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A bstract

In the context of service-oriented computing, the issue of service selection is an important 

one: how can a consumer find and choose a single, appropriate service of the required type, 

given the mass of services potentially available on a network? By using a service discovery 

mechanism (the focus of current service selection research), a consumer is able to obtain 

an unordered list of services which match explicitly specified requirements, from which he 

must select the service he considers most appropriate. However, formulating the original 

service request and selecting a service from the returned fist are both challenging tasks, 

particularly for a consumer in unknown circumstances, with unknown services available.

This research is thus concerned with the investigation, development and evaluation of a 

general design for a system that can provide a personalised service recommendation of ap

propriate services to a requesting consumer. The personalised service recommendation is 

generated through the assessment of past service selections/usage. A design-adhering pro

totype has been demonstrated to generate effective personalised service recommendations 

in a real-world scenario.
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Chapter 1

Introduction

1.1 Background to  Research

Interest in the concept of service-oriented computing is growing rapidly, not only in 

academia but also in industry. Generally speaking, a service can be defined as a network- 

accessible, self-contained software component that provides a particular type of function

ality through a well-defined interface. W ith service-oriented computing, applications will 

be partially or completely composed of services available on an intranet or the Internet.

Allied to the concept of service-oriented computing is the issue of service selection. 

There may well be a myriad of services available on a network, but how can a single, 

appropriate service of the required type be found and chosen? How can a consumer, i.e. 

a user or his proxy application, select the best service for his specific circumstances?

Current research into service selection has focused on the development of service dis

covery mechanisms (SDMs), which essentially take the form of automated “Yellow Pages” . 

At the core of an SDM system is some form of service “registry” , which acts as a third- 

party broker between services and consumers in a network. In order to locate a service, a 

consumer must submit a request to the registry, specifying the service type and any other 

associated requirements. The registry compares this request against advertised service 

descriptions, and returns the set of available services which match the requirements. The 

consumer must then choose a service from this unordered set. Thus, the onus is on the 

consumer, both to formulate a precisely defined service request and then to decide which of 

the services in the returned, possibly large, set is most appropriate. These are challenging 

tasks, particularly for a consumer in unfamiliar circumstances where unknown services are 

available.
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For such an uninformed consumer, a style of SDM registry which actually recommends 

appropriate services of the required type - a recommending registry - would surely be of 

distinct benefit. In response to a service request, the registry itself would determine the 

appropriateness for the requesting consumer of available type-matching services. It would 

then order them by their perceived appropriateness, ranking them from most to least 

appropriate. Finally, the recommending registry would return this ordered list to the re

questing consumer as a personalised service recommendation. If the highly ranked services 

were truly appropriate choices, enabling the consumer to search through the recommenda

tion and select an ideal service with minimum time and effort, then the recommendation 

could be considered effective.

1.2 Aim  of Research

Although some interest has been shown in the concept itself, no-one has yet comprehen

sively explored the issue of registry-generated personalised service recommendation with 

a view to finding a general solution to the general problem of service selection. For the 

problem is a general one: regardless of service type, regardless of scenario, the difficul

ties associated with finding and choosing an appropriate service from the mass of services 

available are universal. In view of this, my own research has focused on the problem of 

generality, with the precise aim of addressing the following question:

What general design for an SDM recommending registry would enable the 

generation of effective personalised service recommendations?

Theoretically, a general design would be of considerable value because it could provide a 

blueprint for the construction and operation of any SDM recommending registry, regardless 

of deployment scenario or service types involved. Hopefully, the design that I have devised 

fulfils this criterion.

1.3 Research U ndertaken

After some initial research into the problem, I concluded that, although theoretically fea

sible, a general design derived from current service selection techniques would have several 

significant drawbacks. In consequence, I devised my own, novel approach to registry

generated personalised service recommendation, based on the assessment of past service
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selections/usage. This approach can be seen as a form of Collaborative Filtering.

In order to develop my approach into a general design for a recommending registry, I 

first identified relevant research issues. I then proceeded to devise basic solutions to these 

issues and formulated a basic design from them. This design was assessed for viability and 

validity through the construction and evaluation of a working, design-adhering prototype 

recommending registry in a real-world scenario. In order to evaluate the prototype registry 

for effectiveness, in terms of the recommendations that it generated, I created an original 

evaluation scheme, taking my initial inspiration from Information Retrieval. The basic 

design was shown to be both viable and valid and was therefore considered worthy of 

further investigation and development.

Through assessment of the basic design, in terms of the evaluation results and the 

original research issues, I identified three elements of the design which would benefit from 

further improvement. The core problem associated with each of these elements was then 

pinpointed, and I subsequently investigated the problems and devised successful solutions 

to them. Ultimately, I formulated a more advanced design for a recommending registry 

incorporating the three improvements made. It is this design that I am presenting as a 

general design for an SDM recommending registry that would enable the generation of 

effective personalised service recommendations.

As my approach to registry-generated personalised service recommendation is a novel 

one, the research undertaken should be seen as an exploratory attem pt to determine 

whether such an approach can form the basis of a viable and valid general design for 

a recommending registry. No claim is made that the resultant design is definitive, only 

that it is a solution that vindicates the assertion made in the thesis statement below 

(Section 1.4).

1.4 Thesis Statem ent

The thesis statement is as follows:

I assert that it is possible to devise a general design for an SDM recommending 

registry which would enable the generation of effective personalised service 

recommendations based on an assessment of past service selections/usage. I 

shall demonstrate the validity of this assertion by developing such a design, 

constructing a design-adhering working prototype recommending registry, and
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evaluating it for effectiveness, within a real-world scenario.

1.5 Research Contributions

The two main contributions of this research axe:

•  A general design for an SDM recommending registry.

•  An evaluation scheme which can be used to assess the effectiveness of any recom

mending registry that adheres to this general design.

There are also two other contributions, which are detailed in the Conclusion (Chapter 14).

1.6 Thesis Structure

The remainder of this thesis is structured as follows:

C h a p te r  2: T he  C o n cep t o f S e rv ice -O rien ted  C o m p u tin g  This chapter contains 

information relating to the concept of service-oriented computing, together with details of 

three application areas.

C h a p te r  3: T he  Issue  o f Serv ice  S elec tion  This chapter contains information about 

current service selection research, including details and analysis of various SDM systems.

C h a p te r  4: T ow ards P e rso n a lised  Service R eco m m en d a tio n  This chapter focuses 

on the issue of advancing from service discovery to service recommendation, with details 

given of an abstract model for a proposed SDM recommending registry, together with a 

discussion and analysis of existing relevant research. The aim of my research is also defined 

here.

C h a p te r  5: A T h e o re tic a l G en e ra l D esign  for a  R ecom m end ing  R e g is try  This 

chapter contains details of a theoretical general design for a recommending registry, derived 

from current service selection techniques. An assessment of the design is then given.

C h a p te r  6: A N ovel G en e ra l A p p ro ach  B ased  on C o llab o ra tiv e  F ilte rin g  This 

chapter focuses on my novel approach to registry-generated personalised service recommen

dation, based on the assessment of past service selections/usage. The approach is defined
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and justified, the related research issues discussed, and the association of the approach 

with Collaborative Filtering noted.

C h a p te r  7: E v a lu a tin g  R ecom m end ing  R e g is try  E ffectiveness This chapter con

tains a detailed explanation and definition of my novel evaluation scheme for assessing rec

ommending registry effectiveness. This is the evaluation scheme specified in the Research 

Contributions (Section 1.5).

C h a p te r  8: A B asic R ecom m end ing  R e g is try  D esign  This chapter contains details 

of the basic recommending registry design, including information concerning the basic 

solutions to the research issues.

C h a p te r  9: A ssessing  th e  Basic R ecom m end ing  R e g is try  D esign This chapter 

contains information about the assessment of the basic design through the construction and 

evaluation of a design-adhering working prototype recommending registry in a real-world 

scenario.

C h a p te r  10: A n  A dvanced  R eco m m en d a tio n  G e n e ra tio n  A lg o rith m  This chap

ter contains details relating to the first improvement made to the basic design, namely the 

development of an advanced recommendation generation algorithm.

C h a p te r  11: R elax ing  th e  T est for Serv ice S elec tion  S itu a tio n -S im ila rity  This 

chapter contains information concerning the second improvement made to the basic design, 

namely the relaxation of the test for service selection situation-similarity.

C h a p te r  12: R ecom m end ing  R e g is try  C o n figu ra tion  using  S elf-O p tim isa tion

This chapter contains details relating to the third and final improvement made to the 

basic design, namely the simplification of the developer task of registry configuration.

C h a p te r  13: A n  A dvanced  R ecom m end ing  R e g is try  D esign  This chapter pro

vides a definition of the advanced recommending registry design, which incorporates the 

improvements detailed in the last three chapters. This is the general design specified in 

the Research Contributions (Section 1.5).
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C h a p te r  14: C onclusion  This chapter contains a discussion of the completed work 

and suggestions for future investigation. My research contributions are also detailed here.

A p p en d ix  A: G lossary  o f A cronym s This appendix provides a glossary of important 

acronyms used throughout this thesis.

A p p en d ix  B: C h a p te r  9 D e ta ils  This appendix contains information relating to

Chapter 9.

A p p en d ix  C: C h a p te r  10 D eta ils  This appendix contains information relating to

Chapter 10.

A p p en d ix  D: C h a p te r  11 D e ta ils  This appendix contains information relating to

Chapter 11.

NB: The pronoun “he” has been used throughout this thesis to denote, what the Oxford 

Dictionary (1990) defines as, “a person, etc. of unspecified sex” . Obviously, if appropriate, 

such a “he” can also mean “she” .
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Chapter 2

T he C oncept o f Service-O riented  

C om puting

The concept of service-oriented computing is presented in this chapter. A ser

vice is defined, the features and benefits of service-oriented architecture are 

discussed, and the current interest and activity in the area highlighted. Fi

nally, three application areas where service-oriented architecture is considered 

of increasing relevance are identified and detailed.

2.1 The Concept of Service-Oriented C om puting

W ith the explosive growth of networking in the last decade, there has been burgeoning 

interest in the concept of service-oriented computing [89,90]. Generally speaking, a service 

can be defined as a network-accessible, self-contained software component that provides 

functionality through a well-defined interface. It could provide any form of functionality: 

for example, the use of a physical device such as a printer or projector, or that of a purely 

software resource such as a stock-ticker or search-engine. Proponents of service-oriented 

architecture (SOA) [8,77] envisage applications which are partially or completely composed 

of services available on an intranet or the Internet.

Theoretically, SOA could provide several benefits, which are derived from two key 

features of the architecture. Firstly, the functionality of a service is exposed via an in

terface, which is a contract for the service’s semantics that defines how the service will 

behave and the syntax of interactions with the service. An application is built to interact 

with an interface which provides required functionality, rather than with a specific service
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which supports that interface. Secondly, an application dynamically finds and binds to 

the particular services that it utilises at runtime.

From a software-engineering perspective, SOA has many of the benefits of the object- 

oriented and component-based programming paradigms, but on a distributed scale. The 

“black-box” nature of a service hides complexity, is amenable to unit testing, and en

courages reuse of services in multiple applications. By linking together the functionality 

provided by different services, it should be possible to build complex distributed applica

tions rapidly. The combination of interface interaction and runtime service binding could 

provide flexibility and fault-tolerance. When an application is running, it may have a 

choice between several deployed services which support a particular interface that it re

quires, and could dynamically bind to the service that appears most appropriate, such as 

the one that seems least loaded. Moreover, if this service fails or is shutdown for main

tenance purposes, the application could continue operating normally by rebinding to an 

alternative service.

2.2 The Current State of Service-Oriented C om puting

Service-oriented computing is not a new concept. Since the early 1990s, various distributed 

middleware solutions have been released, such as CORBA [47], Java RMI [84], Jini [37] 

and .NET [82], which enable systems to be built that conform to many of the principles 

of SOA. Each middleware solution provides a different method of interface definition, ser

vice implementation and service interaction, which are all incompatible with one another. 

Recently, however, there has been a sudden upsurge of interest in SOA, with a number of 

articles [28,52,103-105] and industry white-papers [61,110] being published on the World 

Wide Web which extol the benefits of the concept. As noted by McGovern et al [77], this 

upsurge appears to have been caused by the recent development of Web Service standards.

Web Service standards [22] are an industry-wide effort to enable the construction of 

interoperable SOA-style services. In much the same way that the success of the World 

Wide Web was driven by the proposal and adoption of simple, open Internet standards such 

as H TTP (Hyper-Text Transfer Protocol) and HTML (Hyper-Text Markup Language), 

similar attem pts are being made to drive the growth of service-oriented computing through 

the proposal of open standards that define various aspects of SOA. Two core XML-based 

(extensible Markup Language [20]) standards have been proposed: WSDL (Web Services



Description Language) [23] and SOAP (Simple Object Access Protocol) [21]. WSDL can be 

used to define service interfaces in a platform-independent manner, whilst SOAP provides 

a platform-independent message format for service interaction.

Web Service standards focus on interoperability. Unlike many of the existing heavy

weight middleware solutions, the standards do not define any aspects of service imple

mentation. The expectation is that an application written in one programming language 

running on one platform will be able to utilise a service written in a different programming 

language running on a different platform, assuming that all interaction between the two 

conforms to the platform-independent Web Service standards. For example, a .NET ap

plication running on Windows XP could utilise a Java service running on Linux, assuming 

that all interaction was phrased in terms of operations defined in the WSDL service inter

face, with component messages being encoded as SOAP running over an Internet transport 

protocol such as HTTP.

Activity in the area of service-oriented computing is increasing, in both industry and 

academia. In industry, major software companies such as Microsoft, Sun and IBM have 

started to provide development tools and application frameworks with Web Services and 

SOA support. Indeed, Microsoft has announced that an integral element of its next- 

generation Longhorn operating system will be Indigo [81], a unified programming model 

and communications infrastructure based on SOA principles. In academia, the main topic 

of the Communications of the ACM October 2003 issue [90] was service-oriented comput

ing, and the first conference [60] dedicated to the concept was held in December 2003.

2.3 A pplications o f Service-Oriented C om puting

Much of the recent journalistic coverage of service-oriented computing has been phrased 

from the perspective of the business enterprise. Industry analysts are promoting SOA 

as an ideal means of structuring software within the enterprise, emphasising, in business 

terms [28,61], many of the benefits detailed earlier in Section 2.1. They assert that by 

structuring business logic as a suite of reusable services, application development time and 

costs can be reduced, and return on investment maximised. Moreover, they argue that 

SOA can increase “business intelligence” , by enabling information to be shared between 

existing monolithic applications that did not previously communicate with one another. 

For example, legacy systems could be integrated into developed enterprise applications,
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together with newly-built services, by wrapping them up as services themselves. Indeed, 

a legacy service could eventually be replaced in the enterprise with minimal upheaval by 

deploying a new service which supported the same interface.

However, SOA has much greater potential than merely being the latest fashionable 

architecture for structuring software within the enterprise. SOA can also be considered 

a suitable enabling technology for several new and expanding areas of computing: the 

“services web”, ubiquitous computing and grid computing. These three areas are discussed 

below.

2.3.1 The “Services W eb”

Currently, most deployment of services appears to be occurring in the business world. It 

seems likely that enterprises will initially use SOA to structure internal software within 

their intranets. However, there is an expectation that, over time, enterprises will begin 

making services available on the Internet for other parties to take advantage of [33,61]. 

For example, an enterprise in a supply chain might offer an inventory information service 

for other partners in the chain to query. Alternatively, a shopping web-site might offer an 

item purchasing service, which could be integrated into a customer’s personalised desktop 

shopping application.

Indeed, some experts envisage a market of services [89,90], in which enterprises would 

compete to provide a particular type of service to others; service interfaces would need 

to be standardised, so that providers could develop competing implementations of a par

ticular functionality. For example, the item purchasing system of the shopping web-site 

might require credit-card validation, a service offered by multiple providers. An inexpen

sive service might initially be chosen for use in the application. If that service proved 

unsatisfactory, perhaps by being unreliable, the running application could be dynamically 

switched to using an alternative service offered by another provider.

Gradually, services could be made available on the Internet by providers other than 

business enterprises. For example, local and national government organisations, educa

tional institutions, health-care providers, and even individuals, could all deploy services 

which they considered of use to others. In essence, a “World Wide Web” of services would 

be created, but a web of dynamic functionality, not of static data. This services web could 

provide significant benefits and opportunities. Business-to-business collaboration could 

be streamlined, with the dynamic integration of different enterprises’ services, and new
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business models created. Novel and useful applications could be developed, composed of 

disparate services offered by different providers. Moreover, the potential selection of ser

vices available that provided a particular functionality would enable the luxury of choice, 

with the most appropriate service being selected for use in an application.

2.3.2 Ubiquitous Com puting

Like the services web, ubiquitous computing could also have a significant impact on society, 

but from a somewhat different perspective. First espoused by Mark Weiser over a decade 

ago [118], the concept generally refers to the notion of “computing everywhere” ; rather 

than being constrained to the desktop in the workplace or home, computing would be 

seamlessly integrated into the physical world. Physical objects would be embedded with 

networked computing capability, augmenting their functionality or enabling their remote 

control [10]. Moreover, purely software resources would be associated with places and their 

corresponding activities. In such a world, computing could begin to fulfil a significant role 

in supporting people’s everyday lifestyles. As people went about their daily lives, they 

could access relevant computing resources to aid them in their activities or to augment 

their real-world experiences.

Recent technological advances and trends should enable the vision of ubiquitous com

puting to become a reality in the near future. The growth of smart-phone and laptop 

usage, allied with the widespread deployment of wireless networks to support voice and 

data traffic, should provide a solid technological base for ubiquitous computing. Currently, 

someone equipped with a mobile computing device can access network-accessible comput

ing resources through local wireless networks. In such an environment, “ubicomp” systems 

could begin to be deployed.

As a clarifying illustration, imagine an ubicomp world in which “Alice” visits a univer

sity department to give a presentation. On arriving in the university town, Alice chooses 

a local mapping application using her smart-phone, and obtains directions to the relevant 

university building. Having arrived at the department, Alice prepares for the presentation 

by setting up her wireless-enabled laptop in the meeting room. The presentation appli

cation accesses the meeting-room lights and digital projector, enabling Alice to configure 

and control them remotely. After the presentation, an audience member asks for a copy of 

the slides, and Alice obliges by printing a paper version to one of the nearby printers. As 

a thank-you, Alice is taken out to dinner by a departmental research group. In order not
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to be late for the train which takes her home, Alice decides to pre-book a taxi to take her 

to the station later in the evening. She uses her smart-phone to browse through several 

taxi services, and selects one to collect her from the restaurant at a specified time.

Although the technology may be mature enough to enable the example of Alice to be 

feasible, there is still no clear consensus as to what underlying middleware is required 

to facilitate ubiquitous computing. Various research middleware solutions have been 

constructed, such as Cooltown [65], iCrafter [95], Speakeasy [38] and MobiShare [114], 

which each provide different methods for packaging, finding and interacting with network- 

accessible ubicomp resources. However, there does appear to be a growing opinion [31,66] 

that SOA is an ideal means of structuring ubiquitous computing. Many of the research 

middleware solutions conform to SOA-style principles, and prototype ubicomp systems 

have been built using both Jini [16] and Web Services [25,76,114].

The core features of SOA fit well with the concepts of ubiquitous computing. Many 

aspects of the real world, such as objects and places, can logically be considered discrete 

elements associated with or providing particular functionality. This interpretation maps 

naturally onto the concept of services, which can provide computing manifestations of 

real-world elements. Thus, an SOA-structured ubicomp environment would consist of 

real-world associated services, which could be utilised by ubicomp applications over a 

wireless network.

Moreover, the dynamic nature of ubiquitous computing makes runtime binding a ne

cessity [66,76]. Firstly, an ubicomp application is likely to be designed to utilise available 

services most appropriate to the user’s current situation, which will vary over time. An 

application must use runtime binding in order to switch to using a more appropriate ser

vice when the user’s situation changes, or when a better service becomes available. For 

example, Alice’s presentation application would be designed to bind dynamically to pro

jector and lighting services near to Alice’s current location. Secondly, a particular service 

might not be available for the duration that its functionality is needed, requiring an ap

plication to rebind to an alternative if normal operation is to be maintained. As people 

go about their daily lives, they are likely to pass through multiple ubicomp environments 

controlled by different organisations [66], which may map onto different wireless networks. 

Certain services may only be available within a particular environment. If a person leaves 

an environment, alternatives may need to be found for those services which become un

available. For example, when Alice leaves the university ubicomp environment on exiting
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the departmental building, it is unlikely that she will be able to continue to use a printer 

service there. An alternative printer would need to be found in her current environment.

The benefits of SOA would seem to be of value to ubiquitous computing. Adoption of 

SOA would be another step closer to the realisation of an ubicomp world.

2.3.3 Grid Computing

Another area currently attracting significant attention in addition to ubiquitous computing 

is grid computing [40]. Originating in the scientific computing community, grid computing 

grew out of the realisation that more could be achieved through the pooling and sharing of 

scientific computing resources. By taking advantage of multiple parties’ resources shared 

over the Internet, scientific tasks could be achieved which a single party, such as an indi

vidual, research group, or even research laboratory, could not achieve alone. For example, 

grid computing has been used to enable remote access to specialised experimental facilities 

such as earthquake simulators, and for distributed analysis of large amounts of data such 

as particle accelerator runs [41]. The term “grid computing” appears to have come about 

through the association of this scenario with that of a power grid. Like someone plugging 

an appliance into the power grid for it to operate, a scientific researcher would access a 

networked “grid” of scientific resources in order to “power” their experiment.

Initially, grid computing seemed to be mainly concerned with the pooling and sharing 

of raw computational and storage capacity of a large number of networked computers. 

More recently, however, grid computing appears to be moving towards a more service- 

oriented vision [41,43]. The expectation is that a grid will consist of a market of scientific 

services offered by a range of different parties over the Internet, and that grid applications 

will be dynamically composed of these services. The services offered could provide varied 

functionality, not merely the use of computational and storage capacity. Service function

ality could include the control of remote scientific equipment, access to databases, and 

usage of specialised experiment software.

As a clarifying example, imagine a grid application that has been assembled by “Bob” , 

a bioinformatics researcher, to analyse a particular aspect of animal genomes. Bob has 

organised the application as an experiment workflow. Firstly, the application utilises a 

database-access service offered by a government-funded research institute to obtain the re

quired genome data. The data is then partially processed by a commercial DNA sequence- 

analyser service, which, in Bob’s opinion, provides a good trade-off between price and speed
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compared to the alternatives. Finally the partial results are processed and visualised using 

software custom-built by Bob’s research group.

To support this vision of grid computing, various middleware solutions have been built 

which conform to SOA principles, such as Globus [45] and Gridbus [13]. Moreover, a con

certed effort is being made to standardise next-generation service-oriented grid computing 

through the definition of the Open Grid Services Architecture (OGSA) [42]. Building on 

Web Service standards, OGSA provides specifications for interoperable grid services and 

associated support systems through the definition of WSDL interfaces. If widely adopted, 

OGSA could enable the creation of a massive grid which pools and shares scientific com

puting resources on a worldwide scale.

2.4 Summary

In this chapter, both an introduction to and overview of service-oriented computing have 

been provided. The sudden upsurge of interest in SOA has been attributed to the recent 

development of interoperable Web Service standards, and a corresponding increase in SOA 

activity, both in industry and academia, noted. Business interest in SOA has been outlined, 

and the value of SOA as a suitable enabling technology within the areas of the services 

web, ubiquitous computing and grid computing identified. Finally, the role of SOA within 

these three areas has been discussed.

It is clear that service-oriented computing is of growing importance. However, numer

ous research problems will need to be overcome before the full potential of the concept 

can be realised. One of these, the issue of service selection, will be considered in the next 

chapter.
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Chapter 3

The Issue of Service Selection

In this chapter, the issue of service selection is considered. More precisely, 

how is an appropriate service dynamically selected for use in an application? 

Service discovery mechanisms, which have been the focus of service selection 

research so far, are discussed, with a general description of how they operate 

being given. A more in-depth explanation is presented through the consideration 

of three representative example systems. Both an overview and an analysis of 

the core approach taken by service discovery research are then provided, and 

the conclusion is made that service discovery needs to change, better to support 

the uninformed consumer.

3.1 The Issue o f Service Selection

Although the services web, ubiquitous computing and grid computing may differ in their 

core motivations, researchers have noted distinct similarity between the areas [42, 106] 

through their shared vision of a service-oriented future. All areas envisage parties offering 

services over a network, with applications dynamically composed of these services. All 

are therefore concerned with a number of common research issues associated with service- 

oriented computing. Of significant concern is the question of how an appropriate service 

is dynamically selected for use in an application. From the myriad of services available, 

how can a service be found which provides the required functionality and also proves to 

be an effective resource?

Current research in this area has been directed towards the development of service 

discovery mechanisms, which essentially act as a form of automated “Yellow Pages” . The

15



aim of a service discovery mechanism (SDM) is to enable a service consumer (a user or 

his proxy application) to find an available service which matches specified requirements, 

to bind to it over the network, and then to interact with it. This sequence of events is 

commonly referred to as “find, bind and execute” .

3.2 Service D iscovery M echanisms

Many of the SOA middleware solutions mentioned earlier, such as CORBA [47], Jini [37], 

Cooltown [65] and Globus [45], have inbuilt service discovery mechanisms. In addition, 

standalone service discovery mechanisms have also been built, such as SLP [49], Salutation 

[19], UPnP [83], UDDI [113], SSDS [27], INS [1] and Splendor [124]. These standalone 

systems are concerned purely with the “find and bind” aspects of service discovery, and 

are generally indifferent to service execution specifics. Various surveys and comparisons 

of different SDM systems have been undertaken [7,53,71,123].

Despite the variety of SDM systems in existence, and the fact that they focus on 

numerous different technical aspects such as scalability, security and fault tolerance, all 

generally operate in much the same way, and conform to the same underlying structure. 

Figure 3.1 shows the core structure of an SDM system, and the sequence of events which 

comprise the service discovery process. At the core of an SDM system is some form of 

service “registry” , which acts as a third-party broker between services and consumers in a 

network. When a service becomes available, a provider-defined description of the service is 

advertised in a network-accessible service registry (step 1). This description contains the 

service’s network-address and type, which defines its functionality (perhaps as an interface 

signature). The description may also contain other information considered of relevance to 

the consumer in choosing a service. For example, the description might contain details 

of the service’s capabilities, quality of service, price, and physical location (if the service 

corresponds to a real-world entity).
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Figure 3.1: The Sequence of Events in Service Discovery

When a consumer requires a service, a request containing the service type and other 

requirements is submitted to the service registry (step 2). The registry compares this 

request against the advertised service descriptions, and returns the set of network-addresses 

of services which match the requirements (step 3). The consumer chooses a service from 

this unordered set, and binds to its network address (step 4). Interaction with the selected 

service can then occur.

It should be noted that a number of SDM systems [54,102] have also been built that 

do not conform to the registry-based structure described above. Instead, these systems 

operate without a registry, with consumers generally broadcasting service requests onto a 

network and matching services responding. However, these systems will not be discussed 

further, as the majority of service discovery mechanisms do use a registry structure. More

over, it is questionable how generally applicable broadcast-based SDM systems can be to 

service-oriented computing, since this style of system is not particularly scalable, and 

requires a broadcast medium such as a wireless connection or LAN multicast to operate.
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Given the basic functional commonality of most registry-based SDM systems, a clear 

understanding of service discovery can be gained through the detailed consideration of only 

a small number of representative examples. Consequently, three frequently-cited SDM 

systems will be discussed below: SLP [49], the Jini Lookup Service [37], and UDDI [113]. 

SLP provides an example of an attem pt by a standards body to define an SDM; Jini 

provides an example of an inbuilt SDM system in SOA middleware; and UDDI provides 

an example of an SDM currently in vogue.

3.2.1 SLP

SLP (Service Location Protocol) [49,50] is an IETF (Internet Engineering Task Force) 

standard for service discovery. It defines an abstract SDM architecture, of which several 

implementations exist [7,87]. The architecture is specified in terms of User Agents (UAs), 

Service Agents (SAs) and Directory Agents (DAs). Despite this terminology, the three 

types of “agent” essentially correspond to consumers, services and registries, and the 

explanation of SLP will be given in these original terms.

A service is advertised in a registry using a registration message. The message contains 

the service URL (Uniform Resource Locator), a set of attributes, and the lifetime of the 

advertisement. The URL contains the type and network-address of the service. The set 

of attributes describes various aspects of the service. Ideally, the set should conform to 

those attributes defined in a template registered with IANA (Internet Assigned Numbers 

Authority). Templates [48] are an attem pt to standardise service descriptions. The tem

plate for a particular service type specifies the attributes used to describe a service of that 

type, including their default values and interpretation. The advertisement lifetime acts as 

a lease, defining how long the service advertisement will remain in the registry; a service 

should periodically refresh its registration if it will be available for longer than a single 

lease lifetime. Bettstetter and Renner [7] provide an example SLP URL and template 

advertisement associated with a printer service:

s e r v i c e :p r i n t e r : / / I j 4 0 5 0 . turn. d e : 1 0 2 0 / q u e u e l  

s c o p e s  = turn, bmw, a d m i n i s t r a t o r  

p r in t e r - n a m e  = l j 4 0 5 0  

p r in t e r - m o d e l  = HP L J4050  N 

p r i n t e r - l o c a t i o n  = Room 0 4 0 9  

c o l o r - s u p p o r t e d  = f a l s e
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p a g e s - p e r - m in u t e  = 9  

s i d e s - s u p p o r t e d  = o n e - s i d e d ,  t w o - s i d e d

A consumer submits a service request to the registry in the form of a query which spec

ifies the type and attributes of the required service. The query can be quite flexible, as 

the required attributes can be specified as an LDAPv3 filter [57] which supports logical 

operations, wildcards, inequality and substring match. The registry identifies those ad

vertisements which match both the specified type and the attribute filter, and returns the 

set of corresponding service URLs to the consumer. In terms of the previous example, a 

consumer query specifying service type “service:printer” and attribute filter “(&;(printer- 

location =  “Room 04*”)(pages-per-minute > 7))” should match the advertised printer, 

along with other fast printers on the 4th floor of the building. Finally, the consumer can 

choose which of the matched services to utilise, and can bind to and interact with the 

selected service using the corresponding URL.

3.2.2 The Jini Lookup Service

Jini [37] is an SOA middleware solution, developed by Sun Microsystems, which builds on 

the Java programming language. As such, a Jini service is implemented as a Java object, 

remotely accessible through a Java interface of methods using RMI (Remote Method 

Invocation). The inbuilt service discovery mechanism is centred around the Jini version 

of a registry, known as the Jini Lookup Service.

A service advertises itself in the registry by submitting an RMI proxy stub, which 

implements the same interface as the service, along with other “attribute” objects. As 

in SLP, a service advertisement is leased, and will only remain in the registry if the lease 

is renewed on a periodic basis. A consumer submits a service request to the registry in 

the form of a template which specifies the Java interface type and attribute objects of 

the required service. The registry identifies those advertisements which match both the 

specified interface type and attributes, and returns the set of corresponding service proxy 

stubs to the consumer. In contrast to SLP, service matching in Jini is a simple process 

of exact matching, with the consumer-submitted template objects being matched against 

the service advertisement objects according to Java equality rules. Finally, the consumer 

can choose which of the matched services to utilise, and can bind to and interact with the 

selected service using the corresponding RMI proxy stub.
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3.2.3 U D D I

UDDI (Universal Description, Discovery and Integration) [113] is an abstract SDM speci

fication defined by the industry-led OASIS consortium. Heralded as the service discovery 

mechanism for Web Services, there is an expectation [26] that a service will be defined 

using WSDL, advertised and found using UDDI, and interacted with using SOAP. The 

UDDI specification defines an XML-based data model for representing services within a 

registry, and a set of SOAP messages for interacting with the registry. Various companies, 

such as Microsoft, Sun and IBM, have developed UDDI registry implementations.

Having been developed by industry, the UDDI data model uses business-oriented termi

nology. Despite this, UDDI places no constraints on its usage, and can be used to advertise 

services provided by any party, business or otherwise. A service provider is represented by 

a “businessEntity” , which contains information such as the provider name, web-page and 

contact information. W ithin a businessEntity are references to “businessServices”, which 

represent the different types of service offered by the provider. W ithin a businessService 

are references to “bindingTemplates” , which represent the actual service instances that 

provide the businessService. A bindingTemplate contains the technical information re

quired to utilise a particular service. It contains the network-address of the service, and 

references to technical specifications with which the service complies. Technical specifica

tions, such as a communications protocol or service interface, are first registered with the 

UDDI registry as “tModels” (technical models). If a service supports a particular technical 

specification, its bindingTemplate should refer to the corresponding tModel.

A service provider first registers itself in a registry as a businessEntity. Provider services 

can then be advertised in the registry by registering the service type as a businessService, 

and the actual services as bindingTemplates. Each bindingTemplate should reference 

the tModel of the interface that the service supports. All entities in the UDDI data 

model, businesses and services, can be tagged with arbitrary attributes in the form of 

name-value pairs. Indeed, UDDI explicitly supports three standard taxonomies which 

can provide entity classification attributes: the North American Industry Classification 

System (NAICS) for business classification, the Universal Standard Products and Services 

Code System (UNSPSC) for service classification, and the International Organization for 

Standardization Geographic taxonomy (ISO 3166) for geographic classification. Figure 3.2 

shows an example of Web services advertised in a UDDI registry. The ServiceProviderlnc 

company has advertised two services, one in the USA, the other in Europe. Both services
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support the ExampleService WSDL interface, and are accessible through the specified 

URL access-points.

tModel
overviewURL: http://serviceinterfaces.net/ExampleService.wsdl

businessService
name: ExampleService

businessEntity
name: ServiceProviderlnc

bindingTemplate
accessPoint: http://serviceprovider-eu.com/otherExampleService

bindingTemplate
accessPoint: http://serviceprovider-us.com/ws/exampleService

Figure 3.2: An Example of Advertised UDDI Services

In order to request services of a particular type, a consumer submits a query to the 

registry which specifies the tModel of the required service interface, together with other 

required attributes [70]. As in Jini, the UDDI registry uses exact matching to identify 

those advertisements which match both the specified tModel and other attributes, and 

returns the set of corresponding service bindingTemplates to the consumer. In terms of 

the previous example (Figure 3.2), a consumer query specifying the ExampleService WSDL 

tModel should match the two advertised services. Finally, the consumer can choose which 

of the matched services to utilise, and can bind to and interact with the selected service 

using the corresponding bindingTemplate.

3.2.4 An Overview of Service Discovery M echanisms

As demonstrated by the example systems described above, most SDM systems share com

monality not just with regard to general structure and operation, but also in the more
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specific areas of service description and matching. A service is generally modelled in a 

registry as a structured, machine-manipulable description, which specifies the service type 

and a set of attributes detailing different aspects of the service. An attribute is commonly 

structured as a name-value pair, with the name identifying the aspect under consideration, 

and the value specifying the state of the service in terms of that aspect. If the attribute 

is specified using a particular classification scheme, the name will refer to the scheme, 

and the value to an element within that scheme. Identification of matching services is 

generally done through a process of exact matching, with each service’s advertised type 

and attributes being tested for equality against the requested service type and attributes 

(although SLP does provide marginal syntax-matching flexibility).

3.3 An A nalysis o f Existing Service D iscovery M echanisms

In terms of addressing the key issue of how an appropriate service is dynamically selected 

for use in an application, existing SDM systems do provide certain benefits to the consumer. 

When requested by a consumer for services of a particular type with particular attributes, 

an SDM registry does return an unordered set of services which match those characteristics. 

This service set can be of value to the consumer in choosing which service to use. It provides 

him with an awareness of available services that might otherwise be unknown to him, and 

gives the network-address information required to interact with any of them.

However, there are inherent problems associated with the consumer-driven nature of 

existing SDM systems, whereby the onus is on the consumer both to define precisely what 

he requires and then to choose from the returned service set. For example, a consumer must 

be relatively well-informed in order to devise a request that will identify a set of potentially 

appropriate services. Firstly, the consumer must be aware of how the type of service that 

he requires is modelled in the registry. Secondly, the consumer must have an understanding 

of the important criteria by which service appropriateness should be judged, and of the 

specific service type model attributes which correspond to these criteria. Thirdly, the 

consumer must know which specific values of the “criteria” attributes are appropriate, 

given his particular circumstances. Only then can the consumer devise a registry service 

request that identifies a set of potentially appropriate services: services of a particular 

type with particular attributes that have particular values.

For example, the informed consumer who generated the SLP request for a printer in
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Section 3.2.1 must have understood how a printer type was modelled in SLP, and have 

considered that the important criteria by which printer appropriateness should be judged 

were location (attribute name of “printer-location”) and speed (attribute name of “pages- 

per-minute”). Moreover, he must also have realised that printers on the 4th floor of the 

building (attribute value of “Room 04*”) with a speed greater than 7 pages per minute 

(attribute value > “7”) would be appropriate for his particular circumstances, given his 

current location and presumable need to print a large document urgently.

Unfortunately, a consumer will not always have this level of knowledge and under

standing. He is always likely to know the type of the service required, and perhaps how 

the type is modelled in a registry. However, when in unfamiliar circumstances with un

known services available, a consumer may not have an informed notion of what service 

appropriateness is, or how to characterise it in a request: i.e. which service type model at

tributes with particular values would define an appropriate service? Clearly, an uninformed 

consumer will have difficulty in devising a request that identifies potentially appropriate 

services. Even if a request is devised based on some understood criteria and values, the 

returned set of matches is likely to contain some inappropriate services. Moreover, if the 

uninformed consumer does not specify certain attribute values, some appropriate services 

may not be identified.

Consider the previous scenario outlined in Section 2.3.2 in which Alice is attempting 

to print in the university department, which she has never previously visited. Alice may 

logically consider that location is an important criterion in judging printer appropriateness. 

However, although she may know how to specify the printer type location attribute in a 

service request, she may not know which location values to specify: which printer locations 

would be appropriate, given her current circumstances? Moreover, Alice may be unaware 

that her visitor role constrains her to using certain “public” printers. This would mean 

that any printer request that Alice did devise could return inappropriate private printers; 

the role-accessibility of a printer may have been modelled as a printer type attribute, but 

this would be of little use to Alice if she is unaware of its importance.

Similarly, in Section 2.3.3, when Bob first assembles his animal genome analyser, he 

may consider that an appropriate DNA sequence-analyser service is simply a cheap one, 

and correspondingly devise a request that matches analyser services with an inexpensive 

price attribute. If he were more informed, he might realise that another significant criterion 

for judging analyser appropriateness was processing-throughput, given the magnitude of
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experimental data involved. In contrast to Bob’s actual request, a request matching on 

price and throughput attributes would have identified a more appropriate set of analysers.

Even if a consumer does devise a registry service request to the best of his ability, it 

may still be a challenge for him to select the most appropriate service from the returned 

unordered set of matches. The returned services could be considered equally appropriate, 

but only in that all match the specified service type and attributes. In terms of other 

criteria, some services are likely to be more appropriate than others. For example, some 

might be more reliable or provide better quality. The consumer may have been informed 

enough to define a request for appropriate services based on certain criteria, but selecting 

the most appropriate match could still prove difficult and time-consuming if he has no 

knowledge of the services returned. In order to make an informed judgement, a consumer 

might expend time and effort investigating all of the different matches, but this could prove 

frustrating or even impossible if the set was significantly large. Alternatively, a consumer 

might simply choose a matched service randomly, and risk the consequences.

The effectiveness of a service discovery mechanism based on consumer-specified type 

and attribute matching therefore depends very much on the knowledge and understanding 

of the consumer. In the case of an informed consumer, this style of consumer-driven service 

discovery could provide a flexible tool for the identification of potentially appropriate 

services that have certain defined attributes. On return of the service set, the informed 

consumer could theoretically assess the different choices, and select the most appropriate 

service to utilise.

In contrast, the uninformed consumer might view this style of SDM from a somewhat 

different perspective. Having limited understanding of what attributes an appropriate 

service would have, the consumer might struggle to devise a service request. Even if a 

request was devised based on some understood criteria and values, the consumer would 

then face the challenging task of identifying what appeared to be an appropriate service 

from the unordered set of matches.

In view of this, current service discovery research cannot be said to have adequately 

solved the problem of how an appropriate service can be found and selected. The ben

efits outlined at the beginning of this section do not necessarily extend to uninformed 

consumers, who are handicapped by their own lack of knowledge and understanding when 

using a consumer-driven SDM. Clearly, service discovery needs to change: it should be 

improved and augmented in order to play a more active role in helping such consumers.
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3.4 Summary

The issue of service selection has been discussed in this chapter, and current research in the 

area, with its focus on service discovery mechanisms, has been considered. The fact has 

been highlighted that most developed SDM systems share a basic functional commonality, 

in the style of an automated “Yellow Pages” directory, despite the apparent technical dif

ferences between them. This shared commonality has been further demonstrated through 

a discussion of three frequently-cited SDM systems: SLP, the Jini Lookup Service and 

UDDI.

The current consumer-driven approach to service discovery has been considered, with 

its benefits acknowledged and its inherent problems identified. The fact has been noted 

that the effectiveness of a consumer-driven service discovery mechanism depends very 

much on the knowledge and understanding of the consumer using it.

It has been argued that service discovery needs to change, better to support the un

informed consumer. A potential way of providing more support will be explored in the 

following chapter.
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Chapter 4

Towards Personalised Service 

R ecom m endation

In this chapter, the concept of “personalised service recommendation” is intro

duced and a proposal given for a style of SDM recommending registry that gen

erates such recommendations. Research relevant to the concept is then detailed 

and an analysis given of this research. Finally, my research aim in connection 

with registry-generated personalised service recommendation is motivated and 

defined.

4.1 From Service D iscovery to  Service R ecom m endation

4.1.1 A Proposed SDM  Recom m ending Registry

If uninformed consumers cannot adequately make use of current consumer-driven SDM 

systems to find and select appropriate services, what can be done to help them? How 

could service discovery change in order to play a more active role in supporting their ser

vice selection? Surely, rather than merely enabling a consumer to discover services that 

match his defined requirements, an SDM registry should recommend services that seem 

appropriate. In essence, a registry should aim to provide personalised service recommen

dations.

It is proposed that, in order to provide such personalised service recommendations, an 

SDM recommending registry would operate as follows. On receipt of a service request, 

which would state the required service type and any specific attributes, the registry would
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first identify all available type-matching services, through assessment of the advertised 

service descriptions. Consumer-specified attributes would be ignored at this stage to allow 

the registry itself complete control over the identification of all potentially appropriate ser

vices. The registry would next determine the appropriateness for the requesting consumer 

of each of these services, according to some internal logic. Finally, the registry would or

der the available type-matching services by their perceived appropriateness, ranking them 

from most to least appropriate. This resultant ordered list would be the personalised 

service recommendation and would be returned to the consumer. Those services which 

were highly ranked would be those considered the most appropriate for the consumer’s 

particular needs and circumstances. Such a style of recommendation is conceptually sim

ilar to the relevance-ordered list of documents returned by a Web search engine. If the 

highly ranked services were truly appropriate choices, enabling the uninformed consumer 

to search through the recommendation and select an ideal service with minimum time and 

effort, then the recommendation would have been truly effective. The recommendation 

would also be filterable, to show only those services that matched the consumer-specified 

attributes.

Clearly, in order to determine personalised service appropriateness, a registry would 

need to take into consideration relevant aspects of the consumer’s particular circumstances: 

it would need to be context-aware [86]. Such considered contextual information might in

clude, for example, the state of the consumer, that of the surrounding computing and 

physical world, and the state of the considered services. This information might be sta t

ically defined in, or dynamically sensed by, the registry itself, or obtained from outside 

sources such as the requesting consumer or the services themselves.

Such a proposed form of SDM recommending registry should alleviate the problems 

currently faced by the uninformed consumer when using a consumer-driven SDM system. 

This is because, with a proposed recommending registry, the burden of identifying appro

priate services would move from the consumer himself to the registry, which would perform 

the task autonomously. If a registry-generated personalised service recommendation was 

effective, the consumer would be able to search through it and select a truly appropriate 

service with minimum time and effort.

Figure 4.1 provides a pictorial example of a proposed SDM recommending registry in 

operation. A consumer has submitted a service request to the recommending registry, 

stating the required service type and any specific attributes. The registry has identified
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those advertised services with the required type, namely A, B, C, D, E and J. Having 

assessed contextual information acquired from various sources, the registry has then de

termined the appropriateness of each of these services. Finally, it has ranked the services 

by appropriateness, and returned the resultant list to the consumer as a personalised ser

vice recommendation: D has been ranked first (most appropriate), J and C joint second, 

A third, and B and E joint last (least appropriate). If the consumer applied the filter, the 

recommendation would show only J  and A (shown in italics), which both match the re

quired attributes, ranked first and second respectively. Obviously, in a real-world setting, 

the number of services involved could be much greater.
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Figure 4.1: A Proposed SDM Recommending Registry in Operation

The running examples of Alice and Bob begun in Section 2.3 can be used to illus

trate how such a proposed form of SDM recommending registry might benefit uninformed
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consumers. Alice, for example, could submit a printer request to the SDM recommend

ing registry of the visited university department. This registry would then identify all 

available departmental printers and determine their appropriateness, taking into consid

eration relevant contextual information. Such information could include Alice’s location 

and role, and each printer’s location, role-accessibility, capability, reliability and load. 

The registry would then ideally generate an effective personalised service recommendation 

for Alice, which ranked highly those departmental printers that were nearby, publicly- 

accessible, lightly-loaded, and able to print documents of good quality both reliably and 

quickly. In response to a DNA sequence-analyser request made by Bob, a grid SDM 

recommending registry might take into consideration Bob’s preference for an inexpensive 

service, the network conditions, and each available analyser’s cost, reliability, accuracy, 

load and processing-throughput level when determining analyser appropriateness. The 

registry would then ideally generate an effective personalised recommendation for Bob, 

which ranked highly those DNA sequence-analysers that were cheap, lightly-loaded, had 

low latency and high bandwidth, and were able to process genome data quickly, accurately 

and reliably.

The examples of Alice and Bob also serve to highlight the fact that the problem of 

service selection is a universal one. Alice requires a printer in the departmental ubicomp 

environment, whilst Bob requires a DNA sequence-analyser within a grid. Different service 

types, different scenarios, but the same problem of finding and selecting an appropriate 

service from the many available within a service-oriented architecture. Given the expected 

growth of such service-oriented architecture in areas as diverse as the business world, the 

services web, ubiquitous computing, and grid computing, as outlined in Chapter 2, the 

need for a generally applicable solution to the general problem of service selection becomes 

apparent. Thus, any research into the generation of personalised service recommendations 

through the use of such a proposed form of SDM recommending registry must be under

taken from this perspective of generality.

4.2 Existing Research of Relevance to  the Proposal for an 

SDM  R ecom m ending R egistry

Although, theoretically, the notion of registry-generated personalised service recommen

dation would seem to evolve naturally from the current service discovery approach, there
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appears to be surprisingly little specific in-depth research being undertaken. Indeed, the 

concept does not appear to be the subject of any dedicated research area, and the term 

“personalised service recommendation” has needed to be coined in this thesis in order to 

define the idea more precisely.

Despite this, some research has been undertaken which would seem to fall within 

my remit of personalised service recommendation research, though being presented from 

other perspectives. For example, there is some evidence of an awareness that consumers 

would benefit from more personalised support in service selection, and some researchers 

have noted the value of using contextual information in the area of service discovery 

[5,53,67,69,72,80,107,123]. Some practical research has also been undertaken which does 

relate in some ways to the proposal for an SDM recommending registry. However, no 

concrete systems that actively provide recommendations appear to have been deployed in 

a real-world setting.

An overview of this related research is given below. For the sake of clarity, what are, 

in fact, disparate pieces of research have been grouped into two distinct categories. The 

first category consists of generic technical mechanisms that could enable the construction 

of a style of SDM recommending registry. The second category comprises various SDM- 

style systems which generate a form of personalised service recommendation based on very 

specific notions of service appropriateness. Despite this imposed categorisation, it should 

be pointed out that, in reality, the research projects described are independent of one 

another, no connections appear to exist between them, and associated project research 

papers do not reference one another.

4.2.1 Generic Technical M echanisms 

Extensions to SLP

The concept of returning matched services to the consumer as an appropriateness-ordered 

list has been posited as an improvement to an existing consumer-driven service discovery 

mechanism. RFC 3421 [122] proposed an extension to SLP in which matched services 

would be returned as a ranked list, sorted on a particular service attribute defined by the 

consumer. Hughes et al [59] have also proposed a similar style of extension to SLP.

However, these proposals would still be of little value to the uninformed consumer, as 

they demand an understanding of which single provider-defined service attribute is of most 

importance in judging service appropriateness, on which the sort will then be based. Fur
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thermore, the required direction by the consumer precludes any informed recommendation 

being autonomously generated by the registry.

IN S

An SDM system that could autonomously provide registry-generated service recommen

dations was INS (Intentional Naming System) [1], developed in 1999. Although primarily 

focused on addressing technical issues such as scalability and fault tolerance, INS did in

troduce the concept of a generic, provider-specified service “metric” . This numeric value 

was intended to represent the current appropriateness of a service for consumers, and was 

supplied by the service provider as part of a registry service description; if the appropri

ateness of a service changed, the provider was correspondingly expected to update the 

description. The metric information of matched services was returned to the consumer, 

and it was suggested that the consumer should choose the service with the smallest metric 

(where a smaller metric meant a better service).

