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Summary

This thesis is about the generalisation of a method to determine an asymptotic upper 
bound for the covering radius of primitive BCH codes. The method was introduced 
by S. D. Cohen in the mid-1990s for binary codes. It reduces the coding-theoretical 
problem to the complete splitting of a single polynomial F(x) over a finite field, 
which is then established using results that have their roots in ramification theory 
of function fields.

The opening chapter introduces the covering radius problem for BCH codes along 
with its full coding-theoretical background and some history.

As a first result, the transformation from the covering radius problem to a poly­
nomial splitting problem is extended to primitive p-ary BCH codes, where p is an 
arbitrary prime. The process, during which an explicit “ready-to-use” form of the 
general F  is derived, is summarised in one theorem (Theorem 6).

The foundations for arranging the splitting of F  (via certain adjustable coeffi­
cients) were laid in previous work by Cohen, which is presented in extracts. By 
combining the key strategy of this with new ideas to meet the special requirements 
of the non-binary case, sufficient criteria for the splitting are obtained; these come 
in the form of conditions on polynomials /o and f \ , where F  has been parameterised 
as /o +  u fi  (u an indeterminate). Several other lemmas are proved to deal with the 
establishing of the conditions. All these results are valid for arbitrary primes p > 3, 
so that with this the desired general version of the method has been made available.

The second half of the thesis is an in-depth study of the application of the method 
to ternary codes whose designed distance is of the form 6 = 3t + 2 (t £ N). It is 
shown that for all £ =  0 (mod 4) the covering radius p takes its minimal value <5—1 
whenever the length of the code exceeds [(£ — 1)! (6 — 3)]2; for t = 2 (mod 4) the 
same holds when the length 3m — 1 of the code has even m. The case t = 1 is used 
as an example to illustrate how the method can fail to yield a result.

Subsequently, an improvement of the method for p > 3 is achieved by exploiting a 
certain factor e (not visible for p =  2 because in this case it is always 1). Coming back 
to the ternary case with 5 =  3£ +  2, the example t = 1 becomes instructive in two 
ways: for odd to, the refined version of the method finally allows to prove p =  6 — 1 
(showing that the improvement really is one), while for even m  this turns out to 
be the only case in the text where p does demonstrably not attain its lower bound 
6 — 1, but S instead. Further modifications of the method are explored, and finally 
evidence is gathered that a result similar to that for t = 1 may hold for all odd t.

The final chapter discusses briefly possible directions for a continuation of the 
research.
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Preface

In mathematics, generalisations come with varying degrees of excitement. Where 
some computation is more or less done again with different numbers, this is usually 
considered a technical detail and not a subject of an academic discussion. Then 
there are those generalisations which are essentially straightforward, but due to a 
substantial growth in complexity require great discipline in carrying out, and when 
completed help to see the original matter clearer. Certainly the most interesting 
ones are those where unexpected things happen, completely new aspects come to 
light, and nobody knows where the way really goes until the end is reached.

In this PhD thesis we generalise a method of solving a coding-theoretical problem. 
“Coding theory” is the technical term for the mathematical theory of error-correcting 
codes, a discipline with both an applied and a pure side to it. We will not go too deep 
into this theory here; all that is needed to understand the origin of the problem will 
be explained in the first chapter. (Indeed, once the problem has been transformed 
into the context of polynomials over finite fields, coding theory will play a minor 
role in this study. Even without mentioning codes at all, the remaining part of 
the problem—finding solutions to certain equation systems by making a suitable 
polynomial split into linear factors over a finite field—would make an interesting 
topic in its own right.)

The method at the centre of our attention is due to S. D. Cohen and was pub­
lished in 1997. It brings together a classic coding-theoretical observation by T. Helle- 
seth, auxiliary results from ramification theory of function fields (an application of 
Galois theory), and a certain amount of hands-on manipulation of polynomials. 
The method was originally developed for binary primitive BCH codes and will be 
generalised here to such codes over arbitrary prime alphabets (“p-ary” codes). This 
happens in Chapters 2 and 3, and for a first orientation of the reader a quick overview 
is given now. The skeleton of the method is as follows.

covering radius problem for BCH code 

*First Part < solvability problem for Helleseth systems 

splitting problem for polynomial F

{ uses results from Galois theory to show that certain 
coefficients of F  can be chosen such that F  splits 
completely over the relevant finite field

First, following Helleseth’s idea, equivalence is shown between the coding-theoretical



problem and the solvability of certain equation systems (Section 2.1). Then, follow­
ing Cohen’s idea, a polynomial F  is determined whose splitting over the finite field 
of order q, where ^ — 1 is the length of the code in question, implies a solution to 
the system (Sections 2.3-2.5). Between the two steps there can be a normalisation 
procedure (Section 2.2). Together this may be called the First Part of the method, 
and extending it from 2 to p belongs, in the opinion of the author, to the second 
type of generalisation mentioned at the beginning.

Proving the splitting of F  is a different thing—the Second Part. To this end, we 
take up and develop further (in Sections 3.1 and 3.2) the relevant theory of Cohen, 
which derives conditions for the splitting from a Galois-theoretic criterion. The 
conditions concern elementary properties (functional decomposability, multiplicities 
of factors, etc.) of polynomials /o and / i ,  after F  has been brought into the form 
f o F u f i  (with u incorporating adjustable coefficients of F). The remaining sections 
of Chapter 3 are devoted to proving auxiliary results for the practical application.

This gives the general method, but before results are obtained, the hardest part 
remains: F  takes a different form depending on the alphabet size p, the designed 
distance 5 and the assumed upper bound r for the covering radius of the code in 
question, and the conditions have to be checked individually in each case.

Chapters 4 and 5 test the power of the method in one particular case (p = 3, 
5 = 2 (mod 3), r  =  5 — 1). Results are found, but also obstacles. The latter lead 
to various attempts to improve the method. Not all of these are successful; never­
theless, some of the “dead-end streets” have been included as genuine parts of the 
knowledge gained about the limits of the method (and so that no one else has to 
try them again). In all approaches it was a principle to be as general as possible.

In the categories of the first paragraph, Chapters 3-5 belong without doubt to 
the most interesting type of generalisation. The most prominent features of which 
the binary case gives no indication at all are the occurrence of a certain “Situation 
A” (defined in Lemma 8) and the consequences of the real choice of e in (2.4), the 
latter being more or less the foundation of the whole of Chapter 5.

Since successful application of the method requires a considerable amount of 
work and original ideas, it turned out to be beyond the scope of this thesis to carry 
it out for more than one case. Some remarks about the various others which wait to 
be attacked are collected in the final chapter, and it is hoped that research on this 
will carry on beyond the present project.

The thesis is written on a level that should be accessible for a beginning postgrad­
uate student of any mathematical direction. All prerequisites from coding theory are 
provided in the first chapter, but some familiarity with finite fields will be assumed 
(roughly to the extent of the first two chapters of [LiNi]). For a full understand­
ing of parts of Chapter 3, some knowledge of algebraic function fields is necessary. 
Appropriate references to textbooks are made.

ix



We list some symbols which may be uncommon or give rise to uncertainties:

N {1 ,2 ,3 ,...}
N0 N U {0}
\A\ cardinality of the set A

A \B set of elements in A  which are not in B
A c  B A C B  A A ^ B

A T transpose of the matrix A
(di, Cl2, • • •) ideal generated by ring elements a\, a,2, .

ordb a order of a modulo b (a, 6 G N)
A* multiplicative group of the field A

All other notation is either completely standard or explained in the main text when 
used for the first time. We write LHS and RHS for the left-hand side and right-hand 
side of an equation. Polynomials are stated without their arguments where possible; 
however, we will avoid mixed expressions, i.e. write x f(x ) ,  not x f —this is to avoid 
confusion when we have to deal with expressions like x f ( x p). The statement f  = 0 
means that /  is the zero polynomial, as opposed to the algebraic equation f(x )  = 0. 
The term “splitting” will always mean complete splitting into linear factors.

Finally, the author thinks that a PhD thesis is a good place to put down certain 
details for which in other publications there is not enough space. In this spirit, elab­
orate proofs have been included on two occasions for results stated in the literature 
without further justification. Readers who are only interested in the main thread 
will no doubt wish to skip these tedious technical passages, and for this purpose 
they have been marked with

*rv

on the margin. (Apologies to the examiners, who will have to read everything.)
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Chapter 1

The Covering Radius Problem for 
BCH Codes

Our investigation starts with a problem from coding theory. This is introduced here, 
along with all necessary coding-theoretical preliminaries for this thesis.

1.1 Som e basic coding theory
To begin with, we list the basic notions and facts from coding theory relevant to our 
problem. The reader who wishes a more comprehensive introduction to algebraic 
coding theory and the ideas behind it is referred to the literature, e.g. Chapters 2 
and 3 of [vLi].

Let P  be a prime power and Fp the finite field with P  elements.

A P-ary linear (n, k)  code C is a ^-dimensional subspace of the Fp-vector 
space Fp. The integer n  is called the length of C. The elements of Fp are called 
words, those in C codewords.

The (Hamming) weight of a word a = (ao,. •., an-i)  is defined by 

w(a) := | {i € {0 ,... ,n  -  1} : ^  0}|

and gives rise to the (Hamming) distance

d(a,b) := w(a — b) (a, 6 G F J ) ,

which is easily seen to be a metric on Fp.

Two important parameters of every code C ^  {0} are its minimal distance 
d{C) and its covering radius p(C). The first is defined as

d(C) := min d(a, 6);a,6eC
â b

1



for the second let

Br(a) := {6 G Fp : d(a, b) < r }  ( r e  N0) ,

then
p(C) := min { r e  N : |^J Br(c) = Fp } ,

cEC

i.e. the covering radius of C is the smallest radius for which the balls around the 
codewords cover the whole space Fp.

One way of describing a linear (n, k) code C is to give a matrix H  with n columns 
and entries in Fp such that

V a e  Fp : a e C  <£=> HaT = 0T .

Let I be the number of rows of H. If I = n — k, then H  is called a parity check 
m atrix for C, and HaT is called the syndrome of a (with respect to H). The map

<Ph  ■ ¥ p / c  — > f p

a +  C i— ► HaJ
is then an isomorphism of Fp-vector spaces.

A first step towards proving results about the covering radius of linear codes is 
the following little lemma.

Lemma 1 Let C be a linear (n, k) code with parity check matrix H .
(i) A word a G Fp has distance r from a codeword if and only if its syndrome HaJ

can be written as a linear combination of the columns of H with exactly r non­
zero terms.

(ii) The covering radius of C is equal to the smallest integer r such that every 
column vector vT G Fp can be written as a linear combination of at most r 
columns of H.

Proof.
(i) Let c G C  with d(a, c) =  r. Then w(a — c) = r and HaJ = HaJ — HcJ = 

H(a — c)T is a linear combination of exactly r  columns of H.
Conversely, take a G Fp and consider its syndrome HaJ G Fp . By assumption, 
there is some b G Fp with w(b) =  r  and HaJ = HbT. Then H(a — b)T = 
HaJ — HbT = 0, i.e. a — b G C, and a has distance r from the codeword a — b.

(ii) By surjectivity of ipn, every vT G Fp is the syndrome of some a G Fp. Hence, 
by (i), a radius r G N covers the space Fp iff every vJ G Fp can be written as 
a linear combination of at most r  columns of H. Taking the minimal such r 
yields the result. □

Observe that the statement of Lemma 1 (ii) makes no sense if H  is a matrix with 
more than n — k rows: then the map (fn is no longer surjective, and some elements 
of Fp cannot be represented as linear combinations of columns of H  at all. (Hence 
our insistence in the definition that a parity check matrix have exactly n — k rows.)

2



1.2 BC H  codes
Some codes have a very useful property: a code C is called cyclic, if it is closed 
under cyclic shifts, that is

V (co, • • • , Cti_i) £ C . (cn_i, Co, • • • , Cji—2) £ C .

To study cyclic codes of length 77, one works with advantage in the principal
ideal domain ¥p[x]/(xn — 1) =: P.n by identifying a word (no, • • • ,«n-i) with the 
polynomial ao +  a\x  +  c12X2 4- . . .  +  an_ixn_1. Then the cyclic linear codes of length n  
are exactly the ideals in 7Zn, and the code generated by a polynomial g(x) £ lZn has 
dimension n — deg g. (See for example [vLi] §6.1.)

A famous class of cyclic linear codes, of great importance for both theory and
practice, are the so-called BCH codes. The “BCH” stands for the initials of their 
discoverers: R. C. B ose and D. K. R ay-C haudhuri (1960), and independently 
A. Hocquenghem (1959).

Every (narrow sense) BCH code is determined by three parameters:

alphabet size P  a prime power,
length n an integer > 2 co-prime to P,
designed distance S £ {2, . . . ,  77} .

The P -a ry  B C H  code of leng th  n  w ith  designed d istance S , which we will 
denote by Cp,nj , is defined as follows. Let m  := ordn P, and let 77 be a primitive 
n-th root of unity in F pm (the smallest extension of F p  that contains such a root). 
Denote by rrii(x) the minimal polynomial of rf over F p . Then Cp^s is the ideal in 
7Zn generated by the least common multiple of 7711(2:), . . .  ,ms-i(x). Equivalently,

Cp,n,s := {c{x) £ 1Zn : c{rf) =  0 for i =  1, . . . ,  S -  1} .

For a given BCH code Cpn)(j we fix the notation

771 =  ordn P , q := P m and N  := -— -  .
71

The integer N  is called the degree of p rim itiv ity  of C p ^s ; if N  = 1, the code is 
called prim itive. In the context of BCH codes, the letters P, 71, 6 , 771, q and N  
will be used with these meanings throughout this work without further explanation. 
(Later, p will replace P  in the case of a prime number.)

To find all possible BCH codes with a fixed alphabet size P, one may also start 
from M  £ N. Then there exists a BCH code Cp^s as defined above (with m = M) 
for every divisor n ^  1 of P M — 1 with ordn P = M  (and every designed distance in
the appropriate range). Note that in general we have only ordn P  | M . But equality
holds always trivially for 71 := P M — 1, so that the primitive P-ary BCH code of 
length P M — 1 exists for every M  £ N (and every 6 £ {2, . . . ,  P M — 1}).

3



Since f ( x p) = f p {x) for every f(x )  G Fp[x], it is obvious that in the definition 
of Cp^s all i G {1, . . . ,  6 — 1} which are multiples of P  can be omitted. In particular, 
for 5 = 1 (mod P) we have Cp^s = Cp,n,<5-1 •

The next (rather technical) lemma shows that there is no further such redun­
dancy if the code is long enough with respect to its designed distance. We will need 
this in Section 2 .1  to find parity check matrices for BCH codes, so that we can apply 
Lemma 1 to such codes and establish Theorem 4. This will pave the way for our 
approach. With Lemma 2 and Theorem 4 we make precise and prove, for arbitrary 
characteristic, statements indicated by T. Helleseth in [Hel], pp. 158-163.

The proof of Lemma 2 uses the fact that the minimal polynomial of two el­
ements of Fpm over Fp are either equal—in which case the elements are called 
conjugates—or co-prime. The conjugates of a G Fp in this situation are given by 
{a, a p , a p2, . . . ,  a pm }, a set of d distinct elements, each repeated ^  times, where 
d is the degree of their common minimal polynomial.

Lem m a 2 (H elleseth) Suppose the BCH code Cp,n ,<5 satisfies <5—1 < V q /N .  
Then the code has generator polynomial

6- 1

9 {x) = JJm *(x) ,

i= 1 
P\i

or equivalently (with 77 a primitive n-th root of unity in Fq)

Cpn,s — {c(x) G 1Zn : c(rf) =  0 for all i =  1 , . . . ,  £ — 1 with P \ i } ,

<5-1
and its dimension is n — ms, where s := 5 — 1 —

P

Proof. Write S := (z G {1, . . . ,  (5 — 1} : P \ i}. Then s = |Sj . rv

P f
We will show that the condition 5 — 1 < —— implies

N

V i , j € S :  VA; G {1,. . .  ,m — 1} : i ^ P kj  (mod n) . (1.1)

This has two consequences:

1. Suppose mi(x) = mj(x) for i , j E S , i  ^  j.
Then rf and rf are conjugates, i.e. rf G {rjpi , . . .  ,r)prn J}, so that
i = P kj  (mod n) for some k G {1, . . .  ,m  — 1}. Hence (1.1) implies
that all minimal polynomials mi(x) with indices in S  are distinct.

2. Suppose deg < m for some i G S.
Then some elements of {77*, r)Pl, . . . ,  T]pm z} coincide, i.e. there are 

£ (0, . . .  ,771 — 1} with P kH = P k2i (mod n) and k\ or
equivalently k G ( 1 , . . . ,  m — 1} with i =  P ki (mod n). Hence (1.1)
implies also that deg mi = m  for all i G S.

4



Therefore it follows from (1.1) that Cp,nj  has generator polynomial

g ( x )  = 1cm rrii(x) = T T  rrii(x)
i €S

and dimension n  — deg g = n — ms.

It remains to prove (1.1). Assume first that 1 < k < y .  Then

p^r+fc p m  p m    i
0 < \Pkj - i \  < (S — l)P k — 1 < - T T - - 1  < T T - 1  <  TT—  =  n ,i is— i  -  ' ' JV N  N

^0 (mod P)

so P kj  — i cannot be a multiple of n.

Now consider y  < k < m  — 1. Suppose P kj  — i = zn  for some z G Z. Then, because

P ~
Pkj  — i > P k - ( 8 -  1) > > P k ~ P f  > 0,

we must have z > 1. (*)
On the other hand, because

pf+ k P*T- 1
P kj  -  i < P k (6 -  1) -  1 < -  1 < - j y -  -  1 ( 1.2)

and

P'A- f  P f  (1 .2 ) ,
( P t  +  N) ■ n =  —  +  P m -  — --  1 > — ------ 1 > P kj - i ,
v ' N  N  N

we must have z < P t  -f A/". (**)
Now

/W" y   y
P kj  - i  = zn => iVP*j =  z(Pm -  1) +  JVi => JVj =  zP m“* +  ,

hence (iVi — z ) /P k must be an integer; however,

N i - z  < N ( 6 -  1) -  1 < P 9  - 1  < p k

and
(**) m i

N i - z  > N  -  ( P t  +  IV) > -P *  , 

so this is only possible for Ni  — z = 0. But then we have

N j  =  <zP”^ .  ,
^0 (mod P) = ° (mod p )

a contradiction. So again P kj  — i cannot be a multiple of n. □

We conclude this section about BCH codes with a well-known fact that justifies 
the term “designed distance” . The proof is in most textbooks on coding theory, see 
for instance Theorem 6.6.2 in [vLi].

5



Theorem  1
The true minimal distance of a BCH code Cp,n^ is at least its designed distance 6 .

It is possible to have d(Cp,n,<s) > 5 (a family of examples is mentioned in [Hel], proof 
of Lemma 3.4). However, this does not occur with codes which are sufficiently long 
compared to their designed distance (see Theorem 3.5 of [Hel] and the references 
there).

1.3 The covering radius problem  for BC H  codes
With Theorem 1 it is easy to construct, for example, codes with arbitrarily large 
minimal distance over a given alphabet. Obviously the BCH construction allows 
good control of the minimal distance. By contrast, it is not at all clear what the 
covering radius of such codes should be.

Indeed, determining the covering radius of a general BCH code is hard ([Hel], 
p. 158). In view of Lemma 2 and the remarks at the end of the previous section, 
we will not concern ourselves with numerical values for specific codes, but rather be 
interested in asymptotic bounds. More precisely, by the covering radius problem  
for BCH codes we mean:

Find expressions B*, B * and conditions on P, n and 5 such that 
B* < p(Cp^s) < B* whenever the conditions are satisfied.

The first general results of this kind were proved by T. Helleseth in his pioneering 
paper [Hel], 1985. He found for binary BCH codes (with 5 odd):

5 — 2 < p(C2,n,s) < $ whenever 2m > [(<5 — 2)N  — 1]2(J. (1.3)

The true challenge here lies in the upper bound. The lower bound, as the next 
section will show, is easy to obtain and generalises also to non-binary codes as

6 — 1 < p(Cptn,s) whenever V P m/N  > 6 — 1 (5 ^  1 (mod P ) ) t .

For binary BCH codes, the upper bound and the corresponding required size of 
2m in (1.3) were then gradually improved by various authors ([Shp], [Tie], [SkVI]), 
until in 1993 it was known that for primitive binary codes (<5 odd)

p(C2,2m- i ts) = S — 2 whenever 2m > 104(<5 — 2)d5p3([41ogdJ), (1.4)

where d denotes the product of all odd numbers from 1 to 6 — 2, and p(k) the 
k-th prime ([MoMo]). Finally, in his paper [Coh97], S. D. Cohen proved again 
p(C2,2™-i,6) < ^ — 2, using a new method which yielded a much lower and nicer 
bound for 2m than that in (1.4), namely 2m > [(5 — 2)! (£ — 4)]2. It is this method 
that we will generalise to the non-binary case in this thesis.

t All binary BCH codes can be (and usually are) viewed as having odd designed distance, whereas 
for P  >  2 we will prefer to assume S ^  1 (mod P ). This explains the apparent discrepancy that in 
the binary case we have a lower bound of 5 — 2 while in all other cases it is <5 — 1. See Theorem 3 
for a unified statement.
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The premier source of results for non-binary BCH codes is the dissertation [Kai] 
of Y. Kaipainen, 1995. We quote his main results (Theorems 3.0.1, 4.0.4 and 5.3.8 
in the original work).

Theorem 2 (Kaipainen)

(i) Primitive ternary codes.—The covering radius o fC ^ m - i j  is at most

f <5-4-1 if 5 = 0 (mod 3),
|  8 if 6 = 2 (mod 3),

whenever 3m > qo, where qo is a constant depending only on 5.

(ii) Codes with large characteristic.—Let p > 5 be a prime, P  a power of p, 8 < p. 
Then

p{CP,n,s) < S whenever P > Po and Pm > qo,

where qo is a constant depending on S and N, and Po is a constant depending
only on 5.

(iii) Primitive codes with small characteristic and large alphabet.—Let p < 6 and 
P be a power of p. Then

p(Cp,Pm-i,<0 < 5 whenever P > Po and P m > qo ,

where Po and q0 are constants depending only on S.

In [Kai] it is also suggested explicitly (on p. 49) that a generalisation of Cohen’s 
method may provide a concrete value for q0 in Theorem 2(i).

1.4 A lower bound for p ( C p ^ s )

If C,C' C Fp are two codes with C C C , then C is called a subcode of C  and C  a 
supercode of C. For example, it is clear from their definition that the P-ary BCH 
codes of fixed length n are nested, i.e.

Cp,n,6 Q Cptn,6' whenever 8 > S' .

More precisely, from Lemma 2 we have (for sufficiently small 8 )

• • • C Cptnts C . . .  C Cp,n,Pt+2 c  Cp,„,Pt+l =  Cp>n,pt C Cp^pt-1  c  . . . C Cp,n, 2 C Fp ;

in particular for binary and ternary codes:

• • • C C2,n,S Q ••• C C2,n,7 =  C2,n,6 C C2,n,5 =  ^2,n,4 C C2,n,3 =  ^ 2,n,2 C F2 ,

• • • C Cz,n ,6 C . . . C (̂ 3,n,7 = ^3,n,6 C 0^,5  C ^3^,4 =  C ^ 3^,2 C F3 .

An easy but highly useful observation, due to [GPZ], is the following (more about 
it can be found in Section I.H of [Surv]).
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Lemma 3 (Supercode Lemma)

Let C and C  be codes in FJ> with C c C ' . Then the covering radius of C is at least 
the minimal distance of C .

Proof. There exists c0 G C'\C. This has distance at least d(C') from all other 
codewords in C', in particular all codewords in C. Hence for r < d(C') we have

Co i  ( J  Br(c) ,
cec

therefore p(C) > d{C'). □

This allows to derive quickly the lower bound for the covering radius of long 
BCH codes mentioned in the previous section.

Theorem 3 (Helleseth) Suppose the BCH code Cp,nj  satisfies 5 — 1 < y /q /N . 
Then its covering radius is at least

( 6 — 1 if 6 ^  1 (mod P ) ,
\  — 2 if 6 = 1 (mod P ) .

Proof Assume first that 6 ^ 1  (mod P). Then we deduce from Lemma 2 that 
Cp,n,5-1  is a proper supercode of Cp̂ nj  . Hence p(Cp^s) > d{CqyÛ - 1) > (5-1  by 
the Supercode Lemma and Theorem 1.

In the case 6 = 1 (mod P ) we have Cp,n,6- i  = Cpnj , but Cp,ni<5-2 is a proper 
supercode of Cp,n,<5- The rest of the argument is as above. □

Having settled this, we can now turn to the upper bound and the generalisation of 
the method from [Coh97].



Chapter 2 

From the Covering Radius of a 
BCH Code to the Splitting of a 
Polynomial

2.1 Starting point: H elleseth  system s
As announced in the remarks leading up to Lemma 2 , we complete in this section 
the spelling out of details of the idea by Helleseth which will form the basis for our 
attack (and did so also for [Kai]). It says that the covering radius problem for a 
long BCH code is equivalent to the question whether a certain type of system of 
non-linear equations over a finite field has a solution.

Theorem  4 (H elleseth) Let Cp^s be a BCH code with 6 — 1 < y /q /N . Then 
its covering radius is equal to the smallest integer r such that for any choice of

ak £ Fg (* == 1....... <5-1; P \k )

the system

£1X1 + e2x% + . . . . +  £rXr = 0.1

£\x \N + £2x^n +  . . . . 4- £rXrN =  ak (P \ k )

elXt 1)N + FnT{5~l)N£2X2 +  . . . . +  £ r X ^ r ~l N̂ = CLs- 1

has a solution gq5 * * . ,  £r £ Fp , x u . . . , X r E W q .

Proof Let S  and 5 be as in Section 1 .2 , i.e.

