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Abstract

The m am m alian suprachiasmatic nucleus (SCN) of the hypothalamus is the site 

of a c ircad ian pacem aker tha t drives many rhythms of behaviour and 

physiology. The pacem aker displays a period of approxim ately 24 hours and can 

be entrained to external conditions by a variety of environmental cues. The 

principle entraining cue is the daily light-dark cycle  but other non-photic stimuli 

can also reset the phase. In rodents, the pacem aker is sensitive to photic 

influences during the night while non-photic stimuli are only e ffective  in resetting 

the pacem aker during the day. One afferent pa thw ay to the SCN originating in 

the m edian raphe nucleus contains serotonin (5-HT) and has been im plicated in 

the m ediation of non-photic phase shifting of the pacem aker. Disruption of this 

pa thw ay by neurotoxins can result in alteration of several parameters of 

c ircad ian rhythmicity. Application of 5-HT or its receptor agonists during the day 

results in phase advances of pacem aker period. A role for the neurotransmitter y- 

amino butyric ac id  (GABA) in c ircadian rhythmicity has also been shown. The 

GABAb recepto r agonist baclofen has been shown to phase advance  the 

pacem aker during the day in a m anner similar to 5-HT. Baclofen has also been 

shown to result in an increase in the release of newly synthesised 5-HT within the 

SCN area during the day. The substituted am phetam ine, 3,4- 

m ethylenedioxym etham phetam ine (MDMA) is a com m on drug of misuse as well 

as being a selective 5-HT neurotoxin. At neurotoxic doses it is known to result in 

degeneration of 5-HT terminal areas. In this study, the m agnitude of phase shifts 

due to daytim e injection of baclo fen to Syrian hamsters m aintained in constant 

darkness was com pared  before and after administration of a neurotoxic dose of 

MDMA. Immunohistochemical techniques were em ployed to quantify neurotoxic 

dam age  to the 5-HTergic terminal field within the SCN and cell bodies within the 

raphe nuclei. It was found tha t the m agnitude of bac lo fen  induced phase
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advances during the day were significantly greater than phase shifts induced by 

control injections of saline a t the same time. There was a significant d ifference 

betw een the m agnitude of phase advances to baclo fen  before and after 

treatm ent with MDMA. The difference in density of im m unohistochem ical 

staining for 5-HT was also different between MDMA treated  animals and 

untreated controls. These results imply there may be interaction between the 

GABAergic and 5-HTergic systems within the c ircad ian system for m ediation of 

non-photic phase shifting of the pacem aker during the day in rodents.
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1 Introduction

1.1 Circadian Rhythms

Circadian rhythms are bio logical cycles tha t follow a regular pattern of 

approxim ately 24 hours and are controlled by an endogenous pacem aker. They 

are manifest in numerous physiological and behavioural processes such as body 

tem perature, hormone levels and wheel running behaviour. The natural period 

of any individual an im al’s clock, or tau (x), is synchronised to environmental 

conditions by the process of entrainment. This involves the synchronisation of the 

c lock by environmental stimuli. The most predom inant stimuli, or zeitgeber, is light 

a lthough other non-photic stimuli also reset the phase of the clock.

M anipulation of the endogenous clock can be ach ieved  under laboratory 

conditions by m anipulation of environmental zeitgebers. The result of this can be 

observed as measurable changes in various physiological or behavioural 

processes, such as wheel-running activity in the case of laboratory animals. 

Through the removal of zeitgebers and establishment of constant environmental 

conditions, x can be measured from changes in these activ ity  patterns.

C ircadian time (CT) measures the state of the endogenous c lock under constant 

environmental conditions with CT12 being defined as the time of activ ity onset 

for nocturnal animals. Giving pulses of light a t different c ircad ian times results in 

phase shifts of the c lock reflected as changes in daily activ ity  patterns. The 

m agnitude and direction of these phase shifts varies depend ing upon the time 

a t which the light pulse is given. G raphically plotting time of day against phase 

shift produces in a phase-response curve (PRC) tha t varies slightly between 

species (Figure 1.1). For mammals, pulses given in the early subjective night result
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in phase delays, in the late subjective night phase advances and during the 

subjective day no phase shift a t all (Dann and Pittendrigh 1976).

Non-photic stimuli are also capab le  of resetting the c ircad ian  clock. These 

include food availability (Mistlberger 1992), social interaction (Mrosovsky 1988), 

behavioural activ ity (Mrosovsky 1995), exposure to  a novel running wheel 

(Mrosovsky and Salmon 1987) and sleep deprivation (Antle and Mistlberger 

2000). The PRC is d ifferent from tha t seen in response to photic  stimuli, w ith phase 

advances during subjective day and very little e ffec t during subjective night 

(Figure 1.2).
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Figure 1.1 Photic phase response curve for the hamster. A pulse of light given early 
the c ircad ian night results in phase delays of c ircad ian rhythms, while pulses given 
late in the night result in advances.
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Figure 1.2 Examples of PRCs for three different non-photic stimuli. Each of these stimuli result 
in phase advances a t CT6. (From (Mrosovsky, Reebs et al. 1989).
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1.2 The Suprachiasmatic Nucleus

In mammals, the site of the pacem aker is the suprachiasmatic nucleus (SCN) of 

the hypothalamus (Meijer and Rietveld 1989; Moore 1995). For mammals, this is 

loca ted  above  the optic  chiasm and below the third ventricle. Lesions of the 

SCN result in the loss of rhythmicity in the animal (Rusak 1977). Cells of the SCN 

show circad ian rhythms of e lectrical activity (Gillette 1986) and this rhythmicity 

continues afte r isolation of the nucleus from other brain areas, indicating its 

endogenous nature. Electrical stimulation of the nucleus results in phase shifts of 

c ircad ian rhythms (Rusak and Groos 1982). Transplantation of SCN tissue from 

in tact to lesioned animals results in re-establishment of rhythmicity, with x being 

tha t of the donor animal (Ralph, Foster e t al. 1990). These studies would indicate 

that the SCN is involved in the generation of c ircad ian rhythms and in the 

absence of environmental cues or input from other brain areas, is capab le  of 

generating endogenous rhythms.

Despite the SCN being com posed of a relatively small number of cells, the 

neuropil is com plex with many synapse types. Axons enter the nucleus from all 

directions and dendrites extend outwith it. Some collaterals term inate on other 

neurones within the nucleus forming local circuits and some axons connec t the 

left and right nuclei (Van den Pol 1991). Several lines of evidence point to the 

SCN being com posed of subdivisions based upon cell size, afferent input or 

efferent output and transmitter content of neurone cell bodies (Card and Moore 

1982; Hoorneman and Buijs 1982; Van den Pol 1991). Two major subdivisions are 

the ventrolateral and dorsomedial regions with other subdivisions based upon 

immunostaining for cellular components. Afferent pathways synapse on the 

ventrolateral SCN where they form an extensive and com plex terminal field.
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There are three main afferent inputs conveying information on environmental 

conditions to the SCN. The retinohypothalam ic tract (RHT) is a monosynaptic 

tract originating in the retinal ganglion cells, which conveys pho tic  information 

predom inantly to the SCN (johnson, Morin et al. 1988). The 

gen icu lohypotha lam ic tract (GHT) runs from the thalam ic in tergeniculate leaflet 

(IGL) to the SCN (Morin, Blanchard et al. 1992) and is thought to convey non- 

photic information tha t acts to regulate photic stimuli (Albers and Ferris 1984). 

The IGL itself receives d irect input from the retina and this provides an indirect 

source of pho tic  information for the SCN (Morin 1994). Non-photic information is 

also received from the midbrain raphe nuclei (Meyer-Bernstein and Morin 1996; 

Leander, Vrang et al. 1998). There is evidence for a d irect neuronal projection 

from the retina to  the raphe (Shen and Semba 1994) but not tha t this synapses 

onto cells tha t pro ject to the SCN (Kawano, Decker et al. 1996).

1.3 Pharmacology of the Circadian System

In vitro  e lectrophysiological and pharm aco log ica l studies using isolated SCN 

slices dem onstrate the e ffec t on firing patterns of SCN neurones from application 

of agonists and antagonists of neurotransmitter receptors. In vivo 

pharm aco log ica l manipulations allow observation of changes in the timing of 

activ ity levels and thus interpretation of the state o f the internal clock. Alteration 

of either phase or period of the clock may occur through the d irect action of a 

drug on pacem aker cells. Alternatively, the site of action  for the drug may be in 

another brain area such as the raphe nuclei where it acts to  m odula te  afferent 

input to the SCN.

Several neurotransmitters and neuromodulators in the c ircad ian timing system 

utilise several receptor subtypes for com m unicating environm ental information.
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The excitatory am ino-acid  g lu tam ate is the principal neurotransmitter of the RHT 

(Ebling 1996), while non-photic stimuli a c t through the neuropeptide Y containing 

cells of the GHT (Card and Moore 1989) and serotonin (5-hydroxytryptamine or 5- 

HT), conta in ing cells of the raphe (Meyer-Bernstein and Morin 1996). The 

principle neurotransmitter of the SCN is y-aminobutyric ac id  (GABA) which is 

found along with its synthetic enzyme g lu tam ate decarboxylase (GAD) in 

virtually all SCN neurones (Moore and Speh 1993).

1.4 Serotonin

Serotonin is an indolealkylamine, also known as 5-hydroxytryptam ine (5-HT), 

synthesised from its dietary precursor the amino ac id  tryptophan. The synthetic 

reaction is catalysed by the enzyme tryptophan hydroxylase and  results in the 

production of 5-hydroxytryptophan (5-HTP). Tryptophan hydroxylase is 

synthesised in serotonergic nerve cell bodies and undergoes axonal transport to 

terminal areas where the majority of 5-HT synthesis takes p lace  (Meek and Neff 

1972). Decarboxylation of 5-HTP by the enzyme arom atic  L-amino acid  

decarboxylase results in the formation of 5-HT. O nce synthesised, 5-HT is 

accum ula ted  via a m em brane transporter in storage vesicles within nerve 

terminals. The mechanism of release is by exocytosis which is sensitive to  the 

sodium channel b locker tetrodotoxin (TTX) and to the presence of ca lc ium  ions, 

whether measured in vitro from brain slices (Carboni, C adoni et al. 1989) or in 

vivo  by microdialysis (Auerbach, Minzenberg e t al. 1989; Carboni and  Dichiara 

1989).

Release of 5-HT is known to be regulated by the action  of inhibitory 

autoreceptors, since release inhibition by 5-HT agonists was shown to  be blocked 

by the 5-HT antagonist methiothepin (Starke, Gothert et al. 1989). Serotonergic
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neurones have both som atodendritic and presynaptic autoreceptors, which 

differ in their pharm aco log ica l profiles. The som atodendritic autoreceptors 

suppress cell firing and are involved in collateral inhibition (Aghajanian 1981) as 

well as leading to reductions in synthesis and release of 5-HT in terminal areas. 

Presynaptic autoreceptors however are only involved in inhibition of 5-HT release.

The effects of synaptically released 5-HT are term inated by means of an 

reuptake process m ediated by a m em brane bound transporter protein (Graham 

and Longer 1992). In nervous tissue, 5-HT is m etabolised by the process of 

oxidative deam ination that is catalysed by the m itochondria l enzyme 

m onoam ine oxidase to produce 5-hydroxyindoleaceta ldehyde. This is rapidly 

oxidised by a ldehyde dehydrogenase to produce 5-hydroxyindoleacetic ac id  

(5-HIAA), which diffuses into the cerebrospinal fluid and  is e lim inated from the 

brain.

1.5 Anatomy of the Serotonergic System

Techniques used to e luc ida te  the anatom y of the 5-HT system have included 

neurotoxic lesioning; retrograde and anterograde tracing; autorad iography 

following in vivo  and in vitro app lica tion  of [3H]5-HT; and  immunohistochemistry 

for tryptophan hydroxylase or 5-HT.

The 5-HT system consists of a m orphologically diverse group of neurones with cell 

bodies loca ted  in the m idbrain raphe nuclei and some regions of the reticular 

form ation (Steinbusch 1981). There are tw o distinct subdivisions, a rostral division 

with cell bodies loca ted  in the m idbrain and rostral pons which projects to the 

forebrain and a cauda l division loca ted  in the m edulla ob longata  with 

descending projections to the spinal cord (Lidov and Molliver 1982). The rostral
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serotonergic division consists of the cauda l linear nucleus, the dorsal raphe 

nucleus (DR), the m edian raphe nucleus (MR), the B9 group and in primates a 

large dispersed group of cells loca ted  in the nucleus pontis oralis (Azmitia and 

Gannon 1986). The DR and MR together accoun t for approxim ately 80% of 

forebrain serotonergic terminals (Azmitia 1978).

The DR is loca ted  in the ventral part of the periaqueducta l grey m atter of the 

m idbrain and extends into the periventricular grey m atter of the rostral pons. It 

displays bilateral symmetry and has a diverse neuronal population, with the 

smallest cells on or near the midline and the largest cells in the most lateral and 

dorsal regions of the nucleus (Tork 1985). Several sub regions are distinguishable 

by differences in cell density, cell m orphology and area of projection (O'hearn 

and Molliver 1984; Waterhouse, Mihailoff e t al. 1986). The MR is found largely in 

the rostral pons with constituent cells arranged in tw o ad jacen t regions. Small 

cells with short dendrites are arranged around the midline and aligned parallel 

to the m id-sagittal plane. Outside the midline area the cells are loosely arranged 

w ithout any particular orientation and the boundary of this nucleus is not sharply 

defined (O'hearn and Molliver 1984; Tork 1985; Waterhouse, M ihailoff e t al. 1986).

The ascending serotonergic projections are extensive and conta in  many 

collaterals innervating diverse regions of the forebrain. These projections initially 

travel in the m edial forebrain bundle with axons extending from this to other fibre 

pathways and on to their target areas. There are tw o types of serotonergic axons 

in the forebrain (Kosofsky and Molliver 1987). The most com m on are thin, with 

fusiform shaped varicosities of less than 1 pm, which extend over large areas of 

the forebrain. These fibres tend to branch frequently with the branches being of 

the same structure as the parent fibres. The second fibre type has large round or 

oval varicosities on thin fibres and displays a beaded  appea rance  under the
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microscope. The varicosities are swellings in terminal areas tha t contain the 

vesicles responsible for 5-HT storage and release. Anterograde tracing studies 

have shown tha t the different axon types have different origins with the fine 

axons originating in the DR whiie the beaded axons arise in the MR (Kosofsky and 

Molliver 1987). Serial section analysis in the ca t has also dem onstrated tha t the 

two axon types form two independent fibre systems which m ay also have 

distinct functions (Mulligan and Tork 1988).

Within the c ircad ian system, a com bination of anterograde tracing, retrograde 

tracing and neurotoxic lesioning has shown tha t serotonergic innervation of the 

hamster SCN originates in the MR while that of the IGL originates in the DR 

(Meyer-Bernstein and Morin 1996). Additionally, some evidence  has been found 

in the rat, for a d irect serotonergic pathw ay to the SCN originating in the DR 

(Kawano, Decker e t al. 1996).

1.6 Serotonin in the Circadian System

Serotonin is thought to be involved in the transmission of non-photic information 

to the SCN. It is known tha t numerous types of non-photic stimuli are capab le  of 

adjusting the phase or period of c ircad ian rhythms in m am m alian species. 