However, although the metric concept did introduce the notion of service appropri

ateness into a service discovery mechanism, a recommendation based on it would not be 

personalised towards a particular requesting consumer. Rather, there was an implied as

sumption that a service with a specific metric would have the same level of appropriateness 

for all consumers, despite their differing circumstances. Moreover, the onus of objective 

evaluation and updating of service appropriateness rested with the service providers them

selves, and was thus based on the debatable expectation that the providers would always 

prove reasonable and reliable.

C o n te x t A ttr ib u te s

More recently, Lee and Helal [72] have modified the Jini Lookup Service to allow advertised 

service descriptions to contain dynamic “context attributes” . Similar to an INS service 

metric, a context attribute is a numeric service appropriateness value, again specified by 

the service provider. However, the context attribute is implemented as a Java object, which 

returns the appropriateness value on execution. Once a Jini registry has identified those 

services matching a consumer’s request, the context attribute of each service is executed. 

The matched services are then ordered by the returned values (most to least appropriate), 

and the corresponding list is returned to the consumer as a service recommendation. 

Since a context attribute is dynamically evaluated at request-time, the returned value
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might better reflect the current appropriateness of a service than a statically-defined INS 

service metric. Lee and Helal provide an example [72] in which an executed context 

attribute remotely checks the current load of its represented service, and constructs a 

service appropriateness value based on the result.

However, it is not clear how personalised a service recommendation based on this 

approach could be, since no contextual information explicitly referring to the requesting 

consumer is used in generating a recommendation. It is suggested that if a consumer 

contacts a registry which is nearby in physical and network terms, then the state of this 

registry (where the context attributes are evaluated) will serve as an approximation of 

that of the consumer. However, since a registry can only really approximate the state of 

a consumer in terms of his physical and network location, personalised service appropri

ateness can only be calculated in terms of these specific contextual aspects. For example, 

this approach would be unable to recommend only publicly-accessible printers to Ahce, as 

a registry would have no awareness of Alice’s role.

S em an tic  W eb Services

The active research area of “Semantic Web Services” [79,80,109] is also partly concerned 

with developing an approach which could enable an SDM registry to identify appropriate 

services autonomously for the consumer, but in a completely different manner. Semantic 

Web Services (SWS) are motivated by the Semantic Web vision promoted by Tim Berners- 

Lee, in which the World Wide Web evolves towards a state where “information is given 

well-defined meaning, better enabling computers and people to work in cooperation” [6]. In 

essence, the Semantic Web is concerned with describing the semantics (meaning) of web- 

accessible resources, such as web-pages and web services, using unambiguous, machine- 

understandable, explicitly-defined meta-data.

Researchers claim that the Semantic Web should enable the construction of more useful, 

intelligent and autonomous programs, as software will be able to “understand” , reason 

and infer over manipulated resources using the corresponding meta-data. In terms of 

services, researchers claim that “the Semantic Web should enable users to locate, select, 

employ, compose and monitor Web-based services automatically” [18]. Consequently, one 

aspect of Semantic Web Services research is the development of SDM registries that could 

autonomously generate service recommendations through the assessment of detailed service 

meta-data; with such a recommendation, a user’s representative agent might perhaps select
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and utilise an appropriate service.

SWS research has focused primarily on the development of markup languages. These 

languages should, theoretically, be able to describe services in a richer, more precisely- 

defined and standardised manner than is currently possible using a UDDI service descrip

tion. These languages, such as OWL-S (Web Ontology Language - Services) [18] and 

DAML-S (DARPA Agent Markup Language - Services) [17] are based on the concept of 

an ontology. An ontology provides a common vocabulary for a particular body of knowl

edge, specifying the meaning of and logical relationships between concepts, together with 

associated inference rules. OWL-S and DAML-S provide generic ontologies for services, 

which contain a set of concepts and relationships for describing the type and attributes of 

a service.

Certain researchers [2,88,92] have developed augmented UDDI registries to enable ser

vices to be advertised in terms of these languages. A consumer phrases his service request 

in terms of an ontology markup language, which is matched against the correspondingly 

advertised services. However, in contrast to normal UDDI exact matching, there is an 

expectation that an ontology-based registry will somehow be able to match services on 

a semantic level, in terms of ontological concepts, relationships and inference rules, en

abling a greater understanding of services’ appropriateness. Pokraev et al [93] have also 

modified a UDDI registry to represent required contextual information in terms of DAML- 

OIL, another ontology markup language, with ontologies being used to represent different 

contextual domains such as a consumer’s location, time, social and physical conditions.

Despite this initial activity, however, the main focus of SWS research continues to be on 

the development of languages and methods for the ontological representation of services. 

Little research has currently been done into how exactly service appropriateness would be 

determined through assessment of such service descriptions.

4.2.2 SD M -style Recom m ending System s

In contrast to INS, Context Attributes and Semantic Web Services, which all focus in 

their different ways on developing basic generic technical mechanisms, there are a small 

number of SDM-style systems which focus instead on generating personalised service rec

ommendations through the consideration of contextual information. However, with such 

systems, services are recommended according to only very specific notions of appropri

ateness: physical location only or network performance only. For systems that consider
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physical location, the nearer a service is to a consumer, the more appropriate it is. For 

those considering network performance, the better the perceived network performance of 

a service, the more appropriate it is for a consumer. Two such systems of each type are 

discussed below.

L oca tion -based  Serv ice A p p ro p ria ten e ss

W ebsigns Websigns [96] was part of the Cooltown project [65], which developed ubi

comp system infrastructure tha t could associate Web computing resources with real-world 

physical entities. Cooltown researchers envisaged people equipped with mobile computing 

devices accessing resources associated with entities in their surroundings, such as nearby 

restaurants, theatres and historical sites. The Websigns system aimed to recommend ap

propriate resources (known as “e-services”) to a user, based on his location. Each service 

was detailed in a WsML (“Websign Markup Language”) description containing its type 

and URL network-address, the location that it was associated with (as a latitude /  longi

tude pair), and a range over which it was applicable; a service was then advertised under 

this description in a WsML server, which essentially acted as a form of SDM registry.

The Websigns client running on a user’s mobile computing device occasionally queried 

a WsML server, specifying the user’s location sensed using GPS (Global Positioning Sys

tem). The server assessed the advertised descriptions to identify those services that were 

relatively close to the user’s location, in terms of Euclidean distance, and the descriptions 

of these nearby services were returned. The client further filtered these services on their 

descriptions, identifying those that the user was currently in range of (again using the 

sensed location), and was currently facing (using compass-sensed orientation). This fil

tered list of appropriate services was then presented to the user as a form of personalised 

service recommendation. The Websign developers decided to perform the final service- 

filtering operations on the client, but these could have also been performed in a WsML 

server registry if it had been supplied with the relevant contextual user information.

M o b iS h are  The more recent MobiShare middleware architecture, developed by Vala- 

vanis et al [114], is also driven by a similar vision to that of Cooltown. MobiShare has 

been designed to support an ubicomp environment in which Web Services are associated 

with aspects of the real world. As with Cooltown, users are envisaged accessing services 

through mobile computing devices, but emphasis is also placed on the mobility of the ac
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tual services themselves. Some services are expected to be hosted on the mobile computing 

devices of certain users, who will offer them to others. For example, one such provider 

might be a freelance taxi-driver, offering his trade as a Web Service.

To support this scenario, MobiShare structures the world as a collection of cells, each 

mapping onto a wireless access point. A cell is controlled by a Cell Administration Server 

(CAS), which acts as a form of SDM registry. When a service becomes available in a cell, 

it is advertised in the controlling CAS under a description containing the service WSDL 

type, and a classification of the service in terms of an ontology of service categories (e.g. 

city guide, theatre ticket reservation, taxi booking, etc). When a user requires a service, he 

submits a request to the local CAS, specifying the type or category of service required; the 

request also contains the user’s sensed location and orientation. The CAS first identifies 

those type-matching services in the current cell, which must be near to the requesting user 

(being in the same cell). If the user’s location and orientation indicate that he is moving 

towards the edge of a cell, the CAS also forwards the service request to the CAS that 

manages the adjacent area. Finally, the list of nearby type-matching services, registered 

in the current and adjacent cells, is returned to the user as a form of personalised service 

recommendation.

N e tw o rk -p e rfo rm an ce  based  Service A p p ro p ria ten e ss

N SSD  Huang and Steenkiste refer to the problem of generating service recommendations 

based on network performance as “Network-Sensitive Service Discovery” (NSSD) [58]. 

They have developed an implementation of SLP which augments a registry with network 

measurement capability. A consumer submits a service request to the registry as a normal 

SLP query, but can also request that services be assessed in terms of latency, bandwidth 

or server load. The registry identifies matching services as normal, but then uses its 

network measurement capability to determine those services with good performance from 

the perspective of the consumer’s network location: ideally those with low latency, or high 

bandwidth, or low server load. Well-performing matching services are then returned to 

the consumer as a form of personalised service recommendation.

X u  e t a l Another SDM system that took network performance into consideration was 

proposed and simulated by Xu et al [120]. They proposed that when a consumer selected 

a service using an SDM, and then utilised it, the experienced network Quality of Service
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should be monitored. This QoS level information would then be fed back into the SDM, 

where it would be stored in the service’s advertised description. As with the appropriate

ness values of INS and Context Attributes, no information is given as to what exactly a QoS 

level would represent, only that “the higher the QoS level, the better the QoS observed” . 

A registry would then use these recorded past QoS levels of services to determine their 

current appropriateness, and could then generate a service recommendation. However, it 

is not clear from the description of the research exactly how service appropriateness would 

be determined through the assessment of associated QoS levels.

4.3 A Discussion o f Existing Relevant Research

Although all of the research detailed above focuses on the development of systems that 

generate forms of service recommendation, the individual projects themselves had very 

specific and very different initial motivations. For example, Context Attributes specifically 

aimed to improve the SDM element of Jini, the SWS research is motivated by a strong belief 

in the value of ontological service descriptions, and Websigns was developed specifically to 

help people find physically nearby services in an ubicomp environment. No-one seems yet 

to have comprehensively explored the concept of registry-generated personalised service 

recommendation from the perspective of its being a generally-applicable solution to the 

general problem of service selection.

It could be argued that INS, Context Attributes and SWS research, the three research 

projects categorised together as generic technical mechanisms, were focused on general

ity in their own different ways. Theoretically, such mechanisms do provide a generally 

applicable basis on which to construct any recommending registry, regardless of the par

ticular deployment scenario or service types involved. Indeed, a generic mechanism should 

make registry development quicker and easier. However, apart from imposing a very ba

sic structure and a form of knowledge representation on a recommending registry, it is 

questionable how much value the three considered mechanisms could have in terms of 

simplifying registry development. This is because none provides any general support for 

addressing arguably the most challenging issue in service recommendation generation: how 

is service appropriateness determined?

In the case of INS and Context Attributes, the determination of service appropriateness 

is placed in the hands of the service provider through the use of a service appropriateness
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metric. Although such an approach significantly simplifies the functionality required of 

a recommending registry, certain problematic issues arise. Firstly, how exactly is service 

appropriateness determined, and is a service provider the best party to decide what is 

appropriate or not for a consumer? Secondly, since no explicitly specified information 

about the requesting consumer is taken into consideration during determination of service 

appropriateness, how personalised can a recommendation really be?

In the case of Semantic Web Services, research into service recommendation is very 

much at an early stage. Ontology markup languages such as OWL-S may yet provide 

a standardised and powerful way of defining and manipulating service descriptions and 

other contextual information within a recommending registry. However, there is a marked 

difference between merely defining relevant knowledge and actually using it.

Those research projects categorised as SDM-style recommending systems, namely Web- 

signs, MobiShare, NSSD and Xu et al, ignore generality altogether. Each project is spe

cific to a particular type of scenario. Websigns and MobiShare were both designed for 

ubicomp environments, while NSSD and Xu et al were designed for use in more tradi

tional distributed computing networks. Thus, whilst all the systems do address the issue 

of determining service appropriateness through consideration of contextual information, 

they do so only in terms of the particular criteria which the researchers considered im

portant in the anticipated deployment scenarios. In the case of Websigns and MobiShare, 

the most important criterion for service appropriateness in an ubicomp environment was 

considered to be physical location. More specifically, the nearer a service, in terms of 

Euclidean distance, the more appropriate it is perceived to be. For NSSD and Xu et al, to 

be used in traditional distributed computing networks, the criterion of prime importance 

was seen as network performance. Although there is a lack of detail with Xu et al, NSSD 

uses either the criterion of network latency, or bandwidth, or service load to determine 

service appropriateness, but only singly and not in combination.

It should also be noted that although, when deployed in their intended scenarios, these 

SDM-style recommending systems might well generate adequate recommendations, they 

are inherently constrained in their effectiveness by the very fact that they were designed 

to determine service appropriateness in terms of a single particular criterion alone. Per

haps the ideal benchmark against which a service recommender should be compared is an 

informed human being. When deciding which service to choose, an informed person would 

consider service appropriateness in terms of a range of relevant criteria. Depending on sce
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nario and service type required, he might well consider location or network performance, 

but might also consider, for example, cost, capability, reliability, quality, reputation, accu

racy and much more. Only when service appropriateness is able to be determined in terms 

of a range of relevant criteria can truly effective personalised service recommendations be 

generated.

4.4 Aim s of Research

As the discussion of relevant research has made clear, there is definite interest, albeit in 

an uncoordinated form, in the idea of personalised service recommendation. However, 

no comprehensive research appears to have been undertaken which addresses the issue of 

registry-generated personalised service recommendation from the perspective of ensuring 

that the resultant research findings are generally applicable. More precisely, no-one has 

yet addressed the question which would seem to be of the utmost importance, namely:

W hat general design for an SDM recommending registry would enable the 

generation of effective personalised service recommendations?

A well-devised general design would be of considerable value because it could provide 

a blueprint for the construction and operation of any SDM recommending registry, re

gardless of service-oriented deployment scenario and service types involved. Moreover, a 

successful, detailed design should allow an effective corresponding generic mechanism to 

be developed. Such a generic mechanism would significantly simplify the construction of 

any recommending registry by providing a solid technical infrastructure on which to build 

one. A detailed design should address the challenging issue of service appropriateness 

determination, and should thus enable the corresponding generic mechanism to provide 

more effective general support than is currently provided by INS and Context Attributes.

The aim of my research, therefore, is to attem pt to address the question posed above, by 

exploring potential design options and developing solutions to relevant associated research 

issues. As the general design is developed, it will be repeatedly tested for effectiveness.

The proposal for an SDM recommending registry defined in Section 4.1.1 will serve as 

the abstract model which defines general registry operation. To reiterate:

In requesting a personalised service recommendation, a consumer would submit 

a service request as input, stating the required type and any specific attributes.

38



The registry would first identify all those advertised services of the required 

type, and then determine their perceived appropriateness through considera

tion of relevant contextual information. Finally, it would rank these available 

type-matching services by their appropriateness, and return the resultant or

dered fist to the consumer as a personalised service recommendation. The rec

ommendation would also be filterable to show only those services that matched 

the consumer-specified attributes.

Development of the general design will be based on this abstract model.

In order to initiate the investigative process, techniques from the described SDM-style 

recommending systems will be assessed for their applicability to a general recommending 

registry design. Despite criticism of these systems, it must be acknowledged that they have 

succeeded in generating a form of personalised service recommendation through consider

ation of some contextual information. The associated techniques could consequently be of 

use. In contrast, the described generic technical mechanism research is of little use in terms 

of this investigation, as it provides no guide to service appropriateness determination.

4.5 Summary

In this chapter, the concept of providing better support for the uninformed consumer 

through personalised service recommendation has been considered, and a style of SDM 

recommending registry to generate such recommendations proposed. It has been argued 

that, given the universality of the service selection problem, any research into registry

generated personalised service recommendation should be undertaken from the perspective 

of generality.

It has been noted that there seems currently not to be any dedicated research area 

concerned with the concept. However, research that is of relevance has been identified, 

categorised into the two groups of generic technical mechanisms and SDM-style recom

mending systems, detailed, and discussed.

The observation has been made that, despite interest in the idea of personalised ser

vice recommendation, no-one has yet attempted to address the specific question of what 

general design for a recommending registry would enable the generation of effective rec

ommendations. My research aim of attempting to address this question has been stated, 

and an abstract model of an SDM recommending registry, which will serve as the basis
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for general design investigation, defined.

Finally, it has been noted that techniques used in the SDM-style recommending systems 

outlined could be of use in furthering the research aim. These techniques will thus be used 

in the next chapter to derive a theoretical general recommending registry design.
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Chapter 5

A T heoretical G eneral D esign  for 

a R ecom m ending R egistry

In this chapter, a theoretical general design for a recommending registry, de

rived from techniques used in the basic SDM-style recommending systems dis

cussed in Chapter 4, is presented. The suitability of the theoretical design is 

subsequently assessed, and the conclusion made that its potential drawbacks 

outweigh any potential benefits.

5.1 A Theoretical D esign

My investigation of a general design for an effective recommending registry commenced 

with the development of a theoretical design, derived primarily from techniques used in the 

basic SDM-style recommending systems discussed in the previous chapter. These systems 

are Websigns [96], MobiShare [114] and NSSD [58]. The research of Xu et al [120] was not 

considered as it lacked detail. The abstract model of a recommending registry defined in 

Section 4.4 served as the basis for the theoretical design.

Once such a design was developed, it was assessed for its suitability in terms of a) 

whether a registry which implemented the design should be able to generate effective 

personalised service recommendations; and b) whether a corresponding generic mechanism 

developed to support the design would simplify registry construction. It should be noted 

that the theoretical design was developed only to such level of detail as enabled this 

assessment to be made.

Given that the available type-matching services in a personalised service recommen
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dation will be ordered according to their perceived appropriateness for the requesting 

consumer, how such service appropriateness is determined is arguably the most important 

issue in recommending registry operation. As was noted in the last chapter, this might 

involve the consideration of a range of relevant criteria in combination.

In view of this, how might service appropriateness be determined through the use of 

existing techniques?

5.1.1 World M odels, Appropriateness Rules and Proportional Criteria 

W eightings

As was stated in the abstract model, a recommending registry would need to be context- 

aware in order to generate personalised service recommendations. The existing SDM- 

style recommending systems of Websigns, MobiShare and NSSD do take some relevant 

contextual information into account when determining service appropriateness, having first 

acquired it from various sources. The registries acquire details of requesting consumers’ 

physical or network locations, either through direct sensing, or through direct submission 

by the consumers themselves. Additionally, information about available services is supplied 

to the registries, as usual, in the form of the attribute-based descriptions used by providers 

to advertise their services. Internally, all this contextual information forms an attribute- 

based representation, which can be defined as a “world model” , describing the state of the 

requesting consumer and available services. Through assessment of the world model, the 

registries then determine the appropriateness of a service for the requesting consumer.

In terms of the theoretical design, a registry would similarly need to contain a world 

model. However, to enable the registry to have comprehensive context-awareness, in or

der to generate more personalised and more effective service recommendations, a world 

model richer in content than those currently used in the existing SDM-style recommend

ing systems would be required. For example, the state of the requesting consumer might 

be described in terms more comprehensive than merely location, and details of the sur

rounding computing and physical world might also be captured. The additional contextual 

information might be statically defined in, or dynamically sensed by, the registry itself, or 

obtained from outside sources.

W ith this richer world model in place, how would service appropriateness be determined 

through its assessment? A technique of what can be termed “appropriateness rules” has 

been used in the SDM-style recommending systems. A rule precisely states how the
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appropriateness of a service, in terms of a particular criterion, is determined through 

the assessment of particular elements in the world model. The three considered systems 

define a small number of rules but, as was noted in the last chapter, these determine 

service appropriateness only in terms of either physical location or network performance. 

For example, the appropriateness rule used in Websigns can be defined as “the smaller 

the calculated Euclidean distance between the service’s physical location (attribute-name 

=  service-location) and that of the consumer (attribute-name =  requesting-consumer- 

location), the greater its appropriateness”.

Most of the rules defined in the three systems are conditional, in that the appro

priateness of a service calculated using a rule is dependent on aspects of the requesting 

consumer’s particular situation: for example, in the case of Websigns, service appropriate

ness is dependent on the consumer’s physical location. However, the NSSD system also 

defines an unconditional rule, in which calculated service appropriateness is not dependent 

on the requesting consumer’s situation. This rule determines service appropriateness in 

terms of service load, and can essentially be defined as “the smaller the service’s load 

(attribute-name =  service-load), the greater its appropriateness” . As previously stated, 

service appropriateness might need to be judged according to a range of criteria beyond 

physical location and network performance in order to generate effective recommendations. 

In terms of the theoretical design, therefore, a registry would need to contain a range of 

conditional and unconditional rules which determined service appropriateness in terms of 

a variety of relevant criteria, utilising the contextual information available in the richer 

world model.

The process of service appropriateness determination should ideally allow for the con

sideration of a range of criteria in combination, yet none of the considered systems provide 

this facility. Thus, the final question that needs to be addressed in developing the theo

retical design is how such multi-criteria service appropriateness could be achieved. Some 

recent related research, although emanating more from of an Al perspective, does use a 

technique that could be applicable. Lee et al [73, 74] have recently proposed and par

tially implemented a “Personal Router” , which aims to aid the user in selecting the most 

appropriate choice from a market of services in an ubicomp environment. Similar to my 

concept of a recommending registry, a Personal Router (PR) would attem pt to recommend 

appropriate services to a user. PR research has so far focused on using machine-learning 

techniques to determine how a user balances, or trades off, service network performance
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(quality) against financial cost when judging service appropriateness. When required to 

generate a recommendation, the PR determines service appropriateness by taking the 

numeric quality and cost attributes of a service, and combining them into a single ap

propriateness value by applying the learned trade-off weighting in a weighted sum. For 

example, if the PR  had learned that a user considered cost more important than quality 

on a ratio of 4:1, then the overall service appropriateness value would be generated as 

(0.8 * cost) +  (0.2 * quality).

Although PR  research has considered only network quality and financial cost, a sim

ilar weighted sum technique could be used in the theoretical design to generate a sin

gle value representing the multi-criteria appropriateness of a service. Service appro

priateness could first be determined for different criteria through execution of the cor

responding conditional and unconditional rules. The appropriateness values generated 

by these rules would then need to be converted into a normalised numeric form, e.g. 

between 0 (completely inappropriate) and 1 (completely appropriate). These different 

normalised values could then be combined into a single multi-criteria appropriateness 

value using a proportional weighting. The weighting would represent the contribution 

(i.e. importance) of each criterion when calculating overall service appropriateness, with 

the individual weights summing to 1.0. For example, if service appropriateness was 

judged in terms of physical location, network latency and bandwidth, with location be

ing considered twice as important as the other two, the corresponding weighting would 

be [locationjweight =  0.5, latency-weight — 0.25, bandwidth-weight — 0.25], and overall 

service appropriateness would be calculated as ((0.5 * locationjappropriateness) +  (0.25 * 

latency-appropriateness) +  (0.25 * bandwidthjappropriateness)).

Once the overall appropriateness of each available type-matching service had been cal

culated, a personalised recommendation could finally be generated by ranking the services 

according to this value.

5.1.2 Applying the Design

The theoretical design described above is essentially a generalisation and augmentation 

of the various specialised approaches to service recommendation taken by the existing 

SDM-style recommending systems. The Websigns, MobiShare, and NSSD recommending 

registries all use a form of world model, and determine service appropriateness using a small 

number of rules that assess the model. However, all aspects of their particular approaches
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are focused on generating recommendations in terms of a single criterion. The theoretical 

design relaxes this specialisation, advocating a richer world model, which a wider range of 

conditional and unconditional rules would assess when determining service appropriateness 

in terms of a greater variety of relevant criteria. Proportional criteria weighting should 

make multi-criteria service appropriateness possible. The actual content of a world model, 

the particular conditional and unconditional rules, and the specific criteria weightings 

used in a recommending registry would obviously depend on the scenario in which it was 

deployed, and the types of service that it was required to recommend.

Imagine that the recommending registry in the university department where Alice 

requires a printer conforms to this theoretical design. The registry would provide rec

ommendations for the different types of services offered by the department. When Alice 

requests a printer recommendation, the registry would first use the advertised service 

descriptions in the world model to identify all available printer services. It would then 

determine printer appropriateness in terms of physical location, role-accessibility and cur

rent load, executing the corresponding rules for each matching service. The location and 

role-accessibility rules would both be conditional, whilst the load rule would be uncon

ditional. The location rule would calculate the corridor distance between Alice’s room 

and that of a printer: the smaller the distance, the greater the appropriateness. The 

role-accessibility rule would match Alice’s role against the role-accessibility of a printer: 

a matching printer would be defined as being totally appropriate, whilst a non-matching 

one would be defined as only partially appropriate. The current load rule would assess a 

printer’s current load: the smaller the load, the greater the appropriateness. All of the 

required attributes - locations, roles, role-accessibility, and loads - would be available in 

the world model. Having determined the different appropriateness values of each service 

in terms of the three criteria, the registry would then calculate the overall multi-criteria 

appropriateness value of services using a pre-defined criteria weighting: location might be 

given most weight, closely followed by role-accessibility, with the remaining weight given 

to load. Finally the printer services would be ranked by overall appropriateness, and the 

resultant ordered list would be returned to Alice.

Or, imagine that the grid recommending registry which Bob subscribes to also con

forms to the theoretical design. Obviously the grid registry would have different world 

model content, rules and criteria weightings to that of the departmental registry. When 

Bob requests a DNA sequence-analyser recommendation, the registry would identify all
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available analyser services, and would then determine service appropriateness in terms of 

unconditional rules for financial cost, processing-throughput and reliability, and a condi

tional rule for bandwidth. The unconditional rules would assess the descriptive attributes 

of a service, with lower financial cost, higher processing-throughput and better reliability 

being considered more appropriate. The bandwidth rule would estimate potential service 

bandwidth from Bob’s network location, with higher bandwidth being considered more ap

propriate. Service multi-criteria appropriateness would then be calculated, perhaps with 

cost and processing-throughput being given most weight, and the remaining weight being 

split between reliability and bandwidth. Finally, the analyser services would be ranked by 

overall appropriateness, and the resultant list returned to Bob.

5.2 Assessing the Suitability of the Theoretical D esign

Two questions need to be addressed in assessing the suitability of the theoretical design. 

Firstly, is it probable that a recommending registry which implemented this design would 

generate effective personalised service recommendations? Secondly, to what extent would 

a corresponding generic mechanism, developed to support this design, simplify the con

struction of a recommending registry? These two questions are considered below.

5.2.1 Effective Personalised Service Recom m endations

Theoretically, a registry that implemented this design should be able to generate effective 

personalised service recommendations. The use of a world model, appropriateness rules, 

and proportional criteria weightings could enable service appropriateness to be determined 

in an informed manner, with an extensive range of criteria being taken into consideration 

in combination. If the world model was sufficiently accurate and detailed, with truly 

significant appropriateness criteria specified as well-defined rules, and their actual impor

tance reflected in a proportional weighting, then a recommending registry should be able 

to generate effective recommendations.

However, it is questionable whether this ideal arrangement could always be attained, 

owing to three problematic aspects of the design. Firstly, the effectiveness of a registry, 

and thus of the personalised service recommendations generated, would be dependent on 

the particular ability and awareness of the registry developer. Secondly, unless occasional 

manual modifications were made to a registry to reflect relevant changes, the effectiveness
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of generated recommendations could deteriorate over time. Thirdly, world model content 

could well be inaccurate.

Dependency on the Developer

W ith the theoretical design, the developer of a recommending registry would be wholly 

responsible for deciding how service appropriateness should be determined, and for en

coding the process in terms of the corresponding world model, appropriateness rules and 

proportional criteria weightings. As such, whether or not a registry could generate ef

fective recommendations would depend significantly on the ability and awareness of the 

developer, particularly his knowledge and understanding. His subjective opinions would 

also have an impact.

The development of such a recommending registry could be a complex process. For 

each type of service to be recommended, the developer would first need to ascertain which 

relevant criteria should be taken into consideration. He would then need to decide how 

such criteria should be encoded as appropriateness rules, and what information these rules 

would require to operate. This information would need to be acquired and then represented 

in the world model. Finally, in defining the proportional criteria weighting for a particular 

type of service, the developer would need to determine the relative importance of each 

of the considered criteria. If the developer made a bad judgement at any stage in this 

development process, then the effectiveness of recommendations generated by the registry 

could be severely reduced.

Consider the problems that might occur in the development of the departmental rec

ommending registry used by Alice. In terms of printer services, the registry developer 

might not be aware that role-accessibility was an important issue when accessing printers. 

This could result in inappropriate printers in private offices being highly ranked in the 

recommendation generated for Alice. Alternatively, the developer might be aware that 

physical location was an important criterion to consider, but might decide that the best 

way to implement the corresponding rule would be to calculate the Euclidean distance 

between the sensed height /  latitude /  longitude locations of the requesting consumer and 

a printer. This could also result in inappropriate printers being highly ranked, such as 

those which were physically nearby but difficult and time-consuming to reach owing to 

the structure of the building. Humans currently lack the ability to walk in any direction 

through walls and other physical objects! A better version of the physical location rule
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might involve the calculation of distance in terms of rooms and corridors, although this 

would require the world model to contain details of the building’s architecture. Finally, if 

the developer did actually determine printer appropriateness in terms of well-defined rules 

for physical location, role-accessibility and current load, he might then decide subjectively 

that load was of most importance when constructing the proportional criteria weight

ing. In contrast, most consumers might value location and accessibility more, preferring a 

nearby, accessible printer to a lightly-loaded distant one.

If an external developer was hired to construct a recommending registry for a particu

lar scenario, he might not have an awareness of the issues important in determining service 

appropriateness. A developer might attem pt to address this by making use of question

naires, interviews or ethnography to ascertain the opinions or behaviour of informed users 

in selecting an appropriate service. However, even if this information was taken into con

sideration, whether or not a registry could generate effective recommendations would still 

depend completely on the ability of the developer to determine service appropriateness, in 

terms of his encoded world model, rules and weightings.

Given that the ability and awareness of a developer cannot be guaranteed and could 

vary widely, there is a distinct possibility that a constructed recommending registry which 

conformed to the theoretical design could generate ineffective personalised service recom

mendations.

Reflecting Change

Imagine that, for a particular scenario, a developer does construct a recommending reg

istry which generates effective recommendations for different types of service. On initial 

operation, the world model accurately reflects the current state of the world, and overall 

service appropriateness is determined in terms of adequately weighted significant criteria 

specified as well-defined rules. However, over time, changes that affect the appropriate

ness of services will inevitably occur. The qualities of available services and aspects of 

the physical and computing environment might change, whilst new appropriateness cri

teria could become important and existing ones less so. Unless the registry adapts to 

reflect such changes, through modification of its world model, rules and weightings, the 

recommendations that it generates will gradually become ineffective, as its determination 

of service appropriateness diverges from reality.

To an extent, any current SDM registry is designed to handle certain types of change
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autonomously and dynamically. For example, the changing availability of services is han

dled through the leasing of service advertisements. Indeed, if the qualities of an available 

service change, it would be hoped that the service provider would reflect this by modify

ing the service description advertisement, thus updating the world model. However, other 

aspects of a recommending registry conforming to the theoretical design would be defined 

statically: the appropriateness rules, proportional criteria weightings, and elements of the 

world model that were not expected to change on a regular basis. These could only be 

updated through manual intervention.

Consider the following examples. In the university department which Alice is cur

rently visiting, certain corridors have been closed for a three month refurbishment. To 

reflect this, the architectural information in the department registry world model would 

need to be modified, otherwise distances to printers calculated using the physical location 

rule would be inaccurate, and inappropriate printers might be ranked highly in Alice’s 

recommendation. Alternatively, imagine that some of the DNA sequence-analysers on the 

grid began offering a facility which enabled a consumer to assess the current status of a 

running analysis, and to modify some of the analysis parameters dynamically. Over time, 

it becomes clear that researchers value this facility, so it would seem valid to take this new 

criterion into consideration when determining the appropriateness of an analyser service. 

Consequently, the developer of a grid recommending registry would need to introduce a 

corresponding unconditional rule which assigns greater appropriateness to a service with 

this new facility. Moreover, the proportional criteria weighting would need to be modified 

to reflect the importance of this newly introduced criterion. Only through this adaptation 

could appropriate analysers continue to be highly ranked in a recommendation generated 

for Bob.

The need for manual modifications to a deployed recommending registry, in order to 

reflect relevant changes, places a significant burden on the developer or other responsible 

party. If the developer does not continue to make necessary modifications to a registry over 

its lifetime, the effectiveness of the recommendations generated could gradually deteriorate.

Inaccuracy in the World Model

W ith the theoretical design, the world model plays an integral role in a recommending 

registry. The various criteria rules that determine service appropriateness operate by 

assessing the current state of the world as presented by the model attributes. To enable
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effective recommendations to be generated, a world model would thus need to provide an 

accurate reflection of the elements that it aims to represent: the requesting consumer, 

the available services, and other relevant aspects of the computing and physical world. 

However, there are several reasons why aspects of a registry model might be inaccurate.

On a mundane level, mistakes could always be made in the acquisition and representa

tion of world model attributes. A faulty sensor might record an incorrect value in tracking 

a requesting consumer’s location, or a human service provider might accidentally advertise 

a service with the wrong attribute value. Alternatively, as was discussed in the previous 

point, if relevant changes occurred in the real world and affected model attributes were 

not consequently updated, then the model would no longer accurately reflect the current 

state of things. On a more abstract level, a source of model information might perceive 

world aspects from a certain viewpoint, which most others would disagree with. For ex

ample, a service provider might have a rose-tinted perception of his service, which would 

be reflected in the advertised service description attributes. Those who had actually used 

the service might consider the description inaccurate.

There is also the interesting issue of whether a source of information would always wish 

to provide accurate attributes for a registry world model. A requesting consumer would 

be likely to provide contextual information that accurately reflected his current state, 

being motivated to obtain an effective recommendation of services appropriate for his 

particular circumstances. A registry developer should similarly be motivated to generate 

effective recommendations, and would therefore probably attem pt to ensure that aspects 

of the world model defined by him were accurate. However, from the perspective of 

service providers, it might actually be advantageous to them to supply inaccurate service 

descriptions for a registry world model.

A provider is motivated to advertise a service within a registry to gain users. In a 

competitive service market, more users might equate to more money, either through fees 

paid by the users themselves or through some form of advertising. It therefore seems 

likely that some providers might be somewhat economical with the tru th  when describing 

services, in an attem pt to attract greater custom than they perhaps deserve. For example, 

the provider of a very slow DNA sequence-analyser might lie in the advertisement submit

ted to a grid recommending registry, claiming that the service could provide a massively 

high processing-throughput level. The service would consequently be highly ranked in 

generated recommendations, with the result that Bob and many others might select it.
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The provider would then benefit from their paid fees. Unfortunately, from the perspective 

of the users, the service would prove exceedingly inappropriate, with the analysis process 

taking weeks to complete rather than the expected few days. In a more malicious instance, 

the service provider might simply register the fee, and not perform any analysis at all!

Given the reasons discussed above, there would seem to be a distinct possibility that 

the world model of a registry which conformed to the theoretical design could be inaccurate 

in some way. This obviously diminishes the likelihood that such a registry could generate 

effective personalised service recommendations. The appropriateness rules and propor

tional criteria weightings defined by a developer might theoretically be well-defined, but 

if the world model information over which they operate was inaccurate, then determined 

service appropriateness would be of little value.

5.2.2 Considering a Generic Mechanism

W hat would a generic mechanism, developed to support this theoretical design consist of? 

To what extent could it simplify the construction of a recommending registry?

The theoretical design requires the developer to construct a recommending registry 

that comprises a world model, appropriateness rules and proportional criteria weightings. 

A supporting generic mechanism would probably consist of a “skeleton” implementation of 

such a designed registry. At its core, it might provide a basic service discovery mechanism, 

which handled the advertisement and leasing of provider-supplied service descriptions. On 

top of this, it might provide a framework into which world model content, rules and 

weightings, specific to the particular scenario, could be “plugged in” by the developer. 

A skeleton world model might also be provided, which adopted a standardised way of 

defining and manipulating contextual information. Support might further be provided for 

the acquisition and processing of contextual information through an infrastructure such as 

Dey’s Context Toolkit [30]. This should all theoretically simplify the developer’s task of 

developing a working world model, and of devising the appropriateness rules that access 

the model. The skeleton implementation might also provide support for calculating multi

criteria service appropriateness, by combining values generated by developer-specified ap

propriateness rules according to a developer-specified proportional criteria weighting. It 

might also handle the generation and return of personalised service recommendations, 

ordering services into a ranked list by their overall appropriateness values.

Clearly, a generic skeleton registry thus described could provide a solid technical base
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on which to construct a working recommender, simplifying aspects of the developer’s task. 

However, such a generic mechanism would be unable to provide any specific support as to 

the particular world model content, appropriateness rules and proportional criteria weight

ings which a developer himself would need to define and “plug” into a skeleton registry 

in order to tailor it to a particular deployment scenario. The design and implementation 

of such components could potentially be a very challenging and time-consuming process, 

with much bespoke, intricate code needing to be written. Thus, even with the aid of such a 

supporting generic mechanism, a developer would be likely to face a particularly complex 

task when constructing a working recommending registry that could generate effective 

personalised service recommendations.

5.3 Conclusion

In theory, a recommending registry that adhered to this design might well generate ef

fective personalised service recommendations. In practice, however, the likelihood of this 

occurring is severely reduced. This is because a successful manifestation of the theoret

ical design is dependent on the near-perfect fulfilment of several disparate conditions; a 

situation which cannot be guaranteed. Specifically:

• The registry developer must be adept and aware enough so as to define successfully a 

world model, appropriateness rules and proportional criteria weightings, all together, 

for the particular deployment scenario and service types involved.

• A deployed recommending registry must be constantly monitored and modified so 

as to reflect relevant changes that affect service appropriateness determination, in 

order to avoid a deterioration in recommendation effectiveness.

• World model content obtained from all information sources must consistently and 

accurately reflect the real state of the world ( “Garbage in, garbage out”).

Moreover, the style of this theoretical design means that a supporting generic mechanism 

would be able to do no more than provide basic technical aid in the construction of a 

recommending registry. The developer would still have to confront the potentially complex 

and challenging task of defining all the components necessary for determining service 

appropriateness in the specific scenario.
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In conclusion, although this design for a recommending registry is theoretically feasible, 

it has too many potential drawbacks associated with it to make it entirely satisfactory. The 

complexity inherent in the design’s implementation and deployment, with the consequent 

likelihood of error, would seem to negate any positive aspects of the design itself. In view 

of these points, the theoretical recommending registry design would not seem to merit 

further, more detailed investigation.

5.4 Summary

In this chapter, a theoretical general design for a recommending registry has been pre

sented. This design has been derived primarily from techniques used in the SDM-style 

recommending systems discussed in the last chapter. The component parts of the theoret

ical design, namely a world model, conditional and unconditional service appropriateness 

rules, and proportional criteria weightings, have all been defined and discussed. An ex

planation has then been given of how recommending registries adhering to this theoretical 

design would operate, using clarifying examples.

The design’s suitability has subsequently been assessed, in terms of its ability to gen

erate effective personalised service recommendations and the potential simplification of 

recommending registry construction. The positive aspects of the theoretical design have 

been acknowledged, but three highly problematic features have also been identified and 

discussed. These, together with the complexity inherent in the design’s implementation 

and deployment would seem to diminish the theoretical design’s suitability.

In consequence, the theoretical design cannot be considered suitable as a general design 

for an effective recommending registry, and there is thus no merit in investigating the design 

further.

Given this conclusion, an alternative approach to recommending registry design is 

required. Such an approach is proposed and considered in the next chapter.
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Chapter 6

A N ovel G eneral Approach Based  

on C ollaborative F iltering

A novel general approach to registry-generated personalised service recommen

dation is proposed and defined in this chapter. The potential advantages of this 

new approach are outlined, and the research issues associated with the approach 

are then identified and discussed. Finally, the association of the approach with 

Collaborative Filtering is highlighted.

6.1 A  Novel Approach for a N ovel D esign

Given the perceived unsuitability of the theoretical design as a general design for a rec

ommending registry, how can a better one be developed? Essentially, the approach taken 

by the theoretical design, through the use of a world model, appropriateness rules and 

proportional criteria weightings, is to approximate how an informed human-being might 

himself decide which of the available services matching the required type is most appro

priate1. As an alternative approach, rather than approximate, why not harness the real 

decision-making ability of real people directlyl Why not base recommendations on people’s 

actual service selections?

Although allusion has been made in a few research papers on service discovery [5,44,94] 

to the possible value of past service usage, no-one has yet pursued the notion further.

1See decision theory [99,101] for the design’s correspondence to human decision-making; the combination 

of appropriateness rules and a proportional criteria weighting used to determine service appropriateness is 

essentially equivalent to a weighted multi-attribute utility function.
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In contrast, my own research is focused specifically on the concept of how past service 

selections/usage can be used to determine effective personalised service recommendations 

for people in the present. The concept is developed into a more precise approach to 

registry-generated personalised service recommendation in this chapter. The remainder of 

this thesis is then concerned with how this novel approach was developed into an advanced 

general design for a recommending registry.

6.1.1 The Novel Approach Defined

In any scenario in which services are available, various people are likely to have made use 

of them. W ith every service selection, someone has made a choice, showing a preference 

for one particular service over all others. Yet why did that person select and use that one 

particular service? Presumably, it was because he judged it to be the most appropriate 

service of those available, having taken into account the relevant aspects of his own current 

situation.

If someone has frequently used a particular type of service, then he should be aware of 

the important criteria by which to judge service appropriateness, and of the qualities of 

particular services. He should be aware of important determining factors, such as which 

services had proved reliable and trustworthy in the past, and which services he is precluded 

from using because of physical constraints, organisational culture, rules, regulations, etc. 

Thus, such an experienced individual should make appropriate service selections.

Someone who had not used a particular type of service would initially find it prob

lematic to make an appropriate selection but, over time, would inevitably learn more 

about service appropriateness and the various services available. He would gain experience 

through any initial selections of inappropriate services, and could glean useful information 

by asking others for advice. W ith this acquired knowledge and understanding, such an 

individual would also become able to select appropriate services.

Two assumptions are therefore made about a scenario in which services axe available:

• An individual selected a service in the belief that it was the most appropriate service 

of the required type, given his particular situation.

• A significant proportion of past services chosen were truly appropriate for the se

lecting individuals.

If these two assumptions hold true, why not take advantage of these appropriate service
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selections? If an uninformed consumer in a particular situation makes a request for a 

certain type of service, why not base the recommendation on past service selections made 

by people in a similar situation who had required the same type of service?

More precisely, if the two assumptions hold, I propose that a recommending registry be 

designed to generate personalised service recommendations according to the following gen

eral approach; as in the previous chapter, the abstract model of a recommending registry 

defined in Section 4.4 will serve as a basis:

• Before and during recommending registry deployment:

— All service selections in a scenario are recorded, so that an historical sequence 

of selections is built up over time. Associated with each service selection is 

the type of service, and a number of “situation attributes” . These attributes 

record those aspects of the situation that an individual seems most likely to 

have taken into consideration when deciding upon, and then selecting, the most 

appropriate of the available type-matching services. Clearly, the set of situation 

attributes recorded is specific to the type of service involved. Those aspects of 

a situation that are of relevance in assessing service appropriateness could differ 

significantly from one type of service to another.

• On generating a personalised service recommendation:

1. As required by the abstract model, a requesting consumer submits a service 

request to the registry, stating the required type of service and any specific ser

vice attributes. The registry responds by acquiring the type-specific situation 

attributes that define the requesting consumer’s current situation. It also iden

tifies those available services with the required type by assessing the advertised 

service descriptions.

2. The registry identifies those service selections in the recorded history that were 

recently made in a situation similar to tha t of the requesting consumer, and that 

refer to a service of the required type. Recent service selections are identified 

by filtering out only those that were made within a recent time-window, such 

as the last n days. Situation-similar service selections are then identified by 

comparing each recent service selection’s situation attributes against those of 

the requesting consumer. For brevity, these recent, situation-similar, type- 

matching service selections will be referred to as “relevant” service selections.
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3. The registry uses the relevant service selections to rank the available type- 

matching services by collective perceived appropriateness for the requesting 

consumer’s current situation. By comparing the selections of each service rela

tive to one another, the registry ascertains each service’s ranking in an ordered 

list. If a service has been selected multiple times by multiple individuals, it 

would seem likely that this particular service is collectively considered highly 

appropriate, and should consequently be ranked highly. In contrast, a service 

that has not been selected at all would seem to be considered highly inappro

priate, and should thus be given the lowest ranking possible.

4. The registry returns the ordered list of services to the requesting consumer as 

a personalised service recommendation. As required by the abstract model, the 

recommendation is filterable to show only those services that also match the 

consumer-specified service attributes.

Such a style of recommendation can be intuitively explained to the requesting consumer 

as “individuals who recently required the same type of service as you, and in a similar 

situation, were of the collective opinion that the following highly ranked services were most 

appropriate” .

6.1.2 The Approach in A ction

For clarification, imagine that the recommending registries in the running examples of Alice 

and Bob implement this proposed approach. As will be seen, the situation attributes and 

time-window used to generate a personalised service recommendation obviously depend 

on the particular scenario and service type involved.

The recommending registry of the university department where Alice gives her presen

tation records all service selections made within the department, together with correspond

ing situation attributes. It therefore records the service selection behaviour of academics, 

researchers, postgraduate students, undergraduate students, and visitors. Many of these 

people will be able to select appropriate services, given that a significant proportion of 

them either work in the department, or visit frequently, and use required types of service 

on a regular basis.

Alice requests a printer recommendation from the registry by submitting a service 

request. The registry responds by capturing Alice’s situation in terms of the printer- 

specific situation attributes: location, role and time. It is expected that these aspects of
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a situation are the most likely to be taken into consideration when departmental printer 

appropriateness is assessed (e.g. is the printer physically near to my location? is it 

accessible given my role? would it be busy at this time of day?). The registry also 

identifies all available printers by assessing the advertised service descriptions.

Next, the registry identifies all those printer selections in the recorded history that were 

recently made in a situation similar to that of Alice. More precisely, the registry identifies 

all printer selections that were made in the last x  weeks by various individuals with a 

similar role, at a similar time of day, and in a similar location. The printer selections 

thus identified could include, for example, those of people who had also recently given 

presentations in the departmental meeting room, and those of postgraduate students in 

nearby offices, as such students are also constrained to using publicly-accessible printers.

The registry then assesses these relevant service selections in order to rank the avail

able printers by collective perceived appropriateness for Alice’s situation. The resultant 

ordered list is returned to Alice as a personalised service recommendation. Ideally, truly 

appropriate printers would be highly ranked, because various people in a similar situation 

had selected them in the belief that they were physically near, publicly accessible, had low 

usage at this time of day, and could print documents of good quality, both reliably and 

quickly.

In the case of Bob, the recommending registry to which he subscribes records all 

service selections made within the grid in which it is deployed, together with corresponding 

situation attributes. It therefore records the service selection behaviour of university 

researchers, industry researchers, and anyone else actively making use of grid resources. 

Many of these people will be able to select appropriate services, given that a significant 

proportion of them frequently run computational experiments that require certain types 

of grid service.

Bob requests a DNA sequence-analyser recommendation from the registry by submit

ting a service request. The registry responds by capturing Bob’s situation in terms of 

network location, the analyser-specific situation attribute. It is expected that this aspect 

of a situation is the one most likely to be taken into consideration when analyser appropri

ateness is assessed (e.g. does the analyser have good responsiveness and performance from 

my network location?). The registry also identifies all available analysers by assessing the 

advertised service descriptions.

Next, the registry identifies all those analyser selections in the recorded history that
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were made in the last y weeks at a network location similar to that of Bob. The recent 

analyser selections of other researchers in Bob’s own research group might be identified, 

for example.

The registry then assesses these relevant service selections in order to rank the available 

analysers by collective perceived appropriateness for Bob’s situation. The resultant ordered 

list is returned to Bob as a personalised service recommendation. Ideally, truly appropriate 

analysers would be highly ranked, because various people in a similar situation had selected 

them in the belief that they were inexpensive, responsive, and could process genome data 

quickly, accurately and reliably.

6.1.3 Potential Advantages of the N ew  Approach

My proposed new approach has so far been described at an abstract level only. However, it 

is already evident that a general design for a recommending registry based on this approach 

should have several advantages, particularly over the theoretical design developed in the 

previous chapter, making further development justified. The main advantages axe:

S im plic ity  Firstly, a design based on the proposed approach should not have the com

plexity of the theoretical design, making the implementation and deployment of a rec

ommending registry a simpler proposition. Clearly, a registry developer would need to 

decide upon the situation attributes and time-window of each service type, and how to 

record service selections. However, he would not need to develop the complex world model, 

appropriateness rules and proportional criteria rules of the theoretical design, thus obviat

ing the need to address the associated challenging problems. For example, the developer 

would not need to address the complexities of world modelling, such as how to measure 

or represent a service’s quality or reputation. In terms of registry deployment, the devel

oper would not face the prospect of needing to monitor and modify the model, rules and 

weightings regularly in order to ensure that relevant change was reflected.

In view of the above, a well thought out general design based on the proposed approach 

should allow an associated, supporting generic mechanism to be constructed, which could 

provide a more complete implementation of a recommending registry than that associated 

with the theoretical design (see Section 5.2.2).

