

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

Comparison and Visualisation of

Taxonomic Hierarchies

by

Eilidh J. Grant

A thesis subm itted to the

Faculty of Information and M athem atical Sciences

at the University of Glasgow

for the degree of

M aster of Science

September 2004

© Eilidh J. Grant 2004

ProQuest Number: 10753968

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10753968

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

rGLASG<

A ck n o w led g em en ts

I would like to thank my supervisors Ela Hunt and Rod Page, and also Nadia Anwar for

testing the software.

Many thanks to Fred, Nix, Jean-Alain, Andy, Katie, Kirsty and my family for all their

support.

Special thanks to Tim.

Abstract

There is no one single agreed taxonomy of species. This causes problems when searching

across databases as searching under taxa with the same name may not have the same

meaning if different taxonomies have been used in the databases. There is therefore a need

to be able to find out whether taxa in different taxonomies share the same meaning or

classify some species differently.

This project presents software for addressing the problem of meaningfully comparing

taxonomies. A novel algorithm for merging two hierarchical classifications and finding the

differences between them is described.

We have successfully developed a tool incorporating the comparison algorithm and a

visualisation of the results. This has been tested and evaluated to show that it does provide

the user with a better understanding of the differences between taxonomies, and should

therefore be useful as a component in future tools for data interpretation.

Contents

1 Introduction 1

1.1 T axonom y.. 1

1.2 Visualisation ... 2

1.3 Other a p p lic a tio n s ... 3

1.4 Thesis s tru c tu re .. 3

2 Thesis Statem ent 4

3 M otivation 5

3.1 Sample Problem .. 5

4 Background 7

4.1 Current t o o l s ... 7

4.1.1 Existing Softw are... 8

4.2 Algorithms ... 9

4.2.1 M o R eT ax ... 9

4.2.2 ATreeGrep .. 12

4.2.3 Archiving Scientific Data ... 13

4.3 Interface D esign.. 14

4.3.1 P rom etheus.. 14

4.3.2 Treebolic ... 15

4.3.3 SpaceTree... 15

i

5 Requirem ents Capture 19

5.1 U sers... 19

5.2 R equirem ents... 19

5.2.1 Functional Requirem ents... 19

5.2.2 Non-Functional Requirem ents... 20

6 A lgorithm 21

6.1 Sample Problem .. 21

6.1.1 Definitions . . . • ... 26

6.2 Naive algorithm ... 26

6.3 A lgo rithm ... 27

6.3.1 Merge T re es ... 27

6.3.1.1 A lgorithm .. 28

6.3.2 List Unmatched N odes.. 29

6.4 Improved A lg o r ith m .. 31

6.4.1 Further w o r k ... 31

6.5 Summary of A lgorithm ... 32

7 M aterials and M ethods 33

7.1 Im plem entation... 33

7.1.1 J a v a ... 33

7.1.2 Handling XML Input Data .. 33

7.1.3 Class d iagram ... 34

7.2 R esu lts... 34

7.3 XML Data format ... 37

7.3.1 TaxonTree.dtd - the Input DTD .. 37

7.3.2 Sample Input F i le s .. 38

7.3.2.1 SimpleTree 1 ... 38

7.3.2.2 SimpleTree 2 ... 39

7.3.3 Output Data F o r m a ts ... 40

ii

7.3.3.1 SpaceTree.. 40

7.3.3.2 T re eb o lic .. 40

8 V isualisation 44

8.1 Visualisation Using J T r e e ... 44

8.2 S paceT ree.. 46

8.3 Treebolic.. 46

8.4 Discussion of v isualisation ... 49

9 Further Work 52

9.1 Added F u n c tio n a lity ... 52

9.2 A lgo rithm .. 52

9.3 Im plem entation.. 53

9.4 Visualisation ... 53

9.5 Applications in other fields .. 53

10 Conclusion 54

iii

List of Figures

1.1 Linnaean classification of chimpanzee, human, lion and tiger, represented by

a tree graph... 2

3.1 Two different classifications of albatrosses (family Diomedeidae), represented

as tree graphs. The classification on the left is from Robertson and Nunn

in] . the classification on the right is from the NCBI taxonomy tree.............. 6

4.1 NEWT query in te rface ... 7

4.2 NEWT results b row ser... 8

4.3 Two different classifications of albatrosses (family Diomedeidae). Tree 1 on

the left is from Robertson and Nunn[ll]; tree 2 on the right is from the

NCBI taxonomy.. 11

4.4 Example Trees .. 13

4.5 Set-based comparison of T axonom ies.. 16

4.6 The Treebolic applet displaying a file system.. 17

4.7 SpaceTree displaying the organisational hierarchy of an oil company 18

6.1 Two different classifications of albatrosses (family Diomedeidae), represented

as tree graphs. The classification on the left is from Robertson and Nunn

in] . the classification on the right is from the NCBI taxonomy tree................... 22

6.2 The two albatross classifications as above, with the species which are dif­

ferently classified highlighted in red, and the non-equivalent Diomedea node

highlighted in bold.. 23

iv

6.3 The two albatross classifications as above, with the species which occur only

in one tree highlighted in green.. 24

6.4 The two albatross classifications as above, with the nodes which have an

equivalent node in both trees highlighted in bold... 25

6.5 Two example trees to be compared... 28

6.6 The trees merged together with the nodes labelled with which tree they

originated from. The nodes which are ’unmatched’, i.e. only belong to one

tree are highlighted... 29

6.7 The list of unmatched nodes in alphabetical order. The nodes are coloured

green if they appear once in the list and red if they occur twice. The red

nodes have pointers to the corresponding node with the same name................... 30

6.8 The merged tree with final coloured n o d e s ... 30

7.1 class d ia g ra m .. 35

7.2 Data flow - Input and Output XML f ile s .. 38

7.3 Simple trees 1 and 2, merged and displayed in SpaceTree................................... 41

7.4 Simple trees 1 and 2, merged and displayed in T re e b o lic 43

8.1 The trees representing the classifications by NCBI and by Robertson and

Nunn of the Diomedeidae family, displayed in Java JTYee......................................45

8.2 A web page incorporating some of the improvements suggested by the users,

including a key... 47

8.3 The merged tree for the classifications by NCBI and by Robertson and Nunn

of the Diomedeidae family, displayed in SpaceTree.. 48

8.4 The merged tree for the family Diomedeidae family, displayed in SpaceTree

as above. The red nodes have been searched for and are highlighted.................. 48

8.5 The merged tree for the classifications by NCBI and by Robertson and Nunn

of the Diomedeidae family, displayed in the Treebolic applet................................ 49

v

List of Tables

4.1 MoReTax comparison of albatross classifications.. 10

7.1 Time taken for algorithm to run on the test data s e ts ...36

8.1 A Comparison of tree viewers... 50

vi

Chapter 1

Introduction

In this project we aim to produce software that will allow the user to compare different

classifications of species. Species are named under the Linnaean classification system.

This taxonomy groups species into hierarchies, for example, humans have the species rnme

Homo sapiens and are classed as members of the genus Homo, the order Primates, the dass

Mammalia and the kingdom Animalia (figure 1.1). The Linnaean classification sysrem

can be represented as a rooted tree with all of the nodes labelled. Each node hcS a

“rank”, such as order, family, genus, or species. The NCBI Taxonomy database1^] has 28

ranks. Taxonomies axe not entirely standardised and so different databases may classify

species differently[8]. The problem we have addressed in this project is how to spot wlere

classifications are different and to bring this to the attention of the biologist so that they

can decide how to resolve the issue. This is a special case of the “ontology matching”

problem. We worked with Professor Rod Page, an evolutionary biologist with an interest

in taxonomies.

1.1 Taxonomy

Taxonomy has the apparently simple aim of giving every species a unique name and das-

sifying these species in a hierarchical structure tha t represents their relatedness. It is

1http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Taxonomy

1

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Taxonomy

Figure 1.1: Linnaean classification of chimpanzee, human, lion and tiger, represented by a
tree graph.

(Common
Kingdom Class Order Genus Species name)

Pan

Mammalia, Homo

tigris

leo

{ troglodytes) (chimpanzee)

(tiger)

(lion)

important to have this standard naming system so that scientists can have meaningful

discussions about species based on a common understanding. This issue of standardised

naming is similar to the use of ontologies to standardise biological terminology[2]. An

ontology is the common vocabulary in which shared knowledge is represented[4].

Taxonomies may differ because taxonomists disagree on how to classify species. For

example it is not always obvious whether a species is one species with two different pop­

ulations or actually two different species, or a species may have features of two different

taxonomic groups: one taxonomist may use certain features to classify the species under

one taxa; another taxonomist may decide other features of the species are more significant

and classify it under a different taxa. This issue arises because taxonomies are a human

construct. The plant, animals and bacteria that are alive today have evolved from com­

mon ancestors that diverged more recently the more closely related the species are. The

phylogenetic relationship of species describes the evolutionary relationships between them.

The phylogeny of species is constantly revised as new data, for example molecular data,

becomes available. Taxonomies are more stable and the same species names will be used

in different interpretations of the tree of life (phylogenies).

