  21 Tn

„ 2 

y  22

<72«0+°e
i/O

2 2 
^uO+^e

+ R = <j»o > + er‘ + R , {5.5}

where R is a residual vector. The estimation of the coefficients, cr20 and cr2, uses an 

application of Generalized Least Squares, assuming Normality and using the

(  t \

estimated covariance matrix of the vector Y Y  
v J

, i.e. 2(q 2 1 ® Q 2 !), where (8) is

the Kronecker product. Once these estimates are calculated, the estimation oscillates 

between the fixed parameter estimation of equation {5.4} and the random estimation 

of equation {5.5} until the iterations converge.

The multilevel model produces several residuals at all the different levels of

A

the model. If yy is the observed value for the z'th valve in they'th design, and y  is the 

predicted value from the average regression line, then the raw residual for that

individual is r\) =y\]- y v . The raw residual for the yth design is the mean of these

69



residuals over all Nj valves in the design group (r+j). The predicted level 2 residual 

for this design is found by the following equation

“ 0J = {o-„20 /(<t20 + a I  / N j )}r+y

The factor multiplying r+J- is always less than or equal to 1, hence the 

estimated residual is smaller than the raw residual (sometimes termed a “shrunken”

residual). The degree of shrinkage will be greater when Nj is small or the larger <re2 is

compared with cr20. This situation would hold when we have comparatively little 

information about the designs, i.e. when the number of valves of each design is small 

or the valves within each design are very variable. The level 1 residuals may be

A

calculated from the u 0J , by the equation

A  A

ey =r0 Uoj

The residual estimates are not unconditionally unbiased, but they are 

consistent. The level 2 residuals may be interpreted as random variables with a 

distribution whose parameter values inform us about the variation among level 2 

groups. They may also provide efficient estimates for the fixed coefficients, and 

individual estimates for each level 2 group, assuming they belong to a population and 

predicting their values. The residuals can also be used to check the model 

assumptions, specifically the assumptions of Normality and constant variance. 

Diagnostic residuals are generally standardised by dividing them by the appropriate
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standard errors, because of the dependence of their values on the values of the fixed 

coefficients.

5.4 Use of Residuals

Apart from their use in diagnostic procedures, residuals at different levels can 

be used to plot the differences of each individual from the overall mean. For 

instance, at level 2 for this project, the valves, the residuals with their 95% 

confidence limits can be calculated for each of the intercept and slope fixed 

parameters of the model. These can then be plotted to demonstrate the departure of 

each valve from the common slope mean or the common intercept mean (zero lines 

plotted on the appropriate residual plots). The calculated data can also be fitted into 

an equation specific to each design, giving a mathematical description of the fixed 

parameters for each design. This process may be repeated for each design group to 

define the fixed parameter equations for each valve within each design, and, if 

desired, for each repetition within each valve. The deviation of the residual from the 

common mean is indicative of the significance of its difference from other group 

members and from the common mean. If the individual residual with its 95% 

confidence interval does not overlap the common mean, then that individual has a 

slope and/or an intercept that is significantly different from the common mean. 

Similarly, if an individual residual with its 95% confidence interval does not overlap 

the 95% confidence interval of the slope and/or intercept of another individual, then 

the two are significantly different from each other. For testing the overlap of any 

individual with the zero line, the 95% confidence intervals are calculated using the 

conventional 1.96 standard deviations. For comparisons between pairs of individuals 

at a specified level (e.g. valve designs at level 3), the 95% confidence intervals are
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calculated using 1.4 standard deviations (Goldstein & Healy, 1995). This type of 

analysis is not of particular interest in the present study, where our main interest is 

the separation of different valve designs.

5.5 Summary

The data to be analysed in the current study are ordered in a hierarchical way. 

Simple linear regression analysis is insufficient to provide a comprehensive view of 

the overall performance of valves at different levels of interest. Multi-level 

modelling offers the possibility of analysing valve performance comparing several 

fixed design groups, with a structural analysis which can include analysis of the 

variability associated with individual valves within a design, as well as the variability 

of the test procedure itself by analysis of the replications of individual valves.
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Chapter 6: Multi-level Modelling of Hydrodynamic Function Data

This chapter first examines the multi-level model applied to a single valve 

design, design LE. In this instance the individual valve is allocated to level 2, with 

the replications of each valve at level 1. The second stage examines the two designs 

of chapter 3, design GE and design LE. Finally, the complete set of five valve 

designs, GE, LE, LL, L4 and L5, is examined. For multiple valve comparisons the 

“baseline” design (reference category) is taken as design GE, since it is 

experimentally regarded as the “best” design.

The assessment of the significance of parameters in the model may be made 

in two ways. Each analysis of a model produces a value for -2(loglikelihood) by an 

iterative generalised least squares (IGLS) procedure. Provided one model is nested 

within the other to be compared, then the difference between the two values of 

-2(loglikelihood), known as the deviance statistic, can be compared to a x2 

distribution with degrees of freedom determined by the difference between the 

numbers of parameters in the two models. Fitting greater numbers of parameters to a 

model decreases the numerical value of -2(loglikelihood). In a few cases, the final 

selection was among models, which were not nested. In these situations, the final 

model was selected on the basis of the Akaike Information Criterion, I + 2p, where p 

is the number of parameters in the specified model and / is the -2(loglikelihood), as 

recommended in the MLwiN software documentation. This index does not depend 

on the models being nested, one within another. The lowest value is likely to be the 

“best” model. Significance testing may also be performed using large sample Wald 

tests: however, as will be discussed further in Chapter 7, these are less reliable in the 

current context. Essentially, for datasets with small numbers, deviance testing is
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more reliable for testing the significance of parameters in the model than Wald tests. 

In the case of mean pressure gradient for which there is some deviation from the 

assumption of normality, the reliability of the Wald test is likely to be further 

compromised.

6.1 Valve design LE

This design has leaflets made of the polyurethane material, Estane. Six valves 

were examined, with five replications of each valve test, giving a total of 150 data 

points for analysis. The simplest model considered is of the form described in 

Chapter 5, equation {5.3},

where Xo is a constant, equal to 1, fio (the intercept) is allowed to vary with valve (/) 

and replicate (/'), and Pi models a common slope throughout, fioy is divided into fixed 

and random parts. The fixed term is Po and the random parts are uoiVaive and 

£o, replication, valve, being the measures of the variability associated with the intercepts of 

the individual valves at level 2 (uo,j) and the replications at level 1 given the 

individual valve (£o ij), respectively. In this case, uo, valve ~V(0, Q„): Qu being the 

variance associated with the intercept due to differences among the six valves tested, 

(Tuo . Similarly, So, replication, valve ~N{0, Qe): Q£ being the variance associated with the 

intercept due to differences among the replicates of a given valve, cr^2. This notation 

is idiosyncratic of the software modelling definitions. The error term associated with 

random variation of the slope parameter at level 1 is undefined in this analysis and 

contained within the term, cjso • The expectation of common slopes among the six 

valves was confirmed by repeating the analysis with pjj replacing p j , to allow for 

random variation in the slope among the six valves. In this case, the 

variance/covariance matrix associated with the valve variability is designated as
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^0,valve ~N(0,Q„):n„ =

1
r

bi

_ U \,valve _ ( J u l_

In the analysis of two measures, loge{mean pressure gradient} and 

loge{regurgitation}, the final model did indeed require to allow for different slopes at 

level 2, valve, in this way. Table 6.1 details the parameter estimates calculated using 

such a multi-level regression model applied to the single valve design, LE.

Table 6.1 Valve Design LE, Parameter Estimates (e.s.e.)

Hydrodynamic

Function

Measure

Fixed

parameter

estimate

(intercept)

Po

Fixed

parameter

estimate

(slope)

Pi

Random

parameter

estimate

(valve)
_  2 &u0

Random

parameter

estimate

(valve)
_  2 Oul

Random

parameter

estimate

(valve)

o-uoi

Random

parameter

estimate

(replicate)
_  2 0£0

loge {mean 

pressure 

gradient}

-6.218

(0.127)

1.541

(0.018)

0.080

(0.056)

0.001

(0.001)

-0.010

(0.008)

0.003

(0.000)

loge

{regurgitation}

1.185

(0.148)

-0.042

(0.027)

0.093

(0.076)

0.003

(0.002)

-0.016

(0.014)

0.007

(0.001)

leakage 6.886

(0.453)

-0.906

(0.079)

0.167

(0.101)

0.207

(0.024)

loge {energy 

loss forward 

flow}

-5.033

(0.089)

1.760

(0.014)

0.012

(0.007)

0.007

(0.001)

energy loss 

closing

-22.913

(4.806)

9.570

(0.887)

4.300

(3.088)

26.103

(3.076)

energy loss 

closed

107.350

(6.500)

-13.194

(1.136)

33.576

(20.373)

42.755

(5.039)

maximum 

orifice area

-0.529

(0.056)

0.381

(0.009)

0.005

(0.003)

0.003

(0.000)

6.1.1 loge{mean pressure gradient}

In the case of mean pressure gradient, the common slopes model produces a 

-2(loglikelihood) of -392.903 and the different slopes model -401.520, a deviance
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statistic of 8.617 at 2 d.f. This value is significant (p = 0.013). Therefore, the final 

model allows for different slopes among the individual valves. The slope and 

intercept parameter estimates are similar to those arising from the simple linear 

regression model (Chapter 3, Table 3.15). The residual plots indicate some deviation 

from normality, similar to that found in Chapter 3 and suggestive of under-dispersion 

of the data (figure 6.1, standardised level 1 residuals vs normal scores), although, 

similarly to the findings of Chapter 3, the distribution of residuals is symmetric. The 

amount of data available at level 2 was insufficient to generate informative residual 

plots.

Figure 6.1 Normal Probability Plot of standardised level 1 residuals 

for loge {mean pressure gradient)

S.1-r

00

nscore

As noted for the simple linear regression in Chapter 3, there is a small amount 

of heteroscedasticity, particularly associated with the lowest flow rate, an applied 

cardiac output of 3.61.min‘1, demonstrated in figure 6.2, below.
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Figure 6.2 Plot of Standardised level 1 Residuals vs Predicted Values 

for loge {mean pressure gradient}

0.30-r

0.15-

-0.15'

-0.23-
0.9 2.7 3.3

pred. val.

There is a positive association between mean pressure gradient and flow rate 

through the valve, i.e. as the flow rate increases, the mean pressure gradient across 

the valve rises. The greatest variance is associated with the intercept parameter 

estimate at level 2, the valve-to-valve variability. The random error due to replication 

is very small.

6.1.2 loge{regurgitation}

The slope and intercept parameter estimates are, again, similar to those 

arising from the simple linear regression model. There is a small negative slope for 

the relationship between flow rate and regurgitation, i.e. as flow rate increases, there 

is less regurgitation (reverse flow) through the closing valve. The common slopes 

model was tested similarly to 6.1.1 above. The deviance statistic for comparison of 

the two models was 6.144, again at 2 d.f., p = 0.046, also significant. Both fixed 

parameter estimates were significant. Again greater variance was associated with the 

intercept parameter at level 2 than with the slope parameter or with the random error

77



at level 1, replicate. The data conformed well to normality in this case, and variance 

was approximately constant.

6.1.3 leakage

The slope and intercept parameter estimates are, again, similar to those 

arising from the simple linear regression model. The data conform to the assumption 

of normality and variance was approximately constant. Here, as flow rate increases, 

leakage through the closed valve decreases, so that the valve closes more effectively 

at high flow rates than at low flow rates. In clinical terms, this means that there is 

more efficient pumping of oxygenated blood through the heart to the general 

circulation with smaller losses arising from reverse flow, due to inefficiency of the 

valve. The simpler model with common slopes was tested in the way described in

6.1.1 above. The deviance statistic for comparison of the two models was 0.419, 

again at 2 d.f., not significant. Both fixed parameter estimates were significant. There 

was greater variance associated with the random error at level 1, replicate than with 

the level 2 random error (valve). Leakage is particularly affected by variation in 

leaflet trimming. If one leaflet is cut slightly low, not only can this increase the 

leakage through a closed valve, but it may also affect repeat testing of the valve as 

the leakage measurement might be sensitive to orientation in the tester. This may 

explain some of the relatively high variance associated with the replicate tests 

compared with the valve-to-valve variability.

6.1.4 loge{energy loss in forward flow}

The slope and intercept parameter estimates are, again, similar to those 

arising from the simple linear regression model. The assumption of normality is 

valid, but the variance structure is similar to that for mean pressure gradient with 

slightly higher variance at the lowest flow rate. The energy losses in forward flow
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parallel the behaviour of the mean pressure gradient: as flow rates increases, the 

energy losses rise. A lower rate of rise is preferable to a high rate of rise. The model 

with common slopes was tested as described in 6.1.1 above. The deviance statistic 

for comparison of the two models was 1.109, at 2 d.f., not significant. Both fixed 

parameter estimates were significant. Level 2 variance (between valves) is greater 

than level 1 variance (between replicates), as would be expected.

6.1.5 energy loss closing

The slope and intercept parameter estimates are, again, similar to those 

arising from the simple linear regression model, although there is a larger difference 

in the estimate of the intercept here than for other parameters. The assumptions of 

normality and equal variance appear to be valid. Closing energy losses increase as 

flow rate increases in contrast to the behaviour of regurgitation. The model of 

common slopes was tested in the way described in 6.1.1 above. The deviance statistic 

for comparison of the two models was 1.176, at 2 d.f., not significant. Both fixed 

parameter estimates were significant. There is a greater variance associated with the 

replicate (level 1) compared with the valve (level 2). This may result from similar 

causes to the same observation for leakage, given that energy losses here are a 

composite measure derived from both pressure and flow measures, and that flow is 

measured with less precision than pressure.

6.1.6 energy loss closed

The slope and intercept parameter estimates are, again, similar to those 

arising from the simple linear regression model, though, similarly to the closing 

energy loss (6.1.5) there is a larger difference in the estimate of the intercept here 

than for other parameters. The assumptions of normality and equal variance appear to 

be valid. Closed energy losses parallel the behaviour of leakage flow through the
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closed valve: energy loss decreases as flow rate increases. The model of common 

slopes was tested as described in 6.1.1 above. The matrix, Qu, resulting from the 

different slopes model, contained only zero terms. The -2(loglikelihood) value was 

anomalous, being greater in value than the reduced model it was compared with. This 

may be an effect of the zero variances apparently associated with the random 

parameters under investigation and suggests over-parameterisation of the model. The 

final model was selected on the basis of the Akaike Information Criterion, I + 2p, 

where p is the number of parameters in the specified model and I is the 

-2(loglikelihood). This index does not depend on the models being nested, one within 

another. The lowest value is likely to be the “best” model and confirmed the 

“common slopes” model. Both fixed parameter estimates were significant. Again, 

replicate level variance was greater than for valve level variance, similar to the 

situation for leakage.

6.1.7 effective orifice area at maxima

The slope and intercept parameter estimates are, again, similar to those 

arising from the simple linear regression model. The assumption of equal variances 

seemed valid. The normal probability curve deviated slightly, similar to, though less 

than, that for mean pressure gradient. The valve orifice area increases with flow rate, 

effectively enabling a greater flow volume through the heart as demand for 

oxygenated blood increases. The model of common slopes was tested as described in

6.1.1 above. The matrix, Q„, resulting from the different slopes model, contained 

only zero terms, with a similar anomaly to that found in analysing the two models for 

closed energy loss (6.1.6). Again, the Akaike Information Criterion was used to 

select the final “common slopes” model. Both fixed parameter estimates were
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significant. In this case, the valve-to-valve variability associated with the intercept 

parameter was, as expected, greater than the replicate variability.