A u to m a tic  R eflec tion  of C hange Secondly, a recommending registry designed ac

cording to the proposed approach should reflect change automatically. People should
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naturally factor important change into their decision-making, and since service appro

priateness is determined by people’s recent service choices, generated recommendations 

should also reflect this change.

C o n sis ten tly  E ffective R eco m m en d a tio n s  Thirdly, a design based on the proposed 

approach should enable a recommending registry to generate effective service recommen

dations consistently. W ith the theoretical design, the generation of effective recommen

dations is mainly dependent on the personal ability of the registry developer to define 

successfully the process for determining service appropriateness. In contrast, with this 

new approach, recommendations would be based on the collective decision-making abil

ity of multiple people who had actively selected and used a scenario’s services. Given 

that many of these people would have the ability and personal motivation to select truly 

appropriate services, the resultant recommendations should correspondingly be effective 

on a consistent basis. Interestingly, the process of determining service appropriateness in 

terms of the collective opinion of a group of people shares some similarity with an idea 

that has recently been put forward in the general media. In a recently-published book, 

“The Wisdom of Crowds” [108], Surowiecki draws upon academic research and real-world 

examples to argue that large groups of people are consistently “smarter” than an expert 

in making a correct decision.

H a rd e r  to  In fluence R eco m m en d a tio n s  Fourthly, the proposed approach should 

make it harder for an individual service provider to influence a recommending registry. 

W ith the theoretical design, a provider could easily ensure that his service was highly 

ranked in a recommendation by simply lying about its qualities in the advertised descrip

tion submitted to a registry. In contrast, when service appropriateness, and corresponding 

recommendation ranking, is determined purely by collective service selection behaviour, 

an inaccurate description should have little impact.

The main disadvantage of the proposed new approach would seem to be the general issue of 

privacy, in this case associated with the recording of people’s service selection behaviour 

for the service selection history. Although this issue would need to be considered at a 

later date, it is not of the magnitude of the disadvantages associated with the theoretical 

design of the previous chapter, and as such was not considered a hindrance to further 

investigation of the new approach.
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6.2 From A bstract Approach Towards Advanced Design

6.2.1 Research Issues

In order for the abstract approach to be developed into a general design, the following 

research issues needed to be considered.

R eco rd ing  Service S elections How are service selections and their associated situation 

attributes recorded? A basic approach would be to require each person who made a 

service selection to specify details manually. However, this approach would probably be 

unpopular, as it would require people to expend much time and effort. Submitted data 

might frequently be inaccurate, owing to unintentional human error or intentional lying. A 

more unobtrusive approach would be to record details of service selections automatically, 

as they occurred. This would minimise human involvement, but would obviously require 

some form of underlying distributed mechanism to capture both service selections and 

associated situation attributes.

A cqu iring  a  R eq u es tin g  C o n su m e r’s S itu a tio n  A ttr ib u te s  How are the situation 

attributes that define a requesting consumer’s situation acquired? Like service selection 

recording, the situation attributes could either be specified manually by the consumer, or 

acquired automatically.

C hoosing  S itu a tio n  A ttr ib u te s  How is a decision made as to which set of situation 

attributes is recorded along with a service selection? As was noted earlier, the attributes 

chosen should record those aspects of a situation that are most relevant in the assessment of 

service appropriateness for a particular service type. This is because an individual’s specific 

state in terms of these aspects will greatly affect how he perceives the appropriateness of 

type-matching services, and his consequent service selection. If the correct set of situation 

attributes is recorded, then many of the situation-similar service selections that the registry 

identifies should be appropriate selections for the requesting consumer himself, enabling an 

effective recommendation to be generated. If incorrect situation attributes are recorded, 

then inappropriate service selections will be identified, and an ineffective recommendation 

generated.
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C hoosing  a  L en g th  o f T im e-W indow  How is a decision made as to the length of 

time-window used by a registry to identify the recent relevant service selections? The 

motivation for using time-windows, one for each service type, is to enable a registry to 

respond quickly to any changes which affect service appropriateness. People should factor 

change into their service selections. Thus, if important changes occur which cause people 

to modify their selection behaviour, a shorter time-window should enable change to be 

reflected more rapidly in the generated recommendations. However, the shorter the time- 

window, the smaller the number of service selections on which a recommendation would 

be based. W ith less information, a registry might generate less effective recommendations.

Id en tify in g  S itu a tio n -S im ila r Service Selections How should situation-similarity 

be defined in order to identify relevant service selections? As was noted earlier, the as

sessment of situation-similarity would involve comparing a service selection’s situation 

attributes with those of the requesting consumer. Clearly, if the attributes match exactly, 

the service selection was made in an identical situation, and is therefore relevant. However, 

what of service selections made in “non-identical” situations to the requesting consumer, 

with attributes that do not match exactly? Some of these other situations could be con

sidered similar to the identical consumer’s situation, in terms of similarly perceived service 

appropriateness. Thus, many of the service selections made in these situations should also 

be appropriate selections for the requesting consumer, and would therefore be of relevance 

in generating the recommendation. To enable the identification of these other relevant 

service selections, how could such similar, but non-identical, situations be determined?

G e n e ra tin g  a R eco m m en d a tio n  How is a recommendation generated? Using the 

relevant service selections identified, the registry must rank the available type-matching 

services by collective perceived appropriateness. Various factors might be considered in 

deducing whether one service was perceived as being more appropriate than another: the 

number of individuals who had selected each service, the number of times each service 

was selected, or the order in which services were selected. How might a service provider 

attem pt to influence a recommending registry in order to achieve a high recommendation 

ranking for his service? How might such devious attem pts be combated?

E v a lu a tin g  R eco m m en d a tio n  E ffectiveness Would a recommending registry that 

adhered to the developed general design generate effective personalised service recommen
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dations? Solutions might be found to the research issues discussed above, enabling the 

development of a registry design that, in technical terms, comprehensively defines the 

process of recommendation generation. However, the design would fulfil the research aim 

of Section 4.4 only if an adhering registry could generate effective recommendations: i.e. 

the services ranked highly in a recommendation were truly appropriate choices for the 

requesting consumer. How can such recommendation effectiveness be evaluated?

6.2.2 Research Issues Addressed

I investigated the research issues detailed above within the context of a real-world scenario, 

and ultimately developed the abstract proposed new approach into a advanced general de

sign for a recommending registry. Prom a research perspective, the most important issues 

were those concerned with how a registry generates recommendations from a service selec

tion history, and whether these recommendations are effective. These issues encapsulate 

the core idea of the new approach and needed to be addressed successfully in order for 

the viability and validity of the basic concept to be demonstrated. I therefore concen

trated primarily on developing general solutions for the last five research issues, which are 

concerned exclusively with the generation or evaluation of recommendations.

Less detailed attention was given to the first two research issues, which are concerned 

with how a service selection history is recorded and how a requesting consumer’s situation 

attributes are acquired. While these aspects would be important if a registry were to be 

deployed in a particular scenario, they were of minor research importance in an exploratory 

investigation.

In terms of this thesis, therefore, the seven research issues are addressed as follows.

C h a p te r  7: An evaluation scheme is developed for assessing the effectiveness of recom

mendations generated by a recommending registry. This scheme is of use in investigating 

possible solutions to many of the other research issues.

C h a p te r  8: Basic solutions are given to all six remaining research issues, resulting in a

basic general design for a recommending registry. The viability and validity of this basic

design is assessed in Chapter 9.

C h a p te r  10: Further investigation is made into the issue of generating a recommenda

tion from relevant service selections.
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C h a p te r  11: Further investigation is made into the issue of defining service selection

situation-similarity.

C h a p te r  12: Further investigation is made into the two issues of choosing situation

attributes and time-windows.

C h a p te r  13: An advanced general design for a recommending registry is defined.

6.3 A ssociation w ith Collaborative Filtering

My approach to personalised service recommendation, based on the idea of making use of 

the decision-making ability of real people, can be seen as a form of automated Collaborative 

Filtering (CF). CF has been described by two of its early researchers, Riedl and Konstan, 

as “any mechanism whereby members of a community collaborate to identify what is good 

and what is bad” [100].

In terms of existing Computing Science research, various computing systems have been 

developed which use a form of automated CF to recommend appropriate items within 

particular domains, such as films [55], books [3], newsgroup articles [68] and jokes [46]. 

Essentially, these “recommender systems” collect individuals’ opinions of domain items, 

and then collate them to generate item recommendations for others. However, with one 

limited exception, no research has been undertaken into the use of automated CF to 

recommend services. Moreover, the CF approaches used by most developed recommender 

systems are completely unsuitable for the style of operation required by a recommending 

registry, and are very different to my proposed approach.

Most CF recommender systems require a user to express opinions of items in the do

main from which a recommendation will be made, typically as explicitly-specified numeric 

ratings. The system then identifies like-minded individuals, who have similarly rated the 

considered items. It recommends to the user those items which he has not personally 

rated, but which the like-minded individuals have collectively rated highly. A user is thus 

likely to obtain a recommendation of appropriate items that he is unaware of, once he has 

rated several domain items of which he has an opinion. This form of CF does appear to 

work effectively in taste-based domains such as books and films.

However, this style of CF approach would clearly be unsuitable for a recommending 

registry generating personalised service recommendations. An uninformed consumer is
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likely to request a recommendation precisely because he has no opinion of any of the sce

nario services available, either through lack of awareness or experience. A recommending 

registry must therefore be able to recommend appropriate services to the requesting con

sumer immediately, without his needing to express any form of opinion about the services 

available, or attempting to develop one by expending time and effort using several inap

propriate services. My proposed new approach to personalised service recommendation 

meets this requirement.

A different CF approach, taken by a few researchers, is to focus on users’ sequences of 

activity. W ith Chalmer’s Path Model [14,15], for example, a user’s sequence of activity, or 

“path” , within a domain such as web-pages is recorded. It is assumed that the sequence 

in which items are chosen is of importance, with each item being related in some way to 

the items chosen before and after. To generate a recommendation, a user’s recent path 

segment is compared against the activity paths of others, to identify segments where similar 

behaviour has occurred. Items which have occurred in others’ similar path segments, 

but do not occur in the user’s own segment, are then recommended. Chalmer’s Recer 

system [14,15] uses the Path Model to generate web-page recommendations based on a 

person’s browsing activity. The RECO system [91] also examines a person’s sequence of 

domain activity and those of others, in order to suggest what the person might like to use 

next.

In a way, this style of CF approach is somewhat similar to my proposed approach, in 

that peoples’ actual behaviour in terms of item choices is used to deduce which items to 

recommend. However, as with the main CF approach discussed initially, this approach 

would also be unsuitable for a service recommending registry. A service recommendation 

could not be generated immediately, but only after the requesting consumer had built up 

an activity sequence by selecting and using various services. Moreover, if the consumer 

had made inappropriate choices, then further inappropriate services would probably be 

recommended to him.

A partial CF approach is used in the PILGRIM mobile recommendation system [11,12], 

the one recommender system which does generate a form of personalised service recommen

dation. PILGRIM is designed to operate in an ubicomp environment, and recommends an 

ordered list of services that are associated with locations physically near to the requesting 

user. In terms of CF, the system deduces the locations of services by assessing service 

usage history. Essentially, the system records the particular latitude /  longitude location
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of anyone who uses a service. For each service, PILGRIM “draws” an ellipsoid through 

the locations at which the service was used, and then defines the service location as being 

at the centre of this ellipsoid’s mass. The physical distance between a requesting user 

and the service is calculated in terms of a distance metric based on the ellipsoid, using 

the user’s submitted location and the service’s deduced location. However, apart from the 

fact that service locations and distance metrics are deduced through a form of CF, rather 

than being explicitly specified by the providers, PILGRIM is conceptually no different to 

the Websigns system [96] discussed earlier. In generating personalised service recommen

dations, both determine service appropriateness only in terms of the single criterion of 

physical location.

Despite the obvious differences between my proposed approach to personalised service 

recommendation and the Collaborative Filtering approaches to item recommendation de

scribed above, the underlying idea of using people’s past behaviour would seem to imply 

commonality. In view of this, I will refer to my proposed approach to personalised ser

vice recommendation as a CF-based approach, and the subsequent general design for a 

recommending registry as a CF-based design.

6.4 Sum mary

In this chapter, my novel approach to registry-generated personalised service recommenda

tion has been proposed and defined. This approach is based on the concept of harnessing 

the real decision-making ability of real people directly, through analysis of their past ser

vice selections. The approach has been illustrated through the running examples of Alice 

and Bob in their respective scenarios.

Development of the new approach into a general design for a recommending registry 

has been justified through the enumeration of its potential advantages, and the research 

issues which need to be addressed in such development have subsequently been defined 

and discussed. Finally, the association of my approach with Collaborative Filtering (CF) 

has been highlighted, and its differences with existing CF approaches noted.

One of the research issues identified, that of evaluating recommending registry effec

tiveness, is addressed in the next chapter.
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Chapter 7

Evaluating R ecom m ending  

R egistry  Effectiveness

In this chapter, my evaluation scheme for assessing the effectiveness of a rec

ommending registry that adheres to the CF-based design is motivated, contex- 

tualised and defined.

7.1 The Im portance of R ecom m endation Effectiveness

The basic aim in providing registry-generated personalised service recommendations is 

to ease the burden of service selection for uninformed consumers. The recommending 

registry itself would undertake the process of identifying available type-matching services 

and assessing their appropriateness, and the resultant generated recommendations should 

ideally rank truly appropriate services highly. A recommendation will be effective if a 

consumer is indeed able to select an ideal service with minimum time and effort, from 

the top end of the ordered list. The effectiveness of a recommending registry can thus be 

determined through its ability to generate effective recommendations. How to assess such 

effectiveness is therefore of the utmost research importance.

In view of this, I devised an original scheme for evaluating the effectiveness of a recom

mending registry which conforms to my CF-based approach. The evaluation scheme was 

used to assess the CF-based design in all stages of its development in this research, and 

could be used in the assessment of any CF-based design adhering recommending registry 

in any deployment scenario.
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7.2 The Inapplicability of Existing Evaluation Schemes

Although some of the previously discussed systems that generate forms of service recom

mendation have been evaluated in various ways, none of the schemes used are suitable for 

assessing the effectiveness of a design-adhering recommending registry. In certain cases, 

such as INS [1] and Context Attributes [72], only the system’s technical performance has 

been evaluated, with the effectiveness of generated recommendations not being assessed 

at all.

In contrast, both the Personal Router [73] and PILGRIM [12] systems have been eval

uated in terms of whether their generated recommendations would have enabled a user to 

find an appropriate service. For example, the PILGRIM system was evaluated through a 

simulation, with recommendations being generated for “users” at random locations in an 

imaginary area, which had been seeded with imaginary past service uses. Each recommen

dation was evaluated in terms of its ranking of the physically nearest service, which was 

considered most appropriate, and the results were aggregated to provide an overall assess

ment of system effectiveness from the user’s perspective. Clearly, this evaluation scheme 

would seem to fit well with the concept of recommending registry effectiveness. However, 

the scheme obviously cannot be used to evaluate a design-adhering recommending registry, 

being specifically designed to evaluate PILGRIM, or a similar style of recommender system 

that determines service appropriateness in terms of physical location. A design-adhering 

registry would operate in a completely different way, and the appropriateness of recom

mended services would depend on the particular deployment scenario and service type 

involved. The Personal Router evaluation scheme is also unsuitable for similar reasons.

In addition, the evaluation schemes used within the general area of CF are of no 

relevance. Such specialised schemes, used to evaluate item recommender effectiveness, are 

not suitable for evaluating a recommending registry which operates according to a CF 

approach different to the existing ones.

7.3 Inspiration from Inform ation Retrieval

7.3.1 General Lessons

If none of the evaluation schemes for the previously discussed systems are applicable, can 

inspiration be found in another area of Computing Science research? The area that I iden

tified as being of most relevance is that of Information Retrieval (IR) [115]. I realised that
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a proposed recommending registry and an IR system have distinct similarities: the aim 

of a proposed recommending registry is to recommend appropriate services available in a 

scenario to a user who makes a service request, whilst an IR system aims to recommend 

relevant documents contained in a document collection to a user who makes an informa

tion query. Like a personalised service recommendation, the document recommendation 

returned to a user will generally be in the form of an ordered list, with documents being 

ranked by perceived relevance.

Researchers in IR also have a perception of IR system effectiveness that is similar to my 

perception of recommending registry effectiveness. Consequently, IR evaluation schemes 

provide a useful indication of how registry effectiveness could itself be assessed. An IR sys

tem is considered effective if it generates effective document recommendations, which rank 

truly relevant documents highly. Thus, the overall effectiveness of an IR system operating 

over a particular document collection is generally determined by assessing the effective

ness of document recommendations generated in response to representative information 

queries. A similar approach could be taken when assessing a design-adhering recommend

ing registry deployed in a particular scenario. Overall effectiveness could be determined 

by assessing the service recommendations generated in response to representative service 

requests made in different situations.

Many IR evaluation schemes are also designed to be generally applicable, enabling 

them to be used in the assessment of any IR system, regardless of system implementation 

or document collection involved. As such, the key assumption made by these schemes in 

evaluating IR system effectiveness is that a generated document recommendation takes 

the form of an ordered list. The scheme used to evaluate a design-adhering recommending 

registry should also operate in a similar way. Clearly, an adhering registry would behave 

according to the general CF-based design, but no other assumptions could be made about 

the particular deployment scenario or the service types involved. Thus, the evaluation 

scheme must also determine registry effectiveness on the single assumption that a generated 

service recommendation takes the form of an ordered list, as specified in the design.

7.3.2 C ooper’s Perspective

In terms of specific IR evaluation schemes, the commonly used Precision-Recall method 

[115] is not suitable for use in the evaluation of a design-adhering recommending registry 

as it is too focused on document retrieval. However, after investigation, I discovered a
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lesser known scheme developed by William S. Cooper [24] in 1968, and this is relevant.

Cooper [24] stated that “the primary function of a retrieval system is conceived to be 

that of saving its users, to as great an extent as is possible, the labor of perusing and 

discarding irrelevant documents in their search for relevant ones” . He assumed that, when 

faced with an information requirement, a user would search through a document collection 

one element at a time, until he either found enough relevant documents that satisfied his 

requirement, or gave up. Thus, Cooper considered that the purpose of an IR system was 

to “optimise” the user’s search order, through the use of a document recommendation. 

More precisely, when a user submitted an information query, the IR system would return 

the collection documents in the order in which it considered the user should undertake his 

search, so as to satisfy his information requirement with the minimum time and effort. 

Following the order suggested by the generated recommendation, the user would first 

search the documents with the highest rank, then those with the next highest, and so 

forth. The smaller the number of irrelevant documents that the user needed to peruse 

and discard in his search for relevant ones, the less time and effort required, and the more 

effective the recommendation.

Based on this notion of recommendation effectiveness, Cooper devised an evaluation 

scheme for assessing the effectiveness of an IR system. At its core was the notion of 

the “Expected Search Length” (ESL) of a recommendation. This value referred to the 

number of irrelevant documents that a user would need to assess and discard in searching 

for a required number of relevant documents, if he followed the recommended search 

order. The smaller the Expected Search Length, the more effective the recommendation. 

Thus, to determine the overall effectiveness of an IR system operating over a particular 

document collection, the ESLs of recommendations generated in response to representative 

information queries were calculated, and the results aggregated.

The function of a recommending registry is similar to that of an IR system, as perceived 

by Cooper. To paraphrase Cooper, the primary function of a recommending registry is 

conceived to be that o f saving its users, to as great an extent as is possible, the labour 

of perusing and discarding inappropriate services in their search for an appropriate one. 

When an uninformed consumer needs a service of a particular type, he submits a service 

request to the recommending registry. The registry responds by first identifying those type- 

matching services available in the scenario, and then returns them as an ordered list, ranked 

by perceived appropriateness. Essentially, through the use of this personalised service
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recommendation, a recommending registry is suggesting the order in which it considers 

the consumer should search through the available type-matching services, so as to find 

an appropriate service with the minimum time and effort. The uninformed consumer 

could follow this suggested search order, assessing the services with the highest rank, then 

those with the next highest, until he either found an appropriate service, or gave up. The 

smaller the number of inappropriate services that the consumer needed to assess in his 

search for an appropriate one, the less time and effort required, and the more effective the 

recommendation. The most effective recommendation would therefore be one in which 

the highest-ranked, and first assessed, service was an appropriate choice for the requesting 

consumer.

If the notion of service recommendation effectiveness can be seen as similar to Cooper’s 

notion of document recommendation effectiveness, it follows that Cooper’s style of evalua

tion scheme is likely to be applicable for the assessment of a design-adhering recommending 

registry. A service recommendation should be assessed in terms of how much of the or

dered service list a consumer needs to consider before he finds an appropriate service. To 

determine the overall effectiveness of a recommending registry deployed in a particular 

scenario, two steps need to be taken. Firstly, recommendations generated in response to 

representative service requests made in different situations need to be assessed as outlined 

above. Secondly, the results of such an assessment need to be aggregated.

7.4 The Evaluation Scheme

The evaluation scheme I devised to assess the effectiveness of a design-adhering recom

mending registry is defined below. The scheme is a more comprehensive version of the 

approach briefly outlined in the paragraph above, at the end of Section 7.3.2. As such, it 

takes its conceptual inspiration from Cooper’s evaluation scheme for assessing IR system 

effectiveness, but has been designed from first principles so as to take into account all the 

specific requirements associated with the assessment of recommending registry effective

ness.
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7.4.1 W hat are Representative Service R equests and Appropriate Ser

vices?

If a design-adhering recommending registry deployed in a particular scenario is to be 

evaluated according to the approach briefly outlined above, two basic issues must first 

be addressed. Firstly, what representative service requests are used, and how axe they 

chosen? The set of service requests used is very important, as registry effectiveness will be 

evaluated in terms of the effectiveness of the service recommendations that are generated 

in response. Secondly, for a representative service request, which of the available type- 

matching services are appropriate choices, and how are they identified? Clearly, only if 

appropriate choices are known can the corresponding recommendation be assessed in terms 

of how much of the ordered list needs to be considered before an appropriate service is 

found.

Similar issues have been faced in evaluating the effectiveness of IR systems, in terms 

of choosing representative information queries and identifying the associated relevant doc

uments. In certain cases, the evaluators have themselves defined queries that they con

sidered a typical user would be likely to make [35]. In others, a representative selection 

of queries has been identified by mining the recorded log of those submitted to a simi

lar IR system in the past [116]. For each of the queries chosen, human “assessors” have 

then manually searched through the document collection over which the evaluated IR 

system was operating, marking those documents which they considered relevant. If the 

system was operating over a document collection concerned with a specialised domain of 

knowledge, such as medicine or law, then domain experts might be used to identify the 

relevant documents for each query. W ith these representative queries and associated rel

evant documents, it has then been possible to assess IR system effectiveness using one of 

the IR evaluation schemes. It should be noted that Cooper’s scheme does not specify how 

such queries and associated documents should be identified, being purely concerned with 

assessing document recommendation effectiveness.

A design-adhering recommending registry deployed in a particular scenario would al

ready have access to a recorded log containing potential representative service requests 

with associated appropriate services: the service selection history. A history entry records 

a past service selection made, together with the service type, and attributes describing 

aspects of the selecting individual’s situation. Theoretically, rather than the selecting in

dividual, an uninformed consumer could have been in the same situation at the same point
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in time, and required the same type of service. He could have submitted a request to the 

recommending registry for the entry-recorded type of service, specifying his situation as 

the same set of entry-recorded situation attributes. For evaluation purposes, therefore, a 

history entry can be used as the basis for a representative service request.

If the service selection recorded in a history entry was made by a knowledgeable and 

experienced individual, the selected service itself should have been appropriate for a re

questing uninformed consumer in the same situation. Thus, such a history entry will 

contain all the information required both to derive a representative service request, and to 

evaluate the effectiveness of the recommendation generated in response. A history entry 

of this type will be referred to as an “experienced service selection entry” (ESSE).

7.4.2 The Sequence of the Evaluation Scheme

The evaluation scheme I devised for assessing a design-adhering recommending registry 

is based on ESSEs. The use of ESSEs ensures that a  registry is evaluated in terms of 

responses to service requests that would be typical within the deployment scenario. A 

registry is assessed according to the following sequence of steps:

1. ESSEs axe identified in the service selection history.

2. Recommendations are generated for every ESSE-derived service request.

3. Each recommendation is assessed against the corresponding ESSE-recorded appro

priate service actually selected by the experienced individual. These results are then 

aggregated to provide an overall assessment of recommending registry effectiveness.

The three steps are further detailed below.

1. ESSE Identification:

Firstly, the assumption is made that the service selection history used by the registry hats 

been operating for some time, recording all service selections made within the deployment 

scenario. Next, ESSEs are identified by assessing all those history entries that refer to 

service selections made within an earlier segment of time. For example, if the day of 

evaluation was 15th July 2004, all entries that occurred between 14th June 2004 and 

14th July 2004 might be assessed. To determine whether an entry is an ESSE, the prior 

experience of the selecting individual is considered. The individual should have been
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experienced enough to choose an appropriate service if he had selected and used that 

type of service before, on multiple recent occasions. More precisely, if the individual 

is recorded in the history as having selected and used that type of service at least m 

times in the n  days before the date-time of the considered service selection, then he is 

considered experienced, and the history entry an ESSE. For the particular scenario and 

service type involved, the evaluator needs to choose values of m  and n  that do indeed lead 

to the identification of history entries which record appropriate service selections made by 

experienced individuals.

2. Recommendation Generation:

Next, for each past ESSE identified, the recommending registry is used to generate a 

personalised service recommendation in response to the derived service request. That is, 

a recommendation is generated as if an uninformed consumer at that point in time had 

been in the recorded situation and required the recorded type of service. This requires 

two constraints to be placed on the usage of the service selection history in generating the 

recommendat ion.

Firstly, only history from before the date-time of the ESSE service selection can be 

taken into consideration. If a recommendation is being generated as if an uninformed 

consumer at that point in time had made a service request, then all service selections 

recorded after that point would be in the future, and would not have happened yet. For 

example, if a service request was “made” on the 16th June 2004 at 14:32:05, no service 

selections after that point could be considered, even though the history recorded activity 

up to the day of evaluation on the 15th July 2004.

Secondly, all service selections made by the experienced individual responsible for the 

ESSE service selection must not be taken into consideration. The experienced individual 

is being used by the evaluation scheme as an external arbiter, who specifies which service is 

appropriate for a corresponding service request made by an uninformed consumer at that 

point in time, in that situation. As such, consideration of his past service selections would 

not enable a stringent enough evaluation to be undertaken, as it might provide a good indi

cation of what he considered appropriate, unfairly skewing the generated recommendation 

towards his opinion.
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3. R eco m m en d a tio n  A ssessm ent an d  R esu lts  A ggregation :

Once a recommendation has been generated for every ESSE-derived service request, each 

is evaluated against the corresponding appropriate service that was actually chosen by the 

experienced selecting individual. It is assumed that an uninformed consumer would follow 

the search order suggested by the recommendation, looking for an appropriate service. It is 

also assumed that the consumer would find the experienced individual’s choice appropriate. 

Thus, evaluation of recommendation effectiveness is based on the assumption that, in the 

worst case, the consumer would follow the search order, assessing and discarding every 

service as inappropriate, until he encountered the experienced individual’s appropriate 

choice. He would then terminate his search, having satisfied his requirement. Clearly, the 

consumer might well have found an appropriate service earlier in the search order, but 

the only actual evidence of service appropriateness is the experienced individual’s single 

service selection.

Finally, the individual recommendation effectiveness evaluations are aggregated, to 

provide an overall assessment of recommending registry effectiveness. A particular method 

of recommendation evaluation and results aggregation is referred to as an “effectiveness 

measure” . The three interrelated effectiveness measures that I devised for this evaluation 

scheme - Recommendation Success Probability (RSP), Improvement over Chance (IOC), 

and Normalised Cumulative IOC (NCIOC) - are detailed in Sections 7.4.3, 7.4.4 and 7.4.5 

respectively.

A n  E xam ple  o f th e  E v a lu atio n  Schem e in U se

Imagine that the grid recommending registry used by Bob is being evaluated on 15th July 

2004. The evaluator decides to assess the registry in terms of ESSEs identified between 

14th June 2004 00:00:00 and 14th July 2004 23:59:59 (the night before evaluation day). 

The fictitious service selection history used by the fictitious grid registry is illustrated at 

the top of Figure 7.1, as a time-ordered sequence of history entries. The dotted rectangle 

encompasses the history time-segment from which ESSEs - shown as black vertical bars - 

are identified. Note that some of the history entries within the time-segment - shown as 

grey vertical bars - are not ESSEs.

Details of one of the ESSEs identified - shown as a larger black vertical bar - are 

given below the history illustration. This history entry records a service selection made 

at 16/06/2004 14:32:05, when User A29 chose DNA sequence analyser B from a network
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01/01/2004 
00:00:00 

History start 
I

14/06/2004
00 :00:00

I

Time
16/06/2004

14:32:05

I

14/07/2004 15/07/2004 
23:59:59 14:32:40

History now 
Il

Last 28 days

ESSE:
Service selection: Seq_Analyser B selected by User A29 at 16/06/2004 14:32:05 
Situation attributes: (NetworkLocation = 130.209.246 IP subnet)
Number of times Seq_Analyser type used by User A29 in last 28 days: 6 (experienced)

Derived Service Request:
Service type requested: Seq_Analyser
Situation attributes: (NetworkLocation = 130.209.246 IP subnet) 

Evaluation Specific Details:
Evaluation service request date-time: 16/06/2004 14:32:05 
Selecting individual ignored: User A29

Personalised Service Recommendation (Seq_Analyser):
1 .G , D
2. H,
3. B, A
4. E
5. W

Figure 7.1: An Example of the ESSE-based Evaluation Scheme
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location in the 130.209.246 IP subnet. The entry is identified as an ESSE, as User A29 had 

selected and used analyser services 6 times in the last 28 days (show as white triangles). 

This makes him experienced in the eyes of the evaluator, who has defined the minimal 

experience level for the Seq_Analyser service type to be at least 5 uses (m) in the last 28 

days (n).

Once all the ESSEs are identified, the grid recommending registry is used to generate 

a personalised service recommendation for each of the derived service requests. In the 

case of the detailed ESSE, a request for a service of type Seq_Analyser is submitted to the 

registry, with the requesting consumer’s situation being specified as the 130.209.246 IP 

subnet network location. The registry generates the recommendation through assessment 

of the service selection history, ignoring service selections made by User A29, and those 

which occurred on or after 16/06/2004 14:32:05.

Finally, each generated service recommendation is evaluated against the corresponding 

appropriate service that was actually chosen by the experienced selecting individual, as 

recorded in each ESSE. In the case of the detailed ESSE, User A29 chose Seq_Analyser 

B, which is ranked in third place in the generated recommendation. The results are then 

aggregated, to provide an overall assessment of grid recommending registry effectiveness. 

The three interrelated effectiveness measures of RSP, IOC and NCIOC detailed below 

would be used.

7.4.3 The Effectiveness Measure of Recom m endation Success Probabil

ity

Searching Through a Recommendation

As was stated earlier, a personalised service recommendation generated by a recommending 

registry will take the form of an ordered list, with services being ranked by perceived 

appropriateness for the requesting consumer (from most to least). An example is shown 

at the bottom of Figure 7.1. A recommendation could take the form of a partial order: 

that is, the ordered list could contain ties, with multiple services sharing the same rank. 

This situation will naturally occur if the registry perceives certain services to have the 

same level of appropriateness. The example recommendation contains two such instances, 

with services G and D tying for the first rank, and B and A for the third rank. If a 

generated recommendation contains no ties, with every service distinctly ranked one after 

the other, it is a total order (i.e. a permutation).
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As was also stated earlier, it is assumed that a consumer would follow the search order 

suggested by a recommendation when looking for an appropriate service. The consumer 

would consider each service in turn, first assessing those with the highest rank, then those 

with the next highest, until he either found an appropriate service, or gave up. If multiple 

services tie for the same rank, it is assumed that they are assessed in some arbitrary order. 

In the Figure 7.1 recommendation, for example, the consumer would either consider D 

before G, or vice versa. Thus, the process of consumer searching involves a total order 

being imposed on a recommendation, with any ties being broken through arbitrary ordering 

of the services involved.

Original
Recommendation

Possible Search Orders

1. G, D G D G D
2. H, D G D G
3. a , A H H H H
4. E A A B B
5. W B B A A

E E E E
W W W W

Figure 7.2: Possible Search Orders followed by the Consumer in the Figure 7.1 Example

In the case of a partially-ordered recommendation, the particular total order followed 

by a consumer will determine the specific number of services that he assesses in his search 

for an appropriate one. Consider Figure 7.2. This shows the four different total orders in 

which a consumer could search through the Figure 7.1 example recommendation, which was 

generated in response to an ESSE-derived service request. In the worst case, it is assumed 

that the consumer follows his particular search order, assessing and discarding every service 

as inappropriate, but stopping when he finds B, the ESSE-recorded appropriate choice. 

In two of the orders, when A is searched before B, the consumer assesses 5 services before 

stopping. In the other two, when B is searched before A, only 4 are assessed.

In terms of evaluating recommendation effectiveness, a measure could be developed 

which considered all the different total orders in which a consumer could search through 

a recommendation, calculating the average number of services that he would be expected
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to assess before the ESSE-recorded appropriate choice was found. This would essentially 

be equivalent to Cooper’s concept of Expected Search Length (ESL), but adapted for 

a service recommendation. In the case of the Figure 7.2 example recommendation, the 

ESL would be 4.5. If ESLs were calculated for all ESSE recommendations on which an 

evaluation was based, the different values could then be averaged to provide an overall 

figure representing recommending registry effectiveness. The smaller the overall ESL, 

the less time and effort required by the consumer to find an appropriate service using a 

registry-generated recommendation, and the more effective the registry.

The Concept of Tolerance Levels

Although this measure of overall Expected Search Length would reflect recommending reg

istry effectiveness, it is questionable how meaningful the figure would be when considered 

from the perspective of actual recommendation usage. A consumer is only likely to follow 

a recommendation search order so far, before giving up through impatience or frustration 

if he fails to find an appropriate service. More precisely, if the consumer assesses the 

maximum number of services that he is willing to consider (defined in this research as his 

tolerance level) without success, he is likely to consider the recommendation a failure, and 

will try  other ways of finding a service. It would therefore seem sensible to consider the ef

fectiveness of a recommending registry from the perspective of the different tolerance levels 

that consumers might have. That is, if a consumer has a particular tolerance level, what 

would be the likelihood of his finding an appropriate service using a registry-generated 

recommendation?

Initially, it might seem that the single figure of overall ESL would enable tolerance 

levels to be considered. A consumer would appear not to have found an appropriate 

service if his tolerance level was less than the overall ESL, and to have found one if his 

tolerance level was more. However, the situation is not as straightforward as this, as the 

overall ESL would be the average of the individual ESLs for all ESSE recommendations. 

As such, the figure would not reflect how a consumer with a particular tolerance level 

would have fared in terms of the actual recommendations.

To clarify, imagine a simple evaluation in which a recommending registry has been 

assessed in terms of six totally-ordered ESSE recommendations, and has an overall ESL 

of 4. How would a consumer with a tolerance level of 3 have fared? Based on the overall 

ESL value alone, it might appear that he would never have found an appropriate service,
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given that 3 < 4. However, if the individual recommendation ESLs were <2,2,2,2,8,8> 

then in 66.67% of cases, the consumer would actually have found one, and after assessing 

only 2 services! Clearly, the measure of overall Expected Search Length is inadequate as 

a means of assessing recommending registry effectiveness in the precise manner described.

Recommendation Success Probability Defined

In view of the above, the actual evaluation scheme devised does not make use of the 

effectiveness measure of Expected Search Length at all. Rather, the effectiveness of each 

ESSE recommendation is first evaluated in terms of the probability that a consumer with 

a particular tolerance level would have successfully found the ESSE-recorded appropriate 

service choice. This probability is referred to as Recommendation Success Probability 

(RSP), and is calculated according to the function described below.

When calculating the RSP of recommendation r for tolerance level t, where t > 0, the 

following definitions are made:

• a is the rank of recommendation r  occupied by the appropriate service.

• |a| is the number of services in rank a.

• s is the number of services in the ranks above a.

Then:

R S P (r , t ) =  <

0 when t < =  s

^  when s < t < s + |a|, and |a| >  1 (7-1)

1 when t >= s +  lal

To understand the RSP function, it is necessary to consider the search orders that a 

consumer could follow through a recommendation. In the case of a totally-ordered rec

ommendation with no ties, this is relatively simple, as only the single, explicitly specified 

search order could be followed. Clearly, a consumer with a tolerance level t <= s would 

have no chance of finding the appropriate service, as he would not encounter rank a; this 

is the first case in the function definition. If, however, his tolerance level is greater than s, 

then he would always find the appropriate service, as he would encounter and assess the 

single service in rank a. That is, R S P (r ,t) =  1, where t > s. This is simply a rewriting 

of the third case in the function definition; since |a| must be 1 in a total order, t > s is 

equivalent to t >— s +  |a|. Correspondingly, the second case is not of relevance.
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For a partially-ordered recommendation, the explanation is slightly more complex, as 

a consumer could potentially follow any of a number of total search orders, depending on 

how ties were broken. However, as in the case of a totally-ordered recommendation, the 

first and third cases in the function definition are fairly self-explanatory. Regardless of the 

search order followed, a consumer with a tolerance level t <= s would obviously have no 

chance of finding an appropriate service, as he would not encounter rank a; this is the first 

function case. Consider Figure 7.2 again, in which a =  3rd rank, [a| =  2 (A and B), and 

s = 3 (G, D and H). If t < =  3, then the 3rd rank occupied by appropriate service B would 

never be encountered, for any of the four search orders. In terms of the third function 

case, a consumer with a tolerance level t >= s +  |a| would always find the appropriate 

service regardless of the search order followed, as he would assess every service in rank

a. The appropriate service would be one of these. For example, for any of the Figure 7.2 

search orders, B would always be found for a tolerance level t >— 5.

In the case of a partially-ordered recommendation in which a is a tied rank, the different 

potential search orders do have an impact on the calculation of RSP for a tolerance level 

t, such that s < t < s 4- |a|; this is the second case in the function definition. For such a 

value of t, a consumer would assess some, but not all, of the services with rank a. Thus, 

depending on the order in which the rank services were assessed, the appropriate service 

might or might not be found. For example, in the Figure 7.2 recommendation, if t =  4 

(3 < t < 3 +  2), then in two of the search orders (when B is assessed before A), B would 

be found; in the other two (when A is assessed before B), B would not be found.

To calculate the probability that the appropriate service would be found with such a 

tolerance level, it is therefore necessary to calculate the probability that the appropriate 

service would be one of the t — s services of rank a assessed by the consumer, regardless of 

the search order followed. W ith any search order, it is assumed that the services of rank 

a have been arbitrarily ordered to break the tie. Imagine that this rank ordering is rep

resented as a service sequence of length |a|, as [service-one, service-two, . . . ,  service-\a\]. 

Assuming that the consumer assesses the rank services in the sequence specified, then RSP 

is the probability that the appropriate service would be in one of the first t — s positions in 

the sequence. Since the sequence is ordered arbitrarily, the probability of the appropriate 

service being in a particular position is . The probability of its being in one of the first 

t — s positions is therefore as stated in the second case of the RSP function. As a 

clarifying example, let us calculate the RSP of the Figure 7.2 recommendation r, for t =  4.
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Reiterating, a =  3rd rank, |a| =  2, and s =  3. Thus:

R SP (r, 4) =  1 — ? = 0 .5 (7.2)

This value can be intuitively understood by again considering the four possible search 

orders illustrated in Figure 7.2: in half of them, a consumer with a tolerance level of 4 

would find B.

In terms of the devised evaluation scheme, the effectiveness of a design-adhering recom

mending registry is based on the measure of overall Recommendation Success Probability 

for various tolerance levels. More precisely, the ESSE recommendations are first assessed, 

and the length of the longest recommendation identified. For each ESSE recommendation, 

the RSP is calculated for every tolerance level between 1 and this longest recommendation 

length. There is no reason to consider levels beyond this length as, by then, an appro

priate service must have been found in all recommendations, since a consumer would 

have searched through all the available type-matching services. The overall RSP for each 

considered tolerance level is then calculated by averaging the corresponding RSPs of the 

individual recommendations. For a particular tolerance level t, where t >  0, and set of 

ESSE recommendations R:

r t n

The larger the overall RSP for a considered tolerance level, the more effective the recom

mending registry.

The resulting overall RSP values can then be presented as a graph, by plotting prob-

RSP for a ficticious design-adhering recommending registry. In both cases, overall RSP 

has been presented as a percentage. Overall RSP is simply referred to as “RSP” since, 

when registry evaluation results are being presented, it is implicit that the results refer 

to the registry, not to a single recommendation. The graph on the left plots overall RSP 

from 1 to the largest recommendation length, 68 in this case. Note that the larger the 

tolerance level, the larger the overall RSP. Thus, the greater the tolerance of a consumer, 

the greater the likelihood that an appropriate service would be found. As would be ex

pected, overall RSP is 100% at the largest considered tolerance level. The graph on the 

right plots a “zoomed in” version of the same results, showing the overall RSP of tolerance

Over all-R SP (R , t ) (7.3)

ability against tolerance level. Figure 7.3 shows two example graphs that plot the overall
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levels between 1 and 10. An evaluator should be most interested in the effectiveness of a 

recommending registry at these early tolerance levels, as it seems unlikely th a t a consumer 

would search very far. Overview RSP graphs and zoomed RSP graphs are used to present 

recommending registry evaluation results later in this thesis.
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Figure 7.3: Example Graphs P lotting the RSP of a Ficticious Recommending Registry

7.4.4 T he Effectiveness M easure of Im provem ent over C hance

In order to ascertain whether the effectiveness of a recommending registry is a conse

quence of using the CF-based design, ra ther than  merely being a consequence of chance, a 

refinement to the effectiveness measure of overall RSP needed to be made. Essentially, the 

measure needed to be refined so th a t it could be used to ascertain whether the overall effec

tiveness of the registry-generated recommendations, which order available type-m atching 

services by design-calculated appropriateness, is better than th a t of equivalent recommen

dations which simply order the services arbitrarily, according to chance.

A chance-corrected version of overall RSP has been developed which enables this assess

ment to be made. Referred to as overall Improvement over Chance (IOC), the measure 

operates as follows. For each registry-generated ESSE recommendation and considered 

tolerance level. RSP is calculated as before. However, the RSP of an equivalent recom

mendation, in which the same type-m atching services are ordered arbitrarily, is also calcu-



lated. The RSP of this arbitrarily-ordered recommendation is then subtracted from that 

of the registry-generated recommendation. This difference in probabilities is referred to as 

IOC. The overall IOC of the recommending registry for each considered tolerance level is 

calculated by averaging the corresponding IOCs of the individual ESSE recommendations.

For a particular tolerance level, overall IOC therefore indicates how the overall RSP ef

fectiveness of the registry-generated recommendations compares against that of equivalent 

arbitrarily-ordered recommendations. If this difference in overall probabilities is positive, 

i.e. an improvement over chance, then it can be assumed that the effectiveness of the 

recommending registry is a direct consequence of using the CF-based design. If there is 

no such positive difference, no such assumption can be made.

Although the measure of overall IOC is a difference of probabilities, in essence it is 

simply overall RSP in a chance-corrected form. Thus, for a particular tolerance level, the 

larger the IOC value, the more effective the recommending registry.

In mathematical terms, the IOC of an ESSE recommendation is calculated according 

to the function described below. For a recommendation r consisting of k available type- 

matching services, and for a tolerance level i, where t > 0, then:

{ R SP (r, t) — -r when t < k
K J k (7.4)

0 when t > =  k

Essentially, the arbitrarily-ordered equivalent of recommendation r can be perceived as 

a partially-ordered list with one tied rank, which contains all k type-matching services. 

Thus, its RSP can be calculated using Function 7.1, setting a — 1st (and only) rank, 

|a| =  k and s = 0.

To calculate the overall IOC of a recommending registry, for a particular tolerance 

level i, where t > 0, and set of ESSE recommendations R:

O vera lU O C {R ,t) =  IO C (r, t) (7.5)
' ' reR

Like overall RSP, the resulting overall IOC values can be presented as a graph, by plotting 

probability difference against tolerance level. Figure 7.4 shows an example graph which 

plots the overall IOC of the fictitious design-adhering recommending registry whose overall 

RSP was plotted in Figure 7.3. Overall IOC is presented as a difference in percentage 

points. As in the last figure, overall IOC is simply referred to as “IOC” since, when 

registry evaluation results are presented, it is implicit that the results refer to the registry, 

not to a single recommendation.
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Figure 7.4: An Example Graph Plotting the IOC of a Fictitious Recommending Registry

By comparing Figures 7.3 and 7.4, it is possible to see the im pact th a t chance correction 

would have on the initial overall RSP results. In the case of this fictitious recommending 

registry, overall IOC is positive at all tolerance levels but the last, indicating th a t registry 

effectiveness is a consequence of using the CF-based design. However, as the tolerance level 

becomes larger, the probability difference decreases. This is always to be expected as, for 

an arbitrarily-ordered recommendation, the more services th a t  are assessed, the greater the 

likelihood of finding an appropriate service. At the largest considered tolerance level, an 

appropriate service would always have been found, for any recommendation, so there is no 

difference in the overall RSP of appropriateness-ordered recommendations or arbitrarily- 

ordered recommendations. IOC graphs are also used to present recommending registry 

evaluation results later in this thesis.

7.4.5 T he E ffectiveness M easure of N orm alised  C um ulative IOC

Although the measure of overall IOC does enable chance-corrected effectiveness to be eval

uated. it is not a suitable effectiveness measure to use when investigating the development 

of the CF-based recommending registry design itself. This is because registry effective

ness is represented as a set of numeric values, one for each tolerance level, which could
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make comparison between different registry evaluations rather complicated. The ability 

to compare one registry evaluation with another is important when assessing competing 

solutions to the various research issues associated with the development of the registry 

design. Ideally, to make comparison simpler and quicker, the effectiveness of a recom

mending registry should be represented by a single numeric value. Moreover, such a value 

should also indicate how well the registry performs in relation to the “perfect” registry, 

i.e. one that generates perfect recommendations in which the first ranked service is al

ways appropriate. W ith such information, it should be possible to identify the best of the 

competing solutions to each research issue.

The measure of overall IOC was thus further refined to enable registry effectiveness to 

be represented as such a single numeric value. The refined measure, known as Normalised 

Cumulative IOC (NCIOC), is defined below. It is assumed that, in evaluating a recom

mending registry using a set of ESSEs, overall IOC values have been calculated for every 

considered tolerance level. Then, for a particular tolerance level t , the overall IOC values 

for levels 1 to t are summed; this sum is referred to as the registry cumulative figure. If 

the overall IOC values were plotted as a graph, as in Figure 7.4, the figure would represent 

the area under the curve between 1 and t. Next, the equivalent cumulative figure is calcu

lated as if the recommending registry had actually generated perfect recommendations in 

response to all ESSE-derived service requests. That is, overall IOC values are calculated 

for tolerance levels 1 to t , and then summed, as if every registry-generated ESSE recom

mendation had ranked the ESSE-recorded appropriate service in first place, with all other 

available type-matching services in ranks below. Finally, the registry cumulative figure is 

normalised by dividing it by this perfect cumulative figure. The resulting value is referred 

to as NCIOC.

When calculated for a particular tolerance level t, NCIOC therefore represents the 

normalised, cumulative, chance-corrected effectiveness of the recommending registry for 

tolerance levels in the range 1 to t. It seems likely that the tolerance of consumers in 

searching for an appropriate service will vary. Some consumers will be very impatient, 

with a low tolerance level, whilst others will be more patient, with a higher tolerance level. 

Thus, in the single numeric figure of NCIOC, the overall effectiveness of the registry for 

consumers with tolerance levels in the range 1 to t will be represented. When calculating 

NCIOC for a particular recommending registry, an evaluator therefore needs to decide 

upon a value of t which is the largest tolerance level that a typical consumer is likely to
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have.

If different solutions to a particular research issue are each tested in the same rec

ommending registry, then it is a simple task to identify the most effective solution by 

comparing the NCIOC values of the corresponding registry evaluations. The solution re

sponsible for the largest NCIOC value can be considered the most effective. Moreover, the 

normalised nature of the NCIOC value means that the relationship between the perfor

mance of any research solution and that of the maximum possible can be ascertained. In 

dividing actual cumulative registry effectiveness by that which would be possible if perfect 

ESSE recommendations had been generated, NCIOC is presented as a value between -1 

and 1. An NCIOC value of -1 indicates that the registry generated the most ineffective 

recommendations theoretically possible; 0 indicates that it generated recommendations 

that were only as effective as axbitrarily-ordered recommendations; and 1 indicates that 

it generated the most effective recommendations theoretically possible. If the best of the 

proposed solutions for a particular research issue only generated a low NCIOC value, such 

as 0.2, then it would be clear that there was still significant room for improvement: 0.8, 

to be exact!

The mathematical details of NCIOC calculation are as follows. To reiterate, NCIOC 

calculation involves the cumulative overall IOC of a recommending registry being divided 

by the equivalent value that would have been possible if perfect ESSE recommendations 

had been generated instead. In order to calculate this equivalent value, we must therefore 

first calculate the IOC of every registry-generated ESSE recommendation as if it were 

actually a perfect recommendation, which can be done using the following function. For a 

recommendation r  consisting of k available type-matching services, and a tolerance level 

t, where t > 0, then:

Basically, for a perfect recommendation, RSP can be calculated using Function 7.1, setting 

a — 1, |a| =  1, and s =  0. W ith these values substituted, R S P  = 1 for all t > 0, and the 

IOC function (Function 7.4) simplifies to Function 7.6 above.

