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Sum m ary

The work presented in this thesis is a study of the reversal properties of selected 

magnetic materials. The reversal mechanisms of magnetic multilayer artificial 

anti-ferromagnetically biased spin valves (AAF SV), both in the form of con

tinuous thin films and discrete elements have been investigated. SVs consist 

of two ferromagnetic layers separated by a non magnetic spacer layer. The 

magnetisation of one layer is pinned through exchange coupling to an adjacent 

anti-ferromagnetic layer. The magnetisation of the other ferromagnetic layer 

(the free layer) can be reversed by applying a small external field. If the free 

layer aligned is parallel to the pinned layer, a low resistance state is measured. 

For an anti-parallel alignment, the resistance is considerably larger. This is a 

phenomenon known as Giant Magnetoresistance (GMR) and is highly desirable 

for applications such as read heads in disc drives. For AAF biased systems, the 

pinned layer consists of two ferromagnetic layers and a non magnetic spacer 

such that the two ferromagnetic layers couple anti-ferromagnetically. This 

modifies the coupling within the entire multilayer stack giving a potential ad

vantage for applications.

A second area of investigation comprised hybrid ferromagnetic /  semicon

ductor systems. Magnetic elements were formed on Hall bars enabling a non- 

invasive study of the interactions between the stray field from the elements and 

electrons in the two dimensional electron gas (2DEG) of the semiconductor. 

From this, the magnetisation state of the elements can be investigated giving 

further insight into the reversal properties of the material.

The first Chapter introduces the basic concepts of ferromagnetism and 

reviews the energy contributions which govern the behaviour of magnetic ma

terials. Following this is a discussion of domains, domain walls and some 

of the reversal mechanisms relevant to the work presented in later Chapters.



Two types of magneto-resistive effects important to the two experimental tech

niques of this thesis are introduced: giant magnetoresistance with an emphasis 

on spin valve systems and quantum transport mechanisms for semiconductor 

heterostructures.

Techniques necessary for the fabrication of all specimens investigated are 

discussed in Chapter 2. A discussion of electron beam lithography and pho

tolithography, pattern design, transfer and resists with reference to the systems 

available precedes a description of some of the associated techniques.

An investigation of the free layer magnetic reversal processes for a range of 

AAF biased spin valves is presented in Chapter 3. Prior to this is a discussion of 

the instrumentation and techniques employed. An overview of the transmission 

electron microscope (TEM) including the gun, column and limitations on the 

resolution is given. The principal mode of operation, Lorentz microscopy, 

is then discussed with emphasis on Fresnel and differential phase contrast 

(DPC) modes which were used to investigate the free layer reversal of the 

spin valves in situ. Reversal mechanisms of the spin valves are then presented 

for a range of specimens. The general structures of all specimen are nominally 

identical with only the second Co layer of the AAF varying between specimens. 

Marked differences in the reversal processes are apparent as the thickness of 

the second Co layer is increased from a fraction of the thickness to near double 

the thickness of the first Co layer. Some insight into the mechanisms causing 

the change in the reversal processes is given.

Chapter 4 continues the investigation of AAF biased spin valves with the 

study of a range of spin valve elements. The elements have one of two layer 

structures, a range of orientations with respect to the growth and applied field 

directions, and a range of dimensions down to 400 x 200 nm2. DPC images of 

the free layer reversal for selected elements are presented. It was found that a 

range of reversal mechanisms was possible and was dependent on element shape 

and orientation. Domain processes were observed in all reversals. The reversals



presented exhibited wide hysteresis loops without sharp jumps between ±M S

Accompanying the experimental results, simulations of the AAF SV system 

using a commercially available package are shown for some of the smaller 

elements. These indicate that the elements possess two stable magnetisation 

states with a rapid switch between each state. The fields at which reversal 

of these smaller elements occurred were considerably greater than for larger 

elements, as was the offset in the hysteresis loop. Experimentally, the fields 

at which reversal occurred for the smallest elements were recorded and were 

compared with the simulations.

The final experimental chapter discusses the fabrication and measurement 

of hybrid ferromagnet/semiconductor samples. This system enables a non- 

invasive characterisation of the reversal of a magnetic element by studying 

the interaction between the stray field from the element and electrons in the 

2DEG. The study revealed that small Hall bars can be defined on a much larger 

Hall bar, enabling bulk characterisation alongside smaller scale investigations. 

Both the large and small Hall bars exhibit similar magnetotransport properties 

at high fields with the smaller Hall bar showing additional mesoscopic effects 

at lower fields.

With magnetic elements present, it has been shown that the magnetisa

tion state of elements of dimensions ~  1 /im can be detected using the Hall 

bar. For such an element placed symmetrically between two Hall contacts, 

both the longitudinal and transverse resistance measurements shows structure 

attributed to the magnetic element. A simple model is used to successfully 

describe the relationship between them.

Calculations of the magnitude of the Hall signal from experimental and sim

ulated systems are presented indicating a discrepancy between the two values 

in many samples. This is tentatively ascribed to partial lift-off of the element 

giving a curled structure, but this model is yet to be confirmed. However, 

for an element placed symmetrically between the two Hall contacts, both the



shape of the hysteresis loop and the magnitudes of the resistance structures 

were in good agreement with theoretical estimates.

General conclusions and a discussion of further work are presented in Chap

ter 6
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Chapter 1 

Introduction, M agnetics and 

Transport Theory

1.1 Introduction

This chapter describes the basic concept of ferromagnetism, the various energy 

considerations which help determine the magnetic state, properties and char

acteristics of a ferromagnetic material. Reversal processes appropriate to the 

materials studied are discussed. Further to this, two types of magnetotrans- 

port are introduced: giant magnetoresistance with an emphasis on spin-valves 

which display this phenomenon, and quantum transport theory relating to 

semiconductor/ferromagnetic metal hybrid structures. Jiles [1], Craik [2] and 

Hubert [3] have been frequently referred to in sections 1.2 and 1.3.

1.2 B asic Ferrom agnetism

A ferromagnet is a material which possesses non-zero magnetisation in the 

absence of an applied field. In ferromagnetic materials, there is a dipole mo

ment associated with each atom. The non-zero magnetic moment arises due 

to these dipole moments aligning parallel to their nearest neighbours. Above

1



Chapter 1. Introduction to magnetics and transport theory

a critical temperature, the Curie temperature (Tq) of the material, this align

ment breaks down due to thermal agitation and the dipoles become randomly 

oriented. The material then behaves as a paramagnet.

In the case of an elemental ferromagnet, the dipole moment arises primarily 

from the spin angular momentum of unpaired electrons in the 3d or 4f shells 

of the atoms. At sufficiently low temperature in ferromagnets, the moments 

behave in a cooperative manner. Weiss (1906) proposed that an internal molec

ular field can be used to account for the spontaneous alignment of the dipole 

moments. This internal field, H m, is proportional to the magnetisation M of 

the sample. Heisenberg (1928) suggested this molecular field had its origin in 

a quantum mechanical effect, the exchange interaction between each molecule 

and its nearest neighbours. Specifically he suggested the interaction could be 

written in the form

E„ = -2JtfS , • Sj (1.1)

where is the exchange parameter, Si is the spin angular momentum of a 

molecule i, coupled with nearest neighbours of spin Sj. For positive, this 

results in an energy minimum when the dipoles have a parallel alignment and 

is the interaction responsible for a spontaneous moment arising in zero applied 

field.

From this, it can be deduced that for a ferromagnetically aligned state, Jij 

must be greater than zero and for antiferromagnetic alignment, J\j must be 

less than zero.

1.3 E nergy C onsiderations

The magnetic state of a ferromagnetic sample can be understood by taking 

into consideration various energies associated with the material properties and 

physical dimensions of the sample coupled with the knowledge that the ma

terial will, in general, relax into an energy minimum. Described below are

2



Chapter 1. Introduction to magnetics and transport theory

the exchange energy, the magnetocrystalline energy, the magnetostatic energy 

and, the Zeeman energy, all of which combine to give the total energy Etot of 

the sample.

1.3.1 Exchange Energy

As described earlier, the exchange interaction, equation 1 .1 , is responsible 

for the spontaneous alignment of dipole moments within the material. For 

isotropic exchange, a simplified expression for the exchange energy can be 

used. In this case, Jy =  J  and for identical atoms Si =  S  with small </>y, 

where </>y is the relative angle between the spins, a small angle approximation 

can be applied. The simplified atomic expression is then

E h =  -ZJijSiSj cos (pij ~  J S 2̂  (1.2)

where the constant term has been dropped.

A more general expression for the simple cubic lattice unit cell, is

E h =  n J S 2a2 [(V a ) 2 +  (V/3) 2 +  (V7)2] , (1.3)

where a, (3,7  are the directional cosines of the magnetisation vector, a is the 

lattice parameter, S  the magnitude of the spin component of the magnetic 

moment and n a multiplication factor dependent on the crystal structure.

There are ^  atoms per unit volume for a cubic lattice, thus equation 1.3 

can be rewritten to give a more complete description for a finite volume of 

magnetic material:

Eex = A f  [(Va)2 + (V/?)2 + (V7)2]cfV. (1.4)
Jv

A is the exchange constant and for a cubic system,

A = n- ^ .  (1.5)
a

For bcc materials, n = 2 and for fee n — 4. The spontaneous alignment gives 

a magnetisation vector M  =  M sm i(a (r ) , /3 (r ) ,7 (r ) ) .  M s  is the saturation 

magnetisation and irq is a unit vector in the direction of M.

3



Chapter 1. Introduction to magnetics and transport theory

1.3.2 M agnetocrystalline Energy

The magnetocrystalline or anisotropy energy arises from the tendency of the 

internal magnetic moment, M, to lie along a preferred axis. A preferred axis 

is known as an easy axis. For a hexagonal or uniaxial system, the anisotropy 

energy can be written as

E k = K\ sin2 9 +  K 2 sin4 6. (1.6)

Or, using direction cosines

E k  =  — 7 2) +  K i ( \  — 72)2. (1.7)

For a cubic system using the expression involving direction cosines

E k  = K i(a 2(32 +  P2̂ 2 +  a 2̂ 2) +  K 2a 2/327 2. (1.8)

For all three expressions, K\ and K 2 are the anisotropy constants of the mate

rial and 6 is the angle between the magnetisation vector M of the material and 

the easy axis, a, /?, 7  are the directional cosines of the magnetisation vector M 

and relate the magnetisation vector to the cubic axes. For uniform magneti

sation, the magnitude of the magnetisation vector, |M| =  Ms, the saturation 

magnetisation. The anisotropy energy can also be calculated per unit volume 

by integrating over the volume of magnetic material.

For transition metals with uniaxial or hexagonal anisotropy, K\ is signifi

cantly greater than K 2 and expression 1.6 is frequently reduced to

E K ~  K  sin2 0. (1.9)

There is an energy minimum when 0 = 0°, when M is parallel to the easy 

axis. As the orientation of M rotates away from the easy axis, the anisotropy 

energy will increase until it reaches a maximum at d = 90°. This is known as 

the hard plane. For cubic systems, higher order terms are required.

4



Chapter 1. Introduction to magnetics and transport theory

The relations described above are applicable to single crystals. For poly

crystalline material, the anisotropy direction will vary locally between crys

tallites. These variations lead to a very small anisotropy value and no easy 

overall axis but local easy axes. An appreciable anisotropy and hence an easy 

axis can be induced by growing the ferromagnetic material in an externally 

applied field, by annealing the material after deposition with an external field 

present, or by depositing the ferromagnetic material at an oblique angle. Af

ter the introduction of an easy axis, small variations in the anisotropy due to 

the crystallites still remain. These local fluctuations in the direction of the 

magnetisation vector result in magnetisation ripple. This is further discussed 

in Chapter 3.

1.3.3 M agnetostatic and Zeeman Energies

The magnetostatic energy arises due to the presence of surface and volume 

charges, Fig 1.1. These charges give rise to an external stray field and hence 

an internal field. This results in an energy

Em = - ~ f i 0 j H d - M d V  (1.10)

where H j is the internal demagnetising field, M  is the magnetisation and the 

energy is calculated over the magnet volume. An expression for Hd is

1 f  — V • M 1 f  M n  /  - 1 1  \

n * = T j v — dV + T . j s — dS- (L11)

where M is the internal magnetisation and n a unit vector normal to the 

surface.

If an external field is applied, an additional term is required to account for 

the interaction between the magnetisation and the applied field,

E z = - iiq [  M H appdV. (1 .1 2 )
Jv

This is known as the Zeeman energy.

5



Chapter 1. Introduction to magnetics and transport theory

+ +  + + +  + 
\  ^

A

Surfaca and  Volum t C harga 

M * n and  div M

Figure 1.1: Diagrams showing simple domain states exhibiting magneto

static energy arising from surface and surface and volume charges

1.3.4 Domains and Dom ain Wall Energy

A ferromagnetic system will relax over time into a state which minimises the 

overall energy Etot. This energy minimum can be less than the energy re

quired to keep all the moments aligned in a parallel state, i.e. less than the 

energy required to achieve the single domain saturation magnetisation con

dition. In 1930, Becker [4] proposed that this phenomenon was due to the 

existence of magnetic domains which was confirmed by Bitter [5] in 1931. 

These domains are regions within the magnetic material where all moments 

have parallel alignment, i.e. the magnetisation is saturated. However, two 

adjacent domains would not have the same direction of magnetisation. These 

different directions of magnetisation lower the overall net magnetisation of the 

material, Fig 1.2. The boundary between two regions of differing magnetisa

tion is known as a domain wall. Within the domain wall, the magnetisation 

vector rotates smoothly between the two directions of magnetisation.

Various types of domain wall exist. These depend on how the magnetisation 

vector rotates. A Bloch wall, Fig 1.3a, is where the magnetisation rotates 

out of the sample plane. A Neel wall, Fig 1.3b, is where the magnetisation 

rotates within the sample plane. A third type, the cross-tie wall, Fig 1.3c, 

is a combination of both Bloch and Neel walls. The type of wall found in a

Surfaca Charga 

M ‘ n
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Chapter 1. Introduction to magnetics and transport theory

t 1 t i t

Figure 1.2: Domains lowering the overall net magnetisation

I
< ---------- Wall width  ^

(a) Bloch Wall

-Wall width __________ ^

(b) Neel Wall

(c) Cross Tie Wall

Figure 1.3: Domain wall types

particular sample depends on the sample thickness, as shown in Fig 1.4.

The formation of domains and domain walls reduces the magnetostatic 

energy of a system but increases the exchange and anisotropy energies. This 

change in exchange and anisotropy energies can be described by a domain wall 

energy. Taking into account these energy considerations and the magnetostatic 

energy gives an optimal domain wall thickness dependent on the specimen type. 

In a thin film, it would be expected that considerably more energy would be 

required to pull the magnetisation vector out of plane than with a thicker 

film. Hence, Neel walls are more common in thin films and Bloch walls in

7
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<?w xlO'^Jm'2)

N ed  wall

Bloch wall

40 80 120 160 200
Film Thickness (nm)

Figure 1.4: Dependence of wall type on sample thickness. Material used is 

permalloy, aw  represents the energy density [6], section 3.6.4

thicker films. For the film shown in Fig 1.4, it can be observed that for film 

thicknesses of less than 10 nm, Neel walls are preferred. Between 10 nm and 

70 nm, cross tie walls are dominant and above a film thickness of 70 nm, 

Bloch walls require the least energy, as may be expected. For a Bloch wall in 

a bulk material, assuming that the exchange and anisotropy energies do not 

vary through the wall, the domain wall energy per unit area for a 180° wall 

[2 ], section 1 .1 2 .2 ,

E w =  4VAK .  (1.13)

where A  is the exchange constant and K  is the anisotropy constant. The 

energy per unit area of a Neel wall cannot be written in such a compact form.

1.3.5 Total Energy

The total energy of a magnetic system is given by summing all the energies 

discussed above.

Etot =  E ex +  E k  +  Em +  E z (1-14)

To calculate a possible magnetic state of a system, the total energy must 

be minimised as a magnetic specimen will, over time, relax into an energy min-
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(b)

^ to t  —Fm Fto t —E w

Figure 1.5: Two examples indicating how a different domain structure can 

arise from differing energy contributions

imum. This requires the balancing of the constituent energies which comprise 

the total energy to achieve a minimum. At times, it is simpler to consider 

a domain wall energy, (as the wall energy is a combination of the exchange 

and anisotropy energies), than to calculate each of the energies separately. For 

example, in Fig 1.5a, a single domain structure, Et o t  consists primarily of a 

magnetostatic energy which is relatively simple to calculate. The second ex

ample Fig 1.5b, however, contains a flux closed structure. In this case, Et o t  is 

principally the sum of the anisotropy and exchange energies with a reduction 

in the magnetostatic energy. It is therefore simpler to consider the wall energy 

rather than the individual anisotropy and exchange energies.

The magnetic state a system will relax into also depends on the size. For 

example, the energy of the single domain sample shown in Fig 1.5a decreases 

as r3 as the size decreases. The energy of the flux closed sample, however, de

creases with r. Therefore, for small enough magnetic samples, a single domain 

state would be more energetically favourable whereas for a larger magnetic 

sample, flux closure or another domain configuration may be preferred.

Many local energy minima exist as well as the absolute energy minimum 

of a magnetic specimen. The minimum reached depends on the history of the 

material and any fields applied. For example, the application and removal of 

an external field could result in the magnetic state of a specimen relaxing to

9
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an energy other than the absolute energy minimum, i.e. the input of energy 

may change the magnetic state and enable the material to relax into a lower 

energy state.

1.4 R eversal P rocesses

1.4.1 Hysteresis

For magnetic material in the as grown state that has never been exposed to an 

applied field, the material is likely to consist of domains arranged such that the 

net magnetisation is zero. Applying an external field to the sample leads to a 

net magnetisation being induced within the sample along the direction of ap

plied field. This increases until a maximum moment is reached, the saturation 

magnetisation M s , when all moments are aligned with the applied field, Happ. 

Decreasing the applied field leads to a reduction in the net sample magnetisa

tion. At zero field, the sample magnetisation may not have reduced to zero. 

Any remaining net moment is known as the remanent magnetisation, M r . A 

field applied in the opposite direction will reduce the remanent magnetisation 

to zero. The applied field strength at which this occurs is known as the coer

cive field Hc. Further increase of the applied field in the negative direction will 

cause the sample to reach saturation magnetisation in the opposite direction. 

The loop traced as the applied field is swept from positive to negative values 

then back to positive is known as the hysteresis loop, Fig 1.6.

1.4.2 R otation and Coherent Reversal

In an ideal situation, the magnetisation direction of a sample would reverse by 

a reproducible, reversible process. One example is by pure, coherent rotation 

of the magnetisation direction. A description of the process is outlined below. 

For a uniaxial particle aligned such that the applied field is perpendicular

10
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M
Saturation magnetisationM r

He

Figure 1.6: A typical hysteresis loop

to the easy axis and with magnetisation direction at an angle 9 to the easy 

axis. If all moments of this particle are aligned so that the magnitude of the 

particle magnetisation is the saturation magnetisation Ms, Fig 1.7, the system 

equilibrium energy density

K sin29 — yioHMssin9 (1-15)

is at its minimum when the derivative of the expression is 0, i.e. ĵjj- =  0. This

gives:

2K  sin 6 cos 9 — fioHMs cos 9 = 0 so that sin 9 -  ■ (1-16)
Zi\

Therefore the magnetisation induced in the applied field direction, Happ, as 

specified in Fig 1.7 is

n/r a /r A MOHM"q M  /J,qM ĉ ,M  =  Ms sm0 = * 2 K  s  and X =  —  =  (1.17)

where K  is the anisotropy constant, H the applied field, hq the permittivity in

free space and x  the magnetic susceptibility.

From this it can be observed that the magnetisation increases linearly with 

H  until a maximum value Hk -

2 K
H* = ~^TT  ( L 1 8 )Mo Ms

11
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Figure 1.7: Directions of magnetisation, M, and applied field, H app, with 

respect to the easy axis for rotation

If the applied field is parallel to the easy axis, the magnetisation direction 

jumps discontinuously from antiparallel to parallel to the applied field at 

H  =  Hc — Hk .

1.4.3 Dom ain N ucleation and Irreversible Processes

For a single domain system with the magnetisation direction parallel to the 

easy axis and an external field applied in an anti-parallel direction, it may be 

more energetically favourable for reversal to occur through domain processes 

rather than coherent rotation. Domains frequently nucleate from edges and 

corners.

Systems which already support domains before the application of an exter

nal field will undergo similar processes possibly without nucleation of further 

domains. An example is shown in Fig 1.8a. Those domains that are favourably 

aligned with the applied field will increase in size, Fig 1.8b. Those close to 

the applied field direction will rotate to align with the field. Domains which 

are not favourably aligned will either reduce in size until eliminated or jump 

irreversibly to align with the field direction, Fig 1.8c. If the applied field 

is large enough, the magnetisation will align with the applied field direction 

completely, Fig 1.8d.

12



Chapter 1. Introduction to magnetics and transport theory

(d) Final 

single domain 

state

Domain growth/reduction and rotation are mostly reversible processes how

ever the annihilation of a domain or magnetisation jumps are irreversible.

1.5 M agneto Transport

Of the many different phenomena which have been studied, only the two types 

of magneto-transport relevant to this thesis will be discussed. The first is 

magnetoresistance of magnetic multilayers which is important for one class of 

materials investigated in this thesis. The second is transport in semiconductor 

heterostructures. In this case, the material is introduced first leading into a 

discussion of the more relevant quantum and semi-classical transport proper

ties. The transport properties are used to investigate the magnetic material.

1.5.1 M agnetic M ultilayer M aterial 

M agnetoresistance

Magnetoresistance is a phenomenon that describes the change in electrical re

sistance of a magnetic material either due to the material’s magnetic structure 

or an applied external field.

H«pp

(a) Initial re

laxed domain 

state

(b) Favour

ably aligned 

domains 

increasing in 

size

Anni-c

hilation of 

unfavour

ably aligned 

domains

Figure 1.8: Domain processes
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maj
D(E)D(E)

M a g n e t i s a t io n  M I

F igure 1.9: Density of states for majority and minority electrons.

Many types of magnetoresistance (MR) exist, some of the more common are 

Anisotropic (AMR), Colossal (CMR), Giant (GMR) and Tunnelling (TMR) 

magnetoresistance. Here we only consider GMR arising from spin valve multi

layer stacks.

Giant Magnetoresistance, GMR. was first observed by Baibich [7] in Fe/Cr 

multilayer structures grown by Molecular Beam Epitaxy (MBE). The resis

tivity of the system was found to decrease by a factor of 2 at 4 K under an 

applied field of 20 kOe. Parkin [8] later found that a larger GMR ratio existed 

in sputtered systems. A GMR of greater than 100 % has been demonstrated 

[9, 10]. The origin of GMR was described by Baibich et al as spin dependent 

scattering of conduction electrons at the interfaces.

In ferromagnetic transition metals, conduction electrons tend to arise from 

the s,p or d shells or a mix of the three. The electrons can be divided into two 

families which can be distinguished according to the projection of the electron 

spin along the local magnetisation direction. These electron families are known 

as spin up or spin down electrons, conventionally parallel and antiparallel to 

the local magnetisation direction. The two families can have very different 

scattering rates. This spin dependent scattering arises from the difference of 

empty states at the Fermi level into which electrons can be scattered, Fig 1.9.

14
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The differences in scattering rates gives a difference in the mean free paths. 

For example, in NisoFe2o spin up electrons have a mean free path of around 

5 times that of spin down electrons [?].

For a multilayer system with layers having parallel magnetisation align

ment, Fig 1.10, electrons with a spin parallel to that of the local magnetisation 

direction will be weakly scattered from boundaries and weakly scattered within 

the magnetic material due to the density of states at the Fermi level. However, 

electrons with a spin antiparallel to the local magnetic induction, Fig 1.10, will 

be weakly scattered at boundaries but will also be strongly scattered within 

the magnetic layers. This is due to the different density of states for the spin 

down electrons at the Fermi level giving many more free states for electrons 

antiparallel to the local magnetisation direction to scatter into.

For an antiparallel alignment of magnetic layers, both spins will be scat

tered at boundaries, and alternately strongly and weakly scattered from the 

two magnetic layers depending on whether the spin is anti-parallel or parallel 

to the local magnetisation direction.

A convenient analogue to this is to consider the different spin states having 

a different electrical resistance. In the parallel alignment, the spin up electrons 

are only weakly scattered and as such, carry a large part of the current giving 

a low resistance state. In the antiparallel alignment, both spin up and spin 

down electrons are alternately weakly and strongly scattered giving a higher 

resistance state for both electron species. This is also shown in Fig 1.10.

From this two current model [11], it can be seen that for a parallel mag

netisation alignment (low resistivity state),

P p  = (1.19)
Pt +  Pi

where pj is the resistivity of the spin |  electrons and pi is the resistivity of 

spin I electrons. Also, for an antiparallel magnetic alignment (high resistivity

15
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Spin down 
Spin up

p r /2  p t / 2  

P i / 2  p i / 2

H igh R esistance

F igure 1.10: Scattering within a multilayer stack.

state),
Pi +  Pi n  on \

Pap = — ~— • (1-20)

This gives a GMR ratio of

Ap (Pt — Pi)2 1 Pi M o n—  = ------------- = ----------- where a =  — (1-21)
Pp  4 p ]p i 4a pT

As the thickness of the spacer layer is varied, the GMR amplitude will 

vary. The coupling between adjacent layers can also change leading to either 

ferromagnetic or anti-ferromagnetic coupling in zero applied field. The cou

pling can oscillate from parallel to antiparallel with the separation of the two 

magnetic layers. This is known as Ruderman-Kittel-Kasuya-Yosida (RKKY) 

coupling; details are given in [12, 13, 14].

There are two interesting geometries for studying GMR in multilayer ma

terials. One is when the sense current is in the plane of the material (CIP), the

second where the current is perpendicular to the plane of the material (CPP).

CPP tends to lead to a larger change in resistance as the current passes through 

the interfaces. However the overall resistance is very low. Standard practice 

is to use a four probe CIP set-up to measure GMR.

16
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Cap
Biasing a

Biased
Spacer
Firee
Seed
Substrate

F igure 1.11: A typical spin valve layer structure. AFM is an antiferromag

netic layer and FM a ferromagnetic layer.

Spin Valves

Many GMR applications require a system which exhibits MR at small applied 

fields. One such multilayer system is the spin valve, Fig 1.11a.

This layer structure is known as a top spin valve and contains two ferro

magnetic layers known as the free and the biased or pinned layers. These are 

coupled by a non-magnetic spacer layer. The pinned layer has its direction of 

magnetisation fixed through exchange coupling to a pinning layer grown adja

cent to it. The magnetisation direction of the pinned layer is only reversed by 

reasonably large fields. The spacer layer thickness is chosen so that the pinned 

and free layers are weakly coupled with a parallel alignment in zero field. Due 

to the weak coupling, the free layer can be reversed by a low field, for ex

ample <10 Oe, so tha t the free and pinned layers then have an anti-parallel 

alignment. This leads to a change in resistance [15]. The different coupling 

mechanisms and magnetoresistance are briefly described below.

17



Chapter 1. Introduction to magnetics and transport theory

Exchange Coupling

Within the anti-ferromagnetic layer, the number of moments pointing in one 

direction is equal to the number of moments pointing in the other direction. 

At the interface between the anti-ferromagnetic layer and the ferromagnetic 

layer, there may be an unequal number of moments pointing in each direction 

due to grain orientation, shape, size and surface roughness. The ferromag

netic layer is ordered below the Curie temperature. If this is chosen to be 

higher than the Neel temperature of the anti-ferromagnetic material then ap

plying an external field to the system while keeping the temperature between 

the Curie and Neel temperatures will cause the ferromagnetic layer to align 

with the external field while the anti-ferromagnetic layer is in a paramagnetic 

state. As the temperature is lowered through the Neel temperature of the 

anti-ferromagnetic layer, localised anti-ferromagnetic moments couple paral

lel to the aligned ferromagnetic moments. The exchange interaction between 

moments then keeps the direction of the moments fixed after the applied field 

is removed. The anti-ferromagnetic/ferromagnetic coupling is known as ex

change biased coupling, Fig 1.11b. Further information on exchange biasing 

can be found in [16, 17, 18, 19].

Interlayer Coupling

Two different types of interlayer coupling exist, Orange Peel (Neel) and RKKY. 

RKKY coupling [12, 13, 14], as introduced earlier, is the interaction respon

sible for the change between ferromagnetic and anti-ferromagnetic alignment 

of two magnetic layers due to spacer thickness. Orange peel coupling [20, 21] 

comes from the magnetostatic interaction arising from surface roughness in the 

individual layers. The surface roughness is correlated between different lay

ers due to the interface profile propagating between layers during deposition. 

The magnetostatic interaction keeps the magnetic moments on each side of
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the ferromagnetic/non-magnetic/ferromagnetic tri-layer aligned parallel, giv

ing ferromagnetic coupling, Fig 1.11c.

M agnetoresistance of Spin Valves

The resistivity of the parallel and antiparallel alignment states are as described 

previously in equations 1.19 and 1.20. These lead to the same MR discussed 

earlier, equation 1.21. For the spin valve layer structures investigated, an MR 

of under 10 % is more common than higher GMR values.

The above properties indicate that spin valves are useful as materials for 

sensors. The low reversal field of the free layer leads to a high sensitivity for 

say, read heads in hard disk drives and the two resistive states depending on 

free layer orientation gives a relatively simple way of determining the “bit” 

magnetisation direction in a recorded track. Details of the specific spin valves 

investigated will be given in Chapter 3.