Included am ong these are several which directly e ffec t serotonergic activity 

such as exercise or sleep deprivation. Wheel running activity, itself regulated by 

the c ircad ian system, can  m odulate oscillation of the clock in rodents indicating 

that certain behaviours could have a feedback  e ffec t on the clock. Sleep 

deprivation is also known to result in increased activ ity of 5-HT neurones within 

the raphe (Grossman, Mistlberger e t al. 2000). Within the SCN, release of 5-HT has 

been shown through microdialysis to be increased in the m id-subjective day by 

three hours of either wheel running or sleep deprivation, while wheel running at
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night results in reduction of 5-HT release (Dudley, DiNardo et al. 1998; Mistlberger, 

Antle et al. 2000). This pattern of release follows a similar pattern to the non- 

photic PRC of maximal phase advances during m id-subjective day and smaller 

delays during the night.

The e ffec t on c ircad ian rhythms of lesions of the raphe nuclei or chem ical 

disruption of 5-HT cells has been investigated in vivo  in a num ber of studies. 

Intraventricular administration of the 5HT-specific neurotoxin, 5,7- 

dihydroxytryptam ine (5,7-DHT), demonstrates tha t loss of serotonergic innervation 

to the SCN results in changes in the entrained rhythm of wheel running in the 

hamster (Smale, Michels et al. 1990; Morin and Blanchard 1991). Lesions of the 

MR (but not the DR) produce patterns of locom otor activ ity  similar to those 

resulting from the general intraventricular lesions (Meyer-Bernstein and Morin 

1996). In general, it was found tha t the rhythms b ecam e  irregular, had lower 

overall am plitude, an advanced  phase angle of entra inm ent and the active 

period within a c ircad ian cycle  was generally lengthened. The conclusion was 

drawn tha t 5-HT plays a m odulatory role tha t enhanced the stability of c ircadian 

rhythmicity.

Several experim ental techniques tha t result in reduced levels of 5-HT within the 

SCN have been used to investigate the involvem ent of 5-HT in non-photic phase 

shifting. In hamsters, the drug triazolam is thought to  phase shift the clock by 

inducing locom otor activity. This can be b locked by 5-HT deple tion  using the 

neurotoxins 5,7-DHT or p-ch loroam phetam ine (p-CPA) (Cutrera, Kalsbeek et al. 

1994; Penev, Turek et al. 1995; Meyer-Bernstein, Blanchard et al. 1997). However, 

other studies have shown tha t phase shifts induced by running in a novel wheel 

are una ffected  by 5,7-DHT lesions (Bobrzynska, G odfrey et al. 1996; Meyer- 

Bernstein, Blanchard et al. 1997). Administering a tryptophan-free d ie t to  animals
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results in a reduction of 5-HT release and when administered with three hours of 

sleep deprivation there was no e ffec t on phase shifts in the mid-subjective day 

(Mistlberger, Antle et al. 2000). However, inhibition of 5-HT synthesis using p-CPA 

com bined with ritanserin, a serotonin antagonist, does result in significant 

a ttenuation of phase shifts to sleep deprivation (Mistlberger, Antle et al. 2000). In 

mice, 5,7-DHT lesions elim inate entrainm ent to either restricted daily access to a 

home ca ge  wheel or forced running in a treadmill (Edgar, Reid et al. 1997; 

M archant, Watson et al. 1997). These results would ind ica te  tha t 5-HT plays an 

im portant role in the regulation of circad ian rhythms although its im portance 

m ay vary betw een species.

Techniques which can enhance 5-HT levels or activ ity within the SCN have also 

been used to investigate the involvem ent of 5-HT in non-photic phase shifting. 

The 5-HT antagonist WAY100635 increases 5-HT levels by blocking the actions of 

presynaptic inhibitory autoreceptors. When given systemically, this drug was 

found to increase levels of 5-HT within the SCN by approxim ately 50% as 

measured by in vivo  microdialysis, which is com parab le  to the levels produced 

by wheel running in the mid-subjective day (Antle, M archant e t al. 1998; Dudley, 

Dinardo et al. 1999). However, when administered a t this time, WAY100635 

neither induced phase shifts nor potentia ted  shifts induced by wheel running 

(Antle, M archant et al. 1998). Administration of the 5-HT precursor tryptophan 

can significantly increase 5-HT levels within the SCN during mid-subjective day by 

as much as 200% (Glass, Selim et al. 1995). This d id not induce significant phase 

shifts even when com bined with the 5-HT reuptake inhibitor fluoxetine, nor did it 

po tentia te  phase shifts induced by running in novel wheels.

Electrical stimulation of either the MR or the DR results in release of 5-HT within the 

SCN tha t is com parab le  to the levels released subsequent to injection of either
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WAY100635 or tryptophan (Dudley, Dinardo et al. 1999). Electrical stimulation of 

either the MR or the DR during mid-subjective day also results in small phase 

a dvance  shifts (Meyer-Bernstein and Morin 1999). Since the pharm acological 

manipulations do not result in phase shifts even though they release the same 

am ount of 5-HT, it has been suggested tha t the shifts due to  electrical stimulation 

are not m ed ia ted  by 5-HT release within the SCN. It was also found tha t the 

general 5-HT antagonist metergoline was able to b lock the release of 5-HT in the 

SCN afte r e lectrica l stimulation of the DR but not the MR. Since the DR does not 

synapse on the SCN, it may be tha t these effects on 5-HT transmission are due to 

stimulation of 5-HT receptors on a direct pathw ay to the MR (Dudley, Dinardo et 

al. 1999; Meyer-Bernstein and Morin 1999).

If 5-HT is involved in the m ediation of non-photic phase shifts, then the use of 

agonists for the various 5-HT receptors should mimic these shifts. Direct 

m anipulation of c ircad ian rhythms can be achieved in vitro using isolated brain 

slice preparations conta in ing the SCN. Under these conditions, cells of the 

pacem aker genera te  c ircad ian rhythms of spontaneous e lectrical activity tha t 

can be phase shifted by exogenous stimulation. Application in a perfusate, of 

both 5-HT and the non-specific 5-HT agonist quipazine, results in phase advances 

during the m iddle of the subjective day and in delays during the m iddle of 

subjective night (Prosser, Miller et al. 1990; Prosser, Dean et al. 1993). These phase 

shifts were b locked by the non-specific 5-HT antagonist m etergoline, indicating 

the shifts were due to stimulation of 5-HT receptors. The phase shifts to quipazine 

were not b locked by the presence of TTX or high concentra tion  of magnesium 

ions, ind icating a d irect postsynaptic action on cells of the SCN (Prosser, Heller et 

al. 1992). Another study tha t app lied  the 5-HT agonists 8-hydroxy- 

d ipropylam inotetra lin (8-OH-DPAT) and 5-carboxam idotyptam ine (5-CT) by 

m icrodrop d irectly onto the ventrolateral SCN obta ined  different results
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(M edanic and Gillette 1992). Daytime advances were found to  be much larger 

by this m ethod while there was no e ffect of these drugs a t night. These 

differences in results suggest tha t serotonergic m odulation m ay be regionally 

specific within the SCN.

In vivo  studies have produced conflicting results with regard to the phase shifting 

effects of 5-HT agonists. Systemic administration of 5-HT agonists during mid- 

subjective day to both rats (Edgar, Miller et al. 1993) and hamsters (Tominaga, 

Shibata et al. 1992; Cutrera, Ouarour et al. 1994; Rea, Glass et al. 1994; Mintz, 

Gillespie e t al. 1997) has been found to induce phase advances. These shifts 

were found to be much smaller than those p roduced by three hour bouts of 

locom otor activ ity  or sleep deprivation, but similar to those from one hour bouts 

of wheel running in hamsters with blocked access to running wheels (Wickland & 

Turek, 1991). Administration during the night has been found to produce either 

no phase shift (Tominaga, Shibata et al. 1992; Edgar, Miller et al. 1993; Rea, Glass 

et al. 1994) or small delays (Tominaga, Shibata et al. 1992). O ther studies in the 

rat have shown tha t systemic administration of 5-HT agonists results in a PRC 

similar to tha t of pho tic  stimulation. This consists of phase delays in early 

subjective night, advances in late subjective night but with no phase shifts during 

the subjective day (Kennaway, Rowe et al. 1996; Kennaway and Moyer 1998; 

Kohler, Kalkowski e t al. 1999).

Localisation of the site of drug action is possible using in vivo  intra- 

cerebroventricular injection. In rats, injections to the SCN of either quipazine or 8- 

OH-DPAT induces phase advances during the day, but had no e ffe c t a t night 

(Edgar, Miller e t al. 1993). One study found injection of 8-OH-DPAT during the 

day, into the SCN of hamsters, induced slight advances (Challet, Scarbrough et 

al. 1998). Another found no e ffec t of injection to either the SCN or IGL of
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hamsters, but d id find advances when in jected into the raphe (Mintz, Gillespie et 

al. 1997). Yet another study found tha t SCN injection during the night in hamsters, 

of either 5-CT or 8-OH-DPAT resulted in no phase shift (Weber, Gannon et al. 

1998).

These inconsistencies betw een experimental results m ay be due to species 

differences (Kohler, Kalkowski et al. 1999) or even differences betw een strains of 

the same species (Kohler and Wollnik 1998). Alternatively, it is known that 

different 5-HT recepto r subtypes are expressed throughout the c ircad ian system 

and their response to exogenous stimulation varies, depend ing  upon the drug 

used and route of administration.

1.7 Serotonin Receptor Subtypes

Several 5-HT recepto r subtypes have been d iffe rentia ted by their 

pharm aco log ica l profiles and from the signal transduction mechanisms to which 

they are linked. All belong to the G prote in-coupled superfamily with the 

exception of the 5 -HT3 subtype, which is a ligand-gated ion channel. G protein- 

coup led receptors (GPCR) are mem brane bound proteins consisting of a single 

subunit with seven transmembrane regions. They function by coupling to 

members of a fam ily of m em brane bound proteins, the G proteins. Binding of 

agonist to GPCR results in activation of a G protein, regula ted by the binding of 

a guanyl nucleotide, and leads to stimulation of one or more mem brane 

effectors tha t m ediate  the cellular response. The effectors can  be ion channels 

or a lternatively enzymes that partic ipa te  in synthesis or deg rada tion  of second 

messengers tha t can influence a variety of cellular processes. These cellular 

effects have latencies measured in hundreds of milliseconds making them 

suitable for slow but sustained signalling or for m odula tion of fast
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neurotransmission. Within the circadian system, ana tom ica l ev idence exists for 

the presence of several of the 5-HT receptor subtypes.

Receptor binding studies using radio-ligands selective for d ifferent 5-HT 

receptors, ind ica te  tha t the 5 - H T ib receptor is present in the SCN of the rat 

(Prosser, Dean et al. 1993) and its gene expression has been confirm ed by in situ 

hybridisation (Roca, W eaver et al. 1993). C om bined e lectron microscope- 

immunohistochemistry exam ination of the SCN of the mouse indicates the 

presence of 5 - H T ib receptors associated with the plasma m em brane of retinal 

terminals (Pickard, Smith et al. 1999) although not a t the synaptic terminal zone 

(Belenky and Pickard 2001). High levels of mRNA for 5-HT2C receptors was found 

in the SCN by in situ hybridisation (Roca, W eaver e t al. 1993) and  subsequent 

im m unohistochem ical analysis found im m unoreactivity for both  5-HT2C receptors 

and to a lesser extent for 5-HT2A (Moyer and Kennaway 1999). In the hamster, 

im m unohistochem ical techniques have shown tha t the 5 H T sa recep to r is present 

in all four main com ponents of the circadian system, the SCN, IGL, MR and DR 

(Duncan, Jennes et al. 2000) with very high levels in the SCN (Oliver, Kinsey et al. 

2000). In neurones of the raphe nuclei, 5HT5A receptor-im m unoreactiv ity is found 

co-localised with 5HT-immunoreactivity, suggesting a functiona l role as 

presynaptic au to recep to r for regulation of 5HT neuronal activ ity  (Duncan, 

Jennes et al. 2000). Further analysis of this receptor is h indered by the lack of 

ligands selective for this particular subtype.

Two other 5-HT receptors tha t are thought to be present w ithin the circadian 

system are the 5 - H T i a  and 5-HTz receptors. The recently c loned  5-HTz receptor 

shares some pharm aco log ica l overlap with the 5 - H T i a  receptor, including high 

affinity for 8-OH-DPAT and 5-CT and there is some dispute as to  w hich of these 

receptors m ediate  the effects of serotonin within the SCN. An early
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autorad iographic study found high levels of [3H]8-OH-DPAT binding in the SCN of 

the rat and this was attributed to 5-HTia receptors (Prosser, Dean et al. 1993). 

O ther binding studies in the hamster have used [3H]8-OH-DPAT in conjunction 

with pindolol and ritanserin, antagonists for the 5-HTia and 5-HTz receptors 

respectively. These studies conc luded tha t 20 to 50% of receptor binding in the 

SCN is due to the 5-HT7 receptor, with the remainder being a ttributed to the 5- 

HTia recepto r (Duncan, Short et al. 1999; Rea and Pickard 2000). In the rat, use of 

[3H]5-CT as the radioligand failed to find binding for 5 -HT7 receptors in the SCN 

(Gustafson, Durkin et al. 1996) although another study used this m ethod 

successfully to identify binding in other areas of the rat brain (M engod, Vilaro et 

ai. 1996). In situ hybridisation in the rat found very little sign of gene expression for 

the 5-HTia recepto r in the SCN (Roca, Weaver e t al. 1993) while some evidence 

for the expression of the 5-HTz receptor has been found. One study using 

o ligonucleotide probes to rat 5-HTz receptor mRNA failed to d e te c t a 

hybridisation signal (Gustafson, Durkin et al. 1996), ano ther using ribonucleotide 

probes to different 5-HTz receptor isoforms did find low to m oderate  levels of 5- 

HT7 mRNA (Heidmann, Szot e t al. 1998) while the most recent de tec ted  high 

levels (Neumaier, Sexton et al. 2001). One study has d e te c te d  5-HTz mRNA in the 

hamster (Rea and Pickard 2000). Immunohistochemical staining in the rat failed 

to d e te c t im m unoreactivity for the 5-HTz receptor in the SCN (Moyer and 

Kennaway 1999), while another laboratory d e te c te d  prom inent staining co 

localised with c-Fos im m unoreactivity (Neumaier, Sexton et al. 2001). In the 

mouse, 5-HTz im m unoreactivity is found throughout the rostrocaudal extent of 

the SCN (Belenky and Pickard 2001).

Several in vitro studies have im plicated 5-HTz receptors, in addition to or instead 

of 5 - H T i a  receptors, as mediators of 5-HT effects on SCN neurones. Advances in 

spontaneous e lectrical activ ity in the rat brain slice induced  by 8-OH-DPAT can
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be b locked by ritanserin but not by pindolol (Lovenberg, Baron et al. 1993). 

Inhibition of GABAa responses by 5-HT and 8-OH-DPAT within the rat SCN was 

similarly antagonised by ritanserin, but not by pindolol (Kawahara, Saito et al. 

1994). Spontaneous neuronal firing rates in the hamster have been studied in 

vivo  and it was found tha t inhibition of firing by 5-HT, 5-CT and 8-OH-DPAT could 

be b locked by ritanserin but not by cyanopindolol (Ying and Rusak 1997).

1.8 Serotonergic Interactions with light

5-HT is thought also to a c t as a m odulator of photic phase shifting in the SCN. In 

vitro app lica tion  of the 5-HTib receptor agonist l-[3-(trifluoromethyl)phenyl]- 

piperazine (TFMPP), to the hamster hypothalam ic slice results in a reduction in 

the am plitude of op tic  nerve evoked excitatory post synaptic potentials 

(Pickard, Smith e t al. 1999). When systemically adm inistered in vivo, TFMPP 

attenuates the phase shifting effects of light as well as blocking the induction of 

Fos protein (an alternative marker for light stimulation), both  in the hamster 

(Pickard, W eber e t al. 1996) and in the mouse (Pickard and Rea 1997). These 

results a long with those from the anatom ica l studies would ind ica te  tha t these 

receptors function as modulators of g lu tam ate  release from RHT terminals.

