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A b s t r a c t

Diabetic retinopathy is the commonest cause of blindness in the working age 

population in the Western world. It is widely recognised that screening for this 

treatable condition is highly cost effective. However, there is a shortage in the 

number of trained personnel required to screen for sight threatening forms of the 

disease. It has been shown that many of the features of diabetic retinopathy such as 

microaneurysms, cotton wool spots, exudates and haemorrhages can be identified 

automatically with high levels of sensitivity and specificity.

This work describes the development of an automated computerised system for the 

screening of diabetic retinopathy through the integration of an artificial intelligent 

system and the development of custom written software (Diabetic Retinopathy Image 

Classification Programme) to enable image acquisition, image processing, neural 

network training and testing to be performed in a structured manner. A combination 

of conventional image processing and neural network methods are utilised for the 

identification of the basic features associated with the normal and diabetic fundus 

image. Preliminary investigations into the identification of sight-threatening features 

are also described. Identification of normal retinal vasculature and diabetic 

associated features was performed using three separately trained back-propagtion 

neural networks. Localisation of the optic disc and macula was achieved by region of 

interest pixel intensity scanning. Assessment of the optic disc for sight-threatening 

new vessel growth was performed by comparing the variance in circular intensity 

profiles of normal optic discs to the variance of those with neovascularisation. 

Patients were classified as having maculopathy if hard exudates were identified 

within one disc diameter of the fovea.

The overall aim of this project is to develop an automated screening programme for 

diabetic retinopathy. The initial phase details the development and comparison of a 

range of algorithms for the detection of features associated with diabetic retinopathy. 

The final phase details the clinical evaluation of the current screening system.

-  17 -



J McDonagh 2005: Chapter 1 -  The eye & screening fo r  diabetic retinopathy

C h a p t e r  1 -  T h e  e y e  &  s c r e e n i n g  f o r  d i a b e t i c  r e t i n o p a t h y

1.1 T h e  H u m a n  E y e

In its simplest form the operation o f the human eye is similar to that o f a camera. To 

understand the fundamental features o f the eye it is easier to think o f it in terms o f a 

single captured picture in one moment o f time i.e. a photograph rather than a 

continually updated image like that o f a movie.

1 .1 .1 .  A n a t o m y  o f  t h e  E y e

p u p i l

i r i s

Externally the eye has a protective white coating 

known as the sclera, (F ig l.l.). The clear 

protrusion at the front end is known as the 

cornea, which provides 90% o f the focusing 

power o f the eye. Behind the cornea lies the iris, 

the coloured area o f the eye. The tissue at the 

back o f the iris comprises brown pigment cells, 

these cells absorb incoming light as well as prevent light from scattering within the 

eye. What we perceive to be the colour o f a person’s iris is in fact dependent upon 

the thickness o f the front layer o f the tissue; as the thickness increases the bluer the 

eye appears to be. The black hole at the centre o f the iris is the pupil; this contracts to

Fig 1.1. External eye adapted 
from Eye Anatomy 1996.

protect the delicate tissues 

housed within when the 

surrounding light is too bright 

and dilates when the light is 

dim. Internally the eye is 

filled with a clear jelly like 

substance known as the 

vitreous.

Conjunctiva i

O* *W*M 
Cili*«y Oody ^  

Aqueous
M s

Anre-rlot 
cham ber 
Como*

Pupil 
L en s 

PwUriO) 
r b a m b e r

C o n ju rM i va

V rtre o j ■

S tia rs  

— C»w«W
• -  R m iu  

. M acula

Artery
feenM  rerlnali

vein  (c e m ra l 'ec tn a l;

-  R e c tu s  m e d n l ls

Fig 1.2. Cross section of eye, adapted from Anatomy o f the eye 
1999.
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J  McDonagh 2005: Chapter 1 -  The eye  < £  screening fo r  diabetic retinopathy

Taking a slice through the eye (Fig 1.2.), we find that the next object that a photon of 

light would come in contact with is the lens. The lens is held under tension by the 

ciliary muscles, which have the ability to change its shape. As an object gets closer, 

the eye must alter its light bending power: this is accomplished by the contraction o f 

these muscles.

The parts o f the eye described thus far act for the fundamental good o f the 

photographic paper o f the eye -  the retina. The iris and pupil protects the retina from 

overexposure to light, while the cornea and lens focus the image.

1 .1 .2 .  T h e  R e t i n a

w
|  Optic w M a c u l a  I

i  Disc^

II a
Fig 1.3. Digital fundus image of a normal retina.

The retina is a thin sheet o f neural tissue that lines the back o f the eye, (Fig 1.3.). It is 

less than lA mm thick & 42mm in diameter and consists o f three layers o f nerve cell 

bodies and two layers o f synapses. The retina is nourished by its own supply o f blood 

vessels and capillaries that radiate from the optic disc. Metabolic needs are provided 

by the retinal pigment epithelium (RPE).

The cells responsible for the absorption o f light entering the eye are called 

photoreceptors (rods and cones). Rod cells are most useful in aiding vision in dim 

conditions. Due to their abundance out with the central retinal area they have the 

largest contribution to peripheral sight. Cone cells on the other hand provide colour

-  1 9 -



J  McDonagh 2005; Chapter 1 -  The eye & screening for diabetic retinopathy

(red, green, blue) vision and fine resolution. These cells provide us with our central 

visual acuity: they allow us to read and differentiate between the features that we use 

to recognise people, Carr & Siegel 1990.

1 .1 .3 . T h e  O p t ic  D is c

The optic disc is approx. 1.5mm in diameter and is distinguished by its paler yellow 

colouring. Electrical signals generated from the photoreceptors are carried via the 

ganglion cell axons and converge at the optic disc. The signals are then conducted 

along the visual pathway to the visual cortex within the brain for interpretation.

1 .1 .4 . T h e  M a c u l a

Two and half disc diameters from the optic disc is the area of the retina which 

provides central vision (acuity) known as the macula 1.5mm in diameter. At the 

centre of the macula is the fovea 0.35mm in diameter this only contains cones. 

Consequently, a reduction in function of the cones in the macula region can lead to 

severe visual impairment or even blindness. Outwith the fovea, the number of cones 

rapidly decreases, while the number of rods increases reaching a peak concentration 

at about 20 degrees of visual angle from the fovea.

1 .2 . B l in d n e s s  a n d  V is u a l  D is a b il it y

The International Statistical Classification of Diseases, and Related Health Problems, 

tenth revision (ICD-10), defines blindness as a visual acuity (VA) of less than 3/60. 

This corresponds to the loss of navigational vision or the inability of the patient to 

count fingers held up by the examiner at a distance of three meters. Severe visual 

impairment, on the other hand, is defined as a VA in the better eye equal to or less 

than 6/60 to 3/60, and low vision corresponding to a VA of less than 6/18 but equal

- 2 0 -



J  McDonagh 2005; Chapter 1 -  The eye & screening for diabetic retinopathy

to or better than 3/60 in the better eye with best possible correction (visual 

impairment categories 1 and 2 in ICD-10), WHO 2004.

1 .2 .1 . L e a d in g  C a u s e s  o f  W o r l d  B l in d n e s s

Blindness can occur as a result of a number of infections, non-communicable 

diseases or injuries. Glaucoma, Cataracts and Trachoma account for over 70% of the 

world’s blind or visually impaired population. With the exception of Trachoma these 

diseases mainly effect the older population (>50), WHO 1997.

One of the major leading causes of blindness in the working age group (25-65) in 

Britain and the rest of the economically developed countries is Diabetic Retinopathy; 

a consequence of long term Diabetes, Fact Sheet 3 2000. It is estimated that there are 

almost 150,000 adults with diabetes in Scotland, Scottish Diabetes Framework 2000.

1 .3 . T h e  C a s e  f o r  S c r e e n in g

In a bid to alleviate world health problems WHO defined four cardinal principles for 

the screening of human disease in a public health paper, these were, WHO 1968:

1. The condition should be an important health problem with a recognisable pre- 

symptomatic state.

2. An appropriate screening procedure that is acceptable both to the public and 

health care professionals.

3. Treatment for patients with a recognisable disease should be safe, effective and 

universally agreed.

4. The economic cost of early diagnosis and treatment should be considered in 

relation to total expenditure on health care, including the consequences for 

leaving the disease untreated.
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The St Vincent Declaration was established with a view to reducing the number of 

cases of new blindness due to diabetic retinopathy by a third over the five year 

duration of the target plan, WHO 1990.

1.4 . D ia b e t e s  a n d  D ia b e t ic  E y e  D is e a s e

To the average layperson, diabetes is best known through its association with a lack 

of insulin, the primary regulator of carbohydrate metabolism in the body and first 

identified by Banting and Best in the 1920's. Diabetes mellitus is the name given to 

the medical condition where there is a lack of insufficient production of insulin, or 

indeed an inability of the body to effectively use insulin. This in turn gives rise to an 

increase in blood glucose levels, clinically referred to as hyperglycaemia. It is a 

serious life long disease, which has a large economic burden upon our National 

Health Service (NHS), accounting for 9% of hospital expenditure or in literal terms 

over £2 billion per annum, Fact Sheet 3 2000.

1 .4 .1 . E p id e m io l o g y

The World Health Organisation estimates there to be 177 million people suffering 

from diabetes worldwide and speculate this number could increase to 300 million by 

the year 2025, WHO 2002. Unhealthy diets, obesity and a rise in longevity have all 

contributed to this upsurge in the global incidence of the disease. In Britain alone the 

charity Diabetes UK estimates that there are over 1.4 million known diabetics with a 

further million affected by the disease but as yet undiagnosed, Fact Sheet 2 2000.

The condition is commonly classified into two categories, Fact Sheet 1 2000.

Type I Diabetes

Type I Diabetes or insulin dependent diabetes (IDDM) develops when there is a 

severe lack of insulin in the body due to the destruction of most or all of the cells in 

the pancreas that produce it. This is the least common type of diabetes accounting for
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about 5% of the diabetic population. It usually appears in people under the age of 40, 

with symptoms often presenting in childhood.

Generally, it develops due to an autoimmune disorder, where the body's immune 

system mistakenly sees one of its own tissues as a foreign body and creates 

antibodies to fight the foreign tissue and hence destroys cells responsible for the 

production of insulin. Other instances have been known to occur following a viral 

infection such as mumps, rubella, measles, influenza or polio. Some rarer cases have 

evolved from injuries to the pancreas arising from toxins, trauma, or after the 

surgical removal of the majority (or all) of the pancreas.

Type 1 diabetics are usually totally dependent on insulin injections and must follow a 

strict balanced diet control.

Type II Diabetes

Non-insulin dependent (NIDDM) or adult onset diabetes, is much more common and 

accounts for 90-95% of all diabetes cases worldwide. Its incidence increases with age 

and there are also strong genetic influences.

NIDDM results from the body's inability to respond properly to the action of insulin 

or the pancreas produces an insufficient amount. Depending upon the severity of the 

disease treatment can either be by diet alone or hypoglycaemic agents (sugar 

lowering), in more severe cases insulin injections are required.

1 .4 .2 . C o m p l ic a t io n s

Diabetes is associated with many complications; the areas most affected are the 

heart, the nervous system, the kidneys and the eyes. These complications do not 

usually develop for 10-15 years after diagnosis in Type I diabetes. However 

symptoms are more than likely already present in Type II diabetics due to the delay 

in diagnosis.
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Diabetic retinopathy (DR) is probably the commonest complication of diabetes. 

Sight threatening DR affects 2% of the diabetic population. Early detection of sight 

threatening retinopathy and treatment by laser therapy has been shown to be effective 

in preventing the onset of visual impairment. With appropriate medical and 

ophthalmological care blindness may be prevented in at least one eye, by treating 

both eyes, in 60-70% of cases with macular oedema and in over 90% with 

proliferative retinopathy. Protection lasts for over 10 years in two thirds of treated 

patients, ETDRS1991, Hamilton 1996.

1 .4 .3 . P r e v a l e n c e  o f  D ia b e t ic  R e t in o p a t h y

The prevalence of diabetic retinopathy in Type I diabetics is twice that of Type II, 

and is strongly linked to the duration of diabetes. However, once established, the 

clinical features, progression and treatment of the disease is the same for both 

groups. In 1983 the economic burden of DR in terms of costs to the NHS and the tax 

paying population was calculated, Foulds et a l 1983. The cost of treating a patient at 

risk of blindness was estimated to be £387. It transpired that this sum was 17 times 

less than the annual amount of money which would be accredited to these people in 

social benefits if they were to lose their vision and therefore render them unfit to 

work.

At any one time, up to 10% of people with diabetes will have retinopathy requiring 

ophthalmological follow up or treatment. The annual incidence of retinopathy 

requiring ophthalmological follow up or treatment has been reported to average 1.5% 

after one year. Untreated, between 6-9% of the people with sight threatening 

retinopathy (proliferative) or severe non-proliferative disease would become blind 

each year. A diabetic is 10-20 times more likely to go blind than a person in the 

general population.

After 15 years of diabetes nearly all (97.5%) patients with Type I diabetes and over 

60% of patients with Type II diabetes have some degree of retinopathy. Moreover, 

up to a fifth of newly diagnosed diabetics will already exhibit some features of
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retinopathy. The rising prevalence o f  diabetes will ensure that diabetic retinopathy 

rem ains a m ajor health and econom ic problem .

1 .5 .  F e a t u r e s  O f  D i a b e t i c  R e t i n o p a t h y

Diabetic retinopathy is a progressive disease categorised by certain key features. 

M ost o f  the re tina 's  blood vessels have tiny openings that allow  fluid to pass through 

the vessel walls. The increased blood glucose levels o f  diabetes induce strain on 

these delicate retinal vessels; they becom e m ore porous and as a result allow  larger 

m olecules to pass through the vessel walls into the surrounding retinal tissue. W ater 

m olecules can be quickly reabsorbed into the vessels or into the tissue under the 

retina; however, fatty m olecules are absorbed very slowly and rem ain visually as 

yellow  deposits upon the retina. The capillaries are usually the first vessels to be 

dam aged: it is these vessels that are essential for the delivery o f  oxygen and nutrients 

to the retina and the export o f  carbon dioxide and other waste products.

1 .5 . 1 .  M i c r o - a n e u r y s m s

The earliest clinically detectable m anifestation o f  DR are m icro-aneurysm s, (Fig

1.4.). These are micro vascular abnorm alities 10 to 100 m icrons in diam eter, and 

develop in association with areas o f  capillary closure. They appear as small sacs or 

tiny red dots budding o ff  from the vessels. They are usually concentrated at the 

posterior pole and especially tem poral to the fovea, Kanski 1984. Ryan 1994, 

Hamilton 1996.

Fig 1.4. a). Example o f  micro aneurysms 
seen on the retina when view ed through an 
ophthalmoscope or fundus camera, 
b). Same portion o f  retina  - this time the 
aneurysms are highlighted by fluorescein  
leakage as the small white dots.
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Fig 1.4. a). Example of micro aneurysms 
seen on the retina when viewed through an 
ophthalmoscope or fundus camera, 
b). Same portion of retina - this time the 
aneurysms are highlighted by fluorescein 
leakage as the small white dots.

1 .5 .2 .  D o t  a n d  B l o t  H a e m o r r h a g e s

When the wall o f a capillary or microaneurysm is sufficiently 

weakened, it can rupture, giving rise to an intra-retinal haemorrhage, 

(Fig 1.5.). If the haemorrhage is deep (i.e., in the inner nuclear layer 

or outer plexiform layer), it usually is round or oval (dot or blot). 

Dot haemorrhages appear as bright red dots and are the same size as 

large microaneurysms. Blot haemorrhages are larger lesions, which 

are located within the mid retina and are often surrounding areas o f 

ischaemia (areas starved o f blood).

1 .5 .3 .  H a r d  E x u d a t e s

Hard exudates are features caused by proteins and lipids from the 

blood leaking into the retina through damaged blood vessels. They 

appear on the retina as hard white or yellow areas, sometimes in a 

ring like structure around leaking capillaries, (Fig 1.6.).

1 .5 .4 .  C o t t o n  w o o l  S p o t s  ( C W S )

Cotton Wool Spots or soft exudates form as a result o f a blockage 

within the retinal pre-capillary arterioles supplying the nerve fibre. 

Their appearance is as pale white, almost smudge like lesions in 

the nerve fibre layer (Fig 1.7.).

» tig i.fi.

fig: s
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1 .5 .5 .  I n t r a r e t i n a l M i c r o v a s c u l a r  &  V e n o u s  A b n o r m a l i t i e s

■
 These irregularly shaped blood vessels appear in localized areas o f 

the retina and look like squiggly lines when viewed through an 

ophthalmoscope. They are also known as omega loops or tortuous 

vessels, (Fig 1.8.) and signify irregular dilation o f retinal blood 

vessels in response to poor blood circulation.

1 .5 .6 .  N e o v a s c u l a r i s a t i o n

New vessels initially proliferate in the space between the inner limiting membrane o f 

the retina and the posterior face o f the vitreous. They appear like rosettes o f tightly 

packed capillaries (Fig 1.9.). Eventually they extend into the vitreous cavity, and 

become entwined with fibrous tissue. This increases the risk o f traction on the 

underlying retina, culminating in tears or detachment o f the fine retinal tissue.

Fig /. 9. (a). Example of new vessel growth in peripheral 

retina, (b) New vessels at the optic disc

1.6 .  C l a s s i f y i n g  t h e  P r o g r e s s i o n  o f  D i a b e t i c  R e t i n o p a t h y

The classification o f the severity o f DR is dependent upon the location and 

accumulation o f the above-described features. The typical advancement o f the 

disease is depicted in the flow chart below. Each significant sub-classification is 

described in terms o f advancement and the features associated with it, (Fig 1.10.), 

Kanski 1984, Ryan 1994, Hamilton 1996.
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N o Retinooathv

Develops Later

May accompany

New Vessel formation 
at the Disc (NVD)

CataractPreretinal

Haemorrhage

R ubeosis Iridis

Type II 
(NIDDM)

Type I 
(IDDM)

Maculopathy

Retinal Detachment

Proliferative
Retinopathy

New Vessel formation 
elsewhere on the 
retina (NVE)

A d v a n c e d  D ia b e t ic  E y e  D is e a se

Non Proliferative or 
Background Retinopathy

Fig 1.10. Progression o f  diabetic retinopathy flowchart

1.6 .1  B a c k g r o u n d  R e t in o p a t h y

Background diabetic retinopathy (BDR) is typically asymptomatic and evolves from 

gradual progressive damage to retinal blood vessels. It is rare before 8-10 years 

duration of diabetes. The initial signs include: irregularities within blood vessel 

walls, microscopic size haemorrhages or microaneurysms and exudates. The 

presence, locations and quantities of these features differ greatly between 

individuals, (Fig 1.11a.).
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1 .6 .2 . P r e -P r o l if e r a t iv e  R e t in o p a t h y

Pre-proliferative retinopathy is a more advanced stage of damage to the eye than the 

early signs found in BDR. Once this stage is present, vision can worsen rapidly if the 

progression is not monitored regularly. Additional features associated with pre- 

proliferative retinopathy are cotton wool spots and or intraretinal microvascular 

abnormalities, (Fig 1.11b.).

1 .6 .3 . M a c u l o p a t h y

Maculopathy is a leading cause of severe visual impairment in diabetics and occurs if 

swelling, leakage, or hard exudates arise within the macula or foveal region of the 

retina. Visual blurring occurs in the middle or just to the side of the central visual 

field and subsequent visual loss may progress over a period of months, or can be 

noticed by an inability to focus clearly.

The Modified Airlie House Criteria defines maculopathy as the presence of retinal 

oedema within 500p of the fovea, or hard exudates within 500p of the fovea if 

associated with adjacent retinal thickening, or retinal oedema that is one disc 

diameter or larger in size; where any part of it is residing within one disc diameter of 

the centre of the fovea, ETDRS 1991. Macular oedema is the leading cause of legal 

blindness in diabetics. The predominant feature is a widespread leakage of 

intercellular fluid arising from the leaking microaneurysms or from a diffuse 

capillary leakage, which causes a reduction in visual acuity, (Fig 1.11c.).

1 .6 .4 . P r o l if e r a t iv e  R e t in o p a t h y

Proliferative retinopathy refers to a severe stage of diabetic retinopathy in which new 

blood vessels proliferate on the surface of the retina. Most patients with this form of 

retinopathy have had background diabetic retinopathy for at least a few years prior to 

developing this more advanced form of the disease. It is diagnosed through the
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presence of new proliferating blood vessels (neovascularisation) arising from the 

retina or optic disc and growing on the retinal surface or into the vitreous cavity. 

Over time, the tiny fine new vessels gradually become larger and more mature, (Fig

1.1 Id.).

1.6.5. A d v a n c e d  D i a b e t ic  E y e  D is e a s e

The new vessels generated to supply blood and nutrients to starved areas of the retina 

tend to be very fragile and are prone to bleeding. When these haemorrhages occur in 

the vitreous, blood begins to disperse through the vitreous cavity causing a reduction 

in vision. The eye has the ability to clean the blood from the vitreous cavity as long 

as there is not too much: this process is slow and the speed at which the blood is 

removed can be quite variable for each individual.

With the eye full of blood, it is difficult or impossible for an ophthalmologist to tell if 

the proliferating vessels are continuing to grow and if they are damaging the retina 

with traction or scarring. One of the most severe complications of diabetic eye 

disease is retinal detachment. This is caused by a contraction in scar tissue. These 

detachments can be limited and have little effect on the vision, or they may be 

extensive and cause complete blindness. Once the central part of the retina has 

detached, visual prognosis is poor, even if the retina is successfully re-attached, (Fig

1.1 le.). For this reason, the emphasis in diabetic eye care is upon prevention and 

early treatment whenever possible. Standard guidelines have been compiled to 

predefine the stages of diabetic retinopathy, the features associated with each stage, 

which features require treatment and to identify the frequency of follow up 

examinations.
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Fig 1.11a. Background retinopathy, showing 
multiple small lesions of hard exudates and 
microaneurysms.

Fig I. / lc. Diabetic maculopathy - hard 
exudates and haemorrhages reside and 
encroach upon the central macula region.

Fig 1.1 lb. Pre-proliferative retinopathy. The 
region o f interest is the formation of cotton 
wools spots.

Fig 1.1 Id. Proliferative retinopathy -  a region 
of neovascularisation is shown within the 
white dashed box.

Fig 1.11e. Advanced diabetic eye 
disease. A large vitreous haemorrhage 
is obscuring the macula region 
making central vision difficult.

All images obtainedfrom diabetic review clinic at GGH.
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1 .7 . T r e a t in g  D ia b e t ic  R e t in o p a t h y

Laser photocoagulation treatment of DR can either be employed to dry up leaking 

vessels or alternatively to destroy diseased areas of retinal tissue. This process of 

eliminating unhealthy, oxygen starved tissue from the retina is achieved through 

inflicting thermal injury upon it. It works by causing the abnormal blood vessels to 

dry up, thus stopping their growth and potential for inflicting sight threatening 

damage. There are two different laser treatment formats applied depending upon the 

area of the retina that is affected Ryan 1994, Hamilton 1996.

*5} Focal laser photocoagulation - A very narrow beam of laser light is 

accurately focused in the vicinity of the macular. The beam coagulates the 

leaking blood vessels and is used to treat macula oedema.

^  Pan-retinal photocoagulation - Hundreds of spots are targeted across the 

starved peripheral retina thus stemming the growth of new vessels as seen in 

proliferative diabetic retinopathy and this in turn reduces the chance of a 

more serious haemorrhage.

Laser treatment is designed to maintain vision not improve it. It is highly effective in 

most patients and blindness can be prevented in 80-90% of cases.

1 .8 . S c r e e n in g  G u id e l in e s

Recently, the UK National Screening Committee published guidelines on screening 

for diabetic retinopathy, National Screening Committee 2004. The preferred modality 

is digital fundus photography with image interpretation by trained screeners. The 

committee acknowledge that this method cannot detect macular oedema, yet 

treatment of macular oedema prevents blindness in 60 -  70 % of cases. At each 

review the retina is categorised into one form of retinopathy by a screener based on 

classification guidelines, the most common method used is the Modified Airlie 

House Classification, ETDRS1991.
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N o n - p r o l if e r a t iv e  d ia b e t ic  r e t in o p a t h y

Phase 1 — Background Phase 2 — Pre-Proliferative Retinopathy

Retinopathy Phase 1 lesions plus:
Microaneurysms Cotton-wool spots

Dot and blot haemorrhages Venous beading and loops

Hard ( intra-retinal) exudates Intraretinal microvascular abnormalities

P r o l if e r a t iv e  d ia b e t ic  r e t in o p a t h y

Neovascularisation of the retina, optic disc or iris 

Fibrous tissue adherent to vitreous face of retina 

Retinal detachment 

Vitreous haemorrhage 

Pre retinal haemorrhage

M a c u l o p a t h y

Clinically significant macular oedema (CSME ) 

Ischaemic Maculopathy

These classifications are then used to determine the follow up procedure. If there is 

any evidence of sight threatening features such as new vessels on the optic disc or 

elsewhere in the retina, pre-retinal hemorrhage or fibrous tissue then it is advised that 

the person requires immediate referral to a consultant ophthalmologist for assessment 

and possible treatment. This also extends to vitreous haemorrhage, fibrous tissue, 

retinal detachment and rubeosis iridis.

