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Summary

It has been known since the early part of the twentieth century that fluoride has a beneficial 

effect on dental caries. It is now recognised this occurs through the action of preventing 

demineralisation and encouraging remineralisation, with a minor effect of inhibition of the 

plaque bacteria involved in the caries process. Fluoride can be delivered to the oral cavity 

in a number of ways, and is commonly found in toothpastes used by a large proportion of 

the population in developed countries. Since the mid-1970s, the routine use of fluoride 

toothpastes in such countries has reduced the caries rate significantly (Haugejorden et al., 

1997; Newbrun, 1999). However, for children from disadvantaged areas who may have no 

access to toothbrushes or toothpastes and whose diet is highly cariogenic, additional 

sources of fluoride may be beneficial. It has been proved clinically, and confirmed in a 

systematic review of the literature, that increased exposure to fluoride enhances its caries 

preventive effect (Marinho et al., 2004b).

Fluoridated milk has the benefit that it is possible to target children who would benefit 

most from it. M ilk has excellent nutritional value; after all, it has been recommended by 

the Scientific Advisory Committee on Nutrition (SACN), which advises the UK  

Department of Health, as the sole food for infants up to the age of six months.

There are a number of research questions still unanswered regarding the use of fluoridated 

milk. The topic was reviewed on behalf of the World Health Organisation by Stephen et 

al.(1996). They stated that further research was required to determine, for example: the 

optimum frequency of intake of fluoridated milk; the optimum concentration of fluoride to 

be added to milk; the optimum age of the child to whom the milk should be given and the 

optimum time for which fluoridated milk should be provided. Two recent systematic 

reviews of the literature pertaining to fluoridated milk stated that the evidence regarding 

the efficacy of fluoridated milk was impossible to determine because of a lack of suitably 

designed studies (Holm, 2002; Yeung et al., 2005). Finally, much of the research regarding 

the efficacy of fluoridated milk as a delivery system was obtained prior to the routine use 

of fluoridated dentifrices. Thus, the evidence for benefits from the concomitant use of 

fluoridated milk with a fluoridated dentifrice is lacking.
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One of the main aims of the work reported in this thesis was to use an in situ model to 

investigate the effect of milk, with or without the addition of fluoride, on the 

remineralisation and/or further demineralisation of artificial carious lesions. The design of 

the study also included investigation of the effect of using a fluoridated dentifrice slurry to 

simulate toothbrushing twice-daily, in addition to the milk intake.

The change in mineral content of artificial enamel lesions, created in human tooth blocks 

was measured using two techniques, namely QLF and TMR. A specific study determined 

the repeatability of the new QLF technique.

Using a complete denture in situ model, it was possible to place multiple caries lesions at 

different sites within each subject’s oral cavity. The final aim of this work was to compare 

the response of caries lesions at different sites to exposure to the experimental protocols, 

and to determine whether the results supported previous work relating to the site- 

specificity of caries.

In the studies described in this thesis, repeatability estimates for the image capture and 

image analysis parts of the QLF technique were classed as being ‘substantial’ by the 

criteria suggested by Shrout (1998). It was demonstrated that the operator (AJN) could 

achieve levels of consistency similar to operators described as “experienced” in other 

studies examining the repeatability of QLF.

Subjects who used the fluoridated dentifrice slurry to simulate toothbrushing twice daily 

tended to have a greater increase in the mineral content between pre- and post-protocol 

measurements than those who did not use the slurry. This finding applied to both QLF and 

TMR evaluations, and was statistically significant for some, but not all of the measured 

parameters. These findings demonstrated that, in this study, the positive effect, on lesion 

mineral content, of simulating toothbrushing twice daily, was greater than that of the 

experimental protocols involving fluoridated milk consumption alone. The effect of the 

dentifrice slurry concurs with literature published in recent years which suggests that 

fluoridated toothpaste is very effective in the prevention of dental caries (Stephen et al., 

1988; Marinho et al., 2004b).

Looking at the effect of the experimental protocols, there was overall net mean 

remineralisation of the artificial lesions in the tooth blocks used in the study. However, it is 

unlikely that this was as a result of the experimental protocols alone, because the ‘no
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beverage’ control showed similar amounts of change to that found in the milk and 

fluoridated milk protocols.

There were differences in the remineralisation achieved at different sites within the mouth. 

Lesions at the labial position in the upper denture were notable, because in several 

instances, they achieved the least amount of remineralisation. This result concurs with 

previous work suggesting that there is a reduced salivary film velocity at this site, thereby 

reducing salivary clearance and increasing the likelihood of demineralisation.

In summary, this work has supported the benefit of regular use of fluoridated dentifrice. 

With regard to the effect of fluoridated milk, this work appears to suggest limited value in 

the use of fluoridated milk as a sole source of fluoride, or as a source of fluoride in 

addition to the regular use of dentifrices in the caries-preventive process.
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List of Abbreviations

< less than

% percentage

%Vol mineral, pm percentage volume of mineral times micrometre -  unit of IM L

°C degrees Centigrade, temperature

AF Delta F, also known as QLF average fluorescence loss

AQ Delta Q, average change in fluorescence loss multiplied by area

AZ Delta Z, also known as Integrated Mineral Loss

® registered trademark

pm micrometre, 1 O'6 m

ANCOVA Analysis of covariance, statistical test

ATP Adenosine Tri-phosphate

BSE Bovine spongiform encephalopathy

CaF2 calcium fluoride

Caio(P0 4 )6(OH )2  hydroxyapatite

CCD Charge coupled device

Cl confidence interval

Cu(Ka) Copper (K alpha)

dfs decayed, filled surfaces (deciduous dentition)
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DFS decayed, filled surfaces (permanent dentition)

dmfs decayed, missing, filled surfaces (deciduous dentition)

DMFS decayed, missing, filled surfaces (permanent dentition)

dmft decayed, missing, filled teeth (deciduous dentition)

DMFT decayed, missing, filled teeth (permanent dentition)

et al. and others

F fluorine

F‘ fluoride ion

FAB Fastidious Anaerobe Broth

FOTI Fibre optic Transillumination

g gram

GLM General Linear Modelling, statistical test

HF hydrogen fluoride

ICC Intra-class correlation, statistical test

IM L Integrated mineral loss

in situ in situation, e.g. in the oral cavity

in vitro in a laboratory environment

in vivo in life (i.e. observations of patients/subjects)

Ip Iodine permeability
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kg kilogram

K I Potassium iodide

KSp solubility product

kV kilovolts

LD Lesion depth

LMR Longitudinal Microradiography

M  Molar

mA milliamps

mg milligram

min minute

mL millilitres

mm millimetre, 10' m

mV millivolts

n number

NaF sodium fluoride

Na2FP(>3 sodium monofluorophosphate

nm nanometer, 1 O'9 m

(OH') hydroxyl ion

p p-value of statistical probability
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PBS Phosphate buffered saline

(PO43') phosphate ion

ppm parts per million

QLF Quantitative light fluorescence

QLFarea QLF parameter area

QLFaver QLF parameter average % fluorescence loss

QLFmax QLF parameter maximum % fluorescence loss

r statistical symbol of correlation coefficient

RCT randomised controlled trial

SMFP sodium monofluorophosphate

SnF2 Tin fluoride

Sp. Species

St. Dev. standard deviation

T Treatment group

TD Treatment plus dentifrice slurry group

TMR Transverse Microradiography

TSE Transmissible spongiform encephalopathy

UHT ultra-heat treated

vCJD variant Creutzfeldt - Jakob disease
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WHO

W IM

World Health Organisation 

Wavelength induced microradiography
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1. Introduction and review of literature
1.1 Introduction

This chapter describes the reasons why the studies in this thesis were designed and gives a 

critical review of the relevant literature.

The dental caries process will be discussed first, followed by the effect of fluoride and then 

milk on the caries process. The methods of delivering fluoride to the oral cavity will then 

be reviewed. Thereafter, the effect of fluoridated milk on the caries process will be 

discussed, followed by the methods and designs used to study this process. The methods 

available to measure caries in experimental studies w ill then be described.

A summary of the literature review and the aims of the work described in this thesis will 

conclude this chapter.

1.2 Dental caries

1.2.2 Definition of dental caries

Dental caries is a multi-factorial disease process. Key factors related to the process include 

a tooth coated with cariogenic bacteria, exposed to a fermentable carbohydrate, over time. 

Dental caries has been defined in many ways, and these definitions have been further 

refined as knowledge of the disease process has increased. In 1985, Nikiforuk stated that,

“Dental caries is a peculiarly local disease which involves destruction o f the hard tissues 

o f the teeth by metabolites produced by oral microorganisms”(Nikiforuk, 1985a).

Increased knowledge about the influence of saliva and fluoride on the caries process has 

modified this further. In 1996, Featherstone defined dental caries as “A plaque-related 

disease, dependent on the presence o f simple sugars in the diet, driven by frequency o f 

eating simple carbohydrates, modified by fluoride, salivary-flow and composition o f 

Sfl/zvtf.’’(Featherstone, 1996).

However, neither of these definitions reflects the fact that dental caries occurs over a 

length of time, and the clinical appearance of caries is a reflection of the accumulated 

events which have occurred in the past. In 1997, Fejerskov stated it seemed most 

appropriate to use the term “dental caries” to refer to the recorded mineral loss that



presents itself in the clinic at any particular time. He went on to define the “carious 

process” as being the dynamic de- and remineralizing processes resulting from microbial 

metabolism on the tooth surface which, over time, may result in a net loss of mineral, and 

possibly, but not always, leading to cavitation (Fejerskov, 1997).

Differentiation between the caries process and the lesion itself can cause confusion. This is 

multiplied when the term “dental caries” is used synonymously to describe both the caries 

lesion and the caries process. Such is the importance of defining the terminology 

associated with dental caries accurately, that consensus statements were developed during 

an International Consensus Workshop on Caries Clinical Trials, in 2002, to define the 

‘Caries Process’ and the ‘Caries Lesion’. These statements by Kidd and Fejerskov (2004) 

were:

(a) ‘The Caries Process occurs as an interaction between the (plaque) bio film  and the 

tooth surface and sub-surface'; and

(b) ‘The Caries Lesion is the manifestation o f the stage o f the process at one point in time.' 

The term ‘biofilm’ in the above statement being the communities of microorganisms 

attached to a surface. Dental plaque is an example of a microbial biofilm (Marsh and 

Bradshaw, 1995).

Therefore, in simplistic terms, the caries lesion is a ‘snapshot’ of the caries process. To 

understand the caries lesion, one should have an understanding of the mechanisms of de- 

and remineralisation which occur as a result of the caries process.

1.2.2 Clinical manifestation of the caries process
The manifestations of the caries process occur both within the different mineralised 

structures of the tooth, and at different sites around the tooth. The process may manifest as 

an enamel caries lesion with an intact surface and progress to frank cavitation and dentine 

involvement, which may encroach on the dental pulp. The process is site-specific and can 

occur at different parts of the tooth, i.e. on the smooth surfaces of enamel, or in the 

occlusal fissures or pits of teeth. The caries process results in loss of tooth mineral due to 

an imbalance in the mineral dynamics between the tooth surface and the aqueous 

environment of the oral cavity, a prevailing overall loss of mineral leading ultimately, to 

cavitation of the tooth surface. The lesion is relatively easy to detect when there is obvious
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breakdown of the tooth structure. However, once caries has reached this stage in enamel, 

active restorative treatment will be required (Kidd and Fejerskov, 2003). The challenge in 

dentistry is to detect the presence of the disease at an early stage while it is an incipient, 

non-cavitated enamel lesion, and then modify the oral environment to encourage arrest or 

reversal of the process.

Similar criteria can be applied to root surface caries, where there is also subsurface 

demineralisation and the surface may appear softened early in lesion development. 

However, the carious lesions here are seldom more than 0.5 to 1.0mm deep and are 

amenable to preventive therapies such as plaque control and fluoride therapy, thereby 

arresting the lesions, which may not require restoration (Kidd and Fejerskov, 2004).

The earliest clinical sign of dental caries is the white spot (incipient caries) lesion, which is 

most visible when the tooth is clean and dry. A roughness may be detected when a dental 

probe is run over the lesion surface, but there is no clinical evidence of cavitation at this 

stage. The clinical white spot is a result of prevailing, sub-surface mineral loss producing 

subsurface porosity within the mineral structure of the tooth. This porosity fills with fluid 

and air, which has a different refractive index from sound tooth structure. Light scatters 

differently within the lesion compared with sound tooth structure, and this difference is 

visually interpreted by the human eye as a white spot (ten Bosch, 1996). Prior to 

breakdown of the tooth surface, it is possible for mineral exchange between tooth and the 

oral environment to be reversed: a process known as re-mineralisation. Indeed, studies of 

incipient lesions have shown that, even within the same lesion, certain areas can be 

remineralising while others are demineralising (Zero, 1999). It is thought that a net transfer 

of mineral back into the lesion may also result in take-up of extrinsic brown stain. The 

lesion may even take on a brown appearance and be known as a brown spot lesion. Such a 

lesion is often arrested or reversed by remineralisation due to the instigation of an effective 

preventive programme (Nikiforuk, 1985b).

I f  cavitation does occur, the biofilm then occupies a protected niche, inaccessible to 

measures designed to arrest or reverse the caries process (Marsh and Nyvad, 2003), and the 

rate of lesion progression increases clinically (von der Fehr and Haugejorden, 1997). The 

observation of these signs of dental caries is important, however the decision about how to 

manage the process in a clinical manner, is also required. There is consensus that when 

macroscopic cavitation occurs, then operative intervention is required. However, when
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cavitation is not evident or is not able to be observed directly, the decision-making process 

is more difficult. Current concepts, indicating whether preventative treatment or both 

preventative and operative treatment are required, can be illustrated using the “iceberg of 

dental caries” (Figure 1) and contemporary treatment need/advice (Pitts and Longbottom,

1995).

The detection of dental caries in enamel that has been exposed to fluoride (as discussed in 

Section 1.3), particularly during development, is more difficult than that of enamel that has 

not been exposed to fluoride (Pitts and Deery, 1994). This is because fluoridated apatite 

may have a whiter, more opaque colouring than non-fluoridated apatite. The situation is 

also complicated by the fact that cavitation of more highly fluoridated apatite occurs later 

than less fluoridated apatite (Pitts and Deery, 1994). This can, on occasion reveal a 

significant amount of dentinal caries that may not be amenable to simple restorative 

techniques. In this situation, caries may go undetected on the enamel surface and following 

microscopic enamel cavitation, dentinal caries progresses undetected; leaving little more 

than an enamel shell, with extensive dentinal caries that is close to, if  not involving the 

dental pulp (Weerheijm et al., 1992a; Weerheijm et al., 1992b; Pitts and Deery, 1994).

Figure 1 -  The “iceberg of dental caries”

The “iceberg of dental caries” and contemporary treatment need/advice

Preventive and 
Operative Care AdvisedPCA + OCA

lesions into pulp J
Progressive/ cavitated

+ clinically detectable lesions 
in dentine (open and closed) p. Stable/ non-cavitated

+ clinically detectable “cavities’ 
limited to enamel Preventive Care AdvisedPCA

+clinically detectable enamel lesions with 
“intact” surfaces ]

+lesions detectable only with traditional 
diagnostic aids (e.g. FOTI & Bitewings)

(progressive dentinal = OCA)

+ sub-clinical initial lesions in a dynamic 
state of progression/ regression No Active Care 

above normal caries 
control measures

NAC

From Pitts and Longbottom (1995) Community Dent Oral Epidemiol 23:55-59
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1.2.3 Demineralisation/remineralisation. The mechanism of the 

caries process in enamei

As stated previously, the caries process is multi-factorial, occurring over time and 

alternating between periods of demineralisation and remineralisation.

This section will consider the formation of dental plaque, the enamel structure and the 

chemical changes which drive the caries process.

1.2.3.1 The formation of dental plaque
The growth and metabolic activity of the oral microflora is maintained and regulated by 

saliva, which buffers the normal oral pH to values between 6.75 and 7.25 as a result of 

several buffering systems (Edgar and Higham, 1996). These include the carbonic 

acid/bicarbonate system and the inorganic orthophosphate system.

Saliva contains glycoproteins and proteins that act as the primary carbohydrate, peptide 

and amino acid source for the growth of the oral microflora. Saliva can sustain the growth 

of oral microflora which degrade the oligosaccharide side-chains of salivary glycoproteins 

such as mucins (Marsh and Nyvad, 2003).

The communities of microorganisms which form the biofilm of plaque adhere to the tooth 

surface via the acquired pellicle. The pellicle forms quickly as a film, <1 pm thick, on the 

tooth surface within two hours of thorough tooth cleaning. It is derived from salivary 

proteins, glycoproteins, lipids and glycolipids, as well as extracellular molecules from 

bacteria. Oral microorganisms are transported via saliva, and attracted to the acquired 

pellicle by physico-chemical interactions and short-range specific stereo-chemical 

molecular interactions with the primary colonising bacteria. Following this, secondary 

colonising bacteria adhere to the primary colonisers, and horizontal and vertical 

stratification develops leading, within two weeks, to a climax community of dental plaque 

(Marsh and Bradshaw, 1995).

As plaque develops, bacteria, which metabolise simple sugars, synthesize extracellular 

polysaccharides and organic acids. These extracellular polysaccharides were initially
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thought to improve the adhesion of the plaque but, it is now known, they facilitate 

penetration of sugars deeper into the plaque and inhibit the effect of the buffering capacity 

of saliva at the plaque-enamel interface (Marsh and Bradshaw, 1995). The organic acids 

(lactate, acetate, formate, propionate and butyrate) produced by plaque lead to a reduction 

in the pH at the plaque-enamel interface and within the plaque fluid (Rugg-Gunn, 1993). 

Where there is a carbohydrate-rich diet, the growth-rate of oral bacteria increases and there 

is a change in the composition of the microflora towards more aciduric species, which 

thrive in a lower pH environment (Marsh and Nyvad, 2003).

1.2.3.2 Enamel structure
Although the caries process occurs in all of the dental hard tissues, it is the 

demineralisation and remineralisation process which occurs in enamel which is the 

principal interest of this thesis. The caries process affecting the crown of the tooth begins 

most often in enamel, which is the most highly mineralised tissue in the human body. The 

mineral is in the form of calcium phosphate crystals. A repeating pattern of calcium, 

phosphate and hydroxyl ions are arranged in a crystal lattice structure resembling 

hydroxyapatite, Caio(P0 4 )6(OH)2. The hydroxyapatite lattice is contaminated with many 

other elements and compounds including carbonate, sodium, fluoride, lead and 

magnesium. The hydroxyapatite crystals are long and thin, approximately 50nm wide in 

cross-section and more than 100 pm long (ten Cate et al., 2003), and are tightly packed 

into enamel prisms. Organic matter and water are found between the crystals in the 

intercrystaline and interprismatic spaces. The approximate composition of enamel and 

dentine are listed in Table 1. It is the susceptibility of these hydroxyapatite crystals to 

dissolution by acid that forms the chemical basis of dental caries (Eisenmann, 1989).
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Table 1 -  Approximate composition of enamel and dentine by % weight and by % volume

Tissue Component Enamel Dentine

% by 

weight

% by 

volume

% by 

weight

% by 

volume

Mineral = Carbonated 

hydroxyapatite

96 85 70 47

Protein / Lipid 1 3 20 33

Water 3 12 10 20

Taken from Featherstone JDB: Prevention and reversal of dental caries: role of low level fluoride.
Community Dent Oral Epidemiol, 1999;27:31-40

1.2.3.3 Chemical changes which drive the caries process
Normally, saliva and other oral fluids that bathe the teeth are supersaturated with respect to 

several calcium phosphate compounds, collectively known as apatites. The most 

commonly occurring enamel apatite is hydroxyapatite, and substitution of carbonate and 

fluoride into the enamel apatite changes its solubility product (KSp). Carbonate 

substitution increases the solubility of the hydroxyapatite lattice, whereas solubility is 

decreased with fluoride substitution (ten Cate et al., 2003). The supersaturated apatite 

concentration of oral fluids prevents these apatites, and similar minerals, dissolving from 

the teeth into saliva. However, when the pH of saliva and the fluids within the oral cavity 

drops, the solubility of the tooth apatite increases, resulting in dissolution along a 

concentration gradient between the low-volume/ high-concentration intercrystalline fluids 

and relatively-larger-volume/ lower-concentration fluids of plaque and saliva. In general, 

for each decrease in pH unit, the solubility of the apatites increases by a factor of 10. 

Dissolution of apatite generally occurs in the pH range 4.0-5.5 (ten Cate et a l , 2003).

When phosphate ions (PO43'), hydroxyl ions (OH‘) and calcium ions accumulate in 

solution, it becomes saturated and dissolution of the hydroxyapatite slows. However,
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further exposure to acids as a by-product of sugar metabolism by the oral microorganisms 

again changes the proportion of ions in solution which may further drive the dissolution 

process (ten Cate et al., 2003). Fluoridated apatite and hydroxyapatite are soluble at 

different pH levels (Lagerlof, 1983). It is thought that the critical pH, which is the level at 

which the caries process develops and net mineral loss occurs from the tooth, is when the 

saliva and plaque fluid are supersaturated with respect to fluoridated apatite and under­

saturated with respect to hydroxyapatite. As a result, subsurface hydroxyapatite leaches 

from the dental hard tissues into plaque fluid and saliva, while fluoridated apatite forms in 

the surface layer of the developing caries lesion. It is this concurrent super-saturation with 

fluoridated apatite that appears to be responsible for the formation of the surface layer of 

the non-cavitated white-spot lesion, which may be 20-50 pm thick (ten Cate et al., 2003). 

This surface layer reduces the demineralisation effect in the body of the caries lesion when 

a drop in pH occurs.

When demineralisation occurs initially, there is loss of interprismatic mineral. There is no 

surface layer for a period of about a month (0gaard et al., 1996). At this stage, the initial 

demineralisation may be known as ‘surface-softened enamel’ rather than an early caries 

lesion, which exists when the surface layer is present (Arends and Christoffersen, 1986). 

The method of development of this surface layer is subject to debate. In vitro it can be 

created artificially with the use of various acidified gels, though an unsaturated calcium 

phosphate solution may also be used to create lesions (Arends and Christoffersen, 1986). 

In vivo, numerous methods have been proposed, but it is thought to form due to the 

presence of an inhibitor of mineral loss. Fluoride and proteins are suggested examples, but 

whether they are both required, or only one of them individually, is not clear (Arends and 

Christoffersen, 1986).

Experiments have shown that the surface morphology of the early caries lesion is different 

from that of sound enamel. The surface enamel of an early caries lesion is both porous and 

mineral-rich, and the intact enamel surface layer gives it potential for repair. Below the 

surface layer is the body of the lesion which, at 10-70 %vol is lower in mineral than the 

surface zone (Arends and Christoffersen, 1986). This is where the majority of the loss of 

mineral occurs, hence the term, sub-surface demineralisation.

Remineralisation of the dental tissues occurs when partially demineralised apatite crystals 

are exposed to supersaturated apatite solutions (ten Cate et al., 2003). Partially
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demineralised crystals are present in carious lesions. The surface layer of the lesion 

appears to be the most responsive to the remineralisation process. This is because of the 

small pores present in the surface lesion, which slow down the diffusion process of the 

supersaturated apatite solution into the main body. As a result of this, the lesion body fails 

to remineralise completely, leaving a white scar which is visible through the remineralised 

surface layer. Fluoride has a most important role in the remineralisation process, and this 

will be discussed in more detail later.

Once the lesion has cavitated, the intact surface layer is no longer present and the body of 

the lesion is subject to the pH fluctuations of the oral cavity. Although there is free access 

for salivary calcium, phosphate and fluoride ions into the body of the lesion, there is also 

free access for the cariogenic acids, provision of a non-accessible niche for ever-expanding 

quantities of plaque, and an inevitable increase in the rate of clinical lesion progression 

(von der Fehr et al., 1970).

1.3 Effect of fluoride on caries process
1.3.1 Discovery of the effect of fluoride on the caries process
Fluoride has long been thought to work in one of two ways: “systemically”, if  the fluoride 

is ingested by a foetus/ child, then incorporated directly into the pre-calcified tooth tissues 

as they form; and “topically”, where fluoride is adsorbed on to the outer, and pulpal 

surfaces of the formed tooth, and particularly when the tooth has early decalcification 

present, making such enamel more resistant to decay.

It was originally thought that the main effect of fluoride on the caries process was when it 

was incorporated “systemically” into the developing dental tissues. This theory originated 

from studies in the United States of America undertaken in the early part of the 20th 

century by Black and McKay (Black, 1916; McKay, 1916a; McKay, 1916b; McKay, 

1916c; McKay, 1916d). Black and McKay investigated ‘Colorado brown stain’ which 

caused mottling of enamel in the Colorado area. McKay arrived in Colorado Springs in 

1901 and soon noticed that residents who had lived in the area all their lives had a 

permanent brown stain on their teeth. By 1909, McKay had not been able to find any 

literature describing this brown stain, so he contacted Black, a revered expert from the 

Northwest Dental School of Chicago, USA. They studied 2,945 children native to the town 

and determined that the prevalence of this ‘brown stain’ in native children was 87.5% and 

that the stain was a malformation of tooth enamel. However, although these teeth were
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malformed they did not appear to have an increased amount of tooth decay, compared with 

children who were not affected. In 1912, McKay also noticed that the same condition had 

been described in Italian immigrants from certain areas around Naples (Eager, 1902). It 

was at this point that McKay established mottled enamel occurred in a high proportion of 

children who had been bom and lived all their lives in definite geographic areas. Children 

who moved to the affected areas when they were two or three years of age were not 

affected. The environment of the children, and whether they were from an affluent 

background, did not influence the condition. This eliminated diet as an aetiological factor.

In 1916, McKay was informed that prior to a change in water supply in 1898, citizens in 

Britton, South Dakota had no mottling on their teeth, whereas children bom since this 

change had mottled teeth. It was at this point that McKay suspected that the water supply 

could be responsible. A similar situation occurred in Bauxite, Arizona, where increased 

mottling was caused by a change in water supply, due to expansion of ALCOA 

(Aluminium Company of America) activity. However it was not until 1931, that Churchill, 

an ALCOA analytical chemist ordered testing of the drinking water to be undertaken. The 

water was apparently normal but further testing for trace elements found that, in this part of 

Arizona, the water contained 13 ppm of F" (Churchill, 1931). Thereafter, McKay re­

contacted areas where mottled enamel had been reported previously, and arranged for 

testing of these waters to be undertaken. They were all found to have high, varying levels 

of fluoride.

Further investigation was then undertaken by H Trendly Dean (1931), who worked within 

the US Public Health Service. He was assigned to investigate the relationship between 

fluoride concentration in drinking water, tooth/enamel mottling and dental caries. He 

reported there were 97 localities within the USA where mottled enamel was said to occur. 

This mottling of enamel was Dental Fluorosis and was of no public health significance. His 

aim was to find the "minimum threshold" of fluoride, i.e. the level at which it began to 

blemish teeth visibly. He developed a mottling classification in order to record, 

objectively, the severity of mottling in each area (Dean, 1934). Dean then went on to relate 

the concentration of fluoride in the drinking water with fluorosis-severity and dental caries. 

As a result, he determined that the optimum non-mottling level of fluoride for drinking 

water was around 1 ppm F‘ (Dean, 1934; Dean and Elvove, 1936). Furthermore, he 

demonstrated, conclusively, that the severity of mottling increased with increasing fluoride 

concentration in the drinking water. A number of areas with previously high levels of F in
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the water supply, were changed to a level < lppm F \ This resulted in a halt in the mottling 

of enamel for those teeth formed after the water F" concentration-change.

However, it was a British investigator, Ainsworth in 1925, who determined in Maldon, 

Essex that the mottled enamel was more resistant to dental caries than non-mottled. He 

found an inverse relationship between water F" levels consumed and increased caries 

incidence (Medical Research Council, 1925; Ainsworth, 1928).

In 1939, Dean, having read Ainsworth’s work, studied four Illinois cities, two with fluoride 

concentrations of 1.7 ppm and 1.8 ppm and two with the lower fluoride concentration of 

0.2 ppm. Dean determined that the caries experience in the fluoridated cities was half that 

of the cities with the lower fluoride concentration. In 1942, another of his studies showed 

that near maximal reduction in caries experience, with little or no visible mottling occurred 

with a concentration of lppm F' in the drinking water (Dean et al., 1942). Thereafter, a 

significant amount of dental research concentrated on the systemic effect of fluoride by 

increasing the concentration of fluoride incorporated into the developing dental tissues.

As a result of these studies, the first attempt to fluoridate drinking water artificially was 

planned for Grand Rapids, Michigan, with Muskegon, Michigan acting as a control. 

Following baseline data collection, fluoridation began in 1945 (Dean et al., 1942), with the 

first results being collected in 1951 (Arnold et a l , 1953). It was shown that, for those bom 

and raised in fluoridated Grand Rapids, a near 50% caries-reduction now existed compared 

with the Muskegon control. For many years, comment on data for older children was 

virtually ignored, although it was evident that even for those aged 4-10 years at outset, 

caries reductions -  which could only be due to topical fluoride action -  were substantial.

In spite of the early, and sustained, bias towards a systemic-only mode of action for F‘, the 

suggestion that fluoride may have a topical effect as well as a systemic effect was first 

suggested when epidemiologists reported that some of the caries inhibition occurred in 

teeth only exposed to fluoride post-eruptively. Deatherage (1943a; 1943b) noted that the 

DMFT of males who received water containing lmg F" /litre from the age of 8 years 

onwards, was lower than the DMFT of men who had lived continuously in low-fluoride 

areas, although higher than from those who had received fluoridated water from birth. 

Similarly, Weaver (1944), observed an effect of fluoride on 11-14 year old children who
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moved into a water-fluoridated area in a study involving children from South Shields, 

Sunderland and Jarrow in the UK.

In parallel with the projects above, several workers pursued studies to investigate the 

possible effects of topically - delivered fluoride. Thus, as early as 1955, Muhler et al. 

(1955a; 1955b) reported on the successful reduction of caries via fluoride-containing 

dentifrices. Wellock et a l (1963), formulated caries - inhibiting 12,300 ppm F' Acidulated 

Phosphate Fluoride (APF) topical gels. In 1965, Torrell and Erikson demonstrated benefits 

which could be derived from rinsing regularly with various fluoride solutions, while 

substantial caries reductions were obtained by Aasenden & Peebles (1974) and Stephen & 

Campbell (1978), via fluoride supplements. In the latter case, these were only dispensed 

daily at school, with instructions that they should be allowed to dissolve slowly within the 

mouth. A resulting 81% caries reduction was obtained by Stephen and Campbell (1978). 

The topical-only benefits of fluoride, delivered daily via school milk, were demonstrated 

by Stephen et al. (1984), after a 5 year study. Also in the UK, the post-eruptive effect of 

water-fluoridation was shown clearly in a study by Hardwick et al., (1982). Thus, it was in 

1983, that scientists agreed, at an international caries congress in Zurich, that the main 

caries-beneficial effects of fluoride on teeth, were indeed topical (Fejerskov, 1984). 

Nonetheless, there are still a few advocates of a possible, albeit minor, systemic role 

(Kalsbeek et al., 1992).

1.3.2 Presence of fluoride in the oral cavity
Fluoride is present in the oral cavity in teeth, saliva, oral mucosa and crevicular fluid. It is 

also stored in plaque and calculus.

1.3.2.1 Teeth
The content of fluoride in tooth tissues is related to the amount of fluoride present at the 

time of tooth formation (systemic effect) and also the amount of fluoride in the oral fluids 

bathing the tooth during and after eruption (topical effect). The fluoride content of teeth is 

therefore variable, depending on fluoride intake during tooth formation and, in the outer 

surface of the tooth, on the fluoride content of the fluid that bathes it. Fluoride content 

increases in the outer 100 micrometres of enamel during the months following tooth- 

eruption, due to inward diffusion of fluoride from the oral cavity. The concentration of 

fluoride may reach levels between 1000 - 2000 ppm at the enamel surface (Robinson et al., 

1996), the subsurface enamel typically containing 20-100 ppm of fluoride. However, for
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almost half a century, it has been known that even higher concentrations of fluoride are 

found within incipient caries lesions at the enamel surface (Dowse and Jenkins, 1957).

This increase in concentration was not quantified for many years until Robinson and co­

workers measured up to an 800% increase in the fluoride concentration within the mineral 

at the surface of a remineralised white spot lesion, compared with the adjacent unaffected 

enamel surfaces (Robinson et al., 1983).

When fluoride is applied topically to the surface of enamel, a calcium fluoride-like 

material (CaF2) is formed. It is understood this occurs as a result of a chemical reaction 

between apatite and soluble fluoride, described as a "double decomposition" reaction 

(Gerould, 1945). Small globules (<lpm ) of CaF2 can be visualised on the surface of the 

enamel when viewed using scanning electron microscopy, which may act as a fluoride 

reservoir. The solubility of these calcium fluoride globules increases when there is a pH 

drop, as occurs during a cariogenic challenge. This is believed to be a major cariostatic 

effect of topical fluoride (0gaard, 2001).

1.3.2.2 Saliva
Salivary fluoride concentration is influenced by topical applications of fluoride such as 

fluoridated dentifrice, fluoridated mouth-rinse and also (when available) fluoridated milk 

and water. The speed of excretion of fluoride from saliva is dependent on salivary flow- 

rates, and is described as the ‘salivary fluoride clearance’ (Dawes, 1983; Weatherell et al., 

1984; Dawes and Weatherell, 1990).

As discussed previously, saliva “at rest” is supersaturated with respect to hydroxyapatite 

and fluoridated apatite, and contains a source of calcium and phosphate ions, essential for 

repair of early enamel lesions. The additional presence of fluoride in low concentrations in 

saliva is important in tipping the demineralisation / remineralisation balance towards 

remineralisation. The method by which this occurs will be discussed in more detail in 

Section 1.3.3.

1.3.2.3 Oral mucosa
Human oral mucosa can absorb fluoride and retain it within the tissue. Therefore, the oral 

mucosa may act as a reservoir of fluoride that is replenished when the fluoride 

concentration in saliva is high and is depleted as the concentration falls. Zero et al. (1990) 

compared the fluoride retention of topically applied agents in dentate and edentulous
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individuals. They found that the retention of fluoride in the oral mucosa of edentulous 

subjects using fluoride gel containing 5000ppm fluoride was significantly greater than that 

of dentate patients. In this study, no difference was found between these subjects when 

lower concentrations of fluoride were used, either in a fluoridated dentifrice (1100 ppm F") 

or a fluoride rinse (226 ppm F'). Jacobsen et a l  (1992) also demonstrated fluoride 

absorption and retention into the oral mucosa following rinsing with a 0.2% NaF (900 ppm 

F') solution and demonstrated its subsequent release from the oral tissues over a period of 

two hours. Whether this release was into saliva or plasma, is not known (Jacobsen et al., 

1992). It was noted, however, that mucosal fluoride levels remained elevated for 

considerably longer than those of saliva, suggesting the oral mucosa acts as a major intra­

oral reservoir of fluoride (Jacobsen, 1995).

1.3.2.4 Dental plaque
Dental plaque contains fluoride in both ionic and bound forms (Kashket and Bunick,

1978), which correlate generally with salivary fluoride levels, although other sources of 

plaque fluoride include the diet and crevicular fluid (MacFadyen et a l , 1979). Plaque 

fluoride concentrations vary, depending on the site within the mouth and are higher than 

salivary fluoride concentrations. This may be due to slower elimination of the ion from 

dental plaque, thickness of the salivary film or fluoride being released from other sources 

(Fejerskov et a l , 1996).

Fluoride is known to accumulate in dental plaque and may rise to levels 100-200 times that 

present in whole saliva (Larsen and Bruun, 1994). Fluoride in plaque fluid is present in 

plaque lying adjacent to the tooth and may therefore provide a fluoride source at the time 

of acid challenge resulting from plaque metabolism. It is thus desirable to have a constant 

source of salivary fluoride to replenish plaque fluid levels (ten Cate and Featherstone,

1996).

1.3.3 Mechanistic action offiuoride on the caries process
In the past twenty years, research has been concentrated on determining the mechanism of 

the topical effect of fluoride on the caries process. As a result, current opinion is that there 

are three major mechanisms of fluoride action on the caries process. These mechanisms 

are: fluoride (i) inhibition of demineralisation at the crystal surfaces; (ii) enhanced
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subsurface remineralisation, resulting in arrestment or reversal of caries and (iii) inhibition 

of plaque bacterial metabolism (Featherstone, 1999).

1.3.3.1 Inhibition of demineralisation by fluoride
Fluoride present in the aqueous phase at the apatite crystal surface, may inhibit enamel 

demineralisation. When the local pH falls to approximately pH 4.5-5.5, hydroxyapatite will 

dissolve, but fluorapatite will simultaneously be forming in the demineralised area due to a 

super-saturation of fluorapatite within the oral fluids. Featherstone et al. (1990) showed, in 

an in vitro study, that fluoride at concentrations of 0.1-50ppm within a buffer in an acidic 

solution, inhibited demineralisation. They also demonstrated that the carbonated apatite 

dissolution rate was equivalent to that of hydroxyapatite when as little as lppm fluoride 

was added to an acid solution. The change in dissolution rate was in proportion to the 

logarithm of the fluoride concentration (Featherstone et al., 1990). Elevations in fluoride 

concentration levels, even below lppm, resulted in significant reductions in the mineral 

loss caused by plaque acids (Larsen and Bruun, 1994).

The rate of caries lesion formation is also modified by fluoride. The rate reduces if  fluoride 

is added to an artificial caries-forming solution (ten Cate and Featherstone, 1996). Fluoride 

present during the acid challenge to a tooth will combine with hydrogen ions to form HF. 

The hydrogen fluoride will then be transported rapidly into the enamel before dissociating 

in the fluid between enamel crystallites thereby completing the equilibrium reaction:

HF<* ^ H+ + F"

The fluoride ion can then be absorbed strongly on to the surface of carbonated apatite, 

protecting the crystal surface from dissolving. Featherstone (1999) suggested that low 

levels of fluoride present during an acid challenge from the bacteria, allowed fluoride to 

travel with the acid into the sub-surface of the tooth, and to be absorbed on to the crystal 

surface, thus preventing it from being dissolved.

45



1.3.3.2 Fluoride enhances remineralisation
It is known that fluoride levels as low as O.lppm may be sufficient to enhance growth of 

enamel crystals, and hence promote remineralisation (Brown, 1974). Therefore, the 

presence of fluoride in the aqueous environment of the teeth, at relatively low 

physiological levels, w ill have a stabilising effect on the dental minerals. For mineral to go 

back into the tooth, the saliva is required to be supersaturated with respect to calcium and 

phosphate. Partially-dissolved crystals in enamel act as nucleators for remineralisation and 

fluoride is absorbed on to such surfaces, attracts calcium ions (and therefore phosphate 

ions) and excludes carbonate. This produces a much less soluble surface coating for 

crystallites, with a solubility which is less than hydroxyapatite, but greater than 

fluorapatite. This partially remineralised enamel requires stronger acid challenges of longer 

duration to dissolve it. Therefore, fluoride present in solution from topical sources 

enhances remineralisation by speeding-up the growth of a new surface on the partially 

demineralised sub-surface crystals in the carious lesion. In vivo work has suggested that 

fluoride is more effective in inhibiting demineralisation of enamel than increasing 

remineralisation of lesions (Jeansonne and Feagin, 1979).

1.3.3.3 Fluoride inhibits plaque bacteria
Fluoride in its ionised form (F‘) cannot cross the bacterial cell wall/ membrane. As 

cariogenic bacteria produce acid, the pH in the surrounding area drops, creating hydrogen 

ions (via dissociation from the bacterially produced acid) which bind with fluoride to form 

HF (as described by the equilibrium equation described above). The HF diffuses rapidly 

across the cell wall and into the cell, where it dissociates into H+ and F', creating a 

concentration gradient which encourages further diffusion of HF into the cell. The fluoride 

ion within the cell inhibits the glycolytic enzyme enolase of the plaque bacteria 

(Featherstone, 1999), which is responsible for converting 2-P-glycerate to P-enolpyruvate 

within the cell. The reduced output of the P-enolpyruvate inhibits sugar transport 

(Hamilton, 1990). The hydrogen ion within the cell causes acidification of the cell 

cytoplasm, which also inhibits the proton-pumping H +/ATP-ase (Marquis, 1990). Thus, 

all of these mechanisms inhibit plaque bacterial activity which, in turn, will influence the 

rate of fermentable carbohydrate catabolism to extracellular acids. By so doing, they will 

prevent proliferation of cariogenic bacteria suited to a low pH environment.
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To summarise the mechanistic action of fluoride: the main effect is inhibition of 

demineralisation, followed by enhanced remineralisation. The inhibition of plaque bacteria 

by fluoride is known to occur, but probably has a limited effect on the overall process.

1.3.3.4 Summary of mechanistic action of fluoride on the caries 

process
There is strong evidence today that fluorides work mainly topically by impeding 

demineralisation and promoting remineralisation and of the tooth hard tissues.

Epidemiological studies confirm that good oral hygiene combined with fluoride application 

interferes with caries progression. However, Bjamason and Finnbogason (1991) 

controversially stated that fluoride levels in dentifrices have little effect on the progression 

of radiographically detectable enamel lesions, though a higher concentration of fluoride 

(1000 ppm F") caused a less pronounced caries progression than a lower concentration (250 

ppm F'). They concluded that the benefit of topical fluoride application in the form of a 

dentifrice is mostly in retarding the initiation of new lesions, while the reduction is far less 

in the progression of already established caries. Conversely, Lawrence et al. (1997) 

demonstrated that lifetime residents of a fluoridated area demonstrated a significantly 

lower progression of enamel lesions compared to children resident in a non-fluoridated 

area. The general consensus is that fluoride has a maximum benefit when it is available 

constantly (or if  that is not possible, frequently) in low levels within the oral cavity.

Fluoride does reduce caries prevalence. Over the last 25 -  30 years, caries prevalence in 

the USA and most European countries has dramatically declined. Although it is difficult to 

give a straightforward reason for the present lower caries prevalence in these populations, 

consensus exists on the important role of fluoride, particularly widespread home use of 

fluoride toothpaste and the increasing use of professionally applied topical fluorides 

(Haugejorden et al., 1997; Newbrun, 1999).

So is the use of fluoridated toothpaste enough? Is there an additional benefit from using 

other forms of topical fluorides? These can be in the form of fluoridated water, salt, milk, 

tablets, mouthrinses, gels and varnishes, and are discussed in more detail in Section 1.5. A  

recent systematic review (Cochrane) examined the additional use of a topical fluoride 

along with fluoridated toothpaste and found that there was a further modest caries reducing 

benefit compared to toothpaste use alone (Marinho et al., 2004c).
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1.4 Effect of milk on the caries process
M ilk is regarded as one of the most nutritionally complete foods, containing fat, protein, 

essential vitamins e.g. A & D and minerals such as calcium and phosphate. The UK  

Department of Health recommends that infants are fed on milk alone (preferably human) 

until they are weaned on to solid foods at the age of six months. Whether children are fed 

on cow’s milk, formula feed or human milk, milk is regarded as one of the ideal sources of 

nutrition. Furthermore, the amount of nutrients supplied by milk is high in relation to its 

calorie content.

M ilk (along with water) has also been suggested as a drink that is not harmful to teeth, and 

is therefore thought a suitable alternative to sugary or fizzy drinks for both children and 

adults. It is promoted strongly by both the dental and dairy industry as an ideal beverage.

There has been extensive debate over the years, regarding the cariogenic potential of milk. 

While milk is known to contain sugar in the form of lactose (4-5% in cow’s milk; 7% in 

human milk (Darke, 1976)), in the great majority of situations it is thought to be anti- 

cariogenic (McDougall, 1977; Bowen et al., 1991; Bowen and Pearson, 1993; Erickson 

and Mazahari, 1999). However, in a very few cases, human milk has been shown to cause 

“nursing caries” (a form of early childhood caries) in children who have been fed “on 

demand”, throughout the night when sleeping alongside their mothers (Dilley et a l ,  1980; 

Derkson and Ponti, 1982; Roberts, 1982).

As well as the above mentioned constituents, milk contains a range of antibacterial 

substances: lysosyme, peroxidase and lactoferrin (Kosikowski, 1970), which could affect 

the microflora of the oral cavity. However, as liquids are swallowed quickly, any 

components are less available to intra-oral bacteria as compared to sticky, more retentive 

foods.

In studies using enamel slabs in vitro, milk has been shown to cause less enamel solubility 

than lactose or sucrose solutions (Jenkins and Ferguson, 1966; McDougall, 1977). M ilk is 

also known to contain caries-protective factors, such as calcium, phosphate, casein and 

lipids. Moynihan et a l (2003) report that calcium and phosphate are present in cow’s milk 

in high concentrations (125mg and 96mg/100g respectively), but less-so in human milk
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(34mg and 15mg/100g respectively). It was these high concentrations of calcium and 

phosphate that were initially thought to be the reason why milk was anti-cariogenic. 

However, when milk was compared with a water-based solution containing equivalent 

calcium and phosphate concentrations, enamel was found to be less soluble with milk than 

the water-based solution (Jenkins and Ferguson, 1966). These workers concluded that the 

effect of milk was more complicated than can be accounted for by its calcium and 

phosphate content alone, and that some other constituent must also have an effect on 

enamel solubility. Later studies showed that casein may protect against demineralisation of 

enamel, but unfortunately this is unpalatable to humans (Reynolds and Black, 1987; 

Reynolds et al., 1995). More recent studies (Grenby et al., 2001) tried to determine the 

caries-protective agents of milk in vitro. Their main findings were that when fat, lactose, 

casein and other proteins were removed from milk, it was still caries-protective; i.e. it 

seems calcium and phosphate plays a part in inhibiting caries. However, they stated that 

milk contains other protective factors more powerful than these, and further investigations 

suggested that proteose-peptones may be involved.

M ilk has been shown to reduce the cariogenic potential of sugar-containing foods (Jenkins 

and Ferguson, 1966; Thompson et al., 1984). However, an increase in plaque-acid 

production was noted in an intra-oral plaque study with 5% sucrose in milk (Thompson et 

al., 1984), though another study found no such effect, albeit demineralisation was produced 

with 5% sucrose in water (Mor and McDougall, 1977). Hence, apparent contradictions 

exist.
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1.5 Fluoride delivery systems
1.5.1 Ingestion, absorption, storage and excretion of fluoride
Fluorine is the most electronegative of all chemical elements, is seventeenth in the order of 

elemental abundance in the Earth’s crust (Fleischer, 1953) and, in its ionic form fluoride 

(F'), is ingested via water, foods and drinks. The main source of ingested fluoride is from 

fluoridated dentifrices, other sources include fluoridated mouthwashes and varnishes 

(Fomon and Ekstrand, 1996). Fluoridated water may also have a significant effect in a 

naturally or artificially fluoridated area (in temperate climates, the ‘ideal concentration’ is 

1 ppm F'). In addition, small amounts may be acquired from the use of fluoridated milk, 

Teflon-coated cooking vessels, airborne origins and fluoride-containing drugs. O f the 

ingested fluoride, the major portion is absorbed from the stomach and duodenum (75- 

90%), 1% is absorbed through the oral mucosa, and 10-25% passes through the body to be 

excreted in faeces (Murray et al., 1991).

When fluoride is absorbed via the stomach and duodenum, it is carried around the body 

within blood plasma. Concentrations of fluoride in ductal saliva and gingival crevicular 

fluid, as well as urine and bile, are related to plasma levels. Any change in the fluoride 

concentration of plasma creates a simultaneous and proportional change in the fluoride 

levels of these body fluids (Murray et al., 1991). Approximately 99% of fluoride absorbed 

following ingestion is stored by the body in the calcified tissues, where it is strongly bound 

to apatite and other calcium phosphate compounds (WHO expert Committee on Oral 

Health Status and Fluoride Use, 1994). Any absorbed fluoride not stored, is excreted in 

urine (Murray et al., 1991).