Thus, to calculate the NCIOC of a recommending registry, for a particular tolerance 

level £, where t > 0, and set of ESSE recommendations R:

Per fee t J O C {r , t )
1 — |  when t < k 

0 when t > =  k
(7.6)

N C IO C  (R ,t)
H i=1 (|S[ H reR IO C (r , i))

(7.7)
T , l = l ( \ k \  T , r € R P e r f e c t J 0 C (r ’ i ))
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If NCIOC values are calculated for all considered tolerance levels, then the results can be 

presented as a graph, by plotting NCIOC against tolerance level. Figure 7.5 shows an ex

ample graph which plots the NCIOC values of the fictitious design-adhering registry whose 

RSP and IOC details were plotted in Figures 7.3 and 7.4 respectively. As was discussed 

earlier, different registry evaluations should be compared in term s of their NCIOC values 

for a single tolerance level t, such as 7. However, such a graph also provides a complete 

awareness of the various values of NCIOC for different values of t.
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Figure 7.5: An Example Graph Plotting the NCIOC of a Fictitious Recommending Reg

istry

7.5 T he Use of th e  E valua tion  Schem e in th is  R esearch

The evaluation scheme defined in this chapter, with its identification and use of ESSEs, 

and the different effectiveness measures of RSP, IOC and NCIOC, is used later in this 

research to assess the effectiveness of a prototype recommending registry th a t adheres to 

the CF-based design. The scheme has been autom ated, requiring the evaluator to specify 

only the time segment from which ESSEs will be identified, the criteria for an ESSE, 

and the tolerance level for comparison of NCIOC values. Various competing solutions to 

each of the research issues associated with the design are tested in the prototype registry,
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and the corresponding evaluation results considered and compared. Evaluation in this 

research is based on ESSEs relating to only one particular type of service, rather than a 

variety. However, this approach to evaluation would seem good practice, enabling registry 

effectiveness to be assessed on a per service type basis. Given the various factors that 

would affect the generation of recommendations of a particular service type - the choice 

of situation attributes and time-window length, and the relevant service selections in the 

service selection history - the effectiveness of a registry could vary between types. Assessing 

a registry in terms of ESSEs relating to a variety of service types would make it impossible 

to identify those types that the registry was effective in recommending, and those that it 

was not.

When evaluation results are presented later in this thesis, the four styles of graph de

scribed earlier (shown in Figures 7.3, 7.4 and 7.5) are used, together with a table providing 

additional details. Figure 7.6 is an example of such a presentation (without the table). 

Although the graphs all plot registry effectiveness, they each provide different informa

tion. The top two graphs plot effectiveness in terms of RSP. This information provides an 

easily understood presentation of registry effectiveness from the consumer’s perspective. 

For a particular tolerance level that a consumer might have, the probability of his finding 

an appropriate service can be identified. The bottom left graph plots chance-corrected 

effectiveness in terms of IOC. By considering whether the IOC values axe positive, it can 

be ascertained whether the registry-generated recommendations were more effective than 

arbitrarily-ordered recommendations, an improvement over chance. Finally, the bottom 

right graph plots NCIOC values for different tolerance levels. For a particular tolerance 

level, an assessment of registry effectiveness relative to perfect registry performance can 

be made. When registry evaluations for competing research solutions are all plotted on 

the same graph, the solutions can easily be compared in terms of their respective NCIOC 

values.

7.6 Summary

The focus of this chapter has been my specially-devised, original evaluation scheme for 

assessing the effectiveness of any CF-based design adhering recommending registry in any 

deployment scenario.

The need for such an evaluation scheme was highlighted at the beginning of the chapter,
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Figure 7.6: An Example Evaluation Presentation
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and existing schemes used to evaluate systems that generate forms of service recommen

dation were subsequently discussed, and discounted in terms of this requirement. My 

identification of the conceptual similarity between a proposed recommending registry and 

an IR system, including the notion of recommendation effectiveness, was then noted and 

my realisation of the relevance of Cooper’s IR evaluation explained and justified.

The main body of the chapter has been concerned with the definition and discussion 

of the various aspects of my evaluation scheme. The concepts of Experienced Service 

Selection Entries (ESSEs) and tolerance levels have been explained, and the devised ef

fectiveness measures of RSP, IOC and NCIOC have been introduced and defined, both 

conceptually and mathematically.

Finally, the manner in which the evaluation scheme is used in this research has been 

explained, and the way in which evaluation results are presented has been specified.

My evaluation scheme is first used in this research in Chapter 9 to evaluate a prototype 

recommending registry which adheres to my basic CF-based design. The basic design itself 

is defined in the next chapter.
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Chapter 8

A  Basic R ecom m ending R egistry  

D esign

A basic CF-based recommending registry design is formulated in this chapter, 

through the development of basic generally-applicable solutions to the previously 

defined research issues.

8.1 Justifying the D evelopm ent of an Advanced R egistry  

Design

In order to determine whether my proposed CF-based approach to personalised service 

recommendation, detailed in Chapter 6, justified development into an advanced general 

design for a recommending registry, a basic registry design was first developed, and its 

viability and validity assessed. Only if the basic design did prove viable and valid would 

further development be justified.

The initial registry design was formulated from my proposed approach through the 

development and adoption of basic, generally-applicable solutions to the research issues 

defined in Section 6.2.1. Investigation of the design was then made through the construc

tion of a prototype design-adhering recommending registry for a real-world scenario, which 

was then evaluated for effectiveness using my ESSE-based scheme defined in Chapter 7.

More precisely, the prototype registry was constructed for the Department of Com

puting Science at the University of Glasgow, to recommend printers; this investigative 

scenario will be referred to as the “DCS printer scenario” . The basic registry design is
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presented in this chapter, and the construction and evaluation of the prototype registry 

discussed in the next chapter.

8.2 Basic Solutions to  the Considered Research Issues

The devised basic, generally-applicable solutions to the first six research issues specified in 

Section 6.2.1 are defined below; the seventh research issue of evaluating recommendation 

effectiveness was addressed in Chapter 7. As was stated and justified in Section 6.2.2, less 

attention was given to the first two research issues, which are concerned with how a service 

selection history is actually recorded and a requesting consumer’s situation attributes 

acquired. From a research perspective, the other research issues, which are concerned 

exclusively with the core idea of generating personalised service recommendations from 

a service selection history, were of greater importance. The solutions relate to how a 

developer would construct, configure and deploy a recommending registry in a particular 

service-oriented scenario to recommend particular types of service.

8.2.1 Recording Service Selections

How are service selections and their associated situation attributes recorded? In other 

words, how is a service selection history recorded? Given the problems associated with 

manual specification, as discussed in Section 6.2.1, an unobtrusive automated approach in 

which details are recorded automatically would seem preferable. In many scenarios, service 

usage activity might already be captured automatically, for reasons of accountability (who 

was responsible for this particular service use?) or charging (who should be charged for 

this particular service use?). The core recorded details of a detected service use would 

probably consist of the date-time of occurrence, the service’s ID and the user’s ID. A 

service use obviously corresponds to a prior service selection. Thus, a registry developer 

could construct a mechanism that automatically captures details of service selections by 

linking into an existing service usage recording scheme. For every service use detected, a 

corresponding entry in the service selection history could be recorded, which combined the 

basic captured details of the service use/selection with situation attributes obtained from 

other sources of contextual information. This style of approach was adopted in the DCS 

printer scenario, with the service selection history recorded via a mechanism that linked 

into an existing print-quota system. More details will be given in the next chapter.
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Although I would advocate an automated solution to the recording of a service selection 

history, a generally-applicable solution cannot be defined. Given that history recording 

would involve the capture of service selections made in a particular scenario, and the ac

quisition of particular contextual information, the solution devised by a registry developer 

must, by necessity, be scenario-specific.

However, it is possible to define a generally-applicable format for a recorded service se

lection history entry. Such a standardised history format enables corresponding generally- 

applicable solutions to the other research issues to be devised and developed into a general 

design. Regardless of how a service selection history is recorded, adherence to the stan

dardised history format would allow a developer to construct and deploy a recommending 

registry according to the remainder of the general design.

I have therefore defined a standardised generally-applicable format for a service se

lection history. A history entry must record the following named details about a service 

selection:

•  ServicelD - the unique identifier of the selected service.

• UserlD - the unique identifier of the individual responsible.

• WhenOccurred - the date-time at which the service was selected.

• ServiceType - the type of the selected service.

These named details will be referred to as “core attributes” . The entry must also contain 

those type-specific situation attributes which record relevant aspects of the situation in 

which the service selection was made. An entry therefore consists of a set of core and 

situation attributes. Each attribute has a name that identifies it (e.g. “ServiceType” , 

or “PhysicalLocation”), and a value (e.g ServiceType =  Printer, or PhysicalLocation = 

RoomA). The value of a particular attribute could be one of many (e.g. ServiceType 

=  {Printer, Projector, LightingControl, ...}, or PhysicalLocation =  {RoomA, RoomB, 

RoomC, ...}).

In order to be generally applicable, the value of every attribute, apart from WhenOc

curred, will be represented in and interpreted by a recommending registry only as a symbol. 

This means that the only operation that can be performed on the attribute value is an 

equality test: is this value the same as that value? No other relationships between attribute 

values can be determined (e.g. RoomA and RoomB may be adjacent to one another, but
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this fact will be undetectable). Symbolic representation and interpretation ensures that 

any situation attributes chosen to record relevant contextual aspects of the service selec

tion situation can be treated in the same homogeneous way. For example, regardless of 

whether the situation attributes were the printer-specific attributes of physical location, 

role and time, in the running illustration of Alice, or the DNA sequence analyser-specific 

attribute of network location, in the running illustration of Bob, the different attribute 

values would all be represented and interpreted as symbols.

To clarify, the service selection detailed in Figure 7.1 would be represented as an entry 

in the service selection history of the grid recommending registry used by Bob as:

S e r v i c e l D  = "B"

U s e r lD  = "A29"

W henO ccurred = 1 6 / 0 6 / 2 0 0 4  1 4 : 3 2 : 0 5  

S e r v i c e T y p e  = " S e q _ A n a ly s e r "

N e t w o r k L o c a t i o n  = " 1 3 0 . 2 0 9 . 2 4 6 "

The core and situation attribute values of “B” , “A29” , “Seq_Analyser” and “130.209.246” 

are all represented as strings, as the string equality operation would enable the values to 

be treated as symbols, whilst “16/06/2004 14:32:05” is represented as a date-time. The 

service selection would be interpreted as being made in the particular network location 

represented by “130.209.246” (an IP subnet). If, however, the attribute value was recorded 

as “130.209.245” , the service selection would be interpreted as being made in another, 

unrelated network location. The two IP subnets might be very close to one another in 

network terms, but in symbolic terms, they are completely different (the two strings differ).

8.2.2 Acquiring a Requesting Consum er’s Situation A ttributes

How are the situation attributes that define a requesting consumer’s situation acquired? 

As with the recording of service selection history, an unobtrusive automated scheme for 

obtaining such attributes would seem preferable, but could prove complex for a registry 

developer to construct. A much simpler solution would be to require the requesting con

sumer to specify his situation attributes manually. Given that the consumer has already 

explicitly submitted a service request to the recommending registry, he might be willing 

to specify this additional information as well. This style of approach was adopted in the 

DCS printer scenario.
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However, regardless of whether the attribute acquisition scheme devised by a devel

oper is automated or not, it must, by necessity, be scenario-specific; consumer situation 

attributes will be particular to the specific deployment scenario and service type required. 

Consequently, I have addressed the issue of situation attribute acquisition in a similar 

way to that of service selection history recording, by defining a standardised generally- 

applicable format for acquired attributes. Once again, regardless of how consumer situa

tion attributes are obtained, adherence to the standardised attributes format would allow 

a developer to construct and deploy a recommending registry according to the remainder 

of the general design.

Essentially, the situation attributes of a requesting consumer acquired by the rec

ommending registry must be the same type-specific set as those recorded in any service 

selection history entry that refers to a service of the requested type, and must adhere to 

the same standardised format. Thus, each consumer situation attribute must have the 

same name as the corresponding history entry situation attribute, and its value must be 

drawn from the same underlying set of values. To be generally applicable, every consumer 

situation attribute will also be represented and interpreted only as a symbol.

For example, when Bob submits a service request for a DNA sequence-analyser service 

(type Seq Analyser) to the grid recommending registry in Figure 7.1, the acquired situation 

attribute could be:

N e t w o r k L o c a t i o n  = " 1 3 0 . 2 0 9 . 2 4 0 "

Note that this consumer attribute is the analyser-specific attribute of network location. 

Moreover, it has the same name as the equivalent situation attribute in the last example 

of a Seq_Analyser service selection history entry in Section 8.2.1. The network location 

value is also represented as an IP subnet, in the form of a string. Thus, since they share 

the same standardised format, in terms of name, value, and symbolic representation and 

interpretation, the situation attribute of Bob and that of a Seq_Analyser history entry can 

be easily compared by the grid recommending registry.

8.2.3 Choosing Situation A ttributes

How is a decision made as to which set of situation attributes are recorded with the core 

attributes in a service selection history entry? The choice of situation attributes for each 

service type is very important, as a recommending registry will identify those relevant
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service selections that were made in a situation similar to that of the requesting consumer 

by comparing the entry-recorded situation attributes of each recent type-matching service 

selection against the consumer’s situation attributes. The service recommendation will be 

generated through assessment of these relevant service selections.

It was implied in Section 6.1.1 that the situation-similarity of a service selection would 

be assessed by comparing all of its entry-recorded situation attributes against the request

ing consumer’s situation attributes. For this to happen, the choice of situation attributes 

would need to be made by the developer when the history recording mechanism is first 

constructed. For each service type, the developer would need to decide which aspects of 

a situation would be of most relevance when service appropriateness was being assessed 

(i.e. those important aspects which individuals would take into consideration when decid

ing upon, and then selecting, appropriate services of this type). These particular aspects 

would then be recorded as situation attributes in the history entry of a detected service 

selection. The history recording mechanism would need to be constructed to acquire this 

particular contextual information. Although possible, this solution would not be very flex

ible, and would reduce the potential for variation or experimentation with regard to the 

assessment of service selection situation-similarity.

A more flexible solution would be for the recommending registry to assess the situation- 

similarity of a service selection by comparing a subset of the entry-recorded situation at

tributes against the requesting consumer’s corresponding situation attributes. This is the 

solution adopted in this research. When deciding upon situation attributes to record for 

each service type, the developer would identify any situation aspects that might be of 

some relevance when service appropriateness was being assessed, not just those that ap

peared to be most relevant. The history recording mechanism would then be constructed 

to acquire all of this contextual information, and to record the relevant type-specific at

tributes in the history entry of a detected service selection. The combination of numerous 

entry-recorded situation attributes and a recommending registry that could assess service 

selection situation-similarity in terms of a subset of these attributes would provide consid

erable flexibility. For a particular service type, the developer would be able to configure 

the registry to generate recommendations using any one of the situation attribute subsets.

As a clarifying example, imagine that the developer of the grid recommending registry 

used by Bob has decided to adopt this more flexible solution. For the DNA sequence- 

analyser service type, he has decided to record in an analyser selection history entry the
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4 situation attributes of network location (NetworkLocation), the genome type analysed 

(GenomeTypeAnalysed), the day of the week (DayOfWeek), and the hour of the day 

(HourOfDay). Although network location is generally considered the most important sit

uation attribute in assessing analyser appropriateness, the developer suspects that the type 

of genome being analysed might also play a part. Moreover, since network performance 

may vary on a daily or hourly basis, the developer also records these attributes. Thus, 

the example of the Seq_Analyser history entry given in the earlier discussion of history 

recording (Section 8.2.1) now takes the following form:

S e r v i c e l D  = "B"

U s e r l D  = "A29"

W h enO ccurred  = 1 6 / 0 6 / 2 0 0 4  1 4 : 3 2 : 0 5  

S e r v i c e T y p e  = " S e q _ A n a ly s e r "

N e t w o r k L o c a t i o n  = " 1 3 0 . 2 0 9 . 2 4 6 "

G en o m eT y p eA n a ly sed  = "Mammal"

DayOfWeek = "Wednesday"

HourO fDay = "14"

Given that there are 16 possible subsets of the 4 situation attributes (e.g. NetworkLo

cation, NetworkLocation and GenomeTypeAnalysed, DayOfWeek and HourOfDay, ...), 

and service selection situation-similarity could be assessed in terms of any of these dif

ferent subsets, the developer now has significant flexibility when configuring the registry. 

Through experimentation, the situation attribute subset which would generate the most 

effective Seq_Analyser recommendations should be found.

8.2.4 Choosing a Length of Tim e-W indow

How is a decision made as to the length of time-window used by a registry to identify the 

recent relevant service selections? As was explained when discussing this issue in Section

6.2.1, time-windows are used, one for each service type, to enable a recommending registry 

to respond quickly to any changes that affect service appropriateness. People should factor 

relevant change into their service selections. Thus, by basing a recommendation only on 

situation-similar type-matching service selections that occurred recently, within the type- 

specific time-window, a registry should be able to reflect such change. Theoretically, 

the shorter the time-window, the more rapidly change should be reflected in generated
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recommendations. However, the shorter the time-window, the smaller the number of 

recent situation-similar type-matching service selections identified, perhaps reducing the 

effectiveness of generated recommendations generally. The ideal “trade-off” length of 

time-window is one which would enable the recommending registry to generate the most 

effective recommendations whilst reflecting relevant change as rapidly as possible.

The most basic solution to this issue of time-window choice is for the developer himself 

to decide upon the time-window to be used for each service type. This is the solution 

I adopted in formulating the basic registry design. For a particular service type, the 

developer must consider how often change that will affect the appropriateness of type- 

matching services is likely to occur. Such change might include the introduction of new 

services, or changes in the characteristics of existing services.

If relevant change is a frequent occurrence, the developer might favour a smaller time- 

window; relevant change would be reflected more rapidly, at the risk of reducing the general 

effectiveness of generated recommendations. For example, if the grid of services accessed 

by Bob was relatively volatile, with new services being introduced and the prices of existing 

services being changed on a weekly basis, the developer of a grid recommending registry 

might choose a time-window of, say, 2 weeks for the DNA sequence-analyser service type.

If relevant change happens infrequently, the developer might favour a larger time- 

window instead; the general effectiveness of generated recommendations would be max

imised, though relevant change might not be reflected rapidly. For example, in the running 

example of Alice, change that affected the appropriateness of departmental printers would 

probably occur infrequently, with new printers being introduced on a monthly to yearly 

basis, and existing printers becoming faulty (and quickly being repaired) on a monthly 

basis. The developer of the departmental recommending registry might therefore choose 

a time-window of, say, 8 weeks for the printer service type.

8.2.5 Identifying Situation-Similar Service Selections

How should situation-similarity be defined in order to identify relevant service selections? 

Given the symbolic representation and interpretation imposed by the generally-applicable 

formats of a service selection history entry and a requesting consumer’s situation at

tributes, only one basic definition of service selection situation-similarity is possible.

As was detailed earlier, in generating a recommendation for the service type requested, 

the registry would assess the situation-similarity of each recent type-matching service selec
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tion by comparing a subset of its entry-recorded situation attributes against the requesting 

consumer’s corresponding situation attributes. The developer would have previously de

fined the situation attribute subset to be used, for that particular service type. In terms 

of comparing the two symbol-interpreted values of a particular situation attribute, the 

only operation that can be applied is an equality test. Therefore, a type-matching service 

selection is defined as being situation-similar if, for all subset situation attributes, the 

entry-recorded attribute value equals the corresponding requesting consumer’s attribute 

value. In less formal terms, if the considered subset of situation attributes match exactly, 

the service selection is considered to have been made in a situation similar to that of the 

requesting consumer. Thus, such a definition of situation-similarity will identify those 

service selections that were made in an identical situation to the consumer.

Consider how the grid recommending registry would respond to Bob’s earlier service 

request for a DNA sequence analyser (type Seq_Analyser), with one of Bob’s situation 

attributes being:

N e t w o r k L o c a t i o n  = " 1 3 0 . 2 0 9 . 2 4 0 "

The developer has configured the situation attribute subset used to assess Seq_Analyser 

service selection situation-similarity to be the NetworkLocation attribute alone. Thus, the 

relevant recent Seq_Analyser service selections identified will be those that have the same 

NetworkLocation value of “130.209.240”.

8.2.6 Generating a Recom m endation

How is a recommendation generated? As was explained previously, the registry responds 

to a consumer’s service request by identifying those service selections that refer to a ser

vice of the requested type, and that were recently made in a situation similar to that 

of the consumer. In more technical terms, the registry identifies those history-recorded 

type-matching service selections which occurred within the type-specific time-window, and 

whose situation attributes exactly match those of the requesting consumer, for the type- 

specific situation attribute subset. These identified recent situation-similar type-matching 

service selections are called the “relevant” service selections. Thus, rephrasing the original 

question, how does the registry rank the available type-matching services in an ordered 

list by collective perceived appropriateness, through assessment of the relevant service 

selections identified?
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The history-recorded form of the relevant service selections encapsulates considerable 

information about people’s recent service selection behaviour. As was detailed earlier, the 

core attributes of a service selection history entry record the service selected (ServicelD), 

the individual responsible (UserlD), and the date-time of occurrence (WhenOccurred). 

Viewed as a whole, therefore, the set of relevant service selections show a number of 

different individuals (each with a different UserlD) selecting and using a variety of different 

type-matching services (each with a different ServicelD) over time (the sequence in which 

service selections occurred could be obtained by ordering them by WhenOccurred).

Clearly, various recommendation generation algorithms could be devised which each 

assess this information in a particular way, in order to determine the perceived appropri

ateness of every available type-matching service and thus rank them in an appropriateness- 

ordered list. For example, an algorithm might calculate the perceived appropriateness of 

a service in terms of the number of individuals who had selected it, the recency of its 

selections, or a combination of factors. However, to formulate the basic registry design, I 

decided to calculate perceived service appropriateness in terms of two very simple factors: 

whether a service was selected at all, and, if so, how often. One recommendation gener

ation algorithm was devised that calculated service appropriateness in terms of the first 

factor, whilst a second was devised that considered both.

The first algorithm, referred to as STR (Selection Tied Ranking), is exceedingly simple 

in its assessment of the relevant service selections. It is assumed that a selected service 

is perceived as being more appropriate than one that was not selected. Thus, a recom

mendation is generated that consists of two tied ranks: a top rank that contains available 

type-matching services that were selected at least once, and a bottom rank containing the 

remaining available type-matching services that were not selected at all.

The second algorithm, referred to as SCO (Selection Count Ordering), is a modification 

of STR. Once again, it is assumed that a selected service is perceived as being more 

appropriate than one that was not selected. However, it is also assumed that the number 

of times a service was selected provides a direct indication of its perceived appropriateness, 

in that more selections of a service imply more “votes of confidence” . A recommendation 

is therefore generated by ranking the available type-matching services by the number of 

times each one was selected, from most to least. As with STR, the bottom rank contains 

all those services that were not selected at all.

As an example, imagine that Bob has submitted his request for a Seq_Analyser to
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Bob's Service Request: 
Service type: Seq_Analyser
Situation attributes: (NetworkLocation = "130.209.240") 
Current date-time: 05/08/2004 11:27:32

Available Seq_Analyser Services: A, B, C, D, E, J

Relevant Service Selections

ServicelD UserlD WhenOccurred

B A64 23/07/2004 14:55:02
E A62 27/07/2004 18:37:08
B A29 27/07/2004 21:04:59
B A29 02/08/2004 11:32:26
J A12 02/08/2004 12:49:48
W A09 03/08/2004 14:55:02
J A62 05/08/2004 10:14:17

STR-generated Seq_Analyser Recommendation:
1- B, E, J
2. A, C, D

SCO-generated Seq_Analyser Recommendation:
1. B
2. J
3. E
4. A, C, D

Figure 8.1: The STR and SCO Recommendation Generation Algorithms
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the grid recommending registry at 05/08/2004 11:27:32, as illustrated in Figure 8.1. The 

registry responds by ascertaining that Seq_Analyser services A, B, C, D, E and J are 

currently available. It also identifies the set of relevant service selections: those selec

tions that refer to a Seq_Analyser service, that had been made in the last 2 weeks (the 

Seq_Analyser-specific length of time-window), and whose NetworkLocation value matches 

Bob’s NetworkLocation value of “130.209.240” (NetworkLocation is the Seq_Analyser- 

specific situation attribute subset used to assess situation-similarity). The relevant service 

selections are shown in the middle of Figure 8.1. Note that B has been selected three 

times (by users A64 and A29), J twice (by users A12 and A62), and E and W once (by 

users A62 and A09 respectively). The registry then assesses the relevant service selections, 

generating a Seq_Analyser recommendation that is returned to Bob. As is shown at the 

bottom of Figure 8.1, if the registry uses the STR algorithm, B, E, and J would be ranked 

in first place, and A, C and D in second place; B, E, and J were selected, whilst the other 

three available Seq_Analyser services were not. If the registry uses the SCO algorithm, 

B would be ranked first (with 3 selections), J second (with 2 selections), E third (with 1 

selection), and A, C and D last (as before). Note that the selected service W is not present 

in a recommendation, as it is not currently available.

How does the registry rank the available type-matching services if no relevant service 

selections are identified? The basic solution adopted in this research is for a recommenda

tion to be generated that consists of all the services in a single tied rank. This is essentially 

equivalent to the normal behaviour of a consumer-driven SDM registry, in which available 

matching services are returned as an unordered set.

8.3 The Basic R egistry D esign and Developer Tasks

8.3.1 The Basic Registry Design

The basic SDM recommending registry design developed from the foregoing research so

lutions is defined below. The design is phrased on the operational level, and is based on 

the abstract model of a recommending registry stated in Section 4.4. It does not specify 

architectural details of a registry, such as its internal composition of interacting code com

ponents, or particular types of data structure used. At this early stage in the investigative 

process, it is not possible to define such precise details. Rather, the design specifies how a 

registry should operate in generating a personalised service recommendation. A working
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recommending registry can be constructed that adheres to this operational design, as is 

demonstrated by my prototype (Chapter 9).

For the particular scenario in which it will be deployed, a constructed recommending 

registry must:

1. Have access to a service selection history for the scenario, which adheres to the 

standardised format defined in Section 8.2.1. The history records details of all service 

selections that occur within the scenario on a continual basis.

2. Be able to acquire the situation attributes of a requesting consumer. The acquired 

attributes must adhere to the standardised format defined in Section 8.2.2.

In generating a personalised service recommendation for a requesting consumer, a 

constructed recommending registry must operate as follows:

1. As defined in the abstract model, the requesting consumer submits a service request 

to the registry, stating the required service type and any specific attributes. The 

registry responds by acquiring the type-specific situation attributes of the request

ing consumer. It also identifies those available services with the required type by 

assessing the advertised service descriptions.

2. The registry identifies those relevant service selections that refer to a service of the 

required type, and that were recently made in a situation similar to that of the 

consumer. More precisely, three tests are applied to each history-recorded service 

selection:

• Type-matching - The ServiceType attribute of the service selection is tested 

for equality against the required service type specified in the consumer’s service 

request. If the compared values are equal, the service selection is type-matching.

•  Situation-similarity - For the type-specific situation attribute subset, each ser

vice selection situation attribute is tested for equality against the requesting 

consumer’s corresponding situation attribute. If every pair of compared values 

is equal, the service selection is situation-similar.

•  Recency - The WhenOccurred attribute of the service selection is tested, to de

termine whether the selection was made within the type-specific time-window. 

The date-time start of the time-window, TimeWindowStart, can be calculated
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by subtracting the time-window length from the current date-time. If WhenOc

curred > =  TimeWindowStart, then the service selection is recent.

The set of relevant service selections identified are those that are type-matching, 

situation-similar and recent.

3. The registry assesses the relevant service selections to rank the available type- 

matching services in an ordered list by collective perceived appropriateness. This 

list is the personalised service recommendation. Either the STR or SCO recom

mendation generation algorithm, as defined in Section 8.2.6, is used. If no relevant 

service selections were identified, a recommendation is generated that consists of all 

the available type-matching services in a single tied rank.

4. The registry returns the generated personalised service recommendation to the re

questing consumer. As required by the abstract model, the recommendation is fil

terable to show only those services that also matched the consumer-specified service 

attributes.

8.3.2 The Tasks of the Registry Developer

For a design-adhering recommending registry to become operational in a particular sce

nario, the developer must therefore perform the following sequence of tasks:

1. Service selection history recording - The developer must construct the service selec

tion history recording mechanism. For each type of scenario service, he must decide 

which situation attributes to record in a service selection history entry along with the 

core attributes. As was advocated in Section 8.2.1, the history recording mechanism 

should ideally be automated.

2. Recommending registry construction - The developer must construct a recommend

ing registry that adheres to the design specified above.

3. Recommending registry configuration - The developer must configure the constructed 

registry. For each type of scenario service, he must decide on the subset of type- 

specific situation attributes to be used in assessing service selection situation-similarity, 

and on the length of time-window to be used in assessing service selection recency 

(as discussed in Sections 8.2.3 and 8.2.4 respectively).
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4. Recommending registry deployment - The developer must deploy the registry. This 

can occur once the history recording mechanism has recorded a sizeable service se

lection history, which the registry can use in generating personalised service recom

mendations. Through the registry’s lifetime, the developer may wish to reconfigure 

it periodically, so as to “tune” the effectiveness of its recommendations.

8.4 Summary

In this chapter, details have been given of the basic, generally-applicable solutions that 

were developed to address the various research issues specified in Section 6.2.1. A basic 

design for a CF-based recommending registry has then been detailed based on the research 

solutions, and the tasks that a registry developer needs to perform for a registry to become 

operational have been given.

This basic design was used to investigate whether the proposed CF-based approach 

should be further developed into an advanced design. This was done through the con

struction and evaluation of a prototype recommending registry that adheres to the basic 

design, to determine design viability and validity. The next chapter is concerned with this 

aspect of my research.
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Chapter 9

A ssessing th e Basic  

R ecom m ending R egistry  D esign

In this chapter, details are given of the assessment of the basic CF-based rec

ommending registry design, in terms of viability and validity, through the con

struction and evaluation of a design-adhering working prototype registry in a 

real-world scenario.

9.1 Background to  Assessm ent

Investigation into the viability and validity of the basic recommending registry design, 

detailed in Chapter 8, was made through the construction, and subsequent evaluation, of a 

design-adhering working prototype registry. This prototype was constructed to recommend 

printers in the Department of Computing Science at the University of Glasgow (the DCS 

printer scenario). The basic design could be deemed viable if it enabled the prototype to 

generate personalised service recommendations from a recorded service selection history. 

It could be deemed valid if these generated recommendations were actually effective. If 

the basic recommending registry design was demonstrated to be both viable and valid, its 

development into a more advanced version would be worthwhile.

Details of the DCS printer scenario, the constructed prototype registry and its as

sociated service selection history, and the setup of the effectiveness evaluation are given 

below.
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9.1.1 The DCS Printer Scenario

The Department of Computing Science occupies (partly or wholly) three buildings on the 

Glasgow University campus, and consists of academics, researchers, teaching and tutoring 

staff, administrative and systems support staff, postgraduate students (PhD and MSc) and 

undergraduate students. In a typical month, the department also contains a small num

ber of transient visiting speakers and researchers, academics on sabbatical, and exchange 

students. To provide a rough indication of size, 574 different individuals were recorded as 

using departmental printers in January 2004, and 778 individuals in February 2004.

The department therefore typifies a small to medium-sized organisation with a con

stant stream of uninformed consumers who need to use services that are available on the 

organisational computing network. As with any organisation, long-term members leave 

and uninformed replacements arrive (e.g. newly appointed academics and students start

ing courses), whilst uninformed visitors come and go. The department could well be the 

one which Alice was visiting! The organisational nature of the department also means 

that a significant proportion of service selections made in the scenario should be appro

priate choices; long-term departmental members should be able to make such appropriate 

selections, given their experience.

From the perspective of assessing a design-adhering recommending registry, one type 

of service is as representative as any other, given that recommendations for all types 

are generated in exactly the same manner. This research focuses on printers, which are 

currently one of the few types of service in universal use. Many organisations make use of 

numerous shared printers that are available on an organisational network, as this is more 

cost-effective than supplying every staff member with a printer. This arrangement also 

makes print-quotas possible. Moreover, printers are one of the main service types cited in 

the service discovery and ubicomp research literature [1,7,19,27,38,44,50,53,56,59,66,72, 

78,94,95,123].

There are approximately 80 printers in the DCS printer scenario, distributed across 

all three buildings. Some printers are in private offices, and are considered of restricted 

access. Others are designated for general use, and are positioned in corridors. Some print

ers are in general printing/photocopying rooms which are locked outside normal working 

hours. Yet others are designated primarily for student use, and are located in student 

laboratories. Some printers are faster than others, whilst some printers break down on a 

relatively frequent basis. In such a scenario, an uninformed consumer could face consid
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erable difficulty in finding and selecting an appropriate printer to use. The DCS printer 

scenario was therefore a suitable environment in which to investigate a design-adhering 

recommending registry.

9.1.2 The Constructed Working Prototype Registry  

R eco rd in g  th e  Service Selection  H is to ry

As defined in the sequence of developer tasks specified in Section 8.3.2, I first constructed 

the mechanism to record the service selection history. For the registry to be able to recom

mend printers, the mechanism needed to detect and record every printer selection made 

within the department. Fortunately, at the time when the history-recording mechanism 

was being constructed, the departmental printing architecture was being modified by sys

tems support staff to enable a print-quota system to be deployed. The architecture was 

rearranged so that any print job (i.e. a document to be printed) sent by an individual to a 

network-accessible printer was channelled through one of four print-servers. Three of these 

print-servers were subsidiary, forwarding received jobs onto the other, main, print-server, 

which in turn  sent each job to the specified printer. This arrangement is illustrated in Fig

ure 9.1. The support staff deployed a print-quota system, Print Manager Plus [62], on the 

main print-server, which logged details of every job received, processed and forwarded. For 

a particular print job, these details included the departmental user-name of the individual 

responsible (the “login” of his account in the departmental computing environment), the 

name of the printer to which the job was sent, the date-time of occurrence, the host-name 

of the departmental computer used by the individual (if detectable), and the byte size and 

page length (if detectable) of the document involved. It was therefore possible to construct 

an unobtrusive automated history-recording mechanism which made use of this print job 

log.

A submitted print job corresponds to a printer selection. Thus, the constructed mech

anism periodically parsed the log of the quota system and, for each newly-logged job, 

recorded a corresponding entry in the service selection history. This process enabled the 

core attributes of a service selection to be recorded; ServicelD was set to the logged printer 

name, UserlD to the logged departmental user-name, WhenOccurred to the logged date

time of occurrence, and ServiceType obviously to “Printer” . Although the job log of the 

quota system on the main server recorded a significant proportion of departmental printing 

activity, it did not record all of it. For legacy reasons, the three subsidiary print-servers
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Figure 9.1: The Departmental Printing Infrastructure
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also sent some jobs to certain printers directly, rather than forwarding them to the main 

printer-server. Moreover, it was discovered that the quota system did not always log 

those jobs that were forwarded. However, further investigation uncovered the fact that 

the three subsidiary print-servers (two Windows and one Unix CUPS [97]) did log those 

print jobs which they themselves received, processed and forwarded, recording roughly the 

same details as the quota system log on the main print-server. Thus, to record as many 

departmental printer selections as possible, the history-recording mechanism was actually 

constructed to collate (e.g. remove duplicate entries) and parse all four print job logs from 

the four different print-servers periodically.

W ith regard to the situation attributes recorded along with the log-obtained core 

attributes of a printer selection, the history mechanism was initially constructed to acquire 

a variety of situation aspects which appeared of some direct or indirect relevance when 

printer appropriateness was being assessed: the title (dr,mr,mrs, ...), departmental role 

(academic, support staff, ..), research group (if any) and physical location (room A, room 

B, ..) of the selecting individual, the operating system (windows, unix, ..) and host-name 

of the computer used by him, the hour of day and day of the week when the selection was 

made, and the size, type (txt, jpg, pdf, ..) and page length of the document involved.

However, after further assessment, the decision was made to focus only on the three 

situation attributes which seemed most relevant in this scenario: the selecting individ

ual’s physical location (named “Location”) and departmental role (named “Role”), and 

the hour of day (named “HourOfDay”). Given that the departmental printers are dis

tributed over three buildings, which each contain multiple floors, sets of stairs, corridors, 

rooms etc, location would seem to be an important factor in determining printer appro

priateness. W ith regard to role, although theoretically anyone can use any departmental 

printer, there is an underlying organisational culture which affects printer usage. For ex

ample, undergraduates are not encouraged to use printers in an administrative staff office. 

Thus, departmental role can also be considered an important factor. Finally, hour of day 

is important because printer load varies throughout the day, and certain printers (being 

behind locked doors) are inaccessible outside working hours. Considering only three sit

uation attributes made the research more tractable, as there were consequently only 8 

possible attribute subsets with which the recommending registry could be configured to 

assess printer selection situation-similarity.

For every printer selection obtained from the processed print job logs, the 3 situation
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attributes were acquired and recorded in the following manner:

• Location - The physical location of the selecting individual was recorded as the name 

of the departmental room in which he was estimated to have selected the printer; 

each room has a different assigned name. Given that the locations of people in the 

department are not explicitly tracked (e.g. using Active Badges [117]), the selecting 

individual’s location was estimated in one of two ways. Firstly, the host-names 

of certain departmental computers refer to the rooms in which they are placed. 

For example, computers in room “bo715” , an undergraduate student laboratory, 

have names such as “bo715-5-05” , or “bo715-2-06” . Thus, if the parsed print job 

log had recorded the host-name of the computer used by the selecting individual, 

this was analysed to see if it referred to a room. If it did, the Location situation 

attribute was set to the derived room value (e.g, “bo715” in the example above). 

If this approach failed, a second was tried. The UserlD of the selecting individual, 

his departmental user-name, was used to look up a regularly maintained internal 

departmental database that recorded the roles and allocated offices of permanent 

departmental members such as academics and PhD postgraduate students. If the 

individual had a database entry, which recorded his allocated room, the Location 

situation attribute was set to this value. Given that a permanent departmental 

member mainly works in his allocated office, it is reasonable to assume that his 

printer selection was made in that location. If both approaches failed, Location was 

set to an unknown “null” value. In the time over which the service selection history 

was acquired, printer selections were recorded as being made in 83 different rooms.

• Role - The departmental role of the selecting individual was recorded as one of 

14 values, which are all self-explanatory: “academic” , “admin_staff” , “it” (MscIT 

postgraduate student), “post.grad” , “researcher” , “research-fellow” , “systems_staff” 

(systems support staff), “teaching jstaff”, “tutoring_staff” , “undergrad Jevell” , “un

dergrad Jevel2” , “undergradJevel3” , “undergradJevel4” , and “visitor” . As with 

physical location, role was obtained in one of two ways. Firstly, the same inter

nal departmental database for permanent member details was looked up, using the 

UserlD /  departmental user-name of the selecting individual. If the individual had 

a database entry, which recorded his role, the Role situation attribute was set to 

this value. If this approach failed, the UserlD was used to look up the individual’s 

Unix group. When a login account for an individual is created in the departmental
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computing environment, it is assigned to a particular group, which determines access 

rights. Some of these Unix groups are directly equivalent to the named roles above. 

For example, first year undergraduate students, referred to as “undergradJevell” 

above, are members of the “levell” Unix group. Thus, if the retrieved group of the 

selecting individual was such a group, the Role situation attribute was set to the 

corresponding named role (e.g. “undergradJevell” in the example above). If both 

approaches failed, Role was set to an unknown “null” value.

• HourOfDay - The hour of day was recorded as one of 24 different values: “0” (00:00:00 

to 00:59:59), “1” (01:00:00 to 01:59:59) to “23” (23:00:00 to 23:59:59). It was ob

tained through a simple analysis of the log-obtained WhenOccurred attribute of the 

service selection.

As an example, an actual printer selection recorded by the service selection history 

recording mechanism is given below; to preserve anonymity, the UserlD value has been 

changed:

S e r v i c e l D  = " l w f l 6 4 "

U s e r l D  = "anon"

W henO ccurred = 0 8 / 0 3 / 2 0 0 4  1 6 : 0 4 : 5 0  

S e r v i c e T y p e  = " P r i n t e r "

L o c a t i o n  = " g l4 1 "

R o l e  = " p o s t g r a d "

HourOfDay = "16"

The history-recording mechanism was constructed in mid-2003. From late September 2003 

to early April 2004, the mechanism processed the print job logs of the four print-servers 

every week, adding newly-made printer selections (i.e. those which had occurred since 

the last log processing) to the growing service selection history. The history was stored 

in a MySQL database table, with the table containing a column field for each core and 

situation attribute of a history entry; all fields were of SQL type text (i.e. string), apart 

from WhenOccurred, which was of SQL type date-time. Thus, each table row contained 

a service selection history entry. In total, 118856 printer selections were recorded (some 

of these were made as early as February 2003, and were added on the first log processing 

in September). These involved 1114 different individuals using 93 different printers. If a

113



situation is defined as a unique combination of values for Location, Role and HourOfDay, 

then printer selections were recorded as being made in 1585 unique situations.

The Constructed Registry Itself

Although the CF-based recommending registry design is phrased in terms of its being an 

augmented form of a consumer-driven SDM registry, the constructed prototype recom

mending registry itself does not use advertised service descriptions in generating person

alised service recommendations, as there was no existing departmental SDM registry to 

use as a prototype building block. Moreover, as this research is primarily concerned with 

using service selection history to generate recommendations, advertised service selections 

are of little importance.

In the posited CF-based recommending registry design, advertised service descriptions 

are used in two places in generating a personalised service recommendation. At the be

ginning of the process, the descriptions are used to identify those type-matching services 

that are currently available. At the end, they are used to make the generated recommen

dation filterable, to show only those available type-matching services that also match the 

attributes specified in the consumer’s service request. W ith the prototype, the first func

tion is approximated by assuming that the type-matching services (departmental printers) 

currently available are those which were recorded in the service selection history as used 

in the last 12 weeks. This is a reasonable assumption to make, as the DCS printer scenario 

is a stable environment, with almost constant availability of printers. The second function 

is not implemented, as the filterability of a generated recommendation is something of an 

optional feature, and is not considered of primary importance. These two factors aside, 

the prototype does operate according to the basic registry design specified in Section 8.3.1.

The prototype recommending registry was written in Java. Given that it was to serve 

as an investigative tool for researching the CF-based approach to personalised service 

recommendation, the registry was constructed with flexibility in mind. Thus, the main 

functional elements of the registry were constructed as independent components, and any 

one component can be replaced without affecting any other aspects of the registry. It was 

possible to experiment with a particular component, by devising different implementations 

and then substituting and assessing each in the registry.

Figure 9.2 shows the core structure of the prototype recommending registry. Data 

components are named in italics, whilst functional components are named in non-italics.
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Figure 9.2: The Core Structure of the Prototype Recommending Registry

The numbered arrows indicate the stages of the path taken through the registry in gen

erating a personalised service recommendation. Registry components will be explained in 

terms of their role in this path:

• Consumer service request /  situation attributes submission - A consumer requests 

a recommendation of departmental printers by submitting a form of service request 

to the registry (stage 1). The request does not contain a service type or specific 

attributes; the requested service type is implicit (type Printer), and service attributes 

are unnecessary, given that the filterability of a generated recommendation is not 

implemented. The request does contain the printer-specific situation attributes of 

the consumer: his physical location (Location), departmental role (Role), and the 

hour of day (HourOfDay). These Consumer Situation Attributes are implemented
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as a hash-table, with the name of each attribute mapping to the attribute’s value 

(represented as a String).

•  Relevant service selection identification - Inside the registry, the Relevant Service Se

lection Obtainer assesses the submitted Consumer Situation Attributes, the printer- 

specific time-window length, and the printer-specific situation attribute subset, and 

constructs a data-request that will retrieve the relevant service selections from the 

service selection history, in the form of their ServicelD, UserlD and WhenOccurred 

attributes. Since the history is stored in a MySQL database table, the request 

is an SQL SELECT statement, with the three tests for service selection relevance 

(type-matching, situation-similarity and recency) being specified as a conjunction 

of conditions in the WHERE clause. Each test takes the form defined in the basic 

registry design.

For example, imagine that a consumer submitted a printer request, at 10/08/2004 

14:06:42, with situation attributes of:

HourOfDay = "14"

L o c a t i o n  = " f0 9 1 "

R o le  = " aca d e m ic"

Also imagine that the registry was configured with a time-window of 8 weeks and 

a situation attribute subset of HourOfDay and Role. Then, with the start of the 

time window being 15/06/2004 14:06:42 (current time minus time-window length), 

the constructed SELECT statement would be:

SELECT S e r v i c e l D , U s e r l D ,W h e n O c c u r r e d  FROM S e r v i c e S e l e c t i o n H i s t o r y  

WHERE ( S e r v i c e T y p e  = " P r i n t e r " )

AND ( (H o u rO fD a y  = " 14" ) AND ( R o l e  = " A c a d e m ic " ) )

AND (W henO ccurred  >= " 2 0 0 4 - 0 6 - 1 5  1 4 : 0 6 : 4 2 " )

The type-matching test is superfluous in this scenario, given that the service selection 

history only records printer selections. However, it does demonstrate how type- 

matching selections would be identified, if selections of multiple service types were 

recorded.

The Relevant Service Selection Obtainer submits the constructed data-request to 

the service selection history database (stage 2). The history database returns to the
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registry the requested attributes of the relevant service selections, which are stored 

in a Relevant Service Selection Collection (stage 3).

•  Recommendation generation - The Relevant Service Selection Collection is passed 

to the Recommendation Generator (stage 4). The Collection stores the service se

lections in a data-structure optimised for the particular operation of the Generator. 

The Generator analyses these relevant service selections, generating a Personalised 

Service Recommendation by ranking the available type-matching services (depart

mental printers) according to collective perceived appropriateness. As was noted 

earlier, the available printers are assumed to be those that were recorded in the 

service selection history as used in the last 12 weeks. Two implementations of the 

Generator component have been implemented: one that implements the STR algo

rithm, and another that implements the SCO algorithm. As specified by the basic 

registry design, if no relevant service selections were identified (the Collection is 

empty), any Generator component will generate a recommendation that consists of 

all the available type-matching services in a single tied rank.

• Recommendation output - The Personalised Service Recommendation (of depart

mental printers) is returned to the consumer (stage 5). The Recommendation is 

implemented as an ordered array of Service ID arrays. The core array represents 

the different ranks of the recommendation, with an array element referencing an 

unordered array containing the ServicelDs of services with that particular rank.

Although the design-adhering recommending registry prototype was constructed to 

recommend printers in the DCS scenario, it could have been used to recommend any 

other type of service, in any other scenario, with minimal modifications. The prototype 

operates without any understanding of the service selection history’s content with which it 

generates recommendations, apart from the fact that it conforms to the design-specified, 

symbol-interpreted history format. Thus, from the perspective of the registry, it could 

have been recommending printers, or projectors, or DNA sequence-analysers, or any other 

type of service, in any scenario.

Owing to the nature of the investigative DCS printer scenario, with selections of ser

vices of only one type (printers) being recorded in the service selection history, the con

structed prototype did not enable the consumer to request a particular service type to 

be recommended: the prototype could only recommend one! However, if selections of
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multiple service types were recorded, it would be simple to modify the prototype so that 

the consumer could specify a particular service type in the submitted service request. 

This service type could then be used in the type-matching test of the constructed relevant 

service selection data-request, and the corresponding service recommendation generated.

9.1.3 The Setup of the Evaluation

The prototype recommending registry was evaluated for effectiveness using my ESSE- 

based scheme defined in Chapter 7. More precisely, the registry was evaluated in terms 

of the printer recommendations it generated in response to ESSEs (Experienced Service 

Selection Entries; see Section 7.4.1) identified between 4th January 2004 00:00 and 31st 

January 2004 00:00. During this time period, 12120 printer selections were made, involving 

573 different individuals using 56 different printers. ESSEs were chosen from the month of 

January 2004 as, by then, departmental printer selections had been recorded for at least 

3 months (history recording began in late September 2003). Thus, the generated ESSE 

recommendations could be based on a reasonably-sized service selection history.

Setting the ESSE Condition

To identify ESSEs, the ESSE condition needed to be defined. For a considered printer 

selection, this condition is the minimum number (m) of past printer selections (and cor

responding uses) that the selecting individual had to make in the last n  days for him to 

be considered experienced enough, and the selection an ESSE. The figure of 28 days was 

chosen for n. As has already been noted, change is an infrequent occurrence in the DCS 

printer scenario. Thus, someone who had used departmental printers in the last 28 days 

should have some relevant prior experience when making a printer selection.

Choosing m  was slightly more complex, and was done empirically in this research. 