5  =  {i € {1, . . . ,  <5 — 1} : P \ i } ,  s =  |S |,

and let (  be a primitive element of ¥ q = Fpm. Then 77 := is a primitive n-th root 
of unity in Fg, and by Lemma 2



Therefore the matrix

H  :=

clearly satisfies

/  1 77

1 rf

77“ n —1

772  i ,3  i (n —l ) i ( i e S )

1 VS- 1 ^2(5-1) ^3(«-l)

V ci G Fp : a, G Cp,n,<5 P a T =  0 ' (GFJ,)

If each entry of H  is replaced by a column of its m coordinates with respect to a 
fixed ordered basis of ¥ q over Fp, one checks easily that the resulting ms  x n matrix 
H  with entries in Fp also satisfies

V a G ¥nP : a G Cp,„,* P a T = 0 1 (GF£S).

Since Cp)Tli(s has dimension n — ms  by Lemma 2, we conclude that H  is a parity check 
matrix for CpjUjs • Therefore we can apply Lemma 1 (ii) to see that p(Cp,nj )  is equal 
to the smallest integer r  such that every column v G Fps can be written as a linear 
combination with coefficients in Fp of at most r  columns of H. The result now 
follows by re-interpreting v and H  over F9 and observing that, for a given (ai)ies , a 
linear combination

( a 1
=  £ j  • ( k j - th column of H)

\  0.6-1 )  j=1

is the same as a solution £1, . . .  ,er G Fp, aq, . . . , xr G F9 to the system (2.1) with 
=  C fci_1 ( i  =  1 ,  • • .  , r ) .  □

We can assume that the system (2.1) contains also for P\k equations of the form 
e\x \N +  ... +  erXrN = cik> namely with ajp \= a?. Because ap = a for all a G Fp 
and (a +  b)p =  ap +  bp for all a, b G ¥ q , these equations are redundant and affect 
neither the solvability nor the solutions of the system. The system is still completely 
determined by an S -tuple of values in ¥ q.

We will refer to (2.1) briefly as the AT-Helleseth system  of size 6 — 1 X r  with  
value vector (ak)kes  > and a solution with q , . . . , £ r G Fp and x i , . . . ,  xr G ¥ q will 
be called a (P, g)-solution to the system.

Theorem 4 says that to prove p(Cp,nj )  < r for a code Cpn)(5 with S — 1 < ^ q / N  
it suffices to show that the iV-Helleseth system of size 5 — l x r  has a (P, g)-solution 
for every value vector (ak) G F j. By the results of Section 1.4, we only need to 
consider 5 ^ 1  (mod p) and r > 5 — 1.
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From now on we restrict our attention to a much more special case. Our aim for 
the rest of this thesis is as follows:

Let Cp,q-i,s be a p-ary primitive BCH code, p a prime.
We want to prove an upper bound r for its covering radius (2.2)
(assuming 5 — 1 < y/q, S ^  1 (mod p) and r > 5 — 1 ).

To achieve (2.2) we must show that the 1-Helleseth system of size <5 — 1 x r has a
(p, g)-solution for every (ak) G F j. In other words, we want to find a solution to

E\X\ +  £2%2 T • • • T £rXr — al

; : : : (2 .3 )
£\x\ 1 +  £2^2 * "h . . .  +  £rX̂r * =  <2<j_ 1

with Si , . . . ,  sr G Fp and x i , . . . ,  xr g F ?.
Later, when we want to apply Newton’s identities, we will be forced to specialise

this to Si =  . . .  =  er =: e G F*. With <7* := ak(xi , . . . ,  xr) := x k + . . .  + x k for k G N,
the system (2.3) can then conveniently be written as

£ak = ak (k G S ) . (2.4)

2.2 Linear transform ation of variables
Before making the transition from the Helleseth system (2.3) to a polynomial, it is 
useful to study the effect of a linear transformation of variables on the system.

Lemma 4 Let a system of the form (2.3) be given, and let c G F 9 . Put

y{ := Xi — c fo r i  = l , . . . , r .  (2.5)

Then the original system has a solution if and only if the system 

£ i 2/ i  +  £22/2 +  • • • +  £ r 2/r — b\

Sl2l [ ~ l +  £22/2_1 +  ••• +  £ r y Sr ~ l =  bS - 1

with

bk ak — ck{£\ + . . .  sr ) — ^ ck G Fq
m= i W

has one, and solutions of the two systems are linked by (2.5).

(2 .6)
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Proof.

With Xi = yi +  c, the LHS of the A;-th equation of the original system becomes 

£1(2/1 + c )fc +  sr(yr +  c)k =

- » g o — ’ i o - - -

=  Ck ( e  1 +  . . . +  e r ) +  { £ l l / l  +  • • • +  £ r V r )  +

so that the equation is equivalent to

£lVl +  ■ • • +  £rVr — ak — Ck(£l 4- . • • +  £r) — y ]  f  ^(^lVi +  • • • +  £rVr) ■
M=1 W '

For k = 1, the RHS of this is equal to a\ — c(e 1 +  . . .  +  £r) = b\. And inductively, 
for k > 1 it is equal to

ak -  c*(£l +  . . .  +  er) -  ^  ■ D
M=1 W '

Note: there is no generalisation of this to translating the variables Xi by different 
individual values q, as the induction step relies on the fact that for ji = 1 , . . . ,  k — 1 
the common factor cfc-/x can be isolated from £12/j* +  . . .  +  SrUr ■

What can we gain from this? Coming back to the situation (2.4), where all the £*
are equal to one e 6 F*, we have in particular

b\ = ai — ere .

Thus, for r ^  0 (mod p) it is possible to obtain any b\ G Fg via the above transfor­
mation by taking c := (ai — bi ) / re. As a consequence, rather than solving (2.4) for 
all (ak) € we may assume that ai is an arbitrary fixed value in ¥ q , for instance 
zero.

For r = 0 (mod p) this assumption cannot be made, as the transformation then 
leaves ai unchanged for all c. (Assumptions, of a more complex nature, about ajt 
with higher indices are possible, but will not be used in this study.)

2.3 Conversion into the problem  of the sp litting  
of a polynom ial over

The link between a Helleseth system with constant coefficients (2.4) and the roots 
of a polynomial is provided be the Newton identities (cf. [LiNi], Theorem 1.75).
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Theorem 5 (N ew ton identities) Let ak be as defined in Section 2.1, and for
i = 0, . . . , r  let Si := S i(x \, . . . ,  x r) be the i-th elementary symmetric polynomial
in X i , . . .  ,x r, i.e.

So =  1 ,

S \  =  X \  +  X 2 +  • • ■ +  X r  ,

Sr = X1 X2 ' • ■ x r .

Then the following formula holds for all k = 1, . . . ,  r:

jt-i
=  (—i)*+1fcs*.

1=0

And for all k > r:
T

l) l<7k-lSl =  0 .

1=0

Now suppose a fixed system of the form (2.4) is given. Express r (the number 
of variables Xi) as r =: pt 4- M  with t =  and M e {0, . . .  ,p — 1}. Then apply 
the following procedure.

1. Choose arbitrary elements sp,S2P, . . .  ,s tp E F q .
If 5 — 1 < r, choose also arbitrary elements ak E Fq for k = 5, . . .  , r  
with p \ and fill possible gaps for p\k with aJP := a?.

2. Define So := 1 and

sk := — —— 2 j ( - l ) zafc_zs/ E F q for k = 1, . . . ,  r  with p \ k . 
1=0

r

3. Form the polynomial F(x) := ^ ( ~ l) lSiXr~l E F jx] .
i = 0

4. Factorize F(x)  over Fq, the algebraic closure of Fg, into

r

F(x) = JJ(a; -  7j) .
z=l

13



Lemma 5
The roots 71, . . . ,  7T of F(x) form a solution to the system £ak =  ak (k = 1 , . . . ,  r), 
and in particular to the subsystem £ak = ak (k = 1, . . . ,  S — 1).
If  F{x) splits completely over Fg; we obtain a (p,q)-solution to both systems.

Proof. For the purpose of this proof, let ak stand for (Jk(h ,  - ■ • , 7r). We must 
show that for all k =  1, . . . ,  r

eak = ak . (2.7)
Expressing F(x)  in terms of the elementary symmetric polynomials in its roots,

r  r

F (x ) = I f r - * )  =  ,
i=l i=0

and comparing coefficients with the definition of F(x) shows that 5* (71, . . . ,  7r ) =  s* 
for all i = 1, . . . ,  r. Hence it follows from the Newton identities that

k—1
( - 1  )k+1ksk = 5 ^ ( - l )lcrk-isi for all k = 1, . . .  , r  . (2 .8)

1=0

Now use induction.

k =  1: (2.8) says that si =  <TiSo =  oi- By definition, Si =  e~la\. Hence £(T\ = a\.

k = 2 , . . . ,  r: Suppose (2.7) has already been shown for all indices up to k — 1.

If k = 0 (mod p), write k = jp. From the induction hypothesis we know eaj =  aj ,
and £<7k = ak follows by taking p-th powers on both sides.

If k ^  0 (mod p), we have
k-i(2.8) v—v  . , . , 1.4.1 . definition of St

W o  =  +  ( - 1) =
1 = 1

k—l 1 k—1

E ,  ̂si 1 v—> /  ̂si induction hypothesis
( - l ) 'w iS i  +  =

1 = 1  1 = 0

k- 1 k—l
= - ^ 2 { - l ) lak-iSi +  ^ 2 { - l ) lak-iSi +  e- 1a*so,

1=1  1=1

so that again £ak = ak. □

With this the problem (2.2) about the covering radius of Cp,g-i,5 has been trans­
formed into the problem of making a polynomial split completely over Fq.

Note that we do not get the “converse”: if for some (ak) E Fq there exists no 
choice of sp, . . . ,  spt E Fq for which F(x) splits, this does not imply a lower bound for 
p(Cp,g_i,5). This is because we had to choose all e* equal in order to accommodate 
the Newton identities—but there may still exist a solution to one of the Helleseth 
systems with e* ^  £j for some ?, j  E {1, . . . ,  r}.
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2.4 Expressing the S k  (.p  \  k )  in term s of the S k  ( p \ k )

A look back at the procedure on page 13 shows that the elements to be varied in 
order to achieve the splitting of F(x) are exactly the sp, S2P, . . . ,  stp and the ak with 
5 < k < r and p \ k (if any of the latter are present). Everything else is then 
completely determined. Therefore our next wish is to express F(x) in a form that 
uses only the sk with indices divisible by p.

Lem m a 6 Let sp, S2P, . . . ,  stp, ak (k = 1, . . .  , r ) , so =  1 and
~ k —l

Sk = T - ^ ( - l ) fe+z+1ajfe_/sz (k = p \ k )
1=0

be the elements chosen or defined in the first two steps of the procedure on page 13. 
Define Aq := 1 and, for k =  1 , . . . ,  r,

0, i fp \k ,

Ak := { - r i X - A -  M * .  (2'9)
(jl=0

Then

Sk =  E  (- 1)'k ~ upA k- upsup for all k =  1,. . .  , r
u=o

Proof. Induction on k. For p\k we have the trivial statement sk = sk, so that only 
for p \ k  there is something to prove.

k =  1: We have si = £~1a\So and Ai = — £~la\, hence Si =  — Ais0-

k > 2 (p \ k):

s* =  f e ' T ‘(~ 1)k+l+lak- ,Sl =
1=0

k —1 i k —l  .. LpJ

1=0 1=0 u=0
p\l p \l " 1 v  ' 1 ■ y

=  si by induction hypothesis

k - i  L£-l k - i  LpJ-1  ..= E E y ( - l ) k- v1* l*k-iAi-vpsvp + E E j - i - ^ - ^ k - i A i - u p S u p  +
i=o ^=111 /=o v=o
P\i Lpj P\i

s .
complicated way of writing the first sum with I = up complicated way of writing an additional zero term

*-i LpJ+ E E -r : ( - l )k-'/p+l°-k-lAl-vPs.P ,
/=0 u=0 
p\l
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and with ^ ( ~ l ) k vp+1ak-iA l- vpsvp =: B(l,v)  for / =  0 , . . . ,  k - 1  and v  =  0 , . . . ,  |_̂ J, 
this whole expression becomes

k —l  L^J

1=0 u=0

If further B (l , u) := 0 for v > , then

f c - i  L{J LpJ k - i  i p J  * - 1

= EE5̂ -") = EE5̂ ) = EEB(,>*,)>
i=0 i^=0 i/=0 Z=0 i/=0 l =up

where the last step uses that for I =  0 , . . . ,  up — 1 we have ^ > |_pj and therefore
B(l, u) = 0.

Finally,

Lp J k - l  i

=  EEfe(-l ) fc- ^ +lafc_(Ai_^s„p =  "  + ‘'!>
i/=0 l =up

i~p~l  ̂—L—̂  1 characteristic p= E E =
i/=0 p=0

LpJ /  .  ( k - u p ) - l  \

=  ^  ( _ (fc -  a(fc-^p)-M^/ij S»P =

L̂J
=  , as claimed. □

Substituting the expression of Lemma 6 for the s*,, we obtain a version of F(x) 
which uses only the sup and Ak- Definition (2.9) establishes a one-to-one correspon­
dence between the (ak) G F  ̂ and the (Ak) GFj .  It is reversed via

Q,k <

f  Pr a?, if A; =  j p ,
jfc-i

■keAk -  ^  cik-pA/A, if p \ k . 
m=i

(2 . 10)

In these definitions, the and ajt with indices k = 1, . . .  , 8  — 1 are independent of 
those with indices k = 8, . . .  ,r. Moreover, A\ =  — £-1ai, in particular 4̂i =  0 if and 
only if Ui =  0. Therefore, in order to achieve (2.2), it suffices to make F(x) split 
over Fg for any (Ak) G F j, where the same assumptions can be made about the A k 
as were made about the ak at the end of Section 2.2, and the A k for k = 8, . . . ,  r 
with p \ k can be chosen arbitrarily.
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2.5 R e-structuring o f F ( x )  and sum m ary
Finally, some manipulations are needed to bring F(x) into a shape that makes it 
suitable to be subjected to our splitting criteria in Chapter 3. We have

r r t

p(x)  =  +  £ ( - i ) i^ r- i =
z=0 i= 0  z=0

p \i p \i

M  t

=  £ ( - i  r s ^ - ^  +  ^ ^ ( - i ) w+“sw+Qx’- ('‘p+“> +
L>=0 Q=1 p —0

P ~ 1 t - 1

+ z  £ ( - i r +“sw+«xr“('‘p+“) .
a = M + 1 p —0

The second of the three expressions in (2.11) is equal to

M  t /  p

E ] T ( - i r +“ £ ( - i ) (w+a)- i'M (w+ct)_1/pSl/p) =
q = 1  p —0 \ l / = 0

=  sMP+a by Lemma 6
t p  M= ZEE ( 1) ^A.(il —L,')p+a s l,pX  ^

p —0 is—0 a = l  ^  ^=: B{p, is, a) for short

t M  t t  M

= =  5 Z  ^  S  ^  «) =
p,is=0 a = l  i/=0 /z=j/ a = l
is<p

t M  t

= E E D - ' ^ v w ^ " ' ^ 1 =
i/=0 a = l  /z=i/ 

t M

(2 . 11)

= E E ( - 1>'PiM" " j K ( i ' ) s-»
i/= 0 a = l

t

with ^ E “}(xp) := 24(M_I/)p+a(a:p)t_/i for =  0 , . . . ,  t and a  =  1, . . . ,  M
p=is

Similarly, the third expression in (2.11) is equal to

p - l  t - i  /  p  \

E  E f - 1) ^ 0 E ( - 1)(w+“>" ‘'M to+“) - ^  z r- <“p+“) =
a = M + l jz= 0  \ z /= 0  /
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t - 1 p -1  t - 1

= E E E(-1)‘/M(̂-‘'>p+“ŝ xPi+M"(w+a,+p'p =
i/=0 a = M + l n =v

t p -1

= E E
^=0 a = M + l  

t-1
with a)(sp) :=  X I ^(M-^p+aC^)* M 1 (z' =  0 , . . . ,  t; a  =  M +  1 , . . . ,  p -  1)

(for i/ =  t this definition means in particular g ^ M a  ̂ = 0).

With all this put together, F(x) equals 

t r m p - i

E<-«
Finally, by replacing s„p for odd up with its negative, the factor {—l)up can be 
dropped.

Thus the results of this chapter can be summed up as follows.

Theorem 6

Let p be a prime and q a power of p.

In order to show that a primitive p-ary BCH code CPtq- i j  with 5 — 1 < yjq has 
covering radius at most r = pt + M  (M  G {0,. . .  , p — 1}), it suffices to show that 
for every choice of

Ak € Fq (k = 1, . . .  ,5 -  1; p \  k) (2 . 12)

there exist elements

sp,s2p, . . .  ,s tp e ¥ q and Ak G ¥q (k = 5,. . .  ,r; p \ k) 

such that the polynomial

M p - i

with
so = 1,

t- 1
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splits completely over F9 .

Moreover, if r ^  0 (mod p), one can take k > 2 in (2.12) and assume that Ai is 
any fixed element (zero or other).

The definition of the ^-polynomials above reflects the way they were derived. 
However, a more convenient form to work with is

9 t - i ~ - J ( x p )  =  Y  A { t - u - t ) p i - a X in  ,
<=o

gip+M-a)^) =  ^  A {t-l-u-i)jH-aXpi •
i = 0

2.6 A n exam ple
The re-structured polynomial F(x) in Theorem 6 is at the centre of our approach. 
Its building principle is best illustrated with a specific example. We do it here for 
p = 3 and r =  3t 4- 1, as it arises e.g. from 6 = 2 (mod 3) and r = 6 — 1. This may 
not be the most instructive example—the reader is encouraged to work out one with 
p > 5 and M  E {2, . . . ,  p — 2}—but it is the situation that will prevail in the rest of 
this thesis.

With p and r as said, one finds that there are g^~  and (^-polynomials, whose 
expansions are as follows:

9t-i(x3) =  A 2X3t 3 4- A$x3t 6 4- . . .  4- Ast-7%6 +  Azt_4X3 +  ^3t-i i 
9 t - = A 2X3t 6 4- A$x3t 9 4-. . .  +  A$t- 7x 3 4- A ^t -4  ,

022)(z3) =  A 2X6 4- A 5x 3 4- As ,
g{i \ x 3) = A 2x 3 + A 5 ,
9o2)(x3) = M ,
9- l(x3) = 0,

9t-i(x3) — A\X3t 4- A^x3t 3 4- A 7x 3t 6 4- . . .  4- A^t-sx6 4- A%t-2X? +  A$t+\ , 
9t%(x3) = M x 3t~3 +  A4x 3t~6 4- A 7x 3t~9 4- • • • 4- A 3t_5x3 4 - A 3t- 2 ,

g ^ \ x 3) = A ix 9 4- A4X6 -I- A7x 3 +  A 10 ,
g ^ i x 3) = A ix 6 4- A4X3 4- A7 ,
9o0)(x3) = A\X3 4- A 4 ,
g(°}(x3) = A i\
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if we assume A\ = 0, the ^^-polynomials are shortened to

9 t - l l 3' 3) — A 4 x 3t 3 +  A j x 3t 6 4- . . .  4- A z t - 5 % 6  +  A s t - 2 ^ 3  4- A $ t+ i , 
9t%(x3) =  A 4 x 3 t ~ 6  4- Ayx 3 t ~ 9  4 - . . .  4- A%t-$x3  4- A^t- 2 ,

g{2 ]{x3) — A 4 x 6  4- A 7 X3  +  A  

9 i \ x 3) =  A 4 x 3  +  A 7 , 
g £ \ x 3) =  A 4 , 
g - l { x 3) =  0 .

Together these form 

F(x) =

10

x 3t+i +  x 2 g f \ { x 3) +  g i ° \ ( x 3) 

3t~2 4- x 2 gi% (x3) 4- ^ ( z 3)x4- s3

4- . . .  +

4- s3f_6 • |V 4- x 2 g f \ x 3) 4- g f \ x 3) 4-

4- s3*_3 • [ V  4- x 2 ^ 2)(x 3) 4- 9q \ x3) 4-

4- s3t • [ x  4- g - l { x 3) .

4-

+

Here it may also be of interest to look at the expansions of the polynomials in square 
brackets: the top one is

x3t+i _|_ A lX*t _j_ A2x3t~l 4- A4x3t~3 +  . ..
. . .  4- y43 (t _ j ) _ ix3l+2 4 - A$(t-i)+\X3t 4- . . .  4- Ast-iX2 4- A^t+i ,

the penultimate one is x4 4 - A ix3 4- A2x2 +  A4 (= x 4 4 - A2x2 4 - A4 if A\ =  0), and 
the last one is x 4 - A\ (or simply x, if A\ =  0 ).

One final word about our choice of notation. The reader will have noticed that 
in the symbol g ^

(1) the i stands for the power of x  together with which the polynomial g ^ \ x p) 
appears in F(x),

(2 ) for i of the form p 4  M  — a (a = M  4-1 , . . .  ,p — 1), the j  corresponds to the 
maximal degree that g ^  can have as a polynomial in x.

However, (2 ) does not hold for i = M  — a (a = 1 , . . . ,  M), except for a = 1 when 
we assume A\ =  0 . Otherwise the index j  would have to be one higher.

This is somewhat inconsequent, but for a good reason: the overwhelming part of 
the situations that we will deal with in this thesis will have M  = 1 and Ai = 0, in
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which case (1) and (2) cover everything and our notation is more natural. Moreover, 
apart from avoiding much unnecessary awkwardness in Chapters 4-6, the chosen 
notation is more* consistent with [FrCoh]. The only concession we have to make is 
to keep in mind that for i = M  — a  (a =  1, . . . ,  M) the degree of g ^ \ x p) is bounded 
by p(j +  1) rather than pj.

tThere is, however, some inconsistency as far as t is concerned: in [FrCoh] we wrote 6 =  3t — 1, 
whereas now we prefer S — pt  +  M.  For fixed 6, this makes odd t even and vice versa.

21



Chapter 3 

How to Achieve the Splitting

With the First Part of our method complete, what we now need is a means to ensure 
that the polynomial F(x) in the situation of Theorem 6  splits completely over ¥ q. 
This Second Part of the method is independent of the First Part inasmuch as any 
result to this effect (known or to still be found) could be used. We stick to the 
criterion which was also used in [Coh97], and which stems from [Coh98].

Theorem 7 and Lemma 7 below are extracts from the work of Cohen. They are 
taken from a wider context, namely an extensive (and sometimes rather intricate) 
study of ramification in function fields, for which Sections 3 and 4 of [Coh98] are the 
primary reference (besides [Coh99] and others). The proofs are too extensive to be 
repeated here, but some key steps will be mentioned with the intention to convey 
to the reader a feeling for the underlying ideas and some understanding how the 
generalisations in the second part of Section 3.2 work. This requires some basic 
knowledge of Algebraic Function Field Theory; an excellent introduction to this 
area is [Sti].

Sections 3.3-3 .6 gather some auxiliary material to deal with the practical con­
ditions for the splitting obtained in Section 3.2. Some of the statements may seem 
almost too trivial to be called a lemma, but the purpose in doing so is twofold: to 
lift some of the burden of Chapter 4, thereby making the proof of Theorem 8 more 
transparent, and to supply certain arguments which tend to be used frequently in 
connection with our method in a compact and widely transferable form.

Notation: S n denotes the symmetric group, An the alternating group of degree n. 
From Section 3.2 on, K  stands for a general field with an extension field L and 
algebraic closure K. All notation from previous chapters is retained.

3.1 The sp litting criterion
Here is the result around which the whole method is built.

T heorem  7 (Cohen)

Let Fu(x) := fo(x) + u f i (x ) ,  where u is an indeterminate and /o ,/ i  E ¥ q[x] are 
monic polynomials with r := deg fo > deg / i  > 0 and fo / f i  F9(xp).

Write G for the Galois group of Fu over ¥ q(u) and G for that of Fu over Fq(u).
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Then there exists an a  G F9 such that Fa(x) splits completely into (distinct) linear 
factors over ¥ q, provided / 0 and f i  are co-prime, q > [r! • (r — 2 )]2 and G = G.

This is a shortened version of Lemma 5.1 of [Coh98]. (There deg f i  > 2, but this is 
for other reasons and not essential; cf. [Coh99], which is without this restriction.)

We explain briefly the significance of the condition G = G. Let S and T be the 
respective splitting fields of Fu over the rational function fields Fg(u) and F9(u) :

T = S - F  Ju )

galois with Galois group G

F,(u)

F,

galois with Galois group G

Fq(u)

The original statement of the lemma in [Coh98] is an estimate which shows that 
for sufficiently large q the number of a  E Fg as in the theorem is positive. This is 
derived from the Hasse-Weil bound for § and the Hurwitz genus formula applied 
to S /F q(u). For the former to be valid, it is necessary that Fq is the full constant 
field of §, meaning that Fq is algebraically closed in §. This is equivalent to G = G.

G and G are sometimes called arith m etic  and geom etric Galois g roup of Fu, 
respectively. They always satisfy G C G C S r (viewed as groups of permutations of 
the roots of Fu), so it suffices to concentrate on G C G.

By setting the sp, S2P, . . . ,  stp in Theorem 6  equal to polynomial expressions in an 
indeterminate u , it is easy to bring F(x) into the form Fu(x) of Theorem 7. Usually 
we will choose all but few of the sp, s2p, . . . ,  stp equal to zero.

In the same way, parameters v\ , . . . ,  Vk (usually one v will suffice) can be brought 
in, such that one or both of /o, / i  depend on them. Then it remains to show that 
these can be chosen in F9 in such a way that the conditions for the splitting in 
Theorem 7 are satisfied.

Of these, the co-primality of /o and f \  is an obvious necessity which will never be 
problematic to arrange. The condition q > [r! (r — 2)]2 will appear in our theorems as 
a lower bound for the validity of our statements about the covering radius of codes. 
Our efforts go now into establishing practical criteria (i.e. elementary properties the 
polynomials / 0 and f \  must have) for G =  G.