Fluoride has an affinity for apatite tissue (found in tooth and bone). The fluoride content of 

bone reflects plasma fluoride concentration at the time of calcification and during 

remodelling. Therefore, it changes in relation to the levels of fluoride ingested. As 

discussed earlier, fluoride may substitute for hydroxyl groups in hydroxyapatite to form a 

fluoridated hydroxyapatite.

Research has shown that fluoride is most effective in dental caries protection when a low 

level of fluoride is constantly maintained in the oral cavity. The World Health Organisation 

Oral Health Strategy, encourages the use of ‘community-basedpublic health programmes
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to implement the most appropriate method o f maintaining a constant low level offluoride 

in as many mouths as possible' (World Health Organisation, 2005). There is clear evidence 

that long-term exposure to an optimum level of fluoride results in diminishing levels of 

dental caries in both children and adults. This can be achieved using one or more of the 

methods described below.

1.5.2 Fluoridated water
As was detailed in Section 1.3, water was the first vehicle whereby the beneficial caries- 

preventive action of fluoride was observed (Ainsworth, 1928). Fluoridation of the drinking 

water, either naturally occurring or as a therapeutic additive, is still the preferred method of 

administering fluoride to a population, as the water is drunk both by consumers and is also 

used for cooking. Furthermore, its consumption requires no active compliance of the 

individual. Thus the frequency of exposure of teeth to fluoride is fairly constant and 

guaranteed.

Artificial fluoridation adjusts the fluoride level in the water supply to 1.0 ppm F' in 

temperate climates, 1.2 ppm F' in arctic regions and 0.6 ppm F' in tropical regions. A 

recent UK systematic review commissioned by the Chief Medical Officer of the 

Department of Health published in 2000, examined 214 studies further to an electronic 

search of 25 databases, with no language restrictions and hand search of appropriate 

journals. One of the aims of the review was to determine the evidence regarding the effect 

of water fluoridation on dental caries. Twenty six studies were included in this part of the 

review; a large number of studies were excluded because they were cross-sectional studies 

and did not satisfy the inclusion criteria. It concluded that the best available evidence 

suggests that fluoridation of drinking water supplies does reduce caries prevalence, both as 

measured by the proportion of children who are caries-free, and by the mean change in 

dmft/DMFT score. The range of the mean difference in the proportion (%) of caries-free 

children is -5% to 64%, with a median of 14.6%.Therefore, it was not possible to 

determine, the degree to which dental caries was reduced from the data available 

(McDonagh et al., 2000).

Unfortunately, domestic water within and surrounding Glasgow has a fluoride 

concentration of less than 0.03 ppm F \
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1.5.3 Fluoridated milk
As will be described in greater detail, in section 1.6, fluoridated milk was considered over 

40 years ago in areas with non-fluoridated water supplies. M ilk was recommended as a 

vehicle because of its additional benefit as a good food for infants and children. Numerous 

studies involving fluoridated milk have been undertaken in the USA (Rusoff et al., 1962), 

Switzerland (World Health Organisation, 1970), Scotland (Stephen et a l , 1981; Stephen et 

al., 1984), Hungary (Banoczy et al., 1983; Banoczy et al., 1985), Israel (Zahlaka et a l , 

1987), North West England (Ketley et a l , 2003), and most recently in Russia (Maslak et 

a l , 2004).

While generally positive benefits were reported, the methodologies employed were often 

far from ideal. In addition, one of the difficulties with using fluoridated milk is the logistics 

of producing sterilised fluoridated milk, delivering it to those who need it, and then 

ensuring its compliant consumption.

1.5.4 Fluoridated salt
Fluoridated salt, like fluoridated milk was pioneered in Switzerland, where it was first 

introduced in 1955. It is currently used by approximately 80% of the population. The 

fluoride concentration is currently 250 mg F/kg salt, with the average ingestion of 7-10g 

per day, 3-5g of which is via domestic salt. It is also used in Hungary, Columbia, France, 

Spain and Germany. Studies in Switzerland (De Crousaz et al., 1985) and Hungary (Toth, 

1976) have indicated that fluoridation of salt results in substantial dental caries prevention. 

For example, in the Hungarian study, there was a decrease in the DMFT of 58%, after 8 

years of salt fluoridation in children aged 7-11 years. As a community-based means of 

fluoride delivery, fluoridated salt also uses relatively simple technology and is cheap to 

produce and purchase. In addition, as it requires little positive effort, it has good 

acceptability with the public. However, with public health messages encouraging the 

reduction of salt in the diet, as a method of reducing hypertension, it may be that the 

promotion of fluoridated salt has limited use in the 21st century.

1.5.5 Fluoridated dentifrice
Millions of people worldwide use fluoridated toothpaste. It is one of the World Health 

Organisation’s policies to support the widespread use of affordable fluoridated toothpaste 

in developing countries, particularly as a result of the changing diet and nutritional status 

in these countries (World Health Organisation, 2005).
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Many changes have taken place with respect to formulation of toothpaste over time as in 

the 1940s, the fluoride salt (sodium fluoride) was found to bind to the abrasive and become 

clinically inactive. The formulations of mono-fluorophosphate and stannous fluoride were 

developed, both of which were compatible with calcium-containing abrasives. Then, in the 

1980s, new abrasives were developed e.g. hydrated silica, which was compatible with 

sodium fluoride. Amines can also be used, which in conjunction with the stannous ion, 

may act as F" counter-ions thereby having additional benefits of being antimicrobial.

Today, the most common sources of fluoride in toothpastes are sodium fluoride (NaF) and 

sodium monofluorophosphate (Na2FPC>3, often abbreviated to SMFP). Although NaF is 

acknowledged, since 1974, as being marginally more effective (Stamm, 1995), SMFP is 

often used because it is compatible with a wider range of ingredients, particularly those 

which are less expensive.

Toothpastes are designed to act in a topical manner (i.e. act locally within the mouth, on 

the surfaces of erupted teeth) rather than act following ingestion (systemic effect). As high 

doses of fluoride can cause fluorosis and be toxic, the maximum fluoride level allowed in 

Europe for “over the counter sales” is 1450ppm F (0.32% NaF, 1.14% SMFP), and in USA 

1 lOOppm F (0.22% NaF, 0.76% SMFP). The efficacy is known to increase by 6% per 500 

ppm F" increase in relative concentration (Stephen et a l , 1988). The British Society of 

Paediatric Dentistry has recommended that children under the age of six use 600 ppm F' 

toothpaste, unless they are of higher caries risk, when 1000 ppm F' toothpaste should be 

used, with only a small pea-sized amount (Rock, 1994). Children over the age of six should 

use 1000 or 1450 ppm F' toothpaste (Holt et al., 1996). Recent studies using fluoridated 

toothpastes with a fluoride content of 2800 ppm F‘ demonstrated an increase of 20% in its 

protective effect (Biesbrock et al., 2001) and such a formulation “ Colgate Duraphat®

2800 Fluoride toothpaste” (Colgate-Palmolive (UK) Ltd, Guildford, UK) is available on 

prescription in the UK.

A recent systematic review investigated the effectiveness of fluoridated toothpastes in the 

prevention of dental caries in children and adolescents. It found clear evidence that fluoride 

toothpastes are efficacious in preventing dental caries. The effect of fluoride toothpaste 

increased when the baseline levels of D(M)FS were high; when a higher fluoride 

concentration was used; with higher frequency of use; and with supervised brushing. This 

effect was not altered by exposure to water fluoridation. On average, fluoride toothpastes 

reduced the DMFS 3-year increment by 24% (Marinho et al., 2004b).
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Furthermore, increased efficacy, over-and-above that of increased brushing frequency has 

been proven when post-brushing rinsing with water is eliminated, as the fluoride is then 

not removed from the mouth and is thus available to exert a greater topical benefit (Sjogren 

et al., 1995; O'Mullane et al., 1997; Chestnutt et a l , 1998).

7.5.6 Fluoride supplements
Where water fluoridation is not possible, other vehicles of fluoride delivery must be 

considered. One of the first suggestions for enhancing fluoride exposure was fluoride 

tablets. The first use of this form was attributed to Erharde (1874) in the form of potassium 

fluoride tablets, though the first trial was not recorded until 1945 by Beaudet and reported 

by Bibby et al.( 1955) using calcium fluoride tablets. Arnold et al. (1960) reported on 121 

subjects who had started to take 0.5- or 1-mg F' (sodium fluoride) tablets daily, between 

birth and 6 years of age, over periods ranging from 1 to 12 years and published dmft and 

DM FT results which were comparable with similarly aged subjects in naturally fluoridated 

Aurora and artificially fluoridated Grand Rapids, Newburgh and Brantford.

The daily dosage of fluoride in tablet/drop form was calculated from estimates of fluoride 

ingestion from water. The main drawback of this method is compliance, especially where 

tablets are given for home use (relying on parental and child compliance) rather than in 

supervised school programmes. Current British opinion, based on the majority view and 

current evidence (British Society of Paediatric Dentistry) is that children who live in areas 

containing less than 0.3 ppm F', and who are considered to be at high risk of developing 

dental caries, should take a fluoride supplement of 0.25 mg F' per day for those aged 6 

months up to 3 years; 0.5 mg F‘ per day for those aged 3 up to 6 years and 1.00 mg F‘ per 

day for those aged 6 years and over (Holt et al., 1996), albeit the efficacy of such a 

regimen has still never been tested clinically. When fluoride is given as tablets, these 

should be allowed to dissolve slowly in the mouth in order to give a maximal topical effect 

(McCall et al., 1981) as well as any parallel post-ingestion systemic benefit.

7.5.7 Fluoridated mouthwash
Fluoridated mouthwashes (also known as mouthrinses) act topically within the mouth.

They usually contain 0.05% sodium fluoride (225 ppm F) if  used as a daily rinse or 0.1- 

0.75 %  sodium fluoride (450-3000 ppm F) if  used weekly. Over 30 trials in 14 countries 

have shown that daily mouthrinsing helps to prevent dental caries. A systematic review
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(Cochrane) completed in 2004, determining the efficacy of fluoride mouthrinses showed 

they reduce the DMFS 3-year increment by 26% (Marinho et al., 2004a). Sodium fluoride 

is the preferred formulation (Stephen, 1994), and increased frequency is more efficacious 

than increased concentration (Heifetz et al., 1982).

1.5.8 Fluoride varnish
Fluoride varnish application is a topical method of delivering fluoride to the erupted 

surface of the tooth. The most common UK formulation is Duraphat® varnish (Colgate 

Oral Pharmaceuticals, Canton, MA, USA) which contains 50mg sodium fluoride in 1 ml, 

equivalent to 22.6 mg (22,600 ppm F') of fluoride in an alcoholic solution of resins.

Topical fluoride varnishes are of proven benefit in preventing caries and in helping to 

arrest caries in children with early childhood caries (previously known as “nursing bottle 

caries”) and cervical decalcification. These are highly concentrated vehicles for fluoride 

and the recommended dose should not be exceeded (Ekstrand et al., 1981; Shaw, 1997).

A recent systematic (Cochrane) review investigating the effectiveness of fluoride varnishes 

in the prevention of dental caries in children (Marinho et al., 2005b), examined nine 

studies involving 2709 subjects. They concluded there was a substantial caries-inhibiting 

effect of fluoride varnish in both permanent and deciduous dentitions, based largely on 

trials with “no treatment” controls. However, they were not able to estimate the D(M)FS 

reduction as a result of the relatively poor quality of most of the included studies and the 

wide confidence intervals around the estimates of effect.

1.5.9 Fluoride gel
The use of a thixotropic gel has also been employed as a topical method of delivering 

fluoride to the mouth. Current British recommendations (British Society of Paediatric 

Dentistry) state that “ ....professionally applied fluoride gels (1.23 % acidulated phosphate 

fluoride APF) and solutions (8% stannous fluoride) are recommended by some authorities, 

but have been shown to be o f poor cost-benefit, although clinically beneficial Children at 

high risk should be considered fo r application o f topical fluorides twice yearly” (Shaw,

1997).

A recent systematic review investigated the effectiveness of fluoride gels in the prevention 

of dental caries in children (Marinho et al., 2005a) and included 25 studies involving 7747 

youngsters. They concluded there was clear evidence of the caries-inhibiting effect of
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fluoride gel, the best estimate of this being a 21% reduction (95% Cl, 14 to 28%) in 

D(M)FS. However, inadvertent ingestion can achieve toxic F“ levels unless delivery and 

swallowing of the F" gel is well controlled (Ekstrand et al., 1981; McCall et al., 1983).

1.5.10 Fluoridated foodstuffs
The fluoride content of fresh food generally ranges from 0.01 to 1.0 ppm F' (Whitford,

1996). Fish, such as sardines, may contribute to a higher dietary intake if  the bones are 

eaten. Brewed teas may also contain fluoride concentrations of 1 ppm to 6 ppm F' 

depending on the amount of dry tea used, where the tea leaves were grown, the local water 

fluoride concentration, and the brewing time (Whitford, 1996).

Chewing gum has also been used as a method of delivering fluoride to the oral cavity. 

Brunn and Givskov (1978) reported on salivary fluoride levels following the chewing of 

gum containing 0.25 mg F \ However, with only 6% of the gum fluoride remaining after 10 

minutes of chewing, the salivary fluoride content was low at 3.9 ppm F \ They later 

admitted that the fluoride-containing gum might be more readily accepted by children than 

other methods, but this creates a potential problem of excessive intake via unsupervised 

usage (Bruun and Givskov, 1979). Furthermore, there have been no controlled clinical 

caries-inhibiting studies using this delivery vehicle.

1.5.11 Slow release fluoride devices
More recently, another method of fluoride delivery has been developed: the slow release 

fluoride device. The aim of this device is to provide a constant source of fluoride to the 

oral cavity and overcome problems of poor subject compliance. Initial work on slow 

release fluoride was completed using co-polymer membranes retained on teeth in 

orthodontic brackets (Mirth et al., 1982; Mirth et al., 1983). Further work has been 

completed using glass beads, which contain trace elements in the form of inorganic 

radicals and it has been possible to place fluoride as the trace element in such a device 

(Curzon and Toumba, 2004). Slow releasing glass fluoride devices containing 13.3% 

fluoride, placed on the buccal aspect of maxillary first permanent molar teeth have been 

shown to increase long-term salivary fluoride concentration (Curzon and Toumba, 2004). 

Fluoride delivered in this manner has been shown to be effective as a caries-preventive 

device in vivo in schoolchildren from a low socio-economic background (Toumba and 

Curzon, 2005).
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1.5.12 Summary
Fluoride is without question a most powerful caries preventive agent, and is probably the 

only one for which substantial efficacy has been shown beyond doubt. It is also a 

therapeutic agent which is by-and-large safe for use, as shown in many long-term studies. 

Currently, the WHO Global Health Programme is undertaking demonstration projects in 

Africa, Asia and Europe to assess the relevance of affordable fluoridated toothpaste, water 

fluoridation and salt fluoridation in these areas (World Health Organisation, 2005).

Fluoride’s topical effectiveness regarding dental caries prevention, has been firmly 

established via the body of evidence from randomized controlled trials (Marinho et al., 

2005c). Fluoride toothpastes in comparison with mouthrinses or gels appear to have a 

similar degree of effectiveness for the prevention of dental caries in children (Marinho et 

al., 2005d). However, acceptance is likely to be greater for fluoride toothpaste. 

Additionally, the use of another topical fluoride e.g. mouthrinse, gel, or varnish as well as a 

fluoridated toothpaste, achieved only a modest caries reduction benefit compared to that of 

toothpaste alone (Marinho et al., 2004c).
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1.6 Fluoridated milk as a fluoride delivery system
The use of milk as a vehicle for delivering fluoride has been mentioned previously. This 

section will discuss fluoridated milk in more detail.

The use of fluoridated milk as a possible dental caries-preventive medium was first 

proposed by the Swiss paediatrician Ziegler, in 1953. The method he suggested was 

described in a review (Zeigler, 1956), whereby he added lm L of 0.22% NaF (1000 ppm F') 

solution to 1 litre of fresh milk. He stated that “...the addition offluoride in dosage o f 1 mg 

F  per litre (1 ppm F )  to milk, in cases where the fluoridation o f drinking water is not 

possible, is justified on the grounds ofphysiological and toxicological considerations. The 

advantages o f this mode o f administration as compared with fluoride prophylaxis with 

tablets, salt or even with water, seem to be significant. ”

1.6.1 Possible interactions between milk and fluoride
One of the common misconceptions about the addition of fluoride to milk is that the ionic 

constituents of the milk will bind with the fluoride and prevent any therapeutic benefit. 

There is a certain element of truth in this statement, but it is an issue only with high doses 

of fluoride, or where it is left for a number of hours before drinking. Konikoff (1974) and 

D uff (1981) noted that significant binding of milk to fluoride occurred after a period of 

four or five hours. Cutress et al. (1995) studied the effects of deposition of fluoride in 

ovine enamel from fluoridated milk at concentrations of 300 and 750 ppm F', and found 

that only 30% and 20% of fluoride respectively was chemically available within the milk. 

In the 2-5 ppm F’ concentration range, which is commonly used in milk, these interactions 

have a relatively small effect on the bioavailability of fluoride (Phillips, 1991; Edgar et al., 

1992). In the most commonly used pasteurized milk, virtually all added fluoride remains 

available throughout its shelf-life, extending over several days when stored below 6°C. 

However, ultra-heat-treated (UHT) fluoridated milk does suffer some loss of fluoride 

availability during processing and subsequent storage at ambient temperatures over the six 

month shelf-life (Stephen et a l, 1996).

1.6.2 Compounds used to fluoridate milk
Compounds which have been used to fluoridate milk include sodium fluoride, calcium 

fluoride, disodium monofluorophosphate and disodium silicofluoride. A ll of these 

compounds have been used successfully in clinical and laboratory trials (Stephen et al., 

1984; Banoczy et al., 1985; Villa et a l ,  1989; Stosser et a l, 1993). O f these compounds,
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sodium fluoride is by far the most commonly used agent for large scale production of 

fluoridated milk and has been used in large community schemes in Bulgaria, China, Russia 

and the United Kingdom. In the Chilean studies, (Stephen et a l,  1996) disodium 

monofluorophosphate was used, albeit via powdered milk. Calcium fluoride has not been 

used for large scale production because of its low aqueous solubility.

Sodium fluoride is usually added to the milk in the form of a concentrated aqueous 

solution, using a fixed volume ratio to obtain the required concentration.

1.6.3 Milk fluoride concentration and volume
To calculate the appropriate milk fluoride concentration, it is necessary to consider the 

volume of fluoridated milk consumed daily by a child. The volume consumed varies with 

location; e.g. in the UK, a child would typically receive 1/3 pint (189 mL) of school milk 

per day, whereas in China, kindergarten children each receive 250 mL (Stephen et a l,  

1996). In order to deliver a dose of approximately 0.5 mg fluoride per day, to children in 

both areas, the fluoride concentration in the milk would need to be set at 2.65 ppm F' and 2 

ppm F' respectively. In Bulgaria, where 200 mL per day is the typical volume consumed 

and the fluoride requirement is lmg per day, the concentration of fluoride in milk is set at 5 

ppm F \

1.6.4 Methods of measuring fluoride concentration in milk
The ionizable fluoride concentration of milk can be conveniently measured using a fluoride 

ion selective electrode (Orion Research of Boston, USA), in conjunction with a reference 

electrode, coupled to an ion meter. The use of an appropriate buffer (TISAB II, Total Ionic 

Strength Adjustment Buffer) allows measurement of fluoridated milk concentrations of 

between 1 and 10 ppm F" via a direct concentration readout, or a millivolt output from 

which concentration may be computed (Stephen et a l ,  1996).

1.6.5 Mode of action of fluoridated milk on caries process
The action of milk on the caries process has been discussed previously in Section 1.4, 

where the evidence for milk acting as a caries-preventive substance was shown. Stosser et 

al. (1995) demonstrated there was no evidence to suggest that the fat content of milk 

(skimmed, semi-skimmed or whole) nor the method in which the milk was sterilised (raw, 

pasteurized, UHT) had any effect on the caries-protective effect of milk. However,
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Konikoff (1974) noted that for the consumption of fluoridated fresh milk to be effective, it 

had to be consumed within four hours of preparation.

The addition of fluoride to milk has additional benefit, as it may accumulate in the dental 

plaque; Kertesz et al. (1992) noted this after eight weeks of fluoridated milk consumption. 

It may also accumulate within the enamel. Toth et al. (1987) took acid-etch enamel 

biopsies of children (aged 8-10 years) who had been involved in a closed community 

fluoridated milk study and showed a significant increase (p<0.01) in the fluoride content of 

the enamel biopsy samples after consuming fluoridated milk (200 mL milk containing 

0.75mg F') for one year. Given that the children in the Toth et al. (1987) study were aged 

eight to ten years, it would be reasonable to assume that the increase in fluoride content of 

the enamel was as a result of a post-eruptive (topical) effect of fluoride.

1.6.6 Clinical/Community trials with fluoridated milk
The first clinical trial was in Yokohama, Japan (Imamura, 1959) and reported a 36% caries 

reduction in the permanent teeth from the fluoride group, which consisted of 167 11-year 

olds who consumed 2-2.5 mg NaF in milk, or soup, added to school meals over 150-180 

days a year.

In the USA, Rusoff et al. (1962) enrolled 65 school children, aged six to nine years at the 

outset and provided milk (3.5 ppm F ') to them daily at school. They achieved an overall 

caries reduction of 35% in the six year-old children, and a 78% difference between the test 

and control groups.

In Switzerland, Zeigler (1956) and Wirz (1964), published reports on a large scale 

experiment in Winterthur, Switzerland. They gave one ppm F' to 749 test children (553 

controls) who were aged between nine and 44 months at the beginning of the trial, and 

after six years, the caries reduction was between 14.8% and 31.5% in primary teeth and 

from 64.2% to 65.2% in permanent molars.

In Scotland, in the early 1980s, a carefully designed double-blind study with substantial 

pre-trial stratification, was run over five years. M ilk was given to 4/4 to 5/4 year-old school 

children by providing those in the test group with 200 mL of milk with 1.5 mg F’ added 

(approx. 7 ppm F') while those in the control group were given 200 mL of milk. Both 

groups were given milk for 200 days per year. There were 187 subjects recruited, 94 were
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in the test group and 93 in the control group. The children had annual clinical and 

radiographic examinations. The clinical examinations and milk distribution were on a 

double-blind basis and the radiographs were also read blind. Compliance was assessed by 

laboratory-based urine analysis, at the end of the second year of the trial. The fluoridated 

milk solution was prepared by adding 300 mL of sterile sodium fluoride solution to five 

gallons of milk. At the end of five years there were 50 subjects remaining in the test group 

and 56 in the control group. There was a 31.2% difference in the DMFT scores between 

the fluoridated and non-fluoridated milk scores, and a 43.1% difference in the DMFS 

scores (Stephen et al., 1984).

In Hungary, in 1979, a milk fluoridation study was implemented. Here each child 

consumed 200 mL of milk or cocoa-milk daily, 0.4 mg F' was added to kindergarten 

children and 0.75 mg F' was added to the milk of primary children. Fluoride aliquots were 

prepared by the pharmacy and these were added to the milk and stirred for 10 minutes, 

ensuring that the milk was consumed within 30 minutes. Urinary fluoride excretion was 

analysed initially, weekly then monthly. Clinical examinations were carried out each year, 

DMFS, dmfs, DMFT and dmft indices were calculated without radiographic examination. 

Data were analysed at three, five and ten years. The overall mean caries increment was 

calculated between the test and control groups, there was a 36.8% DMFT, and a 40.0% 

DMFS reduction favouring subjects in the fluoridated milk group (Banoczy et a l ,  1985; 

Gyurkovics et al., 1992).

In the United States, a school-based study was designed to investigate the effect of using 

fluoridated chocolate-flavoured milk on caries incidence in elementary school children 

over two and three years (Legett et al., 1987). They suggested that chocolate flavoured, 

sweetened milk is strongly preferred and this may increase the compliance of milk 

ingestion. However, although a control group is described in the study, it was not described 

whether this was fluoridated and/or sweetened or not. They describe compliance issues and 

a large interruption in the delivery of milk to the schools following dairy refurbishment as 

well as a high attrition rate which led them to recruit additional subjects to analyse over a 

two-year period. Overall, they describe a 77% caries reduction in their two-year study 

when children ingested chocolate-flavoured fluoridated milk. Because of these procedural 

difficulties, these results should be interpreted with caution.
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A study in Israel (Zahlaka et al., 1987) investigated the caries-reducing effect of 

reconstituted powdered cow’s milk (100 mL) supplemented with 1 mg F" as NaF. This was 

provided to children aged between four and seven years at the start of the study for a 

period of three years at school. There were 120 subjects in each of the test and the control 

groups. The control group had no beverage; a more suitable control would have been to 

have the reconstituted powdered cow’s milk with no fluoride supplement. It is known that 

milk may exert a cariostatic effect, therefore, it is difficult to determine whether the results 

of this study are as a result of effect of the fluoride or the combined effect of the milk and 

fluoride.

Community based studies have been undertaken in Bulgaria, where Pakhomov et al.

(1995) instigated a school-based fluoridated milk study involving 3-10 year olds ingesting 

200 mL of milk containing 1 mg of F" (equivalent to 5ppm F' as NaF) in a town, 

Asenovgrad. Their control group were children in a nearby town, Panaguriche, who 

received milk from a different dairy. Cross-sectional random samples of 100 children from 

each town were examined at age six and a half, and again three years later. The fluoridated 

milk cohort showed a decrease in dmft of 40% and in the mean DMFT of 89% compared 

to baseline. However, they discussed that these benefits may not have been as a result of 

fluoridated milk alone, and there may also have been additional effects of improved oral 

hygiene and improved dietary habits.

A large school-based milk fluoridation study was undertaken in North West England by 

Ketley et al. (2003). This study involved children, initially aged 3-5 years. Those in the 

fluoridated school milk group were given 189mL of milk containing 0.5mg of F'

(equivalent of 2.65 ppm F‘), those in the non-fluoridated milk group had the same volume, 

and both groups drank with a straw for approximately 180 days per year. Blinded, clinical 

visual examination was undertaken also examination using Fibre-optic Transillumination 

(FOTI) for DMFT, DFS, dmft and dfs, at baseline and four years later (7-9 years). The 

fluoridated-milk group (n=318) had DMFT 0.40 (st.dev.= 0.85), DFS 0.45 (st.dev.=1.12), 

dmft 2.28 (st.dev.=2.06) and dfs 4.49 (st.dev.=4.91). The non-fluoridated milk group 

(n=233) had DMFT 0.40 (st.dev=0.87), DFS 0.55 (st.dev.= 1.35), dmft 1.96 (st.dev.= 2.18) 

and dfs 4.12 (st.dev.= 4.85). Therefore, this group found no caries reduction in the primary 

dentition and very minimal impact on the permanent dentition. They discussed a number of 

potential explanations for their findings differing from those of previously published work, 

including: age of entry into the study; the numbers of days the children consumed the milk;
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the DM FT in the non-fluoridated milk control group (which was five times less than that in 

the Stephen et al. (1984) study); diet; fluoride toothpaste and use of fissure sealants. Many 

of the earlier fluoridated milk studies were conducted before fluoridated dentifrices were 

readily available or fluoridated dentifrices were not used by test subjects. However, in the 

UK (and elsewhere), fluoridated toothpaste is very readily available and was used at least 

twice a day in 63-66% of subjects in this study.

Most recently, in Volvograd in Russia, Maslak et al.(2004) investigated the effect of 

fluoridated milk in kindergarten children. One hundred and sixty-six children who were 

caries-free aged three, were randomly assigned into two groups. Group 1 (n= 75) 

consumed 180-200 mL of fluoridated milk when at school, group 2 (n=91) consumed non- 

fluoridated milk for four years. Preliminary three year results showed that caries 

prevalence was 69.3% in Group 1 and 82.4% in Group 2, (p< 0.05), dmft was 2.5 

(st.dev.=0.26) for Group 1 and 3.64 (st.dev.=0.26) for Group 2, (p< 0.05) at detection 

threshold D3, D4. They concluded that their milk fluoridation project was effective in 

reducing caries in children when given from three years of age; however, no mention was 

made of the concentration of fluoridated milk used in the study or whether the children 

were using additional fluoride vehicles possibly in the form of fluoridated toothpaste.

1.6.7 Summary of fluoridated milk as a fluoride delivery system
There is “bioavailability” evidence that the availability of fluoride is not reduced by milk 

in the concentrations currently used (<15 ppm F'). The main effect of the fluoride within 

fluoridated milk appears to be a post-eruptive topical one, as it is still as effective in older 

children whose teeth have erupted prior to them being recruited into fluoridated milk 

studies (Toth et a l , 1987). However, Pakhamov et al. (1995) suggested that the greatest 

benefit of fluoridated milk occurs when it is available earlier in the child’s life and in the 

first two to three years of the programme.

Fluoride concentrations of 5-15 ppm F' as CaF2, NaF, Na2-monofluorophosphate or Na2- 

silicofluoride have been shown to result in a significant reduction in caries of 40-50% and 

did not depend on the compound of fluoride used. The Ketley et al. (2003) study used 

fluoride concentration of 2.65 ppm F' and observed minimal caries reduction with this 

concentration in the permanent dentition only.
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There is some debate about the quality of the evidence supporting milk fluoridation. In a 

review of the literature (Marino, 1995) concluded that “recent evidence suggests that milk 

fluoridation may be regarded as a valid alternative in areas where water fluoridation 

cannot be used to provide the desired benefits”. More recently, a systematic review of the 

effectiveness of fluoride tablets, fluoride in salt and fluoride in milk with regard to 

prevention of caries was unable to draw conclusions due to insufficient evidence (Holm, 

2002).

In conclusion, where compliance can be assessed, fluoridated milk appears to maintain a 

prolonged low level of ionized fluoride available within the oral cavity, and this can be 

capable of promoting remineralisation (Stephen et al., 1996). However, currently, there is 

insufficient evidence to determine the extent of the caries preventive effect of fluoridated 

milk over-and-above that of fluoridated dentifrice. Further studies are required to 

investigate this.
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1.7 Caries investigative models
In this section, the design and methods used for caries in situ and in vitro trial models, and 

the reasoning behind the methods chosen for the studies described later in this thesis, are 

discussed.

Ideally, to study the effect of potential caries preventive factors on de- or re-mineralisation, 

a randomised-controlled-clinical-trial (RCT) model would be used, involving longitudinal 

studies and measurement of caries increment, e.g. van Rijkom et al. (2004). However, there 

are significant difficulties with this approach, such as the difficulty of achieving ethical 

approval; potential bias must be avoided by the use of a randomised blind study design; 

and such studies tend to be time-consuming for both patients and examiners. In 

combination, these factors make clinical in vivo randomised-controlled-trials very 

expensive to run. Other models have therefore been developed such as in vitro and in situ 

models, which can simulate an in vivo situation to a greater or lesser extent.

1.7.1 Introduction
As discussed previously (Section 1.2) dental caries is a multi-factorial process. In vitro and 

in situ models are useful to investigate the caries process because they allow multiple 

variables to be held constant in order to facilitate the measurement of a single variable 

(Mellberg, 1992). This situation is virtually impossible to replicate in a clinical 

longitudinal randomised controlled trial. Also, dental caries may progress slowly over a 

long time-period making randomised controlled trials in vivo expensive to run. This is in 

addition to the inevitable subject attrition that occurs over time. Models have the advantage 

that the caries process can be accelerated, or designed in such a way that smaller changes 

in mineral content can be more accurately measured in a non-invasive and ethical manner, 

often using fewer subjects.

The disadvantages of models are that because relatively small numbers of subjects are 

used, the sample population is not necessarily comparable with the general population. 

Also, the studies require a certain amount of compliance from the subject and can be 

difficult to ascertain if  this has been sufficient. Any lack of compliance could have a 

significant effect on experimental outcome.

Given the multi-factorial nature of dental caries, these models should include: a tooth 

substrate (either enamel or dentine), the formation or presence of dental plaque with
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cariogenic potential, a carbohydrate challenge (provided by the subject’s normal diet or 

experimentally controlled), with all of these factors occurring over time (Zero, 1995). The 

method in which the formation or presence of plaque and carbohydrate challenge are 

delivered to the model is dependent on the protocol used to induce the change and the 

place in which the study will take place i.e. in vitro, in situ or in vivo. The method used to 

observe and measure the change is also important and will be discussed in more detail in 

Section 1.8.

Intra-oral model systems provide an essential intermediate step between test procedures in 

animals and in vitro investigations on the one-hand, and clinical and field trials on the 

other (Manning and Edgar, 1992).

1.7.2 In vitro models
These are models which are used, out of the oral cavity, in a highly controlled laboratory 

situation. Such laboratory-based studies are useful for initial investigations into the effects 

of various parameters on de- and re-mineralisation. They allow the use of untested 

products which have yet to be proven as non-detrimental to human health. They are 

frequently quicker to perform, cheaper and can be undertaken at times convenient to the 

investigators (Manning and Edgar, 1992). However, there are limitations to this type of 

study as it can be difficult to extrapolate information determined in this manner, directly to 

a clinical situation.

1.7.3 In situ models
“In situ models involve the use o f appliances or other devices which create defined 

conditions in the human mouth that simulate the process o f dental caries” (Zero, 1995).

In situ models use a hard-tissue substrate placed within the oral cavity for the purpose of 

studying changes in the substrate due to a treatment or modification of the oral 

environment (Mellberg, 1992). Numerous model systems designed to measure the loss or 

gain in mineral by tooth tissues over short periods have been developed. These provide 

direct evidence of the process of caries development, without incurring some of the ethical 

and practical problems involved in clinical trials (Manning and Edgar, 1992).

In situ models tend to use hard tissue substrates in the form of tooth slabs or single sections 

cut from extracted teeth (0gaard and Rolla, 1991). Enamel blocks containing pre-prepared
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artificial caries lesions are usually employed to evaluate the effects of products or 

conditions on remineralisation, though they are also used to determine demineralisation 

and fluoride uptake (Mellberg, 1992). The study of naturally occurring carious lesions is 

the most clinically relevant method of analysing remineralisation and further 

demineralisation in caries trials. However, many uncertainties occur when using such 

lesions, namely, the extent of the caries lesion, whether it has arrested or has the potential 

to become active, and the site of the dental caries. It is known that remineralisation occurs 

more slowly in an in situ, as compared with an in vitro situation, as a result of the dynamic 

de- and re-mineralising situation that occurs within saliva in situ (Manning and Edgar, 

1992).

Prepared tooth blocks or sections need to be mounted in an intra-oral device to retain them 

within the oral cavity. This technique was first developed by Koulourides and 

Volker(1964). Demineralisation or remineralisation regimes can be delivered to the tooth 

block or section in two ways. First, by removal of the intra-oral appliance and applying the 

fluoride/ dietary item directly to the tooth, and second by having the subject wearing the 

intra-oral appliance and taking the fluoride/dietary item directly into the mouth, as 

naturally as possible with the appliance in place. The second method is preferable since it 

permits normal oral clearance, salivary interactions and other physiological interactions to 

occur (Manning and Edgar, 1992). There are a number of methods used to deliver the 

substrate to the oral cavity, the enamel slabs can be mounted in removable appliances (e.g. 

partial dentures, complete dentures) or in fixed appliances (e.g. temporary crowns or 

orthodontic bands).

The partial denture model was developed first by Koulourides and Volker (1964) and 

expanded by Koulourides (1974) where foreign hard tissue was mounted in posterior 

flanges of lower acrylic dental prostheses. This design required that teeth be missing from 

the arch but has been used successfully in many studies (Dijkman et al., 1986; ten Cate and 

Rempt, 1986). Appliances have been designed to wear as palatal plates containing a 

number of enamel blocks (Brudevold et al., 1984; Zero et al., 1992). Also, single section 

models have been used to carry tooth sections rather than tooth blocks in intra-oral 

removable appliances (Creanor et al., 1986; Wefel et al., 1987; Strang et al., 1988; 

Macpherson et al., 1990).
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Fixed appliances have been used to carry tooth sections or blocks. Wefel et al. (1987;

1992) used an intra-oral gold shell crown model. This involved mounting single sections of 

enamel containing white spot lesions, within a rectangular slot constructed within a cast 

gold shell crown. 0gaard et al. (1992) developed a model using tooth blocks mounted in a 

removable appliance. These blocks were carried beneath orthodontic bands which had 

0.8mm wire posts welded to the inside of the band allowing plaque to accumulate between 

the tooth specimen and the band.

To enable the use of multiple treatment protocols to be applied to subjects involved in in 

situ studies, it is essential for there to be regular ‘washout’ periods between protocols to 

eliminate any effect of one protocol (possibly containing fluoride) on another (possibly not 

containing fluoride). Previous studies have shown that fluoride is not generally retained in 

the oral cavity for longer than two weeks after its last usage (Schafer, 1989). However, in a 

study undertaken by Stephen et al. (1992), they noted an unexpectedly high 

remineralisation rate in the subjects who were using non-fluoridated dentifrice, who had 

used 2500 ppm F' prior to the two week washout period. They suggested that a washout 

period of four weeks should be recommended, to minimise potential problems.

1.7.4 In vivo models
In vivo studies investigating the effect of a treatment on a condition will always be the 

method of choice. However, ethically, only a treatment which shows no detrimental effect 

can be used in such a study. In order to conduct a laboratory investigation to examine 

natural early enamel caries, which may be reversible, it would be unreasonable to extract a 

natural human tooth. Some other tooth pathology or clinical indication would need to be 

present to justify extraction of a tooth for this type of study. Furthermore, there are 

disadvantages of undertaking an in vivo study involving lesion microanalyses unless the 

teeth are pre-scheduled for extraction. These disadvantages include difficulties in 

standardising the effect of the previous oral environment and the tooth type.

Intra-oral models based on vital unextracted teeth should also be considered as in vivo 

models (0gaard and Rolla, 1991). Caries lesions can be developed on such teeth using 

metal plates (Nygaard-Ostby et al., 1957), beneath orthodontic bands (Hals and Simonsen, 

1972; 0gaard and Rolla, 1992), or beneath gauze (Ostrom et al., 1977; Gallacher and 

Pearce, 1979). Many of these models have been used in children when teeth were to be 

extracted later for orthodontic purposes e.g. 0gaard et al. (1988). This model is thought to
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be the most accurate in relation to extrapolation of findings to the in vivo situation, 

however, it also introduces further ethical dilemmas.

1.7.5 Enamel in caries investigative modeis
Early caries of the tooth crown tends to occur in enamel. This is observed, clinically, as a 

white opaque spot that is slightly softer than the surrounding sound enamel, and which 

increases in whiteness when dried with air (Arends and Christoffersen, 1986). Thus, much 

of the research on early caries lesions has examined enamel caries. Primary dentine caries 

may occur as root caries, after gingival recession. Dentine caries also occurs in the coronal 

portion of the tooth, deep to enamel caries, with or without cavitation of the overlying 

enamel lesion (Kidd and Fejerskov, 2003).

One might expect that natural, unaltered human enamel would always be the best choice of 

substrate in experiments relating to the caries process but, depending on the objectives of a 

study, this may not always be so. Sound surfaces are necessary to observe caries formation. 

However, to be able to examine the effect of fluoridated substances on the reversal of the 

caries process, it is important to start experiments with demineralised enamel, thus 

allowing measurement of remineralisation as well as potential further demineralisation.

Historically, in situ and in vitro studies have used a number of different enamel substrates 

in caries trials. These include human, bovine, ovine, canine and porcine enamel. Although 

the majority of the characteristics of mammalian animal enamel are generally similar to 

that of humans, there are some minor differences (Featherstone and Mellberg, 1981). I f  

conclusions from in situ and in vivo trials are to be extrapolated and applied to clinical 

situations, as many of these differences as possible should be eliminated. Most 

importantly, the substrate should reflect the effects of an agent on a natural human caries 

lesion (Mellberg, 1992). Bovine enamel was easily obtainable in large quantities and it has 

the advantage of having large, relatively flat surfaces. However, it is more porous than 

human enamel which results in more rapid diffusion rates and lesion formation (Flim and 

Arends, 1977; Featherstone and Mellberg, 1981; Edmunds et al., 1988). Comparing all of 

the animal substrates available, bovine enamel produces lesions most like those in human 

teeth (Edmunds et a l , 1988). However, the advent of bovine spongiform encephalitis 

(BSE) in the UK has made this substance more difficult to obtain and unsuitable for use in 

in situ trials.
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Human enamel is usually considered to be the substrate of choice, for in situ studies. 

However, a major problem can be accessing a sufficient quantity of extracted teeth.

Whilst dental caries occurs naturally in vivo on smooth surfaces, and in pits and fissures, 

the smooth surfaces of teeth have fewer anatomical variations than the occlusal surfaces. 

Dental caries is therefore easier to measure consistently on smooth surfaces. Also, more 

methods are available to measure early enamel caries on smooth surfaces.

Human enamel may contain defects, either from previous natural caries challenges or other 

causes, and is likely to be of variable age and source which gives it a variable composition, 

leading to variations in test response (Mellberg, 1992). As has been described in Section 

1.3, fluoride can be taken into the outer layer of enamel post-eruptively. Significant 

variation occurs in the amount of fluoride present in the outer layer depending on the 

exposure to fluoride following tooth eruption into the oral cavity. To eliminate this 

discrepancy, the outer 500 micrometres of enamel can be removed (as described in Chapter 

2) and the enamel polished, resulting in more consistent in vitro or in situ artificial caries 

lesion formation (Arends and Gelhard, 1983). The resultant flattened tooth surface as a 

result of the removal of the outer enamel also facilitates microdensitometric analysis of 

radiographs of lesions, by reducing the surface curvature of the tooth. However, it should 

be recognised, that subsurface enamel exposed by previous grinding and polishing will 

demineralise more readily than the original surface enamel when exposed to a cariogenic 

challenge (Theuns et al., 1986). Nevertheless, if  all of the enamel surfaces used in a study 

are abraded, the lesions created subsequently should all behave in a more similar manner 

than if  they were created on non-abraded enamel surfaces.

Enamel blocks with lesions formed in vitro are the most widely used substrate in in situ 

studies. They allow for greater control of the demineralisation created and such early caries 

lesions are capable of further de- and re-mineralisation. While it is still not possible to 

create lesions with identical degrees of demineralisation, this methodology is more 

controllable than using natural lesions.

Artificial lesions can be created in tooth blocks/slabs in situ by placing the sound enamel 

substrate within the mouth and covering it (e.g. with gauze) to facilitate plaque 

accumulation, as described in Section 1.7.3. However, these techniques can be time- 

consuming and it is quicker to develop lesions in vitro, then place them in situ. In vitro
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artificial lesions can also be created in thin tooth sections, rather than tooth blocks. 

However, care should be taken when using thin tooth sections, because these sections are 

not robust enough to withstand more than the most careful handling.

7.7.6 Methods of artificial caries lesion creation in enamel
A number of methods have been used to create artificial enamel caries lesions. Each 

method can result in lesions with different characteristics which may cause them to 

respond differently to an anti-caries treatment or a caries challenge. These lesions can be 

classified into several types. Arends and ten Cate (1981) classified them as being: surface- 

etched; surface-softened, or subsurface lesions. The simplest method is to etch the enamel 

with orthophosphoric acid, creating a surface-etched lesion which is more representative of 

erosion rather that caries (Gangler and Hoyer, 1984). Surface-softened lesions are 

intermediate between subsurface lesions and surface-etched lesions, but can be difficult to 

quantify as it may be problematic to locate the original specimen surface, which can be lost 

during handling. However, their use can be justified on the basis that surface-softening 

occurs as a preliminary stage of natural white spot lesion formation (Arends and 

Christoffersen, 1986; 0gaard et al., 1986). Naturally- formed white spot lesions are 

subsurface lesions with well-formed surface layers which form partially as a result of 

recurrent intra-oral demineralisation and remineralisation episodes. Artificial subsurface 

lesions are often developed with a surface layer by using a surface protective agent, such as 

fluoride or other chemicals which alters the transport of tooth mineral ions in and out of the 

tooth (Mellberg, 1992).

In an attempt to mimic the surface zone of a naturally-created caries lesion, White (1987b) 

created an lactic acid based demineralising solution containing a polymer called 

“Carbopol” which enhances the surface zone formation of an artificially-created caries 

lesion. This method has been used successfully for creation of artificial caries lesions 

within the Hard Tissue Laboratory at the University of Glasgow Dental School as well as 

other research units involved in this type of work (Stookey, 1992).

7.7.7 Site of in situ blocks
Enamel blocks can be located in numerous areas of the mouth. Their location relative to 

salivary flow patterns and facility for plaque accumulation may be important in 

determination of the severity of the caries challenge, or the amount of demineralisation or 

remineralisation which occurs subsequently (Mellberg, 1992). The average total salivary
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volume produced per day is approximately 570 mL, though this is dependent on the length 

of time spent awake, eating and sleeping (Dawes, 1987; Watanabe and Dawes, 1988). The 

average unstimulated whole saliva flow rate is about 0.32 mL/min. It has been calculated 

that the average salivary film is only 0.1 mm or less in thickness (Lagerlof and Dawes, 

1984). This figure has been used to calculate the salivary film velocity at various sites of 

the mouth (Dawes et a l , 1989). Unstimulated salivary film velocity has been estimated to 

be greatest at the lower anterior lingual site (7.6 mL/min), with the upper posterior lingual 

region having a velocity of 6.8 mL/min. Lower velocities were noted at the lower anterior 

buccal site, (1.0 mL/min), with the upper anterior buccal site (0.8 mL/min), having the 

lowest salivary film velocity recorded. It has been suggested that a slow velocity of flow of 

the salivary film over different tooth surfaces will slow the clearance of plaque acids, 

thereby prolonging the Stephan curve (Lecomte and Dawes, 1987).

With respect to variations in mineral exchange of artificial enamel lesions as a res ult of the 

thickness of plaque in in situ models, it has been shown that more demineralisation occurs 

under a thick layer of plaque rather than a thin layer (Essig et al., 1987; Mellberg et al., 

1990). Thus it is important to consider with respect to specimen location within the mouth 

whether plaque presence is likely, and how thick it w ill be (Mellberg, 1992). Ultimate 

plaque bulk is also dependent on whether the substrate is mounted proud of the appliance, 

recessed within the appliance (hence creating a trough for plaque accumulation), or flush 

with the appliance surface, thereby resulting in a thinner layer of surface plaque (Creanor 

et al., 1996).
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1.8 Measurement of mineral change of the smooth 

surface carious lesion in vitro and in situ
In in situ studies, it is important to determine how much mineral has been lost or gained 

from a caries lesion within a tooth specimen and where within the lesion the mineral 

change has occurred. The techniques detailed below (Section 1.8.1-1.8.6) have been used 

to measure overall mineral loss from a caries lesion as well as the distribution of mineral 

throughout the lesion. Furthermore, repeated evaluations with the techniques may enable 

monitoring of lesion behaviour over time. It is essential to measure these parameters to 

determine whether de- or re-mineralisation has occurred within a study. It can also be 

helpful to determine where the mineral loss or gain has occurred within a lesion; for 

example; from the surface zone or deeper within the body of the lesion.

The ideal method of measurement would be: (a) easy to use; (b) non-technique sensitive; 

(c) non-destructive to the lesion being measured (therefore allowing longitudinal 

assessment) and (d) permit, by direct measurement, the mineral loss or gain in a 

quantitative manner (by percentage volume or weight of mineral).

Several methods have been developed; each method of measurement will be described and 

discussed below.

1.8.1 Microhardness

Microhardness indentation measurements were used in the first in situ studies 

(Koulourides, 1966). A Knoop or Vickers diamond is positioned on the surface of a caries 

lesion. A given load is applied to the diamond for a specific time. The diamond 

indentation-length left on the specimen is measured microscopically in pm. This 

measurement gives an indirect value of mineral content. I f  indentation length values 

increase, then there has been continued loss of mineral; if  indentation length values 

decrease, then there has been a net gain in mineral. These measurements are only 

applicable for use with enamel. In dentine the change in hardness measurement do not 

relate to the changes in mineral (Herkstroter et al., 1989). Clearly, this method involves 

some degree of destruction as a different part of the lesion must be measured subsequently.

