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Summary

Sepsis-induced renal failure is associated with damage to the proximal epithelial tubule 

and is associated with disruption of the actin cytoskeleton and cell shedding. Nitric 

oxide is associated with the changes induced by pro-inflammatory cytokines in early 

sepsis. We hypothesised that it acts via phosphorylation of vasodilator-stimulated 

phosphoprotein (VASP) altering its ability to act as a link between cell:cell and 

cellrmatrix junctions and the actin cytoskeleton.

Transfection of iNOS into epithelial cells was associated with a loss of VASP from its 

normal location at the cell membrane and with disruption of the actin cytoskeleton. 

Immunoblotting revealed that iNOS transfection was associated with a rise in the 

cGMP-dependent protein kinase preferred phosphorylation site at Ser239, a region close 

to G-actin binding and F-actin polymerising domains. We also showed that Ser239 

phosphorylation was only seen when Seri57 phosphorylation had already occurred, that 

it was a transient effect and that it was nitric oxide dependent. We hypothesised that this 

was due to a conformational change in VASP and that Ser239 phosphorylation was 

dependent on the level of Serl57-phosphorylated VASP available. This was 

demonstrated in RAW 264.7 macrophages in which very high levels of Serl57 are 

achievable.

Given the permissive effect of Serl57 phosphorylation on Ser239 phosphorylation, we 

investigated the effects of cAMP on this as the Serl57 site has been demonstrated to be 

preferentially phosphorylated via cAMP-dependent protein kinase. The addition of 

cAMP alone was not associated with an increase in Ser239 phosphorylation. However, 

when given to iNOS transfected cells, prolongation of the presence of the dually
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phosphorylated form of VASP was seen. We therefore proposed that the interaction of 

both cyclic nucleotide-dependent protein kinase pathways is important in the control of 

VASP phosphorylation.

VASP is present at highly dynamic areas of the cell membrane such as lamellopodia 

and is important in cell motility. We hypothesised that it would be important in the 

formation of new epithelial sheets following injury. To investigate this we used a 

dominant-negative form of VASP (DN-VASP) consisting of amino acids 277-383 of the 

full-length protein. Expression of DN-VASP in a preformed epithelial monolayer did 

not appear to be associated with breakdown of the sheet even though it did disrupt actin 

fibres. However, expression of DN-VASP in a newly forming sheet did appear to be 

involved with cell loss and a reduced ability to adhere to the sub-stratum. Therefore, 

VASP may be of greater importance in the formation of an epithelial sheet than in 

maintenance of its integrity.

The ability of the actin cytoskeleton to reorganise in response to external stimuli is also 

of crucial importance in T cell activation. A T cell adaptor protein, ADAP contains an 

EVH 1 binding domain and is therefore capable of binding VASP. ADAP and VASP 

are amongst a group of proteins that are localised to the T cell: antigen presenting cell 

interface. ADAP knockouts show a decreased ability to cluster the integrin LFA-1 to the 

immunological synapse following stimulation. We investigated the effects of disrupting 

VASP function in T cells via the use of DN-VASP.

Transfection of DN-VASP into T cells was associated with an inability to polarise actin 

in response to TCR ligation and a significant decrease in interleukin-2 production.
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However it was not associated with a decrease in the ability to bind to beads coated with 

the LFA-1 ligand, ICAM-1. We further investigated the effects of DN-VASP 

transfection on signal transduction pathways and demonstrated that it appears to disrupt 

MAP kinase activation though not through phosphorylation of early steps of the 

cascade. It did not appear to have as great an effect on NFAT and NF-kB pathways. 

We hypothesised that VASP is important in T cell activation via its effects on signal 

transduction and that, in vivo these effects may be modulated through phosphorylation 

of VASP.

In summary, this work shows that VASP is affected by NO-induced phosphorylation 

and that appears to be more complex than first expected, involving cAMP-dependent 

pathways also. VASP appears to be important in the formation of new epithelial sheets 

but is of less importance in a pre-formed monolayer. VASP also appears crucial to T 

cell activation and DN-VASP appears to induce T cell anergy, specifically disrupting 

MAP kinase pathways.
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Chapter 1. General Introduction
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1.1 Introduction

Severe sepsis is a major risk factor for the development of acute renal failure (ARF). A 

patient requiring admission to an Intensive Care Unit because of sepsis has a 50% risk 

of death. If acute renal failure develops in this setting, the mortality risk rises to 

approximately 70% (Neveu et a l , 1996). Even a moderate decline in renal function, not 

resulting in the need for renal replacement therapy, increases the risk of death by a 

factor of 5 (Levy et a l , 1996). However, if the patient survives the infection, they have 

a 95% chance of regaining independent renal function. The predominant pathological 

change seen in the kidneys occurs in proximal tubule epithelial cells (PTEC) and is 

termed acute tubular necrosis (ATN) (Racusen, 1995; Solez et a l , 1979). In ATN 

flattening of proximal tubules, loss of the epithelial brush border and cell shedding are 

seen but necrosis is actually an uncommon feature. At a subcellular level, the changes 

seen include alterations in the cytoskeleton, loss of cell polarity and redistribution of pj 

integrins to the cell apex (Glynne and Evans, 1999b; Kellerman and Bogusky, 1992). 

The proximal tubules normally survive at a much lower oxygen tension than other parts 

of the kidney (3-4 kPa compared to 9kPa) and are therefore much more prone to 

damage when any reduction in blood flow or pressure is seen, as in the vasodilatation 

and hypovolaemia associated with severe sepsis. However, renal function can 

deteriorate before hypotension develops (Walker et a l , 1998), possibly via the actions 

of pro-inflammatory cytokines Interferon-y (IFN-y), Interleukin-1 (11-1) and Tumour 

Necrosis Factor-a (TNFa) (Groeneveld et a l , 1991) One of the effects of these 

cytokines is the generation of nitric oxide (NO) via the upregulation of inducible nitric 

oxide synthase (iNOS) (McLay et a l , 1994) NO appears to contribute to the 

development of ARF (Yaqoob et a l, 1996) (Ling et a l, 1998), though the mechanism 

by which this occurs is unclear.
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The purpose of this study is to determine the mechanisms by which acute renal failure 

may occur in sepsis. Nitric oxide induced damage to the actin cytoskeleton and the 

potential role of the cytoskeletal protein vasodilator-stimulated phosphoprotein (VASP) 

as a mediator of these effects will be examined. Additional potential roles of VASP in 

defence against infection via phagocytosis and modification of T cell activation with 

implications in developments of new types of immunosuppressive agents will also be 

examined.

1.2 The Kidney

1.2.1 Anatomy of the proximal tubule

The functional unit of the kidney is the nephron. Normal kidneys contain approximately 

1 million nephrons each. The nephron consists of the renal corpuscle (glomerulus and 

Bowman’s capsule), the proximal convoluted tubule (PCT), the loop of Henle, the distal 

convoluted tubule and the collecting ducts (figure 1.1). The proximal tubule consists bf 

a cortical convoluted segment (pars convuluta) starting at the glomerulus and a straight 

part (pars recta) ending at the loop of Henle in the outer medulla. Morphologically, the 

PCT can be divided into three segments -  SI, forming approximately the first two thirds 

of the pars convuluta, S2, forming the remaining third of the convoluted segment and 

the initial portion of the pars recta and S3 forming the more distal portions of the PCT 

(Kaissling and Kriz, 1979; Tisher et al., 1969). These three segments have different 

functional characteristics. The SI segment has a higher transport capacity than later 

segments of the proximal tubule for a number of solutes including chloride, glucose, 

sodium and bicarbonate (Maddox and Gennari, 1987). The S2 segment has much higher 

tubular secretion by organic anion and cation secretory pumps (Woodhall et al., 1978). 

The cells in the earlier portions of the PCT have a greater luminal surface membrane
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area due to a brush border with long cilia. These become shorter in the more distal 

segments. SI segment cells have a greater number of lysosomes and endocytic vacuoles 

than more distal segments (Madsen and Park, 1987). The lysosomal-vacuolar system in 

the PCT is responsible for the reabsorption and degradation of filtered proteins.

Afferent arteriole

V

Branch o f  
renal artery

Glomerulus
Glomerular 
capsule To rena| vein y

Efferent arteriole

2nd set o f capillaries
Proximal convoluted tubule

Distal convoluted 
tubule

w

Loop o f H en le -

S tra igh t-
collecting
tubule

A nephron and the blood vessels associated with it. 

Figure 1.1 The Nephron

1.2.2 Proximal Tubule Epithelial Cells (PTEC)

The cells of the proximal tubule have a basic polarised structure similar to that of other 

transporting epithelial cells (Figure 1.2). This consists of an apical (luminal) membrane, 

containing a number of vectorial, transmembrane carriers (Schnermann, 1998), 

facilitating the entry of solutes from the tubular lumen into the cell. The basolateral 

membrane contains the Na-K-ATPase pump as well as other transporters (Burrow et al., 

1999) and ion channels to allow the return of filtered solutes into the systemic 

circulation.
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Figure 1.2. Basic epithelial cell structure. The polarised nature of the 

cell is demonstrated, with a web of actin connecting the cells to each other 

via adherens junctions.
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The polarity of the cell is essential for function and is maintained by a highly organised 

actin cytoskeleton (Piepenhagen and Nelson, 1998). The cytoskeleton plays a vital role 

in the regulation of cell shape, polarity and maintenance of cell: cell and cell: matrix 

interactions (Schmidt and Hall, 1998).

1.3 Tubulogenesis

The proximal tubules of the kidney are 3- dimensional (3D) tubular structures with an 

inward-facing apical surface where the brush border is located, and a basolateral 

surface, surrounded by extracellular matrix. Although two-dimensional models of 

epithelia have provided much information, culture of epithelial cells in a 3-D matrix has 

revealed additional signalling pathways not evident in 2-dimensional (2D) culture 

systems (Santos and Nigam, 1993; Wang et al., 1998). Tubulogenesis is the process by 

which epithelial cells form 3 dimensional branching structures. It is a process seen 

within many organs of the body including the lungs, mammary glands (Berdichevsky et 

al., 1994), salivary glands (Nogawa and Mizuno, 1981) and the kidney (Saxen and 

Sariola, 1987) and involves complex interactions between the cells, their extracellular 

matrix (ECM), cell surface receptors and various growth factors such as epidermal 

growth factor (EGF), transforming growth factor (TGF) (Kjelsberg et al., 1997; Taub et 

al., 1990) and hepatocyte growth factor (HGF) (Pollack et al., 1998; Santos and Nigam, 

1993).

It is not unreasonable to expect different processes to be involved in the breakdown and 

formation of tubular epithelial sheets when compared to monolayers. Several ways have 

been identified as to how a 3D model more closely resembles the in vivo situation than 

cells grown in a 2D culture (Zegers et al., 2003). These include
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• In 3D culture, cells can migrate and maintain contact with the ECM in 3 

dimensions. In 2D culture, in order to migrate away from the support, they must 

crawl over adjacent cells, losing contact with the ECM

• The support used in 2D culture is more rigid and inflexible than a normal ECM. 

Cells respond to and exert mechanical forces on the ECM so the rigidity of the 

support is likely to influence behaviour.

• Cells grown in 3D culture are more resistant to apoptosis

• The polarised location of certain proteins depends on whether they are grown in 

2D or 3D culture -  galectin 3 (a promoter of epithelial cell differentiation) is 

located basolaterally in 3D cultures and apically in 2D cultures (Hikita et a l ,

2000)

A 3D model may be able to give us more useful insight into the effects of actin 

cytoskeletal arrangement, responses to disruption and recovery after injury. Madin- 

Darby Canine Kidney (MDCK) are an epithelial cell line that will spontaneously form 

hollow fluid-filled cysts when grown in a collagen gel matrix (Barros et al., 1995; 

Mangoo-Karim et al., 1989) and, on exposure to conditioned media, undergo branching 

tubulogenesis (Montesano et al., 1991b).

Various growth factors have since been implicated in the induction of branching 

morphogenesis. Hepatocyte growth factor (HGF) (also known as Scatter Factor) is a 

morphogenic growth factor (Montesano et al., 1991a) involved in the development of
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various organs in the body including the kidneys and mammary glands. It also is 

involved in the recovery from injury of many organs such as kidneys, lung, stomach and 

liver. (Matsumoto K & Nakamura T, 2001) It acts via the c-met receptor (Rosario M & 

Birchmeier W, 2003; Montesano et al., 1991a; Weidner et al., 1993) which activates a 

number of signalling pathways including SHP2 tyrosine kinase, Ras-ERK-MAP kinase 

and phosphoinositide-3-kinase (PI3K) involved in cytoskeletal and cell adhesion, 

reorganisation and motility. TGF-p, in contrast, appears to inhibit the formation of 

tubular structures and to decrease branching in pre-formed tubules (Santos and Nigam, 

1993). TGF-a and EGF have been shown to act as promoters of tubulogenesis (Taub et 

al., 1990). It is probable that the growth factors work together to determine the length 

and degree of branching of tubules via their conflicting enhancing and inhibiting 

activities.

The extracellular matrix also appears to play an important role in the control of 

tubulogenesis. Fibronectin deposition by MDCK cells enhances cell proliferation and 

migration thereby facilitating branching tubulogenesis (Jiang et al., 2000) as do laminin 

and entactin (Santos and Nigam, 1993). Fibronectin is a major component of ECM and 

interacts with cells via integrin receptors. High turnover of ECM proteins, particularly 

proteoglycans is seen at the tips of budding branches, areas in which the greatest cell 

proliferation is seen (Gumbiner, 1996). Alterations in integrin expression and avidity 

may also play a role in tubulogenesis (Jiang et al., 2001) and the interaction of 

integrins (the major receptor family for collagen) with the ECM appears to be necessary 

for cyst and tubule formation (Zuk and Matlin, 1996).
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Several models have been proposed to explain the mechanisms of cell rearrangement in 

tubulogenesis. The first suggests a 2 stage process in which cells initially dissociate 

from the cyst, losing polarity, migrate out into the ECM, proliferate and then recoalesce 

into a tubule (Thiery and Boyer, 1992). A second model hypothesises tubules forming 

as outpouchings from the cyst. In this model, in contrast to the first, cells do not lose 

cell: cell contact or normal polarity at any time (Sariola and Sainio, 1997). In a third 

model cells temporarily lose polarity but not cell: cell contact. This model has been 

demonstrated in MDCK cells (Pollack et al., 1998). Cells appear to undergo a 4-stage 

process following cyst formation. The cyst polarises forming a single cell extension 

which then develops into a chain of cells. Cells in the chain then divide to form a cord 

and then develop a lumen that eventually joins with the original cyst lumen (Figure 1.3). 

Cells redevelop polarity in the tubular structure. Rho kinase signal transduction factors 

appear to have an important role in actin cytoskeleton remodelling during tubulogenesis 

(Eisen et al., 2004; Rogers et al., 2003).

The 3- dimensional model is a potentially interesting way to study the effects of 

disrupting the actin cytoskeleton both in preformed tubules and newly forming tubules 

at varying stages of development.
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32



1.4 Sepsis-Associated Acute Renal Failure

1.4.1 Definition of Sepsis and Septic Shock

Sepsis is defined as evidence of infection, combined with a systemic inflammatory 

response and can either be self-limiting or progress to severe sepsis or septic shock. A 

system used for classification is shown in table 1.1.

Criteria

Sepsis Clinical infection plus 2 or more of the following

• Pulse rate > 90 beats/minute

• Temperature either >38°C or < 36°C

• Respiratory rate > 20 breaths/minute

• White cell count > 12xl09/ml or < 4xl09/ml

Severe Sepsis Sepsis plus organ dysfunction (e.g. confusion, hypotension, hypoxia)

Septic Shock Sepsis-induced hypotension resistant to adequate intravascular fluid 

replacement

Table 1.1 Classification of Sepsis Syndromes (Bone etal., 1992)

Septic shock carries a high risk of death. Death rates in the intensive care unit due to 

septic shock still remain at nearly 60% (Annane et al., 2003; Rangel-Frausto et al., 

1995) with most of the deaths seen, unsurprisingly, in those with markers of increased 

severity of organ dysfunction (Pittet et al., 1995). Following infection, an intense pro- 

inflammatory response occurs, induced by microbial products such as 

lipopolysaccharide (LPS). This activates a complex pathway of cellular and cytokine 

cascades (Blank et al., 1997; Dinarello, 1992; Sriskandan and Cohen, 1995) and this 

response plays a major role in the multi-organ dysfunction and circulatory collapse 

seen.
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1.4.2 Acute Renal Failure and Sepsis

Acute renal failure (ARF) occurs in over 50% of patients with blood culture positive- 

septic shock (Rangel-Frausto et al., 1995). Sepsis-associated acute renal failure (ARF) 

has a higher mortality rate than ARF due to non-septic causes (Neveu et a l , 1996). The 

combination of ARF and sepsis is associated with a 70% mortality rate compared to 

45% in those with ARF due to non-septic causes.

In sepsis, generalized arterial vasodilatation with a decrease in systemic vascular 

resistance is a common feature (Groeneveld, 1994). Upregulation of iNOS in the 

vasculature by pro-inflammatory cytokines is an important mediator of this effect and 

has a much sustained and profound response than that caused by constitutive eNOS 

release alone (Thiemermann et al., 1993). The renal circulation is capable of 

autoregulating blood flow to maintain perfusion pressure however, when arterial blood 

pressure declines, renal vessels will constrict in an effort to maintain pressure which can 

lead to a reduction in renal blood flow (Lucas, 1976; van Lambalgen et al., 1991). 

Vasoconstriction is partly offset by eNOS and vasodilating endothelins (Groeneveld, 

1994; Groeneveld et al., 1994) but the overall result is hypoperfusion of the kidneys 

with the development of ARF.

Whilst circulatory failure with accompanying hypotension, hypoxia and hypoperfusion 

of the kidney undoubtedly play a major role in sepsis-associated ARF (Groeneveld et 

al., 1991; Myers and Moran, 1986), experimental models of sepsis demonstrate that 

renal function may decline without a fall in renal blood flow (Walker et al., 1998). 

Nitric oxide within the kidney has been identified as a mediator in sepsis-associated 

ARF.
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1.4.3 Pathophysiology of Sepsis-associated ARF

The main pathological features of ARF in sepsis are seen in the proximal tubule and are 

termed acute tubular necrosis (ATN). Early features of ATN are loss of the tubular 

epithelial brush border, dilatation of the tubules and interstitial oedema and progress to 

show flattening of the epithelial cells lining the tubule, shedding of these cells into the 

lumen and subsequent obstruction of the tubule (Figure 1.4) (Solez et al., 1979). 

Widespread necrosis is an uncommon feature (Lieberthal et al., 1998). The damage is 

usually sub-lethal and signs of regeneration such as nuclear enlargement and mitotic 

figures may be seen. In fact, many patients who survive their sepsis syndrome regain 

significant renal function and are able to discontinue renal replacement therapy (Sponsel 

et al., 1994).

At a subcellular level, the changes seen in response to sepsis with associated hypoxia 

and hypoperfusion include major alterations in the actin cytoskeleton of proximal tubule 

cells (Kellerman and Bogusky, 1992). Loss of cell polarity due to hypoxia and ATP- 

depletion actin microfilament disruption is seen with redistribution of basolateral 

integrins and Na/K-ATPase transporters to the apex (Molitoris et al., 1991; Molitoris 

and Marrs, 1999; Molitoris and Wagner, 1996). Cell shedding into the tubule lumen is 

seen as a consequence of dissolution of integrin: extracellular matrix interactions. 

Shed cells aggregate and form casts that can cause obstruction and increase back 

pressure into the glomerulus (Molitoris and Marrs 1999), further reducing renal 

function.
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Figure 1.4a. Normal kidney

Figure 1.4b. Acute tubular necrosis

Figure 1.4. Renal Histology. Figure l.4a is a biopsy taken from normal kidney, 

showing 2 normal glomeruli and cuboidal cells lining the tubules. In Figure 1.4b, the 

glomerulus retains a normal appearance but the tubule epithelium is flattened (arrow) 

and there is debris within the tubule lumen (open arrow).



1.5 Nitric Oxide

1.5.1 Nitric Oxide and the Kidney

Nitric oxide induction has multiple effects in the kidney. NO is synthesised in the 

endothelial cells of the macula densa and the pre- and post-glomerular capillaries where 

it acts as a vasodilator in response to shear stress, playing an important part in the 

control of renal vascular tone (Kone, 1997). It is also involved in the regulation of 

glomerular haemodynamics via tubuloglomerular feedback and modulation of renin 

release from the juxtaglomerular apparatus (JGA). Whilst in sepsis-related renal failure, 

hypotension with hypoperfusion of the kidneys undoubtedly plays a role in the 

development of ATN if left untreated (van Lambalgen et al., 1991), blocking NO 

actions are not necessarily beneficial and can lead to infarction (Shultz and Raij, 1992). 

Constitutive NO production by eNOS, is important for maintenance of renal perfusion. 

eNOS plays an important role in ameliorating renal vasoconstriction in response to a 

baroreflex-mediated rise in sympathetic activity and activation of the renin-angiotensin- 

aldosterone system (Groeneveld et al., 1994; Nath and Norby, 2000).

In addition to eNOS, there are other sources of NO in the kidney during sepsis. 

Infiltrating macrophages express iNOS following LPS stimulation (Butteiy et al., 1994). 

iNOS is induced in proximal tubule epithelial cells in response to combinations of LPS 

and pro-inflammatory cytokines. This is associated with epithelial cell shedding and can 

at least be partially blocked by selective iNOS inhibitors. Cytoskeletal disruption is seen 

after pro-inflammatory cytokine release and is associated with cell shedding. (Glynne 

and Evans, 1999a; Glynne et al., 2001). Infiltrating neutrophils are also a source of NO 

in the kidney in sepsis as they too upregulate iNOS following cytokine stimulation
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et al., 1996). The release of NO and reactive oxygen species by neutrophils has been 

implicated in direct damage to the cells of renal tubules (Nath and Norby, 2000).

The cells of the proximal tubule constitutively express iNOS mRNA (Markewitz et al.,

1993) yet under basal conditions, the enzyme is not detected. Proximal tubule epithelial 

cells (PTEC) are able to produce high levels of NO following stimulation with 

combinations of lipopolysaccaride (LPS), and the pro-inflammatory cytokines, 

interferon-y, interleukin-1 and Tumour necrosis factor-a (McLay et al., 1994; Nathan,

1997). Hypoxia also stimulates NO production in the proximal tubule with 

administration of the selective iNOS inhibitor L-NIL shown to ameliorate renal damage 

in a rat model (Noiri et al, 2001).

1.5.2 Nitric Oxide and the Nitric Oxide Synthases

Endothelium-derived relaxing factor was identified as the labile gas nitric oxide (NO) in 

the late 1980s (Ignarro et al., 1987; Palmer et a l, 1987). Three nitric oxide synthases 

have been identified since then - type I, nNOS (neuronal nitric oxide synthase), type II, 

iNOS (inducible nitric oxide synthase) and type III, eNOS (endothelial nitric oxide 

synthase) with 51-57% identity between the human isoforms (Nathan, 1992). All of 

these enzymes catalyse a reaction of 1-arginine, NADPH and oxygen to produce 

citrulline, NADP and the free radical NO (Knowles and Moncada, 1994).

NADPH
Arginine ----------------------- ► Citrulline + NO

0 2 
Nitric oxide synthase
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The enzyme isoforms have been differentiated in various ways including by the tissues 

in which they predominate (Forstermann et al., 1995), by function (Forstermann et al.,

1994), whether they are constitutive (nNOS and eNOS) or inducible (iNOS) in their 

expression (Forstermann and Kleinert, 1995) and by whether they are calcium 

dependent (nNOS and eNOS) (Bredt and Snyder, 1994) or not. None of these systems 

are completely satisfactory, as many features, initially thought to be unique to a 

particular isoform, have been demonstrated in other isoforms.

The enzymes exist in a dimeric structure in their active forms, associated with two 

molecules of calmodulin each. Each nitric oxide synthase molecule exhibits a bi-domain 

structure (figure 1.5) with an N-terminal oxygenase domain linked by a calmodulin 

(CaM)-recognition site to a C-terminal reductase domain (Alderton et al., 2001; Stuehr,

1997)). The structures of the constitutive synthases eNOS and nNOS contain auto- 

inhibitory loops to produce autoregulation of their function so they only cause NO 

production for very brief time periods in response to physiological stimuli (Bredt and 

Snyder, 1994; Forstermann and Kleinert, 1995; Salerno et a l , 1997). Inducible NOS is 

usually only induced in response to stimuli such as the pro-inflammatory cytokines and 

contains no such regulatory loop (Forstermann et a l , 1994; Xie et al., 1992). Once 

induced, iNOS continues to catalyse a high level of production of NO for a sustained 

period of time (Nathan and Xie, 1994). Down-regulation of iNOS is via ubiquitination 

and caveolin-1 (reviewed in Kone, 2000). Caveolin-1 co-segregates with iNOS in a 

detergent-insoluble membrane fraction of the cell and degradation occurs there via the 

proteasome pathway.
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1.6 The Actin Cytoskeleton

1.6.1 Function of the actin cytoskeleton

Actin is a highly conserved cytoskeletal protein which is able to form 5-9nm diameter 

filaments (F-actin) in the presence of salt and ATP. This is a dynamic process with actin 

monomers being constantly added to and subtracted from the filament, regulated by 

ATP hydrolysis and is important for cell motility (Lauffenburger and Horwitz, 1996) 

and the generation of cell-surface processes such as lamellopodia and filopodia (Rottner 

et al., 1999). The actin cytoskeleton allows transduction of signals between the 

extracellular matrix and the cell and between cells via complex protein structures -  

focal adhesions and adherens junctions, containing proteins with intra and extracellular 

domains (Hazan et al., 1997). The adherens junction in epithelial sheets forms a 

continuous belt located close to the cell apex, just below the tight junction. The cells are 

held together at the adherens junction by the transmembrane protein E-cadherin (Adams 

and Nelson, 1998). The intracellular domains of this protein bind to the proteins a  and 

P catenin (Aberle et al., 1994) which in turn bind to proteins such as Zyxin and 

Vinculin (Brindle et al., 1996; Bubeck et al., 1997; Hazan et al., 1997; Lozano and 

Cano, 1998). These both contain a consensus binding sequence (D/E FPPPPX D/E 

(Niebuhr et al., 1997) for the cytoskeletal protein V  asodilator-Stimulated 

Phosphoprotein (VASP) which in turn associates with polymerised actin. A similar 

protein bundle is found at points of contact with the extracellular matrix (Fillingham et 

al., 2005). The main transmembrane proteins at these focal contacts are the integrins 

which, in renal PTECs, are predominantly of the integrin family (Rahilly and 

Fleming, 1993). These in turn are complexed to intracellular proteins, including Zyxin 

and Vinculin and via these to VASP and F-actin (Critchley et a l , 1999).
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1.6.2 The Actin Cytoskeleton in Epithelial Cell Motility and Migration

Changes in epithelial cell motility, shape and movement are associated with dynamic 

reorganisation of the actin cytoskeleton. Three main organisational arrays of actin are 

seen: lamellipodia, filopodia and stress fibres (Small et al., 1999b). Stress fibres require 

substrate anchorage and are constructed of bipolar bundles of actin and type II myosin. 

They are therefore able to contract and exert tension. Substrate contact sites undergo 

turnover and recreation to allow cell crawling (Small et al., 1999a). Lamellipodia are 

composed of unipolar actin filaments and filopodia are loose bundles of actin filaments 

either embedded within or extending from lamellipodia. Filpodia and lamellipodia do 

not require substrate adhesion to form. They protrude from the leading edge of a cell 

due to actin polymerisation and form focal adhesions with the cell substrate. This 

protrusive ruffling of cells is part of the mechanism by which cells move (Mitchison 

and Cramer, 1996).

1.6.3 Control of Actin Polymerisation

Regulation of the actin cytoskeleton is under the control of the Rho GTPase family of 

proteins (Rho, Rac and CDC42) (Arthur et al., 2002; Hall, 1998) which are members of 

the p21 Ras superfamily of small GTPases. Rho-family proteins act as molecular 

switches and are activated by GTPase-activating proteins (GAPs) and GDP-GTP 

exchange factors (GEFs) (Machesky and Hall, 1996). A variety of processes are 

triggered including formation of protein-protein complexes, rearrangement of the actin 

cytoskeleton, protein phosphorylation and synthesis and turnover of phospholipids. Rho 

activation by lysophosphatidic acid, for example, mediates actin stress fibre formation 

and focal adhesion formation in fibroblasts (Ridley and Hall, 1992). Rho also appears to 

be important in integrin clustering in T cell activation which can be blocked by
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ribosylation of Rho (Tominaga et al., 1993). Rac activation leads to the formation of 

lamellopodia and membrane ruffles, leading to forward cell movement and CDC42 is 

required for filopodia formation and to maintain cell polarity (Nobes and Hall, 1999). 

The Rho GTPase family also appear to be important in cyst and tubule formation by 

MDCK cells. Rho, Rac and CDC42 appear to act in concert to allow formation of cysts 

and tubules and to maintain normal cyst polarity (Rogers et al., 2003).

Actin will polymerise under normal physiological salt conditions (Hannappel and 

Wartenberg, 1993). In order to maintain a pool of monomeric actin and to regulate the 

sites within the cell where polymerisation occurs, a group of regulatory proteins exist 

within the cell which include the actin-monomer binding proteins, thymosin and profilin 

(Bear et al., 2001). Profilin is a 14kDa protein, usually found associated with the plasma 

membrane. When bound to monomeric actin, it accelerates the exchange of ATP for 

ADP, promoting actin polymerisation via the addition of actin monomers to the free 

barbed ends of actin filaments. A profilin-binding site is found in the cytoskeletal 

protein vasodilator-stimulated phosphoprotein (Reinhard et al., 1995), discussed below.

1.7 Vasodilator-Stimulated Phosphoprotein (VASP)

1.7.1 Localisation and role of VASP

VASP was first described in human platelets (Halbrugge and Walter, 1989; Halbrugge 

and Walter, 1990) where its phosphorylation status has been linked to platelet activation 

and aggregation (Halbrugge et al., 1990). It is part of a family of proteins known as the 

Ena/VASP proteins that include the Drosophilia protein enabled (Ena) (Gertler et al.,

1995), and the mammalian orthologs Mena (mammalian Ena) (Gertler et al., 1996) and 

Ena/VASP-like (EVL) protein (Lambrechts et al., 2000). VASP is localised to sites of
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cellimatrix interaction at focal adhesion sites and cellicell interaction at the adherens 

junction (figure 1.6) and focal contacts where it is associated with actin filaments 

(Reinhard et al., 1992). It is also present at sites of dynamic actin turnover such as the 

protruding edge of lamellopodia and in filopodial tips (Gomez and Robles, 2004). 

VASP has been shown to be important in the regulation of actin polymerisation in 

cellicell and cellimatrix interactions. Ena/VASP proteins are found in epithelial 

contacts as part of complexes containing F-actin, E-cadherin, vinculin and zyxin in a 

distribution termed the adhesion zipper, thought to be an early stage in cell: cell contact 

formation (Vasioukhin et al., 2000). A dominant negative form of the VASP protein 

(Bachmann et al., 1999) has been used to demonstrate the essential position of VASP in 

the sealing of cells into epithelial sheets Over-expression of the dominant-negative 

VASP fraction appears to disrupt epithelial sheet formation.