3.2 Practical conditions
First we need some terminology (valid in an arbitrary field extension L/K).
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Let K[x], h ^  0. The rational function /  := g/h  is called decom posable
over L if there exist Qi, Q2, R\, R 2 £ L[x] with gcd(Q1? Q2) =  gcd(-Ri, # 2 ) =  1 such 
that, with Q := Q 1 /Q 2 and R  := R 1 / R 2 ,

(i) f (x )  = Q(R(x)), and

(ii) neither Q nor R  is a fraction of linear polynomials.

We call the quadruple (Q1, Q2, Ri, R2) a non-trivial decom position of /  over L. 
If no such non-trivial decomposition exists, /  is said to be indecomposable over L.

Further, a polynomial g G K[x] will be called simple if exactly one of its linear 
factors in K[x] has multiplicity two and all others have multiplicity one.

Now we can formulate:

Lemma 7 (Cohen) Suppose that, in the situation of Theorem 7, the polynomial 
Fu satisfies all of the following conditions:

(i) /o and f \  are co-prime,

(ii) fo / f i  is indecomposable over Fg,

(iii) Fp is simple for some (3 G  F9.

Then G = G = S r.

This is Lemma 3.1 of [Coh98] with alternative (a). Condition (i) makes G a transitive 
subgroup of S r, and then, as detailed in [Fri], Lemma 2, or [Coh91], Lemma 3.1, 
condition (ii) implies that G is primitive (see e.g. [Wie] for definitions). If now G (the 
smaller group) contains a transposition, then it follows (see [Coh98], p. 326/327) that 
the subgroup of G generated by transpositions equals S r, hence the result. Securing 
the existence of a transposition in G is the purpose of condition (iii). This is a key 
point and deserves some elaboration.

For a root a  of Fu we have Fq(u) C F9 (q:). Write ¥ q := ¥ q(u) U {0 0 }.
The set of places of the rational function field F9 (w) is {Pp '. {3 G  Fg}, where Pp 

for ft €z¥q corresponds to the (u — p)-adic and P ^  to the ^-adic valuation. Similarly, 
the places of F9(q) are given by {p^: p  G Fg}. ([Sti], 1.2.)

For P G ¥ q, factorise Fp(x) as

r((3)

J~[(ir -  7 z(/?))ei(/?) with distinct ji(P) G ¥ q ,
i=i

i.e. the epp) are the multiplicities of the roots of Fp in ¥q. Further, factorise f i  as

r(oo)—1

J J  (x — 7 i(oo))ê °°̂  with distinct 7 *(0 0 ) G ¥q ,
i = l

i.e. the e*(oo) for i = 1 , . . . ,  r(oo) — 1 are the multiplicities of the roots of f \  in ¥q. 
Set 7 r(oo)(oo) := 0 0  and er(oo)(oo) := deg /o — deg f\ .  Then for all P G ¥q the 
ramification index of p^p) over Pp is ei{p). ([Coh98], p. 327/328.)
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Now fix (3 £ Fq (subsequently we suppress the argument (3 after r, e* etc.). For 
a place 3̂ of T lying over P^, let denote the inertia field and F ^  the first 
ramification field of *}3 over Pp. We have the inclusions

Fq(u) C F(0) C F(1) C T ,

and in Galois correspondence to this

G 2  G(0) D G(1) D {idT} ,

where = Gal(T, F ^ )  is the inertia group and =  Gal(T, F ^ )  the first rami­
fication group of 3̂ over Pp. ([Sti], III.8 .)

Suppose Pp is “tamely ramified” , i.e. p \  e 1, . . . , er . Then it is shown in [Coh98]: 
Fu (x) factorises over F^0̂ as H\(x) • • • Hr(x), where the Hi are co-prime irreducible 
polynomials with deg Hi = e*, and the cyclic group is generated by a product 
of disjoint cycles of lengths e i , . . . ,  er. Some examples illustrate how conclusions can 
be drawn from this:

(1) p ^ 2 ,  Fp simple => is generated by a transposition.
(This proves Lemma 7 for odd p.)

(2 ) p ±  2 , deg f 0 -  deg f i  =  2 , /1  square-free =>
=> same conclusion (now with ramification “at infinity”: (3 = 0 0 ).

(3) p 7̂  2, ej = 2 for exactly one j  £ {1, . . . ,  r}, e* odd and p \ et for all i ^  j  =>
=> ae (a a generator of G^°\ I \= lcm(ei: i j))  is a transposition.

(4) po prime, p ^  po5 — Po for exactly one j  £ {1, . . . ,  r}, 
ei not divisible by po or p for all i ^  j  =>

=>■ as in the previous example, G ^  contains the p0-cycle a£.

Now suppose Pp is “fairly tamely”, but not tamely ramified, i.e. p2 \  e i , . . . ,  er 
but p|e* for at least one i £ {1 , . . . ,  r}. Then, by [Coh98], Fu = Hi • • • Hr as before;
in addition, if p \ ei, then Hi splits completely over F ^ ,  and if e* =  pe*, then Hi
factorises over F ^  as a product of e* irreducible polynomials of degree p. Example 
of a possible conclusion:

(5) ej =  p for exactly one j  £ {1, . . . ,  r}, p \ ei for all? ^  j  =>
=> Fu = Hi • • • Hr, where Hj is irreducible of degree p and the Hi for i ^  j  

split completely over F ^  =>
=>• G ^  is generated by a p-cycle.

With p = 2 and Fp simple, this completes the proof of Lemma 7.

In certain situations it is impossible to establish condition (iii) of Lemma 7. For 
instance, if p > 3 and fH =  f "  =  0 identically, then Fp cannot have a root of 
multiplicity exactly 2 for any (3. This makes it necessary to have an alternative.

In the binary case, one option is to replace condition (iii) with

deg fo — deg f i  = 2 , and all factors of f i  have odd multiplicity.
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(This works by example (5) with (3 =  oo.) In [Coh97], the resulting modification of 
Lemma 7 was enough to settle the binary case completely. Though results where a 
transposition is obtained from deg / 0 — deg f i  = 2 can be generalised to arbitrary 
prime characteristic, they are useless for our specific purpose when p > 3, because 
the structure of F(x) (the degrees of the expressions in square brackets decrease in 
steps of p) causes the difference of degrees between fo and / i  to be always a multiple 
of p.

With the ternary case in view, the next reasonable thing to do is to replace 
condition (iii) instead with

deg fo — deg f i  = 3, and all factors of f i  have multiplicity not 
divisible by 3 or p.

This yields a 3-cycle in G (example (5) with (3 = oo for p = 3; example (4) with 
Po — 3 and (3 =  oo for p > 3). If we further manage to show that fo / f i  is indecom­
posable over ¥ qj it follows that G is a primitive group with a 3-cycle in it, hence, 
by Theorem 13.3 of [Wie], it must contain the alternating group A n• This is almost 
what we want.

In order to fill the last gap, the d iscrim inan t proves to be the tool of choice. 
A well-known criterion says that, if char 2, then for a polynomial g G K[x] of 
degree n the Galois group Gal(p, K) is contained in the alternating group An if and 
only if the discriminant of g is a square in K. This can be helpful in two ways. Let 
Ax := discrim(Fu(x), x).

•  If Ax is a square in Fg(w), then G is contained in A,n and equality follows from 
Ar C G C G C A r.

•  If Ax is a non-square in F9(u), then G is not contained in A r. As it contains Ar 
itself, it can only be equal to <Sr , and equality follows from Sr = G C G C <Sr .

(Of course, neither situation may be the case.) We have proved:

Lem m a 8 Let p > 3 (prime). Suppose that, in the situation of Theorem 1, the 
polynomial Fu satisfies all of the following conditions:

(i) fo and f i  are co-prime,

(ii) fo /f \  is indecomposable over¥q,

(iii) deg fo — deg / i  =  3 and f \  has no factor of multiplicity divisible by 3 or p,

(iv) Ax is either a non-square in Fq(u) ( “Situation S ”) or a square in Fq{u) ( “Sit­
uation A ”).

Th n  _  f Sr in “Situation S ”,
n U ~  ^  ~  \ A r in “Situation A ”.
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And this is the strategy for our application of Lemma 7 or 8, or other results 
of this type. Suppose /o ,/ i  depend on one parameter v, to be chosen in ¥ q. We 
bound successively the number of v G ¥ q for which the various conditions are not 
satisfied, assuming that the “bad” values of v are discarded each time we pass from 
one condition to the next. The hope is that in the end the number of all such v lies 
(comfortably) below the size of q of at least [r! (r — 2)]2, i.e. a “good” v is left—even 
if for practical reasons we count the “bad” v in IF9 and replace the indecomposability 
condition over F9 with the stricter one over ¥ q.

This works similarly for several parameters V{.
The next chapter will show this strategy in action. For the rest of the current 

chapter we concern ourselves with some preparations.

3.3 Co-prim ality is never a problem
As mentioned already, dealing with the first condition is always relatively easy. 

Lemma 9

Let g(x) = a mxm +  . . .  +  a\X +  a 0 be a polynomial in K[x] that is not identically 
zero, and let h(x) = (3nxn 4- . . .  +  vxk +  . . .  +  ( 3 \ X  4- p0 G  K [ x ]  with k G  {0, . . . ,  n}. 
Further, if k > 1, suppose that a?o and po are not both zero.

Then there are at most m elements v in K for which g and h are not co-prime.

Proof. If one of m ,n  is zero, the statement is trivially true. So assume m ,n >  1 . 
The polynomial g has at most m  distinct roots in K. Let 7  be one of them, and 
assume it is also a root of h. Then either k = 0, or otherwise, by assumption, 7 ^ 0 .  
In any case, h(7 ) =  0 implies

1 i= 0 
i^k

i.e. 7  determines a unique value v in K. (For 7  =  0 it is always v = 0, corresponding 
to x  as a common factor.) Hence there can only be as many as m  such values in 
either of K  and K. □

(In the presence of several parameters V\ , . . . ,  Vk , the argument can be used in the 
way that for every (k — l)-tuple of Vi there exists only a bounded number of choices 
for the remaining parameter such that the two polynomials are not co-prime.)

So, provided m < |K|, there exists always a choice of v in K  that makes g and h 
co-prime. Of course, if g(x) and h(x) have a power of x  in common, they are never 
co-prime for any v. In this case, let x l denote the highest such power with I < k, 
and put g*{x) := g (x)/x l and h*(x) := h(x)/x l. Then Lemma 9 states that there 
are at most m — I elements v G K  for which g* and h* are not co-prime.
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It is clear how the lemma comes into play in our strategy when one of fo, f i  has 
non-zero constant term. Should both fo(x) and fi(x)  be divisible by x, work with 
/o and / f ,  and use Lemma 7 or Lemma 8 to establish that F* := /q -1- u f l  splits; 
then so does Fu{x) =  x lF*(x).

3.4 A bout decom position o f rational functions
Our studies of indecomposability will rely heavily on the fact that, if fo / f i  is de­
composable at all, one may assume a decomposition with certain “normalisation” 
properties. Though this has been used by various authors before, it is by no means 
obvious, and for anyone seeking a rigorous justification (which seems to be lacking 
in the literature) we include full details here. The proof of the following lemma may 
be skipped without damage for the understanding of the rest of the thesis.

Lemma 10 (Normalised Decom position)

Let g,h  £ K[x] be monic polynomials with deg g > deg h. If g /h  is decompos­
able over L, then there exists a non-trivial decomposition (Qi, Q2, Ri, R 2) with the 
following properties:

(i) ui := deg Qi > deg Q2 =: lj2,
Pi := deg Ri > deg R2 =: p2;

(ii) oji > 1, pi > 1;

(iii) Q\,Q2, R \ ,R 2 are all monic.

►)-
Proof. Let (Si, S2, Xi, T2) be a non-trivial decomposition of /  over L. Then rx

c  ( T , ( x ) \
gW  _  1 / ,  n

Write deg Si =: , deg Ti=: (i =  1,2). Now multiply numerator and denomina­
tor on the right-hand side of (3.1) with 7 J1+<72(:r) to obtain

g{x) T P ( x ) . { m X) . S l ^ g ) }

h W  2 T ( * ) - { 3 T ( * ) - « | ( ^ ) }  ’

where both expressions in braces are in L[x]. Put

ck := deg • Si } (i =  1,2) .

From (3.2) and deg g > deg h we deduce that (even if g and h are not co-prime)

t2g2 +  di > r2ai +  d2 . (3.3)
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Write o~i
S i ( x )  = :  ^  s itVx v ( z  =  1 , 2 ) ,

v=0
then

m x ) ' 5i ( S H )  =  . (3.4)

and the degree of the i/-th summand of this is

f  t i i /  +  t 2 (<7* - 1 / ) , i f s ^ ^ O ,  , 3 5 s

\  -o o  , if sitI/ =  0 .

In a first step we now replace (Si, £ 2 , Ti, T2) by another non-trivial decomposition 
(-Si, 1S2 , Ti, ^ 2) which has property (i) of the lemma. Property (ii) follows then auto­
matically from (i). We consider the cases T\ = 72 , T\ > r2 and T\ < r 2 separately.

T \  - t 2 = :  T .

In this case all non-zero summands in (3.4) have the same degree rcq, therefore 
di G  { r c T i ,  — 0 0 }  for i = 1, 2 . But neither of the di can be — 0 0 ,  as this would mean 
T 2 = 0. On the other hand, with both di equal to to*, the inequality (3.3) becomes 
rcr2 +  t o \  > T ( j \  +  t c t 2 , an obvious contradiction. So this case cannot occur.

n  > t2.

Here ( 3 .5) takes its maximal value for v — c q  (note S j iCri 7^ 0 ) ,  and since all other 
summands have strictly lower degree, it follows di = Ticq. The inequality ( 3 .3) 

becomes now r2a2 +  T101 > r2cri +ricr2, which is equivalent to (t\ — t 2)(<j 1 — cr2) > 0. 
Hence we must have <Ti > <r2, and we can simply take the original (Si, S 2, T i , T 2) as
(S1,S 2, f 1, f 2).

T\ <  T2.

Let Vi G {0,. . .  ,cq} be minimal with /  0. Then (3.5) takes its maximum for 
exactly one index, namely v =  Vi, and di =  (ri — r2)^  +  T20 j, where ri — r2 < 0. 
Inequality (3.3) becomes now r2a2 +  r2crx -f (n  — r2)^i > t 2<7i -I- r2a2 +  (ti — r2)^2, 
which shows that 17 < v2, i.e. the lowest power of x  occurring in Si is strictly smaller 
than the lowest power of x  occurring in S 2.
Now let s  : =  max ( 0 1 , 0 2 ) and put T i ( x )  : =  T 2(x) ,  T 2 (x)  : =  T \ ( x )  and S i ( x )  :=  
x s S i ( x ~ l ). Then, with S  := S i / S 2 and T  := T \ / T 2, 

S(T(x))  =  S ( f ~ l (x)) =  S(T(x)) = f (x )  .

Clearly deg T\ > deg T2, gcd(T’i,T 2) =  1, and deg S i  = s — v\ > s — v2 = deg S 2. 
Moreover, gcd(S'i,S'2) =  1 (otherwise there exists 7  in some extension of L such 
that 7 sS'i(7 -1) =  7 S‘S,2 (7 _1) — 0, and since one of S i,S 2 has non-zero constant 
term it follows that 7  /  0 and Si(7 -1) =  S2 (7 -1) =  0, in contradiction to the
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co-primality of Si and S2). Therefore (S i,S 2 ,Ti ,T2) is a non-trivial decomposition 
of /  satisfying (i).

In a second and final step we make all polynomials monic without changing their 
degrees. First write T\(x)/T2{x) as c • R i (x ) /R 2(x ) with R \ ,R 2 monic and c G L*. 
For i = 1,2 write

Si(x) =: ^2,Si,vXu
v = 0

and define

§i(x) := ^  cvSj,ux u .
i/=0

Then

* M w y  *  ^ i 2i ( x ) y  * ^ ! ( * ) \

s l5 w J  ‘  S ' H s o J  ’  5  U r J ‘  s U w ]  ’

so (S\, S2, R\, R 2), like (Si, £2 , Ti,T2), is a non-trivial decomposition of / .  Let lc(Lf) 
denote the leading coefficient of a polynomial H. Define

g.
Qi =   l—  and (Ji := b{ =  deg Q{ (i = 1 , 2 ).

’ lc(Si)

Then Q1 is monic, and Q 1/Q 2 =  S1/S 2 , i.e. (Qi, Q2 , -^i, R2) is a non-trivial decom­
position of / .  We see that Q2 is also monic as follows. In

g(x)

K*)  ■{*?( *) •  f t  ( $ $ ) }

the denominator of the right-hand side must be monic because g, h and the numer­
ator of the right-hand side are. Hence

1 =  lc =  ic(ij2r - - . i c ( Q 2)-ic(i?1r  =  HQ*)-

□

We show next that, at least over &, the normalisation procedure can be carried 
one step further, allowing us to make assumptions about one of the constant terms of 
the decomposition. This argument will, in several variations, be crucial in Chapter 4.

Assume a normalised decomposition f (x )  = Q(R(x)) as in Lemma 10. Because 
uji > 0, Q1 has a root 7  in K, and one can replace Q(x) by Q{x) := Q(x 4 - 7 ) and
R(x) by R := R(x) —7 . On polynomial level this means (with the obvious notation)

Qi(x) = Qi{x +  7 ), Ri(x) = Ri(x)  -  7  • R 2{x ) ,
Q2(x) = Q2(x + 1 ), R2(x) = R 2(x),
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and it is easy to see that deg Qi = deg Ri = Pi {i = 1 , 2 ) and (Qi, Q2 , Ri, R 2) is 
a normalised non-trivial decomposition of /  over K. (Qi and Q2 must be co-prime, 
because if they had a common root f3 € K, then f3 + 7  would be a common root of 
Q1 and Q2.) In addition, we have now Qi(0) =  $ 1(7 ) =  0. In other words, we may 
always assume that Q i(0 ) =  0 .

If LJ2 > 0, we may apply the same argument with 7  being a root of Q2 rather 
than Q1, and therefore assume $ 2(0 ) = 0 instead.

Finally, we list a few general situations where indecomposability can be estab­
lished easily.

Lem m a 11 Let g ,h  G K[x] be monic co-prime polynomials with deg g > deg h. 
Then g/h  is indecomposable over any extension o fK  if one of the following holds.

(i) deg g is prime.

(ii) deg h = 1 .

(iii) h(x) is a power of x, and the greatest common divisor of all exponents of x 
occurring in g(x) and h(x) is 1 .

Proof. Suppose g/h  is decomposable over some extension field of K. Assume a 
decomposition as in Lemma 10. Then the right-hand side of (3.6) is in lowest terms. 
(Suppose not, then there exists 7  in some extension of K  with

Ro/ii)  ■ Qi{R(i)) = R i l~UJ2{ i ) ' R i 2(i) 'Q2{R(i))  =  0 .

If # 2 (7 ) 7̂  0, then R{7 ) is a common root of Q 1 and Q2, contradiction. If # 2 (7 ) =  0, 
then inspection of the expansion of R£l (x) • Qi(R(x)) reveals that also # 1(7 ) =  0, 
again a contradiction.) Hence we can equate numerators and denominators in (3.6) 
to obtain

g = (3.7)

h = { R ?  • 0 2 ( f ) } .  (3-8)
' ^ '

=: P, a polynomial

which gives the “degree equations”

deg g = u ip i ,  (3.9)
deg h = (lji— uj2)p2 +  uj2p i . (3.10)

(i) Suppose g/h  is decomposable. Then, from (3.9), deg g is composite.

(ii) Suppose g/h  is decomposable. We show that deg h = 1 is impossible. Assume
that deg h < 2. Now look at (3.10): as p\ > 2, we must have u>2 = 0, but then 
u\ — u 2 > 2 and therefore p2 = 0 , so that deg h = 0  follows.
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(iii) Suppose g/h  is decomposable and h(x) is a power of x. Then both R,2{x) and 
P(x) are powers of x.

We show first that we must have = 1. Suppose that # 2(2 ) =  xp2 with
p2 > 0. Then, because of co-primality, R\ must have a non-zero constant term, 
say c.

ui2
Writing Q2M  =: ^^<7 2 we find

i=0

U2-1
P(x) = R? (x )  + Q2,iR\ (x)xP2̂ ~ i) .

i= 0

The constant term of R%2(x) is cP2, and the rest of the sum is a multiple of x, 
therefore P(x) has constant term cP2 ^  0, a contradiction.

So R2 {x) = 1, and consequently

U>2
P(x) = Q2{R l(z)) =  Y 2 q 2,iR\(x).

i—0

As a power of x, this must be equal to a;"2*’1 (the highest power of x  occurs 
in the summand for i — lu2 but in no other summand). This means that 
Ri(x) = xpl, h(x) = Q2(xpl) and g(x) = Qi(xPl). Hence all exponents of x  in 
g(x) and h(x) must be multiples of pi > 1. □

We remark that criterion (iii) does not work if h(x) is not a power of x. For a 
counterexample in F3 take g(x) := x6 and h(x) := x5 +  x 4 +  x3 4- 1; this decomposes 
non-trivially with Q\(x) =  x3, Q2M  = x 2 +  1, Ri(x) = x2 and R 2(x) = x 4-1.

3.5 A bout the discrim inant A x

In this section we prove a result that can help us deal with the discriminant condition 
in Lemma 8 without calculating Ax explicitly.

Lem m a 12 In the situation of Theorem 7, assume that fo and f i  are co-prime. 
Let f  := fo / f i ,  and write the part of E\{x) := fb{x)fi{x) — fo(x)f[{x) that is co­
prime to fi{x) as

s

J J (x  — f3v)dl/ with distinct f3u £ F9 .
u=\

Then the discriminant A x of Fu(x) is equal to

s

c • J J (u  +  f{(3v))du with a constant c £ F * .
i/=i
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Proof.

(All necessary facts from field theory can be found summed up in [Sti], Appendix A.) 
For convenience, we write Fq(w) =: G. Let the factorisation of Fu over T (its splitting 
field over G) be

r

Fu{x) = J J ( z - a i ) .

We show first that Fu(x) is irreducible over G. Together with Fu(x) £  G[xp], this 
implies that Fu is separable, i.e. the a* are all distinct, G (ai) =  . . .== G (ar) and 
G (a i)/G  is a Galois extension of degree r.

It suffices to show that Fu(x) is irreducible in Fg[it,a;]. Suppose Fu = K L  there. 
Since the degree of Fu as a polynomial in u is 1 , we can assume

K  = kiu + ko and L = l0 with ko, Iq e  Fg[x].

Thus Fu = kil0u +  kolo, so fo = kolo and / i  =  kilo, and by co-primality of the two 
it follows that Iq must be a constant in ¥ q.

The idea of this proof is to express Ax in terms of the norm NcfaO/G of suitable 
elements, for which we can, by identifying their minimal polynomials, calculate the 
norm (to some extent). For a start,

a * =f n  ~ =
1 <i<j<r 1 <i^j<r

= ( - i )lsj n  ( n  (“ * - “*)) =
*=i j = i  

r
= ( - l ) liJ • I I ^ M  =  ( - 1 ) « J • JV0 (oi)/G(F '(a ,))  ,

i=l

where the steps (1), (2) and (3) are justified as follows:

(1) For each pair (z, j )  E {1, . . . ,  r}2 with j  > i we get a change of sign as (a* — aj) 
is replaced by (aj — c^). The number of such pairs is (r — 1) +  (r — 2) + . . .  -F1; 
by an obvious induction this is odd if r = 2 or 3 (mod 4) and even if r = 0 or 
1 (mod 4). Hence the factor (—1)^§J.
(Actually, all we need is that the product on the LHS is a constant multiple 
of the product on the RHS.)

r
(2 ) Fu(x) =  (x -  at) • J J (x  -  aj) =>

j=i

t d T
=> k (x ) = 1 • r i ( *  - a j) +  (^ -  ®i) - £ n ( *  - ^

j = i j=i
r

=* k m  = ~ a j ) •
j = 1
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(3) Let {<Ti,. . . ,  <rr} be the Galois group of G(ai) over G. By definition,

r

% a i) /c ( ^ ( a i ) )  =  J J^ i(^ u (a i) )  •
i= 1

So it suffices to show that the F ^ai)  are the conjugates of F^(ai). But for 
k = 1 , . . . ,  r  ,

r  r

°k(F'u{oi i)) =  - a , ) )  =  n W - ^ ) )  =  K (°k (a i) )  ,
3=2 3=2

which equals F'u(oti) for some i.

Now write the factorisation of E\ over ¥q as

8

F\{x) = JJ(a; -  pv)dv (pu G ¥g dictinct),
i/=i

where, as assumed, the (3V are numbered in such a way that

/ i ( W ^ 0  for v = 1 , . . . ,  5 ;
/ i ( A / ) = 0  for v =  s 4- 1, . . .  ,s .

From Fu(a i) =  0 it follows that u = — fo{a{)/ .  Thus we can express the field 
element F'u(a i) G G(ai) as

-  S S  -

For v = 1 , . . . ,  s write short f ( p y) =: uy and define Fu û(x) := Fu(x +  p„). The 
latter is a monic irreducible polynomial in G[x] which has a\ — (3U as a root, hence 
it is the minimal polynomial of a\ — py over G. Its constant term is

^u,i/(0) =  Fu{py) = fo(P„) 4- ufi (py) =
=  fo(Pv) -  u„fi (py) 4- ufi(P„) 4- Uufi(P„) =  {u +  uv) fi(pv) .

By [Sti], p. 240, (5), it follows that

NG(ai)/G{ai -  Pu) =  ( ~ l ) r ■ (u 4- uv)fi(pv) .