There are two types of microhardness measurement:
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Surface microhardness (SMH), where the indenter load is perpendicular to the polished 

tissue surface, and Cross-sectional microhardness (CSMH), where the indenter load is 

parallel to a cut surface through the lesion.

Surface microhardness needs a flat surface, which can be difficult to obtain on a curved 

tooth, and provides only qualitative information. However, lesion shape, mineral 

distribution within the lesion, and protein uptake in situ, may influence indentation length 

values. Furthermore, the linear relationship between indentation length and lesion depth is 

valid only in a limited range of lesion depth values (Arends et al., 1980). White (1987a) 

reported that for early carious lesions of shallow depth (between 25 and 50 pm), the net 

remineralisation measured by surface microhardness was highly correlated with 

remineralisation measured with microradiography (r =0.94; p<0.01).

Cross-sectional microhardness has the advantage that indirectly, the mineral content can be 

determined quantitatively. In 1983, Featherstone et al., showed that the volume percentage 

of mineral as determined by microradiography, was directly proportional to the Knoop 

indentation length (pm), with a correlation coefficient of 0.92 (Featherstone et al., 1983). 

This allows the mineral profile (volume % of mineral as a function of the distance from the 

outer surface) to be obtained. The disadvantage is that it cannot measure the 25 pm nearest 

the edge of the section (Arends and ten Bosch, 1992).

To determine the actual mineral loss or gain, the measurements obtained must be calibrated 

against a quantitative technique, commonly Transverse Microradiography (TMR) 

(Featherstone et al., 1983). This technique is relatively straight-forward to perform and, as 

a result, it is used regularly in research, both within academic institutions and in 

commercial laboratories (White et al., 1992).

1.8.2 Iodine tests
1.8.2.1 Iodine absorptiometry
This methodology was introduced as a quantitative method for longitudinal study of

1 'yc
enamel demineralisation in vitro. Iodine ( I) is used to irradiate longitudinal tooth 

sections, in a similar arrangement to that of LMR (see section 1.8.4.2). The incident and 

transmitted radiation are measured with a scintillation counter. The amount of absorbed 

photon radiation is a measure of the mineral per unit area (kg.m '). The change in photon 

radiation due to a dentine sample placed in the beam is linearly correlated (r=0.83) with the
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amount of calcium ion lost in vitro, as determined by chemical analysis (Almqvist et al., 

1988).

This technique provides quantitative mineral loss and gain data, though it is destructive and 

requires the tooth specimen to be cut into sections prior to analysis. It can also be used to 

assess both enamel and dentine samples.

Given that the main study described in this thesis will be an in situ study, this technique 

will not be discussed further.

1.8.2.2 Iodine permeability
Iodine permeability (Ip) measurements can give sensitive estimates of initial stages of de- 

and re-mineralisation in relation to enamel pore volume. Here, tooth specimens are covered 

with 2M K I solution for 3 minutes, then the K I is wiped off. The window created by the K I 

solution on the enamel specimen is then covered with water for 40 seconds to allow back- 

diffusion of iodide. The water is quantitatively removed with an absorbent disc, the iodine 

content of which is measured with an iodine-specific electrode and is a measure of Ip. This 

technique was first described by (Bakhos et al., 1977). In 1991, ten Bosch and Angmar- 

Mansson showed a moderate correlation coefficient (0.55) between the Ip change and the 

calcium ion change.

However, this technique does not measure mineral loss or change directly and is sensitive 

to enamel pore blockage. Thus, it is not suitable for use in in vivo or in situ studies (Zero et 

al., 1990). Nonetheless, it is a non-destructive technique and therefore can be used to 

measure on a longitudinal basis. This technique has not been used in recently published 

studies.

1.8.3 Chemical analysis

For this technique, tooth tissue sampling for analysis of the calcium and phosphate content 

is undertaken. Microsamples are obtained by dissection, abrasion or micro-drilling of the 

tooth substance. These microsamples are then dissolved in acid, and the solutions analysed 

for calcium and/or phosphate content. Calcium is usually determined via atomic absorption 

spectroscopy, whereas phosphate content is estimated by the formation of a coloured

75



complex with molybdate. It is, in principle, a good method to quantify de- and re­

mineralisation of dental tissues (Arends and ten Bosch, 1992).

Again, this is a single measurement technique (as it is also destructive) and only flat 

samples can be used. It has been cited as a ‘gold standard’ technique for determining the 

mineral dissolved from samples in in vitro studies (ten Bosch and Angmar-Mansson, 1991; 

Huysmans and Longbottom, 2004). However, the disadvantages of the technique are: that 

only a large gain or loss of mineral is measurable; curved samples cannot be used; and 

mineral distributions are not measurable in practice (Arends and ten Bosch, 1992). Given 

these disadvantages, and that many in vitro studies are of short duration, a more accurate 

estimate of the measurement of mineral change is desirable. Therefore, this technique is 

not routinely used.

1.8.4 Microradiography

It was Thewlis (1940) who first wrote about the technique of mineral quantification by 

means of X-ray absorption. Since then microradiography has developed into one of the 

‘gold standards’ for measuring mineral change in tissues, with three different 

microradiographical techniques having been described: transverse microradiography 

(TMR); longitudinal microradiography (LMR) and wavelength independent 

microradiography (W IM ).

1.8.4.1 Transverse microradiography (TMR)

Transverse Microradiography involves cutting the tooth specimen into thin (80 -  140 pm) 

piano-parallel slices or sections, perpendicular to the tooth surface. The sections are placed 

on an unexposed film along with an aluminium step-wedge and irradiated with 

monochromatic X-rays. The absorption of the X-rays is proportional with the optical 

density of the film (described in more detail in Chapter 2, Section 2.3.2.2.). Micro­

densitometry or image-analysis is then used to calculate the mineral content using 

Angmar’s formula. Mineral content is expressed in volume% or kg.m' (Angmar et al., 

1963b; Mallon and Mellberg, 1985). The two parameters commonly measured are: 

Integrated Mineral Loss (IM L) and Lesion Depth (LD). IM L is the integrated difference 

between the microradiograph of the sample with mineral loss, and that of the sound 

sample. LD values are determined from the mineral distribution in the microradiograph as
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the distance from the outer surface of the specimen to the position where the mineral 

content is 95% of that in sound tissue (Dijkman et al., 1986).

I f  a lesion remineralises, both LD and IM L decrease, whereas if  it demineralises, then both 

LD and IM L values increase (Arends and ten Bosch, 1992). The advantages of this 

technique are that mineral change can be measured in a quantitative, accurate manner, and 

that mineral distribution can also be determined. The main disadvantage is that the sample 

is destroyed by cutting into sections, thus not permitting longitudinal measurement, unless 

a single section model is used (Creanor et al., 1986; Mellberg et al., 1986; Wefel et al., 

1987; Strang et al., 1987). When measuring the outer 10 pm of the sample, edge effects as 

a result of sectioning, often results in inaccurate values. Furthermore, if  there have been 

any heavy metal ions (e.g. from S11F2 containing dentifrices) absorbed into the enamel 

surface, these may distort the image analysis of the microradiograph. Image analysis may 

be further prejudiced if  the thin tooth section is not piano-parallel.

This technique is regularly used to indirectly and quantitatively measure the mineral 

content of caries lesions and is recognised as a ‘gold standard’ method (Huysmans and 

Longbottom, 2004).

1.8.4.2 Longitudinal microradiography (LMR)

To overcome the difficulties of tooth sample destruction, longitudinal microradiography 

was developed. In this technique, longitudinal tooth sections are prepared parallel to the 

anatomical tooth surface (approximately 0.3-0.5mm thick). The sections are placed on to 

unexposed photographic film along with an aluminium step-wedge and the processed films 

are analysed using image analysis. By so doing, the absolute amount of mineral per unit 

area can be calculated (de Josselin de Jong et al., 1987). The advantage of this technique is 

that the mineral content in enamel and dentine can be determined repeatedly, allowing 

consecutive quantitative changes to be monitored (Zuidgeest et al., 1990). This technique 

has been used to measure mineral loss through dental caries (de Josselin de Jong et al., 

1988) and erosion (Hall et al., 1997). The technique is routinely used to measure change in 

mineral content.
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1.8.4.3 Wavelength independent microradiography (WIM)

The most recent development in microradiography is wavelength independent 

microradiography (W IM ) and was first described by (Herkstroter et al., 1990). The method 

uses high-energy X-rays (<60Kv) for non-destructive determination of mineral content in 

whole teeth, and uses a step-wedge with a wavelength-independent ratio to the mass 

attenuation coefficients of enamel and dentine. It is possible to measure enamel and 

dentine from 0.3 to 6.0mm in thickness, with or without natural curved surfaces (Arends 

and ten Bosch, 1992). This is a relatively recently developed technique that has not been 

used frequently.

1.8.5 Polarised light microscopy
Polarised light microscopic (PLM) analysis shows changes in hard tissue sections by 

measuring birefringence. Tooth sections are created with a thickness of 80pm. A beam of 

light shone onto the section, splits into two plane-polarised rays, called ordinary and extra­

ordinary rays, respectively. The tooth section is placed between a polariser and an analyser 

and the mineral crystals exhibit birefringence (ten Bosch and Angmar-Mansson, 1991).

The difference between the ordinary ray refractive index and the extra-ordinary ray 

refractive index is calculated. Polarised light microscopy can be used to determine whether 

the difference between the refractive indices of the two rays become smaller or larger. I f  

the difference between the ordinary and extra-ordinary ray refractive indices becomes 

smaller, this indicates that the pore size in the body of the lesion has become smaller 

indicating remineralisation and vice versa. However, polarised light experiments are 

difficult to interpret quantitatively (Arends and ten Bosch, 1992). It should be noted that 

prism shape and orientation, carbonate content, water content and organic content may all 

have an effect on the total birefringence measured by this technique. It is also a single-use 

technique as the tooth specimen needs to be sectioned prior to analysis and the use of 

imbibing agents such as quinoline have an undetermined effect on the mineral changes 

when such sections are analysed repeatedly at intervals throughout the demineralising or 

remineralising protocol. It is a relatively common technique.
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1.8.6 Optical quantification techniques

For many years, the loss of mineral from enamel and dentine has been known to alter the 

optical properties or visual appearance of teeth e.g. the ‘white spot’. The following 

techniques are based on this property.

1.8.6.1 Light-scattering

The light-scattering technique is based on the white appearance of a carious lesion and the 

scattering of light by enamel crystallites in relation to their environment. The light 

emerging (flux) from specimens as a result of light-scattering is expected to be related to 

the size and number of crystallites within a unit volume. Ten Bosch et al. (1984) and 

Angmar-Mansson and ten Bosch (1987) used two narrow beams of white light which 

illuminated a white spot lesion of 0.5 mm diameter, to develop a device called the optical 

caries monitor. The light emerging from the lesion was collected and measured. Linear 

relationships were found between the collected light flux and the mineral loss measured by 

microradiography. The correlation coefficient was 0.9 for lesions created on flat surfaces 

of enamel.

As this method is non-destructive, it can be used for measuring re- and de-mineralisation 

on intact enamel samples. However, it is only useful for smooth surface caries lesions. This 

technique has now been superseded by techniques such as Quantitative Light Fluorescence.

1.8.6.2 Quantitative light fluorescence (QLF)
It has been known for many years that, when a light is shone on a tooth, the tooth will 

auto-fluoresce (Benedict, 1928; Armstrong, 1963; Spitzer and ten Bosch, 1976). It was 

subsequently noted that laser fluorescence facilitated detection of early carious lesions on 

both smooth and fissured tooth surfaces (Bjelkhagen et al., 1982). Further work developed 

quantification of mineral loss in natural, early caries lesions on smooth surfaces of 

extracted teeth (de Josselin de Jong et al., 1995). Later, the original argon laser light source 

was changed to a white (Xenon) light source which was filtered to a wavelength band of 

around 520 nm. The system using filtered white light was subsequently validated by Al- 

Khateeb et al. (1997).
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The basic methodology of the technique (described in more detail in Chapter 2, Section 

2.3.1), is that white light is filtered to allow blue light to shine on a tooth containing a 

lesion. The tooth autofluoresces and the image of this autofluorescence is captured with a 

camera using a yellow barrier filter in front of the lens. The image is stored and analysed 

using QLF software which is calibrated to give the area (mm ) of the white spot lesion as 

well as, maximum loss of fluorescence (%), and average loss of fluorescence (%), of the 

lesion when compared with the sound tooth substance which surrounds it. QLF has been 

validated by comparing it with TMR and LMR (Hafstrom-Bjorkman et al., 1992; Emami 

et al., 1996; Lagerweij et al., 1999). However, concerns have been raised (ten Bosch,

2000) that comparisons should not be made between microradiography and QLF, because 

microradiography analyses a section of a lesion and QLF analyses the whole lesion, 

therefore they are not directly comparable.

QLF’s advantages are that it is relatively quick to perform and non-destructive; therefore, it 

can measure a change in caries lesions over time. Following training, it is relatively quick 

and easy to use, and, once the necessary hardware has been purchased, it is relatively in­

expensive to use. Its disadvantages are an inability to determine changes throughout the 

depth of the lesion, and that data obtained by inexperienced users’ may not be reproducible 

(Pretty et al., 2002). This technique is commercially available for purchase within the 

United States of America (Clin-QLF, Inspektor Research BV, Amsterdam, The 

Netherlands).

1.8.7 Summary of methods to measure mineral content over time

The different methods described previously can be summarised in Table 2. This 

demonstrates that Transverse Microradiography is the only method available that can 

directly measure mineral content, mineral change and also determine mineral distribution 

throughout the smooth surface enamel lesion. However, the only way to assess these 

values repeatedly over time is by using the single section model (as mentioned in Section 

1.7.4), and these thin sections are difficult to handle as a result of their delicate nature. In 

the conventional enamel block method of TMR, the specimen is destroyed during the 

cutting process, therefore repeated measurements of the blocks are not possible. Therefore 

measurement of mineral change over time can only be achieved by Quantitative Light 

Fluorescence (QLF); Longitudinal Microradiography (LMR); Wavelength Induced 

Microradiograhy (W IM ) and Iodine Absorptiometry.
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For studies undertaken in this thesis, LMR could have been chosen as a longitudinal 

method, but evidence suggests that the samples would not have withstood the in situ 

environment (de Josselin de Jong et al., 1987). In addition, W IM  is a relatively expensive 

technique, with limited evidence supporting its use. Another possibility, Iodine 

Absorptiometry, required specialised radiographic equipment that was not available, 

whereas QLF hardware and software were available. QLF therefore became the method of 

measurement of mineral change within the study, with TMR as a ‘gold standard’ technique 

of direct measurement of mineral content for comparison (Huysmans and Longbottom, 

2004).
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Table 2 -  Techniques to assess de- and re-mineralisation of smooth surface enamel lesions
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1.9 Summary and aims
1.9.1 Summary
It has been known since the early part of the twentieth century that fluoride has a beneficial 

effect on dental caries. It is now recognised this occurs through the action of preventing 

demineralisation and encouraging remineralisation, with a minor effect of inhibition of the 

plaque bacteria involved in the caries process. Fluoride can be delivered to the oral cavity 

in a number of ways and these have been discussed in detail in Section 1.5. Fluoride is 

commonly found in toothpastes used by a large proportion of the population in developed 

countries. Since the mid-1970s, the routine use of fluoride toothpastes in such countries 

has reduced the caries rate significantly (Haugejorden et al., 1997; Newbrun, 1999). 

However, for children from disadvantaged areas who may have no access to toothbrushes 

or toothpastes and whose diet is highly cariogenic, additional sources of fluoride may be 

beneficial. It has been proved clinically, and confirmed in a systematic review of the 

literature, that increased exposure to fluoride enhances its caries preventive effect 

(Marinho et al., 2004b).

Ideally, in areas with high caries levels, fluoride should be delivered to the population in 

the water supply. However, this is not possible in areas that do not have access to a piped 

domestic water supply or where political pressures prevent this measure from being 

introduced. When fluoridated water is not available, alternatives must be sought.

One alternative source of fluoride is fluoridated salt. However, its introduction in the UK  

would be difficult at present, with health professionals campaigning to reduce salt intake as 

a way of managing hypertension and reducing risk factors for cardiac disease. Fluoridated 

milk has also been suggested as an alternative, and it has the benefit that it is possible to 

target children who would benefit most from it. M ilk has excellent nutritional value; after 

all, it has been recommended by the Scientific Advisory Committee on Nutrition (S ACN), 

which advises the UK Department of Health, as the sole food for infants up to the age of 

six months.

There are a number of research questions regarding the use of fluoridated milk. The topic 

was reviewed on behalf of the World Health Organisation by Stephen et al. (1996). They 

stated that further research was required to determine, for example: the optimum frequency
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of intake of fluoridated milk; the optimum concentration of fluoride to be added to milk; 

the optimum age of the child to whom the milk should be given and the optimum time for 

which fluoridated milk should be provided. A recent systematic review of the literature 

pertaining to fluoridated milk stated that the evidence regarding the efficacy of fluoridated 

milk was impossible to determine because of a lack of suitably designed studies (Holm, 

2002). Finally, much of the research regarding the efficacy of fluoridated milk as a 

delivery system was obtained prior to the routine use of fluoridated dentifrices. Thus, the 

evidence for benefits from the concomitant use of fluoridated milk with a fluoridated 

dentifrice is lacking.

1.9.2 Aims

One of the main aims of the work reported in this thesis was to use an in situ model to 

investigate the effect of milk, with or without the addition of fluoride, on the 

remineralisation and demineralisation of artificial carious lesions. The design of the study 

also included investigation of the effect of using fluoridated dentifrice to simulate 

toothbrushing twice-daily, in addition to the milk intake.

A further aim of the study was to compare the effect of fluoridated milk consumption with 

a low concentration of fluoride, three times per day, to that found with use of a higher 

concentration of fluoride in milk consumed only once per day; both milk regimes having 

the same overall fluoride content. The effect of increasing frequency of fluoridated milk 

intake had not been studied previously, and was one of the deficiencies in the evidence 

highlighted in the fluoridated milk monograph by Stephen et a l (1996), as described 

above.

To determine whether the fluoride was effective in preventing further demineralisation and 

promoting remineralisation, changes in mineral content of the artificial lesions were 

measured. The relatively new technique of QLF is non-invasive and can be used to 

measure mineral change longitudinally, by taking repeated images of the carious lesion at 

regular intervals. The study aimed to determine the feasibility of using QLF with a novel in 

situ complete denture model. Furthermore, a specific study addressed the question of 

repeatability when using the QLF technique. Having established the suitability of QLF to 

measure mineral change in a repeatable manner, interpretation of the results obtained using
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the QLF method were compared with the interpretation of results obtained with TMR, 

which has been recognised previously as a ‘gold standard’ technique.

Using an in situ appliance, it is possible to place multiple caries lesions at different sites 

within the subjects’ oral cavity. The final aim of this work was to compare the response of 

caries lesions at different sites to exposure to the experimental protocols, and to determine 

whether the results supported previous work relating to the site-specificity of caries.

Therefore, in summary, the following research questions were developed:

• Could a given operator both obtain and analyse an image in a repeatable 

manner with the available QLF machine?

• Was there an effect of using fluoridated dentifrice on the mineral content of 

enamel lesions?

• Were there any effects of consumption of fluoridated milk on mineral content 

of enamel lesions a) with or b) without the effect of fluoridated dentifrice?

• Were there any differences in the change in the mineral content of enamel 

lesions at different intra-oral sites?
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2.0 Materials and Methods
2.1 Introduction
This chapter describes the methods involved in selecting suitable teeth for use in the study, 

preparing tooth blocks and creating artificial lesions in enamel. It also describes the 

techniques used to monitor and measure the mineral content of the artificially-created 

enamel lesions. The specific methods relating to the investigation of repeatability of QLF 

measurements and the main in situ study are detailed in Chapters 3 and 4, respectively.

A ll experiments reported in this thesis were completed using blocks of human enamel with 

underlying dentine and, for the reasons detailed in Section 1.8, were measured using 

Quantitative Light Fluorescence (QLF). In addition, for the main study described in 

Chapter 4, Transverse Microradiography (TMR) was also used.

2.2 Tooth preparation
2.2.1 Tooth selection
Extracted human teeth were collected from general dental practices around Scotland and 

from the Oral Surgery Department of Glasgow Dental Hospital &  School (fluoride level in 

domestic water supply <0.04ppm F'). One thousand suitable molar teeth were selected 

from those collected and stored in 0.12% saturated solution of Thymol prior to use.

Suitable molar teeth were defined as those with no caries or minimal restorations, devoid 

of obvious cracks or other defects and which were of a suitable shape to cut out a tooth 

block of enamel.

2.2.2 Preparation of tooth blocks
Initially, soft tissue debris was removed from each tooth using a discoid excavator 

(Dentsply Ash Instruments, Devon, UK). The teeth were then cleaned with a slurry of 

pumice and water, using a rubber cup in a slow-speed dental handpiece. The buccal and 

lingual surfaces of the molar teeth were abraded to remove the fluoride-rich outer 300-500 

micrometres of enamel thereby exposing a more reactive surface for lesion creation 

(Weatherell et al., 1973; Weatherell et al., 1977; Stookey, 1992). This was achieved using 

a high-speed diamond veneer bur (LVS-2, Set 4151, Laminate Veneer System, Komet 

Medical, Konstanz, Germany) to create depth grooves of 300 micrometres in the natural 

enamel surface. The grooves were then smoothed using a high-speed diamond chamfer bur 

to create a flat smooth surface (LVS-4, Set 4151, Laminate Veneer System, Komet
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Medical, Konstanz, Germany). The enamel surface was polished with Sof-lex ™ Pop-on 

polishing discs (3M ESPE, St Paul, M N, USA) o f decreasing abrasiveness.

The teeth were then cut into blocks, using the Labcut 1010 machine (Agar Scientific Ltd, 

Cambridge, UK). Each tooth was fixed to a chuck at the desired orientation w ith sticky 

wax which was allowed to harden. The chuck was attached to the Labcut 1010 machine 

and the machine switched on. The specimen was gently brought down on to the blade until 

it started to cut, and then allowed to continue until the cut was complete. The cuspal 

enamel was removed first, followed by the roots above the amelo-cemental junction 

(Figure 2). The abraded buccal and lingual surfaces were then cut from the tooth, creating 

a block, approximately 2-3 mm in depth, w ith dentine to support the overlying enamel. The 

shorter mesial and distal surfaces o f the tooth were cut-o ff to construct enamel slabs 

approximately 3-4 mm long x 3-4 mm wide x 3 mm deep. These were reserved and used to 

collect plaque samples for microbiological analy sis (for a concurrent microbiological study 

described later).

Figure 2 -  Diagram of how the molar teeth were cut into blocks

Cut 3 Cut 4

Cut 1 -  remove cuspal enamel
Tooth
block

Cut 2 -  remove roots

Diagram modified from Wheeler’s Dental Anatomy, Physiology and Occlusion, p324, 8th Ed. 
Saunders
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The buccal and lingual surfaces were then tidied up on a grinding wheel to produce tooth 

blocks approximately 6  mm long x 4 mm wide x 3 mm deep. To orientate the blocks, a 

groove was cut in the upper edge o f the slab using a diamond bur in a high-speed 

handpiece. This groove denoted the top surface o f the block and was used for orientation 

(Figure 3) when the studies described in this thesis were carried out and during subsequent 

microradiography and image analysis.

Figure 3 -  Photograph of a prepared tooth block with a notch for orientation. (Scale in mm)

Enamel surface 

Dentine

2.2.3 Disinfection of the tooth blocks
Prior to use in the mouth, all tooth blocks were disinfected using a ‘prion disinfection 

protocol’ . This protocol was provided by Professor W illiam  Wade, Professor o f Oral 

M icrobiology, King's College Dental Institute, University o f London, UK. The purpose o f 

the protocol was to try and eliminate any risk o f prion transfer, or the transmission o f the 

Transmissible Spongiform Encephalopathies (TSEs) to subjects taking part in the studies 

described later in this thesis. In particular, concern was expressed over the possible 

transmission o f Bovine Spongiform Encephalopathy (BSE) which may cause variant 

Creutzfeldt - Jakob disease (vCJD) in humans (Bruce et a l., 1997).

The protocol used was a proven anti-Scrapie protocol. Scrapie is another prion disease, 

similar to BSE, but occuring in sheep. A t the time the studies in this thesis were conceived, 

this was the most progressive prion disinfection protocol available. The prion disinfection 

protocol involved:
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a) storage o f the prepared tooth blocks in 10% Formalin for 7 days,

b) washing in de-ionised water,

c) storage in 5% Sodium Dodecyl Sulphate for 24 hours and,

d) washing three times in phosphate-buffered saline (PBS).

As no data were available at the time to determine whether this treatment would alter the 

potential for artificially-created caries lesions to demineralise and remineralise, a pilot 

study was undertaken. This study will not be discussed in detail in this thesis. However, a 

summary of the work was presented to the British Society of Dental Research in 2001 and 

can be found in Appendix 1.

2.2.4 Varnishing and fissure sealing
Prior to the creation of artificial caries lesions, prepared tooth blocks were covered with 

either acid-resistant varnish or fissure sealant, leaving exposed a 4 x 3 mm window on the 

abraded and polished enamel surface. Initially, acid-resistant varnish was used as this had 

been successfully employed in previous in situ studies at the University of Glasgow Dental 

School. However, it was later discovered that the use of acid-resistant varnish was not 

always sufficiently robust to survive a six-week intra-oral period, in this particular in situ 

model; therefore an alternative methodology was developed. Both methods are described 

below.

In the first method, on removal from the prion disinfection protocol, two coats of clear 

acid-resistant varnish (Max Factor Diamond Hard Nail Lacquer, Crystal Clear 101, Procter 

and Gamble UK, Weybridge, UK) were applied free-hand on all surfaces of the tooth block 

leaving an exposed window 3 x 4  mm on the abraded and polished enamel surface.

For the method involving fissure sealant, following prion disinfection, blocks were dried 

and a 4 x 3 mm piece of adhesive tape (Letraline 1/32 x 650 blue flex tape, Letraset, USA) 

was placed in the centre of the abraded and polished enamel surface. A 37% 

orthophosphoric acid gel (Scotchbond etchant, 3M ESPE dental products, St Paul, M N  

55144, USA) was applied to the exposed enamel around the edges of the tape for 30 - 40 

seconds prior to thorough washing and rinsing with tap water and drying with compressed 

air. The etched enamel was then coated with opaque fissure sealant (Estiseal® LC, Kulzer,
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Germany) and cured with a conventional halogen light (QHL75™, Dentsply Detrey 

GmbH, Konstanz, Germany) for 40 seconds. The adhesive tape was removed along with 

any traces of adhesive. Traces of adhesive were removed with a microbrush® (Dungarvan, 

Co. Waterford, Ireland) soaked in 95% ethanol and the task was performed with the aid of 

a dissecting microscope. After the abraded and polished enamel surface was coated with 

fissure sealant, the remaining sides of the prepared tooth block were covered with acid- 

resistant varnish as described previously.

2.2.5 Artificial caries lesion creation
The varnished and fissure sealed tooth blocks had artificial caries lesions created in the 

exposed enamel window by placing the lesions in a lactic acid-based demineralising 

solution containing a polymer (Carbopol, B & F Goodrich and Company Chemical Group, 

Avon Lake, Ohio, USA) to ensure the preservation of an intact surface. The 

demineralisation solution was manufactured following the protocol described in Appendix 

2 (White, 1987b). For every one square millimetre of exposed enamel, two millilitres of 

demineralising solution was used to create the lesion. In this way the ratio of exposed 

enamel area to volume of demineralisation solution was kept constant. The lesion size was 

approximately 4mm x 3mm, giving a lesion area of 12 mm2. Therefore, approximately 24 

mL of solution was required for each tooth block.

Each tooth block was placed in a numbered tube, containing the demineralisation solution, 

for seven to fourteen days. The tubes were incubated at 37°C and lesion development 

checked every 24-48 hours. Once significant demineralisation, without surface cavitation, 

was evident on the clean, dry tooth surface, verification was made via Quantitative Light 

Fluorescence (discussed in Section 2.3.1). A minimum Average Fluorescence Loss of - 

13% was used to define adequate demineralisation. This value was chosen as, potentially, 

both further demineralisation and remineralisation could be demonstrated by QLF from 

this degree of demineralisation. No maximum Average Fluorescence Loss was defined, 

though in practice, values greater than -30% were seldom achieved after 7-14 days of 

demineralisation.

2.2.6 Creation of lesion controls
Once an artificial caries lesion had been created (as described in Section 2.2.5), one half of 

the lesion was then covered with two coats of pink, acid-resistant varnish (Sugar Pink,
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Proctor and Gamble UK, Weybridge, UK ), while the other ha lf was left exposed (Figure 

4). The covered (varnished) area o f each tooth block thus acted as an in situ lesion control.

Figure 4 - Diagram of tooth specimen covered with acid-resistant varnish

2 coats clear acid-resistant varnish 

Uncovered caries lesion 

2 coats pink acid-resistant varnish

For blocks coated w ith fissure sealant, following lesion creation, the lower ha lf o f  the 

created lesion and the adjacent fissure sealant was covered w ith more fissure sealant and 

cured (Figure 5) using the method described in Section 2.2.4 above.

Figure 5 - Photograph of tooth block containing a caries lesion with the lower half of the 
tooth block covered with fissure sealant and the upper half containing the exposed caries 
lesion surrounded with fissure sealant prior to use in the study. (Scale in mm)

2.3 Mineral change assessment - detailed methodology
Two methods were chosen to measure changes in mineral content: 1) Quantitative Light 

Fluorescence (QLF) and 2) Transverse Microradiography w ith Image analysis (TMR).
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QLF was used in all o f the experiments described in this thesis, while TMR was used only 

in the main study, described in Chapter 4.

2.3.1 Quantitative light fluorescence (QLF)
Quantitative Light Fluorescence is a non-invasive technique that may be used to detect and 

monitor loss and gain o f mineral in caries lesions.

The QLF system comprises hardware (Figure 6 ) that captures an image o f the tooth, and 

software that allows manipulation and analysis o f that image.

Figure 6 - Photograph of QLF hardware. The black coloured handpiece in the front of the 
picture contains the light source, CCD micro-video camera and prism.

The hardware consists o f a white light from a Xenon arc lamp which is filtered to produce 

blue light w ith a peak wavelength o f 370 nm. This was used to illuminate the tooth surface, 

which then auto-fluoresces. In the studies described in this thesis (when the tooth blocks 

were not present in the test dentures), the tooth blocks containing the lesions were mounted 

in Blu-Tack (Blu-Tack, Bostick-Findley Ltd., Stafford, U K ) on a lab-stand. The lab-stand 

was moved up and down in a vertical direction to focus the lesion image on the computer 

screen. The focal length o f the Glasgow Clin-QLF camera was 14 mm. A  colour charge- 

coupled device (CCD) micro-video camera (Panasonic W V-KS 152), w ith a yellow-high 

pass filte r o f wavelength 520 nm placed in front o f the camera, was used to capture the 

fluorescent image. Any light w ith a wavelength o f less than 520 nm was thereby excluded.
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This also eliminated any reflection from the tooth (Al-Khateeb et a l ,  1997). The captured 

image was viewed on a computer monitor for manipulation and analysis. When viewing 

the captured image, sound tooth structure appeared yellow/green in colour, while the 

artificial caries induced light scattering to produce a darker area in the centre of the tooth 

block. After analysis, the images and analysis results were stored on a computer.

The software (QLF version 1.97i, Inspektor Research Systems BV, Amsterdam, 

Netherlands) allowed storage, processing and analysis of the image. Three parameters were 

measured: lesion area - QLFAREA (mm2); maximum fluorescence loss - QLFMAX (% 

Fluorescence loss); and average fluorescence loss - QLFAVER (% Fluorescence loss). The 

fluorescence loss of the caries lesion was calculated by comparing it to the surrounding 

sound enamel, as described by de Josselin de Jong et al. (1995). The fluorescence radiance 

of surrounding sound enamel was taken to be 100% and the QLF software simulated 

reconstruction of sound enamel fluorescence radiance values at the lesion site through two- 

dimensional linear interpolation of sound enamel values around the lesion. The percentage 

change in fluorescence was then calculated by comparing the difference between the actual 

and reconstructed fluorescence images, with caries being defined as a difference larger 

than 10% with respect to the reconstructed values of sound enamel (de Josselin de Jong et 

a l,  1995).

QLFarea describes the two-dimensional size of the lesion over the surface of the tooth 

block. It was determined by counting the total number of pixels which the QLF program 

had defined as being dental caries. In turn, the number of pixels was used to calculate the 

lesion area measured in square millimetres (mm2). QLFMAX describes the maximum 

reduction in pixel intensity compared with the fluorescence of sound enamel. It was 

described as a percentage loss in fluorescence. It is “the largest difference between the 

actual and reconstructed radiance that is found in the lesion”. QLFAVER describes the mean 

reduction in intensity across the lesion and was also measured as a percentage (% loss in 

fluorescence). QLFAVER is “the mean of all of the differences between the actual and 

reconstructed radiance values that are found within the lesion area” (de Josselin de Jong et 

a l,  1995).

The comparison of the caries lesion with the surrounding sound enamel is undertaken by 

placing a rectangular analysis patch over the image of the lesion. The edges of the patch 

are placed over sound enamel, close to the border with the lesion. Given that the patch is
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rectangular in shape, it therefore had four borders. These borders can be moved or 

"stretched" into a position so they are placed over adjacent sound enamel. I f  a border 

cannot be placed on sound enamel, e.g. if  a caries lesion was adjacent to a gingival margin, 

then this border is "turned o ff. In fact, with the QLF software (QLF version 1.97i), any 

combination of the four borders can be switched off, as long as one border of the 

rectangular patch is "switched on" and placed over sound enamel. For most studies 

described in this thesis, where QLF was used, three borders out of the four in the 

rectangular analysis patch were "switched on". The reason for this was one half of each 

lesion was covered with either acid-resistant varnish or fissure sealant and the border of the 

rectangular analysis patch adjacent to this had to be switched off, as it was not overlying 

sound enamel.

Once QLF values for the each of the three parameters: lesion area; maximum fluorescence 

loss, and average fluorescence loss, were calculated, they were exported from the 

programme and imported to a spreadsheet computer file (Excel, Microsoft® Corporation, 

USA). Data were exported in this manner then downloaded to a database (Access, 

Microsoft® Corporation, USA) for storage, prior to statistical analysis.

2.3.2 Transverse microradiography (TMR) and image analysis
This technique has been described as one of the "gold standards" for measuring mineral 

content of tooth substance, and has been used extensively in measuring de- and re­

mineralisation in dental caries research (ten Bosch and Angmar-Mansson, 1991; Huysmans 

and Longbottom, 2004). The two parameters measured using TMR during the study were: 

integrated mineral loss (IM L), which is the integral of the change in mineral content over a 

known distance from the surface of the tooth (vol%mineral. pm), (ten Bosch and Angmar- 

Mansson, 1991); and lesion depth (LD), which was measured in micrometres (pm).

Microradiography was used at the end of each experimental protocol described in the main 

study (Chapter 4).

2.3.2.1 Tooth preparation prior to microradiography
Microradiography was performed on very thin tooth sections, approximately 120-140 pm 

thick, cut from the tooth blocks. Blocks of teeth were embedded in Epoxy resin (Epofix, 

Struers, Glasgow, UK) prior to sectioning. Sections were cut using the Accutom-50 

machine (Figure 7) to an approximate thickness of 200 pm.
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Figure 7 - Accutom-50 machine used to cut the tooth blocks into 200 pm sections

Strusrs Accutom-50

I

Each section was examined on a glass slide under a microscope at x30 magnification.

When a lesion was seen clearly as a dark rectangle at the enamel surface, the section was 

set aside for further preparation. From each tooth block, two such sections were chosen to 

be ground and microradiographed. These sections were ground and polished from a 

thickness o f 200 pm to 120-140 pm prior to microradiography. This was achieved by 

rubbing the sections on a round glass slab using a fine abrasive slurry (1200 grade, White 

Bauxlite Honing Abrasive [A I2 O3 ], Raymond Lamb, London, England). Any ridges present 

on the tooth section from the cutting process, were thus removed. The thickness o f a 

section was confirmed by measuring a number o f points along the edge o f the enamel 

surface at regular intervals, using a digital micrometer (M itutoyo, Tokyo, Japan). These 

measurements also gave an estimation o f the planoparallelity o f  the section. I f  between 

120-140 pm, the section was labelled using a soft pencil and stored in a 0.12% Thymol 

solution. One o f the tooth sections was then randomly chosen and prepared for 

microradiography and image analysis.
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In preparation for microradiography, the tooth sections were washed in cold running water, 

mounted in cling-film  and labelled before being placed in a micro radiograph cassette. The 

cassettes were loaded in a dark room, with the clingfilm-mounted sections, unexposed high 

resolution film  (Holographic film  SO-181, Eastman Kodak Company, Rochester, New 

York, USA) and an aluminium step-wedge. The step-wedge was comprised 25 pm-thick 

sheets o f A lum inium fo il, making a stepwedge w ith 12 increments, from 0 to 275 pm. The 

cassettes were sealed w ith light-excluding tape.

2.3.2.2 Microradiography and film development

Cassettes were placed at a source to specimen distance o f 300mm from a Cu(Ka) N i- 

filtered X-ray source (Diffractus 582, Enraf Nonius, Delf, Holland) operating at 30mV and 

20 kV for 20 minutes (Figure 8). Following exposure to X-rays, the cassettes were opened 

in a dark room and the exposed film  was processed under standard conditions. These 

standard conditions were: all solutions at 21°C; 1 minute in clearing solution to remove the 

silver halide film  backing; 2.5 minutes in the developing solution; 1 minute wash in water; 

5 minutes in the fix ing solution and then 10 minutes under running cold water. The 

developed films were then placed in a drying cabinet at 37 °C for 24 hours prior to 

analysis.

Figure 8 - Photograph of the Cu(Ka) x-ray Diffractus 582 equipment

Once the microradiographs were developed, the tooth sections were removed from the 

cling film  and stored in a 0.12% saturated solution o f thymol. Any microradiographs
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deemed to be unsatisfactory as a result o f a processing fault, were retaken. 

Microradiographs containing lesions w ith surface zones that were no longer intact were re­

taken using another section that had been cut from that particular tooth specimen, i f  one 

was available. These re-taken microradiographs were analysed and the values recorded 

were substituted in place o f those from the damaged tooth specimens.

2.2.2.3 Image analysis

The hardware used to analyse the images consisted o f a CCD camera attached to a Leitz 

transmission microscope (Leitz-Wetzlar, Germany) w ith a stabilised power source to 

ensure constant illumination. The microscope was linked to a computer (Figure 9). Images 

were analysed at x 40 magnification in transmitted light.

Figure 9 - Photograph of image analysis hardware used to measure the mineral content of 
the microradiographs in TMR

Image analysis involved the assessment o f the absorption o f monochromatic X-rays by the 

tooth sections. X-ray absorption o f the tooth sections was proportional to the resultant 

optical density o f the film  and was calculated using the known properties o f X-ray 

absorption o f aluminium from the aluminium step-wedge described previously. M ineral 

loss was calculated using the TM R analysis software version 1.25e (Inspektor Research 

Systems BV, Amsterdam, The Netherlands), using Angmar's formula (Angmar et al., 

1963a). This provided a quantitative measurement o f mineral content at specific points
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within the section. In addition, information about the mineral distribution within the lesion 

from the surface towards the amelodentinal junction was also determined.

The camera used a greyscale with 256 increments (0-255). As described above, the 

aluminium step-wedge had 12 steps of 25 pm increments from 0 - 275 pm. The correct 

illumination for each film was set using the thickest step on the step-wedge (275 pm). This 

was determined by adjusting the lamp current until illumination was deemed satisfactory 

by the computer software. This was indicated by a green light on the computer screen and 

was in the region of 2152 mA current supplied to the light source. The camera was then 

calibrated using the remaining steps of the aluminium step-wedge image. Each step was 

scanned to record an average grey value. The average grey values were plotted against 

step-wedge thickness. A fourth order polynomial curve was fitted to the data. A good step- 

wedge produced a curve with a linear central portion with flattened regions at the thinner 

and thicker parts of the step-wedge. It was then possible to equate any grey level on the 

film to a known thickness of aluminium. Angular’s Equation (Angmar et al., 1963a) 

converts the grey levels on the film of a known thickness of aluminium to a known 

volume % of hydroxy apatite. An image of a stepwedge curve and a plot of numerical loss 

against depth from the TMR programme is given in Figure 10 below.

Once calibration using the step-wedge had taken place, the images on each film were 

scanned and then analysed with the TMR software in the following manner:

a. The image of the lesion surface was aligned parallel to the y-axis of the computer 

screen. This ensured any calculations of mineral content were made perpendicular to the 

surface of the lesion;

b. The region of interest was scanned, ensuring that the area was as broad as possible 

and that its depth extended from the surface of the section into sound tooth enamel;

c. A plot was then constructed of average volume % mineral across the breadth of the 

scan (y-axis) against depth from the surface of the lesion (x-axis);

d. Zero% mineral content was defined on the y-axis using a moveable cursor on the 

screen;

98



e. 100% mineral content of sound enamel was defined on the y-axis using a moveable 

cursor on the screen;

f. The start of the lesion was suggested by the computer programme as that point on 

the x-axis where the mineral content was 20% by volume mineral on the y axis;

g. The depth of the lesion was defined as a point on the x-axis where the mineral 

content reached 95% of sound enamel (Mallon and Mellberg, 1985). This was indicated by 

the computer programme and the x-axis co-ordinate determined by the operator (95% of 

sound enamel tissue, when sound enamel is defined as 80% mineral by volume);

h. For the purposes of calculation of mineral loss it was assumed that sound enamel 

contained 80% by volume mineral. The y-axis was adjusted accordingly and the TMR  

software calculated ‘Integrated Mineral Loss’ and ‘Lesion Depth’. Integrated mineral loss 

was the difference between sound and carious mineral by integration. An image was 

produced on the computer screen as shown in Figure 10.
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Figure 10 -  Image of TMR software output, showing step-wedge curve (top right), TMR 
image (bottom right) and TMR graph (top left) with the IML highlighted in dark grey.
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The data for each individual tooth section follow ing analysis were then exported into a 

spreadsheet computer programme (Excel, M icrosoft® Corporation, USA). These data were 

then imported into a database (Access, M icrosoft®  Corporation, USA) for storage and 

manipulation prior to statistical analyses.
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3.0 The repeatability of QLF
3.1 Introduction and aims
Quantitative Light Fluorescence (QLF) is a relatively new caries diagnostic method which 

can be used to measure quantitatively the change in mineral content of teeth. It is non- 

invasive and is employed to evaluate the difference in scattering of fluorescent light 

between sound and demineralised tooth structure. This method has been validated both in- 

vitro and in-vivo (Chapter 1, Section 1.8.6). However, it was essential to examine whether 

a given QLF operator (i.e. AJN), who would be capturing and analysing images for studies 

such as those described in this thesis, could use the method repeatedly.

To allow comparison of QLF findings, both within and between different studies and 

machines, the QLF technique must be reliable, repeatable and reproducible. Reliability, is 

the noun used to describe the ability of something to be relied upon (Concise Oxford 

English Dictionary, 2002) and is often used interchangeably in statistics to mean 

repeatability or reproducibility. Repeatability can be defined statistically as "the extent to 

which repeated measurements by the same observer in identical conditions agree" (Petrie 

and Sabin, 2000). Reproducibility, however, can be defined as "the extent to which the 

same results can be obtained in different circumstances, e.g. by two methods o f 

measurement, or by two observers" (Petrie and Sabin, 2000).

Despite the abundance of reliability studies published to date, there is still no agreement in 

the levels of reliability required for a method or instrument to be deemed acceptable. 

Landis and Koch (1977) proposed a series of cut-off levels to describe levels of reliability. 

However, these values are not based on any objective criteria and are often criticized 

(Dunn, 1989; Shrout, 1998). Shrout (1998) published modified, more stringent, cut-off 

levels to those proposed by Landis and Koch (1977) and used the following adjectives for 

describing levels of repeatability or reproducibility:

(0.00 -  0.10) -  virtually none;

(0.11 -  0.40) -  slight;

(0.41 -0 .6 0 )-fa ir;

(0.60 -  0.80) -  moderate;
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(0.81 -  1.0) -  substantial.

The QLF machine available in Glasgow was a prototype with a white-light Xenon arc 

lamp, rather than a laser, as the light source (for methodology see Section 2.3.1). It was 

thus necessary to confirm the repeatability of use of this QLF machine, particularly as the 

main study in this thesis relied on taking repeated images of the same lesion, by the same 

observer, on a longitudinal basis.

Reproducibility and repeatability of Quantitative Light Fluorescence has been studied 

previously (Tranaeus et al., 2002; Pretty et ah, 2002), and has included both intra-examiner 

and inter-examiner assessment. The statistical tests used to determine repeatability and 

reproducibility were t-tests, ANOVA and intra-class correlation coefficient statistics (ICC).

Tranaeus et al. (2002) investigated in vivo repeatability and reproducibility of the QLF 

method with respect to three variables; QLFAREA, QLFMAX and QLFAVBR. They examined 

both the image-capturing stage and the analytical stage using two different light sources, 

the Xenon arc lamp (as described in Chapter 2) and the former light source, the argon ion 

laser system. For this stage, intra-examiner repeatability was not investigated formally. 

However, for the image capture stage, inter-examiner reproducibility amongst the three 

analysts in the study produced intra-class correlation coefficients (ICC) of between 0.95 

and 0.98 for the three QLF parameters. O f the three analysts, two were described as 

“experienced” and the other as a “novice” and it was noted there was a statistically 

significant difference between the “novice” and one of the “experienced” examiners in 

repeatability of image capture. However, there was no evidence of consideration of the 

effect of potential bias between the different image capture occasions, though the results 

obtained were “substantial” when described by the adjectives proposed by Shrout (1998).

For the analytical stage, Tranaeus et al. (2002) showed intra-examiner repeatability values 

(ICC) of between 0.93 and 0.99, and inter-examiner reproducibility of between 0.95 and 

0.99; again these results could be described as “substantial”. However, Pretty et al. (2002) 

suggested that repeatability and reproducibility appear to be dependent on the level of 

examiner experience. They investigated the repeatability and reproducibility of QLF image 

analysis amongst 10 examiners of varying experience, and reported inter-examiner 

reproducibility to be significantly different between novice and experienced examiners; the 

latter being superior.
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Both the Tranaeus et al. (2002) and Pretty et al. (2002) studies demonstrated the 

importance of ensuring that an examiner is trained in the Quantitative Light Fluorescence 

method of image capture and analysis, to ensure any differences detected are attributable 

solely to the mineral change within the lesion. They also both noted a significant difference 

between novice and experienced examiners with regard to intra-examiner repeatability.

The novice examiners had difficulty in consistently repeating their QLF analysis, and there 

were statistically significant differences determined for their image capture and analysis 

when compared with the more experienced examiners.

A study was designed, therefore, to assess the repeatability of QLF measurements made by 

an operator (AJN) who would be capturing and analysing the images in the studies 

reported within this thesis. Statistical advice was sought with regards to study protocol and 

statistical analysis. The study was designed to answer the following questions:

• Could the operator (AJN) obtain a repeatable image with the QLF machine?

• Could the operator (AJN) analyse the same image in a repeatable way?

3.2 Materials and methods
3.2.1 Tooth specimen preparation
Extracted caries-free human premolar teeth, 10 in total, were sectioned longitudinally 

through their mesial and distal surfaces using a water-cooled rotating diamond wheel 

(Labcut 1010, Agar Scientific Ltd, Cambridge, UK) to produce 20 specimens. These were 

then cleaned, abraded and polished as described in Section 2.2.2.