The value of m  needed to be large enough in order for the set of ESSEs identified to 

be appropriate printer selections; the more times a selecting individual had recently used 

department printers, the more experience he should have, and the more likely he would be 

to make an appropriate choice. However, the value of m  also needed to be small enough 

so that the ESSEs identified were representative of departmental printing behaviour, and 

thus of the printer requests that uninformed consumers might submit to the recommending 

registry. Ideally, the ESSE set should refer to as many different individuals (in different 

situations) and printers as possible.
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To explore the consequences of choosing different values of ra, 9 ESSE sets were first 

identified by setting m  to values between 0 (least strict) and 40 (most strict), at increments 

of 5; n was set to 28 days in all cases. These different sets were then assessed in terms of 

their size, and the number of different individuals and printers they referred to. Figure 9.3 

plots, for each ESSE set identified using a different value of m  (the x axis), the number of 

selecting individuals tha t it refers to (the y axis). Graphs for the number of printers each 

ESSE set referred to, and the number of selections it contained, are given in Appendix B, 

in Figures B .l and B.2 respectively.
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ESSE condition (number of past printer selections made)

Figure 9.3: The Number of Selecting Individuals Referred to by an ESSE Set

Through consideration of the DCS printer scenario, and assessment of Figures 9.3, B .l 

and B.2, it was decided to set m  =  5. Hence, it was assumed that someone who had 

selected and used departmental printers at least 5 times in the last 28 days had enough 

awareness and understanding to make an appropriate printer selection. Even if he had 

initially selected inappropriate printers, such as one in someone else’s private office, or 

a slow one, by the sixth attem pt he should have gained enough experience to make an
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appropriate choice.

Figure 9.3 shows that, when m  = 5, 398 selecting individuals were referred to in the 

identified set of ESSEs. This is 69.46% of the maximum number possible, as 573 different 

individuals made printer selections during the considered time segment. In other words, 

175 individuals, almost one third of those who made printer selections, were disregarded. 

Presumably, these people were less likely to have made appropriate printer selections. 

However, despite ignoring this number of individuals, the m  = 5 ESSE set would seem to 

strike the best balance between containing appropriate printer selections and being repre

sentative of departmental printing behaviour. At m =  10, only 306 selecting individuals, 

or 53.4% of the maximum, were referred to in the identified set of ESSEs; 267 were not. 

After m =  10, the proportion decreases on an almost linear basis. Thus, for the values of 

ra > =  10, the identified ESSE sets cannot be considered representative of departmental 

printing behaviour, given that the behaviour of so many individuals (potentially all in 

different situations) is being ignored.

Figures B .l and B.2 show that the 771 =  5 ESSE set refers to 54 different printers 

(out of a maximum of 56 used in the considered time segment), and contains 10397 printer 

selections (out of a maximum of 12120). Consequently, by evaluating the prototype registry 

using such a representative ESSE set, it should be possible to determine how well it 

generally performs in the DCS printer scenario.

In summary, the prototype recommending registry was evaluated using the set of ESSEs 

identified between 4th January 2004 00:00 and 31st January 2004 00:00, with the ESSE 

condition defined as m  =  5 and n =  28 days. The ESSE set consisted of 10397 printer 

selections, involving 398 individuals using 54 printers.

Handling Incomplete ESSEs

For a small number of these ESSEs, it had not been possible for the history recording 

mechanism to record Location and/or Role situation attributes. For 2.32% (241) of these 

service selections, Location was not recorded, and for 0.36% (37), Role was not recorded. 

This is simply a consequence of the way in which the Location and Role attributes were 

acquired by the mechanism. For example, as was detailed in Section 9.1.2, the Location 

of a printer selection was estimated using two approaches; if neither succeeded, it was not 

possible to record the attribute. If the prototype registry was configured with a situation 

attribute subset involving Location or Role, then in generating a recommendation for
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such an ESSE, the relevant service selection data-request could not be constructed due to 

the lack of required situation attributes. Given that no relevant service selections could 

therefore be identified, it was decided that, in such cases, a recommendation should be 

generated that consisted of all the available type-matching services (departmental printers) 

in a single tied rank. This is the same approach as that taken when a data-request could 

be constructed, but no relevant service selections were identified in the service selection 

history.

The Range of Tolerance Levels

For the 10397 ESSE recommendations generated, the minimum length of recommendation 

was 66, and the maximum was 68 (i.e. the minimum number of departmental printers 

ever available was 66, and the maximum was 68). The values of RSP (Recommendation 

Success Probability; see Section 7.4.3), IOC (Improvement over Chance; see 7.4.4) and 

NCIOC (Normalised Cumulative IOC; see Section 7.4.5) were therefore calculated for 

every tolerance level between 1 and 68.

Setting the Tolerance Level for NCIOC Assessment

It was decided to assess the NCIOC value of the prototype registry at tolerance level 5. 

That is, a consumer would only be willing to consider a maximum of 5 top-ranked printers 

in a recommendation before giving up. In the DCS printer scenario, many consumers are 

required to walk to a printer to collect their printed documents after printer selection and 

use. A consumer would thus be likely to discard a personalised service recommendation 

quickly if it directed him to various highly ranked printers that proved inappropriate.

9.2 Evaluation of P rototype R egistry Effectiveness

As the working prototype recommending registry was the first manifestation of my pro

posed CF-based approach to personalised service recommendation, initial experiments 

were of an entirely exploratory nature. It was necessary to ascertain whether the proto

type registry could, in fact, generate effective recommendations and, if so, how effective 

the registry could be, in order to assess the validity of the basic registry design. Hypothet

ically, the choice of the situation attribute subset used to assess printer selection situation- 

similarity and the length of time-window used to assess printer selection recency could be
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expected to have a definite impact on the effectiveness of the registry-generated printer 

recommendations. The choice of recommendation generation algorithm, in this case STR 

or SCO (Selection Tied Ranking or Selection Count Ordering; see Section 8.2.6), could 

also be expected to affect effectiveness. In order to explore these issues, the prototype 

registry was configured in a variety of ways, and evaluated in terms of the 10397 ESSE 

recommendations generated, in three experiments.

P re se n ta tio n  o f E v a lu a tio n  R esu lts

For each experiment, the evaluation results for the various registry configurations assessed 

are presented in the format of four graphs, as specified in Section 7.5, together with an 

information table. As an explanatory example, consider Figure 9.4, which presents the 

results for Experiment One, in which 8 registry configurations were evaluated.

G ra p h s  To recap, the top two graphs plot Recommendation Success Probability (RSP) 

against tolerance level; the top left plots RSP for tolerance levels 1 to 68, whilst the top 

right “zoomed-in” graph plots RSP for tolerance levels 1 to 10. The bottom left graph 

plots Improvement over Chance (IOC), as a percentage point difference, for tolerance levels 

1 to 68. The bottom right graph plots Normalised Cumulative Improvement over Chance 

(NCIOC), also for tolerance levels 1 to 68. The evaluated registry configurations have all 

been plotted on the graphs, for easy comparison.

T able  The bottom table provides more detailed information on the registry configura

tion evaluations. For a particular configuration, the “Recommendations” columns provide 

information on the ESSE recommendations generated by the registry. The “Success” col

umn records the number of recommendations that were generated through assessment of 

a non-zero number of identified relevant service selections. The two “Failure” columns 

record the number of those that were not. More precisely, the “No service selections” 

column refers to the number of ESSE recommendations in which no relevant service se

lections were identified in the service selection history. The “No user situation” refers to 

the number of those in which no relevant service selections could be identified, as a lack of 

required situation attributes prevented the construction of the selection data-request. As 

was noted earlier, in both such cases, the recommendation generated consisted of all the 

available type-matching services (departmental printers) in a single tied rank.
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For a particular configuration, the “Successful Recommendations Info” columns pro

vide information on the identified relevant service selections of the successful ESSE rec

ommendations. The “Mean #  Service Selections” column records the average number of 

relevant service selections on which a successful recommendation was based. The “Mean #  

Users” and “Mean #  Services” record the average number of different selecting individuals 

and services these relevant service selections referred to.

For a particular configuration, the “NCIOC” column records the calculated NCIOC 

value, at tolerance level 5. To the left of this column, the “Cumul. IOC” column records 

the equivalent cumulative IOC value (i.e. pre-normalised). By comparing the NCIOC 

values (or cumulative IOC values) of the different configurations, it is possible to identify 

which configuration was most effective. The “Rank” column records the rank of the 

configuration, if the evaluated configurations are ordered by NCIOC value, highest to 

lowest. The configuration with rank 1 was most effective.

The Importance of NCIOC

Despite the many table-recorded details of the registry configuration evaluations, however, 

much of the information is not relevant at this stage. The most important issue is the 

effectiveness of the different registry configurations, which can be assessed using the last 

three table columns, particularly the “NCIOC” column. Recollect that an NCIOC value 

greater than 0 indicates that the registry-generated recommendations were more effective 

than randomly-ordered ones. The higher the value (up to a theoretical “perfect” maximum 

of 1), the more effective the registry.

9.2.1 Experim ent One - Can the Registry Generate Effective Recom 

mendations?

The aim of this initial experiment was to ascertain whether the working prototype registry 

was able to generate effective recommendations for all or any of the 8 possible situation 

attribute subsets of HourOfDay, Location and Role. As such, the registry was evaluated 

for 8 configurations, which differed in terms of situation attribute subset but which all used 

the same length of time-window and recommendation generation algorithm. Given that 

change is an infrequent occurrence in the DCS printer scenario, a time-window of 12 weeks 

was deemed suitable. As this was a pilot experiment, the more basic recommendation 

generation algorithm of STR was used. The results are shown in Figure 9.4.
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Figure 9.4: Experim ent One - Can the Registry Generate Effective Recommendations?
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Encouragingly, even at this early stage, 7 of the 8 registry configurations evaluated did 

generate effective recommendations that were an improvement over chance, having NCIOC 

values greater than 0. Moreover, the NCIOC values of the 3 highest-ranked configurations 

are well above 0, ranging from 0.4633 to 0.5864, although some way off a “perfect” 1. 

In terms of RSP, a consumer with tolerance level 3 had a 66.34% chance of finding an 

appropriate service with the top-ranked registry configuration (HourOfDay & Location). 

At tolerance level 5, his chances had increased to 75.72%. Also at tolerance level 5, the 

RSPs of the second and third-ranked registry configurations (HourOfDay & Location & 

Role, and Location & Role) were 66.91% and 66.98% respectively.

9.2.2 Experiment Two - W hat Impact D oes SCO Have on R egistry Ef

fectiveness?

Following on from the first experiment, the second experiment was set up to ascertain 

whether the use of the more advanced SCO recommendation generation algorithm, rather 

than STR, would have an impact on registry effectiveness. To this end, the registry was 

configured to use SCO, with all other aspects being identical to those of the previous 

experiment. The results are shown in Figure 9.5.

The use of the SCO algorithm has clearly had a significant impact on registry effective

ness. All 8 of the evaluated registry configurations have now generated recommendations 

that are an improvement over chance, having NCIOC values greater than 0. Moreover, 

relative to the previous experiment, the NCIOC values of all 8 configurations have been 

boosted. The values of the 3 highest-ranked configurations now range from 0.6867 to 

0.7605. Indeed the 6 highest-ranked configurations have values which are greater than 

that of the top-ranked configuration in the previous experiment; the sixth-highest NCIOC 

value is 0.6317, compared with the top rank value of 0.5864 in Experiment One. Interest

ingly, the rankings of the configurations have also changed. For example, Location, ranked 

fourth in the last experiment, is now first; HourOfDay & Location, ranked first in the last 

experiment, is now second.

In terms of RSP, a consumer with tolerance level 1 had a 70.98% chance of finding 

an appropriate service with the top-ranked configuration (Location). At tolerance level 3, 

his chances had increased to 78.92%, and at level 5, to 79.78%. All of these values are 

distinctly higher than those of the top-ranked configuration in the previous experiment 

(33.96%, 66.34% and 75.72% respectively). Indeed, for these tolerance levels, the RSP
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Figure 9.5: Experim ent Two - W hat Im pact Does SCO Have on Registry Effectiveness?
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values of the second (HourOfDay & Location: 68.6%, 74.74% and 75.87%) and third- 

ranked configurations (Location &; Role: 64.67%, 71.47% and 72.58%) are quite similar to 

those of the top-ranked configuration.

9.2.3 Experim ent Three - W hat Impact does Tim e-W indow Length Have 

on R egistry Effectiveness?

The aim of the third experiment was to determine whether the length of time-window 

used would have an impact on registry effectiveness. The registry was configured to use 

the SCO recommendation algorithm, and the situation attribute subset of Location, as 

this partial configuration had produced the most effective recommendations so far (with a 

time-window length of 12 weeks). The registry was then configured to use, and evaluated 

for, each of the following lengths of time-window: 1 hour, 1 day, 1 week, 2 weeks, 4 weeks, 

8 weeks, 12 weeks, and no time limit (i.e. as far back as the service selection history 

recorded). The results are shown in Figure 9.6.

The largest NCIOC value occurred when the time-window was set to 12 weeks. For 

time-windows of less than 12 weeks, the smaller the time-window, the smaller the NCIOC 

value. For the time-window greater than 12 weeks ( “no time limit”), the NCIOC value 

was also smaller. Presumably, for the ESSE set used in this evaluation, 12 weeks was 

the optimal “trade-off” length of time-window, as suggested in Section 8.2.4, that enabled 

the prototype registry to generate the most effective recommendations whilst reflecting 

relevant chance as rapidly as possible. Coincidentally, 12 weeks was the length of time- 

window I chose for the previous 2 experiments, based on my knowledge of the DCS printer 

scenario.

9.3 Conclusion

As was stated in Sections 8.1 and 9.1, the aim in constructing the prototype recommend

ing registry and subsequently evaluating it was to ascertain whether the basic CF-based 

recommending registry design was both viable and valid.

Viability has been shown by the fact that it was possible to construct a working 

recommending registry which adhered to the basic design and did generate personalised 

service recommendations based on a recorded service selection history.

The validity of the basic design has been shown by the fact that the personalised service
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recommendations generated by the prototype registry were effective, in that most registry 

configurations evaluated did produce recommendations which were a distinct improvement 

over chance, having NCIOC values significantly greater than 0. In particular, the top 

evaluated registry configuration (SCO algorithm, Location, 12 weeks; see Figure 9.5), with 

an NCIOC value of 0.7605, was just over three-quarters as effective as the perfect (and 

unattainable) recommending registry (i.e. NCIOC =  1). It should be noted that, had the 

prototype registry generated actual recommendations for actual uninformed consumers, it 

would probably have been even more effective. For the sake of stringency, the evaluation 

scheme disregards all past service selections of an ESSE selecting individual in generating 

an ESSE recommendation (see Section 7.4.2). Obviously, this would not happen in real 

registry deployment.

The results of the three experiments have also supported the hypothetical assumption 

that the effectiveness of recommendations generated by a CF-based recommending registry 

would be dependent on the three main integral aspects of the CF-based approach. The 

type-specific choices of situation attribute subset and length of time-window have a definite 

impact, which can be ascribed to the fact that these two particular aspects determine the 

relevant service selections identified on which a recommendation is based. The type of 

recommendation generation algorithm also has considerable impact, which is unsurprising, 

given that it dictates how the recommendation is actually generated from the relevant 

service selections. Of the two algorithms evaluated, SCO performed better than STR. 

Presumably, this can be attributed to the fact that SCO interprets the number of times a 

service was selected as a direct indication of its appropriateness, in contrast to the more 

basic interpretation of STR.

9.3.1 An Advanced Recom m ending Registry Design Justified

Given the demonstrated viability and validity of my basic CF-based recommending reg

istry design, development of a more advanced version seemed justified. After consideration 

of the basic design in the light of the evaluation, I identified three design elements which 

could benefit from further investigation and improvement: the recommendation generation 

algorithm; the situation-similarity test used in identifying relevant service selections; and 

the developer task of registry configuration. Discussion of, and solutions to, these three 

aspects are presented in the following three chapters. A more advanced recommending 

registry design is subsequently defined in Chapter 13. This advanced design is an aug-
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merited form of the basic CF-based design, which incorporates the improvements discussed 

and defined in the next three chapters.

9.4 Summary

The focus of this chapter has been the assessment of my basic CF-based recommending 

registry design in terms of viability and validity. This assessment was undertaken through 

the construction and evaluation of a design-adhering working prototype registry to recom

mend printers in the Department of Computing Science at the University of Glasgow.

The DCS printer scenario has been defined, and details of how the service selection 

history was recorded, and how the prototype registry was implemented, have been set out. 

Information has then been given about the evaluation setup for assessing prototype registry 

effectiveness, and the three evaluation experiments have been described and discussed.

The conclusion was drawn that the demonstrated viability and validity of the basic 

CF-based recommending registry design justified the design’s development into a more 

advanced version. The next chapter is concerned with the first stage of this development 

process, namely research in connection with an advanced recommendation generation al

gorithm.
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Chapter 10

A n A dvanced R ecom m endation  

G eneration A lgorithm

The focus of this chapter is the development of an alternative recommendation 

generation algorithm which would be more robust than SCO in the face of de

liberate and devious manipulation of a design-adhering recommending registry.

Such an algorithm, based on the notion of consensus, is defined, and various 

aspects of it are then discussed in greater detail. Finally, the consensus-based 

algorithm is evaluated under a number of different conditions.

10.1 The Problem  of “Spam m ing”

The first element of my basic CF-based recommending registry design to be further de

veloped was the recommendation generation algorithm. From the effectiveness evaluation 

results of the previous chapter, it might appear that there was little need to improve 

upon this design aspect. High levels of registry effectiveness (e.g. NCIOC =  0.7605) were 

demonstrated when the prototype was configured to use the SCO (Selection Count Or

dering) recommendation generation algorithm. Surely SCO is a perfectly adequate choice 

for the recommending registry design? Unfortunately not: a recommending registry that 

used SCO could easily be manipulated by a service provider in order to achieve an un

deservedly high recommendation rank for his service. In the face of such deliberate and 

devious manipulation, the effectiveness of the registry could be significantly diminished.

Imagine that a recommending registry is deployed in a commercial service-oriented 

scenario. In this competitive environment, every service provider wants to attract as
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much custom as possible to his service. More users equate to more money, either through 

fees paid by the users themselves or through some form of advertising. Thus, there is a 

powerful financial motivation for a provider to ensure that his service achieves the highest 

rank possible in the recommendations generated by the registry, by fair means or foul. 

The higher the rank, the greater the possibility tha t the service will be selected and used 

by the requesting consumer, and more custom gained.

Imagine that a provider is dissatisfied with the ranks currently achieved by his service 

in the registry-generated recommendations, and wants to improve on them. How could 

he do this? Let us assume that the provider understands that the registry adheres to the 

CF-based approach, and knows how a personalised service recommendation is generated 

in response to a consumer’s service request. More precisely, he knows that the consumer’s 

recommendation is generated using an algorithm that ranks the available type-matching 

services by some measure of collective perceived appropriateness, through assessment of 

the relevant service selections identified from the service selection history. To recap, the 

relevant service selections are those which refer to a service of the requested type, and that 

were recently made in the consumer’s situation; i.e. those that passed the three tests of 

type-matching, situation-similarity and recency defined in Section 8.3.1.

Given this information, the honest course of action that the service provider could take 

to achieve higher recommendation ranks would be to improve his service. For example, 

if the service was a grid DNA sequence-analyser in the running illustration of Bob, the 

provider might move the analyser to a more powerful machine with better network con

nections. This should lead to better processing-throughput of genome data, and better 

latency and bandwidth. The improvement should hopefully be noticed, and more people 

in more situations should begin selecting and using the service more often, perceiving it 

to be the most appropriate of the alternatives available. This change in service selection 

behaviour would be reflected in the relevant service selections identified by the registry, 

and should therefore translate into higher recommendation ranks for the provider’s service. 

A higher rank would be deserved, given that the service had been improved.

The alternative, dishonest course of action that the service provider could take, rather 

than improving the service, would be to attem pt to manipulate the process by which a 

recommendation was generated, so that the registry was misled into giving the service 

an undeservedly higher rank. Such deliberate and devious registry manipulation will be 

referred to as “spamming” . This term is adopted from the field of web search, where it is
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used to refer to any deliberate actions taken by a web page author in an attem pt to mislead 

a search engine into giving his page an undeservedly high rank in a query result [51].

W hat form would this recommending registry spamming take? The ranking of services 

in a recommendation is determined by two elements: the relevant service selections identi

fied from the service selection history, and the recommendation generation algorithm that 

assesses them. Thus, to spam the registry for a service s of type t in a particular situation 

p, the service provider (or a hired agent) would essentially have to make sham selections 

of s so that:

1. In the future, when the registry responded to a request made by a consumer in 

situation p for a service of type t, the sham selections would be identified as relevant. 

Thus, the sham selections would need to have been recently made in situation p.

2. When these identified relevant service selections, including the sham ones, were as

sessed by the recommendation generation algorithm used by the registry, s would be 

interpreted as being more appropriate than before spamming occurred, and would 

consequently be ranked higher in the type t recommendation returned to the con

sumer.

If the registry used the SCO recommendation generation algorithm, the provider could 

easily achieve a very high recommendation rank for his service through spamming. With 

SCO, a recommendation is generated by assessing the relevant service selections, and 

ranking the available type-matching services by the number of times each one was selected. 

Thus, in spamming the registry for service s in situation p, the provider could simply make 

repeated sham selections of s there. When the registry responded to a request made by a 

consumer in situation p for a service of type t , a large proportion of the relevant service 

selections identified would thus be sham service selections, and s should achieve a higher 

rank in the generated type t recommendation. Indeed, if over half the relevant service 

selections were sham selections, then s would be ranked in first place!

As an example, consider Figure 8.1 again. This figure illustrated a grid recommending 

registry responding to a request made by Bob in the 130.209.240 IP subnet (his situation) 

for a service of type Seq_Analyser, at 05/08/2004 11:27:32. Note that when SCO was 

used, Seq_Analyser D was ranked fourth in the generated recommendation, since it had 

not been selected at all. Imagine instead that the provider of D, Clara, had recently decided 

to spam the grid registry, being dissatisfied with the generally low recommendation ranks
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that her analyser was achieving. She ascertains that the grid registry is using SCO, and 

that a generated Seq_Analyser recommendation is based on recent analyser selections that 

were made in the IP subnet of the requesting consumer. Having access to machines in 

certain subnets, Clara begins spamming the grid registry on 04/08/2004 by selecting and 

“using” D multiple times every day from each machine. One of the machines used by 

Clara is situated in the 130.209.240 IP subnet. Now consider Figure 10.1. This shows 

the grid recommending registry generating the same Seq_Analyser recommendation for 

Bob as in Figure 8.1, but in the face of Clara’s spamming. Note that four of the relevant 

service selections now identified by the registry are sham selections of D made by Clara. 

Consequently, the grid registry generates a recommendation that ranks D in first place, 

since it was selected more times than any other analyser. Given that D would have been 

ranked fourth without Clara’s deliberate manipulation, the spamming has clearly been a 

success.

The potential problem of devious manipulation of a recommending registry was initially 

alluded to in the original research question of how to generate a recommendation, detailed 

in Section 6.2.1.

10.2 The N eed for an A lternative R ecom m endation Gener

ation A lgorithm

The evaluation results of the previous chapter do demonstrate that a recommending reg

istry which used SCO could be effective, in terms of recommendations generated. However, 

in the DCS printer scenario in which the evaluation took place, the prototype registry was 

not being spammed. The registry was not actively deployed to generate printer recom

mendations to actual consumers, so logically no-one can have been attem pting to boost 

the recommendation rank of a particular printer. Moreover, given that all the printers 

are owned by the same service provider (the Computing Science department), there is no 

reason why spamming should ever occur in this scenario.

However, in the face of spamming, the effectiveness of a recommending registry that 

used SCO could significantly diminish, as will be demonstrated later in the chapter. Given 

the ease with which the rank of a service could be boosted through the simple use of large 

numbers of sham service selections, the highest ranks of a registry-generated recommen

dation could very possibly be occupied by “spam” services. Since it is likely that most of
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Bob's Service Request:
Service type: Seq_Analyser
Situation attributes: (NetworkLocation = "130.209.240") 
Current date-time: 05/08/2004 11:27:32

Available Seq_Analyser Services: A, B, C, D, E, J

Relevant Service Selections

ServicelD UserlD WhenOccurred

B A64 23/07/2004 14:55:02
E A62 27/07/2004 18:37:08
B A29 27/07/2004 21:04:59
B A29 02/08/2004 11:32:26
J A12 02/08/2004 12:49:48
W A09 03/08/2004 14:55:02
D Clara 04/08/2004 10:00:00
D Clara 04/08/2004 11:00:00
D Clara 04/08/2004 12:00:00
D Clara 04/08/2004 13:00:00
J A62 05/08/2004 10:14:17

Seq Analyser Recommendation:
1. D (would be ranked 4th without spamming)
2. B
3. J
4. E
5. A, C

Figure 10.1: Spamming the Grid Recommending Registry
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these services would be inappropriate choices, the requesting consumer would be forced 

to search further to find an appropriate service, and the recommendation would be less 

effective.

As the SCO recommendation generation algorithm was considered an undesirable 

choice for a general recommending registry design, I decided to investigate and develop 

a more robust alternative algorithm that would enable a registry not only to be effective 

under normal conditions, but also to remain effective to a greater extent in the face of 

spamming. It is inevitable that a recommending registry that adhered to the CF-based 

approach could be affected by spamming in the form of sham service selections, and that 

its effectiveness could diminish. When a recommendation is generated, a sham selection 

looks no different to a normal one. However, as will be seen, it is possible to mitigate 

the effect that spamming has, through the use of a style of recommendation generation 

algorithm that limits the extent to which the recommendation rank of a spam service can 

be boosted.

10.2.1 A Different Style of Algorithm

In order to develop a different style of algorithm, I first reviewed the basic recommending 

registry design by considering the identified relevant service selections over which a rec

ommendation generation algorithm operates, and the history-recorded form they take. As 

was noted in Section 8.2.6, the core attributes of a service selection history entry record 

the service selected (ServicelD), the individual responsible (UserlD), and the date-time of 

occurrence (WhenOccurred). Viewed as a whole, therefore, the set of relevant service se

lections show a number of different individuals (each with a different UserlD) selecting and 

using a variety of different type-matching services (each with a different ServicelD) over 

time. Under spamming conditions, the service selections made by a few of these individu

als would be sham ones, explicitly made to mislead the recommending registry. However, 

more importantly, it can be assumed that those service selections made by all other indi

viduals would not be sham ones. A non-spamming individual would have selected services 

which he did believe were most appropriate, without any ulterior motive.

W ith this last point in mind, I then developed a style of recommendation generation 

algorithm which should, through its particular assessment of the relevant service selections, 

be able to mitigate the effect of spamming individuals on the recommending registry:

For each different selecting individual, infer his perceived opinion of the differ-
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ent type-matching services in terms of appropriateness, through assessment of 

the particular relevant service selections made by him. Such an opinion will 

take the form of an appropriateness-ordered list of the type-matching services.

Then, aggregate these individual opinions into a consensus opinion, which rep

resents the “average” opinion of the entire group of individuals who made 

the relevant service selections. This consensus opinion, also in the form of an 

appropriateness-ordered list of type-matching services, will serve as the basis of 

the personalised service recommendation returned to the requesting consumer.

W ith this style of algorithm, the opinion of any individual will be absorbed into the 

group consensus opinion, and thus the extent to which a spam service is boosted in the 

resulting recommendation should be limited. Let us assume that only a small proportion 

of those individuals who made the relevant service selections were spamming the registry. 

In terms of the opinion of a spamming individual, inferred from the sham service selections 

made by him, his spam service might be highly ranked. However, in terms of the inferred 

opinions of non-spamming individuals, the spam service would probably be ranked much 

lower, with many other services being considered more appropriate. Thus, given the larger 

proportion of non-spamming individuals, the group consensus opinion should reflect a 

similar view, with the spam service being ranked below many of these other services.

Returning to the example of Clara in Figure 10.1, the relevant service selections identi

fied by the grid registry in generating a Seq_Analyser recommendation for Bob were made 

by six different individuals. Since none of the five non-spamming individuals selected D, 

in contrast to Clara, this spam service should be ranked lowly in their inferred opinions, 

below the services that they did select (B, E, J  and W). Thus, the resulting consensus- 

based recommendation returned to Bob should reflect a similar view, with D achieving 

only a low rank.

Obviously, if the majority of those individuals who made the relevant service selections 

were spamming the registry, then their opinions could not be adequately countered by 

those of the non-spamming minority, and spam services could achieve high ranks in the 

generated recommendation: garbage in, garbage out. However, this would seem an unlikely 

occurrence.
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10.3 Social Choice Theory and M eta-Search

Owing to the novelty of my CF-based approach to personalised service recommendation, 

I was unable to find any pertinent research in either the area of service discovery, or that 

of CF, to aid me in the development of such a style of consensus-based recommendation 

generation algorithm. However, after further investigation, I did discover two other re

search areas, one in Economics and one in Computing Science, which did seem relevant. 

The two areas identified were Social Choice Theory and meta-search.

10.3.1 Social Choice Theory

Social Choice Theory is an area of Economics concerned with the study of electoral sys

tems for making group decisions (i.e. a social choice). An election involves a number of 

“candidates” and a number of “voters” . Typically, each voter expresses his opinion of the 

candidates by ranking them according to preference. These “preference rankings” are then 

aggregated to generate a consensus preference ranking, which represents the general opin

ion of the voters. Figure 10.2 provides an example of an election involving four candidates 

(named A to D) and five voters.

Voter Preference Rankings

1. A 1. B 1. A 1. A 1. D
2. B 2. A 2. D 2. B 2. B
3. C 3. D 3. C 3. C 3. C
4. D 4. C 4. B 4. D 4. A

Consensus Preference Ranking 

1. A
2. B
3. D
4. C

Figure 10.2: An Example Election

Elections of this form are used in various situations, either to choose a single “winning” 

candidate (the one that is top-ranked in the consensus preference ranking) or to obtain a
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complete ranking of all the candidates. Perhaps the most well known type of election is a 

political one, in which the voting population of a geographic area choose one of a number 

of candidates for political office (e.g. an election for a member of parliament). However, 

elections are also used to choose a subset of candidates for a committee or board, and 

to rate the performance of competitors in judged sports such as diving, synchronised 

swimming, gymnastics and figure skating [112]. In the case of judged sports, a number 

of judges (voters) score the performance of each competitor (candidate), which results 

in preference rankings for all the judges that are then aggregated to determine the final 

performance ranking of the competitors.

Social Choice Theory is concerned with how voters’ preference rankings are aggregated 

into a consensus preference ranking. Since the late eighteenth century, various electoral 

systems, or “rank aggregation methods” , have been devised to perform this function. 

For example, such methods include Plurality Voting (“first past the post”), Approval 

Voting, Single Transferable Vote and Borda Voting [29]. Levin and Nalebuff [75] provide 

a description and analysis of seventeen different rank aggregation methods. However, 

despite the variations in these methods, almost all are based on the pairwise comparison 

of candidates. Essentially, the preference ranking of each voter can be interpreted as a set 

of pairwise comparisons (preferences). For example, in Figure 10.2, it can be inferred from 

the voter preference ranking of [A < B < C <  D] (where “< ” means ranked above) that 

A is preferable to B, A is preferable to C, A is preferable to D, B is preferable to C, B is 

preferable to D, and C is preferable to D. By tallying up all voters’ pairwise comparisons 

for a particular pair of candidates, it is possible to determine which of the two candidates 

is generally preferred over the other. Typically, a rank aggregation method will apply 

this procedure to all pairs of candidates, and generate a consensus preference ranking by 

assessing the results in some way.

Referring back to the style of consensus-based recommendation generation algorithm 

outlined in Section 10.2.1, the generation of a personalised service recommendation can be 

seen to involve a form of election. In assessing the relevant service selections, the different 

selecting individuals can be viewed as “voters” , and the different type-matching services 

selected as “candidates” . Given that the inferred opinion of each individual is essentially 

phrased as a “preference ranking” of the type-matching services, with the services ranked 

by appropriateness, then theoretically a rank aggregation method from Social Choice The

ory could be used to generate the consensus opinion that forms the basis of a personalised
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service recommendation.

10.3.2 M eta-Search

Some research relating to the use of rank aggregation methods from Social Choice Theory 

has been undertaken in Computing Science, primarily in the Information Retrieval area of 

meta-search. A meta-search engine is a type of web search engine that does not respond 

to a user’s information query by assessing some internal database of processed web pages; 

it does not have one. Rather, it submits the query to other search engines, which each 

return results in the typical manner, as a ranked list of web pages ordered by relevance. 

The meta-search engine then merges these multiple lists, and returns the resulting single 

list to the user. Proponents of meta-search argue that such a merged result list can be more 

consistent and more effective (in terms of precision and recall) than any of the individual 

result lists on which it is based [4,98]. Certain meta-search researchers have realised 

that the merging of search engine results can also be viewed as a form of election. The 

underlying search engines queried can be viewed as “voters” , and the ranked lists which 

they return as “preference rankings” of web page “candidates” . Consequently, the use 

of certain rank aggregation methods from Social Choice Theory to generate the merged 

result list of web pages has been investigated [4,35,85,98].

Of particular interest in connection with my research is the work of Dwork et al [35,36], 

who were motivated to use rank aggregation methods in meta-search to mitigate the effect 

of search engine spamming. As was noted earlier, “spamming” in the field of web search 

is used to refer to any deliberate actions taken by a web page author in an attem pt to 

mislead a search engine into giving his page an undeservedly high rank in a query result. 

Dwork et al argued that the use of a rank aggregation method in a meta-search engine 

could counter any spamming that had successfully misled individual search engines whose 

results were being merged. That is, any spam pages that might have achieved high rankings 

in the results of some search engines would only achieve a low ranking in the “consensus” 

results of the meta-search engine. Dwork et al used a standard rank aggregation method 

in their research, and also developed some new methods to address spamming. Their 

results suggested that the use of these rank aggregation methods were indeed successful in 

mitigating the effects of search engine spamming. This research was thus of value to me 

when I was devising a consensus-based recommendation generation algorithm intended to 

mitigate the effects of recommending registry spamming.
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10.4 The Consensus-Based R ecom m endation Generation Al

gorithm  Defined

The consensus-based recommendation generation algorithm that I devised is defined below. 

The algorithm takes the form of a template, and consists of a sequence of four self-contained 

steps, each with a particular function. The first three steps can all be implemented in a 

number of different ways. Consequently, an overview of the entire algorithm will first be 

given, followed by a discussion of the particular variants of each step that were used in 

this research. The overview will be given with the aid of Figure 10.3, which provides a 

pictorial representation of the algorithm steps, and shows a recommending registry using 

the algorithm to generate a personalised service recommendation in response to an example 

service request.

10.4.1 Algorithm  Overview

A proposed recommending registry responds to a consumer’s service request by first iden

tifying those type-matching services that are currently available. It also identifies rele

vant service selections from the service selection history (those which are type-matching, 

situation-similar and recent). The relevant service selections show a number of different 

individuals selecting and using a number of different type-matching services over time. 

Since the devised algorithm essentially takes the form of an electoral system in Social 

Choice Theory, these different selecting individuals will be referred to as “voters”, and 

all the different services selected as “candidates” , or “service candidates” , as and when 

necessary.

In terms of the Figure 10.3 example, four available type-matching services have been 

identified: A, B, C and E. Nineteen relevant service selections have been identified, which 

show three different voters (Voter_1, Voter_2 and Voter_3) selecting and using four different 

service candidates (A, B, C and D). Note that a voter has not necessarily selected every 

service candidate (e.g. Voter_2 has not selected C or D).

Then, to generate a personalised service recommendation, a recommending registry 

must perform the following sequence of algorithm steps:

1. C a lcu la te  V o ter P re fe ren c e  R ank ings: For each voter, calculate his opinion of the

service candidates in terms of appropriateness, through assessment of the particular rele-
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Available Type-Matching Services: A, B, C, E

Relevant Service Selections

ServicelD UserlD WhenOccurred

A Voter_1 23/07/2004 14:55:02
A Voter_2 27/07/2004 18:37:08
C Voter_1 27/07/2004 21:04:59
B Voter_3 02/08/2004 11:32:26
B VoteM 02/08/2004 12:49:48
B Voter_2 03/08/2004 14:55:02
C Voter_3 05/08/2004 10:14:17
C Voter_3 05/08/2004 14:22:43
D Voter_3 06/08/2004 07:57:32
D Voter_3 06/08/2004 16:01:01
B Voter_1 06/08/2004 16:10:36
B Voter_2 06/08/2004 18:23:19
D Voter_3 07/08/2004 13:32:55
A Voter_1 07/08/2004 15:08:13
A Voter_3 07/08/2004 16:01:41
A VoteM 09/08/2004 09:00:03
A Voter_3 10/08/2004 08:19:56
A Voter_3 10/08/2004 08:23:10
A Voter_3 10/08/2004 09:03:30

1. Calculate Voter Preference Rankings

Voter 1: Voter 2: Voter 3:
1. A 1. B 1. A
2. B 2. A 2. D
3. C 3. C, D (inferred) 3. C
4. D (inferred) 4. B

2. Aggregate Voter Preference Rankings

Consensus Preference Ranking:
1. A
2. B
3. C, D

J i t
3. Locally Kemenise Consensus Preference Ranking

4. Convert to Personalised Service Recommendation

1. A
2. B
3.C
4. E

Figure 10.3: The Consensus-Based Recommendation Generation Algorithm
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vant service selections made by him. This opinion will take the form of an appropriateness- 

ordered list of the service candidates, and will be referred to as a “preference ranking” . 

If a voter has not selected certain service candidates, then it can be inferred that these 

are considered less appropriate than those that he did select. Thus, a complete preference 

ranking for such a voter can be obtained by placing the unselected service candidates in 

a bottom  rank. A preference ranking may contain ties (i.e. be a partial order), as service 

candidates may be calculated to have equal appropriateness. The methods devised to 

calculate a voter preference ranking are defined in Section 10.4.2.

In terms of the Figure 10.3 example, for two out of the three voters (Voter_l and 

Voter_2), a complete preference ranking of A, B, C and D has been obtained by placing 

unselected service candidates in a bottom rank (e.g. C and D for Voter_2).

2. A ggrega te  V o te r P re fe ren ce  R ankings: Using a rank aggregation method, ag

gregate the voter preference rankings into a consensus preference ranking. The rank ag

gregation methods adapted and used in this research are defined in Section 10.4.3.

3. L ocally  K em enise  C onsensus P re fe ren ce  R ank ing : Apply a process known as 

“local Kemenisation” to the consensus preference ranking. For the sake of simplicity, this 

process is not detailed here, but in Section 10.4.4. However, to provide a brief explanation, 

local Kemenisation was developed by Dwork et al [35], and involves the partial reordering 

of a consensus preference ranking to ensure that it satisfies the “Extended Condorcet Crite

rion” , an aspect of Social Choice Theory. In the context of meta-search, Dwork et al argued 

that local Kemenisation should further mitigate the effect of (search-engine) spamming on 

a consensus preference ranking of merged search-engine result lists. Theoretically, local 

Kemenisation should also be able to mitigate further the effect of recommending registry 

spamming on the consensus preference ranking generated in this algorithm.

4. C o n v e rt to  P erso n a lised  Service R eco m m en d a tio n : Convert the locally Ke- 

menised consensus preference ranking into a personalised service recommendation. The 

consensus preference ranking is an appropriateness-ordered list of the “candidate” type- 

matching services referred to by the relevant service selections. Thus, to convert it into 

a personalised service recommendation of available type-matching services, any candidate 

services that are not currently available must be removed. Moreover, any type-matching 

services that are available but are not candidates must be added. Given that these services
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had not been selected by any of the voters, it can be inferred that they are generally con

sidered less appropriate than the selected candidates, and can thus be placed in a bottom 

rank. The resulting appropriateness-ordered list of available type-matching services can 

then be returned to the requesting consumer as a personalised service recommendation.

In terms of the Figure 10.3 example, the consensus preference ranking contains one 

candidate service that is currently unavailable (D), and does not contain one of the avail

able type-matching services (E). W ith D removed and E added, the consensus preference 

ranking is converted into a personalised service recommendation.

10.4.2 Algorithm  Step One: Calculating a Voter Preference Ranking

I devised two methods, from first principles, to calculate the preference ranking of a voter 

from the relevant service selections made by him (algorithm step 1). One method is 

referred to as SCOVoter and the other as RPVoter.

SCOVoter

The SCOVoter (Selection Count Ordering Voter) method is based on the assumption that 

the number of times a voter selected a service is a direct indication of how appropriate 

he perceived it to be. Essentially more selections of a service are interpreted as more 

“votes of confidence” in its appropriateness. This assumption is very similar to that on 

which the original SCO recommendation generation algorithm was based. Thus, a voter’s 

preference ranking is calculated by ordering the service candidates by the number of times 

each one was selected by him, from most to least. Unselected service candidates are 

placed in a bottom rank. The voter preference rankings in the Figure 10.3 example were 

calculated using the SCOVoter method. So, the preference ranking of [A < B < C < D] 

was calculated for Voter.l, as he selected the service candidates three, two, one and zero 

times respectively.

RPVoter

I devised the RPVoter (Reward Punishment Voter) method after further consideration 

of SCOVoter, in response to what I perceived as SCOVoter’s inadequacies. Given that 

a personalised service recommendation is being generated for the “present” , the prefer

ence ranking of a voter should ideally reflect his most recent opinion of service candidate 

appropriateness. However, a preference ranking calculated using the SCOVoter method
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might not do this. For example, imagine that relevant service selections were identified 

from a large time-window, such as the last 6 months. A voter might have used service X a 

massive number of times in the first 5 months, and switched to using only service Y in the 

last month, considering it to be more appropriate. However, using SCOVoter, X would 

still be ranked above Y, as it had been selected a greater number of times overall.

A logical solution to this problem is to take into consideration the sequence in which 

a voter made his service selections, when calculating his preference ranking. If a service 

was only selected early in the sequence (i.e. not very recently), then it seems likely that 

the voter no longer considers it appropriate; services used later in the sequence seem likely 

to be considered more appropriate. Thus, I devised the RPVoter method to take into 

consideration the service selection sequence, and this method operates in the following 

manner. Please note that the description of method operation includes two variables - 

new s ervice-offset and oldservice-offset - that are not explained until later. However, at 

this stage it is only necessary to know that these variables are positive integers predefined 

by the recommending registry developer.

Firstly, order the voter’s relevant service selections by date-time, into the sequence in 

which they were made (oldest to most recent). Then, starting with the oldest service se

lection, process the ordered service selections one by one as defined below. For a processed 

service selection p which refers to a service s:

• If p is the first service selection in the sequence, then assign s a score of 0.

• If p is not the first service selection and s has not been selected before (i.e. s has 

not been referred to by an earlier service selection in the sequence) then:

1. Identify the largest current score of all the services selected so far, maxscore.

2. Assign s a score of maxscore — new s ervice-off set.

• If p is not the first service selection and s has been selected before then:

1. Add 1 to the current score of s.

2. Subtract 1 from the current scores of all other services selected so far.

3. Identify the largest current score of all services selected so far, maxscore.

4. Let min-acceptablescore be maxscore — oldservicesffset. If the current score 

of s is less than min-acceptablescore, assign s a new score of min-acceptablescore.
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Finally, having processed the entire sequence, rank the service candidates by their 

respective scores, from most to least. Unselected service candidates are placed in a bottom 

rank. The resulting ordered list is the voter’s preference ranking.

Essentially, RPVoter involves processing a voter’s relevant service selections in order 

of occurrence, rewarding each selected service (adding 1 point to its current score), and 

equally punishing all other services that have been selected before (subtracting 1 point from 

their current scores). This reflects the assumption that when the voter selects a particular 

service, he has decided that it is currently the most appropriate choice, whilst all the other 

services he has selected before are not. Thus, at any point during the processing of the 

voter’s service selection sequence, by ordering the selected services by their current scores, 

it is possible to obtain the inferred preference ranking of the voter at that moment in time. 

The service with the largest score is considered most appropriate, and will be top-ranked. 

There axe two “special cases” .

Special C ase O ne W hat initial score should be assigned to a service that has never been 

selected before? It can be assumed that the voter selected this “new” service either because 

he considered it to be most appropriate (as usual), or was trying it out. However, which 

interpretation is correct? Logically, if the voter proceeds to select the new service multiple 

times, then he does indeed consider it most appropriate, and it should ideally be top-ranked 

in the preference ranking as soon as possible. If he does not, and selects other services 

instead, then presumably he tried it out on a “one-off” basis, but it proved inappropriate. 

Assigning the new service a score of maxscore — new servicesffset cautiously allows for 

both interpretations. Since maxscore is the score of the currently top-ranked service, the 

new service will initially be ranked below it, as less appropriate. However, if the voter 

continues to select the new service, its score will increase, the score of the top-ranked 

service will decrease, and eventually the two services will switch ranking positions. The 

smaller the value of newservice-offset used, the less evidence required in the form of 

repeated voter service selections for the new service to be inferred as most appropriate 

and to achieve top rank. In contrast, if the new service is not selected again, its score will 

be eclipsed by those of the other selected services, and its rank in the preference ranking 

will decrease.

Special C ase Tw o The second special case is somewhat similar to the first. When a 

processed service selection refers to a service that has been selected before, the score of
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this service is increased by 1 and the scores of all other selected services decreased by 1 . 

However, what if the selected service is “old” , in the sense that it was last selected much 

earlier in the sequence, and therefore has a score much lower than that of the top-ranked 

service (maxscore)? Having not selected the old service for so long, it can be assumed 

that the voter was either trying it out again, or did indeed now consider it to be most 

appropriate. Again, which interpretation is correct? As before, it would logically appear 

that the voter now considers the old service most appropriate if he proceeds to select it 

multiple times. If he does not, and selects other services instead, then presumably he tried 

it out on a “one-off” basis, but it again proved inappropriate. If the voter does consider 

the old service appropriate, it should ideally be top-ranked in the preference ordering as 

soon as possible. However, given its low score, the old service would have to be selected a 

large number of times to eclipse the score of the currently top-ranked service. The logical 

solution is to assign the old service a new score of max.score — olds ervice-off set, if its 

initial score is less than this value. Through this boost, the old service will be able to 

achieve the top rank faster, if the voter repeatedly selects it; the smaller the value of 

o lds ervice-off set, the fewer selections required. However, if the old service is not selected 

again, this boosted score will be eclipsed by those of the other selected services, and its 

rank in the preference ranking will decrease.

Service Selection Sequence 
-> Time ->

A B B B C B B B B B A A A A A A B A

A 0 0 -1 -2 -2 -3 -4 -5 -6 -7 -4 -3 -2 -1 0 1 0 1

Service B -5 -4 -3 -3 -2 -1 0 1 2 1 0 -1 -2 -3 -4 -3 -4
Candidate

Scores C -7 -8 -9 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20

D

X U
Voter Preference Ranking:
1. A
2. B
3. C
4. D

Figure 10.4: Using the RPVoter Method

Figure 10.4 provides an example of the RPVoter method being used to calculate a 

voter’s preference ranking, with both new s ervice-off set and oldservice-offset set to 5. 

There are four service candidates: A, B, C and D. The voter has made 18 relevant service
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selections, which are ordered from left to right in the sequence in which they occurred (A, 

B, B, ... A, B, A). A, B and C were selected, but not D. After processing the entire service 

selection sequence, A has the highest score, followed by B and then C. Thus, the calculated 

preference ranking is [A < B < C < D], with unselected D being in the bottom rank. Note 

that if SCOVoter had been used, the calculated preference ranking would have been [B < 

A < C < D], even though B was used very little in the latter half of the sequence.

10.4.3 Algorithm  Step Two: Aggregating Voter Preference Rankings

Five existing rank aggregation methods were adapted and used in this research to aggregate 

voters’ preference rankings of the service candidates into a consensus preference ranking 

(algorithm step 2 ): Borda, and four methods based on Markov chains, known as MCi, 

MC2 , MC3 and MC4 . The Borda method was chosen as it is well-established in Social 

Choice Theory [75], is simple to implement, and has been used with some success in meta

searching [4]. The Markov chain methods were chosen as they were developed by Dwork 

et al [35] in their meta-search research into spamming mitigation, and therefore seemed of 

particular relevance.

To recap, in step 1 of the consensus-based recommendation generation algorithm, an 

appropriateness-ordered “preference ranking” of the “candidate” services (all those referred 

to by the relevant service selections) is calculated for each of the “voter” individuals 

responsible for the relevant service selections. In step 2, these voter preference rankings 

are then aggregated into a single consensus preference ranking of the service candidates.

In more formal terms, let 5  be the set of service candidates and V  the set of voters. Let 

r  be the calculated preference ranking of a voter v 6  V. r  is complete, in that it ranks all 

candidates in S, and may be a partial order (i.e. may contain ties). Let R  =  { r i , . . . ,  Tjy|}, 

the set of preference rankings for all voters in V. Then, in step 2, the rankings in R  are 

aggregated into a single consensus ranking, f .

Borda

In 1770, Jean-Charles de Borda proposed to the French Academy of Sciences the rank 

aggregation method that is now named after him [29]. The method assumes that each 

voter ranks every candidate in his preference ranking, which is a total order (i.e. contains 

no ties). The method operates as follows. For every voter preference ranking, a candidate 

is assigned a score equal to the number of candidates ranked below it. Thus, if there
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are n candidates, the first-ranked candidate in a preference ranking is assigned a score 

of n  — 1 , the second-ranked candidate a score of n  — 2 , and so forth, with the bottom- 

ranked candidate being assigned a score of 0. The Borda score of each candidate is then 

obtained by totalling up its individual scores for the set of all voter preference rankings. 

A consensus preference ranking is calculated by ordering the candidates by Borda score, 

largest to smallest. Thus, the candidates are being ranked by the total number of pairwise 

comparisons that they “won” (i.e. those in which they were preferred to, and ranked above, 

the other candidate). The consensus preference ranking in Figure 1 0 .2  was calculated using 

this method.