6.1.8 Summary of multi-level modelling for design LE alone

The multi-level model for this valve design produced results consistent with 

the random regression model of Chapter 3. There was no significant variation in 

slope associated with either valve at level 2 or replicate at level 1, except for the 

slope random variation with valve detected for the measures, mean pressure gradient 

and regurgitation. In general, there was a small, but significant variation in intercept 

associated with valve at level 2, greater in magnitude than the variability associated 

with the replicates at level 1, as would be expected for mean pressure gradient, 

regurgitation, energy losses during forward flow and maximum orifice area. These 

include all the more precisely measured terms, based on differential pressure 

measurement, with the exception of regurgitation. Those measures which have 

greater variation in the intercept related to replicate variability are, in general, those 

in which repeat testing may be influenced by the orientation of the valve in the tester, 

this increasing the range of the measured data. In the cases of mean pressure gradient 

and regurgitation, the variability associated with the slope at level 2 is lower than that 

associated with the intercept. The data suggest that the analysis might be improved 

by the inclusion of a greater number of valves at level 2.

6.2 Multi-level model with two valve designs, LE and GE

The designs to be compared are the same designs (and data) used to apply the 

random regression model of Chapter 3. Both designs have leaflets made of the 

polyurethane material, Estane. The engineering designs are similar but there are 

minor differences in the leaflet geometries and in the resting orientation of the
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leaflets. The model is similar to that of section 6.1, with valve at level 2 and replicate 

at level 1. In this case, however, design must be entered into the model. There were 

six valves representing each design, and 5 replicates of each valve test, providing a 

total of 300 data points for analysis. There is no inherent variability in design as a 

variable: it is a fixed factor describing a valve. Therefore design is entered as an 

additional fixed parameter into the model. In this case, for design 1, E(Y\x) = Poi+

Piix and, for design 2, E(Y\x) = P02 + P12X, in a random regression model, with slope 

and intercept parameters in the same notation as described in Chapter 3, the second 

subscript designating design 1 or 2, as appropriate. Now, we introduce a dummy 

variable, 8 2 , where 8 2  = 1, if design =2 and 0 if design = 1. Combining these, we 

revise the model to

E(Y\x) = P01 + (P02 - Poi) 8 2  + Pnx + (P12-P1O82X {6.1}

where the constant (intercept) parameter of design 1 is represented by poi, the slope 

parameter of design 1 is represented by /?/;, the difference in intercept between 

designs 1 and 2 by (P02 - Poi), and the difference in slope between design 1 and 2 by 

(pi2~pn)' The common slopes model is similarly derived as

E(Y\x) = poi + (P02 - Poi) 8 2  + Pix.

This structure is easily set up in MLwiN. The model specifies the same 

variances for both designs. Valve design GE was designated as design 1, with valve 

design LE as design 2, referring to the model above. Both random slopes and 

common slopes models were investigated. Using the deviance statistic to test among 

models, no slope difference for any hydrodynamic function measure was statistically 

significant. Therefore, the final model applied was that of same slopes for both 

designs.
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6.2.1 loge{mean pressure gradient}

Table 6.2.1 Parameter estimates for loge{mean pressure gradient}

regression parameter estimate standard error of estimate

Poi intercept of design GE -6.659 0.060

(P 0 2  -  P o i )  increment on 

intercept for design LE

0.408 0.063

Pj common slope 1.547 0.008

(juoz variance of intercept 

due to valve variability

0.012 0.005

a  go variance of intercept 

due to replicate variability, 

given valve

0.004 0.000

The two designs have a common slope parameter estimate that is estimated to 

lie in the range 1.547 ±0.015 (95% C.I.). The intercept parameter estimate for 

design GE is -6.659 ±0.118 (95% C.I.). Considering the increments associated with 

design LE, the intercept parameter estimate for design LE is -6.251 ±0.124 (95% 

C.I.). The parameter estimates for design LE are in close agreement with those 

derived from analysis of design LE alone (Table 6.1). The variance parameter 

estimates associated with the intercepts of different valves and different replicates of 

a valve are both significant in this analysis, using the Wald test, in contrast to the 

findings for analysis of the single design, although the absolute values of the 

estimates obtained from the two models are similar. The estimation of the variances 

has become more precise, probably due to the larger number of valves available at 

level 2.

The difference in intercept parameters, together with the common slope, 

indicates that design GE has a significantly lower mean pressure gradient than design

83



LE, consistently over all tested cardiac outputs applied (Wald tests of fixed 

parameter estimates, % =41.436, ld.f.). A 95% C.I. for the mean difference, at any 

given flow rate, is 0.284 to 0.532. This property of design GE would be regarded as 

better from the clinical point-of-view, as it is an indicator of easier valve opening.

6.2.2 loge {regurgitation}

Table 6.2.2 Parameter estimates for Ioge{regurgitation}

regression parameter estimate standard error of estimate

p o i  intercept of design GE 1.269 0.066

(P 0 2  -  P o i )  increment on 

intercept for design LE

-0.069 0.045

P i  common slope -0.045 0.011

G u o variance of intercept 

due to valve variability

0.006 0.003

c r ^ f  variance of intercept 

due to replicate variability, 

given valve

0.008 0.001

The two designs have a common slope parameter, which is estimated to lie in 

the range -0.045 ± 0.021 (95% C.I.). The intercept parameter estimate for design GE 

is 1.269 ±0.130 (95% C.I.). Considering the increments associated with design LE, 

the intercept parameter estimate for design LE is 1.200 ± 0.089 (95% C.I.). The 

figures for design LE are in close agreement with the parameter estimates derived 

from analysis of design LE alone (section 6.1). Although there was no significant 

improvement in the fit of the model by allowing random variation of the slope 

parameter at level 2 (common to both designs), the variance estimates seemed more 

consistent with expectations. In contrast with the reduced model (Table 6.2.2) in 

which valve-to-valve variation on the intercept parameter estimate is less than the

84



equivalent replicate level variation, the level 2 (valve) variance on the intercept 

parameter estimate is increased to 0.063 (0.041) similar to that for the single valve 

analysis of section 6.1. Allowing for different slopes as described may allow an 

increase in the precision of measurement of the variances and, although the models 

are not significantly different, might suggest that the preferred model should be that 

allowing for different slopes among the valves. There is little difference in the fixed 

parameter estimates between the two models.

Design LE has lower mean regurgitation than design GE, at any given flow 

rate, although the difference is not significant using the Wald test (x2 = 2.327, ld.f.). 

As noted before, regurgitation decreases as applied cardiac output, and flow rate, 

increases. Less regurgitation implies higher efficiency of valve operation, given that 

a lesser volume of oxygenated blood is lost to the circulation in reverse flow during 

valve closing. However, ease of valve opening is a higher priority for consideration 

than regurgitation for clinical purposes.

6.2.3 leakage

Table 6.2.3 Parameter estimates for leakage

regression parameter estimate standard error of estimate

intercept of design GE 6.213 0.323

(P 0 2  -  P o i )  increment on 

intercept for design LE

0.617 0.207

Pj common slope -0.895 0.054

a u ol  variance of intercept 

due to valve variability

0.121 0.052

<Jeo2 variance of intercept 

due to replicate variability, 

given valve

0.195 0.016
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The two designs have a common slope, which is estimated to lie in the range 

-0.895 ±0.106 (95% C.I.). The intercept parameter estimate for design GE is 6.213 

± 0.632 (95% C.I.). Considering the increments associated with design LE, the 

intercept parameter estimate for design LE is 6.830 ± 0.406 (95% C.I.). The figures 

for the intercept parameter estimate of design LE are in close agreement with the 

estimates derived from the single design multi-level model of section 6.1. The 

variance parameter estimates associated with the intercepts of different valves and 

different replicates of a valve are, again, both significant in this analysis, using the 

Wald test, in contrast to the findings for analysis of the single design. The estimation 

of the variances seems to have become more precise, probably due to the larger 

number of valves available at level 2.

The mean leakage in design LE is significantly higher than in design GE, 

likely to lie in the range 0.211 to 1.023 (95% C.I.), with the difference, again, being 

maintained across all applied cardiac outputs (x = 8.889, ld.fi). Low leakage is an 

important aim in valve design as this restricts the amount of oxygenated blood lost to 

the circulation when the valve is closed.
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6.2.4 Ioge{energy loss in forward flow}

Table 6.2.4 Parameter estimates for loge(energy loss in forward flow}

regression parameter estimate standard error of estimate

P o i  intercept of design GE -5.424 0.069

( P 0 2 - P o i )  increment on 

intercept for design LE

0.419 0.064

p i  common slope 1.755 0.010

<7uol  variance of intercept 

due to valve variability

0.012 0.005

O fti variance of intercept 

due to replicate variability, 

given valve

0.007 0.001

The two designs have a common slope parameter estimate, which is 

estimated to lie in the range 1.755 ±0.019 (95% C.I.). The intercept parameter 

estimate for design GE is -5.424 ±0.136 (95% C.I.). Considering the increments 

associated with design LE, the intercept parameter estimate for design LE is -5.005 ± 

0.125 (95% C.I.). The figures for design LE are in close agreement with the 

parameter estimates derived from analysis of design LE alone (section 6.1). The 

variance parameter estimates associated with the intercepts of different valves and 

different replicates of a valve are both significant in this analysis, using the Wald 

tests, in contrast to the findings for analysis of the single design, although of similar 

numerical value. The estimation of the variances seems to have become more 

precise, probably due to the larger number of valves available at level 2.

Design GE has significantly lower mean opening energy losses than design 

LE, at any given flow rate (% = 42.940, ld.f.), which is likely to lie in the range 

0.294 to 0.544 (95% C.I.). The opening energy losses increase with applied cardiac
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output. From a clinical point of view, lower energy losses mean that the heart has 

less work to do in pumping blood, and the heart is able to work more efficiently. 

Reference to the % values suggests a similar sensitivity of mean pressure gradient 

and opening energy losses in detecting differences between the two designs.

6.2.5 energy loss closing

Table 6.2.5 Parameter estimates for closing energy loss

regression parameter estimate standard error of estimate

P o i  intercept of design GE -23.414 3.399

(P 0 2  -  P o i )  increment on 

intercept for design LE

-1.525 1.255

pi common slope 9.952 0.617

(jUQ variance of intercept 

due to valve variability

3.707 1.930

cTeo1 variance of intercept 

due to replicate variability, 

given valve

25.415 2.118

The two designs have a common slope parameter, which is estimated to lie in 

the range 9.952 ± 1.209 (95% C.I.). The intercept parameter estimate for design GE 

is -23.414 ± 6.661 (95% C.I.). Considering the increments associated with design 

LE, the intercept parameter estimate for design LE is -24.939 ± 2.459 (95% C.I.). 

The figures for design LE are in close agreement with the parameter estimates 

derived from analysis of design LE alone (section 6.1). The variance parameter 

estimates associated with the intercepts of different valves are not significant, using 

the Wald test, (p = 0.055) in this analysis similarly to the findings for analysis of the 

single design, although the standard errors associated with the parameter estimates 

are smaller than for the single design analysis.
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The difference in closing energy loss between the two designs is not 

significant (% 2 = 1.477, 1 d.f). Although the behaviour of this measure of 

hydrodynamic function tends to parallel regurgitation, it does increase with applied 

cardiac output unlike regurgitation.

6.2.6 energy loss closed

Table 6.2.6 Parameter estimates for closed energy loss

regression parameter estimate standard error of estimate

P o i  intercept of design GE 92.592 4.718

(P 0 2  -  P o i )  increment on 

intercept for design LE

7.225 2.906

P i  common slope -11.776 0.798

CFuoz variance of intercept 

due to valve variability

23.636 10.345

era variance of intercept 

due to replicate variability, 

given valve

42.558 3.547

The two designs have a common slope parameter, which is estimated to lie in 

the range -11.776 ± 1.564 (95% C.I.). The intercept parameter estimate for design 

GE is 92.592 ± 9.244 (95% C.I.). Considering the increments associated with design 

LE, the intercept parameter estimate for design LE is 99.817 ± 5.695 (95% C.I.). The 

slope parameter estimate for design LE is in closer agreement with the parameter 

estimates derived from the simple linear regression model of Chapter 3, although the 

intercept parameter estimate is closer to that of the single design multi-level model of 

section 6.1, above. The variance parameter estimates associated with the intercepts of 

different valves and different replicates of a valve are both significant in this 

analysis, using the Wald tests, in contrast to the findings for analysis of the single
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design. The estimation of the variances seems to have become more precise, 

probably due to the larger number of valves available at level 2.

The closed energy losses are significantly higher for design LE than design 

GE (x2 = 6.181, ld.f.), likely to lie in the range 1.530 to 12.920 (95% C.I.) at any 

given flow rate, suggesting that design LE valves do not seal as efficiently as design 

GE valves when closed.

6.2.7 effective orifice area at maxima

Table 6.2.7 Parameter estimates for effective orifice area at maxima

regression parameter estimate standard error of estimate

P o i  intercept of design GE -0.315 0.053

(P q 2  -  P o i )  increment on 

intercept for design LE

-0.294 0.048

P i  common slope 0.396 0.008

( j u ol  variance of intercept 

due to valve variability

0.007 0.003

(Jeo1 variance of intercept 

due to replicate variability, 

given valve

0.004 0.000

The two designs have a common slope parameter, which is estimated to lie in 

the range 0.396 ±0.015 (95% C.I.). The intercept parameter estimate for design GE 

is -0.315 ±0.105 (95% C.I.). Considering the increments associated with design LE, 

the intercept parameter estimate for design LE is -0.609 ± 0.095 (95% C.I.). The 

figures for design LE are in close agreement with the parameter estimates derived 

from analysis of design LE alone (section 6.1). The variance parameter estimates 

associated with the intercepts of different valves and different replicates of a valve 

are both significant in this analysis, using the Wald tests, in contrast to the findings

90



for analysis of the single design, with a small increase in the variance estimate 

associated with the intercept parameter of different valves. Again, the estimation of 

the variances seems to have become more precise, probably due to the larger number 

of valves available at level 2.

Design GE has a significantly greater effective orifice area than design LE 

(X2 = 37.044, ld.f), which is likely to lie in the range 0.199 to 0.389 (95% C.I.), at 

any given flow rate. The effective orifice area is a measure that reflects the actual 

open area available to a valve. A larger orifice will a permit a larger flow volume, 

hence will be more beneficial in clinical terms by allowing a greater throughput of 

oxygenated blood. The orifice increases with applied cardiac output over the range 

examined, i.e. the valve opens wider as the flow rate through it increases.

6.3 Summary of multi-level regression model as a means of comparing two valve 

designs

The multi-level model has enabled discrimination between designs GE and 

LE, in valves fabricated from the same material. In fact, a greater number of the 

hydrodynamic function measures have significant differences between the two 

designs compared with the random regression approach of Chapter 3. Careful 

interpretation of the results is required. Using the deviance statistic to determine 

inclusion or exclusion of parameters from the model suggests that included 

parameters are significant. However, some of these parameters are not significant 

when tested by using the Wald tests. The problems of using Wald tests are discussed 

in more detail in Chapter 7. In the present case, if both the Wald test and the 

deviance statistic agree, then confidence in the significance of a specified parameter 

estimate is high. If the two methods of testing significance do not agree, then the
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deviance statistic is likely to be more reliable, but the outcome should be considered 

in light of the practical expectations of what may be reliably measured in the 

experimental tests. In the multi-level model the mean differences in leakage 

behaviour and effective orifice area are significant, in contrast to these measures by 

simple linear regression. Only regurgitation and energy loss during valve closing 

indicate no significant differences on average between the designs, using the Wald 

tests. The improvement in discrimination achieved by the multi-level modelling 

approach compared with the random regression approach is most likely due to the 

explicit use of all 300 data points in the analysis compared with the use of two 

summary measures from each valve to compare designs as used in the random 

regression model, which should increase the precision of the estimates.