Lesions which are only slightly less threatening but still requiring fairly urgent 

assessment by an ophthalmologist are features which are associated with pre-
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proliferative retinopathy i.e. venous irregularities (beading, reduplication, loops), 

multiple haemorrhages, multiple cotton wool spots and intra-retinal microvascular 

abnormalities (IRMA).

And finally if the lesions remain static from the previous visit and are still shows 

evidence of background retinopathy i.e. microaneurysms, dot haemorrhages and hard 

exudates then no immediate action is necessary and the patient can continue with 

annual screening if the facilities are available.

1 .8 .1 . C u r r e n t  S c r e e n in g  M o d a l it ie s

Many different modalities of screening are in use depending on local availability of 

facilities. These variables include the number of available ophthalmologists, other 

trained healthcare professionals, equipment and resources available for screening. 

However, the method used should have sufficient sensitivity (>80%) and specificity 

(>95%) for a single modality screening process, British Diabetic Association 1997.

Recording and archiving of images have traditionally been done using 3 5-mm slides 

or Polaroid prints. The role of new technology in the form of digital computerised 

imaging offers the prospect of immediate high quality images that can be easily and 

quickly transferred from screening camera to a central reference centre. Storage and 

reproduction are inexpensive and quick using this medium.

1 .8 .2 . P o t e n t ia l  S c r e e n e r s

The task of screening would seem straight forward, but the present environment of 

care has led to diversity of views generating much debate. Potential screeners for 

diabetic retinopathy are: -

Ophthalmologists ^  General practitioners

^  Diabetologists ^Optometrists

*5} Junior hospital doctors ^  Retinal photography services
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^  Or a combination of all these

The implicit Gold Standard for identifying and grading retinopathy is a retinal 

examination using indirect biomicroscopy by a senior ophthalmologist or seven field 

stereoscopic photographs of each eye interpreted by experienced readers.

In the UK there are an insufficient number of ophthalmologists to undertake annual 

retinal examination for all diabetics, in 1994 there were an estimated 433 full time 

consultant ophthalmologists, equating to one ophthalmologist for every 1100 

diabetics. Diabetologists can provide eye screening as a part of the total package of 

diabetic care; they are experienced in this field and review the patient at regular 

intervals for their diabetic care. However a large proportion (40-60%) of diabetics 

are not seen by a diabetologist but are cared for by their general practitioners. 

Diabetologists may also have limited facilities, in that a dark room may not be 

available and retinal examination is mostly carried out using a direct 

ophthalmoscope.

Screening provided by ophthalmologists, diabetologists or junior hospital doctors 

would have to be hospital based. This involves long travelling distances, waiting 

times and extra visits to the hospital. Typically a medical student’s experience is 

limited to, at best, 10 hours of retinal observation and thus they tend to perform 

poorly as screeners for diabetic retinopathy.

General practitioners are easily accessible to the patients and thus well placed to 

undertake screening in the community. However they may not get sufficient 

experience in diagnosing and grading retinopathy. They generally use direct 

ophthalmoscopy and may lack dark room facilities. As a consequence eye screening 

provided by general practitioners often appears to be inadequate.

Another option for screening people who reside in rural areas is through the use of a 

mobile retinal photography service. This method utilises the Gold Standard for 

photographic screening. It consists of seven 30-degree fields using stereoscopic
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pairs, (Fig 1.12.). This needs two frames from each field to simulate a stereoscopic 

view; thus fourteen frames from each eye are needed.

4 6

■ '  i
Fig 1.12. The seven standard fields. 
Each covers 30 degrees. Field 1 is 
centred on the optic disc; field 2 is 
centred on the macula; and fie ld  3 is 
just temporal to the macula. Fields 4-7  
are tangential to horizontal lines 
passing through the upper and lower 
poles o f the disc and to a vertical line 
passing through its centre.

The recommended a photographic protocol which requires two 45° or 50° images 

and which covers a 15% field o f view o f the retina. The photographs can be taken by 

a technician and assessed later by a trained reader or an ophthalmologist, National 

Screening Committee 2004.

Optometrists are generally accessible from the patient's home or workplace and in 

any case a large proportion o f patients visit their optometrist on an annual or 

biannual basis. Most have the facilities to measure visual acuity in a standardised 

way, assessing the retina through indirect ophthalmoscopy / slit lamp biomicroscopy 

all housed within a dark examination room, in addition to being familiar in the use o f 

mydriatics. Optometrists are therefore well suited to carry out screening for diabetic 

retinopathy in the community and through appropriate training they are able to detect 

diabetic retinopathy and make the correct decision regarding the need to refer the 

patient for secondary care.
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1 .8 .3 . C h o o s in g  a n  O p t im a l  S c r e e n in g  M o d e

It is not possible to make an accurate and direct comparison of the effectiveness of 

the types of screening personnel. This is because published studies differ in the 

definition of retinopathy used for grading, along with a inconsistency in the numbers 

of the population screened for the disease. An attempt was made to assess the relative 

sensitivities and specificities achieved by the available screening personnel, the 

results of which are in Table 1.1., Hutchinson et al. 2000.

Sensitivity Specificity
General Practitioner reader 

Optometrist reader 

Diabetologist reader 

Trained graders 

Ophthalmic clinical assistant

77% - 100%

88% - 91%

72% - 89%

81%- 100% 

89%

48% - 96%

67% - 82%

91% -93%

97% - 100% 

86%

Table 1.1.: Sensitivity and specificity fo r the detection o f  sight threatening diabetic eye disease using 

Mydriatic 45 degree retinal photographs by various health professionals.

The choice of screening modality to use in a given setting is dependent on local 

factors. The number of trained ophthalmologists available is the limiting factor thus 

favouring general practitioners, optometrists and retinal photography as the preferred 

mode of easily accessible screening in the community.

Availability of resources and infrastructure together with local remunerative 

practices will dictate the choice amongst these. Some societies may find the cost of 

photography too high, but in other settings this may be the cheaper method of 

screening. The advent of digital computerised imaging has the potential to reduce the 

cost per patient and to improve archiving and retrieval. Improvements in information 

technology have made instantaneous transfer of these images from screening centre 

to a referral centre possible. These may tilt the balance in favour of photographic 

techniques once these technologies are proven. It is therefore the ability to combine
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digital photography with conventional computer processing and artificial intelligence 

applications which has the potential to be the best answer for screening.

I .9 . S u m m a r y

The retina is a very delicate and complex array of neural tissue incorporating its own 

unique supply of blood vessels to bring nourishment to the cells responsible for the 

absorption and conversion of photons of light to electrical signals. These signals are 

then transported to the brain via the optic nerves. Damage to the retinal structure may 

severely impair the vision of a person or indeed them blind.

The disease diabetes arises when the pancreas is unable to produce sufficient levels 

of insulin. It affects an estimated 120 million people globally; there are suggestions 

that significantly larger numbers are affected but are as yet un-diagnosed. There are 

two forms of diabetes: Type I where there is a lack of insulin in the body and Type

II, where there is an inability of the body to respond properly to the action of insulin. 

During the long duration of the disease with its poor glucose control many of the 

smaller blood vessels and capillaries are affected throughout the body. The delicate 

vessels of the retina are extremely susceptible to damage; after a significant duration 

of diabetes (15 years) approximately 97% of people with Type I and 60% of people 

with Type II diabetes will exhibit some degree of retinopathy.

Diabetic retinopathy is the commonest cause of blindness in the working age group 

of socially developed countries. Its incidence is ever increasing due to obesity and 

poor diet, and the rise in the average longevity of the human life span. In 1990, the 

detection of diabetic retinopathy was targeted by the World Health Organisation to 

force local governments to provide adequate screening procedures for the detection 

and treatment of the disease before it develops into potentially sight threatening 

stages. The goal is to significantly reduce the amount of new blindness from diabetic 

retinopathy with the incentive being that governments would make substantial 

savings from social benefits compared to the cost of screening and treatment. There 

has been little advancement towards the set target due to ever increasing numbers of
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diabetics and the relatively few trained personnel capable of providing the service. 

Thus, the challenge for this century is to devise a relatively cost effective automated 

screening tool, which will divert some of the burden from the medical personnel, 

enabling them to spend less time screening and more time on treatment.
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C h a p t e r  2  -  L it e r a t u r e  r e v ie w

Before this project started in 1998, little had been done to produce a fully automated 

system capable of detecting sight threatening diabetic retinopathy. Up until 1996 the 

majority of work concentrated on identifying specific features in isolation using a 

variety of image processing techniques. In 1996 the first automated system using 

neural networks was described, Gardner 1996.

The initial investigations were limited by the computer systems available. Computer 

processors were not capable of calculating complex algorithms within short time 

periods. Therefore it was not possible to obtain an instantaneous classification result. 

Another constraint was that digital fundus cameras were not commercially available 

and restrictions were and still are imposed on image resolution, National Screening 

Committee, 2004. Therefore polaroid slides or films of retinal images had to go 

through the arduous task of being manually digitised. However, recent advances in 

computer technology have opened the gateway to a new digital era. With this new 

technology there has been renewed enthusiasm in the development of an automated 

screening tool for diabetic retinopathy.

This Chapter review’s some of the techniques that have been applied to the 

identification of specific retinal features associated with diabetic retinopathy. Much 

of the work described has been performed in parallel to the work presented by the 

author. The relative advantages and disadvantages of each technique will be 

discussed in this chapter with a comparison of the results described in Chapter 8.

2 .1 . N o r m a l  B a c k g r o u n d  R e t in a

The retina is a thin layer of tissue on the surface of a sphere and as such its 

uniformity is affected by discrepancies in illumination. Consequently, this may affect 

the performance of feature recognition algorithms. To minimise the adverse effects 

of this, pre-processing algorithms can be applied to the images to restore uniformity 

of the background retina.
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Images can be altered by manipulating their red, green and blue or hue, intensity and 

saturation (HIS) components. To pre-process images prior to feature detection 

analysis, Zahlmann et al. 2000, Lee & Wang et al. 1999 and Goldbaum et al. 1989 

discarded the information provided by the red and blue band. The benefit of this 

technique is that it does not require much in computational time. Moreover, by 

removing these two bands you are effectively reducing the number of discrepancies 

that would otherwise be introduced by these bands. Alternatively, contrast variations 

can be minimised independently of the colour plane by performing analysis on the 

intensity plane, Sinthanayothin et al. 1999. This involves converting the image into 

its HIS format and altering the intensity plane before converting it back into its 

colour format. This is a multi stage approach and therefore slightly more time 

consuming. Another option is to apply a median filter which can reduce the variation 

across an image, Ege et al. 2000. The amount of computational time is dependent 

upon the size of the matrix. Moreover, care has to be taken when employing this 

technique, as a large matrix will result in poorer definition of the feature edges. 

Frame et al. 1998, successfully employed a large-scale median filter and subtracted 

the resultant image from the original, thus effectively removing the background and 

leaving the vessels and microaneurysms. This technique then requires further 

algorithms to be applied for classifying the remaining features.

The work described within this thesis shows the benefits of discarding the red and 

blue information by increasing the performance of neural networks trained to identify 

specific features, Chapter 5 & 6. This is due to a greater contrast between feature 

edges and background retina.

2 .2 . L o c a t in g  t h e  O p t ic  D is c  a n d  m a c u l a

The successful automatic detection of the optic disc (OD) and macula is a 

requirement of any screening tool. The identification of these features may also assist 

in the analysis of images for other diseases such as glaucoma or age related macular 

degeneration.
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The optic disc is approximately 1.5mm in diameter and is distinguished by its paler 

yellow colouring. To detect the optic disc Sinthanayothin et a l 1999 based their disc 

detection algorithm on a dimensional space of 80 x 80 pixels. This was swept across 

the whole image to calculate a local measure of pixel intensity variance. Similarly, 

Lee et al 1999 used the average brightness value alone to identify the OD. The 

dimension of the matrix for the OD region of interest (ROI) depends on the image 

resolution; the actual size of the optic disc does not vary greatly between individuals. 

The benefit of this technique is that it can be fully automated and relatively quick to 

compute. The scanning of a ROI across the image allows the positional co-ordinates 

of the OD to be recorded for use at a later stage.

Conversely, more complex algorithms have been applied to the task with similar 

successful results. These algorithms detect shape rather than colour intensity values 

alone. Kochner et a l 1998 and Yulong et al 1990 utilised the structure of radiating 

vessels and combined this with Hough transforms to detect the OD. These algorithms 

are able to identify basic shapes such as circles and lines, but require multiple kernels 

of processing. At each stage pixels are eliminated until the final region converges 

upon the centre of the OD. To efficiently perform these complex algorithms more 

computer storage space and faster processors are required. The results obtained have 

shown no benefit over the results achieved by the identification of the OD in colour 

alone.

The macula is located two and half disc diameters from the optic disc and can be 

recognised as an area of lowest pixel intensity. The techniques applied to the 

detection of the OD can easily be adapted for the identification of the macula. With 

similar success Sinthanayothin et a l 1999 adapted their technique by halving their 

scanning ROI (40 pixels) from that of their optic disc template.

The identification of the optic disc and macula described within this thesis employed 

a similar technique to that applied by Sinthanayothin et a l 1999. This work is 

detailed in Chapter 5.
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2 .3 . R e t in a l  V a s c u l a t u r e  R e c o g n it io n

Vessels can be distinguished from background retina through their darker hue. The 

ability to isolate vessels from the rest of the retina enables more specific analysis to 

be performed on vessel contour. Alterations in the shape and hue of the retinal 

vasculature from what is deemed as being normal can provide valuable information. 

For example by analysing the tortuosity of a vessel’s contour it is possible to obtain 

an early insight into the formation of omega loops which are representative of the 

pre-proliferative progression of diabetic retinopathy.

Image processing techniques can be applied to differentiate vessel contours through a 

number of different approaches. One such method is the application of fuzzy set 

theory, Yannis & Panas 1998, Hoover &. Goldbaum 2003. Fuzzy set theory was 

originally introduced in the 1960's, Zadeh 1965. Like human reasoning, it uses the 

approximation of information and uncertainty to generate decisions. This is achieved 

by grouping variables measured into different classification bins, allowing them to 

overlap so that a variable may be classified in both the large and medium categories, 

with varying degrees of membership to each. Thus it is a technique that can be 

applied to any methodology such as classical arithmetic and programming. This 

technique is combined with binary functions so that multiple rules can be applied to 

make classification decisions which more closely mimic the human decision making 

process. The advantage of this approach is that classification programmes can be 

created based on small training sets, unlike statistical and neural network based 

approaches, which require a greater number of examples. The negative side is that it 

often requires user input to identify new starting points when the end of a vessel 

segment has been identified.

The application of image processing techniques to vessel identification can be 

divided into those that use edge detection i.e. Sobel and gradient operators and those 

that use matched filtering or thresholding techniques, Chapter 3.2. The Sobel 

operator is an edge detection filter that has been successfully applied to the 

identification of vessel edges as described by Wang et al. 1997. With similar effect 

Goldbaum et al. 1989 and Yang et al. 2000 opted for Gaussian filters. Gregson et al.
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1995 applied thresholding techniques to images. This technique works by comparing 

the differences in adjacent pixel intensity values and accepting those that lie within a 

predefined upper and lower limit.

All of these techniques share some similar traits. They can be computationally time 

consuming depending upon the number of iterations that have to be applied. They are 

susceptible to problems arising from vascular branching. Therefore starting points 

have to be introduced by the user and can not be performed automatically. On the 

positive side they are highly effective in identifying vessel edges. However they do 

require additional processing for subsequent classification.

A technique that can be fully automated to recognise and classify vessels has been 

described by Gardner et a l 1996, Sinthanayothin et al 1999. They successfully 

trained a back propagation neural network to identify a variety of key retinal features 

including vessels with results comparable to that of an ophthalmologist.

A concurrent problem throughout the literature is the inability of these techniques in 

identifying the sight threatening growth of new vessels. This thesis attempts to 

address the identification of new vessels using neural networks and circular intensity 

profiles, Chapter 3.3. & 6.3. The work described within this thesis is an expansion of 

Gardner’s work.

2 .4 . F e a t u r e s  a s s o c ia t e d  w it h  d ia b e t ic  r e t in o p a t h y

The successful identification of the most common features associated with diabetic 

retinopathy is a fundamental requirement of any automated screening system. This 

section discusses the techniques that have been applied to the identification and 

classification of these features.
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2 .4 .1 . M ic r o - a n e u r y s m s  a n d  h a e m o r r h a g e s

Micro-aneurysms (MA) are the earliest clinically detectable manifestation of diabetic 

retinopathy. The identification of these lesions is not an easy task as they vary in size 

from 12-125 pm. It has been shown that there is a correlation between disease 

progression and increasing numbers of micro aneurysms, Hipwell et a l 2000, Cree et 

al 1997, 1996, Spencer et al 1992, Klein et a l 1989 and Kohner et a l 1986. While 

this technique is helpful in research, it does not distinguish between sight threatening 

and non-sight threatening DR. Nevertheless as a preliminary analysis it does provide 

valuable information if incorporated alongside other feature detection methods.

Image-processing techniques have been applied to images in a bid to automatically 

detect and count the number of micro-aneurysms present. For example, Frame et al 

1998 applied a combination of matched-filtering and region growing algorithms to 

localise MA’s within digital angiography images, a technique they adapted from 

Spencer et a l 1992 and Cree et a l 1997, 1996. However the intravenous injection of 

fluorescein is too invasive to be used as part of a screening process. Although the 

algorithms can be applied to digital colour fundus images the results will not be as 

good as MA’s are difficult to detect on non-angiographic images.

Thresholding algorithms have successfully been applied to the task of identifying 

possible candidate haemorrhage lesions, Ege et al 2000 & Lee et al 1999. Under 

normal colour fundus photography conditions it is difficult to separate micro­

aneurysms from small dot haemorrhages. Thresholding techniques locate possible 

candidate lesions if pixel colour information falls within predefined upper and lower 

limits. These candidates then have to go through a subsequent process of 

classification. This can be automated by using trained NNWs or performed manually.

NNW analysis alone has been shown by Gardner et al 1996 to provide results that 

are comparable to a consultant ophthalmologist. Their data sets were compiled from 

both micro-aneurysms and small dot haemorrhages. The investigation of image pre­

processing techniques and NNW performance for haemorrhage detection is discussed 

in Chapter 6.1.
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2 .4 .2 . E x u d a t e s

A variety of techniques can be applied to the detection of exudates based upon their 

hue, unique edges and pattern (they typically form in clusters). Osareh et al. 2003, 

segmented retinal images using fuzzy c-means clustering. The principle of this 

technique was to detect exudates based on their colour by grouping pixels that were 

spatially connected and then using a back-propagation network to classify them, no 

mention was made of location information.

Thresholding algorithms can be applied to images after the removal of background 

features such as the optic disc and vessels, Zahlmann et al. 2000, Kochner et al. 

1998. This technique is therefore dependent upon the successful detection and 

subsequent removal of the aforementioned features. As with the detection of 

haemorrhages Gardner et al. 1996 successfully employed artificial neural networks 

to the task of classifying exudates. The investigation of image pre-processing 

techniques and NNW performance for exudate detection is discussed in Chapter 6.2.

At the end of this section it is worthwhile to note that many of the features are 

identified in isolation. The authors do not say if these techniques are capable of 

providing the location of each individual feature and how this information can be 

utilised. For example, the identification of exudates within the macula region is a 

crucial indication of the development of sight threatening maculopathy.

2 .5 . S u m m a r y

This chapter reviews the techniques that have been applied to the detection of normal 

retinal features and features associated with diabetic retinopathy. It has been shown 

that neural network analysis as a feature classification tool has proved to be a 

potential substitute to the current mode of screeners, Williamson et al. 1997, Gardner 

at al. 1997, 1996. Studies have shown this method of analysis for detecting 

haemorrhages and exudates is comparable to that of a consultant ophthalmologist
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when differentiating a normal retinal fundus image from one that displays diabetic 

features, Usher et al. 2003 & Sinthanayothin et a l 2002.

Image processing techniques can be effective in improving image quality. They can 

also be used to detect candidate lesions associated with diabetic retinopathy. It would 

seem that the grading of DR images is such a widely varied task that a combination 

of image processing techniques and neural networks should offer an efficient 

automated grading tool.

It is the author’s aim to develop an automatic screening tool capable of identifying 

sight threatening diabetic retinopathy on digital fundus images. Such a system 

requires the accurate identification of normal retinal components in addition to 

features associated with background and sight threatening DR. The forthcoming 

chapter will explain in detail the application of some of the image processing 

techniques applied by the author. This is followed by a description of the software 

which was custom written by the author. This software was specifically designed to 

enable image acquisition, image processing, neural network training and testing to be 

performed in a structured and integrated manner which has not previously been 

performed. The training, testing and validation of the current system is reported in 

Chapters 5 to 7. Finally Chapter 8 concludes with a comparison between the results 

obtained by the author and the results described within the literature.
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C h a p t e r  3  -  A u t o m a t e d  S c r e e n in g  A p p r o a c h e s

3 .1 . I m a g e  S t a n d a r d is a t io n

In ophthalmology, the recording of retinal images provides a method for monitoring 

the progression of disease over time. The way in which these images are acquired, 

processed, and presented has to be standardised to ensure reliability of interpretation. 

Since digital images are nothing more than a set of numbers, corrections can be made 

based on pixel statistics and enhancements can be standardised so that all images are 

enhanced in exactly the same way. In addition, digital imaging also provides a much 

more extensive collection of image manipulation possibilities.

3 .2 . D ig it a l  I m a g e  P r o c e s s in g

Digital image processing enables images to be altered through the application of 

mathematical algorithms. There are a wide range of image processing and pre­

processing algorithms available. They can be individually incorporated into custom 

written programmes if the user wants to apply them to a specific problem, or for 

more general use they can be applied through a variety of commercial software 

packages. Image analysis algorithms can be used to detect specific features within an 

image, while pre-processing algorithms are used more simply to improve image 

quality by removing background noise or distortion, or for the standardisation of a 

group of images. Some of the common techniques applied to the detection and 

grading of retinal images for the identification of features associated with diabetic 

retinopathy have been discussed in Chapter 2. This section describes some of basic 

principles of these algorithms.
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3 .2 .1 . E d g e  D e t e c t io n

Edge detection is based upon the detection of local discontinuities, which mainly 

correspond to the boundaries of objects in the image. An edge is usually defined as a 

transition in the intensity or amplitude of the image; edge detection filters therefore 

search out the borders between areas of different colour, thereby tracing the contours 

of objects in the image. They are often used to make selection easier. Gonzalez and 

Woods 1992.

Typically an ideal 1-D edge can be defined as a step from a low to high intensity, 

(Fig 3.1.). Normally this transition is contaminated by noise, whereby the real edge is 

defined as the transition from an average low to an average high intensity.

High Level

Low Level Low Level

Fig 3.1. a) Ideal edge step between lower and higher intensity level, b) Realistic step between 

edges, where contours are contaminated bv noise.

There are several well-known gradient filters, Sobel operators, Roberts operators, 

Prewitt operators and Isotropic operators, Sobel edge detector 2003.

One way to detect edges in a digital image is by using a 2-D gradient operator, e.g. 

the Sobel operator. The Sobel operator performs a 2-D spatial gradient measurement 

on an image, the result of which emphasises regions of high spatial gradients that 

correspond to edges.

The Sobel operator is generated by a pair of 3 x 3 convolution matrices, (Fig 3.2.); 

constructed in such a way that the second matrix is simply the former rotated by 90°.

High Level
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Fig 3.2. Typical Sobel operator. The kernel origin is located at the centre and the arrows indicate the 

direction that each kernel measures. Gx convolves from left to right and Gy from top to bottom.

In general, each matrix computes the gradient in a specific direction and then these 

partial results are combined together to produce the final result using the equation 

above. It is the output of this absolute magnitude that the user sees. Each partial 

result computes an approximation to the true gradient by either using Euclidean 

distances or absolute differences. Absolute value computations are faster operations 

when compared to square and square-root operations. Thus, a way to speed up the 

process of calculating the gradient magnitude (Gm) is by summing the absolute 

values of the gradients in the Gx and Gy directions.

The Sobel operator is relatively slow to compute, but it has the advantage of being a 

large convolution mask and thereby smoothes the input image to a greater extent, 

thus making it less sensitive to noise. Typically it is used to find the approximate 

absolute gradient magnitude at each point in an input greyscale image. In the 

example below using Aphelion™ developer software, the colour information of the



J  McDonagh 2005; Chapters -  Automated screening approaches

original image is discarded and converted to greyscale prior to the application o f a 

Sobel filter, (Fig 3.3.).

Fig 3.3. Aphelion™ developer Sobel 

operator on a normal fundus image, 

edge detection is only performed on 

one colour plane.

3.2.2. M e d i a n  F i l t e r i n g

Random noise arises from statistical and other variations in pixel intensity values. 