1.5.2 M agneto-transport in sem iconductor heterostruc

tures

Quantum Transport measurements can be used to investigate the interactions 

between a magnetic element and the two dimensional electron gas (2DEG) 

in a semiconductor heterostructure. Further details of this can be found in 

Chapter 5. Here, an introduction to the semiconductor substrate and transport 

properties is given. For this section, extensive reference to Davies [22] and Sze 

[23] have been made.

Semiconductor heterostructures used in most transport measurements are 

semiconductors composed of more than one material. Active regions of het

erostructures are typically at or close to interfaces. However surface roughness 

at the interfaces causes electron scattering which reduces the mobility. This 

can be overcome by growing the heterostructures using Molecular Beam Epi
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taxy [23], section 8 .6 . To achieve as near perfect interfaces as possible, the 

crystals must have the same crystal structure and lattice constant. This con

dition is satisfied for a number of common III-V compounds. (Ill, V relates to 

elements in the third and fifth columns of the periodic table). The materials 

used are GaAs and AlxGai_xAs, where x  is the fraction of A1 ions replacing 

Ga ions in the structure, as these satisfy the above conditions.

The purpose of creating these heterostructures is to modify the properties 

of the material to suit the users’ needs. In this case, a good mobility is the 

desired outcome. To achieve the desired transport properties, extra electrons 

or holes must be introduced for increased conductance. The process employed 

to achieve this is doping.

Doping the region directly where the electrons (holes) are required is the 

most obvious option. However, charged donors (acceptors) are left behind 

when the electrons/holes are released. These scatter the carriers through their 

Coulomb interaction and reduce the mobility. To avoid this, a process called 

modulation doping is employed. In this technique, the carriers are introduced 

into the structure at a distance from the region in which they are required and 

migrate to the desired area. Initially, the material is neutral and the band 

structure is flat. See Fig 1.12a. On the release of the electrons from the doped 

region, some cross into the GaAs. Due to the surface barrier between GaAs 

and AlGaAs, a quantum well is created in which the carriers are trapped. 

This is due to the energy band gap (AEC) on one side and the electrostatic 

potential on the other. The quantum well prevents electrons crossing the 

energy barrier back to the n-AlGaAs and separates the electrons from their 

donors leading to an excess of electrons in the required region, Fig 1.12b. The 

trapped electrons all have similar energies and are confined in the z direction 

due to the well. However, the electrons are free to move in the xy plane. This 

is called a 2 Dimensional Electron Gas or 2DEG. This method of doping has 

two advantages: the scattering from donors in the transport area is reduced
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Figure 1.12: Band structure of GaAs/AlGaAs heterostructure showing 

2DEG formation. [23]
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Figure 1.13: schematic of hall bar

and the electrons have been confined to two dimensions. To reduce scattering 

further, an undoped AlGaAs spacer layer between the n-AlGaAs and GaAs 

can be used.

To enable a study of the transport characteristics of the 2DEG, a pattern 

must be defined in the 2DEG to further confine the electrons and create regions 

where electrical contact can be made to supply a current through the material. 

One such system is the Hall bar, Fig 1.13. A current is applied along the long 

axis of the device and voltage measurements are taken either longitudinally or 

transversely, between contacts 3/4 (5/6) and 3/5 (4/6) respectively.

Under the application of a perpendicular, uniform magnetic field, electrons 

will have a circular orbit, the cyclotron orbit, with a cyclotron frequency and
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radius:
- I  —

° m
(1.22)

(1.23)

where ujc is the cyclotron frequency, B  the magnitude of the applied field, e 

and m  the charge and mass of an electron respectively. Rc is the cyclotron 

radius and v , the magnitude of the electron velocity.

Due to the electron cyclotron motion, the continuous density of states for 

free electrons is replaced by a series of delta functions known as Landau levels. 

There are ub = x  states permitted in each Landau level. In a magnetic field, 

electron spins are non degenerate and therefore a factor of 2  is not required 

here. As B  increases from zero, the separation between Landau levels changes, 

as does the number of available states. The experiments undertaken are with 

carrier concentration (charge per unit area) U2d constant, therefore the number 

of occupied Landau levels ẑ , known as the filling factor, changes with B.

This calculation counts the two electron spins as separate levels, v is generally 

not an integer, N  is the number of full levels. Increasing B  causes more levels 

to become available and leads to fewer electrons filling the highest occupied 

level. At v — N, the top level becomes empty, i.e. when B  = ^ff-there  are N  

full levels.

Plotting the density of states at the Fermi level with respect to B  shows 

that it drops to zero at v — N  and is at its maximum at v =  N  +  This can 

be shown experimentally by measuring Rxx, the longitudinal resistance. At low 

magnetic fields and at low temperature (< 4K), the resistivity is constant but 

as B increases, it develops strong oscillations. This is called the Shubnikov- 

de-Haas effect, Fig 1.14. Measuring the transverse resistance at low fields, 

Rxy =  B R h =  . At high fields, plateaux in the trace can be found when
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F igure 1.14: Typical Shubnikov-de-Haas and Quantum Hall traces

R~y =  (r^~) with n being at an integer. The plateaux exist at integral filling 

factors and are known as the Quantum Hall effect, Fig 1.14. Plateaux in 

the the Quantum Hall effect correspond to minima in the oscillations of the 

Shubnikov-de-Haas effect.

Using the high field longitudinal or transverse measurements to obtain n2o, 

the carrier concentration leads to the electron mobility /i through:

 4 --------  (1.25)
n 2 D e K xx (B=o)

The samples investigated here are GaAs/AlGaAs heterostructures. The 

mobility and carrier concentrations are found using the SdH and QH effects. 

The majority of subsequent measurements are taken at low fields where quan

tisation into LL is not important.
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C hapter 2 

Fabrication Techniques

2.1 Introduction

It was necessary to design and fabricate suitable specimens to enable the in

vestigation of spin valve multilayers and hybrid semiconductor/ferromagnetic 

metal structures introduced in Chapter 1 . Investigation of the spin valve sam

ples (introduced in section 1.5.1) was carried out using transmission electron 

microscopy. This required the fabrication of self-supporting electron transpar

ent windows. These windows served as a substrate onto which the spin valve 

stack could be deposited, and enabled the specimen to be mounted onto a 

suitable sample rod for the microscope.

The study of the ferromagnetic metal/semiconductor samples required Hall 

bars (introduced in section 1.5.2) to be designed and fabricated. These Hall 

bars confined the current flow in the 2DEG enabling measurements to be 

made of the interaction between a magnetic element deposited near the centre 

of the Hall bar and the 2DEG. Due to the complexity of the design, it was 

necessary to fabricate these samples in a series of steps, each of which is known 

as a fabrication layer and consists of a complete fabrication cycle. Each cycle 

comprises a range of techniques which are introduced below.
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The techniques required for each fabrication layer are lithography, com

bined with etching or metallisation, and lift-off. The general principles of 

these techniques will be discussed in this chapter, with specifics pertinent to 

the individual samples being discussed in the relevant chapters.

2.2 L ithography

Lithography is the transfer of a pattern from a physical or electronic mask 

to a substrate. A variety of specialised techniques have been developed to 

enable micro and nano scale lithography, including electron beam lithography 

(EBL), photo or optical lithography, x-ray lithography and ion beam lithog

raphy. Electron beam lithography and photolithography were used in this 

project and are discussed below. Electron beam lithography was the principal 

tool used for pattern transfer and as such, is discussed in the greatest detail.

2.2.1 E-beam  lithography

There are two standard EBL techniques. Projection EBL uses a broad electron 

beam and a physical mask, which is electron transparent only in the regions 

to be patterned, close to or in contact with the substrate. The second method 

does not use a physical mask. A focused, computer controlled, electron beam 

defines the pattern by scanning over the regions to be exposed. The mask 

pattern is held in the control computer. This latter technique was used for the 

fabrication carried out within this project.

The EBL machine is similar to a Scanning Electron Microscope (SEM) and 

is one of the tools available as part of the Nanoelectronics Research Centre of 

the Electronics and Electrical Engineering department at the University of 

Glasgow. The machine used in this research was a commercially available 

Electron Beam Pattern Generator 5 (EBPG5) beamwriter [24], a schematic 

diagram of which can be seen in Fig 2 .1 . Electrons from the LaB6 source
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Figure 2.1: Schematic of the EBPG5
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are focused onto the specimen (see section 3.2 for further details about the 

focusing process). A range of spot sizes is available with the smallest spot size 

for 50 keV electrons being 15 nm. For 100 keV electrons, the minimum spot 

size is reduced to 12 nm. The EBPG5 can write features of 20 nm over 126 mm2 

with a beam placement accuracy of 5 nm. It is kept in a class 10 cleanroom (i.e. 

one in which there are fewer than 10 particles of diameter greater than 0.5 fim 

per cubic foot) with temperature control of ±0.25 °C for stability. Different 

machines have different characteristics, for example, a modified JEOL 100CXII 

TEM which is also available within the Nanoelectronics Research Centre has 

a minimum spot size of ~  3 nm. This higher resolution enables the patterning 

of smaller features but is less automated and hence more complex to use. It 

was not required for this project as the EBPG5 has a resolution better than 

that required for this research.

Pattern D esign

As mentioned previously, no physical mask was used and the pattern was 

transferred onto the substrate by a scanned electron beam under computer 

control. A computer-aided-design (CAD) program was used to design the 

pattern to be transferred to the substrate. The software used in this research 

was the WAM package [25] which enables all the design aspects to be viewed 

simultaneously. For example, the designs for different fabrication layers could 

be studied together to check inter-layer alignment. The design for each separate 

layer was stored as an individual sub-structure of the complete pattern which 

enabled each layer to be written separately.

The completed WAM file was transferred to a control computer which 

stored the mask design. A second piece of software, CATS [26] was used to 

specify which sub-structure was to be written. The areas of the sample to be 

exposed by the e-beam were thus specified and fractured. Fracturing is the 

process whereby the pattern is broken up into pixels, with each pixel being
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Program Output file type Description

WAM

1

readfile

I

CATS

1

writefile

BELLE

.GDS Initial pattern design

-GDS.clib Converts file format

.cflt Fractionates pattern for beamwriter

.IWFL Creates pattern file

.com Creates job file

T a b l e  2 .1 :  The file processes involved from design to pattern transfer

exposed individually by the beam during writing of the pattern. The CATS 

software produced an output pattern file containing the fractured design in a 

format compatible with the EBL control.

To complement this pattern file, a third program, BELLE [27] was used to 

specify the beam diameter, step size, beam dose and the number of pattern 

repeats leading to the construction of a job file. The pattern and the job files 

provided the beamwriter with the information required to expose the desired 

areas at the specified dose, point by point, in a raster pattern, Fig 2.2. The 

file processes from design to pattern transfer are shown in Table 2.1.

As mentioned in section 2 .1  and earlier in this section, some samples re

quire more than one fabrication layer. In these multilayer systems, it was 

necessary to achieve accurate alignment of the current layer with respect to 

those previously fabricated. This process is known as registration. The job 

file enabled the registration process to occur by positioning the pattern to be 

transferred at a known distance, specified by the user, from a set of markers. 

These markers were laid down in the first fabrication layer enabling them to
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ie pixel

size

Figure 2 .2 : A schematic of the e-beam scan process during writing

be referred to in the fabrication of subsequent layers thus allowing accurate 

alignment of many layers.

R esist and P a tte rn  'Transfer

The pattern was transferred onto the substrate via an electron sensitive layer 

known as resist. Electron resists are polymers dissolved in a liquid solvent, 

usually chlorobenzene or o-xylene. The liquid was deposited onto the surface 

of a substrate. To achieve a uniform layer, the sample was first attached to a 

vacuum chuck, then spun with the resist at a known rate for a set period of 

time. The solution in which the resist was dissolved was evaporated through 

baking. The choice of resist depends on the subsequent processing require

ments after patterning. For example, a single layer of resist is sufficient for 

etching. For metallisation, however, a bi-layer of resist is preferable. This will 

be discussed later in this section and also in section 2.4. All samples in this 

research had Polymethyl methacrylate (PMMA) resist deposited, were spun 

for 60 s at 5000 rpm and then baked at 180 °C for half an hour for the first 

layer and an hour for the second layer.

During the transfer of the pattern to the substrate, electrons interact with 

the resist leading to a number of events. The first is a change in the chemical 

bonds of the resist due to the electron - resist interaction. In the case of 

a positive resist, such as the PMMA used for this research, the electron - 

resist interaction serves to break bonds in exposed areas of the long polymer

fc.

4

beam step
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Figure 2.3: Electron beam paths for 10 and 20 kV acceleration

molecules thus increasing its solubility. For a negative resist the electron - 

resist interaction has the effect of solidifying the polymer in exposed areas 

thus reducing solubility.

As the electron beam interacts with the resist, small and large angle scat

tering events occur. Forward scattering involves small angle scattering events 

and leads to an increase in the initial beam diameter. The increase in effective 

beam diameter (in nm) is df = 0.9 ;̂ 1'5 where R t (nm) is the resist thickness 

and Vb (keV) is the electron beam accelerating voltage [28].

Back scattering is the term used to describe large angle scattering events. 

During the electron-solid interaction, the electrons continually lose energy as 

they slow down and produce a cascade of low voltage secondary electrons. 

Simulations can be used to predict electron paths as seen in Fig 2.3. As the 

accelerating voltage is increased, the number of scattering events increases and 

a larger area of resist is exposed to a weak dose of electrons.

For non-bulk substrates such as the electron transparent windows, back 

scattering is greatly reduced. Forward scattering still has the effect of broad

ening the effective beam diameter but the beam footprint does not increase 

significantly. The lack of back scattering gives an altered exposure pattern in 

the resist which can affect further patterning of the sample.
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E-beam
▼

(a) Substrate with resist layer

(b) Developed structure with (c) Developed structure with

positive resist negative resist

F igure 2.4: After patterning and developing of positive and negative resist

Once the mask pattern has been transferred to the substrate, the sample 

was developed by removing the resist that is not required. In the case of a 

positive resist, the patterned areas have the resist removed. In the case of 

negative resist all areas other than those patterned are removed, Fig 2.4.

The developing process consists of immersing the substrate in a solution 

of methyl isobutyl ketone to isopropanol (MIBK:IPA) and gently agitating 

for 60 s at 21 °C. The developing process was halted by rinsing in IPA and 

the substrate was then dried using a fast flow of nitrogen gas. MIBK has 

the function of developing the PMMA and IPA the function of diluting the 

solution. For large features a MIBK:IPA 1:1 is conventionally used, for smaller 

features 1:2.5 is more common.

As stated earlier, the choice of resist used depends on subsequent fabrica

tion processes. Feature size must also be taken into account with smaller fea

tures requiring a thinner resist layer. For metallisation, a bi-layer of resist was 

used to help prevent a phenomenon known as edge-flagging (see section 2.4). 

The bi-layer consists of a base layer with a polymer of lower molecular weight 

and a top layer with a polymer of higher molecular weight. Due to backscatter- 

ing, the base layer receives a greater exposure dose than the top layer. This has 

the effect of producing an undercut profile on completion of the development
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e-beam

(a) Substrate with resist bi- (b) Developed structure

layer with positive resist

F igure 2.5: The resist profile after patterning for a bilayer

Resist concentration (%) Resist type Film thickness (nm)

15.0 (2010) 1200

4.0 (2010) 100

4.0 (2041) 100

2.5 (2010) 40

2.5 (2041) 40

Table 2.2: Resist thicknesses depending on concentration

process, such as that represented schematically in Fig 2.5.

The two electron resists used are both PMMA resists, Elvacite (2041) which 

has a molecular weight of 345 kDa and Elvacite (2010) which has a molecular 

weight of 90 kDa. When dissolved in solvent and spun at 5000 rpm for 60 s, 

these resist layers are of thickness as stated in Table 2.2.

2.2.2 P h o to lith o g rap h y

The technique of photolithography exposes the sample by use of a physical 

mask and ultraviolet radiation. Photolithography enables a high throughput 

of samples as the process of patterning is much more rapid than that of e-beam 

lithography and the mask plate can be used many times.

The mask consists of a glass plate coated with chromium in areas which 

are not to be patterned thus blocking the transmission of the UV radiation in
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specified areas. This mask plate is then placed in contact with the resist coated 

substrate and UV radiation is applied for a set time, usually around 8-10 s thus 

exposing the resist in the desired areas. The resist can then be developed as 

described in section 2.2.1 enabling further patterning of the substrate.

In this thesis, photolithography was used in the preparation of TEM win

dows. The poorer resolution (~  0.5 yum), when compared with EBL, was 

adequate for this process as no small features were required and the pattern 

definition times for e-beam were prohibitively long.

Resists

Photolithography resists are similar to electron resists but are sensitive to UV 

radiation rather than electrons. As with electron resists, the liquid is deposited 

onto the surface of a substrate. To achieve a uniform layer, the sample was 

first attached to a vacuum chuck, then spun with the resist at a known rate for 

a set period of time. The solution in which the resist was dissolved was then 

evaporated through baking. For photo-resists, the spinning rate is 3000 rpm 

for 60 s with subsequent baking for 30 minutes at 90 °C. The variation in 

spinning speed and baking temperature between photo and electron resists is 

due to the different polymers used for the resists.

The developer used in the case of photoresists is microposit concentrate 

which is diluted in de-ionised water to a concentration of 1:1. The substrate 

was immersed in the developer for 75 s and a pipette used to move the developer 

solution across the surface of the substrate. Development is halted by rinsing 

the substrate in de-ionised water and dried using a fast flow of nitrogen gas.

2.3 E tching

Two different etching techniques, wet etch and dry etch were used to remove 

material from the substrate. Wet etch was used most frequently in this research
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(a) Wet etch profile for GaAs (b ) Dry etch profile

Figure 2.6: Etch profiles for wet and dry etch 

with dry etch employed for the fabrication of electron transparent windows.

2.3.1 W et etch

The process of wet etch removes material from the substrate by immersion of 

the sample in a corrosive solution. The resist covering areas of the substrate 

not requiring to be etched is impervious to the etch solution and thus leads to 

only the desired areas being patterned.

Whilst this technique is useful for removing areas of material, it does not 

lead to an edge profile with vertical walls due to the nature of the etch. De

pending on the material to be etched, the profile will differ. For GaAs, once 

the etch has removed the surface, the side walls are also attacked giving a pro

file shown schematically in Fig 2.6. However, for (100) oriented Si, due to the 

(111) plane being more closely packed than the (100) plane, the etch proceeds 

anisotropically with a 45° angle leading to a V shaped profile. Anisotropic 

etches are much less common in GaAs as the surface activity of the (111) Ga 

and (111) As faces are very different.

The wet etching technique is useful for larger sized features. It is not, 

however, suitable for small features as the width of the etch increases with the 

depth of the etch.
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2.3.2 D ry etch

Dry etch removes material by directing ions at the substrate, the ions being of 

a species likely to attack the material to be removed. The resist coating is not 

totally impervious to the ion bombardment but is removed at a slower rate 

than the material to be etched. The two main advantages of this technique 

over wet etch are that (1) the ions are directed such that an etch profile can 

be produced which has vertical walls and (2) there is greater uniformity over 

the substrate than with wet etch, Fig 2.6. There is however, one principal 

disadvantage of damage to the substrate from the ion bombardment. This can 

result in implantation of ions near the surface and damage at and below the 

surface of the substrate.

2.4 M eta llisa tion

Two different metallisation techniques were employed to deposit metal onto 

the surface of the substrates. Evaporation was most commonly used in this 

research. Sputtering, the second technique, was carried out at the University 

of Leeds [29].

For both metallisation techniques, the bi-layer of resist was used with the 

metal to be deposited being less than one third the thickness of the resist layer. 

This gave an overhanging resist profile as shown in Fig 2.5. This overhanging 

profile helped prevent a build up of excess metal at the edges of the areas to 

be metallised. This build up is known as edge flags. Edge flags arise from 

the evaporated or sputtered metal hitting the sample at an angle rather than 

perpendicular to the surface and can cause difficulties, especially in magnetic 

samples. Here, out of plane fields may be stronger near the edges. The flags 

can also act as nucleation points for domains.

For non solid substrates, such as electron transparent windows, the under

cut profile of the resist bi-layer will be less due to the lack of back scattering
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described previously. This can lead to problems with edge flagging in elements 

patterned onto TEM windows.

Before metallisation takes place, a wet etch must be carried out in order 

to de-oxidise the surface of the substrate and enable improved adhesion of the 

metal to the substrate. This etch which is usually carried out just before the 

substrate is put into vacuum for metallisation uses a 20:1, H20:HC1 solution 

for 20 s.

2.4.1 Evaporation

In the technique of evaporation, the material to be deposited was heated until 

thermal evaporation occurred. The sample was exposed to the resulting beam 

of evaporated material until the desired layer thickness was deposited. Evap

oration must take place under high vacuum to ensure that the evaporated 

atoms travel directly from the source to the substrate and also to minimise 

contamination from other materials.

Two different techniques were employed to heat the material for deposition. 

The first used a conducting crucible into which the material to be deposited was 

placed. The crucible and metal for deposition were heated to an appropriate 

temperature by means of passing a high current through the crucible. Once a 

steady evaporation/deposition rate had been achieved the sample was exposed 

and the material deposited. The principal evaporator which uses this technique 

is housed within the Physics department, Fig 2.7a. It can evaporate only one 

metal at a time. To add a second layer the system would have to be let up 

to air and the crucible changed. This introduces a risk of oxidisation between 

layers due to the system being let up to air. This system is therefore only 

appropriate for single layers of metal.

In the second technique, material for deposition was heated by use of a fo

cused electron beam. The equipment was a Plassys MEB450, Fig 2.7b situated
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F igure 2.7: Schematic diagrams of the evaporators

within the Electronic and Electrical Engineering Department of the university. 

The Plassys A1EB450 system uses a number of different crucibles which can be 

rotated, thus enabling the desired material to be evaporated and multilayers 

to be evaporated without exposing the sample to air. An electron beam is 

focused onto the surface of the material to cause heating and subsequent evap

oration. Again, once a steady rate of deposition has been achieved, typically 

~  0.4 nm /s, the substrate is exposed. The crucible selection, application of 

the electron beam for heating the material and layer thicknesses are computer 

controlled enabling multilayers to be easily deposited.

In both systems a quartz crystal is used to determine the rate of deposition. 

The crystal undergoes mechanical oscillation and is exposed to the evaporated 

material. As the thickness of material deposited onto the crystal increases, 

the mechanical resonant frequency of the crystal decreases. For each material
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a calibration is made correlating frequency drop with thickness of deposited 

layer, giving an accurate indication of layer thicknesses.

2.4.2 Sputtering

Using the technique of sputtering, the material to be deposited is removed 

from a source by the impact of energetic particles. The removed atoms build 

up and form layers on any surface upon which they land.

In DC Magnetron sputtering, the source is a negative electrode. The sput

tering chamber is filled with argon gas which becomes ionised by the electrode 

voltage giving a glow discharge plasma. Permanent magnets behind the elec

trode produce a toroidal field thus confining the plasma over the target. Ar+ 

ions are attracted towards the negative electrode and collide with it with a 

kinetic energy of hundreds of electron volts. These collisions remove material 

from the source leading to deposition onto the substrate Fig 2.8.

The sputtering machine used is at the University of Leeds. It has six sources 

and 15 sample slots, thus enabling multilayer systems to be grown and multiple 

samples to be fabricated without breaking the vacuum. The system is com

puter controlled and has a deposition rate of ~  0.3 nm/s. No in situ thickness 

monitoring is used with this machine and the thickness is determined by sput

tering time. A specimen, with a 100s deposition of the sputtered material is 

investigated by x-ray techniques to determine the deposition rate. The targets 

are Cu, Co, Py (NiFe), IrMn and Ta. The targets are not kept permanently 

on during the deposition of the specimens and are ignited as required. A set 

delay between ignition and exposing the sample is used to achieve a steady 

deposition rate before sputtering of the specimen. Magnetic samples can be 

grown in an in-plane bias field, known as the growth field. For this system, 

the growth field is supplied through a 200 Oe permanent magnet between the 

shutter and substrate.
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F igure 2.8: Schematic of the sputtering process

i r
(a) Metallised Structure (b) Lift-off process

F igure 2.9: Schematic of the lift-off process

2.5 Lift-off

Lift-off is the technique employed to remove excess material after metallisation. 

For the positive resists used, the metal was in contact with the substrate only 

in the patterned regions. Elsewhere it lay on top of the resist layers. The excess 

metal was removed by dissolving the resist layers on which it was deposited, 

Fig 2.9. The resist was dissolved by placing the metallised substrate into warm 

acetone. For large features the resist will be removed in a m atter of minutes 

but for smaller features a longer lift-off time is required. Once the excess metal 

has floated free of the substrate the substrate was removed from the acetone, 

rinsed in IPA and dried using a nitrogen gun.
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2.6 W afer cleaning

The majority of the techniques described above were carried out within the 

cleanrooms at the Nanoelectronics Research Centre of the Electronics and Elec

trical Engineering Department at the University of Glasgow. Sample prepa

ration, wet etching and metallisation took place in a class 1 0 0  cleanroom, the 

specification of which is that the air within contains fewer than 1 0 0  particles 

of diameter greater than 0.5 fim per cubic foot. It is essential to carry out 

fabrication in this controlled environment to ensure high quality specimens. 

Contamination can alter the properties of the material to be investigated and 

therefore must be kept to a minimum. To help achieve this, users are required 

to wear protective clothing consisting of a cleanroom suit, gloves and hat. This 

reduces dust or fibres from clothing contaminating the air; and dirt, oils and 

salts being transferred from hands to the substrate. The suit and gloves also 

confers protection to the user from the chemicals used.

An important technique to further improve the fabrication of high quality 

reproducible samples is wafer preparation and cleaning which helps remove 

the surface contamination which can arise between wafer growth and sample 

preparation and is carried out using highly pure organic solvents. The wafer 

is cleaned by immersion in acetone in a clean beaker and subjected to an 

ultrasonic bath at room temperature for 5 minutes. It is then rinsed in iso

propanol (IPA), again for 5 minutes in an ultrasonic bath. IPA is chosen as it 

is stable in air and does not leave prominent drying marks. The wafer is then 

dried using a fast flow of nitrogen gas. This process is repeated frequently 

between fabrication steps if contamination occurs.
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2.7 E xam ple

An example of a standard e-beam fabrication step involving metallisation and 

lift off is shown below. For an etching step, the final two stages are altered to 

include the etch and a 2  minute soak in acetone followed by a rinse in IPA and 

drying in the flow of nitrogen gas to remove the remaining resist.

process action timing

cleaning acetone and ultrasonic bath 

IPA and ultrasonic bath 

dry in nitrogen

5 minutes 

5 minutes

depositing resist spin resist at 5000rpm 

bake at 180 °C 

spin resist at 5000rpm 

bake at 180 °C

60 s

30 minutes 

60 s 

1 hour

writing of pattern submit job to beamwriter 1 night

develop MIBK : IPA warmed to 21 °C 

rinse in IPA 

dry in nitrogen

60 s 

30 s

metallise de-oxidisation etch 

evaporate metal

2 0  s

10-40  minutes

lift-off acetone and heatbath 

rinse in IPA 

dry in nitrogen

20 minutes - 3 hours 

30 s
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C hapter 3

Transm ission E lectron  

M icroscopy o f Artificial 

A ntiferrom agnetic Thin Film  

Spin Valves

3.1 In troduction

Spin Valve systems, introduced in section 1.5.1, are magnetic multilayer sys

tems which exhibit GMR. These systems, which have been investigated for 12 

years, are of industrial and commercial importance. This is due to a high level 

of sensitivity inherent in their structure which has led to applications such 

as sensors in magneto-recording media [16, 30, 31, 32, 33]. The general layer 

structure has three forms. The first, known as a top spin valve, is shown in 

Fig 3.1a. Fig 3.1b and Fig 3.1c represent a bottom spin valve and a double spin 

valve respectively. The standard layer structure was first proposed by Dieny 

et. al [34] and has been the subject of much research since. Dieny (1994) [15] 

provides a general review of some of the earlier work on SVs, Nogues(1999)
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F igure 3.1: Schematic of the different SV formats

and Berkowitz(1999) [17, 18] illustrate some of the more recent research.

The principles behind the interlayer coupling mechanisms were briefly in

troduced in section 1.5.1. For a conventional exchange biased spin valve (CSV), 

similar to that shown in Fig 3.1a, limitations in sensitivity and dynamic range 

exist due to the magnetostatic coupling between the pinned layer and the free 

layer. This interaction is known as orangepeel or Neel coupling and leads to an 

offset hysteresis loop when investigating the free layer reversal processes [35]. 

In some applications, for example sensors, it is more desirable to have the free 

layer reversal process centred round zero field. This has led to modifications 

in the CSV layer structure.

As discussed in section 1.5.1, RKKY coupling can lead to ferromagnetic or 

anti-ferromagnetic coupling [12, 13, 14], Combining this with a CSV as shown
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F igu re 3.2: Schematic of an AAF biased SV

in Fig 3.2 gives a modified pinned or biasing layer. This modification improves 

the therm al and magnetic properties of the SV, see section 4.1. Also, when 

patterned, the ability to “tune” the edge field coupling between the pinned 

and free layers of magnetic elements by modification of the two Co layer thick

nesses within the AAF reduces the effects of the magnetostatic coupling. A 

further advantage is the large effective exchange pinning field which increases 

the magnetic stability of the material. This modification results in Synthetic 

Anti-ferromagnetically (SAF) or Artificial Anti-ferromagnetically (AAF) bi

ased SVs. Such a layer structure was first reported in 1996 [36, 371 and has 

been studied by a number of groups since [38, 39, 40, 41, 42, 43].

The results reported in this chapter and in chapter 4 were carried out on 

AAF biased SV structures. Both thin films and elements have been investi

gated. This chapter covers the research undertaken on thin films; chapter 4 

reports the work undertaken on SV elements.