As well as its role in cell shape, interactions between cells and the matrix and in cell 

motility, the cytoskeleton may have other functions in other cells. Ena/VASP proteins 

are a potential pathway through which modification of the actin cytoskeleton can occur 

and allow control of these functions. T cells polarise when in contact with antigen- 

presenting cells (APCs) by remodelling their cytoskeleton towards the APC to allow 

contact to be maintained (Krause et al., 2000). Ena/VASP proteins are recruited to the T 

cell receptor (TCR) complex. Blocking this recruitment inhibits activation-induced T 

cell polarisation. (Bear et al., 2001). VASP proteins are also required for remodelling of 

the actin cytoskeleton in macrophages to allow pseudopodial extension and 

internalisation of particles (Coppolino et al., 2001).
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Figure 1.6. Structure of an epithelial adherens junction

Representation of an adherens junction between two epithelial cells showing E- 

cadherins bridging the cell: cell divide and connecting to the intracellular actin 

cytoskeleton by means of a complex of proteins.
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The bacterium Listeria monocytogenes uses VASP to harness the host actin 

cytoskeleton to move through the cell (Geese et al., 2002).

1.7.2 VASP and the Kinetics of Actin Polymerisation

The mechanisms by which VASP may promote actin polymerisation are still unclear. 

Whilst some reports have suggested it is a direct nucleator of F-actin, this was only seen 

at low, non-physiological salt concentrations (Bachmann et a l , 1999). Actin is able to 

polymerise from both ends in vitro though the rate differs between the two ends. Slow 

polymerisation occurs at the pointed end and more rapid polymerisation at the barbed 

end. There appears to be a constant treadmilling of actin monomers being added to and 

removed from actin filaments under the control of Actin Depolymerising Factor (ADF 

or cofilin), profilin (supplying actin monomers) and capping proteins (Carrier et al., 

2003). The localisation of Ena/VASP proteins within the cell may suggest the 

mechanisms by which they act. Ena/VASP proteins are concentrated in areas containing 

free barbed ends of actin filaments at the cell membrane. Treatment with cytochalasin D 

(a fungal metabolite that binds barbed ends and inhibits actin polymerisation) causes 

loss of VASP from these areas (Lebrand et al., 2004). Ena/VASP proteins appear to 

antagonise the actions of actin capping proteins. It is possible that they localise at or 

near the end of a growing actin filament and prevent capping by capping proteins (Bear 

et a l , 2002). The EVH2 domain alone, including its F-actin and G-actin binding 

domains and the tetramerisation domain, is sufficient to prevent barbed ends from 

capping actin fibres (Barzik et a l , 2005; Sechi and Wehland, 2004).

Ena/VASP proteins also appear to regulate branching of actin filaments. These proteins 

suppress Arp 2/3 complex-induced actin filament branching (Krause et al., 2002;
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Krause et al., 2000). Listeria require both VASP and Arp2/3 to use actin polymerisation 

to move through a cell (Bear et al., 2001).

These two mechanisms of control of actin filament elongation and branching density 

may be a method by which call motility rates are controlled. Long filaments with few 

branches due to excessive inhibition of capping proteins by VASP would be too flexible 

to counteract membrane tension. An absence of Ena/VASP proteins would lead to 

highly branched, short, rigid filaments that would promote persistence of protrusions 

and increase the chances of formation of attachments to the extracellular matrix (Krause 

et al., 2002). However, more flexible filaments may be needed for active cell 

movement. Experimental data (Bear et al., 2002) shows that the optimal free-actin 

filament length for effective lamellipodial protrusion (distance beyond the last cross

link) is 70-200nm, with a maximal protrusive force at 120nm (seen in lamellipodia in 

which Ena/VASP has been over-expressed). In Ena/VASP- depleted lamellipodia, the 

free-filament length drops to approximately 50nm with an accompanying decrease in 

instantaneous protrusion rate. However, at the higher protrusion rate of 120nm, 

retraction of the lamellipodia by membrane tension leads to an overall slower rate of 

protrusion when compared to the Ena/VASP-depleted situation. It is suggested that 

Ena/VASP-accelerated actin filament assembly may temporarily deplete the 

lamellipodia of G-actin leading to retraction until more monomeric actin can be 

provided through the breakdown of other filaments (Cramer, 1999). Cell motility is 

therefore likely to involve a balance between the actions of these, and other proteins. 

Regulation of this may involve processes such as VASP phosphorylation and new 

evidence suggests that protein kinase A phosphorylation at the Ser235 residue of murine
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VASP (equivalent to Ser239 in human VASP) in vitro is sufficient to prevent the 

normal anti-capping actions of VASP (Barzik et al., 2005).

1.7.3 Structure of Ena/VASP Proteins

The Ena/VASP family of proteins are tetramers (Haffner et al., 1995) and share a highly 

conserved (table 1.2), three-domain structure (figure 1.7) (Reinhard M et al 2001). The 

Ena-VASP homology domain 1 (EVH1) has the highest level of conservation within the 

family, whilst the central, proline-rich domain is the least highly conserved (table 1.2). 

The domains have distinct functions and are discussed below.

EVL VASP Ena
Mena 73% 67% 73%

EVL 61% 62%
VASP 58%

Table 1.2. Percentage identity between members of the Ena/VASP protein 
family. (Adapted from Gertler et al., 1996)

1.7.3.1 Ena-VASP Homology Domainl (EVH1)

The N-terminal EVH1 domain (approx 111-113 amino acid residues) binds to the focal 

adhesion proteins vinculin and zyxin, and to the Listeria protein ActA via a consensus 

motif (D/E)-FPPPP-X(D/E)(D/E) (Carl et al 1999, Reinhard et al 1995, (Ahern- 

Djamali et al., 1998). Binding is established by electrostatic interactions forming 

between the positively charged aromatic and basic residues of the EVH1 domain with 

the negatively charged motifs in vinculin, zyxin and ActA (Carl et al., 1999). This 

interaction appears to be important in cell morphogenesis, especially during the 

formation of adherens junctions (Vashioukin et al 2000).
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Figure 1.7. Tri-domain structure of VASP.
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The EVH1 domain is comprised of a high proportion of aromatic and aliphatic residues. 

The structure of the domain is of seven (3 strands packed together to form an anti

parallel p sandwich with a long C-terminal a  helix along one side (Ball et al.y 2000). 

There is a hydrophobic core with 3 highly conserved non-core aromatic residues on the 

protein surface forming a peptide recognition groove.

The ability of Listeria to bind VASP via its ActA surface protein (Niebuhr et al., 1997) 

has been an important tool in the study of VASP and its interactions with other proteins. 

Listeria use this ability to bind VASP to form a comet tail of actin polymerisation, 

moving the bacterium through the cell. ActA is essential for actin-based motility in 

Listeria. (Auerbuch et al., 2003; Pistor et al., 1995). It locates VASP to the bacterial 

surface where it promotes the rapid polymerisation of an actin comet that is able to 

propel the bacteria through the cell (Laurent et al., 1999). ActA recruits and binds the 

host protein complex Arp 2/3 (actin related proteins 2 and 3) and Ena/VASP proteins 

(Machner et al., 2001). This provides a bridge between the actin tail and the bacterium 

(Skoble et al., 2001; Welch et al., 1998). The combination of ActA and the Arp 2/3 

complex appear to allow branching of actin fibres with VASP appearing to be 

delivering actin filaments to this process.

The EVH1 domain of VASP appears to also be involved in the linking of actin fibres to 

the extracellular matrix through integrins at focal adhesion sites (Critchley et al., 1999; 

Walter et al., 1995). Integrins bind talin which in turn is able to bind vinculin. Vinculin 

contains the consensus binding domain for the EVH1 domain of VASP as mentioned 

previously (Critchley et al., 1999). Alterations in the ability of VASP to bind to F-actin
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are therefore a potential site by which signals between the extracellular matrix and the 

cell may be modulated.

1.7.3.2 Proline-Rich Central Domain

The central proline-rich domain of VASP is the least conserved domain. It binds the 

monomeric actin-binding protein Profilin via polyproline (GP5) binding sites (Haffner et 

al., 1995; Reinhard et al., 1995). Deletion of this site does not appear to affect fibroblast 

motility but does affect the ability of Listeria to move through the cell (Geese et al., 

2000; Grenklo et al., 2003). This domain is also able to bind to the src homology 3 

(SH3) binding domain of Abelson tyrosine kinase (Abl) which is important in control of 

the actin cytoskeleton in the developing Drosophila embryo (Ahern-Djamali et al.,

1998).

Profilin is thought to enhance actin nucleation by raising local levels of monomeric 

actin to sufficiently high concentrations to induce actin polymerisation (Witke et al.,

2001) and as such may be important at sites of high turnover as in lamellipodia and 

filopodia.

1.7.3.3 Ena-VASP Homology Domain 2 (EVH2)

The C-terminal EVH2 domain is the hallmark of this family of proteins and 

differentiates them from other EVH1 domain-containing proteins. The EVH2 domain, 

approximately 160-190 amino acids in length, has three conserved sub-domains. Closest 

to the amino terminus is a momomeric G-actin binding site, (a thymosin-like motif 

KLRK) (Walders-Harbeck et al 2002) essential for the in vitro actin nucleation 

properties of VASP. The second block is responsible for polymerisation of actin 

(residues 259-276) and the third block is a coiled-coil region (residues 343-380),



essential for tetramerisation of proteins of the Ena/VASP family (Bachmann et al 1999). 

The actin-binding properties of VASP are confined to the EVH2 domain which can be 

shown to associate with actin stress fibres (Huttelmaier et al., 1999). Interactions with 

F-actin are enhanced by tetramerisation of VASP. There is evidence to show that other 

members of the Ena/VASP family are able to form hetero-oligomers with VASP 

(Ahem-Djamali et al., 1998; Gertler et al., 1996). Expression of this region alone, acts 

as a dominant-negative form of VASP and has been used to delineate the functions of 

this domain (Bachmann et al., 1999).

Of note is the finding that the EVH2 domain contains a Serine residue close to the sites 

of G-actin binding and F actin polymerisation (Ser239), that is capable of being 

phosphorylated in response to cyclic-nucleotide-dependent protein kinases (Huttelmaier 

et al., 1999).

1.7.4 Cyclic Nucleotide -  Dependent Phosphorylation sites in VASP

A variable number of cyclic nucleotide dependent phosphorylation sites have been 

identified within the proteins of the Ena/VASP family (Butt E et al, 1994). Ena has 

none, Ena/VASP-like protein (EVL) has one, mammalian Ena (Mena) has two and 

VASP three (Figure 1.8). The human VASP phosphorylation sites are at Serine 157, 

Serine 239 and Threonine 278, the first two of which are close to ligand-binding sites -  

the Serine 157 site is adjacent to the G-actin binding site of the central domain of VASP 

and Serine 239 is close to the G-actin binding domain and the actin polymerisation 

region of the EVH2 domain (Bachmann et al., 1999; Butt et al., 1994; Smolenski et al.,

1998). These sites are phosphorylated by cAMP and cGMP dependent protein
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Figure 1.8. Structure and homology of the Ena/VASP proteins

53



kinases (Halbrugge et al, 1990) which have been shown in vitro to demonstrate 

different affinities for the different sites (Halbrugge et al, 1989). Cyclic AMP- 

dependent kinase appears to act primarily at the Serl57 site, and leads to an apparent 

mass shift of VASP from 46 to 50kDa when analysed by SDS-Page electrophoresis 

suggesting that this may cause a change in the secondary structure of the protein 

molecule (Halbrugge & Walter 1989). Phosphorylation of Mena and EVL at the 

equivalent sites also cause a similar band motility shift (Gertler et al 1996, Lambrechts 

et al 2000). Cyclic-GMP-dependent kinase acts primarily at the Ser239 site, with the 

Thr278 site only being phosphorylated after other sites have been phosphorylated and at 

comparatively low levels. In vivo the situation may be different. Experiments in 

platelets suggested that cGMP-dependent kinase might in fact phosphorylate both serine 

residues with a similar time course but with incomplete Serl57 phosphorylation where 

only a 50% shift from 46kDa to 50kDa VASP is seen (Butt et al, 1994). The Ser239 site 

is adjacent to the region of the EVH2 domain associated with actin polymerisation. 

(Hauser et al, 1999). In platelets, VASP phosphorylation has been shown to alter 

activation and integrin-mediated adhesion (Horstrup et al., 1994; Walter et al., 1993). 

The use of VASP knockout mutant mice showed that VASP is required for PKA- 

inhibited platelet aggregation (Aszodi et al 1999) and that for this process, Ser 157 

phosphorylation appears to be the key regulatory process.

Phosphorylation at the Ser239 site in the EVH2 domain of VASP has been shown to be 

a sensitive indicator of the activation of the nitric oxide (NO)/guanylate cyclase 

pathway ((Butt et al., 1994; Eigenthaler et al., 1992; Ibarra-Alvarado et al., 2002), NO 

binds to the haem moiety of guanylate cyclase, increasing its activity (Hobbs, 1997). 

Binding of the EVH2 domain to G-actin appears to be reduced by phosphorylation at
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the Ser239 residue (Walders-Harbeck et al, 2002). Activation of guanylate cyclase is 

limited via phosphodiesterase V which causes the breakdown of cGMP to GMP 

(Koesling and Friebe, 1999; Mullershausen et al., 2005; Mullershausen et al., 2001). 

cGMP also inhibits phosphodiesterase III which normally dephosphorylates cAMP and 

may therefore also upregulate this pathway (figure 1.9) (Feijge et al., 2004). Therefore, 

induction of iNOS may not only activate the cGMP-dependent pathway but may also 

activate cAMP-dependent pathways (figure 1.9). The different phosphodiesterases have 

different specificities for the cyclic nucleotides (Table 1.3) and as such may be a target 

for therapeutic modification of these paths.

Phosphodiesterase Regulatory Mechanisms Substrate
III cGMP-inhibited cAMP

IV cAMP-specific cAMP

V cGMP-specific cGMP

Table 1.3. Phosphodiesterase substrate specificity and regulation.
(Conti and Jin, 1999)

The phosphorylation state of the Ena/VASP proteins is also regulated by 

dephosphorylation by protein phosphatases (PP). In human platelets, dephosphorylation 

of VASP (assessed by band shift of VASP from 50kDa back to 46kDa) occurs within 

minutes of removal of physiological or pharmacological stimuli (Halbrugge et al 1990). 

Different PPs have different selectivities for the different phosphorylation sites. In vitro 

studies show phosphorylated VASP as a substrate for the protein phosphatases PP2A,
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Figure 1.9. Possible pathways of cyclic nucleotide-controlled VASP 
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PP2B and PP2C. PP2A appears to be selective for the Seri 57 residue, whereas PP2B 

preferentially dephosphorylates Ser239 (Abel et al., 1995). There is experimental 

evidence to suggest that binding of VASP to monomeric actin is regulated by its 

phosphorylation state. Murine VASP mutants of a putative G-actin binding site (KLRK) 

located within the EVH2 domain have been used to demonstrate that VASP and G-actin 

do indeed interact physically and that KLRK is involved in formation of the complex 

(Walders-Harbeck et al., 2002). Mutation of this motif to KLGE or KLEE led to failure 

of G-actin binding and F-actin polymerisation. The VASP Ser235 (murine) and Ser239 

(human) phosphorylation sites lie adjacent to the KLRK motif. Phosphorylation at this 

site via cAMP-dependent kinase abolishes VASP-directed actin polymerisation. 

Evidence for how VASP phosphorylation may alter both actin binding and nucleation 

comes mainly from in vitro studies. Two studies investigated the effects of VASP 

phosphorylation on F-actin binding and came to opposite conclusions. The first 

(Laurent et al., 1999), concludes that the affinity of VASP for F-actin is controlled by 

phosphorylation at the Serl57 residue. The second study (Harbeck et al., 2000) suggests 

that phosphorylation of the murine Serl53 residue (equivalent to the human Serl57 

residue) has little or a reduced effect on F-actin binding unless there is additional 

phosphorylation at Ser235 (equivalent to Ser239 in human VASP). Different 

experimental conditions were used in the two studies which makes them difficult to 

compare. Both of these studies were carried out before phospho-specific antibodies 

were available which means it was not possible to examine the effects of Ser239 

phosphorylation alone. Further work is therefore needed to elucidate the role of VASP 

phosphorylation in F-actin binding.
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Actin nucleation in vitro also appears to be influenced by VASP phosphorylation. By 

looking at other members of the Ena/VASP family of proteins, it can be shown that the 

N-terminal Serl57 site appears to be the important residue. EVL does not have an 

equivalent Ser239 site. Phosphorylation of EVL at the Ser 157 site reduces actin 

nucleation (Harbeck et al., 2000; Lambrechts et al., 2000). Phosphorylation at other 

sites in VASP may add extra levels of regulation of actin nucleation.

The reduction of actin nucleation with phosphorylation alternatively could be due to a 

decreased ability to bind G-actin. The EVH2 domain of VASP contains a thymosin like 

motif (TLM) related to a G-actin binding site in thymosin and has been demonstrated to 

bind monomeric actin (Walders-Harbeck et al., 2002). Both mutation at this site and 

PKA-induced phosphorylation reduce G-actin binding.

Overall, the exact roles of phosphorylation in the regulation of VASP functions remain 

unclear. Further work is required in this field, in particular to study the effects in vivo 

rather than in vitro where control of phosphorylation and the effects of the different 

cyclic nucleotide-dependent protein kinases may be veiy different.

1.8 VASP in non-epithelial cells

1.8.1 VASP and Phagocytosis

Phagocytosis is the process by which specialised cell types recognise and engulf foreign 

extracellular material. It is a central component of the innate immune response. Foreign 

materials are coated with opsonins such as complement and immunoglobulins (Allen 

and Aderem, 1996a). Immunoglobulin-coated particles are recognised by the Fc family 

of cell surface receptors. Binding to these receptors triggers a cascade of intracellular
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signals leading to engulfment of the particle. Remodelling of the actin cytoskeleton is 

an essential part of this process as it allows the extension of pseudopodia to engulf the 

particle (Allen and Aderem, 1996b; Greenberg et a l , 1990). A phagosome is thus 

formed in which the particle is destroyed.

It has been shown that Ena/VASP proteins are recruited to phagosomes forming around 

an ingested particle and that this coincides spatially and temporally with actin filament 

reorganisation (Coppolino et al., 2001) A multimolecular complex consisting of 

Ena/VASP proteins, Fyb/SLAP (also known as ADAP -  see section 1.8.2.2), SLP-76 

and Wiskott-Aldrich Syndrome protein (WASP) forms and links the cytoskeleton to Fc- 

mediated signalling pathways during phagocytosis. It is not yet known which proteins 

are responsible for the localisation of VASP to these sites of actin remodelling but 

ADAP (Krause et al., 2000) and vinculin (Allen and Aderem, 1996b) have been 

proposed.

1.8.2 VASP in T Cell Activation

Interaction of a T cell with antigen presented by an antigen-presenting cell (APC) 

results in the triggering of intracellular signalling cascades leading to T cell activation 

and differentiation (Wange and Samelson, 1996). When this interaction occurs a 

massive reorganisation of the actin cytoskeleton is seen (Barda-Saad et al., 2005; 

Valitutti et al., 1995). Polymerisation of F-actin at the site of cell:cell contact stabilises 

the interaction between the lymphocyte and the APC via an increase in integrin avidity. 

A supramolecular activation cluster (SMAC) forms at the immunological synapse 

consisting of a central zone containing the T-cell receptor (TCR), CD3, CD28 and other 

receptors, surrounded by a peripheral zone (pSMAC) containing the integrin LFA-1
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(leukocyte function-associated antigen-1) (Grakoui et al., 1999) and cytoskeletal 

elements such as talin (Krawczyk and Penninger, 2001; Monks et al., 1998). Integrins 

are not constitutively adhesive but are activated by extracellular stimuli to trigger 

intracellular signalling pathways which lead to changes in ligand binding activity 

without increasing levels of cell surface expression (Griffiths and Penninger, 2002b) 

The mechanism by which this occurs has not yet been ascertained. The adapter protein 

ADAP (adhesion and degranulation adaptor protein) has been postulated as a potential 

mechanism by which the TCR and integrins may be linked (Peterson et al., 2001a). 

ADAP contains an EVH-1 binding domain and can therefore potentially interact with 

the Ena/VASP family of proteins.

Reorganisation of the actin cytoskeleton is also required for T cell activation. 

Interruption of the actin cytoskeleton with cytochalasin D (a cell permeable fungal toxin 

that inhibits actin polymerisation) inhibits T cell receptor (TCR) mediated interleukin 2 

gene transcription (Holsinger et al., 1998), suggesting that cytoskeletal reorganisation is 

a necessary event in T cell activation.

1.8.2.1 T Cell Adhesion, Integrins and Actin Cytoskeleton Reorganisation

Lymphocyte function-associated molecule-1 (LFA-1) is a member of the (32 integrin 

family and is expressed on the surface of most leukocytes where it acts as an adhesion 

receptor. LFA-1, in common with other integrins, is a heterodimeric transmembrane 

receptor consisting of an a  subunit (aL or CDlla) and a p2 subunit (CD18) (Larson et 

al., 1989; Stanley et al., 1994). It interacts with its ligand intercellular adhesion 

molecule-1 (ICAM-1) to bring about responses such as leukocyte adhesion to 

endothelial cells and antibody-dependent, monocyte mediated cytotoxicity. (Springer,
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1990). LFA-1 is generally non-functional until stimulated by TCR/CD3 activation 

which induces intracellular signals, activating LFA-1 :ligand binding (inside-out 

signalling) (Miyamoto et al., 2003). These intercellular signals lead to an increase in 

integrin avidity for its ligand. Clustering of integrins is thought to enhance avidity 

(Griffiths et al., 2001). In its non-active state, LFA-1 is tethered to the actin 

cytoskeleton. Release from this appears to allow motility, leading to LFA-1 clustering. 

Newly formed clusters then form stronger links with the actin cytoskeleton via proteins 

such as a-actinin (Sampath et al., 1998) and recruit other molecules to form a functional 

adhesive unit, capable of transducing outside-in signals (van Kooyk et al., 1994). Whilst 

the cytoplasmic domains of integrins have been shown to be important in linkage to the 

actin cytoskeleton, they do not demonstrate enzymatic features themselves. They are 

thought to transduce their signals by associating with adaptor proteins. This then allows 

coupling with the cytoskeleton, cytoplasmic kinases and G-receptor proteins.

The molecular mechanisms by which TCR stimulation leads to alterations in integrin 

avidity is unclear. The TCR-proximal kinase ^-associated protein of 70kDa (ZAP-70) 

appears to be required for anti-CD3 induced integrin adhesion in Jurkat cells (Goda et 

al., 2004). A ZAP-70 mutant unable to induce adhesion was unable to fully activate 

gene transcription. Many other signal intermediates appear to play a role in inside-out 

signalling to integrins, including calcium, the small GTPases, protein kinase C (PKC) 

and phosphoinositide 3-OH kinase (PI 3-kinase) (Kolanus and Seed, 1997; Woods and 

Shimizu, 2001).

The adaptor protein ADAP appears to be an important intermediate in the coupling of 

TCR-induced cytoskeleton rearrangements with alterations in integrin avidity. ADAP
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deficient T cells exhibit reduced LFA-1 clustering in response to anti-CD3 stimulation 

though they are still able to cluster their TCRs. (Griffiths et al., 2001; Peterson et al., 

2001a).

1.8.2.2 Adhesion and degranulation-promoting protein (ADAP)

ADAP (formerly known as Fyb (fyn-binding protein)/Slap (Slp-76-associated protein)) 

is an adaptor protein expressed in T and myeloid cells and is phosphorylated in response 

to TCR stimulation. Upon TCR stimulation, ADAP is phosphorylated by Fyn (a 

tyrosine-binding kinase) and binds to Slp-76 (da Silva et al., 1997). Slp-76 (SH2- 

domain-containing leukocyte protein 76) is a haematopoietic multi-domain adaptor 

protein required for T cell development, TCR-dependent mitogen-activated protein 

kinase (MAPK) activation and calcium flux (Wilkinson et al., 2004).

ADAP-deficient T cells show defective proliferation and cytokine production in 

response to TCR stimulation (Peterson et al., 2001a). This appears to be due to 

deficiencies in p! integrin clustering whilst TCR signalling pathways are unaffected, 

suggesting that ADAP is a regulator of T cell activation by coupling of TCR stimulation 

to integrin avidity modulation. ADAP-deficient T cells are still able to cluster TCRs in 

response to stimulation and actin polymerisation appears to be grossly normal in these 

cells. The alteration appears to be specifically in the clustering of integrins in response 

to TCR stimulation. (Griffiths et al.y 2001) The molecular mechanism by which this 

occurs is unknown.

ADAP contains a proline-rich region and an SH3-like domain both of which bind the 

SH2 domains of Fyn and Slp-76. It also contains an EVH-1-binding domain (Figure
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1.10) which is able to bind members of the Ena/VASP family of cytoskeletal proteins 

(Krause et al., 2000) . A potential mechanism by which ADAP may regulate integrin 

adhesion is via modulation of the cytoskeleton, possibly through binding to Ena/VASP 

proteins which are known to be involved in G-actin binding and F-actin polymerisation 

(Walders-Harbeck et al., 2002). ADAP has been shown to co-localise with F-actin, 

Ena/VASP proteins, the Arp 2/3 complex, Vav-I and WASP (Wiskott-Aldrich 

syndrome protein) at the interface between Jurkat T cells and anti-CD3 coated beads. 

Blocking this interaction by using transfected ActA repeats (the Listeria protein that 

binds EVH1 domains), inhibited TCR-induced actin rearrangement (Krause et al.,

2000). However, mutation of the EVH1 binding domain of ADAP, abolishing the 

ability to bind VASP, appears to have no effect on LFA-1 avidity (Wang et al., 2004). 

Whilst ADAP does not in fact appear to be necessary for gross actin polymerisation 

(Griffiths et al., 2001; Peterson et al., 2001a) it may be required for more subtle actin 

rearrangements, not visible by phalloidin staining, specifically targeted to integrin but 

not TCR clustering. ADAP-VASP may be involved in extending the interface between 

the T cell and the APC following LFA-1 or have a non-essential, supplementary role in 

ADAP function (Wang et al., 2004).

As well as the interactions with ADAP discussed above, the phosphorylation status of 

VASP may also be important in T cell proliferation and IL-2 production. cGMP -
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dependent kinase inhibits CD3-induced IL-2 production (Fischer et al., 2001). This 

enzyme is known to phosphorylate VASP, with a preference for its Ser239 site as 

discussed previously. Phosphorylation of VASP is known to alter its ability to 

polymerise actin (Walders-Harbeck et al., 2002).

1.2.8.3 A Potential Role for VASP in T Cell Activation

In order for regulated T cell signal transduction to occur, the physical organisation of 

these molecules in space is likely to be important For example, if all components of a 

signal pathway are required to be assembled before full signal propagation occurs, this 

would allow a T cell to ignore transient signals and only respond to a sustained signal 

lasting for a threshold duration (McKeithan, 1995). Adaptor proteins such as ADAP can 

form part of a scaffold within a cell and thereby hold molecules at specific sub-cellular 

sites, regulate movement of signalling proteins to specific compartments during 

signalling and enhance the specificity of signal pathways by stopping them interacting 

with other paths (Burack et al., 2002; Weston and Davis, 2001). Adaptors may allow 

two different proteins or pathways to be linked.

VASP is a molecule potentially involved in the link between T cell receptor stimulation 

and signal transduction pathways. It is a known part of the actin cytoskeleton (Reinhard 

et al., 1992) and its interactions with actin may be altered by its phosphorylation state 

(Kwiatkowski et a l , 2003; Loureiro et al., 2002). It has been found co-localised with 

the scaffold protein ADAP (Griffiths and Penninger, 2002a; Krause et al., 2000) and is 

known in epithelial and platelet models to interact with integrins. We propose that it is a 

potential target for modulation of T cell activation.
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VASP may be involved in many aspects of T cell activation (figure 1.11). As an EVH-1 

domain containing protein, it may be involved in the clustering of integrins via 

interactions with the scaffold protein ADAP. Integrin clustering appears to be 

associated with an increase in avidity (van Kooyk et al., 1999; Woods and Shimizu,

2001). Release of integrins from their normal distribution on the T cell membrane 

possibly by modulation of VASP phosphorylation and hence its ability to polymerise 

actin, could be involved in permitting the clustering to occur. This may then lead to 

prolongation of the T cell activation signal if the actin cytoskeleton reassembles to hold 

the integrins in their new location. Transient phosphorylation and dephosphorylation of 

VASP in response to cyclic nucleotide-dependent protein kinases are a potential 

mechanism by which this cytoskeletal reorganisation could occur. VASP-mediated 

rearrangements of the cytoskeleton could also be involved in signal transduction 

pathways by allowing involved proteins and kinases to move into the correct location 

and interact. Again, physiological transient phosphorylation/dephosphorylation is a 

possible pathway by which this may be modulated. This could affect both initiation and 

duration of a signal.

A potential method for examination of the role of VASP in integrin clustering and actin 

cytoskeleton rearrangements with their subsequent affects on signal transduction is by 

the use of a dominant-negative form of the protein. Amino acid residues 277-380 of the 

EVH2 domain of VASP act as a dominant-negative form of the protein (Bachmann et 

al., 1999). It is able to take up its normal tetrameric structure but is unable to bind actin 

as these binding-sites are not present in this terminal portion of the protein. Neither can 

it link to other cytoskeletal proteins such as zyxin via the EVH-1 domain. Transfection 

of dominant negative VASP (DN-VASP) into T cells with investigation of

66



TCR/CD3
complex

Cell surface

Integrin clustering

VASP?

ADAP

VASP?

Cdc42

WASP

X  Adhesion
\  Proliferation

VASP?

F-actin polymerisation 
TCR clustering
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cell morphology, polarisation and activation of signal transduction pathways is 

potentially very interesting and has not been carried out previously. DN-VASP is a 

more useful technique in this situation than either the use of knockout mice or siRNAs 

as it will block the function of other members of the Ena/VASP family (Vasioukhin et 

al., 2000). Both siRNA and knockout animal techniques would specifically disrupt 

VASP function but would still allow Mena and Evl to function and substitute for VASP 

in the cells (Kwiatkowski et al., 2003; Lambrechts et al., 2000).

1.9 Aims of the Project

The central theme of this project was an investigation into the roles of the cytoskeletal 

protein VASP and its function in the modulation of the actin cytoskeleton in epithelial 

cells and T lymphocytes. The following objectives are addressed

• Identification of the effects of iNOS on VASP phosphorylation and distribution 

in epithelial cells and the effects on the actin cytoskeleton as a model of 

sepsis-induced renal failure. Given that we know nitric oxide is involved in 

proximal tubule epithelial cell shedding and that VASP contains a cGMP- 

dependent kinase phosphorylation site, close to a domain associated with actin 

binding and polymerisation, we investigated whether phosphorylation at this site 

was a potential mechanism by which NO disrupted the actin cytoskeleton. We 

also investigated the effects of NO on VASP phosphorylation in macrophages as 

VASP is involved in actin filament reorganisation in phagocytosis.