1.2 Visualisation

Visualisation can be an important aid to understanding. In this project several approaches

to visualising more than one hierarchical structure at a time are discussed. For example,

2

viewing the trees side by side, merging the trees into one graph or using a set-based

visualisation.

1.3 Other applications

The problem of comparing two similar trees is also applicable when studying the history

of a file system or changes to an XML document. Additions to and deletions from the tree

could be of interest. When comparing taxonomies it is important to know if something

has moved to a different branch of the tree and at which branching this occurred. This

will be applicable in ontologies where it is important to know if a word is being used with

a different meaning in different ontologies/ versions.

1.4 Thesis structure

A sample problem in Chapter 3 provides the reader with context. In Chapter 4 the software

that is currently used by our users is described and related algorithms and visualisations

that have relevance to the problem are discussed. The results of the requirements capture

are in Chapter 5. The algorithm that has been designed to solve the problem is in Chapter

6. Details of the implementation are provided in Chapter 7. The visualisation of the

taxonomy tree comparison is discussed in Chapter 8 and further work in Chapter 9.

3

Chapter 2

Thesis Statement

I aim to design an algorithm which compares two taxonomies and finds taxa that are: only

classified under one taxonomy; classified in the same way in both taxonomies; classified

differently in each taxonomy and the points at which the different classifications diverge.

I will argue that it is possible to visualise the results of the algorithm in a way that allows

the user to understand the comparison of the two taxonomies. I assert that it is possible

to achieve interoperability with other programs. The validity of these statements will be

tested in collaboration with phylogeny researchers.

4

Chapter 3

Motivation

3.1 Sample Problem

We examine here the problem of comparing two different albatross classifications: the

NCBI classification and the Robertson and Nunn classification (Figure 6.1). The NCBI

classification divides the family Diomedeidae into two genera, Diomedea and Phoebetria,

whereas the Robertson and Nunn classification recognised four genera; Diomedea, Phoe-

bastria, Phoebetria and Thalassarche. The species which are classified under Diomedea,

Phoebastria and Thalassarche in the Robertson and Nunn classification are all classified

together under the genus Diomedea in the NCBI classification. This means that a search

for species belonging to the genus Diomedea under each of the two classifications has a

different meaning and will return different species.

The aim of this project is to write an algorithm that can find those taxa which have

different meanings in different taxonomies. The differences between the taxonomies should

also be represented in a meaningful way.

5

Figure 3.1: Two different classifications of albatrosses (family Diomedeidae), represented as
tree graphs. The classification on the left is from Robertson and Nunn [11], the classification
on the right is from the NCBI taxonomy tree.

Family Genas Specks Family Specks Subspecies

(Piom e

hoebsitris ni gripes^)

Phoebastria irrorata)

Phoebastria albatrus)

Diomedea sanfordO

Diomedea epomophory

Diomedea gjbsooQ

omedea antjpodenaij)

Diomedea amsterdamcnsii)

Diomedea chiopopterQ

Diomedea exulanD

Phoebetria fuscZ)Phoebetria
Phoebetria palpebral^)

arche salyjnp

Thalassarche cartery

Thalassarche chrvsoatoma)

aarche impavidaD

Thalassarche bull erf)

Tht)««.fcbe aov. »p. (plateih)

Thalassarche

:he erem itQ

Thalassarche steadp

Diomedea epomophOTaN'**C P i omedea epomophora sanfordp

arche caui^) »CThalassarche caula caut^)

i chryaostoma)

iclanophris $

(Diomedeidae^)

T halm gche m eluophm

Dintneriw antipodeaaij)

Diomedea chionoptera)

Diomedea gjbscnjD

^Thalassarche carterD

^Thalassarche CTemi^)

^Thalassarche im pavidQ

CThalassarche salvinD

^ CDi omedea exulaneP

. - ^Diomedea sp[P

|N'*Q 'hal"««"che chlocorfayocboa^ W T̂halassarche chlororhynchos
chlororhvnchos 3

^ CDiomedea dabbeaena)

^ CDiomedca amtterdamensjs)

CThalassarche bull a j) »*<(Thalassarchc bulleri bulletD

Diomedea immutabilit)

Diomedea nigripef)

Cpboebctri

Phoebastria irrorata)

Phoebetria palpcbrata)

6

Chapter 4

Background

4.1 Current tools

There are tools available for accessing taxonomies, such as the NCBI taxonomy interface1

and NEWT[6], a new taxonomy portal to the SWISS-PROT protein sequence knowledge­

base, see Figures 4.1 and 4.2. These do provide some information on synonyms in other

databases but these rely on someone curating the database. The software described in this

project would help with this data curation task or could be used directly by users of the

database to view the relationships between different data sets directly.

1 http://www.ncbi.nlm.nih.gov/entrez / query.fcgi?db=Taxonomy

Figure 4.1: NEWT query interface2

O V

To query NEWT:

Enter text:

o r Taxonomy ID:

match:

query:

; complete word
d, substring

officiul names and official synonyms
3 all names and all synonyms

7

http://www.ncbi.nlm.nih.gov/entrez

Figure 4.2: NEWT results browser
D iu m rtk a

Lineage Tax ID 37068

• Euk areola Scientific name Diomedea
•
• Chut oat .i
• are a? a
•

other NCBI synonym s Phoebastna
Thalassarche

Rank genus
•
•
• Aves
• Net .r alhae
•

Number of Swiss-Prot entries

Number of TrEMBL entries

Taxonomy navigation

Up taxonomy tree Down taxonomy tree

Dtpmeqpa aifraims
Diomedea amstefflamens

Ptgfflssto giCTicgbcf̂

Piemsflea ii«dfln3pr»«s
Jiomedea ngnpes
P 'g-fpsaeti m .

:ha tassarch .e m<)k?n
h a ta ss a tc h e c a iten

• "* I Ml '
T h ajassa rcfte im pavioa
T M ^ a if .b g . Mfvini

4 .1 .1 E x is t in g Softw are

The Glasgow Taxonomic Name Server3 is a web site created by Rod Page. This allows

users to search for a classification or species and returns the associated identity numbers

from the GenBank4 and ITIS (Integrated Taxonomic Information System)5 databases, and

other data sources such as the Robertson and Nunn classification [11]. At present a node

in the classification tree of one database is considered to be equivalent to a node in another

database if they share the same name and rank, although we have built a more sophisticated

system to highlight when this is not the case. The Glasgow Taxonomic Name Server is

home to a database of taxonomic classifications and can provide this data in XML format6

. This is where our application will acquire its data.

3 h ttp ://darwin.zoology.gla.ac.uk/~rpage/MyToL/www/index.php
4http://www.ncbi.nlm.nih.gov/Genbank/GenbankOverview.html
°http: / / www. it is. usda.gov/
6http: / / www.w3.org/XML/

http://darwin.zoology.gla.ac.uk/~rpage/MyToL/www/index.php
http://www.ncbi.nlm.nih.gov/Genbank/GenbankOverview.html
http://www.w3.org/XML/

4.2 Algorithms

Looking at similar problems in other domains will inform the design of a solution to the

taxonomy comparison problem. Algorithms for searching for matches to trees based on

comparing paths (Section 4.2.2) and for merging XML trees (Section 4.2.3) axe described

here.

The problem of comparing phylogenetic trees, although biologically relevant to tax­

onomists, is not relevant to the required taxonomy comparison algorithm design. In taxo­

nomic trees all of the internal nodes are labelled, in phylogenetic trees the internal nodes

are unlabelled. When comparing phylogenetic trees the tree structure must be compared

to determine which internal nodes match best from each tree, when comparing taxonomic

trees the labels on the nodes can be simply compared.

4 .2 .1 M o R eT a x

The MoReTax7 system defines possible relationships between different taxonomic concepts,

as defined by different taxonomists. These relationships are used to merge data about these

taxa, so that it can be accessed despite being referenced differently.

The following basic relationships from set theory are used to describe the relationship

between two taxonomic concepts T1 and T2:

R l. T1 = T 2 T land T2 are congruent. Every member of T1 is a member of T2 and vice

versa.

R 2. T1 C T2 T1 is included in T2. Every member of T1 is a member of T2. Some

members of T2 are not members of T l.

R 3. T l D T2 T l includes T2. Every member of T2 is a member of T l. Some members

of T l are not members of T2.

R 4. T l © T2 T l and T2 overlap each other. Some members of T l are members of T2.

Some members of T l are not members of T2. Some members of T2 are not members
7http://w w w .bgbm.org/biodivinf/projects/moretax

9

http://www.bgbm.org/biodivinf/projects/moretax

Table 4.1: MoReTax comparison of albatross classifications
D io m ed e id a e l® D io m e d e id a e 2 D io m ed e id a e l® D io m e d e a 2 D io m ed e id a e ID P h oebetria 2

P hoebastria l® D io m e d e id a e 2 P hoebastria l® D io m e d e a 2 P h oebastria 1 ! P h oebetria 2

D iom edea 1® D io m ed eid a e 2 D io m ed ea 1® D iom edea 2 D io m ed ea 1 ! P h o eb e tria 2

P h oebetria lc D io m e d e id a e 2 P hoebetria 1 ! D io m ed ea 2 P h oebetria 1 = P h oebetria 2

T halassarch e 1® D io m ed eid a e 2 T halassarche l® D io m e d e a 2 T halassarch e 1 ! P h oebetria 2

of T l.