Median filtering serves to remove this noise from an image by replacing each pixel 

in an image with the median value o f all the pixels in a selected neighbourhood 

mask. The median value m  o f the pixels residing within the selected area is the value 

in which half o f the population have a smaller value than m  and the other half a 

larger value. Very rarely would the median neighbourhood value compute to be the 

same as that o f the random noise value, Gonzalez and Woods 1992.

Fig 3.4. a) Original image, b). Median filter applied using Adobe Photoshop®.
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3 .2 .3 . C l u s t e r in g  A l g o r it h m s

A clustering algorithm attempts to find natural groups of data based on some 

similarity and group them into smaller sets. This is achieved by finding the centroid: 

the point whose parameter values are the mean of the parameter values of all the 

points in the clusters. The output from a clustering algorithm is basically a statistical 

description of the cluster centroids with the number of components in each cluster, 

Everitt 1977.

Input 
Raw Data

Output 
Grouped DataClustering Algorithm

Generally, the distance between two points is taken as a common metric to assess the 

similarity among the components of a population. The most commonly used distance 

measure is the Euclidean distance which defines the distance between two points p= 

(p\,p2, ....) and q = ( q i, q2,....) as :

d = 2  (Pi -
1=1

Clustering algorithms operate on the raw data set where the various clustering 

concepts available can be grouped into two broad categories:

*5} Hierarchial methods

These methods include those techniques where the input data are not 

partitioned into the desired number of classes in a single step. Instead, a series 

of successive fusions of data are performed until the final number of clusters 

is obtained.

*5} Nonhierarchial methods

These methods include those techniques in which a desired number of 

clusters are assumed at the start. Points are allocated among clusters so that a 

particular clustering criterion is optimised. A possible criterion is the

- 5 2 -



J  M cD onagh 2005; C hapter3  -  A u tom ated  screen in g  approach es

m inim ization o f  the variability w ithin clusters, as m easured by the sum o f  the 

variance o f  each param eter that characterizes a point.

3 . 3 .  N e u r a l  N e t w o r k s

Conventional com puters use an algorithm ic approach i.e. the com puter follow s a set 

o f instructions in order to solve a problem . These instructions are com piled in a high- 

level program m ing language. This is translated into m achine code so that the 

com puter can perform  the task set. The fundam ental problem  with this type o f  

approach is that unless the specific steps are know n the com puter cannot solve the 

problem. Neural netw orks, however, take a different approach to problem  solving 

than that o f  conventional com puters. They process inform ation in a m ethod which is 

crudely analogous to the hum an brain.

3 . 3 . 1 .  S t r u c t u r e  o f  T h e  h u m a n  b r a i n

The hum an brain is com posed o f  cells em bedded in a m ass o f  fine felt-like processes, 

named neuropil. Each individual nerve cell, or neuron, consists o f  a cell body from 

which a m ass o f  fine branching processes radiate, called dendrites. The signalling 

units in which m essages arrive via the dendrites are know n as axons, (Fig 3.5.).

a.

Dendrit

Axon \

/  Synapses

Fig 3.5. a) Anatomical image o f  human 
brain. A dapted from Images o f  the human 
brain 1999.

b) Basic schematic structure o f  a human neuron. 
Adapted from  Neura/Ware 1996.
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The function of these cells can be perceived by imagining each neuron as a simple 

micro-processing unit, which receives and combines signals from many other 

neurons through its input processing elements (PE’s), the dendrites. An action, be it 

from a thought or to create a movement of a body part can be interpreted as the 

output which requires a neuron to be fired along the axon or the output path. A 

chemical process within the brain path initiates an action and the output depends 

upon the strength of this signal, Martini 2001.

It is this functional process which NNW’s try to mimic.

3 .3 .2 . N e u r a l  n e t w o r k  s t r u c t u r e

A neural network is composed of a large number of highly interconnected processing 

elements (PE’s), which are analogous to the neurons of the brain and work in parallel 

to solve a specific problem, (Fig 3.6.). Its processing elements are modelled on the 

biological neurons of the brain with input paths analogous to the dendrites and output 

paths to the axons. A mathematical summation and transfer unit replaces the cell 

body. They learn by example and therefore cannot be programmed to perform a 

specific task. Examples must be chosen carefully otherwise the network might arrive 

at an incorrect answer. Because the network finds out how to solve the problem by 

itself, its operation can be unpredictable.

Neural networks are usually characterized in terms of the number and types of 

connections between individual PE’s and the learning rules applied when data is 

presented to them. The particular organization of neurons and connections is often 

referred to as the neural network architecture.
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a
O u tp u t la y er

f& V .

Input la y er

d)c)

Fig 3.6. A Neural Network is analogous to the human learning system, a) The brain consists 
o f  tens o f  billions o f  neurons densely interconnected; the processing o f  information in the 
neuron form s the basic memory’ mechanism o f  the brain, b) A neural network also has a 
large number o f  interconnected processing elements, c) Basic structure o f  biological 
neuron, d) Basic structure o f  a neural network processing element. (a,c,d A dapted from  
Neural Ware 1996)

Each individual neuron has a transfer function, typically non-linear, that generates a 

single output value from all o f  the input values that are applied to it. Every 

connection has a weight that is applied to the input value associated w ith the 

connection. The pow er o f  neural netw orks com es from their ability to learn from 

experience in that they learn to identify patterns by adjusting their w eights in 

response to data input. This process o f  learning can be supervised or unsupervised.

In supervised training each output unit is told what its desired response ought to be in 

association to the input signals. The difference betw een the known output value and 

the neural netw ork output value is used during training to adjust the connection 

weights in the network. The aim  is to determ ine a set o f  weights which will m inim ise 

the error betw een the desired and com puted unit values. W hereas unsupervised 

training or self-organised learning is where the N N W  identifies clusters in the input 

data and detects their em ergent collective properties based on som e m athem atical 

definition o f  distance. In either case, after a N N W  has been trained, it can be
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deployed within an application and used to make decisions or perform actions when 

new data is presented.

There are a multitude of different types of NNW’s, some of the more popular 

include:

^  Hopfield: a fully connected symmetrical two-layer recurrent network. The 

output of each processing element is coupled back to the inputs of every other 

PE except itself. The classic Hopfield network in fact is made up of three 

layers: an input buffer layer connected to a ‘Hopfield layer’ and an output 

buffer layer. Each layer has the same number of PE’s, Hopfield 1984; 

Hopfield and Tank 1986.

"51 Back-propagation (BP): These are the most widely used type of network 

due to its versatility. Generally it consists of three layers an input, an output 

and at least one hidden layer, Rumelhart 1986.

*5} Radial Basis Function (RBF): These are three layered networks consisting 

of an input, output and one hidden layer. The hidden layer is used to cluster 

the inputs of the network. Although they train faster then BP NNWs they are 

not as versatile, Schalkoff1997.

^  Adaptive Resonance Theory (ART): These networks consist of two fully 

interconnected layers. They store a set of patterns in such a way that when the 

network is presented with a new pattern it will either match it to a previous 

pattern or store it as a new pattern if entirely different from the patterns 

already stored. There are two general classes, one devised for classifying 

binary input patterns the other for analogue patterns, Carpenter and 

Gross berg 1988, 1987.

^  Kohonen or self-organising maps (SOM): are two layer networks that 

transform n-dimensional input patterns into an ordered z-dimensional map. 

Data are formed into clusters where similar patterns are projected onto points 

in close proximity to one another, Kohonen 1989.
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Another major advantage of NNW’s is that it is not strictly necessary to understand 

the solution of the problem for which the network is being applied to. Traditional 

computer programming requires a greater understanding of the problem so that the 

correct inputs, algorithms, and outputs can be implemented. A NNW on the other 

hand is shown examples of the correct output for a corresponding input. However, 

failure to include some critical inputs will result in the network failing to converge 

on the correct solution, NeuralWare 1996, Bishop 1995, Muller 1995, Stergiou 1998.

3 .3 .3 . A p p l ic a t io n s  o f  N e u r a l  N e t w o r k s

Neural networks offer ideal solutions to a variety of classification problems such as 

speech, character and signal recognition, as well as functional prediction and system 

modelling where the physical processes are not understood or are highly complex. 

The advantage of NNW’s lies in their resilience against distortions in the input data 

and their capability for learning. They are often good at solving problems that are too 

complex for conventional technologies. They have been incorporated into many 

genres including: Financial Prediction, Davalos et al. 1999, Moshiri et al. 1999, 

Wittkemper & Steiner 1996; General Science, El-Din et al. 2002, Abdul-Wahab et al. 

2002, Adams et al. 2001, Meusinger & Moros 2001, Murvai et al. 2001, Fariselli et 

al. 1999, Hierlemann et al. 1995, Wienke et al. 1995; Robotics, Ozkan et al. 2000, 

Dauffenback 1999; Manufacturing, Liu Y et al. 2001, Huang et al. 1999, Quan et al. 

1998 and in Medical diagnosis, Sardari et al. 2002, Gogou et al. 2001, Williamson et 

al. 1997, Gardner et al. 1996.
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3 .3 .4 . N e t w o r k  D e s ig n

The key to designing a successful neural network is to follow four basic steps: 

McCollum 1998.

75} Step 1. Purpose:

To have a definitive task for the neural network to perform. The performance 

can be compromised if the task or the data presented is not clearly defined.

*5} Step 2. Training:

Training examples are divided into inputs and target outputs. Network 

performance can be altered by changing a number of variables within the 

neural network architecture (discussed later).

*5} Step 3. Testing:

The best network performance during the training phase may not essentially 

be the best when presented with new data. Therefore, to be sure that you have 

the optimal network, it is necessary to present it with previously unseen data 

for a truer interpretation of its performance. If the results remain good, then 

the network is ready to use. If not, then retraining and retesting have to be 

repeated.

75} Step 4. Utilising:

Once the optimal neural network has been designed it is then ready to be 

integrated into a working environment.

3 .3 .5 . S e l e c t in g  a  N e t w o r k  A r c h it e c t u r e

The choice of which type architecture to use is dependent upon the problem to be 

solved and the data available. Back-propagation neural networks (BP NNW) are 

widely used due to their versatility. They can be applied to areas relating to data 

modelling, classification, forecasting, control, and pattern recognition. However, 

they are only practical in certain situations and when the correct data is available.

- 5 8 -



J  McDonagh 2005; Chapter3 -  Automated screening approaches

Below is a list of guidelines for when it would be more sensible to use an alternative 

approach to solving the problem:

75} If a flow chart or formula can provide an accurate representation of the 

problem then traditional programming methods are more appropriate.

75} If it is not possible to easily generate a significant number of input/output 

examples for the desired problem then it will be impossible to train a NNW to 

do anything.

75} If the solution to the problem is very discrete then it may be more practical to 

develop a suitably sized look-up table, which would be much simpler and 

more accurate.

75} If the desired output were to be a precise numeric value then a NNW would 

not be practical as they are not good at giving precise numeric answers.

Conversely, there are some situations where a BP NNW would be of advantage, for 

example when:

75} A large amount of input/output data is available, but it is difficult to simply 

relate it to the output.

75} The problem appears to have overwhelming complexity, but there is clearly a 

solution.

75} The solution to the problem may change over time, within the bounds of the 

given input and output parameters (i.e., today 2+2=4, but in the future we 

may find that 2+2=3.8).

75} Outputs can be fuzzy, or non-numeric.
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3 .3 .6 . T h e  b a c k - p r o p a g a t io n  A l g o r it h m

The typical back-propagation network is a multi-layer perceptron (MLP) consisting 

of: Stergiou & Siganos 1998.

75} An input layer, with nodes representing the input variables to the problem.

75} An output layer, where the nodes represent the dependent variables and what 

the output value should be.

75} And one or more hidden layers, with nodes to help capture the non-linearity 

in the data. There is no theoretical limit to the number of hidden layers to be 

used.

Each layer and its corresponding processing element(s) are fully connected to the 

succeeding layer and its associated PE(s), (Fig 3.6b).

For a neural network to be successfully trained in performing a specific task, the 

weights of each unit must be adjusted in order to minimise the error between the 

desired output and the actual output. This process requires the neural network to 

calculate how the error changes as each weight is increased or decreased slightly 

(.EA).

Each connection has an associated real number, which is called the weight of the 

connection Wo and is the weight of the connection from unit m to unit Uj. The pattern 

of connectivity characterises the architecture of the network and is represented by a 

weight matrix W whose elements are the weights Wij. Two types of connection are 

usually distinguished: excitatory and inhibitory. A positive weight represents an 

excitatory connection whereas a negative weight represents an inhibitory connection.

A unit in the output layer determines its activity by following a two-step procedure:

First, it computes the total weighted input Xj, using the formula:
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i

where yt is the activity level of the jth  unit in the previous layer and Wy is the weight 

of the connection between the ith unit and the jth  unit.

Next, the unit calculates the activity yj using some function of the total weighted 

input. Typically using the sigmoid function (transfer function):

1

Once the activities of all output units have been determined, the network computes 

the error E, which is defined by the expression:

L i

Where yj is the activity level of the jth  unit in the top layer and dj is the desired 

output of the jth  unit.

The back-propagation algorithm consists of four steps:

The first stage is to compute how fast the error changes as the activity of an output 

unit is changed. This error derivative (EA) is the difference between the actual and 

the desired output:

^i—r myrdi
7 *  Step 1

Secondly, it computes how fast the error changes as the total input received by an 

output unit is changed. This quantity (El) is the answer from Step 1 multiplied by the 

rate at which the output of a unit changes as its total input is changed:

&  t® dyj / x
J  ~  ~  X ~ d x ~  ~  3 7 j t1; y 3 a x j   step 2
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Thirdly, computes how fast the error changes as a weight on the connection into an 

output unit is changed. This quantity (EW) is the answer from Step 2 multiplied by 

the activity level of the unit from which the connection emanates.

dE cE &i
=  EI/Vi

v "'J   Step 3
EW- = — --------x — J-  = El v-

And finally, to compute how fast the error changes as the activity of a unit in the 

previous layer is changed. This is the crucial step as it allows back propagation to be 

applied to multilayer networks. When the activity of a unit in the previous layer 

changes, it affects the activities of all the output units to which it is connected. To 

compute the overall effect on the error all the separate effects on output units are 

added together. Each effect is simple to calculate, by multiplying the answer in Step 

2 with the weight on the connection to that output unit.

*  /  *  /   Step 4

Therefore, by using Steps 2 & 4, the E A ’s of one layer of units are converted into 

EA ’s for the previous layer. This procedure can be repeated to get the E A ’s for as 

many previous layers as desired. Once the EA of a unit is known, Steps 2 & 3 can be 

used to compute the EW ’s on its incoming connections. A back-propagation network 

is a known adaptive network as it is one which is able to change its weights, ie dW/dt 

not= 0.
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3 .3 .7 . T r a in in g  t h e  n e t w o r k

The development of a neural network to perform a specific task successfully requires 

careful planning and design. Overall there are several phases which should be 

followed to achieve this, (Fig 3.7.).

NNW
Maintenance NNW

Design

NNW
Implementation

NNW
Training

NNW
Testing

Fig 3 .7. Developmental cycle for a neural network.

Once the initial problem has been identified the next stage is to construct a neural 

network with the appropriate architecture to achieve that task. In this phase the 

number of PE’s for each layer is determined in addition to how the units are 

connected to one another, and the initialisation of the weights. The connections 

determine whether it is possible for one unit to influence another, while the weights 

specify the strength of that influence.

A three-layer network can be taught to perform a particular task by using the 

following procedure:

*53 Presenting the network with training examples which consist of a pattern of 

activities for the input units together with the desired pattern of activities for 

the output units.
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75$ Determining how closely the actual output of the network matches the desired 

output.

*5} Changing the weight of each connection so that the network produces a better 

approximation of the desired output.

By adjusting the weights on the connections between layers, the NNW output can be 

trained to match a desired output. If there is a difference between the actual and the 

desired outputs, the weights are adjusted on the adaptive / hidden layer to produce a 

set of outputs closer to the desired values. This training procedure is repeated until 

the network's performance no longer improves. At this point, it has either 

successfully learned the desired output or it has failed to learn all of the answers 

correctly.

There are specific features of a network that have a direct effect upon network 

performance for example the transfer function, the learning rule, the number and 

arrangement of hidden units and the number of training iterations. Preliminary 

investigations were performed altering these different variables and analyses carried 

out to determine the optimum parameter settings that would yield the optimum 

network performance in terms of its sensitivity and specificity, see Section 3.4.

3 .3 .7 .1 . T r a n s f e r  F u n c t io n

The transfer function is the component of a processing element through which the sum 

is passed to create the output. Some functions are designed to indicate only whether a 

PE can fire regardless of the magnitude of the net excitation by comparing this value 

to the PE threshold value. Typically there are three categories:

*5} Linear (or ramp)

The output activity is proportional to the total weighted output.
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75} Threshold

The output is set at one of two levels. Depending on whether the total input is 

greater than or less than this constant threshold value then some action takes 

place i.e. a neuron is fired.

75} Sigmoid

The output varies continuously but not linearly as the input changes. Sigmoid 

units bear a greater resemblance to real neurones than linear or threshold 

units, but all three must be considered rough approximations. The sigmoid 

function is a smooth version of a (0,1) step. Any smooth function can be 

used: the hyperbolic tangent (TanH) has a step of (-1,1) and has been utilised 

as a reliable alternative, (Fig 3.8).

m  = i

1 + e~

f(z) = er-e'­
er + e~'

Sigmoid

TanH

Fig 3.8. Sigmoid and hyperbolic tangent transfer functions fo r back-propagation. 
Adaptedfrom NeuralWare 1996.

Most applications using a back propagation technique utilise a sigmoid function.

3 .3 .7 .2 . L e a r n in g  R u l e

The learning rule enables the network to configure itself so as to achieve an output as 

close to the desired value as possible. There are four standard types of learning rule:
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*5} Error Correction

The calculated arithmetic difference or error between the desired solution and 

the networks solution at any stage during training is used to modify the 

connection weights so as to gradually reduce the global network error. The 

update of the weight matrix can take place after every example or can be 

accumulated over the whole example set followed by a single update: this is 

referred to as cumulative or epoch update.

75} Hebbian

Hebbian learning is where a connection weight on an input path to a 

processing element is incremented only if both the input and the desired 

output are high.

75} Boltzmann

The Boltzmann learning rule is similar in theory to the error-correction 

technique, however each processing element generates an output based on a 

Boltzmann statistical distribution. Thus learning tends to be slower.

75} Competitive

In competitive learning the processing elements are forced to compete 

amongst themselves. The PE that generates the strongest response in relation 

to the given input in a particular iteration invokes a change in the weights 

attached to it so that it becomes more like the input.

3.3.7.3. H id d e n  L a y e r

In general one hidden layer has been found to be sufficient in the construction of a 

NNW when applied to function approximation problems, Basheer 2000. The 

selection of the optimal number of hidden units within the layer is one of the most 

critical tasks within the neural network design. For the input and output layer the 

number of PE’s required is predefined by the problem to be solved and the data 

provided. The number of PE’s in the hidden layer can be varied to produce
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conflicting results. A network constructed with too few hidden PE’s would be 

incapable of differentiating between complex patterns leading to only a linear 

estimation of the actual trend. However a network with too many hidden processing 

elements would over generalise the task at hand. Furthermore, the greater the number 

of PE’s used the longer the network takes to train.

There are two general rules of thumb for determining the optimal number of hidden 

units required. The first is based upon the relationship between the number of 

training examples and the number of inputs given by the equation below:

H = # of training cases 
5 (m + n)

Where:

+ cases are the number of records in the training file.

^ m is the number of PE’s in the output layer.

+ n is the number of PE’s in the input layer.

H is the number of PE’s in the hidden layer.

The second is a trial and error approach. This involves training the network many 

times where each time the number of hidden units is incremented by a predefined 

factor until the new network achieves a poorer performance than the previous 

training phase. The incremental factor is then reduced and the number of hidden 

units decreased again until the network performance becomes worse. This process of 

increasing and decreasing the number of PE’s in the hidden layer is repeated until the 

optimal network performance is achieved. It is therefore good practise to combine 

these two techniques, firstly by calculating the estimated optimal number of PE’s in 

the hidden layer, then by adjusting the number of PE’s around this value until the 

best network performance is obtained.
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3 .3 .7 .4 . T r a in in g  It e r a t io n s

The number of epochs or times an example is presented to successfully train a NNW 

is determined by trial and error. Training for too long only serves to produce a 

network that is no better than a lookup table. If a network is larger than need be with 

respect to the training data set and as a result is trained on a relatively small number 

of data examples, over-training can result. Such networks are said to have 

memorized their training data and lack the ability to generalise.

The training examples can be presented to the network in one of two modes. The first 

mode is example-by-example training; where the weights are updated immediately 

after each example. On presentation of the first example the BP network applies both 

feed-forward and backward sweeps until either the error between the desired output 

and the calculated output falls to an acceptable level or until a specified number of 

iterations have been completed. Once this example has been learned the process is 

repeated for the next example and so on. The second method is to apply a batch 

training technique where all the examples are presented in a single iteration. The 

error is then calculated as an average of the global error and then back propagated 

accordingly. Again this process is repeated according to the number of training 

iterations; this is controlled by the epoch value.

There are advantages and disadvantages for both these techniques. In the example- 

by-example method one of its main advantages is that it requires smaller storage 

space for the weights compared to batch training, which requires a larger storage 

space. However, this does allow batch training to calculate a better estimate of the 

error with a more representative calculation of the required weight change. The 

performance of both method can be affected by poor examples; for batch training this 

can be alleviated by randomising the training examples between each epoch.

We used a commercial system for developing our networks (NeuralWare, 

NeuralWorks Professional II/Plus) as it offers a range of pre-programmed learning 

rules and transfer functions.
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3 .4 . A s s e s s in g  p e r f o r m a n c e  o f  a  d ia g n o s t ic  t e s t

The performance of a diagnostic test can be expressed as its ability to accurately 

detect those with disease against its ability to accurately detect those without disease. 

One method that is widely used in the medical literature is Receiver Operating 

Characteristic (ROC) curves, Zweig et a l 1993, Hanley & McNeil. 1983.

3 .4 .1 . R e c e iv e r  o p e r a t in g  c h a r a c t e r is t ic  c u r v e

An ROC curve is a plot of the true positive ratio (Sensitivity) against the false 

positive ratio (I-specificity) for each value of the diagnostic test, Hanley et al. 1982, 

Metz 1978.

An ROC curve demonstrates several things:

*5} It shows the trade-off between sensitivity and specificity (any increase in 

sensitivity is generally accompanied by a decrease in specificity).

73} The closer the curve follows the left-hand border and then the top-border of 

the ROC space, the more accurate the test.

73} The closer the curve comes to the 45-degree diagonal of the ROC space, the 

less accurate the test.

73} The area under the curve is a measure of test accuracy.

While considering the results of a particular test in two populations, a corresponds to 

a positive identification of a disease state (in this case the presence of sight 

threatening aspects of DR), and b corresponds to a negative identification (i.e. there 

are no sight threatening features of DR). It is rare to observe a perfect separation 

between the two groups. Indeed, the distribution of the test results will overlap, (Fig 

3.9.).
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CRITERIO N VALUE 
 ►

W ithout
disease / --------- With

S disease
/  TN / V TP \

s ' s' r N F l \ ^

Fig 3.9. ROC cut-off criterion distribution curves. Adapted from  
ROC curve analysis 1993.

For every possible cut-off point selected to discriminate between the two 

populations, there will be some cases with the disease correctly classified as positive 

(TP = True Positive fraction), but some cases with the disease will be classified 

negative (FN = False Negative fraction). On the other hand, some cases without the 

disease will be correctly classified as negative (TN = True Negative fraction), but 

some cases without the disease will be classified as positive (FP = False Positive 

fraction).

The characteristics of an individual test relative to its gold standard are quantified 

through the sensitivity and specificity. Where:

15} Sensitivity: is the probability that a test result will be positive when the 

disease is present (true positive rate, expressed as a percentage).

15} Specificity: is the probability that a test result will be negative when the 

disease is not present (true negative rate, expressed as a percentage).

The two measures are inversely related; an increase in sensitivity will often result in 

a decrease in specificity and vice versa. The optimum cut-off level depends on the 

diagnostic strategy. If the primary objective is to identify a disease meaning false 

negatives are to be minimised and a limited number of false positives is acceptable, a 

system with a high sensitivity and good specificity is required. If on the other hand, 

the objective is to make sure that every test positive is truly diseased (meaning no
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false positives, but limited amount of false negatives acceptable), the diagnostic 

system should have a high specificity and good sensitivity. The sensitivity and 

specificity can be calculated by:

S e n s it iv it y
_  a

S p e c if ic it y
d

a +b c + d

Positive

Likelihood

Ratio

Sensitivity
Negative

Likelihood

Ratio

_  I - Sensitivity
I - Specificity Specificity

Positive

Predictive

Value

a
Negative

Predictive

Value

d
a + c b + d

Table 3.1. Calculation equations fo r sensitivity and specificity

Where: a = correct identification of an abnormal feature.

b = wrong identification of abnormal feature. 

c = correct identification of normal feature. 

d = wrong identification of normal feature.

*5} Positive likelihood ratio', is the ratio between the probability of a positive test 

result given the presence of the disease and the probability of a positive test 

result given the absence of the disease, i.e.