T h e  U nfa irness o f B o rd a  Despite its seeming applicability, the Borda method could 

not be used in the recommendation generation algorithm without minor modification. The 

voter preference rankings calculated in step 1 of the recommendation generation algorithm 

may be partial orders, whilst the original Borda method assumes only total orders. W ith 

Borda, a total of —2~ points are essentially being allocated between the n candidates, for 

each voter’s totally-ordered preference ranking. Thus, each voter contributes equally (in 

terms of points) towards the calculated consensus preference ranking. However, consider 

what would happen if some of the voters’ preference rankings were partial orders, such as 

[A < (B C) < D] (where there axe four candidates A, B, C and D). Using the original form 

of Borda, where a candidate is assigned a score equal to the number of candidates ranked 

below it, A would be assigned a score of 3 points, B and C a score of 1 point each, and D 

zero points; a total of 5 points. However, if a voter’s preference ordering was a total order, 

the total number of points would be 6  (3 +  2 +  1 +  0)! Thus, the different voters would 

contribute unequally towards the calculated consensus preference ranking, which would be 

unfair. My slight modification of Borda was designed to address this unfairness.

M y A d a p ta tio n  o f B o rd a  The modification of Borda I devised is based on the as

sumption that, even if the preference ranking of a voter calculated in step 1 of the recom

mendation generation algorithm is a partial order, the voter’s true opinion is actually a 

total order. Essentially, if only a partial order was calculated, there was not enough infor

mation in the voter’s relevant service selections to determine his true preference ordering 

of rank-tied candidates. From this perspective, a partially-ordered preference ranking can 

be interpreted as representing the set of totally-ordered preference rankings that are ob

tained by breaking rank ties in every possible way. One of these total orders is assumed to
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be the voter’s true preference ranking, with equal probability. For example, reconsidering 

[A < (B C) < D], the two corresponding total orders are [A < B < C < D] and [A < C 

< B < D], with each having a 0.5 chance of being the true preference ranking.

Based on this interpretation, my modified Borda method calculates a candidate’s score 

for a voter’s partially-ordered preference ranking as the average of the scores that would be 

assigned to it in the corresponding totally-ordered preference rankings. For example, for 

[A < (B C) < D], B would be assigned a score of 1.5 (as would C), since 2  candidates are 

ranked below it in one of the totally-ordered rankings, and 1 candidate in the other. The 

total of points allocated to the candidates in a partially-ordered voter preference ranking 

( 6  in the example) is the same as that in a totally-ordered voter preference ranking, so the 

modified Borda method is fair. As normal, the Borda score of each candidate is obtained 

by totalling up its individual scores for the set of all voter preference rankings, and a 

consensus preference ranking calculated by ordering the candidates by this score. The 

consensus preference ranking in Figure 10.3 was calculated using this modified method.

More formally, the modified Borda method can be defined as follows. For each service 

candidate s E S  and voter preference ranking t  e R, calculate b(s,r), the average number 

of candidates ranked below s in the total orders corresponding to r 1. In defining b(s,r), 

let:

• r be the rank of r  occupied by s.

• |r| be the number of candidates in rank r.

• a be the number of candidates in ranks above r.

Then:

b(s,r) = | S | - ( a + M - t i )  (10-i)

Continuing, for each candidate s 6  5, calculate the Borda score B(s, R ), the sum of b(s, r) 

for all r  £ R. That is:

B (s ,R ) = X > ( s , r )  (10.2)
t € R

Finally, to calculate the consensus preference ranking f , order all s G S  according to 

B (s ,R ), largest to smallest.

1A totally-ordered preference ranking simply corresponds to a single total order: itself.
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Markov Chain Methods: M C i - M C 4

The four rank aggregation methods of MCi, MC2 , MC3 and MC4 developed by Dwork 

et al [35] for meta-search are all variants of an approach based on the use of a Markov 

chain. As Dwork et al state, “a (homogeneous) Markov chain for a system is specified by 

a set of states S  =  {1 , 2 , . . .  ,n} and an n x n  non-negative, stochastic (i.e., the sum of 

each row is 1) matrix M .  The system begins in some start state in S  and at each step 

moves from one state to another state. This transition is guided by M:  at each step, if the 

system is in state ?, it moves to state j  with probability M tj.  If the current state is given 

as a probability distribution, the probability distribution of the next state is given by the 

product of the vector representing the current state distribution and M .  In general, the 

start state of the system is chosen according to some distribution x  (usually, the uniform 

distribution) on S. After t steps, the state of the system is distributed according to x M l . 

Under some niceness conditions on the Markov chain (whose details we will not discuss), 

irrespective of the start distribution r ,  the system eventually reaches a unique fixed point 

where the state distribution does not change. This distribution is called the stationary 

distribution. It can be shown that the stationary distribution is given by the principal left 

eigenvector y of M, i.e., yM  — Ay. In practice, a simple power-iteration algorithm can 

quickly obtain a reasonable approximation to y.” .

Dwork et al maintain that the probabilities in the stationary distribution vector y 

define a natural ordering on S. That is, the states in S  can be ranked according to their 

stationary probability, largest to smallest. Dwork et al refer to this ordering as the Markov 

chain ordering of M. They propose a style of rank aggregation method in which every 

candidate in the election corresponds to a state in 5, with the transition probabilities in 

M  depending in some particular way on the voters’ preference rankings of the candidates, 

and the resulting Markov chain ordering of M  being the consensus preference ranking. 

Essentially, the transition probabilities specified in M  correspond to a probabilistic switch 

from the current “candidate” state to a “better candidate” state. Thus, the larger the 

stationary probability of a candidate state, the “better” the candidate is calculated to be.

Dwork et al argue that there are several motivations for using a Markov chain as the 

basis of a rank aggregation method [35]. For example, it is argued that such a method could 

handle incomplete preference rankings, when not all voters had ranked (i.e. compared) all 

candidates. The claim is made that, having used available comparisons between pairs of 

candidates i and j  to determine the transition probability between i and j , the connectivity
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of the Markov chain could be exploited to (transitively) “deduce” comparison outcomes 

between candidate pairs that were not explicitly ranked by any of the voters. Secondly, it 

is stated that a consensus preference ranking could be calculated efficiently using a Markov 

chain. By explicitly computing the transition matrix M  in 0 (n 2k ) time (where n is the 

number of candidates and k the number of voters), an approximation of the stationary 

distribution can be obtained with a few iterations of the Power method [9]. Dwork et al 

suggest that it is actually possible to identify the top few candidates in the stationary 

distribution in 0 (n k ) time, after some preprocessing.

The four proposed variants of this style of rank aggregation method, MCi, MC2 , MC3 

and MC4 , differ in the specification of the Markov chain transition m atrix M . Dwork et 

al provide a justification of the specifications in [35]. The different specifications are given 

below. For all four methods, the assumption is made that voters’ preference rankings could 

be incomplete, not containing (ranking) all the candidates, and could be partial orders.

M C i: If the current state is candidate z, then the next state is chosen uniformly from 

the multiset of all candidates that were ranked higher than or equal to z in some 

preference ranking that contained z.

M C 2 : If the current state is candidate z, then the next state is chosen by first uniformly 

picking a preference ranking r  from all those that contained z, then uniformly picking 

a candidate from all those candidates that were ranked higher than or equal to z in

T .

M C 3 : If the current state is candidate z, then the next state is chosen as follows: first 

pick a preference ranking r  uniformly from all those that contained z, then uniformly 

pick a candidate j  that was ranked by r . If j  was ranked higher than z in r , then go 

to j , else stay in z.

M C 4 : If the current state is candidate z, then the next state is chosen as follows: first 

uniformly pick a candidate j  from the set of all candidates. If j  is ranked higher 

than z by the majority of preference rankings that contained both z and j ,  then go 

to j ,  else stay in z.

M y U se o f th e  M arkov  C h a in  M e th o d s  It was possible to use all four rank aggrega

tion methods in the recommendation generation algorithm without modification. Unlike
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the original version of Borda, the methods can process the complete and possibly partially- 

ordered voter preference rankings R  calculated in step 1 of the algorithm. However, in this 

research, I decided to experiment with two versions of each method. Dwork et al asserted 

that a rank aggregation method based on a Markov chain (MC) could handle incomplete 

voter preference rankings. In step 1 of my recommendation generation algorithm, the 

initial preference ranking of service candidates calculated for a voter could indeed be in

complete, if the voter had not selected certain candidates (see Section 10.4.1). As has been 

stated, if this occurred, an “inferred” complete ranking would be obtained by placing these 

unselected candidates in a bottom rank, on the assumption that they were considered less 

appropriate by the voter than those that he did select. Given that an MC-based rank ag

gregation method could handle either the initial and possibly incomplete voter preference 

rankings, or the inferred complete rankings, I decided to investigate each approach.

Two versions of each method were devised, which differ in their intepretation of R, the 

set of complete voter preference rankings calculated in algorithm step 1. In calculating a 

consensus preference ranking, the first, standard version ignores any inferred bottom ranks 

of voter preference rankings, only considering the rankings in their initial and possibly 

incomplete form. This version is referred to by the method’s original name (e.g. MCi). In 

contrast, the second, alternative version considers the rankings in their (possibly inferred) 

complete form. This version is referred to by the method’s original name, prefixed by 

“Inf” (which represents “Inferring”; e.g. InfMCi).

However, even on initial assessment, it would appear that, conceptually, the “non-inf” 

version of any MC-based rank aggregation method has certain undesirable qualities for a 

proposed recommending registry. Primarily, it is unfair, in that a voter with an incom

plete preference ranking would contribute less towards the calculated consensus preference 

ranking than someone with a complete ranking. The transition probabilities for candidate 

i in matrix M  (i.e. all M y, where j  is another candidate) are based only on voter pref

erence rankings that contain i. Thus, a voter with an incomplete preference ranking that 

does not contain i would not contribute towards these probabilities. More importantly, if 

fewer voters contribute towards these probabilities, the easier it would be for one of these 

contributing individuals to spam the registry successfully for i. The fewer the voters, the 

greater the spammer’s contribution on the transition probabilities, and the higher the 

rank potentially achieved by the spam candidate i in the calculated consensus preference 

ranking (and thus the recommendation). In contrast, my alternative “Inf” version of any
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MC-based rank aggregation method is fair. Since all voters will contribute (equally) to

wards every single transition probability in M  (every voter ranks every candidate), the 

impact of any spamming voter should be mitigated as much as possible. For similar rea

sons, the impact of any non-spamming voter with idiosyncratic behaviour, who ranked 

generally inappropriate services highly, should also be mitigated.

E xam ple  U sage o f M C -b ased  M e th o d s  in  M y C onsensus-B ased  R ecom m enda

tio n  G e n e ra tio n  A lg o rith m  Figure 10.5 provides an example2 of the MC-based rank 

aggregation methods being used to calculate a consensus preference ranking in the recom

mendation generation algorithm. For the three voter preference rankings R  =  {ti,T 2 ,T3 } 

of the three service candidates S  = {A, B , C} specified at the top of the figure, it shows the 

corresponding transition matrices determined for InfMCi, InfMC2 , InfMC3 and InfMC^ 

M 1, M 2, M 3 and M 4 respectively.

R a n k n 1*2 1*3

1 A c c

2 B A B

3 C B A

M 1 M 2

C a n d id a te A B C

A 11/18 2/18 5/18

B 5/18 8/18 5/18

C 2/18 2/18 14/18

C a n d id a te A B C

A 3/6 1 / 6 2 / 6

B 2/7 3/7 2/7

C 1/5 1/5 3/5

M 3 M 4

C a n d id a te A B C

A 6/9 1/9 2/9

B 2/9 5/9 2/9

C 1/9 1/9 7/9

C a n d id a te A B c

A 2/3 0 1/3

B 1/3 1/3 1/3

C 0 0 1

Figure 10.5: Example Transition Matrices

2This example is adapted from one given by Renda and Straccia [98]
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Some example computations for the matrix entries will now be given. Remember that 

is the probability that, if the current system state is candidate i, then the state after 

the next transition is candidate j .

• M \c  is 2/6. The multiset H  of candidates ranked higher than or equal to A  in some 

preference ranking that contained A  is {A, A, C, A, B, C}. Thus, the probability of 

uniformly choosing one of the candidates in H  is 1/6, and the probability of choosing 

C  is 2 / 6 .

• M BA is 5/18. The probability of uniformly choosing a preference ranking r  from all 

those containing B  is 1/3. For a preference ranking Tfc containing B , let i^ s )Tfc be the 

set of all candidates ranked higher than or equal to B. If r\ is selected, then H b ,ti — 

{B , A}, and the probability of choosing A  is 1 / 2 . Similarly, Hb ,t2 — {&■> A  C}, and 

HB,T3 =  {B ,C } . Thus, M%a =  (I  * I)  +  (1 » 1) +  ( I  * 0) =

• M BC is 2/9. The probability of uniformly choosing a preference ranking from all 

those containing B  is 1/3. The probability of uniformly choosing a candidate from 

such a preference ranking is 1/3 as well. Comparing C  and B  in each preference 

ranking r  containing B, C  is not ranked higher than B  in ri, but is in T2 and 7 3 . 

Thus, M%c  =  ( 3  * 0) +  ( § * ! )  +  ( £ * £ )  =  §.

• M b b  1/3- The probability of uniformly choosing a candidate s G S  is 1/3. Addi

tionally, consider the following table:

C a n d id a te A B C

A 0 1/3 2/3

B 2/3 0 2/3

C 1/3 1/3 0

An entry ê - in the table is the proportion of preference rankings containing both 

candidates i and j  that ranked j  above i. If ê - >  1/2, then the majority ranked 

j  above i. M gB is the probability that, if the current system state is candidate B , 

then the system remains in the same state B  after the transition. As esA , eBB and 

eBC are 2/3, 0 and 2/3 respectively, the system moves away from candidate B  in 

two cases out of three, each with probability 1/3. Thus, M BB is the remaining 1/3.

The consensus preference ranking f  of the voter preference rankings R  is the Markov chain
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ordering on M k, k =  1 . . .  4. It can be shown that, for all four cases (InfMCi - InfMC-i), 

f  =  [C < A  < B\.

10.4.4 Algorithm  Step Three: Local K em enisation

The third step in the consensus-based recommendation generation algorithm involves the 

consensus preference ranking calculated in step 2  being partially reordered according to a 

process of “local Kemenisation” developed by Dwork et al [35].

B ackground: th e  E x te n d ed  C o n d o rce t C rite r io n  To understand the concept of 

local Kemenisation, it is first necessary to understand an aspect of Social Choice Theory 

known as the “Condorcet Criterion” , and its natural extensions. The Condorcet Cri

terion [1 2 1 ] states that, in an election in which every voter ranks every candidate, if a 

particular candidate is ranked above all others by an absolute majority of voters, it should 

be declared the winner. That is, in the consensus preference ranking, this candidate should 

be top-ranked. A natural extension, attributed to Truchon [111], states that if a candi

date is ranked above another by an absolute majority of voters, it should be ranked above 

this other candidate in the consensus preference ranking. This is called the “Extended 

Condorcet Criterion” (ECC).

Dwork et al identified ECC as being of relevance in addressing search engine spamming 

in a meta-search engine. They were concerned with merging the web-page result lists 

returned by a set of queried search engines into a single result list, using rank aggregation 

methods. The merging procedure was viewed as an election, with the queried search 

engines as voters, and the top d elements of their returned result lists (such as the top 

100) as preference rankings of web-page candidates. These “top d” result lists are unlikely 

to contain exactly the same web-pages, given that different search-engines use different 

ranking functions and may index different portions of the World Wide Web. Thus, the 

total set of candidates was taken to be the union of web-pages ranked in the considered 

top d result lists, with the lists thus being interpreted as incomplete preference rankings. 

The MC-based rank aggregation methods were specifically developed to aggregate these 

incomplete preference rankings into a complete consensus preference ranking of the web

page candidates (the merged result list).

Dwork et al defined a relaxed version of the Extended Condorcet Criterion that was ap

plicable to their meta-search arrangement of incomplete voter preference rankings (normal
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ECC assumes completeness): if a candidate i is ranked above candidate j  by the majority 

of voters who ranked both candidates, then i (the Condorcet winner) should be ranked 

above j  (the Condorcet loser) in the consensus preference ranking. This relaxed version 

will be referred to as ECC-0. Dwork et al argued that, by ensuring that the consensus 

preference ranking (of web-page candidates) calculated by a meta-search engine satisfied 

ECCd , the effect of search engine spamming could be mitigated.

Imagine that, for a particular query, a spam web-page s has achieved an undeservedly 

high rank in some of the search engine preference rankings aggregated by the meta-search 

engine. Interpreting one of these successfully spammed preference rankings as a set of 

pairwise comparisons, s is undeservedly preferred to (i.e. ranked above) a number of 

“better” web-pages. Let us consider one of these pairs, s and a better page b, for all search 

engines that ranked both web-pages in their preference rankings. If the majority of these 

search engines have been successfully spammed for this pair of web-pages, with s being 

preferred to 6 , then the rank aggregation method is working with overly bad data, and 

nothing can be done to mitigate the effect of such spamming. However, if more than half of 

these search engines still prefer b to s, then b is the Condorcet winner and s the Condorcet 

loser. Thus, in a consensus preference ranking that satisfies ECC-0, better web-page b will 

be ranked above spam web-page s. Given that, in such a ranking, the Condorcet winner 

of every pair of (web-page) candidates will be ranked above the corresponding Condorcet 

loser, spam web-pages such as s that are predominately Condorcet losers should only 

achieve low ranks, and the effect of search engine spamming should be mitigated to a 

significant extent.

Dwork et al noted that many of the existing rank aggregation methods, including 

Borda and the MC-based approaches, do not always generate consensus preference rank

ings that satisfy ECC-0 . Thus, they developed the method of “local Kemenisation” , which 

can be used to partially reorder any initial consensus preference ranking so that it does 

satisfy ECO0 , and therefore gains the associated “anti-spamming” benefits. The method 

is described below; in the description, the terms “consensus preference ranking” and “ag

gregation” (of voter preference rankings) will be used interchangeably.

T he  M e th o d  D efined Local Kemenisation is inspired by a proposal made by Ke- 

meny [63] for the “ideal” consensus preference ranking. Kemeny’s proposal is the fol

lowing: given a set of k complete totally-ordered voter preference rankings r i ,  T2 , . . . ,  r/.
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of n  candidates, produce the complete totally-ordered ranking a  of the candidates that 

minimises X )£=i K ( r k, &), where K ( t , a)  (the K-distance) is the number of candidate pairs 

(i,j) on which the rankings r  and a disagree (one of them ranks i above j , whilst the 

other ranks j  above i). a  is called the “Kemeny optimal aggregation” , and of all possible 

aggregations, is the one that disagrees least with the voter preference rankings in terms 

of pairwise comparisons. Most importantly, a  satisfies ECCD. However, computing a 

Kemeny optimal aggregation is NP-hard, even when there are only four voters.

Dwork et al introduced the related notion of a locally Kemeny optimal aggregation, 

which is locally rather than globally optimal in terms of minimising the total number 

of disagreeing pairwise comparisons, but still satisfies ECCD, and is computationally 

tractable. Since they were developing the concept in the context of meta-search, Dwork 

et al assumed that voters’ preference rankings could be incomplete, and that the set of 

candidates was the union of elements in these rankings. Thus, given a set of k (possibly 

incomplete) totally-ordered voter preference rankings { ti, r 2 , . . . ,  t / J  of n candidates, a 

complete totally-ordered ranking 7r  of the candidates is a locally Kemeny optimal aggre

gation with respect to { ti, T2 , . . . ,  r^} if there is no ranking 7r' that can be obtained from 

7r by performing a single transposition of an adjacent pair of candidates and for which 

Yli=i < Yli= 1 -^(Tfc)7r)- In other words, 7r is locally Kemeny optimal if it is not

possible to reduce the total K-distance to the voter preference rankings (the total number 

of disagreeing pairwise comparisons) by flipping an adjacent pair in 7r, such as the first 

and second ranked candidates. A locally Kemeny optimal aggregation can be shown to 

satisfy ECC^, and can be computed in 0 {kn  log n) time.

The process of local Kemenisation developed by Dwork et al takes an initial totally- 

ordered aggregation fi of (possibly incomplete) totally-ordered voter preference rankings 

{Ti> T2, • • • j r fc}> and computes a locally Kemeny optimal aggregation 7r with respect to 

{Th r2, • • • i Tk} that is maximally consistent with /i. That is, 7r only disagrees with fi on 

the order of any given pair of candidates if a majority of r ’s who expressed an opinion 

(i.e. ranked both candidates) disagreed with fi. Thus, 7r can be viewed as the “tweaked” 

version of n  that satisfies ECCD with respect to { t i , T2 , . . . ,  t*.}. The local Kemenisation 

process is actually quite simple. It involves 7r being constructed incrementally, with the 

nth ranked candidate in fi being inserted into an intermediate version of 7r that contains 

all n — 1 candidates ranked above it in /z, which have previously been processed. Let the 

nth (ranked) candidate in ji being processed be x. Then x  is inserted into 7r just below the

158



lowest-ranked candidate y  such that (a) the majority of r ’s who expressed an opinion did 

not prefer x  to y\ and (b) for every successor z of y  in 7r, the majority of r ’s who expressed 

an opinion did prefer x  to z. In other words, x  is inserted at the bottom  of the ranking 7r, 

and is “bubbled” up the ranking as long as it is consistent with the majority opinion of 

the r ’s. Once all the candidates in /z have been processed, 7r is the locally Kemeny optimal 

aggregation with respect to {ti,T 2 , . . .  , 7*} that is maximally consistent with /z.

M y U se o f Local K em en isa tio n  The argument made by Dwork et al concerning the 

anti-spamming benefits of ECC -0 is as relevant to a proposed CF-based recommending 

registry as it is to a meta-seaxch engine. The consensus-based recommendation generation 

algorithm may involve the aggregation of voter preference rankings of services rather than 

web-pages, but the problem of spamming is exactly the same. As long as only a minority of 

voters rank spam services highly, many spam services should equate to Condorcet losers, 

and should only achieve low ranks in an ECCD-satisfying consensus preference ranking 

(and thus the corresponding personalised service recommendation). Consequently, I de

cided that in step 3 of the recommendation generation algorithm, the consensus preference 

ranking f  of service candidates S  calculated from the voter preference rankings R  in step 

2  should be locally Kemenised with respect to R , to ensure that it satisfied ECC13.

It was possible to use the process of local Kemenisation in my recommendation gen

eration algorithm without modification, although if f  contained ties, these would need to 

be broken; the processed aggregation is required to be a total order. Dwork et al also 

assumed that the voter preference rankings would be total orders, but some of the rank

ings R  calculated in step 1 of the recommendation generation algorithm could be partial 

orders. However, given that local Kemenisation simply involves the individual comparison 

of candidate pairs within a voter preference ranking to determine whether one candidate 

is ranked above the other, this should have no impact.

Dwork et al developed the local Kemenisation process so that it could compute a 

locally Kemeny optimal aggregation with respect to incomplete voter preference rankings. 

Thus, as with the MC-based rank aggregation methods for the recommendation generation 

algorithm, two versions of the local Kemenisation process were devised which differ in their 

interpretation of the complete voter preference rankings R  of the service candidates. In 

locally Kemenising f , the first, standard version ignores any inferred bottom ranks of 

voter preference rankings (which contain unselected service candidates), only considering
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the rankings in their initial and possibly incomplete form. This version is referred to as 

“LK”. In contrast, the second, alternative version considers the rankings in their (possibly 

inferred) complete form. This version is referred to as “InfLK” (as in “Inferring” local 

Kemenisation).

Even on initial assessment, it would appear that, as with the “non-inf” versions of 

MC-based rank aggregation methods, the “non-inf” version of local Kemenisation (LK) 

has certain undesirable properties for a proposed recommending registry. Essentially, con

sideration of voters’ preference rankings only in their initial and possibly incomplete form 

could actually make it easier for a spam service to achieve a high rank in a locally Ke- 

menised consensus preference ranking. Imagine that f  is being locally Kemenised using 

LK, and that spam service s is top-ranked in a single (complete) voter preference ranking 

r  in R. Being highly inappropriate, s has not been selected by any other voter, so LK con

siders all the other preference rankings in R  to be incomplete, not containing s. Consider 

what happens to s during the local Kemenisation process. Let 7r be the locally Kemenised 

form of f . As normal, s is inserted into the intermediate version of ir at the lowest rank 

where, for every candidate c ranked below, the majority of voter preference rankings in 

R  that contained both candidates preferred s to c. Using LK, the only voter preference 

ranking taken into consideration during the insertion of s is r, as it is the only one that 

contained the spam service. Thus, since s is top-ranked in r, it is preferred to every other 

candidate by the majority (of one!), and will be inserted at the top rank in 7r. Clearly, LK 

may not always mitigate the effect of spamming. In contrast, s would not achieve such a 

high rank in 7r using InfLK. Since every voter preference ranking in R  would be taken into 

consideration during the insertion of s (or any other candidate), and s is ranked lowly by 

the absolute majority, it would only achieve a correspondingly low rank in 7r. It should be 

noted that, rather than being a spam service, s could be an inappropriate service ranked 

highly by a non-spamming voter with idiosyncratic behaviour, but the effect would be the 

same.

10.5 Evaluation of the Consensus-Based R ecom m endation  

G eneration A lgorithm

To determine whether, compared to the original recommendation generation algorithm 

of SCO, the consensus-based recommendation generation algorithm did indeed enable
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a recommending registry not only to be effective under normal conditions, but also to 

remain effective to a greater extent in the face of spamming, a number of experiments were 

performed. The experiments take a similar form to those of the last chapter, with different 

configurations of the prototype recommending registry being evaluated for effectiveness 

under both normal and simulated spamming conditions using the ESSE-based scheme of 

Chapter 7. The same DCS printer scenario ESSE set was used, consisting of the 10397 

printer selections identified between 04/01/2004 00:00 and 31/01/2004 00:00 from the 

recorded departmental service selection history, with the ESSE condition defined a s m  =  

5 and n =  28 days. Thus, the results of the following experiments can be compaxed against 

those of the previous chapter.

The consensus-based recommendation generation algorithm was implemented as a con

figurable version of the Recommendation Generator component in the registry prototype 

(see Figure 9.2). The different variants of each algorithm step (step 1: SCOVoter and 

RPVoter; step 2 : Borda, MCi, InfMCi, MC2 , InfMC2 , MC3 , InfMCs, MC4 and InfMC^ 

step 3: LK and InfLK) were all implemented, so that the registry could be configured to 

use any variation of the algorithm.

In all the experiments that follow, the prototype registry was configured to use a 

time-window of 1 2  weeks. The primary aspect of investigation was the recommendation 

generation algorithm, so the time-window length was fixed to a constant; 1 2  weeks was 

chosen since the registry had proved most effective when configured to use this value. 

However, for each experiment, it was decided to vary the situation attribute subset used 

to assess service selection situation-similarity. To recap, there are 8  possible subsets of the 

3 printer-specific situation attributes of HourOfDay, Location and Role. The particular 

subset chosen significantly affects the specific relevant service selections identified and the 

consequent recommendations generated. Thus, it seemed worthwhile to investigate the 

consensus-based recommendation generation algorithm (henceforth referred to as “CB” for 

brevity) for all different situation attribute subsets; if certain behaviour was noted across 

most subsets, it seemed likely to be a general trend. After consideration, it was also decided 

that, when the registry was configured to use a CB variation, algorithm step 1 would 

always be set to RPVoter, with newservice-offset = 5 and oldservice-offset =  5. This 

made evaluation more tractable, as it halved the possible number of CB variations that 

could be investigated (since the less desirable SCOVoter was disregarded). The offsets were 

set to 5, as this ensured that a newly selected departmental printer (or an old one) could
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only achieve top rank in a voter’s preference ranking after at least 4 repeated selections. 

If a voter had repeatedly selected and walked to a printer 4 times, it seemed likely that 

he now considered it most appropriate. Further investigation of SCOVoter and optimum 

RPVoter offsets could be undertaken in the future.

10.5.1 Experim ent One - CB Under Normal, Non-Spamm ing Conditions

The aim of the first experiment was to determine whether the use of the consensus-based 

recommendation generation algorithm could enable a recommending registry to generate 

effective recommendations under normal, non-spamming conditions. Of particular interest 

was which CB variations caused the registry to be most effective, and how this effectiveness 

compared against that of SCO.

S e tu p  a n d  P re se n ta tio n

S e tu p  The prototype registry was assessed in terms of 8  sub-experiments. For each 

sub-experiment, the registry was configured to use a different situation attribute subset 

of HourOfDay, Location and Role. It was then configured to use, and evaluated for, 28 

different recommendation generation algorithms: SCO and 27 CB variations. In terms 

of the CB variations, the registry was configured to use each of the 9 rank aggregation 

methods (algorithm step 2), with either no local Kemenisation, LK or InfLK applied 

(algorithm step 3). Since it can safely be assumed that no spamming occurs in the DCS 

printer scenario, the evaluation results demonstrate how the CB variations perform under 

normal conditions, against each other and SCO.

P re se n ta tio n  For each sub-experiment, the NCIOC values (at tolerance level 5) of all 

28 differing registry configurations are presented in a table. The tables for 6  of the sub

experiments are given in Figures 10.6 to 10.11; the tables for No Attributes and HourOfDay 

are given in Appendix C, in Figures C .l and C .2  respectively. The table results of each sub

experiment are presented in 10 rows. The top row refers to the single SCO configuration, 

whilst each row below refers to the three CB configurations that use a particular rank 

aggregation method; “Basic” is the method with no local Kemenisation applied, “+LK” is 

the method with LK applied, and “+InfLK” the method with InfLK applied. For example, 

the table cell [MC2, +InfLK] contains the NCIOC value of the prototype registry when 

configured to use the CB variation of the MC2 rank aggregation method with InfLK applied
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(referred to as InfLK-MC2 ). For each rank aggregation method, the cells of the three 

corresponding configurations (Basic, LK and InfLK) are colour coded in terms of relative 

effectiveness. In order of least to most effectiveness (i.e. smallest to largest NCIOC value), 

the three configurations are coloured light grey, medium grey and dark grey. The NCIOC 

value of the most effective configuration is also given in the “Best NCIOC” cell. The 

“Rank” cell gives the rank of the rank aggregation method if the different methods (and 

SCO) are ordered by “Best NCIOC” value, most to least effective. Thus, the Rank column 

provides a rough indication of how the different rank aggregation methods perform against 

each other and SCO. As a clarifying example, consider the MC2 rank aggregation method 

in the Figure 1 0 .6  (Location) table. InfLK-MC2 (dark grey) is more effective than Basic- 

MC2 (medium grey), which is more effective than LK-MC2 (light grey). Consequently, 

the “Best NCIOC” of MC2 is that of InfLK-MC2 (0.7583), and MC2 is ranked 7th out of 

the rank aggregation methods and SCO in terms of effectiveness.

Results

A number of general trends concerning the CB variations can be identified from the 6  sub

experiment tables shown in Figures 10.6 to 10.11. It should be noted that these trends are 

not reflected to such an extent in the other 2  sub-experiment tables given in the appendix. 

These 2 other tables refer to the prototype registry when it was configured to use the sit

uation attribute subsets of HourOfDay or No Attributes. As can be seen from the results 

of the last chapter (see Figures 9.4 and 9.5), the prototype registry is consistently much 

less effective when configured to use either subset in assessing service selection situation- 

similarity. Either subset presumably leads to irrelevant service selections being identified, 

which are predominately inappropriate courses of action for a requesting consumer. Based 

on such bad data, these is a limit to how effective generated recommendations can ever be, 

regardless of the particular recommendation generation algorithm used. In the case of the 

consensus-based recommendation generation algorithm, such irrelevant service selections 

are presumably too disparate to allow a meaningful consensus opinion of service appropri

ateness to be formed. For this chapter, therefore, the 2 sub-experiments associated with 

HourOfDay and No Attributes are ignored. In reality, a deployed recommending registry 

would not be configured to use such ineffective situation attribute subsets.
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R eco m m en d a tio n  
G en era tio n  Algorithm

NCIOC (to to lera n ce  leve l 5) B e st NCIOC Rank

B a sic +LK +lnfLK

S C O 0.7605 N/A N/A 0 .7 6 0 5 1

Borda 0.7596 0 .7 4 4 9 0.7588 0 .7 5 9 6 2

MC1 0.7313 0 .7 0 9 4 0.7584 0 .7 5 8 4 6

InfMCI 0.7592 0 .7 3 9 7 0.7594 0 .7 5 9 4 3

M C2 0.7337 0 .7 0 9 3 0.7583 0 .7 5 8 3 7

lnfM C2 0.759 0 .7 3 9 8 0.7589 0 .7 5 9 4

M C3 0.7354 0 .7 0 9 0.758 0 .7 5 8 8

lnfMC3 0.7559 0 .7 4 4 0.7585 0 .7 5 8 5 5

M C4 0 .6 9 1 5 0.6934 0.7575 0 .7 5 7 5 10

lnfMC4 0.7454 0 .7 3 7 7 0.7575 0 .7 5 7 5 9

Figure 10.6: Experim ent One - Location

R eco m m en d a tio n  
G en era tio n  Algorithm

NCIOC (to to lera n ce  leve l 5) B e st NCIOC Rank

B a sic +LK + lnfLK

S C O 0.7234 N/A N/A 0 .7 2 3 4 9

Borda 0.7235 0 .6 8 6 3 0.7239 0 .7 2 3 9 3

MC1 0.6965 0 .6 8 9 9 0.7241 0 7 2 4 1 1

InfMCI 0.7238 0 .6 8 4 0.7237 0 .7 2 3 8 5

M C2 0.701 0 .6 9 0 6 0.724 0 .7 2 4 2

lnfM C2 0.7237 0 .6 8 3 8 0.7237 0 .7 2 3 7 7

M C3 0.7007 0 .6 9 0 2 0.7239 0 .7 2 3 9 4

lnfMC3 0.7222 0 .6 9 1 0.7224 0 .7 2 2 4 10

M C4 0 .6 4 2 7 0.6538 0.7238 0 .7 2 3 8 6

lnfMC4 0.6957 0 .6 8 6 0.7236 0 .7 2 3 6 8

Figure 10.7: Experim ent One - HourOfDay Location

R eco m m en d a tio n  
G en era tio n  Algorithm

NCIOC (to to lera n ce  lev e l 5) B e s t  NCIOC Rank

B a sic +LK +lnfLK

S C O 0.6867 N/A N/A 0 .6 8 6 7 2

Borda 0.6863 0 .6 7 8 1 0.6848 0 .6 8 6 3 4

MC1 0.6779 0 .6 7 6 9 0.6842 0 6 8 4 2 6

InfMCI 0.6861 0 .6 7 7 5 0.6869 0 6 8 6 9 1

M C2 0.6779 0 .6 7 6 9 0.684 0 .6 8 4 7

lnfM C2 0.6847 0 .6 7 7 1 0.6855 0 .6 8 5 5 5

M C3 0.6776 0 .6 7 6 4 0.683 0 .6 8 3 10

lnfMC3 0.6855 0 .6 7 7 4 0.6866 0 .6 8 6 6 3

M C4 0 .6 7 2 3 0.6739 0.6837 0 6 8 3 7 8

lnfMC4 0.6806 0 .6 7 6 7 0.6835 0 6 8 3 5 9

Figure 10.8: Experim ent One - Location & Role
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R eco m m en d a tio n  
G en eration  Algorithm

NCIOC (to to lera n ce  lev e l 5) B e st NCIOC Rank

B a sic +LK ♦ InfLK

S C O 0.6598 N/A N/A 0 .6 5 9 8 1

Borda 0.6296 0 .6 1 2 8 0.6385 0 .6 3 8 5 9

MC1 0.4818 0 .4 5 4 1 0.6414 0 .6 4 1 4 3

InfMCI 0.6404 0 .5 7 7 7 0.6399 0 .6 4 0 4 7

M C2 0.5045 0 .4 6 3 6 0.6411 0 .6 4 1 1 6

lnfMC2 0.6331 0 .5 6 6 8 0.6432 0  6 4 3 2 2

M C3 0.52 0 .4 7 6 7 0.6411 0 .6 4 1 1 5

lnfMC3 0.6303 0 .6 1 6 6 0.6382 0 .6 3 8 2 10

M C4 0.474 0 .4 7 1 1 0.6412 0 6 4 1 2 4

lnfMC4 0.605 0 .5 5 7 1 0.6397 0 .6 3 9 7 8

Figure 10.9: Experim ent One - Role

R eco m m en d a tio n  
G en eration  Algorithm

NCIOC (to to lera n ce  lev e l 5) B e st  NCIOC Rank

B a sic +LK +lnfLK

S C O 0.6395 N/A N/A 0 .6 3 9 5 5

Borda 0.6396 0 .6 0 2 5 0.6398 0 .6 3 9 8 4

MC1 0.5151 0 .5 0 0 9 0.6357 0 .6 3 5 7 6

InfMCI 0.64 0 .5 9 7 4 0.6365 0 .6 4 3

M C2 0.5298 0 .5 1 0 9 0.6356 0  6 3 5 6 8

lnfM C2 0.6425 0 .5 9 7 1 0.6368 0 .6 4 2 5 1

M C3 0.5315 0 .5 1 1 5 0.6357 0 .6 3 5 7 7

lnfMC3 0.6413 0 .6 0 5 4 0.6362 0 .6 4 1 3 2

M C4 0 .4 4 3 2 0.4487 0.6356 0 .6 3 5 6 8

lnfMC4 0.5758 0 .5 5 0 6 0.6353 0  6 3 5 3 9

Figure 10.10: Experim ent One - HourOfDay & Role

R eco m m en d a tio n  
G en eration  Algorithm

NCIOC (to to lera n ce  level 5) B e st NCIOC Rank

B a sic +LK -t-lnfLK

S C O 0 6317 N/A N/A 0 .6 3 1 7 1

Borda 0.6312 0 .5 9 9 7 0.631 0  6 3 1 2 5

MC1 0.6189 0 .6 0 9 8 0.6309 0 .6 3 0 9 6

InfMCI 0.6314 0 .5 9 9 4 0.6316 0 .6 3 1 6 2

M C2 0.6221 0 .6 0 9 8 0.6308 0 .6 3 0 8 7

lnfMC2 0.6309 0 .5 9 9 3 0.6313 0 .6 3 1 3 4

M C3 0.6221 0 .6 0 9 7 0.6308 0 .6 3 0 8 7

lnfMC3 0.6311 0 .6 0 1 4 0.6315 0 .6 3 1 5 3

M C4 0 .5 7 0 8 0.5782 0.6308 0 .6 3 0 8 7

lnfMC4 0.6099 0 .6 0 1 2 0.6308 0  6 3 0 8 7

Figure 10.11: Experiment One - HourOfDay & Location & Role
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C o m p arin g  R an k  A ggrega tion  M e th o d s  The first set of general trends relate to the 

rank aggregation methods used in the CB variations, and can be identified from the “Basic” 

column of each sub-experiment table. The consensus-based recommendation generation 

algorithm actually requires that some form of local Kemenisation be applied (in step 3) 

to the aggregation calculated by a rank aggregation method (in step 2). However, it 

seemed worthwhile to consider the “raw” performance of the rank aggregation methods 

against each another. The first trend is that the non-inf version of every MC-based 

rank aggregation method (e.g. MCi) is consistently less effective than the Inf version 

(e.g. InfMCi). Thus, it appears that, under normal conditions, it is better to calculate 

an aggregation (and thus a recommendation) based on complete, and possibly inferred, 

voter preference rankings than on incomplete voter preference rankings. Presumably, this 

degradation in performance between the Inf and the non-inf version of every MC-based 

rank aggregation method can be attributed to the undesirable qualities of the non-inf 

version that were discussed earlier in Section 10.4.3. In other words, the Inf versions are 

presumably more able to mitigate the impact of any voters with idiosyncratic, generally 

inappropriate, behaviour. The second associated trend is that MC4 is consistently the 

least effective of all 9 rank aggregation methods.

C o m p arin g  V ersions o f Local K em en isa tio n  The second set of general trends relate 

to the 2 versions of local Kemenisation used in the CB variations, LK and InfLK, and can 

be identified from the “+LK” and “-flnfLK” columns of each sub-experiment table. The 

first trend is that, for a particular rank aggregation method, the CB variation that uses 

InfLK (e.g. InfLK-Borda) is more effective than the one that uses LK (e.g. LK-Borda). 

Thus, it appears that, under normal conditions, it is better to locally Kemenise the aggre

gation calculated by the rank aggregation method based on complete, possibly inferred, 

voter preference rankings than on incomplete voter preference rankings. Presumably, this 

difference in performance between LK and InfLK can be attributed to the undesirable 

qualities of LK that were discussed earlier in Section 10.4.4. In other words InfLK is 

less affected by voters with idiosyncratic, generally inappropriate behaviour. The second 

associated trend is that, of the 3 CB variations (Basic, LK, InfLK) that use a particular 

rank aggregation method, the one which uses LK (e.g. LK-Borda) is predominately the 

least effective, less than if no local Kemenisation is applied (e.g. Basic-Borda)!
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C onsidering  In fL K  Given that the prototype registry was more effective when config

ured to use InfLK rather LK, it was decided to concentrate attention on general trends 

relating to InfLK alone. These trends can be identified from the “+InfLK” column of each 

sub-experiment table. The primary trend is that, for a particular situation attribute subset 

(sub-experiment), there is very little difference between the InfLK-using CB variations in 

terms of effectiveness, despite the different rank aggregation methods used. For example, 

for Location (Figure 10.6), the difference between the NCIOC values of the most effective 

InfLK-using CB variation (InfLK-InfMCi: 0.7594) and the least effective (InfLK-MC,*: 

0.7575) is only 0.0019. For all the 6  considered sub-experiments, the smallest difference 

is 0.0008 (HourOfDay & Location &; Role: Figure 10.11), and largest is 0.0050 (Role: 

Figure 10.10). This is interesting, given that there is much greater difference between CB 

variations (with their different rank aggregation methods) when no local Kemenisation 

is used. Returning to Location, the difference between the NCIOC values of the most 

effective CB variation using no local Kemenisation (Basic-Borda: 0.7596) and the least 

effective (Basic-MC*: 0.6915) is 0.0681. Presumably, given that a similar trend does not 

occur for LK-using CB variations, the trend can be ascribed to the fact that InfLK is 

based on complete, possibly inferred, voter preference rankings. By implication, if InfLK 

is used in step 3 of the consensus-based recommendation generation algorithm, the actual 

rank aggregation method used in step 2  would seem to be of lesser importance.

C om paring  CB an d  SC O  In all considered sub-experiments, the InfLK-using CB 

variations compare very favourably against SCO in terms of effectiveness. For example, 

for Location (Figure 10.6), the NCIOC value of SCO is 0.7605 whilst that of the best 

InfLK-using CB variation (InfLK-InfMCi) is 0.7594, a difference of only 0.0011. Even 

better, for HourOfDay & Location (Figure 10.7), the NCIOC value of the best InfLK- 

using CB variation (InfLK-MCi), at 0.7241, is slightly higher than that of SCO, at 0.7234, 

an increase of 0.0007. In fact, for 3 out of the 6  considered sub-experiments, an InfLK-using 

CB variation performs better than SCO.

C onclusion

It has been demonstrated that the consensus-based recommendation generation algorithm, 

using InfLK, does indeed enable a recommending registry to be as effective under normal 

non-spamming conditions as when SCO is used.
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10.5.2 Experim ent Two - CB Under Spamming Conditions

The aim of the second experiment was to determine whether, compared to SCO, the use of 

the consensus-based recommendation generation algorithm could enable a recommending 

registry to remain effective to a greater extent in the face of spamming.

S e tu p  a n d  P re se n ta tio n

G e n e ra l S e tu p  Different configurations of the prototype recommending registry were 

each evaluated under comparable non-spamming and simulated spamming conditions, and 

the corresponding degradation in effectiveness assessed. As has been previously noted, 

spamming should not normally occur in the DCS printer scenario, but it is possible to 

simulate recommending registry spamming in an authentic manner; precise details are 

given below. Like the first experiment, the prototype registry was assessed in terms of 8  

sub-experiments. For each sub-experiment, the registry was configured to use a different 

situation attribute subset of HourOfDay, Location and Role. It was then configured to 

use, and evaluated for, 4 different recommendation generation algorithms: SCO, and the 3 

CB variations of Basic-InfMCi (InfMCi with no local Kemenisation applied), LK-InfMCi 

and InfLK-InfMCi- Essentially, to ensure that this experiment remained tractable, these 

3 CB variations were chosen to be representative of the 27 CB variations assessed in 

Experiment One. The 2  types of local Kemenisation and the “no local Kemenisation” 

option are represented, whilst InfMCi seemed to be (marginally) the most effective of the 

9 rank aggregation methods in the Experiment One, given that it had the best average 

rank (from the “Rank” column) across the 8  sub-experiments.

S e tu p  for N on-sp am m in g  an d  S im u la ted  S pam m ing  C o nd itions  For a partic

ular sub-experiment in this experiment, the 4 different registry configurations were each 

evaluated under comparable non-spamming and simulated spamming conditions in the 

following manner. Firstly, in preparation, the prototype registry was configured to use 

SCO, and was then used to generate recommendations for each of the 10397 ESSEs in the 

standard DCS printer scenario ESSE set. This ESSE set was then “trimmed” to contain 

only those ESSEs for which “proper” recommendations were successfully generated, which 

were based on a non-zero number of identified relevant service selections. In other words, 

those ESSEs for which no relevant service selections were identified, and for which a rec

ommendation consequently consisted of all the available type-matching services in a single
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tied rank, were filtered out. This trimmed ESSE set will be referred to as the “successful” 

ESSE set. Next, for each ESSE in this set, the corresponding SCO-generated recommen

dation was assessed, and the 1 0  worst-ranked services were identified; these services will 

be referred to as the “bottom ” services of an ESSE.

Then, to assess a registry configuration under non-spamming conditions, it was eval

uated as normal for the recommendations it generated in response to the ESSEs in the 

successful ESSE set. To assess the registry configuration under comparable spamming 

conditions, it was also evaluated for the recommendations it generated in response to the 

same ESSEs. However, for each ESSE, the relevant service selections identified during the 

recommendation generation process were intercepted, and augmented with a set of sim

ulated sham service selections deliberately designed to boost the recommendation ranks 

of the corresponding 10 bottom  services. The recommendation generated for the ESSE 

was then based on this augmented set of relevant service selections. More precisely, the 

added sham selections were simulated as being made by a single spamming individual, and 

would cause the bottom  services to be boosted into the top 10 ranks of a SCO-generated 

recommendation, in a particular order. The particular sequence in which the sham selec

tions were made would also cause the bottom services to be boosted into the top 1 0  ranks 

(in the same order) of the spamming individual’s preference ranking calculated in a CB 

variation using RPVoter (with offsets of 5). Thus, through this process of augmentation, 

it was possible to simulate recommending registry spamming.

In overall terms, therefore, the prototype registry was simulated as being spammed 

in every situation in which an ESSE occurred. For a particular situation, the registry 

was being spammed for 10 particular services by a single individual. Note that the spam 

services may have differed between situations. Thus, since each registry configuration, 

with its different recommendation generation algorithm, was evaluated for the same set 

of ESSEs under the same non-spamming and spamming conditions, it was possible to 

ascertain from the evaluation results the relative robustness of the algorithms in the face 

of spamming.

P re se n ta tio n  For each sub-experiment, the evaluation results for the 4 registry config

urations under both non-spamming and simulated spamming conditions are presented in 

the standard graph/table format used in the last chapter, which was explained in Section 

9.2. The results for the Location and HourOfDay &: Location sub-experiments are given in
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Figures 10.12 and 10.13 respectively; the results for the other 6  sub-experiments are given 

in Appendix C, in Figures C.3 to C.8 . For a particular sub-experiment, the evaluation 

details of a registry configuration under non-spamming conditions are referred to by the 

name of the particular recommendation generation algorithm used (e.g. “LK-InfMCi”); 

under spamming conditions they are referred to by this name followed by “(spammed)” 

(e.g. “LK-InfMCi (spammed)”). It should be noted that InfMCi with no local Kemeni

sation applied is simply referred to as “InfMCi” , rather than “Basic-InfMCi” .

R esu lts

A number of general trends concerning the recommendation generation algorithms can 

be identified from the 6  sub-experiments considered; as before, the 2  sub-experiments 

associated with HourOfDay and No Attributes are ignored.

C onsidering  SC O  Firstly, as expected, the use of SCO causes registry effectiveness 

to degrade massively in the face of spamming. In the case of Location (Figure 10.12), 

for example, the NCIOC value of the SCO configuration drops from 0.905 under non

spamming conditions to -0.0447 under spamming conditions, a difference of 0.9497! Indeed, 

for all 6  considered sub-experiments, the NCIOC value of SCO is negative under spamming 

conditions. This trend corroborates the assertion made earlier as to the inadequacy of SCO 

in the face of spamming.

C om paring  C B  an d  SC O  Secondly, compared to SCO, the use of any CB variation 

causes registry effectiveness to degrade to a much lesser extent in the face of spamming. 

Again, for Location, the largest drop in NCIOC value for a CB variation (InfMCi) between 

non-spamming (0.9034) and spamming conditions (0.7963) is 0.1071, much smaller than 

the corresponding drop for SCO (0.9497). Across the 6  considered sub-experiments, the 

smallest NCIOC value of a CB variation under spamming conditions is 0.5148 (LK-InfMCi 

for HourOfDay & Role; see Figure C.5), some way above the negative values of SCO. 