R 5. T1!T2 T l and T2 exclude each other. None of the members of T l are members of

T2.

The first and last relationships above are simple cases in which the taxonomic concepts are

either identical or entirely unrelated. The relationships included in and includes would be

of interest when deciding whether searching under one taxonomic concept in a database

would yield the same results as searching under another taxonomic concept. For example

if T l is included in T2, then searching under T2 would produce at least all of the results

that searching under T l would. However if T l and T2 overlap each other, searching under

T2 may or may not produce all of the results that searching under T l would.

Taxonomic concepts will often be equivalent to each other, in that they do not classify

any species differently, but contain some extra species that are not classified under the

other concept. This leads to taxonomic concepts that would be expected to be included in

another concept being defined as overlapping the other concept instead, as shown in the

example below.

The albatross classification comparison previously described in the motivation chapter

is used as an example here (Figure 6.1). The family and genus level nodes from the left

hand tree are compared with each of the family and genus level nodes on the right hand

tree, and their relationships, as defined by MoReTax are shown in Table 4.1.

It would be expected that Diomedea 1 would be included in Diomedeidae 2, but because

Diomedea 1 contains an extra species (Diomedea sanfordii) that is not classified in tree 2,

these two taxa are defined as overlapping.

The MoReTax system does not readily solve the problem described in chapter 3. Many

10

Figure 4.3: Two different classifications of albatrosses (family Diomedeidae). Tree 1 on the
left is from Robertson and Nunn[ll]; tree 2 on the right is from the NCBI taxonomy.

Tree 1 T re e 2
Fbnaly

(Diomedeidae Q

Fhmfly

FhoebastriainrnutabiliO

ocbastrianigipeQ

ocbastriaiiroratO

iomedea sertorttT)

iomedea qjomophora>

iomedea g b s o rQ

iomedea aitipodensS)

Diomedea anrtgdanendO

Diomedea chioncptera)

iomedea oculariQ

Phoebttria fusc£)raoebdbria 1

CPhoebdria palpebrat^)

Cfhalatsarcheddororhyndiot)

eiassarchcsivinP)

Thalassaiheduysostoma)

ThalassardiemdanophrysZ)

alas arche i mpavi dap

Thdassardie bullerD

aiasttrehenov. sp. (piad)])

Specte Subspecies

Diomedea q3omophora>«»<̂)iomcdea epomophorasanfordD

Thalassgche cauta) » CrhalasHnhecautacaut£)

'iomedea duysostoma)

TM »i«thcmd«ii»plri£>— ^d .M sarc tem d an o p h rt^

iomedea aitipodmsis)

'iomedea chionoptera)

CDiomedea gbsorp

Thdassardie eaten])

alas sarche erorita^

aiassamhelmpayldT)

CThalas sadie sdvinp

(̂ Diomedea ocularis])

lornedeasfĉ

<̂ R ioeb flb ria2 J

'THalffisaihe ch lon .<hyndioT >rn>*l«««he tW»n«hyKho>)
— 1 — V ddoroihynchos_________/
- CDiomedea dabberia3>

CDiomedea anrterdargnaj)

CThdassarche bulled »Cfhalassarche bullcri bull o p

Diomedea imnntatilS^

Iomedea ni gripes)

CFho eb artri a iiroraS)

CPiomedea dbaitnit)

Cflioebctria fusca)

hoebdria pdpebrafa)

11

taxa will be described as overlapping, and it takes some interpretation to discover whether

the taxa are equivalent apart from species that are only described in one of the classifica­

tions, or not. In the table above, looking only at comparisons of genus with genus, it can

be seen that Diomedea 2 overlaps with Phoebastria 1, Diomedea 1 and Thalassarche 1.

This shows that Diomedeal and Diomedea 2 are not equivalent but this is not immediately

apparent.

The MoReTax system also consists of a database linking taxonomic and other data

from various websites, and a web based user interface. There are a set of inference rules

that can be used to decide whether data on a taxon in one classification applies to a taxon

in another classification, based on the basic relationship between those taxa. However,

because species that are only classified under one of the trees are used when defining the

basic relationship, information is lost and taxa that could be considered to be included

in another taxa, are defined as overlapping and it is then uncertain whether data can be

transferred from one taxa to another.

4 .2 .2 A T reeG rep

A im The aim of Shasha et o/.’s ATreeGrep [12] program is to search for approximate

matches to a query tree (Q) within a database of unordered labelled trees (D).

A lgo rithm The algorithm used in ATreeGrep first indexes every root-to-leaf path in all

of the trees in Z), and then searches for matches to the root-to-leaf paths of the query tree

Q using the index.

There is one root-to-leaf path for every leaf in a tree (Figure 4.4). In a labelled tree

this path can be represented as a string made up of the labels of the nodes in the order

they appear in the root-to-leaf path. These strings are concatenated with a delimiter such

as $ between each string. Every suffix of this string is then indexed in a suffix array.

In the on-line search phase of the algorithm, each root-to-leaf path of the query tree is

searched for in the suffix array database. The time complexity of this search is 0 (q 2logS),

where q is the number of leaves in the query tree and S is the size of the suffix array. It

12

Trees: Q
Figure 4.4: Example Trees

D1 D2

c e / \ d e

c e

a a d d a a
Paths:

c e a a c e

c e

takes qlogS to search the suffix array once and the maximum possible number of paths in

Q to be searched is q. If all of the paths in Q are found in one of the trees in the database,

then this is an exact match. Approximate matches can be found by allowing a certain

number of paths not to match.

The ATreeGrep algorithm is an efficient way to search many trees for matches to a query

tree, however for our problem where we are given two trees of comparable size and depth,

the advantages of this algorithm are lost. The ATreeGrep algorithm does not provide a

solution to the question (described in Chapter 3) of whether two nodes are equivalent. The

aim of this project is to compare trees to discover if a node has been moved to a different

place in the tree, and at which place this difference occurs. The ATreeGrep algorithm

will only find that trees differ on a certain number of paths and will not find where these

differences occur.

4 .2 .3 A rch iv in g S cien tific D a ta

A related problem of archiving scientific data in XML format has been addressed by Bune-

man et.al.[l] There are many scientific databases that are regularly updated, and all of the

13

previous versions must be archived, as other scientific work will be based on that data. The

data is in XML format and so it naturally forms a tree structure. As part of the solution

to the problem of storing all of the versions of the data, the nodes in the latest version to

be added to the archive tree are compared with the nodes in the archive and then merged

into one data archive tree. The nodes are timestamped with a version number - the key

feature of this XML data archiving algorithm. This is similar to our work in that in both

cases a comparison of XML structures is made. The X-Diff program[14] also compares

XML structures in such a way that the next version can be programatically reconstructed

from the previous version of an XML file. The comparison of the XML structures will not

necessarily be meaningful to the users of the XML, in this case the biologists.

4.3 Interface Design

Visualisation software is already used in conjunction with the Glasgow Taxonomic Name

Server. The tree viewers SpaceTree and Treebolic can be used to view single taxonomies

and are discussed below. The comparison and visualisation of classification heirarchies

has previously been investigated by Kennedy et. al. and their work is described in the

following section.

4 .3 .1 P ro m eth eu s

Prometheus is a taxonomic database[10]. As part of this system, the visualisation of

multiple taxonomic classifications has been investigated by Graham, Kennedy and Hand[3].

Their system was designed to meet the requirements of a group of plant taxonomists. These

users wanted to be able to view several different classifications at once, and:

1. To track a particular genus’s siblings and parents across re-organised taxonomic

structures, if present.

2. To track a particular higher-level node’s children across re-organised taxonomic

structures, if present.

14

3. To compare the number of distinct levels within and across a set of taxonomic

hierarchies.

4. To compare the structure of whole classifications against each other, though

this was stated to be an infrequent and secondary task.

This differs from our requirements in that while the taxonomists are looking for a descript­

ive, historical understanding of taxonomies, our users are biologists who want to know

what the equivalent of a taxon in one database is in another.

Graham et. al. investigate the use of graph-based and set-based visualisations to com­

pare taxonomies. The graph-based visualisation shows the taxonomies combined into one

directed acyclic graph. The set-based visualisation uses Tufte’s concept of small multiples

[13] and displays each hierarchy individually. So that all of the trees can fit on the screen

at once, space is saved by not labelling the leaf nodes (species) - the name is displayed

when the mouse is over that species. The taxonomies can be compared by using a brushing

technique where the selected nodes in one tree are highlighted in the other trees too. This

is illustrated in Figure 4.5.

4 .3 .2 T reeb o lic

Treebolic8 is a Java applet for displaying hierarchical data in hyperbolic (curved) space[7].