Each tooth specimen was lettered (a-t) and covered with two layers of acid-resistant 

varnish (Max Factor Diamond Hard Nail Lacquer, 549 Passion Red, Proctor and Gamble, 

Weybridge, UK) leaving an exposed area of approximately 4 mm x 3 mm in the middle of 

the buccal or lingual surface. A ll specimens were then placed into a lactic acid-based 

Carbopol demineralisation gel (White, 1987b), (Appendix 2) for 48 hours, to create an 

artificial caries lesion within the exposed area. The acid-resistant varnish was then 

removed with acetone and alcohol, to leave an artificially-created caries lesion surrounded 

by intact enamel on either the buccal or lingual tooth surface.
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A ll tooth specimens were stored in a 0.12% saturated thymol solution, prior to and during 

the study, to prevent desiccation of the artificial caries lesions. Before image capture, each 

specimen was dried for five seconds with compressed air and left to air-dry for 30 minutes. 

This was to reduce the possibility of a change in QLF values as a result of lesion 

desiccation, as previously noted by several authors (Al-Khateeb et al., 1998; van der Veen 

et al., 2003).

3.2.2 Image capture and analysis
The QLF image capture and analysis were accomplished using hardware described 

previously (Chapter 2, Section 2.3.1), and QLF software (version 1.97i, Inspektor Research 

Systems BV, Amsterdam, The Netherlands).

Image capture
(a) To answer the question: “Could the operator (AJN) obtain a repeatable image with 

the Glasgow QLF machine? ”

For this purpose, the 20 tooth specimens containing artificially-created caries lesions were 

labelled “a-t” and had images captured three times, approximately one week apart, in a 

random order. The randomisation was achieved in a simplistic manner, by pulling the 

corresponding letter out of an envelope. The 60 images were then analysed once by the 

same examiner, using the Glasgow QLF software, in a similarly generated random order, 

with values recorded for the three QLF parameters: QLFAREA; QLFMAX and QLFAVER.

Image analysis
(b) To answer the question: “Could the operator (AJN) analyse the same image in a 

repeatable manner? ”

Here one image was captured of each of the 20 tooth specimens containing an artificially- 

created caries lesion. Each image was then analysed on three separate days (20 images, 

analysed x3), in random order (as described above), by the same examiner using the 

Glasgow QLF software, with values recorded for the three QLF parameters: QLFAREA; 

QLFMAX and QLFAVER. A ll analyses were completed within a two-week time period.

Statistical analysis
The statistical analysis used to determine the repeatability of the QLF technique was 

chosen in order to take into consideration the potential effect of systematic bias, which it is

104



important to be aware of, as it is possible that there could be bias between the image 

capture occasions or days.

Repeatability was determined using the "components of variance" technique, with the 

components being estimated using, "repeated measures analysis of variance", for each of 

the QLF parameters. These components were: the order; the image capture or day and the 

tooth specimen. The effect of the ‘image capture’ or ‘day’ was investigated to examine for 

any systematic bias. Data were plotted and components of variance estimated, and the 

repeatability-estimate derived from these, for each of the three QLF parameters. These 

estimates were compared with the levels proposed by Shrout (1998).

3.3 Results and analysis of repeatability of QLF

Image capture
The results of image capture for these 20 tooth specimens for the three QLF parameters: 

QLFarea; QLFmax and QLFAVER are displayed in Figure 11, Figure 12 and Figure 13 

respectively. Each coloured line represents one of the twenty tooth specimens for each of 

the three image capture days. In the ideal situation, where every image of a given tooth 

specimen is the same, parallel, straight lines would be displayed.

Examining the plots in Figure 11, Figure 12 and Figure 13, it would appear from the 

increased number of almost straight lines, that QLFMAX (Figure 12) is the most repeatable 

of the QLF parameters captured for these 20 tooth specimens.
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Figure 11 - Plot of QLFAREA versus day for three separate images captured
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Figure 12 - Plot of QLFMAX versus day for three separate images captured
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Figure 13 - Plot of QLFAVER versus day for three separate images captured
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The descriptive statistics for the twenty specimens from the image captures, on three 

different days, are given in Table 3 for the QLF parameters: QLFAREA; QLFMAX and 

QLFAVhR. Data in Table 3 demonstrate that the QLF values obtained over the three days 

have similar means, standard deviations and ranges for each o f QLFAREA, QLFMAX and 

QLFaver.
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Table 3 -  Descriptive statistics for image capture of 20 specimens over three separate days

QLF

Parameter

Number

of

specimens

Day 1 Day 2 Day 3

Mean

(St.

Dev.)

Range

Mean

(St.

Dev.)

Range

Mean

(St.

Dev.)

Range

QLFAkEA

(mm2)
20

4.05

(1.7)

(0.7,

7.7)

3.97

(1.6)

(0.9,

6.1)

3.73

(1.4)

(1.6,

7.9)

Q LFmax 

(% F  Loss)
20

-42.8

(7.8)

(-58,

-29)

-41.7

(7.7)

(-56,

-28)

-42.1

(6.2)

(-54,

-30)

QLFAVtK 

(% F Loss)
20

-18.0

(3.8)

(-29,

-13)

-17.8

(3.6)

(-27,

-12)

-18.1

(3.3)

(-27,

-13)

From the statistical models, for all three QLF parameters, the effects of order and day were 

not statistically significant (p-values for these effects were >0.1, for each of the QLF 

parameters), whilst the random specimen effect was highly significant (p< 0.001) in each 

of the three models. This significant effect of specimen was expected and indicated that all 

the tooth specimens were unique. From the simple models involving just the random effect 

of specimen, the components of variance were estimated, and the repeatability-estimate 

derived from these, for each of the three QLF parameters. Approximate 95% confidence 

intervals for the repeatability-estimates were also calculated, and are displayed in Table 4.
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Table 4 - Repeatability of QLF for image capture on three separate days

QLF Parameter Estimate of Repeatability
Approx. 95% Cl for 

Repeatability

QLFakla (mm2) 83% (68, 92)%

q LFMAx (o/oF Loss) 96% (91, 98)%

QLFavek (%F L o ss ) 83% (68, 92)%

Data in Table 4 confirm that QLFMAX was the most repeatable QLF parameter for QLF 

capture, as was suggested in Figure 11, Figure 12 and Figure 13. The estimate of 

repeatability was 96%, with a narrow 95% confidence interval of between 91% - 98%. 

QLFarea and QLFAVER had lower estimates of repeatability (83%), with wider 95% 

confidence intervals of between 68% - 92%.

Image analysis
The results of the image analysis experiment, where each tooth specimen had one image 

captured and this image was then analysed on three different days, are displayed for the 

three QLF parameters in Figure 14, Figure 15 and Figure 16, for QLFAREA, QLFMAX and 

QLFaver respectively.
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Figure 14 - Plot of QLFAREA versus day for one image analysed three times
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Figure 15 - Plot of QLFMAX versus day for one image analysed three times
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Figure 16 - Plot of QLFAVER versus day for one image analysed three times
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On examining the plots in Figure 14, Figure 15 and Figure 16, it would appear from the 

increased number o f almost straight lines, that Q LFMAX and QLFAVER were slightly more 

repeatable than QLFARt A for image analysis for these 20 tooth specimens.

The descriptive statistics for analysis o f the images o f twenty specimens, three times on 

different days are described in Table 5 for the QLF parameters: QLFAREA; QLFMAX and

q l f aver

Data in Table 5 demonstrate that the QLF values obtained over the three days had similar 

means, standard deviations and ranges for QLFAREA, QLFMAX and QLFAVER. This would 

suggest that there was little  evidence o f any systematic difference (bias) between the three 

days.
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Table 5 -  Descriptive statistics for image analysis of 20 specimens over three separate days

QLF

Parameter

Number

Day 1 Day 2 Day 3

of

specimens

Mean

(St.

Dev.)

Range

Mean

(St.

Dev.)

Range

Mean

(St.

Dev.)

Range

QLFarea
20

4.05 (0.7, 3.90 (1.1, 4.04 (1.2,

(mm2) (1.7) 7.7) (1.6) 7.9) (1.6) 7.8)

QLpMAX
20

-42.8 (-58, -42.4 (-57, -42.9 (-56,

(% F Loss) (7.8) -29) (7.8) -33) (7.8) -28)

QLFAVEK
20

-18.0 (-29, -18.0 (-30, -18.1 (-28,

(% F Loss) (3.8) -13) (3.9) -13) (3.7) -13)

Statistical analysis of these results was conducted using the "repeated measures analysis of 

variance" technique, where for each of the outcomes (QLF parameters), the day and the 

order were modelled as fixed effects, and the tooth specimen was modelled as a random 

effect.

For all three QLF parameters, the effects of order and day were not statistically significant 

(p-values for both fixed effects, being >0.1, for each of the QLF parameters). The random 

specimen effect was highly significant (p<0.001) in each of the three models. This 

specimen effect was to be expected and confirmed that each of the tooth specimens was 

unique. From the simple models involving just the random effect of specimen, the 

components of variance were estimated and the repeatability-estimate derived from these, 

for each of the QLF parameters. Approximate 95% confidence intervals for the 

repeatability-estimates were calculated. The repeatability estimates, together with the 

corresponding confidence intervals, are contained in Table 6.
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Table 6 - Repeatability of QLF for image analysis of one image on three separate days

QLF Parameter Estimate of Repeatability
Approx. 95% Cl for 

Repeatability

QLfAKEA (mm2) 93% (86, 97)%

QLFmax(%F Loss) 95% (91, 98)%

QLFAVtk (%F Loss) 96% (91, 98)%

Data shown in Table 6 confirm the evidence from Figure 14, Figure 15 and Figure 16, 

which shows that QLFMAX and QLFAVER were slightly more repeatable QLF parameters for 

QLF analysis, with estimates of repeatability of 95% and 96% respectively. Both had 

narrow 95% confidence intervals of between 91% - 98%. QLFAREA had a slightly lower 

estimate of repeatability (93%), with a wider 95% confidence interval of between 86% - 

97%.

3.4 Discussion of repeatability of QLF
It was essential to determine the repeatability of the operator (AJN) in this study to validate 

the QLF results of the studies described in this thesis. Previous work by Pretty et a l  (2002) 

and Tranaeus et al. (2002) have demonstrated that an inexperienced QLF examiner is less 

repeatable than an experienced one. Therefore, repeatability measurements were useful to 

help define the operator’s level of QLF experience, i.e. “the extent to which repeated 

measurements by the same observer in identical conditions agree” (Petrie and Sabin,

2000).

To this end, the study was carefully designed by a statistician from the University of 

Glasgow. The methodology used was standard to the QLF technique. Images were 

captured and analysed in the manner described earlier, and identical to the technique used 

within the main study described in this thesis (Chapter 4). The statistical analysis used was 

the “components of variance” technique, with the components being estimated using 

“repeated measures analysis of variance”. The method of analysis chosen in this study 

allowed for the examination of potential systematic bias, as well as the calculation of
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repeatability estimates. Previous work on repeatability of QLF has not stated whether the 

potential effect of bias were considered, and instead have just reported the repeatability 

estimates, typically using intra-class correlation coefficients. Whilst the statistical methods 

are not identical, results obtained from studies utilising ICCs can be compared to the 

results reported here, by multiplying the ICC by 100 (i.e. converting into a percentage).

Repeatability o f  image capture
For the outcome measures of QLFAREA and QLFAVER, the estimates of repeatability were 

approximately 83%, with corresponding 95% confidence intervals of similar width, 

running from 68% - 92% (Table 4). Therefore, using the definitions from Shrout (1998), 

the repeatability of image capture, using the parameters QLFAREA and QLFAVER, is 

described as “substantial”. However, if  the lower point of the confidence interval is 

examined (i.e. "worst case scenario"), then there could be some cause for concern with 

these endpoints being “moderate”. The most repeatable outcome was QLFMAX, with an 

estimate of 96% repeatability and corresponding confidence interval from 91% - 98%. This 

confidence interval was much narrower than the other two, providing further evidence that 

it would seem easier for this operator to measure, consistently, QLFMAX of the same 

specimen from different images. It is of interest to note that when the Clin-QLF software 

calculates the QLF parameters, it uses the maximum “difference between the surrounding 

healthy enamel and the enamel within the area for analysis of one pixel” to calculate the 

QLFmax value. Therefore, it would be reasonable to assume that this would be one of the 

most constant parameters when examining multiple images of the same tooth specimen and 

would explain the high average repeatability and narrower 95% confidence interval 

obtained.

The results obtained in this study were comparable with those obtained for image capture 

by the Swedish group (Tranaeus et al., 2002), although, the latter study used an Argon ion 

laser as the light source for the image capture rather than light from a Xenon arc lamp. 

However, they found that their most repeatable parameter was QLFAREA. They obtained 

ICC’s of 0.97 for QLFAREA, 0.88 for QLFAVER and 0.94 for QLFMAX.

Repeatability o f  image analysis
For all three of the QLF parameters, the estimate of repeatability was over 90%, suggesting 

that the operator could consistently measure each of the QLF outcomes, for each specimen, 

over a number of days. The least reproducible outcome appeared to be QLFAREA (93%), 

with QLFmax and QLFAVER having similar repeatability-estimates of 95% and 96%. This

114



was further emphasised by the confidence intervals for the repeatability estimates, the 

intervals for QLFAVER and QLFMAX being of similar width. In addition, both were narrower 

than the interval for QLFAREA, suggesting more variability in consistently measuring 

q L F a r e a  0 f  a  g i v e n  specimen. A ll of these repeatability-estimates are described as 

“substantial” (Shrout, 1998).

The Tranaeus et a l  (2002) study also found the image analysis stage to be more consistent 

than image capture. They achieved ICCs of between 0.93 and 0.98 for QLFAREA; between 

0.96 and 0.99 for QLFAVER and between 0.96 and 0.99 for QLFMAX. These results were 

obtained for three different examiners, with the lower values being obtained for the 

“novice” examiner. Similarly to the findings in this study, Tranaeus et a l also found 

QLFarea to be the least repeatable parameter, with QLFMAX and QLFAVER the more 

repeatable parameters for QLF image analysis.

Summary
Overall, it appeared that the image capture stage was not as repeatable as the image 

analysis stage. One of the reasons for this may be the change in magnification of the image 

depending on how close the lesion is to the hand-piece. Not all images of the lesions were 

captured at exactly the same distance because it was dependent on focus. It is likely that 

this difference in magnification could account for the differences in lesion area (QLFAREA). 

To eliminate this potential error, it is now possible to use a depth guide attached to the 

camera, to ensure that the lesion image is captured at optimum focal length. Another 

method of eliminating image capture error is to use the image realignment software that 

has recently been developed within the QLF software (de Josselin de Jong and van der 

Veen, 2000). The software allows alignment of multiple images captured longitudinally of 

the same lesion. A ‘patch’ can be saved when the first image is analysed and this can be 

superimposed on the image when capturing subsequent images. After necessary adjustment 

by horizontal, vertical or rotational images the analysis can then be performed. 

Unfortunately, this software was not available at the beginning of the studies in this thesis.

From a statistical point of view, one of the weaknesses in this study was that the lesion 

sizes showed a lack of range. For repeatability studies, a wide range of lesion size is 

desirable. Despite the lesions in the current study ranging between approximately 0.5 and 

8.0 mm2, this was narrower than that of comparable ranges in other studies. A larger 

variety of lesion size and degree of demineralisation was achieved in the Tranaeus study,
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and the slightly higher repeatability-estimates may reflect this greater variety of lesions 

(though as mentioned before, the authors do not describe any examination of potential 

systematic bias). However, in the current study, one of the intentions was to create 

artificial caries lesions which were of a similar size and degree of demineralisation, to 

allow additional confirmation of the method chosen to create the lesions for the main 

study, the technique of which is described in Chapter 1, Section 1.7 and in Chapter 4.

Although the design of this study was planned so that the statistical method applied 

considered the potential effect of systematic bias, it was not considered important to 

determine bias as a result of operator error. This would have needed to involve many other 

operators of varying experience to measure potential systematic bias between operators i.e. 

if  one QLF operator was to consistently measure QLF parameters lower or higher on each 

occasion, in comparison with a different operator. In the studies completed in this thesis, 

there was one operator who captured and analysed all of the images (AJN), so although it 

was not possible to determine reproducibility, it is possible to determine the repeatability 

of the operator. Future work could include comparison with other QLF operators, of 

varying experience.

The operator (AJN) had approximately six months of QLF image capture and analysis 

experience which was gained prior to the beginning of the experiments described in this 

thesis. In addition, this repeatability study was undertaken prior to the main study 

described in Chapter 4. The results from this study show that the operator in this thesis was 

able to capture and analyse images at a “substantially” repeatable level. The repeatability 

estimates obtained would suggest that the operator could achieve levels of consistency 

similar to operators described as “experienced” in other studies examining the repeatability 

of QLF.

The results also demonstrated that the QLF image analysis stage was more repeatable than 

the QLF image capture stage for all QLF parameters, with the exception of QLFMAX, which 

was highly repeatable in both stages.
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4.0 The effect of fluoridated and non-fluoridated 

milk on longitudinal mineral content changes in 

artificial, caries enamel lesions

4.1 Introduction and aims
This chapter describes a study designed to evaluate the effect of fluoridated milk, on 

change in mineral content of artificial enamel lesions, using a complete denture model in 

situ. The study protocol was designed to investigate a number of research questions in 

relation to the efficacy of fluoridated milk usage. In addition, little is known about the 

additional cariostatic benefit obtained when fluoridated milk is taken in conjunction with 

the normally recommended twice-daily use of a fluoridated dentifrice. Hence, the study 

protocol was designed to address the question of fluoridated milk ingestion frequency, with 

and without the simultaneous use of a fluoridated dentifrice. Any potential site differences 

in caries mineral dynamics that occur within the oral cavity were also studied.

The study used an enamel caries in situ appliance model to investigate the following 

questions:

• Was there an effect of using fluoridated dentifrice on the mineral content of 

enamel lesions?

• Were there any effects of consumption of fluoridated milk on mineral content 

of enamel lesions a) with or b) without the effect of fluoridated dentifrice?

• Were there any differences in the change in the mineral content of enamel 

lesions at different intra-oral sites?

4.2 Methods
4.2.1 Subject selection
Ethical approval for the study was obtained from the Area Dental Ethics Committee of 

North Glasgow University Hospitals NHS Trust.
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Subjects were recruited to allow comparisons both in terms of the effects of fluoridated/ 

non-fluoridated milk and frequency of milk ingestion, and also to allow for the 

investigation of any carry-over effects between experiments. The details about the study 

protocol, the number of subjects to be recruited and the subject allocation are described in 

Sections 4.2.5 and 4.2.7.

Subjects were recruited for selection from three sources: patients of colleagues in general 

dental practice; a list of patients who had previously attended for treatment in the 

undergraduate Prosthodontic clinic of Glasgow Dental Hospital and School; and by 

opportunistic recruitment of individuals known to the study researchers.

In total, 71 potential subjects were approached (Appendix 3), with 50 agreeing to attend for 

further screening and assessment. Selection criteria were determined and are listed below:

Selection criteria
It was judged that subjects suitable for possible inclusion in the study should:

(i) be able to attend on a regular basis and, where relevant, have a good attendance 

history.

(ii) be mobile i.e. not requiring ambulance transport services.

(iii) be edentulous.

(iv) consider themselves to be a good denture wearer, who did not require complex 

treatment.

(v) have a “normal” diet with neither excessive nor insufficient refined carbohydrate.

(vi) have '’sufficient” resting whole salivary flow-rate i.e. >0.1 mL per minute.

(vii) have Lactobacillus sp. intra-orally.

(viii) ideally be free of oral candidiasis.

(ix) have no evidence of Sjogren's syndrome.
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(x) not be on long-term antibiotics, or use chlorhexidine gluconate mouthwash/gel.

(xi) not be taking medication such as antihypertensives, anticholinergics, tricyclic 

antidepressants/sedatives/tranquillisers, diuretics or antihistamines that might 

reduce the salivary flow-rate.

Potential subjects were identified for selection and the above criteria verified as follows. 

Subjects were invited to attend an assessment appointment. They were given further 

information about the study (Appendix 4) and informed they would be provided with two 

new sets of dentures; one of which would carry intra-oral test specimens. In addition, it 

was explained that a financial reward would also be provided to compensate for their time 

and travelling expenses. I f  the subject agreed to participate, a consent form was signed 

(Appendix 5). Subjects were then asked to provide a completed three-day diet diary form 

sent with the introductory letter, which included the request that one of the days should 

record what they ate and drank at a weekend. This allowed subjective evaluation as to 

whether the diet contained excessive or insufficient refined carbohydrate, such as might 

modify their potential caries experience. A full medical and dental history and oral 

examination was completed for each consenting participant and an assessment made of the 

alveolar ridge-form to determine the level of difficulty of denture construction. An 

unstimulated whole saliva sample was collected over two minutes by asking subjects to 

drool into a graduated tube. An adequate unstimulated salivary flow-rate was defined as 

being greater than 0.1 mL per minute (Dawes, 1996). Following this, an intra-oral rinse of 

lOmL of 0.01M Phosphate Buffered Saline (PBS) at pH 7.4 (Sigma Chemical Co., St 

Louis, MO, USA) was undertaken for one minute with the subject's current dentures in 

place. The rinse and saliva sample were then cultured for microbiological assessment to 

detect whether Streptococcus mutans and Lactobacillus sp. were present in the volunteer’s 

oral microflora. A requirement of a microbiology Ph.D study involving the same subjects, 

and running in parallel with this project, was that the participants had Lactobacillus sp., 

and that the intra-oral presence or absence of Streptococcus mutans was known at the 

selection stage.

4.2.2 Complete denture model
As the subjects were edentulous, the intra-oral appliance design consisted of modifying a 

set of complete upper (maxillary) and complete lower (mandibular) dentures to carry 

human tooth blocks with artificially-created caries lesions therein. Rather than merely
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altering the existing dentures, it was decided that new complete dentures should be 

constructed. These "test" dentures were to be worn during each six-week experiment. The 

time between experiments was decreed a "washout period", details of which are described 

later. During washout periods, subjects were to be required to leave their "test" dentures 

out of their mouths. Hence, two sets of complete dentures were constructed, one to wear as 

the intra-oral appliance during each experiment, and one to wear between experiments. In 

total, 32 subjects each had two sets of dentures provided for them (64). The two sets of 

dentures were essentially duplicates with only the test dentures modified to carry tooth 

blocks.

The complete dentures were constructed with a variation from the normal practice. Primary 

impressions were taken in red impression compound (Kerr UK Ltd, Peterborough, UK) to 

enable construction of individual impression trays in light-cured acrylic. Master 

impressions were taken of the patients using individual trays modified with green 

impression compound (Kerr UK Ltd, Peterborough, UK), and Permlastic, polysulphide 

impression material (Kerr UK Ltd, Peterborough, UK). Master casts were constructed in 

dental stone and duplicated to create a second set of master casts. Wax record blocks were 

made, jaw registration taken and acrylic teeth (Senator, Wright Health Group Ltd, Dundee, 

UK) selected for trial dentures. Once both clinician (AJN) and subject were happy with the 

appearance and registration, the dentures were processed in heat-cured acrylic resin, and 

finished. Templates and impressions were made of these prostheses and a duplicate set of 

upper and lower complete dentures constructed on the duplicate master casts. Subjects 

were then asked to wear the dentures and attend for adjustment and review until they were 

able to wear both sets comfortably. Thereafter, volunteers were required to choose which 

set of dentures they preferred to wear as their "test" dentures, as the experimental protocol 

required the subjects to use these dentures continuously (day and night) for several six- 

week periods. A washout period followed each of the six-week test periods during which 

the alternate dentures were worn for four weeks. To prevent any intra-oral discomfort or 

infection, instruction was given on denture cleaning (Appendix 6). Subjects were advised 

to brush only the fitting surface of each denture with a soft brush, and informed that any 

food debris could be removed by simply holding the dentures under running water. 

Throughout the study periods, regular examination of the subject’s oral tissues was 

undertaken, though no subject developed any signs or symptoms from wearing the 

dentures continuously.
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4.2.3 Tooth blocks containing artificial caries lesions
As described in Chapter 2, Section 2.2.2, blocks of abraded human enamel with underlying 

dentine were created with approximate dimensions of 8 x 6 x 3 mm. Artificial caries 

lesions were then prepared using a lactic acid-based demineralisation gel containing a 

polymer (Carbopol, B & F Goodrich and Company Chemical Group, Avon Lake, Ohio, 

USA) to facilitate the formation of subsurface demineralisation with an intact surface zone. 

Within 1-2 weeks, adequate demineralisation was observed in the tooth blocks by visual 

examination, and then confirmed with Quantitative Light Fluorescence (QLF), with the 

lesions having an Average Fluorescence Loss (QLFAVER) of greater than 13%, as described 

in Chapter 2, Section 2.3.1, being suitable for inclusion in the study.

4.2.4 Site selection for artificial caries lesions
The complete dentures used in the experimental phases of the study were modified to 

create test sites by drilling rectangular depressions in the buccal and palatal/lingual aspects 

of each set of dentures, to allow cementation of the enamel blocks flush with the polished 

surface of the dentures. Within the appliance model, 10 test locations were chosen to 

represent intra-oral sites with differing salivary-film velocities (Dawes and Macpherson, 

1993). These were six sites in the upper denture and four sites in the lower denture (Figure 

17). The six chosen sites in the upper intra-oral appliance were: right buccal (site 1); 

midline labial (site 2); left buccal (site 3); left palatal (site 4); midline palatal (site 5) and 

right palatal (site 6). The four sites in the lower intra-oral appliance were: right buccal (site 

7); left buccal (site 8); left lingual (site 9) and right lingual (site 10).
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Figure 17 - Photograph of test dentures containing tooth blocks in 10 test locations

Blocks in situ, 
numbered by 

- v  site

L IS T *

The sites in the upper denture each retained two enamel blocks, whereas there was only 

one block per site w ith in the lower denture. The additional block at each site in the upper 

denture was for plaque collection relating to a concurrent Ph.D study described briefly in 

Section 4.2.1. This additional block was smaller than that described above, w ith 

approximate dimensions o f 4 x 4 x 3 mm and did not contain an artific ia l caries lesion.

The smaller non-demineralised blocks, used solely for plaque collection, were fixed into 

the six sites in the upper intra-oral appliance for each o f the experimental protocols, using a 

combination o f self-cure acrylic (Simplex Rapid, Austenal Dental Products Ltd, Harrow, 

U K ) and cyanoacrylate adhesive (Tufloc, TILP adhesives Ltd, Grantham, UK). The large 

blocks o f tooth, containing a demineralised lesion, were allocated randomly to test sites
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and cemented into the appliances using Tempbond NE™ (Kerr U K Ltd, Peterborough, 

UK). This allowed relatively easy removal o f  the tooth blocks from the test dentures on 

completion o f each o f the experimental protocols. The typical appearances o f both large 

and small blocks, in situ are shown in Figure 18.

Figure 18 - Photograph of small and large tooth block in upper test denture

4.2.5 Study protocol
Selected subjects were allocated randomly to one o f two groups: treatment only (T), or 

treatment plus dentifrice (TD); further details are provided in Section 4.2.7. Those 

follow ing the TD protocol conformed to an industry-accepted method o f simulating twice 

daily toothbrushing o f the teeth (Manly, 1943). A  dentifrice (1100 ppm F) slurry diluted 

1:4 in water was prepared and checked in the laboratory, prior to distribution w ith a small 

marked measuring cup. The subjects involved measured 4 mL o f the slurry into the 

measuring cup, took this to the mouth and swilled it around the oral cavity, once in the 

morning and once in the evening, for two minutes before voiding. The subjects were told 

not to rinse their mouth out follow ing use o f this dentifrice slurry.

For both groups, there were five experimental protocols. Each subject was allocated (in the 

manner described in Section 4.2.7) to fo llow  all five o f the experimental protocols in a 

random order. Each protocol was o f six weeks' duration and was followed by a minimum 

"washout period" o f four weeks (Stephen et al., 1992). The five protocols were:

123



A. 0.5 mg F in 200 mL milk, three times per day (equivalent to 2.5 ppm F)

B. 1.5 mg F in 200 mL milk, once per day (equivalent to 7.5 ppm F)

C. 200 mL milk, once per day

D. 200 mL milk, three times per day

E. No beverage

Each protocol was followed in addition to the subject's usual diet, which had been assessed 

previously (Section 4.2.1). The subject was asked at the beginning of each experiment and 

during each experiment if  there had been any changes to their medical history or 

medication taken, which could have excluded them from the study according to the 

selection criteria (Section 4.2.1).

4.2.6 Fluoridated milk preparations
To prepare the fluoridated milk, solutions of 0.5 mg F and 1.5 mg F were prepared in the 

laboratory, along with deionised, distilled water for use as a placebo. The Pharmacy 

Production Department of the Western Infirmary, Glasgow, filter-sterilised all of the 

solutions, and 2 mL volumes were placed into sterile, labelled, plastic bijou bottles (Figure 

19).
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Figure 19 - Photograph of the three bijou bottles used in the study. The three solutions 1.5 
mg F, 0.5 mg F and distilled, deionised water were randomly allocated A, B and C.

Prior to each experiment, the Research Assistant gave each subject verbal and written 

instructions on how to fo llow  the experimental protocol and explained the function and 

duration o f the four week "washout period" between each study phase (Appendix 7 

contains the details o f the instructions given to subjects for each experiment for the two 

groups, T and TD). The Research Assistant also arranged for delivery o f the UHT m ilk  

w ith fluoride, and the fluoride slurry, where applicable, to the subject's home, i f  required. 

The m ilk  was skimmed, semi-skimmed or whole, depending on the subject's preference. 

The required numbers o f bijou containing either a sodium fluoride solution or placebo 

distilled water, were provided ( i f  required) along w ith sufficient quantities o f UHT m ilk 

appropriate for any one complete protocol run. Only the Research Assistant knew which 

solutions corresponded w ith the bijou labels A, B and C. Subjects were instructed to 

measure 200 mL o f m ilk  into the measuring cup provided, and then empty the contents o f a 

bijou bottle into the m ilk, and stir prior to ingesting the beverage. The concentration o f 

fluoride in the m ilk  was confirmed w ith a fluoride meter, in the laboratory, prior to the 

experimental process.

The processes relating to patient allocation, m ilk  usage, and m ilk  delivery were undertaken 

by the Research Assistant, to ensure the clinical investigator was blind to the actual 

experimental protocol which each subject was following.
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On the last day of each six-week experiment, subjects were asked to return all bijou bottles 

they had been given for the duration of that experiment, to the Research Assistant. Those 

who had been allocated to the TD group were also asked to return the large bottle which 

had contained the dentifrice slurry solution in order to evaluate compliance. Compliance 

was also assessed via a questionnaire distributed to each volunteer following completion of 

their total involvement i.e. at the end of all five experiments (Appendix 8).

4.2.7 Subject allocation and number of subjects
As mentioned before, subjects were each to undertake 5 different experiments (A. 0.5mg F 

in 200 mL milk x 3/day, B. 1.5mg F in 200 mL milk x 1/day, C. 200 mL milk x 1/day, D. 

200 mL milk x 3/day and E. no beverage). With respect to the subject randomisation 

process, two elements were involved: firstly, subjects were allocated randomly to one of 

the two groups (T or TD); secondly, the order of experiments (A - E) had to be determined 

for each subject.

Randomisation o f  subject to a group
To allocate subjects to either the T or TD group, a randomisation list was prepared by the 

research statistician, using the random permutated blocks method (Pocock, 1983), to 

ensure approximately equal numbers of subjects were allocated to each group following 

recruitment. This process was set up prior to the commencement of subject recruitment.

This randomisation list was then transcribed into a log-book, which contained sequential 

subject study numbers, and against each study number, the allocated group. When a subject 

was recruited into the study, the Research Assistant assigned the subject the next available 

subject study number, from which the allocated group was deduced and assigned.

Randomisation o f  order o f  experiments fo r a subject
Prior to study commencement, the statistician created experimental schedules, these 

providing the order in which the five experiments were to be allocated to each subject. The 

experimental orders were determined using a Balanced Latin Squares Design (Pocock, 

1983), to ensure that within each group, each sequential pair of experiments was to be 

given to at least two subjects, assuming every subject completed all five experiments. This 

design was used to enable the potential effect of experimental order to be examined, 

assuming all participants completed all experiments.
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The Balanced Latin Squares Design indicated that ten subjects would be required in each 

group, thus a total of twenty subjects was needed. However, for the design to be balanced, 

it was necessary that all twenty subjects completed all five experiments. Given the target 

population, it was decided to aim to recruit a minimum of thirty persons, to try to ensure 

that all the required sequential experimental orders were undertaken by at least two 

subjects. It was also decided that, if  any subjects dropped-out of the study, without 

completing all five experiments, within the first year of the study commencing, the 

experimental schedule for such a subject would be re-started with a new volunteer. After 

this first year, once the first ten experimental schedules for each group had been allocated, 

further schedules were created for any remaining recruited subjects. By so doing, it was 

hoped to minimise the effect of any subjects dropping-out before completion of all five 

experiments, in the latter phases of the study.

4.2.8 Transverse microradiography and image analysis (TMR)
On completion of the experimental protocols, and after all images were captured with 

QLF, the tooth specimens were cut into sections, hand-lapped then microradiographed as 

described in Chapter 2, Section 2.3.2.1. As many sections as possible were prepared from 

each block. Initially a single section from the centre of the block was used for TMR  

analysis. Image analysis was undertaken using the TMR software, version 1.25e,

(Inspektor Research Systems BV, Amsterdam, The Netherlands). Image analysis was 

undertaken on both the covered (control) area of the lesion and also on the exposed area of 

each tooth section.

Tooth blocks were included for analysis only if  they had an exposed and covered reading 

constituting a ’'pair”. Therefore, if  there was no reading from either the covered "control’' 

portion or exposed portion of the tooth specimen, it was excluded from statistical analysis. 

This occurred if  there was loss of the intact surface zone of the caries lesion, believed to 

occur, on occasion, both during the in situ period and during preparation of the tooth 

section for microradiographical analysis. In such cases another section from the same 

block was used. No TMR data could be recorded from a block if  it was either lost during 

the experiment, or no intact sections could be retrieved from that block. Obviously, use of 

TMR only at the end of an experiment makes it is impossible to obtain a true baseline 

value. Therefore the TMR data calculated for the covered part of the lesions represented 

"proxy" control values. This aspect will be discussed in more detail later.
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4.2.9 Quantitative Light Fluorescence (QLF) image numbering 

and analysis
A  maximum o f nine QLF images were captured o f each tooth specimen during the study. 

They were numbered "Image 1 - 9" according to the stage o f image capture and are 

illustrated schematically in Figures 20, 21 and 24.

Pre-intraoral Appliance Block Preparation

Sound enamel

QLF Image 1 captured of laboratory 
baseline (uncovered) tooth blocklesion

Half of tooth block covered with opaque 
fissure sealant or acid resistant varnish

QLF Image 2 captured of laboratory 
baseline (partially covered) tooth 
blockCovered

Exposed

All Exposed

Figure 20 - Diagram summarising block preparation prior to placement in the intra-oral 
appliance

Figure 20 summarises block preparation prior to placement w ith in the intra-oral appliance. 

Once the artific ia l caries lesion was created on the tooth block, it was examined visually to 

determine whether there was an evenly demineralised "white spot lesion" on the enamel 

surface. This was verified by taking a QLF image o f the block (named QLF Image 1) and 

analysing it to confirm that the lesion demonstrated an Average Fluorescence Loss 

(Q LF A V 1  R) o f 13% or greater. Tooth blocks which satisfied this criterion were then 

partially covered by placing either acid-resistant varnish or fissure sealant over the lower 

ha lf o f the tooth block. Another QLF Image was captured at this stage (named QLF Image 

2  or “ baseline image” ), this was to confirm that the exposed lesion still demonstrated an
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Average Fluorescence Loss (QLFAVKR) o f 13% or greater, i.e. the demineralisation o f the 

lesion was fa irly even between the covered (control) and exposed areas. This image also 

acted as a baseline image, for later comparisons.

Figure 21 - Diagram summarising the order of the QLF image capture

Sequence of QLF Im age Capture

Tooth block cemented into 
Intraoral Appliance

Denture with recess

Exposed

C overed

Tooth block removed from 
Intraoral Appliance

QLF Image 3 captured after 
cementation-clinical baseline

2 weeks wearing appliance 

QLF Image 4 -  clinical two weeks

2 weeks wearing appliance 

QLF Image 5 -  clinical four weeks

2 weeks wearing appliance

QLF Image 6 -  clinical six weeks

Figure 21 outlines the sequence o f QLF image capture associated w ith the clinical aspect 

o f the study i.e. w ith the block in the appliance. When subjects attended for the first v is it o f 

the six-week experiment, blocks were allocated to the appliance in a random manner. The 

tooth blocks were cemented into the appliance using temporary dental cement, Tempbond 

NE™  (Kerr U K  Ltd, Peterborough, U K ) and a clinical baseline image was captured using 

QLF (named "QLF Image 3"). Examples o f QLF images o f tooth blocks are shown in 

Figures 22 and 23.
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Figure 22 - Image of computer screen showing a QLF image 3 for a tooth block with the
lower half covered with acid-resistant varnish
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Figure 23 - Image of computer screen showing a QLF image 3 for a tooth block with the 
lower half covered with fissure sealant
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Images were then captured o f the tooth block at every subsequent attendance o f the 

subject, which was at two-week intervals. Therefore "QLF Image 4" was captured two 

weeks into the experiment, "QLF Image 5" at four weeks and "QLF Image 6 " at the sixth 

week, and end-point o f the protocol. The tooth block was then removed from the intra-oral 

appliance by gentle elevation from the rectangular depression.

In Figure 24, the QLF image capture o f a tooth block on removal from the intra-oral 

appliance is outlined. Immediately on removal, the tooth blocks had an image captured 

(named "QLF Image 7"). The tooth blocks which had been partially covered w ith acid- 

resistant varnish had the varnish removed using acetone and alcohol and a QLF Image was 

captured (named "QLF Image 8 "). QLF Image 8  analysed values were not used in the 

overall statistical analysis.

Figure 24 - Diagram of treatment of tooth block on removal from intra-oral appliance

Post-lntraoral Appliance Tooth Treatment

QLF Image 7 -  captured in laboratory 
at end of experiment

with acid resistant varnish)

QLF Image 8 - acid resistant varnish 
was removed with acetone and alcohol 
and image captured

as stained “de-stain” protocol applied)

QLF Image 9 -  captured after de­
stag ing if required.

In some subjects there was evidence o f staining present on the tooth block when removed 

from the intra-oral appliance and it is known that the presence o f stain modifies the

Exposed

Covered

If tooth 
block was 
stained “de 
stain” 
protocol 
applied v

JJjonly if covered

All Exposed

T (lftooth block w

Exposed

Covered
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specificity of QLF as stain may also fluoresce and absorb light. Thus a false reading, 

indicating greater demineralisation than was actually present, could arise. Hence, if  visible 

stain was present on any tooth block, it was placed into a de-stain protocol (place block in 

30% Hydrogen Peroxide for four hours, rinse thoroughly in running water, store in water 

for 24 hours, rinse block and container, then store in saturated solution of Thymol 0.12%). 

An abstract describing this technique, was presented at PEF in 2002, Appendix 11. 

Following this, where applicable, a final QLF Image was captured, "QLF Image 9”.

To allow ease of manipulation of the data for statistical analysis, a "proxy" final image was 

created and named "Image 10". This was not a newly captured image, and was the data of 

image 9, or if  no stain had been present, the data of image 7. This proxy "Image 10" was 

taken as the final result.

QLF image analysis
The captured QLF Images were analysed using the software Clin-QLF version 1.25e 

(Inspektor Research Systems BV, Amsterdam, The Netherlands) as described in Chapter 2, 

Section 2.3.1. Because of the shape of the artificial caries lesion used in this study, a 

maximum of three borders could be placed on sound tooth substance surrounding the 

lesion prior to analysis. This was because the 4th and last remaining border would have to 

be placed at the division between the covered and uncovered lesion, and hence would not 

have been on sound enamel. This is illustrated in Figures 25 and 26. Each lesion was 

analysed at a threshold of “10”. Therefore, when the mean intensity of the pixels selected 

for sound enamel was compared with the intensity of any pixels within a prescribed area 

enclosing the lesion, those pixels with an intensity reduction of 10% or greater were 

categorised as dental caries. In this way the total number of pixels counted as carious could 

be used to calculate the lesion area (QLFAREA mm2), the average reduction in pixel 

intensity compared with sound tooth enamel (QLFAVER % Fluorescence Loss), as well as 

the maximum reduction in pixel intensity (QLFMAX % Fluorescence Loss).
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Figure 25 - Image of computer screen showing a QLF image of a tooth block covered with
acid-resistant varnish with the analysis patch superimposed.

** Quantitative Light induced Fluorescence [b l 1004a.bmp -  [original] 100%  1.000]

Q  File Edit Measure View Configure Window Help Pan cursor - i s l  X|

*** fh
b l1 0 0 4 a  

b11008a

image4

^Start ^ Q u a n tita t iv e  Light-ind... '*1 16:42

Figure 26 - Image of computer screen showing a QLF image of a tooth block covered with 
fissure sealant with the analysis patch superimposed.
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Thus the three QLF parameters recorded were: Area (QLFAREA); Average % Fluorescence 

Change (QLFAVER) and Maximum % Fluorescence Change (QLFMAX). Examples o f the 

analysis given from the Clin-QLF software are shown in Figures 27 and 28.

Figure 27 - Image of the computer screen following analysis (with the Clin-QLF programme) 
of the varnished tooth block illustrated above
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QLFarea: 5.0 mm2
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Figure 28 - Image of the computer screen following analysis (with the Clin-QLF programme) 
of the fissure sealed tooth block illustrated above
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4.2 .10 Data handling and statistical methodology
A ll data collected were entered into a custom-designed database (M icrosoft Access®, 

M icrosoft ® Corporation, USA). This was to permit storage and manipulation o f the large 

amount o f data from the image analysis using both TM R and QLF. Storage o f these data in 

the custom database allowed subsequent manipulation so they could be imported into the 

statistical computer package (Minitab, M initab Inc, PA, USA).

The main objective o f the statistical analysis was to examine systematically whether the 

difference between the control lesions and the lesions exposed to the protocols were 

related to any o f the factors o f interest (i.e. group, experiment and site). Descriptive 

statistics, i.e. mean, standard deviation and range, were calculated for integrated mineral 

loss and lesion depth, for TMR, and QLFAREA, QLFMAX and QLFAVER. Data were plotted 

to examine their distributions. A ll o f the data were approximately normally distributed; 

therefore, parametric statistical tests were applied.
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In the descriptive analyses of both the QLF and TMR outcomes, the data were 

summarised across all appropriate specimens. The decision was taken to present the data 

in this manner, rather than determining summary statistics on a subject basis (i.e. across all 

sites per subject), as it was felt that, at a descriptive level, the large between-specimen 

variability was of interest. However, the formal statistical analyses using the general linear 

models (detailed further below), took into account the multiple observations from each 

subject.

For both the TMR and QLF ‘baseline’ control data, statistical analysis was used to 

examine whether the ‘baseline’ control lesions were of similar magnitude with regards to 

group and experiment. Because of the composition of the data, this was undertaken slightly 

differently for TMR and QLF. Thus the statistical methodology will be described 

separately for TMR and QLF data analysis. However, for all statistical tests, p-values of 

less than 0.05 were taken to be statistically significant.

4.2.10.1 Statistical methodology for TMR
Throughout this section, the objective was to examine the mineral content (integrated 

mineral loss and lesion depth), as measured by TMR, and to investigate potential 

differences between groups, experiments and sites. The following data were examined:

• all specimens

• subdivided by group - Treatment only (T)

Treatment and Dentifrice (TD)

• subdivided by experiment - 0.5mg Fluoride in milk, three times per day

1.5mg Fluoride in milk, once per day

200ml milk, once per day 

200ml milk, three times per day 

no beverage (negative control)

• subdivided by site - 1 - upper posterior buccal, right

2 - upper midline buccal

3 - upper posterior buccal, left

4 - upper posterior palatal, left
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5 - upper midline palatal

6 - upper posterior palatal, right

7 - lower posterior buccal, right

8 - lower posterior buccal, left

9 - lower posterior lingual, left

10 - lower posterior lingual, right

The TMR parameters of integrated mineral loss and lesion depth were examined in the 

following way:

• Covered area of the lesion (proxy ‘baseline’ control)

• Area of the lesion exposed to the experimental protocol

• Difference between the control and exposed lesion.

When considering the covered (control) lesion data, the mean mineral content of the 

lesions allocated to the two independent treatment groups (T and TD) were compared 

using a two sample t-test and corresponding 95% confidence interval. The mean mineral 

content data for the covered lesions, by the five experiments to which the specimens were 

allocated, were compared using one-way ANOVA. Where required, follow-up 

Bonferroni-corrected multiple comparisons were used to identify which of the five 

experiments differed significantly.

To determine which of the factors of interest detailed above had a significant effect on 

change in mineral content, the difference of covered lesion data minus exposed lesion 

data, was calculated for each block. A general linear model procedure was then used to 

determine which of the factors: experiment, group and site, together with potential 

interactions between these factors, had a significant effect on the difference, for integrated 

mineral loss and lesion depth separately.

Additionally, it was decided to examine the tooth specimens from sites where it was 

anticipated there would be the greatest amount of remineralisation in further detail. The 

four tooth blocks that were placed in Sites 1, 3, 9 and 10 (upper posterior buccal sites and 

lower posterior lingual sites) were likely to be exposed to the greatest amount of salivary
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flow. Thus the greatest amount of remineralisation was anticipated in these blocks. Further 

analysis was undertaken of this group of blocks, in a manner similar to that listed above.

4.2.10.2 Statistical methodology for QLF
The objective was to examine the area (QLFAREA) and change in the fluorescence as an 

average (QLFAVER) and a maximum (QLFMAX), as measured by QLF and to again look for 

potential differences in terms of the factors: group, experiment and site; as defined in the 

list in Section 4.2.10.1 above.

The QLF parameters of QLFAREA, QLFAVER and QLFMAX were examined for:

• baseline QLF (Image 2) data

• difference between the baseline (Image 2) and post-experimental protocol QLF data 

(Image 10).

When considering the baseline (Image 2) data, the means of the lesions allocated to the 

two independent treatment groups (T and TD) were compared using a two sample t-test 

and corresponding 95% confidence interval. The mean baseline (Image 2) data for the 

lesions, by the five experiments to which the specimens were allocated, were compared 

using one-way ANOVA. Where required, follow-up Bonferroni-corrected multiple 

comparisons were used to identify which of the five experiments differed significantly.

To determine which of the factors of interest detailed above had a significant effect on 

change in mineral content, the difference of baseline (Image 2) data and final (Image 10) 

data, was calculated for each block. For QLFAVER and QLFMAX the difference was taken as 

final image (Image 10) minus baseline (Image 2) image, because negative numbers were 

being dealt with, as explained in Section 4.3.2.2. The exception to this was QLFAREA 

which was taken as Image 2 (baseline) - Image 10 (final image), with a positive number 

signifying further demineralisation.

A general linear model procedure was then used to determine which of the factors: 

experiment, group and site, together with potential interactions between these factors, had 

a significant effect on the difference for QLFAREA, QLFMAX and QLFAVER separately.
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For the reasons described in Section 4.2.10.1 above, it was decided to examine the tooth 

blocks from sites where it was anticipated there would be the greatest amount of 

remineralisation. Therefore, the four tooth blocks placed in Sites 1, 3, 9 and 10 (upper 

posterior buccal sites and lower posterior lingual sites) were examined in further detail. 

The statistical analysis undertaken for this group of blocks was in a manner similar to that 

detailed above.

4.3 Results
O f the 50 subjects who agreed to attend for screening, 32 fulfilled the selection criteria and 

were recruited. O f the remaining 18, two failed to attend for screening, nine declined the 

recruitment invitation, and seven were unsuitable either because of inadequate salivary 

flow or an unsuitable intra-oral flora.

A total of 32 volunteers were recruited in case some failed to complete the study. Three 

volunteers failed to start the experimental protocols due to illness. Hence, 29 volunteers 

started at least one of the five experiments within the study (mean age 68 years, SD 9 

years). There were 15 male volunteers (mean age 70 years, SD 9 years) and 14 female 

volunteers (mean age 67 years, SD 9 years). The age range of the volunteers is shown in

Table 7.