The magnetic samples were investigated using transmission electron mi

croscopy (TEM) which will be introduced in sections 3.2 and 3.3. A discussion
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of the sample fabrication process and results obtained follow.

3.2 Transm ission E lectron  M icroscopy

Transmission Electron Microscopy has been used as a technique to facili

tate in-situ studies of the magnetic reversal process of samples for many 

years [44, 45, 46, 47, 48]. The principal microscope used for this research 

was the modified Phillips CM20 electron microscope within the Department 

of Physics and Astronomy at the University of Glasgow. The discussions on 

instrumental requirements and imaging methods which follow refer specifically 

to the CM20 electron microscope when required.

The gun system provides the electron source for the microscope. A small 

negative source emits electrons which are focussed and accelerated to typically 

~  40 keV by an electrode. These electrons are further accelerated by a series of 

anodes to give electron energies of up to 400 keV, depending on the microscope 

system, Fig 3.3. The CM20 operates with electrons of an energy up to 200 keV, 

using the standard equation,

where Vq is the accelerating potential and vr is an effective potential which ac-

at 200 keV, typically the accelerating voltage used on the system.

Two types of electron gun, the thermionic gun and field emission gun (FEG) 

are in common use. Each type of gun uses a different emitter. The two 

most common emitters for a thermionic gun are a tungsten (W) filament or 

a lanthanum hexaboride (LaB6) filament. The LaB6 gun has a brightness 

(defined as the current density per steradian) 1 0  times that of the tungsten

3.2.1 The Electron Gun

where Vr =  Vq ( 1 +
(2 meVry / 2

(3.1)

counts for relativistic correction. This gives an electron wavelength of 0.0251 A
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b j d
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Figure 3.3: The electron gun

filament. A FEG makes use of either a (thermally assisted) cold field emitter 

or a Schottky emitter and has a brightness around 1000 times that of the 

tungsten filament.

The gun used on the CM20 is a Schottky FEG. It provides an almost point 

source, is highly coherent, has significantly higher brightness than either of 

the thermionic guns and has greater stability than the cold FEG. The cathode 

is a small tungsten tip coated in zirconia (Zr0 2 ) to reduce the work function, 

i.e. increases the ease with which electrons are emitted, which in turn enhances 

emission.

3.2.2 The colum n

The electron beam emitted from the gun is manipulated by lenses within the 

microscope to illuminate the specimen. The resulting image is then projected 

by lenses below the specimen onto a suitable viewing medium. This section 

discusses the lenses and their functions within the microscope. Fig 3.4 shows 

a schematic diagram of the CM20 including the lens and detector positions.
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Figure 3.4: Schematic of the modified Phillips CM20
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Figure 3.5: The structure of a magnetic lens. The axially symmetric field 

increases in strength as you move away from the electron axis. This produces 

a stronger focusing effect on of-axis electrons.

M agnetic lenses and  th e ir  aberrations

All lenses in the CM20, with the exception of the gun lens, are electromag

netic. Magnetic lenses have smaller optical aberrations than their electrostatic 

counterparts and can work with greater ease at high voltages. A magnetic 

lens consists of an iron pole piece and a yoke which contains windings and 

a cooling system and enables the lens to be dc energised, Fig 3.5. The pole 

piece produces an axially symmetric focussing field for the electrons and, by 

altering the current through the windings, the focal length of the lens can 

be adjusted. The most commonly used magnetic lenses are similar to that 

sketched in Fig 3.5 and are cylindrically symmetric. The column and lenses 

are cylindrically symmetric. Due to imperfections in the lens and hence the 

cylindrical symmetry you can only have 3rd, 5th etc order aberrations due to 

the deviation changing sign on opposite sides of the lens. Lens aberrations 

limit the ultimate resolution of the microscope. Three main types of aberra

tions, all third order, will be described with here, spherical, astigmatism and 

chromatic. These aberrations can be corrected with the use of quadropole and 

octopole magnetic lenses.

Spherical ab erra tio n

Spherical aberrations arise from the lens field acting inhomogeneously on off-axis

W indings

oke
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Figure 3.6: Spherical aberration

electrons with the consequence that electrons further from the column axis ex

perience a stronger focussing effect than those closer to the axis. Consequently, 

rays close to the axis are focussed at the Gaussian image point whereas off axis 

rays are focussed before the Gaussian image point. Thus, the beam cannot be 

focussed to a point and instead is focussed to a plane where the beam has a 

minimum diameter, Fig 3.6. This is known as the disc of least confusion. The 

radius of this disk is

where Cs is the spherical aberration coefficient of the lens and a  is the lens 

semi angle (see Fig 3.6). The position of the disc is

from the Gaussian image point. This form of aberration limits the overall 

resolution of the microscope.

A stigm atism

Astigmatism occurs when the electrons experience a non uniform magnetic 

field which produces two line foci normal to each other, PC and PC separated 

along the axis. As the focus is moved along the axis the line change to an 

ellipse, a circular disc, back to an ellipse and then a second line focus at 90° 

to the original line focus, Fig 3.7. This gives a disc of least confusion with

(3.2)

(3.3)
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F igure 3.7: Astigmatism

diameter

d = Zaa (3.4)

where Za is the distance from the disc of least confusion to the Gaussian image 

plane. This type of aberration can be corrected by small octopoles, known 

as stigmators whose compensating field cancels out the effects of astigmatism. 

To correct astigmatism, the CM20 has two sets of stigmators, the first corrects 

the condenser lens system and the second the objective astigmatism. 

C hrom atic  A berra tion

Chromatic aberration arises from three sources, the lens power supplies, the 

electron beam itself and energy loss due to the electron-specimen interaction. 

Fluctuations in the lens power supplies can have ^r-  ~  10~6 for the eht supply 

and At ~  5 x 10-7 for the objective lens with AVr and A I  being the varia

tion in supply voltage and current. The electron beam can have an energy 

spread of greater than 0.5 eV ~  2 x 10~6) and there is an energy loss of 

approximately 20 eV per 100 nm of specimen thickness for specimens with a 

mid-range atomic weight such as the transition metals used for the spin valve 

specimens investigated in this project. The specimen itself can be seen to be 

the greatest contributor to the chromatic aberration.

The electron focal length depends on its energy. Electrons with a lower
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Figure 3.8: Chromatic aberration arising from specimen

energy will experience a greater deflection from the lens field than those with 

a higher energy, Fig 3.8. This again leads to a disc of least confusion with

A E
rc =  Cra —  (3.5)

where Cr is the chromatic aberration coefficient, a  the semi-angle of the lens, 

E  is the initial beam energy and A E  the variation in energy.

C ondenser lenses and ap e rtu re

The condenser system illuminates the specimen with electrons. The configu

ration employed by the CM20 is the standard configuration which consists of 

two condenser lenses and an aperture.

The first condenser lens is used to demagnify the beam source and to alter 

the spot size. The second lens projects the demagnified beam from the first 

condenser lens on to the specimen and enables the operator to control the 

illuminated area by focusing/defocusing the illumination on the specimen. The 

condenser aperture controls the angular variation in the beam. As a smaller 

spot size is used and the aperture diameter decreased, the coherence of the 

beam increases.
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Objective lens and aperture

In standard microscopes, the specimen is inserted close to the centre of the 

objective lens. This pre specimen part of the objective lens also contributes 

to the illumination conditions by focussing the beam onto the specimen. The 

post specimen part of the objective lens forms an image of the sample which 

is then, in the simplest case, projected onto a viewing screen by subsequent 

lenses. Due to its inherent aberrations, the objective lens is the most influential 

in determining the resolution of the microscope as subsequent lenses deal with 

a magnified image and as such, their aberrations have a smaller effect. The 

strength of the lens and hence the magnetic field produced subject the sample 

to applied fields great enough to erase any domain structure and hence render 

it unsuitable for imaging magnetic materials. To circumvent this, the CM20 

has a set of upper and lower twin lenses added to the column, as shown in 

Fig 3.4. These lenses enable operation of the microscope with the objective 

lens turned off leaving the specimen in a field free region. In this mode of 

operation, the objective lens can be weakly excited to apply a small magnetic 

field perpendicular to the sample plane. By controlled tilting of the specimen, 

this objective lens field can be used to alter the magnetic state of the specimen 

thereby enabling in-situ magnetising experiments.

The objective aperture is situated at the bottom of the pole piece gap of 

the objective lens. This is used to enhance diffraction contrast images and for 

Foucault imaging, neither of which will be discussed in any detail as they are 

not relevant to the work reported in this thesis.

The selected area aperture below the objective system enables diffraction 

patterns to be obtained from specific areas of the sample.
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Diffraction, intermediate and projector lenses

These lenses are situated below the sample in the column and are used to 

magnify the image obtained from the second part of the objective lens and 

project the image onto an appropriate viewing medium. The first intermediate 

lens is also known as the diffraction lens. The strength of this lens determines 

whether an image or a diffraction pattern is observed. The other intermediate 

lenses compensate for any image rotation and the projector lens projects the 

image onto the viewing screen or other viewing media.

Further information on transmission electron microscopy can be found in 

Williams and Carter [49].

3.3 O bservation o f D om ains by TEM

3.3.1 Beam and sample interaction

One of the challenges of observing magnetic domains is that the specimen is 

usually immersed in the high magnetic field of the objective lens when using a 

standard TEM. This field is large enough to erase the domain structure from 

the sample. As discussed previously, the modified CM20 has twin Lorentz 

lenses which enable a field free region around the specimen and allow magnetic 

imaging (section 3.2.2).

The methods of imaging magnetic structures employed here involve a 

branch of microscopy known as Lorentz microscopy. Lorentz microscopy can 

be used to describe all imaging modes where contrast is observed as a result 

of electron deflection from the beam passing through a magnetic specimen.

Assuming the incident electron beam lies along the z axis, any deflection 

will be along the x axis which relates to the magnetic induction of the material. 

Classically, the Lorentz deflection angle /?l is given by
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Figure 3.9: The Lorentz deflection

where e is the electron charge, A the wavelength, t the sample thickness, h is

Planck’s constant, B is the magnetic induction inside the investigated area and

n is a unit vector along the direction of travel of the beam. (3l is rarely larger

than 100 firad. Confusion between the magnetic deflection angle, /?l, and

the Bragg crystallographic scattering angle is unlikely as the Bragg scattering

angle tends to be around 1 - 1 0  mrad.

For a specimen of constant thickness and no stray fields,

6-Be\t , .
/3 =  ——  B s = hqM3 (3.7)

where Bs is the magnetic induction of the specimen and is perpendicular to

the beam (Fig 3.9).

To enable quantitative analysis of a system, a quantum mechanical descrip

tion is required. For this, the magnetic film is considered as a phase modulator 

of the incident electron wave. The gradient of the phase shift

27ret._ . 7rV(Vt) oN
Vcf> = —  (B x n) +  (3-8)

The symbols represent the same parameters as introduced in the classical de

scription with the addition of V, the inner potential and E0 the electron energy. 

This quantum mechanical description takes into account both the electrostatic 

interaction and the interaction arising from the magnetic induction of the spec

imen. For specimens of constant thickness, for example thin films, the electro-

54



Chapter 3. TEM of AAF SVs
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Figure 3.10: Schematic of Fresnel microscopy

(a) Dark and light (b) Magnetisation

domain walls ripple

Figure 3.11: Fresnel images of domain walls and ripple

static term is small compared to the term arising from the magnetic induction. 

Hence, Lorentz microscopy is a branch of phase contrast electron microscopy. 

For magnetic elements there is an abrupt change in thickness at the edge of 

the element and therefore a much more substantial electrostatic contribution. 

However, the specimen still remains a pure phase object [44, 45].
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3.3.2 Lorentz microscopy 

Fresnel

Fresnel microscopy is one of the most commonly used imaging modes for 

studying magnetic materials. In this mode, the imaging lens is defocussed 

so that the object plane no longer coincides with the specimen plane, Fig 3.10. 

Contrast arises wherever there is a varying component of magnetic induction 

(i.e. domain walls and ripple). Domain walls are observed as bright and dark 

bands on the image which represent convergent and divergent domain wall 

images, Fig 3.11a. Magnetisation ripple is where the moment varies around 

the mean magnetisation direction. This results in a wave like pattern or rip

ple in the Fresnel image perpendicular to the mean magnetisation direction, 

Fig 3.11b. The interference fringes observed in the Fresnel image of the conver

gent wall arise due to the wave nature of electrons. The simple ray treatment 

in the schematic is therefore incomplete. It is, however, useful for a simple 

description of the technique.

Fresnel microscopy is frequently used due to its operational simplicity. It 

gives fairly high levels of contrast and there is no preferred directionality. How

ever, no information is directly available about the direction of magnetisation 

within a domain and in the absence of magnetisation ripple, it is difficult to 

observe the angle through which the magnetisation rotates during reversal.

Differential Phase Contrast Imaging

Differential phase contrast (DPC) is a scanning transmission electron mi

croscopy (STEM) technique whereas Fresnel imaging uses the microscope in a 

conventional transmission electron microscopy (CTEM) mode. The difference 

between the two is that for CTEM, a comparatively large beam illuminates 

the region of interest enabling information to be collected over the entire area 

simultaneously. For STEM, a small, often coherent probe scans in a regular
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Scan coils

Descan coils

Post sample optics 
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Figure 3.12: Schematic of DPC microscopy

raster pattern over the area required. Each pixel of the raster pattern is then 

displayed electronically to obtain an image of the whole region of interest.

The probe undergoes a Lorentz deflection due to the magnetic induction in 

the local area over which the probe is centred, Fig 3.12. This is imaged using 

a segmented detector placed above the viewing screen (see Fig 3.4 for the 

position of the detector and Fig 3.13a for a schematic of the detector). Taking 

the difference between signals from opposite segments gives a direct measure 

of the two components of /?l - These can then be combined with the signals 

from all other pixels included in the scan area to form an overall description of
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(a) 4 segment DPC  

detector

(b ) 8 segment DPC  

detector

Figure 3.13: DPC detector configurations

the component of magnetic induction perpendicular to the electron beam. It 

is also possible to sum the signals from all quadrants of the detector to obtain 

a standard bright field image.

DPC is useful as it enables images to be analysed quantitatively [48] and 

information to be obtained about the direction of magnetic induction within a 

domain. However there is a significant increase in instrumental complexity and 

operational difficulty and, due to this being a scanning technique, the image 

recording times are longer.

A further disadvantage of Lorentz microscopy in general is that the phase 

information of a real specimen contains magnetic and non-magnetic contribu

tions. This can make observation of magnetic contrast very difficult, especially 

on smaller samples with little contrast, hence giving possible difficulties in the 

observation of magnetic contrast when using DPC imaging.

The standard DPC technique introduced above can be improved to give 

enhanced magnetic contrast and is known as modified differential phase con

trast (MDPC) imaging [50, 51, 52]. This technique uses an 8  segment detector, 

Fig 3.13b. The system is set up so that the beam diameter at the detector 

plane is just larger than the diameter of the inner quadrants of the detector. 

This means that when imaging a magnetic sample and taking difference signals
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of the outer quadrants the magnetic deflection is much more significant and 

enhances the signal due to magnetic contrast.

3.4 Spin Valve Structure

The following describes the composition and function of the layer structure 

of the AAF biased thin film spin valves introduced in section 3.1. The layers 

were configured as follows:

Substrate/Ta/NiFe/Co/Cu/Co/Ru/Co/IrM n/Ta.

The Ta seed layer encouraged growth in the < 111 > direction and a textured 

fee crystalline structure in subsequent layers. The NiFe/Co bi-layer acted as 

the free layer. The Co was used to enhance the GMR signal [30]. Enhanced 

GMR is desirable in future applications. The AAF itself was a Co/Ru/Co tri

layer. The thickness of the Ru was specified so that the two Co layers couple at 

the first antiferromagnetic alignment, section 3.1. A thinner layer of Ru could 

be non uniform with pin-holes giving direct contact between the two Co layers 

and hence ferromagnetic coupling. A thicker Ru layer reduces the GMR of 

the material. The IrMn biasing layer was selected due to a comparatively high 

blocking temperature which would permit the possibility of the material being 

used at higher temperatures in applications. The Ta cap acted as a protective 

layer by preventing corrosion of the magnetic layers through oxidisation.

A series of 10 thin film samples was investigated. All 10 specimens were 

fabricated in the same growth run and under the same growth conditions at 

the University of Leeds. In each sample, only the second Co layer of the AAF 

was varied, the rest of the layers in the structures remained unchanged. In 

the first sample the thickness of the second Co layer was |  the thickness of 

the first Co layer with the last sample having the second Co layer twice the 

thickness of the first.
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All samples were grown onto a substrate which incorporated 100 x 100 fxm2 

electron transparent silicon nitride (Si3N4) windows. The TEM windows were 

fabricated within the Electronic and Electrical Engineering Department. Sam

ple growth was carried out in a DC magnetron sputtering machine in conjunc

tion with Dr Chris Marrows at the University of Leeds. A description of the 

sputtering technique can be found in section 2.4. The samples were grown in 

a 200 Oe field parallel to the plane of the sample.

The layer thicknesses in A of each sample were:

Substrate/Ta 47/NiFe 64/Co 7/Cu 31/Co 60/Ru 7/Co X/IrM n 107/Ta 32

where X =  14, 25, 37, 48, 60, 71, 83, 94, 106, 117 for samples 1...10. The 

uncertainty in the layer thicknesses was less than 1 0 %.

3.5 P hysical M icrostructure

Alongside the investigation into the free layer reversal, it was considered ben

eficial to investigate the physical microstructure of the specimens in order to 

permit an understanding of the physical properties of the material. They may 

also help with an explanation of any unexpected results in further analyses. 

The analysis of the physical microstructure was carried out in a JEOL 2000FX 

TEM. This TEM was similar to the CM20 in that it possessed a field free re

gion at the specimen plane. However, in place of the twin lenses and principal 

objective lens of the CM20, the JEOL 2000FX had a modified objective lens 

with a large pole piece gap supplying the field free region. This enabled a 

structural study to be carried out without affecting the magnetic state of the 

samples.

Two sets of measurements were carried out. The first determined the grain 

size of the specimen, the second determined the lattice parameters of the ma

terials present within the structure.
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(b) SV  5, X  = 60 A(a) S V  1, X  — 14 A (c)

SV  10, X =  117 A

Figure 3.14: Bright field image of crystallites for samples 1, 5 and 10.

Bright field images of the crystallites from specimens 1, 5 and 10 are shown 

in Fig 3.14. The thickness of the second Co layer is specified in each case. Spec

imens 1, 5 and 10 were chosen as they represented a cross section of the speci

men range. To determine the grain size, the bright field images were recorded 

at a magnification suitable for viewing the individual grains (~  x 100 K). To 

calculate the average grain size, either the number of grains between two set 

points a known distance apart were counted or a number of individual grains 

were measured. Both these measurements were taken using the negative of 

the bright field image. The second method was the one employed in this case. 

Once the average grain size on the negative has been obtained, it was divided 

by the microscope magnification to obtain the actual grain size.

A plot of the crystallite size w.r.t. total sample thickness (Fig 3.15) indi

cated that the grain size increased with specimen thickness as expected. Grain 

growth is columnar and favourably aligned grains grow at the expense of those 

less favourably aligned. Therefore, as the thickness increased the maximum 

grain size would increase. The smallest grains were approximately 4 nm in size 

and were found in all specimens. As the total sample thickness increased, both 

the mean grain size and the spread in grain size increases. On closer inspection 

of the thickest specimen (SV 10), it was observed some of the largest grains
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Figure 3.15: Variation in grain size with increasing sample thickness

observed (~  20 nm) consisted of several smaller grains clustered together. It 

is possible these smaller grains had coalesced during deposition.

Diffraction patterns of the structure were recorded in order to evaluate the 

crystalline properties and level of texturing of the specimens. The diffrac

tion pattern arose from the deflection of electrons from Bragg planes within 

the material. By measuring the radii of the diffraction rings and plotting 

R 2 vs N (= h2 +  k2 +  I2), the following equation could then be used to obtain 

the lattice parameter

where L  =  camera length of the microscope and A =  electron wavelength.

Two diffraction patterns using the same camera length were used to deter

mine the ring radii. Firstly an image was recorded with no specimen tilt and

LA
(3.9)a =
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Tilt Axis

(a) S V  1, Tilt OP (b) S V  1, Tilt 30 ° (c) SV  10, Tilt 30P

Figure 3.16: Diffraction patterns from specimens 1 and 10. Arrows indicate 

texturing in the specimens at 30° tilt. Specimen 10 was thicker and as such, 

had a better defined grain structure which increases texturing.

then a second was taken at a specimen tilt of 30°. Tilting the sample resulted 

in scattering from Bragg planes at a different alignment to those at 0°. A 

more precise calculation of the lattice parameters could be made by taking 

into account both diffraction patterns.

Fig 3.16a shows a diffraction pattern from sample 1 at 0° tilt, in which the 

rings were homogeneous due to the polycrystalline nature of the material. The 

second diffraction pattern, taken at a tilt of 30°, Fig 3.16b, shows additional 

Bragg reflections and considerable texturing. Comparison between the tilted 

diffraction patterns from sample 1 and sample 10, Fig 3.16c, indicated that 

texturing increased with overall specimen thickness as expected. Texturing is 

defined by the arc length, which has become slightly better defined. A large 

change was not expected as the overall thickness did not change dramatically. 

Also, the definition of the rings were sharper in the thicker specimen. This is 

due to electron diffraction off of a larger number of unit cells due to the larger 

grains giving more unit cells per crystallite.

The double ring structure observed in all diffraction patterns arose from
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U t M  (A) &IrM n  (A) ^aIrMn (■̂•)
SV 1 3.62 0.09 3.83 0 .1 0

SV 5 3.61 0.09 3.81 0 .1 0

SV 10 3.59 0 .1 0 3.80 0 .1 1

Table 3.1: Measured lattice parameters of Spin Valves 1, 5 and 10.

the different lattice parameters of the SV layer structure. The IrMn layer 

had a lattice parameter of a = 3.82 A [43]. The transition metals all had a 

very similar, smaller lattice parameter of a ~  3.61 A [43, 53] and axe therefore 

indistinguishable on the diffraction pattern. The Ta seed and cap layers had a 

lattice parameter of a = 3.3 A [53]. The thickness of the Ru layer is too thin 

to be resolved within the diffraction pattern.

Indexing of the diffraction patterns confirmed that the magnetic layers 

are fee and are the layers which contribute to the double ring structure and 

texturing. It could also be observed that the Ta contributes an untextured 

background. The calculated lattice parameters for samples 1, 5 and 10 are 

presented in Table 3.1. From this, it can be seen that the measured lattice 

parameters agree within experimental error of the accepted values.

Further study of the tilted diffraction pattern showed that the (220) rings 

lay on the tilt axis which is consistent with a <111> zone axis. This confirmed 

that the Ta seed layer promoted <111> growth of subsequent layers as desired

[54].

These studies of the physical microstructure confirmed that the grain size 

increased with specimen thickness and that the materials expected are present.
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3.6 M agnetic R eversal

3.6.1 Introduction

Magnetic studies were undertaken on the ten samples. Each sample was first 

examined in the “as-grown” state, i.e. the magnetic state the film was in im

mediately after deposition. The easy axis reversal mechanism of the specimens 

was then investigated.

3.6.2 As Grown State

Fresnel images were taken in the CM20 of the specimens in the as-grown 

state by Dr Aitchison. The differences between the magnetic configurations 

supported by the films varied significantly with the thickness of the second Co 

layer in the AAF, Fig 3.17.

Magnetisation ripple was easily observed in the majority of the specimens, 

the only exception being specimen 7 which supported a very complex domain 

structure. The presence of magnetisation ripple indicated a preferred direction 

of magnetisation or easy axis within the film. It had been anticipated that a 

preferred direction would be observed due to the external field of 200 Oe ap

plied during growth of the specimens. The magnitude of the ripple increased 

through specimens 1 to 5 (observable in Fig 3.17a-e). Specimen 7 had a highly 

complex domain structure. In specimens 8  to 10, the domain complexity de

creased with the increase of the thickness of the second Co layer in the AAF 

and ripple was again observable.

It should be noted that specimens 1 to 6  showed considerably less domain 

structure than specimens 7 to 10. This change in domain complexity could 

have arisen from changes in the AAF coupling due to the increase in thickness 

of the second Co layer. As the second layer increased in thickness, it would 

have competed with the first layer to lie parallel the growth field direction.
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(a) SV1, X  = 1 4 A  (b) SV2, X  = 25 A (c) SV3, X  = 37 A

(d) SV4, X  = 48 A (e) SV5, X  = 60 A (f)  SV6, X  = 71 A

(g) SV7, X  = 83 A (h) SV8, X  = 94 A (i) SV9, X  = 106 A

(j) SV10,

X  = 117 A

Figure 3.17: Fresnel Images of As Grown states of specimens. X is the 

thickness of the second Co layer within the AAF biasing trilayer.
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For specimens 1 to 6  where the second Co layer of the AAF was either thinner 

or comparable to the first, the first Co layer would have remained parallel to 

the growth field direction. As the thickness of the second Co layer became 

significantly larger than that of the first (specimen 7), it is conceivable that 

the two layers could have formed a complex multi-domain state in the AAF 

which would have been pinned by the antiferromagnetic IrMn biasing layer. 

This would have mapped through to the free layer through non uniform weak 

coupling giving a complex domain state observable in the free layers and no 

easily identifiable preferred direction of magnetisation. As the thickness of the 

second layer increased further, the complexity of the AAF biased layer would 

have been reduced. Accordingly, a reduction in the number of domains in 

specimens 8  through 1 0  was observed.

3.6.3 M agnetising Experim ents

In the studies described here, the easy axis reversal mechanisms of the free 

layer were investigated. The film was oriented in the microscope such that the 

applied field was parallel to the preferred direction of magnetisation in the free 

layer of the SV. As described previously, section 3.3.2, the preferred direction 

was deduced from the magnetisation ripple.

Following this, in a typical experiment, a high field was applied parallel 

to the specimen plane to align the free layer with the applied field. The 

strength of the applied field was subsequently reduced to enable observation 

of the reversal process. In this series, the reduced field was ~  50 Oe and 

from this point, the field in the plane of the specimen was swept from +30 Oe 

to -30 Oe. The reversal process was recorded on a CCD camera below the 

viewing screen of the microscope. These fields correspond to an objective lens 

current of 50 mA providing a vertical field of ~  50 Oe with the specimen 

plane being tilted ±  30° from the horizontal. ±30° tilt is suitable for viewing
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the reversal mechanism without experiencing significant foreshortening of the 

viewed image. The high field and reversal sweep was repeated for the opposite 

field direction and the Fresnel images of the reversal were again recorded. The 

in plane field range +30 Oe to -30 Oe was selected as this represented the range 

where most changes in the free layer magnetisation distribution took place 

whilst having negligible effect on the AAF coupling. A considerably larger 

field (> 7000 Oe) is required to alter the AAF coupling. Positive numbers 

in the applied field denote an applied field in the opposite direction to the 

preferred orientation of the free layer.

The reversal mechanisms for specimens 1, 4, 5, 7 and 10 are presented 

below. These provide a representative cross section of the domain reversal 

processes observed.

Sample 1

As introduced previously, the layer structure of sample 1 was:

Substrate/Ta 47/NiFe 64/Co 7/Cu 31/Co 60/Ru 7/Co 14/IrMn 107/Ta 32

with all thicknesses in A.
The magnetic state of the sample was recorded as the externally applied 

field was reduced from a forward field of +30 Oe to a reverse field of -30 Oe. 

The Fresnel images of this outward reversal are shown in Fig 3.18a-e and 

illustrate the most important stages of the reversal process. Fresnel images of 

the return path are also shown, Fig 3.18f-l. As the images show, 360° loops, 

which proved remarkably difficult to eliminate, were a common feature of this 

sample. It was also observed that they had a tendency to be found in the same 

film locations on repeated cycles, suggesting that they were associated with 

specific micro-structural features. It must also be recalled that the images 

related to the projected induction distribution through the whole multilayer 

stack; as such it was difficult to ascertain in which magnetic layer(s) the 360°
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(d) -10.6 Oe (e) -30 Oe

Figure 3.18: SV 1, X =  14 A, Outward reversal
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(f) -30 Oe after 

-6 kOe

(i) +3 Oe

(g) -0 Oe (h) +2 Oe

(1) +30 Oe

Figure 3.18: SV 1, X = 14 A, Return reversal
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loops formed. It is by no means certain that the loops were in the free layer as 

they seemed to play little if any part in the low field reversals that can clearly 

be observed in Fig 3.18. One theory is that the second Co layer of the AAF, 

being only ~  14 A in thickness did not form a complete layer and thus enabled 

the formation of pin holes between the Ru AAF spacer layer and the IrMn 

biasing layers.

Differences were observed in the way the free layer reversed on the out

ward and return paths of the magnetisation cycle. Along the outward path, 

Fig 3.18a-e, ripple intensified modestly before a rapid switch, involving a very 

small number of highly mobile walls, effected the reversal with the midpoint 

of the reversal occurring at an applied field of ~  -10 Oe. The reversal itself 

occurred so rapidly that it could not be recorded on the CCD camera. On the 

return path, Fig 3.18f-l, a more complex array of rather irregular walls were 

involved in the reversal at an applied field of ~  -3 Oe. The complex array 

persisted over a field range > 1 Oe with the consequence that details of its 

formation and evolution could be more readily studied. The mean orientation 

of the walls was parallel to the field direction and as such was reminiscent of an 

easy axis reversal of a single layer. The process differed, as has been observed 

elsewhere [55], in the irregularity and comparatively low mobility of the walls. 

This led to chain like structures forming during reversal as seen in Fig 3.18f,e/. 

This was indicative of modest local pinning. Based on observation of the fields 

at which reversal occurred, the offset field is ~  -3.5 Oe.