Thus, the consensus-based recommendation generation algorithm is indeed significantly 

more robust than SCO in the face of spamming.

C onsidering  Local K em en isa tio n  Thirdly, for the CB variations, local Kemenisation 

of either form causes registry effectiveness to degrade to a lesser extent than if it were 

not applied, with the smallest degradation occurring when InfLK rather than LK is used.
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Figure 10.12: Experim ent Two - Location
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Again, for Location, the corresponding drops in NCIOC value between non-spamming 

and spamming conditions for InfMCi (with no local Kemenisation applied), LK-InfMCi 

and InfLK-InfMCi are 0.1071, 0.0997 and 0.038 respectively. Indeed, across the 6  consid

ered sub-experiments, the largest drops for InfMCi, LK-InfMCi and InfLK-InfMCi are

0.2145, 0.2116 and 0.1296 respectively (all for HourOfDay & Location & Role; see Fig

ure C.6 ). Thus, the anti-spamming benefits of local Kemenisation claimed by Dwork et 

al are corroborated. The better performance of InfLK compared to LK can presumably 

be attributed to the undesirable qualities of LK discussed earlier in Section 10.4.4. The 

InfLK-InfMCi-using registry configuration actually has the highest NCIOC value under 

spamming conditions for all 6  considered sub-experiments.

C onclusion

It has been demonstrated that, compared to SCO, the consensus-based recommendation 

algorithm does indeed enable a recommendation registry to remain effective to a greater 

extent in the face of spamming. Moreover, the algorithm has been demonstrated to be 

most robust when InfLK is used.

10.5.3 Experiment Three - CB Under Collective Spamming Conditions

The aim of the third experiment was to investigate how the consensus-based recommen

dation generation algorithm performed in the face of more orchestrated spamming. In 

Experiment Two, the simulated spamming conditions used to evaluate the prototype reg

istry configurations took the form of a single individual spamming the registry for certain 

services in a situation. Thus, it was decided to investigate how the CB algorithm per

formed if multiple individuals collectively spammed the registry for the same services in a 

situation.

S e tu p  a n d  P re se n ta tio n

S e tu p  The experiment takes a very similar form to Experiment Two. The prototype reg

istry was assessed in terms of 8  sub-experiments. For each sub-experiment, the registry was 

configured to use a different situation attribute subset of HourOfDay, Location and Role, 

and the CB variation of InfLK-InfMCi. This CB variation was chosen as representative of 

all those investigated previously, since it had proved most robust in Experiment Two. The 

single registry configuration was then evaluated under various simulated spamming condi
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tions, in the same manner as in Experiment Two. After preparation, the configuration was 

evaluated in terms of the recommendations it generated in response to the ESSEs of the 

“trimmed” successful ESSE set. As before, for each ESSE, the relevant service selections 

identified during the recommendation process were intercepted, and augmented with a set 

of simulated sham service selections deliberately designed to boost the recommendation 

ranks of the corresponding 10 bottom services. The recommendation generated for the 

ESSE was then based on this augmented set of relevant service selections. However, in this 

experiment, the added sham selections were simulated as being made by multiple individ

uals. Essentially, the same sequence of sham services was made as in Experiment Two, but 

was “cloned” for multiple individuals. So, for n  individuals, a sham selection was made n 

times, once by each individual. The particular values of n used will be discussed below.

In overall terms, therefore, the prototype registry was simulated as being collectively 

spammed in every situation in which an ESSE occurred. For a particular situation, the 

registry was spammed for 10 particular services by n individuals. Note that the spam 

services may have differed between situations. The registry configuration was evaluated 

in this way for 6  different values of n. The first 2 values were 0 (no spamming) and

1. The other 4 values were calculated from the average number of selecting individuals 

(voters) responsible for the relevant service selections on which an ESSE recommendation 

was based (under normal non-spamming conditions, i.e. n =  0). If this average number 

of voters is v, then n  was set to and v, each rounded up to a whole number.

Thus, the registry configuration was being evaluated for spamming conditions where an 

increasing proportion of the voters, whose inferred opinions (preference rankings) were 

being aggregated by InfLK-InfMCi to form a recommendation, were collectively spamming 

the registry.

P re se n ta tio n  For each sub-experiment, the evaluation results for the single registry 

configuration under the 6  different spamming conditions are presented in the same format 

as in Experiment Two. The results for the Location and HourOfDay & Location sub

experiments are given in Figures 10.14 and 10.15 respectively; owing to its lack of relevance, 

the No Attributes sub-experiment was not performed, but the results for the other 5  sub

experiments are given in Appendix C, in Figures C.9 to C.13.
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R esu lts

A key trend can be identified from the 6  sub-experiments considered; as before, the sub

experiment associated with HourOfDay is ignored. Unsurprisingly, the trend is that the 

more selecting individuals (voters) that collectively spam the registry, the more registry 

effectiveness is diminished. For example, in the case of Location (Figure 10.14), the drop 

in NCIOC value between non-spamming (0.9037) and spamming conditions is only 0.038 

when n =  1 (NCIOC =  0.8657), but is 0.4496 when n = 32 (NCIOC =  0.4541). Thus, the 

consensus-based recommendation generation algorithm performs less effectively when more 

voters collectively spam a registry. This is to be expected, since the larger the proportion 

of collectively spamming voters, the less their opinions can be effectively countered by 

those of the remaining proportion of non-spamming voters.

However, it should be noted that such orchestrated spamming would probably be 

an unlikely occurrence. It may be relatively straightforward to construct such spamming 

conditions in simulation, but in real life numerous people would need to organise themselves 

into making similar sequences of sham service selections within the same situation in 

the same time-frame. If they wished to continue spamming the recommending registry 

continuously, this would require even more organisation over a much longer period of time. 

The other positive aspect that can be derived from the 6  considered sub-experiments in this 

experiment is that, even for the largest numbers of n  collectively spamming individuals, 

the CB algorithm (i.e. InfLK-InfMCi) performed much better than SCO did when it was 

faced with only one spamming individual in Experiment Two (where n =  1 ). The lowest 

NCIOC value of the CB-using registry across the 6  sub-experiments is 0.3185 (n =  52 

for HourOfDay k  Role; see Figure C .ll); as was noted earlier, for all 6  considered sub

experiments in Experiment Two, the NCIOC values of the SCO-using registry were all 

negative.

10.6 Conclusion

In conclusion, it can be seen that the consensus-based recommendation generation algo

rithm (CB) is a more suitable choice for the CF-based recommending registry design than 

SCO. Through the experiments performed, it has been demonstrated that, compared to 

SCO, the more robust CB algorithm can enable a recommending registry not only to be 

effective under normal conditions, but also to remain effective to a greater extent in the
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face of spamming. Moreover, CB has been demonstrated to perform best under both 

non-spamming and spamming conditions when InfLK is used in algorithm step 3. When 

InfLK is used, it would appear that the actual rank aggregation method used in step 2 is 

of lesser importance. However, at least when evaluated under non-spamming conditions, 

InfMCi did perform marginally better than the other rank aggregation methods. Thus, 

InfLK-InfMCi could be considered the ideal CB variation.

NB: For clarification purposes, the evaluation results obtained in Experiment One 

(see Section 10.5.1) for the 8  configurations of the prototype registry which used InfLK- 

InfMCi are shown in Figure 10.16. The configurations differ in the printer-specific situation 

attribute subset used.

10.7 Summary

In this chapter, attention has been focused on my investigation and development of an 

advanced recommendation generation algorithm to replace SCO. The need for a more 

robust algorithm was motivated at the beginning of the chapter through an explanation 

of how the effectiveness of a design-adhering recommending registry that used SCO could 

be diminished as a result of spamming.

Following a description and justification of my proposal for a style of algorithm based 

on consensus, mention was made of the fact that I had needed to widen my investigation 

beyond the areas of service discovery and CF in order to find research of relevance to such 

a concept. It was noted that I had identified two research areas, Social Choice Theory 

(Economics) and meta-search (Computing Science), where some research, in the form of 

rank aggregation methods, was relevant.

The bulk of the chapter has been concerned with the definition and detailed explana

tion of the consensus-based recommendation generation algorithm (CB) that I developed. 

Details of the two original methods (algorithm step 1: SCOVoter and RPVoter) I devised 

to calculate voter preference rankings have been given, followed by details of the five rank 

aggregation methods (algorithm step 2 : Borda and MCi - MC4 ) adapted by me for use 

in CB. The concept of local Kemenisation has been explained and my adaptation of it 

for use in CB (algorithm step 3) has been defined. Finally, details have been given of the 

three experiments that were performed to evaluate variations of CB under both normal 

and spamming conditions. The conclusion has ultimately been drawn that CB is a more
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suitable choice for the CF-based recommending registry design than SCO.

Following this first successful development of the basic recommending registry design, 

a second improvement, that of relaxing the test for service selection situation-similarity, 

was undertaken. This is discussed in the next chapter.
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Chapter 11

R elaxing th e Test for Service 

Selection  S ituation-Sim ilarity

In this chapter, the need for relaxing the test for service selection situation- 

similarity is explained. The associated concept of similar situation clusters 

(SSCs) is subsequently introduced, and a procedure for identifying such clusters 

defined. An evaluation of the use of SSCs in the design-adhering recommending 

registry prototype is then made.

11.1 W hy R elax the Situation-Sim ilarity Test?

As stated in Section 9.3.1, the second aspect of the basic CF-based recommending registry 

design which required further investigation and improvement was the test for service se

lection situation-similarity. This is one of the tests used in identifying the relevant service 

selections on which a consumer’s personalised service recommendation is based. To recap, 

in terms of the basic design, relevant service selections are those in the service selection 

history which pass the three tests of type-matching, recency and situation-similarity de

tailed in Section 8.3.1. A service selection is type-matching if it refers to a service of the 

type specified in the consumer’s service request, is recent if it was made within the type- 

specific time-window, and is situation-similar if, for the type-specific situation attribute 

subset, every situation attribute value exactly matches that of the consumer.

The nature of this basic test for service selection situation-similarity is a direct con

sequence of the symbol-interpreted, and thus generally applicable, formats for the service 

selection history and a requesting consumer’s situation attributes specified in Sections
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8 .2 .1  and 8 .2 .2 ; in terms of comparing the history-recorded situation attributes of a ser

vice selection against those of the consumer, the only operation that can be applied to 

an attribute value pair is an equality test. However, the test is an overly strict one. The 

symbol-based format of a service selection history essentially causes all service selections of 

a particular type to be interpreted as being made in a number of distinct situations, where 

a situation corresponds to a unique combination of attribute values for the type-specific 

situation attribute subset. This unique combination of subset situation attribute values 

will be referred to as a situation “tuple” . W ith the basic situation-similarity test, there

fore, only recent type-matching service selections with a situation tuple exactly matching 

that of the consumer, which were thus made in an identical situation, will be identified 

as relevant. However, what of those service selections with non-matching tuples, which 

were made in non-identical situations? Some of these other situations could be considered 

similar to the identical situation in terms of how service appropriateness is perceived. Con

sequently, many of the service selections made in these situations could also be appropriate 

selections for the requesting consumer, and would therefore be of relevance in generating 

the recommendation. This point relates back to the original research question of how to 

identify situation-similar service selections, detailed in Section 6 .2 .1 .

Imagine that the prototype registry had actually been deployed in the DCS printer 

scenario to recommend printers to requesting consumers, with the registry configured to 

use the printer-specific situation attribute subset of Location & Role, and that a newly- 

arrived researcher submits a request for a printer from room F141 of the Computing 

Science department. W ith the basic design, the relevant service selections identified by 

the prototype registry would consist only of those recent printer selections made in an 

identical situation to that of the researcher, with a situation tuple of [Location =  “fl41” , 

Role =  “researcher”]. However, some of the recent printer selections made in other non

identical situations might also be of relevance in generating the printer recommendation, 

such as those with situation tuple [Location =  “fl41” , Role =  “post_grad”] or [Location 

=  “gl41” , Role =  “researcher”]. The first situation tuple refers to those recent printer 

selections made by post-graduate students in the same room as the researcher, whilst 

the second refers to those made by researchers in a neaxby room. Given that printer 

appropriateness is likely to be perceived by people in these situations in a similar manner 

to how it would be perceived in the requesting researcher’s situation, many of these printer 

selections could also be appropriate selections for the researcher himself.
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“Similar Situation Clusters” and their Benefits

Ideally, therefore, a recommending registry should respond to a consumer’s service request 

by identifying those recent type-matching service selections which were made not only in 

an identical situation to that of the consumer, but also in all those other situations where 

service appropriateness is perceived in a similar manner. This set of similar situations, 

including the identical situation itself, will be referred to as the “similar situation cluster” 

(SSC) of the requesting consumer’s situation. Basing a personalised service recommenda

tion on the relevant service selections made in the SSC, rather than on only those made 

in the consumer’s identical situation, potentially offers several benefits.

Firstly, since a recommendation should be based on more information, it could be 

more effective. Supplied with more evidence in the form of more service selections, a 

recommendation generation algorithm should be better able to determine the collective 

perceived appropriateness of each available type-matching service.

Secondly, since relevant service selections would be obtained from a cluster of multiple 

situations, rather than a single situation, there should be less chance of no relevant service 

selections being identified in response to a consumer’s service request. Thus, a more 

effective, proper recommendation could be generated for the consumer, rather than one 

that simply consisted of all the available type-matching services in a single tied rank.

Finally, since a recommendation should be based on more information, it should be 

less affected by spamming, assuming that the consensus-based recommendation generation 

algorithm (CB) is used. As was discussed in the last chapter, the aim of using the CB 

algorithm was to absorb the opinion of spamming individuals into that of the consensus 

opinion of all those who made relevant service selections. Since a larger number of individ

uals would presumably be responsible for the relevant service selections made in the SSC, 

the opinion of any spamming individual would be more diluted in the calculated consensus 

preference ranking, and thus the consequent recommendation should be less affected by 

his spamming.

Thus, the use of SSCs should, theoretically, enable a recommending registry to be more 

effective under both normal and spamming conditions.
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11.2 Realising the Concept of SSCs

In view of the perceived benefits of basing a personalised service recommendation on 

those relevant service selections made in the SSC of the requesting consumer’s situation, I 

investigated how the concept could be integrated into the recommending registry design. 

Essentially, the main issue centred on how such type-specific SSCs could be identified for 

situations within a recommending registry scenario. Only once a registry is configured 

with these SSCs can it generate personalised service recommendations that axe based on 

this more relaxed notion of service selection situation-similarity.

11.2.1 SSC Identification Defined

The problem of SSC identification can be summed up as follows. Consider a recommending 

registry which is being deployed in a particular scenario. For each service type t recom

mended, the registry has been configured by the developer to use a particular situation 

attribute subset in assessing service selection situation-similarity. In the service selection 

history, the service selections of type t are therefore interpreted by the registry as being 

made in a set of distinct scenario situations 5, where a situation corresponds to a unique 

tuple of attribute values for the t-specific situation attribute subset. For each of these 

situations s G 5, the corresponding similar situation cluster (SSC) needs to be identified. 

This cluster would consist of the subset of the scenario situations S  where, for service type 

t , the perception of service appropriateness is similar to that in situation s. The subset 

obviously contains s itself.

How then can the SSC of each situation s be identified? The most basic solution would 

be to require the developer himself to identify each cluster, based on his knowledge and 

understanding of the different scenario situations and the service type concerned. However, 

this would be very time-consuming for the developer, and, moreover, the identified clusters 

would be based solely on his subjective view. An uninformed developer might consider two 

situations to be similar in terms of perceived service appropriateness but, in reality, they 

might be completely dissimilar. Thus, a bad SSC for a situation could actually cause a 

recommendation generated for a requesting consumer in that situation to be less effective 

than if the cluster was not used.

Given these negative points, the ideal solution to SSC identification is one in which 

the developer has little or no involvement, and in which the identified clusters are based
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on rather more than fallible human intuition concerning the similarity of situations. The 

approach I developed in this research satisfies both criteria, and involves SSCs being 

identified primarily by the recommending registry itself. On initial assessment, it might 

appear that it would be very difficult for a registry to identify those situations that comprise 

a cluster, given that this would involve comparing situations for similarity in terms of 

perceived service appropriateness, when situations are interpreted by the registry only as 

symbol tuples. Returning to the example of the prototype registry given earlier, consider 

how the (printer-specific) SSC would be identified for the situation (tuple) of [Location =  

“fl41” , Role =  “researcher”]. To the informed human eye, the other situation of [Location 

=  “gl41” , Role =  “researcher”] could immediately be identified as being similar, and 

therefore part of the cluster; the situations consist of physically nearby locations and 

identical roles, so people in these situations are likely to perceive departmental printer 

appropriateness in a similar manner. However, to the registry, these situations show no 

similarity at all as their tuples do not match exactly.

The approach I devised to enable a recommending registry to identify the SSC of each 

situation side-steps this problem. No attem pt is made to assess the similarity of situations 

in terms of their symbol-interpreted tuples, instead similarity is assessed through compari

son of the recommendations generated for each situation. A recommendation generated in 

response to a type t service request in any given situation will be based on the recent type t 

service selections of people in that situation, who made those selections according to their 

perceptions of service appropriateness. Thus, a recommendation provides an up-to-date, 

tangible representation of how people have collectively perceived service appropriateness 

in a given situation. Similar recommendations should therefore inherently imply similar 

views of service appropriateness.

Given this, I devised the following novel approach to enable a recommending registry 

to identify the SSC of a situation s. Firstly, the registry generates a recommendation 

r  for service type t in situation s. Then, the equivalent recommendations of all other 

situations are compared against r for mathematical similarity. All those situations with 

recommendations similar to r are consequently considered similar to s in terms of perceived 

service appropriateness, and are therefore identified as the SSC of s. Since each of these 

situations has been demonstrated as being similar to s in the recent past, it is assumed 

that any type t service selections made there in the present and the near future could 

also be appropriate selections for a consumer in s, and would therefore be of relevance in
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generating a type t recommendation for him.

In more precise terms, the identification of SSCs for service type t consists of the 

following three steps.

1. S itu a tio n  Id en tifica tio n  a n d  R eco m m en d a tio n  G en era tio n : Through assess

ment of type t service selections in the service selection history, the registry identifies all 

scenario situations S. Next, the registry generates a type t recommendation for each sit

uation s E S. Assuming that the consensus-based recommendation generation algorithm 

is used, the fourth and final algorithm step (see Section 10.4.1) is not applied. To recap, 

this step involves ensuring that a recommendation contains only those services that are 

currently available. Given that a recommendation is being used as a recent representation 

of collectively perceived service appropriateness within a situation, and not to select an 

actual service, current service availability is irrelevant. For similar reasons, if no relevant 

service selections are identified, then no recommendation is generated for s, as there is no 

evidence on which to base a representation of service appropriateness.

Once this is done, S  is filtered to contain only those situations for which recommen

dations were generated; the filtered version of S  will be referred to as S'7. Given that this 

approach to SSC identification is based on the comparison of recommendations, it cannot 

be applied to those situations with no recommendation. Thus, the SSC of such a situation 

is considered to contain only the situation itself.

2. S itu a tio n  R eco m m en d a tio n  C om parison : Let rs be the generated recommen

dation for a situation s E S'. For every pair of situations { i , j}  6  S', the mathematical

similarity between r% and rj is then calculated.

As each situation recommendation is a ranking of services (ordered by appropriateness),

the problem of recommendation similarity can be seen as an instance of the mathematical 

problem of ranking similarity. This problem has been considered within the statistical

context of rank correlation [64], and the two main ranking distance measures developed 

to address it, the Kendall tau and Spearman footrule metrics, are of relevance in calcu

lating situation recommendation similarity. However, the original metrics assumed that 

compared rankings were permutations, in that each ranking consisted of the same set of 

elements in a total order, i.e. no ties. As such, they cannot be directly used to calculate 

situation recommendation similarity because a) compared situation recommendations may 

not all contain the same services, as only services selected in a situation are ranked; and
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b) compared situation recommendations may be partial orders, containing ties.

However, generalised versions of both the Kendall tau and Spearman footrule metrics 

have recently been developed by Fagin et al [39], in the field of meta-search, to address 

similar issues to those discussed, and these are applicable. In line with Fagin, before 

any comparison for situation recommendation similarity is made, all recommendations are 

modified to ensure that they rank the same set of services, i.e. the union U of those 

contained in all recommendations. Essentially, every recommendation is assessed, and 

those union services which are not currently contained within it are subsequently placed 

in a bottom tied rank.

Fagin et al have shown [39] that the generalised versions of the Kendall tau and Spear

man footrule metrics are mathematically equivalent (the original metrics were shown to 

be equivalent by Diaconis and Graham [32]). In view of this, only the generalised Kendall 

tau metric, referred to as K gen, is used in this research.

For every pair of situations {z, j }  E S' ,  the mathematical similarity between their 

corresponding, recommendations rl and r3 is therefore calculated using K gen as follows1. 

Recollect that, once modified, every situation recommendation ranks all services in U. Let 

P  =  {{x,y} | x ^  y  and x ,y  E U} be the set of unordered pairs of distinct services. Also,

let rs(x) be the rank of a service x  in recommendation rs.

Then to calculate K gen(r i ,r j), the Kendall distance between and rj, the Kendall 

penalty for every pair {x, y} E P  of distinct services of U is first calculated according to 

one of the following three cases:

• In both ri  and rj ,  x  and y  are in different ranks - If x  and y  are in the same order 

in ri and rj  (e.g. Vi(x) > ri (y)  and r j ( x ) > r j ( y) ) ,  then let the Kendall penalty 

kx^y{ri,rj) =  0 . \ i  x  and y  are in the opposite order in ri  and rj  (e.g. ri(x) > ri (y)  

and r j {x)  < r j ( y) ) ,  then let k ^ y ( r t , r j )  =  1.

• In both ri  and rj ,  x  and y  are tied for the same rank (i.e. ri (x)  =  ri (y)  and

rj ( x ) =  rj ( y ) )  -  L e t  k ^ y ( r i , r j )  =  0 .

• In one of the recommendations and rj ,  x  and y  are tied for the same rank; in the 

other, x  and y  are in different ranks (e.g. ri (x)  =  ri (y)  and r j (x)  >  r j ( y ) )  - Let 

k^y (r i ,r j )  = 0.5.

1 Although K gen can calculate the similarity between rankings of any type of element, given its specific 

use in this research, it will be defined here in terms of the situation recommendations of services.
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The Kendall distance between r* and rj is defined as the sum of Kendall penalties for all 

service pairs. That is:

K ^ i r u r j )  =  £  k ^ r j )  (11.1)
{x,y}eP

Essentially, the Kendall distance will measure the (dis)similarity between situation rec

ommendations in terms of (dis)agreement over the ordering of service pairs. The distance 

between two identical recommendations (e.g. ri and r^) will be 0, as the recommendations 

agree on the ordering of every service pair. The largest distance will occur between two 

recommendations where one is the reverse of the other (e.g. A < B < C < D and D < C 

< B < A, where “< ” means ranked above); the recommendations disagree on the ordering 

of every service pair.

Figure 11.1 provides an example of the Kendall distances being calculated between the 

corresponding recommendations of five situations S' =  {SI, S2, S3, S4, S5}. The actual 

situation recommendations are shown at the top of the figure, and each one has been mod

ified to ensure that it contains the same services U =  {A, B, C, D}. There are six pairs of 

distinct services P  =  {{A, B}, {A, C}, {A, D}, {B, C}, {B, B}, {C , B}}. Thus, calculation 

of a Kendall distance involves calculating, and then summing, the Kendall penalties for 

each of these six service pairs. Each row in the bottom table shows the calculated Kendall 

penalties and Kendall distance for a pair of situation recommendations. The “Basic” row 

entry shows the Kendall distance in its original form; the “Norm” row entry shows it in its 

normalised form, which ranges from 0 (completely similar) to 1 (completely dissimilar). 

The normalised form is obtained by dividing the original distance by the largest possible 

Kendall distance (6 in this example), which occurs when two situation recommendations 

disagree on the ordering of every service pair.

Note that the normalised Kendall distance between rsi  and rs 4 is 0, since they are 

identical, and the normalised distance between rsi  and rs 3 is 1 , since one is the reverse of 

the other.

For brevity, the normalised Kendall distance between recommendations r* and rj may 

be referred to as Knlrm(ri,rj) in future.

3. SSC Determination: Finally, for each situation s e S', the Kendall distances

between its recommendation and those of all other situations (including itself) are assessed 

to determine those situations which are similar to s. The SSC of s is then set to be these 

similar situations.
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R a n k rs i rs2 rs3 rs4 rss

1 A B D A D

2 B A C B B

3 C C, D B C C

4 D A D A

{i,j} G S' klfyn(ri,r j) ,{ x ,y }  e  P K gen(rL, r j )

{A ,B} {A ,C } {A ,D } {B ,C } {B,D } {C ,D } Basic N o rm

{SI,SI} 0 0 0 0 0 0 0 0

{S1.S2} 1 0 0 0 0 0.5 1.5 0.25

{SI,S3} 1 1 1 1 1 1 6 1

{S1,S4} 0 0 0 0 0 0 0 0

{S1,S5} 1 1 1 0 1 1 5 0.83

{S2,S2} 0 0 0 0 0 0 0 0

{S2,S3} 0 1 1 1 1 0.5 4.5 0.75

{S2,S4} 1 0 0 0 0 0.5 1.5 0.25

{S2,S5} 0 1 1 0 1 0.5 3.5 0.58

{S3,S3} 0 0 0 0 0 0 0 0

{S3,S4} 1 1 1 1 1 1 6 1

{S3,S5} 0 0 0 1 0 0 1 0.17

{S4,S4} 0 0 0 0 0 0 0 0

{S4,S5} 1 1 1 0 1 1 5 0.83

{S5,S5} 0 0 0 0 0 0 0 0

Figure 11.1: Calculating Kendall Distances between Situation Recommendations
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The obvious approach to identifying such situations is for the developer himself to 

define a maximum normalised Kendall distance d. If the distance between a situation’s 

recommendation and that of s is less than or equal to d, then the situation is considered 

similar to s and therefore part of s ’s similar situation cluster. If d were set to 0.25 in the 

previous example, then the SSC of SI would be {SI, S2, S4}, since Knwm(rsi,rSi) — 0 

(inevitably), KnVrm('irs i i rS2 ) =  0.25, and K’norm(^5 1 ,^5 4 ) =  0. S3 and S5 would not be 

considered similar to SI, as their corresponding normalised Kendall distances are greater 

than 0.25 (1 and 0.83 respectively).

However, although this approach is relatively simple, the required involvement of the 

developer might not necessarily lead to the best SSCs being identified. Essentially, sim

ilarity between situations in terms of recommendation Kendall distance is being equated 

to similarity in terms of perceived service appropriateness. Ideally, the developer should 

pick the value of d that causes the corresponding SSC of each situation s G S' to contain 

all those situations that are truly similar to s in terms of perceived service appropriate

ness, and no more. For this “ideal d” , the effectiveness of a recommending registry should 

be maximised. Unfortunately, with only intuition to direct him, a developer might not 

necessarily pick ideal d. If he sets d too low, then the cluster of a situation s might not 

contain certain, truly similar situations. If he sets d too high, then the cluster of a sit

uation s might contain certain, dissimilar situations. Either way, recommending registry 

effectiveness will suffer.

Consequently, the approach I devised in this research does not involve the developer. 

Rather, through a process of directed experimentation and evaluation, the recommending 

registry itself attem pts to identify the ideal d for each situation s that leads to the best 

SSC for s, and which therefore maximises registry effectiveness. Precise details of this 

self-optimisation procedure are given in the next chapter.

11.2.2 Using SSCs in a Deployed Recom m ending Registry

In order for a recommending registry to be able to generate personalised service recommen

dations based on the relevant service selections made in the SSC of a requesting consumer’s 

situation, it must first be constructed to identify type-specific SSCs according to the ap

proach defined above. Then, in deploying the recommending registry in its scenario, the 

developer must instruct the registry to identify the SSCs of scenario situations, for each 

service type recommended. For a particular service type, an “SSC mapping” should be
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constructed, which maps each situation to its corresponding SSC.

Once configured in this way, the registry must operate as follows when generating a 

personalised service recommendation in response to a type t service request made by a 

consumer in situation s (recollect that a situation corresponds to a unique tuple of values 

for the i-specific situation attribute subset). As normal, the relevance of each history- 

recorded service selection is ascertained using the three tests of type-matching, recency 

and situation-similarity. The tests of type-matching and recency are still those of the basic 

registry design specified in Section 8.3.1. However, the situation-similarity test is now a 

more relaxed version: a service selection is situation-similar if its (^-specific) situation tuple 

exactly matches that of any situation in the ^-specific SSC of situation s. The registry can 

apply this test having obtained the SSC of s from the SSC mapping for type t. Once all 

relevant service selections have been identified, a personalised service recommendation is 

generated in the normal fashion using a recommendation generation algorithm, and then 

returned to the consumer.

It should be noted that the recommending registry must be able to identify relevant 

service selections using either the strict or relaxed versions of the situation-similarity test. 

The relaxed version will be used when normal recommendations are being generated for 

consumers, but the original strict version is still required when the registry is generating 

situation recommendations during the SSC identification process.

Finally, the developer may wish to instruct the recommending registry to perform 

SSC identification periodically during its deployment lifetime. This should ensure that 

the identified type-specific SSCs remain accurate, reflecting how service appropriateness 

is currently perceived in different scenario situations.

11.3 Evaluation of SSCs

To determine whether the use of SSCs did indeed enable a recommending registry to be 

more effective under both normal and spamming conditions, two experiments were per

formed. The experiments take a similar form to those of the last two chapters, with 

different configurations of the prototype recommending registry being evaluated for effec

tiveness under both normal and simulated spamming conditions using the ESSE-based 

scheme of Chapter 7. The same DCS printer scenario ESSE set was used, consisting of the 

10397 printer selections identified between 04/01/2004 00:00 and 31/01/2004 00:00 from
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the recorded departmental service selection history, with the ESSE condition defined as 

m  — 5 and n = 28 days. Thus, the results of the following experiments can be compared 

against those of the previous two chapters.

The registry prototype was modified to enable it to identify type-specific SSCs accord

ing to the approach defined in Section 1 1 .2 .1 , with a type-specific SSC mapping taking the 

form of a hash-table. The Relevant Service Selection Obtainer component of the proto

type (see Figure 9.2) was also modified, to enable relevant service selections to be identified 

using either the strict or relaxed versions of the situation-similarity test. To recap, the 

Obtainer component constructs a data-request in response to a consumer’s service request 

that retrieves the relevant service selections from the service selection history, in the form 

of their ServicelD, UserlD and WhenOccurred attributes. Since the history is stored in 

the MySQL database table, the request is an SQL SELECT statement, with the three 

service selection relevance tests of type-matching, recency and situation-similarity being 

specified as a conjunction of conditions in the WHERE clause. Thus, to enable the relaxed 

situation-similarity test to be used, the Obtainer component was modified to respond to 

a consumer’s service request by first obtaining the type-specific SSC of the consumer’s 

situation from the corresponding SSC mapping, and then constructing the data-request 

SELECT statement with a WHERE condition that required the situation tuple of a service 

selection to match that of any SSC situation.

For example, imagine that a consumer submitted a printer request, at 10/08/2004 

14:25:32, with situation attributes of:

HourOfDay = "14"

L o c a t i o n  = " f l 4 1 "

R o le  = " r e s e a r c h e r "

Also imagine that, in recommending departmental printers, the prototype registry was 

configured to use a time-window of 8  weeks and a situation attribute subset of Location 

Sz Role, and that the SSC of the consumer’s situation tuple [Location =  “fl41”, Role =

“researcher”] was:

[ L o c a t i o n  = " f 141" R o le  = " r e s e a r c h e r " ]

[ L o c a t i o n  = " g lO l" R o le  = " p o s t _ g r a d " ]

[ L o c a t i o n  = " g l4 1 " R o le  = " r e s e a r c h e r " ]

[ L o c a t i o n  = " f 141" R o le  = " p o s t _ g r a d " ]
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[ L o c a t i o n  = " f l 4 2 "  R o l e  = " p o s t _ g r a d " ]

Then the constructed SELECT statement would be:

SELECT S e r v i c e I D , U s e r I D ,W h e n O c c u r r e d  FROM S e r v i c e S e l e c t i o n H i s t o r y  

WHERE ( S e r v i c e T y p e  = " P r i n t e r " )

AND ( ( ( L o c a t i o n  = " f l 4 1 " )  AND ( R o l e  = " r e s e a r c h e r " ) )

OR ( ( L o c a t i o n  = " g lO l" )  AND ( R o l e  = " p o s t _ g r a d " ) )

OR ( ( L o c a t i o n  = " g l 4 1 " )  AND ( R o l e  = " r e s e a r c h e r " ) )

OR ( ( L o c a t i o n  = " f l 4 1 " )  AND ( R o l e  = " p o s t _ g r a d " ) )

OR ( ( L o c a t i o n  = " f l 4 2 " )  AND ( R o l e  = " p o s t _ g r a d " ) ) )

AND (W h en O ccu rred  >= " 2 0 0 4 - 0 6 - 1 5  1 4 : 2 5 : 3 2 " )

Since the primary aspect of investigation was the use of SSCs, all experiments un

dertaken involved the prototype registry being alternatively configured without, and then 

with, SSCs. Effectiveness results could then be compared to assess the impact of SSC 

usage. As in the last chapter, the prototype registry was configured to use a time-window 

of 12 weeks. It was also configured to use the consensus-based recommendation generation 

algorithm of InfLK-InfMCi, with RPVoter (newservice-off'set — 5 and olds ervicesffset 

= 5); the registry had previously proved most effective when using this CB variation (see 

Section 10.6). However, for similar reasons to those described in the last chapter, it was 

decided to vary the situation attribute subset in each experiment. By investigating SSC 

usage for all eight different printer-specific subsets of HourOfDay, Location and Role, be

haviour noted across most subsets seemed likely to be a general trend. Clearly, no SSCs 

can be identified when the subset of No Attributes is used, given that all history-recorded 

printer selections will be interpreted as being made in the same situation.

When the prototype registry was configured to use SSCs, the (printer-specific) SSCs 

consisted of those that would have been identified if SSC identification had been performed 

at 04/01/2004 00:00, just before any of the evaluated ESSEs occurred. Using the self

optimisation procedure described in the next chapter, SSCs were chosen for all scenario 

situations that maximised prototype registry effectiveness for the future time period during 

which the evaluated ESSEs occurred (04/01/2004 00:00 - 31/01/2004 00:00). It should 

be noted that this is an idealised arrangement, which was utilised purely to assess the 

potential capability of SSC usage in maximising recommending registry effectiveness.
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11.3.1 Experim ent One - SSCs Under Normal Conditions

The aim of the first experiment was to determine whether the use of SSCs could enable a 

recommending registry to be more effective under normal conditions.

S e tup

The prototype registry was configured to use, and evaluated for, each situation attribute 

subset of HourOfDay, Location and Role, with and without SSCs. Those eight prototype 

configurations in which SSCs were not used will be referred to as the “basic” configura

tions, whilst the corresponding eight in which SSCs were used will be referred to as the 

“SSC-using” configurations. The evaluation results of the basic configurations are shown 

in Figure 11.2 (these are the same as in Figure 10.16), whilst those of the SSC-using 

configurations are shown in Figure 11.3.

R esu lts

A distinct trend can be identified by comparing each pair of corresponding basic and SSC- 

using configurations which use the same situation attribute subset (apart from the No 

Attributes pair). The trend is that, of the two configurations, the SSC-using configuration 

is consistently more effective than the basic one. For example, in the case of Location, 

the NCIOC value of the SSC-using configuration is 0.8509, an increase of 0.0915 over the 

basic configuration (NCIOC =  0.7594). Indeed, the largest increase is 0.1859, from 0.6316 

to 0.8175, which occurred for the HourOfDay & Location k  Role pair.

D iscussion  Presumably, this improvement in effectiveness through the use of SSCs can 

be attributed to the reasons outlined at the end of Section 11.1. Firstly, it was asserted 

that since recommendations should be based on a greater number of relevant service se

lections, they should be more effective. This would appear to be demonstrated in the 

evaluation results. Recollect that, in the results table, the “Success Recommendations” 

cell of a configuration row refers to the number of ESSEs for which proper, “successful” 

recommendations were generated, which were based on a non-zero number of relevant ser

vice selections. The “Successful Recommendations Info” cells provide information about 

the relevant service selections on which each successful recommendation was based: the 

average number of relevant service selections, the average number of selecting individuals 

responsible for them, and the average number of services they refer to. For each pair of
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corresponding configurations, a successful recommendation generated by the SSC-using 

configuration was indeed based on a larger (average) number of relevant service selections 

than one generated by the basic configuration. Now consider the configuration pair for 

Role. For both configurations, the same number of successful recommendations were gen

erated, but the SSC-using configuration has a higher NCIOC value (0.6448 versus 0.6399). 

A similar result is also shown for the HourOfDay configuration pair, with the same num

ber of successful recommendations being generated, but the SSC-using configuration being 

more effective (0.3375 versus 0.3284). Thus, the greater amount of evidence in the form of 

more relevant service selections would appear to enable a SSC-using recommending reg

istry to generate more effective recommendations. As will be seen, further corroborating 

evidence is also shown in Experiment Two, when, to assess the prototype registry under 

spamming conditions, corresponding basic and SSC-using configurations were evaluated 

for a trimmed ESSE set for which only successful recommendations were generated. Under 

non-spamming conditions (n =  0), for every configuration pair, the SSC-using configura

tion is more effective than the basic one.

Secondly, it was asserted that since relevant service selections would be obtained from 

a cluster of SSC multiple situations, rather than a single situation, there should be less 

chance of no relevant service selections being identified in response to consumers’ service 

requests. Thus, a greater number of more effective, proper recommendations could be 

generated for consumers, rather than those that simply consisted of all available type- 

matching services in a single tied rank. This is clearly demonstrated in the evaluation 

results by considering the configuration pairs for any of the situation attribute subsets 

involving Location. For example, in the case of Location h  Role, 7824 proper recommen

dations were generated using the basic configuration, but 9682 were generated with the 

SSC-using configuration, an increase of 1858 (23.75%). Similarly, in the case of HourOfDay 

& Location &; Role, SSC usage caused the number of proper recommendations generated 

to improve from 7288 to 9112, an increase of 1824 (25.03%).

C onclusion

This experiment has demonstrated that the use of SSCs does indeed enable a recommend

ing registry to be more effective under normal conditions.
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11.3.2 Experiment Two - SSCs Under Spamming Conditions

The aim of the second experiment was to determine whether the use of SSCs could enable 

a recommending registry to be more effective under spamming conditions.

S e tu p  a n d  P re se n ta tio n

S e tu p  Various configurations of the prototype registry, which differed in whether SSCs 

were used or not, were evaluated under a variety of simulated spamming conditions, and 

the effectiveness results compared.

This experiment is very similar to Experiment Three of the last chapter (see Section 

10.5.3). To recap, that was concerned with investigating how the consensus-based recom

mendation generation algorithm (CB) performed in the face of orchestrated spamming. 

Thus, it involved various prototype registry configurations being evaluated under simu

lated conditions where the registry was being (collectively) spammed in every situation by 

a number of individuals. This experiment takes a very similar form, but is concerned with 

SSC usage, rather than with the CB algorithm.

The prototype registry was assessed in terms of 7 sub-experiments. For each sub

experiment, the registry was configured to use a different situation attribute subset of 

HourOfDay, Location and Role (but not No Attributes). It was then configured with and 

without SSCs, and these two basic and SSC-using configurations were evaluated under 

simulated spamming conditions in the same manner as in Experiment Three: see Section 

10.5.3. To recap, each configuration was evaluated in terms of the recommendations it 

generated in response to the ESSEs of the “trimmed” successful ESSE set. This set con

sisted of only those ESSEs for which proper recommendations could be generated under 

normal conditions (without the use of SSCs), which were based on a non-zero number 

of relevant service selections. In evaluating a configuration, for each of these ESSEs, the 

relevant service selections identified during the recommendation process were intercepted, 

and then augmented with a set of simulated sham service selections deliberately designed 

to boost the recommendation ranks of the corresponding 10 “bottom” services. To recap, 

the bottom services of the ESSE were those that would be worst-ranked in a recommen

dation generated using the SCO algorithm under normal conditions (without the use of 

SSCs). The added sham selections were simulated as being made by n  individuals, and 

the particular values of n will be discussed below. The ESSE recommendation generated 

by the evaluated configuration was then based on this augmented set of relevant service
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selections.

In overall terms, therefore, the prototype registry was simulated as being spammed in 

every situation in which an ESSE occurred. For a particular situation, the registry was 

spammed for 10 particular services by n  individuals. Note that the spam services may have 

differed between situations. Both the basic and SSC-using registry configurations were 

evaluated in this way for 4 different values of n. The first 2  values were 0 (no spamming) 

and 1. The other 2 values were calculated from the average number of selecting individuals 

responsible for the relevant service selections on which an ESSE recommendation was based 

(without the use of SSCs) under normal non-spamming conditions (i.e. n — 0). If this 

average number of individuals is i, then n was set to |  and i.

P re se n ta tio n  For each sub-experiment, the evaluation results for the basic and SSC- 

using configurations under the 4 different simulated spamming conditions are presented in 

the standard graph/table format. The results for the Location and HourOfDay & Location 

sub-experiments are given in Figures 11.4 and 11.5 respectively; the results for the other 

5 sub-experiments are given in Appendix D, in Figures D .l to D.5. In a particular sub

experiment, the evaluation details of the SSC-using configuration for a particular number 

of spamming individuals n are referred to as “n (SSCs)” . The evaluation details of the 

basic configuration for the same number of n spamming individuals are simply referred to 

as “n ”.

R esu lts

A distinct trend can be identified from the 7 sub-experiments, by comparing the basic and 

SSC-using configurations for any value of n. The trend is that, of the two configurations, 

the SSC-using configuration is consistently more effective than the basic one. For example, 

in the case of HourOfDay Sz Location, the NCIOC value of the SSC-using configuration 

at n =  1 is 0.9145, an increase of 0.0941 over the basic configuration (NCIOC = 0.8204). 

Similarly, at n =  22, the increase is 0.1191 (from 0.4322 to 0.5513), and 0.1310 at n = 43 

(from 0.3699 to 0.5009). Indeed the largest increase is 0.1578, from 0.7715 to 0.9273, for 

HourOfDay Sz Location Sz Role at n  =  1 .

D iscussion  Presumably, this improvement in effectiveness through the use of SSCs 

can be attributed to the reason outlined at the end of Section 1 1 .1 . It was asserted 

that since recommendations should be based on more relevant service selections made by
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more individuals, they should be less affected by spamming, assuming that the consensus- 

based recommendation generation algorithm (CB) is used (which it was: InfLK-InfMCi). 

This would appear to be demonstrated in the evaluation results. For any of the 7 sub

experiments, consider the average number of individuals responsible for the relevant service 

selections on which a successful recommendation was based (the “Mean #  Users” cell), 

for the basic and SSC-using configurations at n = 0 (no spamming). The value is indeed 

always higher when SSC is used. For example, in the case of HourOfDay &: Location 

(Figure 11.5), an average of 42.7 individuals were responsible for the relevant service se

lections with the basic configuration, but the number had increased to 67.75 individuals 

with the SSC-using configuration. Thus, the opinions of any spamming individuals are 

more diluted in a calculated CB consensus preference ranking generated using the SSC- 

using registry configuration, since they make up a smaller proportion of the individuals 

on which the ranking is based, and the consequent recommendation is more effective. For 

example, in the case of HourOfDay &; Location at n — 1, an average of 2.29% (1/43.7) of 

the individuals on whose opinions a recommendation was based using the basic registry 

configuration were spamming. However, the figure had dropped to 1.45% (1/68.75) with 

the SSC-using configuration.

C onclusion

This experiment has demonstrated that the use of SSCs does indeed enable a recommend

ing registry to be more effective under spamming conditions.

11.4 Conclusion

Through the two experiments performed, it has been demonstrated that the use of SSCs 

can enable a recommending registry to be more effective under both normal and spamming 

conditions. In conclusion, therefore, it can be seen that SSCs, and the corresponding 

relaxation in the service selection situation-similarity test, are worthwhile improvements 

to the CF-based recommending registry design.

11.5 Sum mary

The focus of this chapter has been the second improvement made to the basic CF-based 

recommending registry design, namely that concerned with relaxing the test for service
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selection situation-similarity. Motivation for the need to relax the test has been given, 

followed by a discussion of the concept of similar situation clusters (SSCs) and their 

potential benefits.

A detailed explanation of my novel approach to the identification of SSCs has then 

followed, and the three steps of the approach - situation identification and recommendation 

generation, situation recommendation comparison, and SSC determination - have been 

defined. Directions concerning the use of SSCs in a deployed recommending registry have 

also been specified.

The final part of the chapter has detailed the two experiments that were performed 

to evaluate the effectiveness of a recommending registry, with and without SSCs, under 

normal and spamming conditions. The conclusion has been drawn that the use of SSCs can 

improve recommending registry effectiveness, and that the relaxation of the test for service 

selection situation-similarity is a second worthwhile improvement to the basic CF-based 

recommending registry design.

The third and final improvement to the basic design, that concerned with the developer 

task of registry configuration, is discussed in the next chapter.
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Chapter 12

R ecom m ending R egistry  

Configuration using  

Self-O ptim isation

In this chapter, a self-optimisation procedure for enabling a design-adhering 

recommending registry to configure itself is motivated and defined. An evalua

tion of this procedure is then made.

12.1 M otivation for M inim ising D eveloper Involvem ent

As stated in Section 9.3.1, the third and final aspect of the CF-based recommending 

registry design which required further investigation and improvement was the developer 

task of registry configuration.

Section 8.3.2 specified that, for a design-adhering recommending registry to become 

operational in a scenario, the developer would first need to configure it for each service 

type recommended. More precisely, for each service type t , the developer would need to 

specify two aspects of the tests used to identify relevant service selections on which a type 

t recommendation would be based: the subset of t-specific situation attributes used in 

the service selection situation-similarity test, and the length of time-window used in the 

service selection recency test.

As would be expected, these type-specific configurations of a design-adhering recom

mending registry have a significant impact on the effectiveness of the recommendations 

that it generates. For example, consider how the basic prototype registry performed in
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the DCS printer scenario for the different printer-specific configurations evaluated in the 

Chapter 9 experiments. When the registry was configured to use the situation attribute 

subset of Location and a time-window of 8  weeks in generating printer recommendations, 

it had an NCIOC value of 0.7543 (see Figure 9.6). However, when configured to use the 

situation attribute subset of HourOfDay and a time-window of 1 2  weeks, it had an NCIOC 

value of only 0.357 (see Figure 9.5).

Clearly, although a design-adhering recommending registry has the potential to gen

erate significantly effective recommendations, its actual effectiveness will depend on how 

well it has been configured for each service type. Presumably, a developer would attem pt 

to configure a registry so as to maximise effectiveness, choosing the particular situation 

attribute subset and length of time-window for each service type t that he considered 

would generate the most effective type t recommendations. A developer might diligently 

evaluate different configurations for type t in a manner similar to that of the Chapter 9 

experiments, and choose the configuration that had performed best in the past. Alter

natively, he might simply choose the configuration for type t that he intuitively believed 

would perform best, without such time-consuming investigation. However, regardless of 

the approach taken, the very fact that a developer is required to use considerable personal 

judgement when configuring the registry could lead to ill advised choices being made, and 

thus less effective recommendations being generated.

Moreover, if the relaxed notion of service selection situation-similarity, as defined in the 

previous chapter, was utilised in the recommending registry, then a further configuration 

burden could be placed on the developer. W ith SSCs being identified for type t according 

to the process defined in Section 11.2.1, a developer would be required to pick the ideal 

maximum normalised Kendall distance (ideal d) for each situation, in order to obtain 

the best corresponding SSCs. As was noted in the previous chapter, the developer’s 

involvement could lead to inappropriate SSCs being obtained for situations.

12.2 R egistry Self-O ptim isation

In view of the fact that such developer involvement in registry configuration could lead to 

registry under-performance, I devised a novel, alternative approach to configuration. W ith 

this refined approach, for each service type t , the recommending registry itself evaluates 

different configurations and selects the one which performed best. Theoretically, a type t
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configuration that would have enabled the registry to generate the most effective type t 

recommendations in the recent past should also enable effective recommendations to be 

generated in the present and the near future. Such registry self-optimisation minimises 

developer involvement, and should, hopefully, maximise registry effectiveness.

12.2.1 The Self-Optim isation Procedure Defined

The registry self-optimisation procedure for selecting the configuration for service type t 

can be summarised as follows. Firstly, the registry identifies a set of ESSEs from its service 

selection history that refer to services of type t, and that occurred within a time-segment 

that began at some point in the recent past (such as a number of weeks ago) and ended 

in the present, at the point at which self-optimisation is occurring. Next, for a number of 

different type t configurations, the registry evaluates itself in terms of this recent ESSE 

set using the evaluation scheme defined in Chapter 7. Specifically, it configures itself in a 

number of different ways for service type £, in terms of the situation attribute subset, the 

length of time-window and the calculated SSCs, and for each configuration, evaluates itself 

in terms of the type t recommendations it generates in response to the (type t ) ESSEs. 