Table 7 - Age range of volunteers at start of study

Age Range 

(years)
59 or less 6 0 -69 70 -79 80 or over

Number of 

volunteers (29)
5 11 9 4

O f these 29 volunteers, 13 were randomly allocated to the T group and 16 were randomly 

allocated to the TD group. O f the 29 subjects, 25 volunteers completed all five 

experimental protocols (12 were in the T group and 13 were in the TD group). Details 

relating to those who failed to do so are listed as follows:

Subject 1, (TD group) had an unexpected illness and died after completing two 

experimental protocols.
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Subject 18, (TD group) withdrew after completing two experimental protocols.

Subject 20, (TD group) completed three experimental protocols then failed to return 

because of chronic illness.

Subject 17, (T group) completed four experimental protocols, had an accident during the 

final protocol and was too immobile to return and repeat the final experiment.

Therefore of the 145 possible experiments (i.e. 29 subjects x 5 experiments), results were 

obtained for 136 (25 x 5; 2 x 2; 1 x 3; 1 x 4). In total, 1360 (136 x 10) tooth blocks were 

used in these experiments.

The study design and randomisation were planned to allow analysis of the effect of order 

of experiments. However, because an insufficient number of the subjects completed all five 

of the experimental protocols, it was not possible to incorporate this factor into the 

statistical models.

Compliance with the experimental protocols was assessed at the end of all five 

experimental protocols with a postal questionnaire (Appendix 8). The results of this are 

displayed in Section 4.3.4.

4.3.1 Results of transverse microradiography and image analysis 

(TMR) evaluation
4.3.1.1 Survival of specimens suitable for TMR evaluation
O f the 1360 tooth blocks used in the experimental protocols, there were 939 blocks at the 

end of the study from which a section could be cut with a matched "pair" of a covered 

(control) and exposed lesion suitable for analysis by transverse microradiography. The 421 

tooth blocks without TMR results were because of either a loss of the tooth block during 

the experimental protocol or a mix up of tooth blocks on retrieval from the intraoral 

appliance (four) or failure to cut a section with a matched covered and exposed lesion 

suitable for TMR evaluation.

4.3.1.2 Analysis of covered (control) TMR data
Summary statistics of TMR integrated mineral loss (IM L) and lesion depth (LD) values for 

the covered (control) lesions from the tooth blocks were calculated to determine if  there
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were differences in the covered data when analysed by group and by experiment. These 

IM L and LD values were considered to be proxy values for baseline lesion size (control), 

as they were calculated on completion of the experiment.

Covered lesions

A. Integrated mineral loss
Table 8 contains the summary statistics for IM L data for all the covered TMR lesions. A 

wide range of values was seen and the standard deviation was almost half that of the mean 

(mean = 2214, St. Dev. = 1053).

Table 8 - Summary statistics of integrated mineral loss (IML) of all covered TMR lesions

N * Mean
Standard

Deviation
Range

939 2214 1053 (217,7369)

Integrated mineral loss is measured in %Vol mineral.pm 
N* = number of lesions available for analysis

B. Lesion depth
Table 9 contains the summary statistics of lesion depth (LD) for all of the covered TMR  

lesions. The standard deviation was again relatively high when compared with the mean. 

The range of values was wide, with the deepest lesion being almost three times that of the 

mean.

The summary statistics in Tables 8 and 9 demonstrate the large variability in terms of the 

proxy control lesions, suggesting that the covered lesions were not all of similar size with 

regard to either integrated mineral loss or lesion depth.

Table 9 - Summary statistics of lesion depth (LD) of all covered TMR lesions

Standard
N * Mean

Deviation
Range

939 75.9 28.4 (10.4,212.4)

epth is measured in pm
N* = number of lesions available for analysis
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Covered lesions by group
Tables 10 and 11 show the results of division of the TMR data into the two treatment 

groups, Treatment (T) and Treatment plus dentifrice (TD). The T group was smaller than 

the TD group by 73 tooth specimens.

A. Integrated mineral loss
Table 10 demonstrates a difference in the IM L values of the covered lesions between the T 

and TD groups. The mean IM L of the T group was greater than that of the TD group. This 

was of the order of approximately 12%. The standard deviations of both groups were 

similar and the ranges were very large. Use of a two sample t-test showed a statistically 

significant difference in the proxy control values between the two groups, with the T group 

having greater IM L than the TD group. The 95% confidence interval for the mean 

difference in IM L was 155 to 425 %Vol mineral.pm.

Table 10 - Summary statistics of IML of all covered TMR lesions by treatment group

Group N *
Mean 

(St. Dev.)
Range

2 sample 

t-test

95% Cl 

(T - TD)

T 433 2371 (1091) 237 - 7369

p < 0.001 (155, 425)

TD 506 2081 (1002) 217-5791

Integrated mineral loss is measured in %Vol mineral.pm 
N* = number of lesions available for analysis

B. Lesion depth
The summary statistics of lesion depth, shown in Table 11, demonstrate the differences in 

the proxy control LD data between the two groups, T and TD. Again, the standard 

deviations and ranges were large. A two sample t-test demonstrated a statistically 

significant difference between T and TD, with the mean lesion depth in the T group being 

greater than that in the TD group. The 95% confidence interval for the mean difference 

was 7.4 to 14.6 pm.
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Table 11- Summary statistics of LD of ail covered TMR lesions by treatment group

Group N *
Mean 

(St. Dev.)
Range

2 sample 

t-test

95% Cl 

(T - TD)

T 433 81.8(29.6) 10.4-212.4

p < 0.001 (7.4, 14.6)

TD 506 70.8 (26.4) 12.4-168.6

Lesion depth is measured in pm
N* = number of lesions available for analysis

Covered lesions by experiment
The summary statistics of the covered lesions following random allocation into the five 

experimental protocols are shown in Tables 12 and 13. These tables show that equal 

numbers of lesions were not evaluated for each of the five experiments. The lowest 

numbers of tooth lesions were evaluated for the no beverage experiment, where there were 

33 fewer specimens than in the experiment with the largest number of lesions (the 1.5mg 

F x 1/day).

A. Integrated mineral loss
Table 12 shows the mean, standard deviation and range of the proxy control IM L data for 

the tooth lesions allocated to the five experimental protocols. The mean data demonstrate 

the relatively large lesion sizes. The 1.5mg F x 1/day protocol had the highest mean lesion 

value and the lowest mean IM L value occurred in the specimens allocated to the 0.5mg F x 

3/day protocol. However, the standard deviations and ranges were also large, 

demonstrating the large variability across the lesions within those allocated to each 

experiment. A one-way analysis of variance, used to compare the control IM L areas across 

the five independent experiment groups, resulted in a p-value of 0.043. This suggests that 

there was a statistically significant difference between the mean IM L values across the five 

groups. However, follow-up Bonferroni-corrected multiple comparisons indicated that the 

only difference which reached close to statistical significance (p=0.054) was between the 

0.5 mg F x 3/day and 1.5 mg F x 1/day protocols.
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Table 12 - Summary statistics of IML of covered TMR lesions by experiment

Experiment N * Mean (St. Dev) Range

0.5mg F x 3/day 179 2080 (950) (351,5682)

1.5mg F x 1/day 203 2380 (1198) (237, 7369)

200mL milk x 1/day 192 2167(1083) (355,5395)

200mL milk x3/day 195 2150 (807) (602, 4807)

No beverage 170 2283 (1162) (216, 6343)

Integrated mineral loss is measured in %Vol mineral.pm 
N* = number of lesions available for analysis

B. Lesion depth
Summary statistics for covered TMR lesions by experiment for LD are shown in Table 13. 

These findings are similar to the IM L data. The lesions from the 1.5mg F x 1/day and the 

0.5mg F x 3/day protocols had the greatest and least mean lesion depths, respectively. The 

standard deviations and the ranges were large and again, the narrowest standard deviation 

and range occurred in the 200mL milk x 3/day group, indicating that the depths of the 

lesions randomly allocated to this group were the most consistent. When formal analysis 

using a one way analysis of variance was applied, there was no evidence of a statistically 

significant difference between the mean LD values of the proxy control areas across the 

five groups (p = 0.126).
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Table 13 - Summary statistics of LD of covered TMR lesions by experiment

Experiment N * Mean (St. Dev.) Range

0.5mg F in 200 mL 

milk x 3/day
179 73.3 (26.7) (17.5,161.7)

1.5mg F in 200 mL 

milk x 1/day
203 80.4 (30.2) (10.4,212.4)

200mL milk x 1/day 192 74.8 (29.3) (14.2, 169.8)

200mL milk x3/day 195 75.4 (22.0) (25.6, 153.3)

No beverage 170 74.8 (32.9) (12.4, 168.6)

Lesion depth is measured in pm.
N* = number of lesions available for analysis

4.3.1.3 Comparison of the difference between covered (control) and
exposed lesions measured by TMR
Descriptive statistics of the differences between the covered (control) and the exposed 

lesions for IM L and LD are shown in Tables 14-21. These measurements represented the 

changes in lesions over the experimental periods.

The calculation was covered minus exposed (cov-exp). I f  remineralisation occurred this 

resulted in a positive IM L or LD difference but if  further demineralisation occurred then 

this resulted in a negative IM L or LD difference. This can be illustrated as follows:

Section from tooth specimen 1630, IM L

• (cov-exp) = 2018 - 453 = 1565 %Vol mineral.pm

• this is a positive value and indicates remineralisation.

Section from tooth specimen 1342, IM L
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•  (cov - exp) = 1379 - 2585 = -1206 %Vol mineraLpm

• this is a negative value and indicates further demineralisation.

All lesions

A. Integrated mineral loss
The descriptive statistics for covered and exposed IM L, as well as the difference (covered - 

exposed), are shown in Table 14.

Table 14 - Summary statistics of IML, covered, exposed and the differences between 
covered and exposed

N *
Mean 

(St. Dev.)
Range

Covered 939 2214(1053) (217, 7369)

Exposed 939 1848 (928) (146, 5790)

Difference

(Cov-Exp)
939 366(863)

(-2059,

3639)

Integrated mineral loss is measured in %Vol mineral.pm 
N* = number of lesions available for analysis

There was on average a mineral gain of 366 %Vol mineral.pm, indicating remineralisation 

of the tooth specimens. However, it should be noted that the standard deviation of the 

differences were high. The range for the difference between covered and exposed lesions 

was very wide and indicated that not all of the tooth specimens behaved in a similar 

manner during the experimental protocols.

When plotted, the difference in IM L (covered - exposed), has an approximately normal 

distribution (Figure 29).
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Figure 29 - Dot plot of differences in IML (covered - exposed) TMR lesions
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Integrated mineral loss is measured in %Vol mineral.pm (n=939)

B. Lesion depth
The descriptive statistics for covered and exposed LD and the difference (covered 

exposed) are shown in Table 15.

Table 15 - Summary statistics of LD, covered, exposed and the differences between covered 
and exposed lesions

N *
Mean (St. 

Dev.)
Range

Covered 939 75.9 (28.4) (10.4,212.4)

Exposed 939 71.2(25.5) (6.6, 180.4)

Difference

(Cov-Exp)
939 4.6 (21.8) (-65.3, 143.6)

Lesion depth is measured in pm
N* = number of lesions available for analysis
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The mean lesion depths of the covered and exposed lesions were similar, making the 

difference between them small. However, the standard deviation of the mean differences 

(covered - exposed) were large. This indicates that the lesions were not all behaving in a 

similar manner. This was confirmed from the extent of the range, indicating that some 

lesions demineralised further and others remineralised. When plotted, the difference 

between lesion depths (covered - exposed) has an approximately normal distribution 

(Figure 30).

Figure 30 - Dot plot of differences in LD (covered - exposed) all lesions
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Lesion depth is measured in pm (n=939)

Lesions by group
When dividing the tooth specimens into the different treatment groups and experiments, 

only the summary statistics for the difference between the covered and exposed tooth 

specimens (covered - exposed) are displayed.
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A. Integrated mineral loss

Table 16 - Summary statistics for the IML differences (covered - exposed) by treatment
group

Group N *

Mean IM L  

difference 

(St. Dev.)

Range

T 433 257 (903)
(-2004,

3515)

TD 506 459 (817)
(-2059,

3639)

Integrated mineral loss is measured in %Vol mineral.pm 
N* = number of lesions available for analysis

As discussed in Section 4.3.1.2 above, there were not equal numbers of tooth specimens 

available from the two treatment groups T and TD. However, Table 16 demonstrates an 

IM L difference for the TD group which is just over 200 %Vol mineral.pm, greater than the 

IM L difference of the T group. In other words, both groups showed a net remineralisation 

but there was more remineralisation with the TD group. The standard deviations of these 

IM L differences were very large, and were approximately two to three times the size of the 

mean. The ranges of both groups were extremely wide and include values that were both 

negative and positive, indicating that some of the lesions demineralised and others 

remineralised (Figure 31).
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Figure 31 - Box plot of the IML differences (covered - exposed) by treatment group
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B. Lesion depth

Table 17 - Summary statistics for the LD differences (covered - exposed) by treatment group

Group N *

Mean LD 

difference 

(St. Dev.)

Range

T 433 4.7 (24.9) (-65, 143.6)

TD 506 4.6(18.8) (-56, 100.5)

Lesion depth is measured in pm
N* = number of lesions available for analysis

Table 17 demonstrated that there was very little difference in the mean LD difference 

between the two groups. The TD group had a very slightly smaller mean lesion depth 

difference. The standard deviations were large and were four to five times the size of the

*<- *K> *■*

— ** **
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mean. The ranges were wide and included negative as well as positive values, indicating 

that there had been further lesion demineralisation as well as remineralisation (Figure 32).

Figure 32 - Box plot of the LD differences (covered - exposed) by treatment group
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Lesion depth is measured in pm 

Lesions by experiment
The summary statistics of the IM L- and LD-difference (covered - exposed) lesion data by 

experiment are shown below.
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A. Integrated mineral loss

Table 18 - Summary statistics for the IML differences (covered - exposed) by experiment

Experiment N *
Mean IM L  

difference (St. Dev.)
Range

0.5mg F in 200 mL 

milk x 3/day
179 331(855) (-2059, 3015)

1.5mg F in 200 mL 

m ilkx 1/day
203 411 (890) (-2004, 3515)

200mL milk x 1/day 192 345 (882) (-1852, 3639)

200mL milk x3/day 195 313 (800) (-1935, 2371)

No beverage 170 435 (892) (-1752, 3253)

Integrated mineral loss is measured in %Vol mineral.pm 
N* = number of specimens available for analysis

Table 18 contains the summary statistics for the IM L differences (covered - exposed) for 

the five experimental groups. A ll IM L mean differences were positive indicating 

remineralisation (Figure 33). The smallest IM L difference occurred in the 200mL milk x 

3/day group and the greatest IM L difference was in the no beverage group, which had 

approximately a third greater mean IM L difference than the smallest mean difference, 

200mL milk x 3/day.
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Figure 33 - Box plot of the IML differences (covered - exposed) by experiment
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Integrated mineral loss is measured in %Vol mineral.pm

B. Lesion depth

Table 19 - Summary statistics for the LD differences (covered - exposed) by experiment

Experiment N *
Mean LD difference 

(St. Dev.)
Range

0.5mg F x 3/day 179 5.0 (22.6) (-52.3, 102.9)

1.5mg F x 1/day 203 5.3 (23.4) (-65.3, 143.6)

200mL milk xl/day 192 4.8(21.0) (-48.1, 87.9)

200mL milk x3/day 195 2.7 ( 20.5) (-55.9, 66.7)

No beverage 170 5.6 (21.4) (-45.9, 100.5)

Lesion depth is measured in pm
N* = number of lesions available for analysis
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From the data in Table 19 it can be observed that all mean LD differences were positive 

indicating on average there was remineralisation through a reduction in lesion depth. The 

smallest LD difference occurred in the 200mL milk x 3/day group. The largest LD 

difference occurred in the no beverage group. The standard deviations were large and the 

ranges were very wide (Figure 34). The ranges included negative and positive values, 

demonstrating that the lesions in the five groups were behaving in an inconsistent manner.

Figure 34 - Box plot of the LD differences (covered - exposed) by experiment
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Lesion depth is measured in pm

Lesions by site
The summary statistics of the IM L- and LD-difference (covered-exposed) lesion data by 

site are shown below.
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A. Integrated mineral loss

Table 20 - Summary statistics for the IML differences (covered - exposed) by site

Site N *
Mean IM L  

difference (St. Dev.)
Range

1 — upper right buccal 121 423 (-1852, 2347)

2 — upper mid-labial 117 208 (-2004, 3160)

3 — upper left buccal 120 344 (-1793, 3016)

4 — upper left palatal 48 344 (-849,3152)

5 — upper mid-palatal 49 364 (-1313, 3254)

6 — upper right palatal 54 399 (-1334, 2412)

7 — lower right buccal 111 396 (-1334, 2412)

8 — lower left buccal 102 543 (-2001, 3639)

9 — lower left lingual 108 350 (-1683, 2763)

10 — lower right lingual 109 311 (-1709, 3515)

Integrated mineral loss is measured in %Vol mineral.pm 
N* = number of specimens available for analysis

From the data in Table 20 it can be observed that there were positive values in all sites 

indicating remineralisation. The greatest mean mineral gain occurred at site 8 and the least 

remineralisation occurred at site 2. The mean standard deviations of the differences were 

high and the ranges were very wide, and included negative and positive values, 

demonstrating that the lesions in the different sites were behaving in an inconsistent 

manner.
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Table 21 - Summary statistics for the LD differences (covered - exposed) by site

Site N *
Mean LD difference 

(St. Dev.)
Range

1 — upper right buccal 121 4.6 (-51.6,58.8)

2 — upper mid-labial 117 1.7 (-55.9, 55.1)

3 — upper left buccal 120 3.4 (-46.9, 100.5)

4 — upper left palatal 48 0.71 (-43.0, 65.8)

5 — upper mid-palatal 49 3.1 (-45.8, 52.3)

6 — upper right palatal 54 7.1 (-31.1,56.8)

7 — lower right buccal 111 5.7 (-47.4, 63.7)

8 — lower left buccal 102 9.6 (-65.3,91.2)

9 — lower left lingual 108 4.8 (-52.3, 102.9)

10 — lower right lingual 109 4.5 (-32.7, 143.6)

Lesion depth is measured in pm
N* = number of lesions available for analysis

From the data in Table 21 it can be observed that there were positive values in all sites 

indicating remineralisation. The greatest mean mineral gain occurred at site 8 and the least 

remineralisation occurred at site 4. The mean standard deviations of the differences were 

high and the ranges were very wide, and included negative and positive values, again 

demonstrating that the lesions in the different sites were behaving in an inconsistent 

manner.
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Formal analysis using a general linear model procedure

Formal analysis of the data used a general linear model (GLM) procedure to determine 

which of the three factors, experiment, group and site, together with a random subject 

effect, had a significant influence on the difference (covered - exposed) data for both IM L  

and LD. Furthermore, the GLM procedure was able to examine potential interactions 

between these factors.

A. Integrated mineral loss
When the difference (covered - exposed) in IM L was modelled on experiment, group and 

site, together with a random subject effect, there was evidence of a statistically significant 

interaction effect of'group and site' (p = 0.002), together with a significant subject effect (p 

= 0.001). The subject effect was expected and confirms that the subjects were all different 

in terms of their ‘response’. There was insufficient evidence to suggest that the experiment 

factor had a statistically significant effect on the outcome (p = 0.445).

Given the evidence of the combined effect of 'group and site', the outcome of difference in 

IM L was modelled on experiment and site for the two groups separately. The summary 

statistics of the IM L differences by site, for T and TD separately, are shown in Tables 22 

and 23, respectively. Data from sites 4, 5 and 6 should be interpreted with caution because 

of the smaller number of specimens retained in the intra-oral appliances. There was 

insufficient evidence of an effect of experiment for either the TD group (p = 0.717) or the 

T group (p = 0.139).

In the T group (Table 22) there was variation in the mean IM L differences with site 8 

having the largest positive mean IM L differences (remineralisation) of +979 %Vol 

mineral.pm and site 3 having the smallest mean IM L difference (remineralisation) of +3 

%Vol mineral.pm. The standard deviations were consistently large, as were the ranges.

The GLM procedure determined that there was insufficient evidence to suggest a 

statistically significant site effect for the T group (p = 0.214).
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Table 22 - Summary statistics for the IML differences (covered - exposed) by site for the T
group

Site N *
Mean IM L  

difference (St. Dev.)
Range

1 — upper right buccal 55 149 (823) (-1852, 2092)

2 — upper mid-labial 53 378 (948) (-2004, 3160)

3 — upper left buccal 57 3 (865) (-1793, 2047)

4 — upper left palatal 17 287 (964) (-1793, 2047)

5 — upper mid-palatal 23 204 (806) (-1313,2095)

6 — upper right palatal 29 327 (875) (-1333,2414)

7 — lower right buccal 50 404 (965) (-1981,2825)

8 — lower left buccal 45 979(1062) (-2001,3021)

9 — lower left lingual 50 244 (886) (-1683, 2793)

10 — lower right lingual 54 184 (886) (-1709,3515)

Integrated mineral loss is measured in %Vol mineral.pm 
N* = number of lesions available for analysis

In the TD group (Table 23), the smallest mean IM L difference occurred in site 2 with +67 

%Vol mineral.pm and the largest mean IM L difference occurred in sites 1 and 3 with +652 

%Vol mineral.pm. Again the standard deviations and range were consistently large. The 

GLM procedure determined that there was a statistically significant effect of site for the 

TD group (p = 0.002).
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Table 23 - Summary statistics for the IML differences (covered - exposed) by site for the TD
group

Site N *
Mean IM L  

difference (St. Dev.)
Range

1 — upper right buccal 66 652 (710) (-530,2347)

2 — upper mid-labial 64 67 (849) (-1935, 2485)

3 — upper left buccal 63 652 (912) (-1606, 3016)

4 — upper left palatal 31 375 (675) (-849, 2172)

5 — upper mid-palatal 26 505 (821) (-657, 3254)

6 — upper right palatal 25 482(558) (-1143, 1284)

7 — lower right buccal 61 390 (806) (-2059, 2831)

8 — lower left buccal 57 592 (931) (-1752, 3639)

9 — lower left lingual 58 442 (768) (-1322, 2080)

10 — lower right lingual 55 435 (773) (-1264, 2323)

Mineral Loss is measured in %Vol mineral.pm 
N* = number of lesions available for analysis

B. Lesion depth
When the LD difference (covered - exposed) was modelled on experiment, group and site, 

together with a random subject effect, there was again evidence of a statistically significant 

interaction effect of 'group and site' (p = 0.043), together with the expected significant 

subject effect (p = 0.004). There was insufficient evidence to suggest that the experiment 

factor had a statistically significant effect on the outcome (p = 0.276). There was also 

insufficient evidence of an experiment effect for the TD group (p = 0.583) or the T group 

(p = 0.675).
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Given the significant interaction effect of ‘group and site’, the summary statistics for the 

LD difference (covered - exposed) by site, for T and TD separately, are shown in Tables 24 

and 25, respectively. As discussed previously, data from sites 4, 5 and 6 should be 

interpreted with caution because of the smaller number of specimens retained in the intra­

oral appliances.

In the T group (Table 24), there was much variation in the mean LD differences, with site 

8 having the largest positive change in the mean LD difference o f+11.3 pm (indicating 

remineralisation) while site 3 had the largest negative change in the mean LD difference of 

-3.3 pm, indicating further demineralisation through an increase in lesion depth at this site. 

A similar, but smaller, result difference was noted for site 4. The standard deviations were 

consistently large, as were the ranges, particularly in sites 9 and 10. The GLM procedure 

determined that there was insufficient evidence to suggest a significant site effect for the T 

group (p = 0.295).
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Table 24 - Summary statistics for the LD differences (covered - exposed) for site, for the T
group

Site N *
Mean LD difference 

(St. Dev.)
Range

1 — upper right buccal 55 3.1 (23.2) (-51 .6,58.8)

2 — upper mid-labial 53 4 .6 (21 .9) (-48.8, 55.1)

3 — upper left buccal 57 -3.3 (22.5) (-46.9 ,44.2)

4 — upper left palatal 17 -0.2 (25.5) (-43.0, 65.8)

5 — upper mid-palatal 23 0.6 (18.4) (-24.7, 34.9)

6 — upper right palatal 29 7.8(21.7) (-31 .1,53.4)

7 — lower right buccal 50 6.7 (23.8) (-45.9, 63.7)

8 — lower left buccal 45 11.3 (24.3) (-65.3 ,91.2)

9 — lower left lingual 50 7.4 (29.7) (-38.8, 102.9)

10 — lower right lingual 54 6.7 (30.5) (-29.8, 143.6)

Lesion depth is measured in pm
N* = number of lesions available for analysis

In the TD group (Table 25), the largest negative change in the mean LD difference 

occurred at site 2 (-0.71 pm) and the largest positive change in the mean LD difference 

occurred at site 3 (+9.41 pm). Again, the standard deviations and range were large. When 

the various factors were examined with relation to the outcome for the two groups 

separately, there was some evidence of a site effect for the TD group (p = 0.088), although 

this was not statistically significant at the 5% level.
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Table 25 - Summary statistics for the LD differences (covered - exposed) for site, for the TD
group

Site N *
Mean LD difference 

(St. Dev.)
Range

1 — upper right buccal 66 5.9(16.1) (-31.2, 48.8)

2 — upper mid-labial 64 -0 .7(19.1) (-55.9, 53.7)

3 — upper left buccal 63 9.4 (22.2) (-31.8, 100.5)

4 — upper left palatal 31 1.2(15.4) (-16.2, 49.7)

5 — upper mid-palatal 26 5.4(19.2) (-45.8, 52.3)

6 — upper right palatal 25 6.4 (17.4) (-25 .1 ,56.8 )

7 — lower right buccal 61 4 .9 (17.5) (-47.4, 40.4)

8 — lower left buccal 57 8.3 (21.5) (-39.8, 56.8)

9 — lower left lingual 58 2.5 (17.7) (-52.3, 38.0)

10 — lower right lingual 55 2 .4 (17 .9) (-32 .7 ,51.4 )

Lesion depth is measured in pm
N* = number of lesions available for analysis

Summary

It is apparent from the results of the analysis of the IM L and LD difference data that there 

was variability in the way that the lesions behaved in the different treatment groups at 

different sites. This is illustrated further in the following interaction plots of the IM L and 

LD mean difference data, charted by site and group in Figures 35 and 36.
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Figure 35 - Interaction plot of the mean IML differences by site and group
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Figure 36 - Interaction plot of the mean LD differences by site and group
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These interaction plots indicate that there is much variability between the different sites. In 

order to try and clarify what was happening, it was decided that particular sites should be 

analysed in more detail. Specifically, sites were chosen where evidence from the literature 

suggested that there was an increased salivary film velocity and therefore greater 

remineralisation potential. The sites chosen for more detailed examination were: sites 1 

and 3 (upper posterior buccal sites closest to the parotid major salivary gland duct exit into 

the oral cavity); and sites 9 and 10 (lower posterior lingual and were closest to the 

sublingual papilla, the exit site of the saliva from the submandibular and sublingual major 

salivary glands). These sites became known as the ‘selected sites’.

4.3.1.4 Analysis of covered (control) TMR data for selected sites
Prior to presenting the results of the analysis of the difference data for the lesions allocated 

to the selected sites 1, 3, 9 and 10, the summary statistics for the covered (control) data will 

be presented (Tables 26 and 27). These sites contain similar numbers of tooth lesions, with 

sites 1 and 3 containing 12 more lesions than sites 9 and 10.

Tables containing summary statistics for selected sites covered (control) data by group and 

experiment are displayed in Appendix 9. The values displayed in these tables are very 

similar to those of all of the covered lesions shown in Section 4.3.1.2.

Selected lesions by site

A. Integrated mineral loss
The mean IM L of the covered lesions from the selected sites were similar although the 

means at sites 1 and 3 were slightly larger than at sites 9 and 10 (Table 26). The standard 

deviations were consistently large, as were the ranges. There were no significant 

differences between the selected sites at baseline.
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Table 26 - Summary statistics for IML covered (control) selected sites

Site N * Mean (St. Dev.) Range

1 - upper right buccal 121 2297 (1012) (501,7369)

3 — upper left buccal 120 2229 (1064) (217,5123)

9 — lower left lingual 108 2115 (1032) (537,6251)

10 — lower right lingual 109 2158(1011) (237, 6385)

Integrated mineral loss is measured in %Vol mineral.pm 
N* = number of specimens available for analysis

B. Lesion depth
The mean lesion depths of the covered tooth specimens from the selected sites were also 

similar (Table 27). The standard deviations and ranges were consistently large. There were 

no significant differences between the selected sites at baseline.

Table 27 - Summary statistics for LD covered (control) selected sites

Site N * Mean (St. Dev.) Range

1 - upper right buccal 121 78.7 (26.7) (18.0, 159.4)

3 — upper left buccal 120 74.9 (30.5) (12.4, 168.6)

9 — lower left lingual 108 74.3 (28.1) (20.5, 161.7)

10 — lower right lingual 109 75.7 (32.2) (10.4, 212.4)

Lesion depth is measured in urn
N* = number of lesions available for analysis
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4.3.1.5 Comparison of the difference between covered (control) and 

exposed areas measured by TMR for selected sites
Descriptive statistics of the IM L and LD differences between the covered (control) and the 

exposed lesions in the same sections cut from the tooth specimens for selected sites 1, 3, 9 

and 10, are shown below. Summary statistics of the IM L and LD differences are presented 

by group and experiment prior to the results of formal analysis using General Linear Model 

(GLM) Analysis.

All selected site sections
The summary statistics for the covered and exposed IM L and LD data as well as the IM L  

and LD differences (covered - exposed) for selected site sections are shown in Tables 28 

and 29. There were 458 sections available for TMR analysis from the selected sites 1, 3, 9 

and 10.

A. Integrated mineral loss
Table 28 contains the IM L summary statistics for all sections from the selected sites 1, 3, 9 

and 10. A mean IM L difference between covered and exposed values of +358 %Vol 

mineral.pm was observed. This is a reduction in IM L and indicated a net remineralisation 

of the lesions. However, the standard deviation of the differences was large and the range 

included specimens with negative and positive values, indicating that some specimens 

remineralised and others demineralised further.

Table 28 - Summary statistics for IML data from selected sites

N * Mean (St. Dev.) Range

Covered 458 2203 (1029) (217, 7369)

Exposed 458 1845 (952) (161,5791)

Difference 

(Cov - Exp)
458 358 (853) (-1851,3515)

Integrated mineral loss is measured in %Vol mineral.pm 
N* = number of sections available for analysis

166



B. Lesion depth
Table 29 contains summary statistics for the LD data from the selected sites 1, 3, 9 and 10. 

The mean LD difference between covered and exposed tooth specimens was +4.3 pm. The 

standard deviation was very large and was over five times greater than the mean. The range 

was wide, and contained negative and positive values, indicating that not all of the 

specimens behaved in the same way.

Table 29 - Summary statistics for LD data from selected sites

N * Mean (St. Dev.) Range

Covered 458 76.0 (29.3) (10.4,212.4)

Exposed 458 71.6 (26.0) (6.6, 180.4)

Difference 

(Cov - Exp)
458 4.3 (22.8) (-52.3, 143.6)

Lesion depth is pm
N* = number of sections available for analysis

Selected site sections by group

Summary statistics for the IM L and LD differences (covered - exposed) for lesions from 

tooth specimens allocated to the two treatment groups T and TD are shown in Tables 30 

and 31. There was a difference in the number of sections available for analysis between the 

two treatment groups, with the TD group containing 26 specimens more than the T group.

A. Integrated mineral loss

Table 30 contains summary statistics for the difference IM L data from the selected sites 1, 

3, 9 and 10. The mean IM L difference between T and TD was 411 %Vol mineral.pm, with 

TD having the greater mean IM L difference. The standard deviations were large and 

greater than the means, particularly with the T group which had a standard deviation of 863 

%Vol mineral, pm. The ranges were wide, and contained negative and positive values, 

indicating that not all of the specimens behaved in the same way.
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Table 30 - Summary statistics for the IML differences (covered - exposed) for selected sites
by treatment group

Group N *
Mean IM L  

difference (St. Dev.)
Range

T 216 141(863) (-1852,3515)

TD 242 552 (797) (-1606, 3016)

Integrated mineral loss is measured in %Vol mineral.pm 
N* = number of sections available for analysis

B. Lesion depth
The summary statistics for the LD differences for the selected sites by group are shown in 

Table 31. The mean LD difference between the T and TD groups was 1.9 pm, with the 

mean in the TD group being the greater. The standard deviations were large, being at least 

three times the value of the mean. The ranges were wide, and contained negative and 

positive values, indicating that not all of the specimens behaved in the same way.

Table 31 - Summary statistics for the LD differences (covered - exposed) for selected sites 
by treatment group

Group N *
Mean LD difference 

(St. Dev.)
Range

T 216 3.3 (26.7) (-51.6, 143.6)

TD 242 5.2(18.7) (-52.3, 100.5)

Lesion depth is measured in pm
N* = number of sections available for analysis

Selected site sections by experiment
Summary statistics for the IM L and LD differences (covered - exposed) for tooth sections 

from the selected sites divided according to allocated experiment, are shown in Tables 32 

and 33. The greatest difference in number of tooth sections available for analysis between 

any of the groups is 21; with the 200ml milk x 3/day containing 100 specimens and the no 

beverage group containing 79. The other groups all contained data from approximately 90 

tooth sections.
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A. Integrated mineral loss
Table 32 shows the summarised IM L difference data. A ll mean IM L differences were 

positive indicating remineralisation. The largest positive mean IM L difference occurred in 

the 1.5mg F x 1/day group (+475 %Vol mineral.pm). The smallest positive mean IM L  

difference occurred in the 200ml milk x 1/day group (+231 %Vol mineral.pm). The 

standard deviations were consistently high and the ranges wide, all incorporating negative 

and positive numbers, indicating that not all specimens behaved in a similar way.

Table 32 - Summary statistics for the IML differences (covered > exposed) for selected sites 
by experiment

Experiment N *

Mean IM L  

differences (St. 

Dev.)

Range

0.5mg F x 3/day 90 435 (916) (-1793, 3016)

1.5mg F x 1/day 93 475 (883) (-1683,3515)

200ml milk x 1/day 96 231 (880) (-1852, 2220)

200ml milk x 3/day 100 336 (781) (-1274, 2292)

No beverage 79 318 (787) (-1194, 2871)

Integrated mineral loss is measured in %Vol mineral.pm 
N* = number of sections available for analysis

B. Lesion depth
Table 33 shows the summarised LD difference data. A ll mean LD differences were 

positive indicating remineralisation. The largest positive mean LD difference was in the 

0.5 mg F x 3/day group (+6.3 %Vol mineral.pm); this was followed by the 1.5mg F x 

1/day group (+6.1 %Vol mineral.pm). The smallest positive mean LD difference occurred 

in the 200ml milk x 1/day group (+2.4 %Vol mineral.pm). The standard deviations were 

consistently large, as were the ranges, which again included positive and negative 

numbers, indicating inconsistency in lesion behaviour.
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Table 33 - Summary statistics for the LD differences (covered - exposed) for selected sites
by experiment

Experiment N *
Mean LD difference 

(St. Dev.)
Range

0.5mg F x 3/day 90 6.3 (25.6) (-52.3, 102.9)

1.5mg F x 1/day 93 6.1 (24.6) (-39.6, 143.6)

200ml milk x 1/day 96 2.4 (21.2) (-48.1,87.9)

200ml milk x 3/day 100 3.9 (21.2) (-46.9, 66.7)

No beverage 79 2.8(21.5) (-35.3, 100.5)

Lesion depth is measured in pm
N* = number of sections available for analysis

Formal analysis o f  data from  selected sites using a general linear model (GLM) 
procedure
Formal analysis using a GLM procedure determined whether any of the three factors, 

experiment, group and site, together with the random subject effect, had a significant 

influence on the IM L and LD difference data from sections cut from tooth specimens at the 

four selected sites 1, 3, 9 and 10. In addition, the GLM procedure could also examine 

potential interactions of these factors.

A. Integrated mineral loss at selected sites
The model for IM L differences at the selected sites, indicated that there was a statistically 

significant effect of treatment group (p = 0.001) and also subject (p = 0.021). The subject 

effect was expected and confirms that the subjects were all different in terms of their 

‘response’. There was insufficient evidence to suggest that either the experiment (p = 

0.386) or the site (p = 0.843) had a statistically significant effect on the outcome.
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Figure 37 illustrates the significant influence of group. A two sample t-test was performed 

on the IM L difference data (p < 0.0001, with the 95% confidence interval for the 

difference being -564 to -258 %Vol mineral.pm). Thus, the mean IM L difference was 

significantly greater in the TD group than in the T group.

Figure 37 - Box plot of the selected site IML differences by group (covered - exposed)
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When the factors of experiment and site were examined with relation to the outcome for 

the two groups separately, there was insufficient evidence that either of these factors of 

interest were significantly influencing the outcome (experiment - TD: p = 0.863, T: p = 

0.429; site - TD: p = 0.231, T: p = 0.347).

B. Lesion depth at selected sites
The model for LD differences at the selected sites demonstrated a statistical significant 

interaction effect of ‘group and site’ (p=0.005) and a significant subject effect (p=0.012). 

As before, the significant subject effect was expected and demonstrated that the subjects 

were all different in terms of their ‘response’. There was insufficient evidence to suggest 

that the experiment had a statistically significant effect on the outcome (p=0.787).

The summary statistics for the LD differences for the combined effects of ‘group and site’ 

are shown in Tables 34 and 35. A ll mean differences were positive indicating
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remineralisation, with the exception of site 3 in the T group. The standard deviations were 

high and ranges were wide, all incorporating negative and positive numbers, indicating that 

not all specimens behaved in a similar way. There was evidence that the effect of site was 

different for the two treatment groups. Figure 38 illustrates this difference.

Table 34 - Summary statistics for LD differences, selected sites for the TD group

Site N *
Mean LD difference 

(St. Dev.)
Range

1 - upper right buccal 66 5.9(16.1) (-31.2, 48.8)

3 — upper left buccal 63 9.4 (22.2) (-31.8, 100.5)

9 — lower left lingual 58 2.5 (17.7) (-52.3, 38.0)

10 — lower right lingual 55 2.4 (17 .9) (-32 .7 ,51.4 )

Lesion depth is measured in pm.
N* = number of sections available for analysis

Table 35 - Summary statistics for LD differences, selected sites for the T group

Site N *
Mean LD difference 

(St. Dev.)
Range

1 - upper right buccal 55 3.1 (23.2) (-51.6, 58.8)

3 — upper left buccal 57 -3.3 (22.5) (.46.9, 44.2)

9 — lower left lingual 50 7.4 (29.7) (-38.8, 102.9)

10 — lower right lingual 54 6.7 (30.5) (-29.8, 143.6)

Lesion depth is measured in pm
N* = number of sections available for analysis
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Figure 38 - Difference in selected site LD (covered - exposed) by group and site
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When the various factors were examined in relation to the outcome for the two treatment 

groups separately, there was some evidence, though not statistically significant at the 5% 

level, o f a site effect for both the T group (p=0.094) and the TD group (p=0.104). For both 

groups there was insufficient evidence o f an experiment effect (TD: p=0.971, T: p=0.354).

4.3.2 Quantitative light fluorescence (QLF) studies
In total, 1360 tooth blocks were used in the experimental protocols. Images were captured 

o f these 1360 tooth blocks by QLF as described in section 4.2.9 and illustrated in Figures 

20, 21 and 24. A  baseline image was captured (Image 2) just prior to placement in the 

intra-oral appliance. The final image (Image 10) was o f the tooth block follow ing removal 

from the intraoral appliance and follow ing the de-stain protocol i f  this was required (as 

discussed in section 4.2.8).

The results for the parameters QLFAREA, QLFMAX and QLFAVER (see Chapter 2) are 

described below.
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4.3.2.1 Analysis of baseline QLF (Image 2) data prior to inclusion in the 

intra-oral appliance
The mean QLFAREA was 4.3 mm2 at baseline (Table 36). The standard deviation was 1.3 

and the range was between 1.2 and 8.5 mm2. The mean QLFMAX was -51% fluorescence 

change. The standard deviation was 7 and the range was between -77 and -32% 

fluorescence change. The mean QLFAVERwas -21.0% fluorescence change. The standard 

deviation was 4.1, and the range was between -38 and -14% fluorescence change.

Table 36 - Summary statistics of baseline data for all blocks for the three QLF parameters

QLF Parameter Number of Blocks Mean (St. Dev.) Range

QLpAKhA 1360 4.3 (1.3) (1.2, 8.5)

QLFmax (% 

fluorescence loss)
1360 -51 (7) (-77, -32)

QLFAVtK (% 

fluorescence loss)
1360 -21.0 (4.1) (-38.3,-13.6)

The summary statistics of baseline QLF data by group and experiment are shown in 

Appendix 10, in a layout similar to the summary of the covered (control) TMR data in 

4.3.1.4. The data in Appendix 10 show that there were some statistically significant 

differences detected at baseline for the QLF parameters by group and experiment. There 

were statistically significant differences detected at baseline between the T and TD group 

for QLFarea, but none detected for QLFMAX and QLFAVER. There were statistically 

significant differences detected between experimental protocols at baseline for QLF 

parameters QLFMAX and QLFAVER. For QLFMAX there were significant differences between 

no beverage and 200mL milk x 1/day and the other three protocols. For QLFAVER there 

were statistically significant differences determined between no beverage and the other 

four experimental protocols.
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4.3.2.2 Comparison of baseline with post-experimental protocol QLF
data
Descriptive statistics of the baseline (QLF Image 2) and the post-experimental protocol 

final image (QLF Image 10) for the three QLF parameters are shown below. Summary 

statistics of the differences between baseline and final image were calculated for all 

specimens, then for specimens by group and then by experiment.

The difference between baseline and post-experimental QLF data was calculated as 

follows: QLFarea was baseline (QLF Image 2) - final image (QLF Image 10) mm2. 

Therefore, a positive number indicates that the QLF image area became smaller, 

suggesting that remineralisation had occurred. QLFMAX and QLFAVER were final image 

(QLF Image 10) - baseline (QLF Image 2) % fluorescence loss. Therefore a positive 

number indicates that there has been an overall gain in %fluorescence loss, again 

suggesting that remineralisation has occurred. This term is more accurately described as 

“% fluorescence change”.

All available specimens
There were 284 tooth specimens lost during the experimental protocols; therefore there 

were 1041 tooth specimens available for statistical analysis. These losses were mainly as a 

result of failure of the temporary cement used to retain the tooth specimens within the 

intra-oral appliance. In the sites which were on the palatal surface of the upper denture 

(sites four, five and six) there were significant forces of swallowing applied during eating 

and drinking, therefore, loss of the tooth sections was higher in these sites.

A. QLFarea

The mean difference in QLFAREA between baseline and final image was 2.0 mm2 (Table

37). The standard deviation was large and of similar size to the difference. The range 

included both negative and positive numbers indicating that not all of the tooth blocks were 

behaving in a similar way.
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Table 37 - Summary statistics of baseline, final image and difference between them for
Q L p A R E A

Image Number of Blocks Mean (St. Dev.) Range

Baseline Image 1041 4.2 (1.3) (1.2, 8.5)

Final Image 1041 2.2 (1.9) (0.0, 9.8)

Difference between 

baseline and final 

image

1041 2.0 (2.1) (-5.9, 7.8)

QLFAKtA is measured in mm2

B. QLFmax

The mean difference in QLFMAX between final image and baseline image was 12% (Table

38). This indicated that on average remineralisation had occurred. The standard deviation, 

however, was large and was of similar size to the difference. The range included both 

negative and positive values, indicating that not all of the lesions were behaving in the 

same way.

Table 38 - Summary statistics of baseline, final image and difference between them for 
QLFMAX

Image Number of Blocks Mean (St. Dev.) Range

Baseline image 1041 -50 (7) (-77, -32)

Final image 1041 -39 (12) (-75,-11)

Difference between 

final image and 

baseline image

1041 12(13) (-31,47)

QLpMAA jS measurecj jn o/o change in fluorescence

C. QLFaver

The mean difference in QLFAVER between final image and image 2 was 5.3% (Table 39). 

This indicates that on average the lesions had remineralised. The standard deviation was
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large and of similar size to the difference. The range included both negative and positive 

values, indicating that not all of the lesions behaved in the same way.

Table 39 - Summary statistics of baseline, final image and difference between them for 
QLFAVER

Image Number of Blocks Mean (St. Dev.) Range

Baseline image 1041 -20.9 (4.1) (-37.0, -13.7)

Final image 1041 -15.6 (3.7) (-34.0,-10.2)

Difference between 

final image and 

baseline image

1041 5.3 (5.1) (-15.4, 22.1)

All available tooth blocks by group
During the experimental protocols, there were 137 tooth specimens lost from the T group 

and 147 specimens lost from the TD group. This left 494 tooth specimens in the T group 

and 547 tooth specimens in the TD group.

A. QLFAREA

The mean difference between baseline and final image was greater for the TD group by 1.0 

mm2 than the T group for QLFAREA (Table 40). This indicated that on average the tooth 

specimens in the TD group remineralised more than the specimens in the T group. The 

standard deviations were large, though smaller in the TD group. The ranges were wide and 

included both positive and negative numbers, indicating that not all of the lesions behaved 

in the same way. These data are illustrated in Figure 39.
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Table 40 - Summary statistics of differences (baseline-final image) for QLFAREA by group

Group Number of Blocks
Mean Difference (St. 

Dev.)
Range

T 494 1.5 (2.2) (-5.9, 7.7)

TD 547 2.5 (1.9) (-3.1, 7.8)

QLFAKtA is measured in mm2

Figure 39 - Box plot of difference (baseline-final image) for QLFAREA by group
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B. Q LFmax

The mean difference between final image and baseline was greater in the TD group by 1% 

change in fluorescence when compared with the T group for QLFMAX (Table 41). This 

indicated that slightly greater mean remineralisation occurred in the TD group than the T 

group. The standard deviations were large and were of similar size to the mean differences. 

The ranges included negative and positive numbers indicating that not all of the lesions 

behaved in a similar way. The differences (final image-baseline) for QLFMAX are 

summarised in Figure 40.
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Table 41 - Summary statistics of differences (final image-baseline) for QLFMAX by group

Group Number of Blocks Mean (St. Dev.) Range

T 494 11(13) (-24, 47)

TD 547 12(13) (-31,45)

Figure 40 - Box plot of difference (final image-baseline) for QLFMAX by group
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AVERC. QLF

The mean difference of final minus baseline image was greater in the TD group by 1.1% 

change in fluorescence (Table 42). This indicated that the lesions in the TD group, on 

average, remineralised more than in the T group. The standard deviations were large. The 

ranges were wide and included both negative and positive numbers, indicating that not all
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of the tooth specimens behaved in a similar way. A box plot of the differences (final 

image-baseline) of QLFAVER by group is shown in Figure 41.

Table 42 - Summary statistics of differences (final image-baseline) for QLFAVER by group

Group Number of Blocks Mean (St. Dev.) Range

T 494 4.7 (5.5) (-15.4,21.9)

TD 547 5.8 (4.8) (-12.4, 22.1)

q u a v e r  js measurecj jn o/o Change jn fluorescence 

Figure 41 - Box plot of difference (final image-baseline) for QLFAVER by group
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Blocks by experiment
There were between 54 and 61 tooth blocks lost from each experimental group: 54 blocks 

were lost from the no beverage and 200 mL milk x 1/day groups; 57 blocks were lost from 

the 200 mL x 3/day group; 58 blocks were lost from the 1.5mg F x 1/day group and 61 

tooth blocks were lost from the 0.5mg F x 3/day group.
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A. QLFarea

The greatest mean difference for baseline - final image for QLFAREA was 2.4 mm2 and 

occurred in the 200 mL milk x 3/day group (Table 43). The least difference was 1.9 mm2 

and occurred in the 0.5mg F x 3/day, 200 mL milk x 1/day and no beverage groups. The 

standard deviations were consistently high. The ranges all included negative and positive 

numbers, indicating that not all of the specimens behaved in a similar manner. This is 

shown diagrammatically in Figure 42.