Sample 4

The layer structure of sample 4, as introduced in section 3.4, was:

Substrate/Ta 47/NiFe 64/Co 7/Cu 31/Co 60/Ru 7/Co 48/IrMn 107/Ta 32

with all thicknesses in A. The thickness of the second Co layer (48 A) in the 

AAF of a similar thickness to the first layer (60 A). The reversal process was
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recorded on the CCD as the externally applied field was swept through the +30 

to -30 Oe cycle described in the introduction to this section. The Fresnel images 

of the reversal process as are shown in Fig 3.19. In this specimen, the field 

applied was perpendicular to the ripple direction and reversal was observed to 

take place at fields of ~  —11 Oe and ~  —3 Oe. This was indicative of an offset 

field of ~  —7 Oe and was somewhat greater than was observed for sample 1. It 

should also be noted that no 360° loops were observed in this specimen and also 

that time dependent effects were significant, Fig 3.19c-d. In both directions, 

as the magnitude of the applied field approached that of the reversal fields, 

a modest increase in magnitude of ripple was observed. Reversal, however, 

differed along the outward and return paths. The outward reversal, Fig 3.19a- 

d, primarily occurred through walls with a mean orientation parallel to the 

applied field direction. This was similar to the easy axis reversal mechanism of 

a single magnetic layer. The walls are also relatively low mobility, indicative of 

local pinning. Both the mean wall orientation being parallel to the applied field 

direction and low mobility were observed previously in the reversal mechanism 

of sample 1. Fig 3.19e-h shows the return path. In the images taken, the 

domain wall does not appear to be parallel to the applied field direction. This 

has been observed previously by King [56, 57, 58].

A number of points require to be noted. Firstly, variation in the reversal 

mechanism could be realised by modest changes of the applied field direction 

with respect to the preferred direction of magnetisation within the specimen. 

Thus, offsetting the applied field by +  5° with respect to the preferred direction 

of magnetisation, led to a reversal that involved a combination of rotation of 

magnetisation and wall processes, Fig 3.20. Inevitably, the orientation of the 

walls that effected the reversal changed. On the outward reversal, the domain 

walls remained broadly parallel to the applied field direction. However for the 

return reversal the average wall direction was approaching perpendicular to 

that of the outward reversal wall direction. Secondly, changes to the reversal
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( a ) -10 Oe after (b) -10.6 Oe (c) -11 Oe

+500 Oe

(d) -11 Oe, (e) -5 Oe (f)  -3.5 Oe

reversed over time

(g) -3 Oe (h) -2 Oe

Figure 3.19: Reversal mechanisms of SV4, X = 48 A. (a-d) Outward re

versal, (e-i) Return reversal.
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(a) rotated (b) mid reversal

+5°, just before

outward reversal

(d) mid reversal (e) walls evolving

with time

(c) reversal in re

turn direction

Figure 3.20: Reversal mechanism of SV4 with specimen rotated +5 0 from 

applied field direction.

mechanism could be realised by changing the magnetic field history, i.e. by 

subjecting the sample to different field processes prior to observing a particular 

reversal.

As the external applied field direction is applied between +  10° and +  15° 

to the preferred direction of magnetisation of the specimen, the walls arising 

during outward and return reversals become perpendicular to one other and 

are at 45° to the ripple direction. At an applied field direction ~  +  20° from 

the easy axis the walls facilitating the reversal become parallel to each other 

and the applied field direction once again. An angle of say,A- 35° with respect 

to the easy axis led to rotation being the principal method for reversal whereas
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(a) reversal at 

specimen rotation 

o f +35°

(b) reversal at 

specimen rotation 

o f -35°

Figure 3.21: Reversal mechanism of SV4 with specimen rotated ±35° from 

applied field direction

an applied field at - 35° degrees between the applied field and easy axis led 

to reversal being effected by domain wall processes, Fig 3.21. This break in 

symmetry between reversals at positive and negative rotation of the easy axis 

with respect to the applied field direction is surprising. It is not known why 

the break in symmetry occurred.

Sam ple 5

Sample 5 had a layer structure of:

Substrate/Ta 47/NiFe 64/Co 7/Cu 31/Co 60/Ru 7/Co 60/IrM n 107/Ta 32

with all thicknesses in A. The second Co layer in the AAF was of the same 

thickness as the first layer. Fresnel images of the reversal process were taken 

as before with the CCD. Figure 3.22 shows the reversal process for both the 

outward and return paths. As with sample 4, no persistent 360° loops were 

observed. The externally applied field was parallel to the preferred direction 

of magnetisation of the specimen and reversal occurred at fields of ~  —11 Oe 

and ~  —0 Oe. This implied an offset field of ~  —5.5 Oe, more comparable to 

that of sample 4 than sample 1. It was also observed that the reversal in one
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(a) +20 Oe after 

+6 kOe

(b) -10 Oe (c) -11 Oe

(d) -12 Oe (e) -20 Oe after 

-6 kOe

(f)  -0.5 Oe

(g) -0 Oe, (h) +1 Oe (i) +10 Oe

reversed over time

Figure 3.22: Sample 5, X = 60 A. a-d reversal in outward field direction,

e-i reversal along return path.
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direction was similar to that in the other. Figs 3.22a-d, showed the reversal on 

the outward path; in this case there was an increase in the magnitude of the 

ripple, some domain growth from the persistent loops (marked L in Fig 3.22a) 

followed by domain walls parallel to the applied field direction effecting re

versal. Domain walls present within the sample tended to be irregular which 

was indicative of local pinning. Figures 3.22e-i, show the return path. Here, 

free layer reversal occurred by a similar method to the outward path, with an 

increase in the magnitude of the ripple and walls parallel to the applied field 

reversing the direction of magnetisation.

It can be observed that the reversal processes seen here related more closely 

to those of sample 4 than sample 1. Due to the similarities in the AAF layer 

structure with the thickness of the second Co layer comparable to that of the 

first, this was expected.

Sample 7

The layer structure of specimen 7 was:

Substrate/Ta 47/NiFe 64/Co 7/Cu 31/Co 60/Ru 7/Co 84/IrMn 107/Ta 32

with all thicknesses in A. In this specimen, the thickness of the second Co layer 

in the AAF exceeded that of the first.

Quite different magnetic structures were observed compared to those from 

the previous samples. The first observation is that attainment of an appar

ently saturated state was hard to achieve, even at fields of 250 Oe. Fig 3.23a-d 

illustrates this for the sample in various orientations. On removing the field, 

Fig 3.23e, the complexity of the domain structure increased further making it 

extremely difficult to identify any well-defined reference direction. The diffi

culty in identifying a reference direction and achieving a saturated state made 

it impossible to study the reversal mechanisms of this specimen.
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(a) +250 Oe af- (b) -250 Oe

ter +6 kOe after -6 kOe

(c) rotated 90°, (d) -250 Oe after

+250 Oe after -6 kOe

+6 kOe

(e) 0 Oe

Figure 3.23: Sample 7, X = 84 A. Illustrating difficulties in alignment of 

specimen with applied field direction
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Sample 10

The layer structure of specimen 10 was:

Substrate/Ta 47/NiFe 64/Co 7/Cu 31/Co 60/Ru 7/Co 114/IrMn 117/Ta 32

with all thicknesses in A. In this specimen, the thickness of the second Co layer 

in the AAF was almost double that of the first.

The outward reversal is shown in Fig 3.24a-f. It should be noted that 360° 

loops are present, even after an applied field of +6000 Oe. Chain like structures 

form and grow as the applied field is increased in the negative direction effecting 

the reversal. Fewer 360° loops remain following the reversal of the bulk of the 

material. The majority of the remaining loops were eliminated by a field of 

-100 Oe and all were removed by the application of a large field. The reversal 

was not abrupt and occurred predominantly over a field range of ~  -10 Oe to 

~  -20 Oe.

Fig 3.24g-l shows the return reversal. The 360° walls observed in the out

ward reversal had been eliminated and the magnitude of the ripple was greater. 

A modest increase in the magnitude of the ripple was observed before chain like 

structures reversed the magnetisation. A number of 360° loops were present 

following the reversal. These loops were difficult to remove and persisted be

yond an applied field of +100 Oe. After the application and removal of a large 

field, the loops were still present. As with the outward reversal, the return 

reversal occurred over a field range, ~  -2 Oe to ~  + 6  Oe. This gives an offset 

in the hysteresis loop of ~  -7 Oe.

It should be noted that the direction of the domains walls were at an 

angle of ~  -30° to the applied field direction in the outward reversal but were 

approximately +45° from the applied field direction in the return reversal. This 

change in wall orientation on outward and return reversals had been observed 

previously in specimen 4 and has a possible explanation if the two layers of the 

AAF were not exactly antiparallel. Also, chain like structures and 360° loops
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(a) + 25 Oe after 

+6 kOe

(b) + 0 Oe (c) - 12 Oe

(d) - 14 Oe (e) - 16 Oe (f) - 28 Oe

(g) - 22 Oe after 

-6 kOe

(h) - 2 Oe (i) - 0 Oe

(j) + 4 Oe (k) + 8 Oe (1) + 22 Oe

Figure 3.24: Sample 10, X = 114 A. Outward and return reversals.
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were observed in specimen 1. The chain like structures are well understood. 

However, the 360° loops observed in both specimens differ. In specimen 1, the 

loops remained in the same position from reversal cycle to reversal cycle and 

proved very difficult to remove in either a positive or negative applied field. 

The loops in specimen 10 were considerably larger in size and were removed 

after the application of a reasonable negative field. The behaviour of this 

specimen is not simple, however, it is consistent with an unbalanced AAF in 

the spin valve structure unlike specimen 7.

3.7 M agnetoresistance M easurem ents

Magnetoresistance measurements of each specimen were obtained using the 

standard 4 probe CIP arrangement introduced in section 1.5.1. These results 

were collected by Dr Chris Marrows at the University of Leeds. Actual GMR 

curves were not available for study. However, a plot of the maximum GMR 

amplitude as a function of the second Co layer thickness for eight of the spec

imens is shown in Fig 3.25. From this, it can be observed that in general the 

GMR decreases as the second Co layer increases in thickness. The principal 

exception to this is specimen 7 which is discussed separately. The decrease in 

GMR can be attributed to the second Co layer shunting the current; as the 

thickness of the second Co layer increases, the current through this layer in

creases reducing the current flowing through regions in which spin dependent 

effects occur.

Specimen 7 proved difficult to study magnetically with a highly complex 

domain structure, no observable preferred direction of magnetisation and with 

domains that proved difficult to remove. This suggests it would support a 

very low MR. Moreover, samples of this structure had been shown in previous 

work to display only small effects [43]. The inability to realise a uniformly 

magnetised free layer whose orientation reverses over a modest field range is
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Figure 3.25: Maximum GMR amplitude as a function of second Co layer 

thickness

consistent with the small GMR observed.

As shown in specimen 4, the reversal mechanism varies as the applied field 

direction is moved away from parallel to the preferred magnetisation direction 

of the specimen. Although no data is available for this specimen, plots of the 

variation of the GMR with applied field angle for other samples are shown 

in Fig 3.26. These show that the GMR varies depending on the applied field 

direction in all specimens. This is in agreement with the variation in the 

reversal mechanisms observed in specimen 4. The applied field direction with 

respect to the easy axis affects the reversal mechanisms. The change in the 

relative orientation of the magnetic layers away from parallel and antiparallel 

affects the change in the measured resistance and hence the MR. It can also 

be noted that the one specimen where the GMR does not vary significantly as 

the applied field direction is varied is specimen 7.

3.8 D iscussion  and C onclusions

During growth, as the first Co layer of the AAF was deposited, the expectation 

was that the magnetisation would align parallel to the applied field of 200 Oe. 

Then, as the second Co layer of the AAF was deposited, the magnetisation of 

the second Co layer would compete with the first layer to lie parallel to the
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0

Figure 3.26: Variation of GMR amplitude as a function of applied field 

direction with respect to preferred direction of magnetisation

applied field direction. It was thought that as the thicknesses of the two Co 

layers became comparable, the magnetisation of the two layers would rotate 

to be perpendicular to that of the applied field to leave a balanced system. 

This would subsequently be pinned in by the growth of the AFM layer. Be

yond this, it was expected that once the thickness of the second Co layer was 

significantly greater than that of the first Co layer in the AAF, the second Co 

layer would rotate to lie parallel with the applied field, and thus cause the first 

Co layer to reverse through the AAF coupling. Moreover it was thought that 

the system would behave like a conventional SV in the situation where there 

were considerable differences in the two Co layer thicknesses of the AAF. This 

expectation was observed.

Major disagreement was found when attention was paid to where changes 

in behaviour were observed within the sample series. Thus samples 1, 4 and 5 

showed rather similar behaviour despite the fact that the thicknesses of the two
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Co layers in sample 1 differed markedly whilst in sample 5 they were notionally 

identical. Moreover anomalous behaviour, with virtually no GMR present, was 

not observed until sample 7 where the second Co layer should have been much 

thicker than the first layer. That GMR did reappear, but with the anticipated 

phase change, for samples with much larger thicknesses from the second Co 

layer is apparent from Fig 3.26.

When taken together, the above throws strongly into question whether 

certain layer thicknesses were close to their notional values. For that reason, a 

further structural study was undertaken to see what could be learned of true 

layer thicknesses.

3.8.1 Cross Section Study

An investigation was carried out to examine the true layer thicknesses of some 

of the samples. The expected layer structure with all thicknesses in A of the 

specimens was

Si/SiN/Ta 47/NiFe 64/Co 7/Cu 31/Co 60/Ru 7/Co X/IrMn 107/Ta 32

with X =  14 or 60 for samples 1 and 5 respectively.

To facilitate this structural characterisation, a TEM specimen was pre

pared by Mr Brian Miller of the Solid State Physics group using Cross Section 

Encapsulation. This technique is outlined briefly below. High resolution TEM 

and Scanning TEM images of the cross sections were taken and analysed by 

Dr Sam McFazdean, also of the SSP group, on the Tecnai [59] microscope. 

The results of these measurements are shown below.

Cross Section Encapsulation

The TEM specimen sought consists of two thin sections of the sample material, 

with the faces of interest adjacent to one another, that has been thinned until 

electron transparent.
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A 2  mm diameter molybdenum rod with a slot, ~  380 fim x 15 mm, cut in 

a section of the rod was prepared. Two strips of the specimen to be investigated 

were ground until the thickness of each was half the width of the slot. The 

specimens were joined (faces of interest facing one another) using epoxy resin. 

They were then inserted into the slot of the Mo rod and secured using epoxy 

resin. The rod and specimen were mounted into a brass rod and cured at 

130 °C for 1 hour.

A diamond saw was used to cut slices from the cured encapsulation. 3 to 6  

discs of thickness 500 to 800 fim were obtained from each encapsulation. These 

discs were thinned to ~  1 2 0  /xm using silicon carbide paper of varying grades 

and polished using 3 /xm diamond paste on a rotating felt polishing pad. Each 

side of the disc was thinned in turn to achieve the desired thickness.

The encapsulated specimen was then dimpled until the centre of the spec

imen was ~  10 /xm in thickness. For a silicon based specimen, this can be 

recognised when the thinned region transmits light of a red/orange colour. 

From this point, the specimen was thinned further to electron transparency 

by using ion milling. Ion milling progressively removes sample material until 

an area of material becomes electron transparent. It creates an elliptical hole 

in the middle of the cross section (major axis along the glue line), the electron 

transparent region surrounding the edges of this hole.

TEM investigation of the cross sectioned specimen

The cross sectioned encapsulation of the AAF biased SV specimens were in

vestigated in the Tecnai [59] TEM microscope. Fig 3.27 shows a bright field 

TEM image of the specimen 1. The total width of the cross section (the spec

imen thickness) was measured to be 456 A. The total width of specimen 5 was 

found to be 471 A. These are not in very good agreement with the expected 

thicknesses of 369 A and 415 A.
Fig 3.28 shows STEM annular dark field images of specimens 1 and 5. In
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surface

substrate

Figure 3.27: HRTEM image of specimen 1

this imaging mode contrast relates strongly to the mean atomic number of the 

region under the probe. Regions with high Z appear brighter as they scatter 

more strongly. The bright band at the right hand of the spin valve is the Ta 

seed layer. To the left of the seed layer is the free layer, the spacer and the 

first Co layer of the AAF. These are indistinguishable due to the similarity in 

their atomic weights. To the left of that is the bright Ru band. The second Co 

layer of the AAF tri-layer can be seen between the Ru and the IrMn biasing 

layer. The tri-layer is easier to observe in specimen 5 as the second Co layer 

was expected to be ~  60 A corresponding to a significant separation between 

the Ru and IrMn layers. In the unbalanced AAF, the second Co layer was 

expected to be ~  14 A and as such, was more difficult to observe. At the left 

hand side of the spin valve is the Ta cap layer. It appears much less bright 

than the Ta seed layer as it is thinner than the seed due to the specimen being 

wedge shaped. There are thus fewer atoms for scattering, hence there is a 

reduction in the brightness.

To confirm correct identification of the layers, energy dispersive X-ray 

(EDX) spectra were recorded for various positions within the cross section. 

Fig 3.29 shows the results for specimen 5. In the figure, the left hand images 

are annular dark field STEM images, the red square marks the area used for
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(a) specimen 1, M  — 640 kx  (b) specimen 5, M  — 640 kx

Figure 3.28: Annular dark field STEM images of specimens 1 and 5

automatic drift correction and the red line represents the line scan. An EDX 

spectrum of the marked point (cross) on the line scan is shown next to the 

image. Five different points from the line scan are shown in Fig 3.29: in the 

Ta seed layer; in the NiFe free layer; close to Cu spacer; around the Co/Ru 

boundary; and in the IrMn biasing layer. Ta is observed in all spectra presum

ably due to the redeposition of Ta atoms during the fabrication of the cross 

section.

Overall the spectra are at least qualitatively consistent with expectation. 

The resolution however, is insufficient for an accurate measure of layer thick

nesses, for this we return to what can be extracted from the annular dark field 

images. Table 3.2 shows the layer thicknesses of specimen 5 obtained from the 

ADF images.

Layer Subs Ta NiFe /  Co /  Cu /  Co Ru Co IrMn Ta

Expected 47 162 7 60 107 32

Measured 108 152 39 96 43

Table 3.2: Expected and measured layer thicknesses of specimen 5 in A.

The most obvious feature of the table, apart from the wide discrepancy 

in expected and observed Ta layer thicknesses which should not affect the
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(a) Probe position on Ta seed layer

E n erg y  (keV)

(b) Probe position on NiFe free layer

2 0 -

E nergy  (keV)

(c) Probe position on Cu spacer layer

F igure 3.29: EDX spectra of five points across the spin valve stack
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(e) Probe position on IrMn biasing layer

Figure 3.29: EDX spectra of five points across the spin valve stack (con

tinued)
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magnetic properties, is the discrepancy between the expected and observed 

thicknesses of the second Co layer. Whereas the confirmed thickness of the 

NiFe/Co/Cu/Co layer is within 6  % of expectation, the thickness of the second 

Co layer is only 2/3 of the expected value. In sample 1, the very detection 

of the second Co layer is difficult, a fact that would be easier to understand 

if, once again, the true thickness was significantly smaller than expectation. 

Consultation with the film growers provided no obvious reason how such dis

crepancies could arise, but their existence allows a re-evaluation of the earlier 

results to be made. This is given in the Conclusions.

3.8.2 Conclusions

The discovery that the thickness of the second Co layer in the AAF was less 

than expected aids explanation of some of the magnetisation studies presented 

earlier in this chapter. It is assumed from the results obtained in the cross 

sectional study that the second Co layer of all specimens is thinner than ex

pected.

Specimen 1 , where the second Co layer of the AAF was assumed to be 

14 A, exhibited 360° walls which were present throughout the reversal cycle. 

The reduced thickness could have led to a non uniform layer, with pin holes 

between the Ru and IrMn. These pin holes could provide sites that stabilised 

the 360° walls observed experimentally.

Specimens 4 and 5, where the thickness of the second Co layer was thought 

to be approximately that of the first Co layer in the AAF showed behaviour 

more similar to CSV’s. This is consistent with the observation that the second 

Co layer was thinner than the first Co layer for both these samples and so we 

have an explanation of the behaviour being different from that expected.

Following on from this, if the thickness of the second Co layer was con

sistently ~  2/3 of the expected value, for specimen 7 it would be between
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55 A and 60 A. Thus specimen 7 is likely to be close to the balanced AAF 

composition consistent with the highly complex domain structure, no observ

able preferred direction of magnetisation and virtually zero GMR.

For specimen 10, the thickness of the second Co layer was truly significantly 

greater that the first with simpler GMR behaviour again being observed.
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Transmission Electron  

M icroscopy of P atterned Spin  

Valves

4.1 Introduction

Spin valves biased with artificial anti-ferromagnets are modified SVs designed 

to give a high level of sensitivity and an improved range of operating temper

atures. Thin films of these AAF structures were investigated in Chapter 3 to 

gain an insight into the bulk properties. However, for use in applications such 

as magnetic memory and read/write heads, it is more desirable to investigate 

magnetic elements.

The reversal properties of magnetic elements have been investigated for 

many years; both single layer elements [60, 61, 62] and multilayer elements [63, 

64, 65] have been studied. With magnetic elements, the physical dimensions 

and shape can affect the reversal mechanisms; this is shown in [6 6 , 67]. This 

chapter discusses the characterisation of AAF biased SV elements with the 

same layer structure as the bulk material investigated in Chapter 3.
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(a) balanced A A F  (b) unbalanced AAF

Figure 4.1: Schematics of stray field coupling in balanced and unbalanced

AAF spin valves

As shown by Yi et al [67], the size and end shape of an element can affect the 

reversal process. In the case of multilayer stacks, the layer structure can also 

alter the reversal mechanism. Some of the interlayer coupling mechanisms for 

thin films spin valves and artificial anti-ferromagnetically biased spin valves 

have been introduced previously (sections 1.5.1, 3.1 and 3.4). However, for 

elements, these coupling mechanisms are modified due to the finite size of the 

element. At the edges of an element, stray field coupling between the magnetic 

layers exists. In conventional SVs, this extra coupling between the pinned and 

free layers can contribute to a larger offset in the hysteresis loop. This is rarely 

desirable for use in applications.

For AAF biased SVs, the edge field coupling can be modified by varying 

the relative thickness of the two magnetic layers of the AAF. If both layers 

of the AAF were equal, Fig 4.1a, the free layer should experience essentially 

no stray field coupling though other interlayer coupling is still present. For 

an unbalanced AAF, Fig 4.1b, there would be a net stray field from the two 

layers of the AAF and the system should act more like a conventional SV. From 

this, it would be possible to tune the layer thicknesses so that the stray field 

coupling offset is equal and opposite to that arising from interlayer coupling. 

This would leave the element free to reverse round zero field.

This chapter investigates elements of two AAF biased spin valves with a 

range of dimensions, shapes and orientations with respect to the growth field
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direction. Specimen fabrication, a structural study and investigations in the 

magnetic reversal are discussed in the following sections.

4.2 Specim en Fabrication

As discussed in the introduction, the reversal mechanisms of AAF biased SV 

elements were investigated in the CM20. Two different layer structures cor

responding to specimens 1 and 5 discussed in Chapter 3 were studied. These 

were chosen to enable the study of an unbalanced and a balanced AAF system. 

However, from the results of the cross sectional study presented in Chapter 3 , 

it was found that the second Co layer of both specimens was thinner than 

anticipated. This indicated that both specimens had an unbalanced AAF and 

that the second Co layer in specimen 1 may have been non uniform.

The elements chosen for investigation varied in size and shape. Three 

different end shapes were investigated: rectangular ends; rounded ends; and 

elliptical ends. For each shape, four different sizes were fabricated: 4 x 2  /mi2; 

1.5 x 0.75 /mi2; 0.75 x 0.375 /mi2; and 0.4 x 0 .2  /mi2. Also, for each shape 

and size, a range of orientations with respect to the growth field direction was 

investigated. These were parallel to the growth field, 22.5° to the growth field, 

45° to the growth field, 67.5° to the growth field and perpendicular to the 

growth field direction. Fig 4.2 shows a SEM image of the fabricated pattern. 

The large area in the top right hand corner was an area of continuous thin film 

to enable direct comparison between the elements and bulk material.

The pattern was transferred onto TEM windows by e-beam lithography 

(section 2.2.1). The TEM windows had previously been fabricated using the 

standard technique, broken into groups of four and coated in a bi-layer of 

resist. The desired layer structure was sputtered (section 2.4) onto patterned 

windows at the University of Leeds. Lift-off completed the fabrication process. 

Due to the nature of the specimen, charging while in the TEM was a significant

94



Chapter 4. TEM of patterned AAF SV elements

Figure 4.2: SEM image of elements for investigation in the TEM

problem. This was overcome by coating the specimen with a thin carbon layer 

to improve conductivity. The carbon coating procedure was undertaken in an 

evaporator similar to the evaporator described in section 2.4. The difference 

was that, instead of heating a crucible of the desired metal, a high current 

was passed through carbon fibres leading to thermal evaporation and coating 

of the specimen. The group of four TEM windows were then separated into 

single windows for investigation in the Philips CM20.

4.3 M agnetic Studies o f Specim en 5

Specimen 5 was originally chosen for further investigation as it was thought 

that this specimen possessed a balanced AAF layer structure. The cross sec

tion investigation presented in Chapter 3 showed tha t the AAF was not bal

anced and therefore the behaviour should be more like a conventional SV. The 

experimentally measured layer structure in A of specimen 5 was

Substrate/Ta 108/NiFe Co Cu Co 152/Ru /Co 39 /IrM n 96/Ta 43.

In the studies described here, the easy axis reversal mechanisms of the free 

layer were investigated.The elements were oriented in the microscope such that
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the applied field was parallel to the growth field, i.e. the preferred direction of 

magnetisation in the free layer of the continuous film. Initially the as grown 

state was investigated.

Following this, in a typical experiment a high field was applied parallel to 

the growth field direction to align the free layer with the applied field. The 

strength of the applied field was subsequently reduced to enable observation 

of the reversal process. The field in the plane of the specimen was then swept 

from this reduced field through zero field to the same field applied in the 

opposite direction. The reversal process was recorded using DPC imaging.

This high field and reversal sweep was repeated for the opposite field di

rection and DPC images of the reversal were again recorded. The field range 

differs between elements and in each case was selected to ensure substantial 

reversal of the free layer whilst having negligible effect on the AAF coupling. 

A considerably larger field (> 6000 Oe) is required to alter the AAF coupling. 

Negative numbers in the applied field denote an applied field in the same 

direction as the preferred orientation of the free layer.

4.3.1 D PC  images of the as grown state

DPC images of the as grown state were taken. The direction of induction to 

which images are sensitive is shown above the first image.

Fig 4.3 shows images of the 4 x 2  fim2 rectangular elements in the as 

grown state. It can be observed that the element with long axis parallel to 

the growth field direction was in a C state. This domain configuration is only 

possible when the growth field is along the easy axis confirming the direction 

of the applied field during growth. Looking at the elements at 22.5°, 45° and 

67.5° to the growth field, it can be observed that the as grown state was an S 

state. This would be expected as the applied growth field would have tended 

to align the free layer magnetisation along the direction of applied field. After
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t

(a) parallel to growth field

(b) 22.5° to growth field

(c) 45° to growth field

(d) 67.5° to growth field

(e) perpendicular to growth field

F igure 4.3: Images of 4 x 2 pm 2 rectangular elements in the as grown state gy
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removal of the growth field, this element would relax into a lower energy state, 

the S state. The element perpendicular to the growth field was in a slightly 

more complex domain configuration. This was due to the growth field being 

applied perpendicular to the long axis from the element. This led to one end of 

the element being flux closed whereas the other has a 180° wall perpendicular 

to the end of the element. All images exhibit strong edge contrast. This 

could have arisen from edge flagging due to the fabrication process or due to 

possible interference fringes arising from a ’domain wall’ between the internal 

and external magnetisation.

DPC images of the as grown state for the 4 x 2  fim2 elements with rounded 

ends are shown in Fig 4.4. These elements exhibited more complex domain 

structures than the rectangular elements discussed previously. The element 

with major axis parallel to the growth field direction, instead of the C or S state 

observed in the rectangular element, possessed a complex domain structure at 

one end. This structure was possibly the start of a vortex. In the bulk of 

the element, a ripple like structure was also be observed. It was also present 

in the elements at 22.5° and 45° to the growth field. The element at 45° to 

the growth field possessed a small vortex at one end of the element and again 

is significantly more complex than its’ rectangular counterpart. The element 

perpendicular to the growth field direction was substantially flux closed with 

rotation at one end and a vortex structure at the other end of the element. 

Sketches of some of the domain structures can be seen adjacent to the DPC 

images. The increase in complexity for all elements was due to the lack of 

corners in these elements. Corners acted as domain nucleation and location 

points, without them, local effects within the element had a considerably larger 

effect leading to significantly more complex domain structures such as those 

observed here. This was also applicable for the elliptical elements discussed 

below.

Fig 4.5 shows the as grown states for the 4 x 2  fim2 elliptical elements.
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t

(a) parallel to growth held

(b) 22.5° to growth held

(c) 45° to growth held

(d) 67.5° to growth held

(e) perpendicular to growth held

Figure 4.4: Images of 4 x 2 pm 2 elements with rounded ends in the as gg

grown state
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(a) parallel to growth held

(b) 22.5° to growth held

(c) 45° to growth held

(d) 67.5° to growth held

(e) perpendicular to growth held

Figure 4.5: Images of 4 x 2 pm 2 elliptical elements in the as grown state ^qq
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For the first three elements (parallel, 22.5° and 45° to the growth field) a sim

ple single or very near single domain structure was observed. This structure 

was less complex than either that of the corresponding rectangular elements 

or the elements with rounded ends. A uniform ellipsoid possesses a uniform 

demagnetising field and is therefore more likely to relax into a single domain 

state. These ellipses were not perfect, hence some ripple was observed, but 

the magnetisation of the element was otherwise uniform. As before, the ele

ments at 67.5° and perpendicular to the growth field exhibited a more complex 

domain structure. Both domain structures are sketched adjacent to the DPC 

images. The competition between the shape anisotropy and growth field was 

responsible for the more complex structures observed.