The application of the model was simple and straightforward, once the data 

were structured appropriately. The outcome was apparent with a single analysis 

process, rather than the sequential analytical process required of simple linear 

regression (Chapter 3), in which an initial analysis of each individual valve had to be 

performed, followed by calculation of mean parameter estimates which were then 

entered into another statistical procedure.

One potential advantage of multi-level modelling here was the anticipation of 

being able to assign quality control limits to valve-to-valve variation and 

reproducibility of the hydrodynamic test procedure itself. The relevant terms in the 

model are ouo and a ^ 2, respectively. The single valve design analysis of section 6.1 

raised some concern that the variance due to valve-to-valve variability was less 

precisely determined in some cases than the variance due to replicate variability, 

given valve. The simultaneous analysis of two designs appears to have made the 

determination of these variances more precise and more consistent with expectations.
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Although the absolute values of the parameter estimates are similar, their standard 

errors are lower in the two-design model, and the intercept parameter estimates for 

valve-to-valve variance are therefore statistically significant, with the exception of 

those for regurgitation and energy loss during valve closing. It is likely that the 

relatively small number of valves available at level 2 for any given design caused 

this problem, and that the increased numbers available for the two-design analysis 

have improved the estimation procedure. It must also be remembered that these 

variances at level 2 are modelled to be constant for all valve designs, so that, if we 

increase the number of designs to be analysed, then we must continue to assume that 

the valve-to-valve variability is similar for all designs. If this is not the case, then we 

will over- or under-estimate the variability due to valve manufacture depending on 

which design we are interested in. In practice, provided a skilled operator is 

manufacturing valves, it is likely that the variability among valves is similar 

regardless of design, provided that a similar leaflet thickness distribution is targeted 

for any individual design.

6.4 Multi-level model with five valve designs

Ideally, multi-level modelling could be used to compare a selection of valve 

designs to order them from best to worst, so that a simple assessment could be made 

quickly as to whether one design was truly better than another. The designs to be 

compared are those described in Chapter 2, Table 2.1. Both designs examined above 

are included, with the addition of three further designs, all based on the engineering 

design L above, but with different leaflet materials, designs LL, L4 and L5.

The model is similar to that of section 6.2, with valve at level 2 and replicate 

at level 1, with design entered into the model as a fixed factor. There were six valves
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representing each design, and 5 replicates of each valve test, providing a total of 750 

data points to be analysed. In this case, the model must be expanded to include 

separate dummy variables for all the design contrasts using a similar process to that 

of section 6.2. In this case, because the new valve leaflet materials have quite 

different properties from the two designs examined so far, there is a strong likelihood 

that the slope of the regression model will deviate for one or more designs.

Therefore, we must model the regression with different slopes as well as different 

intercepts. This requires a second variable for each design, with the appropriate 

dummy variable crossed with the loge {RMS flow} variable. One possible 

parameterisation of the model, adapting equation {6.1}, is

E(Y\x) -  Poi + (ft02 - Poi) 8 2  + (P03 - Poi) 8 3  + (P04 - Poi) 8 4  + (Pos - Poi) 8 5  +

P11X + (Pi 2~Pi 1) 82X + (P13-P1O83X + (pi4-Pu)84X + (Pis-Pn)8 sx

where Poi and Pu  are the intercept and slope parameters for the “baseline” design, 

here design 1 (design GE). The 8 2 .... 8 5  variables are dummy variables representing 

designs 2 ....5, respectively, coded as a 1 if the specified design is present and 0 else. 

(P02 - Poi) represents the increment on the intercept parameter for design 1 that 

derives from inclusion of design 2 (design LE) in the model; (P03 - Poi) represents the 

increment on the intercept parameter for design 1 that derives from inclusion of 

design 3 (design LL), and so on. (P12-P11)  etc. are the increments on the slope 

parameter for design 1 that derive from inclusion of design 2 etc. in the model.

We have already seen in section 6.2, above, that designs GE and LE can be 

assumed to have common slopes in the multi-level model, although they appear to 

have significantly different intercepts for most hydrodynamic function measures 

examined. Given the differences in materials used for designs LL, L4 and L5, it is
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unlikely that all these will support a common slopes assumption: it is also possible 

that some of these designs may have intercepts in common. Therefore, the multi­

level analysis procedure began, in every case, with the full model. The model was 

reduced using the differences in -2(loglikelihood) to assess the significance of the 

various parameters in the model, as described above. The normal probability plots 

and standardised residual vs fitted value plots were reasonable for all measures with 

the exception of mean pressure gradient (discussed below).

6.4.1 loge {mean pressure gradient}

In this case, all parameter estimates proved significant with the exceptions of 

the differences in slope parameter associated with designs LE and LL. The reduced 

model was not a significantly poorer fit than the full model using the deviance 

statistic (x = 0.060, 2 d.f). In this case, the normal probability plot indicates some 

deviation from normality with relatively large tails to the distribution (figure 6.3).

The plot of standardised residuals vs fitted values appears to suggest a better fit to the 

model than for the single design (figure 6.4).

Figure 6.3 Normal Probability Plot of standardised level 1 residuals for 

loge {mean pressure gradient} for five designs,

level 1 residuals on intercept parameter
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Figure 6.4 Standardised Residuals vs Fitted Values 

for loge {mean pressure gradient} for five valve designs

1.3 2.1

pred. val

The parameter estimates are tabulated below.



Table 6.4.1.1 Parameter estimates for loge{mean pressure gradient}

regression parameter estimate standard error of estimate

Poi intercept of design GE -6.635 0.161

(P o i -  P o i) increment on 

intercept for design LE

0.401 0.063

(P03 - Pop increment on 

intercept for design LL

0.341 0.063

(P04 -  Pop increment on 

intercept for design L4

2.066 0.316

(P os -  P o i) increment on 

intercept for design L5

2.964 0.316

p n  slope of designs GE, 

LE & LL

1.544 0.026

(P i 4 -  P n )  increment on 

slope for design L4

-0.272 0.053

( P i s -  p i  i)  increment on 

slope for design L5

-0.358 0.053

<t u oz  variance of intercept 

due to valve variability

0.420 0.114

<7ui 2 variance of slope due 

to valve variability

0.012 0.003

cTuoP covariance of 

intercept and slope (level 

2, valve)

-0.069 0.019

O ta  variance of intercept 

due to replicate variability, 

given valve

0.005 0.000

According to the Wald tests available with the MLwiN software, 95% 

confidence intervals for the parameter estimates correspond closely to estimate ± (2 x 

the standard error of the estimate). Significant differences between parameter
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estimates were confirmed from these. Designs GE, LE and LL were modelled with 

common slopes. Design L4 had a significantly lower slope than these. Design L5 had 

a lower slope than design L4, but the difference was not significant, using the Wald 

test. The higher slopes for designs GE, LE and LL indicate that the mean pressure 

gradient increases with flow rate for these designs at a higher degree than for designs 

L4 and L5, with designs GE, LE and LL having the greatest mean pressure gradients 

with increasing flow. Thus, as greater work is demanded from the heart, these 

designs, theoretically, require more effort to operate. The lowest intercept parameter 

estimate is achieved by design GE. Designs LE and LL are significantly higher but 

not significantly different from each other. Design L4 has a significantly higher 

intercept parameter estimate than these three valves, with design L5 being greater 

still, although the difference between designs L4 and L5 is not significant by the 

Wald test. The intercept parameter is an indicator of how easily the valve may be 

opened at low flow rates, when the patient is at rest and relatively little work is 

demanded of the heart. The difference in significance testing noted between those 

parameter estimates which are significant in terms of their inclusion in the model 

using the deviance statistic to test their inclusion and the significance testing 

resulting from the use of the Wald test will be discussed in detail in Chapter 7. 

However, limitations on the analysis resulting from the relatively small number of 

valves available for each design suggest that the deviance statistic is more relevant 

for interpretation of the data than the Wald test results. The intercepts and slopes for 

each of the valve designs, calculated from the model parameter estimates are 

tabulated below. The predicted regression lines for each valve are plotted in Figure 

6.5. This figure demonstrates the relative ranking of each valve design. Design GE is 

demonstrated to be the best valve design at all observed flow rates. There is little
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difference between designs LE and LL, although design LL is slightly the better of 

the two. Although design L4 has a higher mean pressure gradient at low flow rates, it 

can be seen to converge with designs LE and GE at the highest flow rates of interest, 

and, in fact, seems to be better than either of these designs at the highest flow rate. 

Design L5 is consistently worse than any other design.

Table 6.4.1.2 Intercept and slope parameter estimates for 

loge{mean pressure gradient}

Design Intercept Slope

GE -6.635 1.544

LE -6.234 1.544

LL -6.294 1.544

L4 -4.569 1.272

L5 -3.671 1.186

Figure 6.5 Predicted regression lines for all valve designs 

for loge {mean pressure gradient} regressed on loge {RMS flow}

4.0-

3.5-
a4>

«PN

■s 3 0  -uOD
2 2.5-
s
V)

£ 2 .0 -
&
a
C *  1 5 -  ^  - i .  j

s.
B f 1 0  -o

LEL4

LE
LL

GE

GE0.5-

4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6
loge {RMS flow}

99



The intercept and slope parameter estimates for design LE are very similar to 

those derived from the model containing the single design, LE, and, for both designs 

GE and LE, these estimates are close to those derived in the two-design model. The 

ability of the five-design model to discriminate these two designs is similar to that of 

the two-design model. The variances of the intercept due to valve variability and 

replicate variability are increased in this full model compared with the single design 

and two-design models, but with a further decrease in their standard errors. As 

expected, valve-to-valve variability is greater than replicate-to-replicate variability. 

The larger number of cases available for analysis seems to have increased the 

precision of estimation of the random parameters.

The most important parameter of valve function here is the intercept 

parameter estimate, because it is most important to be able to open the valve at 

resting heart rates, otherwise there is a danger of circulatory insufficiency at rest or a 

risk of longer term problems developing due to poor blood flow dynamics through 

the valve causing thrombosis or stenosis of the valve. However, if the intercept 

parameter estimate is tolerable, then, as a secondary consideration, the slope 

parameter should be lower rather than higher. The risk of high mean pressure 

gradients includes the possibility of high shear forces acting on the red cells and 

platelets in blood, causing haemolysis and/or activation of thrombotic cascade 

reactions as the blood is damaged.

In this case, in terms of mean pressure gradient, design GE performs best, 

with fairly good performance from designs LE and LL. Designs L4 and L5 are much 

harder to open and, all else being equal, would be less desirable in terms of their 

functional performance by this measure. However, design L4 may prove acceptable, 

if fabricated with leaflets of similar thickness to those of designs GE, LE and LL.
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6.4.2 loge {regurgitation}

In this case, the intercept parameter estimates showed no significant 

differences among designs. The slope parameter estimates associated with designs 

LE and LL were not significant. Omitting these parameters from the model, the 

reduced model did not fit significantly less well than the full model, as seen from the 

deviance statistic (x = 8.635, 6 d.f). The parameter estimates are tabulated below.

Table 6.4.2.1 Parameter estimates for loge{regurgitation}

regression parameter estimate standard error of estimate

P oi intercept of all designs 1.057 0.077

pi i slope of designs GE, LE & LL -0.018 0.013

(pi4 - pn) increment on slope for 

design L4

0.082 0.008

(P i 5 -  P n )  increment on slope for 

design L5

0.103 0.008

<juo variance of intercept due to 

valve variability

0.139 0.046

crM/  variance of slope due to valve 

variability

0.003 0.001

cjuoi1 covariance of intercept and 

slope (level 2, valve)

-0.022 0.008

(Tso1 variance of intercept due to 

replicate variability, given valve

0.212 0.065

a sj 2 variance of slope due to 

replicate variability, given valve

0.007 0.002

creoi1 covariance of intercept and 

slope (level 1, replicate, given 

valve)

-0.037 0.012
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Designs GE, LE and LL had common slopes, with a negative slope parameter 

estimate indicating decreasing regurgitation with increasing flow, suggesting that the 

leaflets may close faster at higher flow rates. Designs L4 and L5 were not 

significantly different from each other, but both had significantly greater slope 

estimates than designs GE, LE and LL. Furthermore, for these designs, the slope 

estimate was positive, indicating increasing regurgitation with increasing flow 

through the valve. The intercept parameter estimates are not significantly different 

from each other.

The intercepts and slopes for each of the valve designs, calculated from the 

model parameter estimates are tabulated below, with the predicted regression lines 

for each design plotted in figure 6.6.

Table 6.4.2.2 Intercept and slope parameters for loge{regurgitation}

Design Intercept Slope

GE 1.057 -0.018

LE 1.057 -0.018

LL 1.057 -0.018

L4 1.057 0.064

L5 1.057 0.085

The intercept and slope parameter estimates for design LE are very similar to 

those derived from the model containing the single design, LE, and, for both designs 

GE and LE, these estimates are close to those derived in the two-design model. The 

variances of the intercept due to valve variability are increased in this full model 

compared with the single design and two-design models. Valve-to-valve variability is
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less than replicate-to-replicate variability. It seems that the precision of estimation of 

valve-to-valve variability has improved greatly going from a single design model to a 

two-design model and then again, to the full five-design model. The larger number of 

cases available for analysis is likely to have increased precision of estimation of the 

random parameters. However, although there are valve-related effects that may cause 

relatively high variability over replicate tests, the higher variance estimates 

associated with replicate variation compared with valve-to-valve variability suggest 

that there is still some imprecision in the estimation of the random parameters.

Figure 6.6 Predicted regression lines for all valve designs 

for loge {regurgitation} regressed on loge {RMS flow}
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The graph of predicted regression lines demonstrates that there is little 

difference among the designs GE, LE and LL in terms of regurgitation. In fact the 

regurgitation is almost constant over the range of flow rates of interest, with a slight
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decrease as flow rate increases. The higher regurgitation of designs L4 and L5 is 

clearly demonstrated, as is the trend towards increasing regurgitation with increasing 

flow rate. Regurgitation indicates the amount of flow volume passing backwards 

through the valve as it closes. The most likely reason for true differences in 

regurgitation would be that one design spends less time closing than another design 

so that the time available for reverse flow is reduced and hence less reverse flow can 

occur. However, it is also likely that variations in leaflet cutting, which result in 

varying leaflet length from base to centre free edge, will affect the regurgitation 

through the closing valve. In this case, there seems to be no significant difference 

among valves at low flow rates. However, as demand on the heart increases, the 

more efficiently the valve functions the better blood flow can respond to that 

demand. If the valve closes more quickly as flow rate rises, then back-flow through 

the closing valve reduces and blood is more efficiently pumped. Thus, in principle, a 

negative slope estimate would be preferred. Therefore, designs L4 and L5, with 

increasing regurgitation as flow rate increases, have less desirable characteristics. In 

general, regurgitation varies less than mean pressure gradient for most similar valve 

designs, and would be regarded as a lower priority measure. In the present analysis, 

there is no separation of designs GE and LE, in contrast to the findings for the two- 

design model. The slope divergence of designs L4 and L5 compared with the other 

three designs might indicate sufficient difference in valve behaviour in response to 

closing forces that, while the model can discriminate among very different designs, it 

may be less able to discriminate among similar designs.