True Positive rate
False Positive rate

*5} Negative likelihood ratio: ratio between the probability of a negative test 

result given the presence of the disease and the probability of a negative test 

result given the absence of the disease, i.e.

False Negative rate
True Negative rate
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13} Positive predictive value (PPV): probability that the disease is present when 

the test is positive (expressed as a percentage).

13} Negative predictive value (NPV): probability that the disease is not present 

when the test is negative (expressed as a percentage).

It is essential to use good quality images when testing and training a diagnostic test. 

Poor quality images reduce the tests ability to accurately classify features thus the 

overall performance of the system results in a low sensitivity and specificity.

3 .5 . S u m m a r y

Image processing techniques have the advantage of being able to manipulate images 

by deriving algorithms that allow the detection of discrete lesions associated with 

diabetic retinopathy. The benefits that arise from neural networks are that instead of 

just being able to detect lesions they can also be trained to identify discrete patterns. 

Thus they further provide a method of grading the progression of the disease.

Neural networks and conventional algorithmic computers are not in competition but 

complement each other. There are tasks more suited to an algorithmic approach like 

arithmetic operations and tasks that are more suited to neural networks. In essence, 

neural networks are mathematical constructs that emulate the processes people use to 

recognize patterns, learn tasks, and solve problems.

It would seem that the grading of DR images is such a widely varied task that a 

marriage between image processing techniques and neural networks should offer an 

efficient automated grading tool.
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C h a p t e r  4  - I m a g e  D a t a  S e t  F o r m u l a t io n

4 .1 . I m a g e  A c q u is it io n

Digital imaging is a broad term applied to the recording of images electronically 

where what we perceive as different hues of colour are converted into a set of 

numbers. These numbers can then be manipulated through computer software 

programmes. This opens up the opportunity for images to be transmitted across 

computer networks.

4 .1 .1 . D ig it a l  F u n d u s  P h o t o g r a p h y

Digital images are assigned numbers that correlate to the traditional black and white 

scale tonal values as taken from a photograph. Each tonal area is known as a pixel 

which is represented by a fixed number of bytes. Hence, the greater the number of 

pixels the greater the amount of computer storage required. When defining a pixel as 

a single byte grey scale value, white is represented by a value of 255 and black 0. 

The grey tones in between are divided into 255 equal steps. Similarly, when 

considering colour images these tonal steps are viewed in terms of the three primary 

colours (red, green and blue) the contribution of each again is expressed in the range 

of 0..255. Consequently, a colour pixel requiring 24 bits of computer storage space 

can be expressed as a value in the range of 0.. 16777215: depending upon the relative 

contribution of the RGB values.

4 .1 .2 . P h o t o g r a p h ic  P r o t o c o l s

Digital photography has been outlined as the preferred modality for supplying a 

cost-effective national screening strategy for diabetic retinopathy between 

departments within the United Kingdom, National Screening Committee 2004.
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It was proposed that a digital photographic modality should conform to the standards 

set by the EURODIAB protocol that requires 2 x 45 (or 50) degree fields of the 

retina to be acquired, Aldington SJ et al. 1995, ETDRS1991.

The limitation on resolution in a digital system is determined by the physical size and 

quantity of pixels per degree. To record information, a feature needs to cover more 

than half the pixel, ideally covering several pixels for a more accurate representation 

to be recorded, National Screening Committee 2004.

4.1.3. D ig it a l  F u n d u s  C a m e r a  S p e c if ic a t io n s

A review of the available leading manufacturers digital fundus cameras was 

undertaken at the outset of the project. The fundamental specifications at this time 

included:

^  Camera resolution and Field o f View:

^  Does the camera provide enough resolution, which would allow the 

screener to identify the smallest of lesions that they would have detected 

had they been viewing through a direct ophthalmoscope?

Does the camera’s field angle encompass the angles recommended in the 

current standards?

*5} PC platform:

Does it support Windows thus enabling custom written software to be 

installed and run independently on the camera’s PC for the automatic 

image classification after acquisition?

Can the systems be networked allowing images to be reviewed at a single 

site by one ophthalmologist?

15} Software handling:

fr Is there an archival system to be used for storing patient information 

details and photographic record data?
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-$■ Source Code. Does the system provide access to the raw data files for the 

images thus permitting low level image processing algorithms to be 

applied to the images?

The available cameras assessed at this time were:

*5} OCULab /Zeiss FF 450IR Fundus camera:

4/ In this system the images were automatically digitised through an 

attached Sony three-chip CCD digital camera. The fundus camera can 

acquire images covering a field of either 50°, 30° or 20° with a resolution 

of 1534x1024 pixels in addition to a viewing magnification of l lx,  19x 

and 30x.

The OCULab system provides a range of image enhancement and pre­

processing features alongside an inbuilt patient information database. 

Archiving can be achieved through either CD or MOD (magneto optical 

disc). Furthermore the OCULab system allows access to the ASCII data files 

thus allowing the transfer of raw data to be imported in spreadsheets, 

databases or indeed other software applications and has full Windows support 

for peripheral devices.

^  IMAGEnet/ Topcon TRC-NW6 series Fundus camera:

"“y” Images can be digitised through the integration of either a Nikon or Fuji 

CCD digital camera, therefore pixel resolution would be defined by the 

chosen camera’s specifications. The fundus camera offers two fields of 

view, 45° or 30°.

IMAGEnet accompanying software provides a range of image enhancement 

programs and panoramic imaging of the retina through the application of its 

mosaic tool. It supports the acquisition, storage (via CD-ROM), retrieval and 

analysis of a variety of ophthalmic images. Operates with Windows 95 onwards 

and has Network capabilities installed.
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RIS /  Clement Clarke Canon CR6-45N Digital Fundus camera
^  Images can be digitised through the integration o f a Canon CCD digital 

camera, therefore pixel resolution would be defined by the chosen 

camera’s specifications. The fundus camera offers two fields o f view, 45° 

or 30°.

RISLite (Retinal Imaging Solutions) is a digital imaging software platform which 

acquires, stores, retrieves and provides image analysis solutions specifically designed 

to interface with the Canon fundus camera.

The OCULab system was finally chosen as it had the added advantage that it 

provided direct access to the low level software, (Fig 4.1.)

Fig 4 .1. OCULab digital fundus camera system at GGH.
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4 .2 . I m a g e  H a n d l in g

Images were acquired by the two trained Ophthalmic photographers at the Diabetic 

Review Clinic, Tennent Institute of Ophthalmology based in Gartnavel General 

Hospital, Glasgow UK. A purpose written software programme was developed using 

Borland Delphi for the integration of the digital fundus images with Neural 

Networks. The Diabetic Retinopathy Image Classification Programme (DRIC) was 

custom written to incorporate pre-processing image enhancement algorithms and 

designed with the overall prospect of providing an automated classification result for 

the patient being reviewed. Details of the features developed within the DRIC 

programme are described in this chapter; in addition a test version is also included 

along with the program source code (see attached disc).

4 .2 .1 . B o r l a n d  D e l p h i

Delphi is a high level programming language that supports structured and object- 

oriented design. Its benefits include easy-to-read code, quick compilation, and the 

use of multiple unit files for modular programming.

Delphi allows the creation of programmes and provides the capacity to quickly 

develop applications. Programmes are usually divided into source-code modules 

called units where each unit is stored and compiled separately. Thus large 

programmes can be divided into smaller modules that can be edited separately.

4 .2 .2 . D ia b e t ic  R e t in o p a t h y  I m a g e  C l a s s if ic a t io n  P r o g r a m m e

The DRIC programme was developed as a robust system which would be able to 

offer image processing algorithms and neural network classifications. This involved 

designing a system that would be capable of extracting, classifying and retaining 

information from the images. Constructing datasets for training and testing purposes. 

Finally allowing comparison between any feature enhancement algorithms that may
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be applied to the images. The source code written for the programme was the 

author’s own work.

The current programme consists of 17 interconnecting Units, 1 parent form and 7 

child forms, (Fig 4.2.). A summary of each unit’s function can be seen in Table 4.1.

D ia b e t ic  R e t in o p a t h y  I m a g e  C l a s s if ic a t io n  P r o g r a m m e

F u n c t io n c h a r t

F il t e r  F o r m

R O C  F o rm
C ir c l e

(single Image)

P referen ce  s F orm

C o n ta ct  F o r m
(multiple Images)

T ool F orm

A bo u t  B ox
Fig 4.2 a).
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D ia b e t ic  R e t in o p a t h y  I m a g e  C l a s s if ic a t io n  P r o g r a m m e  
P r e f e r e n c e s  F u n c t io n s  C h a r t

Set value for number 
o f images to be 

displayed in contact 
strip

R O C  cut-off value
(Set NNW ait-off value to achieve 
the b es t sen; itivity & specificity far 

feature classification)

C ontact Sh eet

Classification Parameters
(set NNW classification values fcr 

each feature before creating network 
training and testing files)

P reference sF orm

CLASSIFICARON PARAMETERS

Fig 4.2b.
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D ia b e t ic  R e t in o p a t h y  I m a g e  C l a s s if ic a t io n  P r o g r a m m e  

T o o l  F o r m  F u n c t io n s  C h a r t

Im a g i n g  T a b
(dataset archiving)

Save

Disc

Grid Undo Open

Blue Filter

Red Filter

Zoom

Sob el Filter

Histogram

Clear Grid

Close Data

Load Data

Save Data

Disc Analysis

Erase Selection

Green Filter

T o o lb a r

F il t e r s  Tab
(Image pre-processing)

De c Im g  Tab
(Image classification)

Classify  Tab
(defiles feature selection)

Fig 4.2c.
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Unit Name Form Name Purpose o f Unit

About AboutBox
{Child Window)

Contains procedures for the creation /closing 
and running of the AboutBox display.

Circle ChildWindow
Holds child window global variables/ types, 
creates display boxes on mouse down events, 
responsible for opening current image.

Contact ContactForm
{Child Window)

Contains procedures which create/closes & 
highlights an image in the contact form. New 
procedure for batch filtering throughout all 
images in the contact.

DataFuction Open NNW test set and results file to pull back 
image and find problem areas for the network.

Decimatelmage Dissects fundus images into 20x20 sequential 
boxes for full image classification.

DiscAnalysis

Creates an array to store the circumferential 
pixel values around the disc at interchangeable 
diameters, for later analysis of normal discs 
against discs exhibiting new vessel growth.

Filter Contains procedures for performing image- 
processing filters on a selected image.

FilterDisplay FilterForm
{Child Window)

Creates and closes histogram form for the 
display of RGB colour distribution throughout a 
selected image.

ImageArchive

Contains Save/Load/SaveASCII Data 
procedures, which allow the saving and loading 
of dimension (*.dim) files to be used for the 
creation of neural network training and testing 
(*.nna) files.

ImageFunction

Extracts pixel RGB info from image within a 
selected cell, the classification & its top left XY 
co-ordinates and stores the entire information 
including image name in arrays with 9 
variations of the cell.

MainForm Main
{Parent Window)

Create child form applications, hold global 
variables, reacts to mouse movement on screen.
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Unit Name Form Name Purpose o f  Unit

OpDisplay

Contains all display procedures from previously 
saved dim & nna files, redraws classified cells 
and NNW misclassified cells back onto its 
associated image.

OpticDisc Calculates the location of the Optic Disc and 
macula for each fundus image.

Preferences frmPreferences
{Child Window)

Creates and closes pref. form. Factors that can 
be altered, no. of images per row in contact 
strip, classification value (must be changed 
when saving nna), NNW cut-off value k.

ROCUnit ROCform
{Child Window)

Contains the code to draw a ROC curve graph. 
Plots the sensitivity & specificity of a trained 
network & outputs the results on the graph.

TiffToBmp Converts Oculab tiff images to bitmaps.

Tools ToolForm
{Child Window)

Contains all shortcuts to each feature that you 
wish to perform on an image from classifying 
images to saving test and dim files.

Table 4.1. D iabetic  R etinopathy Im age C lassification P rogram  unit sum m ary

4 .2 .2 .I .  M a in  /  P a r e n t  F o r m

At the outset the user is presented with a blank form providing them with menu 

options for the links to the tasks available through the programme, (Fig 4.3.). The 

key areas of interest are housed within the ‘File’ and ‘Preferences ’ dropdown menus.

The programme allows the user to review a single image at a time or multiple 

images. The number of images displayed on each row of the contact strip is governed 

by the preferences form accessed via 'Show Preferences'.
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f©  llr t« n « l tmAgtfK) I’

Fig 4.3. Screenshot o f main form  displaying options in a). File menu. b). Preferences menu.

4 2 .2.2. P r e f e r e n c e s  F o r m

The preferences form provides the user witli the option o f manually changing the 

default values and saving those changes if so desired, {Fig 4.4.). Changing the value 

to a higher or indeed a lower value via the spin-button can alter the number o f 

images displayed on each row o f the contact strip, bearing in mind that as the number 

o f images in a row increases the thumbnail o f the image displayed decreases.

;E o ii« *5 h iiiij|  image | ToolFom) Gasification Paameteis] Contact Sheet j Image | ToolFonn Classification Patarinetets j

|S _ t| Numbei ol Images pet Row

(--------------------
Retina:

Vessel:

m
FU

|50 _ ij ROC setting

Haemoiihage
F I

Exudate:
F H

New Vessels F H

F  Save as Default r  Save as Default

Fig 4.4. Screenshot o f the two main option tabs in the preferences form a), sets the number oj 
images displayed in each row of the contact strip, b). Offers the option to change the default feature 
identification tag and the default neural network cut-off values (which assumes anything below the 
set value is a normal feature and anything above is abnormal).

In addition feature identification tags can be altered from their default values for 

NNW training purposes. For simplicity it is better to work between normal (0) and 

abnormal (1) classification tags when training the NNW. Therefore when creating
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neural network training files (*.nna) these default values can be altered if necessary. 

During the training and testing process the NNW assumes that anything over a value 

o f 0.5 is an abnormal feature and anything under is normal. However, this may not 

strictly be the best value in terms o f achieving the best network performance. 

Therefore the Receiver Operator Curve (ROC) spin button allows the optimum cut­

off value to be reset after ROC analysis, Chapter 3.4.1.

4.2.2.3. R e c e i v e r  O p e r a t i n g  C h a r a c t e r i s t i c  c u r v e

In order to assess the optimum cut-off value between a normal or an abnormal 

feature the relative sensitivity and 1-specificity o f each trained network was plotted 

on an ROC curve. This feature was custom written into the DRIC programme and is 

accessed from the Main Menu / Preference / ROC Graph, (Fig 4.5.).

Fig 4.5. Screenshot o f active ROC curve, displaying results taken from a trained 
neural network. The relative values of sensitivity/specificity are displayed in 
relation to the mouse position on the graph and outputted in the bottom right oj 
the window. The complete range o f sensitivity v specificity in 0.01 increments can 
be calculated and saved via the text ’ button.

The relative values for each point along the curve are displayed on screen 

corresponding to the current mouse position as it traces along the line o f the curve. 

The optimum cut-off value is determined when the curve directly crosses the 

diagonal line plotted between y = 1 & x = 1 (green dashed line depicted in graph). 

Thereafter, the specificity begins to fall and the test becomes more unreliable. In
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practical terms this would mean that a larger number o f patients who were not 

displaying sight-threatening features o f DR would be unnecessarily referred.

In addition to the visual display o f the ROC curve, the calculated values for both the 

sensitivity and specificity at each cut-off value from 0 to 1 in increments o f 0.01 is 

saved as a separate text file. The analysis o f these files allows the operator to assess 

the optimum cut-off value to yield the highest sensitivity and specificity for specific 

features.

4.2.2.4. C h i l d W i n d o w  /  C o n t a c t F o r m  -  D i s p l a y i n g  a n d  p r o c e s s i n g  i m a g e s  

ria." * ct' .icsa— — ^ « M s i

<: J WI  f i r  r» f m&x  W i l‘My * f m ism  TJS4C4

Fig 4.6. Screenshot o f contact strip and overlying image chosen fo r  assessment. Green 
hotspot depicts which image is chosen.

The units that directly govern the ChildWindow and ContactForm are circle.pas and 

contact.pas. These units provide code relevant to the selection and manipulation o f 

the selected image(s).

Once the user has selected the file location o f their fundus images to be viewed / 

analysed, the images are displayed on screen, (Fig 4.6.). From the contact strip only
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one image at a time can be selected for the purposes o f manual classification. Once 

an image has been selected the user can then open the ToolForm.

4 . 2 .2 .5 .  T o o l F o r m

Classify | Filters ) D eel mg )

Imaging ] Classify [ D eel mg ]

Li*
UL Set Scaning Radius:

M

c)

Vessels:

H aemorrhages:

E xudates:

Normal Retina:

Optic Disc:

NVD:

NVE:

Selected Cells:

; Total Data Set:

Coordinates: 291. 13:2582527

Imaging ) Classify | Filters D eel mg j

ra

H aemorrhages:

Normal Retina:

Selected Cells

T otal Data Set

d)
Coordinates: 340. 1 37

Fig 4. 7. Individual screenshots o f each of the four tab features of the ToolForm.

The ToolForm provides access to the main features provided in terms o f the 

classification o f the fundal images. It is sub-divided into four parts, (Fig 4.7.):

*5} I m a g i n g  tab:

The eraser tool restores the image back to its original state, hence removing any 

selected features or undoing any image processing filters that may have been 

performed on the image. The magnification tool is for closer investigation of 

the smaller features on the image. The final three buttons enable access to 

opening previously saved classification files (*.dim) and the saving o f  neural 

network (*.nna) / *.dim type files.
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^  Classify tab:

This allows the random selection of the key features such as retina, vessel, 

exudates, haemorrhage etc. By clicking the left mouse button on the image the 

user is then identifying that central pixel and the surrounding pixels (covering 

an area of 20 x 20) as being a specific feature. A record of how many features 

have been selected is also displayed beside each one. The position of the mouse 

pointer is outputted at the bottom of the form.

*5} Filters tab:

Commencing with the buttons at the top, the first option is for the display of a 

histogram depicting the RGB colour distribution throughout the selected image. 

The second histogram style button is for saving the radial pixel colour 

information of the optic disc for analysis purposes. The third button is for 

saving individual neural network ASCII files (*.nna), however this is more as a 

debug feature. The ‘S’ button performs a Sobel filter on the current image. 

Finally the last four buttons enable the image to be viewed in terms of its red, 

green and blue components or returned to its original RGB combined state.

^  Declmgtab:

This provides the option for dividing the image into 20 x 20 pixel width boxes 

by superimposing a grid over the top of the image. In addition, there is an 

option to toggle between the original image and the ‘grid’ image without losing 

any of the selected cell information. The choice of which normal and diabetic 

retinal feature to be classified has to be pre-selected before classifying each 

cell. A cell to be associated with whichever feature selected at that time is 

chosen by highlighting that cell with the hotspot. There is also an undo button, 

which will delete the last selected cell. Each time a cell is classified the 

numerical display is updated keeping a tally of how many cells have been 

classified under the umbrella of each specific feature. Feature classification 

*.dim files can be created and saved. The position of the mouse pointer is 

outputted at the bottom of the form.
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The image processing filters, data set saving and feature detection routines can be 

accessed as group or batch functions and as such can be automatically performed on 

all o f the images in the contact sheet. The main advantage o f this feature is for a 

more efficient and quicker process o f creating the neural network ASCII files. 

Accessed via the MainForm toolbar this option is available only when the contact 

sheet is active and no other image has been selected for investigation, (Fig 4.8.).

VMBBn

Fig 4.8. The BatchFunction menu provides the option to perform image manipulation filters on a group 
o f images, find and save the optic disc co-ordinates o f all the images or create neural network files for all the 
images. It is onlv active when no individual images are heinv viewed.

Development o f the automated screening programme followed the flow chart, (Fig 

4.9.).

D ia b e t i c  P a t ie n t  
A n n u a l R e v ie w

D ig ita l  F u nd u s  
p h o to g ra p h y

I m a g e  p r e - p r o c e s s in g

R O C  G r a p h  a n a ly s i s  o f  
NNW performance

N e u r a l  N e tw o r k  C la s s i f i c a t io n

N N W  R e tin a l F ea tu re  T r a in in g  and T e s t  
f i le  cr ea tio n

F u ll  I m a g e s  g r a d e d  in  c o l l a b o r a t i o n  
w ith  C o n su lta n t O p h th a lm o lo g is t

D ia b e t ic  R e t in o p a th y  I m a g e  C la s s i f i c a t io n  

P r o g r a m m e

Fig 4.9. The diabetic retinopathy screening process.
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4 .3 .  D i g i t a l  F u n d u s  I m a g e s

Digital fundus images were acquired from the Diabetic review clinic based in the 

Tennent Institute o f Ophthalmology at Gartnavel General Hospital (GGH) and were 

representative o f random age populations. The attending ophthalmologist initially 

graded each image and completed a classification form for each patient they referred 

(Fig 4.10.). Details recorded included the patient name and hospital number solely 

for image retrieval purposes, a classification o f the severity o f the disease for each 

eye and whether the patient had undergone previous photocoagulation treatment. The 

images were subsequently graded by a specialist consultant ophthalmologist to 

address inter observer variability. These classifications can be seen in Appendix I.

O f the patients referred who had prevously undergone laser treament, only untreated 

areas displaying neovascularisation were extracted for training purposes: treated 

areas were not included in the data set. The effects o f laser photocoagulation are 

illustrated in Fig 4.11., initially the treated areas appear as brown circular lesions, 

(Fig 4.11a.). As the retina begins to heal the lesion fades. However the retina never 

returns to its original hue as when the laser beam interacts with the retinal tissue in 

addition to being absorbed by the retinal haemoglobin supply a certain amount o f the 

beam is absorbed by and hence destroys the retinal pigment, thus leaving these areas 

hypo pigmented. Therefore the laser burns remain as pale lesions which could be 

misclassified as areas o f exudates or cotton wool spots, (Fig 4.1 lb).

Fig 4.11. a). Peripherally laser treated retina, dark brown lesions are areas recently 
photocoagulated, b). White arrows indicate areas of retina which have undergone photocoagulation 
treatment. At the outset the burns appear as brownish lesions, as they heal they become paler and 
could be mistaken for a cotton wool spot or exudates (blue arrow) by a neural network.
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B r it is h  D ia b e t ic  A s s o c ia t io n

Diabetic Retinopathy Study

Ophthalmologist:

Date:

Please send Patientfor photography i f  they hare:

R I

Maculopathy □ □
New Vessels a t Disc □ □
New Vessels Elsewhere □ □
Pre-Prolijerative Retinopathy □ □
Proliferative Retinopathy □ □
Background Retinopathy

Has had previous laser treatment? Y/N

□ □

Affix Patient Details 
Nax&

H o s p h a l N o .:

D O B :
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4 .4 .  F o r m u l a t i o n  o f  D a t a  S e t s

To make the training process faster each image was dissected into 1110 boxes, each 

o f which was 20 x 20 pixels, (Fig 4.12.,4.13.). If the NNW were to be trained on the 

full image the overall training period would take days due to the large number o f 

inputs and multiple outputs required. This would result in poorer sensitivities and 

specificities due to the large variance in features associated between individuals. 

Therefore it was decided to apply a multiple NNW approach and to dissect the image 

into localised areas. Each box would contain enough information to identify a feature 

while at the same time not requiring too many inputs that would slow the overall 

NNW training time. Boxes around the circumference o f the retina and those 

containing the dark background were excluded from the data set; these areas 

accounted for 228 boxes. The remaining 882 boxes were manually classified as being 

normal retina (0), normal vessel (1), haemorrhage (2), exudate (3), cotton wool spot 

(4), venous abnormalities (5) and new vessels elsewhere (6).

Haemoirhages

Ncamai Retina

Total Dala Set:

Fig 4.12. Each image is dissected into 20 x 20 pixel cells. The cells are then classified and 
assigned a character to show which type o f feature resides within that area.

-9 1  -



J  McDonagh 2005; Chapter4  -  Image data set formulation

Fig 4.13. Magnified view of four classified 
cells. Each cell contains 400 individual 
pixels.

The co-ordinates and classification codes for each feature were saved as dimension 

files (*.dim) for each image, hence permitting this information to be recalled at a 

later date for the construction o f the neural network files.

Table 4.2. illustrates the number o f images and the number o f features collectively 

identified within these images. These images were used to form the NNW training 

and testing data sets and the final system validation. At this stage we concentrated 

our efforts on detecting the more abundant features associated with diabetic 

retinopathy.

System Training & Testing
Number o f Images & Classification Feature Number o f features
NNW training data set:

normal digital fundus images: 70 
diabetic retinopathy digital fundus images: 70

Retina 8864
Vessel 28533
Exudate 3900
Haemorrhage 8228
New Vessels 334

NNW test data set:

normal digital fundus images: 30 
diabetic retinopathy digital fundus images: 30

Retina 3799
Vessel 12228
Exudate 1671
Haemorrhage 3526
New Vessels 143

System Validation
Number o f Images & Classification Feature Number o f features
Maculopathy: 11 
N ew Vessels at optic disc: 17 
Background diabetic retinopathy: 28 
Normals: 58

Retina 4834
Vessel 4456
Exudate 1207
Haemorrhage 1072

Table 4.2. No of images collected fo r each classification
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NNW training and testing files were generated through the batch function procedure 

which opened the associated *.dim files for each image in the contact strip. The 

information incorporated in the neural network ASCII files were the 400 pixel colour 

values as the network input variables and the classification code used as the network 

output value; an example of a single classified feature can be seen in Appendix II. A 

comment line is included which is invisible to the network but provides the name of 

the image and the feature co-ordinates for later use.