4.3.2 Reversal of 4 x 2 /mi2 rectangular elem ent parallel 

to growth field

The reversal mechanism of the 4 x 2  fim2 element parallel to the growth and 

applied field directions is shown in Fig 4.6. After the application of a large 

positive field to saturate the free layer in the applied field direction without 

affecting the AAF biased layers, the field was reduced and DPC images were 

recorded over the field range where reversal occurred. This was repeated for a 

field applied in the opposite direction. It should be noted that due to the long 

exposure times for obtaining a full reversal set, the contrast for the images 

cannot be directly compared in some cases.

On the outward reversal, it can be observed that by an applied field of 

-I- 27 Oe, the element has formed an S state. Reversal then occurred over a 

wide field range (~  -I- 6  Oe to - 9 Oe), with the magnetisation direction in the 

bulk of the element reversing before the edges. This gave a complex domain 

structure, sketched next to the DPC images taken at 0 Oe. There are an 

odd number of domains through the bulk of the element. This was due to
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I  arowtii Happ

Figure 4.6: Reversal of 4 x 2 /mi2 element parallel to growth field
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the initial S state where the magnetisation at both ends of the element was 

oriented in the same direction. By - 9 Oe, the element had reversed and was 

again approaching an S state.

The return reversal mechanism differed to that of the outward reversal. In 

this case, the element had relaxed into a C state. C and S states are very 

similar in energy so it is not unexpected that the element can relax into either 

state. Reversal occurred with the centre of the element undergoing reversal 

before the edges. This was consistent with the outward reversal. However, 

two points should be noted. Firstly, due to the initial C state, there were an 

even number of domains in the centre of the element whereas for the outward 

reversal there was an odd number. This is due to the magnetisation direction at 

both ends of the element being the same for an S state giving an odd number 

of domains and the magnetisation direction for a C state being in different 

directions leading to an even number of domains. The sketches adjacent to +0 

Oe in the outward reversal and +14 Oe in the return reversal shown in Fig 4.6 

show this diagramatically. Secondly, the edge domains for the return reversal 

were considerably larger than those observed on the outward reversal. This 

was due to the initial magnetisation lying parallel to the preferred direction 

of magnetisation. For the return path, the field range over which reversal 

occurred over was ~  +  7 Oe to > +  27 Oe. Taking into account the fields at 

which the outward and return reversal occurred, the offset in the hysteresis 

loop can be estimated to be ~  +  15 Oe. Clearly the hysteresis loop is broad 

without sharp transitions between ±  M s.

4.3.3 Reversal of 4 x 2 /im2 rectangular elem ent at 45° 

to growth field

Fig 4.7 shows the reversal of 4 x 2 /im2 element at 45° to growth field. Again, 

a large field saturated the free layer in the applied field direction, was reduced
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Figure 4.7: Reversal of 4 x 2 fim2 element at 45° to growth field
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and DPC images of the reversal were recorded. The field was then applied in 

the opposite direction to enable the return reversal to be investigated. As with 

the reversal of the element parallel to the applied and growth fields, an S state 

existed in a modest positive field. Also observable was a faint ripple effect 

at an applied field of +  27 Oe. This intensified at +  8  Oe. As the applied 

field was further reduced, reversal began to occur and was almost midway 

by 0 Oe. At 0 Oe, a complex domain pattern was observed with the centre 

of the element reversing before the edges. Adjacent to the DPC images, a 

sketch of the domain structure shows 7 domains in the centre of the element. 

This odd number was necessary due to the initial S state. As the field was 

increased in the negative direction to - 6  Oe, it can be seen that the reversal 

had almost completed with the bulk of the element reversed and only two 

corners possessing domains. By - 2 1  Oe, these domains have been removed 

and the element has fully reversed into an S state. It was not possible for the 

element to relax into a C state as the applied field was at an angle to the the 

element long axis.

Reversal on the return path occurred with the centre of the element revers

ing before the edges. As the applied field was reduced, the element relaxed into 

an S state. From this, a complex domain structure formed with domains at 

the edges being larger than those observed on the outward reversal. Reversal 

started at ~  +  8  Oe and was past midway by -I- 27 Oe. This gave an offset in 

the hysteresis loop of ~  +  11  Oe with both the outward and return reversal 

taking place over a wide field range.

The remanant magnetic states of the rectangular elements parallel and at 

45° to the growth and applied field directions are shown in Fig 4.8. From this, 

it can be seen that the elements are in a more complex domain configuration 

after the application of a large positive field. This corresponds to the states 

observed during the reversal of both elements and also indicates that both 

elements have the same preferred direction of magnetisation. As both elements
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(a) after a large positive field

(b) after a large negative field

Figure 4.8: Remanant images of rectangular elements parallel to and at 

45° to the growth field direction. The images at remanence were taken from 

a separate set of measurements to those in Fig 4.7

were grown together under the same conditions, this was expected.

It is interesting to note that the element parallel to the applied field direc

tion was in a C state after a large negative applied field and during reversal 

whereas during the reversal cycle, a S state was observed during the outward 

reversal. The domain configuration after a large positive field was more com

plex but there was some indication that a S state had been present. Further 

investigation indicated that both the S and the C state were equally likely in 

this element after both negative and positive applied fields, this was expected 

as the S and the C state are of similar energy. However, for an element at 45° 

to the growth and applied field directions this was not observed. Fig 4.9 gives 

a diagrammatic explanation.
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(a) Growth Field Directions

Figure 4.9: Schematic diagrams of elements parallel to and at 45° to the 

growth field direction. The local magnetisation prefers to lie near parallel 

to the edge of the element, hence C and S states are equally favourable for 

elements parallel to the growth field direction. For the element at 45°, the 

C state is not possible as for the magnetisation to lie parallel to the edge, 

the direction of magnetisation at one end of the element would have to be 

against the preferred direction of magnetisation/applied field direction which 

requires considerably more energy than the S state shown.
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Figure 4.10: Reversal of 4 x 2 //m rectangular element perpendicular to

growth field
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4.3.4 Reversal of 4 x 2 fim 2 rectangular elem ent per

pendicular to growth field

The reversal of a 4 x 2 /im2 rectangular element aligned such that the major 

axis of the element is perpendicular to the growth and applied fields, is shown 

in Fig 4.10. The free layer was saturated by the application of a large field. 

After reducing the applied field, the reversal was recorded using DPC imaging. 

At a positive applied field of 1 2  Oe, a S state was observed. Also visible was a 

ripple like structure. This is similar to the elements parallel and at 45° to the 

growth and applied fields where a S state was also observed. Reversal occurred 

over a wide field range. The structure shown at - 21 Oe persisted beyond an 

applied field of - 35 Oe.

The return reversal mechanism differed to that of the outward reversal. 

In this instance, the element formed a flux closure state at one end of the 

element with the central 180° wall persisting to the other end. This state 

evolved slowly to applied fields of +  35 Oe. Both the growth and applied 

fields were along the minor axis of the element. Due to shape anisotropy, the 

magnetisation would prefer to lie along the major axis of the element. An 

applied field would have led to the magnetisation lying parallel to the short 

axis of the element. Reducing this field enabled the element to relax into a 

state with the magnetisation the long axis of the element. Increasing the field 

in the opposite direction caused the magnetisation to reverse, once again, lying 

parallel to the applied field direction and the short axis of the element. It was 

estimated from the contrast variations in the images sensitive to induction 

parallel to the major axis that the offset in the hysteresis loop was ~  +  12 Oe.

The structural characterisation in Chapter 3 discovered that layer thick

nesses were not as expected. In particular, the second Co layer in the AAF 

was thinner than anticipated, giving an unbalanced AAF. This meant that 

the free layer would experience some stray field coupling from the AAF. If the
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AAF had been perfectly balanced with all layers very smooth, the free layer 

could be thought of as a single magnetic layer. The field range over which 

reversal occurs for a single magnetic layer can be estimated by considering the 

demagnetising factor and the saturation magnetisation. For an element with 

the applied field perpendicular to the long axis of the element, the offset is

B = (N1- N W)MS. (4.1)

and
TTtl-H 51 —W 21/1 — w x2n 

N "  =  4 l [ 1  +  4 — + 1 6 ( — ) } •  ( 4 3 )

where N/ is the demagnetising factor along the length of the element, N^, 

the demagnetising factor across the width of the element, I the length of the 

element, w the width of the element and t the thickness of the single magnetic

layer. The equations were obtained from Chikazumi [6 8 ].

Using only first order terms, this simplifies to

„  7T t  3 1 — W ,  ,  . ,

B = 4 l 2 — Ms (4'4)

and by substituting suitable values for the length, width and thickness of the 

element 1 this gives a field range of ~  29 Oe over which reversal would occur. 

This is in reasonable agreement with the experimentally measured field range 

over which reversal occurred. The difference can be attributed to edge field 

coupling between the free and pinned layers. Also, the free layer has a small 

Co layer adjacent to the NiFe layer which will have an affect on the offset along 

with the stray field coupling due to both layers of the AAF being unbalanced.
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Figure 4.11: Reversal of 4 x 2 /zm2 elliptical element parallel to growth

field
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4.3.5 Reversal o f 4 x 2 jj,m 2 elliptical element parallel 

to growth field

A 4 x 2  //m2 elliptical element, aligned such that the long axis of the element 

was parallel to the growth and applied fields, was investigated in the Philips 

CM20 TEM. DPC images of the reversal mechanisms were recorded and are 

shown in Fig 4.11. The DPC images show there is contamination surrounding 

the specimen. Some contamination arose from surface defects on the TEM 

window which were present prior to the deposition of the element. Further 

contamination occurred during the carbon coating process following deposition 

of the element. Both forms of contamination were non magnetic and were not 

believed to affect the reversal of the element.

Prior to recording the reversal, the element was subjected to a large applied 

field to saturate the free layer. This was reduced and the reversal recorded. 

DPC images of the outward reversal show that a small vortex formed at 

~  +  10 Oe near the top left hand edge of the element. As the applied field was 

reduced through 0 Oe, the vortex moved across the element. By - 7 Oe, the 

element was near flux closed with two vortices present. These moved towards 

the bottom edge of the element and were removed as the applied field was 

increased in the negative field direction. Reversal occurred over a field range 

of ~  +  1 0  Oe to ~  - 1 2  Oe.

In both the outward and return reversals, the centre of the element reversed 

before the edges. However, a very different domain structure formed during 

the return reversal. Here, four central domains effected the reversal, becoming 

visible at ~  +  7 Oe and growing as the magnitude of the applied field increased. 

Initially the edge domains were large indicating that the magnetisation therein 

lay in the preferred direction as expected. By +  24 Oe, reversal had completed. 

This gave an offset in the hysteresis loop of ~  +  6.5 Oe.

1M s =  10864 Oe for NiFe, 1 =  4 //m, w =  2 /zm, t =  9 nm.
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Two points should be noted. Firstly, the lack of corners meant that there 

were fewer domain nucleation and wall location points than for the rectangular 

elements. This explains the motion of the vortex across the element during the 

outward reversal as the domains were not pinned by corners. Secondly, a small 

imperfection in the edge of the element on the top left hand edge acted as a 

domain nucleation point for both outward and return reversals. This suggests 

that ellipses could be susceptible to differing reversal mechanisms.

4.3.6 Reversal of 4 x 2 //m2 elliptical elem ent at 45° to  

growth field

The reversal of a 4 x 2 /iin2 elliptical element aligned so that the long axis of 

the element was at 45° to the growth and applied field directions was studied. 

Fig 4.12 shows DPC images of the main points in the reversal cycle. As with the 

elliptical element parallel to the applied field direction, contamination observed 

in the images was non magnetic and the investigation was carried out using 

standard techniques described previously.

Faint ripple was observed in the outward reversal from an applied field of 

~  +  4 Oe. The ripple intensified leading to the formation of a well defined 

domain structure by - 5 Oe. The centre of the element underwent reversal 

before the edges with three domains present along the length of the element. 

The domains were uneven in size, that aligned favourably with the applied field 

direction being larger. This had been observed previously in the rectangular 

element with a similar orientation and was to be expected. A small increase 

in the applied field strength removed the majority of domains with only small 

edge domains remaining. These disappeared as the applied field was further 

increased. Reversal occurred over a field range of ~  - 1 Oe to ~  - 12 Oe.

The return reversal occurred in a not dissimilar manner. Ripple became 

apparent at ~  - 0 Oe, intensified, then domains somewhat reminiscent of those
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Figure 4.12: Reversal of 4 x 2 ^m2 elliptical element at 45° to growth field
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in the outward reversal formed. In this instance, five domains were observed 

along the length of the element. Again, those domains favourably aligned 

with the applied field were larger in size. The odd number of central domains 

was necessary due to the orientation of the element with respect to growth 

and applied field directions. The return reversal occurred over a field range 

of ^  +  7 Oe to -25 Oe giving an offset in the hysteresis loop of ~  +  7.5 Oe, 

similar to the elliptical element parallel to the applied field direction.

4.3.7 Reversal o f 4 x 2 /im2 elliptical element perpen

dicular to  growth field

The reversal of a 4 x 2 pun2 elliptical element aligned perpendicular to the ap

plied and growth field directions is shown in Fig 4.13. Contamination observed 

in the DPC images is non magnetic as discussed previously.

In both the outward and return reversals, the field range over which domain 

structure was present was greater than that over which images were recorded. 

Significant points in the reversal are shown in the figure. Domain structure 

formed during the outward reversal was difficult to observe due to no distinct 

domain structures. The return reversal possessed a more distinct domain con

figuration. One point, marked P in the figure, possibly acted as a domain 

nucleation and wall location point leading to the domain structure shown in 

the sketch. As the applied field increased in the positive direction, the edge 

domains reduced in size. The offset in the hysteresis loop was estimated to be 

~  -f- 7 Oe.

4.3.8 Discussion

The results presented showed that similar reversal mechanisms were found 

in the majority of elements, both rectangular and elliptical. The dominant 

reversal mechanism was where the centre of the element started to reverse
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F igure 4.13: Reversal of 4 x 2 //m2 elliptical element perpendicular to

growth field
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Happ

Figure 4.14: Domain structure mid-reversal from an initial S state

before the edges giving a complex domain structure shown in Fig 4.14. Several 

points regarding the reversal should be noted. Only the elements parallel to 

the growth and applied field directions could form an initial C state. This led 

to an even number of central domains whereas an initial S state led to an odd 

number of central domains. In the elements parallel to the growth and applied 

field direction, the C or the S state were equally likely. In all elements which 

exhibited this structure, the edge domains were larger when aligned parallel 

to the growth field direction. This was due to the initial magnetisation being 

parallel to the preferred direction. For the elements at 45° to the growth and 

applied field direction, the domains were not uniform in size. Those aligned 

favourably with the applied field direction were larger than those aligned in 

a different direction. This was discussed in Fig 4.9. The number of central 

domains differed between elements and ranged from 3 to 5 domains.

Not all elements underwent reversal in the same manner. For example, the 

rectangular element with the long axis perpendicular to the growth and applied 

field directions formed a flux closure at one end with a 180° wall continuing to 

the other. The differences observed in the reversal process can be attributed 

to the orientations of the elements with respect to the growth and applied field 

directions. The element grown with the long axis parallel to the growth field 

will be biased along this long axis. However, for the element perpendicular to 

the growth field, the biasing will be more complex and may be along the short 

axis of the element. Due to shape anisotropy, the magnetisation of the free 

layer would prefer to lie along the long axis of the element. These two effects
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along with the externally applied field across the short axis of the element 

have different influences on the domain structure leading to the more complex 

domain structures observed.

A second difference in the reversal mechanism was observed in the outward 

reversal of the elliptical element aligned such that the long axis was parallel 

to the growth and applied field directions. One possibility for the difference 

is that the elliptical element has fewer points where domains can be easily 

nucleated and/or walls pinned leading to a more complex domain structure 

dependent on variations in the local physical structure of the element. In one 

case, an edge defect acted as a domain nucleation point.

The rectangular elements had offsets in the hysteresis loop of +  15 Oe, 

+  11  Oe and +  1 2  Oe for the elements parallel, at 45° and perpendicular to 

the applied field respectively. These are similar in magnitude which was to be 

expected as the elements have the same layer structure, growth conditions and 

shape.

The elliptical elements had offsets of +  6.5 Oe, +  7.5 Oe and +  7 Oe for the 

elements parallel, at 45° and perpendicular to the applied field respectively. 

Again, these are very similar in magnitude which was to be expected as the 

elements have the same layer structure, growth conditions and shape. There 

was, however, a difference between the magnitude of the offsets between the 

rectangular elements and the elliptical elements. Also, in all elements, domains 

persisted over a wide field range giving a broad hysteresis loop without sharp 

transitions between ±  Ms

4.4 M agnetic Studies o f Specim en 1

Specimen 1 was originally chosen for further investigation because this speci

men possessed a strongly unbalanced AAF layer structure. The cross section 

investigation presented in Chapter 3 showed that the layer structure in A was
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Substrate/Ta 108/NiFe Co Cu Co 152/Ru /Co /IrMn 96/Ta 43.

It was originally thought that the second layer of Co in the AAF was 14 A 
thick. The results of the cross section investigation in Chapter 3 showed that 

the thickness of the layer was less than anticipated. Both the Ru and second 

Co layer of the AAF were too thin to be measured accurately.

For a strongly unbalanced SV element, there should be some stray field 

coupling between the free and pinned layers in addition to the conventional 

interlayer coupling. It was thought that this would lead to the specimen be

having more like a conventional spin valve.

In the studies described here, the easy axis reversal mechanisms of the free 

layer were investigated. A description of the experimental techniques can be 

found in section 4.3. The as grown states and reversal mechanisms of selected 

elements for specimen 1 axe shown below.

4.4.1 D PC  images of the as grown state

Images of the as grown state for the 4 x 2  /im2 rectangular elements are shown 

in Fig 4.15. It can be observed that the element with its long axis parallel to 

the growth field direction was in a C state. As shown in section 4.3.3, only 

elements parallel to the growth field direction have the option of relaxing into 

a C or a S state. Therefore, the presence of a C state confirms the orientation 

of the growth field with respect to the elements. The element at 22.5° to 

the growth field direction exhibited a more complex domain structure with 

partial flux closure present near the ends. The element at 45° to the growth 

field showed a deposition or lift-off problem making it difficult to observe any 

domain structure at one end of the element. Both the elements at 67.5° and 

perpendicular to the growth field direction were flux closed or nearly so.

Fig 4.16 shows DPC images of the as grown state for 4 x 2 /im2 elements 

with rounded ends. The element parallel to the growth field direction was in
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(a) parallel to growth Held

(b) 22.5° to growth held

(c) 45° to growth held

(d) 67.5° to growth held

(e) perpendicular to growth held

Figure 4.15: DPC images of 4 x 2 ^m2 rectangular elements in the asl20

grown state
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(a) parallel to growth held

(b) 22.5° to growth held

(c) 45° to growth held

(d) 67.5° to growth held

(e) perpendicular to growth held

Figure 4.16: Images of 4 x 2 pm 2 elements with rounded ends in the a s ^ l

grown state
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a more complex state than its rectangular counterpart. However, it could be 

seen that the element was in something resembling a S like state. As with the 

rectangular elements, more complex domain structures were seen in the other 

four elements. Each element had relaxed into a (near) flux closure structure, 

the nature of which varied between elements. Sketches adjacent to the DPC 

images show some of the domain patterns. The lack of corners for domain 

nucleation and wall location points again meant that the physical structure of 

the element played a more important role and could have affected the domain 

structure. The domain configurations observed were more complex than those 

observed in the rectangular elements.

The 4 x 2  /im2 elliptical elements in the as grown state can be seen in 

Fig 4.17. Again, complex domain structures were observed. The element lying 

with its long axis parallel to the growth field direction exhibited a ripple-like 

structure and was more complex than the rectangular element with this ori

entation. Both the elements at 22.5° and 67.5° from the growth field direction 

supported a 3 domain structure with the domains lying approximately along 

the length of the elements. The element at 45° was in a configuration reminis

cent of those frequently observed during reversal in specimen 5 and the element 

perpendicular to the growth field direction had relaxed into a near flux closure 

state. Again, without corners acting as domain nucleation and wall location 

points, the physical structure of the element played a significant role leading 

to more complex domain structures.

The as grown states for specimen 1 were, in general more complex than 

those observed in specimen 5. Both the elements with rounded ends and 

elliptical elements lack domain nucleation points in the form of corners which 

can give rise to less simple domain structures in elements in the size range 

studied here. Also, the change in the layer structure by reducing the thickness 

of the second Co layer in the AAF will have led to a modification in the 

edge field coupling possibly enabling the formation of more complex domain
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(a) parallel to growth field

(b) 22.5° to growth field

(c) 45° to growth field

(d) 67.5° to growth field

(e) perpendicular to growth field

Figure 4.17: DPC images of 4 x 2 pm 2 elliptical elements in the as grown - ^ 3

state
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structures.

4.4.2 Reversal o f 4 x 2 /im2 elem ents

DPC images of the reversals of a range of 4 x 2  /im2 elements were obtained 

in a similar manner to the results presented for specimen 5. For the recorded 

reversals of elements with the layer structure of specimen 1 , contrast was of

ten observed in all images of the reversal. It was not clear from which layers 

the contrast arose although it is unlikely that all the contrast arose from the 

free layer due to the presence of the structure in all images. This led to the 

conclusion that there was some variation in the biased layers; in particular, in

homogeneities in the second Co layer of the AAF. Considering the discrepancy 

between expected and actual thicknesses in this layer, a non-uniform layer was 

not wholly unexpected.

The presence of domain structure from a layer other than the free layer 

prohibits analysis such as that given for specimen 5. For this specimen, some 

of the reversals of higher quality elements will be discussed followed by a range 

of the observed defects.

Reversal of 4 x 2 /im 2 rec tangu lar elem ent parallel to  grow th field

DPC images of the reversal of a 4 x 2 /xm2 rectangular element with its long 

axis parallel to the growth and applied fields are shown in Fig 4.18. A large 

positive field was applied to saturate the free layer in the applied field direction 

which should not have affected the AAF biasing layers. This field was reduced 

to within the range suitable for imaging. DPC images were recorded over the 

field range where reversal of the free layer occurred. This was repeated for a 

field applied in the opposite direction. As the applied field was reduced during 

the outward reversal, it can be seen that a flower state formed by -I- 1 2  Oe. A 

sketch of the structure can be seen adjacent to the DPC image. As the applied
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F igure 4.18: Reversal of 4 x 2 pm2 rectangular element parallel to growth 

field
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field passed through 0 Oe and increased in the negative direction, the domains 

at the corner of the element increased in magnitude and a complex domain 

state formed in the centre of the element effecting the reversal. Reversal was 

completed by ~  - 2 0  Oe. All images show a feature close to the centre of the 

element. This is thought to have arisen in a different layer and does not affect 

the reversal process.

The return reversal mechanism differed to that of the outward reversal. In 

this case, a S state formed as the applied field was reduced. At ~  +  10 Oe, 

the centre of the element began to reverse giving the complex domain state 

observed. A sketch adjacent to the DPC images indicates the domain struc

ture. As the applied field increased in the positive direction, the edge domains 

reduced in size leaving the element in a S state at +  35 Oe. It should be noted 

that there were three central domains. The odd number is consistent with the 

initial S state. From the outward and return reversals, it was estimated that 

the offset in the hysteresis loop was ~  - 1 Oe. The hysteresis loop was broad 

without sharp transitions between ±  M^.

Reversal of 4 x 2 /im 2 ellip tical elem ent perpend icu la r to  grow th 

field

The reversal of a 4 x 2 /im2 elliptical element perpendicular to the applied and 

growth field directions is shown in Fig 4.19. After the application and reduction 

of a large applied field to saturate the free layer, the magnetisation during the 

outward reversal formed a C state across the short axis of the element by 

+  18 Oe. As the element relaxed further with the reduction in applied field, 

a vortex was observed near the top of the element. As the magnitude of the 

applied field increased in the negative direction, the vortex moved along the 

length of the element with the DPC image obtained at - 40 Oe showing the 

vortex nearing the lower end of the element. The domain configuration did 

not change past an applied field of - 70 Oe and consisted of the majority of the
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element reversed into a C state again. A larger applied field would complete 

reversal. This domain structure has been observed previously by Liu et al [69].

Domain structure was visible during the return reversal by an applied field 

of - 20 Oe. As the field passed through 0 Oe and was increased in the positive 

direction, the central, favourably aligned, domain increased in size compress

ing the lower of the two edge domains by +  30 Oe. The remaining domain 

structure was removed from the element by +  50 Oe leaving the element in a 

single domain state. It should be noted that the outward and return reversal 

mechanisms are significantly different. One explanation could be that a defect 

(marked D in Fig 4.19) along the edge of the element acted as a domain wall 

location point in the return reversal. The defect could be a magnetic defect 

in that changes did occur in the other magnetic layers in the structure due to 

the imperfectly formed second Co layer. More clear cut examples of domains 

forming in other than the free layer are discussed in the next section. The 

estimated offset in the hysteresis loop was ~  +  1 Oe.

Reversal of elem ents w ith domain structure present in the biased 

layers

Fig 4.20 highlights some of the persistent domain structures observed in a 

number of the elements due to a non-uniform second Co layer in the AAF. 

The first series of images shows the outward reversal of a rectangular element 

at 45° to the applied field direction. A possible 360° wall was present over most 

of the field range shown in the image sequence. This domain structure does 

not greatly affect the reversal mechanism in the free layer as domains which 

effect the reversal were observed nucleating from the other end of the element. 

Following reversal, the persistent structure was removed by the application of 

a large field applied in the negative direction.

The second series of DPC images shows the reversal of an elliptical element 

parallel to the applied field direction. Contrast was observed across the short
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Figure 4.19: Reversal of 4 x 2 //m2 elliptical element perpendicular to 

growth field
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Figure 4.20: Outward reversals of a 4 x 2 /im2 rectangular element at 45° 

to the growth field and a 4 x 2 /im2 elliptical element parallel to the growth 

field. In both series, N indicates the non free layer magnetic strucutre
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axis of the element in all images taken. As the field passed through 0 Oe, 

additional domain contrast became apparent. It intensified up to - 8  Oe where 

reversal was mid-way and reversal completed by -20 Oe. Any role played by 

the persistent domains is unclear.

4.4.3 Discussion

The reversals of 4 x 2 fim2 elements with the second Co layer of the AAF 

significantly thinner than that of the first showed more variation in observed 

reversal mechanisms than those from specimen 5. The large fields applied to 

fully saturate the free layer are thought to be partially reversing the pinned 

layers due to the poor quality of the second Co layer and this led to excessive 

variation between elements. It is difficult to see how to the persistent domain 

structures observed during a number of the reversals could have existed in the 

free layer.

Of the elements without persistent domain structures, reversals could be 

rationally described. Similar domain structures to those observed in specimen 

5 were seen in some of the elements, the domain structure in the return reversal 

of the rectangular element shown in Fig 4.18 highlights this.

Also, in the elements that behaved in a comprehensible fashion, the offsets 

in the hysteresis loops were considerably smaller than those from specimen 5. 

This could arise from edge coupling from the unbalanced AAF counteracting 

the interlayer coupling within the element.

4.5 Sim ulations

Simulations of element reversal processes were undertaken using the Landau- 

Lifshitz-Gilbert (LLG) simulation package [70]. The package operates by per

mitting the user to input a starting condition detailing the size, shape, layer 

structure and materials. Also, the cell size is defined and any applied or in

130



Chapter 4. TEM of patterned AAF SV elements

trinsic fields are specified. The input parameters enable the calculation of the 

exchange, anisotropy and magnetostatic energies and external and demagneti

sation fields prior to the start of the calculation. The calculation minimises 

the free energy of the system by solving the LLG equation [71]:

^  =  T7 >  x +  ( T T ^ m  x  m  x (45 )

where 7  is the gyromagnetic ratio and a  the damping parameter. He/j  is the 

effective field;

and incorporates all effects of the exchange, anisotropy and magnetostatic ener

gies and the external and demagnetising fields. For the equilibrium condition, 

^  =  0 which means H ef f  is parallel to M. This means that the differential 

equations need not be solved directly. Instead, the magnetisation is relaxed 

iteratively by positioning the magnetisation along Hef f  throughout the mesh. 

When the largest residual of is less than the convergence value set by

the user, the calculation will stop. A fuller explanation can be found in Hubert 

and Schaefer [3] and the LLG package [70]

Due to simulation limitations and the complexity of the system being stud

ied, it was only possible to investigate the smaller elements. It is also due to 

prohibitively long simulation times for larger elements. To reduce simulation 

times, the cell size would have had to been increased which led to un-physical 

results. Simulations were carried out on both balanced and unbalanced AAF 

systems. Assistance in the setting up of the simulations was given by Mike 

Scheinfein.

4.5.1 Simulations on a Balanced A A F structure

The simulated layer structure (in A) was;

Co 60/Vacuum 10/Co 60/Vacuum 40/Co 10/NiFe 70.
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Non magnetic layers were represented by a vacuum and the two, 60 A, Co 

layers were pinned antiferomagnetically. The Co/NiFe bi-layer represented 

the free layer of the experimental system.

The simulated free layer reversal of a 0.4 x 0.2 fim2 rectangular element 

is shown in Fig 4.21a. The cell size was set at 50 A in the x and y directions 

and the thickness of the layer in the z direction for this and all simulations. 