6.4.3 leakage

A series of models were compared using the Akaike Information Criterion as 

described above. The final model included one common intercept term for designs
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GE and LE, a separate common intercept term for designs LL, L4 and L5, one 

common slope term for designs GE and LE, a separate common slope term for 

designs L4 and L5, and a separate slope parameter for design LL. The parameter 

estimates are tabulated below.

Table 6.4.3.1 Parameter estimates for leakage

regression parameter estimate standard error of 

estimate

p o i  intercept of designs GE, LE 6.165 0.426

(P 0 3  -  P o i )  increment on intercept 

for design LL, L4 & L5

3.296 0.550

Pii slope of designs GE & LE —0.830 0.071

( P i 3 -  P i  i )  increment on slope for 

design LL

-0.550 0.099

(Pi4 - Pn) increment on slopes for 

designs L4 & L5

-0.846 0.093

Guo variance of intercept due to 

valve variability

1.090 0.570

G ui l  variance of slope due to valve 

variability

0.023 0.016

GuoP covariance of intercept and 

slope (level 2, valve)

—0.119 0.090

GetjL variance of intercept due to 

replicate variability, given valve

2.659 1.875

Gei l  variance of slope due to 

replicate variability, given valve

0.071 0.065

GeoP covariance of intercept and 

slope (level 1, replicate)

-0.422 0.350
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Designs GE and LE, had common slopes, with negative parameter estimates 

indicating less leakage as flow rate increases. Design LL had a significantly lower 

slope parameter estimate than designs GE and LE. Designs L4 and L5 had a common 

slope parameter estimate that was also the lowest slope parameter estimate. The 

lowest intercept parameter estimate was achieved by designs GE and LE, with no 

significant difference between them. Designs LL, L4 and L5 had a separate, common 

intercept parameter estimate that was significantly higher than designs GE and LE. In 

principle, leakage, being a measure of backwards flow through the closed valve, is an 

indicator of a “leaky” and inefficient closed valve. The slope parameter, similarly to 

regurgitation, would, preferably, be close to zero or negative so that the valve seals 

more effectively as flow rate rises. Leakage is the hydrodynamic function measure 

that is probably most seriously affected by inaccurate leaflet trimming. If a leaflet is 

cut slightly low, it will not be able to close symmetrically with its neighbours, 

allowing a small orifice for reverse flow through the closed valve. If the leaflets are 

cut very low, it may still open well, but the three leaflets can no longer meet together 

in the closed position and the valve will leak. As each leaflet is cut individually, there 

is scope for a wide range in variability in the whole valve as all three leaflets can 

vary in differing degrees. The intercepts and slopes for each of the valve designs, 

calculated from the model parameter estimates are tabulated below. The predicted 

regression lines for each design are plotted in figure 6.7.
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Table 6.4.3.2 Intercept and slope parameters for leakage

Design Intercept Slope

GE 6.165 -0.830

LE 6.165 -0.830

LL 9.461 -1.380

L4 9.461 -1.676

L5 9.461 -1.676

Figure 6.7 Predicted regression lines for all valve designs 

for leakage regressed on loge {RMS flow}
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The intercept and slope parameter estimates for design LE are similar to those 

derived from the model containing the single design, LE, and, for both designs GE 

and LE, in the two-design model. The predicted regression lines for designs GE and 

LE are superimposed (fig. 6.7) and confirm the decrease in leakage as flow rate
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increases. The predicted regression line for design LL indicates slightly higher 

leakage for this design at low flow rates compared with designs GE and LL, but a 

steeper slope indicates equal or better performance at high flow rates. All these 

designs have higher leakage than designs L4 and L5 at all flow rates. This is likely to 

be related to the moulded position of the leaflets. In the designs used for this project, 

all valves are formed with the leaflets in a partially closed “natural” position. The 

relative stiffness of the materials used for these two designs would tend to reinforce 

their tendency to “prefer” the closed position in contrast to the lower modulus 

materials of designs GE, LE and LL, which allow easier leaflet opening. Lower 

modulus materials may also allow a degree of leaflet prolapse in the closed position, 

particularly for valves with unevenly trimmed leaflets. Leakage performance would 

be a secondary consideration to measures of valve opening in judging overall valve 

performance. The predicted regression lines for designs L4 and L5 are superimposed 

and pass through the zero leakage point around the mid-point of the flow range of 

interest. This may be an artefact of the regression, but the measurement of flow is 

also less precise than that of pressure and, around the zero position, the error is much 

higher due to poor signal:noise ratios. It is possible that both these valve designs 

reach a position in the valve cycle where they are fully closed and do not leak, and, 

therefore, have somewhat different distributions than designs GE, LE and LL, 

although substantial deviations from the model assumptions were not apparent from 

the residual plots. Thus the regression would only be valid to the zero cross-over 

point and comparison of these designs with the other three designs may be improved 

with a more complex modelling process accounting for these differences in the data 

distributions, beyond the scope of this study. This may also account for the loss of 

discrimination in the five-design model between designs GE and LE, compared with
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the two-design model. There may be fundamental differences among valve designs 

related, for example, to ease of leaflet trimming when different modulus materials 

are used to fabricate the leaflets. It is also more likely that hydrodynamic test data 

would be influenced by the orientation of a valve with leaflets of varying height in 

the test rig, and such influences may not be the same for all valve designs. More 

detailed investigation of the relative performances of designs GE, LE and LL might 

be better done using a three-design model focussing on these designs alone.

The variances of the intercept due to valve variability and replicate variability 

are increased in this full model compared with the single design and two-design 

models, with an increase in their standard errors. The variance of the replicate 

intercept parameter estimate is also increased compared with that of the valve 

intercept parameter, suggesting that, not only does valve-to-valve variability have a 

significant effect, but that influences such as orientation of the valve in the rig on 

replicate testing may influence the test results. This is probably related to the 

problems of leaflet trimming discussed above.

6.4.4 loge {energy loss in forward flow}

In this case, all parameter estimates proved significant with the exceptions of 

the slope parameter estimates associated with designs LE and LL, similar to the case 

for mean pressure gradient. The reduced model did not fit significantly less well than 

the full model using the deviance statistic (% = 0.356, 2 d.f). The parameter 

estimates are tabulated below.
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Table 6.4.4.1 Parameter estimates for loge{energy loss in forward flow}

regression parameter estimate standard error of estimate

P o i  intercept of design GE -5.109 0.148

( P 0 2  -  P o i )  increment on intercept 

for design LE

0.417 0.068

( P 0 3  - Poi) increment on intercept 

for design LL

0.357 0.068

( P 0 4  - Poi) increment on intercept 

for design L4

1.630 0.288

( P o s  -  P o i )  increment on intercept 

for design L5

2.675 0.288

Pi j slope of designs GE, LE & LL 1.697 0.024

( P i  4  -  p n )  increment on slope for 

design L4

-0.191 0.048

( P i s -  p i  i )  increment on slope for 

design L5

-0.300 0.048

Guo variance of intercept due to 

valve variability

0.335 0.094

Gui 1 variance of slope due to valve 

variability

0.010 0.003

Guoi1 covariance of intercept and 

slope (level 2, valve)

-0.055 0.016

GedL variance of intercept due to 

replicate variability, given valve

0.106 0.050

Geil variance of slope due to 

replicate variability, given valve

0.002 0.002

c f e o i 1  covariance of intercept and 

slope (level 1, replicate, given 

valve)

-0.014 0.009

110



Designs GE, LE and LL had common slopes. Design L4 had a significantly 

lower slope than these. Design L5 had a lower slope than design L4, but this 

difference was not significant. The higher slopes for designs GE, LE and LL indicate 

that the energy required to open the valve increases with flow rate for these designs 

at a higher degree than for designs L4 and L5. Thus, as greater work is demanded 

from the heart, these designs, theoretically, require more effort to operate. The lowest 

intercept parameter estimate is achieved by design GE. Designs LE and LL are 

significantly higher but not significantly different from each other. Design L4 has a 

significantly higher intercept parameter estimate than these three valves, with design 

L5 having a significantly higher intercept parameter estimate than design L4. The 

intercept parameter is an indicator of how easily the valve may be opened at low 

flow rates, when the patient is at rest and relatively little work is demanded of the 

heart. The measure is related to the mean pressure gradient but is a more 

comprehensive measure of the work required to open a valve. The intercepts and 

slopes for each of the valve designs, calculated from the model parameter estimates 

are tabulated below. The predicted regression lines for each design are plotted in 

figure 6.8.

Table 6.4.4.2 Intercept and slope parameters for 

loge{energy loss in forward flow}

Design Intercept Slope

GE -5.109 1.697

LE -4.692 1.697

LL -4.752 1.697

L4 -3.479 1.506

L5 -2.434 1.397
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Figure 6.8 Predicted regression lines for all valve designs 

for loge {energy loss in forward flow} regressed on loge {RMS flow}
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The intercept and slope parameter estimates for design LE are very similar to 

those derived from the model containing the single design, LE, and, for both designs 

GE and LE, these estimates are close to those derived in the two-design model. The 

variances of the intercept due to valve variability and replicate variability are 

increased in this full model compared with the single design and two-design models, 

with a decrease in their standard errors. As expected, valve-to-valve variability is 

greater than replicate-to-replicate variability. The larger number of cases available 

for analysis seems to have increased the precision of estimation of the random 

parameters.

It is clearly demonstrated in figure 6.8 that design GE has lower energy losses 

in forward flow at all flow rates of interest. The results are similar to those for mean 

pressure gradient, with design L5 having the worst performance at all flow rates. 

Design L4 is worse than designs GE, LE and LL at low flow rates, but converges
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with designs LE and LL at high flow rates. The most important parameter o f valve 

function here is the intercept parameter estimate, similarly to the mean pressure 

gradient measure. Similarly, if the intercept parameter estimate is tolerable, then, as a 

secondary consideration, the slope parameter should be lower rather than higher. In 

this case, in terms of energy loss in forward flow, design GE has the best 

performance with designs LE and LL performing fairly well. Designs L4 and L5 are 

much harder to open, with L5 being worse than L4, and, all else being equal, would 

be less desirable in terms of their functional performance by this measure. However, 

as previously stated, design L4 has much thicker leaflets than the other designs and 

may perform well at lower leaflet thickness values. Further investigation would be 

required to determine whether the slope of design L4 changes with leaflet thickness 

as well as the intercept. The discrimination of designs GE and LE is similar to that 

achieved with the two-design model.

6.4.5 energy loss closing

In this case, only the base intercept and slope parameter estimates of design 

GE and the intercept parameter estimate associated with design L5 proved 

significant, testing the parameter estimates using Wald tests. The reduced model, 

however, was significantly different from the full model using the deviance statistic 

(X2 = 28.399, 7 d.f, p = 0.0002). It was not, however, obvious how to redefine the 

model to include any other parameters, as none was either close to being significant 

or notably less insignificant than any other. Sequential testing of all the removed 

parameters was investigated and a final model including a common intercept for 

designs GE, LE and LL, common slope for all designs and separate intercept 

parameters for designs L4 and L5 produced a model with all parameter estimates 

now testing significant using Wald tests and that did not fit significantly less well
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than the full model using the deviance statistic (% 2 = 1.759, 6 d.f, p = 0.940). The 

parameter estimates for this model are tabulated below.

Table 6.4.5.1 Parameter estimates for closing energy loss

regression parameter estimate standard error of estimate

p o i  intercept of designs 

GE, LE & LL

-26.069 7.307

(P 0 4  -  P o i )  increment on 

intercept for design L4

25.568 3.914

( P 0 5  -  P o i )  increment on 

intercept for design L5

33.852 3.914

Pu slope of all designs 10.562 1.324

Guo variance of intercept 

due to valve variability

57.182 17.812

<jeol variance of intercept 

due to replicate variability, 

given valve

294.062 15.498

Designs GE, LE and LL have the lowest intercept parameter estimate in 

common. Design L4 has a significantly higher intercept parameter estimate than 

these three designs. Design L5 has a significantly higher intercept parameter estimate 

than design L5. The intercept parameter is an indicator of how easily the valve may 

be moved into the closed position at low flow rates, when the patient is at rest and 

relatively little work is demanded of the heart. The intercepts and slopes for each of 

the valve designs, calculated from the model parameter estimates are tabulated 

below. The predicted regression lines for each valve design are plotted in figure 6.9.
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Table 6.4.5.2 Intercept and slope parameters for closing energy loss

Design Intercept Slope

GE -26.069 10.562

LE -26.069 10.562

LL -26.069 10.562

L4 -0.501 10.562

L5 7.783 10.562
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Figure 6.9 Predicted regression lines for all valve designs 

for closing energy loss regressed on loge {RMS flow}
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The intercept and slope parameter estimates for design LE are similar to those 

derived from the model containing the single design, LE, and, for both designs GE 

and LE, these estimates are close to those derived in the two-design model. The 

graph indicates that there are no differences among designs GE, LE and LL at all
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flow rates. These findings are similar to those of the two-design model for designs 

GE and LE. The closing energy losses for designs L4 and L5 are considerably higher 

than the other three designs, at all flow rates. The variances of the intercept due to 

valve variability and replicate variability are considerably increased in this full model 

compared with the single design and two-design models. Valve-to-valve variability is 

less than replicate-to-replicate variability.

In general, the less energy required for a task, then the easier or more 

efficiently that task can be carried out. Hence, to close a fully open valve, it would be 

preferred that the valve has a low intercept parameter estimate and, if possible, a low 

slope parameter estimate. In this case, design L5 seems much harder to close than 

any other design. Design L4 is easier to close than design L5 but is harder to close 

than designs GE, LE or LL.

6.4.6 energy loss closed

In this case, the model selection faced the same problems as for the analysis 

of leakage and the model selection process used the Akaike Information Criterion to 

select the final model. The final model included a common intercept parameter for 

all designs, a common slope parameter for designs GE, LE and LL (fin=  fin  = Pi3), 

with a separate common slope parameter for designs L4 and L5 (Pi4 = Pi5). The 

parameter estimates are tabulated below.
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Table 6.4.6.1 Parameter estimates for closed energy loss

regression parameter estimate standard error of estimate

Poi intercept of all designs 101.147 7.684

Pi i slope of designs GE, 

LE and LL

-12.506 1.260

(Pi 4 - Pn) increment on 

slope for designs 

L4 and L5

-4.121 0.330

Guo variance of intercept 

due to valve variability

1454.931 459.767

Guil variance of slope due 

to valve variability

36.019 12.239

Guoi1 covariance of 

intercept and slope (level 

2, valve)

-227.464 74.699

Geo1 variance of intercept 

due to replicate variability, 

given valve

62.060 3.341

Designs GE, LE and LL had the highest slope estimate. Designs L4 and L5 

had significantly lower slope parameter estimates than these three designs. The 

intercept parameter estimate is an indicator of the energy required to maintain the 

closed valve: it will be increased by a “leaky” valve. The slope parameter indicates 

the change in energy required to keep the valve closed as the flow rate rises. In 

general, the slope decreases with flow so that the valve is more easily maintained in 

the closed position at high flow rates. This being the case, a more negative slope 

parameter estimate would make the valve easier to keep tightly closed. The intercepts 

and slopes for each of the valve designs, calculated from the model parameter
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estimates are tabulated below. The predicted regression lines are plotted in figure 

6 . 10.

Table 6.4.6.2 Intercept and slope parameters for closed energy loss

Design Intercept Slope

GE 101.147 -12.506

LE 101.147 -12.506

LL 101.147 -12.506

L4 101.147 -16.627

L5 101.147 -16.627

Figure 6.10 Predicted regression lines for all valve designs 

for energy loss when the valve is closed regressed on loge {RMS flow}
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The intercept and slope parameter estimates for design LE are very similar to 

those derived from the model containing the single design, LE, and, for both designs 

GE and LE, these estimates are close to those derived in the two-design model. The 

graph demonstrates the superposition of the regression for designs GE, LE and LL. 