The 5-HTia recepto r is present in the circad ian system both as presynaptic 

au to recep to r and postsynaptic heteroreceptor (Moriya, Yoshinobu et al. 1998). 

Systemic injection of the 5-HTia receptor antagonist WAY100635 results in 

augm entation of phase delays to light in early subjective night while having no 

effects on phase advances late a t night (Smart and Biello 2001).

There is some evidence suggesting that, in the rat, 5-HT m ay m odulate  light 

induced phase shifts through action a t 5-HT2C and /o r 5-HT2A receptors. Systemic
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injection of the 5-HT2A/2C receptor agonist (±)-l-(4-iodo-2,5-dimethoxyphenyl)-2- 

am inopropane hydrochloride resulted in delays in the rhythms of activity, 

melatonin secretion, and tem perature (Kennaway and Moyer 1998). This agonist 

also induced expression of the im m ediate early gene c-fos in a manner similar to 

light (Moyer and Kennaway 1999).

In v itro , the 5HTia/7 agonist 8-OH-DPAT reduces the am plitude of op tic  nerve- 

evoked excitatory post-synaptic potentials in SCN neurones from the mouse via 

a 5HT7 recepto r m ed ia ted  mechanism (Smith, Sollars e t al. 2001). The effects of 5- 

H T 7 antagonists on the expression of c-Fos expression has been exam ined in the 

rat. One study using m etergoline and ritanserin failed to prevent the photic 

induction of c-Fos in the SCN (Kennaway and Moyer 1998). Another showed that 

c-Fos expression induced by 5-CT and 8-OH-DPAT a t CT22 w ithout light, could be 

b locked by ritanserin in the presence of pindolol (Mullins, Gianutsos et al. 1999).

1.9 The Role of GABA in the Clock

y-am inobutyric ac id  (GABA) is an inhibitory neurotransmitter found extensively

throughout the central nervous system. It is synthesised in a single step from L- 

g lu tam ate, catalysed by the enzyme g lu tam ate  decarboxylase (GAD). A large 

num ber of SCN neurones conta in GABA as well as GAD (Card and Moore 1984; 

Van den Pol 1986; Moore and Speh 1993) and 48% of synaptic boutons in the 

SCN are GABAergic (Decavel and Van den Pol 1990). GABA has also been 

found co-localised in the SCN with other neurochemicals, such as vasoactive 

intestinal pep tide  in the ventrolateral SCN (Francois-Bellan, Kachidian et al. 1990) 

and arginine vasopressin in the dorsomedial SCN (Moore and Speh 1993). 

GABAergic interneurones comprise a dense network within the SCN (Moore and 

Speh 1993; Van den Pol 1993), including reciprocal innervation betw een each of
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the two nuclei (Buijs, Hou et al. 1994). GABAergic neurones comprise part of one 

afferent, the GHT, where they are co-localised with NPY (Van den Pol 1986; Card 

and Moore 1991; Moore and Speh 1993).

Several lines of ev idence ind icate  that the activ ity o f the GABAergic system is 

under c ircad ian control. GABA content in the SCN varies over the course of the 

c ircad ian cycle  showing a peak a t CT16 tha t can be entrained by the daily 

photoperiod and persists under conditions of constant darkness (Aguilar-Roblero, 

Verduzco-Carbajal e t al. 1993). GABA turnover rate also shows a peak at CT16 in 

several non-SCN areas of the central nervous system of Syrian hamsters 

(Kanterewicz, Rosenstein et al. 1995). GABAa recep to r sites in the brain show 

c ircad ian rhythms both in num ber and affinity (Wirz-Justice 1987) with a 

nocturnal peak in high affinity binding sites (Acuna-Castroviejo, Rosenstein et al. 

1986) which can be abolished by ablation of the SCN (Kafka, Marangos et al. 

1985). Finally, a mid to late night peak of rad ioactive  3H-GABA release was 

observed in hamster preoptic-m edia l basal hypotha lam ic explants (Yannielli, 

Kanterewicz et al. 1996).

A role has been suggested for GABA in the synchronisation of c ircad ian patterns 

of e lectrica l activ ity betw een individual cells of the SCN. Electrophysiological 

recordings from SCN cells in dissociated cell culture show tha t individual cells 

display diverse patterns in spontaneous electrical activ ity (Welsh, Logothetis et 

al. 1995). Application of GABA to dissociated SCN cells induces phase- 

dependan t phase shifts in the firing rhythm of individual cells and daily 

app lica tion  of GABA induces synchronisation of rhythms betw een the cells (Liu 

and Reppert 2000). Cellular com m unication via g ap  junctions has been shown in 

cell culture through dye coupling and this can be reduced by app lica tion  the
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GABAa recepto r agonist 3-hydroxy-5-aminoethylisoxazole hydrobrom ide 

(muscimol) to the culture medium (Shinohara, Hiruma et al. 2000).

1.10 GABA Receptor Subtypes

The effects of GABA are m ediated though several receptor subtypes. GABAa 

and GABAc receptors are both ionotropic receptors associated with Cl- 

channels. GABAa receptors have been identified within the SCN using 

autorad iographic (Francois-Bellan, Segu et al. 1989) as well as 

electrophysiological techniques (Liou, Shibata et al. 1990; Mason, Biello e t al. 

1991), while GABAc receptors were not found in the SCN using northern analysis 

techniques (O'Hara, Andretic et al. 1995). The third receptor subtype, the GABAb 

receptor, is a G-protein coup led m etabotrop ic recepto r (Bormann 2000). This is 

known to function presynaptically both as au to recep tor and heteroreceptor, as 

well as postsynaptically. Presynaptically, the GABAb receptor inhibits the release 

of neurotransmitter through suppression of C a2+ channels, while postsynaptically 

it functions to inhibit neuronal firing, m ediated by coupling to inwardly rectifying 

K+ channels. It is also recognised for inducing the inhibition of adenylyl cyclase 

activity, a cellular second messenger (Kerr and Ong 1995).

High affinity of the agonist 4-am ino-3-[4-chlorophenyl]-butanoic ac id  (baclofen) 

for GABAb receptors has been recognised for some time. However, there is 

differential selective antagonism with the currently availab le  antagonist ligands, 

ind icating the presence of different GABAb receptor subtypes (Jones, Tamm et 

al. 2000). Two genes are known that express two d ifferent receptors, GABAbi and 

GABAb2 (Kaupmann, Huggel e t al. 1997; Jones, Borowsky et al. 1998; White, Wise 

et al. 1998). When expressed individually in m am m alian cell lines or Xenopus 

oocytes, these were found to have similar antagonist binding properties to
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native GABAb receptors but have a much lower affinity for agonists. When 

exposed to agonist, neither is able to produce a cellular response, such as the 

opening of potassium channels (Kaupmann, Huggel e t al. 1997). When 

expressed alone GABAbi subunits were also found to  be dispersed within the cell 

cytoplasm and did not associate a t the cell surface (Couve, Moss et al. 2000).

Evidence tha t colocalisation of both receptor subtypes is required to  produce a 

functional GABAb recepto r comes from several sources. The distribution patterns 

for the expression of mRNAs of each subtype show substantial areas of overlap 

within the brain (Jones, Borowsky et al. 1998; Durkin, Gunwaldsen e t al. 1999; Lu, 

Ghasemzadeh et al. 1999). Co-expression studies illustrate that the 

pharm aco logy of the com bined protein unit is equ iva lent to tha t of native 

receptors and produces the expected responses from agonist or antagonist 

stimulation. Im m unoprecipitation studies show the subunits associate as 

heterodimers and tha t they are concentra ted  on the plasma m em brane (Jones, 

Borowsky et al. 1998; Kaupmann, Malitschek et al. 1998; White, Wise et al. 1998). 

The functional im portance of each of the individual subunits in this heterodimer 

remains to be discovered but it appears tha t there must be both a GABAbi and 

GABAb2 subunit present to produce a fully functional GABAb receptor. Several 

splice variants of each  of the two GABAb genes are known (Couve, Moss et al. 

2000). Different com binations of these variants m ay lead to pharm aco log ica l 

and functional differences due to substituted residues for ligand binding and G 

protein coupling (Bischoff, Leonhard et al. 1999; Charles, Evans et al. 2001). This 

may explain the appa ren t differences in baclofen effects be tw een pre- and 

postsynaptic sites. In cerebellum  for example, splice variant GABAbiq localisation 

is in agreem ent with a presynaptic role while tha t for another splice variant, 

GABABib favours a postsynaptic function (Kaupmann, Schuler e t al. 1998; Fritschy, 

Meskenaite et al. 1999).
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1.11 GABAb within the Circadian System

In situ hybridisation for both G A B A b i  (Lu, Ghasemzadeh et al. 1999) and G A B A b 2 

(Durkin, Gunwaldsen et al. 1999) mRNAs shows high expression of both subtypes 

within the SCN and the raphe nuclei of the rat. Immunohistochemical analysis of 

the G A B A b i  protein confirms this distribution while showing, by comparison with 

the distribution of GAD immunoreactivity, tha t this subunit is not expressed on 

GABAergic neurones. Some evidence was found however for expression of this 

recepto r on GABAergic interneurones in some areas of the rat brain (M argeta- 

Mitrovic, M itrovic et al. 1999).

Several lines of evidence ind icate tha t the stimulation of GABAb receptors results 

in m odulation of the phase shifting effects of light. In vitro, bac lo fen  strongly 

attenuates optic  nerve evoked SCN field potentials (Shibata, Liou e t al. 1986; 

Jiang, Allen et al. 1995) as well as the frequency of spontaneous miniature 

excitatory post-synaptic potentials (Jiang, Allen et al. 1995). The GABAb 

antagonist 3-Amino-2-(4-chlorophenyl) propylphosphonic ac id  (phaclofen) dose 

dependently  increases SCN field potentia l amplitudes in vitro (Gannon, C ato  et 

al. 1995). Systemically administered baclofen has been reported to  a ttenua te  

both light-induced phase advances and delays of the running activ ity rhythm in 

hamsters (Ralph and M enaker 1989), as well as light-induced expression of c-fos 

(Colwell, Kaufman et al. 1993). M icroinjection of baclofen directly to the SCN 

reduces both the phase delaying and advancing effects of light (Gillespie, Mintz 

et al. 1997) as well as reducing the am ount of c-fos im m unoreactivity within the 

SCN (Gillespie, Van Der Beek et al. 1999). The GABAb antagonist 3-amino-propyl 

(diethoxymethyl)phosphinic ac id  (CGP 35348) increases the phase delaying 

e ffect of light a t CT14, while having no e ffec t on phase advances to  light at
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CT19 (Gillespie, Mintz et al. 1997), or on induction of c-fos protein a t either time 

point (Gillespie, Van Der Beek et al. 1999).

Stimulation of GABAergic transmission via GABAb receptors can  also have a 

d irect e ffec t on the clock. In vitro work indicates tha t app lica tion  of baclofen to 

the SCN slice results in phase advances of the rhythm of e lectrica l activity of SCN 

cells a t zeitgeber time (ZT) 6 and small delays a t ZT22 (Biggs and Prosser 1998), 

where ZT12 is the time of lights off in the animal co lony under a light-dark cycle. 

Administration of TTX blocks both these phase advances and delays suggesting 

tha t the GABAb receptors m ediating these phase shifts must be loca ted  

presynaptically a t least one neurone aw ay from the pacem aker cells (Bergeron, 

Danielson et al. 1999). Application by m icroinjection of baclo fen directly to the 

SCN also phase advances the clock a t CT6 (Smith, Turek e t al. 1990). The ability 

of GABAb receptors to phase advance  the clock during the day, indicates tha t 

they m ay be involved in the m ediation of non-photic input to the SCN, since this 

is a time when non-photic stimuli also phase advance  the pacem aker.

1.12 Interactions between GABAb and Serotonin

There is ev idence for interaction between GABAergic and serotonergic 

transmissions within the SCN. Double-labelling techniques using [3H]5-HT uptake 

rad ioautography com bined  with immunohistochemistry for GAD found a close 

in terconnection betw een these two afferent systems (Bosler 1989). No axonal 

varicosities showed double labelling for both transmitter types, indicating 

separate neuronal populations and 41% of the 5-HT terminals were directly 

apposed, on a post-synaptic target, to a t least one GAD-imm unoreactive 

profile. It is also known tha t administration of GABAb but not GABAa agonists
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increases the release of serotonin within the SCN in vitro (Francois-Bellan, Hery et 

al. 1987) as well as in vivo  (Francois-Bellan, Hery et al. 1988).

GABAb receptors are also known to be present within the raphe nuclei (Lu, 

Ghasemzadeh et al. 1999; M argeta-M itrovic, Mitrovic et al. 1999). One study 

utilised in situ hybridisation to examine coexpression of mRNAs for GAD, the 

GABAbi subunit and the 5-HT transporter (Abelian, Adell e t al. 2000). It was found 

that most 5-HT neurones in both nuclei expressed the GABAbi transcript while 

very few  cells conta ined  the transcript for GAD. This is confirm ed in both nuclei 

by double labelling immunohistochemistry for GABAb receptors and 5-HT (Varga, 

Sik e t al. 2002). This study found colocalisation in virtually all serotonergic cells. 

Electron-m icroscopic exam ination also revealed tha t staining for GABAb 

receptors appeared  on proximal dendrites and cell bodies, never on afferent 

axons.

The effects of GABAb recepto r stimulation in the raphe nuclei have been 

investigated using microdialysis and electrophysiological techniques (Tao, Ma et 

al. 1996; Abelian, Adell e t al. 2000; Abelian, Jolas e t al. 2000). It was found that 

both presynaptic and postsynaptic effects of GABAb recepto r stimulation could 

be found within the raphe. Higher concentrations of baclo fen are required to 

stimulate the postsynaptic effects and GABAb antagonists fail to fully block the 

effects of baclo fen. This would indicate that the different effects of baclofen 

m ight be m ed ia ted  by different populations of GABAb recepto r subtypes a t pre 

and postsynaptic sites. Microdialysis also showed tha t there is a time of day 

e ffect of baclo fen administration to the DR. Local administration of the drug 

results in a reduction of released 5-HT during lights-out conditions (Tao, Ma et al. 

1996) while having the opposite e ffect during lights-on conditions (Abelian, Jolas
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et al. 2000). Local injection of baclofen to the MR results in an increase of 

released 5-HT (Abelian, Adell e t al. 2000)

1.13 Molecular Components of the Circadian Clock

Details of how circad ian rhythms are generated in mammals a t the molecular 

level com e mainly from studies in mice. The mechanism for generating rhythms 

over a 24-hour period depends upon interwoven positive and  negative 

transcriptional/translational feedback  loops of specific c lock genes within cells 

of the SCN (Figure 1.3). These genes include the period (Per/, Per2 and Per3), 

c ryptochrom e (Cry/ and Cry2), C lock  and BmalJ (brain and muscle Arnt-like) 

genes. In animals with ta rgeted disruption of either Perl or Per2 but not Per3 

gene, locom otor activ ity rhythms are severely disrupted (Bae, Jin e t al. 2001), 

and m ice defic ien t in both Per/ and Per2 do not express c ircad ian  rhythms 

(Zheng, A lbrecht e t al. 2001). The PerOl m utant of Drosophila, which is arrhythmic 

due to a lack of endogenous PER, can have rhythm icity restored by the 

introduction of m am m alian Per/ or Per2 genes (Shigeyoshi, Meyer-Bernstein et al. 

2002). A key role is also p layed by C ry/, Cry2 and Bm all since C ry l/C ry2  double 

knockout m ice (Okamura, Miyake et al. 1999; Van der Horst, Muijtjens et al. 1999) 

and Bm all knockout m ice (Bunger, Wilsbacher et al. 2000) show the im m ediate 

loss of a behavioural rhythm in constant darkness.