The field range and number of stages in the hysteresis loops differ between 

simulations; however, the field step is always set at 15 Oe.

From Fig 4.21a, it can be seen that at the maximum applied field, the 

element was in a S state. As the applied field reduced and approached that of 

the reversal field, the magnitude of the end domains increased making the S 

state more pronounced. Reversal occurred rapidly in both outward and return 

reversals. The mechanism was similar in both cases, hence only the outward 

reversal is shown here. The fields at which reversal occurred were - 170 Oe and 

-I- 200 Oe and due to the rapid switch, the hysteresis loop, Fig 4.21b, showed a 

sharp jump. In the hysteresis loop, Mm ax ^  Ms when the free layer was fully 

saturated as the loop took into account the magnetisation of all layers. The 

antiparallel alignment of the pinned layers therefore reduced the magnetisation 

from Ms.

Using a different viewing orientation, it was also possible to study a cross 

section of the element, Fig 4.21c. This showed that the only layer in which 

reversal occurred was the free layer. Both ferromagnetic layers of the AAF 

were unaffected by the external applied field.

It was not known where the biasing within the elements at 45° to the growth 

field lay. Two separate simulations were therefore taken representing the two 

possible extremes. Firstly, a 0.4 x 0.2 fim2 element, biased along the long axis 

with the applied field at 45° to the long axis was investigated. Secondly, a 

0.4 x 0.2 /im2 element with the bias and applied field at 45° to the long axis 

was studied. The applied field range for these simulations was ±  600 Oe with
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I I
163 Oc I S O  ( )

(a) LLG images o f outward reversal. Red indicates the direction o f magneti

sation is to the right o f the image. The upper image shows magnetisation in 

the y  direction, the lower, magnetisation in the x  direction.

0.5 ~

-300 300
Happ ( O e )

(b) Simulated hysteresis loop

i
(c) LLG images o f the cross section. The bottom layer represents the free 

layer in both images.

Figure 4.21: Simulation of 0.4 x 0.2 pm2 rectangular element parallel to 

the applied field direction
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field steps of 15 Oe. In the first case, reversal occurred in a similar manner 

to the element with all fields applied along the long axis, with magnetisation 

reversing through a jump. The outward reversal occurred at - 350 Oe and the 

return at +  200 Oe. In the second simulation, reversal occurred at - 160 Oe 

and +  210 Oe.

Simulations of rectangular elements with the applied field and bias across 

the short axis of the element were investigated. It was found that reversal 

occurred through rotation. Initially, the magnetisation was parallel to the ap

plied field direction. As this reduced, it rotated to lie along the long axis of 

the element. As the applied field increased in the reverse direction, the mag

netisation rotated once again to lie along the short axis of the element. This 

occurred over a wider field range than the elements investigated previously.

Reversal mechanisms of elliptical elements were also explored. It was ob

served that for a 0.4 x 0.2 fim2 elliptical element, with both the pinning and 

applied fields along the long axis of the element, reversal occurred by a jump as 

observed previously in the rectangular elements. The fields at which reversal 

took place were - 145 Oe and +  180 Oe for the outward and return reversals 

respectively.

An elliptical element with the same dimensions and an applied field at 

45° to the biasing direction and long axis of the element was also studied. 

Again, reversal was via a jump in the magnetisation. Fig 4.22 shows LLG 

images of the reversal process. The fields at which reversal occurred were - 

118 Oe and +  145 Oe. As with the rectangular elements, simulations were also 

undertaken with the biasing direction and applied field at 45° to the long axis 

of the element. Reversal occurred by a similar mechanism observed previously 

at -105 Oe and +150 Oe.

Simulations of an elliptical element with the applied field and bias across 

the short axis of the element were investigated. Fig 4.23 shows the magneti

sation rotating smoothly as the applied field altered. Once again, the reversal
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Figure 4.22: LLG images of the return reversal for a 0.4 x 0.2 /xm2 elliptical 

element with the biasing along the long axis and an applied field at 45 ° to 

the long axis.

Figure 4.23: LLG images of the outward reversal for a 0.4 x 0.2 /xm2 

elliptical element with the bias and applied field across the short axis.

occurred over a wide field range.

As discussed previously, time limitations enabled only the experimental 

investigation of the larger elements. A second limitation was low magnetic 

contrast levels using DPC imaging due to the element layer structure. The low 

contrast and lack of domain walls in the smaller elements prohibited Fresnel 

imaging as an alternative for detailed studies. However, Fresnel imaging could 

be used to investigate the reversal fields by studying Fresnel fringes surrounding 

the elements under a large de-focus. As reversal occurred, the fringes changed. 

Fig 4.24 shows the 0.4 x 0.2 /xm2 elements before and after reversal of a 

number of the elements. Although the differences between the two images are 

not large, the applied field at which reversal occurred could be noted as it was 

possible to observe directly any change in the fringes as reversal occurred.
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F igure 4.24: Fresnel images of 400 x 200 nm elements before and after 

reversal.

Experimental reversal fields were obtained for comparison some of the sim

ulated elements. Table 4.1 shows the experimentally measured and simulated 

reversal fields. It should be noted that the simulations were undertaken when 

it was thought tha t specimen 5 had a balanced AAF. Time constrictions pro

hibited further simulation of the system, therefore, the comparisons here will 

not be exact.

For the two elements with major axis parallel to the applied field direc

tion, the fields at which the elements reverse are not too dissimilar and the 

difference within the offsets are reasonable. This could possibly be improved 

by simulations using the corrected layer structure. Results from the elements 

with the applied field at 45° to the long axis of the element have more varia

tion. From these results, it can be seen that one theoretical offset is negative 

unlike all the others. Discounting this, the other offset is just over half the 

experimental offset. This implies that the pin within the experimental element 

does not lie along the long axis or at 45° to the long axis but somewhere in 

between. Further simulations would be required to confirm this.
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Element Simulation Experimental

Outward Return Offset Outward Return Offset

Rectangle, parallel -170 + 2 0 0 +15 -150 +175 +12.5

Rectangle, 45 ° -350 + 2 0 0 -75 - 1 1 2 + 2 0 0 +44

-160 + 2 1 0 +25

Ellipse, parallel -145 +180 +17.5 - 1 0 0 +125 +12.5

Ellipse, 45 ° -118 +145 +13.5 -150 + 2 2 0 +35

-105 +150 +22.5

Table 4.1: Comparison of experimental and simulated reversal fields. All

fields are in Oe. For the elements at 45° to the applied field, the first row 

corresponds to the bias applied along the long axis of the element. The 

second row with the bias at 45° to the long axis of the element and parallel 

to the applied field.

4.5.2 Simulations on an Unbalanced AAF structure

The simulated layer structure (in A) was;

Co 15/Vacuum 10/Co 60/Vacuum 40/Co 10/NiFe 70.

As with the previous simulation, non magnetic layers were represented by a 

vacuum and the two Co layers were pinned antiferomagnetically by a field of 

magnitude such that the AAF was unaffected by the field applied to reverse 

the free layer.

Fig 4.25a shows the simulated free layer reversal of a 0.4 x 0.2 /im2 rect

angular element. The cell size was 50 A in the x and y directions and the 

layer thickness in the z direction. For this and all simulations in this series, 

the applied field range was ±  600 Oe with field steps of 15 Oe. From the 

figure, it can be seen that as the field reduced from the maximum, the element 

relaxed into a S state. As the applied field approached that at which reversal
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occurred, the size of the end domains increased in size leading to a fast switch. 

The reversal mechanism was similar in both the outward and return reversals; 

only the return reversal is shown here. Reversal occurred at - 60 Oe on the 

outward path and +  340 Oe on the return path giving an offset in the hystere

sis loop of +140 Oe. The hysteresis loop for the simulated reversal is shown 

in Fig 4.25b. Due to the hysteresis loop taking into account all layers, Mx/M s 

~  0 in one orientation of the free layer and Mx/M s ~  0.75 in the other. This 

is different from the balance system where ±  Mx/M s was symmetric about 0. 

Although not shown, cross section images were obtained and showed that re

versal occurred only in the free layer with the two layers of the AAF remaining 

unaffected.

As with the simulations of the balanced AAF with the applied field at 

45° to the long axis, two separate simulations were undertaken with the pin 

parallel and at 45° to the long axis. The fields at which the element pinned 

parallel to the long axis reversed were - 330 Oe and +  315 Oe giving an offset 

of - 7.5 Oe. This was significantly different to the simulation where both the 

pin and applied field were at 45° to the long axis where the reversal occurred 

at - 30 Oe and +  410 Oe which gave an offset of +190 Oe.

Again, the reversal of elliptical elements were considered. Reversals oc

curred via a jump in the magnetisation direction in both the elements with 

long axis parallel and at 45° to the applied field direction. The fields at which 

the element parallel to the applied field reversed were - 30 Oe and +370 Oe. 

This gave an offset of +  170 Oe. For the element at 45° to the applied field 

with the pin along the long axis, the reversal fields were - 1 0 0  Oe and +270 

Oe giving an offset of +85 Oe. The return reversal is shown in Fig 4.26. The 

fields at which the element with the applied field and pin at 45° to the long 

axis of the element were -80 Oe and +  300 Oe giving an offset of +110 Oe.

Experimental values of the reversal fields were obtained for these elements 

and are shown in table 4.2 alongside the simulation results. It can be seen that
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-600 0 600 

Happ (Oe)

(b) Simulated hysteresis loop

Figure 4.25: Reversal of a 0.4 x 0.2 pm rectangular element with applied 

field parallel to the long axis of the element.

Figure 4.26: LLG images of return reversal of a 0.4 x 0.2 pm elliptical

element with the applied field applied at 45 ° to the long axis of the element.

(a) LLG images o f outward reversal
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agreement between the simulations and experimental results is poor. This can 

be attributed to the second Co layer of the AAF in the specimens being thinner 

than anticipated and possibly not fully formed which as already seen seriously 

affected the experimental measurements.

Element Simulation Experimental

Outward Return Offset Outward Return Offset

Rectangle, parallel -60 340 +140 - 1 0 0 + 1 2 0 + 1 0

Rectangle, 45 ° -330 315 -7.5 -140 +230 +45

-30 +410 +190

Ellipse, parallel -30 370 +170 -90 +190 +50

Ellipse, 45 ° - 1 0 0 270 +85 -115 +170 +27.5

-80 +300 + 1 1 0

Table 4.2: Comparison of experimental and simulated reversal fields. All

fields are in Oe. For the elements at 45° to the applied field, the first row 

corresponds to the bias applied along the long axis of the element. The 

second row with biasing at 45° to the long axis of the element and parallel 

to the applied field.

4.6 C onclusion

Specimens 5 and 1 had originally been chosen as it was thought that they 

represented a balanced and an unbalanced AAF system. Further investigation 

showed that both specimens possessed an unbalanced AAF with the second 

layer in the AAF ~  |  and < |  the thickness of the first. DPC images recorded 

of the reversals of a range of 4 x 2 fim2 elements from both specimens yielded 

some interesting results.

It was apparent from many of the reversals that one reversal mechanism
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dominated. This was where the centre of the element reversed before the edges 

giving a complex domain structure. From an initial C state, four central do

mains were present while three or five domains played a major role the reversal 

from an initial S state. Edge domains were eradicated as the magnitude of the 

applied field increased.

The reversal mechanism depended on the orientation of the element with 

respect to the growth and applied field directions. In elements oriented at 

45° to the applied fields, domains aligned favourably with the applied field 

tended to be larger than those not aligned with the applied field direction. 

More notably, elements perpendicular to both fields had a tendency to form 

a flux closure state at one end of the element. This was due to competition 

between the shape anisotropy along the length of the element and the applied 

field perpendicular to this.

Greater variation in the reversal mechanisms was observed in elements with 

the layer structure of specimen 1 . Accompanying this, some elements possessed 

a persistent domain structure which did not have its origin in the free layer. 

One explanation for this is that the second layer of the AAF, being less than 

10 A thick, had not completely formed creating a non uniform magnetisation 

in the AAF. This is consistent with the results from the same specimen in 

chapter 3 where pinholes enabled the formation of persistent 360° walls.

The reversal mechanisms of both layer structures was also dependent on 

the shape of the element. Elliptical elements, possessing no corners, lacked 

domain nucleation and wall location points with the local physical structure 

playing a more dominant role. Accordingly, defects in the elements had a 

greater effect on the reversal leading to differences in the reversal process.

The shape dependence of the reversal is also seen in the offsets of the 

hysteresis loops with elliptical elements having a lower offset than rectangular 

elements in specimen 5. Elements from specimen 1, having a lower offset, 

generally did not exhibit this difference. Finally, all elements possessed a
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broad hysteresis loop with no sharp transitions between ±  Ms.

Simulations of the reversal mechanisms of a balanced and unbalanced AAF 

biased SV with dimensions 0.4 x 0 .2  fim2 showed that the reversal of smaller 

elements was rapid between two stable states of magnetisation. This was 

also observed experimentally. For the balanced specimen, the fields at which 

the simulated elements with the field applied parallel to the long axis were 

in reasonable agreement with the experimental measurements. However, for 

other elements, agreement was poor. This can be attributed to the poor quality 

of specimen 1 , commented on earlier.
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Transport in Hybrid  

M agnetic/Sem iconductor  

D evices

5.1 Introduction

Semiconductor heterostructures and their transport properties, introduced in 

section 1.5.2, can be used to investigate interactions between a magnetic struc

ture on the surface of the semiconductor and electrons in the 2DEG of the sys

tem. Such hybrid ferromagnetic metal/semiconductor devices have been inves

tigated for a number of years [72] and may have future applications as magnetic 

sensors , magnetic memory elements [73] or nanomagnetometers [74, 75] as well 

as exhibiting interesting fundamental physics. The standard structure for in

vestigating these hybrid devices is a Hall cross with one end of the magnetic 

material positioned at or near the centre of Hall cross, Fig 5.1a. A second 

common structure is a Hall bar with a magnetic strip across a constriction 

between the two sets of voltage probes, Fig 5.1b.

Both device designs operate from the same principles. In each, the stray
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Figure 5.1: Schematic of two common Hall Bar structures for investigating 

hybrid ferromagnetic metal/semiconductor systems.

field from the magnetic material interacts with electrons in the 2DEG giving a 

measurable change in the transport properties of the material. The first system 

with magnetic material positioned at the centre of the Hall cross has attracted 

considerable interest from a number of research groups. One study by Johnson 

et al [73, 76, 77, 78] has investigated NiFe elements ( 7 x 7 x 0.15 pm) over a 

Hall cross. The voltage probes are offset by an amount Xi, Fig 5.1a, introduc

ing a component of longitudinal resistance into the transverse measurement. 

The magnitude of the offset was chosen so that the measured Hall resistance 

was zero with the magnetisation of the element saturated in one direction. Re

versing the magnetisation gives a non-zero Hall resistance. The two resistance 

states (Lo and Hi) can be used to determine the magnetic state of the material 

and hence act as a magnetic sensor.

Using a similar system as above, disks of magnetic and superconducting 

materials deposited in the centre of a Hall cross have been studied by Geim et 

al [74, 79, 80, 81]. The Hall probes were ~  1 pm  in each dimension with the 

disks having a smaller diameter and a thickness of 0.15 pm  and the system 

was used to enable a non-invasive study of the superconducting and magnetic 

particles.
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A cross over between the two principal systems was carried out by Nogaret 

et al. [82] with the theory being studied by Reijniers et al. [83]. In this case, 

a long thin ferromagnetic stripe along the length of a Hall bar with a number 

of voltage probes was fabricated to study snake like electron orbits in a Hall 

system.

Finally, the second system, where a magnetic strip was deposited over a 

constriction in a Hall bar was investigated by Kubrak et al [75, 84, 85]. This 

system was used to detect the magnetic state of the material through changes in 

the longitudinal resistance whereas the previous results concentrated primarily 

on the transverse resistance.

Theoretical investigations of the transport of electrons through each of the 

above systems has been undertaken by Peeters et al. Refs. [8 6 , 87, 8 8 ] relate 

to the systems of Johnson et al. The magnetic disks studied by Geim were 

simulated in refs [89, 90, 91]and magnetic stripes in [92, 93]. The first system 

is closely related to the work presented in this chapter and is discussed below.

5.1.1 Hall effect in inhomogeneous m agnetic fields

As introduced above, Peeters et al. undertook a theoretical simulation of the 

experimental work carried out by Johnson et al. These simulations calculate 

the flux through the Hall cross. A simplified version of the calculations is 

shown below.

The transverse voltage is

Vy = R hw JxBz (5.1)

where R h is the transverse resistance, Jx, the current density and Bz the flux 

density. Using Jx = this gives

Vy = R h IxB z. (5.2)
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Also,
A B

R h = ----- (5.3)ne

From these, to calculate the change in resistance through the Hall cross, it 

is necessary to calculate the equivalent flux through the Hall cross:

{54)

where A is the area of the Hall cross. Experimentally, R h is calculated using 

the current and transverse voltage. Using equation 5.3, this enables the flux 

through the Hall cross to be calculated. Theoretically, the flux is summed over 

the Hall cross area and divided by the area. This can be compared with the 

value calculated from the experiments.

It should be noted that this approach does not hold in the diffusive limit 

where the mean free path is approximately that of the Hall bar size. For the 

experimental work presented in this chapter, the mean free path is greater 

than the Hall bar size and the system behaves ballistically. Reference [89] 

shows that the above calculation holds for ballistic electrons. This commonly 

accepted framework is used as the basis for data interpretation within this 

chapter.

One result from these calculations is that the flux through the Hall cross 

varies inversely with the size of the Hall cross. Therefore, reducing the size of 

the Hall cross effectively enhances any signal from the magnetic material.

The work undertaken in this chapter aims to investigate smaller magnetic 

elements than those studied previously, by reducing the Hall cross dimensions 

and using two Hall crosses with the element in the centre of the Hall bar. From 

this, more sensitive elements such as spin valves could be investigated leading 

to possible future applications as highly sensitive sensors. The design of a 

specimen suitable for investigating the structures introduced here is discussed 

in section 5.3.
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This chapter discusses the measuring system used, followed by sample de

sign and development, results of the measurements and discussion.

5.2 C ryostat D esign /O p eration

To facilitate the investigations into the modulation of the transport properties 

of the semiconductor substrate by a magnetic element, the specimens were 

cooled to a temperature of 1.5 K. This was carried out using the cryostat 

system described below.

The cryostat itself consists of a vacuum jacket, a liquid nitrogen bath, a 

liquid helium bath and a specimen chamber. A superconducting magnet sits 

within the He bath providing a uniform vertical field around the specimen. 

The cryostat used was an Oxford Instruments Teslatron [94].

The sample chamber was cooled by means of a needle valve and a vacuum 

pump. The valve allows a controlled flow of liquid helium into the chamber. 

As the liquid evaporated, it was pumped out of the chamber by a vacuum 

pump lowering the temperature of the system. In this system it was possible 

to cool the specimen to ~1.5 K. A heater, mounted on the inlet to the sample 

chamber enabled the specimen temperature to be controlled by controlling the 

temperature of the incoming helium. This enabled the temperature to be set 

at a desired value. The temperature range for the specimens investigated in 

this research was 1.5 K to 50 K.

The specimen is placed inside the chamber attached to a sample rod. This 

rod enables electrical contact to be made between external control and mea

suring equipment and the specimen. Three different sample rods were used to 

obtain the measurements. Initially, a rod where the specimen plane was per

pendicular to the applied field was used, followed by a second rod where the 

specimen could be placed in a fixed inclined plane with respect to the applied 

field. However, with these inserts, in order to alternate between in-plane and
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inclined plane measurements, the sample required to be warmed up to room 

temperature and then re-cooled. This led to difficulties in obtaining a full set 

of measurements as specimen properties could change between cooling cycles. 

Also, repeated heating and cooling caused damage to the small gates in the 

gated specimens (see section 5.3.2) rendering specimens unsuitable for further 

measurements.

These problems were overcome by the introduction of a new rotating spec

imen rod designed by Professor Andrew Long and Mr Tom McMullen [95]. 

This rod enabled the rotation of the specimen plane from an alignment of per

pendicular to the applied field through to parallel to the applied field without 

requiring the heating of the specimen to room temperature.

In both rods where the specimen was at an inclined plane with respect to 

the applied field, it was possible to determine the orientation of the specimen 

plane with respect to the applied field by using the change in the conventional, 

field dependent Hall voltage. In an applied field, with the specimen plane 

perpendicular to the applied field, the Hall voltage is at its maximum. As 

the specimen is rotated, the measured Hall voltage drops until the specimen is 

parallel to the applied field and the Hall voltage is zero. By calculating the gra

dient of the measured Hall resistance against the applied field at perpendicular 

and the inclined plane, the values can be manipulated by basic trigonometry 

to give the angle of inclination of the specimen normal to the field direction.
dRt)

e = cos~1 (M:'>- (5-5)
dB

Measurements were obtained using the equipment shown schematically in 

Fig 5.2. A known supply voltage was passed from lock-in 1 amplifier 1 through

1A lock-in amplifier contains a phase sensitive detector together with a.c. and d.c. ampli

fiers and filters. The input a.c. signal is multiplied by the reference signal and the resultant
filtered to give an output proportional to the a.c. component synchronous with the reference.

The lock-in’s used for this work were also capable of supplying an a.c. signal synchronous
with the reference which was used to excite the sample.
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Figure 5.2: Schematic of measurement equipment

the control circuit and specimen. The control circuit (pink inset in Fig 5.2) 

had four outputs. This enabled the current to be directly measured through 

one set of outputs (Imeas) while the other set of outputs (Ihi and Iio)  provided 

the current supply for the Hall bar. Two separate voltage readings could also 

be measured simultaneously alongside the current using different contacts on 

the Hall bar.

All three signals were amplified and returned to computer controlled lock- 

ins. The computer also controlled and measured the magnitude and direction 

of the applied field. This enabled current and voltage measurements to be 

obtained at predefined intervals and known applied fields.

A bias voltage could be applied to gates in the specimen using power supply 

4. This bias voltage created an electric field around the gates and for a negative
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bias voltage, electrons in the 2DEG were depleted from the region under the 

gate defining the gate pattern into the 2DEG. The gate voltage supply could 

either be set manually or, for constant applied field, varied using computer 

control.

The control programmes were written by Dr B Milton [96] using LabView 

and were modified to record two sample voltages by Dr A Ganjoo. Mea

surements could then be obtained with the current passed through one set of 

contacts and voltage measurements taken across other two pairs of contacts. 

The connections made are discussed further in section 5.4.

5.3 Fabrication o f sam ples

To enable an investigation into the effects of a magnetic element on a semicon

ductor, a Hall bar structure such as that introduced in section 1.5.2 was used. 

The Hall bar confined the electrons of the 2DEG into a current channel on top 

of which the ferromagnetic element was positioned. The particular configura

tion introduced here was designed to enhance the effects of any modulation 

of the electrons due to the magnetic element. Due to the complexity of the 

fabrication process, a number of separate samples were fabricated on one chip, 

then separated for measurement purposes. This section discusses the sample 

fabrication techniques particular to these specimens.

5.3.1 Wafer Fabrication

Wafers were grown by the Molecular Beam Epitaxy (MBE) group in the de

partment of Electronics and Electrical Engineering at the University of Glas

gow. A brief overview of MBE can be found in Sze [23]. Three different wafers 

were used in the fabrication of specimens: A1063, A1065 and A971. All are 

GaAs:AlGaAs heterostructures. Their layer structures are shown in Fig 5.3. 

Both A1063 and A1065 have a 38 nm deep 2DEG with A971 having a 48 nm
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Figure 5.3: Layer structure of A1063, A1065 and A971. Layer thicknesses 

relate to A1063 and A1065. Not drawn to scale.

deep 2DEG. The depth is measured from the surface of the wafer. The differ

ence between A971 and A1063/A1065 is that the spacer is 10 nm thicker in 

A971. This will lead to a lower carrier concentration in the 2DEG. A discus

sion of the modulation doping process used to form the 2DEG can be found 

in section 1.5.2

5.3.2 Hall Bar Fabrication 

W et-etched structure

The standard design of a Hall bar is well known and documented. Section 1.5.2 

introduced the layout and the general transport properties. For the purposes 

of this research a relatively small Hall bar was required. Initially it was hoped 

that the Hall bar could be defined in the 2DEG using a wet etch (section 2.3). 

However, as discussed below, the etched Hall bar proved unsuitable for the 

desired measurements. A Hall bar of length 2  fim and width 1 fim of this 

type was designed using a CAD package (section 2.2.1) with three fabrication 

layers.

• Alignment marks to enable the registration of subsequent layers.
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Figure 5.4: SEM image of etched HB. Voltage probes were designed to be

500nm

• Ohmic contacts to establish electrical contact between the 2DEG and an 

external current supply.

• Isolation to prevent current flow out with the Hall bar.

The fabrication details of each of these layers will be discussed shortly in the 

context of the successful Hall bar.

Figure 5.4 shows a SEM image of the completed structure. It can be 

observed that, due to the nature of the wet etch, the structure was not well 

defined and expanded from the desired dimensions as the depth of the etch 

increased. This led to the voltage contacts being highly constricted with the 

specimen unsuitable for further investigation. The bulbous ends at the edges 

of the isolation defining the Hall bar were typical of one of the difficulties 

arising from using a wet etch when defining features with small dimensions. If 

successful, this would have led to a comparatively simple fabrication process 

which was desirable as it gave a shorter fabrication time, a higher yield and 

increased reproducibility of specimens.
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Structure defined by Schottky gate

In light of the fabrication difficulties defining the Hall bar into the 2DEG by wet 

etch, a second option of dry etching was considered. However, the expected 

process development time for this technique led us to dismiss it. Further 

consideration led to the Hall bar being defined by Schottky gates. These gates 

did not provide a current path from the external source to the 2DEG. However, 

when a negative bias voltage was applied to them, the resulting electric field 

repelled electrons from under the gate, leading to the temporary definition of 

the Hall bar in the 2DEG.

Fig 5.5 shows the CAD (computer aided design) pattern used for the fabri

cation of the gated Hall bar. It can be seen that a number of different structures 

were required. Each of these have a specific purpose and are described below. 

All follow the standard fabrication procedure introduced in table 2.7. The 

most important points of each step are described below with the full process 

being detailed in Appendix A.

Alignment Marks

The first layer to be fabricated consisted of alignment marks (marked A on 

Fig 5.5). These enabled all subsequent layers to be correctly aligned with 

respect to one another. This ensured that, for example, the ferromagnetic 

element was positioned in the desired location with respect to the Hall bar. 

The alignment marks were metallised using evaporation and lift off procedures. 

For this, and all other layers requiring metallisation during the fabrication of 

the Hall bar, the Plassys MEB 450 (section 2.4) was used. The layer thicknesses 

evaporated for the alignment marks were 33 nm Ti and 160 nm Au. The Ti 

was essential to achieve good adhesion between the evaporated Au and GaAs 

substrate as Au has a tendency to lift off when evaporated directly onto the 

substrate without a buffer layer. The overall thickness was such that the
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Figure 5.5: WAM [25] (see section 2.2.1) pattern of complete Hall bar layer 

structure. Inset shows centre of gated Hall bar. A represents the alignment 

marks, B the ohmics, C the isolation to define the large Hall bar into the 

2DEG, D the small gates and E the large gates which define the small Hall 

bar into the 2DEG.
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alignment marks were easily located by the automatic search facilities in the 

beamwriter.

Ohmic Contacts

The second fabrication layer consisted of the ohmic contacts, (marked B on 

Fig 5.5). These provided a current path from the surface of the semiconductor 

to the 2DEG and had dimensions of 150 x 150 fim. The dimensions were 

chosen so that an external current and voltage measurements could be carried 

out on the specimen through a gold wire bonded to the completed hybrid 

device. This will be discussed in more detail later. The ohmics comprised a 

number of evaporated layers. These were;

Ni 8  nm / Ge 120 nm / Au 130 nm / Ni 80 nm / Au 250 nm.

In this case, the buffer layer providing adhesion to the GaAs was nickel. After 

the completion of lift off, the substrate was annealed. The annealing process 

heated the specimen causing diffusion of germanium atoms from the metallised 

stack through the semiconductor to the 2DEG. The Ge atoms acted as dopants, 

forming a current path between the 2DEG and an external current source, thus 

enabling investigation of the completed specimens.

Isolation

The isolation layer was the third layer to be fabricated (marked C on Fig 5.5). 

This process confined the electrons within the device area by defining a large 

Hall bar (100 x 50 fim) into the bulk substrate. The Hall bar was defined using 

a wet etch (section 2.3) to remove material to a depth of 40 nm, isolating the 

2DEG from the surrounding material. The fabrication difficulties observed 

in the previous design were not found here as the dimensions etched were 

considerably larger. This large, etched Hall bar enabled basic characterisation
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F igure 5.6: Photograph of ohmic contacts (orange) and isolation (buff). 

The GaAs substrate regions are blue/grey. The gated layers were added to 

the pattern layer

investigations into the bulk substrate. Fig 5.6 shows a photograph of the ohmic 

and isolation layers after fabrication.

G ates

The fourth and fifth layers (D and E on Fig 5.5) defined the small gates which 

were used to form a 2 x 1 Hall bar at the centre of the larger etched 

Hall bar. Due to the dimensions of this smaller Hall bar, it was necessary 

to use two fabrication layers. The first of these, layer D, defined the central 

region of this smaller Hall bar using 12 nm Ti and 15 nm Au. The second, 

layer E, linked the central region of this gated Hall bar to the ohmic contacts. 