Finally, the registry compares the different configurations in terms of their corresponding 

NCIOC values (for a particular tolerance level), and chooses the one with the highest 

value. In other words, the registry configures itself in such a manner that would have 

enabled it to generate the most effective type t recommendations in the recent past. Since 

the registry’s “performance” in the recent past is being evaluated in terms of the identified 

ESSE set, the set should be representative of typical type t service requests that might be 

made within the deployment scenaxio.

As a clarifying example, imagine that the prototype registry is actually being deployed 

in the DCS printer scenario to recommend departmental printers to requesting consumers. 

Deployment occurs on 04/01/2004. Consequently, the registry self-optimisation procedure 

is run at 04/01/2004 00:00, in order for the registry to configure itself for the printer 

service type. The registry identifies an ESSE set which consists of departmental printer 

selections that occurred in, say, the last 4 weeks, from 07/12/2003 00:00 to 04/01/2004 

00:00. Next, the registry evaluates itself in terms of this representative ESSE set for 

different configurations. The configurations differ in terms of the subset of the printer- 

specific situation attributes (HourOfDay, Location and Role), the length of time window 

(e.g. 1 hour, 1 day, 1 week, 2 weeks, 4 weeks, 8  weeks, 12 weeks ...) and the calculated
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SSCs. Finally, the registry selects the configuration with the highest NCIOC value. When 

deployed, the registry will generate printer recommendations using this configuration.

In more precise terms, the registry self-optimisation procedure for selecting the config

uration for service type t consists of the following two steps.

1. ESSE Set Identification:

The recent representative ESSE set E  of type t  service selections is identified by the 

recommending registry from its service selection history. The ESSEs will be drawn from 

a time-segment that begins at some point in the recent past and ends in the present, 

at the moment of self-optimisation. The developer must specify the length of this time- 

segment, from which the start point can then be calculated. He must also specify the 

ESSE condition, (m  and n as explained in Section 7.4.2). ESSE set E  will be identified 

according to these developer-specified values.

For example, in the prototype registry example of printer self-optimisation occurring 

at 04/01/2004 00:00, E  could have been identified with a time-segment of 4 weeks (start 

point is then 07/12/2003 00:00), m  — 5 printer selections and n =  28 days.

2. Configuration Evaluation and Comparison:

The registry evaluates itself in terms of ESSE set E  for a number of different type t 

configurations, and selects the one for which it performs best, in terms of NCIOC value 

at a particular tolerance level. The developer must specify this tolerance level.

Type t configurations can differ in terms of the subset of t-specific situation attributes, 

the length of time-window, and the calculated SSCs. Thus, there are an almost infinite 

number of possible configurations. There may be a finite number of situation attribute 

subsets, but the time-window length could be anything between 1 second and 1 year or 

more, and in the SSC identification process, the maximum normalised Kendall distance 

d for each situation could be anything between 0  and 1 , leading to different calculated 

SSCs. Given this, to remain feasible, the self-optimisation procedure does not evaluate 

every possible type t configuration, but a finite number.

The developer is required to specify a set B  of time-window lengths which he considers 

are sensible values that could lead to effective type t recommendations (i.e. not a tiny time- 

window of 10 seconds). Let A  be the set of all possible subsets of the t-specific situation 

attributes. Then the registry evaluates itself only for those configurations with a situation
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attribute subset a € A  and a time-window length b € B. For a particular attribute subset 

/  time-window length pair (a, 6), only one configuration is evaluated. Rather than assess 

all possible (a, b) configurations that differ in terms of calculated SSCs, the registry first 

identifies the (a, b) configuration with the best SSCs that maximise registry effectiveness 

for ESSE set E. Only this “best (a, &)” configuration is evaluated; the process used to 

identify this configuration will be explained later. Thus, in total, a maximum of |A| * \B\ 

configurations could be evaluated.

Ideally, all |A| * \B\ configurations would be evaluated by the registry and the best 

performing one selected. However, if |A| or \B\ were large, then the evaluation of all of 

these configurations could take a considerable amount of time. Thus, the self-optimisation 

procedure was devised to evaluate only a subset of these configurations, that should still 

enable the best performing configuration to be identified, or at least one that performed 

almost as well.

The particular procedure devised was based on the observation from Figures 9.5 and 9.6 

that the choice of situation attribute subset had a much greater impact on registry effec

tiveness than the length of time-window. Consequently, it was decided that configurations 

that differed in terms of situation attribute subset should be evaluated first, before those 

that differed in terms of time-window length. More precisely, the developer is required 

to specify which time-window length in B  he considers should lead to the most effective 

type t recommendations; this will be referred to as bstart. Then, the registry evaluates 

itself for those \A\ configurations that differ in terms of situation attribute subset, but 

have this specified time-window length. The most effective e of these |A| configurations is 

identified. Next, the registry evaluates itself for those \B\ — 1 configurations that have the 

same situation attribute subset as e, but different time-window lengths. At this point, the 

most effective of these \B\ — 1 configurations and e is identified. If e still remains the most 

effective, the self-optimisation procedure terminates, and the registry configures itself to 

use e. However, if e is not the most effective, but one of the \B\ — 1 configurations with 

alternative time-window length balt is, this indicates that the registry is more effective 

when configured to use balt. Thus, the whole process is repeated using balt. That is, those 

|A| configurations that differ in terms of situation attribute subset, but have this length 

of time-window balt are evaluated, followed by the identification of a new e, evaluation of 

those with time-window lengths different to e (i.e. not balt), and possible termination with 

e selected. In the worst case, all |A| * |jB| configurations will be evaluated. However, in
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the best case, when the self-optimisation procedure terminates on the first iteration with 

e selected, only \A\ +  \B\ — 1 configurations will have been evaluated.

E xam ple

Returning to the prototype registry example of printer self-optimisation, there are 3 

printer-specific situation attributes: HourOfDay, Location and Role; for brevity, these 

will be referred to as “H” , “L” and “R” respectively. A  therefore consists of 8  attribute 

subsets: {{No attributes}, {H}, {L}, {R}, {H, L}, {H, R}, {L, R}, {H, L, R}}. Imagine that 

B  is specified as {4 weeks, 8  weeks, 12 weeks}. Then, there are 24 ( 8  * 3) different printer 

configurations that could be evaluated. Imagine that bstart is specified as 12 weeks. Then, 

the self-optimisation procedure might operate as follows. Firstly, the 8  configurations with 

time-window length of 1 2  weeks are evaluated:

1 . No attributes /  12 weeks

2. H /  12 weeks

3. L /  12 weeks

4. R /  12 weeks

5. H, L /  12 weeks

6 . H, R /  12 weeks

7. L, R /  1 2  weeks

8 . H, L, R /  12 weeks

Next, e is identified: the configuration with the highest NCIOC value. Imagine that e 

is H, L, R /  12 weeks. Then, the 2 other configurations with the same situation attribute 

subset as e but different time-window lengths are evaluated:

9. H, L, R /  4 weeks

1 0 . H, L, R /  8  weeks

Finally, the most effective of these 2  configurations and e is identified. If e still remains 

the most effective, the self-optimisation procedure terminates with e selected, after only 

10 configuration evaluations. However, if one of the other 2 configurations is most effective 

instead, with a time-window length of balt, the process is repeated using balt. For example,
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if H, L, R /  8  weeks is most effective, the process would be repeated with a time-window 

length of 8  weeks. Obviously, in this further iteration, if a configuration has been evalu

ated before (e.g. H, L, R /  8  weeks), it can be skipped over, and its previously calculated 

NCIOC value used in the comparison of configuration effectiveness.

How is the Best (a, b )  Configuration Identified?

As was noted earlier, a type t configuration with situation attribute subset a £ A  and 

time-window length b £ B  that is evaluated by the recommending registry in step 2 of the 

self-optimisation procedure (e.g. H, L, R /  12 weeks in the previous example) is the one 

that was identified as having the best SSCs that maximise registry effectiveness for the 

ESSE set E  identified in step 1 . How is this best (a, b) configuration identified? Essentially, 

the SSC identification process defined in the previous chapter is used (see Section 1 1 .2 .1 ). 

Firstly, the registry configures itself for type t with situation attribute subset a and time- 

window length b. Next, the steps in the SSC identification for type t are followed. To 

recap, in step 1 of the SSC identification process, through assessment of the type t service 

selections in its service selection history, the registry identifies all scenario situations S ; 

each situation corresponds to a unique tuple of attribute values for the situation attribute 

subset a. An attem pt is then made to generate a recommendation for each situation s £ S, 

and S  is filtered to contain only those situations for which recommendations were actually 

generated; this filtered set is referred to as S'. In step 2 , for every pair of situations in S', 

the Kendall distance between their corresponding recommendations is calculated. Finally, 

in step 3, for each situation s £ S', the Kendall distances between its recommendation and 

those of all other situations (including itself) are assessed to determine those situations 

which are similar to s. The SSC of s is set to be these similar situations.

In describing step 3 of the SSC identification process (Section 1 1 .2 .1 ), it was explained 

that a situation would be considered similar to s, and therefore part of the SSC of s, if 

the normalised Kendall distance between the situation’s recommendation and that of s 

was less than a defined maximum distance d. The challenge is to set d at the ideal level 

that leads to the best SSC for s being obtained, which maximises recommending registry 

effectiveness. The description in the previous chapter only noted that the registry picks 

this value of d itself. Complete details of this sub-process will now be given.

Firstly, the registry ranks all situations in S', ordering them by the Kendall distance 

between their recommendations and that of s, smallest to largest. This ranked fist ls may
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contain ties, as some situations may have the same Kendall distance to s. Secondly, the 

registry assesses E , and identifies those ESSEs that were made in situation s; this ESSE 

subset will be referred to as E s. Thirdly, the registry configures itself with an SSC for s that 

consists only of those situations in the first rank of ls (the “nearest” situations). It then 

evaluates itself in terms of E s, noting the NCIOC value. Next, the registry configures itself 

with an enlarged SSC for s that consists of those situations in the first and second ranks 

of ls. Again, it evaluates itself in terms of E s, and compares the obtained NCIOC value 

against that of the smaller SSC from the last iteration. If the NCIOC value is greater than 

or equal to this last value, then the SSC is again enlarged to also contain those situations in 

the next rank of ls, and again evaluated. However, if the NCIOC value is smaller than this 

last value, the sub-process stops, and the SSC of s is set to be the smaller one from the last 

iteration. In other words, the SSC of s is being enlarged to contain more situations from 

more ranks in ls, as long as registry effectiveness increases (or remains constant). When 

the process stops, either because registry effectiveness deteriorated with SSC enlargement, 

or the SSC could not be enlarged any further (there are no more ranks in ls), the resulting 

SSC maximises recommending registry effectiveness for E 3; conceptually, d has been set 

to a value that results in this SSC. Consequently, by applying this sub-process to every 

s € S', the resulting calculated SSCs maximise registry effectiveness for E  as a whole. If 

a situation s is not represented in E  (i.e. |£ s | =  0), its SSC is set to contain only the 

situation itself; there are no ESSEs with which to assess the impact of enlarging the SSC. 

Thus, the best (a, b) configuration (with the best SSCs) has been identified, and can now 

be evaluated by the registry. W ith the explanation of this step 3 sub-process, the SSC 

identification process has now been defined completely.

E xam ple  As a clarifying example, consider Figure 11.1 of the previous chapter again. 

This showed the recommendations generated in step 1 of the SSC identification process for 

five situations S' =  {SI, S2 , S3, S4, S5}. It also showed the Kendall distances calculated 

between every pair of situation recommendations in step 2. Now consider how step 3 would 

occur, according to the sub-process defined above. Figure 12.1 shows the ranked list ls 

for each s £ S', which contains all the situations ordered by the Kendall distance between 

their recommendations and that of s. For each rank of ls, the normalised Kendall distance 

of the situations in that rank is shown in brackets. Now consider how the best SSC would 

be obtained for SI. Firstly, the registry configures itself with an SSC of { SI, S4 } for SI,
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since these situations are in the first rank of Isi, and then evaluates itself in terms of E S1. 

Next, the registry configures itself with an enlarged SSC of { SI, S4, S2  }, the situations 

in the top 2  ranks, and again evaluates itself. The NCIOC value obtained for this SSC 

is compared against tha t of the previous SSC. Assuming that the value is greater than 

the previous one, the registry configures itself with an enlarged SSC of { SI, S4, S2 , S5 }, 

the situations in the top 3 ranks, and evaluation occurs again. This time, however, let us 

assume that the NCIOC value of this SSC is less than that of the previous SSC. Thus, the 

sub-process stops, and the SSC of SI is set to { SI, S4, S2  }. Conceptually, d has been set 

to 0.25. This same sub-process is applied to each s € S', and the best SSCs are therefore 

calculated that maximise recommending registry effectiveness for E  as a whole.

R an k S I S 2 S3 S4 S5

1 SI, S4 (0) S2  (0) S3 (0) SI, S4 (0 ) S5 (0)

2 S2 (0.25) SI, S4 (0.25) S5 (0.17) S2 (0.25) S3 (0.17)

3 S5 (0.83) S5 (0.58) S2 (0.75) S5 (0.83) S2  (0.58)

4 S3 (1 ) S3 (0.75) SI, S4 (1 ) S3 (1 ) SI, S4 (0.83)

Figure 1 2 .1 : Situations Ordered By Kendall Distance

A d d en d u m  to  S ec tion  11.3 As a brief side issue, the experimental setup used in 

evaluating the SSC concept in the previous chapter (Section 11.3) can now be explained 

fully. The two experiments performed (Sections 11.3.1 and 11.3.2) involved the prototype 

registry being evaluated for the standard set of ESSEs identified from between 04/01/2004 

00:00 and 31/01/2004 00:00. The prototype registry was evaluated for a number of different 

printer-specific configurations, which differed in terms of situation attribute subset. When 

the registry was configured to use SSCs, the (printer-specific) SSCs consisted of those that 

would have been identified if SSC identification had been performed at 04/01/2004 00:00, 

just before any of the evaluated ESSEs occurred. Using the complete SSC identification 

process (including the just-detailed step 3 sub-process), for a considered printer-specific 

configuration, the best SSCs were identified for all scenario situations that maximised 

prototype registry effectiveness for the future time period during which the evaluated 

ESSEs occurred (04/01/2004 00:00 - 31/01/2004 00:00). This was done by performing
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the step 3 sub-process not with a recent representative ESSE set (e.g. the last 4 weeks, 

from 07/12/2003 00:00 to 04/01/2004 00:00) as normal, but with the future ESSE set 

being used for evaluation purposes itself. This was an idealised arrangement, which was 

utilised purely to assess the potential capability of SSC usage in maximising recommending 

registry effectiveness.

12.2.2 Using the Self-Optim isation Procedure

A design-adhering recommending registry should be constructed to configure itself ac

cording to the self-optimisation procedure defined above. Note that the SSC identification 

process defined in the last chapter is now essentially a sub-element of this procedure. Then, 

in deploying the recommending registry in its scenario, the developer must instruct the reg

istry to configure itself for each service type recommended. To summarise, in instructing 

the registry to configure itself for service type t , the developer must specify:

• The length of the recent time-segment from which the representative ESSE set E  

will be identified (e.g. the last w weeks).

• The ESSE condition (m and n).

• The particular tolerance level at which the different evaluated type t configurations 

will be compared, in terms of NCIOC value.

• The set B  of time-window lengths that type t configurations can have.

• The time-window length bstart in B  that the developer considers should lead to the 

most effective type t recommendations.

The developer may also wish to instruct the recommending registry to perform self- 

configuration periodically during its deployment lifetime. This should ensure that the 

chosen type-specific configurations reflect any change that has occurred, and that registry 

effectiveness is maintained.

12.3 Evaluation o f the Self-O ptim isation Procedure

To determine whether the self-optimisation procedure did indeed enable a recommending 

registry to configure itself well, and thus achieve a high level of registry effectiveness, two
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experiments were performed. As previously, the experiments involve the prototype recom

mending registry, which was modified to enable it to use the self-optimisation procedure. 

Each experiment involves the registry configuring itself in the DCS printer scenario at a 

particular point in time, and then being evaluated for NCIOC effectiveness in terms of an 

ESSE set identified from a time-segment that occurred just after this point. Thus, both 

experiments show how effective the registry would have been if it had configured itself (for 

the printer service type) according to the self-optimisation procedure.

As in the last chapter, the prototype registry was set to use the consensus-based recom

mendation generation algorithm of InkLK-InfMCi, with RPVoter (newserviceservice =  

5 and oldservice-offset =  5). In both experiments, the registry was instructed to configure 

itself for the printer service type according to the following values:

• The length of the recent time-segment from which ESSE set E  was identified was 4

weeks. This length was chosen because the standard representative ESSE set used 

for evaluation purposes in the last three chapters had been identified from a 4 week 

time-segment.

• The ESSE condition was specified as m  =  5 printer selections and n = 28 days. 

This condition was chosen because the standard representative ESSE set had been 

identified with these values.

•  The NCIOC values of the different printer-specific configurations were to be com

pared at tolerance level 5. This level was chosen because it had been used in all

previous prototype registry experiments.

• The set B  of time-window lengths was { 4 weeks, 8  weeks, 12 weeks }. These 

lengths seemed sensible values, since they had been demonstrated to lead to effective 

departmental printer recommendations in Figure 9.6.

• The time-window length bstart in B  was 12 weeks. This length had led to the most 

effective printer recommendations in Figure 9.6.

12.3.1 Experim ent One - Self-Optim isation at 0 4 /0 1 /2 0 0 4  00:00 

S etu p

In the first experiment, the prototype registry was instructed to configure itself for the 

printer service type as if it was 04/01/2004 00:00. Thus, the ESSE set E  used by the
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self-optimisation procedure was identified from the previous 4 week time-segment between 

07/12/2003 00:00 and 04/01/2004 00:00. E  consisted of 12266 printer selections involving 

51 departmental printers and 604 individuals. The procedure selected the configuration 

with a situation attribute subset of HourOfDay & Location & Role and a time-window of 

1 2  weeks (plus best SSCs).

The prototype registry was then evaluated for this chosen configuration in terms of 

the standard ESSE set used in previous chapters. To recap, this set of ESSEs consists of 

10397 printer selections identified between 04/01/2004 00:00 and 31/01/2004 00:00, with 

the ESSE condition defined as m  — 5 printer selections and n =  28 days. Thus, the registry 

was evaluated for the period just after self-optimisation occurred.

To provide a useful comparison, the self-optimisation procedure was also utilised to 

identify the best possible configuration that would have maximised prototype registry 

effectiveness for this evaluated ESSE set; for brevity, this set will be referred to as F. 

Thus, the prototype registry was again instructed to configure itself for the printer service 

type as if it was 04/01/2004 00:00. However, this time, the self-optimisation procedure 

was performed using F  itself. In reality, such a self-optimisation could not occur, given 

that this set of ESSEs was identified from a period in the future, after the point in time 

at which the procedure was occurring. The best possible configuration selected used a 

situation attribute subset of Location and a time-window of 4 weeks (plus best SSCs). 

The registry was then evaluated for this configuration in terms of F.

R esu lts

The evaluation results for when the prototype registry used the self-optimised configuration 

are shown in Figure 1 2 .2 . For comparison, the evaluation results for when the registry 

used the best possible configuration are also shown. The prototype registry has performed 

significantly well when using the self-optimised configuration: it has an NCIOC value of

0.7779. In other words, the prototype registry was almost four-fifths as effective as the 

perfect (and unattainable) recommending registry (i.e. NCIOC =  1). A consumer with 

tolerance level 1 had a 72.11% chance of finding an appropriate service. At tolerance 

level 2, his chances had increased to 78.25%, and 80.08% at level 3. Registry effectiveness 

with the self-optimised configuration is also near that obtained with the best possible 

configuration (NCIOC =  0.8618): the difference is 0.0869.
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12.3.2 Experim ent Two - Self-Optim isation at 0 4 /0 3 /2 0 0 4  00:00 

Setup

In the second experiment, the prototype registry was instructed to configure itself for the 

printer service type as if it was 04/03/2004 00:00, two months after the first experiment. 

Essentially, if it is imagined that the first registry self-optimisation occurred on the initial 

deployment of the prototype registry, this second self-optimisation might have been initi

ated to ensure that any change that might have occurred in the interim was reflected in 

the chosen printer-specific configuration, and that registry effectiveness was maintained. 

Thus, the ESSE set E  used by the self-optimisation procedure was identified from the 

recent 4 week time-segment between 05/02/2004 00:00 and 04/03/2004 00:00. E  consisted 

of 18421 printer selections involving 51 departmental printers and 623 individuals. The 

procedure selected the configuration with a situation attribute subset of HourOfDay &; 

Location & Role and a time window of 8  weeks (plus best SSCs).

The prototype registry was then evaluated for this chosen configuration in terms of an 

ESSE set F  that was identified from the 4 week time-segment between 04/03/2004 00:00 

and 31/03/2004 00:00, with the standard ESSE condition of m  =  5 printer selections and 

n =  28 days. This representative set of ESSEs consists of 12544 printer selections involving 

54 departmental printers and 474 individuals. Thus, the registry was evaluated for the 

period just after self-optimisation occurred.

Again, to provide a useful comparison, the self-optimisation procedure was also utilised 

to identify the best possible configuration that would have maximised prototype registry 

effectiveness for the evaluated ESSE set F. Similar to the first experiment, the prototype 

registry was instructed to configure itself for the printer service type as if it was 04/03/2004 

00:00, and the self-optimisation procedure was performed using F  itself. The best possible 

configuration selected used a situation attribute subset o f Location and a time-window of 

1 2  weeks (plus best SSCs). The registry was then evaluated for this configuration in terms 

of F.

R esu lts

The evaluation results for when the prototype registry used the self-optimised configuration 

are shown in Figure 12.3. For comparison, the evaluation results for when the registry used 

the best possible configuration are also shown. Again, the prototype registry has performed
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significantly well when using the self-optimised configuration: it has an NCIOC value of

0.8061. This value is actually better than that which was achieved in the first experiment.

A consumer with tolerance level 1 had a 73.58% chance of finding an appropriate service. 

At tolerance level 2, his chances had increased to 80.89%, and 83.62% at level 3. Registry 

effectiveness with the self-optimised configuration is again near that obtained with the 

best possible configuration (NCIOC =  0.8426): the difference is 0.0365.

12.4 Conclusion

Through the two experiments performed, it has been demonstrated that the self-optimisation 

procedure can enable a design-adhering recommending registry to configure itself well, and 

consequently achieve a high level of registry effectiveness. In conclusion, therefore, it can 

be argued that such registry self-configuration should enable a more consistently high level 

of registry effectiveness to be achieved than might be possible through configuration by the 

developer. In addition, from a developer’s perspective, the task of registry configuration 

has been made much simpler and far less time-consuming.

12.5 Summary

The focus of this chapter has been the registry self-optimisation procedure that I devised 

in order to simplify the developer task of registry configuration, and to maximise registry 

effectiveness. The motivation for such an improvement has been given, followed by a 

definition of the self-optimisation procedure itself.

The main body of the chapter has been concerned with a detailed explanation of the 

registry self-optimisation procedure, which is based on the use of my previously-defined 

ESSE-based evaluation scheme, and incorporates the SSC identification process detailed 

in the last chapter. Information as to using the self-optimisation procedure has also been 

specified.

Finally, details have been given of the two experiments that were undertaken in con

nection with the evaluation of the self-optimisation procedure. The conclusion has been 

drawn that the devised registry self-optimisation procedure can enable a design-adhering 

recommending registry to configure itself so as to achieve a high level of registry effective

ness, and as such should simplify the developer task of registry configuration.

Now that the third and final improvement to the basic CF-based recommending registry
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design has be detailed, it is possible to define an advanced design, which incorporates all 

three improvements (from Chapters 10, 11 and 1 2 ). This advanced design is specified in 

the next chapter.
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Chapter 13

A n A dvanced R ecom m ending  

R egistry D esign

In this chapter, an advanced CF-based SDM recommending registry design is 

defined, together with the sequence of developer tasks that must be performed 

for a design-adhering registry to become operational in a particular scenario.

13.1 An Advanced R egistry D esign

In view of the three improvements made to the basic CF-based SDM recommending reg

istry design, a definition can now be given of a more advanced version. This advanced 

CF-based design is an augmented form of my basic design (defined in Section 8.3.1), incor

porating the three improvements of the consensus-based recommendation generation algo

rithm (Chapter 1 0 ), the SSC-based relaxation of the service selection situation-similarity 

test (Chapter 1 1 ), and the self-optimisation procedure for registry configuration (Chapter 

1 2 ). As before, the design is based on the abstract model of a recommending registry 

stated in Section 4.4. It is defined as follows.

For the particular scenario in which it will be deployed, a constructed recommending 

registry must:

1. Have access to a service selection history for the scenario, which adheres to the 

standardised format defined in Section 8 .2 .1 . The history records details of all service 

selections that occur within the scenario on a continual basis. To recap, the history 

entry of a type t service selection records four core attributes (ServicelD, UserlD, 

WhenOccurred and ServiceType) and a number of t-specific situation attributes.
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2 . Be able to acquire the situation attributes of a requesting consumer. The acquired 

attributes must adhere to the standardised format defined in Section 8 .2 .2 .

3. Be able to configure itself according to the self-optimisation procedure defined in 

Section 1 2 .2 .1 ; note that the SSC identification process defined in Section 1 1 .2 .1  is 

a sub-element of this procedure. It is assumed that, on deployment, the registry is 

instructed to configure itself for each scenario service type recommended. Thus, for 

each service type £, the registry chooses the subset of t-specific situation attributes 

used in the service selection situation-similarity test, the length of time-window used 

in the service selection recency test, and constructs an SSC mapping which maps 

each scenario situation to its corresponding SSC.

In generating a personalised service recommendation for a requesting consumer, a 

constructed recommending registry must operate as follows:

1 . As defined in the abstract model, the requesting consumer submits a service request 

to the registry, stating the required service type t and any specific attributes. The 

registry responds by acquiring the t-specific situation attributes of the requesting 

consumer. It also identifies available type t services by assessing the advertised 

service descriptions.

2 . The registry identifies those relevant service selections that refer to a type t service, 

and that were recently made in a situation similar to that of the consumer. More 

precisely, three tests are applied to each history-recorded service selection:

• Type-matching - The ServiceType attribute of the service selection is tested for 

equality against the required service type t specified in the consumer’s service 

request. If the compared values are equal, the service selection is type-matching.

•  Situation-similarity - The relaxed version of this test is applied as specified in 

Section 11.2.2. To recap from Chapter 11, a scenario situation corresponds to 

a unique combination of attribute values for the f-specific situation attribute 

subset; the acquired subset situation attribute values of the requesting consumer 

specify the situation he is currently in, whilst those of the service selection 

specify the situation in which it was made. The service selection is situation- 

similar if its situation tuple exactly matches that of any situation in the t- 

specific SSC of the requesting consumer’s situation. The registry can apply this
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test having first obtained this SSC from the SSC mapping for type t constructed 

earlier.

•  Recency - The WhenOccurred attribute of the service selection is tested, to 

determine whether the selection was made within the t-specific time-window. 

The date-time start of the time-window, TimeWindowStart, can be calculated 

by subtracting the time-window length from the current date-time. If WhenOc

curred > =  TimeWindowStart, then the service selection is recent.

The set of relevant service selections identified are those that are type-matching, 

situation-similar and recent.

3. The registry assesses the relevant service selections to rank the available type t 

services in an ordered list by collective perceived appropriateness. This fist is the 

personalised service recommendation. The consensus-based recommendation gener

ation algorithm (CB), as defined in Section 10.4.1, is used. Given the evaluation 

results of Chapter 1 0 , InfLK-InfMCi with RPVoter would seem an ideal CB varia

tion. If no relevant service selections were identified, a recommendation is generated 

that consists of all the available type t services in a single tied rank.

4. The registry returns the generated personalised service recommendation to the re

questing consumer. As required by the abstract model, the recommendation is 

filterable to show only those type t services that also match the specified service 

attributes.

13.2 The Tasks o f the R egistry D eveloper

For a design-adhering recommending registry to become operational in a particular sce

nario, the developer must perform the following sequence of tasks:

1 . Service selection history recording - The developer must construct the service selec

tion history recording mechanism. For each type of scenario service, he must decide 

which situation attributes to record in a service selection history entry along with the 

core attributes. As was advocated in Section 8 .2 .1 , the history recording mechanism 

should ideally be automated.

2. Recommending registry construction - The developer must construct a recommend

ing registry that adheres to the design specified above.
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3. Recommending registry configuration - For each scenario service type recommended, 

the developer must instruct the constructed registry to configure itself using the self

optimisation procedure. In doing so, he must specify the small number of variables 

defined in Section 1 2 .2 .2 .

4. Recommending registry deployment - The developer must deploy the registry. This 

deployment can occur once the history recording mechanism has recorded a sizeable 

service selection history, on which the registry can generate personalised service 

recommendations. Periodically during the the registry’s lifetime, the developer may 

wish to instruct the registry to reconfigure itself, so as to ensure that any change 

that has occurred is reflected in the chosen type-specific configurations, and that 

registry effectiveness is maintained.

NB: It should be noted that the final version of my working recommending registry pro

totype, evaluated in the last chapter (Chapter 1 2 ), adhered to this advanced design.
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Chapter 14

C onclusion

In this final chapter, an assessment is given as to whether the completed re

search meets the original aim. This is followed by a discussion of the evaluation 

approach, a general discussion of the CF-based recommending registry design, 

and possible future work. Finally, a list of research contributions is given.

14.1 The Com pleted Research in R elation to the Research  

A im  and Thesis Statem ent

As was stated in the introduction (Chapter 1 ), the aim of my research was to attem pt to 

address the following question:

W hat general design for an SDM recommending registry would enable the 

generation of effective personalised service recommendations?

More precisely, it was claimed, in the thesis statement, that it would be possible to devise 

a general design which would enable the registry generation of effective recommendations 

based on an assessment of past service selections/usage. The main body of this thesis has 

detailed the investigation of such a design, and the final design itself is defined in Chapter 

13. However, can this CF-based design be said to meet the demands of the inquiry?

The generality of the design can be seen from the fact that the inputs of a design- 

adhering recommending registry - the service selection history, and the service request 

and situation attributes of a requesting consumer - are represented and interpreted only as 

symbols. As a consequence, from the perspective of a registry, the nature of the data being 

processed is irrelevant. Thus, theoretically, it should be possible for a design-adhering
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registry to be deployed in any scenario to recommend any type of service. Provided that 

the inputs did conform to the symbol-interpreted formats specified in the design, a registry 

would be able to generate recommendations. The design does specify that date-time should 

be represented and interpreted in a date-time format, but date-time is universal. It should 

be noted, however, that there could be scenarios in which the symbolic representation 

of required recommending registry inputs could be difficult. For example, it might be 

challenging to represent a floating-point situation attribute as a finite set of symbols. This 

would obviously affect registry deployment, and the question of such intricacies of symbolic 

representation would be a useful topic for future research.

A recommending registry which adhered to the specified CF-based design should also 

be able to generate effective personalised service recommendations. In this research, ef

fectiveness has been demonstrated through the evaluation of the working design-adhering 

prototype registry within the DCS printer scenario. The version of the prototype registry 

evaluated in Chapter 12 (concerned with registry self-optimisation) was one which did 

adhere completely to the final design specified in Chapter 13. Therefore, the evaluation 

results of Experiments One and Two in Chapter 1 2  provide examples of how highly effective 

a design-adhering recommending registry could be: in Experiment One, the self-optimised 

registry achieved an NCIOC value of 0.7779 (see Figure 12.2), and in Experiment Two, it 

achieved one of 0.8061 (see Figure 12.3). It should be remembered that the final design 

incorporates the improvements of the consensus-based recommendation generation algo

rithm and similar situation clusters (SSCs). Thus, as was demonstrated in Chapters 10 

and 1 1 , a design-adhering recommending registry should also be able to remain effective 

in the face of spamming.

In summary, therefore, in terms of the thesis statement, it has been demonstrated 

that it was possible to devise a general design for an SDM recommending registry which 

would enable the generation of effective personalised service recommendations based on 

an assessment of past service selections/usage. Moreover, this CF-based design provides 

an answer to the original research question.

14.2 D iscussion of the Evaluation Approach

The style of evaluation used throughout this research can be defined, as in Information 

Retrieval [119], as a system-oriented approach. A registry’s effectiveness is assessed in
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an automated manner in terms of recommendations generated in response to pre-defined 

representative service requests. A recommendation is considered effective if pre-defined 

appropriate services are ranked highly. This approach implicitly assumes that a registry 

which proves effective under these system-oriented test conditions will prove effective from 

the perspective of actual requesting consumers.

I decided early on in my research that I would need some method of assessing recom

mending registry effectiveness throughout the registry design process in order to enable me 

to assess solutions to the design research issues. The system-oriented evaluation scheme 

(see Chapter 7) that I devised was ideal for this. The automated and self-contained nature 

of the scheme, together with the single numeric value of the NCIOC effectiveness mea

sure, enabled the rapid assessment, comparison and evolution of various design options. 

Thus, this same scheme was able to accommodate not only the investigation of variation 

in time-window length and choice of situation attributes, but also the investigation of var

ious recommendation generation and SSC algorithms, under both normal and spamming 

conditions.

A more consumer/user-oriented approach was considered, but discounted. Such an 

approach could have consisted of users interacting with a deployed design-adhering rec

ommending registry and providing feedback on whether the generated recommendations 

aided them in their service selections. However, a significant amount of time and effort 

would have been needed to organise, execute and complete a user study, and to collate and 

interpret the study results. This would have precluded the rapid and frequent assessment 

of the design options. Moreover, multiple user studies would have been required to assess 

different aspects of the design (e.g. variations in time-window length, choice of situation 

attributes, etc.). In addition, it would have been difficult to obtain precise quantitative 

measurements from user studies, making it challenging to compare research solutions (e.g. 

which of 28 different recommendation generation algorithms was most effective?).

Although a user-oriented evaluation approach would not have been suitable during 

my investigative development of the CF-based recommending registry design, it might be 

applicable now that the design has been completed. As has been noted in IR [34], there is 

value in complementing the system-oriented evaluation of an interactive recommendation 

system with some form of user-oriented evaluation. From the perspective of my research, 

this would allow an holistic investigation into whether real people did consider a design- 

adhering recommending registry to be of benefit. For example, did they consider the
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returned personalised service recommendations to be trustworthy and of good quality, and 

were the recommendations generated speedily enough? It would also allow an assessment 

of user-registry interaction, which in turn  could lead to improvements in recommendation 

presentation.

14.3 D iscussion of the CF-based Recom m ending R egistry  

D esign

In addition to the main points of generality and effectiveness, there are certain other 

issues relating to the CF-based recommending registry design of Chapter 13 which should 

be discussed.

Firstly, although this research does not present a generic mechanism to support the CF- 

based design, a generic mechanism which could provide an almost complete implementation 

of a recommending registry is entirely feasible. At its core, this registry implementation 

could provide the functionality of a basic service discovery mechanism, to handle the 

advertisement and leasing of provider-supplied service descriptions. On top of this, all the 

design aspects relating to recommendation generation could also be provided. In fact, the 

prototype registry developed for this research would need only the addition of basic SDM 

features to become a design-supporting generic mechanism itself.

In terms of the tasks that a developer would need to perform in order for a recom

mending registry to become operational in a particular scenario (see Section 13.2), such 

a generic mechanism would completely remove the task of registry construction (task 2 ). 

Given that the registry self-optimisation procedure minimises developer involvement in 

registry configuration and deployment (tasks 3 and 4), the developer could concentrate his 

efforts on the task of constructing the service selection history recording mechanism (task 

1). This last task is predominately a scenario-specific engineering problem, although the 

developer would need to decide upon the type-specific situation attributes to be recorded.

Secondly, while, as has been demonstrated, the CF-based design can enable effective 

recommendations to be generated by a design-adhering registry, just how effective the 

recommendations are will be dependent on the underlying service selection history. If the 

history provides a complete record of service selections/usage in the registry deployment 

scenario, and the services chosen are, for the most part, appropriate, effective recommenda

tions should be generated. Conversely, an incomplete history containing many inappropri
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ate service selections may cause ineffective recommendations to be generated. However, in 

any scenario, inappropriate services should hopefully be kept to a minimum, as individuals 

should be motivated to choose the services most appropriate for their circumstances.

Thirdly, as was noted in Section 6.1.3, the issue of individual privacy could be a concern 

in relation to the recording of people’s service selections for the service selection history. 

However, in many scenarios, such data might already be recorded for auditing or charging 

purposes. Moreover, an individual may actually be quite willing for his service selection 

behaviour to be recorded if he can perceive a gain for himself in the form of effective 

personalised service recommendations. In addition, in terms of the CF-based design, the 

behaviour of an individual is not singled out as a generated recommendation represents a 

consensus opinion derived from group behaviour.

14.4 Possible Future Work

W ith regard to future work, there are several potentially interesting areas of investigation.

As mentioned previously in this chapter, the intricacies of symbolic representation (see 

Section 14.1) and user-oriented evaluation (see Section 14.2) could be investigated.

A comprehensive generic mechanism which takes the form of an almost complete imple

mentation of a design-adhering recommending registry would be both practicable and use

ful, as was stated in Section 14.3, . Thus, such a generic mechanism could be constructed, 

with particular investigation being made into how to maximise the speed/throughput of 

recommendation generation and how to minimise memory usage.

Although the viability and validity of the CF-based recommending registry design 

has been demonstrated in the real-world DCS printer scenario, further assessment of the 

design in another scenario would be of use. Research into the design within the context of a 

different style of scenario with different types of services could uncover areas of the general 

design which would benefit from modification or improvement. For example, a scenario 

where change is a regular and expected occurrence could allow an in-depth investigation 

to be undertaken into how well a design-adhering recommending registry would respond 

in such circumstances.

The CF-based design could be further examined through the actual deployment of a 

design-adhering recommending registry as, although my working prototype was evaluated 

in the DCS printer scenario, it was not deployed for active use. One interesting research
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question could be: how often should a deployed registry reconfigure itself? Another issue 

relates to the impact that requesting consumers’ responses to recommendations generated 

for them in the present, in terms of the consequent service selections they make, will have 

on the recommendations generated by the deployed registry in the future.

One particular aspect of the CF-based design that would certainly merit investigation 

and improvement is how a design-adhering recommending registry responds to a con

sumer’s service request when no relevant service selections are identified. As the design 

currently stands, the consumer is given a recommendation that simply consists of all the 

available type-matching services in a single tied rank. It would be better if, in such an 

instance, the consumer could be provided with a more effective recommendation.

Finally, as my research was concerned primarily with the development of the CF-based 

recommending registry design itself, no comprehensive investigation was made into how a 

service selection history would be recorded (developer task 1 in Section 13.2). Although 

the recording of such a history would be scenario specific, it might be possible to develop 

some generally applicable guidelines.

14.5 Research Contributions

The main contributions of this research are:

• A general CF-based design for an SDM recommending registry.

• An evaluation scheme which can be used to assess the effectiveness of any recom

mending registry that adheres to this general CF-based design.

The devised effectiveness measures of RSP (Recommendation Success Probability), 

IOC (Improvement over Chance) and NCIOC (Normalised Cumulative IOC) could 

also be used in the evaluation of any non design-adhering recommending registry 

that conforms to the general abstract model defined in Section 4.4. In such a case, 

an alternative method of choosing representative service requests (and corresponding 

appropriate services) to that of the evaluation scheme would need to be used.

Other contributions of this research are:

• The demonstration of a particular style of Collaborative Filtering, that incorporates 

aspects of Social Choice Theory (from Economics), to aid service selection.
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• The identification of the similarity between a proposed SDM recommending registry 

and an IR system. This could lead to further investigation of IR from the perspective 

of developing techniques to aid service selection.
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Appendix A

G lossary of A cronym s

C B  Consensus-Based recommendation generation algorithm. See Section 10.4.

C F  Collaborative Filtering. See Section 6.3.

E C C  Extended Condorcet Criterion. See Section 10.4.4.

ESSE  Experienced Service Selection Entry. See Section 7.4.1.

InfL K  Inferencing Local Kemenisation. See Section 10.4.4.

In fM C i - In fM C 4 Inferencing Markov Chain recommendation generation algorithms. 

See Section 10.4.3.

IO C  Improvement Over Chance recommending registry effectiveness measure. See Sec

tion 7.4.4.

IR  Information Retrieval. See Section 7.3.1.

LK Local Kemenisation. See Section 10.4.4.

M C i - M C 4 Markov Chain recommendation generation algorithms. See Section 10.4.3. 

N C IO C  Normalised Cumulative IOC recommending registry effectiveness measure. See 

Section 7.4.5.

R P V o te r  Reward Punishment Voter preference ranking algorithm. See Section 10.4.2. 

R S P  Recommendation Success Probability recommending registry effectiveness measure. 

See Section 7.4.3.

SC O  Selection Count Ordering recommendation generation algorithm. See Section 8.2.6. 

SC O V oter Selection Count Ordering Voter preference ranking algorithm. See Section 

10.4.2.

SD M  Service Discovery Mechanism. See Section 3.2.

SO A  Service-Oriented Architecture. See Section 2 .1 .

SSC Similar Situation Cluster. See Section 1 1 .1 .
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S T R  Selection Tied Ranking recommendation generation algorithm. See Section 8.2.6.
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A ppendix  C

C h a p te r  10 D eta ils

R eco m m en d a tio n  
G en eration  Algorithm

NCIOC (to to lera n ce  lev e l 5) B e s t  NCIOC Rank

B a sic +LK +lnfLK

S C O 0.3648 N/A N/A 0 3 6 4 8 1

Borda 0 .1 8 6 5 0.1908 0.1874 0 .1 9 0 8 6

MC1 0.1981 0.1916 0 .1 8 3 7 0 .1 9 8 1 5

InfMCI -0 .0 0 0 2 0.2141 0.17 0 .2 1 4 1 4

M C2 0.1794 0 .1 7 5 9 0.1837 0 .1 8 3 7 8

lnfMC2 0.1343 0 .1 3 0 2 0.1548 0 .1 5 4 8 10

MC3 0.2441 0.2409 0 .1 8 3 7 0 .2 4 4 1 3

lnfMC3 0.1915 0.2857 0 .1 8 7 4 0 .2 8 5 7 2

MC4 0 .1 2 9 7 0.1297 0.1597 0 .1 5 9 7 9

lnfMC4 0.142 0 .1 1 1 9 0.1868 0 .1 8 6 8 7

Figure C .l: Experim ent One - No A ttributes

R eco m m en d a tio n  
G en eration  Algorithm

NCIOC (to to lera n ce  lev e l 5) B e st NCIOC Rank

B a sic +LK +lnfLK

SC O 0.357 N/A N/A 0 .3 5 7 1

Borda 0.325 0 .3 2 2 2 0.3246 0 .3 2 5 7

MC1 0 .1 7 9 3 0.1797 0.3261 0 .3 2 6 1 4

InfMCI 0 .0 6 9 2 0.1767 0.3284 0 .3 2 8 4 2

MC2 0 .2 0 6 6 0.2072 0.326 0 .3 2 6 5

lnfMC2 0.3124 0 .3 1 1 1 0.3233 0 .3 2 3 3 9

MC3 0.2156 0 .2 1 5 5 0.3257 0 .3 2 5 7 6

lnfMC3 0 .2 9 4 3 0.2959 0.3234 0 3 2 3 4 8

MC4 0 .0 8 7 9 0.0892 0 3224 0 .3 2 2 4 10

lnfMC4 0 .2 1 2 2 0.2335 0.328 0 3 2 8 3

Figure C.2: Experim ent One - HourOfDay
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(level 5)

NCIOC  
(level 5)
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S u c c e s s Failure M ean #  
U sers
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S e r v ic e s  
S e le c te d

M ean #  
S e r v ic e  

S e le c t io n sN o se rv ic e  
s e le c tio n s

N o u ser  
situation

S C O 7 8 2 4 0 0 6 4 .3 2 4.1 3 5 2 2 .7 7 4 3 5 .8 2 0 .9 1 2 5 2

S C O  (sp a m m ed ) 7 8 2 4 0 0 6 5 .3 2 14.1 3 6 6 7 6 .4 6 -2 1 .0 3 -0 .0 4 4 8

InfMCI 7 8 2 4 0 0 6 4 .3 2 4.1 3 5 2 2 .7 7 4 3 5 .4 9 0 .9 1 1 8 3

InfMCI (sp a m m ed ) 7 8 2 4 0 0 6 5 .3 2 14.1 3 6 6 7 6  4 6 3 4 7 .8 9 0 .7 2 8 4 7

LK-lnfMC1 7 8 2 4 0 0 6 4 .3 2 4.1 3 5 2 2 .7 7 4 3 0 .0 2 0 .9 0 0 4 4

LK-lnfMC1 (sp a m m ed ) 7 8 2 4 0 0 6 5 .3 2 14.1 3 6 6 7 6 .4 6 3 4 8 .4 6 0 7 2 9 6 6

InfLK-lnfMCI 7 8 2 4 0 0 6 4 .3 2 4.1 3 5 2 2 .7 7 4 3 5 .9 9 0 9 1 2 8 1

InfLK-lnfMCI (sp a m m ed ) 7 8 2 4 0 0 6 5 3 2 14.1 3 6 6 7 6 .4 6 3 8 4 .2 1 0 8 0 4 4 5

Figure C.3: Experim ent Two - Location & Role
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R eco m m en d a tio n  
G en eration  Algorithm

R e c o m m e n d a tio n s S u c c e s s fu l  R e c o m m e n d a tio n s  Info Cumul.
IOC 

(leve l 5)

NCIOC  
(level 5)
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U sers
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S e le c te d

M ean #  
S e r v ic e  

S e le c t io n sN o se rv ic e  
s e le c tio n s

N o u ser  
situation

S C O 1 0 3 6 0 0 0 7 5 1 3 .9 6 4 8 6 5 .2 2 3 1 6 .2 8 0 .6 6 2 2 1

S C O  (sp a m m ed ) 1 0 3 6 0 0 0 76 2 3 .9 6 3 8 6 4 3 .4 5 -1 7 .7 -0 .0 3 7 1 8

InfMCI 1 0 3 6 0 0 0 7 5 1 3 .9 6 4 8 6 5 .2 2 3 0 6 .9 7 0  6 4 2 7 2

InfMCI (sp a m m ed ) 1 0 3 6 0 0 0 7 6 2 3 .9 6 3 8 6 4 3 .4 5 2 8 8  83 0 .6 0 4 7 5

LK-lnfMC1 1 0 3 6 0 0 0 75 1 3 .9 6 4 8 6 5 .2 2 2 7 6 .9 0 .5 7 9 8 6

LK-lnfMC1 (sp a m m ed ) 1 0 3 6 0 0 0 76 2 3 .9 6 3 8 6 4 3 .4 5 269 .0 1 0 .5 6 3 2 7

InfLK-lnfMCI 1 0 3 6 0 0 0 75 1 3 .9 6 4 8 6 5 2 2 3 0 6 .7 0  6421 3

InfLK-lnfMCI (sp a m m ed ) 1 0 3 6 0 0 0 76 2 3 .9 6 3 8 6 4 3 .4 5 3 0 1 .5 7 0 .6 3 1 4 4

Figure C.4: Experim ent Two - Role
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Figure C.5: Experim ent Two - HourOfDay & Role
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Figure C.6: Experim ent Two - HourOfDay & Location &; Role
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Figure C.7: Experim ent Two - No A ttributes
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Figure C.8: Experim ent Two - HourOfDay
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Figure C.9: Experim ent Three - Location & Role
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Figure C.10: Experim ent Three - Role
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Figure C .l l :  Experim ent Three - HourOfDay & Role
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Figure C.12: Experim ent Three - HourOfDay & Location & Role
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Figure C.13: Experim ent Three - HonrOfDay
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Figure D .l: Experim ent Two - Location & Role
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Figure D.2: Experim ent Two - Role
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Figure D.3: Experim ent Two - HourOfDay Role
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Figure D.4: Experim ent Two - HourOfDay & Location &: Role
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S e le c t io n sN o se rv ic e  
s e le c t io n s

N o u ser  
situation

0 1 0 3 9 7 0 0 4 6 0  67 4 5  83 3 2 5 7 .3 1 1 5 6  84 0 3 2 8 4 3

0  (S S C s ) 1 0 3 9 7 0 0 4 9 9 .4 2 4 6 .5 8 4 1 0 4 .4 4 1 6 1 .1 9 0 .3 3 7 5 1

1 1 0 3 9 7 0 0 4 6 1 .6 7 5 5 .8 3 1 0 8 2 3 .6 3 156.41 0 .3 2 7 5 4

1 (S S C s ) 1 0 3 9 7 0 0 5 0 0 4 2 5 6 .2 9 1 1 6 7 0 .7 5 1 6 0  8 5 0 .3 3 6 8 2

231 1 0 3 9 7 0 0 6 9 1 .6 7 5 5  83 1 7 5 1 0 7 5 .2 8 -17 -0 .0 3 5 6 5

231 (S S C s ) 1 0 3 9 7 0 0 7 3 0 .4 2 5 6 .2 9 1 7 5 1 9 2 2 .4 -17 -0 .0 3 5 6 5

461 1 0 3 9 7 0 0 9 2 1 .6 7 5 5  83 3 4 9 1 3 2 6  9 3 -17 -0 .0 3 5 6 5

461 (S S C s) 1 0 3 9 7 0 0 9 6 0 .4 2 5 6  2 9 3 4 9 2 1 7 4 .0 5 -17 -0 .0 3 5 6 5

Figure D.5: Experim ent Two - HourOfDay
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