A tree is rendered in curved space so that the selected node is largest and in the centre

of the display. Parent and child nodes of the selected node are rendered slightly smaller

and nodes that are further away are smaller still (Figure 4.6). This gives the effect of the

hierarchy being viewed through a fisheye lens. Animation is used to show a gradual change

when the focus is changed.

4 .3 .3 S p aceT ree

SpaceTree[9] is another tree visualisation tool. SpaceTree addresses the issue of gaining an

overview of the whole tree, whilst examining some of the details, by showing the selected

8http://treebolic.sourceforge.net/en/home.htm

15

http://treebolic.sourceforge.net/en/home.htm

Koch_1824

dem o2

Koch 1824: M oloposperm um -> S e s e lin e a e -> P a u c iiu g a ta e -> A p iaceae

Be rc h to ld & P resM 820

ffomuj [Hyd! [Bupj jPunpui iSmymj fC«id jSc«J (Am j (S«iin«W

**} r 5»*#h««M j (An^1 iP«oc*d«i| (Tori JSCi* P I |T 5u| (£>«i| |EJ fC«^ S cm & l 2 n r

B e n th a m 1867

H eterosciad iae

H ippom arathrum

jH ohenackeria

H uanaca

iHydrocotyle

'Hydrocotyleae

jH ym enolaena

Im peratoria

Isophyllum

iJohrenia
Klotzschia

|Krubera
K undm annia

Lagoecla

Laretia

L aserp itieae
jLaserp ilium

Lecokia
jLefeburia

■Leptocaulis
jLeptolaenia

{Levistlcum

jub an o tis

|U chtenstein ia

Ligusticum

L opbosciadium

M agydaris
Malabaila
M elanosciadium

Meurn

M icropleuia
M iciosciadium

M oloposperm um

Figure 4.5: Set-based comparison of Taxonomies

v De C am tolle 1830

ICimplyoipenniw Molopo.<p«ntwjm
i324|D* Cindolk 1830 Koch 1824

✓ B erch to ldJL _P resl_1820

✓ B enthatn_1867

V K och_1824

✓ Sbow sibling n o d e s w hen se lec tin g leaf n o d es

16

Figure 4.6: The Treebolic applet displaying a file system.

node, the path to the selected node and if possible the selected node’s children in detail.

Where there is not room to display nodes in detail the size (breadth and depth) of the

subtree containing those nodes is represented by a triangle as illustrated in Figure 4.7.

The transition from one selected node to another is animated, so that the user is not

disorientated by a sudden change in representation.

17

Figure 4.7: SpaceTree displaying the organisational hierarchy of an oil company

Big Oil

Safety Manager j ^Support INorth Region
Manager

B Planning Engi | | Field CoordinatorOperations Manager Petroleum Engr
Supervisor

Earth Science
Supervisor

Safety Tearn

DrtgSupl Drtg Engr Mgr j

[Prig Engr~| | B Plan Analyst | [com pletion Engr | | WO PlarvCoord | j WO Rep- j

| Prig Rep | | Prig Tech |

18

Chapter 5

Requirements Capture

5.1 Users

The system will be used by people who understand taxonomies. The users of the Glasgow

Taxonomic Name Server may use this product to compare different taxonomies from the

Server. They axe therefore likely to want to access the product from the Internet. The

system may also be used by members of Rod Page’s lab to decide how to annotate taxa in

their database.

5.2 Requirements

5.2.1 Functional Requirements

FO Enable the comparison of two taxonomic classifications, in particular highlighting the

similarities and differences between the classifications.

F I There should be a visual display of the classifications.

F2 It should be possible to see which species exist only in one tree.

F3 It should be possible to see which species are in both trees and classified in the same

way.

19

F4 It should be possible to see which species axe in both trees and classified in different

ways.

F5 For the species which are classified differently it should be possible to see where the

differences occur.

F6 It should be possible to output data from the system in formats that can be read

by visualisation tools such as Treebolic (a hyperbolic tree viewer)1 and SpaceTree[9]

(another tree viewer),and to connect to these viewers.

5.2.2 Non-Functional Requirements

N F1 The system should be simple to use.

N F2 The system should be accessible over the Internet.

N F3 Data to be read by our software is provided in Rod Page’s XML format, currently

stored on his web server.

xhttp://treebolic.sourceforge.net/en/home.htm

20

http://treebolic.sourceforge.net/en/home.htm

Chapter 6

Algorithm

6.1 Sample Problem

We examine the sample problem of comparing two different albatross classifications, presen­

ted in the motivation chapter, in more detail here. The major difference between the two

classifications is that species which are classified under Diomedea, Phoebastria and Thcdas-

sarche in the Robertson and Nunn classification axe all classified together under the genus

Diomedea in the NCBI classification (Figure 6.1). This means that a search for species be­

longing to the genus Diomedea under each of the two classifications has a different meaning

and will return different species.

The nodes labelled Diomedea in each of the two trees have the same name and level

of classification (i.e. genus) but are not equivalent. We know this because there are some

species classified under Diomedea in the NCBI classification which axe classified under a

different genus (e.g. Thalassarche) in the Robertson and Nunn classification (see Figure

6 .2).

A node in one tree is equivalent to a node in another tree if it has the same leaf

nodes (species) as descendants. In most cases there will be species which only belong

to one of the classifications, these can be ignored when deciding whether two nodes are

equivalent (Figure 6.3). In the example above the nodes representing the genus Phoebetria

are equivalent in both trees because they have exactly the same species as descendants.

21

Figure 6.1: Two different classifications of albatrosses (family Diomedeidae), represented as
tree graphs. The classification on the left is from Robertson and Nunn [11], the classification
on the right is from the NCBI taxonomy tree.

22

"•Kj^abuBHffche bullcri bulled)

Figure 6.2: The two albatross classifications as above, with the species which axe differently
classified highlighted in red, and the non-equivalent Diomedea node highlighted in bold.

Family Species Specks Subspecies

23

Figure 6.3: The two albatross classifications as above, with the species which occur only
in one t ree highlighted in green._______________________________________

Fam ily

24

Figure 6.4: The two albatross classifications as above, with the nodes which have an
equivalent node in both trees highlighted in bold.______________________

FtrnH j G « h Spccfa* t m d t y G ena gpirl— Sabapccki

T la l— i l a i IiIib ib Ii j h tn<]
^ cfakrcrirypriMM________ y

The nodes representing the family Diomedeidae are also equivalent, as the only species

which differ between the two Diomedeidae classifications are species which only occur in

one of the classifications (Figure 6.4). It should be noted that the top nodes of the trees,

in this case Diomedeidae, will always be found to be equivalent. Without looking at higher

levels of the classification we can’t tell whether species that appear to occur in only one

of the classifications are actually in the other classification but classified under a different

node. An important difference between our approach and that of MoReTax is that we

ignore nodes that don’t occur in both trees when deciding if nodes are equivalent.

Species which are named differently in each classification are treated as different species

in our algorithm. For example, Phoebastria immutabilis and Diomedea immutabilis are the

same species but named differently in the two classifications. If a lookup table of equivalent

names were available then this information could be incorporated into the algorithm.

25

6.1.1 Definitions

M atched nodes (w h ite) Internal or leaf nodes that appear in both trees under he

same path from the root.

U nm atched n od es Internal or leaf nodes that do not appear in both trees unier

the same path from the root.

U nique nodes (green) Internal or leaf nodes that occur only in one tree.

M ism atched nodes (red) Leaf nodes (species or subspecies) that occur in b>th

trees under different paths from the root.

E quivalent nodes Equivalent nodes have the same name and rank in both tr«es.

The leaves below this node are not found anywhere else in the other tree except under h e

equivalent node in the other tree.

C on flictin g / non-equivalent nodes (am ber) The internal nodes which axe the

point at which the paths of the mismatched nodes mismatch.

6.2 N aive algorithm

A naive approach could be to take each species name in one tree and search for the sane

species name in the other tree. If no match is found then that species is only found in me

of the trees, can be labelled as such and considered no further. If there is a species vith

the same name in the other tree, then the path to the root for each of the species can be

compared. If the path is the same then the species axe classified in the same way and :an

be labelled as the same. If the paths between the species name and the root of each tee

differ, then the species axe classified differently and the species and the nodes at which tiey

differ should be labelled as not equivalent. In effect we axe comparing the full classification

of every species in one classification system with the corresponding classification in the

26

other classification system. The complexity of this algorithm is of the order of 0 (n 2). This

algorithm is similar to the path matching approach used in the ATreeGrep algorithm.

In the example above, the species Diomedea sanfordii and Diomedea dabbenena axe

only classified under the NCBI classification and the Robertson and Nunn classification

respectively. These can be labelled as only belonging to one classification and ignored

for the purpose of deciding whether nodes in the two trees are equivalent. The species

Phoebetria fusca and Phoebetria palpebrata axe in both classifications and have the same

path from the root, that is: Diomedeidae, Phoebtria, Phoebetria fusca /palpebrata. They

axe therefore classified in the same way under both classifications and the node Phoebtria

is equivalent in both trees. The species Thalassarche carteri is classified under both classi­

fications but the path from the root in the NCBI classification is Diomedeidae, Diomedea,

Thalassarche carteri and the path from the root in the Robertson and Nunn classification

is Diomedeidae, Thalassarche, Thalassarche carteri. These differ at the genus level, i.e.