Layer E was considerably thicker (Ti 33 nm /Au 160 nm) than layer D. This 

thicker layer prevented cracks and breaks in the gates. A 2 gm overlap joined 

the two layers and provided current continuity. The thicker layer of metal 

was not used for the centre of the Hall bar as the thickness was two thirds
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(a) Photograph o f completed Hall (b) SEM  image o f completed Hall

bar bar

F igure 5.7: Completed Hall Bar

the width of the voltage probes and could have led to difficulties with lift-off 

at the high resolution required and when the gates were being defined by a 

biasing voltage. The ohmic contacts in this case, were contacts which were 

isolated from the 2DEG of the Hall bar by the isolating wet etch enabling 

electrical contact to be made to the gates without affecting the 2DEG of the 

Hall bar. Ohmic contacts were used to reduce the number of fabrication layers 

(fabricating contacts for the gates and the Hall bar unnecessarily increases the 

complexity of the design). An example of a gate ohmic is shown in Fig 5.6. ft 

can be observed that isolation surrounds the ohmic contact, preventing current 

flow between the gate ohmic and the 2DEG of the Hall bar.

Figure 5.7 shows images of the completed Hall bar structure on a large 

scale. Both the large Hall bar etched into the substrate and the smaller, gated 

Hall bar can be seen in the photograph. In the SEM image, however, only 

the leads to the smaller gated Hall bar can be observed. The SEM detects 

backscattered electrons and the gold in the gates has a higher atomic weight 

compared to the GaAs substrate, therefore reflecting a higher proportion of 

electrons into the detector. The difference is such tha t the contrast can not be 

adjusted to observe both the gated and the etched Hall bars simultaneously in 

a SEM image.
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(a) Photograph of 

magnetic element 

positioned with one 

end lying in the 

centre o f a Hall 

cross

(b) Photograph o f 

magnetic element 

positioned in the 

centre o f the Hall 

bar

(c) SEM image o f 

magnetic element 

positioned in the 

centre o f the Hall 

bar

Figure 5.8: Small Hall bar indicating positions of 1 x 0.5 pm magnetic 

elements.

Ferrom agnetic elem ents

Magnetic elements were evaporated onto the surface of the Hall bar using the 

thermal evaporator in the physics department (section 2.4). They consisted of 

1 x 0.5 pm  or 1.5 x 0.5 pm  rectangular elements positioned either with one 

end lying in the centre of a Hall cross (Fig 5.8a) or with the rectangular element 

in the centre of the Hall bar (Fig 5.8b,5.8c). The materials used were either 

Cobalt or Permalloy with thicknesses of 50 nm and 20 nm respectively.

Cleaving and Bonding

As stated earlier, a number of samples were fabricated onto one chip. The spac

ing between bottom left hand corners of each sample was 1.5 mm x 1.0 mm. 

After completion, the samples were cleaved into individual specimens. To en

able an investigation to be carried out, individual specimens were mounted 

onto a chip carrier using a conducting adhesive known els silverdag. Silverdag 

is a silver loaded conductive paint with a low resistance. The chip carrier
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was of sufficient size to be handled easily without damaging the specimen and 

external current and voltage supplies could be connected with relative ease 

using the sample rod introduced in section 5.2. Gold wires of diameter 25 /mi 

were attached between the sample and contacts on the chip carrier by a pro

cess known as bonding, enabling the current to pass through the sample and 

voltages to be measured.
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Figure 5.9: Schematic of large Hall bar. Gate positions for small Hall bar 

are shown in orange.

5.4 E xperim ents

Results are presented from a series of samples: basic Hall bars to characterise 

the substrate, investigate any non-magnetic modulations of the traces and 

characterise the equilibrium carrier concentration and mobility; Hall bars with 

50 nm thick Co elements; and Hall bars with 20 nm thick NiFe elements. The 

investigations were all undertaken using the low temperature system described 

above. The aim was to progress from investigating single layer elements to spin 

valve elements. However, due to persistent adhesion problems between the Ta 

seed layer and GaAs substrate, it was not possible fabricate spin valve samples 

in the time available. It should be noted that the measure of magnetic field 

used in chapters 3 and 4 was oersteds. For Quantum Transport measurements, 

it is usual to quote B values in teslas (T) to characterise a magnetic field and 

will be the unit used here.

5.4 .1  Large H all B ar

A schematic of the basic large Hall bar is shown in Fig 5.9. Numbered contacts 

were those used to supply and measure current and voltage. Lettered contacts 

were those used to define the small Hall bar using gates. For investigations 

on the large Hall bar, the lettered contacts (gates) were connected to  the 

current low. In a typical experiment, the first measurements characterised the 

bulk substrate using the large Hall bar. This enabled the equilibrium carrier
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concentration and mobility to be calculated, and gave an indication of the 

quality of the semiconductor substrate. In this measurement set, the current 

was passed between connections 1 and 2 with 3/4 (5/6) giving the longitudinal 

voltage and 3/5 (4/6) giving the transverse voltage.

The bulk transport measurements for two basic Hall bars are shown in 

Fig 5.10. The first, Hall bar A (Fig 5.10a), was a Hall bar taken from near 

the edge of wafer A971 whereas the second Hall bar, B (Fig 5.10b), was taken 

from near the centre of wafer A1065. The differences between the two sets 

of traces in Hall bar A in both transverse and longitudinal measurements 

showed that the voltage probes were not identical. This sort of distortion of 

the Shubnikov de Haas amplitude or transverse resistance is not unusual. The 

carrier concentration and resistances (and hence the mobility) hardly differ. 

It was not possible to obtain transport measurements from both sides of Hall 

bar B due to difficulties with contacts. A discussion of the plateaux and the 

Shubnikov-de-Haas oscillations can be found in section 1.5.2. It should be 

noted that, as expected, minima in the Shubnikov-de-Haas oscillations occur 

at the same fields as Hall plateaux.

From these results, the longitudinal and transverse measurements were 

used to calculate the carrier concentration. For each specimen, the two val

ues calculated from the different measurements were consistent. For Hall 

bar A, a carrier concentration of n^D — 2.60 ±  0.03 x 1015m - 2  and mobility 

[i = 8.5 ±  0.3 m2 V- 1  s- 1  were calculated. The mobility was less than ideal; 

reasons for this are discussed below. For Hall bar B, the carrier concentration 

was ri2D = 2.80 ±  0.03 x 1015m - 2  and the mobility fj, = 30.1 ±  0.3 m2 V - 1  s_1 

which was much more desirable for the specimens investigated here. The errors 

stated above for both the carrier concentrations and mobilities are applicable 

to all subsequent calculations. As such, they will not be stated explicitly but 

all results can be assumed to have similar errors present.

In all wafers tested, it was found that the mobility was dependent on the
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F igure 5.10: Bulk substrate characterisation measurements
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Figure 5.11: Variation of mobility with distance from edge of wafer (A971)

position of the specimen with respect to the centre of the substrate wafer. 

Fig 5.11 indicates the change in mobility with radial position from the edge 

of wafer A971. One possible explanation for this is a lack of uniformity in 

the any layer giving carrier concentration fluctuations in the wafer as a lack of 

uniformity in one layer will translate to all other layers. The lack of uniformity 

arose due to rotation during the MBE process which affects peripheral samples 

more than those from the centre of the wafer. From this result, the low mobility 

observed in the first bulk substrate measurements would not be unexpected. 

An explanation of the lower carrier concentration (and hence mobility) of A971, 

is that the deeper 2DEG of A971 would have led to a lower carrier concentration 

than either A1065 or A1063 if both samples had been taken from similar 

positions on the wafer.

Following measurements of the large Hall bar, gates were defined and 

checked. Both two terminal and four terminal measurements of resistance 

against gate voltage were taken. Fig 5.12 shows a graph typical of those ob-
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Figure 5.12: Two terminal gate characterisation (A1065)

tained for a two terminal measurement. This gate measurement was taken 

from sample B (wafer A1065) discussed earlier. The graph shows that at low 

applied gate voltages, there was no gate definition and the measured resistance 

was that of the large Hall bar. The high resistance at Vg =  0 V was due to both 

the current and voltage using connections 1/2, i.e. the 2-terminal technique. 

As the gate voltage was increased, the measured resistance began to increase. 

The region where the resistance was increasing indicated that the field from 

the gates was repelling electrons from under the gates and constricting the 

electron channel. Above a maximum applied voltage, the small Hall bar was 

fully defined in the 2DEG, the gate definition did not change significantly and 

there was little change in resistance. For this sample, it can be observed that 

gate definition commenced at ~  -0.1 V, full definition of the Hall bar occurred 

at ~  -0.2 V and beyond this the definition did not change greatly. The two 

terminal gate measurement confirmed that each pair of gates were working 

correctly and were not significantly damaged by the fabrication process. Us-

164



Chapter 5. Transport in Hybrid Semiconductor/Magnetic Devices

ing the information obtained, the most suitable gate voltage was applied to 

the samples to fully define the small Hall bar without risking damage to the 

gates could then be determined. This was just as the resistance measurement 

began to flatten out again after gate definition (point A in Fig 5.12).

One further point to consider is that for a conventional transport system, 

each gate pair could be considered as a variable resistor. With each pair 

defined individually, a change in resistance of Ar ca 600 Q was measured for this 

specimen between V g = 0 V and V5 =  -0.25 V. Defining all gates simultaneously 

could be represented as three resistors in series. It could be expected that 

classically, the change in resistance, A/?., over the same applied gate voltage 

range would equal the sum of the changes in resistances of each gate pair, i.e.

A R  = J 2 A r -  1800Q. (5.6)
1 - 3

The measured change in the resistance with all gates defined gave AR  ~  1450 Q, 

which was less than anticipated for a conventional transport system. The mean 

free path length was calculated using

I =  (R cB)/j, — 2.bfim, (5.7)

where RCB  = 1.651 x 10- 1 5  n 5 mT at low temperatures. By considering the 

Hall bar as a series of three separate constrictions, the mean free path length 

is considerably greater than the length of each constriction and is compara

ble with the separation between the constrictions and therefore transport is 

ballistic. Therefore, equation 5.6 is not true. Similar systems for single con

strictions have been investigated by van Houten et al [97], Thornton et al [98] 

and Wharam et al [99]. Wharam et al [100] showed experimentally that for a 

series of constrictions, AR  ^  Ari +  A r2 , the same result observed here.

Due to the gates being defined electrostatically, the Hall bar pattern defined 

into the 2DEG alters as the applied gate voltage is altered. To help characterise 

this change, it was useful to take a second set of gate measurements using a
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Figure 5.13: Four terminal gate characterisation. (A1063) All gates con

nected together, 1 = 1/2 Vt = 3/5 and Vl = 3/4. The reduction in the 

longitudinal resistance was unexpected and was not found on other speci

mens. The origin of this effect in this sample is unknown.
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four probe arrangement. This led to results such as those in Fig 5.13. It can 

be observed that the longitudinal resistance increased with the constriction 

of the current channel. The transverse resistance however, changes sign with 

increased applied gate voltage. This can be observed in the measurements and 

gives a range of Hall offsets observed in all specimens. The change in the Hall 

offset due to applied gate voltage for this specimen is large. They can, however, 

be considerably smaller or vary between positive and negative depending on 

fabrication differences and differences in the underlying current flow patterns in 

different samples. Any changes in the Hall offset due to geometrical influences 

will be noted in the relevant sections.

Longitudinal and transverse magneto-resistance measurements of the spec

imens were then taken with the small Hall bar defined. There was little differ

ence between the transverse traces of the large and small Hall bars (Fig 5.14). 

The offset at zero applied field is due to the gate definition of the small Hall 

bar as discussed above. This specimen exhibits a considerably smaller offset 

due to geometrical influences. Both traces show plateaux at the same fields 

and gave the same carrier concentration as the bulk measurement.

For Hall bars with magnetic elements, two offsets in the Hall measurement 

were observed. The first is the geometric offset due to the Hall bar definition 

by gates and the second is an offset due to the magnetic element. The magnetic 

contribution gives rise to a small hysteresis loop in the transverse measurement 

and will be discussed in more detail later.

In the longitudinal measurements, there was a notable change at low field 

between the large and small Hall bars. This is illustrated in Fig 5.15. The 

downward trend of the longitudinal resistance at low field was a common fea

ture of all specimens, with and without a magnetic element, when the small 

Hall bar was defined. This decrease in resistance was ascribed to a mesoscopic 

shape effect arising from diffuse boundary scattering. This magnetostatic effect 

is further discussed in Thornton et al [98], and Beenaker and van Houten [101],
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Figure 5.14: Comparison of the transverse measurements between the large 

etched, and small gated Hall bar in A1065. The carrier concentration is 

unaffected by the change in Hall bar dimensions although a non-magnetic 

change in R^=o is observed. This 150 H offset arose from the change in the 

applied gate voltage.
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Figure 5.15: Longitudinal measurement on the same sample as shown in

Fig 5.14 with small Hall bar defined, using contacts 4/6 on A1065.

section 5. At low applied fields, the electron mean free path length is greater 

than the width of the electrostatically defined Hall bar, i.e. the cyclotron diam

eter, 2rc, is larger than the channel width, W. Under these conditions, diffuse 

boundary scattering effects can reverse the direction of electron motion along 

the channel increasing the measured resistance. This is shown schematically 

in the inset of Fig 5.15. As the magnitude of the applied field is increased, 

the cyclotron diameter is reduced, equations 1.22 and 1.23. At the applied 

field when the cyclotron diameter becomes less than the channel width, diffuse 

boundary scattering can no longer reverse the direction of electron motion, i.e 

there is a reduction of backscattering with magnetic field and the measured 

resistance becomes the same as the bulk value.

The characteristic field over which the resistance would change depends on 

the cyclotron orbit and applied field. For these specimens, rcB  =  100 nm. The 

Hall bar width of W  — 1 gm gives a maximum cyclotron orbit of rc =  0.5 gm 

for diffuse boundary scattering. This gives a characteristic field of B = 0.2 T
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which is the same field range over which the drop occurs, as seen in Fig 5.15 

and Fig 5.16.

The detail within the mesoscopic resistance shape effect varies from spec

imen to specimen but is not affected by the presence of a magnetic element. 

The detail arises from mesoscopic fluctuations in the electron paths. At low 

fields, the mean free path is greater than the size of the Hall bar and electrons 

undergo many small angle scattering events before a large angle collision. In

creasing the applied field affects the small angle scattering events, changing 

the electron trajectories and creating fluctuations in the measured resistance. 

These fluctuations are not self averaging as active areas of the device are small.

It was expected that the detail within the mesoscopic resistance shape effect 

would reduce with an increase in temperature. This was observed and is shown 

in Fig 5.16. As the temperature increases, the number of inelastic scattering 

events will increase due to increased thermal vibration of atoms within the 

2DEG. This is particularly important in reducing mesoscopic fluctuations as 

inelastic scattering destroys the coherence of the electron waves.

It was also expected that the detail within the longitudinal shape effect 

would vary with applied gate voltage. A change in the applied gate voltage 

would alter the definition of the Hall bar and its position with respect to the 

scattering potential environment. It would also slightly decrease the electron 

concentration in the small Hall bar, hence making potential fluctuations more 

significant. This was also observed, Fig 5.17. In this sample, full gate defini

tion was attained with an applied gate voltage of -0.25 V. With an applied 

gate voltage less than this, the Hall bar would not be fully defined, the voltage 

probes would be larger than expected and less detail in the resistance measure

ment would be expected. This was seen in the -0.1 V and -0.2 V traces. Above 

the full definition voltage, more detail would be expected in the trace at low 

fields, increasing with applied gate voltage and was found in the -0.3 V and the 

-0.4 V measurements. For a larger gate voltage, the transport channel would
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Figure 5.16: The change in longitudinal resistance with T (A1065). The 

measurement taken at 1.61 K is the original measurement with all higher 

temperatures being moved 50 H with respect to one another to enable easier 

comparison. Vg = -0.15 V
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Figure 5.17: The change in longitudinal resistance with applied gate volt

age. 2 terminal gate measurements (A1065).

have been considerably narrower than for lower gate voltages. The narrower 

channel means that collisions would have a greater effect on the measured 

resistance. Also, as the applied gate voltage increased, the Hall bar would 

increasingly constrict the current flow leading to a higher average resistance 

as observed in Fig 5.17.

5 .4 .2  1500 x 500 x 50 nm  C o e lem en t w ith  on e  end  over

a H all cross

A 1500 x 500 x 50 nm cobalt element was evaporated onto a Hall bar with 

one end of the element over a Hall cross. An SEM image of the specimen can 

be seen in Fig 5.18. All results from this and sections 5.4.3 and 5.4.4 were 

obtained using wafer A1063.

Due to the failure of contact 2, it was not possible to use conventional 

current contacts. This led to either 1/4 or 1/6 being used for the current
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Figure 5.18: SEM image of specimen
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Figure 5.19: Cross coupling of signals in small Hall bar. I =  1/4, V = 3/5 

(transverse) and 5/6 (longitudinal). 1500 x 500 x 50 nm cobalt element 

with one end of the element over a Hall cross.
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and 3/5 (5/6) being used as voltage probes with I being contacts 1/4, and 

3/5 (3/4) being used with I through contacts 1/6. The principal difference 

between these measurements and measurements with a full set of contacts is 

that there is some cross coupling of signals. Fig 5.19 shows transverse and 

longitudinal measurements from the specimen. It can be observed that in 

the transverse trace, instead of the expected plateaux, the resistance begins 

to oscillate in a similar manner to the longitudinal resistance measurement. 

These oscillations are evidence of some cross coupling between the longitudi

nal and transverse measurements. It should be noted that this effect is only 

appreciable at fields greater than IT and is therefore not of significance in the 

measurements obtained here where the region of interest is less than 0.4 T. 

It is still possible to obtain the bulk characteristics of the material and for 

this specimen, ti^d — 3.3 x 1015 m“ 2 and fi = 51 m2 V- 1  s-1. This is a high 

mobility for the specimen range investigated and as expected, the specimen 

came from near the centre of the wafer.

Element Mesoscopic Effect

Material Size (nm) Position Field Range (T)

None ~  ±  0 .2

NiFe 1000 x 500 x 20 

1500 x 500 x 20

one end over Hall cross 

one end over Hall cross

~  ±  0 .2  

~  ±  0.25

Co 1500 x 500 x 50 

1500 x 500 x 50 

1000 x 500 x 50

one end over Hall cross 

centre of Hall bar 

centre of Hall bar

~  ±  0.4 

~  ±  0.25 

~  ±  0.35

Table 5.1: Applied field range over which mesoscopic effects occur for

different element size, location and materials.

Fig 5.20 shows the longitudinal trace in perpendicular field of the small 

electrostatically defined Hall bar. Mesoscopic shape effects were observed. As
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T =  1 .5  K

4 0 0 -

q) 300

0.0 0.5

A p p lied  P e r p e n d icu la r  F ield  (T)

Figure 5.20: Longitudinal measurement of electrostatically defined Hall 

bar. I = 1/4, V = 5/6. 1500 x 500 x 50 nm cobalt element with one end of 

the element over a Hall cross.
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discussed in the section 5.4.1, the shape effects were not of magnetic origin 

and arose from comparable magnitudes of the Hall bar dimensions and the 

electron mean free path. One interesting difference between this measurement 

and those taken from the basic Hall bars is that the field range over which the 

mesoscopic effect occurred is not the same. Table 5.1 shows the change in field 

range of the mesoscopic effects due to different element sizes, locations with 

respect to the Hall bar and material. The NiFe elements have little effect on 

the range over which the effects occur. However, the Co elements can have a 

much more significant effect on the field range. A number of mechanisms could 

account for the effect. The NiFe is thinner than the Co and has a smaller Ms- 

If the expansion of the field range depends on the stay field of the element as 

well as the standing field, this explains the effect only being significant for Co 

elements. Also, the stray field from the element could act to further constrict 

the Hall bar, increasing the applied field range over which diffusive boundary 

scattering occurs. Currently, there is not sufficient evidence to conclusively 

determine which, if any of these theories axe correct or whether a combination 

of effects are occurring.

Little magnetic information can be obtained while the applied field is per

pendicular to the specimen plane. In order to progress further, the specimen 

was rotated until the applied field direction is near parallel to the specimen 

plane. Fig 5.21 shows the longitudinal and transverse measurements taken at 

a small angle (0.1° ±  0.03°) from the in-plane field. Each set of results was 

repeated on two consecutive days with the sample warming to 50 K overnight. 

The results showed that the magnetic effects were similar over the two days, 

although the absolute resistance changed. This indicated that the results were 

reproducible with a stable hysteresis loop and magnetic reversal cycle. The 

change in resistance was dependent on the cooling and warming cycles and can 

vary from day to day. Measurements were obtained at a temperature of 5 K as 

there was a reduction in noise within the measurements and the temperature
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control mechanism was more stable at this rather than lower temperatures.

The residual gradient in Fig 5.21 was due to a slight misalignment of the 

sample field to the applied field direction. The calculated field angle is ~  0.1° 

from the in-plane field. The Hall gradient can be subtracted from the results 

using the transformation equation shown in Fig 5.22. This transformation 

gives a hysteresis loop with a step of 3 ±  0.2 Q, Fig 5.22. Using the equation

A Rh = —  (5.8)
ne

where A R h is the step in the resistance and n the carrier concentration, this 

gives a mean flux density change through the Hall cross of ~  ±  0.8 mT for the 

reversal of the magnetisation of the sample.

The flux through the Hall cross can also be simulated. Two different meth

ods of simulating the flux are shown below.

The first uses three assumptions to calculate the flux per unit area at the 

end of the magnetic element going into the Hall cross. Firstly, it is assumed 

that the element is magnetised uniformly and that all external flux originates 

at the end of the element. Secondly, that the flux splits up and down equally 

so that half of the flux goes through the Hall cross. Finally that B ~  M 

and is much greater than H inside the element. From these, the flux is

4> ~  x hW, (5.9)

where M =  Ms, the saturation magnetisation of the element, h is the element 

thickness and W the width of the element. From this, the flux density through 

the Hall cross can be calculated using

B =  | ,  (5.10)

where A is the area of the Hall cross. Using (IqM  =  1.82 T for cobalt 2 and the 

element dimensions defined previously, this gives a flux through the Hall cross

2For Co, M  =  1.42x 106 A m " 1 [1]
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Figure 5.21: Transverse and longitudinal measurement close to an in-plane 

applied field. I = 1/6, V = 3/4 (longitudinal) and 3/5 (transverse). 1500 x 

500 x 50 nm cobalt element with one end of the element over a Hall cross.
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Figure 5.22: Transverse measurement from Fig 5.21a with the Hall gra

dient subtracted. 1500 x 500 x 50 nm cobalt element with one end of the 

element over a Hall cross.
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of 0.07 T. This estimated value of the flux through the Hall cross is greater by 

an order of magnitude than the measured value. This calculation is a useful 

tool for understanding the basic mechanisms involved but needs to be refined 

to confirm that the poor agreement is not an artefact.

The second method of calculating the flux through the Hall cross also 

assumes that the element is magnetised uniformly with a magnetisation M(r). 

This element can be represented as the sum of the volume charge and surface 

charges

divMdV +  M.dS. (5.11)

The flux at a plane below the specimen can therefore be calculated by taking 

into account the surface and volume charge distributions and integrating over 

the thickness of the specimen.

This method is non-trivial and is complex to carry out analytically. How

ever, a method using Fourier Transforms has been developed which simplifies 

the calculations somewhat. Full details of the calculations can be found in 

Beardsley [102] and a more accessible treatment in McVitie et al. [48, 103]. 

To undertake the transformations, an assumption that the magnetisation does 

not vary through the specimen thickness is made. The transform is calculated 

in a plane parallel to the plane of the film and is a 2D transform with the 

magnetisation split into MXiJ/ and (in plane and out of plane components). 

Calculations of the fields are made using Fourier transforms in the xy  plane 

with Fourier space coordinates K =  kxx+kyy. The expression for the out of 

plane component of field in Fourier space is

Hz{K,z)  =  + M * (/q ) sin ( ^ )  (5 .1 2 )

where i = y/—l, t is the specimen thickness and 2  the distance of the xy  plane 

from the centre of the specimen. This can be inverse transformed to calculate 

the real space field for any plane with z > 0.5t.

This simulated out of plane component is equivalent to the out of plane field
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contributing to the Hall offset measured experimentally. The Fourier transform 

technique was applied to simulations of the magnetic element using the LLG 

[70] magnetics package. The calculations on the element were undertaken using 

the Fast Fourier Transform package available as part of the Digital Micrograph 

[104] package. The K space functions and magnetic data were controlled by 

scripts written by Mr Gordon White under the supervision of Dr Stephen 

McVitie.

The reversal process of a 1500 x 500 x 50 nm Co element was simulated 

using the LLG package to investigate the flux density through the Hall cross 

from the element. Fig 5.23a shows the hysteresis loop from the reversal of such 

an element. This loop indicates that the element reverses over ±  60 mT which 

is comparable to the experimental loop, Fig 5.22 where reversal occurs over 

±  80 mT. The shape of the simulated hysteresis loop indicates that domain 

processes were involved in the reversal. Figs 5.23b and 5.23c show the magnetic 

state of the element at 0 and -5 mT respectively. These show that the element 

relaxed into a flower state as the applied field approached zero and that a small 

reverse field induced a jump into a flux closure domain state. The favourably 

aligned domain grows as the applied field increased in the negative direction 

until the magnetisation approaches a uniform value . For an element of this 

size, this is not unexpected.

Fig 5.24 shows the out of plane field component at the 2DEG for a simulated 

Co element in a single domain state and a line scan taken across the centre 

of the element. In general, some of the flux can be seen to arise from along 

the side edge of the element. Using the out of plane field components from 

the element, the flux through the Hall cross can be calculated by summing 

the field value at every point over the area of the Hall cross with respect to 

the magnetic element. From this, the simulated mean flux density through 

the Hall cross was found to be ±  29 mT. This is considerably better than the 

first estimate but is still much larger than the measured flux through the Hall
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1 1
■

(a) Hysteresis loop

(b) Magnetisation at 0 T  (c) Magnetisation at -5 m T

Figure 5.23: LLG simulation of 1500 x 500 x 50 nm Co element.
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Figure 5.24: Image of stray field from single domain magnetised Co element 

and accompanying line scan. Element dimensions 1500 x 500 x 50 nm.

Figure 5.25: Schematic of stray field arising from element with raised ends.

It can be seen that less flux enters the area underneath the end of the element 

and therefore less flux passes through the Hall cross.

cross.

Two possible explanations for the discrepancy are that the Hall cross de

fined in the 2DEG was larger than expected and tha t the ends of the element 

were not completely parallel to the substrate surface. During lift-off, it is 

common for materials evaporated onto the surface in the holes in the resist 

to partially lift-off due to adhesion problems between the material and GaAs 

substrate. The Co layer does not have a seed layer to ensure good adhesion 

and could therefore have partly lifted off. Fig 5.25 shows a sketch of the stray 

field which would arise from an element with raised ends. To confirm this pic

ture, a SEM image could be taken at an angle to the specimen plane and the 

simulation system could be modified to consider this. Due to time constraints, 

it was not possible to attem pt this.
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Also of interest was the longitudinal measurement cycle where structure 

due to the magnetic element was observed, Fig 5.21(b). Due to the cross 

coupling of signals, the longitudinal signal also contained a fraction of the Hall 

component from the element, see section 5.4.3 below. This gave the observed 

hysteresis loop in the longitudinal measurement.

Fig 5.26 shows results from reversing the current and voltage contacts. Here 

the current is through 3/5 with the voltages being measured over 1/6 (1/4). 

The transverse measurement here, is taken over the length of the element. 

However, one end of the element is outwith the narrow constriction of the gated 

Hall bar. The measurements have been transformed to remove the gradient due 

to the slight misalignment. It can be observed that this measurement is similar 

to the transverse measurement in Fig 5.22 with the orientation of the hysteresis 

loop reversed. The step in the hysteresis loop measured here is 3 as found 

previously with the conventional current/voltage contact arrangement. This 

helps confirm the step is due to the magnetic element and that the measured 

mean flux density through the Hall cross is ~  ±  0.8 mT.

5.4.3 1500 x 500 x 50 nm Co elem ent in the centre of

the Hall bar

A 1500 x 500 x 50 nm Co element was evaporated such that the centre of the 

element was aligned at the centre of the Hall bar, Fig 5.27. The bulk carrier 

concentration and mobility were; n =  2.7 x 1015 m~ 2 and fi = 26 m2 V" 1 s ' 1. 

In this specimen, a contact problem was observed with pin 4. This led to the 

set of measurements, both longitudinal and transverse, which used this contact 

having considerably more noise than the measurements from the second set 

of contacts. The level of noise was such no magnetic information could be 

obtained from measurements using contact 4.

As discussed previously, the transverse measurement changed with applied
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Figure 5.26: Measurements with I and V reversed. 1500 x 500 x 50 nm 

cobalt element with one end of the element over a Hall cross.

Figure 5.27: SEM image of specimen
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gate voltage. In this specimen, the Hall measurement varied between positive 

and negative as the applied gate voltage was increased.Two separate measure

ments at Vg — -0.15 V and V5 =  -0.25V were obtained. Both had a positive 

transverse resistance. Fig 5.28 shows the transverse measurement for an in 

plane field using contacts 3/5 for the two different applied gate voltages. As 

with the previous specimen, a change in resistance of ~  3 was measured in 

the hysteresis loop for a gate voltage of -0.15 V. This was the applied gate 

voltage chosen for good gate definition. Increasing the gate voltage to -0.25 V 

increased the constriction in the Hall bar and therefore the mean flux density 

through the Hall cross increased. This is observed in the measurement as a 

significantly larger step in the transverse measurement.

For the standard applied gate voltage of -0.15 V, the simulations carried 

out in the previous section would also be roughly applicable as the end of the 

magnetic element is very close to the Hall cross. Again, the calculated flux 

density through the Hall cross is greater than the measured flux density as 

discussed previously.