Designs L4 and L5 are also superimposed, but have lower closed energy losses than 

the other three designs. There is a similar zero cross-over point in the regression as 

seen in the case of leakage flow. The reasons for this are similar to those discussed 

previously for the leakage flow and are likely to cause similar difficulties in model 

selection and design discrimination. The variances of the intercept due to replicate 

variability and, especially, valve variability are increased in this full model compared 

with the single design and two-design models. Valve-to-valve variability is greater 

than replicate-to-replicate variability, but the differences suggest a problem with the 

estimation, especially in the estimation of level 2 variance of the intercept parameter 

estimate. The larger number of cases available for analysis seems to have improved 

estimation of the random parameters associated with level 1 (replicates). However, 

the problems with model selection may indicate that the final model chosen either is 

not, in fact, the best model, or that there are fundamental differences related to 

specific valve designs that affect their influence on the modelling.

The closed energy losses are rather more difficult to interpret than other 

measures of hydrodynamic function. The valve designs under consideration here are 

moulded in a nearly closed position. They, therefore, have a “natural” position nearly 

closed rather than nearly open. Ideally, it should be easy to close the valve, but, if  the 

valve does close easily, and it is moulded in this position, then it may be harder to 

open than an alternative design either moulded in a partially open position, or with a 

different material. A stiffer material may have a lesser tendency to collapse back
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over itself under high loading pressures on the closed valve than a lower modulus 

material. The closed energy losses are likely to be a relatively low priority 

consideration for a valve design (within a quite large range) compared with other 

hydrodynamic function measures. They may also be more useful with a better- 

controlled valve fabrication method and when examining substantially different 

designs where the engineering design is altered significantly as well as the leaflet 

material. On the basis of the intercept here, all designs are functionally similar, with 

little to choose among them, although the graph demonstrates that the slope 

differences separate the designs at the lowest flow rate of interest so that designs L4 

and L5 seem to perform best by this measure.

6.4.7 effective orifice area at maxima

In this case, the final model included separate intercept parameters for all 

valve design, a common slope parameter for designs GE, LE, LL and L5, and a 

separate slope parameter for design L4. The reduced model was not significantly 

different from the full model using the deviance statistic (%2 = 2.014, 3 d.f). The 

parameter estimates are tabulated below.
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Table 6.4.7.1 Parameter estimates for effective orifice area

regression parameter estimate standard error of estimate

Poi intercept of design GE -0.372 0.078

( P 0 2  -  P o i )  increment on intercept 

for design LE

-0.300 0.045

( P 0 3  -  P o i )  increment on intercept 

for design LL

-0.270 0.045

( P 0 4  - Poi) increment on intercept 

for design L4

-0.759 0.167

( P o s  -  P o i )  increment on intercept 

for design L5

-0.676 0.045

pi i slope of designs GE, LE, LL & 

L5

0.407 0.013

( P 1 4  - Pn) increment on slope for 

design L4

0.070 0.030

Guol variance of intercept due to 

valve variability

0.111 0.033

Gui1 variance of slope due to valve 

variability

0.004 0.001

Guof covariance of intercept and 

slope (level 2, valve)

-0.020 0.006

Geo1 variance of intercept due to 

replicate variability, given valve

0.096 0.030

g£il variance of slope due to 

replicate variability, given valve

0.003 0.001

Geoj1 covariance of intercept and 

slope (level 1, replicate, given 

valve)

-0.017 0.006

Design L4 had a significantly higher slope than all other designs. The lower 

slopes for designs GE, LE, LL and L5 indicate that these designs have a more slowly
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increasing orifice with increasing flow rates than does design L4. Design L4 had the 

lowest intercept parameter estimate. Design L5 was not significantly different from 

this, using the Wald test. Design GE had the highest intercept parameter estimate and 

hence was the “best” valve in this respect, although the differences between it and 

designs LE and LL were not significant, using the Wald tests. Designs L4 and L5 

were significantly worse than designs GE, LE and LL. The intercept parameter is an 

indicator of how wide the valve may be opened at low flow rates, when the patient is 

at rest and relatively little work is demanded of the heart. The slope parameter 

indicates how much wider the valve will open as the flow rate rises with demand on 

the heart. The intercepts and slopes for each of the valve designs, calculated from the 

model parameter estimates are tabulated below. The predicted regression lines for all 

valve designs are plotted in figure 6.11.

Table 6.4.7.2 Intercept and slope parameters for effective orifice area

Design Intercept Slope

GE -0.372 0.407

LE -0.672 0.407

LL -0.642 0.407

L4 -1.131 0.477

L5 -1.048 0.407
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Figure 6.11 Predicted regression lines for all valve designs 

for effective orifice area regressed on loge {RMS flow)
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The intercept and slope parameter estimates for design LE are very similar to 

those derived from the model containing the single design, LE, and, for both designs 

GE and LE, these estimates are close to those derived in the two-design model. The 

predicted regression lines plotted in figure 6.11 indicate that design GE has a 

substantially greater valve orifice than any other design at all flow rates of interest. 

Design L5 has the smallest orifice at all flow rates. Designs LE and LL have 

intermediate performance, while design L4 is worse than these at low flow rates but 

converges at higher flow rates. Again, the relatively poor performance of design L4 

is likely to be related to its greater leaflet thickness and this design may perform well 

at similar leaflet thickness to designs GE, LE and LL. The variances of the intercept 

due to valve variability and replicate variability are low and similar to the single 

design and two-design models, with a small decrease in their standard errors. As
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expected, valve-to-valve variability is greater than replicate-to-replicate variability. 

The larger number of cases available for analysis seems to have slightly improved 

estimation of the random parameters.

Both slope and intercept fixed parameters of this model are important. It is 

important to have a wide valve orifice at low flow rates so that sufficient blood may 

be pumped through the valve when the patient is at rest. However, it is also 

important that the valve should be able to respond to an increased demand on the 

heart and, by opening wider as the flow rate rises, it enables the pumping of a larger 

volumetric flow rate through the valve. This enables the patient to pursue more 

energetic activities successfully, without developing shortness of breath.

124



Chapter 7: Evaluation of the Multi-level Modelling Approach

The application of multi-level modelling to the data under consideration has 

enabled a relatively complex problem to be analysed in a reasonably straightforward 

way, using all the data available in the analysis, in contrast to the random regression 

modelling of Chapter 3. In the sociological problems commonly analysed by this 

means, a dataset with such small numbers would likely have been uninformative as a 

result of the low power available from the method to detect important parameters. 

However, although the estimation of certain parameters may have been affected to 

some degree, in that random parameters in particular may have been underestimated, 

the differences between designs that are of practical consequence are, generally, 

much greater than differences within designs so that parameter estimation was both 

possible and precise enough to be useful.

In the results presented in Chapter 6, the significance of parameter estimation 

has been tested using a combination of tests on the deviance statistic and the Wald 

tests provided by the software. In general, Wald tests should be used with caution for 

datasets with small numbers, particularly when the assumptions of the model are not 

strongly adhered to, and the likelihood ratio test using the deviance statistic is 

regarded as preferable (Goldstein, 1999). In all cases of the full five design analysis, 

however, when the level 2 variance intercept parameter was tested using the deviance 

statistic, omission of the parameter resulted in a significantly poorer model, 

suggesting that this parameter was consistently significant. The significance was 

generally greater using this test than the Wald test, but the interpretation of the model 

was unaffected. This observation is particularly relevant in the selection of the final 

model for closing energy losses, in which Wald tests conflicted with the results of
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testing the deviance statistic. The final model, therefore, was always selected on the 

basis of the likelihood ratio tests of the deviance statistic or, in a few cases, the 

Akaike Information Criterion where models to be compared were not nested, one 

within the other.

There was a further decision to be made on whether to use separate or joint 

95% confidence intervals (Wald tests) to test significance of individual fixed 

parameters. There is an issue here of multiple testing whereby the ideal choice might 

be thought to be joint intervals, particularly given the small numbers of valves 

available for analysis. However, joint 95% confidence intervals are extremely 

conservative and, in practice, potentially misleading. In the present case, separate 

95% confidence intervals were used to test significance of fixed parameters. 

Although there is a risk of detecting differences where none truly exists, in this 

particular case, where we are seeking to optimise design and performance, it is better 

to detect differences than to miss detection and separate 95% confidence intervals 

were deemed to be preferable.

7.1: The fixed parameter estimates

The single and two-design multi-level models have been discussed in 

comparison with the simple linear regression model (Chapter 6). As discussed in 

Chapter 6, for leakage and closed energy losses, for multiple design models where 

the designs perform substantially differently from each other, there may be a benefit 

in using the larger model for initial assessment, followed by a model restricted to the 

“best” group of designs (here designs GE, LE and LL) to improve discrimination 

among these. The following discussion focuses on the five-design model.

126



As expected certain hydrodynamic function measures were more able to 

distinguish design-related differences than others. The worst measures in this respect 

were regurgitation, leakage, closing and closed energy losses. In the case of loge 

{regurgitation} no design-related differences were apparent from the intercept 

parameter estimates: all designs had similar regurgitation behaviour at low flow 

rates. Designs L4 and L5 had increasing regurgitation as flow rate increased, in 

contrast to the other designs. The materials of designs GE, LE and LL are more 

flexible than those of designs L4 and L5, i.e. lower modulus materials. In contrast to 

closing energy losses, which are dependent on both the reverse flow through the 

closing valve and the pressure gradient measured across the closing valve, 

regurgitation is simply the volumetric flow measured through the closing valve. 

Hence, either the lower modulus material valves are closing more quickly or have a 

smaller orifice for a longer time during closing, when forward flow has ceased. Both 

of these are possibilities. A more flexible material will respond more easily to an 

applied force. In the case of leakage, only design L5 was worse than any other with 

greater leakage as determined by the intercept parameter, although the increase in 

leakage with flow was less for this design than any other. This material was the 

stiffest of all the leaflet materials and hence less able to conform to a tightly closed 

morphology. Thus the increased leakage is not surprising, although there may be 

some relationship to difficulty in trimming leaflets to a consistent height in the stiffer 

material. A leaflet that is cut slightly too low will allow greater reverse flow through 

the closed valve than a higher-cut leaflet. Design L5 also performed worst in terms of 

closing energy losses, with a higher intercept parameter than any other design. This 

may also be related to its relatively stiff character, producing a greater inertia of the 

leaflets as they move towards the closed position and hence slowing down the rate of
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closure compared with other designs. Further practical experimentation could 

confirm this by using sequential time-lapse photography of the valve during 

hydrodynamic testing. This would allow assessment of the actual time taken for the 

valve to close. This design has a similar slope to the other four designs, suggesting 

that, at higher flow rates, the valve tends to close faster with the greater forces 

involved assisting in overcoming the leaflet inertia. Design L4, while it has a better 

performance in respect of closing energy losses than design L5, has a poorer 

performance than designs GE, LE and LL at low flow rates. This material has an 

intermediate modulus. It is significantly stiffer than the materials of designs GE, LE 

and LL, but less stiff than that of design L5. Again, time-lapse photography of leaflet 

closure may assist in explaining the findings. The worst discriminant measure was 

the closed energy loss. In tAis case, all designs have similar intercept parameters. In 

terms of the slope parameter, design L4 has the lowest slope, with decreasing energy 

loss with increasing flow rate. Design L5 also has a relatively low slope. Both these 

valves have a greater response to the increased forces applied by high flow, and by 

this measure would seem to perform relatively well compared with designs GE, LE 

and LL. Design L5 has unexpectedly low energy losses in this case, considering the 

leakage results. The reasons for this are not obvious. In this case, because the valves 

cannot close tightly due to the high modulus of the material, a passage is left for a 

small amount of reverse flow through the valve. It may be the case that the stiffer 

leaflets are less subject to “flutter” in the flow field so that they are more stable in the 

closed position, even although they do not close as efficiently as other designs. In the 

closed position, the leaflet materials of lower modulus may be subject to some 

collapse of the leaflet free edge due to their high flexibility, increasing the pressure 

component of the energy loss calculation in this case.
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The behaviour of these materials is well-characterised in terms of their simple 

mechanical properties, but it is uncertain how these properties relate to measures of 

hydrodynamic function and it is not easy to explaiO all the findings in terms of 

properties as simple as the material modulus. The valve is a complex three- 

dimensional device, operating in a flow field of varying complexity that is generally 

assumed to be streamlined, although there are local regions of flow turbulence and 

vortex formation in the vicinity of the valve. Differences in material properties that 

seem to be clearly defined may have unexpected consequences to some measures of 

hydrodynamic function when the interactions of pressure and flow are considered.

The value of the hydrodynamic function measures discussed above seems to 

be limited in that they do not differentiate among most designs examined. However, 

those dPMigns that are distinguished from the rest are worth careful consideration and 

may lead to improvements in understanding of the relationships between material 

properties, design and functional behaviour.

The most important measures in assessing valve hydrodynamic function are 

the mean pressure gradient, the energy losses during forward flow and the maximum 

orifice area attainable by the valve. These three measures were best able to 

discriminate among design performance. Maximum orifice area was least effective 

among these three measures. Given that this measure, too, is a derived value from 

consideration of both pressure and flow, perhaps this is notPMurprising. Again, this 

measure suffers from a lower precision of measurement of flow, although, because it 

uses the maximum flow achieved at any specific applied cardiac output, it is 

measured more accurately than flow in the regurgitant or leakage phases of valve 

function. It therefore seems to be a better discriminator than measures related to 

those phases of the valve operation. The smallest maximum orifice areas (intercept
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parameter estimates) are associated with designs L4 and L5, which behave in a 

similar manner. Design LL has a larger orifice, with design LE larger still. Design 

GE has the largest 07ifice area. The difference between designs GE and LE suggests 

that design G, a different engineering design than design L made with leaflets of the 

same material, is the best design in terms of the opening that can be achieved by the 

valve to allow blood to flow. It might be expected that design LL would have the 

best performance by this measure as it has leaflets made of the lowest modulus 

material. Its leaflets, however, are slightly thicker (Table 2.1) than those of design 

LE, which might explain its slightly worse performance in comparison. It has leaflets 

of similar thickness to design GE, which again reinforces the finding that design GE 

indeed has a larger orifice area than the other designs. Designs L4 and L5 have 

similar orifice areas, notably smaller than other designs. There are two reasons for 

this. One is that the materials have higher modulus than the other designs, potentially 

making them harder to open. The other may be related to differences in leaflet 

thickness. The modulus of design L4 leaflets is approximately half that of design L5 

leaflets, so that it would be expected to have a larger orifice area. However, the 

leaflet thickness for these valves was considerably higher than L5 valves. This large 

difference in leaflet thickness is sufficient to explain the similar orifice areas of these 

two designs, in spite of the modulus differences. The leaflet thickness difference is 

also likely to explain at least part of the difference between design L4 and the wider 

orifice designs. Design L4 has the steepest slope parameter estimate, suggesting that 

its orifice area increases more than other designs as flow rate increases. In this case, 

the effects of leaflet thickness and modulus are more easily overcome in this material 

than in design L5, which has a lower slope parameter estimate. This seems to suggest 

that design L4 may perform better at higher flow rates, but this finding must be
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interpreted in conjunction with the intercept parameter estimates. If a valve perfo^lXrms 

very well, it will open to nearly full orifice at low flow rates, so that the amount by 

which it can increase its orifice as flow increases is relatively small. A valve that has 

a small orifice at low flow rates has the potential for much wider opening, but the 

amount by which the orifice actually increases will then be dependent on other 

factors such as leaflet thickness and material modulus.