• The use of a dominant-negative form of VASP as a method for investigating the 

effects of actin cytoskeletal disruption on formation and breakdown of epithelial 

sheets. VASP is implicated in the formation of both cellxell and cell:matrix
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junctions. We examined the effect of disrupting normal VASP function with 

DN-VASP to see whether it affected the ability of epithelial cells to both 

maintain a pre-formed epithelial sheet and to form new sheets.

• Investigation of the role of VASP in T cell activation and signal transduction by 

the use of DN-VASP. Little is known of the role of VASP in T cells and 

investigations of its role in integrin clustering are unclear. The objective of this 

area of work was to use DN-VASP to interfere with normal VASP function and 

look at the effects on ligand binding and actin polymerisation. We also looked at 

T cell activation via assays of markers of activation and activation of signal 

transduction pathways in order to try and identify what roles VASP plays.
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Chapter 2. Nitric Oxide and VASP Phosphorylation in Epithelial Cells and 

Macrophages.
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2.1 Introduction

Nitric oxide is a free radical gas produced by the oxygenation of L-arginine by the 

enzyme nitric oxide synthase (NOS) (Knowles and Moncada, 1994). Three isoforms of 

this enzyme have been identified, neuronal NOS (nNOS), endothelial NOS (eNOS) and 

inducible NOS (iNOS) (Nathan, 1992). Two of these isoforms, nNOS and eNOS are 

constitutively expressed (Bredt and Snyder, 1994) but the third, iNOS, is usually up- 

regulated following pro-inflammatory cytokine stimulation as seen in severe sepsis 

(Forstermann et al., 1994). Nitric oxide produced by renal proximal tubule epithelial 

cells (PTECs) has been implicated in cell shedding (Glynne and Evans, 1999a). A key 

feature seen in experimental models of sepsis in epithelial and other cells is disruption 

of the actin cytoskeleton and loss of normal cell polarity (Koukouritaki et al., 1999; Puls 

et al., 1999). Given that nitric oxide stimulates cGMP-dependent protein kinase, the 

actions of this enzyme on cytoskeletal proteins present a potential mechanism by which 

the actin cytoskeleton may be altered.

VASP is an attractive target by which NO-dependent mechanisms may affect the actin 

cytoskeleton. As reviewed in section 1.7.4, it contains 3 cyclic-nucleotide-dependent 

phosphorylation sites, one of which is found in close proximity to G-and F- actin 

binding sites (Butt et al., 1994; Halbrugge et al., 1992). VASP is localised to cell 

membranes at sites of dynamic turnover (Drees et al., 2000; Reinhard et al., 1996; 

Renfranz and Beckerle, 2002) via a consensus motif (D/E)-FPPPP-X(D/E)(D/E) to 

cytoskeletal proteins including zyxin and vinculin (Carl et al 1999, Reinhard et al 1995, 

(Ahem-Djamali et al., 1998) through its EVH1 domain (discussed further in Chapter 

One). VASP localises at cell: cell and cell: extracellular matrix contacts and therefore
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provides a potential role in cyclic-nucleotide dependent protein kinase-induced 

alterations of contacts between these sites and the actin cytoskeleton.

The role of VASP and the effects of NO on VASP in this setting have not previously 

been investigated. VASP plays an important role in the mediation of both cAMP and 

cGMP-dependent pathways (Aszodi et al., 1999). NO may affect not only cGMP 

dependent pathways via activation of guanylate cyclase but, through actions on 

phosphodiesterases (Manns et al., 2002), may also affect cAMP activated pathways. 

cGMP, as well as activating cGMP-dependent kinase (PKG), also decreases activity of 

phosphodiesterase III, the enzyme that normally breaks down cAMP to AMP (Main 

introduction, figure 1.9). This should therefore lead to an increase in activity of the 

cAMP-dependent protein kinase (PKA) pathway as cAMP is present for a longer 

duration (Osinski and Schror, 2000). The importance of this in epithelial cells has not 

been determined.

The two major cyclic-nucleotide-dependent protein kinase phosphorylation sites in 

human VASP are at residues Serl57 and Ser239 (Butt et al., 1994) with PKG 

demonstrating specificity for the Ser239 site and PKA for the Serl57 site in vitro. The 

role of phosphorylation at these sites and the effects on actin binding are unclear. In 

previous investigations, conflicting results concerning the ability of phosphorylation to 

influence actin binding have been seen (Harbeck et al., 2000; Laurent et al., 1999). In 

one study an increase in binding was seen and in the other a decrease when 

phosphorylation occurred. The second study suggested that the effects are different 

when dual phosphorylation binding at Serl57 and 239 is seen rather than mono

phosphorylation. These studies were both carried out in vitro and the situation in vivo
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may be very different. Also, the two studies used very different conditions and are not 

really comparable.

To examine the hypothesis that nitric oxide-induced phosphorylation of VASP is a 

mechanism by which the actin cytoskeleton is disrupted following iNOS induction, this 

study pursued several different pathways. In this section, we demonstrate that VASP is 

found at cell:cell and cell:matrix contacts in primary proximal renal tubule cells and 

bronchial epithelial cells. We show that iNOS expression was associated with a loss of 

VASP from focal adhesions and disruption actin fibres. We demonstrate that Ser239 

VASP phosphorylation is an iNOS-dependent event and that blocking iNOS action, 

stops this phosphorylation step. We also show that this appears to be a two-step process 

and that phosphorylation at the Ser 157 residue appeared to be permissive step for 

Ser239 phosphorylation. Stimulation of both the cAMP and cGMP pathways seems to 

show a synergistic effect on the presence and duration of VASP Ser239 

phosphorylation. Work carried out in mouse macrophages suggests that the level of 

Serl57-phosphorylated VASP was critical to the production of Ser239 phosphoiylated 

VASP. In order to investigate this further we have attempted to produce mutants of 

VASP in which the phosphorylation sites have been altered.
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2.2 Methods

2.2.1 Cell Culture of Normal Human Bronchial Epithelial (NHBE) Cells.

The 16HBE (or NHBE) cell line is a human transformed bronchial epithelial (HBE) cell 

line (Cozens et al., 1994). We also used an HBE cell line, homozygous for the A508 

mutation in the cystic fibrosis transmembrane receptor (CFTR) (CFBEs) (Goncz et al., 

1999). Culture conditions are the same for both cell types.

NHBE and CFBE cells were grown in RPMI media (Gibco, UK) 

supplemented with 10% FBS (Biowhittaker Europe, UK), penicillin-streptomycin 

(lOu/ml to lOmg/ml) and 2mM glutamine (both from Gibco) at 37°C, 5% C 02. Stock 

cultures of the cell line were passaged when 100% confluence was reached. To passage 

cells, media was removed, and the cells were washed in HBSS which was then 

removed. Sufficient 0.05% trypsin- 0.02% ethylenediaminetetraacetate (trypsin-EDTA, 

Gibco, UK) was added to cover the cells which were then incubated at 37°C until cell 

detachment occurred. The action of trypsin was terminated by the addition of fresh, 

FBS-containing media. Cells were split at a 1:3 dilution to maintain stocks.

2.2.2 Cell Culture of RAW 264.7 Macrophages

Mouse macrophage RAW 264.7 cells (European Cell Culture Collection, Porton Down, 

UK) were cultured in RPMI media supplemented with 10% FBS, 2mM glutamine and 

penicillin-streptomycin (lOu/ml to lOmg/ml). They were passaged when cells had 

reached 70% confluence. To passage cells, media was removed from the flask and the 

cells were scraped from the flask. Cells were split at a 1 in 3 dilution to maintain stocks.
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2.2.3 Cell Culture of MDCK TetOff Cells

MDCK TetOff cells (BD Clontech) were grown in Dulbecco’s modified Eagle’s media 

(DMEM) (Gibco, UK) supplemented with glutamine and penicillin-streptomycin as for 

RAW cells. Puromycin (10p,g/ml) (BD Clontech) was added to the media to maintain 

the clone. Cells were passaged as described for NHBEs. The MDCK TetOff clone will 

be described further in Chapter 3.1.

2.2.4 Preparation and Characterisation of Primary Human PTEC

(method adapted from Glynne PA, 2000)

All procedures were performed in a laminar flow hood using sterile tissue culture grade 

plastic ware and sterile dissection equipment.

2.2.4.1 Reagents

The following additional materials were used; DMEM/Ham’s F-12 (1:1 mixture); 

insulin-selenium-transferrin supplement (1ST, stock lOOx) (Gibco, Paisley, UK); type II 

collagenase from Clostridium histolyticum), hydrocortisone, tri-iodothyronine and 10% 

dimethyl sulfoxide (DMSO) (Sigma-Aldrich Co. Poole, UK); recombinant human 

epidermal growth factor (hEGF) (Peprotech, London, UK); collagen S (Roche 

Molecular Biochemicals, East Sussex, UK); 0.1% soybean trypsin inhibitor (Boehringer 

Mannheim), in sterile phosphate-buffered saline (PBS) (140mM NaCl, 2.7mM KC1, 

lOmM Na2HP04, 1.8 mM KH2P04);

2.2.4.2 Preparation of matrix substrate

Flasks, plates and titretek slides used in the culture of HPTEC were coated with 

collagen S (0.25mg/l in PBS) and allowed to dry and in the laminar flow hood. FBS was
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then added to coat the entire surface and incubated for 6 hours at 37°C. The flasks were 

then washed 3 times with HBSS and stored for up to 2 weeks at 4°C before use.

2.2.4.3 Serum-free, hormonally defined media

The following media was used to culture HPTEC: DMEM/Ham’s F-12 (1:1 mixture) 

supplemented with glutamine (2mM), penicillin-streptomycin (50U/ml to 50mcg/ml), 

insulin lOmcg/ml, transferrin (5mcg/ml), selenium 5ng/ml, hydrocortisone 36ng/ml, tri

iodothyronine (4pg/ml), and Epidermal growth factor (EGF) (lOng/ml). ^

2.2.4.4 Preparation, culture & passage of HPTEC

Sections of fresh normal kidney were obtained from nephrectomy specimens performed 

for the resection of tumours. Patients were counselled appropriately by the surgical staff 

and written consent for the use of material for research obtained. Cores of outer cortex 

were taken. Tissue was transported to the laboratory on ice in HBSS containing 

penicillin-streptomycin (50U/ml to 50mg/ml) and on arrival was placed in HBSS with 

penicillin-streptomycin, prewarmed to 37°C in a Petri dish in a tissue-culture laminar 

flow hood. The outer fibrous capsule was stripped away using sterile forceps and 

discarded. The outer cortex was dissected away from the inner cortical regions and the 

medulla. The outer cortex was then cut into fragments of approximately 1mm3 and 

transferred into a sterile 50ml centrifuge tube. The sample was washed with HBSS three 

times by spinning at 200g for 5 minutes, pouring off the supernatant and resuspending 

in fresh HBSS. Collagenase (1 mg/ml) was then added to cover the tissue fragments. 

This was then incubated at 37°C with occasional agitation for 60 minutes. Following 

this, the cells were sedimented by centrifuging at 200g for 5 minutes. The supernatant 

was discarded and the cells resuspended in serum free, hormonally defined media. The
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cells were counted and then transferred to coated 25cm2 tissue culture plates. These 

were then incubated at 37°C in a 5% C02, 95% air incubator. The media was changed 

approximately 24 hours after initial plating.

Cells were passaged at approximately 100% confluence. Cells were washed with HBSS 

and incubated with a thin layer of prewarmed trypsin-EDTA at 37°C until cells 

detachment was observed. Trypsin action was terminated by adding an equal volume of 

0.1% soybean trypsin inhibitor. Detached cells were resuspended in serum-free media 

and subcultured at a 1:3 subculture ratio.

2.2.4.5 Immunofluorescent Staining of HPTEC

In order to show that the cells showed characteristics of HPTEC, they were stained for 

specific cytokeratins (4, 5, 6, 8 and 13) found within human epithelial cells. Cells were 

also exposed to pro-inflammatory cytokines to induce iNOS expression, another 

characteristic of proximal tubule cells.

The following reagents were used: anti-pan cytokeratin monoclonal antibody (1:100 

dilution) (Mouse ascites fluid Clone C -ll; Sigma); AlexaFluor 488 goat anti-rabbit IgG 

(H+L) 2mg/ml and AlexaFluor 488 goat anti-mouse IgG 2mg/ml (H+L)(Molecular 

probes, Leiden, Netherlands), TNFa (lOng/ml), IFNy (200i.u/ml) and IL-1 (lOng/ml) 

(Peprotech); iNOS/NOS Type II mAb 250jxg/ml (Transduction Laboratories); TitreTek 

2 chamber tissue culture slides (Nalge Nunc, USA); Vectashield (Vector Laboratories, 

USA); normal goat serum (NGS), Triton X-100 and 4,6-Diaminidino-2-phenylindole 

(DAPI)(Sigma, UK). 4% paraformaldehyde (PFA) solution (4g paraformaldehyde, 1ml 

1M NaOH in PBS, pH7.4)
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2.2.4.5.1 Cytokeratin Staining

Cells were grown on collagen and FCS coated-Titretek 2 chamber slides to 

approximately 100% confluence. They were then fixed and stained for cytokeratins. All 

incubations were carried out at room temperature. Cells were fixed in 1% 

paraformaldehyde (PFA) in PBS for 30 minutes, permeabilised in 0.2% Triton-X 100 in 

PBS for 20 minutes and blocked in 10% NGS in PBS for 1 hour. Cells were incubated 

with the primary cytokeratin antibody diluted 1:100 in 10% NGS for 1 hour. Following 

washing in PBS, the secondary fluorochrome-conjugated antibody was added at a 1:500 

dilution in 10% NGS in PBS for a further hour. Nuclei were counterstained with DAPI 

1:3000 dilution in PBS for 10 minutes. Slides were mounted in Vectashield and 

examined using fluorescence microscopy.

2.2.4.5.2 iNOS Induction and staining

Cells were grown to approximately 90% confluence on Titretek 2 chamber slides before 

exposure to TNFa (lOng/ml), IFNy (200i.u/ml) and IL-1 (lOng/ml) for 24 hours to 

induce iNOS expression. They were then fixed and stained as above using a mouse 

iNOS mAb (1:200 dilution in NGS for 1 hour) and an anti-mouse fluorochrome- 

conjugated secondary antibody (1:500 dilution as before).

2.2.5 Distribution of VASP and Actin in HPTEC

HPTEC were grown in 2-chamber titretek tissue culture slides. When the cells reached 

approximately 60% confluence, the media was removed, the cells washed in HBSS and 

then fixed, stained and permeabilised as before. They were stained with VASP 

antibody (M4 Antiserum (polyclonal) to VASP (human) (Alexis Biochemicals). (1:500 

dilution in 10% NGS) for 1 hour before washing. A secondary fluorochrome-conjugated
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antibody was then added and FITC labelled phalloidin to stain F-actin for a further hour. 

Cell nuclei were counterstained with DAPI and the slides were mounted and examined 

using conventional immunofluorescent microscopy.

2.2.6 The Effects of iNOS Transfection on VASP Localisation in HPTEC

The following additional reagents were used: Lipofectamine 2000 (Invitrogen); 

Optimem media (Gibco) and pCI vector (Promega). The pCI/iNOS construct was kindly 

donated by Dr K.E.A Darling.

2.2.6.1 Transfection protocol

Human PTEC were grown to 80% confluence in treated 2 chamber Titretek slides in 

hormonally defined media. In half of the slides, a plasmid/iNOS construct (pCI/iNOS), 

already available in the laboratory, was transfected into the cells using the following 

protocol. 1.6pg of DNA in serum-free Optimem was combined with 10pl of 

Lipofectamine 2000 in serum-free Optimem and added to the tissue culture media in the 

slide chamber. The media was changed 4 hours post transfection. The cells were 

incubated overnight at 37°C, 5% C02 before being fixed for immunostaining. The other 

half of the cells were transfected using the same protocol but with empty pCI vector.

2.2.6.2 Immunostaining protocol

24 hours following transfection, media was removed, the cells washed and then fixed, 

permeabilised and blocked as before. The cells were stained for iNOS using a mouse 

monoclonal antibody (1:200 dilution) and for VASP using a rabbit polyclonal antibody 

at a 1:500 dilution, both for 1 hour at room temperature in 10% NGS. Following 

washing, the cells were incubated for 1 hour at room temperature with anti rabbit and
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anti-mouse fluorochrome-conjugated secondary antibodies. The cell nuclei were 

counterstained with DAPI. The cells were mounted in Vectashield and visualised using 

immunofluorescent microscopy. Pictures were taken using Magnafire software.

The number of focal adhesions seen per cell were counted in 10 cells expressing iNOS 

and 10 cells not expressing iNOS. The number of focal adhesions seen in iNOS- 

expressing cells was then compared to the number seen in non-iNOS expressing cells 

using the Mann-Whitney test for non-parametric data. A p value <0.05 was considered 

significant.

2.2.7 Effects of iNOS transfection on VASP phosphorylation in Bronchial 

Epithelial Cells and HPTEC

The following additional materials were used: Laemmelli lysis buffer (lOOmM Tris Cl 

(pH 6.8), 200mM Dithiothreitol (DTT), 4% sodium dodecyl sulfate (SDS) (both from 

Sigma, UK), 0.2% bromophenol blue and 20% glycerol); L-N6-(l-Iminoethl)lysine, HC1 

(L-NIL), (Calbiochem) and N-(3-Aminoethyl) benzyl acetamadine.2HCl (1400W) 

(Alexis Biochemicals)

2.2.7.1 Transfection and lysis

NHBE cells were grown to 80% confluence in 6 well plates and transfected using the 

transfection agent Lipofectamine 2000 following a standard protocol. Briefly, for each 

well 4jig pCI/iNOS DNA was added to 250pl Optimem and 20|il Lipofectamine 2000 

was added to 250pl Optimem and incubated at room temperature for 5 minutes. The 

two mixtures were then combined and incubated at room temperature for a further 20 

minutes before being added to the cell media in the 6 well plates.
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The samples were then lysed at time points up to 24 hours post transfection, directly 

into 200^1 Laemmelli buffer containing ImM sodium orthovanadate as a phosphatase 

inhibitor. They were denatured by heating at 105°C for 5 minutes. The samples were 

analysed by SDS-Page electrophoresis.

HPTEC were also investigated using the same method. They were grown to 80% 

confluence in pre-coated 6 well plates (See section 2.3.4.2), transfected with iNOS 

using Lipofectamine 2000 as for NHBEs (section 2.3.6.1), lysed and analysed as above.

In order to investigate control of the pathway further, the selective iNOS inhibitors L- 

NIL or 1400W at a concentration of ImM were also added to some samples. These 

were added immediately prior to transfection of pCI/iNOS at a final concentration of 

ImM. The ability of L-NIL and 1400W to block nitric oxide production was assessed 

with a Griess reaction (see below).

2 .2.7.2 Measurement of NO production

In order to follow the production of nitric oxide in iNOS transfected cells, nitrite 

production was used as indirect measurement via a standard Griess reaction. Nitrite is 

an oxidation product of the short-lived free radical NO.

100pl of supernatant was added to an equal volume of Griess reagent (0.1% N(l- 

naphthyl)ethylenediamine in double-distilled water (DDW) with 1% sulfanilic acid in 

5% phosphoric acid) and incubated at room temperature for 10 minutes. A standard 

curve was produced with NaNOz. A colorimetric reaction occurred and was assayed 

using a microplate reader at 550nm. The nitrite level was determined by comparing
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lOOpl of supernatant was added to an equal volume of Griess reagent (0.1% N(l- 

naphthyl)ethylenediamine in double-distilled water (DDW) with 1% sulfanilic acid in 

5% phosphoric acid) and incubated at room temperature for 10 minutes. A standard 

curve was produced with NaN02. A colorimetric reaction occurred and was assayed 

using a microplate reader at 550nm. The nitrite level was determined by comparing 

values obtained for samples from a standard curve established by adding known 

quantities of sodium nitrite to the media used in the experiment.

2.2.7.3 Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis 

and immunoblotting

The following additional materials were used: polyvinylidene difluoride (PVDF) 

membrane (Amersham Pharmacia Biotech), VASP activated ser239 clone 16C2 

monoclonal antibody, lpg/ml, (Upstate Biotechnology); Rabbit VASP antiserum M4, 

1:3000 dilution, (Alexis Biochemicals); Biotinylated Rabbit IgG H+L and biotinylated 

mouse IgG H+L, both 1.5mg/ml, (Vector Laboratories, 1:1000 dilution); horseradish 

peroxidase (HRP) conjugated streptavidin, lmg/ml (Biosource International); ECL Plus 

detection kit (Amersham Pharmacia Biotech)

50pl of each sample was loaded and run on a 10% SDS-Page gel at 40mA, transferred 

onto a PVDF membrane (100mA overnight then 1000mA for 1 hour at 4°C), blocked in 

5% milk in PBS for 1 hour and immunoblotted, for P-VASP Ser239 (2 hours, room 

temperature, 1:100 dilution in 5% milk in PBS) using a commercially available 

monoclonal antibody against P-VASP Ser239. Membranes were then incubated with a 

secondary biotinylated anti-mouse antibody for 1 hour following washing in 0.1% 

Tween 20 in PBS. Following further washes, HRP-conjugated streptavidin diluted
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1:5,000 in 5% milk in PBS was added to the membranes (30 minutes at room 

temperature). Results were visualised using the ECL Plus detection kit.

Following stripping, (see below) the membranes were reblocked and re-stained with 

pan-VASP antibody (1:500 dilution) for 1 hour at room temperature and a secondary 

ant-rabbit biotinylated antibody to probe for all forms of VASP.

The same immunoblotting methods were used to look at the effects of the competitive 

iNOS inhibitors L-NIL and 1400W on VASP phosphorylation.

2.2.7.4 Membrane Stripping

Membranes were stripped for reprobing by submerging in stripping buffer (lOOmM 2- 

mercaptoethanol, 2%SDS, 62.5mM Tris-Cl pH6.7) at 50°C with intermittent agitation 

for 30 minutes. They were then washed in PBS with 0.1% Tween-20 and reblocked in 

5% non-fat milk in PBS.

2.2.8 Induction of iNOS in RAW Cells by pro-inflammatory cytokines and 

the Effects on VASP Phosphorylation

RAW 264.7 cells were cultured in 6 well tissue culture flasks in the presence and 

absence of the selective iNOS-inhibitor, L-NIL. Cells were stimulated with lOng/ml 

murine interferon-y (IFN-y) (Peprotech, UK) and 2pg/ml Lipopolysaccharide (LPS) 

(lOmg/ml from E.coli serotype 0111:B4 (Sigma, UK)) or left unstimulated as a control. 

Samples were taken at 0, 8, 16, 24 and 28 hours after stimulation to assay for VASP 

phosphorylation. Cells were harvested by removing media, washing twice in PBS and
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lysing in 200pl of Laemelli lysis buffer before transferring to a microfuge tube. 

Samples were boiled for 5 minutes at 95°C before being analysed using immunoblotting 

as described in section 2.2.13. Membranes were stained initially with the P-VASP 

Ser239 (Clone 16C2) antibody before being stripped and reprobed with a pan VASP 

antibody as before.

2.2.9 Effects of Nitric Oxide Donors on VASP phosphorylation in HPTEC

Human PTEC were grown to 90% confluence in 6 well plates as before. The nitric 

oxide donor spermine NONOate (T1/2 39 minutes at 37°c) (Calbiochem) was used as a 

nitric oxide donor at a final concentration of 200pM which will release 400pM of NO. 

The cells were lysed at time points from 15 minutes to 8 hours following the addition of 

the nitric oxide donor as before and analysed for the presence of P-VASP Ser239 and 

pan VASP using immunoblotting techniques as described above. A longer acting NO 

donor DetaNONOate (T1/2 1200mins at 37°c) also used in bronchial epithelial cells at a 

200pM concentration with cells lysed at time points from 2 minutes to 28 hours and 

analysed by SDS-Page electrophoresis as before. Membranes were blotted for both P- 

VASP Ser239 and (after stripping) pan-VASP as described previously.

2.2.10 Effects of a cell permeable cGMP analog on VASP phosphorylation 

in NHBEs

The cell permeable cGMP analog Guanosine 3’, 5’-cyclic Monophosphate, 8-Bromo-, 

Sodium salt (8-Br-cGMP) (Calbiochem) was used throughout unless otherwise stated.

Bronchial epithelial cells were grown to approximately 90% confluence in 6 well plates. 

8-Br-cGMP was administered at final concentrations of 200 and 500pM. Cells were
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2.2.11 Effects of addition of a cell-permeable cAMP analog to iNOS- 

transfected NHBEs

The following cell permeable cAMP analog was used in all experiments unless 

otherwise stated: 8-Bromoadenosine 3’,5’-cyclic monophosphate. Sodium salt (8-Br- 

cAMP) (Alexis Biochemicals).

NHBE cells were grown to 70% confluence in 6-well plates and transfected with iNOS 

as described previously. At 4 hours post transfection, the media was changed and half 

the cells had 8-Br-cAMP added at a final concentration of lOOmM. In wells treated 

with 8-Br-cAMP in addition to iNOS. As a control, some wells had 8 Br-cAMP alone 

added, with no iNOS transfection. Samples were taken at time points from 5 minutes to 

4 hours post administration (8 hours post-iNOS transfection), directly into Laemelli 

buffer. The samples were analysed by immunoblotting for VASP and P-VASP Ser239 

as before as described in section 2.2.7.3.

2.2.12 Production of a Ser239-Ala VASP mutant

The following additional reagents were used:- VASP cDNA GeneStorm Expression 

Ready Clone RG00084 in pcDNA3.1/GS (Resgen); Qiagen Miniprep Kit and Midiprep 

Kit, Qiagen Gel Purification Kit (Qiagen); Zeocin, EcoRl, Mlu-1, Not-1, Bam-Hl 

restriction endonucleases and Luria-Bertani (LB) low salt medium (Invitrogen); 

Agarose (electrophoresis grade) (Sigma, UK); Stratagene QuikChange site-directed 

mutagenesis kit;); X-gal and Isopropyl p-D-l-thiogalactopyranoside (IPTG) 

(Invitrogen, UK); 6x His-tag rabbit polyclonal antibody (AbCam)
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mutagenesis kit;); X-gal and Isopropyl |3-D-l-thiogalactopyranoside (IPTG) 

(Invitrogen, UK); 6x His-tag rabbit polyclonal antibody (AbCam)

2.2.12.1 Extraction of VASP cDNA

VASP cDNA was supplied in the pcDNA3.1/GS plasmid as an expression-ready 

bacterial clone in chemically competent E.coli. The plasmid contains a Zeocin 

resistance gene to allow selection of clones. It also contains a V5 epitope and a 6xHis 

tag to allow detection of the plasmid. The bacteria were streaked onto low salt LB 

containing 25pg/ml of zeocin and grown overnight at 37°C. A single colony was 

inoculated into 5ml liquid low salt LB medium containing zeocin (25pg/ml) and grown 

at 37° C in a shaking incubator at 200rpm for 2 hours. 1ml of this culture was then 

inoculated into 100ml of the same medium and grown overnight under the same 

conditions. The following day, the culture medium was centrifuged at 6,000g to give a 

bacterial pellet. Plasmid DNA was then extracted using a Qiagen MidiPrep kit. The 

amount of DNA was quantified sphectrophotometrically. To check the DNA was 

present, it was digested with the restriction endonuclease Mlu-1 (which cuts at 228 and 

983 in the plasmid) at 37° for 3 hours. The DNA digest was then run on a 1% agarose 

gel containing ethidium bromide, at 70v for approximately 1 hour before being 

visualised with a UV camera.

2.2.12.2 Site-Directed Mutagenesis of Serine 239 residue to Alanine

A VASP Ser239Ala mutant was constructed using the Stratagene QuikChange site- 

directed mutagenesis kit. The following oligonucleotide primers were used 

5’ CAAACTCAGGAAAGTCGCGAAGCAGGAGGAGG 3’

5’ CCTCCTCCTGCTTCGCGACTTTCCTGAGTTTG 3’
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(from (Smolenski et al., 1998).

This method allows site-specific mutagenesis in double stranded DNA plasmids. The 

steps involved are denaturing of plasmid and annealing of the oligonucleotide primer, 

temperature cycling with non-strand-displacing Pfu Turbo polymerase to extend and 

incorporate the mutagenic primers resulting in nicked circular strands, digestion of 

methylated, non-mutated parental DNA with Dpn I, followed by chemical 

transformation into XL-1 Blue supercompetent cells (all supplied in QuikChange Kit). 

The cells then repair the nicks in the mutated plasmid. The cells are spread onto low salt 

LB agar containing 25pg/ml Zeocin, spread with X-gal and IPTG to allow colour- 

screening identification of colonies (blue = contain mutation). Blue colonies were 

picked and grown up overnight in 4ml of media (as before). Plasmid DNA was then 

isolated using a Qiagen miniprep kit. The concentration of DNA was checked 

spectrophotom etrically and DNA sequenced using the primer 5 ’ 

AGGTGGAGCAGCAGAAAAG 3’, to look for site-specific mutation.

2.2.13 Localisation of VASP and VASP Ser239-Ala mutant in HPTEC: 

Effects of iNOS cotransfection

2.2.13.1 Transfection protocol

Human PTEC were grown to 80% confluence in collagen S and FCS-treated 2-chamber 

Titretek slides. Lipofectamine 2000 was used as a transfection agent. 1.6pg/well total of 

DNA (either 1.6pg of a single DNA or 0.8pg of each DNA if cotransfection was carried 

out) in 200pi Optimem was combined with lOpl of Lipofectamine 2000 in 200pl 

Optimem for 20 minutes before being added to the slide chamber. The media was 

changed 4 hours post-transfection. The cells were then incubated for a further 20 hours 

before being fixed and stained. The transfections carried out were
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2.2.13.2 Immunostaining protocol

24 hours post-transfection, media was removed from the cell chamber and the cells 

were washed, fixed, permeabilised and blocked as described previously. To stain for 

VASP or the VASP mutant, the cells were incubated with a 6x His-tag rabbit polyclonal 

antibody (1:500 dilution) for one hour at room temperature, washed and then stained 

with a secondary anti-rabbit fluorochrome-conjugated antibody (AlexaFluor 568 anti

rabbit IgG 2mg/ml). AlexaFluor FTTC-conjugated phalloidin 488 (1:50 dilution) was 

used to visualise filamentous actin and was added at the same time as the secondary 

antibody. For iNOS staining, a mouse monoclonal antibody was used (Transduction 

Laboratories 250pg/ml, 1:200) as the primary antibody and a secondary anti-mouse 

antibody (AlexaFluor 568 anti mouse IgG) was used as before. The slides were 

visualised using confocal microscopy (Biorad MRC 1024, Zeiss Axiovert microscope 

and LaserSharp software).