Table 43 - Summary statistics of differences (baseline-final image) for QLFAREA by 
experiment

Experiment Number of Blocks Mean (St. Dev.) Range

0.5mg F x 3/day 194 1.9 (2.3) (-5.1, 6.8)

1.5mg F x 1/day 221 2.1 (2.0) (-3.5, 7.7)

200mL milk x 1/day 207 1.9 (2.0) (-2.8, 7.5)

200mL milk x 3/day 218 2.4 (2.2) (-3.6, 7.8)

No beverage 201 1.9 (2.2) (-5.9, 6.7)

Q L F a r e a  j s  measured in mm2
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Figure 42 - Box plot of differences (baseline-final image) for QLFAREA by experiment
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QLFarea is measured in mm2

B. Q LF max

The greatest mean difference for final minus baseline image for QLFMAX was 13% and 

again occurred in the 200mL milk x 3/day group (Table 44). The smallest mean difference 

was 10% and occurred in the 200 mL milk x 1/day group. The standard deviations were 

consistently large. The ranges included negative and positive numbers indicating that not 

all of the tooth blocks behaved in a similar manner. This is shown diagrammatically in 

Figure 43.
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Table 44 - Summary statistics of differences (final image-baseline) for QLFMAX by experiment

Experiment Number of Blocks Mean (St. Dev.) Range

0.5mg F x 3/day 194 11(14) (-26, 46)

1.5mg F x 1/day 221 12(12) (-24, 44)

200mL milk x 1/day 207 10(13) (-31,41)

200mL milk x 3/day 218 13 (12) (-20, 38)

No beverage 201 12(15) (-23,47)

QI_pMAx js measured jn o/o Change jn fluorescence

Figure 43 - Box plot of differences (final image-baseline) for QLFMAX by experiment
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QLFmax is measured in % change in fluorescence
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c. q l f aver

The greatest mean difference for final minus baseline image for QLFAVER by experiment 

occurred in the no beverage group with a mean 6.2% change in fluorescence (Table 45). 

The smallest mean difference occurred in the 0.5mg F x 3/day with 4.8% mean change in 

fluorescence. The standard deviations were consistently high. The ranges were wide and 

included both negative and positive numbers indicating that not all of the lesions behaved 

in a similar way. A box plot illustrating these differences by experiment is shown in Figure 

44.

Table 45 - Summary statistics of differences (final image-baseline) for QLFAVER by 
experiment

Experiment Number of Blocks Mean (St. Dev.) Range

0.5mg F x 3/day 194 4.8 (5.0) (-7.6,21.9)

1.5mg F x 1/day 221 5.1 (5.2) (-15.4,21.1)

200mL milk x 1/day 207 4.9 (5.2) (-12.4, 20.1)

200mL milk x 3/day 218 5.4 (4.3) (-6.4, 16.5)

No beverage 201 6.2 (5.9) (-10.6, 22.1)

QLpAvtK js measure(j jn o/o Change in fluorescence
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Figure 44 -  Box plot of differences (final image-baseline) for QLFAVER by experiment
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QLFaver is measured in % change in fluorescence 

Formal analysis using a general linear model procedure
Formal statistical analysis utilised a general linear model (GLM) procedure to determine 

which of the three factors, experiment, group and site, together with the random subject 

effect and the potential interactions of these factors, had a statistically significant influence 

on the difference between baseline and final image for the tooth specimens, for the three 

QLF parameters: QLFAREA; QLFMAX and QLFAVER.

q l f area

The final model for difference in QLFAREA indicated that there was a statistically 

significant effect of group (p=0.006), experiment (p=0.040) and site (p<0.001) together 

with a significant subject effect (p<0.001). This subject effect was expected and confirmed 

that the subjects were all different in terms of their ‘response’. There was also a 

statistically significant combined effect of experiment and group (p=0.047).
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The summary statistics for the effect of site are shown below in Table 46. The significant 

effect of site is also illustrated (Figure 45).

Table 46 - Summary statistics for differences (baseline-final image) for QLFAREA by site

Site Number of Blocks Mean (St. Dev.) Range

1 — upper right buccal 133 2.2 (1.9) (-3.1, 6.7)

2 — upper mid-labial 134 1.4 (2.0) (-4.6, 6.2)

3 — upper left buccal 126 2.0 (2.2) (-5.9, 7.6)

4 — upper left palatal 56 2.8 (2.1) (-3.3, 7.5)

5 — upper mid-palatal 59 2.9 (1.9) (-2.2, 6.8)

6 — upper right palatal 57 2.7 (2.1) (-3.4, 6.2)

7 — lower right buccal 119 1.7 (2.1) (-4.0, 6.3)

8 — lower left buccal 116 1.9 (2.3) (-5.5, 7.7)

9 — lower left lingual 122 2.0 (2.1) (-3.6, 7.8)

10 — lower right lingual 119 1.9 (2.2) (-5.1, 6.6)

QLpAKtA js measured in mm2
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Figure 45 - Plot of mean difference (baseline-final image) for QLFAREA by site
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QLFarea is measured in mm2

There was also a statistically significant combined effect of group and experiment. The 

summary statistics of this combined effect are shown in Tables 47 and 48. This significant 

combined effect of group and site is illustrated (Figure 46).
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Table 47 - Summary statistics of differences (baseline-final image) for QLFAREA by
experiment for the T group

Experiment Number of Blocks Mean (St. Dev.) Range

0.5mg F x 3/day 92 1.0 (2.3) (-5.1, 6.1)

1.5mg F x 1/day 100 1.7 (2.2) (-3.5, 7.7)

200mL milk x 1/day 106 1.5 (2.0) (-2.8, 7.5)

200mL milk x 3/day 99 1.9 (2.4) (-3.6, 6.7)

No beverage 97 1.5 (2.2) (-5.9, 6.3)

QLFAKtA is measured in mm2

Table 48 - Summary statistics of differences (baseline-final image) for QLFAREA by 
experiment for the TD group

Experiment Number of Blocks Mean (St. Dev.) Range

0.5mg F x 3/day 102 2.7 (1.9) (-2.6, 6.8)

1.5mg F x 1/day 121 2.4 (1.7) (-2.2, 7.6)

200mL milk x 1/day 101 2.2 (1.9) (-2.5, 6.6)

200mL milk x 3/day 119 2.7 (2.0) (-3.1, 7.8)

No beverage 104 2.3 (2.1) (-3.1, 6.7)

QLFAKCA is measured in mm2
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Figure 46 - Plot of mean differences (baseline-final image) for QLFAREA by group and
experiment
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q l f max

The final model for difference in QLFMAX indicated that there was a statistically significant 

effect o f site (p=0.047) together w ith a significant subject effect (p<0.001). This subject 

effect is expected and confirms that the subjects were all different in terms o f their 

"response". There was insufficient evidence to suggest that the experiment had a 

statistically significant effect on the outcome (p=0.182) or the group (p=0.549).

Thus there was evidence that the only factor o f interest to have a significant influence on 

the outcome was site. The summary statistics for the difference in QLFMAX by site are 

shown in Table 49 and the mean differences are illustrated in the summary figure below 

(Figure 47).
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Table 49 - Summary statistics of differences (final image-baseline) for QLFMAX by site

Site
Number of 

Experiments
Mean (St. Dev.) Range

1 — upper right buccal 133 11(11) (-15,45)

2 — upper mid-labial 134 8(10) (-18, 30)

3 — upper left buccal 126 10(11) (-12, 37)

4 — upper left palatal 56 17(16) (-21,47)

5 — upper mid-palatal 59 16(14) (-12, 37)

6 — upper right palatal 57 19(14) (-18, 44)

7 — lower right buccal 119 10(15) (-31,43)

8 — lower left buccal 116 11(14) (-20, 44)

9 — lower left lingual 122 12 (14) (-23,46)

10 — lower right lingual 119 11(14) (-19, 40)

QLFmaa is measured in%  change in fluorescence
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Figure 47 - Plot of mean difference (final image-baseline) for QLFMAX by site
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QLFaver

The final model for difference in QLFAVER indicated that there was a statistically 

significant effect of experiment (p=0.022), site (p=0.006) and subject (p<0.001). The 

subject effect is expected and confirms that the subjects were all different in terms of their 

"response”. There was insufficient evidence to suggest that group had a statistically 

significant effect on outcome (p=0.116).

The summary statistics of the differences for QLFAVER by site are shown in Table 50. The 

main significant effects of experiment and site are plotted (Figure 48). (Note: the summary 

statistics of the baseline data for experiment are shown in Appendix 10.)
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Table 50 - Summary statistics of differences (final image-baseline) for QLFAVER by site

Site Number of Blocks Mean (St. Dev.) Range

1 — upper right buccal 133 5.8 (4.9) (-8.8,18.8)

2 — upper mid-labial 134 5.1 (4.7) (-3.3,21.1)

3 — upper left buccal 126 5.2 (4.0) (-6.2, 16.8)

4 — upper left palatal 56 5.8 (6.3) (-10.5, 22.1)

5 — upper mid-palatal 59 6.3 (4.8) (-8.6, 15.3)

6 — upper right palatal 57 7.4 (4.5) (-1.4, 20.1)

7 — lower right buccal 119 4.4 (5.6) (-12.4, 22.1)

8 — lower left buccal 116 4.8 (5.3) (-7.4, 18.8)

9 — lower left lingual 122 4.9 (5.8) (-8.0,21.9)

10 — lower right lingual 119 4.8 (5.8) (-15.4, 16.0)

OLpAvtK js measured jn o/o Change in fluorescence
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Figure 48 - Plot of mean differences (final image-baseline) by experiment and site 
forQLFAVER
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4.3.2.3 Analysis of baseline QLF data for selected sites

In a similar manner to the TMR data, the QLF data were further analysed concentrating on 

the sites where it was anticipated there would be the greatest potential to remineralise. 

These were the selected sites 1, 3, 9 and 10.

In total there were 541 tooth specimens cemented into the intra-oral appliance in the four 

selected sites 1, 3, 9 and 10. The summary statistics of the baseline data for these selected 

sites for the three QLF parameters are presented below. A ll of the four selected sites 

contained 135 tooth sections, with the exception of site 3 which contained 136 tooth 

sections.

A. QLFarea

The selected sites had similar mean QLFAREA values at baseline (Table 51). The standard 

deviations and ranges were similar too, indicating that on average the lesions from the 

selected sites had a similar spread of QLFAREA values.
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Table 51 - Summary statistics of baseline data from selected sites for QLFAREA

Selected site Number of Blocks Mean (St. Dev.) Range

1 - upper right buccal 135 4.4 (1.4) (1.8, 7.6)

3 — upper left buccal 136 4.2 (1.3) (1.6, 7.9)

9 — lower left lingual 135 4.2 (1.2) (1.5, 8.5)

10 — lower right lingual 135 4.2 (1.2) (1.2, 7.6)

QLFAKtA is measured in mm2

B. QLFmax
The lesions from the four selected sites at baseline had similar mean values for QLFMAX 

(Table 52). The standard deviations and ranges were also similar, indicating that there was 

a similar spread across the four sites in terms of the QLFMAX of the artificial caries lesions.

Table 52 - Summary statistics of baseline data from selected sites for QLFMAX

Selected site Number of Blocks Mean (St. Dev.) Range

1 - upper right buccal 135 -50 (8) (-73, -34)

3 — upper left buccal 136 -51 (8) (-74, -35)

9 — lower left lingual 135 -51(7) (-72, -32)

10 — lower right lingual 135 -50 (8) (-77, -33)

QLFmaa is measured in % fluorescence loss

C. QLFaver

The selected sites had similar mean QLFAVER (Table 53). The standard deviations and 

ranges were also similar indicating that the spread in terms of QLFAVER was similar across 

the four selected sites.
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Table 53 - Summary statistics of baseline data from selected sites for QLFAVER

Selected site Number of Blocks Mean (St. Dev.) Range

1 - upper right buccal 135 -21.1 (4.2) (-31 .9 ,-13 .7)

3 — upper left buccal 136 -20.5 (3.7) (-31 .6 ,-15 .3)

9 — lower left lingual 135 -20.9 (4.2) (-35.2, -14.0)

10 — lower right lingual 135 -20.8 (4.3) (-35 .0 ,-13 .8)

QLpAvtn js measurecj jn o/o fluorescence loss

In summary, for all three of the QLF parameters, on average there were similar sized 

lesions in the tooth blocks allocated to the four selected sites.

4.3.2.4 Comparison of baseline with post-experiment QLF data for 
selected sites

Selected sites
The summary statistics of the selected tooth blocks at baseline, for the three QLF 

parameters, are presented below (Table 54).

Table 54 - Summary statistics of selected sites at baseline, for the three QLF parameters

QLF Parameter Number of blocks Mean (St. Dev.) Range

q L F a k e a 541 4.3 (1.3) (1.2, 8.5)

Q L p i w v * 541 -50 (7) (-77, -32)

Q L p A V t i K 541 -20.9 (4.1) (-35.2,-13.7)

Q L p A K t A  j s  m e a s u r e d  j n  m m 2  Q L p M A A  ^  Q , _ p are measured in % Fluorescence loss

There were 41 fewer blocks at the end of the experiments compared with at the beginning. 

These missing tooth blocks were lost from the intra-oral appliances during the 

experimental protocols, often when the subject was eating or drinking. The summary
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statistics of the selected blocks minus the 41 lost tooth blocks at baseline, final image and 

the difference between them, for the three QLF parameters, are presented in Tables 55, 56 

and 57.

A. QLFarea

There was a mean difference of 2.0 mm2 between baseline and final image for QLFAREA 

indicating that the area of the caries lesions on average became smaller (Table 55). 

However, the standard deviation was of similar size to the difference and the range 

included negative and positive values, indicating that not all of the lesions behaved in a 

similar way.

Table 55 - Summary statistics of selected sites at baseline, final image and difference 
between them for QLFAREA

Image Number of Blocks Mean (St. Dev.) Range

Baseline 500 4.3 (1.3) (1.2, 8.5)

Final image 500 2.2 (1.8) (0.0, 9.8)

Difference between 

baseline and final 

image

500 2.0 (2.1) (-5.9, 7.8)

QLFAKtA is measured in mm2

B. QLFmax

There was a mean 11% change in fluorescence between baseline and final image for 

QLFmax (Table 56). The standard deviation was of a similar size to the mean difference. 

The range included negative and positive values, indicating that not all of the lesions 

behaved in the same manner.
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Table 56 - Summary statistics of selected sites at baseline, final image and the difference
between them for QLFMAX

Image Number of Blocks Mean (St. Dev.) Range

Baseline 500 -50 (7) (-77, -32)

Final image 500 -39(11) (-64, -14)

Difference between 

final image and 

baseline

500 11(11) (-23,46)

Q L p M A A  j S  m e a s u r e c j  j n o/ o  fluorescence change

C. QLFaver

There was a mean 5.2% fluorescence change between baseline and final image for 

QLFaver (Table 57). The standard deviation was of a similar size to the mean difference in 

QLFaver. The range included positive and negative values indicating that not all of the 

lesions behaved in a similar manner.

Table 57 - Summary statistics of selected sites at baseline, final image and difference 
between them for QLFAVER

Image Number of Blocks Mean (St. Dev.) Range

Baseline 500 -20.9 (4.1) (-35.2, -13.7)

Final image 500 -15.7 (3.5) (-30.6, -10.5)

Difference between 

final image and 

baseline

500 5.2 (5.0) (-15.4,21.9)

QLFAVbK is measured in % fluorescence change
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Selected tooth blocks by group
There was a difference in the number of tooth blocks in the two groups, with the TD group 

containing 24 more specimens than the T group.

A. QLFarea

The mean change in QLFAREA between the baseline and final images was 1.2 mm2 greater 

for the TD group compared with the T group (Table 58). The standard deviations were 

similar for the two groups. The ranges were wide and included positive and negative 

numbers, indicating that the lesions behaved in different ways.

Table 58 - Summary statistics of selected sites differences (baseline-final image) for 
QLFAREA by group

Group Number of Blocks Mean (St. Dev.) Range

T 238 1.4 (2.1) (-5.9, 6.2)

TD 262 2.6 (1.9) (-3.1, 7.8)

QLFAKbA is measured in mm2

B. QLFmax

The mean change in QLFMAX between the final and baseline images was 2 units of % 

fluorescence change greater in the TD group compared to the T group (Table 59). The 

standard deviations were of similar size to the mean differences. The ranges were wide and 

included both negative and positive numbers, indicating that not all of the blocks behaved 

in a similar way.

Table 59 - Summary statistics of selected sites differences (final image-baseline) for QLFMAX 
by group

Group Number of Blocks Mean (St. Dev.) Range

T 238 10(13) (-23, 46)

TD 262 12(12) (-17, 45)

Q I _ p M A A  j S  m e a s u r e c j  j n  o/o fluorescence change
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c. q l f aver
The mean change in QLFAVER between the final and baseline images was 1.2 units of % 

fluorescence change greater in the TD group compared to the T group (Table 60). The 

standard deviations were large and were of a similar size as the mean differences. The 

ranges were wide and included negative and positive numbers, indicating that not all 

lesions behaved in a similar manner.

Table 60 - Summary statistics of selected sites differences (final image-baseline) for 
QLFaver by group

Group Number of Blocks Mean (St. Dev.) Range

T 238 4.6 (5.4) (-15.4,21.9)

TD 262 5.8 (4.5) (-9.3, 18.8)

QLF is measured in % fluorescence change

Selected tooth blocks by experiment
The summary statistics of the differences between baseline and final image by experiment 

for the selected sites are shown below. The numbers of tooth specimens in the five 

experimental groups were all between 95 and 105.

A. QLFarea

There was no great difference between the mean area differences of the experimental 

groups (Table 61). The standard deviations were all similar to each other and to the mean 

differences. The ranges all included positive and negative numbers, indicating that not all 

of the lesions in each group behaved in the same way.
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Table 61 - Summary statistics of selected sites differences (baseline-final image) for
q l r ARe a  b y  e X p e r j m e n t

Experiment Number of Blocks Mean (St. Dev.) Range

0.5mg F x 3/day 97 1.9 (2.1) (-5.1, 5.9)

1.5mg F x 1/day 103 2.1 (1.9) (-2.2, 7.6)

200mL milk x 1/day 100 1.9 (2.0) (-2.5, 6.6)

200mL milk x 3/day 105 2.2 (2.3) (-3.6, 7.8)

No beverage 95 2.0 (2.2) (-5.9, 6.7)

QLFAKtA is measured in mm2

B. QLFmax

The mean differences ranged from 12% to 10% change in fluorescence (Table 62). The 

standard deviations were of similar size to those of the mean differences. The ranges 

included positive and negative values, indicating that not all of the lesions behaved in the 

same way.

200



Table 62 - Summary statistics of selected sites differences (final image-baseline) for QLFMAX
by experiment

Experiment Number of Blocks Mean (St. Dev.) Range

0.5mg F x 3/day 97 10(13) (-16, 46)

1.5mg F x 1/day 103 11(11) (-19, 40)

200mL milk x 1/day 100 10(12) (-23,41)

200mL milk x 3/day 105 12(12) (-20, 37)

No beverage 95 12(13) (-17, 45)

QLFMAA is measured in % change in fluorescence

c. q l f aver
The greatest mean difference between the final image and baseline image in the selected 

sites for QLFAVER occurred in the no beverage group, with 6.4%, and the smallest 

difference occurred in the 0.5mg F x 3/day group, with 4.6% change in fluorescence (Table 

63). The standard deviations were of similar size to the mean differences. The ranges 

included positive and negative values, indicating that not all of the lesions behaved in the 

same way.
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Table 63 - Summary statistics of selected sites differences (final image-baseline) for
q L F a v e r  b y  e x p e r j m e n t

Experiment Number of Blocks Mean (St. Dev.) Range

0.5mg F x 3/day 97 4.6 (5.1) (-7.3,21.9)

1.5mg F x 1/day 103 4.8 (5.4) (-15.4, 16.7)

200mL milk x 1/day 100 5.2 (5.0) (-9.3, 16.8)

200mL milk x 3/day 105 5.1 (4.4) (-6.4, 16.5)

No beverage 95 6.4 (5.1) (-4.9, 18.8)

QLFAVtK is measured in % change in fluorescence 

Selected tooth blocks by site
Following the experimental protocols, a number of blocks were lost from each site: 2 from 

site 1; 10 from site 3; 13 from site 9 and 16 from site 10.

A. QLFarea

The mean differences in QLFAREA values between baseline and final images were of a 

similar magnitude across the four selected sites (Table 64). The standard deviations were of 

a similar size to the mean differences. The ranges included negative and positive values, 

indicating that the lesions in each site behaved in different ways.
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Table 64 - Summary statistics of selected sites differences (baseline image - final image) for
QLFarea by site

Site Number of Blocks Mean (St. Dev.) Range

1 - upper right buccal 133 2.2 (1.9) (-3.1, 6.7)

3 — upper left buccal 126 2.0 (2.2) (-5.9, 7.6)

9 — lower left lingual 122 2.0 (2.1) (-3.6, 7.8)

10 — lower right lingual 119 1.9 (2.1) (-5.1, 6.6)

QLFAKtA is measured in mm2

B. QLFmax

The mean differences in QLFMAX between final and baseline images were of a similar 

magnitude across the four selected sites (Table 65). The standard deviations were of similar 

size to the mean differences. The range included negative and positive values, indicating 

that not all of the lesions behaved in a similar manner.

Table 65 - Summary statistics of selected sites differences (final image-baseline image) for 
QLFmax by site

Site Number of Blocks Mean (St. Dev.) Range

1 - upper right buccal 133 11(11) (-15, 45)

3 — upper left buccal 126 10(11) (-12, 37)

9 — lower left lingual 122 12(14) (-23, 46)

10 — lower right lingual 119 11(14) (-19, 40)

QLpMAx is measured in%  change in fluorescence

C. QLFaver

The mean differences in QLFAVBR values between final and baseline images were different 

across the four selected sites (Table 66), with the least mean difference (4.8%) in site 10 

(lower, right lingual) and the greatest mean difference (5.8%) in site 1 ( upper, right 

buccal). The standard deviations were large and of similar size to the mean differences.
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The ranges were wide and included positive and negative numbers, indicating that not all

of the lesions behaved in a similar manner.

Table 66 - Summary statistics of selected sites differences (final image-baseline image) for 
QLFaver by site

Site Number of Blocks Mean (St. Dev.) Range

1 - upper right buccal 133 5.8 (4.9) (-8.8, 18.8)

3 — upper left buccal 126 5.2 (4.0) (-6.2, 16.8)

9 — lower left lingual 122 4.9 (5.3) (-8 .0 ,21 .9)

10 — lower right lingual 119 4.8 (5.8) (-15.4, 16.0)

QI_pAvt* js measure(j jn o/o Change in fluorescence

Formal analysis o f  selected sites using a general linear model procedure
Formal analysis via a general linear model (GLM) procedure was used to determine

whether any of the three factors, experiment, group and site, together with the random 

effect of subject and the potential interactions of these factors, had a significant influence 

on the difference between baseline and final image, for each of the three QLF parameters:
q L F A R E A .  q L F M A X  m d  Q L F A V E R  f o j . {qu[ s e l e c t e d  g i t e s

A. QLFarea

The final model for difference in QLFAREA, for the selected sites, indicated that there was a 

statistically significant effect of group (p=0.001), together with a significant subject effect 

(p<0.001). This subject effect is expected and confirms that the subjects were all different 

in terms of their ‘response’. There was insufficient evidence to suggest that the experiment 

had a statistically significant effect on the outcome (p=0.640) or the site (p=0.730).

Thus there was evidence that the only factor to have a statistically significant influence was 

group. This is illustrated in Figure 49. A two-sample t-test applied to the differences in 

QLFarea resulted in a p-value of <0.001 and a 95% confidence interval for (TD - T) of 0.9 

to 1.6 mm2. Thus the difference in QLFAREA was significantly greater in the TD group than 

in the T group.
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Figure 49 - Box plot for selected sites illustrating the difference in QLFAREA by group
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When the factors of site and experiment were examined in relation to the results for the 

two groups separately, there was insufficient evidence that either of the factors of interest 

were significantly influencing the difference in QLFAREA (experiment -TD: p=0.749, T: 

p=0.630; site - TD: p=0.998, T: p=0.406).

B. Q LFmax

The final model for the difference in QLFMAX indicated that with the exception of a 

significant subject effect (p=0.012), there was no evidence of any of the other factors 

having a statistically significant effect (experiment: p=0.592, group: p=0.596, site: 

p=0.833). The subject effect was expected as this confirms that the subjects were all 

different in terms of their response.

c. q l f aver
The final model for the difference in QLFAVER, for the selected sites, indicated that there 

was some evidence of an interaction between the factors of experiment and group
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(p=0.054) and an effect of experiment alone (p=0.050). There was insufficient evidence of 

a site effect (p=0.373).

When the various factors were examined with relation to the outcome for the two groups 

separately, there was no evidence of a site effect for either the T group (p=0.405) or the TD 

group (p=0.715). For both groups there was some (although not statistically significant) 

evidence of an experiment effect (TD: p=0.055, T: p=0.057).

To investigate further the effect of experiment, the summary statistics for the differences in 

QLFaver, by experiment, for the two groups separately, are given below (Tables 67 and 

68).

Table 67 shows that 200mL milk x 3/day had the lowest mean difference between final 

image and baseline image, and the no beverage group had the greatest mean difference for 

the T group. The ranges were wide and included positive and negative numbers, indicating 

that not all of the lesions behaved in the same way.

Table 67 - Summary statistics of selected sites differences (final image-baseline image) for 
q i_pAver ky eXperjment for the T group

Experiment Number of Blocks Mean (St. Dev.) Range

0.5mg F x 3/day 45 4.1 (5.9) (-7.3,21.9)

1.5mg F x 1/day 47 4.7 (5.7) (-15.4,16.7)

200mL milk x 1/day 51 4.3 (5.3) (-9.3, 13.2)

200mL milk x 3/day 48 3.3 (4.6) (-6.4, 15.6)

No beverage 47 6.4 (5.3) (-3.2, 17.3)

QLFAVthl is measured in % change in fluorescence

Table 68 shows similar statistics for the differences between final image and baseline 

image for the TD group. Here, the lowest mean difference occurred in the 1.5mg F x 1/day 

group and the greatest difference occurred in the 200 mL milk x 3/day. Again the ranges
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were wide and included positive and negative numbers, indicating that not all of the lesions

behaved in a similar manner.

Table 68 - Summary statistics of selected sites differences (final image-baseline) for 
Q L F aver by experiment for the TD group

Experiment Number of Blocks Mean (St. Dev.) Range

0.5mg F x 3/day 52 5.0 (4.3) (-2.6, 15.0)

1.5mg F x 1/day 56 4.8 (5.1) (-9.3, 15.2)

200mL milk x 1/day 49 5.9 (4.6) (-8.8, 16.8)

200mL milk x 3/day 57 6.7 (3.5) (-1.0, 16.5)

No beverage 48 6.4 (4.8) (-4.9, 18.8)

QLpAvtK js measurecj jn cyo change in fluorescence
In the T group, using Bonferroni-corrected multiple comparisons, there was some evidence 

(although not statistically significant) of differences between no beverage and 0.5mg F x 

3/day, no beverage and 200 mL milk x 1 day and no beverage and 200 mL milk x 3/day. 

The corrected confidence intervals for these three comparisons are given in Tables 69.

Table 69 -  Bonferroni-corrected confidence intervals for selected comparisons of 
experiments for QLFAVER for the T group

Differences between experimental protocols Corrected Cl for difference

No beverage 0.5mg F x 3/day (-0.5, 5.6)

No beverage 200 mL milk x 1/day (-0.8, 5.1)

No beverage 200 mL milk x 3/day (-0.02, 6.0)

QLpAvtK js measured in % change in fluorescence
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In the TD group, using Bonferroni-corrected multiple comparisons, there was some 

evidence (although not statistically significant) of differences between 200 mL milk x 

3/day and 0.5mg F x 3/day and 200 mL milk x 3/day and 1.5mg F x 1/day. The corrected 

confidence intervals for these two comparisons are given (Table 70).

Table 70 -  Bonferroni-corrected confidence intervals for selected comparisons of 
experiments for QLFAVER for the TD group

Differences between experimental protocols Corrected Cl for difference

200 mL milk x 3/day 0.5 mg F x 3/day (-0.4, 4.6)

200 mL milk x 3/day - 1.5 mg F x 1/day (-0.2, 4.6)

QLFAVtK is measured in % change in fluorescence

4.3.3 Overall summary of results for TMR and QLF

A ll data

In summary, the effects of group, site and experiment and any statistically significant 

interaction effects on the differences in the two TMR parameters, IM L and LD, for all sites 

are given in Table 71 below.
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Table 71 - Summary of effects of group, experiment and site on the differences in the TMR
parameters for data from all sites

TMR parameter Group Site Experiment

IM L

No (p=0.059) No (p=0.436)

No (p = 0.445)Combined effect of group and site 

Yes (p=0.002)

LD

No (p=0.917) No (p=0.276)

No (p = 0.606)Combined effect of group and site 

Yes (p = 0.043)

p-values calculated via a general linear model procedure

In summary, the effects of group, experiment and site and any statistically significant 

interaction effects on the three QLF parameters: QLFAREA; QLFMAX and QLFAVER for all 

sites are given in Table 72 below.
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Table 72 - Summary of effects of group, experiment and site on the QLF parameters for all
sites

QLF parameter Group Experiment Site

QLFaREa

Yes (p=0.006) Yes (p=0.040)

Yes (pO.OOl)Combined effect of group and experiment 

Yes (p=0.047)

QLFmax No (p=0.549) No (p=0.182) Yes (p=0.047)

Q L p A V b K No (p=0.116) Yes (p=0.022) Yes (p=0.006)

p-values calculated via a general linear model procedure

Selected sites
The effects of group, site and experiment and any statistically significant interaction effects 

on the differences in the two TMR parameters, IM L and LD, for the selected sites 1, 3, 9 

and 10, are summarised in Table 73 below.

Table 73 - Summary of effects of group, experiment and site on the differences in the TMR 
parameters for the selected sites

TMR parameter Group Site Experiment

IM L Yes (p=0.001) No (p=0.843) No (p=0.386)

LD

No (p=0.726) No (p=0.934)

No (p=0.787)Combined effect of group and site 

(p=0.005)

p-values calculated via a general linear model procedure
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In summary, the effects of group, experiment and site and any statistically significant 

interaction effects on the differences for each of the three QLF parameters: QLFAREA; 

QLFmax and QLFAVER for the selected sites 1, 3, 9 and 10 are given in Table 74 below.

Table 74 - Summary of effects of group, experiment and site on the differences in the QLF 
parameters for the selected sites

QLF parameter Group Experiment Site

Q L p A K b A Yes (p=0.001) No (p=0.640) No (p=0.730)

QLFmax No (p=0.596) No (p=0.592) No (p=0.833)

QLFaver

No (p=0.147) Yes (p=0.050)

No (p=0.373)Combined effect of group and experiment 

No (p=0.054)

p-values calculated via a general linear model procedure

4.3.4 Results of post-experimental compliance questionnaire
A questionnaire designed to assess compliance of the volunteers with the experimental 

protocols was constructed. Two versions were designed; one to give to the volunteers 

allocated to the treatment group (T), the other, with two additional questions, was given to 

those allocated to the treatment plus dentifrice group (TD). These are shown in Appendix 

8.

The questionnaire was distributed to the volunteers that completed all five of the 

experimental protocols (25) and also the individual that completed four experiments but 

was unable to return because of ill health. Due to loss of contact, the questionnaires were 

not distributed to the other three subjects. In total, 26 questionnaires were sent by post to 

the volunteers on completion of the study, 25 questionnaires were returned completed. O f 

these, seventeen subjects declared that they were fully compliant with all aspects of the 

experimental protocols. Eight of the subjects were not fully compliant; all eight did not 

wear their dentures overnight all of the time (mainly they declared that they removed the 

lower denture, some of the time, overnight). O f these eight, three of them did not take the 

UHT milk all of the time: one volunteer did not take it for three days because he had "flu";
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another subject moved house and as a result did not take all of the milk during one week 

but claimed to take extra the next week; the third, said that he had diarrhoea when he added 

the fluoride to the milk (no mention of this was made during the experiments to either the 

research assistant or the clinical researcher).

4.4 Discussion
The following sections will discuss the methodology used and the results of the 

experimental studies described earlier in this chapter, and interpret them in relation to the 

methodology and results of previously published work.

4.4.1 Discussion of methodology
This sub-section will discuss the reasoning behind the methodology chosen in the study, in 

relation to the review of the literature (Chapter 1).

4.4.1.1 Experimental substrate chosen
There are several advantages to using bovine enamel in preference to human enamel.

These include the fact that bovine enamel is easier to obtain in large quantities and, of all 

the non-human substrates, it facilitates the production of artificial caries lesions most like 

those in human teeth (Edmunds et al., 1988). However, it was decided that bovine enamel 

would not be used because of increased incidence of Bovine Spongiform Encephalitis 

(BSE) being detected in cattle during the time of the selection and recruitment stages of the 

study.

Human enamel was therefore chosen to be used as the hard tissue substrate in this study, 

even though significant amounts were required i.e. approximately 1000 extracted 

permanent molar teeth with intact, caries free buccal and lingual surfaces. To obtain these 

teeth, substantial effort was put into liaising with general dental practitioners and oral 

surgeons within Glasgow and the surrounding area, requesting that they collect teeth in 

bottles containing 0.12% aqueous thymol following extraction.

4.4.1.2 Substrate disinfection
As discussed in Chapter 2, Section 2.2.3, all tooth blocks were disinfected using a prion 

decontamination protocol. This protocol had been suggested by a British Professor of 

Microbiology to reduce the potential risk of contracting variant Creutzfeld Jacob Disease 

(vCJD) from extracted teeth. This ‘prion-decontamination’ protocol was applied to all of
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the tooth blocks used in the study and this methodology was accepted by the local ethics 

committee as an appropriate procedure at the time. A pilot study was designed to 

determine whether the prion decontamination protocol affected the potential for 

artificially-created caries lesions to demineralise. This was measured by both QLF and 

TMR. The results of this pilot study, which were presented at the British Society for Dental 

Research Conference in 2001, are described in Appendix 1. In summary, they 

demonstrated that little change occurred in the lesions, as measured by TMR and QLF, 

when the protocol was applied to the tooth prior to being sectioned into blocks or after it 

had been sectioned into blocks. However, if  the protocol was applied twice to the tooth, 

before and after it was cut into the blocks, then differences were detected in 

demineralisation when compared to the control group.

The recommended protocol was subsequently found to be ineffective for prion 

decontamination. Current protocols for general prion decontamination therefore revert 

back to those outlined by Taylor (1999) and suggest placing items in 2M NaOH for 1 hour, 

or a combination of autoclaving (121°C) with NaOH. Although it is not known for certain 

what effect these latter protocols may have on any artificially created lesions or on the 

actual tooth structure, it can be assumed they would be very destructive. At present, there 

is, therefore, no known method of decontaminating tooth blocks containing artificial caries 

lesions that is effective against prion proteins and has been shown not to affect the 

structure of the block.

The current ‘gold standard’ for disinfection of tooth substrate for use in in situ studies is 

gamma-irradiation (Amaechi et al., 1998; Amaechi et al., 1999). However, prion proteins 

are known to be resistant to ionizing, ultraviolet and microwave radiations (Taylor, 1999). 

This raises significant concerns about whether in situ studies using human teeth should be 

undertaken at all, at present. Preliminary work in the disinfection of tooth substrate has 

been undertaken by Watson et a l  (2004) using hypochlorite-treated and untreated 

autoclaved enamel surfaces. However, the effect this would have on the mineral dynamics 

of an artificially-created caries lesion is not clear. Further work is required in this area to 

determine the appropriate manner of eliminating the possible transmission of prion 

proteins (and other infective agents) during in situ studies. The prescribed protocol was 

considered effective for conventional microbial control prior to placement of specimens in 

the mouth although the sterility of the specimens was not specifically tested.
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4.4.1.3 Creation of artificial caries lesions
In the present study, it was important to commence experiments with caries lesions which 

had the potential to either remineralise or demineralise further. For reasons outlined in the 

literature review (Section 1.2.3.2), it was decided that smooth surface enamel caries would 

be investigated as these lesions are easier to create in a standard manner than fissure caries. 

In addition, measurement is simplified with this lesion type, as smooth surfaces permit 

alignment of the measurement device perpendicular to the surface being assessed. Hence, a 

greater number of measurement techniques may be employed. Artificially-created enamel 

lesions were chosen for the study, since it is virtually impossible to identify early, natural 

caries lesions capable of remineralising which have all demineralised to a similar degree 

(Ekstrand et al., 2005).

Early enamel caries can be created experimentally in vivo by fixing modified orthodontic 

bands or gauze onto a natural tooth to allow plaque accumulation (Nygaard-Ostby et al., 

1957; Hals and Simonsen, 1972; Ostrom et al., 1977; Gallacher and Pearce, 1979; 0gaard 

and Rolla, 1992). However, as discussed in Section 1.7.4, unless these teeth are scheduled 

for extraction, it is almost impossible to perform exacting lesion microanalysis. By creating 

artificial caries lesions in vitro for later use within an in situ model, more control of the 

lesion development is possible, and ideally, lesions can be developed so that they have a 

similar degree of baseline demineralisation. In situ appliances allow the placement of 

relatively standardised caries lesions into a more realistic environment than would be 

achieved in a laboratory, while permitting the testing of specific hypotheses.

In lesion development, it is hypothetically easier to standardise the creation and behaviour 

of these lesions if  the surface enamel is abraded to remove the outer surface. This removes 

the “history” of the outer surface of enamel with respect to intra-oral fluoride exposure and 

caries experience (Arends and Gelhard, 1983). Therefore, it was decided that abraded 

human enamel was to be used in the studies described in this thesis, in an attempt to have 

consistency of enamel lesion development and response. Following examination of the 

literature and pilot studies within the hard tissue laboratory of the University of Glasgow 

Dental School, the Carbopol method of artificial caries lesion development (White, 1987b) 

was chosen for: (a) its ability to recreate a surface zone, (b) the capacity to investigate both 

remineralisation and demineralisation and (c) its potential for consistency in artificial 

lesion creations. Thus to conclude, the decision was made to use abraded, human enamel
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as the substrate, containing artificially-created smooth surface caries lesions, in an in situ 

appliance.

4.4.1.4 In situ model
To resolve any ethical considerations and to permit the placement of many tooth slabs (10) 

in the mouth, it was decided that modified complete dentures would be used as the intra­

oral model for the main in situ enamel caries study described in this thesis. This model 

allowed for the potential testing of cariogenic substrates (as had been planned initially) and

also eliminated any ethical considerations involved in asking subjects to refrain from using

other fluoridated substances, such as fluoridated dentifrices, for the six-week duration of 

each of the experimental protocols (domestic water within and surrounding Glasgow has a 

fluoride concentration of less than 0.04 ppm F').

4.4.1.5 Denture model
The sites chosen to place the tooth slabs within the denture were determined partially with 

reference to previous studies in this area investigating salivary film velocity and its effect 

on the clearance of plaque acids from areas of the mouth (Lecomte and Dawes, 1987; 

Dawes et al., 1989) and partially by the ability to physically site the tooth blocks within the 

dentures. The thickness of the tooth blocks was approximately 3 mm, as it was necessary 

to provide support for the enamel from the underlying dentine. The tooth blocks were 

symmetrically placed on the right and left sides, buccally and palatally in the posterior of 

the upper and lower dentures (eight blocks), with additional blocks placed in the midline, 

buccal and palatal aspects of the upper denture (two blocks). It was anticipated that sites 

adjacent to major salivary gland orifices would have greater remineralisation potential than 

those placed, for example, on the upper buccal anterior (labial) aspect of the dentures.

One of the disadvantages of this model is that once dentures are worn, the microflora may 

change, with a potential increase in the colonisation by yeasts such as Candida albicans, as 

well as higher proportions of lactobacilli and staphylococci (Marsh and Martin, 1999). In 

particular, it is known that specific caries organisms, such as streptococci, significantly 

reduce in numbers when the patient is edentulous. Prior to the experimental protocols, 

subjects had small enamel blocks placed in the test dentures and were asked to wear these 

for three days before the caries-containing enamel blocks were sited. Plaque samples were 

collected after the three-day period and placed in lm L of Fastidious Anaerobe Broth 

(FAB), prior to transfer to the microbiology laboratory for immediate processing. It is
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known that the manner in which a carious lesion responds to a caries challenge is 

dependent, in part, on the oral microflora present. Examination of this oral microflora did 

take place and is described in detail in the Ph.D thesis of Elizabeth Dickson, University of 

Glasgow (2003). In summary, following the placement of enamel and dentine blocks, 

Lactobacilli sp. counts increased in the majority of subjects, with a minority (-30% ) being 

recolonised by Streptococcus mutans.

Another potential disadvantage of the complete denture model is a possible reduction in 

the salivary flow rate, particularly in subjects who are elderly. This potential disadvantage 

was carefully managed and subjects were selected who had fulfilled stringent inclusion 

criteria. This topic is discussed in further detail later in Section 4.4.2.1. Subject compliance 

is an issue in a study involving removable appliances, and this will also be discussed in 

Section 4.4.2.8. In other aspects, this model acts in a similar manner to other in situ 

models.

The advantages of the complete denture model are numerous. Given that the subject no 

longer has their own teeth, the treatment being tested cannot cause any detrimental damage 

to their dental hard tissues. This allows testing of treatments that may have evidence of 

being caries-inducing, thereby overcoming any ethical dilemmas and constraints. At the 

same time, other advantages of an in situ model still apply, such as the ability to place 

caries lesions of a pre-determined size into the oral cavity, which is a much more relevant 

location than a test-tube or “artificial mouth”. In addition, most subjects rendered 

edentulous would have become so as a result of their caries or periodontal disease 

experience and it could be argued that they are thus relevant subjects, given their disease 

experience.

4.4.1.6 Experimental protocols
Historically, the fluoride concentration used in milk has been between 5 and 15 ppm F' as 

CaF2, NaF, Na2-monofluorophosphate or Na2-silicofluoride, and has been shown to 

produce a significant reduction in caries of 40-50% (Stephen et al., 1996). Previous studies 

completed in the Glasgow area (Stephen et al., 1981; Stephen et al., 1984) used 200 mL of 

milk with 1.5 mg F' added (approx. 7.5 ppm F') and obtained a 43% difference in average 

DMFS scores between subjects exposed to fluoridated and non-fluoridated milk. However, 

it should be recognised that all of the children in the Stephen et a l  (1984) study were 

advised to brush with a non-fluoridated toothpaste. The majority of early fluoridated milk
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studies (discussed further in Chapter 1, Section 1.6.6) were undertaken without the use of 

fluoridated toothpastes, at a time when no fluoride was routinely available to the general 

population. The use of fluoridated dentifrices has become widespread over the last 2 5-30  

years, and as a result of this (and the use of additional fluoride sources) the caries rate in 

Europe and USA has dropped significantly (Haugejorden et al., 1997; Newbrun, 1999). 

Fluoridated toothpaste is now regarded as the main source of fluoride in areas without 

water fluoridation.

The consensus view is that frequent exposure to fluoride at an appropriate concentration is 

important to maintain the low levels of fluoride in saliva and plaque. There is uncertainty 

about the potential benefits of consumption of fluoridated milk, in populations who 

routinely use fluoridated toothpaste. Additionally, the influence of frequency of exposure 

to fluoridated milk has been highlighted as an area requiring investigation (Stephen et a l , 

1996).

Therefore, the main study described in this thesis (Chapter 4) was designed to investigate 

the effect on enamel mineral content of exposure to milk, with and without added fluoride 

and to determine whether any benefit of fluoridated milk use was apparent over-and-above 

that associated with exposure to a fluoridated toothpaste slurry. The effect of frequency of 

intake of fluoridated milk was also investigated. It was decided to use the same daily dose 

to that used previously by Stephen et al. (Stephen et al., 1981; Stephen et al., 1984), i.e.

200 mL of milk with 1.5mg F" (7.5 ppm F"), and to compare it to that of 200 mL of milk 

containing 0.5 mg F' (approx 2.5 ppm F") in three daily doses. The control was milk alone; 

200 mL of milk once a day, and 200mL of milk three times per day, with an additional 

negative control of “no beverage”. It was important to determine the effect of both a 

control (milk) and a negative control (no beverage) because previous work has suggested 

that there is a caries-preventive effect from consuming milk alone (discussed in more detail 

in Section 1.4).

When investigating the effect of increasing the fluoride delivery to three times daily, it was 

decided to divide the daily dosage of fluoride by three, thereby reducing the concentration 

of the fluoridated milk given to the subjects. The main reason for this was, although the 

subjects involved in the study were edentulous adults, fluoridated milk is generally given 

to young children. It was suggested therefore that the dosage of fluoride in milk given to 

the subjects in three daily doses should approximate with that suggested as the appropriate
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daily dose, which has been calculated previously to be equivalent to the optimum 

fluoridated water concentration, which is 1 ppm F \

4.4.1.7 Study design and number of subjects
To eliminate any carry-over effect of fluoride between the six-week experimental 

protocols, the study design incorporated a four-week “washout” period, as research 

undertaken by Stephen et al. (1992) suggested a “washout” period of two weeks (Schafer, 

1989) was insufficient. The study design also tried to balance any potential cumulative 

effect of the different protocols. It was mainly a statistical design process (detailed in 

Section 4.2.7) and involved randomisation of the order of the experimental protocols, for 

each subject, after the subject had been randomly allocated to one of the two groups. This 

process was provided by a statistician from the University of Glasgow and administered by 

a research assistant, with the main operator (AJN) not party to this information for the 

duration of the study.

The number of subjects was determined by the design of the study, rather than following 

on from a more formal statistical sample size calculation, given the limited resources of 

time and funding available. The design of the study was described in detail in Section 4.2.7 

and required a minimum of 20 subjects (10 in each group), each completing all five 

experiments, in order to be able to examine all the effects of interest. Therefore, as 

previously described, a target of 30 subjects was set. Ideally, the number of subjects would 

have been greater, but 30 subjects, involved the production of 1500 human tooth blocks, 

each containing a carious lesion. Producing these lesions was, in itself, an enormous 

undertaking, not including the exacting analysis of the specimens on removal from the test 

dentures. Previous studies in this field, involving protocols of similar duration have used 

smaller numbers of subjects; Sjogren et al. (2002) in an in situ study involving six four- 

week protocols had 15 subjects, Engstrom et al. (2004) used one four-week protocol and 

had 20 subjects.

4.4.1.8 Measurement of caries
Measurement of the caries lesions over time was undertaken using QLF. This technique 

became available following the loan of a prototype machine to the University of Glasgow 

by Inspektor Research Systems BV, Amsterdam, The Netherlands. The QLF technique has 

many advantages; it is non-invasive and repeated measurements can be made relatively 

easily. The QLF product “Clin-QLF” has been developed extensively over the last 10-12
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years. Initially, the light source used to illuminate the tooth was an Argon laser (de Josselin 

de Jong et a l , 1995). However, because of health and safety regulations surrounding the 

use of lasers, which limit their locale and portability, a white Xenon light source was later 

developed (Al-Khateeb et al., 1997). The prototype machine used in this study was one of 

the first light source prototypes developed. In addition, the manner in which the CCD 

(Charge Coupled Device) camera and light source are mounted in the hand-piece has been 

modified in recent years. The prototype machine used for this study had the light source, 

with a prism adjacent to a CCD camera, mounted in a hand-piece. However, the more 

recent Clin-QLF equipment has the light source and CCD camera mounted co-axially and 

this, anecdotally, appears to improve the amount of light and fluorescence available to the 

camera (though no evidence is available to date to substantiate this claim). Also, it should 

be recognised that technology advances continually and that the resolution of the CCD 

cameras available has improved over time. This should be remembered when making 

direct comparisons of QLF results obtained with the prototype machine used in this thesis 

and those obtained using QLF machines currently available on today’s market. In addition 

to the advancements in the hardware, there have been developments in the software used; 

in particular, the image alignment software, which now allows multiple images to be 

captured over time at similar angulations and orientation (de Josselin de Jong and van der 

Veen, 2000). This is particularly valuable in the in vivo situation when imaging a natural 

curved tooth surface and allows longitudinal monitoring of a demineralised area. 