Analyses of mean pressure gradient and energy losses during forward flow 

have similar ability to discriminate among design performances. In terms of the 

intercept parameter estimate, a measure of how easy it is to open the valve at low 

flow rates, design GE had the lowest intercept and, hence, the best performance.

Design LL was next best, followed by design LE, then design L4 and, worst of all, 

design L5. Design GE had leaflets made of the same material as design LE, but its 

leaflets were slightly thicker, suggesting a greater significance might be associated 

with its better performance. Further experimentation on the effects of leaflet 

thickness would be required to clarify this relationship. It is known for other valves, 

that the relationship between leaflet thickness and hydrodynamic function is not 

linear, particularly for low modulus materials (Bemacca et al, 2000; 2001). Thus it is 

uncertain, in this case, how much of the difference may be attributed to differences in 

leaflet thickness. Design L4 has lower intercepts than design L5, in spite of its much 

thicker leaflets. In this case, the difference in modulus is likely to be the major 

influence on the intercept parameters. Indeed, previous research has suggested that 

there is a critical value of modulus, for designs L, below which acceptable 

hydrodynamic function can be achieved, and that this critical modulus lies 

somewhere between the modulus of material 4 and material 5 (Bemacca et al, 2000; 

2001). The slopes of designs GE, LE and LL may be regarded as common. Thus
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there seems to be little difference in the hydrodynamic function measures of mean 

pressure gradient and energy loss during forward flow as flow rate increases among 

these designs. The slope seems to be more influenced by large differences in leaflet 

thickness or leaflet material modulus. Design L4 has a steeper slope parameter 

estimate than design L5, however, suggesting that modulus has the greater effect on 

this parameter.

Overall, design GE has a significantly better hydrodynamic performance than 

any other design. Designs LE and LL have fairly good performance, but are not as 

good as design GE. Designs L4 and L5 have the poorest hydrodynamic 

performances, with design L4 being significantly better than design L5. Design L4 

may, in fact, perform rather better than it appears here if the leaflet thicknesses were 

matched to those of the better designs, as was not possible in this study. 

Hydrodynamic function is an extremely important feature of valve performance. If 

the hydrodynamic function is poor, then the valve will not open at low flow rates and 

this can be critical for a patient with already poor cardiac function. However, it is not 

the whole story. It is also important that the valve is capable of being able to function 

for long periods (preferably in excess of twenty years) without failure of the leaflet 

material, either due to biodegradation of the leaflet material or to fatigue failure 

mechanisms. In this respect, research suggests that higher modulus materials may 

provide an advantage in durability terms (O’Connor et el, 2000). Thus the materials 

used in designs L4 and L5 may provide advantages for long-term use over the lower 

modulus materials and their hydrodynamic function must be interpreted with this in 

mind. The balance between the two factors is critical. In this case, a design must be 

shown to have satisfactory, if not optimum, hydrodynamic function combined with 

the potential for long-term durability. In this respect, design L4 may be regarded as

132



having satisfactory performance, particularly if a suitable leaflet thickness can be 

targeted.

7.2 The random parameter estimates

The random parameter estimates provide measures of the amount of variance 

attributable to valve differences at level 2 of the multi-level model and to replicates 

at level 1 of the model, given valve. The valve-related variance is an indicator of the 

reproducibility of the valve manufacturing process and the replicate variance is a 

measure of the reproducibility of the hydrodynamic function testing. These variances 

are estimates which should yield some indication of quality control limits that can 

reasonably be set on the performance of individual valves within a group of valves 

and the amount of variability during hydrodynamic function testing that can 

reasonably be allowed to be attributed to testing differences rather than valve-related 

differences. In the present study, only random parameters associated with the 

intercept parameter were included in the model for all measures: attempts to include 

random parameters associated with the slope parameter generally were not 

significant in the model or the model failed due to lack of convergence, particularly 

for variance associated with replicate testing.

There are some problems with the interpretation of these parameter estimates. 

The Iterative Generalised Least Squares (IGLS) method is a maximum likelihood 

method used by MLwiN in a standard analysis and performs well with large numbers 

of level 2 units in a two-level model. It is known that this method tends to produce 

biased estimates in small samples, because sampling variation of the parameter 

estimates is not accounted for in the algorithm. In general, the fixed parameter 

estimates appear unbiased, but their standard errors may carry relatively large bias
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and are usually underestimated (Hox, 1998). The MLwiN software offers an 

alternative analysis, Restricted IGLS (RIGLS), which provides a bias-adjusted 

parameter estimate, making use of regression coefficient estimates, which carry a 

degree of uncertainty. In theory this method should lead to better estimates especially 

for datasets with small numbers (Hox, 1998). The effects of different methods of 

analysis of a two-level multi-level model have been investigated, comparing IGLS, 

RIGLS and Bayesian fitting algorithms (Browne & Draper, 2000). These authors 

investigated the effects of different analytical methods on a series of simulated 

design configurations, comparing a dataset with a small number of level 2 units (12) 

with one containing more level 2 units (48). They showed that all methods produced 

nearly unbiased estimates of po, Pi and oe , with greater than 90% coverage of 95% 

confidence intervals for the small dataset. They found that IGLS underestimated the 

variance of the level 2 units, but that RIGLS methods often corrected this bias to 

some degree but was still subject to under-coverage of the confidence intervals.

Given the complexity of alternative analytical methods and the minor improvements 

in performance noted, the authors were not able to make any specific 

recommendation for handling datasets with small numbers of level 2 units. It has 

further been suggested, using simulation studies, that multi-level modelling 

parameter estimates remain unbiased when the assumptions of normality and large 

sample size are not met, but again, their standard errors are underestimated (Hox, 

1998). Estimates of the random parameter at the lowest level are usually accurate. 

Reference to sociological research has suggested that, for accurate estimation of 

parameters and their standard errors, a sample of at least 30 groups with at least 30 

individuals within each group would be preferred, depending on which part of the
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analysis is of interest (Hox, 1998). These recommendations also include a 

consideration of the costs incurred in performing the analysis.

The hydrodynamic function data, as discussed throughout Chapter 6, gave 

rise to some inadequately estimated variances, particularly the level 2 variance of the 

intercept. This variance seemed to be estimated more efficiently as the numbers of 

level 2 units increased, as more designs were added to the model. For some 

measures, where the experimental data was more variable, the random parameter 

estimates were very dependent on the model selected. This may be related to the 

differences in the valve designs, in terms both of material modulus and differences 

among valves both between and within designs in leaflet thickness distributions. 

There may, as a result, be some complex covariate influences, which, if accounted 

for, would improve the estimation procedures for these models.

In order to examine the effect of an alternative analysis, the models were 

reanalysed, using RIGLS as the analytical method and the estimates, g u q  , compared 

with the results from the IGLS method.

Table 7.1 cjuo (s.e.), the level 2 estimate of variance on

the intercept parameter of the model: IGLS compared with RIGLS

Hydrodynamic function measure IGLS RIGLS

loge{mean pressure gradient} 0.016 (0.004) 0.019(0.005)

loge {regurgitation} 0.008 (0.002) 0.010 (0.003)

leakage 0.343 (0.522) 0.481 (0.558)

loge {energy loss in forward flow} 0.016 (0.004) 0.019(0.005)

closing energy loss 57.241 (17.814) 64.748 (19.752)

closed energy loss 44.901 (12.277) 54.043 (14.625)

maximum orifice area 0.006 (0.002) 0.007 (0.002)
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Differences in estimates of other parameters and their standard errors 

between the IGLS and RIGLS methods were trivial or non-existent for all the fixed 

parameters and for the random parameter, creo • The IGLS method does appear to 

underestimate the variance of the level 2 units compared with RIGLS, although the 

actual differences are quite small. However, in determining quality control limits, we 

would reject fewer valves if the RIGLS method were used to determine the 

acceptable variance. The variances associated with leakage, closing and closed 

energy losses are relatively high. It is likely that improvements in manufacturing 

methods to reduce the variability in, for example, leaflet trimming would improve 

these parameter estimates. The current results suggest a need to examine these 

factors more carefully, although the measurement of flow is likely to be a significant 

component of the variance associated with these measures.

The best way to improve the random parameter estimates would be to test 

more valves at level 2. This might be a possibility for analysis of a smaller number of 

designs, although the testing is quite labour-intensive. However, it is a bigger 

problem for the study of clinical quality valves where the cost of a single valve is 

likely to be several thousand pounds sterling and, due to commercial and financial 

constraints, no laboratory is likely to have large numbers of valves available for such 

testing. In practice, it is unlikely that more than six valves in any one design or size 

of valve would be available. The variance remains relatively small, however, for this 

parameter estimate, at least for the best measures of hydrodynamic function. In this 

respect, this study has advantages over the sociological analysis commonly using 

multi-level modelling methods, in that the measurement of hydrodynamic function is 

inherently more accurate than most sociological measures and is not dependent on 

measures which are, to some extent, subjective in nature and which are, generally,
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based on scoring methods rather than an objective, continuous quantitative 

measurement. There is also less natural variability amongst valves than amongst 

school pupils (for instance)!
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Chapter 8: Conclusions and Future Directions

This study has demonstrated that the techniques of multi-level modelling can 

be used in a new type of application, the analysis of engineering problems, as well as 

datasets that are of a sociological or epidemiological nature. The particular problem 

addressed by this thesis cannot be easily analysed by other statistical methods to 

provide both parameters that describe individual valve designs in terms of their 

hydrodynamic function and a differentiation of designs with a statistical significance 

attached to that differentiation. The analysis could be improved in statistical terms by 

the availability of larger numbers of valves in each design to be examined. However, 

even if this is not possible, multi-level modelling is capable of useful discriminatory 

testing for this application. Previously, descriptions of valve hydrodynamic function 

properties have been made almost entirely by purely subjective means, using 

observation of very few valves of a design and plotting the hydrodynamic function 

curves of interest. This has encouraged selection of the “best” valve curves to 

demonstrate the desired effect. The availability of multi-level modelling will enable 

objective assessment of valve hydrodynamic function using reasonably 

straightforward, readily available statistical software.

The software package, MLwiN, was fairly easy to use, although the user 

interface is rather different from other software in general use and requires some 

study to use effectively. The manual is directed towards the analysis of sociological 

data and the transfer of knowledge to other applications requires some care in fully 

understanding and developing appropriate models. The software is amenable to 

handling datasets created in commonly used spreadsheets such as MS Excel, 

although the spreadsheet cannot be opened directly into MLwiN, but must be copied
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and pasted. The details of the process are not well explained for the novice and some 

trial and error was required before this was successful. It is critical to the analysis 

that the spreadsheet is formulated in a suitable way. The structure of the spreadsheet 

is easily performed in MS Excel, although it is likely to require some alteration from 

the way the data has been originally entered. In particular, the MLwiN software 

spreadsheet only handles numeric data, so that descriptive entries copied into the 

spreadsheet are lost. Data can be recoded in situ as categorical, where appropriate, in 

which case an alpha-coded name can be replaced into the variable. This entails good 

record keeping so that different groups are accurately identified throughout. The 

graphing capability of MLwiN requires some experimentation for the novice to 

achieve the desired display. The software has been written by statisticians for a 

specific purpose. It would benefit from an iterative feedback process from a variety 

of users in different situations. By this process, the help facility and manuals could 

be extended to improve the explanations of details. Efforts in this direction would 

encourage wider use of the package and enable the development of its applications in 

the broader scientific community.

There is ample scope for extending the work begun in this study. In particular 

for valves fabricated from synthetic elastomers, there are covariate effects that would 

be of interest to investigate. The most obvious of these are the leaflet material 

modulus and the leaflet thickness distribution. Measurement of the material modulus 

is straightforward, but would require a set of valves of similar design and similar 

leaflet thickness distribution. This is more difficult to achieve under laboratory 

conditions as leaflet thickness variability is difficult to tightly control and sufficient 

numbers of valves would be required for precise parameter estimation. The 

investigation of leaflet thickness effects is likely to be easier to begin with. In this
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case, it would be best to fix the design and leaflet material and fabricate a set of 

valves of varying leaflet thickness distribution. Since the leaflet thickness is not 

uniformly distributed over the leaflet, it would be necessary to investigate a series of 

covariates to determine the most sensitive measure of thickness influence. These 

might include mean leaflet thickness, median leaflet thickness, maximum and 

minimum leaflet thicknesses. This investigation would be particularly useful in 

determining the optimum leaflet thickness distribution to achieve good valve 

hydrodynamic function, which is, at present, done largely by a process of trial and 

error. This would enable a scientific assessment of the best valve design parameters, 

considering the durability performance of valves in fatigue testing alongside 

hydrodynamic function performance. These investigations might also enable 

improved modelling of those hydrodynamic function measures that were less 

successfully applied here.

In Chapter 6 a number of modelling issues arose which should be 

investigated further. For example, the use of a weighted model might improve the 

parameter estimation by dealing with the non-constant variance of some measures. It 

might also be useful to apply a non-linear model to investigation of some measures, 

for example closed energy losses.

In conclusion, multi-level modelling has been successfully applied in a novel 

scientific arena, to an engineering problem. The method has enabled discrimination 

of different valve designs by any of several hydrodynamic function measures and 

allowed a statistical assessment of their relative performances.

140



References

Abdullah Khan HT. A multilevel modelling approach to the determinants of urban 

and rural fertility in Bangladesh. Asia-Pacific Population Journal 1997; 12:55-76.

Armstrong N, Welsman JR, Nevill AM, Kirby BJ. Modeling growth and maturation 

changes in peak oxygen uptake in 11-13 yr olds. JAppl Physiol 1999; 87:2230-2236.

Armstrong N, Welsman JR, Williams CA, Kirby BJ. Longitudinal changes in young 

people’s short-term power output. MedSci Sports Exerc 2000; 32:1140-1145.

Bahmaie A, Hughes SW, Clark T, Milner A, Saunders J, Tilling K, Maxwell DJ. 

Serial fetal lung volume measurement using three-dimensional ultrasound. 

Ultrasound Obstet Gynecol 2000; 16:154-158.

Barbara V, Grigioni M, Daniele C, Boccanera G. A statistical approach to the 

quantitative comparison of pulsatile flow in vitro data of prosthetic heart valve 

testing. J Heart Valve Dis 1997; 6:93-100.

Bemacca GM, Mackay TG, Wilkinson R, Wheatley DJ (1995) Calcification and 

fatigue failure in a polyurethane heart valve. Biomaterials 16: 279-285.

Bemacca GM, Mackay TG, Wilkinson R, Wheatley DJ (1997a) Polyurethane heart 

valves: fatigue failure, calcification and polyurethane structure. JBiomed Mater Res 

34: 371-379.

Bemacca GM, Mackay TG, Gulbransen MJ, Donn AW, Wheatley DJ (1997b) 

Polyurethane heart valve durability: effects of leaflet thickness. Int J A rtif Organs 

1997; 20:327-331.

Bemacca GM, O’Connor B, Wheatley DJ. Hydrodynamic function of polyurethane 

prosthetic heart valve: influences of Young’s modulus and leaflet thickness.

141



Transactions o f  the Sixth World Biomaterials Congress, Kamuela, Hawaii: 2000; p. 

584.

Bemacca GM, O’Connor B, Williams DF, Wheatley DJ. Hydrodynamic function of 

polyurethane prosthetic heart valve: influences of Young’s modulus and leaflet 

thickness. Biomaterials 2001; (in press).

Browne WJ, Draper D. Implementation and performance issues in the Bayesian and 

likelihood fitting of multilevel models. Computational Statistics 2000; 15: 391-420.