A positive loop is form ed by heterodimers of the CLOCK and BMAL1 proteins 

which bind to E-boxes loca ted  in the regulatory region of Per and  Cry genes and 

initiate their transcription (Gekakis, Staknis e t al. 1998; Hogenesch, Gu et al. 1998; 

Yam aguchi, Mitsui et al. 2000; Lee, Etchegaray e t al. 2001; Travnickova-Bendova, 

Cermakian et al. 2002; Etchegaray, Lee et al. 2003). Accum ulation  of Per mRNA 

peaks in the SCN during the subjective day, while translation to PERI and PER2
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proteins occurs in the cytoplasm where concentrations peak during the middle 

of the night (Albrecht, Sun et al. 1997; Shearman, Zylka et al. 1997; Tei, Okamura 

et al. 1997; Zylka, Shearman et al. 1998). A negative loop is then form ed by the 

translocation of these proteins to the nucleus where they form stable complexes 

with CRY1 or CRY2 and suppress the transcription of Perl and Per2 genes by 

binding to the CLOCK/BMAL1 heterodim er (Kume, Zylka et al. 1999). (Figure 1.3).

The above  core feedback  loop is very stable and accurate ly maintains a 24 h 

rhythm. There are other com plem entary m olecular loops assisting this core 

feedback  loop a t the gene-transcription level. Another feedback  loop is formed 

when the CLOCK/BMAL1 heterodim er activates a gene encod ing  the orphan 

nuclear recepto r REV-ERBa. This is a transcription fac to r tha t functions to repress 

the B m a ll ,  C lock  and C ry l  genes (Onishi, Yam aguchi e t al. 2002; Preitner, 

Damiola e t al. 2002; Ueda, Chen et al. 2002; Etchegaray, Lee et al. 2003). Two 

other transcription factors thought to be involved in the m olecular clockwork are 

DEC1 and DEC2. These have been shown to be expressed in the SCN and inhibit 

the activ ity of the CLOCK/BMAL1 dimers either through association with them or 

through com petition  with the E-box elements of the ta rge t genes (Honma, 

Kawam oto et al. 2002).

Post-translational mechanisms are involved in regulating levels of c lock proteins 

both spatially and tem porally through phosphorylation, degradation  and 

nuclear translocation. The casein kinases (CKI) 8 and e have been shown to 

phosphorylate PERI, PER2, CRY1, CRY2 and BMAL1 (Keesler, C am acho  et al. 

2000; Lowrey, Shimomura et al. 2000; C am acho, Cilio et al. 2001; Eide, Vielhaber 

et al. 2002). Phosphorylation by CKI serves both to a llow transport of the clock 

gene proteins into the nucleus as well as allowing their eventual degradation. 

The PER2 protein usually shuttles between the cytoplasm and the nucleus and is
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easily deg raded  by ubiquitination and the proteasom e pa thw ay (Yagita, 

Tamanini e t al. 2002). It is also known tha t the ubiquitination of PER proteins is 

inhibited in the presence of CRY proteins and the PER proteins appear to be 

more fragile if they do not dimerize with CRY proteins. It has also been recently 

dem onstrated tha t the CRY protein, which is a strong suppressor of Per? 

transcription, can be ubiquitinated when PER proteins are absent (Yagita, 

Tamanini et al. 2002). The decrease of PER in the nucleus due to  proteasome- 

dependent degradation  causes destabilisation of CRY, and the decrease in CRY 

will lead to the re-starting of Perl and Per2 gene transcription.

1.14 Entrainment

Entrainment of the m olecular clock to both pho tic  and non-photic stimuli 

involves transcriptional mechanisms that alter Per gene expression in the SCN. 

Light pulses lead to increased levels of Perl and Per2 in the SCN (Albrecht, Sun et 

al. 1997; Shearman, Zylka et al. 1997; Shigeyoshi, Taguchi e t al. 1997) while 

intracerebroventricular injections of antisense oligodeoxynucleotides to Perl 

inhibit light-induced phase delays in m ice (Akiyama, Kouzu et al. 1999). Mice 

with a m utated Per? gene exhibit altered light induced phase advances, while 

Per2 m utant m ice display impaired light-induced phase delays (Albrecht, Zheng 

et al. 2001). Entrainment by non-photic cues has been shown to be as a result of 

reduction o f Per expression within cells of the SCN. Both NPY and novel wheel 

running activ ity can decrease Per? and Per2 mRNA levels in vivo (Maywood, 

Mrosovsky et al. 1999; M aywood, Okamura et al. 2002) and in vitro (Fukuhara, 

Brewer et al. 2001). Systemic injections of 8-OH-DPAT and short-acting 

benzodiazepines suppress Per? and Per2 levels in the SCN of hamsters (Horikawa, 

Yokota e t al. 2000; Yokota, Horikawa et al. 2000).
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Outwith the laboratory environment it is unlikely tha t photic and non-photic 

stimuli occur in isolation from each other and it has been shown tha t there is 

interaction betw een the two. Light pulses given shortly a fte r a non-photic 

stimulus reduce the phase advances tha t would otherwise have been 

produced. This occurs when the non-photic stimulus is running in a novel wheel 

(Mrosovsky 1991), injection o f NPY (Biello 1995), or in jection of 5-HT agonists 

(Penev, Zee et al. 1997). The opposite has also been found w ith phase shifts to 

light being a ttenua ted  by activ ity (Ralph and Mrosovsky 1992), novel wheel 

running (Mistlberger and Antle 1998), injection of NPY (Weber and Rea 1997) or 

injection of 5-HT (Weber and Rea 1997). It has also been shown tha t the 

reduction in levels of PER expression produced by novel w heel running can be 

a ttenua ted  by a light pulse given im m ediately following the non-photic pulse 

(M aywood and Mrosovsky 2001).

1.15 Output pathways of the SCN

The core c ircad ian clock regulates the tem pora l variation of numerous 

behavioural and physiological processes. The oscillations of gene expression in 

the m olecular c lock must be translated into a form tha t will im part rhythmicity to 

these other processes. Rats whose SCN neuronal firing has been inhibited with 

the sodium channel blocker TTX display arrhythm ic behaviour patterns and 

rhythm icity is restored a t the previous c ircad ian  phase on removal of TTX 

treatm ent (Schwartz, Gross et al. 1987; Schwartz 1991). A similar result is achieved 

using individual SCN neurons treated with TTX in vitro (Welsh, Logothetis et al. 

1995) suggesting tha t the rhythmic e lectrical activ ity  of SCN cells is an output of 

the c lock and not a com ponent. The neuropeptide  arginine vasopressin (AVP) 

has been shown to augm ent the m agnitude of the e lectrica l activ ity  rhythm in 

the SCN through a receptor-m edia ted excitation of SCN neurons (Mihai,
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Coculescu et al. 1994). Expression of A VP is directly regula ted by CLOCK/BMAL1 

heterodimers acting  on an E-box within its prom oter region and its transcription is 

negatively regulated by the same molecules tha t negatively regulate the core 

clockwork (Jin, Shearman et al. 1999; Kume, Zylka et al. 1999). M ice with 

mutations in the Per2 gene show loss of the rhythmic expression of the AVP gene 

in the SCN ind icating c ircad ian control of AVP gene expression within the SCN 

(Albrecht, Zheng et al. 2001).

Another mechanism by which the clock controls downstream events is to  use the 

protein products of clock-controlled genes tha t are regulated by the core 

feedback  loops. One such protein is D-element binding protein (DBP) tha t is 

expressed with a c ircad ian period (Wuarin and Schibler 1990) and which has 

been shown to be regulated by CLOCK/BMAL1 heterodimers (Ripperger, 

Shearman et al. 2000). DBP is a transcription fac to r tha t can bind to  the prom oter 

of the Perl gene and positively influence Perl transcription (Yamaguchi, Mitsui et 

al. 2000) ind icating the clock can react to its own targe t genes and  thus sense 

the physiological state of the organism. A num ber of other genes are controlled 

by DBP including Cyp2a4  and Cyp2a5  the protein products of which are 

involved in the metabolism of the sex hormones testosterone and  estradiol 

(Lavery and Schibler 1993; Lavery, Lopez-Molina et al. 1999). A m utation in the 

D bp  gene shortens circad ian period and affects c ircad ian sleep consolidation 

and rhythmic e lectroencephalogram  activ ity (Franken, Lopez-Molina e t al. 

2000).

It has been shown tha t diffusible, secreted molecules from the SCN can  control 

rodent activ ity rhythms. Hamsters carrying the tau m utation, which shortens the 

c ircad ian period, were given bilateral lesions of the SCN. Subsequent to this, a 

w ild-type SCN was im planted within a semi-permeable polym etric capsule in the
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third ventricle of the lesioned animals. The capsule prevents neural outgrowths 

from the im p lanted SCN while still allowing diffusion of humoral signals. It was 

found after several weeks tha t the locom otor rhythm displayed by the im planted 

animals was tha t of the w ild-type phenotype (Silver, LeSauter e t al. 1996). The 

peptide, transforming growth fac to r a (TGFa), is expressed in a c ircad ian fashion 

in the SCN of hamster and com plete ly blocks wheel-running activity when 

infused into the third ventricle. The receptor for TGFa is the epiderm al growth 

fac to r recepto r and this is expressed in the subparaventricular zone, a major 

target region of the SCN. Animals with mutations in this receptor display 

increased wheel running activ ity during the day and an imprecise onset of 

nocturnal activ ity (Kramer, Yang et al. 2001). Another cand ida te  c lock output 

signal is prokineticin 2 (PK2) tha t is expressed in the SCN in a c ircad ian fashion. Its 

transcription is ac tiva ted  by CLOCK/BMAL1 via an E-box in the PK2 prom oter and 

inhibited by the PER and CRY proteins. The circad ian pattern of PK2 expression is 

shifted in response to light resetting of the c lock and wheel running activity is 

suppressed when the protein is infused into the third ventricle during the night. 

The recepto r for PK2 is present in the SCN and in m any ta rge t regions of SCN 

efferents (Cheng, Bullock et al. 2002).

1.16 3,4-methylenedioxymethamphetamine (MDMA)

The am phetam ine derivative 3,4-m ethylenedioxym etham phetam ine (MDMA), 

also known as ecstasy is known to have both acute  and chronic toxic effects in 

animals and humans. First synthesised and pa ten ted  in 1914 for use as an 

appe tite  suppressant it has becom e increasingly popular as a recreational drug. 

It is used primarily by young people  in large dance  settings, or ‘raves' but is also 

known to be used in smaller social gatherings. Users report tha t a fter abou t 20 

minutes the drug begins to produce euphoria, feelings of intim acy towards
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others, heightened arousal, increased self-confidence and increased sensory 

sensitivity (Morgan 2000). Acute adverse physiological symptoms reported 

include tachycard ia , bruxism, trismus, pupilary dilation, ga it instability, nausea, 

suppressed appe tite  and hyperthermia (Morgan 2000). Users report subsequent 

to 24 to 48 hours of these effects, there follows a period characterised by muscle 

aches, fatigue, depression, irritability, difficulty in concentra ting  and headache 

(Morgan 2000). The most adverse acute  effects of MDMA a ppea r to be related 

to hypertherm ia. This is typically accom pan ied  by a num ber of clin ical problems 

including seizures, intravascular coagulation, rhabdomyolysis, renal and liver 

im pairm ent (Gowing, Henry-Edwards et al. 2002). The toxicity of the drug can be 

enhanced under certain conditions such as those present a t a rave. A 

com bination of the d irect effects of MDMA, high am bient tem perature, 

sustained physical activ ity and inadequate  fluid rep lacem ent all impair 

tem perature regulation and can even lead to dea th  (Gowing, Henry-Edwards et 

al. 2002).

MDMA has been shown to cause long-term neurotoxicity in animals. Studies 

ind ica te  tha t the drug is toxic to serotonergic systems and to a lesser extent 

dopam inerg ic systems (Burgess, O 'Donohoe et al. 2000). A single dose of MDMA 

(40 m g/kg) in rats results in decreased levels of both 5-HT and 5-HIAA within three 

days and which lasts for up to eight weeks (Commins, Vosmer e t al. 1987). After 

multiple doses (5-20 m g/kg, tw ice  daily over 4 days), the decreases last from 6 to 

12 months (Battaglia, Yeh et al. 1988). These reductions vary regionally within the 

brain with severe reductions in the neocortex, striatum and hippocam pus, while 

smaller decreases were found in the brainstem and hypothalam us (Stone, Stahl 

et al. 1986; Battaglia, Yeh et al. 1987). The num ber of 5-HT uptake transporter sites 

was found to be reduced in rat brain after administration of MDMA from studies 

using both autorad iography (Battaglia, Yeh et al. 1987) and synaptosomal
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preparations (Commins, Vosmer et al. 1987; Schmidt 1987). These results are 

consistent with the degeneration of presynaptic terminal areas.

Immunohistochemical techniques demonstrate that MDMA administration results 

in loss of fine serotonergic axons throughout the forebrain of the rat (O'Hearn, 

Battaglia et al. 1988), with the areas of fibre reduction being similar to those for 

the loss of transporter sites (Battaglia, Yeh et al. 1987). Fibres which suffer the loss 

of terminal areas are of the fine fibre type tha t originate in the DR while the thick 

beaded  axons of the MR are spared from dam age  (Molliver, Berger et al. 1990). 

The cell bodies within the raphe remain im m unoreactive ind icating a lack of 

degeneration (O'Hearn, Battaglia et al. 1988). The sparing of cell bodies from 

dam age  suggests the potentia l for regeneration of serotonergic projections and 

this does occur in both rodents and non-human primates, but the pattern of 

regeneration is generally abnorm al (Fischer, Hatzidimitriou et al. 1995).

The effects of MDMA on c ircad ian timing have been addressed in two previous 

studies. One in vitro experim ent found tha t pre-treatm ent w ith MDMA resulted in 

a reduced ability of cells of the SCN to phase shift to the 5-HT agonist 8-OH-DPAT 

(Biello and Dafters 2001). In vivo the ability of the SCN to phase shift to both light 

and 8-OH-DPAT was shown to be significantly reduced subsequent to MDMA 

administration (Colbron, Jones et al. 2002).

1.17 The Study

It is known tha t 5-HT or its agonists can phase advance  the c ircad ian pacem aker 

a t ZT6 in vitro (Prosser, Miller et al. 1990). Likewise, stimulation of GABAb receptors 

during the day can phase shift the pacem aker both in vitro (Biggs and Prosser 

1998) and in vivo (Smith, Turek e t al. 1990). It is also known tha t the stimulation of
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GABAb receptors during the subjective day increases the release of newly 

synthesised 5-HT within the SCN area (Francois-Bellan, Hery e t ai. 1987). It may be 

tha t the baclo fen induced phase shifts are brought abou t via the increased 

release of 5-HT within the SCN.

The following experiments were carried out to investigate w hether the in vivo 

stimulation of GABAb receptors a t CT6 results in a phase a dvance  shift in the 

c ircad ian pacem aker as seen in vitro. The involvem ent of 5-HT in the baclofen 

induced phase shifts was investigated by lesioning of serotonergic input to the 

SCN using the neurotoxin MDMA. Finally, the ana tom ica l effects of MDMA 

treatm ent were investigated in both the SCN and the raphe nuclei using 

im m unohistochem ical techniques.