Unfortunately, this software was developed only in 2000 and thus was not available at the 

beginning of the studies described in this thesis.

A value of -13 % Fluorescence Loss for QLFAVER was chosen as the minimal threshold of 

demineralisation for the tooth block to be included in the study. This was chosen because it 

was found to correspond with evidence of a white spot lesion when the tooth block was 

viewed dry, with the naked eye, in natural light. In addition, it was surmised that 

potentially, both further demineralisation and remineralisation could be demonstrated by 

QLF from this degree of demineralisation. There was no maximum threshold defined for 

inclusion in the study, though in practice, values greater than -30% were seldom achieved 

after 7-14 days of demineralisation. It could be suggested that a maximum threshold should 

have been defined, thereby reducing the variability of the specimens at baseline.

TM R was also used because it is currently recognised as a “gold standard” in the 

measurement of mineral content. It was considered necessary to use an accepted method to
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measure the tooth mineral change in addition to the relatively new QLF technique.

Initially, it was intended to compare directly the results obtained with QLF and TMR. 

However, this was not as straight-forward as had been anticipated. TMR examines a 

section or slice taken from a lesion, whereas QLF measures the mineral content of the 

whole lesion. Whilst some researchers have attempted to correlate results derived from the 

two methods (Hafstrom-Bjorkman et a l , 1992; Emami et al., 1996; Lagerweij et al.,

1999), others have raised questions about the ability to compare values obtained via QLF 

with those obtained via microradiography (ten Bosch, 2000). Therefore, in the present 

study, results obtained with QLF and TMR were not directly compared, although 

comparisons of the conclusions of the factors influencing the differences obtained between 

end-point and baseline values for the various parameters of the two methods will be 

discussed later (Section 4.4.2.7).

4.4.1.9 Removal of stain from caries lesions
One of the difficulties, which became apparent early in the study, was the development of 

staining on some of the tooth blocks and/or the carious lesion situated within the blocks. 

Stain is known to influence the fluorescence properties of a caries lesion, which in turn can 

affect the ability of the QLF method to accurately measure the degree of de- or re­

mineralisation. Therefore, a pilot study was undertaken to investigate the ability of various 

protocols to “de-stain” the caries lesion, taking into consideration the effect that each 

protocol may have on the ability of the lesion to de- or re-mineralise further and the effect 

that they may have on the lesion’s surface characteristics. This protocol and the results 

obtained are described in more detail in Appendix 11. This work was presented at the Pan 

European Society for Dental Research conference in 2002. The results obtained in this 

pilot study demonstrated that 30% hydrogen peroxide and zircate polishing paste were both 

effective at removing the stain. The “de-stain” protocol used in the main study described in 

this thesis was therefore, 4 hours immersion in 30% hydrogen peroxide followed by 

thorough washing and soaking in water for 24 hours. This protocol was only applied to 

tooth blocks at the end of the experimental protocols where stain was observed visually. I f  

the lesion did undergo “de-staining”, an image was captured prior to this procedure (QLF 

Image 7) and further to the stain protocol being applied (QLF Image 9). The methodology 

of this protocol was described in more detail in Section 4.2.9.
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4.4.1.10 Statistical analysis
Statistical analysis was undertaken as described in Section 4.2.10. It was decided to 

summarise the data by tooth block rather than by subject. This was because there were 

numerous factors involved in the design of the study; the five experimental protocols, the 

different sites within the mouth and whether the subject was using a dentifrice slurry to 

simulate tooth-brushing twice daily. Given that there were 29 subjects in the study, after 

consideration of these factors, there would have been small numbers in the sub-groups, 

potentially making it more difficult to interpret the summarised data, particularly given the 

high variability across tooth blocks. This is in contrast to the number of specimens 

available for analysis, which was 939 for TMR and 1041 for QLF.

As mentioned previously, descriptive statistics were initially used to describe the results 

achieved with QLF and TMR. Blocks were randomly allocated when situating them within 

the test dentures. However, there was a difference determined between the two groups (T 

and TD), in terms of the baseline measurements, as measured by both QLF and TMR, 

which occurred by chance. The formal statistical analyses, using a general linear model 

procedure, for both the QLF data and TMR data, were based on modelling the appropriate 

difference between baseline and final lesion size, on the various factors of group, 

experiment, site and subject. However, it is acknowledged that by using the differences, 

the baseline size of the lesion could be very important, particularly if  the lesions were not 

all comparable to start with: lesions which were bigger prior to any experimental exposure 

would have more potential for remineralisation.

An alternative statistical method for analysing the data would be to model the final lesion 

size on the effects of group, experiment, site and subject, after adjusting for the baseline 

lesion size (as a covariate within the model), using analysis of covariance (ANCOVA). It is 

recognised that analysis of covariance (ANCOVA) would have been an alternative 

statistical method, however, it was impractical to report and include the analyses presented 

previously as well as the more complicated ANCOVA method of analysis and this 

alternative method was deemed to be beyond the realms of this thesis. For the purposes of 

this “clinical” thesis it was considered sufficient to report the findings in terms of 

modelling the differences in lesion size only.
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4.4.2 Interpretation of results
4.4.2.1 Subjects
Given that the mean age of the participants at recruitment to the study was 72 years, and 

the duration of the study, it is remarkable that so many of the subjects managed to 

complete all five experimental protocols. Following recruitment to the study, the subjects 

all had two sets of complete dentures constructed and were reviewed until both sets were 

comfortable to wear both day and night. In addition to the time taken to achieve this, the 

time required to complete the five experimental protocols, with washout and vacation 

periods, meant the subject’s commitment to the study was between two and a half and 

three years duration. This is significant, particularly as the subjects were often required to 

attend at two-weekly intervals.

To enable an analysis to be undertaken of the effect of order of the experimental protocols, 

it was necessary that at least 10 subjects, in each group, completed all of the protocols in 

the pre-determined orders. Unfortunately, this did not happen and thus, it was not possible 

to examine for any effect of the order in which the experiments were completed within the 

statistical modelling. It is thought that this inability to examine for the effect of order of the 

experimental protocols will have a minimal effect on the conclusions of the study, as there 

was a relatively lengthy four-week washout period between each protocol, which should 

eliminate any carryover effect from the previous protocol.

Whilst this elderly cohort of subjects may have had an age-related reduced salivary flow, 

all participants had resting whole salivary flow rates greater than 0.1 mL per minute at 

selection (Dawes, 1996). Any medication that could reduce salivary flow rates was a 

contraindication and excluded the subject from the study. Additionally, subjects were 

repeatedly asked throughout the study whether there had been any change to their medical 

history or medication taken which could have affected their ability to fulfil the initial 

selection criteria described in Section 4.2.1. No participants were found to have had any 

change that would have affected their salivary flow rate and therefore their suitability to 

remain as a participant in the study.

A number of advantages were associated with use of an elderly population group. Many of 

the subjects were no longer working in paid employment and therefore were more able to 

attend appointments. Participants made every effort to attend appointments that had been 

arranged, and there were only a few appointments throughout the whole study where
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patients did not attend. These were usually as a result of unforeseen circumstances, such as 

a fall or sudden illness. The disadvantages of using a more elderly cohort of subjects are 

that the findings obtained might not be directly extrapolated to younger cohorts e.g. they 

may have a different diet and intra-oral microflora (as discussed in Section 4.4.1.5) and 

demographically they are more likely to develop morbidity which may prevent them from 

completing their agreed participation in the study.

4.4.2.2 Survival of specimens suitable for evaluation
O f the 1360 tooth blocks used in the experimental protocol for analysis by TMR, there 

were 939 blocks (69%) available at the end of the study with a matched “pair” of a covered 

(control) and exposed lesions. Therefore, a total of 31% of the blocks were not available 

because they had either been lost during the study (21%), did not have a matched pair of 

lesions at the end of the study (9.7%), or were mixed up on retrieval from the study (0.3%). 

Many of the blocks were lost from sites 4, 5 and 6 of the dentures, i.e. the palatal sites on 

the upper denture. The subjects mentioned that many of these were lost during eating. This 

may have been related to positioning of the blocks within the denture, or the choice of 

cement used to place the blocks within the denture. Blocks were placed in depressions cut 

in the acrylic dentures that were as near to a friction-fit as possible. The dental cement used 

was one designed to temporarily hold crowns and bridges onto teeth rather than hold pieces 

of tooth in an acrylic denture. In the choice of cement, a balance was required between 

selecting a material with the ability to hold the pieces of tooth securely within the denture 

and at the same time allowing easy removal of specimens at the conclusion of each 

experimental protocol. Whilst it could be perceived that the cement chosen was not an 

appropriate material to use, it was surmised that temporary crowns are sometimes 

constructed in cold-cure acrylic resin and, therefore, a reasonable tooth/acrylic bond should 

exist (Sjogren et al., 2002).

Prior to TM R evaluation, approximately nine thin (-200 pm) sections were cut through 

each lesion. One section was chosen for TMR analysis, usually from the middle of the 

lesion. I f  any section was found not to have an intact surface zone, within both the covered 

and exposed parts of the lesion, then that section was discarded and another section chosen. 

The lack of a matched pair of intact exposed and covered lesions on sections at the end of 

the study was frequently as a result of cavitation of the lesion surface, either during section 

preparation at the end of the study or during the in situ protocol.
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O f the 1360 tooth blocks initially placed in the denture, 1041 blocks were available for 

analysis with QLF at the end of the study. Two hundred and eighty-four blocks (21%) were 

lost from the dentures in situ because of failure of the cement used to fix the blocks in 

place during function (swallowing, eating and drinking).

4.4.2.3 Analysis of baseline data
For the purposes of this study, the intention was for the lesions to have a relatively similar 

size at baseline. The criteria for lesion selection involved capturing images of the lesions 

and analysing them with QLF. Lesions were prepared and then visually examined to 

confirm the presence of a white spot lesion. Inclusion was based on a minimum QLFAVER 

reading of -13% Fluorescence Loss. However, there was no maximum QLFAVER value 

suggested, the maximum demineralisation criterion being that the lesion surface should be 

intact and have not cavitated.

Looking at the QLF (Image 2) data as a whole, it is evident that the baseline images were 

of a relatively standard size and degree of demineralisation. This is demonstrated by the 

similar mean values and narrow standard deviations of the lesions at baseline. Additional 

examination of the baseline QLF data, divided by group and experiment, is shown in 

Appendix 10 and, in general, confirms this statement. One exception, however, is the QLF 

parameter QLFAREA where statistical analysis of baseline data by group (Appendix 10) did 

demonstrate a significant difference between the T and TD groups, with the latter group 

having a statistically significantly greater mean lesion area. The mean difference was 0.2 

mm2. The other exception was the analysis of baseline QLF data by experiment. This 

found statistically significant differences between experimental protocols for QLFMAX and 

for QLFaver. While the effect of these differences in QLF baseline values on experimental 

outcomes is unknown, it is felt that the magnitude of the mean differences occurring 

between the groups or experimental protocols at baseline is unlikely to have clinical 

significance.

Looking at the covered (control) TMR data as a whole, it was apparent that although the 

mean IM L and LD values indicated highly demineralised but shallow TMR lesions, there 

was a wide range of lesion sizes amongst the specimens. It was impossible to measure the 

degree of lesion demineralisation with TMR at baseline, as the specimens would have been 

destroyed in the process. Unlike QLF, where the whole of the lesion is measured both at 

baseline and post-experimentally, with TMR, adjacent parts of the original lesion are
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measured at the end of the experiment, one part having been covered with varnish 

representing the proxy baseline or control measurement, and the other uncovered area 

representing the post-experimental measurement. It is possible that the varnished/fissure 

sealed, covered (control) part of the lesion may not have always completely protected the 

control part of the lesion from further remineralisation or demineralisation as, on occasion, 

saliva may have been able to leach/seep under the covered area. It has to be noted, 

therefore, that whilst TMR is a ‘gold standard’ for measurement of enamel mineral 

content, there are some limitations associated with the use of covered proxy baseline 

measurements.

Although the enamel blocks with created lesions were allocated randomly to test subjects 

and sites within dentures, when the covered TMR data were examined with respect to 

treatment group (T and TD), there were differences between the T and TD groups for both 

mean IM L and LD. This difference between groups indicated there was greater 

demineralisation of the covered specimens in the T group, by approximately 12%, and 

there was consistency in the direction of this change for both IM L and LD. These 

differences were statistically significant (p<0.001 for both IM L and LD). It could be 

argued that as the T group lesions were on average larger than those of the TD group, there 

was more potential for remineralisation in the former group. There could, therefore, have 

been a tendency for the difference between the ‘baseline’ covered and final values to have 

been greater in the T group. However, in general, the results found that more 

remineralisation occurred in the TD group, and it is therefore possible that the use of the 

dentifrice slurry may have shown an even greater effect, had the baseline values been more 

consistent, as discussed in Section 4.4.1.10.

4.4.2.4 Comparison of differences between ‘baseline’ and final lesions
This sub-section will interpret the results obtained when comparing the differences 

between the covered and exposed lesions for TMR, and baseline and final lesions for QLF.

TMR
For the parameters IM L and LD, examining the mean values of the differences between 

covered ‘baseline’ and final lesion sizes indicated that there was overall remineralisation, 

although there was significant variation in lesion response.
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The three main factors being investigated in the study were: 1] ‘group’ i.e. with and 

without the use of a dentifrice slurry to simulate brushing with a fluoridated dentifrice, 2] 

‘site’ in the mouth, and 3] ‘experimental protocol’ i.e. various milk protocols with and 

without added fluoride and the ‘no beverage’ control.

Whilst it could have been anticipated from the literature that the use of a dentifrice slurry 

would have clearly increased the amount of remineralisation, and the descriptive statistics 

for IM L showed on average more remineralisation in the TD than T group, formal 

statistical analysis using a general linear modelling procedure (GLM) found that the main 

effect of ‘group’ was not statistically significant for either IM L (p=0.059) or LD  

(p=0.917). Although the reasons for this are unclear, possible explanations could relate to 

the difference in baseline values between the groups as discussed previously and/or the 

inclusion of other fluoride protocols, which could have reduced the effect of the dentifrice 

slurry. The analysis did, however, show a statistically significant interaction effect of 

‘group and site’ .

Since the site pattern of change in mineral content of lesions was different in the two 

groups, the factor of site was examined for each group separately. Within the TD group, in 

relation to the IM L data, a statistically significant site effect was seen and the pattern found 

concurs with previous literature investigating the site-specificity of caries (Lecomte and 

Dawes, 1987; Dawes et al., 1989), with more remineralisation occurring in the upper 

buccal posterior regions (with high salivary film velocity) and less in the upper anterior 

labial region (with low salivary film velocity). A similar pattern was seen for LD, but the 

site effect did not reach statistical significance (p=0.088). Within the T group, a different 

pattern was seen, but the within-group site effect did not reach statistical significance for 

either IM L or LD outcome measures, suggesting that the differences between the two 

groups were not consistent at all ten sites. It is difficult to understand why the different 

patterns across the sites occurred for the two ‘groups’, i.e. with the expected site pattern of 

remineralisation occurring in the group who used the dentifrice slurry, and exposure to 

relatively high concentrations of fluoride on a regular basis, but not with the treatment-only 

group.

With regard to the third factor under investigation, namely ‘experiment’, although some 

variation in mean change of mineral content occurred between the different experiments 

(with descriptive statistics surprisingly showing most remineralisation in the ‘no beverage’
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group), using the GLM analysis, the effect o f‘experiment’ was not statistically significant 

for either IM L or LD data, after adjusting for the other significant factors. With the TD 

group, it could have been expected that the exposure to the toothpaste slurry may have 

‘swamped’ the effect of the additional exposure to lower concentrations of fluoride in 

some of the milk experimental protocols. It could, therefore, perhaps have been 

anticipated that a ‘group and experiment’ interaction may have been seen, with more 

pronounced differences being present between experiments in the T group than in the TD 

group. However, this did not occur. Although efforts were made to facilitate subject 

compliance, e.g. with home delivery of products and clear instruction sheets, the potential 

effect of compliance on study outcomes is uncertain, particularly in relation to the effect of 

experiment, where it could be surmised the greatest variation from the protocol may have 

occurred. The potential influence of subject compliance is discussed in detail in Section 

4.4.2.8.

Overall, the mean IM L difference between covered and exposed lesions was 366 %Vol 

mineral.pm. For LD, the mean difference was very small (overall mean change = 4.6 pm). 

This brings into question the preciseness with which changes in lesion depth can be 

measured. It has been suggested that the accuracy of TMR in relation to enamel lesion 

depth measurement is about 5 pm and for IM L 200 %Vol mineral.pm (Arends and ten 

Bosch, 1992). This suggests that the parameter IM L may be a more appropriate measure 

of changes in mineral content of artificially created caries lesions, as used in this in situ 

model. This would appear to agree with work published by White et al. (1992), which 

suggested that the primary measure of mineral loss or gain should be IM L (also known as 

AZ), with the secondary measure being lesion depth. However, the findings of the present 

study showed, in general, agreement between the IM L and LD results. In both cases the 

individual effects of ‘group’, ‘site’ and ‘experiment’ were not found to be statistically 

significant, whilst for both outcomes an interaction between ‘group and site’ occurred. 

Furthermore, on exploring this interaction, the same overall pattern of remineralisation 

across sites was seen within the TD group for both IM L and LD, whilst for the T group 

both the two outcomes showed different patterns across the ten sites.

QLF
The comparison of baseline data (Image 2) with post-experimental protocol data (Image 

10) for all specimens for each QLF parameter, demonstrated mean positive differences, 

indicating remineralisation occurred overall. QLFAREA demonstrated the greatest positive
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difference of approximately 50%, this was followed by QLFAVER with a 25% change 

towards mineralisation, then QLFMAX with a positive change of approximately 20%.

For QLFarea, formal statistical analysis using a general linear modelling procedure (GLM) 

demonstrated statistically significant effects o f ‘group’, ‘experiment’ and ‘site’. By group, 

there was more remineralisation in the TD than T group, indicating that the dentifrice 

slurry was more effective than the experimental protocols alone. By experiment, the 

greatest mean difference for QLFAREA was in the 200 mL of milk x 3/day protocol, 

followed by the 1.5 mg F in milk x 1/day. The finding with regard to the latter protocol is 

understandable, although its use could have been expected to result in most 

remineralisation. Whilst milk alone has been shown to be non-cariogenic (McDougall, 

1977; Bowen et al., 1991; Bowen and Pearson, 1993; Erickson and Mazahari, 1999), it is 

somewhat surprising that on average more remineralisation occurred with intake of milk 

three times daily than with either of the fluoride-containing milk protocols.

In relation to the QLFAREA data, a statistically significant interaction effect occurred 

between group and experiment. Although, as expected, the average changes in mineral 

content were lower in the T group, the greatest difference between experimental protocols 

in the T group, in terms of the difference between baseline and final measurements ,was 

larger than with the TD group (0.9 and 0.4 mm , respectively). Although, as discussed 

previously in relation to TMR, it could be predicted that a wider range of values would be 

associated with the absence of dentifrice slurry use, it is surprising that in the T group, the 

smallest amount of remineralisation occurred, on average, with use of 0.5 mg F x 3/day. It 

was anticipated that the fluoride-containing milk protocols would have been seen to have 

more of an effect than the non-fluoride protocols, without the swamping effect of the 

dentifrice slurry being present.

Examining the results by site, on average, there was greatest remineralisation at sites 4, 5 

and 6 (upper, palatal sites). However, there were approximately 50% fewer tooth blocks 

retrieved from these areas. Nevertheless, this finding is understandable as, with tongue 

movement, there will be good movement of saliva and little plaque accumulation at these 

sites. By contrast, the least amount of remineralisation occurred in site 2. The results 

achieved at this site would concur with previous evidence suggesting that less 

remineralisation occurs at areas of reduced salivary flow (Lecomte and Dawes, 1987; 

Dawes et a l , 1989).
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For QLFmax, formal statistical analysis using the GLM procedure indicated that there was 

a statistically significant effect of site. The smallest mean positive difference between the 

baseline and post-experimental measurements occurred at site 2, indicating that the least 

remineralisation occurred at this site. As mentioned previously, this could be explained by 

the low salivary film velocity that has been proven to occur in this area (Lecomte and 

Dawes, 1987). The greatest mean differences occurred at sites 4, 5 and 6, where the 

difference achieved was double that which occurred at site 2. The findings in relation to 

these palatal sites are thus similar to those seen with the QLFAREA parameter, and the 

potential reasons for this have been described previously.

For the QLF parameter QLFAVBR, formal analysis with GLM demonstrated statistically 

significant effects of experiment and site, but after adjusting for these effects, there was no 

statistically significant group effect. For experiment, the smallest mean difference occurred 

in the 0.5 mg F x 3/day protocol and the greatest mean difference occurred in the ‘no 

beverage’ protocol. The ranges included negative values suggesting that there was 

inconsistency in lesion behaviour. It was surprising to see that the negative control, i.e. ‘no 

beverage’, had the greatest positive effect on average fluorescence change. It is not 

understood why this should be the case, although the percentage differences in the average 

fluorescence obtained for these protocols were small (4.8% for the 0.5 mg F x 3/day 

protocol and 6.2% for the no beverage protocol). For site, the greatest mean differences 

between baseline and post-experimental protocol data occurred in sites 4, 5 and 6. This 

concurs with results obtained with the other QLF parameters. The smallest mean changes 

occurred at sites 7 to 10, i.e. those situated on the lower denture. This pattern is different to 

that seen with the other QLF parameters and is difficult to explain, as both the buccal and 

lingual aspects of the lower arch are exposed to a relatively high salivary film velocity 

compared, for example, to the upper labial site (Lecomte and Dawes, 1987; Dawes et al., 

1989).

In summary therefore, for QLF, the most consistent statistically significant effect on all 

three QLF parameters was that of the site of the tooth blocks within the test dentures. The 

greatest amount of remineralisation occurred on the palatal aspects of the upper denture. 

Many blocks were lost from these sites during the experiments, presumably due to 

movement of the tongue and the effect of eating. It is probably for these reasons that most 

remineralisation occurred here, with good salivary movement and little chance for 

appreciable plaque accumulation at these sites. The finding would tend to agree with
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clinical observations, with caries seen relatively rarely at these locations. For both 

QLFarea and QLFAVER, the smallest change between baseline and post-experimental 

measurements occurred at site 2. As discussed previously, this finding agrees with the 

published literature, indicating a very low salivary film velocity at this site (Lecomte and 

Dawes, 1987). The experimental protocol used also demonstrated a statistically significant 

effect on both QLFAREA and QLFAVBR. These results varied and are difficult to interpret, 

with the fluoride-containing milk resulting, on average, in less mineral change than some 

other experimental protocols. There was also a clear effect of group, but only with regard 

to QLFarea. This demonstrated, for this parameter, that the remineralising effect of the 

additional fluoride content of the dentifrice slurry was greater than that achieved with the 

fluoridated milk alone.

Summary
Overall, on examining the TMR and QLF findings, the outcomes are difficult to interpret. 

Although the summary statistics showed, on a consistent basis, more remineralisation with 

the TD than T group, it was only with one parameter, QLFAREA, that the group effect (as a 

main effect) was statistically significant, after adjusting for any other significant effects. 

The effect of baseline lesion size may have had some influence on these findings. There 

was no consistent effect of experimental protocol. Two of the QLF parameters showed 

‘experiment’ to have a statistically significant effect, but the ordering of the experiments 

with regard to magnitude of change in mineral content varied and the protocols with 

fluoridated milk were not associated, on average, with more remineralisation than the 

fluoride-free experiments. As discussed earlier, the influence of subject compliance is 

unknown. With regard to ‘site’, in many cases the smallest mean change in mineral content 

occurred at site 2 (associated with low salivary film velocity), but again this pattern was 

not consistent across all parameters. A site effect was seen for all three QLF parameters 

and a combined effect of group and site occurred in relation to both of TMR parameters.

As the two main factors being investigated in this study were the effects of experiment and 

group, and as a statistically significant site effect was seen for all three QLF parameters 

and the combination of site and group was statistically significant for both TMR  

parameters, it was decided to repeat the analysis using a smaller number of sites, which it 

was hoped would behave in a more consistent manner. The four sites chosen were sites 1 

and 3 (upper posterior buccal) and 9 and 10 (lower posterior lingual). A ll of these sites are 

close to major salivary ducts. Evidence suggests that there is a relatively high salivary film
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velocity in these areas (Dawes et al., 1989) and therefore greater remineralisation potential. 

Although, according to the QLF results, the palatal sites of the upper arch were associated 

with most remineralisation, many of the blocks were lost from these locations and the 

findings from these sites differed from others around the mouth.

4.4.2.5 Analysis of baseline data for selected sites
No statistically significant differences were found in mean ‘baseline’ lesion TM R or QLF 

values between the four selected sites. The means, standard deviations and ranges seen 

across the four sites were relatively similar, particularly in relation to QLF. The potential 

reasons why more variation may have occurred among sites measured with TM R have 

been discussed previously in Section 4.4.2.3. The findings suggest that lesions of similar 

size were allocated to the four selected sites and it could therefore be expected that lesions 

at these four different sites would behave in a relatively similar manner.

4.4.2.6 Comparison of differences between ‘baseline’ and final lesions 

for selected sites

TMR
The results of the selected sites TMR data are described in detail in Section 4.3.1.5 and 

summarised in Section 4.3.3.

For TMR, both parameters, i.e. IM L and LD, demonstrated an overall positive mean 

difference between ‘baseline’ and post-experimental values, indicating remineralisation. 

This was more pronounced with IM L. The mean difference for LD was small (overall 

mean change = 4.3 p,m), and as discussed previously in Section 4.4.2.4, the magnitude of 

the change brings into question how precisely the small differences obtained can be 

measured.

For IM L, formal statistical analysis was performed using a GLM procedure and for the 

selected sites, unlike for the all-sites data, a statistically significant effect of treatment 

group was demonstrated on changes in mineral content, with more remineralisation 

occurring in the lesions exposed to the dentifrice slurry. This outcome is not surprising 

given the fact that the dentifrice contained 1100 ppm fluoride and was used twice daily. 

With regard to the ‘experiment’ factor, the descriptive data showed some variation 

between experimental protocols, with a different pattern emerging to that seen when all 

sites were included. For the selected sites data, on average most remineralisation occurred
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with use once daily of milk containing 1.5 mg of fluoride and the smallest mean change in 

mineral content was seen with use of fluoride-free milk once daily. Whilst this result is 

closer to that which would have been anticipated, compared to the findings seen with 

inclusion of all the sites (where ‘no beverage’ showed on average most remineralisation), 

even with use of the selected sites data, the effect of ‘experiment’ again failed to reach 

statistical significance, after adjusting for the significant effect of group. The fact that ‘site’ 

had no significant effect is expected; with the four sites having been selected in the 

expectation that they would behave in a similar manner. Thus for IM L, the ‘group’ effect 

was strongest, suggesting that the fluoridated dentifrice slurry has the most significant 

effect on change in lesion mineral content.

For LD, although descriptive data showed similar patterns in relation to ‘group’ and 

‘experiment’ to that seen with the IM L data, analysis by GLM demonstrated insufficient 

evidence to suggest statistically significant main effects of ‘group’, ‘experiment’ or ‘site’ 

on the outcome. The analysis did, however, show a statistically significant interaction 

effect of ‘group and site’, suggesting that for LD, it is the combined effects of the 

dentifrice slurry and the position of the block in the mouth (i.e. site) that has the greatest 

effect on change in this parameter, rather than the experimental protocol. The finding of a 

‘group and site’ interaction effect was to some extent unexpected, as it was anticipated that 

the use of the selected sites would have resulted in lesions behaving in a similar manner at 

the different sites and so any differences between the two groups would be similar at the 

four sites.

Examining the effect of site separately for the two groups, there was some evidence, 

though not significant at the 5% level, of an effect of site for both the T group and the TD 

group. The lingual surface of the lower posterior region behaved in a similar manner for 

both the T and TD groups on the left and right sides of the mouth (i.e. sites 9 and 10), 

although there was less of a difference between the covered and exposed lesions in the TD 

group. It was anticipated that sites 1 and 3 would also behave in a similar manner, given 

that they were both placed in the upper posterior buccal area of the dentures. However, this 

did not happen in the T group with, on average, demineralisation occurring at site 3. Whilst 

both the failure to see an overall ‘group’ effect and the detected ‘group and site’ interaction 

were unexpected and differ from the results obtained with IM L, given the size of the mean 

changes in lesion depth occurring and the previously mentioned associated limitations of 

this measure with regard to the ability to measure consistently and accurately such small
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changes in LD, the findings are perhaps understandable. More weight should, therefore, 

perhaps be attached to the IM L findings, as suggested by White et al. (1992).

When comparing the TMR results obtained for all data with those for the selected sites, the 

interpretation of factors important on the outcomes was clearer with the selected sites data. 

Here, only the effect of ‘group’ had a statistically significant effect on mean change in 

IM L, with significantly greater remineralisation occurring in the TD group. Therefore, for 

the selected sites IM L data, the dentifrice slurry had the greatest beneficial effect on the 

lesions. For LD, the only statistically significant effect noted was the combined effect of 

‘group and site’; this was seen both when all of the data were considered, as well as with 

the selected site data.

QLF
For all QLF parameters, the comparison of baseline and post-experimental data for 

selected sites demonstrated a mean positive difference, indicating remineralisation 

occurred overall. QLFAREA demonstrated the greatest positive difference of approximately 

50%, this was followed by QLFAVER with an approximate 25% change towards 

mineralisation, then QLFMAX with a positive change of approximately 20%. These values 

are almost identical to those found when all sites were included in the analysis.

Formal analysis of the change in QLFAREA using the GLM procedure, found a statistically 

significant effect of group, with more remineralisation occurring in the lesions exposed to 

the dentifrice slurry. Unlike the findings when all sites were analysed (when all three 

factors of interest had a statistically significant effect), this was the only statistically 

significant effect on outcome, suggesting that the fluoride within the dentifrice had a 

greater effect than the experimental protocols. It is not surprising that the use of the 

selected sites resulted in the disappearance of the site effect. It could be concluded, 

therefore, that for QLFAREA, the most significant effect on outcome was that of group.

The GLM model indicated that for QLFMAX, none of the factors examined showed 

evidence of a statistically significant effect on the outcome. The only factor that had shown 

a significant effect when all sites were included in the analysis was ‘site’, and as discussed 

above, the loss of this effect with use of selected sites data is not unexpected.

The GLM model for QLFAVER indicated that there was a combined effect of ‘group and 

experiment’ on change in mineral content. This suggests that the dentifrice slurry and the
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experimental protocol used in combination had an effect, that was not quite statistically 

significant (p=0.054), with differences between experiments not being the same for the two 

groups. When the various factors were investigated for the two groups separately, there 

was some evidence (not statistically significant at the 5% threshold) of an effect of 

experiment. In the T group the greatest mean difference (remineralisation) occurred in the 

‘no beverage’ protocol and the least mean difference was in the 200 mL milk x 3/day 

protocol. In the TD group, however, the greatest mean difference was in the 200 mL milk x 

3/day protocol and the least mean difference occurred in the 1.5 mg F x 1/day protocol. In 

both the T and TD groups, the ranges were wide, indicating inconsistency in lesion 

behaviour. Given the inconsistency in the ranking of the experimental protocols, it is 

difficult to draw conclusions from this data.

4.4.2.7 Comparison and interpretation of outcome of results obtained 

with TMR and QLF data
Although it would be interesting to have been able to correlate data obtained with QLF and 

TMR, the results obtained for these parameters within this study do not lend themselves to 

direct comparison. Lagerweij et al. (1999) attempted to correlate results obtained with QLF 

(QLFaver only), using a white arc lamp, and TMR and achieved a correlation coefficient 

of 0.63, which is classed as ‘moderate’ according to Shrout’s descriptors (1998), detailed 

in Chapter 3. Al-Khateeb (1997) performed similar work comparing QLF (QLFAVER and 

QLFarea), again, using a light source with TMR, and obtained a ‘substantial’ correlation 

coefficient of 0.84 for both parameters. From the results obtained within this thesis, the 

two techniques appear to be measuring lesion mineral content in different ways. This is 

not surprising, as TMR is measuring a section of a carious lesion from the surface 

downwards, into the depth of the lesion, while QLF is measuring the scattering of 

fluorescence of the surface of the carious lesion, in comparison to the sound enamel around 

it. This concurs with a previous suggestion by ten Bosch that the two measurement 

techniques are not directly comparable (ten Bosch, 2000).

However, it is possible to make indirect comparisons of the results of the statistical models 

obtained from the QLF and TMR data, as follows:

For the TMR data, the most useful parameter was IM L, due to the minimal differences 

attained in lesion depth. However, analysis involving all sites showed similar results for 

both IM L and LD. In both cases, none of the individual factors i.e. group, experiment or
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site, demonstrated statistically significant effects, although for both parameters, a 

combined effect of ‘group and site’ was seen. For QLF parameters, the effects of group, 

experiment and site showed different results to those obtained with TMR. From the data, it 

is difficult to determine the most useful QLF parameter for measuring change in mineral 

content. When modelling all the data, for all three QLF parameters there was a statistically 

significant site effect with, in general, the least remineralisation occurring in the upper 

labial region, and most remineralisation being seen at the palatal sites. For QLFAREA, a 

statistically significant group effect was also observed, with more remineralisation 

associated with exposure of lesions to the dentifrice slurry. This parameter, together with 

QLFaver, also showed a significant experiment effect. However, the ranking of the 

experiments by mean changes in mineral content were not as one would have predicted, 

i.e. the fluoride-containing milk protocols did not show the most remineralisation.

Statistical modelling involving use of data from the four selected sites attempted to allow 

the effects of group and experiment to be investigated more clearly, without the additional 

effect of variation in lesion response due to the positioning of the enamel blocks within the 

oral cavity. On the whole, this approach was successful, with none of the TM R or QLF 

parameters demonstrating an individual statistical significant site effect, although a 

combined ‘group and site’ effect was seen in relation to the lesion depth TM R parameter. 

Both QLFarea and the IM L component of TMR showed a statistically significant group 

effect, with more remineralisation occurring with use of the dentifrice slurry containing 

1100 ppm fluoride. Neither of the TMR parameters demonstrated a significant 

‘experiment’ effect, although QLFAVER parameter demonstrated a statistically significant 

effect of experiment (with no beverage demonstrating the greatest amount of 

remineralisation) and QLFAVER showed a statistically significant combined effect of group 

and experiment. The selected site data therefore indicated that the use of the dentifrice 

slurry was the main factor influencing the outcome, with the use of the different 

experimental protocols having no additional statistically significant effect on most of the 

outcomes.

In summary, although it was not deemed appropriate to make direct comparisons between 

the QLF and TM R data because they appear to be measuring different properties, it could 

be suggested that the IM L component of TMR and QLFAREA are able to draw similar 

conclusions. However, before this claim could be substantiated, further work would need 

to be undertaken in this area. To date, there are no in situ studies in the literature using
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QLF as a method of measuring mineral content and, therefore, no in situ studies have been 

published comparing the results obtained using both QLF and TMR.

Attempts to compare the QLF results achieved in this study with those achieved in other 

investigations are also complicated by the use of different parameters in other studies. 

Commonly, the parameters AF and AQ are now used. AF is equivalent to QLFAVER and 

describes the average change in fluorescence, as a percentage, when comparing the area 

within the highlighted area to the sound enamel surrounding it. AQ is the average change 

in fluorescence as a percentage (AF) multiplied by the area, measured in mm2, i.e. with 

units of mm2.%. These changes in outcome measures have been introduced following 

updates to the Clin-QLF hardware and software and the majority of very recent 

publications reflect these changes. This makes comparison of the QLF data obtained from 

this and other studies difficult. As stated above, to date, no in situ studies have been 

published using QLF as a method of measuring de- or remineralisation, although a 

methodology has recently been published (Higham et al., 2005).

4.4.2.8 Subject compliance
With any in situ study, it is essential to make an assessment of the level of subject 

compliance with the study protocols. This is particularly the case when the subjects are 

wearing intra-oral appliances that they are able to remove themselves. Every effort was 

made by those involved in the investigation to enable the subjects to fulfil all of the study 

requirements with minimum inconvenience. This included delivering the milk to the 

individuals’ homes (although this was not undertaken by the main investigator to ensure 

blinding). In an attempt to stress the importance of compliance, the Research Assistant 

asked the subjects on a regular basis about their adherence to the experimental protocols 

and at the end of each experiment the individuals were asked to return any fluoride 

containers (including those which had contained the dentifrice slurry), so that ongoing 

assessment of compliance could be made. It is acknowledged that the positive responses 

received from the subjects and the return of the containers does not prove that the subjects 

ingested the fluoride as requested.

The evidence obtained from the study suggests that the dentifrice slurry had an effect on 

the caries lesions. This suggests that compliance with dentifrice slurry use was satisfactory. 

The protocols relating to use of the milk protocols were a little more demanding and it is 

likely that, on occasion, subjects would not have complied fully with requests about the
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milk/fluoridated milk intake. In addition, when the subject was involved in one of the 

fluoridated milk protocols, it is possible that the subject forgot or neglected to add the 

fluoride solution to the milk, or indeed, they forgot to mix the milk and fluoride solutions 

together. It is unlikely that the subjects used the wrong bijou of fluoride in their 

experiments as the subjects were asked to return empty and unused containers to the 

Research Assistant at the end of each protocol. Additionally, there should not have been a 

problem with carry-over of one six-week protocol to the next, with a washout period of at 

least four weeks occurring between each experiment.

Ideally, the subjects would have been subjected to regular urine analysis to confirm that 

they had followed the protocols correctly. However, given the extensive commitment 

required of the subjects and their age, it was felt that this would have been too invasive and 

would have discouraged the subjects from participating. Urinary analysis is often 

impracticable in a field study, and for this investigation it was determined that, logistically, 

urinary analysis was not possible and it was therefore not undertaken.

At the end of the study, the 26 subjects who had completed four or five experiments were 

asked to fill in a compliance questionnaire (the results of which are described in detail in 

Section 4.3.4). O f the 25 subjects who replied, 17 subjects claimed to be fully compliant 

with the study instructions. Eight (32%) of those who replied were not fully compliant, and 

admitted to removing their lower denture, some of the time, overnight. This could have 

changed the lesion response by reducing the amount of time that the lesion had to 

remineralise overnight (in the absence of food and drink, bathed in saliva) and also change 

the manner in which the lesion responded following a period of dehydration, or immersion 

in water. In addition, of these eight persons, three also admitted to not taking all of the 

milk, for various reasons such as illness. These issues are common problems with in situ 

and other study-types involving human subjects.

4.4.2.9 Comparison of current results with the fluoridated milk 

literature
As outlined in Chapter 1, the use of milk as a delivery vehicle for fluoride could have a 

number of advantages. In addition to the potential caries-preventive benefits, there is 

evidence that the use of milk itself reduces general health inequalities (Smith, 1997).

Thus, milk fluoridation programmes operate in a number of countries including China, The 

Russian Federation, Chile, Bulgaria and the United Kingdom. However, the evidence base
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in relation to the effectiveness of fluoridated milk as a community-based method of caries 

prevention is not strong. A very recent systematic review of the topic (Yeung et al., 2005) 

used selection criteria that included the need for a randomised or quasi-randomised control 

trial design and study duration of at least three years. Only two studies met the inclusion 

criteria. One study, involving children in Russia from three years of age at baseline, used a 

fluoride concentration in milk of 2.5 mg/L (or 0.5 mg/200mL), and found significant 

differences in caries increment for both the primary and permanent dentition between test 

and control groups after a study duration of three years (Maslak et a l , 2004). The fluoride 

milk concentration used corresponded to that of one of the experiments used in the present 

study, i.e. the 0.5 mg F in 200 mL milk x 3/day. However, limited study information is 

available as, to date, the work has only been published in abstract format. The second study 

included in the review was that of Stephen et al. (1984). This school-based Glasgow study 

involved children from five years of age at baseline. The fluoride level used was 1.5 mg / 

200 mL milk, i.e. three times that used in the Russian study. Stephen et al. (1984) 

instructed use of a fluoride-free dentifrice during the study. The study design therefore 

most closely relates to the experimental protocol of the present study involving 1.5 mg F in 

200 mL milk x 1/day in the T group. The results of the Glasgow-based RCT showed no 

significant difference in caries increment between test and control groups for the primary 

dentition at the three annual examinations, and for the permanent dentition, again no 

significant differences were found for the first three years. However, by years four and 

five, significant differences in DMFT values occurred between the two groups, with a 

lower caries increment in the test group. It is interesting to note that the results are not 

consistent between the two studies included within the review and that the differences 

between test and control groups were greater in the study involving the lower 

concentration of fluoride. However, as mentioned above, limited information regarding 

study design is available in relation to the Russian study and it is therefore difficult to 

compare study findings in a meaningful way.

The two clinical studies described above are obviously very different to the in situ study 

described in this thesis. The clinical studies measure the incidence of new caries lesions 

developing over a number of years, whilst the in situ study measured the change in mineral 

content of artificially created enamel lesions over a six-week period. The methods of 

detection / measurement of lesions were also very different. Although in situ studies are 

designed to be able to produce results in a much shorter time than clinical studies and they 

have been shown in the past to be a useful method for providing information relating to the
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effectiveness of different concentrations of fluoride in dentifrices (Schafer, 1989; Mellberg 

et a l , 1991; Stephen et al., 1992), it is nevertheless difficult to compare directly the results 

of the clinical and in situ studies. With inconsistent results being found between the 

clinical studies with regard to the effectiveness of fluoridated milk as a caries-preventive 

agent, and with no significant differences in caries increment becoming apparent in one 

study until the four-year time point, it is perhaps not surprising that the in situ study failed 

to show an obvious effect of the experiment protocols for either of the treatment groups. 

The systematic review concluded that there was some evidence, from the two studies that 

met the inclusion criteria, that fluoridated milk was beneficial to the permanent teeth of 

school children, but that at present there are an insufficient number of high quality studies 

available to provide a strong evidence base in relation to the effects of fluoridated milk in 

preventing caries in children.

In this in situ study the effect of group was statistically significant for some outcome 

parameters with, on average, more remineralisation occurring in the lesions exposed to the 

toothpaste slurry containing 1100 ppm F. It is perhaps surprising that the effect of group 

was not statistically significant for all of the outcome measures, as the literature provides 

strong evidence of the effectiveness of fluoridated toothpaste in the prevention of caries 

(Stephen et a l ,  1988; Marinho et a l, 2004b).
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5.0 Conclusions and further work
This chapter contains general conclusions from the preceding work, discusses the 

limitations of the project and suggests some recommendations for further work.

The work in this thesis evaluated the ability of an operator to both take images and analyse 

them in a repeatable manner using the QLF technique. Once the repeatability of the 

operator using this technique had been established, QLF was used, together with the 

established TM R methodology, to evaluate the effect of consumption of milk, with or 

without additional fluoride, on the change in mineral content of artificial caries lesions 

placed at different sites within the oral cavity. This work posed a number of specific 

research questions which are discussed within the remainder of this chapter.

5.1 Conclusions
The aim of the study described in Chapter 3 was to investigate the repeatability of the QLF 

process and answer the research question listed below:

• Could a given operator both obtain and analyse an image in a repeatable 

manner with the available QLF machine?

From the results obtained in this study, it can be concluded that the image analysis stage 

was more repeatable than the image capture stage of the QLF technique. For the image 

capture stage, of the three QLF parameters measured, QLFMAX was the most repeatable, for 

this given operator, when using this prototype Clin-QLF machine, with a repeatability 

estimate of 96%. QLFAREA and QLFAVER had lower repeatability estimates of 83%, 

however, these were still classed as being ‘substantial’ by the criteria suggested by Shrout 

(1998). For the image analysis stage, the most repeatable parameters were QLFMAX and 

QLFaver (96% and 95%, respectively), although QLFAREA still had a repeatability estimate 

of 93%. However, it should be noted that one of the disadvantages of this study was the 

limited variability in the degree of demineralisation of the tooth specimens (n=20). In the 

main study described in Chapter 4, statistical analysis of baseline measurements of the 

degree of demineralisation, determined using both QLF and TMR, demonstrated greater 

variability between the tooth specimens (n=1360). Repeatability work described by 

Tranaeus et a l (2002) demonstrated greater repeatability and higher correlation values in a 

study with a greater variability in the degree of demineralisation of the tooth specimens
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analysed. Therefore, it could be that the repeatability of QLF in the main study described 

in this thesis, is likely to be greater than that achieved in the study (Chapter 3).

In summary, QLF is a highly repeatable technique, for this given operator, for both the 

image analysis and image capture stage. However, it is important that the operator is 

experienced because the repeatability of the technique decreases significantly with 

inexperienced operators (Pretty et al., 2002). As stated in Chapter 3, the repeatability 

estimates obtained would suggest that the operator in the studies described in this thesis, 

can achieve levels of consistency similar to operators described as “experienced” in other 

studies examining the repeatability of QLF. Recent developments in image re-positioning 

software (van der Veen and de Josselin de Jong, 2000) are likely to further improve the 

repeatability of image capture and subsequent analysis. QLF has significant benefits over 

other mineral measurement techniques in that it is possible to take multiple images over 

time, it is non-invasive and it is relatively straight-forward to perform. In addition, when 

compared with TMR, the QLF measurement obtained at baseline is a true measurement, 

rather than a proxy measurement, as obtained by TMR. Therefore, QLF is a useful and 

repeatable measurement technique for use in in situ and in vivo studies.

Having established the operator repeatability in the use of QLF to evaluate mineral loss in 

a non-invasive manner, QLF was applied to an in situ model to study the effects of 

fluoridated milk consumption. The aims of the study described in Chapter 4 were to 

answer the following research questions:

• Was there an effect of using fluoridated dentifrice on the mineral content 

of enamel lesions?

• Were there any effects of consumption of fluoridated milk on mineral 

content of enamel lesions a) with or b) without the effect of fluoridated 

dentifrice?

• Were there any differences in the change in the mineral content of enamel 

lesions at different intra-oral sites?

With regard to the methodology used in this study, an in situ model involving human 

enamel blocks with artificial caries lesions was selected. The complete denture model used 

was advantageous in that it allowed the placement of multiple tooth blocks into the mouth
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of the subject and potentially allowed for cariogenic substances to be tested. However, a 

suitable method for disinfecting tooth specimens used in in situ caries models needs to be 

determined via further research. A ll of these issues have been discussed further in Chapter 

4, Section 4.4.

Was there an effect of using fluoridated dentifrice on the mineral content of enamel 

lesions?

The design of the study included the investigation of the effect of use of fluoridated 

dentifrice to simulate toothbrushing twice-daily. Subjects who used the dentifrice slurry to 

simulate toothbrushing twice daily tended to have a much greater mean positive difference 

between pre- and post-protocol measurements than those who did not use the slurry. This 

applied to both QLF and TMR evaluations; although statistically significantly greater 

remineralisation was only evident for QLFAREA and IM L evaluations, whilst for LD and 

QLFaver evaluations the combined effect of group and site was statistically significant. 

This demonstrated that, in this study, the positive effect of toothbrushing twice daily on 

lesion remineralisation was greater than that of the experimental protocols involving 

fluoridated milk consumption alone. This was probably because of the difference in 

concentration of fluoride available. The maximum amount of fluoride available with the 

fluoridated milk was no greater than 7.5 ppm F', whereas the concentration of fluoride in 

the dentifrice was 1100 ppm F, although diluted to a slurry. Therefore, overall, greater 

levels of lesion remineralisation were observed with subjects using the dentifrice slurry and 

this was statistically significant for some but not all of the measured parameters. The effect 

of the dentifrice slurry concurs with literature published in recent years which suggests that 

fluoridated toothpaste is very effective in the prevention of dental caries (Stephen et al., 

1988; Marinho et al., 2004b).