4.5. S u m m a r y

This chapter provides details of the specifications of the digital fundus camera 

selected and the collection and integration of images acquired. Details are provided 

of the custom written Diabetic Retinopathy Image Classification programme. This 

programme was developed to enable training and learning data sets to be 

automatically created in a syntax that was translatable to Neural Networks. In order 

to assess the optimum cut-off value between a normal or an abnormal feature the 

relative sensitivity and 1-specificity of each trained neural network a receiver 

operating characteristic curve feature was also incorporated into the DRIC 

programme. Other features of the DRIC programme include pre-processing image 

enhancement algorithms and the automated identification of the optic disc and 

macula. These will be discussed in detail in Chapter 5.
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C h a p t e r  5  -  P e r f o r m a n c e  T e s t i n g  o n  M a i n  R e t i n a l  C o m p o n e n t s

The benefits and procedures for diagnosing and the screening o f diabetic retinopathy 

have been well recognized and guidelines have been set, ETDRS 1991.

The main objective when assessing the progression o f DR is to identify the key 

features associated with the disease and to weigh up the severity o f these features 

through their quantity and location. Therefore it is important to be able to identify 

normal retinal features i.e. the macula, optic disc and vessels as well as the abnormal 

features such as exudates and haemorrhages.

5 .1 .  N o r m a l  B a c k g r o u n d  R e t i n a

If laid flat the normal human background retina is fairly uniform in colour and tone. 

However, in-vivo, the retina is technically not spherical it is a thin layer on the 

surface o f a sphere and as such its uniformity is affected by discrepancies in 

illumination. Consequently, this may affect the performance o f feature recognition 

algorithms. To minimise the adverse effects o f this a Sobel matrix was applied to the 

green plane o f images within the test and training data sets. This enhanced the 

features within the image (Fig 5.1.).

O  R e tin a l lin aq in fl P io c e t^ o !  H R E S I O  R e tin a l Im aging  P io c e s s o f  H P 1 P

File £d& Images Window Help £ fe  £<# Images Window tfd p

Current Fie: C \Jo\PhD \F)HD images'Js0025zl bgndbm p Fie Size 311124 bytes Current Fie: C:\Jo\PhD\PHD images VJs0025zl bgndbm p Fie Size: 311124 bytes

Fig 5.1. a). RGB digital fundus image before processing, b). Post processed image with Sobel 
filter on green plane.
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5 . 2 .  L o c a t i n g  t h e  O p t i c  D i s c

Anatom ically, the hum an optic disc is elliptical in shape and although it varies in size 

from person to person it has a typical vertical diam eter o f  1.5mm. In order to 

standardise the size o f  the optic disc as captured by the digital cam era a random  

selection o f  50 fundus im ages were analysed from the group o f  100 norm al images.

The average w idth, height and standard deviation was calculated, the resultant optic 

disc region o f  interest (ROI) had a diam eter o f  90 pixels. We applied two approaches 

to autom atically detect the optic disc, both techniques were based on taking 

advantage o f  the brighter hue o f  the disc against the m ore uniform  orange o f  the 

retina. The first approach was by custom  w riting a piece o f  code in Delphi, the 

second was to em ploy a com m ercial pre-processing system  A phelion1M.

5 . 2 . 1 .  M e t h o d  1 -  c u s t o m  w r i t t e n  s o f t w a r e

An optic disc detection feature was w ritten into the DRIC program m e, (Fig 5.3.). In 

each image a sub box o f  equivalent dim ensions to the optic disc (O Sq) was scanned 

across the image in 20 pixel increm ents. For each stopping pixel (P) the TopLeft 

(i/,ji) & Bottom Right (12J 2) co-ordinates were stored in an array in addition to the 

corresponding 8100 RGB pixel colour values o f  the image: the position o f  the OD 

was initialised w ith Osq rms = 0 and P(,■/,//), Pu2j 2 ) co-ordinates o f  (0,0), (0,0). The

Therefore: Width = X 2 - X j

& Height =Y 2-Y,

the four widest points o f  the optic disc, (Fig 

5.2.).

obtained by positioning the m ouse pointer at

For each o f  the 50 im ages chosen the 

relative w idths and heights were calculated 

by subtracting the v and y  co-ordinates

Fig 5.2. Calculating average dimension o f  
optic disc taken form  four widest points.
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location o f the optic disc was determined by calculating the root mean square (RMS) 

value o f the associated box:

OSq r m s  =SQRT (ZPRGB / 8100)

For each subsequent box the location o f the optic disc was altered only if the Osq rms 

value was greater than the preceding value. Thus the remaining values contained 

within the Osq r m s  array corresponded to the location o f the OD.

Fig 5.3. Screenshot taken from  
DR1CP, location o f the optic disc 
is highlighted by encircling it with 
a blue ring fo r visual 
confirmation.

5.2.2. M e t h o d  2 -  c o m m e r c i a l  s o f t w a r e

The second method was to employ a commercial image-processing package 

(Aphelion™ 2.2 developer): the source code can be viewed in Appendix III.

Initially the RGB images were converted to HIS, next the intensity image was 

extracted and the image ID label excluded from the bottom. An optic disc ROI o f 

90x90 pixels was scanned across the image within a predefined area with a starting 

point o f (80xi, 80yi) and ending at (619x2, 419y2). The location o f the OD was 

identified as the region with the highest percentage threshold based on the (max-min) 

value within the ROI, (Fig 5.4.).
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Fig 5.4. Screenshot taken from  
Aphelionni disc detection macro 
where the white rectangle 
illustrates the ROI in relation to 
the centre o f the disc.

5 .2 .3 .  A u t o m a t e d  O p t i c  D i s c  F i n d i n g s

A collection o f fundus images were classified into two subgroups by an experienced 

ophthalmologist, G1 ~ normals, G2 ~ background DR. There were 100 posterior pole 

views ensuring good definition o f the optic disc and macula in each group. G1 

contained a 57 / 43 mix o f left and right eyes, while G2 had a 53 / 47 split. The actual 

location o f the disc was manually depicted and co-ordinates saved by a mouse-down 

function incorporated into the DRICP. The accuracy o f each technique, Tables 4.1. & 

4.2., was expressed as a result of the difference between the actual co-ordinates (id. 

jet) and the automated co-ordinates (it.ji):

r = S Q R T  ( ( / , - / „ ) 2 -H ii-P )2)
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OD’s in Normal Images

I No Actual Co-ords DRICP Aph
Id .id i1 j1 ' r1 i2 j2 r2 Mean r r1-r2

1 225 124 231 139 16 232 135 13 14.5 3
2 189 96 191 102 6 190 101 5 5.5 1
3 228 82 225 89 8 231 87 6 7 2
4 211 141 219 144 9 219 143 8 8.5 1
5 226 121 217 123 9 235 121 9 9 0
6 212 519 209 513 7 211 512 7 7 0
7 145 127 137 140 15 149 138 12 13.5 3
8 235 174 227 185 14 231 184 11 12.5 3
9 290 169 291 171 2 291 169 1 1.5 1
10 244 488 249 481 9 248 482 7 8 2
11 269 103 271 107 4 273 109 7 5.5 -3
12 260 477 257 441 36 250 443 35 35.5 1
13 248 152 255 164 14 253 162 11 12.5 3
14 198 559 181 546 21 180 548 21 21 0
15 244 479 253 467 15 247 471 9 12 6
16 293 86 297 92 7 297 92 7 7 0
17 209 509 203 471 38 210 472 37 37.5 1
18 251 107 254 143 36 251 142 35 35.5 1
19 255 160 242 163 13 259 168 9 11 4
20 217 491 211 490 6 210 490 7 6.5 -1
21 226 479 229 476 4 230 475 6 5 -2
22 212 100 218 101 6 217 97 6 6 0
23 233 420 217 412 18 228 402 19 18.5 -1
24 235 213 222 223 16 243 225 14 15 2
25 226 170 205 183 25 235 174 10 17.5 15
26 239 530 233 522 10 233 522 10 10 0
27 248 116 257 125 13 255 123 10 11.5 3
28 236 114 235 123 9 235 122 8 8.5 1
29 181 520 157 521 24 179 526 6 15 18
30 229 113 231 111 3 235 117 7 5 -4
31 205 392 207 393 2 207 390 3 2.5 -1
32 187 516 184 510 7 184 510 7 7 0
33 227 101 233 109 10 231 107 7 8.5 3
34 266 411 261 398 14 262 398 14 14 0
35 186 89 203 101 21 197 107 21 21 0
36 214 458 217 454 5 217 455 4 4.5 1
37 236 200 251 191 17 251 188 19 18 -2
38 208 151 209 161 10 211 153 4 7 6
39 212 515 195 511 17 216 516 4 10.5 13
40 233 494 212 478 26 210 477 29 27.5 -3
41 212 99 219 121 23 220 119 22 22.5 1
42 201 549 183 554 19 197 535 15 17 4
43 217 189 228 191 11 227 188 10 10.5 1
44 271 564 284 549 20 283 548 20 20 0
45 291 153 299 163 13 299 162 12 12.5 1
46 251 208 253 220 12 253 219 11 11.5 1
47 188 538 197 530 12 195 529 11 11.5 1
48 236 524 249 510 19 249 510 19 19 0
49 203 521 213 490 33 212 490 32 32.5 1
50 251 103 259 135 33 259 112 12 22.5 21
51 209 462 205 453 10 205 453 10 10 0
52 215 180 211 187 8 211 185 6 7 2
53 209 515 215 510 8 215 510 8 8 0
54 183 79 183 110 31 185 94 15 23 16
55 223 517 235 495 25 233 495 24 24.5 1
56 251 128 257 142 15 257 142 15 15 0
57 247 162 251 173 12 252 180 19 15.5 -7
58 231 107 230 128 21 228 124 17 19 4
59 240 105 235 113 9 235 113 9 9 0
60 242 466 241 455 11 239 455 11 11 0
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61 194 85 195 119 34 192 117 32 33 2
62 248 500 244 469 31 244 469 31 31 0
63 215 158 217 127 31 217 126 32 31.5 -1
64 206 140 209 150 10 209 150 10 10 0
65 213 99 211 109 10 209 104 6 8 4
66 241 469 237 466 5 235 464 8 6.5 -3
67 200 534 206 522 13 208 521 15 14 -2
68 252 188 257 232 44 260 213 26 35 18
69 229 119 221 119 8 220 118 9 8.5 -1
70 210 155 209 167 12 209 166 11 11.5 1
71 202 145 183 181 41 185 180 39 40 2
72 256 524 258 523 2 255 520 4 3 -2
73 238 145 233 152 9 233 146 5 7 4
74 265 181 261 195 15 268 187 7 11 8
75 257 441 267 420 23 262 419 23 23 0
76 196 119 194 128 9 194 128 9 9 0
77 232 540 229 503 37 235 505 35 36 2
78 171 93 195 123 38 188 121 33 35.5 5
79 211 529 211 520 9 217 506 24 16.5 -15
80 225 87 229 83 6 233 79 11 8.5 -5
81 195 492 193 488 4 194 487 5 4.5 -1
82 220 119 203 87 36 201 85 39 37.5 -3
83 217 499 225 494 9 223 491 10 9.5 -1
84 227 156 227 168 12 228 167 11 11.5 1
85 229 425 229 412 13 227 412 13 13 0
86 245 116 243 123 7 245 116 0 3.5 7
87 217 537 209 532 9 216 540 3 6 6
88 196 153 203 170 18 203 169 17 17.5 1
89 198 528 191 520 11 196 520 8 9.5 3
90 222 152 223 154 2 222 151 1 1.5 1
91 249 218 252 236 18 251 234 16 17 2
92 223 440 211 431 15 217 428 13 14 2
93 226 72 225 85 13 227 81 9 11 4
94 212 130 229 161 35 229 151 27 31 8
95 253 137 251 142 5 252 141 4 4.5 1
96 272 102 266 128 27 265 127 26 26.5 1
97 294 513 299 512 5 299 512 5 5 0
98 197 543 195 521 22 207 527 19 20.5 3
99 242 454 228 453 14 227 454 15 14.5 -1
100 255 555 263 543 14 264 544 14 14 0

Mean 226.7 291.7 15.6 228.6 289.9 13.9 14.8 1.8
SD 29.4 175.4 10.7 28.0 176.4 9.54 9.6 4.86

Table 5.1 .Automatic optic discfindings on normal retinal’images, r values depict how close in 
pixels the automated techniques placed the optic disc in comparison to its actual location when 
tested on 100 normal digital fundus images.
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OD’s in Diabetic Images

1 No. Actual Co-ords DRICP Aph
Id .id i1 j1 ' r1 i2 J2 r2 Mean r r1-r2

1 73 185 91 171 18 81 197 14 16 4
2 565 220 553 217 12 548 222 17 14.5 -5
3 416 220 408 213 8 407 211 13 10.5 -5
4 172 204 181 192 9 186 203 14 11.5 -5
5 518 302 501 306 17 500 305 18 17.5 -1
6 531 181 528 183 3 527 186 6 4.5 -3
7 105 236 117 233 12 117 233 12 12 0
8 454 213 420 215 34 351 429 239 136.5 -205
9 495 145 89 301 406 471 160 28 217 378
10 467 241 459 250 8 457 248 12 10 -4
11 425 208 414 207 11 413 206 12 11.5 -1
12 84 222 93 234 9 91 233 13 11 -4
13 196 229 206 237 10 203 237 11 10.5 -1
14 485 241 474 248 11 475 245 11 11 0
15 486 188 479 191 7 474 193 13 10 -6
16 195 188 195 181 0 198 179 9 4.5 -9
17 437 273 430 255 7 427 268 11 9 -4
18 183 217 189 209 6 188 219 5 5.5 1
19 76 222 118 225 42 105 222 29 35.5 13
20 461 227 478 391 17 486 364 139 78 -122
21 433 228 420 231 13 420 228 13 13 0
22 88 221 93 205 5 88 209 12 8.5 -7
23 478 249 466 229 12 472 255 8 10 4
24 76 255 83 250 7 78 261 6 6.5 1
25 461 210 452 201 9 451 204 12 10.5 -3
26 115 236 120 229 5 116 237 1 3 4
27 513 247 506 243 7 506 243 8 7.5 -1
28 148 232 158 241 10 156 238 10 10 0
29 491 307 481 307 10 483 308 8 9 2
30 149 253 159 246 10 159 245 13 11.5 -3
31 105 262 115 267 10 113 265 9 9.5 1
32 164 220 166 205 2 173 213 11 6.5 -9
33 120 239 152 269 32 1 103 181 106.5 -149
34 100 191 136 194 36 136 195 36 36 0
35 233 223 267 225 34 268 223 35 34.5 -1
36 143 235 152 243 9 152 243 12 10.5 -3
37 108 286 119 291 11 117 290 10 10.5 1
38 481 265 479 259 2 480 259 6 4 -4
39 591 200 572 209 19 575 205 17 18 2
40 97 250 108 243 11 105 251 8 9.5 3
41 490 147 483 147 7 483 151 8 7.5 -1
42 38 218 57 218 19 51 217 13 16 6
43 197 254 196 241 1 203 255 6 3.5 -5
44 128 223 129 215 1 129 223 1 1 0
45 464 274 457 259 7 457 269 9 8 -2
46 413 222 413 243 0 412 243 21 10.5 -21
47 560 285 143 293 417 141 291 419 418 -2
48 47 276 57 281 10 57 282 12 11 -2
49 393 239 380 234 13 377 234 17 15 -4
50 531 262 529 273 2 529 273 11 6.5 -9
51 197 234 216 242 19 213 245 19 19 0
52 152 196 155 203 3 154 202 6 4.5 -3
53 532 238 531 239 1 531 239 1 1 0
54 403 250 437 265 34 436 265 36 35 -2
55 97 217 102 226 5 101 226 10 7.5 -5
56 581 272 583 275 2 583 274 3 2.5 -1
57 73 213 80 209 7 75 208 5 6 2
58 71 224 102 219 31 102 219 31 31 0
59 453 201 440 203 13 438 201 15 14 -2
60 165 211 383 89 218 176 205 13 115.5 205
61 457 246 456 221 1 449 231 17 9 -16



J  McDonagh 2005; Chapters -  Performance testing on main retinal components

62 167 182 188 181 21 188 181 21 21 0
63 42 237 58 228 16 57 232 16 16 0
64 113 222 124 207 11 123 223 10 10.5 1
65 490 237 448 245 42 448 245 43 42.5 -1
66 509 223 496 213 13 492 227 17 15 -4
67 136 265 144 257 8 143 262 8 8 0
68 110 216 113 211 3 118 221 9 6 -6
69 436 185 434 185 2 431 184 5 3.5 -3
70 533 221 515 215 18 515 224 18 18 0
71 104 202 123 189 19 107 202 3 11 16
72 459 213 457 203 2 522 450 245 123.5 -243
73 182 215 198 203 16 197 210 16 16 0
74 521 227 503 226 18 506 226 15 16.5 3
75 142 194 147 199 5 147 199 7 6 -2
76 523 237 215 220 308 213 220 310 309 -2
77 127 257 129 237 2 141 254 14 8 -12
78 89 226 110 233 21 110 231 22 21.5 -1
79 186 221 194 223 8 192 221 6 7 2
80 476 249 468 253 8 466 251 10 9 -2
81 176 225 185 211 9 181 229 6 7.5 3
82 24 260 39 259 15 33 257 9 12 6
83 500 224 492 233 8 492 233 12 10 -4
84 193 223 240 217 47 227 221 34 40.5 13
85 170 280 191 281 21 188 281 18 19.5 3
86 516 237 515 249 1 515 249 12 6.5 -11
87 66 170 76 173 10 73 173 8 9 2
88 472 177 465 173 7 464 173 9 8 -2
89 78 299 94 307 16 92 305 15 15.5 1
90 412 242 379 227 33 397 237 16 24.5 17
91 112 267 122 271 10 121 271 10 10 0
92 55 213 428 279 373 399 304 356 364.5 17
93 108 207 380 339 272 379 339 301 286.5 -29
94 217 228 225 239 8 221 236 9 8.5 -1
95 447 258 406 251 41 436 261 11 26 30
96 425 204 418 187 7 415 204 10 8.5 -3
97 491 198 453 213 38 455 215 40 39 -2
98 189 252 198 259 9 196 259 10 9.5 -1
99 487 230 484 231 3 483 232 4 3.5 -1
100 530 264 522 265 8 525 265 5 6.5 3

Mean 293.3 232.3 31.9 292.6 348 34.1 33.0 -2.2
SD 170.6 40.2 79.0 173.7 47.9 75.5 71.8 57.5

Table 5.2.. Automatic optic disc findings on diabetic retinopathy images, r values depict how 
close in pixels the automated techniques placed the optic disc in comparison to its actual 
location when tested on 100 background retinopathy digital fundus images.
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From the 100 normal images assessed the DRICP successfully identified 98% o f the 

OD’s within a 40 pixel deviance while the technique applied using the Aphelion™ 

software correctly located 100%. O f the 100 background diabetic retinopathy images 

DRICP located 90% o f  the O D 's within 40 pixels, while Aphelion ™ located 91%. 

This range is further illustrated, (Fig 5.5.J.

N o r m a l  O p t i c  D i s c  L o c a t i o n  R e s u l t s

0 -  10 11-20 21-30 3 1 -4 0 41-50 >50

□  D R I C P  □  A P I !

Fig 5.5. a) Histogram of results from 100 norma! retinal images displayed 
within pixel accuracy to the actual disc location.

D i a b e t i c  O p t i c  D i s c  L o c a t i o n  R e s u l t s

O o
>500 -  10 11-20 21-30 3 1 -40

□  D R I C P  □  A P H

Fig 5.5. b) Histogram of results from WO retinal images displaying background 
retinopathy features, results displayed within pixel accuracy to the actual disc 
location.

To assess the statistical correlation o f both methods for detecting the optic disc the 

results were plotted on a series o f Bland and Altman charts, Bland and Altman 1986. 

In the first instance the x co-ordinates and y co-ordinates are plotted from the DRICP 

along the x-axis and the results from Aphelion ™ along the y axis. The results are 

displayed for both the normal and diabetic groups o f images, (Fig 5.6. a & b). The 

plots show good linear correlation between both techniques for identifying the x (r = 

0.97761) & y (r = 0.99962) co-ordinates in the normal images with poorer correlation 

shown in the diabetic images (x, r = 0.96196; y, r = 0.56747). However these plots 

only display the correlation between each technique and not the accuracy with which

-  1 0 2 -



J  McDonagh 2005; Chapter5 -  Performance testing on main retinal components

each technique locates the optic disc. Therefore the high correlation between both 

techniques in identifying the individual x and y co-ordinates does not indicate the 

accuracy of these co-ordinates in comparison with the true values.

To determine the accuracy with which each technique located the OD with respect to 

the actual location the mean difference between the actual co-ordinates and the 

detected co-ordinates of each technique was calculated (r values Table 5.1. & 5.2.) 

Again the results were plotted for both groups of images, (Fig 5.6 c & d). The 

correlation between each technique was r = 0.882 for the normal group and 0.724 for 

the diabetic group of images. In addition to displaying the correlation between both 

techniques this chart shows the accuracy with which each technique locates the optic 

disc where the closer the value to the origin the more accurate the co-ordinates.

Finally the mean difference of each technique against the difference of each 

technique in relationship to the actual co-ordinates is displayed within confidence 

intervals of 2SD, (Fig 5.6, e & f). In the normal group 7 optic discs were identified 

out with 2SD of the mean. However the location of these OD’s were still within lA 

disc diameter of the actual disc location. Six of optic discs identified in the diabetic 

group lay outside 2SD of the mean (r>100). In these instances a cluster of exudates 

were wrongly identified as being the optic disc.

The difference between the accuracy with which each method locates the optic disc 

arises from the technique applied. In the first method the optic disc location is solely 

reliant on the identification of the maximal pixel RGB intensity value. The second 

method identifies the OD as the region with the highest percentage threshold based 

on the (max-min) value within a region of interest.

The accuracy with which the optic disc was located was improved when combining 

the maximal volume intensity with the maximal pixel intensity value. Hence this was 

the preferred method for detecting the optic disc.
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Optic Disc location normals
x/y co-ordinates

600

*  400E

200

0 200 600

Optic Oise location normals -  r values

45

40

35

30

25

20

15

10

5

0
0 10 20 30 40 50
DR/CP

Optic Disc location normals

e).

______ i
10 20 30 40 50

Hi 'cngc q/DR/CP 6 .ApMiort tm

Optic Disc location diabetic

by

x/y coordinates
800

600

400

200

0
200 600 8000

DR/CP

Optic Disc location diabetic ~ r values

500

400

£  300

200

100

♦

♦

d). 0 100 200 300 400 500
ORtCP

Optic Disc location diabetic
600

I
400

200

-200 Moon • 2SD

-400

-600
300 4500 150

S>- Average of DRICP & Aphelion tm

^‘8  5-6- Statistical correlation plots for comparison of both techniques in the identification of the optic 
disc ~ a) shows good linear correlation between both techniques in the identification of the x & y  co­
ordinates in the normal group, b) shows slightly poorer linear correlation in the diabetic group, c),d) 
shows the correlation between each technique when calculated as the difference between the actual co­
ordinates and the identified co-ordinates in the normal and diabetic groups respectively, e), f )  shows 
the mean difference of each technique.
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5.3. L o c a t i n g  t h e  m a c u l a

The typical human macula is comparable in size to the optic disc. Its position within 

the retina is approximately 4mm temporal (or 2 V2 disc diameters to the left) and 

0.8mm inferior to the centre of the optic nerve head.

The same two groups of images used in the detection of the optic disc were also used 

for the identification of the macula. In contrast to the optic disc, which is the object 

with the brightest hue object within the retina, the macula tends to be the darkest but 

with a comparable intensity to that of the vessels. A similar technique combining the 

optic disc location and minimum pixel intensity values were investigated for the 

identification of the macula.

The DRICP program looks for a minimum average intensity within the 90x90 pixel 

area and determines the location of the macula relative to the OD. Thus if the OD /y 

co-ordinate is <360 then the macula is on the disc’s right hand side and on the left if 

>360. Similarly, in the Aphelion™ system macula detection uses the previously 

determined OD LLX & LLY: if the OD is on the right of the image (LLX>360), look 

for the minimum point in the region (OD LLX - 250,OD LLY - 100,OD LLX - 

150,OD LLY + 100). If however, the OD is on the left of the image (LLX<360), look 

for the minimum in the region (OD LLX + 150,OD LLY - 100,OD LLX + 250,OD 

LLY + 100). The analysis was performed initially in 10 pixel steps for the ROI 

coordinates, then in one-pixel steps over the first maximum volume -10 to +10. The 

Aphelion™ system macula detection code can be seen in Appendix IV.