Chu S-H, Hung C-R, Yang Y-J, Lin F-Y, Wang S-S, Tseng C-D, Liau C-S, Huang P- 

J, Tseng Y-Z, Lee Y-T, Lue H-C, Lien W-P, Wu T-L (1984) Comparison of long­

term results of various cardiac valvular prostheses. In: Bodnar E, Yacoub M (eds) 

Biologic and Bioprosthetic Valves, Yorke Medical Books, New York, pp805-816.

Draper NR, Smith H. Applied Regression Analysis, 3rd edition. Wiley, New York, 

1998.

Giddens DP, Yoganathan AP, Schoen FJ (1993) Prosthetic cardiac valves.

Cardiovasc Pathol 2:167S-177S.

Goldstein H. Multilevel Statistical Models. Kendall’s Library of Statistics 3. Internet 

Edition (http://www.amoldpublishers.com/support/goldstein.htm). Arnold, 1999.

Goldstein H, Healy MRJ. The graphical representation of a collection of means. J  

Royal Stat Soc A, 1995; 158:175-177.

Greenland S. Principles of multilevel modelling. Int J  Epidemiol 2000; 29:158-167.

Gunatillake PA, Meijs GF, McCarthy SJ, Adhikari R. Poly(dimethylsiloxane)/ 

poly(hexamethylene oxide) mixed macrodiol based polyurethane elastomers. I. 

synthesis and properties. JAppl Polym Sci 2000; 76: 2026-2040.

142

http://www.amoldpublishers.com/support/goldstein.htm


Herold M, Lo HB, Reul H, Muckter H, Taguchi K, Giersiepen M, Birkle G, Hollweg 

G, Rau G, Messmer BJ (1987) The Helmholtz-Institute-tri-leaflet-polyurethane-heart 

valve prosthesis: design, manufacturing and first in-vitro and in-vivo results. In 

Planck H., Syre I., Dauner M., Egbers G. (eds) Polyurethanes in Biomedical 

Engineering II, Elsevier Science, Amsterdam, pp231-256.

Hilbert SL, Ferrans VJ, Tomita Y, Eidbo EE, Jones M (1987) Evaluation of 

explanted polyurethane trileaflet cardiac valve prosthesis. J  Thorac Cardiovasc Sur, 

94: 419-429.

Hox JJ. Applied Multilevel Analysis. TT-Publikaties, Amsterdam , 1995.

Hox JJ. Multilevel modelling: when and why. In: Classification, data analysis and 

data highways. Balderjahn I, Mathar R, Schader M (eds.), New York, Springer 

Verlag, 1998. pp 147-154.

Jansen J, Reul H (1992) A synthetic three-leaflet valve. J  Med Eng Technol 16: 27- 

33.

Lancelot R, Lesnoff M, Tillard E, McDermott JJ. Graphical approaches to support 

the analysis of linear-multilevel models of lamb pre-weaning growth in Kolda 

(Senegal). Prev Vet Med 2000; 46:225-247.

Mackay TG, Bemacca GM, Wheatley DJ, Fisher AC, Hindle CS (1996a) In vitro 

function and durability assessment of a polyurethane heart valve prosthesis. Artificial 

Organs 20: 1017-1025.

Mackay TG, Wheatley DJ, Bemacca GM, Hindle CS, Fisher AC (1996b) A new 

polyurethane heart valve prosthesis: design, manufacture and evaluation. 

Biomaterials 17: 1857-1863.

143



Martin DJ, Poole-Warren LA, Gunatillake PA, McCarthy SJ, Meijs GF, Schindhelm 

K. Polydimethylsiloxane/polyether - mixed macrodiol-based polymethane 

elastomers: biostability. Biomaterials 2000; 21: 1021-1029.

Matthews JNS, Altman DG, Campbell MJ, Royston P. Analysis of serial 

measurements in medical research. Br Med J 1990; 2:30-35.

0 ‘ Connor B, Bemacca GM, Straub I, Wheatley DJ. Mechanical testing of flexible 

polyurethanes: candidate selection for a prosthetic heart valve. Transactions o f the 

Sixth World Biomaterials Congress, Kamuela, Hawaii: 2000; p. 294.

Omar RZ, Wright EM, Turner RM, Thompson G. Analysing repeated measurements 

data: a practical comparison of methods. Statist Med 1999; 18:1587-1603.

Rasbash J, Browne W, Goldstein H, Yang M, Plewis I, Healy M, Woodhouse G, 

Draper D, Langford I, Lewis T. A User’s Guide to MlwiN version 2.1. Multilevel 

Models Project, Institute of Education, University of London, 2000.

Rhodes NP, Shortland AP, Hunt JA, Doherty PJ, Williams DF. In vivo biostability of

tfipolyurethanes purported to be biologically stable. Proceedings of the 25 Annual 

Meeting of the Society for Biomaterials, Providence, Rhode Island: 1999; p.62.

Silvey S. Statistical Inference. Chapman and Hall, London, 1975.

Tamsett D, Janacek G. Sampling trips for measuring discards in commercial fishing 

based on multilevel modelling of measurements in the North Sea from NE England. 

Fish Res 1999a; 42:103-115.

Tamsett D, Janacek G, Emberton M, Lart B, Course G. Onboard sampling for 

measuring discards in commercial fishing based on multilevel modelling of 

measurements in the Irish Sea from NW England and N Wales. Fish Res 1999b; 

42:117-126.

144



Tanzi MC, Ambrosio L, Nicolais L, Iannace S, Ghislanzoni L, Mambrito B. 

Comparative physical tests on segmented polyurethanes for cardiovascular 

applications. Clin Mater 1991; 8: 57 -64.



Appendix

Table 3.1 Estimates, bo and bi, for valves GE and LE fabricated from Estane, 

lo g e  {mean pressure gradient} data (n=10 iterations)

unweighted regression weighted regression

valve bo bi Rz(adj) bo bi Rz(adj)

GE1 -6.33 1.57 99.3 -6.46 1.60 99.8

GE2 -6.31 1.55 99.5 -6.34 1.55 99.8

GE3 -6.38 1.55 99.5 -6.55 1.59 99.8

GE4 -6.77 1.62 98.9 -6.88 1.64 99.6

GE5 -6.15 1.49 98.8 -6.18 1.50 99.0

GE6 -6.06 1.53 99.8 -6.10 1.54 99.8

LEI -5.93 1.54 99.2 -6.16 1.58 98.6

LE2 -6.31 1.60 99.8 -6.30 1.60 99.8

LE3 -5.82 1.54 99.6 -5.79 1.54 99.7

LE4 -5.48 1.49 99.6 -5.36 1.47 99.8

LE5 -5.71 1.53 99.8 -5.70 1.53 99.8

LE6 -6.30 1.61 98.7 -6.22 1.59 99.8
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Table 3.2 Estimates, bo and bi, for valves GE and LE fabricated from Estane,

lo g e  {regurgitant flow} data (n=10 iterations)

unweighted regression weighted regression

valve bo bi Rz(adj) bo bi Rz(adj)

GE1 1.01 -0.03 17.9 1.01 -0.03 18.5

GE2 0.93 0.01

NS

-0.3 1.04 -0.01 -1.4

GE3 1.31 -0.04 25.7 1.30 -0.04 20.2

GE4 1.33 -0.04 25.8 1.33 -0.04 26.2

GE5 1.34 -0.03 11.6 1.38 -0.04 15.4

GE6 1.01 0.01

NS

-0.5 1.09 -0.01

NS

-1.3

LEI 1.43 -0.08 42.7 1.54 -0.10 54.5

LE2 1.12 -0.03 8.5 1.16 -0.04 17.2

LE3 1.14 -0.02

NS

4.9 1.15 -0.03 5.9

LE4 0.97 0.00

NS

-2.0 1.01 -0.00

NS

-1.1

LE5 0.84 0.02

NS

3.3 0.80 0.02

NS

5.3

LE6 1.23 -0.04 6.6 0.98 0.00

NS

0.0
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Table 3.3 Estimates, bo and b], for valves GE and LE fabricated from Estane,

leakage flow data (n=10 iterations)

unweighted regression weighted regression

valve bo bi Rz(adj) bo bi Rz(adj)

GE1 3.33 -0.58 51.9 3.26 -0.57 49.9

quadratic 18.6932-6.6478 lx+0.593703xz; Rz (adj) 59.7

GE2 4.26 -0.73 55.3 3.08 -0.51 35.0

quadratic 25.523988-9.110785x+0.818736xz; Rz (adj) 64.8

GE3 5.04 -0.83 65.0 5.30 -0.90 58.8

quadratic 20.920538-7.106817x+0.614089xz; Rz (adj) 69.4

GE4 4.31 -0.72 60.1 4.39 -0.73 64.6

quadratic 23.576969-8.327796x+0.744982xz; Rz (adj) 68.8

GE5 3.12 -0.56 37.1 2.83 -0.50 39.0

quadratic 25.500577-9.405997x+0.866256xz; Rz (adj) 48.9

GE6 4.32 -0.71 61.4 4.26 -0.70 54.7

quadratic 18.747312-6.410852x+0.559173xz; Rz (adj) 66.2

LEI 4.49 -0.72 49.1 5.24 1 -0.87 54.9

quadratic 28.6751-10.275x4-0.936183xz; Rz (adj) 62.0

LE2 4.76 -0.76 58.2 4.59 -0.77 58.2

quadratic 28.735 l-10.2367x+0.939535xz; Rz (adj) 69.8

LE3 4.90 -0.75 58.2 4.59 -0.70 | 49.0

quadratic 32.031492-11.482345x+1.052624xz;lR2 (adj) 74.0

LE4 4.90 -0.82 69.2 4.52 -0.74 76.1

quadratic 27.836809-9.91461x4-Cl.893558xz; Rz (adj) 80.2

LE5 4.73 -0.73 57.4 4.77 -0.74 59.6

quadratic 29.019863-10.359174x+0.945594xz; Elz (adj) 70.5

LE6 5.26 -0.72 53.8 5.31 -0.72 61.0

quadratic 27.4648-9.5048x+0.861115xz; Rz 'adj) 64.1
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Table 3.4 Estimates, bo and bi, for valves GE and LE fabricated from Estane,

loge{energy losses forward flow} data (n=10 iterations)

unweighted regression weighted regression

valve bo bi Rz(adj) bo bi Rz(adj)

GE1 -5.27 1.78 99.1 -4.92 1.71 99.5

GE2 -5.16 1.74 99.1 -4.61 1.63 99.4

GE3 -5.37 1.77 99.3 -4.92 1.69 99.3

GE4 -5.64 1.81 98.9 -5.21 1.73 99.3

GE5 -5.13 1.71 98.8 -4.70 1.63 99.1

GE6 -5.05 1.75 99.4 -4.77 1.70 99.4

LEI -4.48 1.66 84.5 -4.17 1.62 98.4

LE2 -5.33 1.82 99.3 -5.05 1.77 99.4

LE3 -4.80 1.76 99.1 -4.35 1.68 99.3

LE4 -4.52 1.72 99.1 -4.06 1.64 99.3

LE5 -4.73 1.76 99.4 -4.24 1.67 98.9

LE6 -5.20 1.81 98.5 -4.59 1.69 99.3
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Table 3.5 Estimates, bo and bi, for valves GE and LE fabricated from Estane,

energy losses closing data (n=10 iterations)

unweighted regression weighted regression

valve bo bi Rz(adj) bo bi Rz(adj)

GE1 -2.07

NS

6.33 70.5 11.2 3.87 61.6

quadratic -223.904+93.915lx-8.56982 xz; Rz (adj) 89.1

GE2 -11.90 9.64 67.8 -8.62 8.25 79.0

quadratic -313.332705+127.853933x-l 1.60801 lxz; Rz (adj) 83.9

GE3 -7.35

NS

8.62 70.8 -13.19 9.60 81.8

quadratic -305.824158+126.495818x-l 1.538386xz; Rz (adj) 89.0

GE4 -9.40 9.30 68.9 -18.46 10.96 I 79.7

quadratic -365.26305+149.846047x-13.758568xz; Rz (adj) 90.4

GE5 -14.00 10.37 75.2 -20.32 11.61 79.2

quadratic -285.938497+117.842508x-10.526216xz; Rz (adj) 85.8

GE6 -17.40 9.92 73.0 -21.80 10.74 79.4

quadratic -230.894384+94.355538x-8.276157xz; Rz (adj) 79.9
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LEI -15.8

NS

9.65 4.3

NS

-6.9

NS

7.58 9.7

quadratic -345.022+139.768x-12.7458xz; Rz (adj) 7.8, regression NS

LE2 -7.33

NS

8.02 68.8 -10.71 8.59 76.8

quadratic -254.9003931[+105.93041 lx-9.59867xz; Rz (adj) 82.1

LE3 -11.26 9.24 72.7 -15.39 10.00 78.1

quadratic -219.061612+91.491183x-8.070346xz; Rz (adj) 80.3

LE4 -12.05 9.08 84.3 -14.07 9.41 89.0

quadratic -191.071734+80.05283lx-6.975368xz; Rz (adj) 91.1

LE5 -9.01 7.87 62.1 -9.00 7.86 65.8

quadratic -184.688978+77.499209x-6.839986xz; Rz (adj) 68.1

LE6 -4.26

NS

7.30 76.1 -4.73

NS

7.33 82.3

quadratic -165.373+71.0241x-6.24757xz; Rz (adj) 83.8
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Table 3.6 Estimates, bo and bi, for valves GE and LE fabricated from Estane, 

energy losses closed data (n=10 iterations)

unweighted regression weighted regression

valve bo bi Rz(adj) bo bi Rz(adj)

GE1 45.9 -7.24 47.7 45.7 -7.23 47.1

quadratic 267.402-94.6975x+8.5571xz; Rz (adj) 57.2

GE2 57.91 -9.02 51.1 55.60 -8.53 1 51.8

quadratic 135.070211-1I18.271309x+10.673281xz; Rz (adj) 60.8

GE3 68.91 -10.53 61.3 71.89 -11.29 54.9

quadratic 270.585992-90.174386x+7.796065xz; Rz (adj) 65.4

GE4 57.91 -8.68 60.2 57.24 -8.50 65.2

quadratic 286.251103-98.864532x+8.828327xz; Rz (adj) 68.6

GE5 42.76 | -6.56 32.7 38.21 -5.61 33.0

quadratic 342.621961-1125.061109x+11.606986xz; Rz (adj) 46.5

GE6 54.31 -7.89 53.6 55.61 -8.20 51.2

quadratic 249.133237-84.937883x+7.552427xz; Rz (adj) 59.8

I
t
!