Diomedea or Thalassarche.

6.3 Algorithm

Our approach to the problem of comparing two classification trees has been to merge both

of the trees into one tree and label each node as belonging to tree 1 and/or tree 2. Each

node also has a colour - white, green or red, with white as the default. At the end of the

algorithm the nodes which are equivalent should be coloured white, the nodes which exist

only in one tree should be coloured green, the nodes which differ between trees should be

coloured red and the nodes that axe not equivalent should be coloured amber. We consider

two small example trees in Figure 6.5. The XML files defining these trees axe shown in

Section 7.3.2.

6.3.1 Merge Trees

The first tree is read in from an XML formated file and every node is labelled as belonging

to tree 1. The second tree is then read in, and if a node with the same name at the same

27

Figure 6.5: Two example trees to be compared.

Tree 1 Tree 2

level exists, it is labelled as belonging to tree 2 as well as tree 1. If no node with the same

name exists then a new one is created and labelled as belonging to tree 2 (figure 6.6). All

nodes are white at this stage.

6 .3 .1 .1 A lgorithm

The tree merging algorithm is shown below.

The XML Handler class calls the addChild method in the most recent parent TaxonTreeN-

ode, when a new taxon is read in from the XML input file.

addChild(String name, String rank, int whichTree){
c= getChild(n); // get child node with same name as node to be added
if(c==null){ // if there is no matching node

c= new taxonTreeNode(n, r); // then create and add a new node
c .setParent(this);
children.add(c);

28

Figure 6.6: The trees merged together with the nodes labelled with which tree they origin­
ated from. The nodes which are ’unmatched’, i.e. only belong to one tree axe highlighted.

J Tree 1

C Tree 1

C Tree 2

F Trees 1 and 2

E Trees 1 and 2

D Trees 1 and 2A Trees 1 and 2

>

c . s e t T r e e (v h i c h T r e e) ;

>

6.3 .2 List U nm atched N odes

The tree is then traversed using a pre-order traversal. If a node belongs to both trees,

then it is left as coloured white. If a node only belongs to one tree, then it is added to

a list of unmatched nodes, sorted by name. The list of unmatched nodes is empty at the

beginning of the merged tree traversal, and as nodes axe added, an alphabetical ordering

is maintained. When a node is added to the list of unmatched nodes, the list is searched

using binaxy search to find the correct position for that node to be inserted.

This fist of unmatched nodes is then traversed and if a node with a certain name only

occurs once it is coloured green. If a node with the same name and rank occurs twice in the

list it is coloured red, as it must have been classified differently in the two classifications

29

Figure 6.7: The list of unmatched nodes in alphabetical order. The nodes are coloured
green if they appear once in the list and red if they occur twice. The red nodes have
pointers to the corresponding node with the same name.

I Trf- 1 ♦

C T ie e V J 'f

J Tree 1

Figure 6.8: The merged tree with final coloured nodes

C Tree

H Trees 1 and 2
G Trees 1 and 2

(figure 6.7). When nodes are labelled as red they are also set to have a pointer to the other

red node with the same name. This allows the visualisation tool to access corresponding

nodes with the same name without having to search the list of unmatched nodes again.

The paths from the root to the red nodes can be compared and the places where they

differ are nodes that are not equivalent in the two classifications. These nodes are coloured

amber and a reference to the corresponding node that this node is mismatched with is

stored for use in the visualisation.

This algorithm could be extended to compare any number of trees. The trees would

be read into one merged tree and labelled as belonging to tree n, as above. The merged

30

tree would then be traversed and any nodes which did not belong to all n trees would be

added to the list of unmatched nodes. In the list of unmatched nodes, any nodes which

only occur once will be coloured green and nodes which occur more than once in different

places will be coloured red.

6.4 Improved Algorithm

Our software is designed to compare two trees at present, so we adapted the above algorithm

to handle two trees more efficiently. We set every node to be green by default when reading

in the first tree. When the second tree is read in, if there is a corresponding node from the

first tree, this will be coloured white, if not a new node will be created and coloured green.

The tree can then be traversed and all of the green nodes read into a fist of unmatched

nodes. This list can be traversed and if a node of the same name and rank appears twice,

then these nodes will be coloured red.

The algorithm can be further improved by storing the children of a node in a sorted

array. This will reduce the time needed for the insertion of the second tree into the first.

6.4.1 Further work

The algorithm will not handle the case in which the two trees have a different number of

ranks. The algorithm could also be extended to handle more than two trees and also to

incorporate a lookup table of synonyms.

The list of unmatched nodes could be used further to check for spelling mistakes. Nodes

that are coloured green by the algorithm could be compared using dynamic-programming

string matching algorithms[5] to find nodes with similar names in the list that are only

found in the opposite tree. These could be presented to the user as possible misspelled

names. In the lice data set the nodes Docophorides niethamerri in Tree 1 and Docophorides

niethammeri in Tree2; Haematopinus pacochoeri in Tree 1 and Haematopinus phacochoeri

in Tree 2 and Heptapsogaster minuta in Tree land Heptapsogaster minutus in Tree 2. The

list could also be viewed by an expert as a list of candidate species that may have different

31

names in the two trees.

6.5 Summary of Algorithm

The algorithm proceeds in three steps:

1. Data from one tree is read in , labelled as belonging to Tree 1 and coloured green.

2. Data from the second tree is read in, labelled as belonging to Tree 2, and merged

with Tree 1. Nodes that match in both trees are coloured white; unmatched nodes

axe coloured green.

3. A list of unmatched (green) nodes is made.

4. The unmatched nodes axe re-labelled as unique (green) or mismatched (red) and the

nodes at which the mismatched nodes don’t match axe labelled as conflicting (amber).

The implementation of the algorithm is described in Chapter 7.

32

Chapter 7

Materials and Methods

7.1 Im plem entation

7.1.1 Java

Java1 was used to implement the tree matching algorithm. The Swing library of graphical

user interface classes enabled the building of an interactive tree visualisation component.

It will be possible to convert the application into an Applet to run over the Internet within

a web browser such as Netscape.

7.1.2 Handling XML Input Data

XML2 stands for extensible markup language. There are two main APIs for handling

XML data - SAX (the Simple API for XML) and DOM (Document Object Model). Parsers

implementing SAX read one part of the XML at a time and leave the programmer to decide

what to do with the data. The DOM parser reads the whole XML document into memory

in one go and makes it into a tree object representation of the data. The SAX parser was

used in this project to read in the XML taxonomy data as the procedural method enabled

the tree merging algorithm to insert the data from both XML files into one tree.

1 http://java.sun.com
2http: / / www.w3.org/XML/

33

http://java.sun.com
http://www.w3.org/XML/

7.1.3 Class diagram

The class TaxonTreeParser reads in XML documents according to the specified DTD and

translates all related events into TaxonTreeHandler events. TaxonTreeHandlerlmpl imple­

ments the TaxonTreeHandler interface to handle the TaxonTreeHandler events. The tree

traversal and the main algorithm axe implemented here and in the TaxonTreeNode class.

The TaxonTreeNode class contains the data read in from the XML files, i.e. “name”

and “rank”, recorded as Strings, and which classification trees the node belongs to, recorded

as booleans. The colour of the node, as determined by the main algorithm, is stored in

this class. Each TaxonTreeNode has a Vector of references to its child TaxonTreeNodes, its

parent TaxonTreeNode and in the case of red and amber nodes a reference to its matching

TaxonTreeNode. A red node will match the node in the other tree with the same name.

Amber nodes signify the point at which the mismatch between two red nodes with the

same name occurs. An amber node will match the node that is mismatched in the other

tree. The matching node reference is used by the display so that when a node is selected

in one tree, its closest match in the other tree will also be highlighted.

TwoTreesFrame displays the two trees with coloured nodes as described in the algorithm

chapter, Chapter 6. TreeRenderer defines how the trees should be rendered, for example

with coloured icons representing the colour of the node.

The SpaceTree class outputs the merged tree data in an XML format that can be

displayed by the Space Tree program (Section 4.3.3), similarly, the Treebolic class outputs

the data in an XML format that can be displayed by the Treebolic program, as described

in Section 4.3.2.