Were there any effects of consumption of fluoridated milk on mineral content of 

enamel lesions a) with or b) without the effect of fluoridated dentifrice?

Looking at the effect of the five experimental protocols, there was overall net mean 

remineralisation of the artificial lesions in the tooth blocks used in the study. However, it is 

unlikely that this was as a result of the experimental protocols alone, because the ‘no 

beverage’ protocol showed similar amounts of change to that found in the milk and 

fluoridated milk protocols. There were no statistically significant effects of experimental
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protocol as measured by TMR. For QLF, for the parameter QLFAREA there was a combined 

effect of ‘group and experiment’ determined, which was not apparent when the selected 

sites data were examined. There was no significant effect of experimental protocol for 

QLFmax. For QLFaver there was a statistically significant effect of experiment but the 

protocol ‘no beverage’ demonstrated the greatest remineralisation. Therefore, 

unfortunately, there was no consistent pattern seen.

Examining the effect of fluoridated milk in addition to the fluoridated dentifrice slurry, the 

only parameter to show a significant effect was, as stated above, QLFAREA, which was a 

combined effect of ‘group and experiment’.

It was anticipated that there might have been greater discrimination noted between 

experiments in the T group, which did not have the ‘flooding effect’ of the dentifrice slurry 

to contend with. Again, however, there was no consistent pattern seen with any of the 

parameters.

A further aim of the study was to compare the effect of consumption of fluoridated milk 

with a low concentration of fluoride three times per day, to that found with the 

consumption of milk with a higher concentration of fluoride in milk only once per day; 

both milk regimes having the same overall fluoride content. This was, in effect, comparing 

the experimental protocols: 0.5 mg F' in 200 mL milk x 3/day with 1.5mg F" in 200 mL 

milk x 1/day. The statistical analysis concluded that there was no evidence of an 

experimental effect, after adjusting for any other statistically significant effects. However, 

it was apparent that there were consistently greater mean differences observed, indicating 

greater remineralisation, for the 1.5mg F‘ in 200 mL milk x 1/day protocol. Therefore, 

from the studies performed in this thesis and for this dosage of fluoride, there were no 

positive effects to the subject of increasing the frequency of fluoridated milk consumption 

greater than once per day. It may be that the fluoride in the 0.5 mg F x 3/day protocol 

group was too low to have a beneficial effect, though this contrasts with research which 

suggests that a low sustained concentration of fluoride within the oral cavity is preferred 

for lesion remineralisation (Larsen and Bruun, 1994; ten Cate and Featherstone, 1996). In 

addition, the fluoride concentrations chosen were similar to those used in successful 

clinical trials (Stephen et a l , 1984; Maslak et a l , 2004). However, it may be that a certain 

threshold of fluoride is required to elevate the fluoride retained in the oral cavity to a 

therapeutic level. It could be suggested, that if  a higher concentration of fluoride had been
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used three times per day, further remineralisation could have been obtained. However, 

further research is required in this area to substantiate this claim.

Were there any differences in the change in the mineral content of enamel lesions at 

different intra-oral sites?

The final aim of this work was to compare the response of caries lesions exposed to the 

same experimental protocols but at different sites within the oral cavity, and determine 

whether the results supported previous work relating to the site-specificity of caries 

(Lecomte and Dawes, 1987; Dawes et al., 1989; Macpherson and Dawes, 1994). In this 

study, there were differences in the remineralisation achieved at different sites within the 

mouth. Lesions at site 2 were notable, because in several instances, they achieved the least 

amount of remineralisation. This site was the labial position in the upper denture. This 

result concurs with previous work suggesting that there is a reduced salivary film velocity 

at this site, thereby reducing salivary clearance and increasing the likelihood of 

demineralisation. There was no consistency in the ordering/ranking of other sites, in terms 

of the amount of change in mineral content.

In an attempt to tease out the significant results and to attempt to eliminate the variability 

in lesion behaviour dependent on site, specific sites were analysed in further detail (sites 1, 

3, 9 and 10). These sites were chosen because it was anticipated that they would behave in 

a similar manner. As expected, lesions at these selected sites behaved in a more similar 

manner and no statistically significant differences were detected in lesion behaviour 

between sites for either QLF or TMR evaluations. This supports previous work relating to 

site specificity of caries (Lecomte and Dawes, 1987; Dawes et al., 1989; Macpherson and 

Dawes, 1994). The only exception to this was the TMR parameter LD, which demonstrated 

a statistically significant combined effect o f‘group and site’ . However, the differences in 

LD obtained, in general, are small enough to question the ‘usefulness’ of this parameter. 

The results of the statistical models obtained for the selected sites data were ‘clearer’, once 

the variability of site was removed.

Summary

Clinically, this work has confirmed the benefit of regular use of fluoridated dentifrice. This 

work has also to some extent supported previous evidence related to the site-specificity of 

dental caries. With regard to the effect of fluoridated milk, this work appears to suggest
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limited value in the use of fluoridated milk as a sole source of fluoride or as a source of 

fluoride in addition to the regular use of dentifrices in the caries-preventive process.

5.2 Limitations of the project
Subject compliance will always be a limiting factor in an in situ study. It was not possible 

to determine accurately how compliant the subjects were in fulfilling the requirements of 

the experimental protocols. However, given the number of appointments they were 

expected to attend and their excellent compliance with these appointments, the majority of 

subjects were compliant with at least some of the instructions provided. In addition, the 

post-experimental compliance questionnaire was anonymous, so one would hope their 

answers would be honest and true.

One method of assessing subject compliance with such experimental protocols is to 

measure the fluoride concentration in urine samples obtained from the subjects. Whilst 

considered a limitation of the study, it is accepted that urinary analysis cannot be 

performed in field studies, for which the numbers of subjects here, were not dissimilar to 

studies of that type. Inclusion of this analysis was considered prior to the commencement 

of studies, but it was decided that logistically, it would not be possible to perform urinary 

analysis on the subjects.

It is acknowledged that the multiple phases in the study, along with the required ‘washout 

periods’ meant that the duration of the study was long and arduous for the subjects. 

However, the Research Assistant endeavoured to limit the inconvenience and regularly 

delivered milk to the subjects at home. It was fortunate that of those who agreed to 

participate in the study, most of them completed it. In the majority of subjects who failed 

to complete, the reasons were due to medical problems developing, either in themselves or 

with their spouse. The duration of the study and the commitment required therefore limited 

the number of subjects recruited to and completing the study.

Clinically, most studies and programmes involving fluoridated milk have involved 

children. In this in situ study, edentulous adults were used as subjects. It is acknowledged 

that the oral microflora, salivary flow and diet of children w ill be different to that found in 

edentulous adults, and this may limit the ability to extrapolate the findings from these 

studies to an in vivo situation. However, the study was investigating the topical effect of
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fluoride; therefore, there is no reason why the use of fluoridated milk should be restricted 

to children.

It is also acknowledged that the design of the study was complex. A number of parameters 

were being evaluated at the same time, i.e. the use of two fluoridated milk regimes, the 

concurrent fluoridated dentifrice use and the effect of site specificity. It was essential to 

study the effect of fluoridated milk with the use of fluoridated dentifrice given that the 

latter is considered normal practice for all dentate individuals in developed countries and 

as much of the key literature in the past has studied the effect of fluoridated milk alone.

The statistical method of analysis, the general linear modelling procedure, took these 

factors and potential interactions between the different factors into consideration. With 

regard to the site specificity effect, it is acknowledged that published literature in this area 

has used dentate individuals. In the main study described in this thesis, edentulous 

individuals were subjects. It is possible that the flanges present on the modified complete 

dentures altered the salivary flow rate and the site specificity of the caries lesions.

The QLF hardware was a protocol device, loaned by Inspektor Research Systems BV, 

(Amsterdam, The Netherlands) and the illumination provided to the handpiece was 

(anecdotally) inferior to that found on newer systems. In addition, developments in the 

CCD cameras over time have improved with advances in technology. Also, the QLF 

software has continually been developed and additional features, such as the image 

repositioning software, are now available, which should improve the repeatability of the 

image capture process (de Josselin de Jong and van der Veen, 2000). Together, these 

advances in QLF are likely to improve both the repeatability and reproducibility of the 

technique. Therefore, if  the studies performed in this thesis were repeated today, there may 

have been improvements in ease of use and some improvements in precision, but not 

enough to affect the conclusions. It should be remembered that this was a long-term study, 

which took a long time to run and analyse.

Initial work was published in the 1990s which attempted to make comparisons between 

lesions measured with TMR, LMR and QLF (Hafstrom-Bjorkman et a l , 1992; Emami et 

al., 1996; Lagerweij et a l , 1999). Therefore, it was anticipated that a direct comparison 

between QLF and TMR could be made within this study. However, more recent work has 

suggested that this is not possible, as it is acknowledged that these tools are measuring 

different lesion properties and are, therefore, not directly comparable (ten Bosch, 2000).
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Nevertheless, an attempt was made to make comparisons between the results obtained 

from the statistical models for the parameters from the two methods and this is described in 

Chapter 4, Section 4.4.2.7. Good agreement was obtained for the IM L component of TMR  

and QLFarea and it could be suggested that these parameters could possibly be 

comparable. Further work would be required to substantiate this claim.

5.3 Recommendations for future work
5.3.1 General future work
One of the pilot studies undertaken prior to the main study described in this thesis (Chapter 

4), was to determine whether a new prion-decontamination protocol had any effect on the 

behaviour of artificially created caries lesions to demineralise further and remineralise.

This research was presented as an abstract at the British Society of Dental Research in 

2001 (Appendix 1). This protocol was used throughout the main study in an attempt to 

decontaminate tooth specimens against potential prion proteins that could be present, in 

addition to storage of the tooth blocks in a thymol solution. Subsequently, it was 

demonstrated through the use of a bio-assay that 2M NaOH at 60°C for 1 hour, was the 

only effective protocol against prion disease. The current “gold standard” technique for 

disinfecting teeth prior to use in the oral cavity is gamma irradiation. However, prion 

proteins are known to be resistant to ionising, ultraviolet and microwave radiations 

(Taylor, 1999). Currently, there is no known method of sterilising tooth blocks containing 

artificial caries lesions without irreversibly damaging the lesions and tooth blocks. Further 

work is required in this area to determine an effective protocol which will eliminate the 

possible transmission of prion proteins (and other infective agents) during in situ studies 

and will maintain the characteristics and behaviour properties of the artificially created 

caries lesions, allowing them to behave in their accustomed manner, by demineralising 

further or remineralising when exposed to an intra-oral environment.

5.3.2 Future work related to this study
The QLF data were collected at fortnightly intervals (i.e. at baseline, 2, 4, and 6 weeks). 

Ideally, it would have been interesting to observe the patterns that developed from these 

measurements over time. However, this was out with the capabilities of this study and will 

be investigated in future work.
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In addition, it would be interesting to determine any effect of using the new image 

alignment software, along with newer QLF hardware, to determine whether the 

measurements obtained would be more repeatable and precise.

The relationship between QLF and TMR is complex. As stated previously, it would be 

interesting to undertake further work to determine whether there is a relationship between 

the data obtained by the two measurement methods.

An alternative method of statistical analysis would be to use the ANCOVA method 

(analysis of covariance), rather than the GLM method (general linear modelling). The 

analysis undertaken in this thesis (GLM) takes into consideration the baseline lesion size; 

however, ANCOVA is a more powerful analysis and may be worthy of further 

investigation.

In addition, as mentioned previously, it would be of interest to determine if  there would be 

an effect of increasing the frequency of fluoridated milk consumption, to three times per 

day, and comparing it to that used once per day, both with a similar concentration of 

fluoride e.g. 1.5 mg F" in 200 mL milk x 3/day compared with 1.5 mg F' in 200 mL milk x 

1/day.

5.4 Dissemination of results
Results from the work discussed in this thesis have been presented at a number of scientific 

research conferences. It is the intention of the author to disseminate the results further by 

the production of a number of research papers and publications in peer-reviewed research 

journals.
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Appendices
Appendix 1 - BSDR 2001 (Prion decontamination), poster

text

UNIVERSITY
o f

GLASGOW

E ffe c t o f a Prion-Decontam ination Protocol on A rtific ia l Caries Development

A H annah  *, L Oxford , C Sm ith , A H a ll, L  Macpherson , R Foye
(Glasgow Dental Hospital and School, Scotland)

ABSTRACT
Safety o f laboratory personnel is o f utmost importance. A  protocol has been suggested to 

reduce the potential risk o f contracting variant Creutzfeld Jacob Disease (vCJD) from 

extracted teeth. This study aimed to determine whether this protocol affects the 

development o f artific ia lly created caries lesions in such teeth. The protocol comprises 

storage in 10% Formalin for 7 days, washing in deionised water, storage in 5% Sodium 

Dodecyl Sulphate for 24 h and washing 3 times in Phosphate Buffered Saline (PBS). 

Ground and polished blocks were cut from 160 extracted teeth and divided into 4 equal 

groups. The groups were treated as follows. Group 1, the tooth and block were exposed to 

the prion-decontamination protocol. In Group 2, only the tooth was exposed to prion- 

decontamination protocol. In Group 3, only the block was exposed to the prion- 

decontamination protocol. Group 4 was a control group where neither the tooth nor the 

block, were exposed to the prion-decontamination protocol. Blocks were varnished and 

placed in lactic acid demineralisation solution for 96 hours. Quantitative Light 

Fluorescence (QLF) readings were taken at 0 and 96 hours. H a lf the blocks in each group 

were sectioned prior to Transverse Microradiography (TMR). QLF readings demonstrated 

significant demineralisation that was also measured by TMR. A  one-way A N O V A  

demonstrated significant differences between groups for some QLF measurements (p =

0.1, p = 0.04 and p = 0.005 for QLF area, QLF Maximum % Fluorescence and QLF Mean 

% Fluorescence, respectively). No such differences were apparent for TM R  measurements. 

From this data prion-decontamination protocols may affect the degree o f demineralisation 

o f artific ia l lesions but further work is required to determine the nature o f this effect.
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HYPOTHESIS
There is no difference between groups o f artific ia l caries lesions created in extracted 

human teeth previously exposed to different prion decontamination protocols when 

measured by the QLF machine and this demineralisation can be confirmed by TM R 

(transverse microradiography).

QLF (Quantitative Light Fluorescence)
A method o f measuring the scattering o f fluorescent light to determine the amount o f 

mineral loss through dental caries. Mineral loss is expressed as three different parameters:

Area o f mineral loss in mm2 (AREA)

Mean % loss o f fluorescence radiance (M EAN)

Maximum % loss o f fluorescence radiance (M A X )

METHOD / / / -  - a

/ A /

QLF
CZẐ > and 

TMR

Prion-decontamination protocol

C H H ^

E i = > 3 ^ E c = > E
Wash deionised 5% Sodium Dodecyl Wash x3 Phosphate 

water Sulphate (24 hours) Buffered Saline

160 Teeth

G ro u p  1

P rion - 
d e co n tam in a tio n  

pro toco l on w ho le  
to o th  and  block

G roup  2 G roup  3

P rion - P rion -
de co n tam in a tio n  deco n tam in a tio n  

pro toco l on w hole  pro toco l on  b lock  
to o th  on ly  on ly

G roup  4

P rion - 
d e co n tam in a tio  
n p rotoco l not 

  used

Varnished

<=

Demineralisation

< C =

(1/2) Transverse 
Microradiography

QLF 0 Hour

QLF 96 Hour
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STATISTICAL ANALYSIS
One way A N O V A 's  were used to compare the parameters 

RESULTS

96hr - Ohr QLF data

30

25

20

15

10

Area (mm2)
Max % fluorescence change 
Mean % fluorescence change

ELi3J A dJs JL
Group 1 Group 2 Group 3 Group 4

Protocol

96 hr TMR data

1000

900

Group 1

I  I ML (Vol% Mineral x jam) 
□ Lesion depth (x10 mm)

ji ii ri ri
Group 2 Group 3

Protocol
Group 4

PARAMETER ONE W AY 
A N O V A

QLF AREA p = 0.1
QLF M A X p = 0.043
QLF M EAN p = 0.005
TM R IM L p = 0.219
TM R  DEPTH p = 0.3

CONCLUSION
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From this data, prion-decontamination protocols may affect the degree of demineralisation 

of artificial lesions created in extracted human teeth but further work is required to 

determine the nature of this effect.
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Appendix 2 - Carbopoi demineralisation solution (White, 
1987b)
Carbopoi / Lactic Acid gels were prepared from stock solutions of 1% polyacrylic acid 

(Carbopoi C907, MW  = 450,000 daltons) and 1.0M Lactic Acid, respectively.

1 % Polyacrylic Acid
Add lOg of C907 to a 1L beaker and add approximately 600mL of distilled water. The 

resulting solution was stirred with a magnetic stirrer at room temperature while 10M/1 

NaOH solution was added to adjust the pH to 4.0. The Carbopoi resin typically takes about 

2-4 hours to dissolve. The resulting solution was transferred to a lOOOmL volumetric flask 

and diluted to the mark.

1M  Lactic Acid Solution
The stock lactic acid solution was prepared from reagent grade Lactic Acid and was steam 

distilled prior to use, (the lactic acid was heated at 90°C for 8 hours and allowed to cool to 

room temperature before use), after which 74mL was made up to a litre with distilled 

water.

Carbopoi/Lactate gels
These are prepared by adding lOOmL of polyacrylic acid and lOOmL of 1M lactic acid to 

500mL of distilled water and making up to lOOOmL with distilled water, giving a solution 

of 0.1 M  lactic acid in 0.1% Carbopoi. The pH of this solution was adjusted to 5.0 using 

1M NaOH solution.

Saturated Carbopoi /L actic  Acid gel
This is prepared by adding 2g of synthetic calcium hydroxyapatite to lOOOmL of carbopoi / 

lactate gel at pH 5.0. The pH of the resulting solution was readjusted to pH 5.0 by the 

drop-wise addition of 2M HC1 until the solution reaches equilibrium (~4-8 h, pH drift <0.1 

unit/hr). This solution was then filtered through Whatman # 42 paper and the supernatant 

collected. This is saturated carbopoi / lactic acid gel.

Carbopoi Demineralising Solution
This is prepared by adding equal volumes of carbopoi / lactate gel and saturated carbopoi / 

lactate gel. This solution was adjusted to pH 5.0 by the addition 1M NaOH before use.

253



The enamel specimens were demineralised in 25 mL of solution (2mL/mm2) at 37°C for 

the required time period.
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Appendix 3 - Patient introduction letter
Ailsa J. Nicol, BDS, FDS RCS (Edin)
Clinical Lecturer in Restorative Dentistry
Tel: 0141-211 9861
E-mail: a.nicol@dental.gla.ac.uk

THE EFFECT OF M ILK  ON ARTIFICIAL TOOTH DECAY

Hello,

M y name is Ailsa Nicol and I am a Dentist who lectures at Glasgow Dental Hospital and School.

I am looking for enthusiastic ladies and gentlemen with no teeth, and with time on their hands to assist me 
with my research. In return you will be given free of charge, two sets of carefully made complete dentures 
and a financial gift to compensate you for your time and travelling expenses.

The study in which you will be asked to take part is to look at the effects of drinking milk, with and without 
fluoride, on little pieces of artificial tooth decay hidden in the dentures. After the dentures have been 
constructed, you will be required to attend the Dental School for a short visit on a fortnightly basis during 
each experiment.

So, i f  you wear complete dentures, have time on your hands and don’t mind drinking milk, I would be 
delighted to hear from you!

I f  you are interested, please fill in the slip below and return it in the stamped addressed envelope. In return 
you will receive an appointment to attend for an introduction and assessment, further information will be 
given to you then. There is no obligation to participate in the study and you are able to withdraw at any time. 
I f  you have any questions please do not hesitate to contact me at the above address.

Looking forward to meeting you!

Miss Ailsa Nicol, BDS, FDS RCS(Edin) 
Clinical Lecturer in Restorative Dentistry

I am interested in the above and would like an appointment for further information and assessment.

NAME: .... 
ADDRESS:

POSTCODE:

TELEPHONE NO:

DATE OF BIRTH:

Please return in the stamped addressed envelope. Thank you!
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Appendix 4 - Patient information
Ailsa J. Nicol, BDS, FDS RCS (Edin) 
Clinical Lecturer in Restorative Dentistry 
Tel: 0141 -211 9861 
E-mail: a.nicol@dental.gla.ac.uk

PATIENT INFORMATION

THE EFFECT OF MILK ON ARTIFICIAL TOOTH DECAY

The project involves looking at the effects o f milk containing fluoride on early tooth decay. This is 
important as it may aid prevention of tooth decay, particularly in children’s teeth.

The study involves carefully constructing full upper and lower dentures for ladies and gentlemen 
with no teeth, who are judged to have a normal diet. These dentures are then copied to make 
another set o f dentures which will contain small pieces o f human enamel with artificial decay 
hidden in them. These are the experiment dentures which will be worn full-time for each of the 
five, six-week-long experiments.

As mentioned in the introductory letter, following construction of the dentures you will be required 
to attend the Dental School for a short visit on a fortnightly basis during each of the experiments. 
You will also be encouraged to follow a particular, straight-forward daily denture cleaning routine. 
There will be a three-week break between each of the experiments. The experiments will involve 
you supplementing your normal diet with one o f the following:

1. nothing (control)
2. 200 mL o f milk ( less than half a pint, once a day)
3. 200 mL of milk ( less than half a pint, three times a day)
4. 1.5mg Fluoride in 200 mL o f milk, i.e. 7.5ppm F( once a day)
5. 0.5mg Fluoride in 200 mL of milk, i.e. 2.5ppm F ( three times a day)

A financial gift will be given at the end of each experiment, with a lump sum available 
at the end of the series of experiments to cover your time and travelling expenses. In 
total you could receive up to £300 for completion of all the work required in addition 
to the two new sets of dentures specially constructed for you.

You can, o f course, withdraw from the study at any time. If you have any further questions or 
request any further information, please do not hesitate to contact me at the above address.

Ailsa Nicol,
BDS, FDS RCS (Edin)
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Appendix 5 - Consent form
Ailsa J. Nicol, BDS, FDS RCS(Edin) 
Clinical Lecturer in Restorative Dentistry 
T e l: 0141 -211 9861 
E-mail: a.nicol@dental.gla.ac.uk

CONSENT FORM

THE EFFECT OF M ILK  ON ARTIFICIAL TOOTH DECAY

Please initial box

I confirm that I have read and understood the patient information sheet for 
the above study and have had the opportunity to ask questions □ 

□
I agree to take part in the above study. |— |

I understand that my participation is voluntary and that I am free to 
withdraw at any time, without giving any reason.

Name of Patient Date Signature

Name of Researcher Date Signature

Patient Identification number:

1 copy to patient, 1 copy to researcher.
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Appendix 6 - Denture cleaning advice
GENERAL CLEANING INSTRUCTIONS.

Dentures should be removed twice daily (morning and evening) in 

order to clean the fitting surface, i.e. the area in contact with your 

gums.

You are asked to brush this area with a toothbrush and water each 

time but to make sure not to touch the pieces of tooth that have been 

inserted into the dentures.

If necessary, you can rinse the dentures gently under running water 

to remove particles of food etc.

i
i

i

i
!
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Appendix 7 - Patient information for experiments for T 

and TD groups
FLUORIDATED M ILK  STUDY

INSTRUCTIONS TO PATIENTS
GROUP ‘T>

EXPERIMENT 1 : NO BEVERAGE

• Wear dentures continuously (including throughout the night) for 6 
weeks.

• During the 6 week experiment, follow the general cleaning  
instructions (provided on a separate sheet).

• Continue with your normal diet

On the mornings of your appointments at the Dental Hospital, we would ask you
(1) not to drink any tea.
(2) not to eat for at least two hours before your appointment time, if possible.

You will be given appointments at the start of the experiment, at 2 weeks, 4 

weeks and at 6 weeks (i.e. the end of the experiment).
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FLUORIDATED MILK STUDY

INSTRUCTIONS TO PATIENTS
GROUP ‘T*

EXPERIMENT 2/4; 200mL MILK (ONCE EACH DAYI

• Wear dentures continuously (including throughout the night) for 6 

weeks.

• During the 6 week experiment, follow the general cleaning  
instructions (provided on a separate sheet).

• We also ask you to stir one o f the small bottles of liquid which are 
supplied with the milk into 200 mLs of the study milk, and drink this 
once each day. The milk solution should be drunk all at once rather 
than sipped over a long period of time.

(The milk, a plastic measuring cup and bottles of liquid will be 
provided by the study organisers).

• Continue with your normal diet.

On the mornings of your appointments at the Dental Hospital, we would ask you
(1) not to drink any tea.
(2) not to eat for at least two hours before your appointment time, if possible.
(3) not to drink the test milk that morning.

You will be given an appointment at the beginning of the experiment, at 2 

weeks, 4 weeks and at 6 weeks (i.e. the end of the experiment).
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FLUORIDATED MILK STUDY

INSTRUCTIONS TO PATIENTS
GROUP ‘T’

EXPERIMENT 3/5; 200 mL MILK (THREE TIMES EACH DAY)

• Wear dentures continuously (including throughout the night) for 6 
weeks.

• During the 6 week experiment, follow the general cleaning  
instructions (provided on a separate sheet).

Three times a day, we also ask you to stir one of the small bottles of 
liquid (which are attached to the milk carton) into 200 mLs of the study 
milk, and drink this milk solution. On each occasion, the milk solution 
should be drunk all at once rather than being sipped over a long period 
of time. Please leave at least 2 hours in between each of these 200mL 
drinks.
(The milk, a plastic measuring cup and the bottles of liquid will be 
provided by the study organisers).

• Continue with your normal diet.

On the mornings of your appointments at the Dental Hospital, we would ask you
(1) not to drink any tea.
(2) not to eat for at least two hours before your appointment time, if possible.
(3) not to drink the test milk that morning.

You will be given an appointment at the beginning of the experiment, at 2 

weeks, 4 weeks and at 6 weeks (i.e. the end of the experiment).
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FLUORIDATED MILK STUDY

INSTRUCTIONS TO PATIENTS
GROUP ‘TD’

Experiment 1 : No beverage

• Wear dentures continuously (including throughout the night) for 6 
weeks.

• During the 6 week experiment, follow the general cleaning  
instructions (provided on a separate sheet).

• We also ask you to rinse the dentures in your mouth twice each day 
(once in the morning and once in the evening), with the toothpaste 
mixture provided. The amount to use is shown by a black mark on the 
medicine cup attached to the bottle of toothpaste mixture.

(The toothpaste mixture should be shaken well and stirred before use 

and swirled around all parts of the mouth for 2 minutes each time).

After swirling, spit out.

• Continue with your normal diet.

On the mornings of your appointments at the Dental Hospital, we would ask you
(1) not to drink any tea.
(2) not to eat for at least two hours before your appointment time, if possible.
(3) not to swirl with the toothpaste mixture that morning.

You will be given appointments at the start of the experiment, at 2 weeks, 4 

weeks and at 6 weeks (i.e. the end of the experiment).
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FLUORIDATED MILK STUDY

INSTRUCTIONS TO PATIENTS
GROUP ‘TD’

Experiment 2/4: 200mL milk (Once a day).

• Wear dentures continuously (including throughout the night) for 6 
weeks.

• During the 6 week experiment, follow the general cleaning  
instructions (provided on a separate sheet).

STEP 1
• We also ask you to rinse the dentures in your mouth twice each day 

(once in the morning and once in the evening), with the toothpaste 
mixture provided. The amount to use is shown by a black mark on the 
medicine cup attached to the bottle of toothpaste mixture.

(The toothpaste mixture should be shaken well and stirred before use 
and swirled around all parts of the mouth for 2 minutes each time).
After swirling, spit out.

STEP 2
• The experiment also involves stirring one of the small bottles of liquid 

(attached to the milk carton) into 200 mLs of the study milk, and 
drinking this once each day. The milk solution should be drunk all at 
once rather than sipped over a long period of time. It should also be 
taken at least 2 hours after the morning toothpaste rinse and at least 2 
hours before the evening toothpaste rinse.

(The milk, plastic measuring cup and bottles of liquid will be 
provided by the study organisers).

• Continue with your normal diet.
On the mornings of your appointments at the Dental Hospital, we would ask you
(1) not to drink any tea.
(2) not to eat for at least two hours before your appointment time, if possible.
(3) not to drink the test milk or swirl with the toothpaste mixture that morning.

You will be given appointments at the start of the experiment, at 2 weeks, 4 weeks

and at 6 weeks (i.e. the end of the experiment).
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FLUORIDATED MILK STUDY

INSTRUCTIONS TO PATIENTS
GROUP ‘TD*

Experiment 3/5; 200 mL milk (Three times each day).

• Wear dentures continuously (including throughout the night) for 6 
weeks.

• During the 6 week experiment, follow the general cleaning  
instructions (provided on a separate sheet).

STEP 1
• We also ask you to rinse the dentures in your mouth twice each day 

(once in the morning and once in the evening), with the toothpaste 
mixture, which is provided by the study organisers. The amount to use 
is shown by a black mark on the medicine cup attached to the bottle of 
toothpaste mixture.

(The toothpaste mixture should be shaken well and stirred before use 
and swirled around all parts of the mouth for 2 minutes each time).
After swirling, spit out.

STEP 2
• Three times a day, we also ask you to stir one of the small bottles of 

liquid (which are attached to the milk cartons) into 200 mLs of the 
study milk and drink this milk solution. On each occasion, the milk 
solution should be drunk all at once rather than being sipped over a 
long period of time. The first 200 mL drink should be taken at least 2 
hours after the morning toothpaste rinse and the third 200 mL drink at 
least 2 hours before the evening toothpaste rinse.

(The milk, plastic measuring cup and bottles of liquid will be provided 
by the study organisers).

• Continue with your normal diet.

On the mornings of your appointments at the Dental Hospital, we would ask you
(1) not to drink any tea.
(2) not to eat for at least two hours before your appointment time, if possible.
(3) not to drink the test milk or swirl with the toothpaste mixture that morning.

You will be given appointments at the start of the experiment, at 2 weeks, 
4 weeks and at 6 weeks (i.e. the end of the experiment).
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Appendix 8 -  Post-experimental compliance 

questionnaire

Post-experimental compliance questionnaire fo r TD group
FLUORIDATED MILK STUDY

Patient Allocation No.  Treatment No.______

1. Did you complete all five experiments? YES [ ] NO [ ]

I f  NO, How many did you complete? ________________________

Please give a reason for not completing all five experiments_________________

2. Did you have any problems taking the milk? YES [ ] NO [ ]

I f  YES, please give details______________________________________________

2A. Were there occasions when you did not manage to take the milk? (Please tick

one).

[ ] A ll of the time [ ] Most of the time [ ] Some of the time [ ] Not at all

Please give details________________________________________________________

3. Did you have any problems adding the fluoride solution to the milk?

Y E S [ ] N O [ ]

I f  YES, please give details______________________________________________
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3A. Were there occasions when you did not manage to add the fluoride solution to 

the milk? (Please tick one)

[ ] A ll of the time [ ] Most of the time [ ] Some of the time [ ] Not at all

Please give details_________________________________________________________

4. Did you have any problems swirling the toothpaste mixture in your mouth?

YES [ ] NO [ ]

I f  YES, please give details__________________________________________________

4A. Were there occasions when you did not manage to swirl the toothpaste

mixture? (Please tick one)

[ ] A ll of the time [ ] Most of the time [ ] Some of the time [ ] Not at all 

Please give details_____________________________________________________

5. Were you able to fast for 2 hours before each appointment? (Please tick one) 

[ ] A ll of the time [ ] Most of the time [ ] Some of the time [ ] Not at all 

Please give details_________________________________________________________
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6. Did you manage to wear the dentures throughout the night during the 

experiments?

[ ] A ll of the time [ ] Most of the time [ ] Some of the time [ ] Not at all 

Please give details____________________________________________________

7. Did you have any problems wearing the dentures made for you? (Please tick 

one)

[ ] A ll of the time [ ] Most of the time [ ] Some of the time [ ] Not at all 

Please give details_________________________________________________________

7A. Were those problems rectified? [ ] Completely [ ] Partially 

[ ] Not at all [ ] Does not apply

WE WOULD BE GRATEFUL IF YOU COULD RETURN THIS 

QUESTIONNAIRE IN THE PREPAID ENVELOPE PROVIDED.

THANK YOU AGAIN FOR TAKING PART IN THE STUDY.
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Post-experimental compliance questionnaire fo r  T group
FLUORIDATED MILK STUDY

Patient No.  Treatment No.______

1. Did you complete all five experiments? YES [ ] NO [ ]

I f  NO, How many did you complete? ________________________

Please give a reason for not completing all five experiments__________________

2. Did you have any problems taking the milk? YES [ ] NO [ ]

I f  YES, please give details______________________________________________

2A. Were there occasions when you did not manage to take the milk? (Please tick

one).

[ ] A ll of the time [ ] Most of the time [ ] Some of the time [ ] Not at all

Please give details_________________________________________________________

3. Did you have any problems adding the fluoride solution to the milk?

Y E S [ ] N O [ ]

I f  YES, please give details______________________________________________
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3A. Were there occasions when you did not manage to add the fluoride solution to 

the milk? (Please tick one)

[ ] A ll of the time [ ] Most of the time [ ] Some of the time [ ] Not at all 

Please give details________________________________________________________

4. Were you able to fast for 2 hours before each appointment? (Please tick one) 

[ ] A ll of the time [ ] Most of the time [ ] Some of the time [ ] Not at all 

Please give details_________________________________________________________

6. Did you manage to wear the dentures throughout the night during the 

experiments?

[ ] A ll of the time [ ] Most of the time [ ] Some of the time [ ] Not at all 

Please give details____________________________________________________

7. Did you have any problems wearing the dentures made for you? (Please tick 

one)

[ ] A ll of the time [ ] Most of the time [ ] Some of the time [ ] Not at all 

Please give details_________________________________________________________
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7A. Were those problems rectified? [ ] Completely [ ] Partially 

[ ] Not at all [ ] Does not apply

WE WOULD BE GRATEFUL IF YOU COULD RETURN THIS 

QUESTIONNAIRE IN THE PREPAID ENVELOPE PROVIDED.

THANK YOU AGAIN FOR TAKING PART IN THE STUDY.



Appendix 9 -  TMR results not described in Chapter 4

Covered (control) TMR data fo r selected sites by group and experiment 
Table 75 - Summary statistics for IML data of covered (control) selected sites by group

Group N * Mean (St. Dev.) Range

T 216 2345 (1070) (237, 7369)

TD 242 2076 (977) (217,5791)

Integrated Mineral Loss is measured in %Vol mineral.pm 
N* = number of lesions available for analysis

Table 76 - Summary statistics for LD data of covered (control) selected sites by group

Group N * Mean (St. Dev.) Range

T 216 82.8 (30.0) (10.4,212)

TD 242 69.8 (27.4) (12.4, 168.6)

Lesion Depth is measured in pm
N* = number of lesions available for analysis

Table 77 - Summary statistics of IML data for covered (control) selected sites by experiment

Experiment N * Mean (St.Dev.) Range

0.5mg F x 3/day 90 2171 (911) (429, 5044)

1.5mg F x 1/day 93 2424 (1214) (237, 7369)

200mL milk x 1/day 96 2114(1066) (428,5123)

200mL milk x 3/day 100 2137 (753) (677, 4663)

No beverage 79 2170(1159) (217, 6252)

Integrated Mineral Loss is measured in %Vol mineral.pm 
N* = number of lesions available for analysis
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Table 78 - Summary statistics of LD data for covered (control) selected sites by experiment

Experiment N * Mean (St.Dev.) Range

0.5mg F x 3/day 90 75.1 (29.1) (17.5, 162)

1.5mg F x 1/day 93 90.0 (31.9) (10.4,212)

200mL milk x 1/day 96 73.7 (27.5) (17.8, 153)

200mL milk x 3/day 100 76.2 (22.8) (25.6, 153)

No beverage 79 73.4 (35.3) (12.4, 169)

Lesion Depth is measured in pm.
N* = number of lesions available for analysis
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Appendix 10 -  QLF results not described in Chapter 4

Baseline QLF data by group

A. q l f area

Table 79 - Summary statistics of baseline QLF data by treatment group for QLFAREA

Group
Number of 

Blocks

Mean 

(St. Dev.)
Range

Two- 

sample T- 

Test

95% Cl (T- 

TD)

T 640 4.1 (1.3) (1.2, 8.0)

p=0.001 (-0.4, -0.15)

TD 720 4.3 (1.3) (1.2, 8.5)

QLFAKtA is measured in mm2 

B. Q LFmax

Table 80 - Summary statistics of baseline QLF data by treatment group for QLFMAX

Group
Number of 

Blocks

Mean 

(St. Dev.)
Range

Two-sample

T-Test

95% Cl (T- 

TD)

T 640 -51.0 (7.9) (-77, -32)

p=0.098 (-1.5, 0.13)

TD 720 -50.3 (7.1) (-77, -34)

QLFmax is measured in % fluorescence loss

c. q l f aver

Table 81 - Summary statistics of baseline QLF data by treatment group for QLFAVER

Group
Number of 

Blocks

Mean 

(St. Dev.)
Range

Two-sample

T-Test

95% Cl (T- 

TD)

T 640 -21.0(4.2) (-35, -14)

p=0.852 (-0.4,0.5)

TD 720 -21.0 (4.0) (-38, -13.6)

QLFAVtK is measured in % fluorescence loss
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Baseline QLF data by experiment 

A. q l f area

Table 82 - Summary statistics of baseline QLF data by experiment for QLFAREA

Experiment
Number of 

Blocks
Mean (St. Dev.) Range

0.5mg F x 3/day 260 4.1 (1.3) (1.2, 7.7)

1.5mg F x 1/day 290 4.2 (1.3) (1.5, 7.9)

200mL milk x 1/day 270 4.3 (1.3) (1.6, 8.0)

200mL milk x 3/day 280 4.3 (1.4) (1.2, 8.5)

No beverage 260 4.3 (1.2) (1.4, 7.6)

QLFAKtA is measured in mm2
One-way ANOVA of QLFAREA vs experiment - p=0.336

B. q l f max

Table 83 - Summary statistics of baseline QLF data by experiment for QLFMAX

Experiment
Number of 

Blocks
Mean (St. Dev.) Range

0.5mg F x 3/daya 260 -49.5 (7.6) (-77, -32)

1.5m gFx 1/dayab 290 -50.6 (7.7) (-75, -34)

200mL milk x 1/dayab 270 -50.8 (7.4) (-72, -33)

200mL milk x 3/daya 280 -50.0 (7.2) (-72, -32)

No beverageb 260 -52 (7.5) (-77, -35)

QLFmaa is measured in % fluorescence loss 
One-way ANOVA of QLFMAX vs experiment - p=0.001
Common symbol means no statistically significant difference between experimental groups
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c. q l f aver

Table 84 - Summary statistics of baseline QLF data by experiment for QLFAVER

Experiment Number of Blocks Mean (St. Dev.) Range

0.5mg F x 3/daya 260 -20.3 (3.8) (-35, -14)

1.5mg F x 1/daya 290 -20.9(4.1) (-34, -14)

200ml milk x 1/daya 270 -21.1 (4.3) (-35,-14)

200ml milk x 3/daya 280 -20.4 (3.7) (-35, -14)

No beverage b 260 -22 (4.5) (-38, -14)

QLFAVtK is measured in % fluorescence loss 
One-way ANOVA of QLFAVER vs experiment - p= 0.001
Common symbol means no statistically significant difference between experimental groups
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Appendix 11 -  PEF 2002, text of poster presentation
Quantitative Light Fluorescence measurement of stain removal from 

artificial caries

HANNAH AJ1*, HALL AF1, GARDNER SJ2 
^University of Glasgow Dental School, UK, 2Whitehill House Dental 
Surgery, Halifax, W Yorkshire, UK)

Abstract

Artificial caries lesions used for in situ studies may acquire extrinsic stain. This affects the 

ability of optical caries detection methods such as Quantitative Light Fluorescence (QLF) 

to measure mineral change during the study. The aim of this experiment was to investigate 

the effect of two different stain removal protocols on artificially created caries lesions.

Sixty human premolar teeth with 4x2mm artificial caries lesions were created. Lesions 

were allocated to six equal-sized groups with matched mean and standard deviation values 

based on initial QLF assessment. Three groups of ten lesions were stained with a tea 

solution for 20 hours and measured again. Groups of ten teeth were subjected to the 

following protocol: Group 1, stained then immersed in 30% Hydrogen Peroxide for four 

hours; Group 2, stained then polished with Zircate Polishing Paste (Dentsply) in a rubber 

cup; Group 3, stained only; Group 4, Zircate Polishing Paste only; Group 5, Hydrogen 

Peroxide for four hours only; Group 6, no treatment. Post-treatment QLF measurements 

were taken. Statistical analysis of the difference between baseline QLF measurements and 

post-tea stain QLF measurements using a paired t-test demonstrated a significant increase 

in QLF values (p< 0.001). To compare the effect of different stain removal protocols, the 

difference between baseline and post-treatment QLF measurements was calculated. Using 

this data, a one way ANOVA and pairwise analysis using a Tukey test demonstrated the 

effective removal of tea stain by both Hydrogen Peroxide and Zircate Polishing Paste 

(p<0.001). In conclusion both Hydrogen Peroxide and Zircate Polishing Paste remove stain 

effectively from artificial caries lesions when measured by QLF.

Null Hypothesis
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There are no differences in QLF measurements following exposure of artificial caries 

lesions to a tea solution for 20 hours.

Hydrogen Peroxide and Zircate Polishing Paste are not effective at removing stain from 

artificial caries lesions.

Method

Sixty human caries-free premolar teeth were abraded and polished to remove the outer 300 

micrometres of enamel. They were varnished to leave a window of 4x2mm on the buccal 

surface and placed in a demineralisation solution for 72 hours to create the artificial caries 

lesions. Varnish was removed with acetone and alcohol. Measurements were made using 

QLF which is a method of measuring the scattering of fluorescent light that has been used 

to determine the amount of mineral loss through dental caries. Preliminary QLF 

measurements were made (Pre-Stain) and the lesions divided randomly into six equal sized 

groups. Three groups of 10 lesions were stained with a tea solution for 20 hours and 

measured by QLF again (Post-Stain). Groups of 10 teeth were subjected to the following 

protocol: Group 1, stained then immersed in 30% Hydrogen Peroxide for four hours;

Group 2, stained then polished with Zircate Polishing Paste (Dentsply) in a rubber cup; 

Group 3, stained only; Group 4, Zircate Polishing Paste only; Group 5, Hydrogen Peroxide 

for four hours only; Group 6, no treatment. Further QLF measurements were made post­

treatment (Post-treatment). A paired t-test was used to compare baseline QLF 

measurements with post-tea stain measurements. A one way ANOVA and pairwise 

analysis using a Tukey test were used to compare QLF measurements following stain 

removal.

Results
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Comparison of QLF measurements following 
tea-stain and stain-removal protocol

—  ■  P re-S ta in
P a ire d  f-te s t p < 0 .001

O n e -w a y  ANOVA p < 0.001 Post-Stain 
Post-T reatment

i i i
3 4

Group Number

Confidence intervals from a Tukey Pairwise analysis o f the difference between Pre-stain 

and Post-treatment QLF measurements

Group 1 2 3 4 5
2 -11.82-4.65

3 5.33-21.80 8.92-25.39

4 -12.46-4.01 -8.88-7.60 -26.03- - 
9.56

5 -8.78-7.69 -5.19-11.28 -22.35- - 
5.87

-4.55-11.92

6 -7.91-8.56 -4.33-12.14 -21.48- - 
5.01

-3.69-12.78 -7.37-9.10

(Note the red values denote significant differences between groups)

Conclusion

In this study exposure to a tea solution affected QLF measurements significantly. Both 

Hydrogen Peroxide and Zircate Polishing Paste were effective methods to remove stain 

from artificial caries lesions when measured using QLF.

The authors wish to acknowledge the support o f  Inspektor Research Systems B.V., 
Amsterdam for their help w ith  the QLF measurements.

278



Appendix 12 -  ORCA 2005, abstracts

Use of TMR in an in-situ study to measure the effect of a fluoridated 

dentifrice

A.J. Nicol*, A.F. Hall, L.M.D. Macpherson and S. McHugh 

*a.nicol@dental.gla.ac.uk: University of Glasgow Dental School, UK.

The aim was to determine if  TMR could be used to observe mineral change in caries 

lesions in-situ exposed to a fluoridated dentifrice. Human tooth blocks (n=1450) were used 

in a randomised, cross-over design, utilising 29 subjects, analysis was blinded. Each block 

contained an artificial carious lesion, half of which was covered with acid-resistant varnish. 

Blocks were placed in modified complete dentures and 13 subjects followed each of five, 

six-week protocols: no beverage, 200mL milk x 1/day; 200mL milk x3/day; 1.5mg F in 

200mL milk x 1/day and 0.5mg F in 200mL milk x3/day. This group of subjects followed a 

treatment only protocol (T). The remaining 16 subjects followed the same treatment 

protocols but also used a dentifrice slurry (1 lOOppm F) diluted 1: 4, 4mL x2/day. These 

subjects followed a treatment plus dentifrice protocol (TD). Integrated Mineral Loss (IM L) 

and Lesion Depth (LD) TMR values were determined for the covered and uncovered parts 

of each carious lesion.

Results -  T group (433 blocks in 13 subjects): mean IM L= 268 %vol.mineral.pm (SD 

261); mean LD= 4.9pm (SD 6.6). TD group (506 blocks in 16 subjects): mean IM L= 451 

%vol.mineral.pm (SD 165); mean LD= 4.8 pm (SD 3.1). After averaging across teeth and 

protocol for each subject, a two-sample t-test of the effect of group revealed a statistically 

significant difference in IM L between the TD & T groups (p=0.041) with 95% Cl for 

difference (TD-T) = (8.4, 357.3) %Vol mineral.pm, but no difference between groups in 

terms of Lesion Depth (p=0.980).

In conclusion, TMR was unable to conclusively demonstrate increased remineralisation 

when using fluoridated dentifrice twice a day, in addition to ingestion of fluoridated milk.
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Using QLF to evaluate the effect of a fluoride dentifrice in an in-situ trial

A J. N ico l, A.F. Hall*, L.M.D. Macpherson and S. McHugh 

* a.hall@dental.gla.ac.uk: University of Glasgow Dental School, UK.

The aim of this study was to determine if  QLF could be used to observe mineral change in 

artificial caries lesions in situ exposed to a fluoridated dentifrice slurry (TM R results in 

Abstract No.49). Twenty-nine edentulous subjects were recruited and provided with 

complete dentures containing 10 lesions per subject. Subjects were randomly allocated to 

one of two broad protocols: a five-treatment protocol (T) and a five-treatment plus 

dentifrice protocol (T+D). Each set of complete dentures contained 10 lesions which were 

changed after each treatment which lasted for six weeks. The dentifrice exposure 

comprised twice daily swilling for 2 min with 4 mL of a dentifrice slurry made from 

1 lOOppm NaF dentifrice diluted 1:4 with deionised water. QLF measurements were made 

at baseline and after six weeks. Data were obtained for 494 lesions from 13 subjects and 

547 lesions from 16 subjects for the T and T+D groups, respectively. Averaging across 

teeth and treatment for each subject, the mean (sd) differences for baseline minus week-six 

values were 4.8 (1.8) and 5.7 (1.1) for Average Fluorescence loss for T and T+D protocols, 

respectively. Maximum Fluorescence loss differences were 11.2 (4.4) and 12.1 (12.7) and 

the Area differences were 1.5 (0.7) and 2.4 (0.7) for T and T+D, respectively. Simple two 

sample t-tests were performed and demonstrated a statistically significant difference 

between groups for Area (p =0.004) but not for Average Fluorescence Loss (p=0.136) or 

Maximum Fluorescence loss (p = 0.525). In conclusion, QLF may be useful to evaluate the 

effect of fluoride dentifrice use using this in situ model but further work is required to 

establish which QLF parameters are most helpful.
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