A rough estimate of the area of the Hall cross with the applied gate volt

age of -0.25 V can be obtained by considering the size of the step in the 

measurement. The step gives a flux density through the Hall cross of B =  

0.01T using equation 5.8. Combining this with equation 5.9, the area can 

be calculated by dividing one by the other. This gave a Hall cross area of 

A = 2 x 10 ~ 13 m 2. One possible set of dimensions for the Hall cross could 

therefore be 250 nm x 0.9 /mi.

5.4.4 1000 x 500 x 50 nm Co element in the centre of

the Hall bar

A 1000 x 500 x 50 nm Co element was evaporated such that the centre 

of the element was aligned with the centre of the Hall bar. SEM images
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(b) Transverse measurement at Vg = -0.25 V

Figure 5.28: Hall measurements at differing applied gate voltages. 1 = 1/2, 

V = 3/5. 1500 x 500 x 50 nm cobalt element in the centre of the Hall bar.
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Figure 5.29: SEM image of specimen

of the element and the small gated Hall bar are shown in Fig 5.29. Bulk 

substrate measurements gave a carrier concentration of n = 3.1 x 101 5  m - 2  

and a mobility of fj, = 48 rn2 V - 1  s-1 . With an applied field perpendicular to the 

plane of the specimen and the small Hall bar defined in the 2DEG, mesoscopic 

effects were observed in the longitudinal measurement as expected.

Longitudinal and transverse measurements from both sides of the Hall bar, 

in an in-plane field, are shown in Fig 5.30. A clear step in resistance and a 

hysteresis loop can be observed in all cases. The difference in the resistance of 

the two measurements is due to gate b, between current contact 1  and voltage 

probe 5 being badly defined leading to a high resistance state. Although the 

resistance is different, the loop observed in all four measurements occurs at the 

same fields. The two Hall resistance measurements ( (V3 -V5 ) and (V4  - Ve) ) 

independently showed hysteresis loops of opposite sign. The sense of the loop 

is reversed in the two graphs as the measurements are taken at different ends 

of the magnetic element. One Hall measurements will be affected by flux out 

of the element whereas the other will be affected by flux into the element.

Similar investigations using a 2D array of elements have been carried out 

by McMullen et al [105]. McMullen calculated the longitudinal and trans

verse, sum and difference signals and showed that for a perfectly symmetric 

system, the summed signals should show no variation in resistance with ap

plied field. Also, the longitudinal difference voltage, (V3  - V4 ) - (V5  - Vg), can
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Figure 5.30: Traces of longitudinal and transverse at parallel applied field. 

1000 x 500 x 50 nm cobalt element in the centre of the Hall bar.

189



Chapter 5. Transport in Hybrid Semiconductor/Magnetic Devices

A pplied in p la n e  field (T)A pplied in p la n e  field (T)

(a) Hall Sum (3/5+4/6) (b) Longitudinal Sum (3/4+5/6

8
l

■02 -0.1 0.0 0.1 02 

A pplied in p la n e  field (T)

(d) Longitudinal Difference 

(3/4-5/6)

Figure 5.31: Sum and Difference traces of longitudinal and transverse at 

parallel applied field. 1000 x 500 x 50 nm cobalt element in the centre of 

the Hall bar.

be re-written as (V3  - V5) - (V4  - V6). This is equal to the difference in Hall 

voltages, (V3  - V5) and (V4  - Vg), over the two Hall crosses. Therefore, the 

Hall and longitudinal difference signals would be identical.

The analysis applied to the 2D array of elements is also applicable here as 

the element lies in the centre of the Hall cross. Figs 5.31a and 5.31b show the 

transverse and longitudinal summed signals. The change in measured resis

tance observed in both graphs indicate that the system is not fully balanced. 

This could arise from differences in gate definition voltages giving two Hall 

crosses with a slightly different size or a small misalignment of the element 

with respect to the two Hall crosses.

£-

-1210-

A pplied in p la n e  field

(c) Hall Difference (3/5-5/6)
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The difference voltages are shown in Figs 5.31c and 5.31d. Only two of the 

possible four difference signals are shown; the other two are identical but with 

opposite sense, similar to taking measurement on opposite sides of the Hall 

bar as discussed previously. Some small differences are observed, the reasons 

for which were discussed above. The shapes however, are the same within 

experimental error.

The shape of the hysteresis loop, has been observed previously [106, 107] 

and represents the formation of domains, with favourably aligned domains 

growing before an irreversible change. Further domain processes occur as the 

magnetisation aligns fully with the applied field. The shape of the hysteresis 

loop is similar to that obtained from simulating the reversal of a 1000 x 500 x 50 nm 

Co element using LLG, Fig 5.32. When compared with the experimentally ob

served loops, it can be seen that the fields at which the element reverses do 

not match perfectly. The likely cause of this discrepancy is that the anisotropy 

used in the the simulation did not match that of the real element due to grains 

in the elements giving fluctuations in the anisotropy and therefore affecting 

the reversal fields.

Fig 5.33 shows the stray field arising from a 1000 x 500 x 50 nm Co element 

and a line scan across the centre of the element. Using the same technique 

discussed in section 5.4.2, the flux through the Hall cross was calculated to 

be 27 mT. The measured flux through the Hall cross was ~  20 mT. These 

two values are in much better agreement with one another than found previ

ously. One explanation for this is that the element was in the centre of the 

Hall bar, with all contacts working, which enabled a full characterisation and 

measurement of the effects at both sides of the Hall bar.
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Figure 5.32: Simulated hysteresis loop for 1000 x 500 x 50 nm Co element
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Figure 5.33: Simulated hysteresis loop, image of stray field from single 

domain magnetised Co element and accompanying line scan. Element di

mensions 1000 x 500 x 50 nm.
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Figure 5.34: Longitudinal measurement with applied field perpendicular 

to specimen plane

5.4 .5  1500 x 500 x 20 nm  P y  e lem en t w ith  on e end  over

a H all cross

A 1500 x 500 x 20 nm permalloy element was evaporated such that one 

end of the element lay over a Hall cross. As with previous experiments, the 

bulk transport properties of the substrate were investigated. For this spec

imen, the carrier concentration was n =  3.4 x 10l0 m-2 and the mobility 

fi = 22 m2 V-1 s-1.

The longitudinal measurement, for both sides of the Hall bar is shown in 

Fig 5.34. The field in this case was applied perpendicular to the plane of the 

specimen. From this, it can be seen that the mesoscopic effects observed in 

the basic Hall bars and those with cobalt elements are also observed when a 

permalloy element is evaporated onto the surface of the substrate as expected.

The transverse measurement with the field applied in the plane of the 

specimen is shown in Fig 5.35a. Due to the magnetic element being permalloy
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Figure 5.35: Transverse measurement showing unclear small step in trans

verse measurement. Second fig shows same data but smoothed three times.
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rather than cobalt and the reduction in element thickness, it was expected 

that any effects due to the magnetic element would be smaller. This meant

that at low temperatures, it was considerably more difficult to observe a step

in the hysteresis loop as the expected step was comparable to the noise level. 

To reduce the mesoscopic resistance fluctuations, the specimen was warmed to 

50 K and the measurements were obtained at this temperature. From Fig 5.35, 

the step in the transverse measurement is ~  1 Q. Using the method described 

in section 5.4.2, this gives a flux density through the Hall cross of 0.5 mT.

Although the data taken shows a step in the hysteresis loop, it is not as 

clear as the steps observed for the cobalt elements. To help reduce some 

of the noise, the data was gaussian smoothed. That is, every data point is 

transformed using
_ . 8n 8n + 1  6n - 1

Sn Y  “ T " +  ~ r  { 5 - l 3 )

where 6n is the signal point n in a particular generation and 5n' the smoothed 

values which replaces it. Fig 5.35b shows the smoothed measurements after 3 

cycles of Gaussian smoothing. This helps make it easier to observe that the 

step in the transverse measurement is ~  l and also, that the field at which 

the magnetic element reverses is ~  ±  0.07 T.

LLG simulations were carried out on a magnetic element of the same di

mensions as the one investigated experimentally. The hysteresis loop and stray 

fields were calculated using the techniques described in section 5.4.2. Fig 5.36 

shows the simulated hysteresis loop. The fields at which the simulation re

versed are similar but do not match those of the element investigated experi

mentally. This could be due to a difference in the anisotropy between simulated 

and experimental results as discussed previously. Also, as for the Co elements, 

the stray field through the Hall cross was calculated and as previously, was 

considerably larger than the experimental value.
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Figure 5.36: Simulated hysteresis loop for 1 x 0.5 fim x 20 nm permalloy 

element

5.5 Conclusions

It has been shown that small gated Hall bars could be fabricated onto the sur

face of a semiconductor specimen on top of a larger etched Hall bar. This en

ables the characterisation of the bulk transport properties alongside measure

ments related to the small Hall bar. In particular, it confirmed that the high 

field transport properties of the systems investigated did not change markedly 

with Hall bar size, and that the carrier concentration and mobility remained 

constant. At low fields, the small gated Hall bar showed additional effects to 

those observed in the large Hall bar. These mesoscopic effects were attributed 

to diffuse boundary scattering.

Further to this, magnetic elements were evaporated near the centre of the 

gated Hall bar to investigate the interactions between the stray field from the 

element and electrons in the 2DEG. The mesoscopic effects observed in the 

basic system were also observed in perpendicular applied field with a magnetic 

element present. With an in-plane external field, an additional effect was 

observed due to the stray field from the magnetic element. This effect gave a
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measurable change in the Hall resistance. The magnitude of the Hall signal 

due to stray field from the magnetic element was measured experimentally and 

also calculated. Discrepancies between the two values were measured in many 

samples. This is currently attributed to partial lift-off of the element leading 

to a reduction of flux through the Hall cross.

For an element placed symmetrically between the two Hall contacts, in the 

centre of the Hall bar, both longitudinal and transverse resistance measure

ments exhibited structure due to the magnetic element when an in-plane field 

was applied. The relationship between the two measurements was described 

by a simple model which was used to discuss the data. Again, the magnitude 

of the Hall signal due to the stray field was measured experimentally and also 

calculated. In this case, good agreement between the two values was obtained. 

The shape of the hysteresis loop was in good agreement between the simulation 

and experimental results and was explained by domain processes effecting the 

reversal.
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Chapter 6

Conclusions and Future Work

6.1 Introduction

The work presented in this thesis has investigated properties of selected single 

and multilayer magnetic materials. Lorentz microscopy was carried out on 

AAF biased SVs, both as thin films and elements, to study their micromag- 

netic properties. Alongside this, quantum transport measurements of hybrid 

semiconductor/magnetic structures gave an insight into the interactions be

tween the stray field from magnetic elements and conduction in the 2DEG. 

For some of the AAF biased SV elements, simulations were carried out to aid 

interpretation of the results.

This chapter discusses the principal findings from the different investiga

tions and conclusions drawn from the studies. Following this, is a discussion of 

some of the possible future investigations which could extend the work carried 

out here.
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6.2 C onclusions

6.2.1 Artificial antiferrom agnetically biased spin valves

The free layer reversal mechanisms of a range of thin film AAF biased SVs 

were investigated in Chapter 3. Fresnel imaging showed that the reversal 

mechanisms varied markedly with the thickness of the second Co layer in the 

AAF.

It had been expected that this would occur and that three different regimes 

would be observed. For the AAF biased SVs where the second Co layer of the 

AAF was thinner than the first, it was expected that the system would be

have in a manner similar to that of a conventional SV and possess moderate 

GMR. As the thickness of the second Co layer approached that of the first, 

both layers would compete to lie parallel with the growth field direction cre

ating a complex domain structure in the AAF. This would become pinned, 

leading to the observation of complex domain structures and a low GMR. For 

a system where the second Co layer of the AAF was thicker than the first, 

the orientation of the AAF would reverse so that the second layer would lie 

parallel to the applied field direction. Again, due to the imbalance in thickness 

of the two layers, the system would behave like a conventional SV and have a 

corresponding GMR.

For the series of spin valves investigated, changes in magnetic reversal mech

anisms and the magnitude of the GMR with the thickness of the second Co 

layer in the AAF were observed. The spin valve studied with the second Co 

layer significantly thinner than the first acted in a manner consistent with 

conventional SVs, with easily understood behaviour. Also, the system with 

the second Co layer notably thicker than the first behaved as anticipated. 

However, the specimens studied where the two Co layers were thought to be 

comparable or with the second slightly thicker than the first did not exhibit 

the anticipated reversal properties. Further investigation indicated that an
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anomaly during growth had led to the second Co layer of the AAF being ap

proximately 70% of the expected thickness. This explained the unexpected 

results. Specimens where the two Co layers were thought to be approximately 

equal were in fact unbalanced and the specimen where the second Co layer was 

thought to be slightly thicker than the first had both Co layers approximately 

equal. In light of the new information, the predicted behaviour of the system 

and the experimental results were in good agreement.

For use in applications, elements rather than continuous films are of in

terest and two of the AAF structures were chosen for further investigation in 

Chapter 4. Edge field coupling from the elements interacted with the interlayer 

coupling affecting the offset in the hysteresis loop. In one case, the thickness of 

the second Co layer was ~  70% that of the first whilst for the other specimen 

it was ~  1 2 % and possibly a discontinuous film.

DPC images of the magnetisation reversal showed that they were dependent 

on the orientation of the long axis with respect to the growth and applied field 

directions. However, for the elements investigated, one particular magnetic 

configuration was observed in a number of the elements. This consisted of a 

number of large, central domains effecting the reversal, leaving edge domains 

which were eliminated as the applied field increased in magnitude.

The offset in the hysteresis loop was similar for elements of the same shape 

and size but different orientation. This had been expected for elements with 

the same layer structure and growth conditions. The offset did however differ 

between the two specimens with different layer structures. Also, in the elliptical 

elements, the lack of domain nucleation and wall location points due to corners, 

led to lower reversal fields and offsets in the hysteresis loop.

As introduced above, in the specimen where the second Co layer is signif

icantly thinner than that of the first, it is not known whether the second Co 

layer was a continuous film. An incomplete layer could explain some of the 

results observed in this specimen.
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6.2.2 Hybrid ferrom agnet/sem iconductor heterostruc

tures

A hybrid ferromagnetic/semiconductor system was investigated in Chapter 5. 

It was shown that small gated Hall bars can be successfully used in conjunc

tion with a larger etched Hall bar to enable bulk characterisation of the ma

terial alongside measurements on a smaller scale. Both large and small Hall 

bars showed similar high field magnetotransport properties but at low field, 

the smaller Hall bar shows additional mesoscopic effects attributed to diffuse 

boundary scattering.

With the magnetic element present, the above effects persisted in perpen

dicular applied field. With an in-plane field, an additional effect was observed 

where the stray field from the magnetic elements gave a measurable changes 

in the Hall resistance. The magnitude of the Hall signal due to stray field from 

the element was measured experimentally and also calculated. It was shown 

that discrepancies between the two values existed in many samples. Currently, 

this is attributed to partial lift-off of the element leading to a curled state and 

reduced flux through the Hall cross.

For an element placed in the centre of a Hall bar, symmetrically between the 

two Hall contacts, both longitudinal and transverse resistance measurements 

showed structure due to the magnetic element in an in plane applied field. The 

relationship between the two measurements has been described by a simple 

model which was used to discuss the data. For this sample, both the shape 

of the hysteresis loop and the magnitudes of the resistance structures were in 

good agreement with theoretical estimates.
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6.3 Future W ork

6.3.1 Artificial antiferrom agnetically biased spin valves

The work presented on the free layer reversal of AAF biased thin film SVs 

concentrated on the applied field aligned parallel to the growth field direction. 

Only a small section related to the field applied at an angle (0) with respect 

to the growth field. The results obtained from measurements with the ap

plied field at an angle to the growth field showed that the reversal mechanism 

significantly altered as 6 increased. Reversals became asymmetric and were 

dependent on whether the field was rotated clockwise or anticlockwise from 

the preferred direction of magnetisation.

Previous work had been undertaken simulating the change in the reversal 

mechanism as the applied field rotated from the preferred direction of mag

netisation using a modified Stoner-Wohlfarth model. Developing the current 

research by investigating the dependence of the reversal mechanism on 6 along

side the simulations to gain a better understanding of the coupling between 

the layers and anisotropy within the system. This could lead to possible modi

fications of the AAF system to render it more suitable for applications such as 

MRAM where two distinct magnetisation states with a fast reversal between 

them are desirable or a sensor where a smooth rotation of the magnetisation 

is more favourable.

The AAF biased SV specimens incorporated an IrMn antiferromagnetic 

biasing layer. The IrMn was chosen as it has a high blocking temperature which 

is necessary for applications. A number of applications in which SV’s are used 

experience operating temperatures significantly higher than room temperature. 

It would therefore be interesting to investigate the temperature dependence of 

the SV systems. Both the GMR, using a four probe CIP arrangement, and 

the reversal properties, using a heating rod in the TEM, could be studied to 

gain a comprehensive insight into the suitability of these materials for high
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temperature operation.

Due to limitations of time and difficulties in observing magnetic contrast, 

it was not possible to fully characterise the range of SV elements. As smaller 

elements are of greater interest, it is desirable that a method of enhancing 

magnetic contrast from the elements is found. Improvements in the fabrication 

process to minimise edge flags should be considered. Also, other methods of 

observing the reversal, such as MOKE could be used in conjunction with the 

TEM to aid characterisation of larger elements.

Finally, the specimens investigated in this thesis did not posses the expected 

layer structures. It would be interesting to investigate specimens where the 

layer structure was closer to that expected and enable a study of a fully bal

anced AAF and also to adjust the layer structure so that the hysteresis loop 

centered around zero field.

6.3.2 Hybrid ferrom agnet/sem iconductor heterostruc

tures

The work presented on the hybrid ferromagnetic/semiconductor systems high

lighted some of the technical difficulties in fabricating complex multi-layer 

systems. Lift-off and adhesion problems reduced the quality and yield of a 

specimen batch. It would therefore be beneficial to study the fabrication pro

cess to determine where improvements could be made. Alongside this, it would 

be desirable to develop a process to enable the patterning of a Hall bar us

ing dry etch. This would offer a more uniform Hall bar with known Hall bar 

dimensions and should help reduce noise within the system. As part of the 

development, a study into the feasibility of reducing the dimensions of the Hall 

cross could be undertaken.

Following improvement to the Hall bar structure, it would be interesting to 

study a wider range of ferromagnetic elements. Co is a relatively easy material
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to study; further investigations on thinner layers of Co and continuation of 

the study into NiFe would help determine possible measurement limits. This 

would act as a base from which more complex ferromagnetic systems such as 

the AAF biased SVs could be investigated.

As part of the investigations into the limits of measurement, it could also 

be useful to consider the shape, position and size of the elements with respect 

to the Hall bar to maximise the stray field from the element through the Hall 

cross.
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A ppendix A

A .l  Introduction

This appendix describes the fabrication of hybrid ferromagnetic/semiconductor 

heterostructures. Each step in the fabrication of the Hall bars is described. 

Following this, the deposition of the magnetic elements is reported.

A .2 Fabrication process

A .2.1 Wafer Cleaning

process action timing

cleaning acetone and ultrasonic bath 5 minutes 

IPA and ultrasonic bath 5 minutes 

dry in nitrogen

Wafer cleaning, as discussed in section 2.6, was vital to the fabrication 

process as contamination damaged specimens, often to the extent where the 

specimen was unusable. Wafer cleaning removed contamination and was car

ried out before commencing fabrication of a new sample, and as required during 

the fabrication process.
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A .2.2 Alignment Marks

process action timing

depositing resist spin 15 % 2010 resist at 5000rpm 60 s 

bake at 180 °C 30 minutes 

spin 4 % 2041 resist at 5000rpm 60 s 

bake at 180 °C 60 minutes

transfer of pattern pattern transferred from WAM to CATS 

Job file submitted 

submit job to beamwriter

dose 280 /xC, spot size 160 nm 1 night

develop 1 : 1 , MIBK : IPA warmed to 2 1  °C 60 s 

rinse in IPA 30 s 

dry in nitrogen

de-oxidisation etch 

metallise

20 : 1 H20  : HC1 20 s 

rinse H20  20 s 

dry in nitrogen

evaporate 33 nm Ti, 160 nm Au 30 minutes

lift-off acetone and heatbath ~  2 0  minutes 

rinse in IPA 30 s 

dry in nitrogen

The set of four alignment marks had dimensions of 30 /xm x 30 /xm with a 

spacing of 150 /xm between bottom left corners. The alignment process during 

subsequent layers exposed the alignment mark used for that layer. This led 

to the mark in use being damaged, for example, during the evaporation of 

ohmic contacts, the alignment mark used will also have the ohmic materials 

evaporated onto the exposed area making the reference corner less well defined. 

It is not possible to prevent this so a set of four alignment markers were used, 

when the first was damaged, the reference distances were altered to use the
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+  +  +  T  4" *0%
F igure A .l:  CATS image of alignment file to enable the fabrication of 35 

specimens

second alignment mark and so on.

Multiple specimens were fabricated on a large section of substrate and the 

specimen spacing was 1.5 mm x 1 mm. This enabled each specimen to have 

four sets of alignment marks, one at each corner. This gave an advantage in 

aligning the specimen accurately as all four sets could be used to determine 

the position and any rotation of the specimen. Fig A .l shows the CATS image 

of the complete alignment mark file.
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A .2.3 Ohmics

process action timing

depositing resist spin 15 % 2010 resist at 5000rpm 60 s 

bake at 180 °C 30 minutes 

spin 4 % 2041 resist at 5000rpm 60 s 

bake at 180 °C 60 minutes

transfer of pattern pattern transferred from WAM to CATS 

Job file submitted 

submit job to beamwriter

dose 280 /xC, spot size 160 nm 1 night

develop 1 : 1 ,  MIBK : IPA warmed to 21 °C 60 s 

rinse in IPA 30 s 

dry in nitrogen

de-oxidisation etch 

metallise

20 : 1, H20  : HC1 20 s 

rinse H20  20 s 

dry in nitrogen

8  nm Ni, 120 nm Ge, 130nm Au,

80 nm Ni, 250 nm Au 45 minutes

lift-off acetone and heatbath ~  25 minutes 

rinse in IPA 30 s 

dry in nitrogen

annealing heat from ambient temperature to 360 °C 1 0  s 

raise from 360 °C to 380 °C 1 0  s 

anneal at 380 °C 40 s 

cool to ambient temperature 2  minutes

Fig A .2  shows the CATS pattern used for the ohmic contacts. The ohmic 

contacts had dimensions of 150 fim x 150 pm  with a spacing of 100 pm  be

tween contacts. Ohmic contacts have been labelled to indicate which contacts
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Vg

i

Vp

F igure A .2: CATS images of ohmics. I represents current contacts, Vp 

voltage probes and \ g gate contacts

traditionally current contacts, voltage probes or gate contacts.

As shown in the table, after lift-off, the wafer section is annealed. This 

involves heating of the specimen to allow the diffusion of germanium atoms 

through the metallised stack into the GaAs/AlGaAs semiconductor. These 

atoms form a current path between the ohmic contact and the 2DEG. Different 

semiconductors and 2DEG depths require different annealing conditions. The 

conditions shown above chosen after a series of tests which varied the annealing 

temperature and time.

After cooling, the room temperature resistance of the wafer is checked using 

a probe system. For a good specimen, the resistance between ohmic contacts 

should be less than 1 kD. If the resistance is significantly higher, this can mean 

that when cooled, the specimen may fail. Frequently, a single Hall bar will 

be cleaved and tested in the low temperature system to confirm the quality of 

the annealing process and the viability of the wafer segment. It is possible to 

re-anneal at this point, although this process has limited success.
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Figure A.3: CATS image of the isolation 

A .2.4 Iso lation

process action timing

depositing resist spin 15 % 2010 resist at 5000rpm 60 s 

bake at 180 °C 60 minutes

transfer of pattern pattern transferred from WAM to CATS 

Job file submitted 

submit job to beamwriter

dose 280 ^C, spot size 160 nm 1 night

develop 1 :1 ,  MIBK : IPA warmed to 21 °C 60 s 

rinse in IPA 30 s 

dry in nitrogen

isolation etch 100 : 2 : 1, H20  : H20 2 : H2S 0 4 30 s 

rinse H20  20 s 

dry in nitrogen

Fig A.3 shows the pattern file for the isolation. After completion of the 

etch, the resistance between ohmic contacts is again checked. This gives an 

indication of whether the etch has reached depth of the 2DEG. In a successful 

etch, the resistance between ohmic contacts should be less than 1 kf7 for con

tacts with a current path between them and considerably greater than 1 MQ
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when there is no current path available.

If the isolation etch did not reach the 2DEG, the etch can be repeated for 

a further 5 s and then re-checked. Once completed, the resist layer is removed 

by a 5 minute soak in acetone, 30 s rinse in IPA then dried using a fast flow 

of nitrogen.

The isolation etch defines the large Hall bar into the 2DEG. It also isolates 

the specimen from other specimens on the same piece of wafer. Each ohmic 

also has isolation round either three or four sides of the contact depending on 

whether it is to be used for current/voltage or for a gate. For a current or 

voltage contact, the side without isolation leads to the Hall bar. The other 

three sides are isolated to prevent unwanted current flow. For a gate, the ohmic 

needs to be electrically isolated from the Hall bar, hence isolation on all sides 

of the contact. Also, for the gate ohmics, there is a small area between the 

isolation and the contact on one side. This is to prevent cracks in the gates by 

having a stepped drop from the ohmic to the isolated gate track.
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A .2.5 Small Gates

process action timing

depositing resist spin 4 % 2010 resist at 5000rpm 60 s 

bake at 180 °C 30 minutes 

spin 2.5 % 2041 resist at 5000rpm 60 s 

bake at 180°C 60 minutes

transfer of pattern pattern transferred from WAM to CATS 

Job file submitted 

submit job to beamwriter

dose 312 pC, spot size 15 nm 1 night

develop 2.5 : 1, MIBK : IPA warmed to 21 °C 60 s 

rinse in IPA 30 s 

dry in nitrogen

de-oxidisation etch 

metallise

20 : 1, H20  : HC1 20 s 

rinse H20  20 s 

dry in nitrogen

evaporate 1 2  nm Ti, 15 nm Au 15 minutes

lift-off acetone and heatbath ~  30 minutes 

rinse in IPA 30 s 

dry in nitrogen

To establish the correct dose to expose the pattern, a series of exposure 

tests are carried out. The pattern file used is shown in Fig A.4 and results of 

one such test is shown below in Fig A.5.

From this, it can be seen that a dose of approximately 312 pC  was suitable 

for the pattern required. Further investigation of the exposure test around 

this dose gave the exact dose required. Fig A.6 a shows that a dose of 250 pC 

defined the gates well but did not give the desired voltage probe dimension of 

300 nm. A dose of 312 pC (Fig A.6 b) showed that the gates were well defined

212



Appendix A. Device fabrication

w
/ 1\

Figure A .4: CATS image of the small gates

(b) Dose = (c) Dose =

312 fiC 488 fj.C

(d) Dose = (e) Dose -

610 (jtC 760 nC

Figure A .5: SEM images of small Hall bar exposure dose test

(a) Dose =

200 iiC
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(a) Dose — 250 /iC (b) Dose = 312 /iC

Figure A.6: Higher magnification SEM images of small Hall bar exposure 

dose test

and that the desired voltage probe dimension of 300 nm was transferred from 

pattern to substrate accurately. It was this dose which was used to fabricate 

the small Hall bars.
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A .2.6 Thick gate leads

process action timing

depositing resist spin 15 % 2010 resist at 5000rpm 60 s 

bake at 180 °C 30 minutes 

spin 4 % 2041 resist at 5000rpm 60 s 

bake at 180 °C 60 minutes

transfer of pattern pattern transferred from WAM to CATS 

Job file submitted 

submit job to beamwriter

dose 280 pC, spot size 160 nm 1 night

develop 1 : 1 ,  MIBK : IPA warmed to 21 °C 60 s 

rinse in IPA 30 s 

dry in nitrogen

de-oxidisation etch 

metallise

20 : 1, H20  : HC1 20 s 

rinse H20  20 s 

dry in nitrogen

evaporate 33 nm Ti, 160 nm Au 30 minutes

lift-off acetone and heatbath ~  2 0  minutes 

rinse in IPA 30 s 

dry in nitrogen

The large gates, Fig A.7, linked the gate ohmics to the small Hall bar at 

the centre of the design by an overlap of 2  p,m to provide current continuity 

between the ohmic contacts and the centre of the Hall bar. The thick gates 

were used in conjunction with the small gates and the thicker gates are less 

likely to be discontinuous over a larger distance. The small gates are required 

at the centre of the Hall bar to achieve the desired definition.
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Figure A.7: CATS image of the thick leads to the gates 

A .2.7 M agnetic structures

process action timing

depositing resist spin 4 % 2010 resist at 5000rpm 60 s 

bake at 180 °C 30 minutes 

spin 2.5 % 2041 resist at 5000rpm 60 s 

bake at 180 °C 60 minutes

pattern transfer pattern transferred from WAM to CATS 

Job file submitted 

submit job to beamwriter

dose 312 p,C, spot size 15 nm 1 night

develop 1 : 1 , MIBK : IPA warmed to 21 °C 60 s 

rinse in IPA 30 s 

dry in nitrogen

de-oxidisation etch 

metallise

20:1, H20  : HC1 20 s 

rinse H20  20 s 

dry in nitrogen

evaporate 60 nm Co 3 hours

lift-off acetone and heatbath ~  30 minutes 

rinse in IPA 30 s 

dry in nitrogen
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Magnetic structures were evaporated onto the surface of the GaAs substrate 

using the thermal evaporator in the Department of Physics and Astronomy. 

Metallisation times for the magnetic structures are considerably longer than 

those for other layers. This is due to the use of different evaporator for the 

magnetic layer.

Dose tests similar to those for the small Hall bar were also carried out for 

the magnetic layer. The test gave a dose of 312 /j,C defining the magnetic 

structure most accurately.
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