The macula detection results are displayed in Tables 5.3. & 5.4..

-  105 -
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M acula’s in N orm al Im ages

1 No. Actual Co-ords DRICP Aph
Im jm i1 j1 ' r1 i2 ]2 r2 Mean r r1-r2

1 367 243 335 197 32 358 234 13 22.5 19
2 281 227 295 223 14 280 211 16 15 -2
3 282 255 295 223 13 311 221 45 29 -32
4 364 243 353 253 11 387 228 27 19 -16
5 319 226 322 248 3 317 227 2 2.5 1
6 295 259 292 253 3 292 243 16 9.5 -13
7 330 202 333 205 3 316 205 14 8.5 -11
8 414 281 333 205 81 411 292 11 46 70
9 406 284 333 205 73 404 267 17 45 56
10 255 283 250 211 5 256 283 1 3 4
11 321 294 314 197 7 322 294 1 4 6
12 252 281 186 215 66 246 293 13 39.5 53
13 380 262 186 215 194 381 256 6 100 188
14 339 215 331 213 8 319 196 28 18 -20
15 254 251 264 221 10 242 249 12 11 -2
16 314 299 334 199 20 326 297 12 16 8
17 312 239 188 245 124 307 229 11 67.5 113
18 307 272 339 209 32 305 256 16 24 16
19 376 289 354 206 22 376 283 6 14 16
20 272 260 280 247 8 268 241 19 13.5 -11
21 254 273 215 195 39 246 290 19 29 20
22 328 215 320 249 8 325 217 4 6 4
23 0000 262 191 253 3 188 252 10 6.5 -7
24 439 252 191 253 248 476 236 40 144 208
25 397 259 191 253 206 388 247 15 110.5 191
26 293 274 221 201 72 300 274 7 39.5 65
27 350 288 327 203 23 346 305 17 20 6
28 338 266 341 203 3 340 256 10 6.5 -7
29 283 210 292 201 9 284 210 1 5 8
30 350 273 327 199 23 343 246 28 25.5 -5
31 180 233 182 241 2 163 226 18 10 -16
32 300 227 286 221 14 303 221 7 10.5 7
33 308 239 334 201 26 296 232 14 20 12
34 183 243 184 230 1 166 260 24 12.5 -23
35 327 205 323 234 4 313 199 15 9.5 -11
36 250 277 237 253 13 248 258 19 16 -6
37 413 260 237 253 176 437 268 25 100.5 151
38 383 232 352 253 31 378 232 5 18 26
39 279 247 273 243 6 246 230 37 21.5 -31
40 255 281 253 251 2 248 267 16 9 -14
41 321 265 335 251 14 321 238 27 20.5 -13
42 333 246 347 231 14 329 221 25 19.5 -11
43 391 223 347 231 44 411 212 23 33.5 21
44 360 291 319 207 41 354 288 7 24 34
45 385 323 354 228 31 387 315 8 19.5 23
46 424 286 354 228 70 441 289 17 43.5 53
47 327 231 337 231 10 313 227 15 12.5 -5
48 306 242 202 195 104 296 227 18 61 86
49 285 230 284 244 1 314 226 29 15 -28
50 348 231 345 223 3 325 233 23 13 -20
51 262 247 257 251 5 256 238 11 8 -6
52 403 235 257 251 146 387 229 17 81.5 129
53 283 232 280 247 3 298 233 15 9 -12
54 278 250 354 219 76 289 209 42 59 34
55 302 234 241 195 61 297 228 8 34.5 53
56 358 286 334 197 24 373 305 24 24 0
57 396 262 334 197 62 404 260 8 35 54
58 331 252 337 197 6 326 254 5 5.5 1
59 328 255 334 199 6 327 248 7 6.5 -1
60 252 278 205 197 47 248 278 4 25.5 43
61 298 220 310 226 12 299 221 1 6.5 11
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62 280 242 272 213 8 293 235 15 11.5 -7
63 402 268 354 249 48 385 255 21 34.5 27
64 348 259 346 249 2 350 255 4 3 -2
65 302 231 304 242 2 308 226 8 5 -6
66 248 267 231 195 17 246 256 11 14 6
67 295 220 295 237 0 291 213 8 4 -8
68 430 268 295 237 135 447 261 18 76.5 117
69 344 247 338 252 6 348 231 16 11 -10
70 369 248 338 252 31 373 246 4 17.5 27
71 356 230 338 252 18 375 204 32 25 -14
72 300 284 286 199 14 296 305 21 17.5 -7
73 350 261 346 201 4 361 248 17 10.5 -13
74 396 253 346 201 50 400 250 5 27.5 45
75 228 277 224 207 4 228 261 16 10 -12
76 338 220 333 225 5 352 226 15 10 -10
77 303 256 256 195 47 301 241 15 31 32
78 323 216 322 226 1 322 213 3 2 -2
79 310 257 319 251 9 309 241 16 12.5 -7
80 308 250 343 197 35 309 239 11 23 24
81 298 255 288 253 10 287 248 13 11.5 -3
82 354 241 352 241 2 344 239 10 6 -8
83 319 266 352 241 33 317 249 17 25 16
84 370 242 352 241 18 372 244 3 10.5 15
85 214 253 188 197 26 200 262 17 21.5 9
86 304 255 334 199 30 300 244 12 21 18
87 332 255 333 247 1 320 242 18 9.5 -17
88 369 242 333 247 36 374 232 11 23.5 25
89 315 249 317 249 2 308 246 8 5 -6
90 385 237 317 249 68 385 202 35 51.5 33
91 449 281 317 249 132 472 277 23 77.5 109
92 221 271 220 253 1 225 262 10 5.5 -9
93 317 255 220 253 97 321 261 7 52 90
94 344 260 354 196 10 349 243 18 14 -8
95 379 276 342 201 37 370 261 17 27 20
96 319 277 333 203 14 327 255 23 18.5 -9
97 309 337 278 229 31 309 341 4 17.5 27
98 317 233 314 241 3 310 232 7 5 -4
99 238 287 235 197 3 244 272 16 9.5 -13
100 320 297 256 195 64 319 288 9 36.5 55

Mean 295.8 224.9 34.7 322 248.2 14.9 24.8 19.9
SD 60.8 21.5 59.8 84.7 48.3 56.9 25.2 47.1

Table 5.3. Automatic macula detection on normal retinal images, r values depict how close in pixels 
the automated techniques placed the macula in comparison to its actual location when tested on 100 
normal retinal digital fundus images.
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Macula in Diabetic Images

1 No. Actual Co-ords DRICP Aph
Im jm i1 j1 ' r1 i2 j2 r2 Mean r r1-r2

1 314 230 311 233 3 309 229 5 4 -2
2 324 242 319 251 5 325 244 2 3.5 3
3 206 256 192 245 14 205 251 5 9.5 9
4 393 264 192 245 201 390 254 10 105.5 191
5 300 295 257 237 43 296 299 6 24.5 37
6 320 233 327 237 7 311 225 12 9.5 -5
7 324 226 337 201 13 322 218 8 10.5 5
8 241 249 192 253 49 610 486 439 244 -390
9 258 214 285 213 27 265 212 7 17 20

10 258 258 190 217 68 229 252 30 49 38
11 182 242 177 245 5 143 116 132 68.5 -127
12 312 267 336 201 24 328 264 16 20 8
13 422 253 336 201 86 462 257 40 63 46
14 243 290 186 201 57 216 280 29 43 28
15 273 212 276 225 3 252 197 26 14.5 -23
16 410 229 276 225 134 419 233 10 72 124
17 222 301 188 197 34 207 272 33 33.5 1
18 420 231 188 197 232 432 229 12 122 220
19 292 229 188 197 104 288 242 14 59 90
20 245 242 251 242 6 233 274 34 20 -28
21 202 243 225 195 23 201 239 4 13.5 19
22 296 270 293 253 3 295 259 11 7 -8
23 265 270 185 195 80 257 252 20 50 60
24 310 295 316 195 6 300 291 11 8.5 -5
25 230 247 228 249 2 212 242 19 10.5 -17
26 349 265 348 197 1 335 269 15 8 -14
27 285 290 256 195 29 289 292 4 16.5 25
28 372 244 353 205 19 351 244 21 20 -2
29 276 302 185 253 91 290 309 16 53.5 75
30 360 277 350 209 10 351 266 14 12 ■A
31 316 277 348 225 32 322 273 7 19.5 25
32 374 261 348 225 26 366 247 16 21 10
33 323 293 348 210 25 255 182 130 77.5 -105
34 313 210 340 232 27 325 213 12 19.5 15
35 460 238 340 232 120 462 243 5 62.5 115
36 375 282 348 205 27 373 269 13 20 14
37 338 308 347 247 9 336 312 4 6.5 5
38 262 307 272 209 10 259 306 3 6.5 7
39 360 233 353 247 7 362 231 3 5 4
40 292 246 310 195 18 295 245 3 10.5 15
41 290 199 184 199 106 292 196 4 55 102
42 279 233 276 252 3 277 258 25 14 -22
43 414 297 276 252 138 440 305 27 82.5 111
44 365 279 327 249 38 364 281 2 20 36
45 222 276 183 197 39 221 271 5 22 34
46 177 232 177 207 0 163 232 14 7 -14
47 334 282 350 253 16 363 283 29 22.5 -13
48 291 285 273 209 18 289 283 3 10.5 15
49 195 246 187 201 8 107 313 111 59.5 -103
50 310 268 276 220 34 313 244 24 29 10
51 393 285 276 220 117 410 285 17 67 100
52 382 207 348 239 34 368 214 16 25 18
53 304 208 333 197 29 314 200 13 21 16
54 181 308 177 217 4 166 300 17 10.5 -13
55 323 259 352 195 29 307 229 34 31.5 -5
56 348 283 343 225 5 337 277 13 9 -8
57 291 243 288 251 3 298 230 15 9 -12
58 302 231 309 250 7 308 233 6 6.5 1
59 233 244 233 251 0 218 236 17 8.5 -17
60 400 252 233 251 167 402 245 7 87 160
61 208 249 200 253 8 213 251 5 6.5 3
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62 421 234 200 253 221 447 91 145 183 76
63 284 252 310 197 26 277 248 8 17 18
64 337 246 334 251 3 321 244 16 9.5 -13
65 257 263 222 213 35 253 266 5 20 30
66 300 293 225 249 75 290 295 10 42.5 65
67 354 293 340 219 14 361 296 8 11 6
68 334 244 325 245 9 329 241 6 7.5 3
69 210 225 198 235 12 217 225 7 9.5 5
70 309 255 304 253 5 296 303 50 27.5 -45
71 340 219 334 221 6 318 230 25 15.5 -19
72 265 246 266 251 1 252 360 115 58 -114
73 404 257 266 251 138 404 247 10 74 128
74 293 259 268 195 25 298 246 14 19.5 11
75 363 224 354 234 9 378 216 17 13 -8
76 306 236 354 234 48 363 237 57 52.5 -9
77 362 268 320 197 42 400 284 41 41.5 1
78 306 234 303 199 3 294 238 13 8 -10
79 404 250 303 199 101 404 235 15 58 86
80 253 253 215 217 38 251 245 8 23 30
81 420 258 215 217 205 440 265 21 113 184
82 252 277 351 215 99 253 273 4 51.5 95
83 279 201 261 197 18 268 228 29 23.5 -11
84 421 251 261 197 160 412 247 10 85 150
85 398 320 261 197 137 413 321 15 76 122
86 296 271 237 209 59 296 261 10 34.5 49
87 294 188 290 205 4 293 187 1 2.5 3
88 250 216 250 225 0 253 211 6 3 -6
89 319 318 349 215 30 307 323 13 21.5 17
90 194 261 188 195 6 176 253 20 13 -14
91 357 306 337 195 20 372 324 23 21.5 -3
92 282 248 227 235 55 238 241 45 50 10
93 338 220 183 235 155 109 418 303 229 -148
94 439 238 183 235 256 473 220 38 147 218
95 219 238 211 215 8 207 224 18 13 -10
96 196 241 186 241 10 197 236 5 7.5 5
97 232 240 236 251 4 241 236 10 7 -6
98 411 253 236 251 175 431 254 20 97.5 155
99 256 218 276 195 20 274 225 19 19.5 1
100 298 267 281 213 17 298 237 30 23.5 -13

Mean 271.6 222.8 47.3 307.5 255.2 28.2 37.7 19.2
SD 60.8 21.5 59.8 84.7 48.3 56.9 43.9 77.0

Table 5.4. Automatic macula detection on diabetic retinopathy images, r values depict how close in 
pixels the automated techniques placed the macula in comparison to its actual location when tested  
on 100 background retinopathy digital fundus images.

The accuracy of each technique is defined by its ability to locate the macula within a 

40 pixels distance of its actual position. Of the 100 normal images assessed the 

DRICP identified 74% while the technique applied using the Aphelion™ software 

identified 98% within this range. For the 100 background diabetic retinopathy 

images DRICP identified 69% and Aphelion™ identified 89%. The range of 

deviance from the actual macula location is displayed, (Fig 5.7).
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N o r m a l  M a c u l a  L o c a t i o n  R e s u l t s

11-500 -  10 21-30 31-40 >50

□  D R IC P  D A  P H

Fig 5.7. a) Histogram o f  results from  100 normal retinal images, results 
displayed within pixel accuracy to the actual macula location.

D i a b e t i c  M a c u l a  L o c a t i o n  R e s u l t s

LD
0 -  10 11-20 31-40 >50

□  D R IC P  □  A  PI I

Fig 5.7. b) Histogram o f  results from  100 retinal images displaying 
background retinopathy features, results displayed within pixel accuracy to the 
actual macula location.

Again the statistical correlation o f both methods for detecting the macula were 

assessed and displayed on a series o f Bland and Altman charts, Bland and Altman 

1986. The first graph displays the x co-ordinates and y co-ordinates o f  the DRICP 

plotted along the x axis and the results from AphelionIM technique plotted along the 

y axis for the same group o f normal and diabetic images, (Fig 5.8. a & b). The linear 

correlation between both techniques was r = 0.512 & 0.378 for the x co-ordinates o f 

both groups o f images respectively and r = 0.309 & 0.048 for the y co-ordinates. 

Unlike the results for the optic disc there is less o f  a correlation between the two 

techniques in macula identification.

Therefore to evaluate the accuracy o f each technique in identifying the macula with 

respect to its true location the mean difference between the actual co-ordinates and 

the detected co-ordinates was calculated(r values Table 5.3. & 5.4.) and plotted for 

both groups o f images, (Fig 5.8 c & d). The correlation between each technique was 

r = 0.178 and 0.130 for the normal and diabetic group o f images respectively. In
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addition to displaying the correlation between both techniques this chart shows the 

accuracy with which each technique locates the macula where the closer the value to 

the origin the more accurate the co-ordinates.

Finally the mean difference of each technique was plotted within confidence 

intervals of 2SD, (Fig 5.8, e & j). Only 12 images lay out with 2SD of the combined 

test images.

Once again the method by which each technique locates the macula differs but this 

time producing a more striking difference between the results. There was only a 

slight difference between the two techniques performance in locating the optic disc: 

the Aphelion™ method was only marginally superior by 2% in the normal group and 

1% in the DR group of images. However it outperformed the DRICP by 24% and 

20% in the normal and DR groups respectively when applied to the task of 

identifying the macula.

One reason for the poor performance of the DRICP method is due to its dependency 

upon successful detection of the optic disc. If the disc is wrongly located then it is 

highly unlikely that the macula will correctly be identified as the programme is 

designed to find the lowest intensity pixel value in a predefined ROI from the disc 

location. Although correctly identifying the minimal pixel within that ROI it does not 

necessarily correspond to the overall minimal pixel intensity value that would be 

located within the centre of the macula.

The preferred method for detecting the macula was once again the technique using 

the Aphelion™ software system. It combined volume intensity values with the 

minimal pixel intensity value and used the optic disc location only as a guide as to 

wether the macula will be on the right or left of the image.

The overall purpose of being able to identify the optic disc and the macula region is 

that it enables localised analysis of these key retinal regions to be performed. For 

example once the optic disc has been located analysis of its vessel appearance can be
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performed to determine if there is evidence o f new vessel formation. Similarly we 

can analyse the macular region for features associated with diabetic maculopathy.
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Fig 5.8.Strtistical correlation p lo ts fo r  comparison c f both techniques in the identification of the macula 
~  a), b) shows the linear correlation between both techniques in the identification o f  the x &  y  co ­
ordinates in the normal and diabetic groups respectively, c),d) shows the correlation between each  
technique when calculated as the difference between the actual co-ordinates and the identified co­
ordinates in the normal and diabetic gyoups respectively, e), f )  shows the mean difference c f each  
technique.
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5 .4 .  R e t i n a l  V a s c u l a t u r e  R e c o g n i t i o n

One method of making vessels more distinguishable from background retina is by 

extracting only the information from the green plane as the red and blue planes 

provide very little additional information. To further enhance the visual distinction 

between background retina with vessels, new vessels, haemorrhages & exudates a 

Sobel edge detection filter was applied to the images to emphasise feature edges see 

Chapter 4.2.1, (Fig 5.9.).

Fig 5.9. a) Original image, b) Green plane information, c) Sobel enhanced image, clearer visual 
definition o f vessels.
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Trials were executed to identify the optimal back-propagation NNW architecture for 

the identification of vessels by varying the number of hidden units and training 

iterations. From the available set of images we were able to construct datasets that 

contained 12663 normal background retina examples and 40761 vessels; 70% of the 

examples were used for NNW training the other 30% for testing NNW performance.

Each NNW comprised of 400 inputs corresponding to the individual pixel colour 

values contained within the classified 20x20 pixel box and one output. The NNW 

was trained to find the optimal number of training iterations and hidden units using 

feature examples compiled from Sobel enhanced images, see neural network 

architecture Chapter 3.3.7. The NNW result files were exported to the DRIC 

program where Receiver Operator Curves were plotted to identify the optimal cut off 

value that would yield the best network performance in terms of sensitivity and 

specificity, Table 5.5., (Fig 5.10), Chapter 4.2.2.3.

R e tin a  v s  V e s s e l

Iterations ->• 5 0 ,0 0 0 1 0 0 ,0 0 0 1 5 0 ,0 0 0 2 0 0 ,0 0 0 2 5 0 ,0 0 0
I  Hidden Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec

5 7 5 .0 1 7 4 .8 6 8 5 .9 1 8 5 .7 5 8 6 .2 2 8 5 .9 9 8 9 .1 3 8 8 .8 7 8 5 .9 5 8 6 .0 4
10 8 4 .2 1 8 3 .6 3 8 8 .6 8 8 8 .7 8 8 .5 1 8 8 .7 1 8 9 .0 3 8 8 .9 7 8 8 .8 2 8 8 .9 5
15 8 2 .7 8 2 .6 5 8 9 .2 8 9 .4 2 8 9 .8 1 8 9 .6 8 8 9 .6 4 8 9 .7 6 8 9 .6 8 9 0 .0 1
2 0 ' 8 2 .4 3 8 1 .8 8 8 .5 1 8 8 .4 8 8 9 .7 4 8 9 .7 4 9 1 .4 5 9 1 .3 2 8 9 .9 8 9 0 .0 4

1 0 /1 0 7 3 .4 7 7 .2 6 9 0 .5 3 9 0 .4 2 9 0 .6 9 0 .6 8 9 0 .1 5 9 0 .0 6 9 0 .7 9 0 .5 5
7 /7 7 4 .5 8 7 3 .6 3 8 3 .6 4 8 4 .7 2 8 4 .5 1 8 3 .5 2 8 8 .5 5 8 8 .4 2 8 4 .6 2 8 4 .5 2

Table 5.5. NNW performance fo r varying training iterations and hidden units -  to find  
optimal network structure fo r  the identification o f  vessels.
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ROC RV S hidden units ROC RV 10 hidden units

ROC RV 15 hidden units ROC RV 20 hidden units

ROC RV 10hid1 /10hid2 ROC RV 7hid1 / 7Nd2

sofcel green 1-specificity

■sobel rgb

 sobel  r g b    green . _1-specificity

I.K I I  1

green 1-specificity

I.K I I  1

green 1-specificity

I.K l . l  1

green 1-specificity

I.K l . l  1

green 1-specificity

Fig 5.10. ROC analysis o f NNW performance to fin d  optimal number of hidden units. The graphs 
show that NNW’s trained and tested on green plane images and pre-processed using a Sobel filter  
performed better than NNW’s trained on images with no processing andfull RGB pixel colour 
information.
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To quantify the subjective visual enhancement of the features after the application of 

the Sobel filter, two further NNW were trained on the optimal number of iterations of 

200,000 but this time without the Sobel filter pre-processing. Using the same data set 

of examples, the first NNW was trained using information provided only by the 

green plane, the second trained on the full RGB colour information for each pixel, 

Table 5.6..

Iteration -» 200,000
Hidden I Green RGB

Sens Spec Sens Spec
5 88.82 88.58 59.66 57.76
10 89.91 90.17 60.44 60.11
15 89.5 89.8 60.39 63.43
20 89.64 89.76 62.6 62.3

10/10 88.62 88.46 62.46 64.03
7/7 88.17 88.36 62.19 64.4

Table 5.6. NNW performance fo r  hidden units -  fo r comparison, when green plane 

without Sobel filter and full RGB pixel colour information is used.

The optimum network architecture for the detection of vessels trained on Sobel 

enhanced images was one with 20 hidden units and trained for 200,000 iterations, 

yielding a sensitivity of 91.45% and specificity of 91.32%.

These results displayed an increase of 1.81% in sensitivity and 1.56% in specificity 

compared to the NNW trained on green plane information. A more significant 

increase was noted, 28.85% in sensitivity and 29.29% in specificity, when results 

were compared to a NNW with the same architecture trained on full RGB 

information.

These results agree with the visual findings that the application of a Sobel filter to the 

image increases the distinction between vessels and background retina. Although 

only marginally better than the NNW trained on the original green plane image, there 

is a significant increase in sensitivity and specificity when compared to the full RGB 

image. Fundamentally, this significant difference is a consequence of the amount of 

information the NNW has to learn to enable it to determine the correct association 

between pixel colour values and the feature which these values represent. When
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trained on full RGB information the NNW is effectively presented with redundant 

information from the red and blue plane; that is to say the NNW has to learn to 

differentiate between more disperse numerical ranges. For example a single pixel on 

the green plane can only range from 0 to 255 numerically, however that same pixel 

on full RGB information can range from 0 to 16777215, thus introducing greater 

uncertainty.

Therefore for a NNW to achieve its optimal performance it has to be presented with 

the simplest and most appropriate information applicable to the problem. In this 

situation the primary contributing information is best provided by the Sobel 

enhanced green plane image.

5 .5 . S u m m a r y

In this chapter analysis of the digital fundus images for the detection of normal 

retinal features are described. Two techniques were applied to the detection of the 

optic disc and the macula. The first used custom written software by the author to 

identify the location of the centre of the optic disc as being the pixel with the highest 

intensity colour value on the RGB plane. The second technique was a commercial 

system which similarly looked for the highest intensity value on the HIS plane. In 

contrast the macula is the darkest notable region of the retina and therefore its 

identification was based on the minimal pixel value located within a ROI placed 

relative to the optic disc.

Results were obtained from a cohort of 100 normal and 100 background retinopathy 

fundus images. The custom written software successfully identified 98% of the OD 

from the normal images and 90% from the background retinopathy images within 40 

pixels. The commercial system correctly located 100% of the OD’s in the normal 

images and 91% of the background retinopathy images. For the identification of the 

macula both techniques were applied to the same group of images and identified 

74%, 98% of the maculas in the normal images and 69%, 89% of the maculas in the 

diabetic retinopathy images respectively.



J  McDonagh 2005; Chapter5 -  Performance testing on main retinal components

The results showed that the accuracy with which the optic disc was located was 

improved when combining the maximal volume intensity with the maximal pixel 

intensity value. Similarly, combining the volume intensity values with the minimal 

pixel intensity value and using the optic disc location only as a guide as to wether the 

macula will be on the right or left of the image produced superior results. Therefore 

this strategy was the preferred method for detecting the optic disc and macula within 

a standard posterior pole view of the retina.

The other standard recognisable normal feature of a retinal fundus image is a blood 

vessel. Trials were executed to identify the optimal back-propagation NNW 

architecture in terms of hidden units and training iterations for the identification of 

vessels from normal background retina. In addition, the neural network was also 

presented with three different types of pixel information. These included training and 

testing the NNW’s performance when presented with full RGB pixel colour 

information, only the information contributed by the green plane information and 

finally information contributed by pre-processed green plane information.