2.2.14 Transfection and Production of a Stable pTRE2hyg/iNOS Clone of 

MDCK TetOff Cells

The following additional reagents were used:- pTRE2hyg plasmid, Tet-system- 

approved foetal bovine serum (Tet-free FBS) and hygromycin were all obtained from 

BD Clontech. pCI/iNOS was donated by Dr K.E.A Darling. Restriction enzymes (Mlu-1 

and Not-1) were obtained from Invitrogen. T4 DNA ligase and buffer were obtained 

from Promega.
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2.2.14.1 Production of pTRE2hyg/iNOS Construct

The pCI/iNOS plasmid construct and pTRE2hyg were digested with Mlu-1 and Not-1 

restriction enzymes for 2 hours at 37°C in a water bath. The products were then run on a 

1% agarose gel containing 0.5p,g/ml ethidium bromide to separate the plasmid and 

insert bands. Bands representing pTRE2hyg and iNOS were cut from the gel and gel 

purified using a Qiagen gel purification kit. The iNOS insert and pTRE2hyg were 

ligated using T4 DNA ligase overnight at 16°C. Following ligation, an aliquot was re

digested with Mlu-1 and Not-1 and run on a 1% agarose gel to check for insertion of 

iNOS into the plasmid.

2.2.14.2 Electrical Transformation of Bacteria with pTRE2hyg/iNOS

Chemically competent bacteria (TOPO One Shot, Invitrogen) were transformed with 

pTRE2hyg or pTRE2hyg/iNOS. Cells were defrosted on ice before the addition of 1(li1 

of DNA solution. Bacteria were electroporated using an Electrocell Manipulator 600 at 

2.5kV resistance voltage, 2.45kV charging voltage and 129 ohms resistance. 450pl of 

SOC media was added immediately to each bacterial aliquot. The bacteria were shaken 

for 1 hour at 37°C before aliquots were spread on LB agar plates containing 50pg/ml 

ampicillin (selective antibiotic for pTRE2hyg). Plates were incubated at 37°C overnight

The following day, 12 colonies were picked from the pTRE2hyg/iNOS transformant 

plate and plasmid DNA extracted using a Qiagen DNA miniprep kit. DNA samples 

were digested once more with Mlu-1 and Not-1 before being run on a 1% agarose gel. 6 

out of the 12 samples expressed pTRE2hyg containing the appropriately sized (1.14 

kbp) band for iNOS insertion. One sample was chosen and used for all further 

experiments.
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kbp) band for iNOS insertion. One sample was chosen and used for all further 

experiments.

2.2.14.3 Transfection of MDCK TetOff Cells with pTRE2hyg/iNOS

MDCK TetOff cells were grown on 2 chamber Titretek cell culture slides and 

transfected withpTRE2hyg/iNOS using Lipofectamine 2000 using a standard protocol. 

Briefly, 1.6pg of DNA and lOpl of Lipofectamine 2000 were used to transfect each 

well. Following transfection, half the cells were grown in the presence of 2pg/ml 

doxycycline and the other half in the absence of the antibiotic. 24 hours after 

transfection, cells were fixed, blocked and permeabilised. They were then stained for 

iNOS (method as section 23.6.2) and the nuclei stained with DAPI. Slides were then 

examined using standard immunofluorescent microscopy.

2.2.14.4 Cloning of pTRE2hyg/iNOS Transfected MDCK TetOff Cells

Attempts were made to produce a stable clone of pTRE2/hyg/iNOS transfected cells. 

(For an explanation of the TetOff system see Chapter 3, Section 3.1). MDCK TetOff 

cells were grown to 90% confluence before being transfected with pTRE2hyg/iNOS. 

Cells were grown in the presence of 2pg/ml of doxycycline unless otherwise stated.

24 hours after transfection, hygromycin (lOOpg/ml) was added as a selective antibiotic. 

In order to assess the concentration of hygromycin needed to act as a selective 

antibiotic, a kill curve experiment was carried out for each new attempt at production of 

a stable clone (section 2.3.14.5). Within 48 hours after hygromycin addition, massive 

cell death occurred. The remaining cells continued to be cultured in the presence of 

doxycycline and hygromycin until 100% confluence was reached. At this point, cells
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were subjected to trypsin-EDTA to cause cell detachment. Cells were counted using a 

haemocytometer and diluted to a concentration of lxlO4 cells/ml. Cells were then 

transferred into a tissue culture 96 well plate. Column 1 contained cells at a 

concentration of lxlO4 cells/ml. Doubling dilutions were then carried out across the 

plate so the final column contained cells at a theoretical concentration of 7 cells/ml. 

Each well held 200pl so theoretically, the final column would be expected to hold 

approximately 1 cell. Cells continued to be cultured in selective antibiotics as before.

The 96 well plate was checked daily for cell growth. Only wells that appeared to 

contain single clones were allowed to continue growing. Once confluence was achieved 

in these wells, they were moved sequentially into 24 well plates, 6 well plates and T25 

tissue culture flasks.

The ability of the clones to express iNOS was assessed by the culture of an aliquot of a 

clone on 2 chamber slides in the presence and absence of doxycycline.

2.2.14.5 Construction of a Hygromycin Kill Curve

MDCK TetOff cells were grown to 90% confluence in a 6 well plate. Hygromycin was 

added to the wells at concentrations from 0 -  800|ng/ml. The cells were allowed to 

continue growing and assessed for cell death daily. The media was changed every 4 

days, unless need earlier (indicated by a colour change from red to yellow). 

Hygromycin was added every 4 days or with a change in media. The end point was 

massive cell death at 5-7 days to give the most appropriate selection concentration.
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2.3 Results

HPTEC in Culture Demonstrate Epithelial Pattern Cytokeratin Staining and 

iNOS Expression following Cytokine Simulation

Positive immunostaining for pan-cytokeratin using an antibody against human 

cytokeratins 4, 5, 6, 8, 10 and 13 was uniformly seen throughout the cells (figure 2.1). 

This antibody is a broad spectrum antibody that reacts with a wide variety of epithelial 

cells and is useful in staining cultured epithelial cells. The cells also demonstrate iNOS 

expression following cytokine stimulation in approximately 50% of cells. iNOS positive 

cells often appeared in aggregates (Figure 2.2). These cells were suitable for further 

experimental use.

2.3.2 VASP Localisation in HPTEC

VASP staining in individual HPTEC revealed its distribution at the cell membrane in 

focal sites. These sites were co-localised with the ends of actin fibres seen stretching 

across the cell cytoplasm (Figure 2.3). This is consistent with VASP’s abilities to bind 

to integrins and also to actin as a focus of F-actin nucleation and polymerisation.
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■
 Figure 2.1 Cytokeratin 

staining in HPTEC (green). 

Cell nuclei are counterstained 

with DAPI. (M agnification 

x400)

■
 Figure 2.2 iNOS expression 

in HPTEC fo llo w in g  

cytokine stimulation. iNOS 

(g reen) express ion  is seen 

d is t r ib u te d  th ro u g h o u t  the 

aggregate of iNOS-expressing 

cells (Magnification x 400)
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Figure 2.3 Co-localisation of VASP and actin in HPTEC.

VASP (red) localises at the ends of F-actin (green) fibres at focal 

adhesions (Nuclei stained with DAPI (blue) (magnification x 1000)
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2.3.4 iNOS Expression Causes Loss of VASP from Focal Sites at the Cell 

Membrane

The effects of iNOS expression on the distribution of VASP in human PTEC were 

examined using immunofluorescent microscopy to visualise native VASP and the 

effects of iNOS transfection on its location within the cell.

Following iNOS transfection in HPTEC, a large amount of cell death was seen (70- 

90%). In cells not expressing iNOS, VASP staining (Figure 2.4) was seen to localise to 

the cell periphery at what appear to be focal adhesions. This is consistent with its known 

distribution with integrin associated protein complexes. Some low level, non

specific, cytoplasmic staining was seen. In cells expressing iNOS (Figure 2.4) focal 

adhesions were less common or not present at all. The cells also demonstrated a more 

rounded morphology that suggests that these cells were less firmly attached to the 

extracellular matrix (ECM), having fewer sites of contact and therefore more likely to 

shed.

The number of focal adhesions present was counted in 10 cells expressing iNOS and 10 

cells not expressing iNOS. In surviving cells, the mean number of focal adhesions seen 

in iNOS-expressing cells was lower compared to cells not expressing iNOS. iNOS- 

expressing cells showed a mean of 3.1 focal adhesions (range 0-9, median 1.5) per 

cell (figure 2.5) In cells not expressing iNOS, the mean number of focal adhesions was 

18.3 (5-39, median 16) per cell. This was significantly different (P<0.01) when analysed 

using the Mann-Whitney test. These results show that iNOS induction is associated with 

the loss of VASP from focal adhesion sites.
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iNOS VASP MERGED

Figure 2.4 The effects of iNOS expression on VASP localisation in 

HPTEC. The upper panel of cells demonstrates the peripheral location of 

VASP (green) in a single HPTEC. The lower panel demonstrate the effects of 

iNOS (red) expression on this localisation. (Magnification x 1000)
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Figure 2.5 iNOS expression leads to a decrease in the mean number 
of focal VASP adhesion sites in HPTEC. Mann-Whitney analysis shows a 

highly significant difference in the number of focal sites (** p<0.01).
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2.3.5 Nitric Oxide, cGMP and VASP Phosphorylation

The nitric oxide donors, spermine NONOate and DetaNONOate were used to 

investigate the effect of a steady level of NO production on VASP phosphorylation in 

NHBEs. These molecules release NO over a sustained period of time when made into 

solution. They were used in order to try and look at the direct effects of treating the cells 

with NO. No Ser239 phosphorylation was detectable with either of these compounds 

(Figure 2.6). This lack of phosphorylation was also seen when 8-Br-cGMP was used as 

a cell-permeable analog of cGMP to try and stimulate cGMP-dependent kinase directly 

(Figure 2.7). Both of these methods have been used previously to stimulate VASP 

phosphorylation in platelets ((Horstrup et al., 1994; Li et al., 2003). It is unclear why 

these methods did not succeed. It is possible that in epithelial cells, NO needs to be 

produced in very close proximity to its target enzyme and that it is rapidly broken down 

in other locations within the cell, before it is able to have a detectable effect.

The effects of transfection of the iNOS gene were also investigated. Primary HPTEC 

are difficult to obtain, have a limited duration of usefulness prior to de-differentiation 

and are difficult to transfect. An alternative cell line was therefore also used to allow 

further investigations to be carried out. 16HBEs (or NHBEs, normal human bronchial 

epithelial cells) are a well-characterised human bronchial epithelial cell line ((Kelley TJ, 

1995; Puddicombe et al., 2000) which display normal features of epithelial cells such 

as polarity and a well - defined actin cytoskeleton. They are more easily transfected 

than primary PTECs ((Wiseman et al., 2003) and as such are a useful tool in this work. 

The CF variant of this cell line was also used (CFBE)- these contain the cystic fibrosis 

transmembrane receptor mutant (CFTR) and were available within the laboratory).
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Figure 2.6a. VASP phosphorylation following the administration of DetaNONOate 

demonstrating an absence of Ser239 phosphorylation

Time post administration of 100p.M DetaNONOate (hours)

0 2 4 8 21 24

50kDa
46kDa

Pan-VASP staining

50kDa
46kDa

P-VASP Ser239 staining.

Figure 2.6b. Membrane stained for P-VASP239 phosphorylation following the 

adm inistration of Spermine NONOate dem onstrating an absence of Ser239 

phosphorylation.

Time post administration of 100p.M Spermine NONOate (minutes)

0 15 30 45 60 120 240 480

50kDa 
46kDa

Figure 2.6 VASP phosphorylation following the administration of NO 

donors to bronchial epithelial cells. Membranes were stained with either a pan- 

VASP antibody, able to recognise al forms of VASP or with the 16C2 clone monoclonal 

antibody, only capable of recognising VASP that has undergone phosphorylation at the 

Ser239 site (P-VASP Ser239)
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Time post-administration of 8 Br-cGMP (hours)

0 30’ 1 2 4 8

50 kDa 
46 kDa

50 kDa 
46 kDa

50 kDa 
46 kDa

lOOpM 8 Br-cGMP 

200p,M 8 Br-cGMP 

500uM 8 Br-cGMP

Figure 2.7 VASP phosphorylation at Ser239 in bronchial epithelial cells 

following the administration of 8 Br-cGMP. Follow ing 8 Br-cG M P 

administration, samples were analysed for Ser239 phosphorylation using a phospho- 

specific antibody as before.
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In most cell types, VASP exists in a mixture of both the 46kDa and 50kDa (Serine 157 

phosphorylated) forms but levels of the Serine 239 phosphorylated form are not found. 

In NHBE cells prior to transfection, no phosphorylation of VASP at the Serine 239 site 

is detectable by immunoblotting -  no band is seen either at the 46 or 50 kDa position 

(figure 2.8) in the first lane of the top right panel of the blot. In contrast, pan-VASP 

staining of the same membrane demonstrates two bands -  at the 46 and 50 kDa 

positions. This shows that a percentage of VASP always exists in the Serl57 

phosphorylated form at 50kDa. This was seen with all cell types used.

Following iNOS transfection, a rise in Ser239 phosphorylation was seen and is seen at 

both 4 and 8 hours post transfection (figure 2.8, right upper panel). By 20 hours post

transfection, this band is no longer visible. A Griess reaction to measure nitrite levels 

was performed in order to see whether this was due to a decrease in NO production. 

This showed that nitrite levels were still rising, 24 hours post transfection (figure 2.9) 

suggesting that another mechanism is involved in controlling the duration of 

phosphorylation and that this is able to block the effects of the continuing presence of 

NO.

When the membrane was stripped and reprobed with pan-VASP antibody (figure 2.8, 

left hand panels), it was seen that Sei239 phosphorylated VASP is only detectable at the 

50kDa position. This indicates that it must also be phosphorylated at Serl57 to have 

caused the observed mass shift.
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C ontro l *

1400W ►
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Time p o s t  iNOS tra n s fe c tio n  (h)
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20 24 (kDa) 
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16 20 24

Pan VASP P-VASP Ser239

Figure 2.8 VASP phosphorylation following iNOS transfection. VASP 

phosphorylation at S e r i57 is demonstrated by bands at 50kDa when stained with either 

antibody. Phosphorylation at Ser239 is detected by the use of a phospho-specific 

antibody. The appearance of a 50kDa band with Ser239 specific staining indicates that 

both S e r i 57 phosphorylation (to cause an apparent mass shift) and Ser239 

phosphorylation must have occurred.
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Figure 2.9 Inhibition of nitrite production by iNOS inhibitors. A Griess 

reaction to measure nitrite levels as a marker of NO production was used to detect the 

effects of the specific iNOS blockers L-NIL and 1400W on NO output following iNOS 

transfection in NHBEs.
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The addition of 1400W prior to transfection, blocked Ser239 phosphorylation 

completely (figure 2.8, lower right hand panel) indicating that phosphorylation at this 

site is a nitric oxide-mediated process. The competitive iNOS inhibitor, L-NIL and 

1400W successfully inhibited NO production when assessed by a Griess reaction. 

(Figure 2.9). The addition of 1400W failed to block an increase in Serl57 

phosphorylation (Figure 2.8, lower left hand panel, second lane, upper band) suggesting 

an alternative method of activation of phosphorylation, not dependent on NO. This 

increase in Serl57 phosphorylation following transfection was not consistent and may 

reflect variability in transfection of these cells and their response to the transfection 

process.

In RAW cells a slightly different pattern of VASP phosphorylation was seen. In these 

cells, iNOS induction was produced by the use of LPS and IFN-y stimulation rather than 

by iNOS transfection. A rise in Serl57-phosphorylated VASP (50 kDa band) is seen 

with pan-VASP staining by 16 hours after stimulation and is still visible 12 hours later 

(figure 2.10). Ser239P-VASP is not detected until 24 hours after stimulation. In contrast 

to NHBEs, this form of VASP is visible as two bands at 46 and 50 kDa. This shows it is 

present both as the mono-phosphorylated form where it is only phosphorylated at 

Ser239 (46 kDa band), and as the bis-phosphorylated form (Ser239 and Serl57) shown 

by the 50kDa band, though at much higher levels as the bis-phosphorylated than the 

mono-phosphorylated form. In NHBEs, the mono-phosphorylated form was not 

detected (figure 2.8). In RAW cells, cytokine stimulation leads to very high levels of 

iNOS induction which may be sufficient to allow Ser239 phosphorylation alone even 

without accompanying Serl57 phosphorylation. Ser239 phosphorylation does appear to
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IFN-y + LPS IFN-Y+LPS + L-NIL

8 16 24 28 8 16 24 28
50 kDa 
46 kDa Pan-VASP

50 kDa 
46 kDa 16C2

Figure 2.10 VASP phosphorylation in RAW cells following iNOS induction.

Raw cells were treated with IFN-y and LPS to induce iNOS. L-NIL was used as a 

selective blocker of iNOS in order to investigate the NO-mediated pathway of VASP 

phosphorylation. Membranes were blotted for P-VASP Ser239 (16C2 antibody) and for 

pan-VASP. The 50kD a band represents V A S P  that has undergone S e r l5 7  

phosphorylation.
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be largely nitric oxide-dependent as the use of L-NIL completely abolishes the 50 kDa 

band and dramatically decreases the intensity of the 50 kDa band. In iNOS-transfected 

HPTEC, a rise in the proportion of P-VASP Serl57 phosphorylation was seen, starting 

at 4 hours and peaking at 21 hours following transfection (figure 2.11, upper panel). 

Phosphorylation at the Ser239 site was seen but only at very low levels, probably 

reflecting the high proportion of cell death and the relatively small amount of this form 

of the protein, compared to total cellular VASP levels. Phosphorylation at Ser239 

(Figure 2.11, lower panel) appeared to occur earlier (at 4 hours post transfection) than 

the P-VASP157 but this result was inconsistent and difficult to confirm due to the 

variable and low levels of iNOS transfection seen in these cells.
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Time post iNOS transfection (h)
Ctl 0 4 8 21 24

Pan VASP

P-VASP Ser239

Figure 2.11 VASP phosphorylation in HPTEC following iNOS transfection.

Staining in the upper panel is with a pan-VASP antibody, capable of recognising all 

forms of VASP. In the lower panel, the same membrane has been stained with a 

monoclonal antibody only capable of recognising P-VASP Ser239.
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2.3.6 The Effects of Addition of a cAMP Analog to iNOS-transfected cells

As Ser239 phosphorylation was only detected at 50kDa, indicating that Serl57 

phosphorylation had occurred, the effects of adding a cAMP analog were investigated. 

In vitro experiments suggest that Serl57 is preferentially phosphorylated by cAMP- 

dependent protein kinase (Halbrugge and Walter, 1989).

In NHBE cells treated with iNOS alone, P-VASP Ser239 was first seen at 4 hours post 

transfection and was no longer detectable by 6 hours (Upper left panel, figure 2.12a). 

Stripping of the membrane and reprobing for pan-VASP, demonstrated that this band 

was only present at the 50kDa position as before (Figure 2.12a, left lower panel), 

indicating that the VASP must also have been phosphorylated at Serl57 to induce the 

apparent mass shift. When 8 Br-cAMP was added 4 hours after iNOS transfection, the 

50kDa band was also seen on staining for P-VASP Ser239 but persisted for much 

longer -  it was still present at 8 hours post transfection (4 hours post 8-Br-cAMP) where 

it had disappeared in cells treated with iNOS alone (Upper right panel, figure 2.12a). 

This also appears to be mirrored by the persistence of a higher level of serine 157 

phosphorylated-VASP at the 50kDa position seen with pan VASP staining. Thus, 

addition of a cAMP analog appears to be able to overcome dephosphorylation of P- 

VASP Ser239. When 8 Br-cAMP is added to cells that have not undergone iNOS 

transfection, no Ser239 phosphorylation of VASP is seen (Figure 2.12b), 8 Br-cAMP 

alone is unable to mediate Serine 239 phosphorylation of VASP. This suggests a 

potential synergistic mechanism between the cAMP and cGMP pathways, possibly via 

phosphorylation by cAMP at Serl57 leading to a conformational change, exposing the 

cGMP preferred Ser 239 site to phosphorylation (see figure 1.9, main introduction).
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Figure 2.12. iNOS transfection with or without costimulation with 8 Br- 

cAMP in NHBE cells: Effects on VASP phosphorylation

Figure 2.12a. Effects of addition of Br-cAMP to NHBEs transfected with iNOS

Time post iNOS transfection (hours)
4+ 4+ 4+

0 4 5 6 8 5m 10m 30m 5 6 8

iNOS transfection 100iiM 8 Br-cAMP added 
alone 4 hours post iNOS

transfection

Figure 2.12b. Effects of addition of 8 Br-cAMP to untransfected NHBEs

Time post addition of 100pM 8 Br-cAMP (minutes)

0 5 15 30 60 120 240

P-VASP Ser239
50kDa
46kDa

50kDa
46kDa Pan VASP
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2.3.7 Distribution of His-tagged VASP and Ser239-Ala VASP in HPTEC

Use of the QuikChange site -  directed mutagenesis kit allowed production of a mutant 

form of VASP in which the Ser239 residue was replaced by an Alanine residue. Alanine 

is not able to be phosphorylated. This mutation was confirmed by DNA sequencing. 

Transfection of this mutant in HPTECs was detected by staining for His-tagged VASP

Primary cells are difficult to transfect and less robust than cell lines. A high proportion 

of death was seen in transfected HPTEC, with less than 50% of cells surviving. His- 

tagged VASP was seen by 24 hours post-transfection. It localised in the same pattern as 

native VASP to the cell membranes at the ends of actin fibres (Figure 2.13a). As 

expected, VASP that had undergone mutation at the Ser239 residue to mutate it to 

alanine also localised in this pattern (Figure 2.13b).

In cells that had undergone co-transfection with VASP and iNOS, cell death was even 

higher, with less than 10% of cells surviving. Despite expression of His-tagged VASP 

in several of these cells, showing that transfection had occurred, iNOS co-expression 

could only be detected in very few cells. In cells where Ser239-AlaVASP mutant had 

been transfected with iNOS, no iNOS-expressing cells were seen.

Cells expressing iNOS and His-tagged VASP showed a different morphology to non- 

iNOS transfected cells. The cells were less spread out and no focal localisation of VASP 

was seen (Figure 2.13c).
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Figure 2.13a. His-tagged

V A SP (red) and actin

(g reen) d is tr ibu tion  in

HPTEC (Magnification x

630)

Figure  2 13b His tagged 

Ser239 Ala VASP (red ;

7 and aciin (green) mutant

d i str i b u t i on in 11PT EC 

(Magnification x 630)

■
 Figure 2.13c. Distribution

of His-tagged VASP (green) 

and iNOS (red) in HPTEC 

Magnification x 630)

Figure 2.13. Distribution of VASP and the Ser239-Ala VASP 

mutant in HPTEC. Cells were transfected with either VASP or Ser239- 

Ala VASP or co-transfected with iNOS and VASP and fixed and stained 24 

hours later. No cells expressing the VASP mutant and iNOS were seen.
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2.3.8 Transfection and Cloning of pTRE2hyg/iNOS in MDCK TetOff Cells

We aimed to produce a stable MDCK TetOff clone containing a regulatable iNOS insert 

in order to allow us to investigate the effects of inducing iNOS expression at different 

points in epithelial sheet and tubule formation. Following successful production of the 

pTRE2hyg/iNOS construct, it was transfected into MDCK TetOff cells and examined 

after 24 hours. Cells grown in the presence of doxycycline showed no iNOS expression 

(Figure 2.14a) demonstrating tight control of expression by the TetOff system. In cells 

grown in the absence of doxycycline, iNOS expression was observed (figure 2.14b) but 

in a disappointingly low number of cells (less than 2%). This system was also used for 

transfection of dominant-negative VASP in chapter 4 with a much higher level of 

success. This suggests that it is the iNOS itself that is related to the low level of 

expression as all other experimental conditions are the same.

Construction of a hygromycin kill curve showed lOOp-g/ml to be a suitable hygromycin 

concentration to use in this experiment. In other attempts at cloning (Chapter 3.2.6), 

200pg/ml was used.

Multiple attempts at cloning failed to produce a stable iNOS-expressing clone. The 

earliest time-point at which it was possible to test for iNOS expression was 2 weeks 

post-transfection. By this time, iNOS expression had already been lost. Further attempts 

at cloning were abandoned.
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■
 Figure 2.14a. M DCK TetO ff 

cells transfected with pTRE2hyg/ 

iNOS grown in the presence of 

doxycycline (Magnification x 100)

■
 Figure 2.14b. MDCK TetOff 

cells transfected with pTRE2hyg/ 

iNOS grown in the absence of 

doxycycline (Magnification x 100)

Figure 2.14 Expression of iNOS in MDCK TetOff cells following 

transfection with pTRE2hyg/iNOS: Effects of Doxycycline 

Suppression. Both sets of cells were transfected with pTRE2hyg/iNOS 

and allowed to continue growing for a further 24 hours before being fixed 

and stained. In the upper panel, no iNOS expression is seen. In the lower 

panel, in the absence of doxycycline suppression, a few iNOS-expressing 

(green) cells can be seen. (Nuclei stained blue with DAPI)
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2.4 Discussion

The aim of the work described in this section was to find a mechanism by which nitric 

oxide causes shedding of epithelial cells. As described previously, VASP is a possible 

target due to its cGMP-dependent kinase site, situated near an actin-binding domain 

(Bachmann et al., 1999). We have shown VASP is normally localised at focal sites in 

the cell membrane, at the ends of actin fibres (figure 2.3) and that induction of iNOS is 

associated with loss of VASP from these sites (figure 2.4). These cells demonstrate 

altered morphology, tending to take up a more rounded shape and actin fibres are no 

longer seen. This suggests that the cells are no longer firmly attached to the extracellular 

matrix consistent with a redistribution of integrins away from the basolateral surface 

(Glynne et al., 2001), making them more prone to detachment and loss. This is the 

pattern also seen in ischaemic injury with disruption of actin filaments, a loss of cell 

polarity due to altered integrin:matrix interactions, cell shedding and tubule obstruction 

(Atkinson et al., 2004; Goligorsky et al., 1993; Molitoris et al., 1991; Molitoris and 

Wagner, 1996). The effects of iNOS on VASP distribution and the altered cell 

morphology associated with this are therefore a potential path by which cell loss in the 

proximal tubule during sepsis-induced pro-inflammatory cytokine release may occur.

We have also demonstrated that VASP phosphorylation at the Ser239 position in 

epithelial cells is seen following iNOS induction (Figure 2.8) and that inhibiting NO 

generation with the iNOS inhibitors L-NIL or 1400W stops this process. We have 

shown that in the epithelial cells studied, this phosphorylation is only seen on VASP 

that is already phosphorylated at the Serl57 position, a finding not previously reported. 

This is interesting in that it suggests that phosphorylation at the Serl57 residue,
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preferentially phosphorylated by cAMP-dependent protein kinase (Halbrugge et al., 

1990) is necessary in order for Ser239 phosphorylation to occur.

The mechanisms by which Seri57 phosphorylation may permit Ser239 phosphorylation 

have not yet been investigated. Phosphorylation at the 157 residue is known to cause a 

change in the electrophoretic mobility of VASP (Butt et al., 1994). This suggests that it 

may cause a conformational change in the protein, exposing the Ser239 residue and 

allowing it to be more easily phosphorylated by cGMP-dependent protein kinase. 

Another possible mechanism is that Serl57 phosphorylation may allow targeting of 

VASP to a cellular compartment in which it is more easily targeted by cGMP-dependent 

protein kinase. Finally, Serl57 phosphorylation may be involved in down regulation of 

protein phosphatase action at the Ser239 residue and therefore allow persistence of 

Ser239 phosphorylation. The latter explanation is interesting in the light of the results of 

combining iNOS transfection with a cAMP analog (Section 2.3.6). This causes 

persistence of the Ser239 phosphorylation signal that, without cAMP addition, is rapidly 

lost. The use of phosphatase inhibitors in this model would be a method of further 

investigation. X-ray crystallography or nuclear magnetic resonance (NMR) 

spectroscopy of phosphorylated VASP would also give an idea of the conformational 

changes caused by VASP phosphorylation and whether it alters the exposure of the 

Ser239 site.

The data discussed so far, suggests that there is a critical level of Seri57 phosphorylated 

VASP needed in order to allow the second Ser239 phosphorylation step to occur and 

that cAMP analogs prolong persistence of this form. This suggests an interplay between 

cAMP and cGMP-dependent pathways may be occurring with sequential
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phosphorylation of the preferred cAMP-dependent protein kinase serl57 site followed 

by cGMP-dependent protein kinase Ser239 phosphorylation. Control of the cyclic- 

nucleotide dependent pathways occurs via substrate selective and stimulated 

phosphodiesterases (PDE) (Conti and Jin, 1999). The actions of cGMP are down 

regulated by its effects on PDE V. cGMP expression causes activation of this enzyme 

by binding to the GAF A domain of the enzyme (Rybalkin et al., 2003) which in turn 

increases the breakdown of cGMP to GMP (figure 1.9, main introduction). Cyclic 

AMP phosphorylation is controlled in a similar manner by PDE III and IV: a rise in 

cAMP levels increases activity of these enzymes (Scapin et al., 2004; Tilley and 

Maurice, 2002) resulting in increased breakdown to AMP. PDE III is also inhibited by 

cGMP leading to an elevation of cAMP levels as its breakdown is reduced (Zhang et al., 

2001).

Nitric oxide itself appears to directly alter the response to the stimulus itself. NO causes 

a very rapid rise in cGMP levels which then rapidly decline despite guanylate cyclase 

remaining activated. NO appears to cause desensitisation of the cGMP pathway via 

phosphorylation and subsequent activation of PDE V (Mullershausen et al., 2003; 

Mullershausen et al., 2001). As shown in figure 2.8, Ser239 phosphorylation of VASP 

is present by 4 hours after transfection but is transient and is lost by 16 hours after iNOS 

transfection. This suggests that NO-induced activation of PDE V as discussed above 

may have been sufficient to down-regulate the cGMP-dependent pathway associated 

with phosphorylation of VASP at the Ser239 residue despite a continuing rise in NO 

levels (figure 2.9).
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Synergy appears to occur between iNOS and cAMP in the experimental model detailed 

in section 2.3.6 in which persistence of VASP 239 phosphorylation is seen when the 

two stimuli are combined (figure 2.12). In this section, we saw persistence of high 

levels of P-VASP Ser239 at 8 hours in cells dually stimulated with iNOS transfection 

and 8-Br cAMP addition whilst in cells that had only undergone iNOS transfection, 

Ser239 phosphorylated VASP was undetectable by 6 hours. A possible explanation for 

this would be inhibition of phosphodiesterases by cAMP. PDE V has not been 

demonstrated to be affected by cAMP levels. However other enzymes may be involved. 

PDE Xa is a cAMP-inhibited cGMP PDE and could therefore be a potential mechanism 

by which this occurs (Fujishige et al., 1999). It is inhibited by dipyridamole which also 

inhibits PDE V making it difficult to isolate out the effects of PDE Xa alone. An 

alternative’ though unlikely, explanation is that cAMP inhibits VASP 

dephosphorylation by regulation of protein phosphatases (PPs) (Abel et al., 1995). 