34



2 Materials and Methods

2.1 General Procedures

All work was carried out in accordance  with local codes of p rac tice  and within 

the framework of the Animals (Scientific Procedures) Act of 1986. Adult male 

Syrian hamsters [Mesocricetus auratus), 100-130g, (Harlan Sprague-Dawley, 

Oxon, UK). Animals were housed individually in polypropylene cages ( 1 3 x 9 x 8  

cm) with food and w a ter availab le a d  libitum. Cages were fitted with a 16 cm 

running wheel a tta ch ed  to a micro switch which was m onitored continuously by 

Dataquest Pro-Data software (Data Sciences Inc., Roseville, MN, USA), with 

wheel running activ ity gathered in 10-minute bins. Animals were initially 

acclim atised for a minimum period of 5 days a t 22 ± 2°C and light:dark cycle  of 

12:12 (LD 12:12). Subsequent to this, constant environm ental conditions (DD) 

were established by switching off the animal room lights. Alternatively, the 

animals were transferred to a ventilated, light-tight cham ber, measuring 174 x 87 

x 56 cm  with the lights turned off. Both room and cab ine t were illuminated by 

dim red light (14-18 lux) to enable daily husbandry practices to  be carried out. 

This level and w ave length  of illumination has been shown to  be ineffective in 

resetting the phase of the endogenous clock of hamsters (Biello 1995). All 

animals were left in DD for a minimum of 7 days to establish free-running 

conditions within the c lock before any drug treatments were given.
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2.2 Behavioural Analysis

2.2.1 Activity Onset

Activity onset (CT12) was taken as the first period of activ ity closest to the time of 

lights out from the most recent LD cycle. For the purposes of statistical analysis, 

CT12 was defined as the first 10-minute bin of greater than 50 wheel revolutions 

followed by a subsequent bin of greater than 50 revolutions within a 30-minute 

period. Activity onset for the day of drug treatm ent was ca lcu la ted  by forward 

regression of the line of best fit for the activity onsets of the 7 days prior to the 

treatm ent. Any animals with less than five d a ta  points for the regression 

ca lcu la tion  were excluded from the analysis.

To ca lcu la te  the regression line, the times for CT12 were taken from the raw data  

files genera ted by the Dataquest software. Each of these was converted to a 

decim al figure by expressing minutes past the hour as a fraction of 60 and was 

then entered onto a Microsoft Excel tem plate  (Figure 2.1). Excel then 

autom atica lly  ca lcu la ted  the line of best fit and produced a graph for these 

da ta  points (Figure 2.2) along with the equation of the line in the form of y = 

mx+c. The time of activ ity onset for the day of drug administration was 

ca lcu la ted  by substituting 8 (for the 8th day) for 'x' into the equation of the 

regression line and converting back from the decim al. The time of drug 

administration (CT6) was 6 hours before the p red icted onset of activity.
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2.2.2 Phase Shifts in Activity Onset

Post-drug treatm ent activ ity onsets were ca lcu la ted  by backw ard  regression of a 

line of best fit for the activ ity onsets of 7 days post-treatm ent. The initial 3 days 

post-treatm ent were excluded from the regression calculations to allow for 

transient effects. Any animals with less than five d a ta  points for the regression 

ca lcu la tion  were excluded from the analysis. The m ethod of ca lcu la tion  was by 

a similar m ethod to tha t used for the ca lcu lation of activ ity onset. The values for 

CT12 were taken, converted to decimals and entered onto the Excel tem plate 

(Figure 2.3) to p roduce a similar graph to tha t described above. This time 

however, the value of 10 was entered for 'x' into the ca lcu la ted  equation of best 

fit. The resulting value for activ ity onset was entered into the tem plate. Phase 

shifts were ca lcu la ted  as the d ifference between pre-treatm ent and post

treatm ent activ ity onsets (Figure 2.4).

2.2.3 Changes in I

The values of x were taken directly from the regression lines p roduced  in Excel for 

ca lcu la ting  activ ity onset. The value of x is simply the grad ient of these lines i.e. 

the 'm ' in y = mx + c. Changes in x subsequent to administration of baclofen 

were com pared  betw een animals before and afte r MDMA treatm ent.

2.2.4 Changes in Activity Offset

Activity offset was defined as the time point a t which the 98th percentile of the 

total activ ity for the c ircad ian day is reached. This has been empirically 

determ ined to be the least variable ind icator of activ ity offset (Meyer-Bernstein 

and Morin 1996). Total daily activ ity was taken to be all w heel running activity
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tha t fell betw een the times of activ ity onset for two consecutive days. The time 

of the da ta  bin in which 98% of this figure fell, was then taken as the time of 

activ ity offset. The time of activ ity offset for all seven days prior to the day of drug 

treatm ent were then determ ined. These times were then converted to decim al 

and entered into the Excel tem plate  as described above. The tem plate  then 

ca lcu la ted  the time for activ ity offset on the day of drug treatm ent by forward 

regression. The times for activ ity offset for seven days post-drug treatm ent were 

then ca lcu la ted  by backwards regression. The three days im m ediately following 

drug treatm ent were excluded from this ca lcu lation to allow for transient shifts. 

Any animals for which there were less than five d a ta  points for either of the 

regression calculations were excluded from the calculations. Differences in 

activ ity offset were taken as the difference betw een the results of the two 

regression calculations.

2.2.5 Alpha Activity Period

The a lpha activ ity period was taken as the time, in minutes, between the times of 

activ ity onset and activ ity offset. The mean figure for each  animal was used in 

analysis.

2.2.6 Total Activity

Total daily activ ity  was taken to be all wheel running activ ity  that fell between 

the times of activ ity onset for two consecutive days. The m ean figure for each 

animal was used in analysis.
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2.3 Drug treatments

After 7 days in DD, each  animal (n=16) received an intraperitoneal (i.p.) injection 

of R(+)-baclofen hydrochloride (10 m g/kg in 0.9% saline; Sigma, Poole, UK) a t CT 

6. Animals rem ained in DD for 10 days before receiving an i.p. in jection of 0.9% 

saline a t CT6. Following a further period of 10 days in DD, all animals were 

transferred into a cycle  of LD 14:10. Subsequent to 7 days under the LD cycle, all 

animals rece ived a subcutaneous injection of 3,4- 

m ethylenedioxym etham phetam ine (MDMA; kindly dona ted  by the National 

Institute of Health, USA) in 0.9% saline, from 3 to 4 hours prior to lights off. This drug 

was adm inistered in increasing doses of 10 m g/kg, 15 m g/kg and 20 m g/kg over 

three consecutive days. Animals remained in LD 14:10 for a further 12 days 

before being returned to DD. After 7 days in DD a second i.p. injection of 

baclofen was adm inistered a t CT6 followed by 10 days in DD and a final 

injection of saline a t CT6. All injections with the exception of those of MDMA 

were carried out under dim red light (14-18 lux).

2.4 Immunohistochemistry

2.4.1 Monoclonal Antibody to Serotonin

The an tibody used in this study was purchased from A ccura te  Chem ical and 

Scientific Corporation, Westbury, New York, U.S.A. (Product num ber YMC1019; 

Rat anti-serotonin; Cell line YC5/45). This m onoclonal an tibody was secreted by a 

hybridom a form ed by the fusion of a Y3-Ag-1.2.3 rat myeloma cell w ith a spleen 

cell from a male COB Wistar rat which had been immunised against a conjugate 

of 5-HT and bovine serum albumin (Cuello and Milstein 1981). The hybridoma 

secretes specific heavy chains and both specific and non-specific light chains



(Milstein, Wright e t al. 1983). The antibody belongs to  the rat immunoglobulin 

class IgG (Milstein, Wright e t al. 1983).

The antibody specifically recognises the form aldehyde con juga te  of 5-HT. 

Without paraform aldehyde treatm ent, it cross-reacts in liquid phase with 

dopam ine and tryptam ine in haem agglutination tests. It does not react with 

ca techolam ine-conta in ing  neurones in form aldehyde fixed preparations. The 

antibody reacts with 5-HT in neurones and recognises 5-HTergic sites in fixed 

tissue sections (Consolazione, Milstein et al. 1981). The antibody has previously 

been used successfully in anatom ica l studies of the c ircad ian system (Morin and 

Blanchard 1991; Morin, Blanchard et al. 1992; Meyer-Bernstein, Blanchard et al. 

1997; Meyer-Bernstein and Morin 1998).

2.4.2 Source of Tissue

Due to time constraints brought abou t by a change in d irection of the project, 

the analysis of the effects of MDMA on the SCN was taken from animals used in 

a previous study (Colbron, Jones et al. 2002). This looked a t effects of the 

serotonin agonist 8-OH-DPAT and light both pre- and post-MDMA treatm ent. 

There are no known residual effects from this agonist and the MDMA treatments 

used were identica l to those used in the current experiment. All 

im m unohistochem ical procedures were carried out by this author. All animals 

(n=14) were prepared for immunohistochemistry within 4 weeks of the final 

treatm ent as deta iled  below. All tissue for ana tom ica l analysis of the raphe 

cam e from the animals used in the current experim ent (DR, n=12; MR, n=13). 

These were processed for immunohistochemistry, as deta iled  below, between 10 

and 14 days a fte r the final injection of saline.
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2.4.3 Protocol

All animals were deep ly anaesthetised by i.p. in jection of sodium 

pentobarb itone (Dunnwood, Aberdeen, U.K.) and perfused transcardially with 

physiological saline followed by 4% paraform aldehyde in 0.1 M phosphate buffer 

(pH 7.4). Each brain was removed and post-fixed overnight in 4% 

paraform aldehyde before being cryopro tected through a series of sucrose 

solutions in 0.1 M phosphate buffer, ending with 30% sucrose. Brains were then 

frozen and sections of 30 pm were cu t in the coronal p lane and co llected  in 

0.01 M phosphate buffered saline (PBS).

A com bination  of retrograde, anterograde and dual immunofluorescence 

techniques has shown tha t serotonergic innervation of the SCN originates in the 

MR, while tha t of the IGL originates in the DR (Meyer-Bernstein and Morin 1996). 

Injection of retrograde tracers to the SCN showed an equal distribution of 

serotonergic cells throughout the rostrocaudal extent of the MR. A similar 

distribution throughout the DR was found when retrograde tracers were injected 

into the IGL. App lica tion  of anterograde tracers to the MR demonstrates that 

there is a substantial serotonergic fibre plexus concen tra ted  in the medial and 

ventral regions of the SCN. Therefore all sections through the SCN and every third 

section cu t through the aforem entioned areas of the raphe were co llected. A 

stereotaxic atlas of the hamster brain (Morin and W ood 2001) was used as a 

guide to loca te  the relevant stereotaxic coordinates of the brain areas during 

cu tting on the cryostat.

See append ix 1 for a deta iled  protocol of the methods used in this study and 

append ix 2 for the theory behind the chemistry of immunohistochemistry.
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2.5 Anatomical Analysis

2.5.1 SCN

Photomicrographs of stained tissue were obta ined on 400 ASA Kodak cam era 

film using a single lens reflex cam era (K-1000, Pentax) a tta ch e d  to a m icroscope 

(Galen II, Leica). These were digitised using a fla tbed  scanner (Hewlett Packard, 

Scanjet 4470c) to greyscale 75 dpi and im age size of 640x480 pixels. ROD values 

for the SCN were obta ined  using 'Scion Image' software ca lib ra ted  to a 

greyscale density step tab le t (Q-13, Kodak). For each  anim al brain, 4 to 6 

sections were selected from equivalent areas of the SCN using the shape of 

surrounding structures as guide. The optica l density of a control section from 

each brain, which received no primary antibody, was subtracted from the OD 

value of each  section of the same brain. The mean figure for OD of each  brain 

was used in the statistical analysis. See appendix 3 for the theory o f densitometry.

2.5.2 Raphe

Photomicrographs of the raphe were obta ined and digitised as deta iled  above. 

The images were opened in Adobe Photoshop and a grid of 16x8 was used as a 

guide in cell counts. Cell counts were m ade in quadrats from left to right and 

from top  to bottom . Nuclei tha t crossed a grid line were included in the count of 

the first quadra t in which they appeared. Nuclei tha t overlapped and were 

difficult to distinguish as separate cells were counted as one cell.
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2.6 Statistical Analysis

Repeated measures ANOVA were used to analyse phase shifts in activ ity onset 

and activ ity offset, changes in the alpha activ ity period and changes in total 

activity. Changes in t were analysed using t-tests. Differences in ana tom ica l da ta  

betw een MDMA treated animals and untreated animals were ca lcu la ted  using 

a Mann-W hitney U-test. The statistical software used in all cases was G raphpad 

Instat® software.
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3 Results

3.1 Behavioural Analysis

Four animals were excluded from the analysis of phase shift in activ ity onset for 

not m eeting the minimum criteria set. There was a significant d ifference in the 

size of phase shifts in activ ity onset betw een baclo fen and saline before 

treatm ent w ith MDMA (Fig 3.1 & 3.2) but not a fter (F(3,l 1) = 7.865, pO.OOl). There 

was also a significant d ifference between pre-MDMA baclo fen and post-MDMA 

baclofen (Fig 3.2 & 3.3).

For half of the animals, the size of x appeared  to change  afte r baclofen 

injection, which could distort the size of mean phase shifts (Fig 3.4). However 

when analysed, the differences were insignificant both before (Fig 3.5) and after 

(Fig 3.6) MDMA.

Four animals were excluded from the analysis of phase shift in activ ity offset for 

not m eeting the minimum criteria set. Analysis of activ ity offset showed no 

significance betw een any of the drug treatm ent protocols (Fig 3.7). No 

significant differences were found between a lpha activ ity period and total 

activ ity before and a fte r baclofen administration. The d a ta  were pooled for the 

final analysis of MDMA treatm ent but still p roduced non-significant results (Fig 3.8 

& 3.9).

Baclofen had a strong sedative e ffec t on all treated animals on the day of 

injection, which delayed the onset of activ ity by several hours (Fig 3.10). The 

delay betw een the p red icted  onset for the day of injection and  the actua l onset 

was ca lcu la ted  for each  animal. A t-test was used to determ ine whether MDMA



treatm ent changed  the m agnitude of the sedation induced by baclofen. No 

significance was found (Fig 3.11).
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Figure 3.4 Changes in x  subsequent to baclofen treatment.
R e p r e s e n t a t iv e  a c t o g r a m  illu s tra tin g  c h a n g e s  in x a f t e r  

a d m in is t r a t io n  o f  b a c lo f e n .  T h e  g r a d ie n ts  o f  t h e  t w o  lin es  

a p p e a r  d i f fe r e n t ,  a l t h o u g h  th is w a s  f o u n d  n o t  to  b e  s ig n if ic a n t  

w h e n  a n a ly s e d .  T h e  r e d  b lo c k  a r r o w  r e p re s e n ts  t h e  d a y  o f  

d r u g  a d m in is t ra t io n .
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□  Pre-Baclofen t 

y  Post-Baclofen t

Figure 3.5 Effect of baclofen on x prior to treatm ent with MDMA. T h e re  w a s  

n o  e f f e c t  o f  b a c lo f e n  o n  x w h e n  a n a ly s e d  b y  p a i r e d  t - te s t .

y  Pre-Baclofen t 

□  Post-Baclofen t

Figure 3.6 Effect of baclofen on x subsequent to treatm ent with MDMA. A g a in  

t h e r e  w a s  n o  d i f f e r e n c e  w h e n  a n a ly s e d  b y  p a i r e d  t- te s t .
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Figure 3.10 Actogram  illustrating the sedative effect of baclofen. A n  a c t o g r a m  

i l lu s tra t in g  a  d e la y  in t h e  a c t iv i t y  o n s e t  in a n  a n im a l  t r e a t e d  w ith  b a c lo f e n ,  p r io r  to  

M D M A  a d m in is t r a t io n .  A ll a n im a ls  s h o w e d  th is e f f e c t  s u b s e q u e n t  t o  b a c lo f e n  

t r e a t m e n t .  T h e  g r e e n  lin e  a p p r o x im a t e s  t h e  fo r w a r d  re g re s s io n  lin e  th r o u g h  th e  

a c t iv i t y  o n s e ts  o f  t h e  s e v e n  d a y s  p r io r  t o  d r u g  t r e a t m e n t .  T h e  r e d  b lo c k  a r r o w  

in d ic a te s  t h e  d a y  o f  d r u g  a d m in is t ra t io n . T h e  b lu e  b lo c k  a r r o w  s h o w s  t h e  2 5 6 -m in u te  

d e la y  in a c t iv i t y  o n s e t  s u b s e q u e n t  to  t h e  d r u g  a d m in is t ra t io n .
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3.2 Anatomical analysis

3.2.1 SCN

T h e  o p t ic a l  d e n s ity  in t h e  S C N  o f  a n im a ls  t r e a t e d  w ith  M D M A  (0 .1 1  ±  0 .0 0 5 ;  M e a n  ±  

S E M ) w a s  s ig n if ic a n t ly  r e d u c e d  w h e n  c o m p a r e d  to  u n t r e a t e d  c o n tro ls  ( 0 .5 0  ± 0 .1 6 1 ;  U 

= 4 , P < 0 .0 5 ; F ig u re  3 .1 2  a n d  3 .1 3 ) .