7.2 Results

The algorithm was tested on three data sets: simple trees 1 and 2 (Section 6.3); the

albatross taxonomies (Section 6.3); and also a larger data set of lice taxonomies from

NCBI and Vincent Smith3. In the albatross taxonomy the algorithm correctly labelled

3 http://darwin.zoology.gla.ac.uk/~rpage/MyToL/www/find_naine_result.php

34

http://darwin.zoology.gla.ac.uk/~rpage/MyToL/www/find_naine_result.php

Figure 7.1: class diagram

35

Table 7.1: Time taken for algorithm to run on the test data sets
Data set no. of nodes

in Tree 1
no. of
nodes in
Tree 2

no. of
differing
nodes

Algorithm (ms) Visualisation -
JTree (ms)

XML
Output
(ms)

Simple Treel vs
Simple Tree2

9 8 3 433 5314 131

Albatross NCBI
vs RobNunn

31 29 38 460 4885 178

Lice NCBI vs
Vince

428 5243 5037 1603 5668 581

Simple Treel vs
Simple Treel

9 9 0 493 5083 99

Albatross Rob­
Nunn vs Rob­
Nunn

31 31 0 373 4298 137

Lice NCBI vs
NCBI

428 428 0 818 5006 330

Lice Vince vs
Vince

5243 5243 0 2056 4800 893

Diomedea, Phoebastria and Thalassarche in the Robertson and Nunn classification and

Diomedea in the NCBI classification as not equivalent, i.e. amber. In the lice taxonomy,

only two pairs of amber nodes were found. These were places were a taxon had been

spelled differently in the different databases: Rhynchophthrinia and Rhyncophthrinia, and

Boopidae and Boopiidae.

The times taken for the program to run the algorithm (including input), the JTree

visualisation and to write the output XML files, using several data sets, axe shown in

Table 7.14. The time to display JTree is constant across the test data. The time to output

the SpaceTree and Treebolic XML is proportional to the size of the merged tree. The time

taken to run the algorithm increases as the number of nodes in the input files increase.

The algorithm would be expected to run faster when the trees to be compared match, than

when the compared trees have many differences between them. In both cases the algorithm

proceeds by merging the two trees into one tree, and then processing a list of unmatched

4The timings in this table are the average of 5 runs. The program was run on an iBook with an 800
MHz PowerPC G3 processor and 640 MB of memory.

36

nodes. If the two trees match perfectly, the list of unmatched nodes will be empty and

the algorithm will finish at that point. The more mismatches there are, the longer the list

of unmatched nodes will be and the longer it will take to process. To test this input files

were matched With a copy of themselves. The simple tree data set actually took longer to

process when both trees were identical, but this may be due to variations in timing and

the small size of the data set. The algorithm did process the data faster when the two tree

matched exactly (373 ms) than when there were differences between the trees (460 ms).

The lice data is harder to compare because the two trees are such different sizes: 428 nodes

vs 5243 nodes. Comparing the smaller tree (NCBI) with itself is faster than comparing the

different lice trees, but comparing the large tree (Vince) with itself is slower.

7.3 XML D ata format

XML has emerged as the de facto standard for data exchange between disparate systems

and there are many freely available tools for parsing and manipulating data in this format.

Hence, XML was used as the input format for the developed software. The Document

Type Definition (DTD) and sample input and output files (Figure 7.2) are described be­

low. Taxonomic classifications in this data format can be downloaded from the Glasgow

Taxonomic Name Server web site5.

7.3.1 TaxonTree.dtd - the Input DTD

The document contains one classification, made up of many taxa. Each taxon has a name

and rank (e.g. genus, species) and can contain other taxa.

<?xml version^ 1. O ’ encoding=,UTF-8,?>
<!ELEMENT taxon (taxon)*>
<!ATTLIST taxon

rank CDATA #IMPLIED
name CDATA #IMPLIED

5http://darwin.zoology.gla. ac.uk/~rpage/MyToL/www/index.php

37

http://darwin.zoology.gla

Figure 7.2: Data flow - Input and Output XML files

Treebolic
program

SpaceTree
program

Java program
(and JTree
interface)

Tree 1 in
TaxonTree DTD
format ___________ Cr

Tree 2 in
TaxonTree DTD
format

Meiged tree in
SpaceTree XML
format

Meiged tree in
Treebolic XML
format

>

<!ELEMENT classification (taxon)*>

7 .3 .2 S am p le In p u t F ile s

We present here sample input files for the two simple trees described in Section 6.3.

7.3 .2 .1 Sim pleTree 1

<?xml version="l.0" encoding="UTF-8"?>
< 1D0CTYPE classification SYSTEM "TaxonTree.dtd">
cclassification>

<taxon name="A" rank="Family">
<taxon name="B" rank="Genus">

<taxon name="C" rank="Species"/>
<taxon name="E" rank="Species"/>

38

</taxon>
<taxon name="D" rank=“Genus">

<taxon name="F" rank="Species"/>
</taxon>
<taxon name="G" rank=“Genus">

<taxon name="H" rank="Species"/>
<taxon name="J" rank=“Species“/>

</taxon>
</taxon>

</classification>

7.3.2.2 SimpleTree 2

<?xml version="l.0" encoding=“UTF-8“?>
<!D0CTYPE classification SYSTEM “TaxonTree.dtd“>
<classification>

ctaxon name="A" rank=,lFamily“>
<taxon name=“B" rank=“Genus“>

<taxon name=“E" rank=“Species“/>
</taxon>
<taxon name="D" rank=“ Genus11 >

<taxon name="C" rank=“Species“/>
<taxon name=,,F“ rank=“Species“/>

</taxon>
<taxon name="G" rank=“Genus“>

<taxon name="H'1 rank=,lSpecies“/>
</taxon>

</taxon>
</classification>

39

7.3.3 Output Data Formats

The DTDs for XML data input for Treebolic6 are available on the Internet. The merged

tree XML files that are the output from the main Java program (when the two simple

trees above are the input) and used as input for the SpaceTree and Treebolic programs are

shown below.

7.3.3.1 SpaceTree

<?xml version="1.0" encoding=,,UTF-8"?>
<node>A(white) Trees 1 and 2

<node>B (amber) Tree 1 Tree 2
<node>C (red) Tree l</node>
<node>E (white) Trees 1 and 2 </node>

</node>
<node>D (amber) Tree 1 Tree 2

<node>F(white) Trees 1 and 2</node>
<node>C (red) Tree 2</node>

</node>
<node>G(white) Trees 1 and 2

<node>H(white) Trees 1 and 2</node>
<node>J(green) Tree l</node>

</node>
</node>

The above XML code will produce the tree shown in figure 7.3 when displayed using

SpaceTree.

7.3.3.2 Treebolic

The DTD for input data for Treebolic is available on the Internet7.

6http: / /treebolic.sourceforge.net/ en/dtd.htm
7http: / / treebolic.sourceforge.net/ en/dtd.htm

40

Figure 7.3: Simple trees 1 and 2, merged and displayed in SpaceTree
SpaceTree: /Users /e i i i c lh gra nt / Des kto p/ ta xon om yTr ee s /d at a /S pac eT r

File Edit H elp

Search:

//

Co Res ,jt HClt)

r----- „------ — C (red) Tree 1
d vdmDcr; i ree i i hmm. --- ---------- ---- 1

■.. E (white) Trees 1 anq 2

_ (Ffwhitp) Trpps 1 Anri ?
A(white) Trees 1 an<[-2- D (am be r) Tre e 1 Tre * 2 tr— ~

\
'

....]C (red) Tree|2

v---- =--- 1 . . . H (white) Trees 1 an<|l 2
G(whiie) Trees 1 anti 2_ -------- - --- ll---------------------------- -t j(green) Tree 1

<?xml version="l.0" encoding="UTF-8"?>
!DOCTYPE treebolic SYSTEM "Treebolic.dtd"
<treebolic>

<tree>
<nodes>

<node id="l" backcolor="000000" forecolor="FFFFFFl,>
<label>A</label>
<node id="2" backcolor="FFCC00"> backcolor="CCAA00">

<label>B</label>
<node id="3" backcolor="FF0000">

<label>C</label>
</node>
<node id="4" >

<label>E</label>
</node>

41

</node>
<node id="5" backcolor="FFCC00"> backcolor="CCAAOO">

<label>D</label>
<node id="6" >

<label>F</label>
</node>
<node id=H7" backcolor=',CC0000,,>

<label>C</label>
</node>

</node>
<node id="8" >

<label>G</label>
<node id=,,9l? >

<label>H</label>
</node>
<node id="10" backcolor="00FF00M>

<label>J</label>
</node>

</node>
</node>

</nodes>
</tree>

</treebolic>

The above XML code will produce the tree shown in figure 7.4 when displayed using

Treebolic.

42

Figure 7.4: Simple trees 1 and 2, merged and displayed in Treebolic

43

Chapter 8

Visualisation

For our visualisation of the trees we used Java Swing JTree to display the comparison of

the two classifications. We also used two publicly available tree viewers - SpaceTree [9]

and Treebolic 1 to view a merged tree representing the two classifications.

When asking users to evaluate the system we asked them to consider the following

questions.

The users were asked to:

1. Find species that exist only in one tree.

2. Find which are in both trees and classified in the same way.

3. Find which species are in both trees and classified in different ways.

4. For species which have been classified differently, find where these differences

occur.