Cytostatin, an inhibitor of cell adhesion to the ECM inhibits PP2A (the protein 

phosphatase selective for Serl57 dephosphorylation) (Kawada M et al 1999) and may 

therefore be a potential method for exploring this aspect of control of VASP 

phosphorylation.

From our results, we suggest a model by which increased cAMP or cGMP activity leads 

to phosphorylation of VASP at the Serl57 site, causing a conformational change, thus 

exposing the Ser239 site to phosphoiylation (Figures 2.8 and 2.12) by cGMP-dependent 

protein kinase. Phosphorylation at Ser239 is only seen at 50kDa (figures 2.8 and 2.11) 

therefore Serl57 phosphorylation must have occurred. As the level of Seri57 

phosphorylation of VASP seems to be important in permitting Ser239 phosphorylation 

to occur, this could explain the effects of addition of 8-Br cAMP to iNOS transfected
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cells. The cAMP analog could lead to higher levels of P-VASP Serl57 and therefore 

allow more P-VASP Ser239 to be produced.

RAW cells produce very high levels of iNOS when stimulated with pro-inflammatory 

cytokines, as well as changes in numerous other pathways. These lead to increases in 

cAMP dependent phosphorylation of VASP at Ser 157 (Fig 2.10). NO produces 

predominant phosphorylation of this Serl57 phosphorylated VASP, as observed in the 

16HBE140- cells. However, there is a small amount of Ser239 phosphorylation alone 

(Fig 2.10) which is not abolished by NO inhibition. This may reflect Ser239 

phosphorylation by cAMP dependent or other protein kinases.

Li et al (2003) suggested that cAMP-dependent protein kinase (PKA) is the 

predominant enzyme in cGMP-stimulated phosphorylation rather than cGMP-dependent 

protein kinase (PKG). They demonstrated that forskolin (a cell permeable adenylate 

cyclase activator) was able to induce Ser239 phosphorylation more rapidly than a 

cGMP analog, suggesting a possible indirect pathway for cGMP-induced Ser239 

phosphorylation. They also showed that PKA inhibitors but not PKG inhibitors were 

able to block Ser239 phosphorylation. We would suggest a potential alternative 

explanation of these findings in the light of findings in epithelial cells. Using the pan 

VASP antibody we were able to show that Ser239 phosphorylation was only detectable 

at the 50kDa position, as discussed above, and that blocking the cGMP-dependent 

pathway with an iNOS inhibitor causes this to be lost (figure 2.8). We have suggested 

that Ser239 phosphorylation via the NO-induced PKG pathway requires initial 

phosphorylation at Serl57 (the PKA-preferred site), before it can occur. Therefore, 

blocking PKA-induced Seri57 phosphoiylation would block Ser239 phosphorylation as
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the initial, permissive step would not take place. The delay in Ser239 phosphorylation 

with a cGMP analog reported by Li et al may be due to activation of the cAMP 

dependent pathway by rising levels of cGMP, allowing Serl57 phosphorylation and 

then permitting Ser239 phosphorylation by cGMP.

Unexpectedly no changes in phosphorylation of VASP were seen when 8 Br-cGMP or 

NO donors were used to try and stimulate the cGMP-dependent kinase pathway. 

Different time points, concentrations and donors were used to try and stimulate 

phosphorylation without success. Phosphorylation at the Ser239 site can be difficult to 

detect due to low levels. However it would be expected that the use of 

supraphysiological concentrations of cGMP or NO in these experiments would be 

sufficient to allow activation of cGMP-dependent kinase. Nitric oxide is an unstable 

free radical and rapidly becomes oxidised. It is possible that it is rapidly metabolised 

before reaching the protein kinase/phosphatase complex located at specific subcellular 

locations (Sim and Scott, 1999). It is possible that iNOS may need to be co-localised 

with these complexes to allow direct localised NO production, permitting enzyme 

activation before NO is metabolised. Protein kinases can be targeted to the cytoskeleton 

by anchoring proteins such as A-kinase anchoring proteins (AKAPs). The assembly of 

complexes at the cytoskeleton appears to facilitate transmission of messages between 

membrane bound receptors and specific cytoskeletal sites (Diviani and Scott, 2001). 

The use of iNOS transfection may allow delivery of the enzyme to the correct 

compartment for it to have its effect. For example, previous work in Professor Evans’ 

laboratory, demonstrated that iNOS is co-localised with the apical PDZ protein ezrin- 

radixin-moesin-binding Phosphoprotein 50 (EBP50) in a sub-membranous protein 

complex, bound to cortical actin. Apically localised iNOS directs vectorial NO

119



production at this site. This colocalisation of iNOS and EBP50 may allow modulation 

of function of EBP50-associated proteins within this compartment (Glynne et al., 2002). 

Phosphorylation of VASP could be tightly controlled within one compartment of the 

cell, for example, the leading edge. This may mean that looking at total P-VASP levels 

within the cell may not reflect the situation within these highly dynamic regions of actin 

turnover and could explain why only very low levels of phosphorylation could have a 

pronounced effect.

In summary, this section of work has demonstrated the normal localisation of VASP in 

renal epithelial cells and that iNOS causes this to be lost. We have also demonstrated 

that iNOS transfection induces VASP phosphoiylation at the Ser239 residue but, in 

epithelial cells, only in the presence of Seri57 phosphorylation. In macrophages, some 

Ser239 phosphorylation alone is seen but that it is still predominantly seen in VASP that 

has also undergone Serl57 phosphorylation. We have also shown that Ser239 

phosphoiylation persists for longer in the presence of cAMP in addition to iNOS. We 

propose a mechanism by which VASP requires initial phosphorylation at Serl57 (the 

site preferentially phosphorylated by PKA in vitro) before Ser239 phosphorylation can 

occur.
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Chapter 3. The Effects of Dominant-Negative VASP on Epithelial Sheet 

Formation^
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3.1 Introduction

Cell adhesion, both to the extracellular matrix and to other cells, is of fundamental 

importance in the assembly of individual cells into the organised 3-dimensional 

structures such as the proximal tubule of the kidney. Tubulogenesis involves many 

coordinated processes including cell differentiation, polarisation, changes in 

morphology, adhesion and reorganisation of the actin cytoskeleton. Prominent 

structures in cellrcell adhesion in epithelia are the adherens junctions (or zona adherens) 

containing a core of E-cadherins (Gumbiner, 1996; Nose et al., 1988). The cytoplasmic 

domains of E-cadherin bind to P-catenin which in turn binds to a-catenin which links to 

the actin cytoskeleton (Drubin and Nelson, 1996). a-catenin also binds to other actin- 

binding proteins, amongst which is the related protein vinculin, to which VASP binds 

(Reinhard et al., 1996). The actin cytoskeleton is essential in the formation of new 

cell.cell junctions and the stabilization of recently formed contacts (Vasioukhin et al., 

2000) though mature contacts are more stable in the face of cytoskeletal disruption.

We have used a canine renal epithelial cell line for this work, Madin-Darby canine 

kidney (MDCK) cells (briefly described in Chapter 2). We have used a specific clone of 

these cells for this work. MDCK TetOff cells are a stable clone containing the pTetOff 

regulator plasmid. These cells have been engineered to express a tetracycline-controlled 

regulatory protein which will allow controllable, high level gene expression. This has 

been created from amino acids 1-207 of the E.coli Tet repressor protein (TetR) and the 

c-terminal 127 amino acids of the Herpes simplex virus (HSV) VP-16 activation 

domain. The VP-16 domain converts the TetR from a transcriptional repressor to a 

transcriptional activator, the resultant protein being the tetracycline-controlled 

transactivator (tTA). tTA is encoded by the pTetOff regulator plasmid which also
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contains a puromycin resistance gene to maintain selection of a stable clone of 

transfected cells

The cells than require a second component -  the Tetracycline response plasmid which 

expresses the gene of interest under the control of the tetracycline response element 

(TRE). This is contained in the pTRE2hyg plasmid that contains a multiple cloning site 

(MCS) for insertion of the gene of interest. The plasmid also contains a hygromycin 

resistance gene to allow selection and cloning of transfected cells. This system can 

therefore be used to control when the gene of interest is expressed by removal of 

tetracycline repression of transcription (Figure 4.2).

In this section of work, we have looked at the effects of actin cytoskeletal disruption on 

adhesion through the use of a dominant negative form of VASP (DN-VASP). The 

EVH2 domain of VASP, containing the regions essential for tetramerisation and coiled- 

coil formation (amino acids 277-383) acts in this manner (Bachmann et al., 1999). DN- 

VASP does not contain the domains necessary for binding to other cytoskeletal proteins 

such as vinculin and zyxin, thereby disrupting the link between actin and cell: cell and 

cell: matrix junctions. It also does not include the F-actin and G-actin sites found in the 

central proline rich domain and the EVH2 domain.

In the formation of cellxell junctions, epithelial cells from the epidermis initially form 

calcium-stimulated filopodia which penetrate into neighbouring cells. E-cadherin 

accumulates at the tips of the filopodia and bundles of actin filaments radiate back into 

the cell (Vasioukhin et al., 2000). Cells grown in low calcium media will not form these 

structures. VASP, zyxin and vinculin also localise to focal contacts and puncta between
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Figure 3.1 The TetOff System 

tTA
r

\

Transcription

Add doxycycline

Remove doxycycline

Transcription
stopped

Key

ct
y\

tTA (binds TRE and activates
transcription in the absence of
doxycycline

Doxycycline

Gene of interest

Tetracycline Response Element (TRE)

PcMV

TetR

V P -16 activation domain

124



the cells and act as a potential mechanism for the organised actin bundles radiating from 

these areas (Machesky and Insall, 1999). Studies using DN-VASP in order to interfere 

with this function show that membrane fusion between cells is inhibited (Vasioukhin et 

al., 2000). Earlier studies of cell division and junction formation in MDCK cells 

suggested a slightly different mechanism with actin initially existing in a 

circumferential cable in these cells. As cells adhere, E-cadherin associates into puncta at 

cell:cell contacts which in turn leads to breakdown of the actin ring and insertion of 

actin fibres into these cables (Adams et al., 1998). VASP localises to the Zona adherens 

via the assembled protein complex at the junction that contains the Ena/VASP-binding 

proteins zyxin and vinculin (Renfranz and Beckerle, 2002) and is involved in actin 

polymerisation (Walders-Harbeck et al., 2002). We have used DN-VASP to investigate 

further the effects of cytoskeleton disruption on formation of a new epithelial sheet and 

on a pre-formed monolayer of MDCK cells. We have also gone on to investigate the use 

of a 3-dimensional model of tubule formation using MDCK cells.

Tubulogenesis is a developmental process seen in many organs of the body including 

the lungs, mammary and salivary glands and the kidney. Tubules are lined with 

polarised epithelial cells but during development polarity appears to be transiently lost 

as cells migrate (Pollack et al., 1998). The different forms of cell: cell junctions appear 

to be differentially regulated during this process, with E-cadherins becoming distributed 

randomly across the cell surface whilst the tight junction protein ZO-1 remains at sites 

of cellrcell contact. MDCK cells grown in a 2-dimensional culture on a semi-permeable 

membrane support, form a well polarised monolayer approximately 10-15 pm tall in 

contrast to when they are grown on a solid support when they are only 3-5 pm high 

(Zegers et al., 2003). When grown in a type I collagen matrix they organise to form a
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fluid-filled cyst of a monolayer of cells. If treated with hepatocyte growth factor, they 

will then form branching tubules (Rosario and Birchmeier, 2003). Other growth factors 

such as transforming growth factor-P (TGF-P) (Santos and Nigam, 1993) and epidermal 

growth factor (EGF) receptors (Kjelsberg et al., 1997; Sakurai et al., 1997) also appear 

to influence tubulogenesis though HGF appears to have the dominant effect in these 

cells (Barros et al., 1995). Tubulogenesis is important as these mechanisms are similar 

to those needed for tubule repair post injury when cells must divide and move in 3 

dimensions to recreate a polarised epithelial lining for the renal proximal tubule. HGF 

has been proposed as an agent which may be useful in the management of renal failure, 

both in the inhibition of fibrosis in chronic disease (Matsumoto and Nakamura, 2002; 

Negri, 2004) and in amelioration of damage in acute renal failure (Yamasaki et al., 

2002) though its role is, as yet, unclear (Reviewed in (Laping, 1999).

HGF acts via the c-met tyrosine kinase receptor and acts both as a growth factor, for 

example in hepatocytes where it was first characterised, and as a scatter factor 

stimulating cell dissociation and motility (Weidner et al., 1993). Ligation of the receptor 

activates a host of signalling pathways that lead to reorganisation of the cytoskeleton 

and cell adhesion complexes. In particular, Racl and Cdc42 (Rho GTPases) are 

activated downstream of HGF and are required for adherens junction reorganisation, 

lamellopodia formation cell spreading and motility (Royal et al., 2000). A potential role 

for VASP in this process via actin polymerisation and bundling is therefore likely. The 

distribution of VASP during tubulogenesis would be an interesting area to study to 

investigate its interactions with actin during this process.
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3.2 Methods

3.2.1 Immunofluorescent Staining of Native VASP in MDCK TetOff Cells

MDCK TetOff cells were grown to 100% confluence on a 2 chamber tissue culture 

slide. They were then fixed and permeabilised as described previously before being 

blocked in 10% NGS. Following blocking they were incubated with the primary 

polyclonal anti-VASP antibody (1:500) for 1 hour at room temperature. Staining was 

visualised using a secondary fluorochrome linked anti-rabbit antibody. Nuclei were 

stained with DAPI.

3.2.2 Production of Dominant-Negative VASP (DN-VASP)

The following additional reagents were used: VASP cDNA GeneStorm Expression 

ready clone RG00084 in pcDNA3.1/GS (Resgen); pCR2.1-TOPO vector, Zeocin, 

EcoRl, Mlu-1, Not-1, Bam-Hl restriction endonucleases, X-gal and TOP10 cells (all 

from Invitrogen, UK); Ligafast and Ligafast buffer, Taq polymerase and lOx 

Amplification buffer (all from Promega); Dimethylsulfoxide (DMSO) and agarose 

(electrophoresis grade) (Sigma, UK); Qiagen plasmid DNA Miniprep and Midiprep 

Kits, Qiagen Gel Purification Kit (Qiagen); Low Salt LB media (Tryptone lOg, NaCl 

5g, Yeast extract 5g, distilled water to 11,).

3.2.2.1 Polymerase Chain Reaction (PCR) Protocol

cDNA VASP was extracted as in section 2.2.12.1. A dominant negative form of VASP 

(amino acids 277-380 of full length VASP) was amplified from full length VASP 

cDNA using the following oligonucleotide primers -  

5’ GCACGCGTATGACGCAAGTTGGGGAGAAAACC 3’
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5’ GCGCGGCCGCCAGGGAGACCCCGCTTCC 3’

(Adapted from (Vasioukhin et al., 2000)

(incorporating an ATG sequence to ensure the correct frame and Mlu-1 and Not-1 as 

restriction endonuclease sites) and VASP cDNA as detailed previously. Not-1 and Mlu- 

1 were chosen as restriction sites in order to be able to incorporate the protein into 

pTRE2Hyg vector which allows the production of a tetracycline-controllable construct 

for incorporation into MDCK-TetOff cells (see section 2.2.14).

The amplification protocol used was 95°C for 2 minutes, then 40 cycles of 95°C for 30 

seconds, 55°C for 30 seconds and 72°C for 1 minute, finishing with 72°C for 10 

minutes. VASP cDNA was used at concentrations of 1, 5 and lOng as templates for the 

reaction. The presence of DNA of the expected size (approximately 350 base pairs) was 

confirmed by electrophoresis using a 2.5% agarose gel. The per product was excised 

from the gel and purified using a Qiagen gel purification kit.

3.2.2.2 Insertion of DN-VASP into a regulatable plasmid

In order to increase the concentration of the dominant-negative VASP, it was initially 

TA cloned into pCR2.1-TOPO vector. TA cloning exploits the terminal transferase 

activity of Taq polymerase to add a 3A overhang to each end of the PCR product. It can 

then be cloned directly into a linearised cloning vector with 3T overhangs such as 

pCR2.1 TOPO. The PCR products are mixed with the vector in high proportion and 

ligated with T4 ligase.

The per amplification protocol detailed previously was repeated using non-proof 

reading taq polymerase in order to incorporate an AAA overhang. It was ligated into
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linearised pCR2.1-TOPO and incubated at room temperature for 5 minutes. Following 

this, the DNA was chemically transformed into TOPIO cells. The cells were then spread 

onto LB-ampicillin plates pre-spread with 40mg/ml X-gal and incubated at room 

temperature overnight at 37°C. The following day a mixture of blue and white colonies 

were present. White colonies indicate incorporation of the DNA. White colonies were 

picked and grown overnight in LB-ampicillin (50pg/ml) liquid media. The following 

day, the cultures were spun down and the plasmid DNA extracted using a Qiagen 

minprep kit and run on a 2.5% agarose gel to look for incorporation of DN-VASP DNA. 

Samples of DNA from different colonies expressing the expected 2 bands were then 

sent for DNA sequencing to ensure incorporation of full length DN-VASP DNA had 

been successful. pCR2.1TOPO incorporates M13 primers which were used for 

sequencing.

DNA from a sample containing full length DN-VASP was the incorporated into the 

pTRE2hyg expression vector. PCR2.1 TOPO/DN-VASP and pTRE2hyg were both 

digested with Mlu-1 and Notl at 37°C for 2 hours. Samples were run on a 2.5% and a 

1% agarose gel respectively and the appropriate bands excised and gel purified using a 

Qiagen gel extraction kit. They were then ligated using the following quantities :-

• DN-VASP 7 pi

• pTRE2hyg lpl

• Ligafast buffer lOpl

• Ligafast lpl

for 8 minutes at room temperature before being placed on ice to stop the reaction. The 

pTRE2/hyg/DN-VASP was electrically transformed into electrocompetent E.coli (100 

Ohms resistance, 2.45kV charging voltage, 25pFD capacitance). Cultures were spread
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onto LB-ampicillin agar plates and grown at 37°C overnight. The following day, 

colonies were picked and grown in 4ml LB-ampicillin liquid media overnight. Plasmid 

DNA was extracted as before and digested with Mlu-1 and Not-1. Samples were run on 

a 2.5% agarose gel in order to confirm incorporation of the DN-VASP insert.

3.2.3 Expression of DN-VASP in MDCK TetOff Cells

The following reagents were used: VASP mouse monoclonal antibody (BD 

Transduction Laboratories); Novex 10-20% Tris-Glycine gels and SeeBlue Plus2 pre

stained proteins (Invitrogen).

3.2.3.1 Detection with Immunoblotting

MDCK TetOff cells were grown in 6 well plates to 80-90% confluence prior to 

transfection with pTRE2hyg/DN-VASP (protocol section 2.2.14.3, 4pg DNA and 20pl 

Lipofectamine 2000 per well). Cells were grown in the presence or absence of 

doxycycline (2pg/ml) for a further 24 hours before being harvested for assay. MDCK 

TetOff cells were washed twice with PBS then lysed in 200pl of SDS-lysis buffer. 

Samples were boiled at 95° C for 5 minutes and briefly sonicated before being loaded 

onto a 10-20% Tris-Glycine electrophoresis gel. 40pl of each sample was used. The gel 

was run at 20mA until the dye reached the base of the gel. The samples were then 

transferred onto a PVDF membrane at 400mA for 1 hour at 4°C. Transfer was checked 

by Ponceau S (Sigma, UK) staining. Following blocking, the membrane was stained 

using a VASP mAb (1:500 dilution in 5% non-fat milk) for 2 hours at room temperature 

on an orbital shaker. The membrane was washed before addition of the secondary 

biotinylated antibody for a further hour. The membrane was washed again before the 

addition of Streptavidin-HRP conjugate (1:3000) in 5% milk in PBS for 30 minutes.
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Immunoreactive bands were detected using the ECL Plus detection system and 

visualised using autoradiography film.

3.2.3.2 Detection with Immunofluorescence

The following additional reagents were used: VASP mAb (clone IE273) (Alexis 

Biochemicals); AlexaFluor 488-labelled Phalloidin and AlexaFluor 568 goat anti

mouse, 1:500 (Molecular Probes).

pTRE2hyg/DN-VASP was transfected into MDCK TetOff cells grown in Titretek 2 

chamber slides using a standard protocol described previously. In one half of the cell 

chambers, in order to suppress DN-VASP expression, doxycycline was added to the 

media at a concentration of 2pg/ml. In the other chambers, no doxycycline was added 

in order to allow the protein to be expressed.

24 hours following transfection the cells were fixed and stained for DN-VASP and F- 

actin. The cells were fixed in 1%PFA, permeabilised in 0.2% Triton X-100 in PBS and 

blocked in 10% NGS as described previously. After blocking, cells were incubated with 

VASP mAb (IE273) at a 1:250 dilution in 10% NGS and FTTC-labelled phalloidin at a 

1:50 dilution for 2 hours at room temperature. Following washing, the secondary 

antibody and FITC-labelled phalloidin in 10% NGS were added and the cells incubated 

for a further hour. DAPI was added following washing to stain the nuclei. Cells were 

examined using immunofluorescent microscopy.
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3.2.4 The Effects of DN-VASP Transfection on the Formation of an 

Epithelial Sheet and the Presence of Actin Fibres

MDCK TetOff cells were cultured overnight in either 2 chamber slides or 6 well plates 

to approximately 90% confluence. They were then transfected with pTRE2Hyg/DN- 

VASP using Lipofectamine 2000 as before. Doxycycline was added at a concentration 

of 2p,g/ml to half of the cells whilst the rest were cultured in the absence of 

doxycycline. 6 hours following transfection, the cells grown in 6 well plates were 

trypsinised and replated into 2 chamber slides. Slides were then fixed and stained at 

timepoints from 6 - 2 4  hours following transfection. Cells were stained with VASP 

mAb (IE273) for DN-VASP and either FITC-phalloidin (F-actin) or anti ZO-1 antibody 

to demonstrate cell: cell junctions (ZO-1 mAb, 1:100 dilution, Zymed). The cells were 

then examined using immunofluorescent microscopy with images being taken for 

deconvolution microscopy and z-stack images using Openlab software.

In order to assess the percentage of cells expressing DN-VASP at the various time 

points, random fields were photographed from each slide. The total number of cells 

present was counted and also the number of cells expressing DN-VASP. Means and 

standard deviations were then calculated. A Student’s two tailed t-test was used to 

compare the percentage of cells expressing DN-VASP at equivalent time points 

between the two different growth conditions (Transfected in situ vs transfected and 

replated after 6 hours). A difference with p<0.05 was taken as a significant difference 

and p<0.01 as highly significant.
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Figure 3.2 Protocol for investigating the effects of replating DN-VASP 
transfected MDCK TetOff cells
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3.2.5 Establishment of a 3-Dimensional Tubule Model to Investigate VASP 

Distribution

3.2.5.1 Culture of tubules

The following reagents were used: Type I Rat Tail Collagen (Roche), RPMI powder 

(Gibco), sodium bicarbonate (Sigma), 1M HEPES (Gibco), hepatocyte growth factor 

(HGF) (Peprotech), 0.2pm pore Tissue Culture inserts (10mm Anopore membranes) 

(Nalge Nunc)

A sterile collagen matrix was prepared using 66% type I rat tail collagen, lx RPMI 

media, sodium bicarbonate 2.35mg/ml, 0.02M HEPES and 12% sterile distilled water. 

MDCK cells were added to the matrix at a concentration of 5x10* cells/ml. 0.25ml of 

the collagen/ cell mixture was placed onto 0.2p anopore membrane inserts in a 24 well 

plate and allowed to set in a 37° incubator for approximately 20 minutes. Prewarmed 

media was then added above and below the membrane and the plates were incubated at 

37° C, 5% C02 in a humidified incubator.

Media was changed daily. Approximately 1 week after seeding, cysts had formed and at 

this stage, HGF was added at a concentration of 20ng/ml. This was added daily in fresh 

media for 5 days until the formation of branching tubules was seen. Samples were fixed 

and stained at each stage of tubule growth.

3.2.5.2 Immunostaining of Tubules in Collagen Matrices

(Adapted from (Pollack et al., 1998) with unpublished modifications by Lucy O’Brien 

& Keith Mostov.)

Media was removed from above and below the samples which were then washed 3 

times with PBS+ (Phosphate buffered saline supplemented with ImM calcium chloride
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and 0.5mM magnesium chloride). They were then incubated with 0.05units/ml 

collagenase (Liberase Blendzyme 3, Roche Pharmaceuticals) for 10 minutes at 37°C, 

washed a further 3 times in PBS+ before being fixed in 4% PFA for 30 minutes at room 

temperature. Following this, Quench solution (1.5ml 1M ammonium chloride, 0.4ml lm 

glycine (pH8) made to 20ml with PBS+) was added for 10 minutes. The samples were 

washed again 3 times in PBS+ then blocked with PFS at 4° overnight.

The primary antibodies (Ezrin lpg/ml (Transduction Laboratories) or p, integrin 

0.2pg/ml (Chemicon International)) were diluted in PFS (3.5g fish skin gelatin (Sigma), 

saponin (Sigma) 10% 1.25ml in PBS+ to 0.51, 0.02% sodium azide) and added above 

and below the sample before being incubated for 24 hours on an orbital shaker at 4°C. 

The samples were washed in PFS before the secondary antibody, also diluted in PFS 

(AlexaFluor 488 goat anti mouse 1:500 dilution (Molecular Probes).) was added and the 

samples shaken for a further 24 hours at 4°C. Following washing in PFS (5 times) and 

PBS+ (twice), the samples were post-fixed in 4%PFA for 30 minutes before washing 

again in PBS+. The collagen gel was then removed from the filter insert and mounted in 

Vectashield on a microscope slide. The samples were allowed to harden at 4°C in the 

dark for 24 hours before being visualised using confocal microscopy.

3.2.6 Cloning of pTRE2hyg/DN-VASP Stable Transfectants

MDCK TetOff cells were grown to 80% confluence in a 6 well tissue culture plate 

before being transfected with pTRE2hyg as described previously. The media was 

changed 4 hours after transfection and doxycycline 2pg/ml was added at this point. 

(Unless otherwise stated, doxycycline was always added to the media from now on in 

this experiment). 24 hours after transfection, cells were trypsinised and replated into 

15cm Petri dishes. They were seeded into the plates at a 1:10, 1:20 and 1:50 dilutions.
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Hygromycin was added as the selective antibiotic at a concentration of 200jig/ml from 

now on unless otherwise stated. The cells were then allowed to continue growing.

7 days after reseeding into the Petri dishes, small colonies began to appear. These 

clones were then replated into 24 well plates in order to keep the colonies separate. In 

order to replate clones individually without cross-contamination, the following method 

was employed. Tissue culture media was removed from the plates and the cells washed 

with HBSS. Sterile cloning discs (Sigma) were soaked in trypsin-EDTA and placed 

onto individual clones using sterile forceps. Cells were allowed to detach from the 

tissue culture plate. Discs were then removed to 24 well plates with detached cells 

adhering to them. 1ml of media was added to the wells of the 24 well plate and cells 

allowed to continue growing. By the following day, cells had detached from the disc 

and were now growing in the wells. Media was changed for fresh media and the discs 

removed. Clones were sequentially replated into 6 well and T25 tissue culture flasks to 

expand cell numbers.

3.2.7 DN-VASP Expression by Stable Transfectants.

In order to asses DN-VASP expression in the clones, 2 aliquots of cells from each clone 

were grown in 2 chamber tissue culture slides, one in the presence of doxycycline and 

one in the absence of doxycycline, for 24 and 48 hours. They were then fixed, 

permeabilised, blocked and stained for DN-VASP as described in section 3.2.3.2 

Immunofluorescent microscopy was used to assess DN-VASP expression.
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3.3 Results

3.3.1 DNA sequencing of DN-VASP

Sequencing of the PCR-amplified product confirmed that the DN-VASP sequence was 

present in its entirety and without errors. The product was therefore used in further 

experiments.

3.3.2 Distribution of native VASP in MDCK TetOff Cells

MDCK TetOff cells are a canine renal epithelial cell line. They were stained with 

polyclonal VASP in order to demonstrate normal distribution of the protein in these 

cells. VASP is known to localise to cell:cell and cell:matrix junctions. Figure 3.3 

demonstrates localisation of VASP in focal sites at the cell membrane at cell:cell 

junctions. Contacts at the celkmatrix junction were not seen in this confluent monolayer 

as the plane imaged here is at a higher level within the cell. The antibody used in this 

experiment is a polyclonal antibody capable of recognising both human and canine 

VASP.
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Figure 3.3 Distribution of native VASP in MDCK TetOff cells. VASP 

(green) is localised at cell; cell junctions in the epithelial monolayer (arrow). 

(Magnification x630)
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3.3.3 Expression of DN-VASP in MDCK TetOff Cells

DN-VASP expression was identified by the use of a monoclonal antibody against 

VASP. This commercially available antibody was raised against the EVH2 domain of 

human VASP and does not cross-react with canine VASP. Only cells expressing 

transfected DN-VASP, which is of human origin, will therefore stain with this antibody. 

The polyclonal antibody described in the previous section was not used as this is 

capable of staining both canine and human VASP. FITC-conjugated phalloidin was also 

used to stain F-actin in these cells. Stress fibres are visible in cells not expressing DN- 

VASP (figures 3.4a and b, black arrows)

Using immunofluorescent staining, it was possible to see DN-VASP expression by 4 

hours post transfection. In the chambers in which expression was repressed by the 

addition of doxycycline, low level of DN-VASP expression was seen at all time-points 

(less than 1% by 24 hours) (figure 3.4a) demonstrating some leakiness of the 

tetracycline repression system. In the chambers to which doxycycline was not added, 

approximately 40% DN-VASP expression was seen by 24 hours post transfection 

(figure 3.4b). The control by tetracycline in this system appeared therefore to be 

effective in repressing gene transcription. Some leakiness of expression in the presence 

of DN-VASP is not unexpected but was present at a low enough level of expression to 

allow use of this model.

Cells expressing DN-VASP appear to be able to remain as part of the epithelial cell 

monolayer as seen in figure 3.4b. In this image, a relatively high number of cells 

(approximately 40%) are demonstrating DN-VASP expression (red) but appear to 

remain in the epithelial sheet, surrounded on all sides by other cells. No breakdown of
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the epithelial sheet was seen and by 24 hours post transfection, 100% confluence had 

been reached as seen in figure 3.4b. DN-VASP appeared to be expressed throughout the 

cytoplasm of the cells, excluding the nuclei (best seen in the white-arrowed cells in 

figure 3.4b) and did not appear in a focal distribution at cellxell contacts where native 

VASP is usually seen (Figure 3.3).

In summary, this experiment demonstrated DN-VASP was expressed in a regulatable 

fashion when transfected into MDCK TetOff cells. This experiment looked specifically 

at DN-VASP expression in cells that had already reached a high level of confluence 

before transfection. It suggested that expression of the dominant-negative protein did 

not appear to cause breakdown of the pre-formed cell monolayer, cells remained 

incorporated into the epithelial sheet.
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Figure 3.4 Detection of DN-VASP expression by Immunofluorescence.