We proceed similarly with the remaining parts of E \) f \ .  Suppose 7  is a root 
of f i  (one of the py with v > s + 1 or another root of / 1). Define Fu(x) := Fu(x 4-7 ), 
then Fu is a monic irreducible polynomial in G[x] with ai — 7  as a root and constant 
term

£.(0) =  F„(7 ) =  /o (7 )+ « /i(7 )  =  fo il)  i 
so that, by the same argument as above,



By multiplicativity of norm, the norm of /i(o;i) is an element of F*, and further

( - 1 ) L*J ‘ NG{ai)/G(K(a l)) = ( - 1)1-2-1 ’ NG(ai)/G

|r, nLi^GtaO/GCQi -  Pv))du • [constant in F*]
[ constant in F* ]

s

= [ constant in ¥*q ] • J"J(w +  uv)dv ,

as claimed. □

3.6 A nother prelim inary lem m a
We conclude this chapter with a little fact which is rather evident, but which will 
be convenient to have ready for reference later. If one would like to give it a name, 
“Stairs Lemma” might be appropriate.

For m, n  G N with n  > m  let

i.e. B  uses the same coefficients as A , shifted by n  — m  towards the smaller powers; 
the last n  — m  coefficients are lost.

Lemma 13

For w  = 0 the statement is trivial, so assume w  G K*. Suppose A  — w B  = 0. Then 
the first n  — m  coefficients of A  must be zero. Therefore the next n  — m  coefficients 
of A  must also be zero, etc.—repeat this argument, until after a finite number of 
steps all coefficients of A  have been seen to be zero, in contradiction to A  ^  0. □

n m
and

Let w  G K. I f A ( x )  is not identically zero, then neither is A ( x )  — w B ( x ) .

Proof (semi-visual).

A ( x )  =  a nx n +  . . .  +  a m + i x m+1 
w B ( x )  =

+  a m X m  +  . . . +  O t 2 m - n + l x *

w a nx m +  . . .  +  woim +i x

,2m—n+1 _|_

,2m —n+1 _|_

s.
first n — m  terms second n — m  terms
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Chapter 4

The Primitive Ternary Case with  
Designed Distance =  2 (mod 3)

Our ambition in this chapter is to use the approach developed so far to identify as 
many primitive ternary BCH codes as possible with designed distance 6 = 2 (mod 3) 
which have covering radius <5—1 (the smallest possible).

In other words, we take p = 3, q = 3m (m E N) and r = 6 — 1 =  3£ +  M, M  =  1 , 
in Theorem 6, and we want to find conditions on q under which for every choice of 
Ak G F? (fc =  2, 1; 3 { &), assuming A\ = 0 , we can find S3 , s$, . . . ,  s^t in

such that the polynomial F(x) splits completely over ¥ q. The explicit forms of 
F{x) and the relevant ^-polynomials have already been given in Section 2.6.

4.1 The central result and set-up o f its proof
Theorem  8 Let t G N.

The covering radius of the primitive ternary BCH code of length q — 1 (q = 3m) 
and designed distance 6 = 3t -\- 2 is exactly 3̂  +  1 whenever t = 0 (mod 4) and 
q >  [(3£ +  1)! (3t — l)]2.

The same holds for t = 2 (mod 4), provided m is even.

This adds also to the knowledge about the minimal distance of BCH codes. 

Corollary 1
Let t, q and m  be as in Theorem 8. Then the actual minimal distance of the primitive 
ternary BCH code of length q — 1 and designed distance 3£ +  1 is exactly 3t 4-1 •

Proof. Supercode Lemma: 3£ +  1 =  p(C3,<7-i,3t+2) > d{C^q- i,3t+i) > 3£ +  1. □

The proof of Theorem 8 will be given in Sections 4.2-4.4, each covering one of 
three subcases.
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Note that all information about the coefficients Ak is contained in the two poly­
nomials

Si-1  (x3) = AiX3*-3 + A-,7?1- 6 +  . . . +  A3t- 2x3 +  A3t+1 ,
flt-i (x3) =  +  A5x3t_6 +  . . .  +  4 3i- 4x3 +  A3!_i .

We can assume that at least one of the coefficients is non-zero (otherwise simply put
s3 = s6 = . . .  = s3t = 0 to obtain F(x) =  xr).

If A2 = A4 = . . .  =  A3t_4 =  A 3t- 2 =  0, we call this the D egenerate  Case.

Otherwise, if we are not in the Degenerate Case, let j  G {1, — 1} be the
smallest integer such that A3j- i  and A3j+i are not both zero. Put =: C2 and
A 3j+i =: Co (i.e. C* is the coefficient that occurs in the (^-polynomials). With this 
the ^-polynomials can be written in the shortened forms

t—u—j
gi-i-„ (z3) =  A3{t-»-i)+ix31 =

i=0

=  Cox3(l +  A 3j+4X3̂  v J ^ 4- . . .  +  x43(f_j,)_2£3 -1- A3̂ -u)+\ ,

t-v-j

t=0

— C2X3(t w A +  A3j+2X3̂  u i +  x43(f_ )̂_4X3 -I- A3(t-v)-1 •

The situation where C2g f \  = Cog[2}1, i.e. one of the two polynomials is a constant 
(possibly zero) multiple of the other, requires separate treatment, and we label 
this the E xceptional Case. Consequently, by the S tan d ard  Case we mean the 
situation where 7  ̂ Cog®\.

4.2 The “Standard C ase” : C 2gf^\ ^  C o g t - i

Note that under the condition for the Standard Case neither of <7̂ ,  can be the 
zero polynomial.

To start with, put

w := 1, if Co — 0 — A3t+i 
0 , otherwise.

(Instead of w = 1 we could take any non-zero element in ¥q.) The w will serve as a 
“switch” to ensure that one of / 0, f i  has a non-vanishing constant term. This avoids 
the need for further case distinctions when it comes to establishing co-primality.

In the case w = 1, choose I G {j  +  1 , . . . ,  t — 1} with A3i+ 1 ^  0 (exists because
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gl-i 7  ̂ 0). It is helpful to have ready that

1 -3

i = 0

— CqX3 1̂ A +  Asj+4 ^ 1 J ^ +  • • • +  ^3/_2X3 +  A3/+1 >

1-3

— ^3(f—z) —l^3t “  
i= 0

= C2a;3^-J) +  A 3j+2x 3̂ ~ l) +  . . .  +  A3l. 4x3 +  A3*_i •

If w = 0, all terms involving I will be “switched off” , so that in this case it is not
necessary to define I at all.

Now choose the s3l/ as follows (all others are understood to be zero): 

s3(t_j) =  u , s 3 (*-z)  =  w (ignore this if w =  0 ), s3t = v .

Then F(x) becomes Fu(x) = fo{x) + u fi(x )  with

fo(x) = x3t+1 +  x 2g f \ { x 3) +  g f \ ( x 3) +  wx3l+l +  wx2g ^ 1(x3) 4 - w g ^ ^ x 3) +  v x ,
f i(x )  = x3̂  +  C2x2 +  Co.

The u is the indeterminate of Theorem 7, the v is a (single) parameter via which we 
can influence the properties of / 0. We proceed to establish the existence of a choice 
of v in Wq such that the conditions of Lemma 7 are satisfied.

C o-prim ality
Here the w comes into effect. We have w = 1 exactly if C0 and A3t+1 are both zero; 
in this case the constant term of fo is A3*+i 7  ̂ 0. Otherwise, if w = 0, the constant 
terms of fo and f i  are A 3t+1 and Co, at least one of which is then non-zero.

In each case Lemma 9 applies immediately and shows that there are no more 
than deg /1  =  3j +  1 < 3£ — 2 values v in ¥q for which fo and f i  are not co-prime. 
We exclude these from further consideration.

Indecom p osab ility
Suppose fo / f i  =: /  is decomposable over ¥ q with decomposition and notation as in 
Lemma 10.

We consider first the case U2 > 0. To this we can apply the argument described 
after the proof of Lemma 10 on p. 30, which allows to assume that Q2(0) =  0.

As in (3.8), f i  =  Rff~U2 • {Rff  • Q2{R \/^ 2)}- This is a polynomial that does not 
depend on the choice of v, and since ui > a;2 it must have R 2 as a divisor. Taking all
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possible subsets of linear factors of / i ,  this leaves at most 2 deg R possibilities for R2 . 
Now $ 2 (0 ) =  0 implies that Ri also divides / 1, so R\ must also be one out of at 
most 2deg h polynomials. Together there are at most 22 deg R possibilities for R. (In 
fact much fewer, as we have for example not taken into account p \>  P2- But there 
is no need to keep numbers down as long as we arrive at the desired existence result 
in the end, so we will in general make no effort to do so.)

Now fix one R  and suppose it occurs in decompositions of / 0 / / 1  for two distinct 
values v and v. We introduce the notation ((.)) for the fixed part of a polynomial, 
i.e. all terms that depend only on the Ak . With this, cf. (3.7),

^ ‘(z) • Qi ( tw !))  =  «/o(*)» +  vx

and at the same time

( tIM )  =  «/oW » +  *x •

Subtraction yields

R T (X) • (Qi ~ Q i)  ( § ( f ) )  =  ( v ~ v ) z .  (4.1)

We show that this is impossible. With denoting the coefficient of in Qi(x), 
and similarly q i for Q\{x), the left-hand side of (4.1) reads

fi=0

In this, the degree of a non-vanishing summand for some index p is pp\ 4 - (lui — p)p2- 
This decreases strictly with p. Hence, if p0 is the maximal p for which the p-tYi 
summand is non-zero, the degree of the LHS of (4.1) is given by p0pi +  (u)\ — ^0)^2 - 
This has to be equal to 1, but for po G {1, . . . ,  c î} it is greater than 1 , and po = 0 
is also impossible because 7̂  1 -

Hence every R  occurs for at most one v, and consequently the number of v in ¥ q 
allowing a decomposition of /  with U2 > 0 is limited by 2 2 deg h =  26j+2 < 26*-4.

Secondly, we have to consider decompositions with u 2 = 0 , which are not covered
by the “Q2 (0 ) =  0 trick” . Here the idea is to use formal differentiation and exploit
the characteristic.

If uj2 =  0 then Q2 = I and f i  = R^ 1, i.e.

x3j+1 +  C2x2 +  Co = R£l (x). (4.2)

Since uj\p\ =  deg / 0 =  3̂  +  1 , we have Hence taking first derivatives yields

x3*7 — C2X = u)iR%l~l (x) - R ^ ix ) .

Multiplying both sides of this with x  and subtracting from (4.2) gives

—C2X2 + Cq = R^1~1(x) [R2(x) — ljixR!2{x)\ .
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Now equating degrees gives 2 =  £2 (^1  — 1) +  d, where d := deg [# 2  0*0 — (jJixR^(x)]. 
Since u\ > 1, p2 7  ̂ 0 and 3 \ ui, the only possibilities for this are

(i) p2 =  2 , Ui =  2 , d = 0 ,
(ii) p2 = 1 , wi =  2 , d = 1 .

Possibility (ii) can be ruled out immediately, because here P2UJ1 = 2 while we have 
P2^ i =  deg /1  =  3jf +  1 > 4. With (i), the degree equation for /o becomes 3t +  1 = 
2pi, which is also impossible, since t is always even in Theorem 8 .

Hence decompositions with 0)2 =  0 do not occur at all, and the number of v we 
must exclude for decomposability reasons remains bounded by 26*-4.

We digress for a moment and show that indecomposability can still be shown if 
we consider also odd t > 3. This will come in useful later.

All that needs to be modified is the argument for (i) above. In this situation we 
have Co = C2 and # 2 (2 ) = x2 — C2. Suppose Q(x) = x2 + ax + p. Replace Q{x) by
Q(x) := Q(x + a) and R(x) by R(x) := R(x) — a , then, as on p. 30, (Qi, Q2 , Ru R2)
is again a normalised non-trivial decomposition of /  with the same degrees, now 
with the additional property that Q has vanishing linear term. We drop the “hats” 
and simply assume that Q(x) is of the form x2 -I- A. Then

fo(x) = R\(x) +  A(x2 -  C2)2 • (4.3)

This may be possible for some v. But assume it happens also for v 7  ̂v. Then going 
through the above process again (note that all of /o, Q, R\ and A depend on u, but 
R2 does not) yields

fo(x) =  R\(x) +  A{x2 -  C2)2 • (4.3)

Subtract (4.3) from (4.3) to obtain

(v — v)x = Rf{x) — R[{x) + (A — A)(x2 — C2)2 ,

or

(v -  v)x -  (A — A)(x2 — C2)2 = (Ri(x) + Ri(x))(Ri(x) — R\(x)) . (4.4)

Both Ri and R\ are monic of degree pi =  so deg (Ri~\~Ri) = > 5. Clearly,
(4.4) cannot hold with Ri = Ĵ x, therefore the degree of the right-hand side is at 
least 5. But the degree of the left-hand side is at most 4, a contradiction.

Consequently, at most one more v e  needs to be excluded to ensure indecom­
posability also for odd t > 3.

Sim plicity— Step  1
Making sure that there is always some p G ¥ q for which Fp is simple is more difficult. 
We do this in three steps. The first is to show that for all but a limited number of 
v G Fg there exists p  G ¥ q such that Fp has at least one repeated factor.
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Suppose v is such that Fp is square-free for all (3 G  ¥ q. Then the system

Fu(x) = fo{x) + ufi(x)  =  0  . ,
K ( x ) =  /oW  +  w/ iW  =  0 

 2
has no solution (u, x) =  (/?,7 ) in ¥ q.

Now consider E\(x) := fo(x)fi(x) — fo(x)f[(x). A root 7  of Ei with /( (7 ) 7̂  0 
would imply a solution to (4.5) by putting (3 := — fo i l ) !  Therefore every root 
of Ei must also be a root of the fixed polynomial f[(x) = x3-7 — C2x, and elementary 
combinatorics show that the number of possibilities for Ei is at most

deg E l

£  1 1 <
i = 1

One finds that E\(x) equals

x3i{x2g{2\ { x 3) -  gl°_}i(x3)) -  x3t(C2x2 -  C0) +  x(C2g f \ { x 3) -  CQg f \ { x 3)) +  

x3j(x2gl2J l (x3) -  gl°_\(x3)) -  x3l{C2x 2 -  C0) + x f a g ^ x 3) -  C o g ^ x 3))

-  v(C2x2 -  Co) ,
which turns out to be of degree at most 3t — 1 (and at least 1).

Thus, since every choice of E\ determines v , the maximal number of values v 
that have to be excluded in this step is

3t — 1 + 3 j \  (eagy) f6t -  4j  \  <  1

deg / ' \  / (deg Ei) -  1 \  / deg +  deg f{
i J \  i - 1  J  V d e g /;

+  W

3 j  J \3t — 3,
which is still by a factor of at legist (3t 1)! (31 — l ) 4 smaller than [(3i+ 1)! (31 — l)]2.

Sim plic ity— Step  2
Let v be an element in ¥ q that has passed through the selection process so far, and 
let [3 be any element in for which Fp has a repeated root (at least one such (3 
exists by Step 1). Now assume that Fp has a factor of multiplicity > 3. We show 
that this can happen only for a relatively small number of v.

Let 7 be a triple of higher root of Fp, i.e. Fp(7 ) =  Fp(7 ) = Fp(7 )  = 0. From 
Fpin) =  0 ^  follows that f ^ )  ±  0 (by co-primality of / 0, / /)  and (3 = - fo { l ) ! h { l ) -  
Hence

0 =  f 'b{ 7 ) =  / ' ( 7 ) - | M / ; ( 7 ) ,

i.e. 7 is a root of E\ (defined as in Step 1). In the same way, 7 is also a root of 

F2(x) := fH(x)fi(x) -  fo(x)f['(x) =

= - x 3j+1g[2\ ( x 3) -  Cogf\{x3) +  C2x3*+1 +  C29 t*}i{x3) +

+ w - x 3j+lg{2\ ( x 3) -  C0gl2_\{x3) +  C2x 3l+1 +  C2g f \ { x 3) +

+ vC2x
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Now consider first the case C2 =  0. Here E2(x) simplifies to

— (x3j+l +  Co)( g?\{x3) -  wgl2\ ( x 3)^ ,

which is a fixed polynomial of degree < 3t — 2, not identically zero by Lemma 13. 
Hence there are at most 3t — 2 possible roots 7 . By £ 1(7 ) =  0, each 7  determines a 
unique v £ Fg.

Next assume C2 7  ̂ 0. Observe that Fp(0) =  v, hence we can ensure that 7 ^ 0  
by excluding v — 0. Solving # 2 (2 ) =  0 for v and substituting in E\(x) =  0 yields

(CoSt-'iM) - C 2g f \ ( x 3)) +  ^ ( C o s S tx 3) -  C s f t^ x 3))

Since C27  7  ̂ 0, we conclude that 7  must be a root of the polynomial in square 
brackets, which is fixed of degree < 3 1 — 6 and not identically zero (using the 
assumption for the Standard Case and Lemma 13). It is again clear, this time from 
£ 2(7 ) — 0 , that 7  determines a unique v.

In each case we count no more than 3t—2 values of v which must be discarded. For 
all remaining v £ Fg, and all (3 £ F9, all repeated factors have exact multiplicity 2 .

It remains to show that in this last situation the polynomial Fp has at most one 
repeated factor for at least one choice of v and (3. Again, we count the number of v 
for which it is possible to have several repeated factors.

This step is less straightforward than the previous two. We show first, that it boils 
down to another decomposition problem for rational functions. This part follows 
the idea of “Proof of (D)” on pp. 341/342 in [Coh98].

Sim plicity— Step  3: reduction
Write D{x) := C2X2 — C0 and define hi(x) to be such that E\(x) = h\(x) — vD(x),  
i.e. hi(x) equals

+  w

x3j(x2gl2\ ( x 3) -  g ^ i x 3)) -  x3t{C2x2 -  C 0) + x{C2g f \ ( x 3) -  C o g ^ i x 3)) +

x3j(x2gl2J l {x3) -  gl°_\{x3)) -  x3l{C2x2 -  C 0) +  x (C2g f \ ( x 3) -  C0g\2\ { x 3))

Solving E\ (x) = 0 for v then yields

hi(x) rr , \
V = W ) =: l{ ) '

and if we substitute this for v in f (x )  we find

f (x ) -  Hotx)
f[x)  ~  M x )  -  D{x) -  H2{x)

with
h2{x) := (x2g{2\ { x 3) -  g ^ x 3)) +  w(x2g{2\ { x 3) -  g f \ { x 3)) .
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(This polynomial is of a remarkably simple form. Readers may wish to carry out 
the calculation in detail to convince themselves of the cancellation of

Further, for any rational function <p(x) =  in Fg(x) we put

. <Pi(X)<f*(Y) -  <Pi(Y)<P2{X)
J X — Y

One verifies easily that BV(X, Y)  is a polynomial in ¥ q[X, Y] of total degree at most 
deg ipi +  deg y>2 — 1. For example, deg B hx < 31 and deg B h2 < 3(i — j  +  1).

Now let 7 i, 72 be distinct multiple roots of Fp in ¥q. Then E i ( j i) =  # 1(7 2 ) =  0. 
We claim that (7 1 , 7 2 ) is a solution to

BHl{X,Y)  = Bh2(X ,Y )  = 0 . (4.6)

Indeed, the numerator of B h2{7 1 , 7 2) is equal to

/o (71 )/i(72) ~  /o (72) / i ( 7 i )  =
=  / o ( 7 i ) / i (72) +  /? / i ( 7 i ) / i ( 72) ~ / ? / i ( 7 i ) / i ( 7 2 )  -  /o (72) / i ( 7 i )  =

=  /1  (7 2 )^ 9(7 1 ) -  /i(7 i)^ (7 2 ) =  0,

and that of (7 1 , 7 2 ) is equal to

M 7 1 W 72) -  u £ > ( 7 i ) D ( 7 2) +  u T > (7 i)D (7 2) -  M 7 2 ) L > ( 7 i )  =

= £>(72)£ i (7i ) -  D(7i )F?i (72) =  0 ,

while the denominators are 71 — 72 7  ̂0 .
Moreover, if for at least one i G {1 , 2 } we have £>(7 *) 7  ̂ 0, this determines 

v = Z/i(7 ») uniquely, as i / i  is a fixed expression. The only case where a pair (7 1 , 72) 
can occur with an infinite number of v is when {7 1 , 7 2 } = {+a/Co/C2, — y/CiJC?}. 
But, since we are free to choose (3 for each v, we can prevent these values from 
being roots of Fp at all by a change of (3 (note that for fixed v and $  7  ̂ (3 the 
polynomials Fp and Fp have no root in common).

The remaining crucial problem is to show that Bhi and B h2 are co-prime. Then 
it follows from Bezout’s Theorem ([Ful], p. 1 1 2 ; applied as in Lemma 3 of [Coh72]) 
that the number of solution pairs (7 1 , 72) to (4.6), and hence the number of v we 
have to exclude in this step, is bounded by deg B hx • deg B h2 < 3£-3(t—j  + 1) < 912.

By Lemma 4 of [Coh72] (or by [FrMR]), if Bhx and B h2 have a common fac­
tor, then H\ and i72 must decompose as functions of the same non-trivial rational 
function. To complete Step 3, we show that this is not the case.

Sim plic ity— Step  3: so lv ing  th e  d ecom p osition  problem

In order to prove that H 1 and H2 do not decompose as functions of the same inner 
function, we may multiply them individually with a constant to make them monic,
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for if a rational function H  has a non-trivial decomposition (Qi, Q2, R\, R2), then 
cH has non-trivial decomposition (cQi, Q2, /?i, # 2)-

We write again lc(^) for the leading coefficient of a polynomial g. Three cases 
(of increasing difficulty) follow.

C o - 0 .

Then D(x) = C2X2. The linear coefficient of hi is C2(Ast+i -{-wAsi+i) ^  0, so that x, 
but not x2, cancels from H\. Thus, in reduced form, H\ has linear denominator and 
is therefore indecomposable by Lemma ll(ii).

Co 7̂  0 , C2 =  0 .

In this case w — 0 and D(x) = —Co, and we have the monic polynomials

( z 3',+ 2 f t <- )i ( z 3 ) -  * 3 j fft(- i ( z 3 )  +  C 0x 3t -  C o x g ^ x 3)^

and

\ ^ t ) H2{x) = R b  -  s.-V )) •

Suppose the first of these decomposes as Q(R(x)) and the second as S(R(x))  with 
Q(x), R(x), S(x) £ ¥q[x] all monic of degree > 2 . Upon differentiation,

Q'(R(x)) ■ R \ x )  = j -^ -y  ( - x 33+lg ^ \{x3) -  C0g ^ i ( x 3)̂ j , (4.7)

S'{R{x)) • R!(x) = j -^ -y  ( - x ^ (!\(x 3)) . (4.8)

Using the fact that none of g^ \ ,  R' and S' is the zero polynomial, we can divide (4.7) 
by (4.8) to obtain

lc(/ii) Q'(R{x)) x3j+1 +  C0

lc(h2) ' S '(R ( x j)  ~  x '

The right-hand side of this is clearly in lowest terms, and if one assumes the same 
for the left-hand side (after removing any common factor from Q' and S'), equating 
denominators yields the contradiction deg R = 1.

C 0C 2 ^  0.

Here, dividing by C2 makes both D and h2 monic. Moreover, deg h2 = 3(£ — j)  +  2 

is strictly greater than deg D. Therefore we can assume for H2 a decomposition as 
in Lemma 10. Notice again the absence of the w-terms, which simplifies matters 
considerably.

Suppose first that H2 is already in lowest terms. Then equating degrees of the 
denominators as in (3.10) yields

2 =  (ui — uJ2)p2 +  ^ 2Pl •
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For this there are only two possibilities: (uji,uj2, pi, p2) is equal to (2,0, |  deg h2, 1) 
or ( |  deg h2, 1,2 ,0). We show that in fact neither of these can occur.

• (2 , 0 , |  deg h2, 1):

Then ^ D(x) =  R%(x). If, say, R2(x) = x + A, then this means C2X2 — Co =  
C2x2 — C2Ax  +  C2A2, which implies both A = 0 and

• ( |  deg/i2 , 1 , 2 , 0 ):

Now =  Q2{Ri{x)), and by comparing coefficients, the quadratic poly­
nomial Ri  must have vanishing linear term. Hence h\{x) and h2(x), both also 
functions of Ri(x),  must both involve only even powers of x. We claim to the 
contrary that always one of hi(x) and h2(x) contains an odd power of x.
To see this, consider first the part of hi(x) whose exponents are =  1 (mod 3). 
Call this aT(a;), then

r(x) = C2gl°\(x3) - C 0g f \ ( x 3) =  
t - j

— (C2^3(f-z)+l — Co^3(t-z)-l) X3* • (4-9)
z=0

By assumption, T is not identically zero, so let i0 G { 0 ,.. .,  t — j  — 1} be such 
that the io-th summand in (4.9) does not vanish (the summand for t — j  is 
obviously zero).
If i0 is even, then hi(x) contains a non-vanishing :r3*0+1-term and we are done. 
So suppose io is odd. Now look at

h2{x) = x2g f \ { x 3) - g ^ x 3) =
t —j  t —j

— A3(t_i)_iX3l+2 — A$(t_i)+iX31. (4-10)
z=0 z=0

The coefficient of x 3l° in T(x) is 0 ^  C2A ^ t_io)+1 — Co^3(f_i0)_i, so at least one 
of y43(f_io)+i and A3(*_io)_i is non-zero; hence one of the terms A3(4_io)_ix3l0+2 
and A3(t-i0)+ix3l° in (4.10) contributes the desired odd power of x  to h2(x).

Thus we have established that no non-trivial decomposition of H2 exists if D and h2 
are co-prime.

The next case to be considered is that D and h2 have exactly one linear factor 
in common. Then, after cancellation, the denominator of H2 has degree one, and 
Lemma 11 (ii) shows again that H2 is indecomposable.