8.1 Visualisation Using JTree

Our first visualisation tool was a Java application that shows the two classifications side

by side using the the standard Java tree display JTree (Figure 8.1). In this view, when

1 http: / / www.cs.umd.edu/hdl/spacetree /

44

http://www.cs.umd.edu/hdl/spacetree

Figure 8.1: The trees representing the classifications by NCBI and by Robertson and Nunn
of the Diomedeidae family, displayed in Java JTree.____________________
V ^
9 □ D io m e d e id a e 9 □ D io m e d e id a e

9 □ D iornedea ©■ □ D iornedea
© ■ □ D iornedea e p o m o p h o r a ©- □ Phoebetria
©- El T h a la s sa rch e cauta ©- □ Ph oeb astr ia

E D iorn ed ea chrysostorna 9 □ T h a lassarch e
<>□ T h a la ssa r ch e m elanophris D T h alassarch e chlororhynchos

□ D iorn ed ea ant ip od en s is □ T h alassarch e erem ita
□ D iornedea ch ionop tera □ T h a la ssa rch e salvini
□ D iornedea gibsoni □ T h alassarch e carteri
□ T h a la ssa r ch e carteri □ T h a lassarch e chrysostorna
□ T h a la ssa rch e erem ita E3 T h a la ssa rch e m elanop hrys
□ T h a la ssa r ch e im p av ida □ T h a la ssa r ch e im p avida
□ T h a la ssa rch e salvini □ T h a lassarch e bulleri
□ D iornedea exu lans □ T h a la ssa r ch e nov. sp (platei)
□ D iornedea sp. □ T h a la ssa r ch e cauta
□ D iornedea d a b b e n e n a □ T h a lassarch e steadi
□ D iornedea am ste rd arn en s i s

©■ □ T h a lassarc h e chlo rorh \nchos
T h a lassarch e bulleri

□ D iornedea immutabilis
□ D io rnedea nigripes
□ Ph oeb astr ia irrorata
□ D iorn ed ea albatrus

©- □ Ph oeb etr ia

a node is selected, the corresponding node with the same name in the other classification

tree will be highlighted simultaneously. Green nodes do not have a corresponding node in

the other tree. Parts of the tree can be expanded or contracted by clicking on the handles

to the left of expandable nodes.

We showed this visualisation to two potential users of the system: Professor Rod Page,

an evolutionary biologist and Nadia Anwar, a PhD student working with Professor Page.

They suggested the following improvements:

• There should be a key explaining the colouring and layout of the tree.

• When a node is chosen, the path to the root should be highlighted as well as the

node. This makes it easier to see the entire classification for the node.

• There should be an option just to see the nodes that differ between the two trees,

especially the conflicting nodes.

45

• There should also be an option to see the merged view of both classifications merged

into one tree and to be able to highlight one tree at a time in this view.

• It was also suggested that the view of two trees could be laid out so that the trees

face each other, the left tree with the root on the left and the right tree with the

root on the right. The species nodes could then be aligned with each other in the

middle. This layout would be time-consuming to implement and so has been left as

a suggestion for further work.

The users also suggested some extra functionality. It would be useful for the user to be able

to annotate the comparison of two trees. For example, to say that two nodes are equivalent

(for example where they are spelled differently), or to comment on features of the tree.

Some of this could be made interactive, allowing users to see the results of changes such as

making two nodes equivalent. For example the lice comparison can be resolved if we state

that Rhynchophthrinia and Rhyncophthrinia, and Boopidae and Boopiidae are equivalent.

8.2 SpaceTree

We output the results of our tree comparison in an XML format that could be used as an

input to the SpaceTree visualisation tool (Figure 8.3). This visualisation shows the path

from the root to the node clearly but does not allow you to view the whole tree at once.

SpaceTree allows you to search for words in the nodes.

It was not possible to choose the colour of the nodes using the standard input format.

The SpaceTree code would have to be changed to get the software to display the tree nodes

in an appropriate colour. However, it was possible to search for the red nodes which showed

the usefulness of being able to do this (Figure 8.4).

8.3 Treebolic

The results of our tree comparison were also output in an XML format that could be used

as an input to the Treebolic visualisation tool (Figure 8.5). The Treebolic applet uses a

46

A Comparison of Lice Taxonomies

Here we compare two versions o f the taxonomy for the order Phihiraptera as classified by N CBI and Vincc Smith. These are shown nrrged intto
one tree, with colour coding as follows:

~ IT he root of the tree (top level o f classification)
■1 Nodes that are the same in both trees
~1 N odes that occur only in one of the trees

I N odes that have the same name but are classified differently in the two trees
■ iThe point at which the classifications o f the red nodes diverge.
The classification by Vince Smith is show n in light shading (L 1.SI) and the classification by the NCBI is show n in darker shading (

V
Navigate the tree below by clicking and dragging. Note that all o f the red. differently classified nixies would be resolved if the amber mdes
Rhxncophthirm o and Rltynchophthirinia and Boopidae and Boitpiidac were spelt the same. The larger proportion o f light coloured nods shows
that there are many more lice covered by the Vince Smith taxonomy than by the NCBI taxonomy.

F'hthiraptera

The taxonomic data is from . The taxonomies are com pared and merged using code w ntten by
. The applet w hich is displaying the tree is by Bernard Bou.

Figure 8.2: A web page incorporating some of the improvements suggested by the isers,
including a key.3
[O A A Lice T a x o n o m y

la c id a e

I B o o p id a e } n e r io p j~ jd a c
hm dae

th id a e

|R h y n ch o p h th m n a |
I s c h n o c e r a

T r ic h o d e c tid a eIHrr'rrntnrn.Tim
H e p ta p s o g a s te r id a e | | P h ilo p te r id a e

47

Figure 8.3: The merged tree for the classifications by NCBI and by Robertson and Nunn
of the Diomedeidae family, displayed in SpaceTree.

S p a c e t r e e / U s e r s / e i l i d h g r a n t /D e s k to p / ta x o n o m y f r e e s /d a t a /S p a c e i re e O u tA lb a .x m l

F ile E d it H e lp

S e a rc h

[D io m e d e id a e iw h n e) T re es 1 a
P h o e b a s tr ia (a m b e ri

T h a la s s a rc h e (a m b e ri T r^ e 2

h c i 'l

D io rn e d e a (a m b e r) T ree 1 T r

P h o e b e tr ia (w h ite) T rees 1 a r jtlj

D io rn e d e a e p o m o p h o ra (w h ite) T re es 1 ̂ m d 2

T h a la s sa rc h e c a u ta ired) T r * e l

D io rn e d e a c h r y s o s to r n a (g re e n) Tj-ee 1

T h a la s s a rc h e m e la n o p h r is (g re e n) _ T ^ e l

D io rn e d e a a n t ip o d e n s i s (w h ite) T re es 1 fcin d 2

D io rn e d e a c h io n o p te r a iw h ite i T re es 1 ^ n d 2

D io rn e d e a g ib s o n i (w h ite) T re es l ^ n d 2

T h a la s s a rc h e c a r te r i (red) Trfee 1

T h a la s s a rc h e e r e m ita (red) Trfce 1

t h a l a s s a r c h e im p a v id a (red) Trjee 1

t h a l a s s a r c h e sa lv in i (red) Trfce 1

D io rn e d e a e x u la n s iw h ite i T rees 1 ^ n d 2

D io rn e d e a s p . (g re e n i Tr^e 1

D io rn e d e a d a b b e n e n a (g re e n i T r ^ e l

D io rn e d e a a m s t e rd a m e n s is (w h ite i T re es l |a n d 2

T h a la s s a rc h e c h lo ro r h y n c h o s (red) lWee 1

T h a la s s a rc h e bu lle ri (red) T r^e 1

D io rn e d e a im m u ta b il is ig re e n) T^ee 1

D io rn e d e a m g r ip e s ig re e n l Tr^e 1

P h o e b a s tr ia i r ro r a ta (red)

D io rn e d e a a lb a tr u s (g re e n i JT r^e 1

D io rn e d e a s a n fo rd i iq re e n i Trjee 2

Figure 8.4: The merged tree for the family Diomedeidae family, displayed in SpaceTree as
above. The red nodes have been searched for and are highlighted.

S p a c e T re e / U s e r s /e i i id n g r a n t /D e s k to p / ta x o n o m y T re e s / d a ta /S p a c - T reeO utA lba xm l

F ile E d it H e lp

S e a rc h re d R eset H C tl •

[T h a la s s a rc h e c a u t a (red) Tr^e 1

[T h a la s s a rc h e c a r te r i (red) Tr^e 1

[T h a la s sa rc h e e r e m ita (red) Trfee 1

r - --— J f t h a la s s a r c h e im p a v id a (red) Trfce 1
ID io m ed e a (a m b e r) T ree 1 T r te 2
1 - ■ * [T h a i

[D io m e d e id a e .w h ite) T rees 1 aj)d .[P h o e b a s t r ,a (a m b e ri Treje 2

(T h a la s s a rc h e (a m b e r) Trae 2

a l a s s a r c h e sa lv in i (red) Trite 1

(t h a l a s s a r c h e c h lo ro rh y n c h o s (red) t r e e 1

[T h a la s sa rc h e b u lle ri (red) T r^e 1

P h o e b a s tr ia ir ro ra ta (red i T r^e 1

[P h o e b a s tr ia i r ro ra ta (red i Tic- .