3.2.2 Raphe

N o  s ig n if ic a n t  d i f f e r e n c e  in t h e  n u m b e r s  o f  im m u n o p o s it iv e  c e ll  n u c le i  w a s  fo u n d  

s u b s e q u e n t  t o  t r e a t m e n t  w ith  M D M A  in e ith e r  t h e  d o rs a l (F ig u re s  3 .1 4  a n d  3 .1 6 )  o r  

m e d ia n  (F ig u re s  3 .1 5  a n d  3 .1 7 )  r a p h e  n u c le i.

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

□  Pre-MDMA

□  Post-MDMA

Figure 3.12 O ptical densities of SCN brain tissue stained with antibody against 5-HT.
T h e  d e n s ity  o f  im m u n o h is to lo g ic a l  s ta in in g  fo r  5-FIT w a s  s ig n if ic a n t ly  r e d u c e d  in b ra in s  

t r e a t e d  w ith  M D M A .
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Figure 3.13 Photomicrographs of coronal sections through the SCN stained with 
antibody against 5-HT. A =  C o n tr o l  b r a in . B =  M D M A  t r e a t e d  b r a in . T h e  b i la te r a l  n u c le i  
o f  t h e  S C N  c a n  b e  s e e n  ly in g  a b o v e  t h e  o p t ic  c h ia s m  a n d  b e lo w  t h e  th ird  v e n t r ic le .  

T h e  b r o w n  c o lo u r  is t h e  e n d  re s u lt o f  t h e  im m u n o h is t o c h e m ic a l  s ta in in g  o f  5 -H T  fib re s . 
A  r e d u c t io n  in d e n s ity  c a n  b e  s e e n  in tissue  f r o m  t h e  b r a in  t r e a t e d  w ith  M D M A .  V  =  

th ird  v e n t r ic le ;  O C  =  o p t ic  c h ia s m ; S C N  =  s u p r a c h ia s m a t ic  n u c le u s ; x lO  m a g n if ic a t io n ,  
s c a le  b a r  =  5 0  jam
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Figure 3.14 Cell counts of 5-HT immunopositive cell bodies within the dorsal raphe  
nucleus. N o  d i f f e r e n c e  w a s  f o u n d  b e t w e e n  c o n tr o l  b ra in s  a n d  M D M A  t r e a t e d  b ra in s .
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Figure 3.15 Cell counts of 5-HT immunopositive cell bodies within the m edian  raphe 
nucleus. N o  d i f f e r e n c e  w a s  f o u n d  b e t w e e n  c o n tr o l  b ra in s  a n d  M D M A  t r e a t e d  b ra in s .

Pre-MDMA

Post-MDMA

Pre-MDMA

Post-MDMA
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Figure 3.16 Photomicrographs of coronal sections through the dorsal raphe nucleus 
stained with antibody against 5-HT. A  =  c o n tr o l  b ra in . B =  M D M A  t r e a t e d  b r a in . x lO  

m a g n i f ic a t io n ,  s c a le  b a r  =  5 0  f im .
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4 Discussion

4.1 Phase Shifting Effect of Baclofen at CT6

Systemic administration of 10 m g/kg of R(+)-baclofen hydrochloride to Syrian 

hamsters a t CT6 results in a phase advance  shift in the onset of activ ity rhythms 

tha t is significantly d ifferent from the phase shift induced by control injections of 

saline adm inistered a t the same time. The phase and d irection of these baclofen 

shifts are similar to those of shifts induced by other non-photic stimuli, indicating 

that GABAb receptors m ay be involved, either d irectly or indirectly in the 

m ediation of phase shifts of this type.

This result is in agreem ent with previous work dem onstrating baclofen-induced 

phase advance  shifts of SCN neuronal activ ity in vitro  a t ZT6 (Biggs and Prosser

1998) and of activ ity  rhythms in vivo  a t CT6 (Smith, Turek et al. 1990). The phase 

shifts from the in vivo  study were of a similar m agnitude to those observed here 

despite the fa c t tha t the lighting conditions were different (LL as opposed to 

DD). The phase advances in vitro were larger (97.8 ± 24 minutes) than those 

resulting from this study (43.4 ± 9.8 minutes). The differences seen betw een these 

two types of study m ay be due to the loss off inhibitory a fferent input to the 

pacem aker in the SCN slice preparation resulting in a greater m agnitude of 

phase shift.

An a lternative explanation for the d ifference in the m agnitude of phase 

advances m ay be due to  the sedative e ffec t of baclofen. On the days when 

baclo fen was used as the phase shifting stimulus, there was a m ean delay in the 

onset of activ ity  of 207.8 ± 37.3 minutes. There was no d ifference subsequent to 

MDMA administration (279.6 ± 31.8 minutes), which would ind icate  that the
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mechanism for this e ffec t does not involve 5-HT. It has been previously shown 

tha t restriction of activ ity can a c t as a phase shifting stimulus in itself (Van Reeth, 

Hinch et al. 1991). It was found tha t under LL conditions, a three-hour period of 

immobilisation a t CT12 resulted in a phase delay of 51 ± 9  minutes. Since 

baclo fen administration appeared  to restrict all activ ity onsets by similar period, 

it m ay be tha t phase advances to baclofen a t CT6 m ight have been larger but 

have been coun terba lanced  by a phase delay from immobilisation due to the 

drug. It m ay also have been tha t the animals were still active  subsequent to drug 

administration but unable to engage in wheel-running activity. This could have 

been clarified through the use of infrared m ovem ent detectors p laced  around 

the animals’ cages.

4.2 The SCN as the Site of Action for Baclofen

Systemically administered baclofen has the potentia l to induce phase advances 

by ac ting  a t any site within the circad ian system where GABAb receptors are 

loca ted . GABAb receptors are known to be present within the SCN both from 

studies utilising in situ hybridisation (Lu, Ghasemzadeh et al. 1999) and 

immunohistochemistry (Margeta-M itrovic, Mitrovic e t al. 1999). The in situ 

hybridisation study would ind icate  tha t GABAb receptors are expressed by SCN 

cells and a direct, postsynaptic e ffec t of baclofen has previously been shown. 

One in vitro study (Jiang, Allen et al. 1995) found tha t bac lo fen  caused an 

outward current in SCN cells tha t was not b locked by TTX. Since TTX prevents the 

propagation  of sodium -dependant action potentials this would ind ica te  tha t the 

baclo fen was acting  directly on pacemakers cells. The outward current 

p roduced was associated with an increase in m em brane conductance  

consistent with an increase in potassium co nduc tance  and resulted in inhibition 

of SCN cells. An in vivo  study investigating photic signalling a t CT13.5 also found
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evidence for a d irect e ffec t of baclofen on SCN cells (Mintz, Jasnow et al. 2002). 

It was found tha t phase shifts to m icroinjection of a g lu tam ate  agonist were 

significantly reduced by baclofen and tha t this reduction was also unaffected 

by TTX. It m ay be tha t the phase advances observed in this study, a t CT6 a time 

when the e lectrical activity of SCN cells is high, are brought abou t by 

postsynaptic inhibition by baclofen. The mechanism for this could be 

hyperpolarisation and so a reduction in the e lectrica l activ ity of SCN cells 

resulting from the opening of inwardly rectifying potassium channels.

It is also thought tha t baclo fen can have a presynaptic e ffec t in the SCN. The 

phase advances in spontaneous electrical activ ity induced by baclo fen a t ZT6 in 

vitro  were b locked by TTX suggesting a presynaptic action  (Bergeron, Danielson 

et al. 1999). Application of baclofen in vitro can inhibit the release of g lu tam ate  

through activa tion  of GABAb heteroreceptors on terminals of the 

re tinohypothalam ic trac t (Jiang, Allen et al. 1995). It m ay be that baclofen 

phase advances are induced by disinhibition of inhibitory afferents to the SCN. 

GABAb receptors m ay be present on afferents from the GHT. The e ffec t of 

baclofen on these receptors would be to inhibit the release of GABA and /o r NPY 

and so rem ove the inhibitory e ffect of these neurotransmitters on cells of the 

SCN. This mechanism seems unlikely however, since coexpression of GABAbi 

receptors and GAD was not found by immunohistochemistry (Margeta-M itrovic, 

M itrovic et al. 1999). Evidence from cultured SCN neurones indicates tha t 

activation of GABAb receptors by baclofen results in a strong presynaptic 

inhibition of GABA release from these cells (Chen and van den Pol 1998). Thus it 

m ay be tha t baclo fen activates autoreceptors on GABAergic interneurones 

within the SCN resulting in the reduction of neurotransmitter release and 

ultimately in a phase advance.
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Thus baclo fen m ay result in phase advances of hamster activ ity rhythms by 

acting  a t the level of the SCN. This m ay be either by d irect inhibition of SCN cells 

or by a reduction in transmitter release from afferent pathways or possibly a 

com bination  of both. Since in situ hybridisation and im m unohistochem ical 

studies have found evidence for the presence of GABAb receptors throughout 

the c ircad ian system, it seems likely tha t baclofen could a c t a t any of these sites. 

It may be tha t the observed phase shift a t CT6 is the net result of stimulation of 

GABAb receptors a t both pre- and postsynaptic sites.

4.3 The Raphe Nuclei as the Site of Action for Baclofen

Both in situ hybridisation (Lu, Ghasemzadeh et al. 1999) and

im m unohistochem ical techniques (Margeta-M itrovic, M itrovic et al. 1999) have 

ind ica ted  tha t GABAb receptors are also present within the raphe. Com bined 

immunohistological staining for both 5-HT and GABAb receptors indicates tha t all 

serotonergic cells in both raphe nuclei express GABAbi recep to r subunits (Varga, 

Sik et al. 2002). This study found a t both light and electron m icroscope level that 

the subcellular location of GABAb receptors was on proximal dendrites and cell 

bodies. This would ind icate  tha t systemically administered baclo fen could a c t on 

these GABAb receptors to inhibit the firing of raphe cells causing reduction of 

both 5-HT metabolism and its release in projection areas. The 5-HTergic cells of 

the MR pro ject to the SCN while those of the DR pro ject to the IGL. 

Administration of baclo fen a t CT6 could result in changes in 5-HT levels in these 

areas and so lead to a phase shift.

The effects of GABAb recepto r stimulation by baclofen has been studied in both 

raphe nuclei by a com bination of microdialysis and  electrophysiological

techniques (Tao, Ma et al. 1996; Abelian, Adell e t al. 2000; Abelian, Jolas et al.
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2000). From these studies, it would appear tha t the net e ffe c t o f systemically 

adm inistered baclo fen on 5-HT neurones in the raphe results from a balance 

betw een d irect postsynaptic inhibition and indirect presynaptic disinhibition. 

Lower doses of baclo fen were found to have a preferential action at 

presynaptic GABAb recepto r sites while the GABAb antagonist phaclo fen cannot 

fully b lock the effects of higher doses of baclo fen (Abelian, Jolas e t al. 2000). 

These observations would suggest the presence a t the d ifferent cellular 

locations, of a lternate GABAb receptor subtypes with varying affinities for agonist 

and antagonist.

The dose of drug used in these experiments was 10 m g/kg of baclofen 

hydrochloride. A dose response curve for R(+)baclofen has been previously 

reported (Ralph and M enaker 1989). The maximal inhibition of phase shifts to 

light by R(+)baclofen is achieved a t a dose of 15 m g/kg. The baclofen 

hydrochloride used in these experiments is a more water-soluble version of 

baclofen and has been shown to produce a significant reduction in light- 

induced c-fos production in cells of the SCN a t 10 m g/kg (Crosio, Cermakian et 

al. 2000). Thus systemic administration of baclofen a t the lower dose used of 10 

m g/kg m ay a c t preferentially a t presynaptic GABAb autoreceptors on inhibitory 

GABAergic neurones tha t synapse on raphe 5-HT neurones. GABAergic input to 

the raphe is high during the day (Nitz and Siegel 1997), so baclo fen would 

reduce the GABAergic inhibition on 5-HT neurones resulting in an increase of 

serotonin metabolism and release. This would be in agreem ent w ith the in vitro 

work which dem onstrated an increase in the release of newly synthesised 5-HT in 

the SCN subsequent to baclofen administration during the subjective day 

(Francois-Bellan, Hery e t al. 1987). This increase in serotonin release from the MR- 

SCN pa thw ay m ay be involved in the phase advances observed.
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If low doses of baclo fen  show preferential action at presynaptic GABAb 

receptors, then the MR serotonergic terminal zone in the SCN m ay be another 

site of drug action. Stimulation of GABAb autoreceptors on these afferents would 

result in a reduction in 5-HT release and disinhibition of SCN cells possibly leading 

to a phase shift. MDMA was administered by i.p. in jection in increasing doses 

over three consecutive days. This is a protocol known to  be neurotoxic to 

serotonergic neurones resulting in degeneration of term inal areas in rodents 

(O'Hearn, Battaglia et al. 1988). This can be seen in our study as a significant 

reduction in the optica l density of the serotonergic term inal field within the SCN. 

If 5-HT is involved in m ediation of baclofen phase advances, then it would be 

expected  tha t a reduction of the terminal 5-HT field would a ffe c t the 5-HT being 

released within the SCN and so a ffec t the size of the baclo fen-induced phase 

advances. The phase advances to baclofen subsequent to MDMA lesions were 

indeed significantly smaller. Thus it seems likely tha t a presynaptic action of 

baclo fen on 5-HTergic cells from the MR that synapse on the SCN may be 

involved in phase shifts to this agent a t CT6.

It may be possible tha t the phase shifts to baclo fen a t CT6 are m ediated by the 

5-HTergic innervation of the IGL. The IGL is known to be involved in the mediation 

of non-photic phase shifts a t CT6 through release of NPY (Biello, Janik e t al. 1994) 

and /o r GABA (Morin and Blanchard 2001) onto the SCN. If GABAb receptors are 

present on the 5-HTergic pa thw ay from the DR to  the IGL, then these may also 

be involved in m ediation of non-photic phase shifting. Activation of these 

receptors would result in a reduction in 5-HT released onto the IGL. This would 

remove an inhibitory influence on the IGL and so result in an increase in the 

am ount o f NPY a nd /o r GABA released onto the SCN from the GHT tha t may lead 

to a phase shift.