The results showed that the optimum network architecture for the detection of 

vessels was one with 20 hidden units and trained for 200,000 iterations, yielding a 

sensitivity of 91.45% and specificity of 91.32%. These results were achieved from 

the pre-processed pixel information test set. This set displayed an increase of 1.81% 

in sensitivity and 1.56% in specificity compared to the NNW trained on green plane 

information and an increase of 28.85% sensitivity and 29.29% in specificity 

compared to a NNW with the same architecture trained on full RGB information. It 

was postulated that the performance of the NNW trained on the RGB pixel 

information reduced as a consequence of presenting it with redundant information 

contributed by the red and blue planes. Furthermore the application of a Sobel filter 

enhanced the feature edges thus enabling the NNW to better distinguish between 

vessels and background retina.
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C h a p t e r  6  -  P e r f o r m a n c e  t e s t in g  -  T h e  D ia b e t ic  R e t in a

6.1. H a e m o r r h a g e s

Haemorrhages have the same colour as retinal vasculature and differ only in shape 

and size. It can often be difficult to distinguish smaller haemorrhages from 

background retina due to the similarities in their hue. One method of making them 

more distinguishable is by extracting only the information from the green plane, (Fig

6.1.). To further emphasis feature edges and enhance the visual distinction between 

background retina and vessels, new vessels, haemorrhages & exudates a Sobel edge 

detection filter was applied to the images, see Chapter 3.2.

A series of investigations were performed to identify the optimal back-propagation 

NNW architecture for the identification of haemorrhages. This was achieved by 

varying the number of hidden units and also the number of training iterations. From 

the available set of images feature data sets were constructed, they contained 12663 

normal background retina examples and 11754 haemorrhages; 70% of the examples 

were used for NNW training the other 30% for testing NNW performance. Each 

NNW comprised of 400 inputs and one output, and was trained upon Sobel enhanced 

images, see neural network architecture Chapter 3.3.7. The NNW result files were 

exported to the DRIC program where Receiver Operator Curves Chapter 4.2.2.3., 

were plotted to identify the optimal cut off value that would yield the best network 

performance in terms of sensitivity and specificity, (Fig 6.2.).
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Fig 6 .1, a) Original image, b) Green plane information, c) Sobel enhanced image, clearer 
visual definition o f haemorrhages.
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g n e e n  --------- rg bg r o e n  --------- r g b

 v o  b e  I  g r< aen  --------- «gb

Fig 6.2. ROC analysis of NNW performance to find  optimaI number o f hidden units. The graphs show 

that NNW's trained and tested on images using the green plane information and pre-processed using 

a Sobel filter performed better than NNW’s trained on images with no processing and those using full 

RGB pixel colour information.

The results o f each network’s performance when trained and tested with different 

numbers o f hidden units, multiple hidden layers and training iterations are displayed 

in Table 6.1.
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Retina vs Haemorrhage

Iterations 50,000 100,000 150,000 200,000 250,000
H idden  4 Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec

5 63.25 63.23 78.05 77.91 79.73 79.77 79.83 79.98 79.73 80.11
10 74.56 74.3 83.21 83.08 84.58 84.31 84.92 85.2 85.23 85.11
15 76.55 76.72 81.47 81.26 83.18 83.29 83.15 83.33 83.56 83.25
20 71.01 71.67 80.34 79.94 81.57 81.76 86.36 86.13 81.91 81.42

10/5 80.55 78.37 80.34 80.07 82.26 82.1 82.26 81.85 82.09 81.93
7/7 72.58 73.03 81.64 81.72 84.51 84.31 84.55 84.48 84.62 84.52

Table 6.1. NNW performance fo r varying training iterations and hidden units -  to fin d  optimal 

network structure fo r the identification o f  haemorrhages.

To quantify the subjective visual enhancement of the features after the application of 

the Sobel filter, two further NNW were trained for 200,000 iterations and 

incorporated the same array of hidden units. The first one used information provided 

only by the green plane, the second one was trained on the full RGB colour 

information for each pixel, Table 6.2.

Iterations -» 
Hidden 4-

5
10
15
20

10/5
7/7

200,000
Gr<

Sens
76.68
75.9

79.52
82.91
79.28
76.07

sen
Spec
75.49
75.36
78.97
83.08
79.26
76.29

RC
Sens
58.97
58.63
59.25
58.36
58.29
58.80

BB
Spec
59.37
59.08
58.91
57.93
57.21
59.46

Table 6.2. NNW performance fo r  hidden units -  fo r comparison when 
green plane and fu ll RGB pixel colour information are used as opposed 
to Sobel enhanced green bit information.

The optimum network architecture for the detection of haemorrhages comprised 20 

hidden units and training for 200,000 iterations, thus yielding a sensitivity of 86.36% 

and specificity of 86.13%. this was an increase of 3.45% in sensitivity and 3.05% in 

specificity compared to the green plane trained NNW. A more significant increase
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was noted in sensitivity 28% and specificity 28.2% when results were compared to a 

NNW with the same architecture trained on full RGB information.

As previously discussed in Chapter 5.3, error or confusion between features within 

the learning process can be minimised by training the NNW on information at its 

most concise level. Therefore the NNW performs better when the edges between 

features are enhanced and information contained within the red and blue planes is 

excluded because they provide surplus information.

6 .2 . E x u d a t e s

Exudates appear as randomly shaped yellow deposits and it is this difference in hue 

which makes them easily distinguishable from other retinal features such as vessels 

and haemorrhages. Scattered in small numbers across the retina they do not 

dramatically affect a person’s visual acuity. As clusters of exudates increase small 

blind spots in a person’s vision can be noted, however, it is not until these features 

begin to encroach within the macular region that vision can be affected, Hamilton et 

al 1996.

Conventional digital fundus photography provides a 2-D solution to the detection of 

maculopathy; the other primary contributing factor to the loss of visual acuity is a 

thickening (oedema) of the macula caused by capillary leakage. The identification of 

exudates within 1 disc diameter of the fovea is indicative of a higher potential for 

that patient to experience severe visual impairment, ETDRS 1991. Therefore, the 

detection and more importantly the ability to identify the position of exudates within 

the retina is of particular importance.

Once exudates have been located within the macular region the operator could then 

be prompted to provide additional information on a patient’s visual acuity and 

whether oedema is present, thus providing a more accurate diagnosis. Therefore 

when considering a viable approach to the detection of exudates it is necessary to 

include a method which will provide positional information also. As discussed in
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Chapter 4 all NNW data sets contained location information at the time of 

construction.

Trials were executed to find the optimal network structure for the identification of 

exudates. Maintaining the same background retina data set as previously used in the 

haemorrhage trials, the new series of neural networks were trained and tested on a 

total number of 5571 exudates using 400 inputs and 1 output. Once again the feature 

data sets were assembled with full RGB pixel colour information, green plane only 

and green plane information from Sobel enhanced images. An example of an image 

containing multiple exudates displayed in each of the states above can be visually 

assessed in Fig 6.3. From the example highlighted in the RGB and green plane 

images, the edges around the exudates appear fuzzy. In comparison the edges of the 

same exudates in the Sobel enhance image appear more defined.
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h i

Fig 6.3. a) Original image, b) Green plane information, c) Sobel enhanced image, clearer visual 
definition of exudates.
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To corroborate this visual enhancement o f exudate edges ROC analysis was 

performed to identify each network’s optimal performance (Fig 6.4.). The results are 

displayed in Table 6.3. & 6.4.

R O C  RE 10  h id d e n  unit

 g rae i --------- >gb

ROC: RE 5 h id d e n  u n it

 'sobel ----------------------------  «gb

R O C  RE 15  h id d e n  unit

 -sobsl  green  >gb

R O C  RE 20  h id d e n  u n it

R O C  RE 10  h id 1 /5  h id 2

Fig 6.4. ROC analysis o f NNW performance to find  optimal number o f hidden units. The graphs 
show that NNW’s trained and tested on images o f the green plane information and pre-processed 
using a Sobel filter performed better than NNW’s trained on images with no processing and those 
usine full RGB pixel colour information.
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Retina vs Euxdate

Iterations -> 50,000 100,000 150,000 200,000 250,000
Hidden I Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec

5 75.59 75.5 81.57 82.05 83.18 83.76 83.83 83.62 83.97 83.62
10 82.26 81.98 86.5 86.47 87.28 86.61 86.36 86.61 86.15 86.75
15 91.56 74.57 85.61 85.83 89.16 89.1 89.5 89.17 89.16 89.32
20 90.63 77.92 90.94 90.81 91.9 92.02 91.9 92.09 91.97 92.09

10/5 85.47 82.69 89.23 89.1 87.59 88.11 88.03 87.89 88.14 87.82
7/7 90.09 80.77 88.34 88.89 89.5 89.1 88.92 89.32 89.13 89.17

Table 6.3. NNW performance fo r varying training iterations and hidden units -  to find  optimal

network structure for the identification o f  exudates.

Iterations -> 200,000

Hidden I Green RGB
Sens Spec Spec Spec

5 82.94 81.7 65.91 66.45
10 86.5 86.47 68.14 65.31
15 86.8 85.53 66.46 66.45
20 89.94 89.81 65.85 66.17

10/5 87.22 86.13 68.00 67.81
7/7 86.34 86.87 78.91 63.46

Table 6.4. NNW performance fo r hidden units -  fo r comparison 
when full RGB pixel colour information is used as opposed to Sobel 
enhanced green bit information.

The optimal network performance for the identification of exudates from normal 

background retina on Sobel enhanced data sets comprised of 20 hidden units and 

trained for 200,000 iterations yielding a sensitivity/specificity of 91.90% & 92.09% 

respectively. This was an increase of 1.96% in sensitivity and 1.28% in specificity 

compared to the green plane trained NNW. A more significant increase was noted in 

sensitivity 26.05% and specificity 24.92% when results were compared to a NNW 

with the same architecture trained on full RGB information. These results verify that 

applying a Sobel filter to the images increases the definition of exudate edges and 

thus improves the NNW’s performance in identifying these features.

Once the NNW has been trained to successfully recognise exudates their positional 

information can be extracted and analysed. We incorporated the location of exudates
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relative to the macula to provide a method for identifying maculopathy, this 

technique is detailed in Chapter 7.3.

6 .3 . S ig h t  t h r e a t e n in g  d ia b e t ic  r e t in o p a t h y

The Scottish Executive has reported that there are nearly 120,000 people in Scotland 

who have been diagnosed as having diabetes. Of this population 2 - 3 %  (2,400 -  

3,600 people) will go on to develop sight threatening features of DR requiring 

automatic referral to a consultant ophthalmologist for treatment. The Greater 

Glasgow region accounts for approximately 12.2% (609,370) of the Scottish 

population, General Register Office 2000. Assuming there is an equal distribution of 

the diabetic population between all regions we can postulate that an estimated 366 

people with sight threatening features of DR would be referred to the diabetic review 

clinic at Gartnavel General Hospital if it were the sole centre.

However, not all diabetic patients attend their routine eye examinations, some 

through ignorance of the associated risk of diabetic related eye disease, others 

through logistical complications or just poor health. In consequence this causes a 

direct reduction in the number of presenting examples of sight threatening features of 

DR. In addition, GGH is not the only Glasgow site which has direct screening access 

to all diabetic patients in the Greater Glasgow Region, in fact on average the 

department has a throughput of approximately 3200 patients a year. Thus we would 

expect to obtain 60 -  100 cases (since the progression of sight threatening DR can be 

unilateral). Unfortunately other exclusion criteria come into play reducing this 

number further, for example:

*5} People presenting with additional non-diabetic related eye disease pathology 

e.g. age related macular degeneration (ARMD) and Drusen -  as it becomes 

difficult to differentiate from maculopathy or cotton wool spots in the early 

stages. These are relatively common diseases in the elderly. Glaucoma -  high 

intraocular pressure (IOP) can result in flame shaped haemorrhages; these can 

be confused with DR lesions. Inherited retinal dystrophies or Maculopathies
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such as Stargardts or Retinitis Pigmentosa (RP) or Best’s disease cause 

conflicting or additional retinal lesions, Kanski 1984.

*5} Post laser photocoagulated proliferative retinopathy with reoccurrence in new 

areas of the retina -  much of the retina is contaminated with scarring, thus 

confusing the network with conflicting normal retina examples.

75} Cataracts -  the opaque lens diffuses the light entering the eye and prevents a 

clear image from being captured, Kanski 1984.

Most of these conditions, with the exception of Drusen are symptomatic. Thus most 

patient’s would go to their optician or GP complaining of a reduction in vision, 

thereby bypassing the screening program because they have an appreciable problem 

in the eye.

Taking all this into account we were presented with relatively few images displaying 

sight threatening features of DR. Nonetheless with the collective number of 

examples available to us at this time we did attempt to address the identification of 

neovascularisation and maculopathy, see Chapter 7.

6 .3 .1 . N e o v a s c u l a r is a t io n  e l s e w h e r e  o n  t h e  r e t in a

In theory the retina’s ability to regenerate the growth of new vessels would seem an 

ideal solution for conveying nutrients to areas that have been starved through damage 

incurred by capillary closure. However, in reality the new vessels are fragile and may 

bleed. When these haemorrhages occur the blood begins to disperse through the 

vitreous cavity, vision becomes blurred or dim and can result in severe visual 

impairment or blindness. It is for this reason that neovascularisation is one of the 

most sight threatening features of DR, however it is also the least common. We 

investigated the use of NNWs as a potential technique for identifying new vessels.
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From the available set of images datasets were constructed, these contained 12663 

examples of normal retina, 5571 exudates, 11754 haemorrhages and 477 new 

vessels. Three back-propagation NNW’s were trained to identify new vessels from 

background retina and other recognisable features of diabetic retinopathy (exudates 

and haemorrhages). Data sets were complied from green plane pixel colour 

information on Sobel enhanced images (Fig 6.5), Table 6.5.

New Vessels Elsewhere

Hidden
20

Rvs
Sens

82.35%

SIVE
Spec

51.85%
Hidden

10

Evsf
Sens

75.72%

JVE
Spec

77.38%
Hidden

10

Hvsh
Sens

58.33%

VE
Spec

41.27%

Table 6.5. Optimal NNW performances fo r the identification o f  new vessels against normal 

background retina (R), exudates (E) and haemorrhages (H).

From these datasets the NNW achieved a sensitivity and specificity of 82.4% / 51.8% 

respectively for the identification of normal retina against new vessels, 75.7% / 

77.4% between exudates and new vessels and 58.3% / 41.3% against haemorrhages. 

Due to the small number of new vessel examples available and the relatively poor 

performance of the NNW we did not repeat RGB trials, as we did not feel that it 

would provide any further beneficial findings.
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Fig 6.5. a) Original image, b) Green plane information, c) Sobel enhanced image clearer 

definition o f new vessels.
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6.3.2. N e o v a s c u l a r is a t io n  a t  t h e  O p t ic  d is c

The optic disc (OD) is also susceptible to the growth of new vessels; therefore an 

essential requirement of any automated system is one that includes the ability to 

identify the growth of these new vessels as early in their developmental process as 

possible. As discussed in Chapter 5.2 we successfully derived a method for detecting 

the optic disc within a digital fundus image. At the time of detection the relative co­

ordinates were saved thus permitting localised analysis to be performed on the optic 

disc area.

6.3.2.1. C ir c u l a r  I n t e n s it y  P r o f il in g

Circular intensity profiling (CIP) is a method that was employed to analyse the optic 

disc for the detection of new vessels. Due to the limited number of examples 

available of new vessels at the optic disc the analysis was performed on a data set of 

34 images (17 normal and 17 with new vessels at the optic disc). The normal OD has 

unique vascular structure where vessels and background optic disc can easily be 

identified by their differing hues. However new vessels at the OD are still difficult to 

detect as they are much finer than normal vessels and their hue is often only 

marginally darker than the normal optic disc background.

To enhance the vessel edges within the optic disc we applied a High Pass filter 

(Photoshop™) with a radius of 3.5 pixels. This enabled edge details to be retained, 

where sharp colour transitions occurred while suppressing the rest of the image, (Fig 

6.6.). The filter effectively removes lower-ffequency information. To further enhance 

the vessels the image contrast was raised to 75%.
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Fig 6.6. a) Normal optic disc, unprocessed, b) Image after the application of a High pass fdter  
with radius set at 3.5 pixels to enhance vessel edges, c) Image contrast is increased to further 
enhance vessels.

The circular intensity profiles o f the processed images were obtained from custom 

written code incorporated within the DRIC program, (Fig 6.7.).

Fig 6.7. DRIC program, 
records the co-ordinates and 
pixel intensity values o f the 
optic disc and outputs the 
values to a text fde  for  
analysis. The profile o f each 
disc can be built up by 
varying the radius of the 
circle

The information contained within the CIP data included the x, y co-ordinates and 

pixel intensity values. These were collated for a range o f scanning ring radii. The 

files were then exported to MSExcel for subsequent analysis.

Vessels are reflected through a lower intensity value than the normal yellow hue 

associated with the OD background. When the intensity values are plotted these 

changes in intensity values are displayed as a series o f peaks and troughs. The CIP 

plots illustrate vessel edges as troughs and the resultant peaks indicating the end o f 

the vessel and a return to the higher intensity background. An example taken from a 

normal optic disc and one that has new vessel growth is shown in Fig 6.8. & 6.9.

-  1 3 3 -
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b).

________V________
Normal Disc Circular Intensity Profile

d ) . r50r20 r30 r40

Fig 6.8. a) Typical normal optic disc, b) Normal image after the application of a high pass 
filter (3.5 pixel kernel using Adobe Photoshop), c) Contrast enhancement is applied to make 
vessels more prominent, before circular pixel intensity values are obtained with the DRIC 
program, d) Normal disc intensity profile plots fo r radius values o f20,30, 40 & 50 pixels
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NVDCircular Intensity Profile

d). r20 r30 r50r40

Fig 6.9. a) optic disc with new vessel growth, b) NVD image after the application of a high 
pass filter  (3.5 pixel kernel using Adobe Photoshop), c) Contrast enhancement is applied to 
make vessels more prominent, before circular pixel intensity values are obtained with the 
DRIC program, d) NVD intensity profile plots for radius values o f20,30, 40 & 50 pixels.

On normal OD profiles the plateau between the major vessel edges remain fairly 

uniform, however on optic discs with new vessel growth the plateaus between major 

vessels exhibit an increase in the number o f peaks suggesting the presence o f further 

vessel activity. A direct comparison between the CIP plot for a normal optic disc and 

an optic disc with new vessels is shown in Fig 6.10. To further illustrate this, the CIP 

were segmented into four arcs, (Fig 6.11.).

-  1 3 5 -
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Circular Intensity Profile Comparison

 Norm r20  NVD r20

Circular Intensity Profile Comparison

 Norm r30  NVD r30

Circular Intensity Profile Comparison

 Norm r40  NVD r40

Circular Intensity Profile Comparison

Norm r50  NVD r50

Fig 6.10. Circular intensity profiles taken from normal disc (blue) and a disc with new 
vessel growth (pink). The peaks indicate vessel edges, normal discs appear fairly 
uniform between vessels. There are areas o f increased peaks on the NVD profile 
indicative of more vessel edge activity.
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A R C  1 C i r c u l a r  I n t e n s i t y  P r o f i l e A R C  2 C i r c u l a r  I n t e n s i t y  P r o f i l e

A R C  3 C i r c u l a r  I n t e n s i t y  P r o f i l e A R C  4 C i r c u l a r  I n t e n s i t y  P r o f i l e

Fig 6.11. a) normal optic disc arc segmentation, b) Disc with new vessel growth arc profile. 
c,d,ej). CIP are segmented into 4 arcs, the plots o f the normal discs are shown in blue 
(bottom), the disc with new vessels in pink (top). The peaks represent the vessel edges, the 
normal image remains fairly uniform between major vessels while the disc with new vessels 
displays multiple peaks between major vessels indicating a great abundance of vessels.

To quantify the difference between the CIP’s o f OD’s displaying normal retinal 

vasculature and OD’s with new vessels we employed a method o f counting the 

relative number o f turning points across each plot. For this trial a selection o f normal 

images and images with new vessels were assessed. There is a natural variance in 

hue across the vessels and the background o f the optic disc which may give rise to 

false vessel edges. To minimise these discrepancies o f non-uniformity and noise the 

CIP’s were smoothed using nearest neighbour averaging. Where P is the pixel value 

and n is the nth pixel, the average calculated as:
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P n = £ ( P n +  P  (n-1) +  P  ( n + l ) ) ^

It is necessary not to over smooth the data as this could result in the peaks created by 

the new vessels being averaged out. Hence the new vessels would not be identified.

A pixel was identified as a turning point (i.e. a peak or a trough) if the following 

conditions were met:

I f  ( P n > P ( n - 1 ) )  A N D  ( P „ > P ( n + 1 ) )  or I f  ( P „ < P ( n - 1 ) )  A N D  ( P „ < P („+!))

The number of turning points was calculated for each image over differing radii and 

the results displayed in Table 6.6.

Radius 20 

Norm NVD

Radius 30 

Norm NVD

Radius 40 

Norm NVD

Radius 50 

Norm NVD

35 37 55 54 61 66 63 63
34 33 63 62 59 64 63 61
28 33 64 56 60 67 59 58
34 41 52 66 63 68 65 62
30 40 58 60 55 71 65 60
33 37 52 52 62 65 61 62
29 41 60 58 63 73 65 71
34 40 59 60 58 68 65 72
33 31 58 62 61 65 59 61
33 29 59 66 59 65 65 61
36 31 60 62 57 67 63 61
38 39 63 62 64 67 67 64
33 35 56 56 58 62 67 63
41 39 64 64 57 67 67 54
36 33 53 67 59 67 67 69
33 34 64 65 60 65 63 73
35 34 58 54 60 65 53 72

AVG 33.82 AVG 35.71 AVG 58.71 AVG 60.35 AVG 59.76 AVG 66.58 AVG 63.35 AVG 63.94

S D 3.13 SD 3.84 S D 4 .1 0 SD 4.66 SD 2.41 SD 2.57 SD 3.69 SD  5.48

Table 6.6. Number o f  turning points identifiedfor each radii.

To establish if there is any statistical variation between the two groups of images, the 

number of turning points were analysed using a Mann-Whitney non-parametric test, 

Lyman Ott 1992. Analysis at 95% confidence intervals revealed no significant
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variation betw een the num ber o f  turning points w hen the radius o f  the scanning circle 

was set at 20, 30 and 50 pixels (p = 0.1984, p  = 0 .2837,/?  = 0.6773 respectively). At 

the sm aller radii the vessels are still tightly packed together m aking it difficult to 

detect overlying new  vessel form ation. Sim ilarly, at the boundary o f  the optic disc 

the vessels are m ore disperse and begin to branch out across the retina resulting in 

the introduction o f  greater num bers o f  norm al vessels. This com bined with the darker 

hue o f  the OD boundary contributes to the new vessels being less distinguishable as 

they m erge into the background or overlie the norm al vessels.

The optim al radius for identifying new  vessel form ation was a radius o f  40 pixels. 

At this point the vessels begin to branch out and there is good separation betw een 

normal vessel edges and the brighter background hue o f  the OD. Thus the new 

vessels are easier to distinguish. There was a significant statistical variation between 

the num ber o f  identified turning points betw een norm al optic discs (average 59.8, SD 

2.41) and optic discs with new vessels (average 66.6, SD 2.58) at this radius where 

/?<0.001. To illustrate this the num ber o f  turning points in the NV D population was 

plotted against the 5th and 95lh percentile range o f  the normal population, (Fig 6.12.).

95th percentile

5th percentilec
5 5

5 0  J---------------------------------------------------------------------------------------------------------------------------

Fig 6.12. Distribution o f  turning points NVD  vs normal radius 40.
Blue diamonds represent NVD group.

This clearly illustrates the difference betw een the num ber o f  turning points in each 

group. O f  the 17 optic discs analysed only 1 im age lay w ithin the 95th percentile

-  1 3 9 -
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range. On further inspection of this image the majority of the new vessels were 

superimposed upon the normal vessels.

6 .4 . S u m m a r y

The identification of the primary features associated with diabetic retinopathy 

provides a good starting platform from which a fully automated system can be 

produced. Information relating to the number of features present and more 

importantly their location within the retina can all be weighted to provide an overall 

classification of the severity of retinopathy for a particular patient.

Three back-propagation neural networks were trained to identify the key features of 

micro-aneurysms, dot/blot haemorrhages, exudates and neovascularisation from 

normal background retina. The optimum networks achieved sensitivities of 86%, 

92%, 82% and specificities of 86%, 91% and 52% for each NNW respectively.

Optic discs were analysed to differentiate between normal and optic discs with new 

vessel growth. This was achieved by extracting circular intensity profiles at varying 

radii from both groups. The comparing the number of turning points identified within 

the two groups we found that there was a significant difference p<0.001 between the 

average number of turning points on a normal optic disc (59.8, SD 2.41) with radius 

40 pixels when compared to an optic disc which had new vessels (66.6, SD 2.58).
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C h a p t e r  7 - P e r f o r m a n c e  T e s t in g  o f  t h e  D ia b e t ic  R e t in a

7.1. V a l id a t io n  o f  n e u r a l  n e t w o r k  p e r f o r m a n c e s

In Chapter 6, methods for the optimisation of neural network performance in 

association with the main clinical features of the normal and diabetic retina were 

described. To ascertain the accuracy of the network performance the classification 

results from the network were compared to that of an experienced ophthalmic 

clinician. A random selection of images was selected from the Diabetic review clinic. 

These images had not previously been used in the training and testing phase. The 

images were segmented into boxes each containing 20 x 20 pixels and classified by 

the clinician as being normal background retina, normal vessel, hard exudate or dot / 

blot haemorrhage.