Slides were fixed and stained for DN-VASP (red) and F-actin (green) 24 hours after 

transfection with pTRE2hyg/DN-VASP. (Magnification x400)
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3.3.4 Detection of DN-VASP by Immunoblotting

In order to confirm the expression of DN-VASP, we prepared lysates of cells 

transfected with pTRE2hyg/DN-VASP at 24 and 48 hours after transfection, grown in 

either the presence or absence of doxycycline. These were then assayed for the presence 

of the dominant-negative protein by immunoblotting on high strength Tris-glycine gels 

to enhance detection of low molecular mass proteins.

DN-VASP was detected as a band at approximately 20kDA by immunoblotting 24 

hours after transfection in cells grown in the absence of doxycycline. In samples where 

the cells had been grown in the presence of doxycycline, DN-VASP expression was 

suppressed to a sufficiently low level that it was undetectable by this method (Figure 

3.5).

The level of DN-VASP expressed at 48 hours post transfection appears to be lower than 

at 24 hours. This may be due to cell shedding of MDCK cells due to a very high level of 

confluence. MDCK cells grow very rapidly and form an epithelial sheet several layers 

thick that is liable to detach easily from the tissue culture flask. This effect was also 

observed in non-transfected cells in this experiment.
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Figure 3.5 DN-VASP expression in MDCK TetOff cells. DN-VASP was 

detected at approximately 20kDa. The effects of addition of doxycycline, suppressing 

DN-VASP expression are clearly visible.
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3.3.5 DN-VASP Expression D ecreases Actin Fibre Formation.

We next examined the effect of DN-VASP expression on the distribution of actin within 

MDCK TetOff cells. MDCK TetOff cells were transfected with pTRE2hyg/DN-VASP 

and grown in the absence of doxycycline in order to allow expression of the protein. We 

then stained cells for F-actin and DN-VASP expression.

In cells that do not express DN-VASP, typical actin stress fibres can be seen stretching 

across the cell (figure 3.6a, white arrow). Figure 3.6b shows the same microscopic field 

but in this image, staining for DN-VASP (red) has been included. In cells that do 

express the transfected protein, actin stress fibres are not visible. However, if these 

same cells are examined in figure 3.6a (black arrows), it can be seen that they do not 

demonstrate stress fibre formation as seen in adjacent cells. In these cells, DN-VASP is 

distributed throughout the cytoplasm, excluding the cell nuclei.

Whilst the distribution of F-actin within the cell has shown to be altered by the presence 

of DN-VASP, it was felt to be of less use to investigate the position of epithelial cells 

with respect to the plane of the monolayer as it is usually distributed throughout the cell. 

For the next series of experiments we therefore chose to study the effects of DN-VASP 

on distribution of ZO-1, a protein normally located at the Zona occludens.
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Figure 3.6 The presence of DN-VASP expression inhibits actin fibre 

formation. Typical actin stress fibres (green stain, white arrow) are seen in cell 

not expressing DN-VASP. In DN-VASP expressing cells (red stain, black 

arrows), stress fibres are not seen. (Magnification x400)
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3.3.6 Effects of DN-VASP Transfection on the Ability of Cells to Reattach 

to the Cell Sub-stratum

The experiments described above showed that, although DN-VASP appeared to disrupt 

actin stress fibre formation, it had little apparent effect on the integrity of the epithelial 

sheet. To examine the effects on de novo epithelial sheet formation, cells were 

transfected with DN-VASP, allowed to recover for 6 hours before undergoing 

detachment from the tissue culture flask by the use of trypsin. They were then replated 

into 2 well tissue culture slides and allowed to continue growing. Following 

transfection, cells were allowed to grow in the absence of doxycycline in order to 

facilitate DN-VASP expression. This means that DN-VASP was being expressed by the 

time the cells were replated. Cells were then fixed and stained for DN-VASP at 

timepoints from 2-18 hours after replating. A control set of cells for each time-point 

used did not undergo replating but were allowed to grow in situ on the 2 chamber slides.

As a common starting point for both sets of growth conditions, one set of cells was 

fixed and stained at 6 hours following transfection, the time-point at which some of the 

cells underwent detachment and reattachment. By 6 hours after transfection, 

approximately 5% of cells expressed detectable DN-VASP using immunofluorescent 

microscopy. This shows that DN-VASP expression would therefore have started in the 

cells which then underwent replating at this point. By conventional phase contrast light 

microscopy, cells which were replated could be seen to be adhering to the slides by 2 

hours after detachment and reattachment and this point was therefore taken as the next 

time-point for assessment.
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By 8 hours after transfection (2 hours after replating), there was a statistically higher 

percentage of cells expressing DN-VASP seen in chambers where the cells had been 

allowed to remain growing in situ, compared to those that had undergone detachment 

and reattachment. This difference was observed at all the time-points measured in this 

experiment. In cells transfected in the 2 chamber slides and not replated, the percentage 

of cells expressing DN-VASP rose from 4.86 +/- 2.15 at 6 hours post transfection to 

36.33 +/-11.1% at 24 hours post transfection. In cells that had undergone replating, by 

18 hours after re-plating (24 hours after transfection), only 23 +/- 5.39% of cells were 

expressing DN-VASP. The difference between the two sets of cells was seen at all 

timepoints following transfection and reached statistical significance at 8, 10 and 12 

hours after transfection (Figure 3.7).

In conclusion, this experiment suggests that expression of DN-VASP inhibits the ability 

of MDCK cells to adhere to the culture surface.
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Figure 3.7 The effects of replating cells transfected with DN-VASP. In cells 

replated 6 hours after transfection, the percentage of cells expressing DN-VASP was 

significantly lower at timepoints 8, 10 and 12 hours after transfection -  corresponding 

to 2, 4 and 6 hours after replating. (Error bars have been included and significant 

differences (* p<0.05) calculated using a Student’s t-test,)
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3.3.7 The Effects of DN-VASP Transfection on the Formation of an 

Epithelial Sheet

Previous experiments have shown that following replating, a lower percentage of DN- 

VASP expressing cells are seen than in cells that have undergone detachment and 

reattachment compared to cells left in situ. In this experiment, we looked at whether 

DN-VASP transfected cells could be incorporated into a newly forming monolayer and 

whether there were any differences in distribution.

In this experiment, as in the previous one, some cells were plated directly onto 2 

chamber slides and transfected with pTRE2hyg/DN-VASP when nearly confluent. 

These cells were then grown in the absence of doxycycline in order to allow expression 

of DN-VASP. A second set of cells were grown in 6 well plates to approximately 80% 

confluence before undergoing DN-VASP transfection. They were then allowed to grow 

for a further 6 hours in the absence of doxycycline before undergoing replating onto 2 

well slides as described in the previous experiment. Cells were then stained for DN- 

VASP expression and ZO-1 at timepoints between 10 and 24 hours following 

transfection (6 and 18 hours after replating). ZO-1 was chosen for staining in this 

experiment as it sits in a very localised area at cellrcell junctions at the Zona occludens. 

This therefore allowed us to look at whether cells expressing DN-VASP were found in 

the same plane as the rest of the monolayer where cells were not expressing DN-VASP.

In cells that were not replated (Figure 3.8), DN-VASP expressing cells appear to be 

fully incorporated into the cell monolayer. ZO-1 staining is seen around the cells 

suggesting that cell: cell junctions are forming at the Zona Occludens. The cells appear 

to be at the same level above the matrix as those that are not expressing DN-VASP (XY
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images, all time points). This does not appear to alter between 6 and 24 hours post 

transfection (figure 3.8a and c).

In replated cells (Figure 3.9), 4 hours after replating (Figure 3.9a), the DN-VASP 

expressing cell can clearly be seen to be positioned above the level of the cell 

monolayer (0 pm level). The lower set of images shown were taken 13 pm above the 

level of the cells shown in the top panel but are from the same microscope field. Only in 

the images taken at this higher level, is the DN-VASP-expressing cell in focus. This is 

also noticeable if the XY section is viewed -  this cell appears to be attached to other 

cells below it, not to the matrix. By 18 hours post-replating (Figure 3.8b), the DN- 

VASP cells appear to have been incorporated into an epithelial monolayer. However, 

some of these cells still appear to be located slightly above the main body of the 

monolayer. In an image taken at a level 5pm higher than the monolayer these cells 

appear more in focus, suggesting they are situated slightly higher than the surrounding 

cells. Whilst these cells appear to have made cell: cell contacts as demonstrated by ZO- 

1 staining this finding suggests that they may not be attached to the substratum but are 

being held in place by cellrcell contacts with cells that are not expressing DN-VASP.
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DN-VASP MERGED
Figure 3.8a

6 hours post transfection 
non-replated

Figure 3.8b
10 hours post transfection 
non-replated

Figure 3.8c

24 hours post transfection 
non-replated

Figure 3.8 Distribution of MDCK TetOff Cells transfected in situ with 

DN-VASP. DN-VASP expression is demonstrated by red staining in the above 

images. ZO-1 expression at cell:cell junctions is seen in green. Images were 

deconvolved and then reconstructed to create XZ images demonstrating the 

positions of the cells in a vertical slice through the image. (Magnification x400)
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ZO-1 DN-VASP MERGED

XY

Opm level

XZ reconstruction

Figure 3.9a. 10 hours post transfection, 4 hours after replating

XY

0pm level

Figure 3.9b. 24 hours post transfection, 18 hours after replating

Figure 3.9 Distribution of DN-VASP expressing MDCK TetOff cells 

subjected to detachment and reattachment 6 hours after transfection.

As in figure 3.8, DN-VASP is stained red and ZO-1 green. The upper XY image 

in both 3.9 a and b is a deconvolved image at the level of the epithelial monolayer. 

The lower XY image is from the same microscope field but with the 

deconvolution carried out at either 13 or 5 pm above the monolayer, showing cells 

at a n elevated plane. (Magnification x400)
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3.3.8 Establishment of a 3D Tubule Model to Investigate Tubule Formation 

and Breakdown.

The aim of this section of work was to establish a 3-dimensional model of tubules and 

then investigate the effects of allowing DN-VASP expression to be switched on at 

various stages of tubulogenesis. This could be used to investigate the effects of 

disrupting VASP function and its interaction with the actin cytoskeleton during these 

processes. This would give a clearer picture of how the actin cytoskeleton is altered 

during tubulogenesis and what alterations in cell polarity and morphology are necessary 

to allow formation of a new tubule. This has obvious implications then in the recovery 

of the proximal tubule following acute injury.

MDCK TetOff cells readily formed cysts when grown in a collagen matrix. These were 

easily visible by 3 days after seeding and continued to grow to day 7. Following the 

addition of 20ng/ml of HGF, spikes and projections were seen within 1-2 days (Figure 

3.10a). With daily addition of HGF, these developed into cords (day 2-3) (Figure 

3.10b), early tubules (day 3-4) (figure 3.10c) and complex branching tubules after 5 

days (Figure 3.10d). Not all cysts responded, some remained at the cyst stage formation 

or regressed despite daily HGF addition. It is unknown why some were able to respond 

to HGF and others not.
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Figure 3.10a Spikes and projections

Figure 3.10b Cord -  a chain of cells

Figure 3.10c Early tubule

Figure 3. lOd Branching tubule

Figure 3.10 MDCK Cells in Collagen Gels Following HGF Stimulation
Light microscopy images, magnification xlOO)
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Staining of the cells and examination by confocal microscopy revealed the polarised 

nature of these structures. This was present by the stage of cyst formation where 

integrin can be seen to clearly localise to the basolateral aspects of the cells forming the 

cyst (figure 3.11a). In more complex tubules, the microvilli-associated protein Ezrin can 

be seen to localise to the apical aspects of the cells (Figure 3.11b), lining to tubule 

lumen demonstrating normal epithelial cell polarity.

It had been hoped to produce a stable clone of MDCK TetOff cells expressing DN- 

VASP under the control of tetracycline repression by transfecting with pTRE2hyg/DN- 

VASP and the use of selective antibiotics as described in section 3.2.6. Transient 

transfection demonstrated that transfection rates of at least 40% were possible (Section 

3.3.4). Following cloning, we first tested for DN-VASP expression by 

immunofluorescent staining at 2 weeks following transfection by taking a sample of 

cells and growing them in the absence of the repressor antibiotic doxycycline. 

Unfortunately, by this time, we were already unable to detect any DN-VASP 

expression. Despite this, we continued with the cloning attempt and tested more 

samples when we had enough of a clone to grow in a T25 cell culture flask. 60 clones 

were tested for DN-VASP expression 24 hours after removal of doxycycline using the 

method described. No DN-VASP expression was seen in any of the clones. 

Approximately 25% of these clones were re-tested at 48 hours after doxycycline 

removal. Unfortunately, again, no DN-VASP expression was seen. In order to try and 

increase the chances of expression the histone deacetylase inhibitors, sodium butyrate 

and Trichostatin A were also added to the culture media following the removal of 

doxycycline. However, DN-VASP was still not detectable. This pathway of 

investigation was therefore discontinued.
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Figure 3.11 Confocal images of MDCK cells in collagen gels

Phase Integrin Merged

Figure 3.1 la MDCK cell cyst stained for the basolaterally-distributed protein j3, integrin

Phase Ezrin Merged

Figure 3.1 lb  MDCK cell tubule stained for the microvilli-associated apically 
distributed, protein ezrin
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3.4 Discussion

VASP is known to localise at both cell: cell and cell: extracellular matrix contacts and 

to act as a link to the actin cytoskeleton via subcellular targeting dependent on their 

EVH1 domains (Brindle et al., 1996; Critchley et al., 1999; Drees et al., 2000). The 

exact role of VASP in maintenance of these contacts is yet to be fully evaluated. In this 

chapter we have presented evidence that VASP is of greater importance in newly 

forming epithelial sheets than in established monolayers. In section 3.3.6 we 

demonstrated that disruption of normal VASP function decreased the ability of cells to 

adhere to the extra-cellular matrix. A significantly decreased number of DN-VASP 

expressing cells were seen when they underwent replating at a time-point where we had 

demonstrated that the protein was being expressed. In cells that were not replated, a 

higher number of DN-VASP expressing cells were seen at all timepoints and this did 

not appear to interfere with sheet integrity. Cells that were expressing DN-VASP in the 

replated cells, appeared not to be forming contacts with the ECM but were instead seen 

above this level, attached to other cells. It is possible that the cells did not detach from 

their neighbouring cells during the trypsinisation process and were able to be transferred 

and stick in the new environment only because they had already formed stable 

attachments to other cells.

These findings are consistent with published literature in other cells. It has been noted 

previously that cells grown in low calcium media are unable to form normal cell: cell 

contacts until the calcium is replaced (Vasioukhin et al., 2000). This is also seen with 

the use of cytochalasin D to disrupt the actin cytoskeleton. However, cytochalasin D is 

only effective at interrupting cell: cell contacts when they are either attempting to form 

or are less than 1 hour old. In contacts greater than 1 hour old, the contacts do not
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disassemble with addition of cytochalasin D (Adams et al., 1998). This suggests a role 

for the actin cytoskeleton in bringing together cells and forming new contacts but 

suggests it may not be so important in maintaining contacts. Our results (section 3.3) 

support this conclusion. In this section we demonstrated the effects of DN-VASP 

transfection on a pre-formed epithelial sheet. Despite 40% of the cells expressing DN- 

VASP, the monolayer has survived. This is despite disruption of actin fibre formation as 

demonstrated in figure 3.6.

The XZ reconstructions of replated cells expressing DN-VASP show that these cells are 

seen mainly above the monolayer. This was seen even 18 hours after replating when a 

sheet had reformed (Figure 3.9b). This could suggest that a more important role for 

VASP is in the formation of adhesions to the extracellular matrix, a process essential for 

cell motility in recovery after damage. Cell motility involves coordination of changes in 

cell polarity (Pollack et al., 1998), membrane extension, alterations in adhesiveness and 

contractile mechanisms (Loureiro et al., 2002). Ena/VASP proteins localise to dynamic 

regions of the cell with high rates of actin turnover such as lamellipodial and filopodial 

tips (Reinhard et al., 1992; Rottner et al., 1999). Studies in fibroblasts have 

demonstrated the necessity of the F-actin-binding domain of Ena/VASP proteins for 

whole cell motility (Loureiro et al., 2002) These findings demonstrated that the EVH2 

domain was sufficient to restore cell motility in Mena-deficient cells. Interestingly, the 

DN-VASP we used in our experiments did not contain F-actin binding portion of the 

EVH2 domain. It only contains the coiled-coil and tetramerisation domains of VASP. 

We used residues 277-380. The F-actin binding domain is at residues 259-276 of human 

VASP (Bachmann et al., 1999). It would be interesting to repeat this work using a 

longer form of DN-VASP that also incorporated the F-actin domain.
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In an earlier chapter we demonstrated that iNOS expression was sufficient to cause loss 

of VASP from focal adhesion sites in HPTECs. The presence of cyclic-nucleotide 

dependent phosphorylation sites has also been demonstrated to be essential for cell 

motility (Loureiro et al., 2002). DN-VASP used in this experiment only contains the 

threonine 278 phosphorylation site, one that does not appear to be important in VASP 

function (Butt et al., 1994) and is only very slowly phosphorylated. Again, it would be 

interesting to investigate the effects of other forms of truncated VASP including these 

sites to study cell motility. The Serl57 and 239 residues are phosphorylated in response 

to PKA and PKG (Haffner et al., 1995). In sepsis, upregulation of both of these 

enzymes can occur. It is possible that ongoing, pro-inflammatory cytokine-induced 

upregulation of these pathways could disrupt the ability of tubules to reform after 

injury. However, transient phosphorylation to allow temporary rearrangement of actin 

to allow movement could be important in normal recovery.

A 3-D tubule model would provide a much more physiological model of tubule 

breakdown and formation as discussed in the main introduction (Section 1.3) (Zegers et 

al., 2003). As demonstrated in this section (Figure 3.10), MDCK cells form polarised 

structures when grown in a type I collagen matrix with the expected distribution of 

apical and basolateral membrane-associated proteins. As it has been shown that cells 

need to lose polarity transiently to form tubules (Pollack et al., 1998) this demonstrates 

that the actin cytoskeleton must undergo reorganisation and then reform to reproduce 

polarity. Cell:cell adhesion is maintained during this process but contacts with the 

extracellular matrix would need to be disrupted and focal adhesions formed to allow cell 

motility. With the findings discussed above that VASP appears to be more important in
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these roles, the use of a regulatable DN-VASP-expressing clone of cells would have 

been of great interest as the effects of disrupting normal VASP function at different 

stages of development could have been investigated. Unfortunately, we were unable to 

produce a stable, DN-VASP expressing clone. The TetOff and TetOn systems are 

capable of producing highly regulatable systems by which expression of the gene of 

interest may be controlled (Gossen and Bujard, 1992; Kistner et al., 1996) and we found 

we were able to obtain high levels of doxycycline-regulated transient transfection 

(Figures 3.4a and b). These systems have also been used in the production of transgenic 

mice (Ray et al., 1997) in order to allow a lethal gene to be suppressed until the animals 

have reached a suitable stage of development, suggesting that long term suppression 

without loss of the gene of interest is feasible. There are a number of reasons why our 

cloning strategy may have failed. Whilst immunofluorescence is a very sensitive way of 

detecting protein expression, DN-VASP may have been expressed at levels too low for 

detection. We found that, even in the presence of doxycycline, some leakiness of the 

tetracycline repression occurred (Figure 3.3a). With the longer culture times involved in 

the production of a stable transfectant, this may have been sufficient to build up and 

have enough of an effect to stop these cells from binding to the substratum, thereby 

leading to the loss of successfully transfected cells. Another alternative explanation is 

that the gene of interest may have been incorporated into the cDNA in a location 

whereby its expression was repressed possibly due to the proximity of a repressor 

element. It is possible that by screening more clones we may have been able to find a 

stable, tetracycline regulated, DN-VASP expressing clone however it was not feasible 

to continue this process within the time limits of this project. If one could be found, it 

would provide a very interesting tool for future work involving the 3-D model.
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Chapter 4. The Effects of Dominant-Negative VASP on T cell activation.
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4.1 Introduction

T cell activation and proliferation involves clustering of integrins (lymphocyte function 

related antigen (LFA)-l) around the T cell receptor (TCR) (van Kooyk, van Vliet et al. 

1999) with an accompanying increase in their avidity for their ligands on the antigen- 

presenting cell (APC), intercellular adhesion molecules 1, 2 and 3 (ICAM 1, 2 and 3) 

(Griffiths and Penninger, 2002b; Sims and Dustin, 2002; van Kooyk et al., 1999). 

Conformational changes in the a/p  heterodimer are thought be associated with the 

enhancement of binding (Lollo et al., 1993). T cell activation is associated with an 

increase in interleukin-2 (IL-2) and interferon-y (IFN-y) production and the appearance 

on the cell surface of activation markers such as CD25 (IL-2 receptor a) and CD69. 

Changes in free intracellular calcium occur during T cell activation. The increase in 

calcium seen after TCR activation is one of the earliest biochemical responses to occur 

and happens within seconds (Sims and Dustin, 2002). The actin cytoskeleton undergoes 

rearrangement during T cell activation (Penninger and Crabtree, 1999; Valitutti et al., 

1995). Upon binding to an APC, the T cell cytoskeleton rapidly polarises, forming a 

tight actin collar at the T cell; APC interface (Ryser et al., 1982; Valitutti et al., 1995). 

This reorganisation of the cytoskeleton is required for T cell activation. Disruption of 

the actin cytoskeleton with Cytochalasin D inhibits IL-2 gene transcription (Holsinger et 

al., 1998).

The adaptor protein ADAP has been suggested as a link between TCR activation and 

actin polarisation. The role of ADAP in actin cytoskeleton rearrangement remains 

unclear. ADAP has been shown to co-localise with F-actin, Ena/VASP proteins, the Arp 

2/3 complex, Vav-I and WASP (Wiskott-Aldrich syndrome protein)(Barda-Saad et al., 

2005) at the interface between Jurkat T cells and anti-CD3 coated beads. Blocking this
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interaction by using transfected ActA repeats (the Listeria protein that binds EVH1 

domains found in Ena/VASP proteins), inhibited TCR-induced actin rearrangement 

(Krause et al., 2000). Also, TCR-mediated integrin (LFA-1) clustering is deficient in 

ADAP-knockout mice (Griffiths et al., 2001; Peterson et al., 2001b). However, ADAP 

mutated in the EVH-1 bonding domain has no effect on LFA- avidity (Wang et al., 

2004)

The Ena/VASP proteins are a potential pathway by which TCR stimulation and 

rearrangements of the actin cytoskeleton may be linked. VASP is capable of binding to 

integrins and polymerising actin and, in epithelial cells, forms an important part of focal 

adhesion formation. It is therefore a potential mechanism through which actin 

polarisation may occur following TCR stimulation and clustering of integrins. The 

ability to rearrange the actin cytoskeleton is known to be essential for full T cell 

activation (Barda-Saad et al., 2005; Valitutti et al., 1995). For example, in its non-active 

state, the T cell integrin, LFA-1 is tethered to the actin cytoskeleton. Release from this 

appears to allow motility, leading to LFA-1 clustering. Newly formed clusters then form 

stronger links with the actin cytoskeleton via proteins such as a-actinin (Sampath et al., 

1998) and recruit other molecules to form a functional adhesive unit, capable of 

transducing outside-in signals (van Kooyk et al., 1994).

Actin dynamics may also regulate other features of T cell activation, downstream of 

TCR clustering. Disruption of actin polymerisation is associated with a prolonged rise 

in elevation of intracellular calcium levels. This causes a persistent increase in NFAT 

(nuclear factor of activated T cells) activation and increased IL-2 promoter activity 

(Rivas et al., 2004). This suggests that actin polymerisation may have a negative 

regulatory role in this pathway normally, limiting calcium-induced NFAT activation.
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There are other ways in which the actin cytoskeleton may play a role in downstream 

activation of T cells may be important. Components of the cytoskeleton may act as 

insulators, holding parts of a signal transduction apart until activation releases them 

from the cytoskeleton, allows them to move, contact each other and activate pathways 

such as MAP (mitogen-activated protein) kinases (Weston and Davis, 2001). They may 

act to target components of signalling pathways to specific sub-cellular compartments, 

controlling the dynamics of delivery of the components to upstream activators or 

downstream effectors (Burack et al., 2002). Many different signal transduction 

pathways are involved in T cell activation (Figure 4.1). The role of the actin 

cytoskeleton in control of these pathways has undergone little study.

In this chapter we present work investigating the effects of disruption of the actin 

cytoskeleton through the use of a dominant-negative form of VASP and how this alters 

aspects such as cell polarisation, cell adhesion, signal transduction pathways and 

expression of markers of activation. For this work we have used Jurkat cells to 

investigate the role of VASP in T cell activation. Jurkat Cells are a human cell line 

originally derived from a patient with acute lymphoblastic leukaemia (ALL) (Schneider 

et al., 1977). They are a non-adherent T cell line that grow singly or in clumps. Whilst 

they have proved a useful tool in the investigation of T cell activation, they are limited 

in how results can be interpreted and transferred to primary cells. Like all cell lines, 

they undergo spontaneous mutations the longer they are grown and also, unlike primary 

cells, exist in a state of low grade activation at all times (Astoul et al., 2001).
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Figure 4.1 T Cell Receptor Signalling Pathways. This figure demonstrates 

some of the many pathways involved in T cell activation and proliferation. The role of 

VASP in these pathways has not yet been elucidated
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We have used a specific clone of Jurkat cells for this work. Jurkat TetOff cells are a 

stable clone containing the pTetOff regulator plasmid as described in MDCK TetOff 

cells in the introduction to chapter 3. Jurkat TetOff cells require the presence of G-418 

to maintain the clone whereas MDCK TetOff cells use puromycin.

We have used this system to transfect in dominant-negative VASP (DN-VASP) into 

Jurkat cells. This consists of the terminal portion of the EVH2 domain of VASP, the 

part associated with tetramerisation (Bachmann et al., 1999). As it does not include the 

EVH1 domain, it is unable to bind to proteins such as vinculin, zyxin and integrins, 

thereby altering its ability to anchor to transmembrane proteins (Carl et al., 1999; 

Reinhard et al., 1992). DN-VASP therefore provides an interesting way to look at the 

effects of Ena/VASP proteins and the actin cytoskeleton on T cell activation. It is 

particularly useful as it blocks the actions of all Ena/VASP proteins, not just VASP 

(Vasioukhin et al., 2000) and therefore has benefits over the techniques of siRNA or 

genetically engineered VASP knockouts where other members of the protein family 

could substitute for VASP.
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4.2 Methods

4.2.1 Culture of Jurkat TetOff Cells

Jurkat TetOff cells (BD Clontech) were grown in the following media at 37°C, 5% C02; 

DMEM supplemented with 4mM glutamine, 10% Tet-system approved Foetal bovine 

serum (FBS), Penicillin lOu/ml, streptomycin lOmg/ml and lOOp-g/ml G-418 (Sigma, 

UK). Stock cultures were sub-cultured at a 1:5 dilution when a cell density of 3xl06 

cells/ml was reached.

4.2.2 Optimisation of Jurkat TetOff Cell Transfection

All transfections were carried out using an Amaxa Nucleofector (Amaxa, Germany). 

Nucleofector Kit V was used for transfection of Jurkat TetOff cells. pmaxGFP was 

supplied with the kit.

The Nucleofector allows delivery DNA into the cell nucleus, so called 'nucleofection' 

and is used in conjunction with optimised solutions for individual cell types. Optimised 

protocols have been worked out by the company for different cell lines and clones. 

Whilst Jurkat TetOff cells do not have an optimised protocol, advice obtained from 

Amaxa was to use programmes C16 and G10 for initial experiments. Cell Line 

Nucleofector Kit V contains solutions and supplements optimised for Jurkat cell 

transfection and was used in the following experiments.

Jurkat TetOff cells were cultured in media as described above. The cells were counted 

using a haemocytometer and the required number were spun down at l,000rpm for 10 

minutes. For each transfection, 3xl06 cells were used. All supernatant media was 

removed following centrifugation and the cells were resuspended in lOOpl of
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nucleofector solution with added nucleofector supplement per transfection reaction as 

per standard protocol. 2pg of pmaxGFP (Amaxa, supplied with kit) was added to the 

cell suspension and then transferred to a cuvette. The cuvette was placed into the 

Nucleofector and programs C-16 and G-10 were used to transfect individual samples. 

Following electroporation, the cells were then immediately transferred into prewarmed 

media in 12 well plates and the cells were incubated for 24 hours at 37°, 5% C02 before 

being harvested and prepared for FACS analysis for expression of GFP. The cells 

centrifuged at 1500rpm for 7 minutes, washed twice in FACS buffer (PBS plus 2% 

BSA) and resuspended in 800pJ FACS buffer containing 2pg propidium iodide. FACS 

analysis was carried out using a FACSCalibur flow cytometer (BD Biosciences, San 

Jose, CA) and the data was analysed using FloJo software.

4.2.3 Time Course of Expression of DN-VASP in Jurkat TetOff Cells

Jurkat TetOff cells were transfected with either pTRE2hyg/DN-VASP or pTRE2hyg 

alone as described previously. (The production of pTRE2hyg/DN-VASP is described in 

section 3.2.2). Cells were cultured in 6 well tissue culture plates, each well holding 

1.5xl06 cells/well. Samples were taken for analysis at 2, 4, 6, 8 and 24 hours post 

transfection. The contents of one well were centrifuged at 200g for 10 minutes, washed 

twice in PBS and then lysed in 75pl of Laemelli lysis buffer. Samples were boiled at 

95°C for 10 minutes and briefly subjected to sonication before being analysed by 

immunoblotting.

Samples were run on 10-20% Tris-glycine gels (Invitrogen, UK) at 20mA/gel to the 

bottom of the gel. 40pl of sample was added to each well. The proteins were then 

electrophoretically transferred onto a PVDF membrane as described previously.
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Membranes were stained with primary antibody (Mouse mAB anti VASP, BD 

Transduction Labs, 1:500 dilution) and a biotinylated secondary antibody (Horse anti

mouse IgG (H+L), Vector Laboratories), was added for 1 hour. HRP-conjugated 

Streptavidin and the ECL Plus system were used to visualise immunoreactive bands. 

ECL film was used for autoradiography.

4.2.4 The Effects of DN-VASP Transfection on lnterleukin-2 and Interferon- 
Y Expression in Jurkat Tet-Off Cells

The following additional reagents were used: Purified mouse anti-human CD3 

monoclonal antibody (No azide/ low endotoxin (NA/LE)) 1 mg/ml and purified mouse 

anti-human CD28 monoclonal antibody (NA/LE) 1 mg/ml (Both BD Biosciences 

Pharmingen, USA); DuoSet Elisa Development systems for human IL-2 and human 

IFN -y and Substrate Reagent Pack (Solution A H20 2 and solution B 

tetramethylbenzidine (TMB)) (R&D Systems, USA).