There also appears to be differences in the e ffec t of baclo fen  a t different times 

of day. Local administration of baclofen through microdialysis probes to the DR 

during the lights-off period results in a reduction in extracellular 5-HT both in the 

DR and a projection area (Tao, Ma et al. 1996). However, local administration in 

the DR (Abelian, Jolas e t al. 2000) or MR (Abelian, Adell e t al. 2000) during the 

lights-on period results in an increase in extracellular 5-HT. It is known from in vivo  

microdialysis experiments tha t extracellular 5-HT levels in the SCN area are at 

their lowest a t CT6 under DD conditions (Dudley, DiNardo et al. 1998). Thus it may 

be tha t systemically administered baclofen a t this time increases the release of 

5-HT which ultimately leads to a phase advance  shift of the activ ity rhythms.

Some authors have specula ted tha t there is a reciprocal 5-HTergic pathw ay 

betw een the DR and MR. Electrical stimulation of either the MR or DR a t CT6 both 

resulted in significant phase shifts in activity rhythms (Meyer-Bernstein and Morin 

1999). Microdialysis measurement has shown tha t e lectrical stimulation of the DR 

produces an equivalent release of 5-HT within the SCN area as tha t p roduced by 

stimulation of the MR (Dudley, Dinardo et al. 1999). Systemic administration of the 

non-specific 5-HT antagonist metergoline b locked the release of 5-HT subsequent 

to DR stimulation but had no e ffec t on the release subsequent to MR stimulation 

(Dudley, Dinardo et al. 1999). M icroinjection of the 5-HTia au to recep to r agonist 8- 

OH-DPAT or the antagonist WAY 100635 directly to the MR resulted in inhibition 

and stimulation respectively of 5-HT release within the SCN. Similar microinjections 

to the DR had no e ffec t on 5-HT release within the SCN (Dudley, Dinardo et al.

1999). GABAb receptors, if present on this pathw ay would be an additional 

substrate through which phase shifts to baclofen m ay be m ediated.

Thus there are a num ber of possible sites for the actions of systemically 

adm inistered baclo fen on the raphe nuclei during the subjective day. The drug
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may be acting  presynaptically to inhibit neurotransmitter release onto cells of 

either nucleus. The action  may be directly on receptors of raphe cells and so 

inhibit cell firing and metabolism. Alternatively, GABAb heteroreceptors on 

terminals of the MR to SCN pathw ay may be a ffecting  transmitter release in this 

nucleus. It m ay be a com bination of all of these, however the strongest possibility 

from the current d a ta  would be the last of these. MDMA caused a measurable 

decrease in 5-HTergic innervation of the SCN and this was paralleled by an 

a ttenuation of phase shifts to baclofen.

4.4 The Effect of Baclofen on the Molecular Clock

It has previously been shown tha t several different non-photic stimuli a c t both to 

produce phase advances in activity rhythms and to reduce production of PER 

within the SCN during the subjective day. These stimuli include novel wheel 

running (M aywood, Mrosovsky et al. 1999), injection of NPY (M aywood, Okamura 

et al. 2002), in jection of 8-OH-DPAT (Horikawa, Yokota e t al. 2000) or injection of 

benzodiazepines (Yokota, Horikawa et al. 2000). It m ay be tha t the phase 

advances p roduced by baclofen in these experiments are also as a result of the 

reduction in Per expression within the SCN. Expression of Per during the day is 

maximal (M aywood and Mrosovsky 2001) and a reduction in this through 

baclofen administration would ultimately change the pattern of clock gene 

expression within the SCN. This in turn would lead to changes in the expression of 

c lock-controlled genes involved in output pathways such as TGFa, a molecule 

tha t has been im plicated in the control of hamster activ ity  rhythms (Kramer, 

Yang et al. 2001).
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4.5 The Neurotoxic Effect of MDMA

Dam age to the 5-HTergic system through the use of neurotoxins other than 

MDMA has been previously shown to a ffec t various param eters of circadian 

rhythmicity. The neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) can destroy 5- 

HTergic terminals, fibres and neurones w ithout dam ag ing  other neurotransmitter 

systems. Lesions induced through the use of this neurotoxin have been shown to 

have effects on several c ircad ian rhythm parameters. Under the entraining 

conditions of a light-dark cycle, activ ity onset usually occurs just a fte r lights-off for 

nocturnal rodents. Subsequent to lesioning by 5,7-DHT however, activity onset 

occurs slightly before lights-off and activ ity offset is usually de layed by 1.5 to 2 

hours, a lthough the tota l activ ity for the period remains the same (Morin 1999). In 

hamsters under constant darkness, c ircad ian rhythm icity persists w ithout any 

alteration in period, a lthough the expanded activ ity phase persists (Morin and 

Blanchard 1991). This differs from the effects tha t were observed in this study 

where lesioning by MDMA had no e ffec t on either the a lpha activ ity phase or 

tota l activity. This m ay be due to differing sites of action of the tw o neurotoxins. 

The e ffec t of 5,7-DHT on activ ity onset, offset, a lpha period and tota l activity is 

similar w hether the lesions are intraventricular or induced by injection directly to 

the MR (Morin 1999). It is possible tha t the effects of 5,7-DHT occur through the 

destruction of 5-HTergic cell bodies within the MR since the effects of this 

neurotoxin can occur by retrograde degeneration of nerve cells (Morin and 

Blanchard 1991; Morin 1992). MDMA however is known to  result in the depletion 

of 5-HTergic axons and axon terminals with very little e ffec t on cell bodies (Stone, 

Stahl e t al. 1986) as confirm ed by the results of this study. A d ifference between 

the effects of MDMA and 5,7-DHT has previously been shown with respect to 

c ircad ian rhythm icity (Colbron, Jones et al. 2002). This study found tha t phase 

shifts to light were a ttenua ted  subsequent to MDMA treatm ent, an e ffect
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opposite to the e ffec t of 5,7-DHT tha t results in augm enta tion  of phase shifts to 

light (Morin and Blanchard 1991).

An alternative explanation for the d ifference betw een the effects on activity of 

these two neurotoxins m ay be provided by a study tha t com pared  the e ffect of 

in jecting 5,7-DHT directly into the MR with the e ffec t o f injections d irectly to the 

SCN (Meyer-Bernstein, Blanchard et al. 1997). It was found tha t bilateral infusion 

of 5,7-DHT into the SCN area resulted in d ifferent behavioural circadian 

parameters under a LD cycle  than when the neurotoxin was diffused directly into 

the MR, even though both methods virtually e lim inated 5-HTergic innervation of 

the SCN. Infusion to the MR, and so destruction of cell bodies, resulted in the 

usual a dvance  in the onset of activity, delay in offset and extended activity 

phase. However bilateral infusion to the SCN, and so presumably destruction of 

terminal areas, resulted in earlier activ ity onset but had no e ffec t on either offset 

or duration of the activ ity phase. The interpretation of this d a ta  a t the time was 

tha t the 5-HTergic pa thw ay from the MR to the SCN contro lled the onset of 

activ ity but not any of the other circad ian parameters. It was suggested tha t 5- 

HTergic innervation from the MR to other brain areas indirectly controlled the 

other param eters through alternate transmitter systems. A comparison can be 

drawn from this with the present study. MDMA caused a reduction in 5-HTergic 

cell terminal areas with no e ffec t on cell bodies within the MR, a situation similar 

to bilateral infusion of 5,7-DHT into the SCN. MDMA had no e ffe c t on alpha 

period or to ta l activity, it d id however cause a change  in the tim ing of activity 

onset.

The m ode of administration of the neurotoxins m ay also contribute to the 

observed differences in e ffect. Experiments involving 5,7-DHT utilise local injection 

of the neurotoxin a t specific stereotaxic coordinates. This results in lesions of
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specific ta rge t pathways, which allows the contribution of tha t particular 

pa thw ay in phase shifting to be assessed by subsequent experiments. MDMA is 

however adm inistered systemically which results in g lobal neurotoxicity of 5- 

HTergic pathways. O ther areas of the brain tha t are rich in 5-HT m ay a c t on input 

pathways to  the c ircad ian system. Dam age to the fibres caused by MDMA in 

these areas will also contribute to changes in the functioning of the circadian 

system.

The neurotoxic effects of MDMA would also be expected  in the 5-HTergic 

terminal field within the IGL. It has been shown tha t MDMA has a greater 

neurotoxic e ffec t on neurones originating from the DR than those originating 

from the MR, possibly due to the anatom ica l differences in the 5-HTergic 

innervation originating from these two nuclei (O'Hearn, Battaglia e t al. 1988). 

Neurons from the MR are predom inantly of a 'beaded ' variety characterised by 

numerous rounded varicosities 2 to 3 pm in d iam eter while those of the DR are of 

a more uniform thin calibre type (Kosofsky and Molliver 1987). However, in the 

hamster there is no m orphological d ifference betw een 5-HTergic innervation of 

the IGL or SCN with afferents to both areas being very fine with small fusiform 

terminals (Morin and Meyer-Bernstein 1999). Since dam age  was found to MR 

terminals in the SCN and tha t DR terminals are generally more susceptible to 

neurotoxic dam age  from MDMA, it seems probable  tha t there would be 

dam age  to the 5-HTergic innervation of the IGL. Thus it may be tha t dam age to 

5-HTergic terminals in the IGL may be responsible for, or contribute to, the 

a ttenuation of baclo fen induced phase shifts observed subsequent to MDMA 

administration.
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4.6 Future Directions

One of the major shortcomings of the experiments used in this study is the 

inability to  distinguish the exact site of action of systemically adm inistered 

baclo fen within the c ircad ian system. One techn ique com m only used in 

c ircad ian research which overcomes this is the use of indwelling guide cannulae 

im planted with the use of stereotaxic positioners. These can be a im ed d irectly a t 

specific areas of the brain from known stereotaxic coordinates and a llow  direct 

app lica tion  of drugs to an area of interest such as the SCN or the raphe nuclei. 

This techn ique has previously been used successfully to investigate the e ffec t of 

baclofen within the SCN. One study looked at the effects o f bac lo fen  on light 

induced delays and advances during the night (Gillespie, Mintz e t al. 1997) while 

another looked a t the d irect e ffect of baclofen on the SCN a t CT6 under 

constant light (Smith, Turek et al. 1990). No experiments have been carried out 

using this techn ique a t CT6 under conditions of constant darkness. No study so 

far has looked a t the effects of baclofen in jected through cannu lae aim ed 

directly a t either of the raphe nuclei or the IGL.

The involvem ent of 5-HT in systemically administered baclo fen  phase advances 

could be further exam ined by com bination with local in jection of antagonists of 

5-HT receptors. There are several different 5-HT receptors tha t are known to be 

present within the c ircad ian system. Selective antagonists are availab le  for 

several of these enabling the b lockade of tha t particular receptor. Used in 

com bination  with systemically administered baclo fen would a llow  clearer 

identification of the neural pa thw ay along which baclo fen mediates its effects.

Recent ev idence suggests tha t GABAb receptors are com posed of different 

recepto r subtypes and tha t different combinations of these vary in their
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pharm aco log ica l properties. It has also been suggested tha t the different 

subtypes are coup led  to alternate signal transduction mechanisms such as G 

proteins. It has been previously shown in vitro tha t pertussis toxin can discriminate 

betw een pre- and postsynaptic actions of baclofen in the rat DR (Colmers and 

Williams 1988). If a similar treatm ent was to be used in vivo, then it may be 

possible to determ ine the contribution of the d ifferent subtypes to baclofen 

phase shifts a t CT6 and allow a closer determ ination of the exact location of 

these receptors.

The neurotoxic e ffec t of MDMA on the 5-HTergic terminal field within the SCN 

was exam ined in this study. No accoun t was taken of any similar toxicity to the 5- 

HTergic term inal field within the IGL. A similar im m unohistochem ical examination 

of any dam age  to this area would be necessary before any firm conclusion 

could be drawn regarding the exact location of the site of action  of systemically 

administered baclofen.

4.7 Conclusions

Systemic administration of the GABAb agonist baclofen during the subjective day 

to Syrian hamsters, results in a significant phase advance  shift of activ ity rhythms 

when com pared  to control injections of saline adm inistered a t the same time. 

This would ind ica te  tha t GABAb receptors m ay have a role in the m ediation of 

non-photic phase shifting of the circad ian clock since this is a time a t which 

other non-photic stimuli p roduce phase advances. This has implications for the 

treatm ent of c ircad ian rhythm disorders in tha t drugs tha t a ffect 

neurotransmission through the GABAb receptor m ay have potentia l therapeutic 

value.
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Further, neurotoxic dam age  to the 5-HTergic innervation of the SCN induced by 

the substituted am phetam ine MDMA resulted in a ttenuation  o f the phase shifts 

induced by baclo fen. This suggests tha t the 5-HTergic innervation of the SCN is 

involved in baclo fen-induced phase advances. It has previously been shown 

tha t MDMA reduces tha t ability of the SCN to phase shift to  a different non- 

photic stimulus as well as to light (Colbron, Jones et al. 2002). It is known that 

there is an increase in the use of MDMA as a recreational drug tha t may lead in 

the future to increasing incidences of c ircad ian rhythm disorders.
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Appendix 1: Immunohistochemistry Protocol 

A1.1 Chemicals Used and Sources

Chemical Name

5HT antibody; clone YC5/45

Biotinylated anti-rat IgG m ade in rabbit 

DPX m ountant 

DAB substrate kit

Hydrochloric ac id

Hydrogen peroxide 

Normal rabb it serum

Paraform aldehyde

Potassium chloride 

Sodium b ica rbonate  

Sodium chloride 

Sodium hydroxide

Sodium phosphate dibasic anhydrous 

Sodium phosphate m onobasic dihydrate

Sucrose 

Triton® X-100

Vectastain ABC Kit - Standard peroxidase 

Xylene

Supplier Code Supplier Address

YMC1019
A ccura te  Chem ical & 
Scientific Corporation,

BA-4000

Westbury, NY, USA 

Vector, Peterborough, UK

44581 Sigma-Aldrich, Poole, UK

SK-4100 Vector, Peterborough, UK

H / l150/PB17 Fisher Scientific, 
Loughborough, UK

285196H BDH, Poole, UK

S-5000 Vector, Peterborough, UK

16965-0010
Fisher Scientific, 
Loughborough, UK

P5405 Sigma-Aldrich, Poole, UK

S5761 Sigma-Aldrich, Poole, UK

S5886 Sigma-Aldrich, Poole, UK

930-65 Sigma-Aldrich, Poole, UK

S5136 Sigma-Aldrich, Poole, UK

71509 Sigma-Aldrich, Poole, UK

S/8560/63 Fisher Scientific, 
Loughborough, UK

BPE151-100 

PK-4000

Fisher Scientific, 
Loughborough, UK

Vector, Peterborough, UK

X/2022/17 Fisher Scientific, 
Loughborough, UK
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A1.2 Stock Solutions

0.2M Phosphate Buffer Solution (PB):

A sodium phosphate monobasic d ihydrate 6.24 g in 200 ml double  distilled w ater
(ddbhO)

B sodium phosphate dibasic anhydrous 28.4 g in 1000 ml ddhteO
>  mix 190 ml of A with 810 ml of B
>  check the pH is -7.4, if necessary adjust with 1M sodium hydroxide or 1M

hydrochloric ac id

Perfusion Buffer:

per litre: distilled w ater (ddH20) 950 ml
0.2M buffer stock solution 50 ml
sodium chloride (NaCI) 8.25 g
potassium chloride (KCI) 0.25 g
sodium b icarbonate  (NaHCCb) 0.5 g

4% Paraformaldehyde (PAM):

per litre: ddH20 500 ml
0.2M buffer stock solution 500 ml
NaCI 8.8 g
KCI 0.2 g
paraform aldehyde 40 g

> hea t solution to 60°C on a stirring hotp la te
> stir until solution clears then filter through a double layer of filter paper

Sucrose solutions:

per 100 ml 10% lOg of sucrose in 0.2M PB
20% 20g of sucrose in 0.2M PB
30% 30g of sucrose in 0.2M PB