Finally, there remains the possibility that D\h2. Then H2{x) is a monic polyno­
mial of degree exactly 3{t — j).  A look at

hi(x) = x 3j • h2(x) -  x3t • D{x) +  x • (' c 2g f \ { x 3) -  C o g ^ x 3)')
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suggests to examine whether D also divides h\. This is indeed the case, as can be 
seen from

Czgl-iix3) -  Cogi-i(x3) =
= C2g f \ ( x 3) -  C2x2g{2\ ( x 3) +  C2x2g f \ { x 3) -  Cog?\(x3) =

= C2 ( - x 2g(2\ ( x 3) + g ^ x 3)') +  {C2x 2 -  C0) g[2\ ( x 3) =

=  -  C2h2{x) +  D(x)g{2\ [ x 3) =  -  ( c 2H 2{x ) -  ^ ( x 3) )  D ( x ) . 

Consequently,

H ^ x )  =  x3j ■ H 2(x ) -  x 3t -  x ■ ( c 2H2(x) -  gl2\ { x 3)̂ j . (4.11)

It is not possible to nail down the leading term of Hi, as the x3t cancels with the 
leading term of x3-7 • H 2{x ), and there may or may not be terms of order higher than 
deg x ( C 2H 2(x ) — g f \ ( x 3) ) . At any rate, Hi is also a polynomial, so if there is a 
decomposition of Hi and H2 with common inner function, we can assume

Hi(x) =  lc {Hi) • Q (R(x)) , H 2(x ) =  S(R(x))  (4.12)

with Q(x), R(x), S(x) G Fg[x] all monic of degree > 2 .
The aim is to prove this impossible. To this end we employ a striking interme­

diate result.

Lem m a 14 In the situation described,

H [ { x )  =  ^  * f i(x)  • H ’2(x ) , 

and this is not identically zero.

Proof. We begin by writing h2(x) in the form

t - j - i

h2(x) =  ( C 2x 2 -  C 0 ) x 3{t 3) +  ^ 2  ( M { t - i ) - \ x 2 -  A 3{t- i ) + 1 ) x z
z=0

This means that

H2{x ) = 'L [~r\ ~ i f l'L. 1)41 . (4.13)
r r f  C2x — Co1=u

Using the quotient rule, one finds

ut (  ̂ ~A${t-i)-ix (C2 x 2 — Co) — (—C2 x)(Am-i) - ix 2 — 3i _
" 2W  -  2 ^  t r ^ 2  _  n A 2 x -

z=0
t - j - l

X
(,c2x2 -  Co)2 ^  ( ^ o ^ 3 ( t - i ) - i  -  C2A3(t_i)+i) X 3 1 . (4.14)

46



It is clear from (4.14) that H2 vanishes identically if and only if

CoAs(t-i)-l =  C2A ^ t-i )+ 1 f°r i — 0 ? • • • ? t — j  ~  1 j

which is equivalent to Cog^\ = C2ĝ °]1. Since the latter is assumed not to be the 
case, this proves the “not identically zero” part of the lemma.

Further,

C2H2(x) -  5 <!\(x3) <4i 3) c 2 • +  g ‘ :  c * ~ i)+1 *3i)  -

C2x<3t-»  + =
 ̂ t= 0  /

E —C 2A ^ t - i ) + l  +  C o A z ( t - i ) - \  
C2x2 -  Coz=0

(4U 4) C 2 X 2 ~  C p  ,

X
H ’2{x ) , (4.15)

and it follows then from (4.11) that

H[(x) =  x3>-H'2{x) -  [ c 2H2(x) -  g f \ { x 3) + xC2H'2(x) 

(4U 5) /  3 j  _  C 2X 2 ~  C p

X
-  C2x \ ■ H'2(x ) = 1  • A(x) ■ H'2(x ) .

□

Coming back to the decomposition (4.12), differentiation yields

H[(x) = lc(tfi) • Q\R{x))  • B!{x) , H'2(x ) = S'(R(x)) • R'(x) ,

and the lemma allows to divide H[(x) by H2(x). This gives

H[(x) =  f i(x)
H'2{x ) x

which is clearly in lowest terms, and at the same time

H[{x) lc[HQ ■ Q'(R{x)) ■ R’(x) Q'(R(x)) .
H'2{x ) S'(R{x )) ■ R’{x) K 11 S ’(R(x)) ’

equating denominators (after removing common factors of Q' and S', if necessary) 
leads to the contradiction deg R = 1.

This proves that H\(x)  and H2(x) cannot decompose non-trivially as functions 
of the same R(x), and with this Step 3 is complete.

Altogether, the number of v that have been excluded in the various steps to 
secure the simplicity condition of Lemma 7, together with those for co-primality 
and indecomposability, is far from exhausting ¥q. This proves the splitting of F(x) 
in the Standard Case.

47



4.3  The “E xceptional Case” : C o g ^ - i  =  C ^ g ^ i

The condition of the Exceptional Case implies =  C2g ^  for d = 0 , . . . ,  t — 1.
It includes the possibility that for one i E {0,2} the polynomial g ^ \  is identically 
zero; note that g ^ \  = 0 44* Ci = 0. In the case Co ^  0 we put C := C2/C 0 so that 
we can replace g ^  by C g ^  where useful.

Our choice of parameters is

S3 =  u and Sst = u v ,

which results in F(x) =  Fu(x) = fo{x) 4- ufi(x)  with

f 0(x) = x 3t+1 + x 2g(? \ { x 3) + g(0\ { x 3) , 

f i{x) = x 3t~2 + x 2gf}2{x3) + gf}2{x3) + v x .

This time the polynomial to be adjusted by the choice of v is / 1, and we aim to 
meet the conditions of Lemma 8 .

C o-prim ality
The constant term of /o is ^ 34+1, that of /1  is A3t- 2- If at least one of these is not 
zero, Lemma 9 applies immediately and says that at most 3£ +  1 values of v need to 
be excluded to ensure gcd(/0 , / i )  = 1 .

If A3t+i = A 3i—2 — 0, we must work with

/•(*) := (i = 0,1).Jj

Then, by Lemma 9, it suffices again to exclude at most 3£ +  1 values of v (one of 
them being 0) to obtain g c d ( f ^ f i )  = 1. However, in what follows we must now 
remember to establish all other conditions both for /q , /j* as well as for /o, /i-

Indecom posab ility
Suppose fo / f i  has a decomposition as in Lemma 10. Subtracting the degree equation 
deg f i  = (ui — uj2)p2 + u>2pi from deg /o =  ujipi (compare (3.7) to (3.10)) gives 
3 =  (cjj — u;2)(pi — P2), i-e. one of — u 2 and p\ — p2 is equal to 1 and the other 
to 3. Of course, this works the same way for /q and

It is now necessary to distinguish seven subcases:
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st-2  are not both zero (work with /o, /i)
uj\ — u)2 = 3

*  0 Subcase (1)
9 ? \  = 0 Subcase (2)

UJ\ — UJ2 = 1

Qi is not a power of x Subcase (3)
Qi is a power of x Subcase (4)

M t - 2 = o (work with / 0*, f l )
uj\ — (jJ2 — 3 Subcase (5)
U\ — UJ2 =  1

Qi is not a power of x Subcase (6 )
Qi is a power of x Subcase (7)

Subcase (1): {A3t+i, A3t- 2} <£ {0 }, ljx -  u 2 = 3, g f \  ^  0 .

We have f o ( x )  = R%l {x) • Q i(Ri(x ) /R2(x)). As detailed after Lemma 10, we can 
assume Qi(0 ) =  0 , which implies that Ri divides /o. Since /o is fixed of degree 
3t -|-1, this limits the number of possibilities for R\ by 23f+1.

On the other hand, f i{x) = x3t~2 + x2 gl%(x3) + ^ _ 2(^3) +  vx equals R,2(x)P(x) 
with P(x) := R22{x) • Q2(R\{x) /  R2{x)) G Fg[a;]. As R%(x) is actually a polynomial 
in x3, the derivatives of f \  are

f[(x) = x3t~3 -  xg^J2{x3) +  v = Rl(x)- P' (x) , 

m * )  =  -9 t% (x3) = Rl(x)  • P "(x ) .

The last equation says that R3{x) divides a fixed polynomial in x3 of degree at most 
t — j  — 1 that is not identically zero by assumption. So there are at most 
possibilities for R2. This makes together at most 24t_J < 24t_1 possibilities for R.

It remains to show that each R  can only occur with a bounded number of values v.
We show that in fact every R  determines a unique v, so that the number of values to
be excluded is at most 24*-1. To see this, fix R  and assume it occurs with distinct v 
and v. Then, from /{,

x 3t~3 — xg[%(x3) +  v = R%(x) - P' (x) ,
x 3t~3 — xgl%(x3) +  v = R3(x) • P'(x)

(with obvious P), and after subtracting,

0 7  ̂ v — v = R^{x) • (P'{x) — P'(x)) .

This would require R2 to be a constant, but then p2 = 0 and pi = p2 +  1 = 1, in 
contradiction to our decomposition assumptions.
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Subcase (2): {A3t+1, A3*_2} $£ {0}, -  u 2 =  3, g f \  =  0

As in the previous subcase, the number of possible R\ can be limited to at most 23t+1 
by assuming Q i(0 ) =  0 .

Now we have

/i(x ) =  x3t~2 +  gt%(x3) +  vx = R\{x) • P(x ) , 
f[ (x) = x3t~3 + v = R3(x)-P ' (x) ,

and therefore R 3{x) divides f \(x) — xf[(x) = ^ ? 2(^3), a fixed polynomial in x3 of 
degree < t — j  — 1 , which is not identically zero (because its counterpart already is). 
Again the choices for R2 are bounded by 2 t_J_1, and hence those for R  by 2u ~l .

If a fixed R  comes with v ^  v, then x3t~3 + v = R2(x) • P'{x) and x3t~3 +  v = 
R%{x) • P'{x), hence again v — v =  R 3{x) • (P'(x) — P'(x) ) . The rest of the argument 
which shows that every R  leads to the exclusion of at most one v is as above.

Subcase (3): {A3t+i, A 3t- 2} £  {0 }, ui — uj2 = 1, Qi not a power of x.

Assume again Qi(0) =  0 to bound the choices for Ri by 23t+l.
Now let Ri be fixed. Because Qi is not a power of x, one obtains by subtracting 

R^1(x) from fo(x) = R%x (x) • Qi(Ri(x)/ R2(x)) a fixed non-zero polynomial of degree 
at most

{ui -  l)pi +  p2 = ujiPi -  (pi -  p2) = (deg f 0) -  3 =  3t — 2

that is divisible by R2. Thus there are at most 23t~2 choices of R2 for any given Ri, 
allowing at most 26f_1 choices for R.

Next fix R  and assume it occurs with distinct v and v. Write
U>2

Q 2(x ) = :  92,ix% and Q 2 ( x ) = :  Y 2  ^ x% •
i=0 i=0

Then, with ((.)) denoting the fixed part,
U>2

( f l ( X ))) +  VX =  R 2{x) -Y2<l2,iR lW ^ 22
i= 0U>2

i f i ( x ) )  +  v x  =  R 2 {x ) ■ Y ^ q 2 , i R \ ( x ) R %2~ l {x ) ,
i= 0

and after subtracting (note q2̂ 2 = q2̂ 2 = 1)

UJ2~l
(v -  v)x = R2(x ) • Y 2  (^2,t -  <?2,z)R\{X)R%2~ \ X) .

i= 0

Now equating degrees shows (because the degrees of the summands on the RHS 
strictly increase with i)

1 =  P2 +  Piio +  P2{^2  ~  «o) for some i0 G { 0 ,.. .,  u 2 — 1} .
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Here clearly p2 = 0 or p2 =  1. But in the first case it follows that p\ =  1, and in the 
second case io =  u 2 = 0  and therefore uq = 1 ; both contradict the properties of the 
assumed decomposition.

Therefore there can be no more than one v for every R , and we have to exclude 
at most 26t~l values to avoid that fo / f i  has a decomposition of this type.

Subcase (4): {A3f+i, Azt-2) £  {0}, ui  -  u 2 =  1 , Qi a power of x.

We show that this subcase cannot occur.
Since and A^t-2  are not both zero, we must have ^  0 and Co ^  0.

Therefore (with C  =  C2/Co)

fo(x) =  x3t+1 +  {Cx2 +  l ) ^ ^ 3) .

This must now be equal to R^^x).  Consequently,

f'Q(x) =  x3t -  C x g f \ ( x 3) =  u i R ^ ~ l {x) • R\(x ) ,

where 3 \ cji, U\ > 2 and pi > 3.
From R^1(x) =  x3t+l 4 - (Cx2 +  l)^ ° \( :r3) it follows moreover that the greatest 

common divisor of Ri(x)  and gf}i(x3) is a power of x. Write R\(x) =  x lS(x) with 
S(x)  G Fq[x] and 5(0) ^  0. Then gcd(S(x), gf°{(x3)) divides gcd(i?i(x), ^ ° \(x 3)) 
but is itself not divisible by x, hence

g c d ^ f x ) , ^ ^ 3)) =  1 .

Now fo(x) — xfh(x) =  (1 — Cx2)ĝ °}l (x3) is divisible by RUJl~1(x) =  [^^(a;)]^1-1. 
Since S(x) is co-prime to ^ \ ( a : 3), we must have 5Wl_1(x) | 1 — Cx2, so that

(uji — 1) • deg 5  < 2 .

This leaves three possibilities:

(i) deg S  =  0 ;
(ii) deg 5 = 1 ,  =  2 ;

(iii) deg 5  =  2 , ui =  2 .

If S(x)  were equal to 1, then Ri(x),  and therefore fo(x), would be a power of x, but 
this is not so. This excludes (i). But (ii) and (iii) are also impossible, because here 
lji | deg /o implies that t is odd, whereas we are considering only even t.

However, we will need later that this part of the proof holds also for odd t > 3. 
So here is an alternative argument that still rules out (ii) and (iii) in this situation: 
then pi =  deJ  ■fy > 5, so I =  p\ — deg 5  > 3; this means that /o(x) =  R\(x)  is 
divisible by x6, contrary to the assumption that Azt+i and Azt- 2 are not both zero.

In Subcases (5) to (7) we assume for f S / f f  a decomposition as in Lemma 10.
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Subcase (5): A 3t+i =  A 3t- 2 =  0, u i -  uj2 =  3.

The polynomial /g is fixed of degree 31. Applying the usual Qi(0) =  0 argument
bounds the number of choices for P i by 2 3t.

Under the given conditions,

f i (x )  =  X™' *+ xg?}2(x*) +  x 2gf}z {xz ) +  v  = R\{x) • P ( x ) ,

where P  is defined as in Subcase (1). From

/?'(*) =  flft - 2 (a;3) ~  xg$%(x3) = R\{x) • P'(x)

one sees that R3{x) divides the fixed polynomial f i \ x ) .  This cannot be zero, because
all coefficients A2, A 4, . . . ,  A3t-4  appear in it, one of which must be non-zero (since 
A 3t-2  is zero). Further deg /* ; < 3(t — j  — 1), so that deg R 2 < t — j  — 1. This gives 
at most possibilities for R 2 and at most 244-J’-1  < 2 4 i-2  for R.

Limiting the number of v  per R  to one is analogous to Subcase (1), using v — v = 
R%(x) ■ (P{x) — P{x)); replacing P', P' with P, P  does not affect this argument.

Subcase (6 ): A 3t+i = A 3t-2  =  0 , uj\ — U2 — 1, Q1 not a power of x.

Once again we use the assumption Q i(0) =  0 to bound the number of possible P i 
by 23f. Arguing analogously to the beginning of Subcase (3), we further limit the 
number of possible P  to 26<-3. Once again we will also show that only one v is 
possible for each P, but this time this turns out to be more difficult than in previous 
situations.

Suppose P  occurs with distinct v and v. Subtracting { f i (x )}  +  v =  R2(x)P(x) 
from (fl(x))) +  v = R 2{x)P(x), with the appropriate P  and P, yields

v - v  = R2{x ) • (P{x) -  P{x)) ,

which again forces P 2 to be a constant. Unlike in previous cases with ui — o;2 =  3, 
this does now not immediately lead to a contradiction, but merely implies pi = 3.

Assume first that = 0. Then

/o*W =  xzt + xg¥\{x*) =  Qi{R\(x) ) , 
f*(x) =  x3t~3 +  xgi%(x3) +  V =  Q2(Ri(x)).

Put f*(x) := f i (x )  — v. With Q2(x) := Q2W  — v, this decomposes as 

f i (x )  = x3t~3 + xgf}2{x3) = Q2(Ri(x)).

(Of course, we could have used v here as well.) Differentiation yields

f o ( x ) = 9 ? \ ( x*) = x3gj%(x3) +  A3*_i =  Q'liR^x)) ■ R[(x)

and
f i \ x ) = d f - 2 ^ )  =  Q'2{Ri {x)) • R\{x) - (4.16)
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It follows that R[{x) divides fo (x )  — x3f{'(x) = A3t- i ,  i.e. if ^  0 then R[ is 
a constant K  G ¥ q. Define

f Q[(x) ,  if Ast-i =  0 ,
Qi(x ) ;f A _j_ n

Qi\X) ^  i  A^t-l T~ 0 •

Then it is easily verified that in both cases

Qi(Ri(x))  • R[{x) = x3g f \ { x 3) . (4.17)

One checks further that none of gf}2, R[ and Q2 ls the zero polynomial (in the case 
of the latter two this would mean that Ri(x)  or Q2(x) had to be in Fg[x3]). Hence, 
as a result of dividing (4.17) by (4.16),

2 ±(fli(a:)) =  x3 .
W2

This implies that R\(x)  is a function of x3, and we have a contradiction.

Now consider the situation for g[°}l ^  0. Here one finds

fo(x ) =  x;3t +  {Cx7 +  x5)g[%(x3) = Q i(R i (x ) ) , 
f*{x) = x 3t~3 +  (Cx4 +  x2) g f \ { x 3) + v = Q2{Ri (x)).

The rest of the procedure is similar to that in the case g ^ l =  0: define /* and Q2 

as above, look at f o / f i '  (this time g^% is non-zero and can be cancelled) and find 
(Q[/Q2)(Ri (x )) = x3, which leads to the same contradiction.

Subcase (7): A^t+i =  A$t- 2 =  0 , — uj2 — I, Qi a power of x.

As it will turn out, similarly to Subcase (4), this type of decomposition is again 
impossible.

Since uj2 = ^ 1  — 1 > 1 , we assume Q2(0 ) = 0 (the reason will become clear later). 
Write R\(x) = x lS(x) with S(x)  G ¥q[x], S(0) ^  0.

Assume first that ĝ °}l — 0. Then

fo(x ) =  x 3t + x g f \ ( x 3) = R ^ { x ) .

Therefore gcd(i?i(x),g ^ \ { x 3)) is a power of x and gcd(S '(x),^?1(x3)) =  1. The 
derivative of /q is

fo (x )  = d l -d x 3) = U iR T ^ ix ) - R ' i ( x ),

not identically zero. Hence S(x) divides g ^ \ ( x 3) and we must have S(x) = 1 . But 
then Ri(x), and consequently fo(x), is a power of x , contradiction.
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Now we come to the case ĝ °}l ^  0. Here

/o W  =  x3t+ (Cx7 + x 6) g f \ ( x 3) = R f ' ix ) .

Therefore gcd(i?i(x), ^ ^ ( x 3)) is a power of x and gcd(5(x), gi%(x3)) = 1. This 
time it is necessary to differentiate twice:

f o ( x ) = (Cx6 - x 4)gfX(x3) = u iR ^ l~ \ x )  ■ R [(x ) ,

fo"(x ) = - x 3g[%(x3) = 2(x) • [(ux -  l )(R[(x))2 +  Ri(x)#l(x)].

Provided uq > 2 , this shows that S(x)  divides the non-zero polynomial gl°}3(x3), 
and a contradiction is obtained as above.

W hat if UJ2 = 2? Here our assumption $ 2(0 ) =  0 comes in and results in R\(x) 
dividing

^ ( z ) - j i ^ ( x ) - Q 2 0 ^ j ^ j  =  f l (x )  = x3t~3 +  (Cx4 +  x2)&(°}3 (x3) + v .

As a consequence, R\(x)  divides also / q(x ) — x3f*(x) = —vx3, and this implies 
R\(x) = x3 and again the contradiction that Jq(x) is a power of x. This completes 
the final subcase.

In summary, at most 24t +  26*-1  values v must be discarded in the case that one 
of Azt+i, Am-2  is non-zero, and at most 24t~2 -I- 2 6f_3 in the case A^+i = A^t- 2 =  0 , 
in order to ensure indecomposability of fo / f i  over ¥ q. Both numbers are smaller 
than 26t, which is, already for small t , only a fraction of [(lit +  1)! (3£ — l)]2.

C ondition  (iii)
The degree difference is clear (also for / q and /j"). As for the second part, we show
that f i  is square-free for all but a small number of v. Then the same is true for /*
(because |/i, except for v = 0 , which we have already excluded anyway in this 
case).

Let 7  be a multiple root of f \ . Then 7  satisfies

0 = h ( i )  = 73*-2 +  i 2g ? \ ( i 3) + &-U7 3) +  v i  (4-18)

and
0 = f i ( l )  = 73*- 3  -  7&(- 2(73) + v .  (4.19)

Solving (4.19) for v and substituting into (4.18) shows that

- 7 2&(-}2 (73) + & -2(73) =  0,

i.e. 7  is a root of a fixed non-zero polynomial of degree at most St —3j — 1 < St — 4. 
So this is the maximal number of elements in Fg which can be a multiple root of f i  
at all, and clearly each can be so only for a single choice of v. Hence, by excluding 
at most St — 4 values of v, we can guarantee that f i  is square-free.
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D iscrim inants
Here our Lemma 12 comes finally into action. First observe that if a is a common 
root of Ei and / i ,  then fo(a)f[(a) = 0 , and, since fo(a) 7  ̂0 , this means that a  must 
be a repeated root of /i . But we have just arranged that such roots do not exist, 
therefore we can assume that Ei and f i  are co-prime. Consequently, in Lemma 1 2 , 
all factors of E\ contribute to the degree of A x in it, and to prove that A x is a non­
square in ¥ q(u) it suffices to show that E\ has odd degree. We begin by identifying 
all situations where this is the case.

We divide this analysis into three subcases. Here our conclusions use the fact 
that t is even in Theorem 8 .

Ast+i, A& -2  are not both zero.

This implies Co 7  ̂ 0, and with C = C2/C 0 (possibly zero) one finds 

Ei(x) =  (C x2 -  1) (A 3t+ix3t~3 + r3)) ,
S. ,    v--------------------------------✓

=: Q(a;)

which has odd degree if and only if Q has odd degree.
Suppose A3t+i 7  ̂ 0. Then the leading term of Q(x) is A 3tjriXit~3 for j  > 1, and 

for j  = 1 it is (A3t+i +  vCo)x3t~3 provided we avoid v = —A3t+i/Co- In both cases 
deg Q, = 3t — 3 is odd.

Suppose otherwise that A 3t+1 =  0, in which case f2(x) =  u ^ \ ( x 3). This has 
degree 3(t — j )  (assuming that we exclude v = 0 ), so deg Q is odd if and only if j  
is odd.

A 3 t+ 1  —  ^ 3 « - 2  —  0 , C o  7̂  0 .

Here E{{x) := fS'(x)f*(x) -  fS{x) f^(x)  = vxA(Cx2 -  l ) ^ 3 (x3), with C zero or 
not. The degree of E* is odd if and only if deg gt%(x3) = 3(t — j  — 2) is odd, i.e. 
iff j  is odd.

A 3t + i  —  A 3 1 —2 —  C o  —  0 .

In this final subcase E{{x) = A3t- \ x 3t~3 +  v g f \ { x 3), and the rest is analogous to 
the first subcase: deg E{ is always odd for A3t- 1 7  ̂ 0 , while for A 3t- \  = 0 it is odd 
exactly if j  is odd.

In all of the above cases where deg Ei (or deg E{, respectively) is odd we are 
done, having established Lemma 8 with “Situation S” .

55



The remaining open problems are:

(I) A 3t+i = 0 , A3t-2  i 1 0, j  even;
(II) A3t+i = A 3t- 2 =  0 , C0 ^  0 , j  even;

(III) A 3t+\ =  A 3t-2  = Co =  A 3t- i  = 0, j  even.

In these situations, a closer examination of E\ or E\  reveals that Ax is still a non­
square in most cases, but there are always circumstances in which Aa, is definitely a 
square in Fg(u). The details for (I) can serve as an example.

In (I) we have E\{x) = (Cx2 — l)vx* gf}2{.xZ) w^h C = C2 /C 0  and <7*°2 (0 ) 7  ̂ 0.
Assume first C2 =  0. Then the roots of E\ are the triple root zero and certain 

otp 7  ̂ 0 (all with multiplicity divisible by 3). Now /(0) =  0, but fo(ctp) = off+1 7  ̂ 0 
and so /(cfy) 7  ̂0 for all other roots. Therefore, by Lemma 12, the factor u appears 
precisely with multiplicity 3 in As , making Ax a non-square in F9(i/), and we are in 
“Situation S” .

So far everything is fine. But now consider C2 7  ̂ 0. Then we have the additional 
non-zero roots ±77 of Cx2 — 1 , and a problem occurs: if / ( —77) =  0 , ol\ = 77, and all 
other have even multiplicity, then Ax is a square. Take

& - i ( * 3 ) .  & - i ( s 3 ) -  X 1* -  x lb -  X U  +  X* +  X6 -  X3 

(with 77 =  1) for an example where this actually happens.

Similar phenomena occur with (II) and (III). In these sporadic situations where 
As is a square, the problem would be solved by showing that Ax € F9 (w), thus 
establishing “Situation A” . But we do not know of a general way how to do this. 
Therefore we must think of alternatives: changing the choice of s3, . . .  , s3t and/or 
replacing the discriminant criterion by another argument that shows G is a full 
symmetric group. This is the topic of the next and final subsection.

D iscrim inants— th e rem aining op en  cases
We treat (I) to (III) in reverse order. In all cases, because j  is even and j  < t — 1, 
we can assume t > 4 (even).

(Ill): A3t+i — A3*_2 — 0, Co — 0, A 3t-i  — 0, j  even.