J h a l a s s a r c h e c h lo ro r h y n c h o s (red) [^ree 2

[T h a la s sa rc h e e r e m ita (red) Trfce 2

IT h a la s s a rc h e sa lv in i (red) Tr^e 2

iT h a la s sa rc h e c a rte r i (red i T r^e 2

[T h a la s s a rc h e im p a v id a (red) Trjee 2

;T h a la s s a rc h e b u l le n (red) Tr£e 2

T h a la s sa rc h e c a u ta ired i Tree 2

48

Figure 8.5: The merged tree for the classifications by NCBI and by Robertson and Nunn
of the Diomedeidae family, displayed in the Treebolic applet. 5

D io rn ed ea

[T halassarche |

[rhaiasstrchg

D iom edeidae

Diornedea epornophora

[rm ate

iL-tonriedea afo-afn.;*

P h o e b e tr ia pal

antorcfc
J P h o e b e tr ia H P h o e b e tr ia fus

| P hoebastria
JTV icuci aioa; [

 |P h o e b a ; t r r a nig \
[P h u e b a s t i ia im m u t I

hyperbolic visualisation technique where the tree appears as though it is on the surface

of a sphere, with nodes displayed smaller and closer together the further from the centre

they are. This technique allows the viewer to get a feel for the size of the tree, and to

explore a lot of the tree quickly. The use of colour was particularly effective here as even

when nodes were small at the edge of the screen, the colour stood out. A disadvantage

of this visualisation technique is that it can be disorientating and the hierarchy of the

classification was effectively lost. The Treebolic tool slows down considerably when a large

tree is being viewed.

8.4 Discussion of visualisation

We compare the different views of the data in the table below (Table 8.1).

One of the issues when displaying hierarchical data is that of representing the overall

hierarchical structure, whilst still showing details of individual nodes. In the JTree visu­

alisation internal and leaf nodes are represented by different icons. This means that the

49

r ’able 8.1: A Comparison of tree viewers.
Our viewer SpaceTree Treebolic

Display technique like a file viewer dynamic resizing hyperbolic
(curved space)

Layout indented list left to right radial
highlights path from root not yet yes no
search facility no yes no
merged/ separate trees separate (merged option to

follow)
merged merged

highlight corresponding
nodes with the same name

yes could use search facility to
do this

no

legibility of display good for comparing the two
trees

easy to read path from root reasonable

legibility of labels good excellent only central labels
legible

user can tell which nodes contain more nodes but has no indication of how many nodes

or how many more levels of the hierarchy a node contains without expanding the node.

If the expanded tree is larger than the available screen space, then JTree uses scrolling

to accommodate the tree. Again this makes it hard to gain an overview of a large tree

structure in JTree. SpaceTree and Treebolic both give an impression of the size and layout

of the whole tree within one screen by using compression.

SpaceTree lays out the tree from left to right. Along with path highlighting this makes

it easy to read the path to the selected node. The SpaceTree layout is also consistent. The

JTree layout makes it a little harder to read the path to the selected node, but again the

layout is always consistent. In Treebolic all of the other nodes fan out around the selected

node and the orientation changes as the selected node changes. The inconsistent layout

of Treebolic can be disorientating and the path from selected node to root may not be

obvious.

Overall, each of the tree visualisations has its own strengths and weaknesses. JTree

can show the two trees separately and when a node is selected in one tree, highlight the

corresponding node in the other tree. Treebolic can provide a good overview of all of the

nodes in the tree at once. SpaceTree is searchable and clearly shows the path from node

50

to root. It is therefore left for the user to decide which visualisation suits their needs best

- all three visualisation tools work with our algorithm.

51

Chapter 9

Further Work

9.1 Added Functionality

A very useful feature would be to allow users to annotate the comparison to:

- add a comment about one or several nodes.

- state that two nodes are equivalent and merge them.

- record that a node is not equivalent in the two trees.

9.2 Algorithm

A lookup table of synonyms could be used by the algorithm to allow for known differences

when merging the trees. The algorithm should also be able to handle comparison data

described above. When adding nodes to tree, the algorithm should check with annotation

to see if there is an equivalent node with a different name.

The algorithm could be extended to handle more than two trees as described in Section

6.4.1.

The algorithm could also be extended to check the list of mismatched nodes for nodes

that may have been spelled wrongly using dynamic programming.

52

9.3 Im plem entation

As the program was written in Java it could be converted into an Applet and made available

on the Glasgow Taxonomic Name Server website.

If the annotation feature was added, an extra XML format for comparison annotation

storage would be necessary.

All of the algorithm is carried out in memory. For comparing very large trees it may

be necessary to index the trees in a database and compare them that way.

9.4 Visualisation

The layout of the view of two trees could be changed so that the trees face each other,

the left tree with the root on the left and the right tree with the root on the right. The

species nodes could then be aligned with each other in the middle. Further user evaluation

research could be carried out to find out which visualisations are most useful to which

users.

Features would need to be added to the user interface to support the added annotation

functionality.

9.5 Applications in other fields

This work could form the basis for XML comparison software, or software that could be

used to compare ontologies.

53

Chapter 10

Conclusion

We have defined the most important features that should be highlighted when comparing

taxonomic hierarchies. An algorithm has been written that compares two taxonomies by

merging them and finds these features. The features are then displayed in three differ­

ent visualisations using JTree, SpaceTree and Treebolic. Each visualisation has different

strengths and weaknesses and so all of them are made available to allow the user to choose

which suits them best.

In the thesis statement (Section 2) it was stated that the algorithm should compare

two taxonomies and find taxa that are: only classified under one taxonomy; classified in

the same way in both taxonomies; classified differently in each taxonomy and the points at

which the different classifications diverge. The algorithm was described in Chapter 6and

tested in Chapter 7. The results of the algorithm are visualised (Chapter 8) and user testing

shows that this allows the user to understand the comparison of the two taxonomies. The

program is shown to interoperate with other programs (SpaceTree and Treebolic) using

XML. In further work (Chapter 9), some improvements to the current implementation are

suggested. It would also be interesting to use this algorithm to solve other problems such

as comparing ontologies.

This project contributes a novel algorithm for comparing hierarchies and visualisations

of the comparison, allowing biologists to easily see the differences between two taxonomies.

54

Bibliography

[1] Peter Buneman, Sanjeev Khanna, Keishi Tajima, and Wang-Chiew Tan. Archiving

Scientific Data. ACM Transactions on Database Systems, 29:2-42, 2004.

[2] The Gene Ontology Consortium. Gene Ontology: tool for the unification of bidogy.

Nature Genetics, 25:25-29, 2000.

[3] M. Graham, J. B. Kennedy, and C. Hand. A Comparison of Set-Based and Graph-

Based Visualisations of Overlapping Classification Hierarchies. In Procedings cf the

working conference on Advanced Visual Interfaces, pages 41-50, 2000.

[4] T. R. Gruber. A Translation Approach to Portable Ontology Specifications. Knovledge

Acquisition, 5:199-220, 1993.

[5] Dan Gusfield. Algorithms on Strings, Trees and Sequences. Cambridge University

Press, 1997.

[6] I. Q. H.Phan et al. NEWT, a new taxonomy portal. Nucleic Acids Research, 33(13).

[7] J. Lamping and R. Rao. The Hyperbolic Browser: A Focus+Context Technique for

Visualizing Large Hierarchies. In S. K. Card, J. D. MacKinlay, and B. Shneideman,

editors, Readings in Information Visualisation Using Vision To Think, pages 382-408.

Morgan Kaufmann, 1999.

[8] R.D.M. Page. Phyloinformatics:Towards a Phylogenetic Database. In J. Wang, edtor,

Data Mining in Bioinformatics. 2004.

55

[9] Catherine Plaisant, JesseGrosjean, and Benjamin B. Bederson. SpaceTree: Supporting

Exploration in Large Node Link Tree, Design Evolution and Empirical Evaluation. In

Procedings of IEEE Symposium on Information Visualization, pages 57 -64, 2002.

[10] M.R. Pullan et al. The Prometheus Taxonomic Model: a practical approach to rep­

resenting multiple taxonomies. Taxon, 49:55-75, 2000.

[11] C.J.R. Robertson and G.B. Nunn. Towards a new taxonomy for albatrosses. In

G. Roberson and R. Gales, editors, Albatross Biology and Conservation, pages 13-19.

Surrey Beaty and Sons, Chipping Norton, 1997.

[12] D. Shasha, J. T. Wang, H. Shan, and Zhang K. ATreeGrep: Approximate Searching

in Unordered Trees. In Proceedings of the 14th International Conference on Scientific

and Statistical Database Management, pages 89-98. IEEE Computer Society, 2002.

[13] E. Tufte. The Visual Display of Quantitative Information. Graphics Press, 1992.

[14] Yuan Wang. X-Diff: An Effective Change Detection Algorithm for XML Documents.

In ICDE, 2003.

[15] D.L. Wheeler et al. Database resources of the National Center for Biotechnology

Information. Nucleic Acids Research, 28:10-14, 2000.

56

G l a s ; c tvv
U N I V E R S I T Y i
U B B A B Y j