0.01 M Phosphate Buffered Saline (PBS):

per litre: ddH20 950 ml
0.2M buffer stock solution 50 ml
NaCI 8.8 g
KCI 0.2 g

0.01 M phosphate buffered saline with Triton-X (PBS+T):

per litre: PBS 997 ml
Triton-X 3 ml

1% Hydrogen Peroxide Solution:

per 30 ml: PBS+T 29 ml
30% hydrogen peroxide (H2O2) 1 ml

Blocking Solution:

per 10 ml: PBS+T 9.7 ml
normal rabbit serum (3%) 300 |jl
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Primary Antibody (1:100):

per 10 ml: blocking solution 9.9 ml
antibody -  YC5/45 100 |jl

Secondary antibody (1:200):

per 10 ml: PBS+T 9.95 ml
biotinylated rabbit anti-rat 50 |jl

Avidin-biotin complex (ABC):

per 5 ml: PBS+T 5 ml
reagent A 1 drop
reagent B 1 drop

> make up a minimum of 30 minutes before use

Diaminobenzidine solution:

per 5 ml: ddhteO
buffer solution 
DAB solution 
H2O2

A1.3 Procedure

1. Wash:
a. using a transfer p ipette  to remove the PBS solution in which the 

sections were co llected  and rep lace with fresh PBS solution
b. p lace  culture plates on the rotary shaker to ag ita te
c. a llow to wash for 10 minutes
d. repea t this process for a second 10 minute wash

2. Quenching endogenous peroxidase activity:
a. remove the wash solution
b. rep lace with 1 % H2O2 in PBS+T and ag ita te  for 5 min

3. Wash:
a. 2 x 10 minutes in PBS -  as above

4. Blocking non-specific background staining:
a. rem ove the wash solution
b. app ly  b locking solution
c. incuba te  tissue in blocking solution with agita tion for 1.5 hours at 

room tem perature

5. Primary antibody:
a. keep one section as a non-specific staining control and remove 

blocking solution from all o ther sections
b. app ly  primary antibody
c. secure lids onto  plates with sellotape
d. incuba te  for 3 days a t 4°C

6. Wash:

5 ml 
2 drops 
4 drops 
2 drops
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a. using a transfer p ipette  to remove the primary antibody and replace 
with PBS

b. p lace  culture plates on the rotary shaker to ag ita te
c. a llow to wash for 10 minutes
d. repeat this process for a second 10 minute wash

7. Secondary antibody:
a. remove the wash solution
b. app ly  secondary antibody using a 1 ml Gilsen p ipe tte
c. incubate  for 90 minutes with agitation a t room tem perature

6. Wash:
a. 2 x 10 minutes in PBS -  as above

7. ABC solution:
a. rem ove the wash solution
b. app ly  ABC solution using a transfer p ipette
c. incubate  for 90 minutes with agitation a t room tem perature

8. Wash:
a. 2 x 1 0  minutes in PBS -  as above

9. DAB visualisation:
a. app ly DAB solution with a transfer p ipette  and allow 2 to 5 minutes 

incubation until a suitable intensity of staining is ach ieved
b. carry out this stage on one culture dish a t a time to prevent over

staining

10. Wash:
a. 2 x 1 0  minutes in PBS -  as above

11. Specimen mounting:
a. dehydra te  through increasing concentrations of a lcohol
b. c lear in xylene
c. coverslip and m ount with DPX m ountant
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Appendix 2: Immunohistochemical Theory

A2.1 Antibodies

Antibodies are a class of proteins, the immunoglobulins, p roduced by B- 

lymphocytes of the immune systems of animals in response to invasion of the 

body by foreign molecules. They form one or more Y-shaped units, which are 

each com posed of four po lypeptide  chains. Each of these Y-shaped units 

contains tw o identica l copies of a 'heavy' chain and tw o identica l copies of a 

'light' chain, nam ed based on their relative m olecular weights. There are five 

classes of an tibody based on the number of Y-units and the type of heavy chain 

(IgG, IgM, IgA, IgD and IgE). Antibodies are p roduced by the immune system in 

response to  antigens, which are high m olecular w e ight chem icals such as 

proteins or polysaccharides. Smaller substances known as haptens, if these are 

chem ically coup led to a larger carrier protein such as bovine serum albumin 

may also genera te  immune responses.

Antibodies bind to antigens a t a specific site known as an ep itope. This is usually 

one to six m onosaccharide or am ino ac id  residues on the surface of the antigen. 

Conform ational epitopes are dependant upon a specific three-dimensional 

antigenic conform ation such as would be form ed from the interaction of two 

native protein subunits. Linear epitopes correspond to a simple primary 

sequence. The range of possible binding sites for antibodies is large with each 

having its own structural properties depend ing upon the type of molecular 

bonding present. The bonding between antibody and antigen is dependant 

upon non-cova lent bonding such as hydrogen bonds, hydrophobic bonds, 

e lectrostatic forces and van der Waals forces. Im m unochem ical techniques rely 

upon the specific binding properties of an antibody for its antigen.
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Antibodies are p roduced for use in im m unochem ical research by repeatedly 

immunising a suitable animal by a suspension of the antigen of interest. Blood 

serum is harvested a t the peak of antibody production and  the antibodies 

isolated. When very large antigen molecules are used for the immunisation, the 

resulting antibodies are said to be polyclonal. This is due to the large number of 

epitopes on the surface of the antigen molecule, each  of w hich results in the 

production of an immunoglobulin specific for tha t epitope. Polyclonal antibodies 

have the d isadvantage tha t they can cross-react with other epitopes on the 

antigen m olecule. M onoclonal antibodies are hom ogenous populations of 

immunoglobulins p roduced  by hybridomas, which are the result of the fusion of a 

B-lymphocyte with an immortal cell line. These antibodies all recognise the same 

ep itope but because of this are sensitive to changes it the ep itope  brought 

about by processes such as chem ical fixation of tissue samples. M onoclonal 

antibodies are used as the primary antibody in im m unochem ical research due 

to their high specificity and results can be highly reproducib le  if experimental 

conditions are kept constant.

The de tec tion  of antigens in b io logical tissue is known as immunohistochemistry 

(IHC). In this technique, an antibody is used to link a cellular antigen to a stain 

tha t can be observed under the m icroscope. There are three main stages 

involved in IHC, specimen preparation, antibody staining and antibody 

detection .

A2.2 Specimen Preparation

The cells and tissues have firstly to be preserved in a life-like manner. This is 

ach ieved by the use of fixatives, which are chemicals tha t stabilise the cells and
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tissues and p ro tec t them  from the rigors of processing and staining techniques. 

Tissues have differing protein content and so differing abilities to retain their 

structure depend ing  upon fixation m ethod used. The methods tha t are best for 

the preservation of tissue structure generally work by altering proteins, which may 

result in the masking of some epitopes and so b lock or im pede antigen labelling. 

Fixatives m ay work by form ation of cross-linkages betw een reactive groups in the 

po lypeptide  chains of proteins or by protein denaturation by coagula tion, or a 

com bination of the two. Requirements for fixation varies w idely betw een tissue 

types, so methods used must be optim ised for each  in order to retain antigens 

and cellular structure while keeping ep itope masking to a minimum.

Perfusion fixation involves the pum ping of fixative through the vascular system of 

an in tac t animal. The animal is given an injection of anaesthetic and has its 

chest cavity  opened. A needle connected  to a supply of physiological saline is 

inserted into the left ventricle of the heart and the right atrium is cut. The saline is 

a llowed to flow a t a steady pressure and so pumps out all the b lood from the 

body. The saline is then rep laced  by fixative and this is a llowed to  flow at a 

steady pressure through the body. The tissue of interest is then harvested. This 

m ethod has the advan tage  of being quick as well as allow ing the fixative good 

accessibility to all tissues throughout the body.

There are several methods of preparing sections of tissue sample for use in IHC. 

Cryostat sectioning involves the rapid freezing o f the tissue sample for cutting on 

a cryostat. This m ethod allows good antigen preservation and  the use of many 

different fixatives so allow ing optim isation of fixative for each  antigen. The 

sections p roduced by this m ethod can be stained free-floating and not slide 

m ounted which allows greater surface area for incubation. This m ethod however 

gives less m orpholog ica l deta il and resolution.
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A2.3 Antibody Staining

The purpose of immunohistochemistry is to identify the presence or absence of a 

particular antigen within a tissue sample. There are several methods of achieving 

this but all involve exposing the tissue to an antibody raised against the molecule 

of interest. Detection of the antibody is ach ieved through several stages that 

ultimately result in a ttachm ent of a label tha t can be viewed under the 

m icroscope. The primary antibody may be directly labelled, or unlabelled, with 

de tection  ach ieved  by a labelled secondary antibody. If a secondary antibody 

is used, it must be genera ted against the immunoglobulin of the anim al in which 

the primary antibody was raised. For instance, if the primary an tibody was raised 

in rat then the secondary antibody could be raised in rabbit against rat 

immunoglobulin. Antibodies bound in tissue samples can be d e te c te d  by several 

methods. Enzyme-mediated detection  involves the use of enzymes such as 

horseradish peroxidase or alkaline phosphatase as the label. These are then 

reacted  with a suitable substrate tha t yields a precip ita te . Various signal 

am plification techniques can be used to increase the signal to antibody ratio 

and so allow bette r visualisation of the end product.

A2.4 Avidin-Biotin Technique for Antibody Detection

Avidin is a g lycoprote in tha t has such high affinity for the small vitamin biotin that 

reaction betw een the tw o molecules is essentially irreversible. Each m olecule of 

avidin has four binding sites for biotin. Additionally, a variety of biological 

molecules including antibodies and enzymes can be con juga ted  to several 

molecules of biotin. Following from this, biotinylated proteins can  each  a ttach  to 

more than one m olecule of avidin. These properties have been exploited in
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im m unohistochem ical techniques to allow the formation o f m acrom olecular 

complexes betw een avidin and biotinylated proteins. The ABC technique 

employs unlabeled primary antibody, followed by b io tinylated secondary 

antibody and  then a preform ed avidin and b iotinylated horseradish peroxidase 

m acrom olecular com plex (ABC). The biotin molecules on the secondary 

antibody react with the ABC and as a result greatly am plify the antibody signal 

(Figure A2.1).

An enzyme substrate is then added  which results in the conversion of a colourless 

chrom ogen into a visible, coloured end product. The ABC techniques utilises the 

sensitive hydrogen peroxide-3,3’-diam inobenzidine (DAB) reaction which 

produces a brown end product which is insoluble in organic solvents. One 

draw back of this m ethod is that many types of b io log ica l tissue have 

endogenous levels of the enzyme peroxidase present tha t can  react in the final 

stage and produce high levels of non-specific staining. This has to be prevented 

by quenching the endogenous peroxidase activ ity with hydrogen peroxide 

before staining with the primary antibody.

Following this final stage, the tissue sections are m ounted on m icroscope slides, 

dehydra ted through increasing concentrations of a lcohol, c leared  in xylene and 

finally cover-slipped.
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Avidin-Biotin Complex

rat anti-5-HT 
primary antibody

biotinylated rabbit anti-rat 
secondary antibody

antigen (5-HT)

Figure A2.1. The ABC technique for immunohistochemistry as 
used in this study. A = avidin; B = biotin; P = peroxidase.
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Appendix 3: Densitometrical Analysis

The principle of densitometry is based on the fa c t tha t radiation, including light is 

lost as it passes through a medium. If we have a beam  of m onochrom atic light 

of rad iant pow er Po passing through a sample solution then absorption takes 

p lace  and the radiation leaving the sample has rad ian t pow er P. Beer's Law 

states tha t for transm ittance (T):

T = P/Po

and for absorbance (A):

A = logioPo/P

This radiation loss in a m edia is a function of the substance's molarity or 

concentration. According to Beer's law, concentra tion  is proportional to optica l 

density (OD). From this it is possible to use a scaling system for pixels in a 

photograph, which has a one to one correspondence with the concentration of 

a substance being studied. The logarithm ic optica l density scale and net integral 

of density values for an ob jec t in an im age is the proper measure for use in 

quantification. So by Beer's Law, the density of a point is the log ratio of incident 

light upon it and transmitted light through it:

OD = logioPo/P

There are several standard methods used to find the density of an ob jec t or a 

point on an im age. The one used in this study uses photom icrographs of the SCN 

taken a t X I0 m agnification and then digitised on a fla tbed  scanner. OD values
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a r e  n o t  m e a s u r e d  d i r e c t ly  b y  th is m e t h o d .  P ixel v a lu e s  in t h e  p h o t o g r a p h  a r e  

l in e a r  w ith  r e s p e c t  to  T, w h ic h  is t h e  a n t i - lo g  o f  t h e  n e g a t iv e  o f  O D :

T = 1 C K > D

T h e  s o f tw a r e  u s e d , S c io n  Im a g e ,  c a n  b e  c a l ib r a t e d  fo r  o p t ic a l  d e n s ity  

m e a s u r e m e n ts  u s in g  e x te r n a l  s ta n d a r d s . For s o m e  a p p l ic a t io n s ,  e x te r n a l  

s t a n d a r d s  a r e  a v a i la b le  fo r  k n o w n  c o n c e n t r a t io n s  o f  t h e  s u b s t a n c e  b e in g  

m e a s u r e d ,  w h ic h  a l lo w s  a c t u a l  m o la r  c o n c e n t r a t io n s  t o  b e  c a lc u l a t e d .  

U n f o r tu n a te ly  t h e r e  a r e  n o  s u c h  s ta n d a r d s  a v a i la b le  fo r  5 -H T  in n e rv o u s  tissue  

a n d  so  a  p h o t o g r a p h ic  s te p  t a b l e t  w a s  u s e d  (F ig u re  A 3 .1 ) .

Figure A3.1 Photographic step-tablet used for calibration of densitometry 
software

This o n ly  a llo w s  r e la t iv e  o p t ic a l  d e n s ity  (R O D )  to  b e  m e a s u r e d  r a th e r  t h a n  

a b s o lu te  v a lu e s . T h e  c a l ib r a t io n  p r o c e d u r e  a llo w s  t h e  t r a n s fo r m a t io n  o f  p ix e l 

v a lu e s  d ir e c t ly  f r o m  a  s c a le  t h a t  is l in e a r  w ith  r e s p e c t  to  T in to  a  s c a le  t h a t  

c o r r e la te s  to  O D  o r  c o n c e n t r a t io n .  A n  e q u a l  a r e a  o f  e a c h  o f  t h e  g r e y  b a n d s  o n  

t h e  s te p  t a b l e t  is m e a s u r e d  to  g iv e  a  m e a n  g r e y s c a le  v a lu e  fo r  t h a t  b a n d .  T h e s e  

v a lu e s  a r e  th e n  m a t c h e d  w ith  t h e  c o r r e s p o n d in g  k n o w n  o p t ic a l  d e n s it ie s  fo r  

e a c h  o f  t h e  b a n d s  to  p r o d u c e  a  c a l ib r a t io n  c u r v e  (F ig u re  A 3 .2 ) .  T h e  im a g e s  o f  

s a m p le  tissu e  a r e  th e n  lo a d e d  in to  t h e  s o f tw a r e  a n d  m e a s u r e m e n ts  t a k e n  o f  t h e  

r e g io n  o f  in te re s t . This g r e y s c a le  m e a s u r e m e n t  is th e n  c o n v e r t e d  t o  o p t ic a l  

d e n s ity  b y  c o m p a r is o n  w ith  th e  c a l ib r a t io n  c u r v e .
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20 f y=a+bx+cxA2+dxA3
a=-0.49910480 
b=0.11421986 
c=-0 00118387 
d=0.00000417

0.00
2550

Figure A3.2 Calibration curve for optica l density
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