4.2.4.1 Transfection and stimulation

Jurkat TetOff cells were transfected using Amaxa Nucleofector kit V in the Amaxa 

Nucleofector.(as described previously in section 4.2.2) with either pTRE2hyg or 

pTRE2hyg/DN-VASP and allowed to recover overnight. A 48 well plate was prepared 

for use in cell stimulation. Anti-CD3 antibody was diluted in PBS at a concentration of 

5mg/ml and used to coat the bottom of the wells. The plate was incubated at 37°C for 2 

hours before being washed twice in warm PBS. The plate was stored at 4°C until ready 

for use.
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Transfected cells were counted and 0.25X106 cells placed into each well of a 48 well 

plate. Cells for stimulation were placed into the CD3 coated plate. Those for dual 

stimulation were also treated with soluble anti-CD28 antibody (1 mg/ml). Unstimulated 

cells were grown in uncoated 48 well plates and were also cultured in the presence or 

absence of 2pg/ml doxycycline. Each set of conditions was repeated in triplicate.

Samples were harvested at 48 hours for assay by ELISA. Samples were aspirated from 

the tissue culture well and placed into a microfuge tube. They were centrifuged at 200g 

for 5 minutes. The supernatant was removed and placed into a fresh microfuge tube 

before being stored at -20°C until assayed.

4.2.4.2 IL-2 and IFN̂ y Enzyme- Linked Immunosorbent Assay (ELISA)

The assay was carried out using the DuoSet kits as described above. 96 well plates were 

coated with capture antibody (either IL-2 or IFN-y antibodies) and incubated at room 

temperature overnight. They were then washed and blocked with block buffer (BSA 

1%, sucrose 5% in PBS with 0.05% NaN3) for at least 1 hour. Meanwhile IL-2 or IFN-y 

standards were prepared from 1000 pg/ml with 7 doubling dilutions. The standards were 

prepared in media which was also used as a blank. Each transfection and stimulation 

condition was assayed in triplicate.

After blocking, the plates were washed and the samples and standards added. The plates 

were covered and incubated for 2 hours at room temperature before further washing. 

Detection antibodies (biotinylated anti-IL-2 or IFN-y) were then added to the plates 

which were again incubated at room temperature for 2 hours before washing. Following 

this Streptavidin-HRP (at the kit-recommended dilution of 1:200) was added for 20 

minutes, before washing and addition of substrate solution (1:1 mixture of H20 2 and
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TMB) for a further 20 minutes. The reaction was then stopped with 1M sulphuric acid. 

Following this the plates were read on a Dynex MRX II microplate reader and 

Revelation software. The optical density of each well was determined at 450nm with 

540nm wavelength correction.

Results were analysed using a Student’s t test to look at significance; p < 0.05 was 

considered significant and <0.01, highly significant

4.2.5 The Effects of DN-VASP Transfection on CD69 and CD25 Expression 

by Jurkat TetOff Cells.

The following additional reagents were used: Fluorescein isothiocyanate (FITC)- 

conjugated mouse anti-human monoclonal CD25 antibody, FITC-conjugated mouse 

monoclonal anti-human CD69 antibody and FITC-conjugated mouse IgG, k  

monoclonal immunoglobulin isotype control (all BD Pharmingen); bovine serum 

albumin (BSA) and propidium iodide (Sigma, UK)

Jurkat TetOff cells were transfected with either DN-VASP or empty vector using the 

same protocols as described previously. They were allowed to recover overnight at 

37°C, 5% C02. The following day, they were stimulated with plate bound anti CD3 

(5p,g/ml) and soluble anti CD28 (lp,g/ml) or left unstimulated. To assess CD69 

expression, cells were harvested at 24 hours post transfection and for CD25 expression 

they were harvested at 48 hours post-transfection. Cells were centrifuged at 200g for 10 

minutes, media removed, washed in 1% BSA in PBS three times and then resuspended 

in 0.5ml 1% BSA in PBS. FITC-conjugated antibody against either CD25 or CD69 was
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added at a concentration of 20p<l/0.5xl06 cells. A control sample was incubated with a 

FTTC conjugated-IgG control at the same concentration. The cells were then incubated 

on ice for 1 hour before being washed a further 3 times and analysed using FACs. 

Propidium iodide (25pl, lOOpg/ml solution) was added just before analysis to allow 

exclusion of dead cells.

4.2.6 The Effects of DN-VASP Transfection on Signal Transduction 

Pathways in Jurkat TetOff Cells.

PathDetect in Vivo Signal Transduction Pathway c/s-Reporting Systems, PathDetect in 

Vivo Signal Transduction Pathway frans-Reporting Systems and Luciferase Assay Kit 

were all obtained from Stratagene. For details of the vectors used in these experiments 

see Appendix 1)

Stratagene’s PathDetect in Vivo Signal Transduction Pathway cis and trans Reporting 

Systems were used to assess the effects of DN-VASP on the activation of various signal 

transduction pathways. The c/s-reporting systems (figure 4.2) are a series of inducible 

reporter plasmids containing the luciferase reporter gene driven by a basic reporter 

element. Expression of the luciferase gene is controlled by a synthetic promoter that 

contains direct repeats of the element under investigation (eg AP-1, NFAT). The effects 

of extracellular stimuli on these pathways can then be investigated. The trans-reporting 

systems are designed for assessment of the activation of transcription activators and 

upstream signal transduction pathways (Figure 4.3). Each trans-reporting system 

contains a fusion frans-activator plasmid that expresses a fusion protein which is a 

pathway-specific transcriptional activator. This fusion protein consists of the activation 

domain of the element of choice (e.g, CREB) fused with the yeast Gal4 DNA binding
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domain. The transcriptional activator CREB is phosphorylated by protein kinase A 

(PKA) and activity reflects the activity of the signal transduction pathway.

In the fraws-reporter systems as well as the trans-activator plasmid, the pFR-Luc 

plasmid is also transfected into the cells. This contains a synthetic promoter with 5 

tandem repeats of the yeast Gal4 binding sites that control expression of the luciferase 

gene. The DNA-binding domain of the fusion fraws-activator protein binds to the 

reporter plasmid at these sites. Phosphorylation of the transcription activation domain of 

the fusion protein due to cell stimulation will then activate transcription of the luciferase 

gene.

These systems can be used to investigate the effects of DN-VASP on Jurkat activation 

following stimulation by transfecting in the pTRE2hyg plasmid and investigating what 

effects it has on the activation of these pathways. The pathways investigated in Jurkat 

TetOff cells were AP-1 (Fos/Jun complex), NF-kB (nuclear factor -kB) and NFAT for 

c/s-reporting systems and CREB (cAMP-response element binding factor) for trans- 

reporting systems

All transfections were carried out using 3xl06 cells/ transfection, Amaxa Nucleofector 

Kit V, DNA as indicated and programme G-10 with the Amaxa Nucleofector
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Figure 4.2 PathDetect cis-Reporter System
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Figure 4.3 PathDetect frans-Reporter System
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4.2.6.1 Transfection protocols
(1) Table 4.1 c/s-reporting system  plasm ids (for plasmid details see

appendix 1)

Reporter
Plasmid

Positive
Control
Plasmid

Negative
Control
Plasmid

Vector V ector + 
insert

Carrier
DNA

pAP-1-Luc pFC-MEKK pTRE2hyg pTRE2hyg/

DN-VASP

pCI

pNF-KB-Luc pFC-MEKK pTRE2hyg pTRE2hyg/

DN-VASP

pCI

pNFAT-Luc pCIS-CK pTRE2hyg pTRE2hyg/

DN-VASP

Table 4.2 Protocol for c/s system transfections

Number Reporter
Plasmid

Negative
Control
Plasmid

Positive
Control
Plasmid

Vector + 
Insert

Empty
Vector

Carrier
DNA

1 i(*g i^g
2 i(*g i^g
3 iMg 50ng 950ng

4 i(*g iM-g

(2) Table 4.3 frans-reporting system  plasm ids (for plasmid details see 

appendix 1)

Reporter
Plasmid

Fusion
trans-
Activator
Plasmid

Negative
Control
Plasmid

Positive
Control
Plasmid

Empty
Vector

Vector + 
Insert

C arr
ier
DNA

pFR-Luc pFA2-

CREB

pFC2-

dbd

pFC-

PKA

pTRE2

hyg

pTRE2 

hyg/ DN- 

VASP

pCI

176



Table 4.4 Protocol for trans system  transfections

No Report
er
Plasmid

Fusion
trans-
Activat-
or
Plasmid

Negative
Control
Plasmid

Positive
Control
Plasmid

Empty
Vector

Vector
+
Insert

Car-
rier
DNA

1 lug 50ng lug
2 lMg 50ng i(*g
3 l^g 50ng 50ng 950ng

4 l^g 50ng 950ng

The Amaxa Nucleofector was used to transfect the cells, using Kit V, 3xl06 

cells/transfection and programme G-10. Cells were transfected according to the 

protocols given above and then allowed to recover overnight in fresh media at 37°C, 5% 

C02. For cells transfected with either pTRE2hyg or pTRE2hyg/DN-VASP, 2 

transfections of 3xl06 cells were carried out. The cells were pooled and allowed to 

recover overnight.

The following day, cells were either stimulated with plate bound CD3 (5[xg/ml) and 

soluble CD28 (lp-g/ml) or remained unstimulated (table 4.5)

Table 4.5 Transfection and stimulation conditions for signal transduction 
experiments

Sample DNA transfection CD3/CD28 an tibody  

Stimulation

VS pTRE2hyg/DN-VASP +

ES pTRE2hyg +

V pTRE2hyg/DN-VASP
-

E pTRE2hyg
-
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Each experimental condition was repeated in triplicate. The cells were then incubated 

for a further 48 hours at 37°C, 5% C02.

4.2.6.2 Extraction of Luciferase

Following 48 hours stimulation with CD3/CD28, the cells were lysed in order to extract 

luciferase for the assay. Cells were transferred into a microfuge tube and centrifuged at 

200g for 10 minutes. The media was removed and the cells washed twice in PBS. The 

PBS was then removed and the cells lysed in 75p,l lx cell lysis buffer (25mM Tris- 

phosphate pH 7.8, 2mM DTT, 2mM l,2-diaminocyclohexane-N,N,N’,N’,-tetraacetic 

acid, 10% glycerol, 1% Triton-XlOO) for 15 minutes at room temperature with 

occasional agitation. Following this, the lysates were vortexed for 15 seconds before 

being centrifuged at 12,000g for 2 minutes at 4°C. The supernatants were transferred 

into a fresh microfuge tube and assayed immediately for luciferase activity.

4.2.6.3 Luciferase Activity Assay

The luciferase substrate-assay buffer (from Luciferase Assay Kit) was prepared by 

adding the assay buffer to the vial containing the lypophilized luciferase substrate and 

mixing well. 100p,l of buffer was then placed in a polystyrene tube. 20^1 of supernatant 

was added to the tube which was then immediately placed into the luminometer (Lumat 

LB 9507 Luminometer, Berthold Technologies). The reading was taken using an 

integration time of 10 seconds. Results are a mean of triple determinants and were 

analysed using a Student’s 2-tailed t test. The fold increase in pathway activity for 

either DN-VASP or empty vector transfectants after stimulation was calculated with 

respect to the non-stimulated samples.
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4.2.7 The Effects of DN-VASP on Calcium Flux in Jurkat TetOff Cells

Changes in intracellular calcium can be followed using FACS analysis. We used two 

dyes, Fluo-4 and Fura red (both Molecular Probes) to follow these changes. Fluo-4 

becomes brighter in the presence of calcium whereas Fura-red experiences quenching of 

fluorescence in response to a rise in calcium levels.

Jurkat TetOff cells were transfected with either pTRE2hyg/DN-VASP, pCI/DN-VASP 

(donated by Dr S. Lindsay) or pTRE2hyg vector alone using the Amaxa Nucleofector 

kit V as described previously, and allowed to recover overnight. The following day they 

were loaded with Fluo-4 (2.5pM) and Fura-red (2.5pM) and incubated for 60 minutes at 

37°C in the dark. They were then removed from the incubator, washed in PBS, 

resuspended in fresh media and incubated for a further 30 minutes to allow de- 

esterification of the dyes. They were then washed and resuspended in 2% BSA in PBS 

to which anti CD3 antibody (5|ig/ml) was added for 30 minutes to induce cell 

stimulation. Following this, the cells were washed twice and then resuspended in 2% 

BSA in PBS at a concentration of lxlO6 cells/ml. Baseline FACs data was collected for 

dye fluorescence for 50 seconds before cross-linking was induced by the addition of 

80^g/ml of anti mouse antibody. Further fluorescence data was immediately collected 

by FACs for a further 200 seconds. This was repeated for each sample.

Results were analysed by comparing alterations in the ratio of the fluorescence of the 

two dyes over time following cross-linking. Results were analysed using FloJo 

software.
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4.2.8 The Effects of DN-VASP Transfection on Phosphorylation of early 

MAP kinase signal pathways.

Jurkat TetOff cells were transfected with either empty vector (pTRE2hyg) or DN-VASP 

(pTRE2hyg/DN-VASP) as described previously and were allowed to recover and 

express the protein overnight. The following day cells were either left untreated or 

stimulated with CD3 and CD28 antibodies as described previously, at a cell density of 

3xl06 cells/ml. At time-points between 0-60 minutes, aliquots of 1.5xl06 cells were 

removed, washed with ice-cold PBS and then lysed in lOOpl of Phosphosafe reagent 

(Novagen) for 15 minutes on ice. Nuclei were removed by centrifugation at 12,000g for 

5 minutes. The supernatant was removed and mixed and mixed with an equal quantity 

of SDS-sample buffer.

In order to demonstrate phosphorylation, these samples were then assayed by 

immunoblotting. 30pl of lysate was loaded per lane of an 10-20% SDS-Page gel and 

separated electrophoretically. Gels were blotted onto PVDF membranes as described 

before and probed for various members of the MAP kinase family members as indicated 

(all antibodies were obtained from Cell Signalling and used at a 1:500 dilution).
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4.2.9 The Effects of DN-VASP Transfection on Actin Polymerisation in 

Jurkat TetOff Cells.

Jurkat TetOff cells were transfected with either pTRE2hyg/DN-VASP, pTRE2hyg 

alone or left untransfected. Transfected cells were allowed to recover overnight. The 

following day, cells were centrifuged (200g for 10 minutes) and resuspended in PBS. 

Dynabead CD3/CD28 T cell expander beads (Dynal Biotech, Norway) were then added 

and the cells were incubated at 37°C for 10 minutes with occasional agitation. The beads 

are 4.5^m diameter magnetic, polystyrene beads coated with a mixture of mouse mAb 

to CD3 and CD28. Following this, the cells were washed in PBS containing 0.5% azide 

in order to stop any further actin polymerisation. They were resuspended in 50pl of PBS 

and pipetted onto poly-lysine coated slides (Sigma, UK) where they were allowed to 

settle and adhere for 15 minutes. They were then fixed in 4% PFA, permeabilised in 

0.2% Triton X-100, blocked in 10% donkey serum (Sigma, UK) for 1 hour before 

staining with AlexaFluor -  conjugated phalloidin 488 and goat aL  polyclonal antibody 

(Santa Cruz laboratories, USA) against the integrins. Secondary donkey anti-goat 

AlexaFluor 588 conjugated secondary antibody (Molecular Probes) was then added. 

Cells were mounted in Vectashield and photographed using immunofluorescent 

microscopy and Improvision software to take z-stack images. Images were analysed 

using deconvolution microscopy.

In order to measure the angle of contact between the cell and the bead, the arc 

transected by the cell: bead contact was measured and used to calculate the length of the 

contact between the cell and the bead (Figure 4.4). 20 cells for each condition (DN- 

VASP transfection, empty vector transfection and untransfected cells) were measured. 

The formula used to calculate the contact length was 2jtr x 0/360. Differences in length
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of contact were compared for significance using a Student’s t-test with a result of <0.05 

considered significant and <0.01 highly significant.

In order to assess whether actin polarisation at the site of bead: cell contact was present, 

20 cells for each condition were photographed and assessed for polymerisation by an 

independent observer. The observer was blinded as to the transfection each cell had 

undergone.

Results were analysed using the Chi-squared test. A p value of < 0.05 was taken as a 

significant value.
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Figure 4.4 Calculation of Contact Between Cell and Bead. The length 

of contact between the Jurkat TetOff cell and the bead was calculated using 

measurements obtained as in the diagram below. Length of the arc of contact was 

calculated using the equation, arc = 0/360 x jt  x diameter. 20 cells for each 

condition were measured.

4.5 qm diameter
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4.2.10 The effects of DN-VASP transfection on primary T cell binding

The following reagents were used: Ficoll-Paque Plus (Amersham Biosciences); Pan T 

Cell Isolation Kit (Human) and autoMACS Seperator (Miltenyi Biotec, Germany); 

MACS buffer (2% FBS in PBS, filter sterilised) and preservative-free heparin 1000 

units/ml (Leo Pharmaceuticals);

4.2.10.1 Isolation of Human T Cells

60mls of blood was collected into heparinised tubes and diluted in a 50:50 ratio with 

HBSS. 20mml of Ficoll-Paque Plus was added to a 50ml centrifuge tube and 30ml of 

diluted blood carefully layered on top, avoiding mixing of the blood and Ficoll-Paque. 

The sample was then centrifuged at 400g for 30 minutes at 18°C. Following 

centrifugation, the upper layer (plasma) was removed without disturbing the layer 

below. This lower layer (containing platelets and lymphocytes) was then washed to 

remove platelets. Briefly, the lymphocyte/platelet layer was transferred to a clean 

centrifuge tube and had 3 volumes of HBSS added. The cells were resuspended by 

gentle pipetting and then centrifuged at lOOg, 18°C for 10 minutes. The supernatant was 

removed and the cell pellet resuspended in HBSS. It was then re-centrifuged at lOOg for 

10 minutes and the supernatant removed once more. The pellet was resuspended in 

500pJ of HBSS and the cell count determined.

Following cell number determination, the cell suspension was centrifuged at 300 for 10 

minutes. The supernatant was removed and the cell pellet resuspended in 40pJ of 

MACS buffer/ 107 cells. 10p.l of Biotin-Antibody cocktail was added/107cells, the 

sample was mixed and incubated for 10 minutes at 4°C. 30pl of MACS buffer and 20pl 

of Anti-biotin MicroBeads/107 cells were then added, mixed and incubated for a further
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15 minutes at 4°C. lOx volume of buffer was then added and the sample centrifuged at 

300g for 10 minutes. The supernatant was removed and the cells resuspended at a 

maximum concentration of 108 cells/ 500pl of MACS buffer.

In order to separate the cells, magnetic separation using an autoMACS separator was 

carried out. This involved passing the cells through a magnetic column to remove all 

cells labelled with magnetic beads. The non-labelled cells (negative fraction) were then 

collected as these were the T cell fraction.

Following collection, cell number was once again determined.

4.2.10.2 Transfection of Primary T cells

Cells were transfected using the Amaxa Nucleofector . To transfect primary human 

cells, the Human T Cell Nucleofector Kit (Amaxa) was used with programme U-14. 

3xI06 cells and 2pg of DNA (either pTRE2hyg/DN-VASP or pTRE2hyg alone) were 

used per transfection. An equivalent number of cells was left un-transfected in order to 

act as a control sample.

Following transfection, cells were immediately transferred into pre-warmed media in 6 

well plates. Jurkat TetOff media has been described previously. Human primary T cells 

were cultured in RPMI media, supplemented with 10% heat-treated FBS, 2mM 

glutamine and Penicillin-streptomycin. Cells were allowed to recover overnight.

185



4.2.10.3 Binding assay

Binding to LFA-1 on the surface of primary T cells was assayed by the use of 

fluorescent beads coated with ICAM-1 (Molecular Probes) (method adapted from 

Geijtenbeek et al., 1999). Following transfection with DN-VASP or empty vector and 

overnight recovery, the cells were activated by treatment with CD3 and CD28 

antibodies (both at 10 ^ig/ml) for 30 minutes at 37°C and exposed to ICAM-1 coated 

beads (20 beads/cell) to allow binding. To confirm specificity of binding, an aliquot of 

cells was pre-incubated for 10 minutes with a blocking antibody to LFA-1 (BD 

Pharmingen) at a concentration of 20[xg/ml prior to activation and exposure to the 

coated beads.

As a negative control and to confirm that transfection alone was not sufficient to 

Stimulate ICAM-1 :LFA-1 binding, an aliquot of cells was exposed to the beads without 

CD3/CD28 antibody exposure. As a positive control, a further aliquot of cells was fully 

activated using PMA at a concentration of lOOnmol/L for 30 minutes.

Binding of the fluorescent beads to the cells was then assayed using flow cytometry.
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4.3 Results

4.3.1 Optimisation of Transfection

Two programmes (G-16 and C-10) were compared to a control sample in which the 

cells were electroporated using programme G-16 but without pmaxGFP. In the control 

sample, negligible levels of cells were detected within the set gate (0.3%). This gate was 

therefore used to analyse the results obtained with the two cell aliquots transfected using 

programmes G-10 and C-16 (Figure 4.5).

Both programmes showed approximately the same percentage cells lying within the set 

gates (73.57% with programme G-10 vs 78.96% with programme C-16). The 

percentage of eGFP positive cells within this was also similar (76.99 vs 73.69) between 

the two programmes. When the mean geometric fluorescence of cells transfected by 

these two programmes was compared, cells transfected using programme G-10 showed 

higher levels of fluorescence than with C-16 ((307.88 vs 201.85) (Table 4.6). This 

suggests better gene expression in cells transfected using this programme. This may be 

due to the different conditions leaving the cells in a healthier condition than those 

transfected with programme C-16. Programme G-10 was therefore selected for use in 

further transfections of Jurkat TetOff cells.

187



CM

CM -

CO

O

O

Key

Pink Control -  no GFP
Green 2pg pmaxGFP, programme G-10
Blue 2pg pmaxGFP, programme C-16

Figure 4.5 Electroporation of Jurkat TetOff Cells with pMaxGFP using the 
Amaxa Nucleofector -  a comparison of Programmes G-10 and C-16. The gate 

( Ml )  is set to non-transfected cells.

Control (no 
eGFP)

Programme
G-10

Programme
C-16

Events counted 20025 20040 20037
Percentage gated (live cells) 0.3 73.57 78.96
Percentage of gated cells positive 0 76.99 73.69
Percentage of total cells positive 0 56.64 58.19
Geometric mean fluorescence 0 307.88 201.85

Table 4.6 Transfection efficiency of Jurkat TetOff cells. FACS results 

comparing nucleofection of Jurkat TetOff cells using programmes G-10 and C-16 on an 

Amaxa Nucleofector. (Live cells = PI negative)
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4.3.2 Time Course of DN-VASP Expression

We used immunoblotting techniques to investigate the time course of DN-VASP 

expression following nucleofection with pTRE2hyg. Full length VASP has an apparent 

molecular weight on SDS-Page electrophoresis of 46-50kDa. DN-VASP is much 

smaller and therefore can be detected separately to the full-length protein. The 

monoclonal antibody used to detect DN-VASP will also detect full length, native VASP 

in Jurkat cells as they are both of human origin and the antibody has been raised against 

a sequence contained within the EVH2 domain.

A band representing full length VASP was seen at just above the 50kDa marker on the 

gel (figure 4.6) and was at the same intensity at each time point. Only one band is 

visible in most of these lanes at this weight, we have not been able to detect the 46 and 

50 kDa forms of VASP in this experiment. This may be because the band is of 

sufficiently high intensity that it becomes impossible to distinguish between the two 

bands or because this cell line may not express both forms of VASP in its resting state. 

Transfection of DN-VASP has not altered the density of the band at 50kDa.

In several of the lanes, it is possible to see other, fainter bands just below the strong 

band representing VASP. This may be due to breakdown products of the protein or a 

cross-reaction with other proteins.

A second major band was detected at approximately 22kDa on the gel. This was not 

seen at time point 0 but was visible by 2 hours after transfection and continued to 

increase in intensity up to 24 hours post transfection. Whilst DN-VASP has an actual 

molecular weight of approximately llkDA, this band represents the dominant-negative
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protein. Full length VASP is also known to migrate at a higher molecular weight 

(50kDa) than its actual molecular weight (38kDa). Also, low molecular weight proteins 

are known to migrate in an aberrant fashion and are usually detected at a higher point 

than expected. This blot clearly demonstrates increasing levels of DN-VASP 

accumulating in the cells with time. High levels are present by 24 hours, making this a 

suitable time post-transfection to carry out experiments into the effects of DN-VASP on 

cell activation.
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Figure 4.6 Expression of DN-VASP following transfection in Jurkat TetOff 

cells. The upper band represents full length native VASP, present at the same level in 

each lane. The lower band shows increasing levels of DN-VASP expression with time.
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4.3.3 The effects of DN-VASP transfection on IL-2 and IFN̂ y production by 

Jurkat TetOff cells.

Under basal conditions, Jurkat TetOff cells transfected with either pTRE2hyg/DN- 

VASP or empty vector alone produced minimal levels of IL-2 and IFN-y (Figures 4.7a 

and b) suggesting that transfection alone was not sufficient to cause activation of Jurkat 

cells. Following stimulation with plate-bound CD3 antibody alone, IL-2 levels were 

raised by 48 hours following stimulation. Levels were significantly different between 

DN-VASP and empty vector transfectants but the overall increases in IL-2 levels were 

so low as to make it difficult to assess this result.

When dual stimulation with plate-bound CD3 and soluble CD28 antibodies was carried 

out, a much greater increase in IL-2 expression was detected (figure 4.7a). In cells 

transfected with empty vector alone, levels of IL-2 detected rose to over 200 pg/ml. 

Cells transfected with DN-VASP also showed an increase in IL-2 output but the levels 

of IL-2 were significantly lower (p<0.05) than in the empty vector transfectants. The 

quantity of IL-2 produced by DN-VASP transfectants was approximately half that of 

empty vector transfectants. In earlier experiments to determine the level of transfection 

in these cells (section 4.3.1) we showed that only about 75% of cells are transfected 

using this protocol. Therefore, 25% of the surviving cells would not be expected to 

express DN-VASP and would not be subject to any inhibition of activation induced by 

the dominant negative protein. This suggests that the difference in output between DN- 

VASP transfected cells and cells not expressing this protein may be even greater. DN- 

VASP does appear to have a role in inhibiting T cell activation when assessed by IL-2 

levels.
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Figure 4.7a The effects of DN-VASP transfection on IL-2 production by Jurkat TetOff 
cells.
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Figure 4.7b The effects of DN-VASP transfection on IFN-y production by Jurkat 
TetOff cells

Figure 4.7 The effects of DN-VASP transfection on lnterleukin-2 and 

Interferon-y production by Jurkat TetOff cells. The data shows the effects of 

DN-VASP transfection (V) vs empty vector transfection (E) following either 

stimulation (S) with plate bound CD3 and soluble CD28 antibodies (CD3/CD28),plate 

bound CD3 alone (CD3) or no stimulation on IL-2 and IFN-y output. Shown are the 

means and standard deviations for the sample groups. (* P<0.05 vs empty vector 

transfection).



Very low levels of IFN-y were detected in unstimulated cells transfected with either 

pTRE2hyg/DN-VASP or empty vector. Following CD3 stimulation alone, very little 

difference was seen in the levels of IFN-y detected in either set of cells (figure 4.8b). 

With combined CD3/CD28 stimulation levels of IFN-y did rise but again only by very 

little. No significant differences were seen between IFN-y levels under any conditions 

of stimulation. In this situation, IFN-y does not appear to be a useful marker to assess 

activation of Jurkat cells and the effect of DN-VASP.

The effects of doxycycline on stimulation of T cells were also assayed as the plasmid 

used contains a tetracycline-regulated element. In the presence of doxycycline, 

transcription should be switched off (TetOff system). Comparing DN-VASP 

transfected, CD3/CD28-stimulated cells grown in the presence and absence of 

doxycycline, no significant difference in IL-2 production was seen (p=0.35) (Figure 

4.8). Both sets of cells increased IL-2 production in response to antibody stimulation. 

Comparing CD3/CD28 stimulated cells, transfected with either DN-VASP or with 

empty vector and grown in the presence of doxycycline, a non-significant drop (p=0.08) 

in IL-2 production was seen in the DN-VASP transfected cells. We have seen in 

epithelial cells transfected with DN-VASP that some leakiness of the system occurs in 

the presence of doxycycline (Section 3.3.2). In the T cell system used here, it may be 

that there was sufficient leak in the system such that overall, doxycycline did not 

suppress DN-VASP expression to allow a difference in results to be seen. However, the 

fact that there was a difference, though non-significant, between DN-VASP and empty 

vector transfected cell suggests that there is possibly a concentration-dependent effect of 

DN-VASP expression in IL-2 production. An additional complicating factor was that 

doxycycline alone in empty vector transfected cells seemed to influence IL-2 production
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III
(Figure 4.8). Because of these effects of doxycycline, we did not attempt to use it 

further to control levels of DN-VASP expression. We used transfection with empty 

vector as a control for transfection with DN-VASP in the absence of doxycycline to 

allow maximal DN-VASP expression.
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Figure 4.8 The effects of doxycycline on IL-2 production by Jurkat 

TetOff cells following CD3/CD28 stimulation. This graph shows the effects of 

CD3/CD28 stimulation (S) on DN-VASP transfectants (V) and empty vector 

transfectants (E) in the presence or absence of doxycycline (D) (2pg/ml).
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4.3.4 The Effects of DN-VASP Transfection on CD69 and CD25 Expression

by Jurkat TetOff Cells.

CD69 is a more rapidly appearing marker of T cell activation and expression was 

therefore examined at an earlier time-point stimulation than for CD25. On FACS 

analysis of unstimulated cells, low levels of CD69 expression (less than 10% of cells) 

were seen, probably reflecting the low grade activation of Jurkat TetOff cells, a feature 

they have as a cell-line developed from a leukaemia.

Following stimulation with combined CD3 and CD28 antibodies, the level of cells 

expressing CD69 rose to approximately 80%. This was seen both in cell that had been 

transfected with the pTRE2hyg/DN-VASP construct and the empty vector alone (Figure 

4.9). No CD25 expression was detectable in unstimulated cells transfected with either 

DN-VASP or empty vector. 48 hours after stimulation with CD3 and CD28 antibodies, 

some CD25 expression was detectable but only at very low levels in both cell groups 

(figure 4.10).

The graphs shown in figure 4.10 are from a separate set of data but show a similar 

result. In these graphs, the gate was set on the IgG isotype control. In this set of data, 

some rise in CD25 expression was seen following CD3/CD28 stimulation but there was 

little difference between empty vector transfectants (12.6%) and DN-VASP 

transfectants (10.7%) in expression levels (figure 4.10.a.ii). When CD69 levels were 

examined in this set of data, following CD3/CD28 stimulation, levels rose to a similar 

degree in both groups (88.6% in empty vector transfectants vs 89.6% in DN-VASP 

transfectants).
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Figure 4.9 The effects of DN-VASP transfection (V) vs  empty vector 

transfection (E) on CD69 and CD25 expression. Expression was analysed at 

24hrs for CD69 expression and 48 hours for CD25 expression following CD3/CD28 

antibody stimulation (S) of Jurkat TetOff cells.
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Figure 4.10 Flow Cytometry data: Effects of DN-VASP Transfection on 
CD69 and CD25 Expression
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4.3.5 The Effects o f DN-VASP Transfection on Signal Transduction

Pathways in Jurkat TetOff Cells.