In this case we have = 0 for all d and g ^  =  0 (because j  > 1). Therefore

F(x) = [x 3t+1 +  x2 g ^ \ { x z)] +
+  s3 • [ xst~2 +  x 2 gl%(x3)] +
+ ... +
+  S3t-3 ' [%4] +
+  S 3t • [ x ]  .
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Write gt-i(x3) as x3zg*(x3) with #*(0) ^  0. Under the given circumstances we have 
z E {1 ,. . .  , t  — 2}. Now put

j  f 1 , if 2 is odd,
\  4, if z is even,

and choose S3 =  it, S3f-z+i =  uv. Then Fu(x) =  fo(x) +  uf\(x)  with

fo(x) = x3t+l +  x3z+2g*(x3), 
f i(x)  = x 3t~ 2 +  x 3z~l g*(x3) + vx1,

where (after excluding v = 0) the highest common power of x  is x l for all z. Hence 
we work with

fo(x) =  x3<+1_/ +  x 3z+2~i g*(x3) ,
f i (x )  = x3t~2~l +  x 3z~l~l g*(x3) +  v .

For / =  1 this parameter choice is the same as earlier in this section. For / =  4 we 
have, with T  := t — 1,

/5 W  = x3T +  xg?-  i(x3), 
f i{x)  = x 3T~3 +  x g ^ l 2{x3) +  i>,

i.e. again the same polynomials as before, only with T  instead of t. Since T  > 3, 
and since the first three subsections of this section do not depend on t being even, 
the arguments for conditions (i)-(iii) of Lemma 8 remain valid in all cases. This
establishes that G contains the alternating group of appropriate degree.

To conclude that G is the full symmetric group, it remains to find an odd per­
mutation in it.

For u = 0 we get

f ’o M  = /o’M  =  •   My. ^
=: Mx)

Thus we are done if we can show that A(x) is square-free. Then F0* factorises over 
any intermediate field of T /F g, in particular the inertia field of a place 3̂ over P0 
(cf. page 25), as

r(0)

Fo(x ) = ■
i = l

where e\ — 3z +  2 — I (for H\{x) := x) and all other e* are 1. It follows, because

f 3z +  1, ii 
\  3z -  2 , ii3 z +  2  — / =  < r  • ;■ ^ isodd-it z is even,

is even and not divisible by the characteristic 3, that G contains a (3z + 2 — /)-cycle 
(the generator of G ^  with cycle pattern e\ • • • er(o))> which is an odd permutation.

We have A'(x) =  — x 3̂ ~z^~2. This is clearly co-prime to A(x). So A(x) cannot 
have a repeated root, and the above conclusions apply.
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(II): A 3 t+ 1 =  A m- 2 =  0, Cp ±  0, j  even.

Basically, everything here is as in the previous case, except that the place of x2g ^  
is taken by (Cx2 +  1 ) g ^ \  and it is now g^y(x3) which we write as x 3zg*(x3) with 
g*(0) ^  0. This time z G {2, . . . ,  t — 2}.

For z > 3 proceed exactly as before. This leads to

Fq (x ) = x3z~l [x3{t~z)+1 +  (Cx2 +  l)g*(x3)] ,

=: A(x)

where
/ _  /  3* — 1 , if  ̂ is odd,

Z \  3z — 4, if z is even,

is again even and ^  0 (mod 3), so that square-freeness of A, when established, yields 
a (3z — /)-cycle in G and proves it to be a symmetric group.

If C = 0, square-freeness of A is shown as above. Difficulties arise when C ^ 0 .  
A multiple root 7  of A is also a root of

A(x) — xA'(x) — — (Cx2 — 1 )g*(x3) .

But 7  cannot be a root of g* (then 7  7  ̂0 and at the same time 0 =  A(7 ) =  7 3(*~d+1)? 
so we must have 7  =  ±y/Co/C 2- Since A"(x) = —Cg*(x3) is co-prime to A'(a;), the 
only possibilities for multiple roots of A are ±>/Co/ C2 as double roots.

Coming back to the cycle pattern ey • • • er(0) , there is a problem if and only if 
exactly one of ± \/C o / C2 is a double root of A: then the aforementioned generator 
of the inertia group is a composition of an even cycle and a transposition, thus even, 
and we do not get an odd permutation in G.

Here is the way out of this: replace I by

^  f 4, if z is odd,
|  1 , if z is even,

(the opposite choice of before). Then x L cancels from fo(x) and fi(x),  and /q , / f ,  Fq 
are as before, but with L instead of /; A remains unaffected. As a result, G contains 
now the composition of an odd (3z — L)-cycle with the transposition corresponding 
to the single square factor of A. This is the desired odd permutation.

The case z = 2  needs to be treated separately, because here, with the same I 
and parameter choice as before, the highest common power of x  in fo(x) and f \(x)  
is only x3 =  xl~l . After cancelling this, we have

/o W  =  x3T+1 +  X<1 9 t - i ( xS) +  9 t - lfa3)* 
f i (x )  = x3T~2 +  x2g^_2(x3) +  9t - 2^ )  +  v x >

again with T  := t — 1 > 3. Up to replacing t with T, these polynomials are identical 
with fo(x), f i(x)  in the original case where one of Am+i, Am-2  is non-zero (p. 48), 
so again the proofs of conditions (i)-(iii) from the earlier subsections carry over.
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To show that G is the full symmetric group, we can this time use the familiar 
argument: E{(x) = vx3(Cx2 — 1 )gt%(x3), and x 3g ^ 3(x3) has odd degree 3(t —j  — 1), 
implying “Situation S” .

(I): A 3t+i = 0, A3t-2  ^  0, j  even.

The reader be warned that we have left the most tedious problem to the end! The 
strategy of the previous two cases fails here, because with it we get / i ( 0 ) ^  0  and

F0(x) = x3 [x3t~2 +  (Cx2 +  l)g*(x3)] ,

where the multiplicity of x  is divisible by 3. Instead, we will have to make completely 
new parameter choices and go through all conditions again. To complicate matters 
further, different arguments are needed for j  = 2 and j  > 4.

We begin with j  = 2 . Choose 534-3 =  v and 534 =  u, then

fo(x) = x3t+l +  (Cx2 + l)gl°\(x3) +  vxA,
/ l W  =  X ,

and after cancelling x,

fo(x) = x3t 4- (Cx2 +  1 )x2g*(x3) +  vx3 ,
/i*(z) =  1 ,

where we write g* for gf^2 to indicate its non-zero constant term. We aim at the 
conditions of Lemma 7.

Co-prim aiity. Trivial.
Indecom posability . Assume fo(x) = Q(R(x)) with Q(x),R(x)  G Fjo;] monic 

of degrees uj > 1 and p > 1 , respectively.
Suppose first that deg Q' > 1. Then we can play yet another variation of the 

“transformation trick” on page 30. Let 7  be a root of Q' and put Q(x) := Q(x-1- 7 ), 
R(x) := R(x) — 7 . Then Q(R(x)) is another decomposition of /q (x) with the same 
degrees, and by the chain rule we have Q'(x) — Q'(x-1- 7 ), so Q'(0 ) =  Q'(~i) = 0 . As 
always, we drop the “hats” and assume Qf(0) =  0 . As a consequence, R(x) divides 
/o'(x) =  Q'(R(x)) • R'(x), a fixed non-zero polynomial of degree at most 31 — 6 , so 
there are at most 2 3t_6 possibilities for R. Assume that one such R  appears with 
distinct v and v. Then, in the usual way, we find (v — v)x3 = Q(R(x)) — Q(R(x)),  
which implies p • deg (Q — Q) = 3. Since p > 1 , we must have deg (Q — Q) = 1. But 
if Q — Q is linear, it follows that R(x) G Fg[x3], in contradiction to R' 7  ̂ 0. So there 
are at most 23*-6  values of v to exclude to avoid a decomposition with deg Q' > 1.

Now we turn to the case Q'(x) =  q\ G F , i.e. Q(x) is of the form Qi(x3) +  q\X. 
Then

x 3t +  (Cx2 +  l )x2g<j.%(x3) +  vx3 = fo(x) = Qi(Rs(x)) +  q\R(x) . (4.20)

Let us temporarily consider general j  > 2 (even). From the expression on the left- 
hand side of (4.20), fo(x) contains the non-vanishing term Cqx3̂ - ^ -1, and on the
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right-hand side the highest term that is not a term in x 3 can have degree at most p. 
Therefore, and because Q'(x) = qi forces 3|o>, we have

. . 3t 3t3 { t - j )  -  1 < p = — < — = t,
UJ o

from which it follows that j  > |( 2 1 — 1). Thus a decomposition with Q'{x) =  q\ is 
impossible for j  < \  (21 — 1). In particular, since t >  4, this holds always for j  = 2 . 

Sim plicity. Taking (3 = 0, we have

Fq (a;) =  x 2 [x3t~2 +  (Cx2 +  l)g*{x3) +  vx]

=: A(x)

and must make A square-free by choice of v. A multiple root of A is also a root of 
A(x) — xAf{x) = —{Cx2 — l)g*{x3), a fixed non-zero polynomial of degree at most 
2 +  3(£ — j  — 1), and each such (non-zero) root 7  determines v uniquely by A'(7 ) =  0 . 
Hence, for j  = 2 , exclusion of at most 3t — 7 values v suffices to guarantee simplicity 
of F0*, so that all conditions of Lemma 7 are satisfied.

To cope with the case j  > 4 we need two parameters Note that j  > 2 means 
=  0 , so the choice Sst-6 =  -S3*_3 =  u and s3t — uv2 yields

f 0(x) = x3t+l +  {Cx2 + l ) g f \ ( x 3) -1- vix7 , 
fi{x) = x 4 +  v2x.

Therefore the polynomials to work with, after excluding v2 = 0 and cancelling x, 
are (again with g[% 9* because #*(0 ) 7  ̂ 0 )

fo{x) =  x 3t + {Cx2 + l )x2g*{x3) +  Vix6 , 
f j (x )  = x 3 +  v2 .

We aim again at Lemma 7.
Co-prim ality . For each v\ G ¥ q there are at most deg /q =  31 values of v2 in ¥q 

for which we do not have co-primality. Exclude these {vi,v2).
Indecom posability . Assume that /£ /  f[  has a decomposition as in Lemma 10 

with Q i(0 ) =  0 . Analysis of the degrees shows that there are only two possibilities: 
(cji, u 2, pi, p2) = (£, 1,3,0) or (3,0,^,1). A decomposition of the first type leads to 
the contradiction J q {x ) = Q\{R\{x)) with R\{x) G F 9 [x 3]. So the challenge is to 
restrict for each 17 G F g the number of v2 G ¥ q which allow a decomposition with 
(cji, u)2, pi, p2) = (3,0,t, 1). Here we have R2{x) = x -f V2, where V2 := v2 . From 
Qi(0 ) =  0  we conclude that R\{x) divides

, ; w -  «?(.)■

which is a fixed polynomial (for fixed iq). Hence the number of choices for Ri is at 
most 23t. We show that no two v2,v2 G F 9 , v2 ^  v2l can occur with the same R\. 
Suppose



where Vi := v'uj and both Q\ and Q\ are cubic polynomials with zero constant 
term, say Qi(x) := x3 +  A x2 + Bx  and Q\{x) := x3 + A x2 +  Bx.  Then

fo(x)  =  R?(x) + A ■ R2(x) • (x +  V2) + B  ■ R ^ x )  ■ {x +  Vi)2 = 
= R\(x) + A ■ R\{x) ■ {x + V2) + B  • R ^ x )  • (x +  Vi)2 ,

and upon dividing through Ri ^  0  and re-arranging,

R i ( x )  \{A -  A)x  +  (AV2 -  AV2)

{.B -  B)x2 -  (BV2 -  BV2)x +  (BV.? -  BY?)

This is impossible:

• If A  ^  A, then the degree of the LHS is exactly t +  1 > 5, while that of the 
RHS is 2 or smaller.

• If A = A ^  0, then AV2 — AV2 ^  0, so the degree of the LHS is exactly t > 4, 
still greater than that of the RHS.

• If A = A = 0, then both sides are identically zero. This implies B = B = 0, so 
that Qi(x),Qi(x)  and consequently / J(x) are in Fg[x3], which is not the case.

Thus indecomposability can be achieved by excluding at most 23< values of v2 for 
each v\.

Sim plicity. Taking (3 = 0, we have

Fq(x ) = x2 [x3t~2 +  (Cx2 +  l ) / ( x 3) +ViXA]
^ ...........  y.

=: A(x)

and must make A square-free by choice of v \ . This can be done in exactly the same 
way as for j  = 2. Thus, exclusion of at most 3£ — 3j — 1 values v\ suffices to ensure 
the simplicity of F0* (for a suitable v2). So all conditions of Lemma 7 are satisfied, 
and the last part of the proof for the Exceptional Case is complete.

4.4 The “D egenerate C ase” : all coefficients A k  

w ith  k  <  3 i — 2 are zero
This is the easiest of our three cases—and also the hardest! While the vanishing of all 
coefficients A2, . . . ,  A 3t- 2 makes the calculations very simple, it also greatly reduces 
the scope for manipulating / 0 and / i  to endow them with the desired properties. 
Indeed, as will become clear, the cases where only one of Azt-i,  Ast+i is non-zero 
each alone account for all restrictions on t and m  in Theorem 8 .

We distinguish again three obvious subcases.
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A 3t - \ A 3t+\ 7^ 0 .

Choosing S3 =  u, one obtains F(x) = Fu(x) = fo{x) +  uf\(x)  with

fo(x) = x3t+1 +  A m- iX2 + A3t+\ ,
M x )  = x3t~2 .

For these, conditions (i)-(iii) of Lemma 8  are trivially satisfied (use Lemma 11 (iii) 
for indecomposability). For the discriminant there is Lemma 12:

Ei(x) = {A3t- i x 2 -  A3t+1)x3t~3 ,

and the part of this which is co-prime to f i(x)  is A3t- i x 2 — A3t+i. Hence

Ax =  c • (it 4- f (a) ) (u  +  f ( —a)) where q G F J  with a 2 = ^ 3f+1 .
A3t—i

To show that Ax is a non-square in ¥ q(u) one has to rule out f (a )  = / ( —a). With t 
even, we have f i(a) = f i ( —a) and fo{a) ^  /o(—a), because fo(a) = fo(—a) would 
be equivalent to a  =  0. Therefore Lemma 8  holds with “Situation S” .

The only non-zero coefficient is A 3t+i.

With S3 =  u as above, we have now

fo(x) =  x3t+1 +  A3t+1 , 
fi{x) = x3t~2 .

Again we aim at Lemma 8 , where conditions (i)-(iii) hold trivially. But this time 
Ei(x) = —A3t+ix3t~3, so that the part co-prime to f i(x)  is a constant (reflecting the 
fact that Ax E F9) and Lemma 12 is of no use. Instead, Fu(x) = x3t+l+ux3t~2+A3t+i 
is a trinomial, and we can use Theorem 3.87 of [LiNi] to determine its discriminant 
explicitly:

A -  ( - n * (3t+i)/2 A3t _  /  AIU1 - if t =  0 or 1 (mod 4),
x 3t+l |  — ) if £ — 2 or 3 (mod 4).

Since Ax is now an element of Fg, the only situations where we get a result are those 
where Ax is a square in F9. We check the above cases individually for this:

• If t = 0 (mod 4), then Ax is an even power of ^ 34+1 and thus always a square 
in ¥q.

•  If t = 2 (mod 4), then Ax is the negative of an even power of 4 ^ + 1. This is a 
square in ¥ q if and only if —1 is a square in ¥q, i.e. if and only if the degree m 
of Fq over F3 is even.

• If t = 1 (mod 4), then Ax is an odd power of A3t+i. This is a square in ¥ q if 
and only if A 3t+ 1 is already one.
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• If t = 3 (mod 4), then A x is the negative of an odd power of A3t+i. This is a 
square in Fg if and only if —1 and A 3t+i are both squares or both non-squares 
in Fq.

In the first two cases we have successfully established Lemma 8  (with “Situation A”) 
under the conditions of Theorem 8 . In the latter two cases it depends on A3t+1 

whether or not A* is a square in F9, and for half of the elements in F* it will 
actually be a non-square. This forces us to disregard odd values of t.

As far as the last point is concerned, the question springs to mind whether 
Lemma 7 would offer a better alternative to Lemma 8 . Unfortunately, it turns out 
that Lemma 7 cannot be used at all: for any possible choice of S3 , . . . ,  s3t one gets

fo(x) = x3t+1 -1- A 3t+1 +  £ 0 ( x) , 
f i(x)  = x3t~2 +  E i (x ) ,

where Eo(^) and £ i(z ) are polynomials in F jx] with all exponents =  1 (mod 3). 
Hence Fp(x) = fH(x) +  (3f"(x) is identically zero, so that every double root of Fp is 
automatically a triple root and Fp cannot be simple.

Therefore, in the Degenerate Case, we rely on the use of Lemma 8  with “Situa­
tion A”!

The only non-zero coefficient is A3t- 1.

This is very similar to the previous situation. After choosing S3 =  u we must first 
cancel x2 from fo(x) and f i(x)  to arrange co-primality. Then we have

fS(x) = x3t~l + A 3t- 1 , 
f{(x) = x3t~A.

As before, conditions (i)-(iii) of Lemma 8 are obviously met, and by Theorem 3.87 
of [LiNi] the discriminant A* of F*(x) — x 3*-1  +  ux3t~4 -I- A3t- 1 is

AH_l , if t = 0 or 3 (mod 4),
—Aftz l , if t = 1 or 2 (mod 4).

The cases individually:

•  If t = 0 (mod 4), then A* is an even power of A3t-i ,  always a square in F9.

•  l i t  = 2 (mod 4), then A* is the negative of an even power of A3*_ 1, a square
in Fq if and only if m  is even.

With this the proof of Theorem 8 is complete. The remaining cases pose the same 
problems as before (with their roles interchanged):

•  If t =  1 (mod 4), then A* is the negative of an odd power of A3t_i, a square
in Fq iff —1 and A3t- 1 are both squares or both non-squares in Fq.
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• If t =  3 (mod 4), then A* is an odd power of A$t-u a square in ¥ q iff A3t- i  is 
one.

The use of Lemma 7 is again prohibited by the fact that for every choice of S3 , . . . ,  s3t 
either Fp = 0 or Fp(x) =  x  • Fp(x) ,  so that a non-zero root of Fp is automatically 
a root of F p , and Fp cannot be simple. Thus Theorem 8 is the best possible result 
we can get on the basis of Theorem 6 .

4.5 Failure o f th e approach for t  —  1
Attempting to prove an analogous statement to Theorem 8  for t =  1 can serve as 
a simple example for a situation where the approach of Theorem 6 fails, i.e. where 
there exists always a choice of coefficients A k  for which F(x) does not split.

For t = 1 we find

F ( x )  =  ( x *  +  A \ X ^  +  A 2 X 2  T  A 4 )  +  S 3  { x  +  A i )

(where A\ may be zero or not). The only influence we can exert here is by varying S 3 .

Suppose A 4 = — in which case

x ^  T  A \ X ^ - f -  A 2 X 2  T  A 4  — ( x ^  4 -  A 2 X  — A2A\){x T  A \ ) ,

so that
F(x)  =  (x3 +  A 2x -  A 2A i -I- s3)(x +  A \ ) .

Put S3 — A 2A 1 =: u. Then F{x) splits if and only if x3 +  A 2X +  u splits for some 
u G Fq.

Now let in this situation A 2 be the negative of a non-square in ¥q. Then F(x) 
cannot split, for if it did, say with

x3 + A2x  +  u = (x — a)(x — P)(x — 7 ) ,  a , / ? , 7  e F 9,

then comparing coefficients shows that a +  (3 +  7  =  0 and aft + a j  + (3j =  A2,
and substituting 7  =  — (a -h (3) in the second equation results in — A 2 = (a — @)2, 
contradicting the assumption made about A2.
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Chapter 5 

Refinement of the Approach

Since failure of our method, like in the example of the last section of Chapter 4, 
does not allow any conclusions about the covering radius of BCH codes, there is a 
case for trying to strengthen the method. An obvious way for this which we will not 
pursue here would be to try to expand further the toolbar for showing G = G. We 
begin with a heuristic argument why even without this it is reasonable to hope for 
more results.

5.1 W hy there should be room  for im provem ent
Recall from the end of Section 2.1 that we need to find for all (a*) E F^ an e G Fp 
such that the Helleseth system EGk =  ak has a solution x j , . . . ,  xr E Fq.

The space F* x F^ =: H  with (p — 1 )q3 elements describes all possible Helleseth 
systems with E\ = . . .  =  er =: e for fixed g, 6 and r (all notation as in Section 2.1). 
Call (e, (a*)) E TC solvable if there exists a solution to the system eg*, — ak in F9. 
The aim is to identify a solvable subset of H  which covers all (a*) G F^.

Clearly, if (e, (ak)) is solvable, then so is (i9e, ('dak)) for any d G F*.

For any c G ¥ q and e E F*, the recursion

k—l / . \
bk := ak -  ckTE -  (k = 1 , . . . ,  5 -  1) (5.1)

n=i w

induces on F^ a well-defined bijection

V̂c,e • (a>k) 1 * (hfc) •

The inverse of </?C|£ is (p~c,e 5 more generally, for fixed e the group ({</?c,e : c G Fg}, o ) 
is isomorphic to (F?, +  ). A non-recursive alternative expression for the bk is



(We omit the proofs of these statements, which, where not obvious, are mainly 
exercises in the arithmetic of binomial coefficients.)

The map </?Cie stems from Lemma 4 about linear change of variables: (5.1) is 
identical with (2.6). The lemma states that for a solvable fe  (ak)) G H  and c G ¥q 
the element fe  <pc,e(ak)) € 7i is also solvable.

There are two obvious equivalence relations on 7i:

fe ,  fe ))  ~  f e ,  (ak)) f e ,  (zk)) = (i9ea, (tfak)) for some i9 G F*,

f e , f e ) ) ^ f e , f e j 0)  £z = £a a  (zk) = ^ c,s(ak) for some c G Fq .

As seen above, both preserve solvability. Each ^-class has size p — 1. The ^-classes 
in the case r ^  0 (mod p) all have size g, so there are (p— 1 )qs~1 such classes, and as 
a system of representatives one can take F* x {ofe x F ^ 1̂  with any fixed element a\ 
of Fq. (For r = 0 the situation is different, e.g. the equivalence classes have different 
sizes, and the map ipCt£ no longer depends on e. We neglect this case.)

We want to combine «  and & into one equivalence relation to get large classes 
of solvable elements. For this some preparations.

Lemma 15

(i) If  f e ,  (ak)) & fe , (bk)) «  f e , f e ) )  in H, then there exists (ew, (wk)) with 

f e ,  (ak)) «  f e ,  (wk)) & fe ,  (zk)).

(ii) For all f e ,  (afc)), f e ,  (zk)) G H:

fe,fefc)) ~  f e , f e ) )  A f e , f e ) ) & f e ,  fe ))  => fez, (ak)) =  fe ,  fe ))  •

Proof.

(i) The hypothesis f e ,  f e ) )  ^  fe , fe ))  ~  f e ,  fe ))  means, using (5.2), that there 
are c G F g and $ G F* with

fc-i
£2 =  ife  and zk = $bk = (~c)krtf£a +

u=0

Now it is easily checked that f e ,  (wk)) := ('ife , ($ak)) has the desired property.

(ii) From & it follows that £z = £a, and from «  that ez =  ife . Therefore d = 1 
and f e , f e ) )  =  f e , f e ) ) -  1=1

From the first part of the lemma it is clear that 

f e ,  fe ))  ~  f e ,  (ak)) :<t4> 3 fe , fe ))  G H  : fe ,  (ak)) «  fe , fe ))  & fe ,  fe ))

( f e  (~ cy t i ak-v (k e  S ) .
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is again an equivalence relation on 'H. Denote the class of (e, (ak)) by [e, (afc)]~, 
similarly those of «  and & . If (e, (ak)) is solvable then all elements of [e, (a*)]^ are 
solvable. Part (i) of Lemma 15 shows further that

[e, (a*)]~ = |J [e6, (bk)}% ,
(£6 .(frfc))€[e,(afc)]a

and by part (ii) the union is disjoint, so that for r ^  0 (mod p) all ^-classes have 
size (p — 1 )q and \H /~ \ = qs~l . A system of representatives for H / ~  is given by
{e} x x Fq ^ l\  where e is any fixed element of F* and aq of ¥q .

In Section 2.4 we associated with each system (s, (a*)) an (Ak) G F^ such that
solving the splitting problem for F(x) with the as coefficients implies solvability
of the system. Let us write this now as

H  — > ¥q
(e, (ak)) i— ► A (a k)

with
F^ — ► F^

(®fc) 1 * 5

where the A k are defined as in (2.9). For every e  E F* the map ip£ is bijective; the
inverse was given in (2.10).

For r  ^  0 (mod p), represent ?7/~ as described with fixed e G  F* and cq G  ¥q.
With these, A\ = —£~la\ is also fix, and ip induces a map

i>- n /    {^ }xF f{1} f .
[e, (afc)]~ i— ► (Ak) .

This is the approach of Theorem 6. If in this situation the polynomial problem 
can be solved for all (Ak) G  {Ai} x ¥ q ^ \  as for example under the hypotheses 
of Theorem 8, this shows that one representative of each ~-class—and therefore 
all (e, (ak)) G  Ft—are solvable. But this is far more than necessary, since it would 
suffice to find one e for each (ak) such that (s, (ak)) is solvable!

Thus, in a sense, with Theorem 6 we prove a result that is p — 1 times as strong 
as necessary. There is no reason to assume that this stronger result holds whenever 
the desired bound for the covering radius does; some situations may fall in between 
the two and require a more subtle approach.

Note that the considerations of this section make a difference only for p > 2, in 
other words: here is a real novelty of the non-binary case.