LEI 59.50 -8.94 29.3 1 52.20 -7.62 23.1

quadratic 329.81-115.745x+10.4625xz; Rz (adj) 36.5

LE2 74.71 -11.45 64.5 72.95 -11.17 61.7

quadratic 369.4999-128.031066x+11.429529xz; Rz (adj) 72.9

LE3 76.55 -11.39 65.8 79.39 -12.22 59.0

quadratic 381.973207-132.288672x+ll.86184xz; Rz (adj) 75.5

LE4 68.19 -10.65 68.4 62.64 -9.37 77.8

quadratic 373.324707-131.62459x+11.889179xz; Rz (adj) 79.9

LE5 70.33 -10.43 63.7 71.93 -10.72 66.2

quadratic 347.06795-120.106047x+10.774503xz; Rz (adj) 72.9

LE6 86.20 -12.1 67.1 89.10 -12.60 73.3

quadratic 325.271-106.643x+9.2699xz; Rz (adj) 72.2
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Table 3.7 Estimates, bo and bi, for valves GE and LE fabricated from Estane,

mean effective orifice area data (n=10 iterations)

unweighted regression weighted regression

valve bo bi Rz(adj) bo bi Rz(adj)

GE1 -0.06

NS

0.28 85.5 -0.07

NS

0.28 84.8

GE2 -0.28 0.34 94.9 -0.24 0.33 94.9

GE3 -0.34 0.36 94.3 -0.22 0.33 94.7

GE4 -0.04

NS

0.30 87.3 0.02

NS

0.292 84.8

GE5 -0.17 0.33 82.2 -0.17 0.33 82.0

GE6 -0.18 0.30 96.8 -0.18 0.30 97.1

LEI -0.37 0.31 94.2 -0.27 0.29 92.9

LE2 -0.14 0.28 92.2 -0.17 0.29 94.6

LE3 -0.40 0.31 94.8 -0.50 0.33 94.9

LE4 -0.42 0.30 92.4 -0.38 0.29 92.1

LE5 -0.34 0.29 95.5 -0.35 0.29 96.1

LE6 -0.26 0.30 92.9 -0.32 0.31 94.6
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Table 3.8 Estimates, bo and bi, for valves GE and LE fabricated from Estane,

loge{mean pressure gradient} data (n=5 iterations)

unweighted regression weighted regression

valve bo bi Rz(adj) bo bi Rz(adj)

GE1 -6.378 1.584 99.6 -6.503 1.608 99.8

GE2 -6.147 1.516 99.4 -6.344 1.552 99.9

GE3 -6.147 1.516 99.4 -6.344 1.552 99.9

GE4 -6.988 1.657 99.7 -6.950 1.650 99.5

GE5 -6.222 1.506 98.6 -6.482 1.553 99.5

GE6 -6.057 1.532 99.8 -6.108 1.541 99.8

LEI -5.771 1.511 98.8 -6.107 1.573 97.3

LE2 -6.306 1.599 99.7 -6.24 1.587 99.6

LE3 -5.993 1.575 99.7 -5.891 1.557 99.8

LE4 -5.512 1.499 99.6 -5.369 1.474 99.7

LE5 -5.624 1.517 99.8 -5.660 1.523 99.7

LE6 -5.885 1.528 98.8 -6.144 1.575 99.9
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Table 3.9 Estimates, bo and bi, for valves GE and LE fabricated from Estane,

loge{regurgitant flow} data (n=5 iterations)

unweighted regression weighted regression

valve bo bi Rz(adj) bo bi Rz(adj)

GE1 1.071 -0.044 26.1 1.088 -0.047 27.3

GE2 0.946 0.009

NS

-3.2 1.008 -0.002

NS

-4.3

GE3 1.341 -0.050 39.3 1.334 -0.050 53.2

GE4 1.383 -0.053 33.8 1.370 -0.050 32.2

GE5 1.417 -0.048 24.5 1.357 -0.038 16.3

GE6 0.985 0.014

NS

-2.2 1.080 -0.006

NS

-3.9

LEI 1.440 -0.085 44.6 1.513 -0.099 52.0

LE2 1.189 -0.044 16.6 1.209 -0.049 17.4

LE3 1.132 -0.022

NS

2.2 1.062 -0.009 -3.5

LE4 0.988 -0.002

NS

-4.2 1.080 -0.021 7.1

LE5 0.978 -0.008

NS

-3.2 1.024 -0.090

NS

1.6

LE6 1.250 -0.041

NS

1.9 0.796 0.042 18.9
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Table 3.10 Estimates, bo and bi, for valves GE and LE fabricated from Estane,

leakage flow data (n=5 iterations)

unweighted regression weighted regression

valve bo bi Rz(adj) bo bi Rz(adj)

GE1 3.844 -0.666 54.9 3.793 -0.656 52.8

Quadratic

weighted

17.466-6.045x+0.527xz; Rz (adj) 58.3 

16.9-5.8lx+0.503x2; R2 (adj) 55.5

GE2 4.203 -0.719 48.9 3.811 -0.638 51.8

Quadratic

weighted

25.888-9.266x+0.835xz; Rz (adj) 57.4 

23.3-8.23x+0.732x2; R2 (adj) 57.9

GE3 5.464 -0.924 | 69.9 5.297 -0.909 58.3

Quadratic

weighted

17.108-5.519x+0.450xz; Rz (adj) 71.1 

24.9-8.67x+0.764x2; R2 (adj) 66.3

GE4 4.275 -0.731 61.5 4.089 -0.677 76.0

Quadratic

weighted

26.43

25.

6-9.474x+0.855xz; Rz (adj) 72.7 

2-8.95x+0.803x2; R2 (adj) 83.7

GE5 2.976 -0.555 32.8 1.383

NS

-0.272

NS

5.9

Quadratic

weighted

36.853-13.924x+l

39.7-15.1x+1.4

.308x2; R2 (ad 

Gx2; R2 (adj)

Ij) 60.0 

56.9

GE6 4.704 -0.764 58.9 4.713 -0.768 55.2

Quadratic

weighted

23.566-8.226x+0.731xz; Rz (adj) 65.5 

24.5-8.59x+0.767x2; R2 (adj) 62.1
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LEI 4.312 -0.692 39.4 4.158 -0.671 34.0

Quadratic

weighted

27.487-9.852x+0. 

28.3-10.2x+0.926x2; R2 (adj)

897xz; Rz (adj) 47.4

43.8, but plots look a bit better

LE2 4.603 -0.717 45.8 3.709 -0.590 19.7

Quadratic

weighted

32.10

45

9-1.592x4-1.

6-17.0x4-1.6

066xz; Rz (adj) 59.1 

Ox2; R2 (adj) 59.5

LE3 4.723 -0.693 57.3 3.564 -0.493 36.7

Quadratic

weighted

33.523-12.093x4-1.118xz; Rz (ad 

35.9-13.0x4-1.21x2;R 2 (adj)';

j) 78.9 

73.2

LE4 5.518 -0.929 79.5 5.316 -0.878 85.5

Quadratic

weighted

27.297-9.570x4-0.

26.9-9.39x4-0.83

850xz; Rz (adj) 88.9 

lx2; R2 (adj) 92.6

LE5 5.121 -0.820 59.5 5.127 -0.815 62.5

Quadratic

weighted

30.483-10.880x4-0.989xz; Rz (ad 

26.7-9.40x+0.847x2; R2 (adj)

j) 71.2 

70.7

LE6 4.690 -0.605 45.1 5.056 -0.660 67.3

Quadratic

weighted

28.71]

24.!

1-10.123x4-0.935xz; Rz (ad 

5-8.41x4-0.760x2; R2 (adj)

j) 60.1 

74.6
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Table 3.11 Estimates, bo and bi, for valves GE and LE fabricated from

Estane, loge{energy losses forward flow} data (n=5 iterations)

unweighted regression weighted regression

valve bo bi Rz(adj) bo bi Rz(adj)

GE1 -5.341 1.794 99.3 -4.945 1.723 99.4

weighted

-12.3

-11.9+4.39x-0.256x2;

13+4.548x-C 

R2 (adj) 99.

,270x2; R2 (ad 

6, plots a bit b

Ij) 99.6

etter esp. normal prob.

GE2 -5.017 1.707 99.3 -4.637 1.635 99.7

weighted

-11.254+4.136x-C 

-13.4+4.95x-0.2

.240x2; R2 (ad 

I13x2; R2 (adj)

Ij) 99.5 

99.9

GE3 -5.344 1.764 99.2 -5.124 1.724 99.5

weighted

-10.826+3.928x-C 

-12.6+4.60x-0.2

.212x2; R2 (ad 

!76x2; R2 (adj)

Ij) 99.4 

99.6

GE4 -5.829 1.842 99.0 -5.502 1.781 99.2

weighted

-14.439+5.239x-0

-13.3+4.80x-0.2

,332x2; R2 (ad 

.90x2; R2 (adj)

ij) 99.5 

99.5

GE5 -5.139 1.705 98.7 -4.697 1.623 99.3

weighted

-12.363+4.556x-0 

-9.79+3.55x-0.1

,279x2; R2 (ad 

82x2; R2 (adj)

j) 99.1 

99.5

GE6 -5.021 1.744 99.4 -4.591 1.663 99.3

weighted

-13.066+4.925x-0

-9.85+3.67x-0.1

.312x2; R2 (ad 

91x2; R2 (adj)

j) 99.8 

99.6
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LEI -4.682 1.713 98.9 -5.872 1.961 97.3

weighted

-10.933+4.183x-0.242xz; Rz (adj) 99.1 

-14.4+5.38x-0.344x2; R2 (adj) 97.8

LE2 -5.281 1.814 99.2 -5.005 1.761 99.3

weighted

-13.523+5.073-0.319xz; Rz (adj) 99.6 

-12.2+4.57x-0.271x2; R2 (adj) 99.6

LE3 -4.938 1.785 99.0 -4.318 1.671 99.1

weighted

-15.777+6.075x-0.421xz; Rz (adj) 99.8 

-14.1+5.43x-0.360x2; R2 (adj) 99.7

LE4 -4.560 1.729 99.0 -4.220 1.667 99.2

weighted

-14.060+5.498x-0.371xz; Rz (adj) 99.6 

-15.0+5.86x-0.407x2; R2 (adj) 99.7

LE5 -4.664 1.746 | 99.4 -4.278 1.679 98.9

weighted

-12.080+4.687x-0.289xz; Rz (adj) 99.8 

-13.9+5.41x-0.359x2; R2 (adj) 99.7

LE6 -4.879 1.747 98.9 -4.337 1.648 99.3

weighted

-10.469+3.962x-0.218xz; Rz (adj) 99.1 

- 1 1.9+4.54x-0.276x2; R2 (adj) 99.6
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Table 3.12 Estimates, bo and bi, for valves GE and LE fabricated from Estane,

energy losses closing data (n=5 iterations)

unweighted regression weighted regression

valve bo bi Rz(adj) bo bi Rz(adj)

GE1 -0.343

NS

6.021 63.6 -4.556

NS

6.849 73.3

Quadratic

weighted

-257.775+107.688x-9.951 xz; Rz (adj) 89.4 

-258+108x-10.0x2; R2 (adj) 91.6

GE2 -12.364 9.137 73.2 -1.959

NS

7.079 75.6

Quadratic

weighted

-280.983+114.897x-10.332xz; Rz 

-188+78.8x-6.83x2; R2 (adj)

[adj) 86.8 

83.2

GE3 -5.491

NS

8.245 63.7 -9.707

NS

8.840 78.9

Quadratic

weighted

-336.114+138.767x-12.771xz; Rz 

-336+138x-12.7x2; R2 (adj)

[adj) 86.1 

*3.2

GE4 -6.583

NS

8.699 66.6 -10.019

NS

9.533 63.1

Quadratic

weighted

-362.60

-3

l+149.166x-13.737xz; Rz 

99+164x-15.2x2; R2 (adj)

[adj) 90.7

n.  0

GE5 -12.007

NS

10.114 72.4 -9.594

NS

9.573 76.2

Quadratic

weighted

-311.191

-3

3+128.190x-11.548xz; Rz 

06+126x-11.3x2; R2 (adj)

[adj) 85.9 

*8.2

GE6 -19.140 10.468 78.0 -32.928 13.392 86.9

Quadratic

weighted

-208.839+85.507x-7.356xz; Rz (adj) 83.0 

-310+127x-11.6x2; R2 (adj) 95.1
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LEI 1.982 6.330 59.4 I -0.663 6.737 78.5

Quadratic

weighted

-219.279+93.785x-8.568xz; Rz (adj) 74.7 

-212+90.5x-8.19x2; R2 (adj) 88.4

LE2 -4.190 7.408 63.6 -5.780 7.653 69.3

Quadratic

weighted

-245.028+102.629x-9.332xz; Rz (adj) 77.2 

-246+103x-9.35x2; R2 (adj) 81.3

LE3 -13.674 9.762 77.3 -16.403 10.298 81.7

Quadratic

weighted

-207.895+86.637x-7.543xz; Rz (adj) 83.4 

-238+99.5x-8.90x2; R2 (adj) 87.8

LE4 -11.757 9.129 83.9 -14.155 9.542 88.3

Quadratic

weighted

-203.528+85.217x-7.483xz; Rz (adj) 91.7 

-201+84.2x-7.36x2; R2 (adj) 94.5

LE5 -7.811 7.923 78.1 -7.396 7.806 82.1

Quadratic

weighted

-150.4$

- I f

14+64.510x-5.563xz; Rz (adj) 83.0 

>l+64.5x-5.55x2; R2 (adj) 86.8

LE6 -6.591 7.716 79.0 -4.450 7.318 78.8

Quadratic

weghted

-122.323+53.575x-4.504xz; Rz (adj) 82.2 

-135+58.7x-4.99x2; R2 (adj) 83.5
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Table 3.13 Estimates, bo and bi, for valves GE and LE fabricated from Estane,

energy losses closed data (n=5 iterations)

unweighted regression weighted regression

valve bo bi Rz(adj) bo bi Rz(adj)

GE1 52.081 -8.233 51.5 51.531 -8.105 51.2

Quadratic

weighted

256.74

24

12-89.059x+7.911xz; Rz (adj) 56.9 

9-85.7x+7.56x2; R2 (adj) 55.8

GE2 57.228 -8.936 44.1 52.939 -8.009 47.4

Quadratic

weighted

344.23*

33

M22.063x+11.05 lxz; Rz (adj) 52.7 

>3-114x+10.2x2; R2 (adj) 54.3

GE3 74.466 -11.698 67.2 71.351 -11.279 55.7

Quadratic

weighted

215.259-67.279x+5.438xz; Rz (adj) 68.0 

303-102x+8.94x2; R2 (adj) 61.4

GE4 57.139 -8.747 61.0 56.201 -8.340 77.5

Quadratic

weighted

322.043

31

-113.265x+10.222xz; Rz (adj) 72.1 

7-11 lx+10.0x2; R2 (adj) 84.9

GE5 42.721 -6.884 32.8 20.236 -2.934 3.2

Quadratic

weighted

471.576-176.131x+16.553xz; Rz (adj) 61.3 

531-200x+19.0x2; R2 (adj) 63.5

GE6 56.791 -8.261 46.0 57.377 -8.402 44.0

Quadratic

weighted

323.533

33

-113.777x+10.344xz; Rz (adj) 55.2 

5-119x+10.9x2; R2 (adj) 53.8
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LEI 66.241 -10.116 46.0 65.443 -10.068 40.9

Quadratic

weighted

349.575-122.106+1

376-132x+12.C

0.972xz; Rz (adj) 52.2 

)x2; R2 (adj) 49.4

LE2 74.669 -11.325 54.7 61.039 -9.339 26.5

Quadratic

weighted

411.054

61

-144.323x+13.035xz; Rz (adj) 63.7 

2-225x+20.9x2; R2 (adj) 61.4

LE3 79.200 -11.693 66.8 87.582 -13.834 59.4

Quadratic

weighted

376.377-129.318x+11.541xz; Rz (adj) 75.4 

557-202x+18.8x2; R2 (adj) 82.0

LE4 75.189 -11.864 78.9 70.708 -10.851 83.3

Quadratic

weighted

357.692-123.952x+11.023xz; Rz (adj) 88.3 

355-123x+10.9x2; R2 (adj) 91.4

LE5 73.801 -11.325 67.7 74.453 -11.427 68.5

Quadratic

weighted

357.297-123.766x+11.054xz; Rz (adj) 76.2 

351-122x+10.9x2; R2 (adj) 76.5

LE6 77.127 -10.187 62.1 82.445 -11.007 81.4

Quadratic

weighted

359.713

29

-122.162x+10.997xz; Rz (adj) 71.8 

7-96.7x+8.44x2; R2 (adj) 84.9
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