To determine which of the signal pathways triggered by the TCR are affected by DN- 

VASP, we utilised a reporter gene system specific for individual transcription factors. 

As cotransfection with the reporter genes are necessary for detection, only cells that 

have undergone transfection affect the result. This means that only cell transfected with 

DN-VASP are assayed and therefore any effects of DN-VASP on these pathways are 

easier to see. We have already demonstrated in section 4.3.3 that DN-VASP transfection 

significantly decreases IL-2 production following stimulation. This set of experiments 

was looking for what specific signals may be involved in this process.

Figure 4.11 shows the effects of DN-VASP transfection on the NF-kB and CREB 

pathways. CD3/CD28 stimulation of empty vector transfected cells leads to a dramatic 

increase in the activation of the pathway with relative luciferase unit (RLU) readings 

increasing from approximately 40,000 to 210,000 (5.25x increase). The magnitude of 

the NF-kB signal is reduced following DN-VASP transfection in both stimulated and 

un-stimulated cells but still shows a rise from 12,000 RLU to 90,000 RLU (7.5x 

increase). This is comparable to that seen in empty vector (EV) transfectants and 

suggests that DN-VASP does not alter the ability of this pathway to respond to antibody 

stimulation. NF-kB is activated via alterations in protein kinase C levels in T cells.

CREB activation occurs via phosphorylation following activation of a PKC/Ras/Raf- 

1/MEK and RSK2 signalling pathway upon TCR stimulation (Muthusamy and Leiden, 

1998). Figure 4.11 shows that, prior to antibody stimulation, practically no CREB 

pathway activation was seen in either empty vector or DN-VASP transfected cells.

200



NF-KappaB Assay
240000

_ 220000
£
■—  200000

3  180000

£  160000 
O)___

<D
~  100000

—  80000 a>
QZ 60000

40000

□  Unstimulated 
■ Stimulated

EV DN-VASP
Plasmid

CREB Assay

6ooo -| D Unstimulated
■  Stimulated

C  5000

<1)3000 
>

—  2000

DN-VASP
Plasmid

Figure 4.11 The effects of DN-VASP transfection on the activation 
of NF-kB and CREB pathways
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Following CD3/CD28 stimulation, in empty vector transfectant cells showed pathway 

activation with a rise in RLU readings to >5,000. In contrast, DN-VASP transfected 

cells showed a significantly different result with basically no rise in activation observed. 

This pathway appears to have been completely blocked by DN-VASP.

The effects on NFAT and AP-1 pathways are shown in figure 4.12. In T cells, NFAT is 

activated by alterations in calcium flux. In this experiment, NFAT activation appears to 

be reduced by DN-VASP transfection following CD3/CD28 antibody stimulation 

whereas AP-1 activation is completely obliterated. Interestingly even the basal level of 

AP-1 activity seen in un-stimulated, empty vector transfected cells is not seen in DN- 

VASP transfected cells. The AP-1 complex is composed of the c-Jun and Fos 

components and is activated via MAP kinases. NFAT forms a complex with AP-1 to 

allow IL-2 transcription and T cell proliferation.
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Figure 4.12 The effects of DN-VASP on NFAT and AP-1 signal 
transduction pathway activation
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4.3.6 The Effects of DN-VASP Transfection on Calcium Flux in Jurkat Cells

The effects of DN-VASP on calcium flux in Jurkat cells was assessed through the use of 

two dyes, Fluo-4 and Fura Red. The fluorescence intensity of Fluo-4 is increased in the 

presence of calcium whilst Fura-red is quenched (Burchiel et al., 2000). Analysis of 

changes in fluorescent intensity of the two dyes after cross-linking of CD3 with anti

mouse antibody were assessed using flow cytometry. We used 2 different expression 

vectors containing DN-VASP to ensure the results we obtained were not just a function 

of the tetracycline-regulated system.

Three groups of cells were used. The control cells were transfected with pTRE2hyg 

empty vector. Two other groups of cells were transfected with either pTRE2hyg/DN- 

VASP or pCI/DN-VASP. Baseline fluorescent intensity, prior to CD3 cross-linking was 

the same for each sample (Figure 4.13). Following cross-linking, the ratio of 

fluorescence intensity rose in all 3 groups, reaching a peak at about 50 seconds after 

addition of the antibody, and returning to near baseline values by 200 seconds. DN- 

VASP transfection in either vector, failed to have any effect on calcium flux. The 

change in the ratio of signal intensity was the same as seen in cells transfected with 

empty vector.
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Figure 4.13 The Effects of DN-VASP transfection on calcium flux in 
Jurkat TetOff Cells. T w o D N -V A S P  containing vectors were used 

pTRE2hyg/ DN -V A SP and pCI-DN-VASP. Baseline data was collected for 50  

seconds before CD3 was cross-linked by the addition o f  80pg/ml anti-mouse 

antibody. Data was then collected for a further 200 seconds.
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4.3.7 The effects of DN-VASP on early signal transduction pathways

We looked at early signal transduction pathway activation and the effects of DN-VASP 

transfection (Figure 4.14). The images on the left are of empty vector transfected cells 

and those on the right of DN-VASP transfected cells. The lowest panel on the right 

demonstrates that equal levels of DN-VASP expression were seen at all timepoints 

under investigation. Phosphorylation of ERK and JNK occurs very rapidly after T cell 

receptor binding. Figure 4.14 shows a Western blot of p-ERKl/2, ERK 1/2 and p-JNK. 

No phosphorylation of either JNK or ERK is seen before antibody stimulation but is 

detectable by 5 minutes after antibody stimulation. By 30 minutes after stimulation, this 

has almost returned to baseline levels and no phosphorylation of either kinase is 

detectable by 60 minutes after stimulation. DN-VASP expression has no measurable 

effect on the level of phosphorylation. The same pattern of rapid phosphorylation 

followed by return to undetectable levels by 60 minutes is seen in both cell groups.
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Figure 4.14 The effects of DN-VASP transfection on early MAPK 
phosphorylation. EV = empty vector transfection.
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4.3.8 DN-VASP Transfection reduces actin collar formation and actin

polarisation in Jurkat TetOff Cells

Next, we examined the effects of DN-VASP expression on actin re-organization 

following T cell receptor crosslinking. We have previously shown that transfection in 

this system leads to approximately 75% transfection rates in surviving cells (section 

4.3.1). We were unable to demonstrate by staining which cells contained the transfected 

vector and which did not. Therefore, in order to look for a difference, we examined 20 

cells from each group, chosen randomly and assessed by an independent examiner, 

blinded to the sample group.

In non-transfected cells, a collar of actin was seen to form at the cell: bead contact. 

Leading away from this actin collar, fingers of F-actin were seen, protruding back into 

the cell, demonstrating polarisation of the actin cytoskeleton (Figure 4.15c). The actin 

cytoskeleton appeared to be directed towards the cell: bead junction, providing a 

support network to maintain the junction. This phenomenon was also seen in cells that 

had been transfected with pTRE2hyg empty vector (Figure 4.15b).

In cells transfected with pTRE2hyg/DN-VASP, reduced formation of actin collars and 

F-actin polarisation was seen (Figure 4.15a). Statistical analysis using the x2 test 

demonstrated significantly fewer cells with actin polarisation than in either non- 

transfected or empty vector transfected cells (p<0.05). This is likely to be even more 

significant if the fact that approximately 1/4 of the cells included in this group are likely 

not to be DN-VASP transfected as transfection efficiency has previously been 

demonstrated to be 75%.
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Figure 4.15 The effects of DN-VASP transfection on actin cuff formation 
and cytoskeletal polarisation in Jurkat TetOff Cells. D econvolved  

immunofluorescent images of individual Jurkat cells interacting with a single 

CD3/CD28 antibody coated bead. Cells were stained with FITC-labelled phalloidin 

(green) to demonstrate F-actin polarisation. The beads are stained non-specifically 

(red). The images from a cell transfected with pTRE2hyg vector and an untransfected 

cell show two sets of images, one at an arbitrary level zero and one just below this.
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4.3.9 DN-VASP Transfection R educes the Contact Between CD3/CD28

antibody coated Beads and Jurkat TetOff Cells

Following activation, T cells reorganise their actin cytoskeleton, polarising it towards 

the APC to allow contact to be maintained. We looked at whether transfection with DN- 

VASP, known to be an important regulator of actin polymerisation, would alter the 

ability of the cells to modify their cytoskeletons. We did this using CD3/CD28 antibody 

coated beads and measured the arc of contact between them.

In order to assess the contact length, 20 cells were photographed from each group and 

the angle between the two ends of cell: bead contact measured and used to calculate the 

length of the arc as described previously. We knew that the beads were 4.5p.m in 

diameter and could therefore calculate the arc of the bead circumference in contact with 

the cell (see figure 4.4).

No difference in contact length was seen between cells from the non-transfected group, 

compared to those transfected with empty vector, suggesting that transfection itself does 

not have an effect. However, when the cells from the group transfected with the 

pTRE2hyd/DN-VASP construct were assessed, the arc of contact was seen to be 

significantly lower (p<0.01) than in those either untransfected or transfected with empty 

vector (figure 4.16). In view of the fact that approximately only 75% of the cells were 

likely to be transfected (section 4.2.2), if we had been able to distinguish and eliminate 

untransfected cells, it is likely the difference would have been greater.
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4.3.10 The effects of DN-VASP on Primary T cell adhesion

ICAM-1 is the ligand for the T cell integrin LFA-1. ICAM-1 coated beads were used to 

assess the ability of primary T cells to adhere following stimulation with CD3 and 

CD28 antibodies. Jurkat cells were not suitable for this study as they did not appear to 

express functional LFA-1. Use of the Amaxa Nucleofector to transfect primary T cells 

resulted in 60% survival and 60% transfection.

Binding was assayed using FACS analysis. Several peaks were seen in each assay; this 

represents the binding of one or more beads to a cell. Prior to antibody stimulation, only 

very low level binding was seen by T cells transfected with empty vector alone (figure 

4.17). This increased after CD3/CD28 stimulation to nearly the same levels seen with 

full activation by PMA. This increase in binding was blocked by the LFA-1 antibody 

demonstrating that it was an integrin-dependent process.

In the presence of DN-VASP transfection (Figure 4.18) exactly the same response was 

seen. There was only a very low level of binding prior to stimulation. Addition of PMA 

or CD3/CD28 antibodies caused an increase in binding and this was blocked by LFA-1 

antibody. DN-VASP transfection does not appear to alter the ability of LFA-1 to bind to 

its ligand ICAM-1
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4.4 Discussion

The ability of T cells to alter their cytoskeleton following TCR stimulation is vital to 

their full activation. If the actin cytoskeleton is disrupted by the use of the fungal 

metabolite Cytochalasin DIL-2 production and T cell proliferation is inhibited (Valitutti 

et al., 1995). The importance of a dynamic actin cytoskeleton for T cell activation has 

also been demonstrated by the use of genetically modified mice (Holsinger et al., 1998; 

Snapper et al., 1998) which have allowed study of the links between signalling cascades 

and the induction of cytoskeletal remodelling. For example, Vav is a gene that normally 

encodes a guanine-nucleotide-exchange factor (GEF) for the GTPase Rac, part of the 

Rho GTPase family and important in actin cytoskeleton regulation (Hall, 1998). Vav -/- 

T cells are deficient in IL-2 production and proliferation in response to TCR stimulation 

(Holsinger et al., 1998).

Most work has concentrated on cytoskeletal reorganisation and its effects on integrin 

clustering and avidity (Lub et al., 1997; Peterson, 2003; van der Merwe, 2002; van 

Kooyk et al., 1999). In resting T cells, antigen receptors appear to be distributed evenly 

throughout the cell surface. Activation of the T cell leads to the formation of 

supramolecular activation clusters (SMACs) with clustering of LFA-1 integrins in the 

peripheral zone (pSMAC) to enforce T cell: APC adhesion (Peter and O'Toole, 1995). 

F-actin has been shown to be able to both enhance and inhibit LFA-1-mediated ICAM-1 

adhesion depending on the activation state of the T cells. In resting T cells, response to 

intracellular signals to bind the APC ligand ICAM-1 are poor unless the actin 

cytoskeleton is disrupted, allowing integrins to cluster. In activated T cells already 

demonstrating strong ligand binding, this is inhibited when the cytoskeleton is 

disrupted, allowing integrins to disperse (Lub et al., 1997). We were unable to
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demonstrate any effect of DN-VASP on binding (using ICAM-1 coated beads) 

suggesting that however VASP functions in T cell activation, it is not via LFA1 

clustering and avidity.

One of the pathways by which TCR triggering may be linked to cytoskeletal 

remodelling is via the recruitment and tyrosine phosphorylation of the adaptor protein 

ADAP (Fyb/SLAP). ADAP is found located in a complex at the activated TCR along 

with Evl (a member of the Ena/VASP family), WASP, SLP-76 and the Arp 2/3 

complex. The use of ActA repeats to disrupt potential ADAP: EVH1 binding leads to 

impaired T cell binding to CD3 coated cells (Krause et al., 2000). Our experiments 

demonstrated that interrupting VASP function through use of DN-VASP had a similar 

effect. T cells were able to contact CD3/CD28 -  coated beads but did not form the 

typical actin collar or demonstrate F-actin polarisation directed at the interface (section 

4.3.8). Whilst ADAP contains an EVH1 binding domain, making it capable of binding 

to VASP, this may not be the mechanism involved in cytoskeletal reorganisation. In 

fact, ADAP deficient cells are still capable of forming actin caps and fibres (Griffiths 

and Penninger, 2002b). Also, mutation of the EVH1 binding domain of ADAP, 

abolishing the ability to bind VASP, appears to have no effect on LFA-1 avidity for its 

ligands (Wang et al., 2004). Put together, this suggests that whilst ADAP and VASP are 

capable of binding to each other, this is not the mechanism by which T cell cytoskeleton 

remodelling and activation occurs. ADAP and VASP may regulate independent signals 

for actin reorganisation with ADAP, potentially working through proteins such as 

WASP.
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TCR ligation activates downstream signalling cascades leading to T cell activation. A 

central tyrosine kinase cascade is triggered. These early signals (that can also be 

induced by calcium ionophores such as Ionomycin), if sustained, lead to nuclear 

transcription of 3 families of transcription factor: NFAT, the AP-1 complex (Fos and 

Jun) and NFkB (Sims and Dustin, 2002). In our experiments, DN-VASP transfection 

was able to interfere with NFAT and AP-1 activation and to decrease IL-2 production 

following activation. NFAT forms a complex with AP-1. This complex then binds the 

IL-2 promoter and enhances transcription of the cytokine gene (Macian et al., 2000). 

The decrease in NFAT activity observed was different to that seen with in the AP-1 

experiment. DN-VASP transfection completely eliminated even baseline AP-1 activity 

in contrast to empty vector transfected cells where measurable, baseline activity was 

observed. It is possible that this accounts for the effects seen in the NFAT pathway. As 

NFAT needs to complex with AP-1 for activation, the inhibitory effect of DN-VASP on 

AP-1 is probably enough to decrease NFAT activation. NFAT is activated via calcium 

flux alterations which we found to be unaltered by DN-VASP (figure 4.13) and we 

would therefore expect to see no alteration of activity in the luciferase assay if we were 

able to measure this pathway alone. A potential way to investigate this further would be 

to transfect in a constitutively active AP-1 at the same time in order to isolate the effect 

of DN-VASP on NFAT.

NFAT may be independently affected by cytoskeletal modification. As mentioned in the 

introduction to this chapter, calcium flux may play a role in limiting NFAT activation 

(Rivas et al., 2004) with actin cytoskeletal disruption leading to prolonged calcium flux 

and enhanced NFAT activation. We were unable to demonstrate any effect of disrupting 

VASP function by the use of DN-VASP on calcium but other proteins, capable of
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altering actin polymerisation, such as WASP may be involved (Badour et al., 2004; 

Benesch et al., 2005; Volkman et al., 2002; Zhang et al., 2005). Interestingly, it has 

recently been shown that WASP has effects on NFAT and NF-kB distinct to its effects 

on the actin cytoskeleton (Huang et al., 2005). WASP appears to act via calcium 

regulated pathways. The combination of VASP and WASP may be necessary for full 

activation of signal transduction pathways following TCR ligation.

VASP and WASP may function by bringing together independent parts of the complex 

by cytoskeletal remodelling or holding them separate in the inactive state (an ‘insulator’ 

function (see (Burack et al., 2002; Davis, 2000) with activation leading to relaxation of 

the cytoskeleton, allowing them to move together.

CREB activation occurs downstream of the TCR via phosphorylation following 

activation of a PKC/Ras/Raf-l/MEK and RSK2 signalling cascade (Grady et al., 2004; 

Muthusamy and Leiden, 1998). We noted a decrease in CREB activation when DN

VASP was transfected into Jurkat cells (section 4.3.5), a process that we also showed 

disrupted normal actin cytoskeleton rearrangement (section 4.3.8). This suggests that 

the cytoskeleton may be important in this pathway, perhaps by allowing movement of 

the different factors, bringing them into contact with each other and facilitating signal 

transduction.

As all of these pathways are involved in IL-2 transcription, these effects would explain 

the decrease in IL-2 production following DN-VASP transfection observed in section 

4.3.3. The differences observed for IL-2 production were not as strong as the 

differences seen in the CREB, AP-1 and NFAT luciferase assays. This is because the
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luciferase reporter gene assays allow only transfected cells to be assayed, whereas the 

IL-2 ELISA assay also incorporates non-transfected cells (accounting for approximately 

25% of live cells). However, the observed difference was still significant (p<0.05)

NF-kB activation was increased in stimulated T cells regardless of transfection of DN

VASP or empty vector (section 4.3.5). A role for WASP, independent of its actions on 

the actin cytoskeleton in NFAT and NF-kB activation in natural killer (NK) cells has 

been suggested. Absence of WASP in these cells is associated with a decrease in 

calcineurin, WASP-interacting protein (WIP), ZAP70 and PLC-yl a the immune 

synapse (Huang et al., 2005). The use of DN-VASP, whilst potentially interfering with 

the ability of VASP to bind to ADAP, would not alter the ability of WASP to bind. 

Therefore WASP-associated activation of NF-kB could potentially be unaltered by DN

VASP transfection.

In signal transduction pathways therefore, VASP activity appears to be important in the 

MAP kinase activated pathways but not in the calcium flux mediated pathways where 

WASP may be active (Figure 4.17). This effect is not via modification of early 

phosphorylation steps such as ERK and JNK phosphorylation but occurs further down 

the cascade. Interfering with AP-1 and CREB abut not NFAT or NF-kB is a potential 

way of inducing T cell anergy and could therefore be of interest as a new area for the 

development of immunosuppressive agents.

CD69 and CD25 (IL2Ra) are markers of T cell activation produced by early signal 

transduction pathways following T cell receptor signalling. CD69 is an early antigen
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activation marker and is expressed on the T cell surface earlier than CD25. In our 

experiments we saw very little CD25 expression following T cell stimulation but a 

marked increase in CD69 expression. The lack of CD25 activation may have been a 

function of Jurkat cells and it would be interesting to repeat this experiment in primary 

human lymphocytes. CD69 expression was not altered by DN-VASP transfection 

suggesting that T cell activation is not completely stopped by disruption of the actin 

cytoskeleton by DN-VASP and that other pathways are still functional.

Modifiers of T cell activation are still being sought for use in immunosuppression. 

Whilst we already have several (e.g. Cyclosporin, tacrolimus, OKT3) they all have 

limitations and side effects. The adaptor proteins present a future target for development 

of new agents able to modulate the interaction of various pathways in T cell activation 

(Rudd and Wang, 2003). It is interesting to note that in long-term surviving kidney 

transplants, T cell expression of CD69 is preserved, suggesting that immune regulation 

in these patients is preserved (Alvarez et al., 2004). Modifiers of the actin cytoskeleton 

may therefore be a system to explore further whilst looking for new immunosuppressant 

agents as the aim is to achieve long-term graft survival without impairing the host’s 

immune system significantly.

There is a great deal of future work to be carried out in this interesting field. These 

experiments need to be carried out in primary cells as immortalised cell lines can show 

altered activities. Further elucidation of affected signal transduction pathways would 

help to clarify the exact positions at which VASP is acting. The effects of VASP 

phosphorylation in reaction to signals such as NO induction would be interesting as a 

potential mechanism for regulation of the T cell cytoskeleton in vivo. It would be useful 

to be able to create a tagged form of VASP in a stable clone of T cells to investigate the
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effects of phosphorylation on location within the cell to allow changes in morphology, 

biochemistry and signal transduction to be studied in a coordinate fashion.

In summary, in this section of work we looked at the effects of interfering with VASP 

function by the use of a dominant-negative form of the protein in two major, interlinked 

areas

• Markers of T cell activation

• Effects on the actin cytoskeleton.

We showed that DN-VASP transfection was associated with down-regulation of some 

pathways but appeared to have no effect on others. Transfection of DN-VASP appeared 

to have no measurable effect on CD69 and CD25 expression or on the NFkB and c-Jun 

signal transduction pathways. It did however significantly alter T cell polarisation, 

binding to CD3/CD28 coated beads, IL-2 production and AP-1, and CREB signal 

transduction pathways following stimulation.
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Chapter 5. Conclusions



5.1 Summary of Results.

This study has investigated several different roles of VASP and the way its function is 

regulated. In epithelial cells we have demonstrated that VASP is phosphorylated at the 

Ser239 position in response to nitric oxide and that this is enhanced by the presence of 

Serl57 phosphorylation. The addition of a cyclic AMP analog to cells transfected with 

iNOS appears to have a synergistic effect on this phosphorylation. We have also shown 

that inducible nitric oxide is associated with a loss of VASP from focal sites at the cell 

membrane. We also used dominant-negative VASP in order to investigate the effects of 

disrupting VASP function in epithelial cells and showed that normal VASP function 

seems to be of much greater importance in the formation of new epithelial sheets than in 

the maintenance of existing sheets. Cells expressing DN-VASP appeared to have a 

diminished ability to adhere to the substratum but were still able to remain as part of an 

epithelial monolayer.

In the T cell line, Jurkat TetOff cells, disruption of VASP function using DN-VASP had 

a number of effects. DN-VASP transfection was associated with a significant decrease 

in interleukin-2 production, a loss of actin polarisation and decrease in the MAP kinase 

signal transduction pathways following stimulation with CD3 and CD28 antibodies. It 

did not alter calcium flux, CD69 or CD25 expression and did not appear to alter the 

NFAT signal transduction pathway. Its effects on NF-kB signal transduction were less 

clear but were probably related to its effects on AP-1. The effects on MAP kinases did 

not appear to be via early phosphorylation of the kinases but appear to occur at a later 

stage of the pathway activation.
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5.2 Biological Implications and future work

Pro-inflammatory cytokines, acting via iNOS induction are able to produce PTEC 

shedding in an in vitro model (Glynne and Evans, 1999a) with disruption of the actin 

cytoskeleton and loss of cell polarity (Glynne et al., 2001). Vasodilator-stimulated 

phosphoprotein is a potential mechanism by which this may occur. It binds to proteins 

situated at cellxell and cellimatrix junctions via its EVH1 domain and to the actin 

cytoskeleton via its EVH2 domain. VASP contains a cGMP-dependent protein kinase 

phosphorylation site in close proximity to domains associated with G-actin binding and 

F-actin polymerisation. It is therefore an attractive proposition as a cytoskeletal protein 

that may later its ability to act as a link between the cytoskeleton and adjacent cells or 

the extracellular matrix. Our studies confirmed that iNOS induction was associated with 

a loss of VASP from focal membrane sites and with Ser239 phosphorylation. 

Interestingly, we found that the level of Ser239 phosphorylation appeared to be 

crucially dependent on the level of Serl57 phosphorylation. This Serl57 site, in vitro, is 

preferentially phosphorylated by cAMP-dependent protein kinase. As Ser 157 

phosphorylation is known to be associated with a shift in the apparent molecular mass 

of VASP on western blotting, this suggests that it is associated with a conformational 

change, possibly exposing the Ser239 site and enabling phosphorylation.

Potentially, this suggests that there may be two possible pathways by which the effects 

of NO on VASP may be modulated, either by cGMP or cAMP-dependent protein kinase 

pathways and therefore two potential paths at which agents could be targetted. The 

activity of these pathways is regulated by phosphodiesterases (Conti and Jin, 1999; 

Feijge et al., 2004; Murray et al., 2002). We have several pharmacological agents 

available to us which act as phosphodiesterase inhibitors such as dipyridamole and
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Zaprinast (Type V PDE inhibitors ) (Aktas et al., 2003; Matot and Gozal, 2004; 

Matsumoto and Nakamura, 2002) and Milrinone (type III PDE inhibitor). Milrinone, for 

example, has been noted to cause an increase in cAMP-mediated VASP Seri57 

phosphorylation in platelets (Manns et al., 2002). From our results, we would expect 

this to allow a higher degree of Ser239 phosphorylation and potentially greater cell 

shedding. In fact, in an animal model, type III PDE inhibition has been associated with 

a greater degree of LPS-induced ARF (Jonassen et al., 2002).

To pursue this work further, it would be interesting to generate further VASP mutants, 

including an Serl57-Ala mutant to investigate whether Ser239 phosphorylation is still 

possible in this mutant and what effect this has on the response of a cell to nitric oxide. 

Use of PDE inhibitors would also allow further elucidation of the control of VASP 

phosphorylation and its effects on the cell. Further work should be directed at the 

investigating the effects in primary cells. The generation of fluorescence-labelled 

VASP mutants would allow the use of time-lapse photography to study the effects of 

NO donors and PDEs in the living cell.

Our studies also suggested that VASP is more important in forming cell:substratum 

adhesions and early celhcell junctions rather than in the maintenance of cell:cell 

junctions. Interrupting VASP function with DN-VASP had a greater effect on the ability 

of cells to form a new epithelial monolayer but had relatively little effect on an 

established epithelial sheet. This is consistent with previously reported findings on the 

formation of cell:cell junctions (Adams et al., 1998; Adams and Nelson, 1998). 

Addition of cytochalasin D to disrupt the actin cytoskeleton, was only effective at 

disrupting cellicell junctions either in newly forming junctions or those less than 1 hour
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old. VASP may therefore play a role in cell motility, allowing cells to move close 

enough to adjacent cells to form an epithelial zipper (Vasioukhin et al., 2000) but once 

the junction is complete, other proteins may be involved in maintaining it. Indeed, 

VASP is generally located at highly dynamic areas of the cell membrane (Han et al.,

2002). This may be important for example, in the recovery of the proximal tubule 

epithelium post-acute injury in forming a new epithelial sheet following cell shedding 

seen in ATN. As discussed above, phosphorylation of VASP is an important mechanism 

by which its actions may be modulated. Drugs which interfere with this such as 

milrinone may, in theory, prolong recovery via their actions on PDEs.

The final part of this study investigated the role of the actin cytoskeleton and the 

functions of VASP in T cell activation. The adaptor protein ADAP contains an EVH1 

binding domain and has a role in the regulation of adhesion between the T cell and an 

APC (Wang et al., 2004) with ADAP knockout cells showing deficient LFA-1 

clustering.. As VASP contains an EVH1 domain and is known to polymerise actin, it 

appeared an attractive pathway by which VASP could be involved in T cell activation. 

Our results demonstrated that DN-VASP transfection was associated with a loss of actin 

polarisation and cuff formation in response to TCR ligation by a CD3/CD28 coated 

bead. Previous studies (Griffiths and Penninger, 2002a) have shown that ADAP 

deficient cells are still capable of polarising actin and another approach using ActA 

repeats to block EVH-1 binding (Krause et al., 2000) suggested that actin polarisation 

does not occur through proteins such as VASP binding through this domain. Our work 

also suggested that VASP does not alter T cell activation through modulation of LFA-1 

clustering and ligand avidity as we were unable to demonstrate any effect on ICAM-1 

binding.
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We therefore looked at other ways in which VASP may affect T cell activation. The 

effects we demonstrated on signal transduction via MAP kinases were striking. The AP- 

1 pathway appeared to be completely obliterated by DN-VASP with even base-line 

activation, prior to stimulation, being lost. The CREB pathway was also down- 

regulated. This is a potential method by which T cell anergy could be induced, with 

preservation of NFAT and NF-kB pathways but with a decreased ability of the cells to 

produce IL-2 and proliferate due to MAP kinase blockade. VASP could be involved in 

signal transduction by moving complexes into positions by which they can interact 

(Davis, 2000). Modulation of VASP’s ability to interact with the actin cytoskeleton via 

modulation of its cyclic-nucleotide dependent protein kinase sites may be a model of 

manipulating T cell activation. The role of scaffold and adaptor proteins in the 

production of immunosuppressive agents has not yet been explored but may be a novel 

field for therapeutic agents.

The MAP kinases are involved in many other diseases such as tumour development 

(Johnson et al., 1996), wound healing by keratinocyte proliferation (Szabowski et al., 

2000) Alzheimer’s disease (AP-1 activation is associated with enhanced cerebral 

endothelial cell apoptosis (Yin et al., 2002) and chronic myeloid leukaemia (Yang et al.,

2003). The role of modulation of VASP function in these diseases may be interesting 

both in terms of producing disease models and in therapeutic agents.

There is much more work to be done in these fields. The interaction between VASP and 

actin and the role by which NO has its effects is still to be fully clarified. It would be 

interesting to investigate the role of VASP on MAP kinase signalling in epithelial cells
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and how this affects epithelial sheet integrity. The work in Jurkat cells needs to be 

repeated in primary cells as cell lines are known to mutate and may not mimic the 

situation in the body. DN-VASP appears to be a powerful tool in this work but the 

actions of NO on VASP in these situations may give more clues to the physiological 

control of these processes.
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Appendix



Plasmid Source Plasmid content

pFC-MEKK Strata gene Mitogen-activated 
protein/ERK kinase 
kinases gene.

pFC-PKA Stratagene cAM P-dependent protein 
kinase A gene 
(transcriptional activator 
of CREB)

pFC2-dbd Stratagene GAL-4 DNA binding 
domain

pAP-1-Luc Stratagene Activator Protein-1 gene 
linked to luciferase gene

pNFKB-Luc Stratagene Nuclear factor-KB 
(NFkB) linked to 
luciferase gene

pNFAT-Luc Stratagene Nuclear factor of activated 
T cells (NFAT) linked to 
luciferase gene

pFR-Luc Stratagene Luciferase reporter 
plasmid

pFA2-CREB Stratagene Activation domain if 
CREB (cAMP-response 
element binding protein)

pTRE2hyg BD Clontech Tetracycline regulatable, 
empty vector

pT RE2hy g/DN -VASP BD Clontech/Produced in 
Laboratory

Tetracycline regulatable 
vector, containing 
sequence for expression of 
DN-VASP

pCI Promega Carrier DNA, empty 
vector

pCIS-CK Stratagene Negative control plasmid

Appendix 1. Plasmids used in signal transduction pathway experiments in 

Jurkat TetOff cells (section 4.2.6)