5.2 A refined approach
The map 'ip in (5.3), which depends on e and a\, is a bijection. On the other hand, 
the example in Section 4.5 shows that there can be Ak G {Ai} x F ^ 1̂  for which
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F (x ) does definitely not split over F9. Therefore, if we want to extend our results, 
we must abandon the unified choice of e and a\.

Instead, in order to exploit as fully as possible the potential of our approach, the 
idea is to go through the process of Chapter 2 for each (e, (ak)) G  H individually. 
In practice this can be immediately realised as follows.

1 .  Start from (a k )  G  .

2. Take unspecified e G  F*, c G  ¥q and map (a/.) to (Ak) via ip£ o <pĉ£:

9 9 9

(ak) I— ► (bk) I— ► (Ak)  ■

3. Try to find a choice of e and c for which splitting of F(x) with coefficients A k 
can be proved.

If this procedure can be completed successfully for all (ak), the bound for the covering 
radius follows.

In the subsequent sections this refined approach will be put to the test in the 
case of ternary codes with designed distance 5 = 2 (mod 3). In this case e is one
of +1 or —1, in particular s_1 =  e, and the (bk) = (pc,e(ak) and (Ak) = ipe(bk) are
given by (5.2) and

fc-i
A k =  ̂bk—fxA^

/ i = 0

(with auxiliary element A 0 =  1). Moreover, we write □  for the set of squares in F9 
and 0  for the set of non-squares, i.e. ¥ q is the disjoint union of □, 0  and {0}.

5.3 The case t  —  1 ( S  =  3 t  +  2) re-visited
Let us first come back to the case t = 1 of Section 4.5. It turns out that with the 
improved method it is possible to obtain an analogue of Theorem 8 for odd m. 
Motivated by the fact that the method still fails for even m, we show then by more 
direct means that in this case the hypothesis p — 5 — 1 is actually false.

T heorem  9 Consider the primitive ternary BCH code £3,3- 1,5 of length q — 1 
(q = 3m) and designed distance 5.

(i) I f  m >  9 is odd, then the covering radius of C3,g_i ,5 is exactly 4.

(ii) I f  m  > 4 is even, then the covering radius of £3,3 -!,5  is exactly 5.
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Proof.

We begin with part (i). Let (ai, a2j 0,4)  G . The transformation (Ak) = i)£0 {Pc,e(ak) 
yields

A \  =  C — £CLi ,

A2 = ea2 - a\ ,
A4 = —ea4 — ec2a2 +  £caf +  £a2a\ +  c2a\ — ca2ay — a\ +  a\ .

The polynomial to split is F(x) =  x* +  A \ X Z +  A2x 2 +  A 4  + s$(x + A\). With s 3 =  u 
this becomes Fu(x) = fo(x) + u fi(x )  with

fo(x) =  xA +  A \x 3 +  A 2 x 2  +  A 4 , 
fi(x)  = x + A i .

One finds

/o, /1  are co-prime A 4 ^  —A 2A2 4$ £04 -1- £a2a2 + a2 7̂  0  .

The last condition cannot be “transformed away” by choice of c. Thus, if we want to 
work with a particular e, it is inevitable to distinguish two cases according to whether 
the last expression is zero or not. Two other expressions will govern our division 
into subcases in a similar way (their significance will become clear immediately in 
the course of the proof). The complete list is:

I\ := £0,4 -|- £o2q2 CL2 — —A4 — A 2A 2 ,
12 := £CL2 -  a2 = A 2 ,
13 := — £0,4 +  £a2a2 +  a\ — a* = A 4 — A 2 when c =  £a\.

Seven subcases follow. These are not all disjoint, but the reader will quickly verify 
that they cover all possible (ai, a2, 04) G F j. By UI\ for — e" we mean the expression 
—£0,4 — £a2a\ +  0%, etc.

Case 1: h h h  7̂  0 for some e G {1, —1}.

Take e with I i l2h  ^  0, then use Lemma 8 . Co-primality of fo and f i  is settled 
by Ii 7  ̂ 0 , indecomposability of / 0 / / 1  follows from the fact that /1  is linear, and 
condition (iii) is obvious. The only serious problem is the discriminant Ax.

For this employ Lemma 1 2 . One finds Ei(x) = A 2x 2 — A2A\X — A 4 , and further 
E i( -A i )  = —A4 — A2Af = 11, not zero by assumption, so that E\ is co-prime to f \  
and all factors contribute to the discriminant.

By putting c := £di we can arrange A\ = 0. Then A 4 becomes equal to I\ ^  0, 
and by assumption A2 ^  0, so that Ei has roots ± a  G ¥ q , where a 2 = A4/A 2. To 
show that A x is a non-square in F9 (u), and thus establish “Situation S” of Lemma 8 , 
it suffices now to show f (a )  ^  f ( —a). But f (a )  =  f ( —a) is equivalent (for c =  £a\) 
to A4 — A2 — 0 , which was excluded by I3 ^  0 .
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Case 2: I\ ±  0 A I2 =  0 for one e G {1, — 1}, I\ =  0 for —e.

Together the conditions imply a4 = 0 and a2 = ea\ ^  0. Work with e as described 
(and arbitrary c). As before, co-primality, indecomposability and condition (iii) of 
Lemma 8  are clear. The general expression for the discriminant (computed with 
Maple) is

Ax =  - A \ u 2 +  [A\Ai -  A\A\)u  +  {A\ +  A\A \  +  A 4A\ -  A4A%Al) .

Here, thanks to A 2 =  0, this reduces to Ax =  A\ — a\2, a square in F9, so that we 
have “Situation A”.

Case 3: I\ = 0 for both e G {1, —1}.

(We can take any e.) The condition implies a2 = a4 = 0; in particular, A2 simplifies 
to —a2. After cancelling x + A\ from fo{x) and fi{x)  we must show that

K ( x ) = fo(x ) +  u fi(x )  =  x3 +  A2x -  A2A\ +  u

splits. Choose u =  A 2A 1, then

F*(x) = x 3 — a2x = x(x-b ai)(x — a i ) .

Case 4: I2 =  0 for both e G {1, —1}.

The condition implies a\ = a2 = 0, so assume a4 ^  0. Then / 0 and f \  are co-prime.
Conditions (i)-(iii) of Lemma 8  hold, and the discriminant is

A -  a3 _  /  ~ al for £ =  1,
Ax “  A* -  \  for e =  - 1 .

In the case of odd m  one of these is a square in Fg and we can arrange “Situation A” 
by choice of e. (For even m  there is nothing we can do if a4 G 0.)

Case 5: I2 = 0 for one e G {1,-1}, I3 = 0 for —e.

From the conditions it follows that ea4 = a\ and further A\ = c — eax, A 2 = A 4 = 0. 
Thus with c := ea\ we get Ak = 0 for all k , and Fq(x) = fo(x) = x4 splits trivially.

Case 6 : I2 7  ̂0 A I3 = 0 for both e G {1, — 1}.

I3 = 0 for both e implies a\ — a\ = 0 and therefore a2 = ±af. This contradicts 
I2 7  ̂ 0  for one of the e. So this case cannot occur.
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Case 7: I\ =  0 for one e E {1, —1}, /i  /  0 A / 2 /  0 A / 3 =  0 for — £.

Here we find 0 =  — ea2a\ — af = a \(—sa2 — a?) and so a\ =  0, —££24 =  a | 7  ̂ 0. With 
c := 0 the become Ai =  A 4 = 0  and A 2 = ea2. For odd m, exactly one of ±£<22 

is a square.
Assume first that —ea2 = (32, (3 E ¥ q. With u := 0 this means Fu(x) =  xA — (32x2, 

which splits as x2(x + (3)(x — (3).
Now suppose ea2 = (32 with (3 E ¥ q. In this case work with — £ instead. Then 

I\ 7̂  0 implies co-primality of /o, f \  \ conditions (ii) and (iii) of Lemma 8  are satisfied 
as usual. In addition we have now A\ = 0 , A2 =  — ea2 and A 4 = a2 =  A \ , so the 
discriminant is (cf. Case 2)

Ax =  —A^u2 = ea\u2 =  (f3su )2

and we are in “Situation A”. This completes the proof of part (i) of Theorem 9.

To prove part (ii), we establish first that the covering radius of £3,9- 1,5 must 
be greater than 4 when m  is even. By Theorem 4, this follows if there exists one 
(£2i, £22, £24) £ ¥q for which the system

£ 1 X1 +  £ 2 ^ 2  4" £3^-3 d~ £ 4 ^ 4  =  <2 i

£ix2 4- £2^2 +  £3^3  4- £4^4  =  a2 (5-4)
£1*̂ 1 T £2*^2 3~ £3^3  d” £ 4 X 4  —  £24

has no solution with £1, £2 , £3 , £4 £ {1 ,-1} and x i ,x 2, x3, X 4  E ¥ q .
A look back at the proof of part (i) shows that in most cases the system does 

have a solution (with all £ equal), for both odd and even m. Only in two situations 
we could not show splitting of F(x) for even m:

• ai = a2 =  0, «4 £ 0  (Case 4), (5.5)

• ai = 0, a2 E 0 , <24 =  3za2 (Case 7 ) . (5.6)

We prove now that for (5.5) the system (5.4) has indeed no (3, g)-solution when m 
is even. Since even m implies that the negative of £24 is also a non-square, we need 
only consider the possibilities that exactly four, three or two of the £* are 4-1.

Let us first deal with the system

xi 4- x 2 4- x 3 4- X4 = 0
x\ 4- £2 4- x \  4- x 2 = 0
x\ 4- x \  4- x \  4- x\ =  £24 E 0 .

The first equation says x\ + x 2 = —x 3 — X4 . Squaring both sides and subtracting
the second equation yields x \x 2 = (x3 — X 4 ) 2 . Therefore

x i 4  x\  = (x\ 4- x \ ) 2 4- {x\x2) 2 = {—x\ -  x l )2 4- (2:3 -  x4)4 ,
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and substituting this in the last equation gives £ 2 4  =  — 2 : 3 2 : 4 ( 2 : 3  — X 4 ) 2 . By symmetry,

<24  =  - X i X j ( x i  -  x j ) 2  for i j  E {1,2,3,4}, i ^ j .

Now let X\ = a, x 2 = (3, x 3 = 7 , 2:4 =  S be a solution in ¥q . For fixed a, the other 
values are roots of

(24 =  —ax[a — x )2 — —a x 3 — a2x 2 — a 3x ,

or (since we can assume without loss a ^  0 ) of

x 3 +  ax 2 -1- a 2 x  +  — =  0 .
a

Dividing out the factor x  — (3 (say), and applying the formula for quadratic equations 
to the remainder, we find that

7 ,5 = a + f i ± \ / a j3 .

Suppose the solution lies completely in Fq. This is the case if and only if a(3 E □. 
But then £24 =  —a(3(a — (3) 2 E □, a contradiction.

Next we turn to
x i  +  £ 2  +  x 3 ~  x 4 =  0

x\ 4- xl  -I- x\  — x\ = 0
x\  +  xj  +  £ 3  — x\ = £2 4  E 0  •

Proceeding as above, we find x \x 2 — x\ — x 3X4 , £ 2 4  = x 2X4(x3 — £ 4 ) ,  and by symmetry

£24 =  x 2 X 4 ( x i  — X 4 )  for i =  1,2,3.

Let x\ = a, x 2 = (3, £3  =  7 , X4 =  6 be a solution in ¥ q . Fix 8 . We can assume 
8 7  ̂ 0 , since we cannot have a solution in ¥ q with 8 = 0 (this would also be one for 
all e equal to 1). Continue as above by dividing out x — a  from x 3 — 8x 2 — 0,4 /8  to 
obtain

(3, 7  =  a — 8 ±  y/5(8 — a ) .
Suppose the solution is in ¥q. That is the case exactly if 8(8  — a) E □  or 8 — a = 0. 
But then £24 =  —a 2 • 8 (8  — a) E □  or £24 =  0, either of which is a contradiction.

The last possibility to examine is that

Xi + x 2 — x 3 — X4 = 0

x \ +  x 2 —  x\ —  x\ =  0

x i  +  X 2 ~  x i  ~  X 4 =  a 4 €  0

h a s  a  s o l u t i o n .  B u t  h e r e  t h e  a b o v e  s t r a t e g y  l e a d s  ( v i a  2 : 1 2 : 2  =  2 : 3 2 : 4 )  i m m e d i a t e l y  t o  

t h e  c o n t r a d i c t i o n  £ 2 4  =  0 .

It remains to show that the covering radius of £3,9- 1 , 5  is at most 5. To do this, 
it suffices to show that the system

£ X i  +  £ X 2  +  £ X 3  +  £ 2 :4  +  £ 2 :5  =  £2 i

ex\ +  £2:2 +  £2:3 +  £2:4 +  £2;§ =  a2 (5.7)
£ x \  +  £ 2 : 3  +  £ 2 : 3  +  £ 2 : 4  +  £ 2 : 5  =  £ 2 4
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h a s  a  ( 3 ,  ^ - s o l u t i o n  f o r  ( a i ,  < 2 2 , ^ 4 )  a s  i n  ( 5 . 5 )  a n d  ( 5 . 6 ) ;  f o r  a l l  o t h e r  ( a k )  E  s u c h  

a  s o l u t i o n  e x i s t s  w i t h  x 5  =  0 ,  a s  t h e  p r o o f  o f  p a r t  ( i )  s h o w s .

W e  u s e  T h e o r e m  6 . T h e  r e l e v a n t  p o l y n o m i a l  i s  Fu(x) =  fo(x) +  uf\(x)  w i t h

J q ( x )  =  x 3  +  A \ X ^  +  A 2 X 3  +  A 4 X  +  A §  ,

fi(x)  =  x 2 + A ix  + A2 ,

w h e r e  ( A k )  =  i f>e  0  ( P c , e ( a k )  f o r  s o m e  e  G  F * ,  c  G  ¥ q . T h e  m a p  ( p CiE  d e p e n d s  o n  r ,

w h i c h  i s  n o w  =  2  ( m o d  3 ) ,  b u t  t h i s  d o e s  n o t  c o m e  i n t o  e f f e c t  i f  w e  c h o o s e  c  : =  0 .

T h e n  t h e  A k  a r e ,  a s  f o r  r  =  4 ,

Ai = —ea\ ,
A 2 = ea2 -  a\ ,
A4 = —ea4 +  ea2a\ — a\ +  a* .

T h e  “ f i l l - u p  e l e m e n t ”  a 5 , a n d  t h u s  A 5 , c a n  b e  c h o s e n  a r b i t r a r i l y  i n  F g .

ai = a2 = 0, a4 G 0 .

This is the case A\ = A 2 = 0, A4 = ± a 4 ^  0.

f 0(x) = x 5 +  A4x  +  A 5 , 
f i  (x) = x 2 .

Use Lemma 8. Avoid A 5 = 0 to make /o and /1  co-prime. Indecomposability follows 
from deg / 0 =  5 prime, and condition (iii) is clear. E\(x) — — A 4X 2 +  A 5x\ the part 
of this which is co-prime to fi(x)  is — A4X + As, of odd degree. Therefore we are in 
“Situation S” .

a \  =  0 , a 2  G  0 , < 2 4  =  ± 0 3 .

Take e : =  —  1  for a 4  =  a 2  and e 1  for < 24  =  —  a $ ,  then this is the case Ai = A4 = 0, 
A 2 ±  0.

fo(x) = x 5 + A2x3 +  A5 , 
fi(x) = x2 + A2 .

As before, “Situation S” of Lemma 8 can be established: fo(x) =  x 2f \(x )  + A$, so to 
ensure co-primality one must avoid A5 =  0, and then E\ = A5x has automatically 
degree 1.

It follows that for even m  the covering radius of C^q- 1,5 is exactly 5. □

When Ai = 0, (5.5) corresponds for t > 1 to the Degenerate Case with A 3t+i as the 
only non-zero coefficient. The proof of part (ii) shows that it is definitely a “spoiler” . 
Coding-theoretically, this means that certain codewords of the supercode C3,9- i ,3 , 
all of which satisfy the first two equations of (5.4), fail to have distance < 4 from a 
codeword of £3,9- 1,5 .

Despite trying similar techniques, it has not been possible to decide the same 
problem for (5.6), which corresponds in the same way to the remaining two instances 
of the Degenerate Case. Neither is it clear what the coding-theoretical interpretation 
of this situation is.
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5.4 N o new  results for even t

The case t = 1 shows that our refined approach can indeed lead to better results. We 
ask next: is it possible with the flexible choice of e and c to get rid of the restriction
in Theorem 8 that m  must be even for t =  2 (mod 4)?

The answer is no. To see this, take again, as in (5.5), (ak) E with ak = 0 for 
k = 1 , . . . ,  and a^t+\ ^  0. Then (Ak) = 'ipe ° y c,e(ak) is given for general e and c 
by

A i — c,
Ak = 0  for k =  2 , . . . ,  3 t ,

Azt+i — — £&3t+l 7̂  0  •

For c =  0 we are exactly in the situation of the Degenerate Case (Section 4.4), 
second subcase, which led to the restriction on m  in the first place.

For c ^ O  we have A\ ^  0 and

F(x) = [x3t+1 +  A xx3t +  A3t+i ] +
+ s3 • [x3t~2 +  A ix3t~3] +
+ ... +
+  $3 t - 3  ' [ ^ 4  +  A i X 3 ] +

+  S 3 f  • [ X  - f  A i  ] .

With this neither Lemma 7 nor Lemma 8 can cope:

• There is no power of x of the form x3l+2, and for no choice of S3 , . . .  ,S3t a 
common factor of /o ,/ i  that could cancel. Therefore, in Lemma 7, we have 
always Fp = 0 identically, so Fp cannot be simple.

•  The polynomial fi(x )  is inevitably of the form

Y J S3A x 3t+1- 3,' + A 1x3t- 31') = +
V  V

a polynomial in x 3

so condition (iii) of Lemma 8 is always violated.

This puts already an end to our hopes of extending Theorem 8 when t is even. 
Nevertheless, to get a more complete picture, it is worth having a look also at the 
case a3t-i 7̂  0 and =  0 for all other k. (This is the analogue of (5.6) for t > 1, as 
Section 5.7 will show.) Here the Ak have values

Ai = c,
Ak = 0 for k = 2 , . . . , 3t — 2 and k = 3£,

-̂3£—1 == Ea3t-1 7̂  0 >
Ast+i = —c2£ast-i ■

^Here and in the sequel we tacitly identify an S'-tuple (ak) £ with the appropriate r-tuple
(ak) e Fg.
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Again c = 0 reproduces the situation of Section 4.4 (third subcase), and for c ^  0 
we find

F(x) = [x3t+l + A rx3t + A ^ x 2 + A 3t+l] +
+  s3 • [x3t~ 2 +  A ix3t~3] +
+  . . .  +  (h-8)
+  s3t-3 ' \x^ A\X3 \ +
+  $3t • [ X +  A\ ] .

Each expression in square brackets is divisible by x +  c, so co-prime polynomials can 
only be obtained from

F*(x) := = [x3t +  eazt-ix -  ceazt-i ] +  ^  s3ux3(t~u'> .x  +  c 'i/=i
But for this the same considerations as above apply.

Not willing to give up yet, we will return to these particular problem situations
in the next section to try out an idea that suggests itself exclusively to ( a k )  G

with very few non-zero entries.

5.5 W orking w ith  one e* different from the rest
A disadvantage of our method is that it can only handle the special case of (2.3) 
where all £{ are equal. Thus we gain no information about the solvability of systems 
with general £ i , . . . ,  er G F*, and much of the power of Theorem 4 is lost.

In general, nothing can be done about this. However, for individual (ak) £ F^ 
it is at least possible to choose one e* different from the rest, provided almost all 
of the ak are zero. In this section we describe first a general way how to do this, 
and then examine whether this additional degree of freedom finally allows to find a 
solution for the (ak) of the last section.

In the system (2.3), take :=  E for i = 1  T — 1 and Er :=  $ £  with $  G F * :

EX\ +  . . . + EXr —i +  dEXr =  CLl

kEXl +  . . . + ^ r - 1 +  flEX* — ak

E x \ ~ l +  . . . + £XSr Z{ +  d £ X Sr~ 1 =  a 6 - 1  .

Put 2/i : =  X i j x r (i = 1, 
equivalent system

. . . , r -

z y i

1 ) and divide the k - th equation by x j? to obtain the 

+  . . .  +  Eyr- 1  = d i

eyi + . .. + £Vr-l = a k (5.9)

eyf- 1 +  . .. +
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Then go through the procedure of Section 2.3 and use the usual method.
There is a slight difficulty with the last step. In Section 2.3 we took into con­

sideration the possibility that a system may have more variables than equations 
(r > S — 1); this was compensated by adding “dummy equations” . With (5.9), in 
contrast, it is possible to have one more equation than variables, namely ii r = S —1 . 
In this case the Newton identities impose an additional condition on sp,S2P, . . . ,  s*p . 
The practical examples below will illuminate this point.

The “eliminated” variable xr is still implicitly present in the dk for ak ^  0. 
This is the reason why this approach becomes quickly unusable when several ak are 
non-zero.

Now let p = 3, 6 = 3t +  2 and r = S — 1. Assume t > 2 (even or odd). We apply 
the above to (ak) with either a3t- i  or a3t+i as the only non-zero entry, beginning 
with the former case.

In F3 we can take without loss e = 1 and # =  — 1. Then the modified system is

+  . . .  +  y^t = dk (k G S) (5.10)

where d3f_i =  X  +  1 with X  := a3t- i /x 3E+}, %3t+i arbitrary in F9, and all other dk 
are equal to 1.

Going through the procedure in the frame on p. 13, but taking k only up to 31 
in the second step, yields inductively (with details left to the reader)

S3j+i = s3j , s3j-+2 =  0 for j  =  0 , . . . ,  t -  2

and
S3t-2  — Szt-3  5 $3t- 1 — ( — i ) t+lX  .

By Lemma 5, the roots of

F{y) = = (-l)'ss, + to- ! ) £ ( - ! ) W '- 31"1 + x v
1=0 1=0

solve the equations of (5.10) for k < 31. It remains to satisfy also the equation for
k — 3̂  +  1. Theorem 5 with 31 variables states for k = 3t +  1 that

31
T > D W i- i^  — 0 ;

1=0

by replacing Si with si and cr*, with £~ldk we get the condition



that extends £<Jk{yi, • • • >2/31) = &k also to k = 3t +  1 (cf. the proof of Lemma 5). 
This determines s3t completely as (—l ) t+lX .  So the polynomial for which we have 
to study the splitting problem finally takes the form

t-i
F{y)  =  {y - 1) x  +

Z=0

From this an interesting conclusion can be drawn. Obviously, 1 is always a root 
of F (y ), so any solution to (5.10) found in this way will have yi = 1 for at least 
one i G  {1, . . . ,  3£}. This means that Xi =  x3t+i , and the columns for Xi and x3t+i 
in the original system cancel out with each other. In other words, any solution 
from F(y) implies one to the original system with all e* equal and at most 3t — I 
variables different from zero. Such a solution would already have been found in the 
previous section, where the original system was studied with arbitrary e and c (in 
fact, already in Section 4.4, since (5.8) can have a double root 0 only if c =  0). In a 
word: the change of only one e* produces nothing new here.

If a3t+\ is the only non-zero entry of (a*), the result is less conclusive. In the 
analogous way one calculates

t-1
F(y) = - X  +  (y — 1) ■ £ ( - l ) ‘S3iy3t—3Z—1

1=0

with X  := a3t+i/xft+{ and x3t+\ arbitrary in ¥q. We show that the use of Lemma 8 
(assuming that conditions (i)-(iii) are satisfied) can never lead to “Situation S” 
because the discriminant A y is always an element of Fq. Let /, J  C  {1, — 1}
with I  fl J = 0 and 1 G  J  be sets such that for v G  I  we put (—l ) us3v := wv and for 
y  G  J  we put ( - l ) * ^  ■= uv^. Then F(y) =  Fu(y) = f 0(y) +  u fx{y) with

fo{y) =  (y ~  1) .31- 1 +
v€l

- X ,

= ' y 2G0{y3)

h ( y )  =  i y -  i) • ^ 2 ^ y 3{t ^  1 ,

-■y 2Gi ( y3)

and in Lemma 12 one finds Ei(y) = XyG i(y3). Since yG\{y3) divides fi{y), the 
part of Ei co-prime to f i  is a constant, and consequently A y G  ¥ q .

Calculations with Maple for small values of t yielded A y = (— x 3t~2 in 
all cases (regardless of the choice of the s3/). If true in general, this formula would 
again only confirm the results already found in Section 4.4: X 3t~2 is a square iff 
aft+2 is a square, and so A y would be always a square for t =  0 (mod 4), for t = 2 
exactly if m  is even, and for odd t for exactly half of the values of a3t+i (for either 
parity of m).

In particular, another attempt to extend Theorem 8 to t = 2 and odd m  has 
been unsuccessful. The persistent failure of these attempts seems to be an indication
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that in this situation the hypothesis p — 6 — 1 may, as for t = 1, actually be false. 
We will not endeavour in this work to prove a generalisation of Theorem 9(ii).

5.6 Econom ical change o f e

The final challenge of this chapter will be to see whether with the refined method 
Theorem 8 can be extended to some odd t > 1.

However, the immediate way in which the method was realized in Section 5.2 is 
not very clever in our circumstances. Starting from (ak) G FJ makes it difficult to 
make optimal use of the considerable knowledge from Chapter 4 about coefficient 
tuples (Ak) for which the polynomial splitting problem has already been solved. 
Another important observation is that A\ = 0 seems to be crucial in our proof of 
Theorem 8 (all attempts of a modification for A\ ^  0 have so far met with serious 
obstacles).

The subject of this section is a systematic study how the concept of working 
with individual e and c for each (a*) G F j can be put into practice as economically 
as possible in view of these two points. We allow arbitrary odd characteristic and 
use the terminology of Section 5.1.

Let the space 7^/~ be represented as {e0} x {&i} x ¥ q ^ l\  Refer to this as the 
norm alised representation of 7i /~ .  In the light of the remark about A\ = 0 above, 
we are only interested in the case b\ =  0.

Recall from (5.3) the bijection

^  : W /~ — ► {0} x F f {1}
[£o> (W]~ 1 > (Ak) •

Now assume that for some (Ak) G F^ with A\ = 0 the splitting of the polynomial 
F(x) cannot be established. The aim is to identify exactly all (ak) G F^ which would 
have been covered by this, and try each of them again with a different e.

The equivalence class of Helleseth systems for which the problem remains open 
is ^ ~ l (Ak) = [£o> (bk)]~ with (bk) = i/j~0l (Ak), already in normalised representation. 
The elements of this class can be listed as

( e o , ( M )  ( £ o ,<Pc,e o ( b k ) )

( t f e 0 , ( # b k ) )  • • •  ( t f e 0 ,^c, t?e o ( ^ W )  • "

(p — 1 rows corresponding to the elements i9 G F*, and q columns corresponding to 
the elements c G Fg). A general element in this class is ($£o, (ak)) with

( a k )  =  <Pc,0eo ( t i b k ) =  $ ' V c , e o ( h )  =  & • </?c,£0 °  ^  ( M )  .
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For this, the change of e is now executed by replacing $e0 with another e G F*. 
Since this is arbitrary, we can write it in the form t?£i with arbitrary £i G FJ. So 
the new system to be considered is (i?ei, {ak)).

To find the image under ip of the ^-equivalence class of ($£i, {ak)), it is neces­
sary to find first the normalised representative of this class. The ^-component is 
normalised by

(0ei,(a*)) «  ( e o , ( ^ - a * ) )  ,

and then d E ¥ q has to be determined such that (fd,e0( ^  ' ak) = : (Pk) has h  = 0 . 
One calculates

b\ = —dreo -I- and a\ = —dcrco ,
V£i

so d = ——c, and in normalised representation our class is [eo, (&fc)]~ with
£1

(bk) =  ¥>-Ja<wo( f J - ^ c e o ° V ’w1 (>!*)) ■

Finally, by applying the map ip, we find that the new coefficients for the poly­
nomial splitting problem are

(Ak) :=  ip£o o i p _ ^ £o( f i • o ip-'iAk)) ■

The problem must now be solved for all c G Fq, but £1 g F J  can be chosen individ­
ually in each case.

In all this we can take w.l.o.g. £0 := 1. If we further replace £\ with ej"1, the
expression for the Ak simplifies to

{Ak) = ipi o ^ _ SlC)i(ei • <pC|i ° ipil {Ak)) . (5.12)

One checks that the choice e\ := 1 yields the identity. In the special case p = 3,
the only real change of £ is obtained from £i := —1.

5.7 N otes on the case of odd t  greater than 1
C onjecture Let t E N be odd.

(i) For odd m  the analogue of Theorem 8  holds, i.e. the covering radius of the 
primitive ternary BCH code of length q — 1 {q — 3m) with designed distance 
3t-\-2 is exactly 3£ +  1 whenever q > [(3£ +  l)!(3t — l)]2.

(ii) I f  m  is even and sufficiently large, then the covering radius of C^q-\^ t+2 is 
exactly 3£ +  2.

What evidence is there to support this?
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Part (ii), like the corresponding statement for t = 2 (mod 4) and odd m, is based 
on the repeated failure of our attempts to lower the bound for the covering radius 
to 3t +  1. As we will see below, the refined version of our method still fails in the 
Degenerate Case for even m. From Section 5.5 we know that varying one of the e* 
does nothing to help either.

And of course there is the example of t = 1, where the statement is positively 
true by Theorem 9(ii). (But one has to be careful with t = 1, as this case may be 
pathological—see below.)

Beyond that, the second part of the Conjecture is mere speculation.

When it comes to the more interesting part (i) of the Conjecture, we have more 
concrete evidence to go by.

First of all, it is again true for t = 1 by Theorem 9(i).
Secondly, for t > 3 the proof of the Standard Case from Section 4.2 carries over 

completely. The only place where the parity of t has any relevance is at the end of 
the subsection “Indecomposability” , and there an extra argument was included to 
cover odd t.

So let us turn to the Degenerate Case. We have the results from Section 4.4, 
obtained with some fixed e G F£. Where this leads to nothing, we use now (5.12) 
with ei := —1 to see what happens if we change to “the other e” .

The step-by-step calculation of (Ak) is shown on page 83. The mapping of (ak) 
to (bk) via </?C)i uses that, modulo 3,

y ( * )  =  (  ? '  i^ iSOdd } for all A; € N ,
V v )  I — 15 it « is even IU=1 x J

a fact easily proved using (J) =  (*l}) +  (fe~1)- All other steps are straightforward 
with induction. The list gives the results for arbitrary t G N. Those for t = 1 differ 
to some extent from those for larger t. This is the reason why we said that the 
situation of Theorem 9 may be misleading and must be taken with caution.

For odd t > 3 we re-visit now the cases of Section 4.4. All notation from there 
is retained, and where a change of e is carried out the new objects are denoted by
over lined symbols ( / 0, E  l7 Ax, ...) in the obvious way.

^3t-l^3t+l 7  ̂0 .

Unlike for even t (see p. 62), it is now possible to have f (a )  = f ( —a ) .  This happens 
exactly when A\t_x = where s  := (31 +  l)/2 . Only in this case it is necessary
to employ the change of e.

Then the only Ak that can be different from zero are

A2 =  c2 , A4 = c4 , A3t- 1 =  —A3t~ 1, A3t+\ =  —A3t+i — c2A3t_ 1 .

For c ^  0  this is the Standard Case (because A2A3t+i 7  ̂ A^A^i). For c = 0 the 
change of e amounts to multiplying the Ak through with —1. Since it is not possible
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to have A 3^  =  and (—A 3t- i ) s = (—̂ 34+1 )s 1 at the same time, this must
lead to Situation S. This settles the case A3t_iA3t+i ^  0 (for all m).

The only non-zero coefficient is A3444.

Change of e yields either the Standard Case (for 0, then A2A34+i — A±A3t-i  = 
—c2A 3t+1 7  ̂ 0) or, for c =  0, the Degenerate Case with A344.1 =  —̂ 34+1 as the only 
non-zero coefficient. In the latter situation,

Ax =  Aft+l, Ax =  - A f t+l when t =  1 (mod 4),
Ax =  - A f t+l, Ax =  Aft+l when t =  3 (mod 4).

Hence, for odd m, one of Ax, Ax is always a square. (It is obvious that we lose the 
even m  here.)

Assuming that the remaining case will be analogous to this, we seem to be close 
to reducing the proof of part (i) of the Conjecture to the Exceptional Case. But at 
this point we are in for a nasty surprise.

The only non-zero coefficient is A3t-\.

Use the change of e again. For c = 0 this yields, similarly as above, Ax = —A*, so 
that for odd m  either Ax G □  or Ax G □. But for c 7  ̂0 we find

A 2A 34-1-1 —  — c A3t-i — A^A3i—\ ,

so this time we are in the Exceptional Case! With the parameter choice of p. 48 we 
get

f 0(x) = x 3t+1 +  (C x2 +  1) gl_i(x3) = x3t+1 -1- (x2 -I- c2)(c2x 3t~3 — A3f_ i ) , 
f i (x )  = x 3t~2 -I- (Cx2 +  1) gt%(x3) + v x  = x 3t~2 +  (x2 4- c2) c2x 3t~6 + vx  ,

and so
Ei =  (x2 -  c2) [ -A 3t- i x 3t~ 3 +  v(c2x 3t~ 3 -  A3f_i)] ;

this is a particularly obstinate instance of the Exceptional Case which is not covered 
by any of the arguments in Section 4.3 and has so far also withstood all other 
attempts of a general solution.

Yet we can uphold our conjecture on the following basis. Calculations with Maple 
for t = 3,5,7 suggest that the general form of the discriminant Ax (with f 0, f i  as 
above) is

Ax =  (—1)(*-1)/2 (c&tv3t~l -  c6t~6v3t~AA3) u3i~l +
_!_ ^c 6 f - 4 ?;3 f - 6 y^5 _  c 6 t + 2 y 3 t - 3 ^ 2 ^  y ^ t - 3  _  3 t y 2 u 2  c 2 ^ 3 t + 2

Can this be a square in Fg(tt)? For t = 1 (mod 4) this can definitely be ruled out by 
elementary means. For t = 3 (mod 4) the same appears to lead to R(v) =  0 with
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a rational expression R(x) £ Fg(z) of reasonably small degree, but not constant. 
Thus, excluding a number of v would settle the problem.

A rigorous (and possibly more elegant) proof remains to be found.

Suppose these last difficulties can be overcome. Then all that separates part (i) 
of the Conjecture from a theorem is the Exceptional Case.

Again, with the little addition at the end of Subcase (4) of “Indecomposability” , 
the arguments for the first three conditions of Lemma 8 from Section 4.3 cover also 
odd t > 3. Only for the discriminant the ice becomes thin. Here Section 4.3 leaves 
numerous cases open for odd t. The hope that in all these the change of e would 
make it possible to avoid the Exceptional Case altogether comes only partly true— 
this works for most situations, but some serious problem cases remain. We look at 
some examples.

For fi, v, £ {1, . . . ,  t} with fi < i/ define the E xceptional Case in d ica to r (ECI) 
for (/i, v ) by

ECI(fi,v) := A^-iA^u+i — Afy+iAsv-i .

We are in the Exceptional Case if and only if all possible ECIs are zero.
Now take the case t = 3 with A5 =  A 7 = 0 and A2A^A^ ^  0, Ai0 =  A\A%jA2. 

This is an example of the Exceptional Case for which Section 4.3 offers no way to 
decide the discriminant problem. After changing e (the full general expressions for 
the Ak up to index 13, calculated by computer, are listed on p. 84), we find for c =  0

ECl(l,2) = ECI(2, 3) -  0,
ECl(l, 3) =  - A 8A 2 + A34 -  A2A2 .

Thus if — A8A\ 4- A\  — A \A 2 =  0 we are again in the Exceptional Case. Further,

A2 = —A2 , Ag — 0, Ag = —Ag + A4 — A4A 2 ,
A\ =  —A4 +  A 2 , A7 =  0, A 10 - A4A8/ A 2 ;

therefore, if A4 and Ag are different from zero, we get the same difficulties as before.
This can happen: take A2, A4 £ ¥* with A4 ^  and put Ag := A2(A4 — A2) /A 2.

Examples for t > 5 can be obtained by taking as non-zero Ak exactly those with 
k £ {3£ — 4,31 — 2,31 — 1,31+ 1}. Then Ei(x) has even degree, and for c =  0 one 
gets (Ak) — (~Ak) and thus again the Exceptional Case.

Unfortunately, the expressions for the discriminants are, already for t = 3, too 
voluminous to be studied directly.

Tiresome as such examples may be, the do not seem to indicate a fundamental 
obstacle. In judging the problems it must be taken into account that, apart from 
Lemma 12, we have not given much emphasis to developing powerful tools to deal
with general discriminants. Future research in this direction may be the key to
settling part (i) of the Conjecture.
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Ak — 0 for h = 1, . . . ,  34 — 2 and k = 3t

V'f1
values for t — 1 where 
different:

bk = 0 for k = 1 , . . . ,  34 — 2 and k = 3t 
&3i-l — A m- i

^3t+i — —̂ 3t+i &4 — —A% — A4

P̂c,l

ak = —(—c)fc for fc =  1, . . . ,  34 — 2 and k = 3t
& 3 t - i  — — ( — c ) 3f 1 — y^3t— 1

a 3 t+ i  =  — ( —c ) 3 t + 1  +  A m + i a 4 =  — C4 +  An 4- A 4

P̂c,\

bk = 0 for odd fc G {1, . . . ,  34 — 2} U {34}
bk = ch for even A; € {1, . . . ,  34 — 2} U {34}

c3t_1 — A 3t_i if 4 is odd
—Azt-i if 4 is even
c3i+ \  _|_ A 3t+1 if i  is odd 64 — c 4 +  A \  +  A t

^3t—l ~

I  _  /  c3t+1 “I" A^t+i if 4 is odd 
3 t+ i ^ A3f+i if 4 is even

'ipi

Ai = 0

a 2 = c2 A2 = c2 -  A2

IICO 0

^1 II c4 JH II 1 <\o to + to 
to 1

Ak = 0 for k = 5 , . . . ,  34 — 2 and k = 34

Aft-l — —̂ 3£-l
^3f+l — ~ A 3t+i — c2 Am-i

Table 1: Calculation of in the Degenerate Case (p = 3, r = 1)
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A i  =  0,

A-2 = —A2 4 C2 ,

3̂ = 0,

A4 =  — A4 4 j4.2 C2y42 4 C4 ,

A5 = —As — CA4 — cAl — c3A2 ,

Aq = 0,

A7 = — A7 — 5̂̂ 4.2 +  CA4A2 — cA?2 — C2As 4 C3A2 — C3A2 ,

Ag = — 4.8 4 42 — 4̂̂ 4.2 — cAj 4 C-A5A2 — c2y44i42 4 c3As 4 c4y4.4 ,

Ag =  0 ,

Aio — — Aiq — AgA2 4 A2 — A2y42 4 ^4^2 ~h cAjA2 4 cAsA4 — c2Ag — c2A2
— c2Ai42 — c2A\ — c3A7 4 c3AsA2 4 caA4A2 +  cAA\ 4 c5A5 — c6Ai
-  c6A2 ,

4̂11 = —An — 47̂ 4.4 — .A7A2 4 ASA4A2 — cAi 0 4 cAgA2 — cA2 — c24.74.2
-  c2A5A4 4  c3A\ 4 c3A4A% -  (?A\ 4 caA5A2 4 c5A4A2 4 cbAl 4 c645 
+ cM4 — c7 A\ ,

A12 -- 0 ,

Aig = — Aig — 4i i42 — AgAs 4 A7A4A2 4 ^7^2 — AgA2 4 cAiqA2 4 cAgA4 
4 cA7A5 — cA3 4 cA4A\ — c2An 4 CM7A4 — c2A7A2 4 c2A5A4A2
— c2AsA3 4 c3Aio — caA7A2 — cAÂ Â  4- c?A% — (AA4A2 4 (AA\
4 c6A7 — c6A5A2 — c7A3 4 c8A5 — c9A4 4 c:9A% ,

Table 2: General values of the Ak in (5.12) up to index k =  13 (p = 3, r = 1)
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Chapter 6 

And next?

In Chapters 2 and 3 we have achieved our aim of presenting a workable method for 
estimating the covering radius of long primitive BCH codes over arbitrary prime 
alphabets. In each case, however, the main burden remains the technical manipula­
tion and analysis of the individual polynomials (recall that we get no result at all if 
we fail to establish splitting of F(x) for a single coefficient tuple (Ak) € F j ). Due 
to the limited scope of the present project, it was not possible to apply our method 
to many different situations; on the contrary, we focussed instead on ternary codes 
with designed distance 5 = 2 (mod 3) and treated this quasi as an in-depth example 
and a playing-field to explore various ideas.

We devote this last chapter to an outlook towards what else could (and should?) 
be done with the machinery developed in this work. It is also an appropriate place 
for a brief recapitulation of the problems that remained open in Chapters 4 and 5.

6.1 O pen questions for p  =  3 and 5 =  2 (m od 3)
For ternary codes with designed distance 5 = 3t +  2, getting a result means showing 
p < 5 — 1 for large enough q.

The cases where our method repeatedly failed to do this, and where we believe 
this is because p < 5 — 1 may not be generally true (or may even be generally false), 
are

• t = 2 (mod 4), m odd; • t odd, m  even.

Here it would be desirable to have ways of raising the lower bound for the cover­
ing radius, something for which our method is unsuitable (and for which also the 
techniques of the proof of Theorem 9(ii) are not feasible when t > 1).

A key to this may lie in the question what is with (5.6), or more generally with 
the Degenerate Case with Ast- i  ^  0. Do these force p > 5 — 1? What is their 
coding-theoretical meaning?

In the remaining open case, when t and m  are both odd, we conjecture that the 
result holds and a proof will eventually be found, as discussed in detail in Section 5.7. 
The role of the discriminant in this context has already been stressed. Independently,
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one may also try to open up new ways by improving on the function-field-theoretic 
results in Section 3.2.

6.2 The ternary case w ith  <5 =  0 (m od 3)
The obvious next step in the use of our method is to apply it to “the other” ternary 
case, namely codes with designed distance £ =  0 (mod 3).

In view of Theorem 2(i), the first challenge must be to see if there are conditions 
under which one can show p = S — 1. For this write 5 = 3t + 3 with t E N0. Then, 
by Theorem 6 with r = 3t + 2, for every choice of Ak 6 F 9 (k = 1, . . . ,  3£ +  2; 3 \ k) 
there have to be found elements s3, S6> • • • > s3t in such that

F(x) = [x3t+2 4  xgl]_\{x3) 4  &(° \(z 3)] +

4  s 3 • [x3t~l 4  xg^}2{x3) 4  gt%(x3)} 4

4 +

4  S3i-6 • [x8 +  xg[l\ x 3) 4  ^i0)(x3)] 4

4  $3t-3  ‘ [x5 +  x ^ O r 3) 4  tfo0̂ 3)! +
4  s3t • [ x 2 4  A \X  4  A 2 ]

with

9t-lfa3) = A ix3t +  A4x 3t~3 +  A 7x 3t~6 +  . . .  4- A 3t- 2x 3 4  A 3t+i , etc.
fl,t- i(a;3) =  A2x 3t 4- A 5x 3t~3 +  A 8x 3t~6 4- . . .  4  A 3t- i x 3 4  A 3t+2 , etc.

splits completely over ¥q. (One may assume Ai =  0.)
Where this fails, one will go for p < S. Then, with r = 5 = 3t (t E N), one must

find for every choice of Ak E ¥ q (k = 1 , . . . ,  3t — 1; 3 \ k) elements s3, s6)• • •, s3t E ¥q
such that

F(x) = [x3t +  x 2 g f \ { x 3) 4  x g ^ x 3)} 4

4  s3 • [x3(*-1) +  x2 gf}2(x3) 4  x g ^ 2{x3)} 4

4- . . .  4

4  s3£—6 • [x6 4  x 2 g f \ x 3) 4  xg[l)(x3)] 4  

+  s3t-3  ' [x3 -\~ A\X2 A2x ] 4  

4* $3t

with
g[Ji(x3) = A ix3t 3 4  A4x 3t 6 4  . . .  4  A 3t~3x 3 -I- A3t- 2 , etc.

g{t- i ( x 3) = A 2x 3t~3 4  A5x 3t~6 4  . . .  4  A 3t_4x 3 4  A3t- 1 , etc.

splits completely over ¥ q. (Here A\ = 0 can not be assumed.)
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At the time of writing this account, these problems are under investigation. They 
had initially been put back because of apparent fundamental obstacles. For instance, 
if in the “p = 5 — 1” case — A2 E [2 and all other A*. are zero, then F(x)  contains 
an irreducible factor x 2 +  A2 . It takes a combination of linear transformation and 
choice of e—a concept which was only fully developed at a late stage—to resolve this 
(for odd m). Although now all such serious problems seem to have been eliminated, 
much technical work still has to be done to catch up with the case <5 =  2. So, for the 
time being, the question whether the upper bound for p{Cz,q-\^t)  can be improved 
must remain open.

However, building upon the work of Chapter 4, we can show with little extra 
effort:

C oro llary  2 Let t E N.

The covering radius of the primitive ternary BCH code of length q — 1 (q = 3m) and 
designed distance 6 = 3t is at most 3£ +  1 whenever q > [(3£ +  1)! (3t — l)]2.

Proof

We have r =  3t +  1 in Theorem 6, and the ^-polynomials and F(x)  are the same as 
in Section 2.6 and Chapter 4 (we normalise again Ai to 0). The important difference 
is that the element A3*+i is now at our disposal. We go again through the proof of 
Theorem 8 and see what improvements and simplifications this brings.

The proof for the Standard Case carries over completely (i.e. for all t > 1). In 
fact, it simplifies greatly, as by choosing A3t+1 ^  0 we can get rid of the w-terms.

The Exceptional Case can be avoided altogether by choosing A3 t+ 1 different from 
A 3t - i C o / C 2 . ( N o  more awkward discriminants!)

Finally, consider the Degenerate Case for t > 1. If A3*_i =  0 take also A$t+1 =  0, 
then F(x) = x r splits trivially. Otherwise we may assume A3*_iA3*+i 7  ̂ 0; for even t 
argue as on page 62, for odd t we have f (a)  = f { —a) iff Aszt_x =  A^+j (cf. page 80), 
which can be avoided by choice of A^t+i-

It remains t = 1. Here F(x) = (x4 4- A2x 2 +  A4) +ux.  The case A 2 = 0 is settled 
by choosing A4 = u = 0, so assume A 2 7  ̂ 0. Avoid A 4 = 0 to arrange co-primality, 
then the first three conditions of Lemma 8 are satisfied. Further, E\{x) = A 2x 2 — A 4 
has roots ± a  with a 2 = A 4/A 2\ by avoiding A 4 = A 2 one gets 0 7  ̂ f (a)  = —f ( —a) 
and thus “Situation S”. □

This confirms the result of Kaipainen in Theorem 2(i), with the bonus of yielding 
the explicit value [(3£ +  1)! (31 — l)]2 for go-

6.3 Prim es p  greater than 3
Since Theorem 6 holds for arbitrary primes p (this being an essential point of it), it 
would be a waste not to try at some stage to use it for p > 3.
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The main difference with p-aryt codes is that there are now p — 1 cases to distin­
guish, namely with designed distances 5 = 0 (or 1) and 6 = 2, . . .  ,p — 1 (mod p). It 
is certainly reasonable to pick the case S = pt +  2 with hypothesis “p < 5 — 1” before 
any other, because here the shape of F(x)  is closest possible in similarity to that of 
the ternary case in Chapter 4, and one may hope to retain some of the structure of 
the proof of Theorem 8. The polynomial F(x)  for 5 =  pt -t- 2 and “p < S — 1” is the 
same as for 5 = pt +  2 — m  and “p < 5 — 1 +  m” (m =  2,3, . . . );  each has r = pt +  1. 
Therefore, whenever the first of these cases is completed successfully, this brings 
with it a whole flag of corollaries, similarly to Theorem 8 and Corollary 2.

The next obvious difference is that the coefficients Ak are now distributed over 
p — 1 polynomials g^ly (for r = pt + 1 these are gl°}y and an(  ̂ their
descendants.

From now on, fix r  =  pt +  1 and assume Ay = 0, so that all g ^ \  have degree 
at most p(t — 1). In generalisation of the ternary situation in Chapter 4, we speak 
of the Degenerate Case when only Ak with k > p(t — 1) +  2 (the constant terms 
of the g ^ )  are allowed to be non-zero. This leads potentially to 2P_1 — 1 different 
subcases, though these can possibly be grouped in some efficient way. The details 
of this case have not yet been pursued.

More significantly, the Standard Case can be generalised in a sensible way. 
For p = 3 it was characterised by C2g ^ \  — Cog^y ^  0, and it turns out that the 
appropriate generalisation (with the obvious definition of C{ for i =  0, 2,3, . . .  ,p — 1) 
is

Y ,  aik x i+k- 2 {Cugfl, (x?) -  Cig{k\  (z»)) ^  0.
i,/c€{0,2,3,...,p—1} 

i> k

where the are certain elements in F*. With this definition, and the same choice 
of sp, . . .  ,Spt as for p = 3 in Section 4.2, everything from co-primality to Step 1 of 
showing simplicity extends to arbitrary p > 3 (with some extra work in the case of 
indecomposability). A new difficulty occurs in Step 2 of the simplicity part, when, in 
a certain situation, f['(x) and fy{x) — xf[{x)  have a common non-zero root. Without 
elaborating further on this, we mention it as an example that even beyond p = 3 
structural phenomena exist which do not emerge for smaller alphabet sizes.

Another serious problem comes with Step 3. It is an encouraging sign that, at 
least when w = 0, the reduction from Section 4.2 works for p > 3 exactly as in the 
ternary case, in particular fy cancels from H2 (cf. page 42). Yet, the polynomial D 
in the denominator of H2 is now of degree up to p — 1, and any part of this may 
cancel with the numerator—so we have not one, but p indecomposability problems 
to solve (with denominator degrees from p — 1 to 0)!

The Exceptional Case (defined as everything not covered by the other two 
cases) has not been looked into so far. However, the fact that by a theorem of Jordan 
([Wie], Thm. 13.9; see also the extensions in [Zie]) a p-ary version of Lemma 8 is 
possible gives rise to some optimism.

Of course, the ultimate goal would be to prove a theorem for all (or at least an 
infinite number of) primes p. Whether it will ever be possible to find the necessary

^For simplicity, we assume p >  3 in this section. The reader will easily check that all statements 
for which this is meaningful extend the case p =  3.



generic arguments—e.g. in cases like the Step-3-problem above, where an infinite 
number of decomposition problems would have be solved—the author is sceptic, but 
the mental challenge is undoubtedly intriguing.

But even attempts on individual small primes should be worthwhile and provide 
both results on covering radii and new insights into the fascinating structure of the 
problem. Clearly, the effort involved grows quickly with the size of p, so p =  5 may 
give a first indication. An early step in this direction was made in [KaiSu], where 
it was shown soon after the publication of Cohen’s method that the covering radius 
of the 5-ary BCH code of length 5m — 1 with designed distance 7 is at most 7 when 
m > 13; for odd m > 9, this was subsequently improved by Cohen to =
6. Another possibility to be considered is whether parts of the method could be 
formulated algorithmically and implemented on a computer, so that larger primes 
become accessible.

6.4 N on-prim itive codes
For completeness, we remark that the method should also allow a generalisation to 
non-primitive codes. For this, by Section 2.1, one has to substitute the variable x 
by y \= xN, where N  is the degree of primitivity. Making F(y)  split in ¥ q[x] will 
presumably require a deeper analysis of the Galois-theoretic aspects ([CohSt] may 
come in useful) and is left for future treatment elsewhere.
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