The previously optimised NNW's trained for the identification of vessels, exudates & 

haemorrhages from background retina were tested on the new test images and the 

results imported into the DRIC programme for analysis.

Quantification of the NNW's performance can be executed via the main menu, File > 

Open Classification in the DRIC programme. The user is prompted to input the 

neural network result file (*.nnr) from which information relating to the associated 

test set file (*.nna) can be accessed. This allows the classification results from the 

NNW to be directly compared to the original feature classification. If the NNW 

correctly classified a feature then that feature would be displayed in its original 

position on the image from which it was taken. If on the other hand the NNW 

incorrectly classified a feature it would then be displayed in black instead of its 

predefined colour coding: i.e. exudateiyellow, vessehwhite, exudate: green, 

haemorrhage:blue, (Fig 7.1.).

The sensitivity values are calculated as a percentage of the number of abnormal 

features correctly classified by the NNW over the total number of that specific 

feature presented to the NNW. The specificity is calculated as 1- (the number of
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normal features incorrectly classified by the NNW over the total number o f normal 

features presented to the NNW) and expressed as a percentage.

^ U J x l

Ffe C'JovMJVAiduo*.*!Ijnv Ffc Sw* I2U M  tote.

Fig 7.1. Screenshot of neural network results file analysis through DRIC program.
White boxes represent correctly classified vessels, yellow boxes represent correctly 
classified normal background retina. Features that were incorrectly classified by the 
NNW are displayed in black.

7 .1 .1 .  R e c o g n i t i o n  o f  v e s s e l s

The clinician generated data sets were tested on data trained using the optimal neural 

network architecture as identified in the previous trials, Chapter 5.3 & 6. For the 

performance testing o f vessels against normal background retina the NNW 

architecture included 400 inputs, 1 output, 1 hidden layer with 20 units, trained for 

200,000 iterations and using the hyperbolic tangent learning rule. Included within the 

test set were 4456 examples o f vessels and 1386 examples o f normal retina taken 

from 20 images. For the new test set o f images the neural network achieved an 

average sensitivity o f 93% and specificity 84%. The individual breakdown from each 

image within the test set is displayed in Table 7.1.

-  1 4 2 -
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Image TF IV TV IR TR sens specs
1 883 8 648 21 235 99% 91%
2 171 16 99 8 72 84% 89%
3 108 0 0 19 108 n /a 82%
4 90 0 0 8 90 n /a 91%
5 423 6 360 21 63 98% 67%
6 432 47 306 4 126 85% 97%
7 477 10 360 15 117 97% 87%
8 369 27 306 4 63 91% 94%
9 198 24 171 0 27 86% 100%

10 162 3 153 2 9 98% 78%
11 288 5 235 22 53 98% 58%
12 45 3 45 0 0 93% n /a
13 450 47 450 0 0 90% n /a
14 171 14 153 7 18 91% 61%
15 279 17 180 17 99 91% 83%
16 441 27 378 11 63 93% 83%
17 18 0 0 0 18 n /a 100%
18 189 6 108 18 81 94% 78%
19 243 10 171 5 72 94% 93%
20 405 18 333 17 72

Average
95%
93%

76%
84%

Table 7.1. N N W  performance testing of vessel recognition from normal retinal TF: total number oj 
features, IV: number of incorrectly classified vessels, TV: total number o f vessels to be identified, IR: 
number of incorrectly classified retina examples, TR: total number of retina examples to be identified

7 .1 .2 . R e c o g n it io n  o f  h a e m o r r h a g e s

The optimum back-propagation network architecture for the detection of 

haemorrhages consisted of 400 inputs, 1 output, 1 hidden layer comprising of 20 

units, trained for 200,000 iterations and using the hyperbolic tangent learning rule. 

The neural network was tested on a new set of 20 images, which collectively 

displayed 1072 examples of haemorrhages and 1452 examples of normal retina. 

Eight images included within the data set had no known diabetic retinopathy related 

pathology. The NNW achieved an average sensitivity of 81% and specificity 85%. 

The number of features and the performance of the NNW for each image are 

displayed in Table 7.2.
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Image TF IH TH IR TR sens specs

1 235 0 0 16 235 n /a 93%
2 39 0 0 3 39 n /a 92%
3 27 0 9 6 18 100% 67%
4 108 0 0 18 108 n /a 83%
5 126 1 36 5 90 97% 94%
6 90 0 0 24 90 n /a 73%
7 63 0 0 15 63 n /a 76%
8 243 29 117 2 126 75% 98%
9 117 0 0 9 117 n /a 92%

10 99 8 36 2 63 78% 97%
11 117 34 90 3 27 62% 89%
12 54 7 45 3 9 84% 67%
13 81 8 28 5 53 71% 91%
14 369 96 369 0 0 74% n /a
15 135 5 36 14 99 86% 84%
16 63 0 0 13 63 n /a 74%
17 216 32 198 1 18 84% 94%
18 153 16 72 6 81 78% 92%
19 117 7 36 6 81 81% 92%
20 72 0 0 16 72

Average
n /a

81%
71%

85%
Table 7.2 . NNW performance testing o f  haemorrhage recognition from normal retinal.

TF: total number o f  features, IH: number o f  incorrectly classified haemorrhages, TH: total 
number o f haemorrhages to be identified, IR: number o f  incorrectly classified retina examples, 
TR: total number o f  retina examples to be identified

7 .1 .3 . R e c o g n it io n  o f  e x u d a t e s

For the performance testing of exudates against normal background retina the NNW 

protocol included 400 inputs, 1 output, 1 hidden layer comprising of 20 units, trained 

for 200,000 iterations and using the hyperbolic tangent learning rule. There were 27 

images in the test set, containing 1207 examples of exudates and 1996 examples of 

normal retina. 7 images included in the test set had no known diabetic retinopathy 

related pathology. The NNW had achieved average sensitivity of 80% and specificity 

98% for the identification of exudates against normal retina. The individual 

breakdown from each image within the test set is displayed in Table 7.3.
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Image TF IE TE IR TR sens specs
1 235 0 0 0 235 n /a 100%
2 115 7 36 6 79 81% 92%
3 81 0 0 1 81 n /a 99%
4 135 9 36 2 72 75% 97%
5 54 2 9 0 45 78% 100%
6 63 5 45 0 18 89% 100%
7 108 0 0 8 108 n /a 93%
8 90 0 0 1 90 n /a 99%
9 144 9 27 2 117 67% 98%

10 90 0 0 9 90 n /a 90%
11 186 4 9 0 177 56% 100%
12 63 0 0 4 63 n /a 94%
13 90 3 27 1 63 89% 98%
14 117 13 81 0 36 84% 100%
15 126 16 99 0 27 84% 100%
16 27 5 18 0 9 72% 100%
17 81 1 45 0 36 98% 100%
18 198 20 145 2 53 86% 99%
19 108 30 108 0 0 72% n /a
20 27 1 9 1 18 89% 94%
21 162 0 0 6 162 n /a 96%
22 90 8 72 0 18 89% 100%
23 108 9 27 2 81 67% 97%
24 108 8 36 0 72 78% 100%
25 180 29 162 0 18 82% 100%
26 171 11 90 3 81 88% 96%
27 162 25 126 0 36

Average
80%
80%

100%
98%

Table 7.3. NNW performance testing o f  exudate recognition from normal retinal.
TF: total number o f features, IE: number o f  incorrectly classified exudates, TE: total number o f  

exudates to be identified, IR: number o f  incorrectly classified retina examples, TR: total number o f  
retina examples to be identified

7 .2 . M a c u l a  a n a l y s is

For our central vision to function properly it is vital that the highly sensitive macula 

region remains disease free. The presence of exudates, new vessels and or 

haemorrhages within and immediately surrounding the macula region acts as a 

forewarning that if untreated normal vision will be affected. The detection of these 

features only serves as an indication that sight may become threatened; a prognosis 

of maculopathy or macula oedema cannot be made unless there has been a reduction 

in visual acuity and a thickening of the macula region.
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As discussed in Chapter 5.3 we successfully derived a process for detecting the 

macula region on a digital fundus image. At the time of detection the relative co­

ordinates are saved thus permitting localised analysis to be performed on this area.

By combining the co-ordinates of the macula with the co-ordinates of the features 

correctly classified as exudates by the NNW, we were able to grade an image as 

being diabetic maculopathy based on the assumption that there are multiple exudates 

within one disc diameter of the centre of the fovea, National Screening Committee 

2004.

The performance of the NNW was tested against a consultant ophthalmologist who 

classified twenty-eight images: 11 as maculopathy the other 17 were classified as not 

having maculopathy Table 7.4. This technique correctly identified 10 out of the 11 

fundus images with maculopathy and 12 of 17 with no maculopathy, giving an 

overall sensitivity and specificity of 91%, 71% respectively.

Im age exudate E W M R N N W C C C Im age exudate E W M R N N W C C C

1 0 0 X X 15 68 30 V X

2 0 0 X X 16 83 8 V X

3 29 29 V V 17 13 8 V V

4 27 6 V V 18 44 17 V V

5 7 0 X X 19 125 58 V V

6 40 15 V V 20 8 0 X X

7 18 0 X V 21 0 0 X X

8 0 0 X X 22 0 0 X X

9 5 0 X X 23 64 25 V V

10 5 5 V X 24 18 16 V V

11 0 0 X X 25 28 2 V X

12 0 0 X X 26 0 0 X X

13 0 0 X X 27 133 24 V V

14 24 0 X X 28 79 47 V V

Sensitivity: 91%

Table 7.4. Detection o f  maculopathy. Specificity: 71%

EWMR: number o f  exudates within 1 disc diameter o f  macula, NNWC: neural network 
classification, CC: consultant ophthalmologist classification, X: no maculopathy present, ?: 
maculopathy present.
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7 .3 . F u l l  im a g e  c l a s s if ic a t io n

We have successfully trained three individual NNW’s to identify the main 

components of the diabetic retina, namely, normal background retina, vessels, 

haemorrhages and exudates. Combining the results from the three networks and by 

extrapolating the position of exudates in relation to the macula region we were able 

to grade the digital fundus images as being:

*5} Normal, no evidence of diabetic retinopathy: No identifiable haemorrhages or 

exudates related to diabetic retinopathy.

*5} Background: Multiple haemorrhages and or exudates detected.

7  ̂ Maculopathy: Exudates detected within one disc diameter of the macula.

The performance of the NNW was tested against a consultant ophthalmologist who 

classified 25 randomly selected images from the image data set. The classification of 

each image by the NNW and the consultant ophthalmologist is shown in Table 7.6. 

(the individual numbers of features have already been shown in Tables 7.2. & 7.3.).
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Image haemorr exudates m aculop N N W C CC
1 X X X N N
2 X V X M M
3 V X V M M
4 V X X B B
5 X X X N P
6 V V V M M
7 X V X B M
8 X X X N N
9 X V X B B

10 X V V M B
11 X X X N N
12 < X X B B
13 X X X N B
14 X V V M M
15 V V V M B
16 V V V M B
17 X V V M M
18 V V V M M
19 V V X B B
20 X X X N N
21 X X X N B
22 V V V M M
23 V V V M M
24 X X X N N

25 X V V M M

Sensitivity: 85%
Specificity: 100%

Table 7.5. Full image classification.
NNWC: neural network classification, CC: consultant ophthalmologist classification, X: 
no features present, V: features present, N: normal, B: background retinopathy, M: 
maculopathy.

The consultant ophthalmologist classified 5 images as normal with no disease 

pathology and the remaining 20 as having features associated with diabetic 

retinopathy. The 20 images were then graded with respect to disease progression: 9 

images displaying features associated with background diabetic retinopathy, 10 

images with maculopathy and 1 image with regressive pre-proliferative retinopathy.

Using the results from the trained NNW we graded each image as being:

- 1 4 8 -
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Normal -  no evidence of diabetic retinopathy: If the NNW classified none of 

the features as being either haemorrhages or exudates.

^  Background diabetic retinopathy: If one or more features were correctly 

classified as being haemorrhages or exudates.

^  Maculopathy: If one or more exudates were correctly identified and located 

within one disc diameter of the macula.

The NNW correctly classified all 5 of the normal images (100%) and 17 / 20 of the 

images displaying features associated with diabetic retinopathy (85%). It incorrectly 

classified three images as being normal: the ophthalmologist graded two of the 

images as background retinopathy and the other pre-proliferative retinopathy.

Under the above criteria, the NNW correctly classified 9 out of the 10 images 

displaying features associated with maculopathy (90%) and 4 of the 9 images 

displaying features associated with background retinopathy (44%). Three of the 5 

background images were classified as being maculopathy (33%), the other 2 as 

normal (22%).

The current guidelines recommend a sensitivity of >80% and specificity of >95% for 

a single modality screening process, British Diabetic Association report 1997. 

Overall our method of combining image pre-processing algorithms with neural 

networks fulfils this criteria by achieving a sensitivity of 85% and specificity of 

100% for distinguishing between normal images and images containing features 

associated with diabetic retinopathy.

7.4. Sum m ary

In this chapter the ability of the trained neural network in identifying the main 

clinical features associated with diabetic retinopathy was assessed. A consultant 

ophthalmologist classified individual segments (20 x 20 pixel boxes) in additional to 

the image as a whole.
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Three individual NNWs were trained to identify normal vessels, haemorrhages and 

exudates from normal background retina. The performance of the NNW was tested 

against the classification provided by the ophthalmologist for each feature. For the 

identification of each feature from normal background retina the NNW achieved a 

sensitivity of 93% and specificity 84% for vessels, a sensitivity of 81% and 

specificity 85% for haemorrhages and a sensitivity of 80% and specificity 98% for 

exudates.

Full images were classified as being normal if the NNW correctly identified no 

exudates or haemorrhages being present within the field of view. A classification of 

background retinopathy was given if the NNW correctly identified multiple 

haemorrhages and or exudates. Finally, images were classified as diabetic 

maculopathy if exudates were correctly identified within one disc diameter of the 

macula region.

Current guidelines recommend a sensitivity of >80% and specificity of >95% for a 

single modality screening process. Our method of combining pre-processing 

algorithms with neural networks fulfils this criterion by achieving a sensitivity of 

85% and specificity of 100% for the identification of images displaying features 

associated with background diabetic retinopathy from normal images. When applied 

to the identification of sight-threatening maculopathy we achieved a sensitivity of 

91% & specificity of 71% from non-maculopathy images. These results show that 

this method would successfully identify the greater majority of patients at risk of 

maculopathy but as a consequence it would also flag an additional number of patients 

who were not at risk.
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C h a p t e r  8  -  C o n c l u s io n s  a n d  F u r t h e r  W o r k

8 .1 . R e v ie w

The images used for the training and testing of the NNW performance were selected 

from patients attending the diabetic review clinic at Gartnavel General Hospital. The 

selection of these images coincided with the commissioning of a new digital fundus 

camera that was purchased with funding from Diabetes UK. At the time of 

attendance to the review clinic the referring ophthalmologist graded each image. To 

minimise interobserver variability a consultant ophthalmologist subsequently graded 

the images.

The images were analysed for specific features using a combination of conventional 

image processing algorithms and neural networks. The Diabetic Retinopathy Image 

Classification Programme (DRICP) was a custom developed programme that was 

specifically written by the author to enable NNW training and learning data sets to be 

created. Additional components were written into the programme including image 

enhancement and automated feature detection algorithms. A detailed description of 

the programme and its functions were discussed in Chapter 4.

8 .2 . R e c o g n it io n  o f  N o r m a l  R e t in a l  F e a t u r e s

The normal components of the retina were identified as being normal background 

retina, normal blood vessels, the optic disc (OD) and the macula.

Localisation of the optic disc and macular regions were achieved by identifying the 

areas of highest pixel and lowest pixel intensity values respectively. The accuracy for 

the identification of the optic disc and macula within a normal group and a diabetic 

retinopathy group of images was 100%, 98% and 91%, 89% respectively. These 

results are comparable with other researchers who applied a similar technique. 

Sinthanayothin et al. 1999, Selected 112 images from a diabetic review clinic and
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successfully identified 91% of the OD’s and 85% of the fovea’s. The author does not 

indicate the classification of the images selected. Furthermore they have not stated 

the performance of their technique in identifying these features on normal fundus 

images.

Identification of normal retinal vasculature was performed using an optimally trained 

back-propagation neural network (NNW), yielding a sensitivity of 93% and 

specificity of 84%. The identification of normal retinal blood vessels is of particular 

importance when trying to detect abnormal vessel formation. While the NNW 

achieves a relatively high success rate in differentiating between background retina 

and larger blood vessels it is not as effective at identifying the fine new vessels. 

When applied to the detection of new vessels the NNW attained a sensitivity of 82% 

and specificity of 52%.

These results were comparable to the results obtained by researchers who also 

employed neural networks to classify vessels. Gardner et al. 1996 reported a 

combined sensitivity and specificity of 92%. Sinthanayothin et a l 1999 achieved a 

sensitivity of 83% and specificity of 91%. The slight differences within these results 

can be accounted by the discrepancies in the number of inputs and training examples. 

Neither of these studies provided information relating to the identification of new 

vessels.

Further investigation into the application of new algorithms for the detection of these 

sight-threatening features would be advantageous. One approach would be to utilise 

vessel tracking algorithms. However a certain amount of user input is required to 

define starting and end points and thus removes the automation of the technique. 

Nonetheless the benefit of this technique is that it allows the morphology and widths 

of vessels to be recorded. New vessels proliferate out into the vitreous cavity and are 

therefore a three dimensional feature. For this reason it will always be difficult to 

detect these features on two dimensional digital images.
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8 .3 . R e c o g n it io n  o f  F e a t u r e s  A s s o c ia t e d  w it h  B a c k g r o u n d  D ia b e t ic  

R e t in o p a t h y

This thesis has concentrated on the automated identification of the common features 

associated with background diabetic retinopathy, namely hard exudates and 

haemorrhages. Exudates and haemorrhages can form as isolated lesions across the 

retina or as localised clusters. Hipwell et a l 2000, proposed that the number of 

micro-aneurysms was related to disease progression. They reported that their system 

could identify 76% of patients with no DR pathology at the expense of 15% of 

patient who actually have DR. Current screening guidelines require a sensitivity of 

80% and specificity of 95%, therefore this technique would fail to meet this criteria

A fully automated technique was designed to segment digital colour fundus images 

into discreet 20 x 20 pixel examples. These were then used to successfully train a 

back-propagation neural network to identify exudates and haemorrhages from normal 

background retina achieving sensitivities and specificities of 80%, 81% and 98%, 

85% respectively. The benefit of this approach is that it provides a fully automated 

method for identifying background diabetic retinopathy.

The results of this work can be compared with Gardner and Sinthanayothin who also 

employed neural networks. Gardner had a combined sensitivity and specificity of 

93% for exudates and 74% for haemorrhages. Sinthanayothin reported a sensitivity 

of 86% & 78% and specificity of 100% & 89% for respective features, Gardner et a l 

1996, Sinthanayothin et a l 1999.

The results obtained in this work are marginally poorer than those achieved by 

Sinthanayothin, this may simply be attributed to the difference in NNW design. 

Sinthanayothin presented the information to the NNW in a smaller matrix effectively 

reducing the contribution of other conflicting features. Other factors such as the 

number of training and testing examples can also contribute these differences.
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At this stage these differences do not require the currently trained network to be 

redesigned. This will only come into effect when the system is tested against images 

taken from a true screening population.

The next stage would be to address methods for identifying pre-proliferative features 

such as cotton wool spots and vessel abnormalities. As with the more common 

features Neural Networks could be applied to the task. The shortfall of a neural 

network approach is that it requires a large quantity of good quality training 

examples. The features associated with pre-proliferative DR are less common and 

therefore it may prove more difficult to collect enough samples. As a result the 

trained NNW would yield poor specificity results similar to those obtained for new 

vessels.

8 .4 . D e t e c t in g  D ia b e t ic  M a c u l o p a t h y

As macular oedema is a major cause of treatable visual loss in diabetic patients early 

detection of its development is essential. The clinical definitions for classifying the 

varying degrees of diabetic related maculopathies are:

^  Exudative: Characterised by exudates within the macular region, in 

particular causing visual damage if they accumulate at the centre of the 

fovea. This type of maculopathy is categorized as more threatening to 

sight if the exudates form groups or appear in complete or near-complete 

circular rings.

*5} Diffuse: This form of maculopathy is characterised by thickening or 

oedema of the retina; this may include little or no exudation but certainly 

microaneurysms will be present. Again at its most advanced stage there 

will be clusters of microaneurysms within the fovea region.

*5} Ischaemic: Presently, diagnosis of this form of maculopathy can only 

accurately be made through fundus fluorescein angiography
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The accurate assessment of the macula for the detection of clinically significant 

macular oedema (i.e. diffuse and ischaemic strains) as defined by the Early 

Treatment Diabetic Eye Study group, ETDRS 1991, requires ophthalmoscopic 

screening utilising stereoscopic biomicroscopy and fluorescein angiography. The 

first technique provides the ophthalmologist with a 3-D view of the retina, enabling 

them to more accurately assess the extent of thickening within the patient’s macula. 

Fluorescein angiography is an invasive technique which requires injecting a small 

amount of dye (sodium fluorescein) into the arm.

Images were classified as being at risk of developing maculopathy if exudates were 

identified within the macular boundaries. By extrapolating the co-ordinates of the 

exudates in relation to the co-ordinates of the macula and fovea boundaries images 

were graded according to the number of exudates identified within these boundaries. 

For the identification of diabetic maculopathy from non-maculopathy images our 

network achieved a sensitivity of 91% & specificity of 71%. There have been no 

similar attempts to identify maculopathy for comparison with these results.

There are a number of possible solutions to automatically detect diffuse and 

ischaemic diabetic maculopathy. The first would be to obtain a method of capturing 

3-D fundus images. This would require the purchase of a new stereoscopic digital 

fundus camera. Once in place the actual process of analysing these images would 

follow a similar approach to those methods practised under the current study. It 

would involve training more neural networks to identify the differences under these 

new conditions. Hence, a new dataset of stereo images would have to be collected. 

However the accuracy of this technique being able to identify a significant increase 

in the thickness of the macula would have to be assessed.

Another more practical option for the department to pursue would be the inclusion of 

assessing macular thickening using optical coherence tomography (OCT). The 

department currently has a Humphrey-Zeiss Medical Systems (San Leandro, CA) 

system already in place, (Fig 8.1.). In addition to performing a full statistical analysis 

on the application of the technique including quantifying the repeatability and
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reproducibility o f the system, the EDIU department also has considerable experience 

o f the clinical use o f OCT, Muscat et al. 2002, 2001a, b.

Fig 8.1. Humphrey OCT system, as 
currently set-up within the 
ElectroDiagnostic Imaging Unit at 
Gartnavel General Hospital.

8.4.1 OCT a n d  D i a g n o s i n g  D i a b e t i c  M a c u l a r  O e d e m a

OCT provides a non-contact and non-invasive means for measuring cross-sectional 

or tomographical retinal thickness. Many groups have reported the assessment of 

macular oedema through OCT and have shown a correlation between visual acuity 

and relative central foveal thickness, Yang et al. 2001, Yamamoto et al. 2001, Hee et 

al. 1998, 1995. Morphologically, the changes in macular oedema include a decreased 

intraretinal reflectivity, arising from cystic changes and fluid accumulation. Chronic 

forms o f cystoid macular oedema can lead to the development o f macular holes, (Fig

8.2.). This is evident on OCT as a partial thickness loss o f retinal tissue and an 

abnormal retinal contour.

scanner

Fixation Monitor
Fundus

monitor

Fig 8.2. a) Macular Oedema b) Macular hole
Images obtainedfrom  the ElectroDiagnostic Imaging Unit, Gartnavel General Hospital, G lasgow
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Optical coherence tomography provides an objective assessment of diabetic macular 

oedema through cross-sectional images of the retina. It is a technique that can 

measure retinal thickness as well as the intraretinal structures of the eye. Combined 

with an automated diabetic retinopathy feature detection system it could provide the 

extra dimension required to successfully identify macular oedema.

8.5. D e t e c t i n g  N e w  V e s s e l s  a t  t h e  O p t i c  D i s c

The identification of new vessels is particularly complex as they appear as very fine 

strands with highly irregular shapes and are difficult to distinguish from the 

background retinal hue. Their detection is marginally easier at the optic disc due to 

its brighter hue. Identification of new vessels at the optic disc was achieved by 

analysing the differences in pixel colour values. Normal profiles were compared 

against optic discs with new vessels.

When plotted in profile vessel edges appear as a trough, the adjacent peak making 

the other edge of the vessel and a return to the higher intensity background. Plateau 

between major vessel edges remain fairly uniform on normal OD profiles. However 

on OD’s with new vessel growth the plateaus between major vessels exhibit an 

increase in the number of peaks suggesting the presence of further vessel activity. To 

quantify the difference between the circular intensity profiles (CIP) of OD’s 

displaying normal retinal vasculature and OD’s with new vessels, we employed a 

method of counting the relative number of turning points. We found that there was a 

significant difference /K0.001 between the average number of turning points on a 

normal optic disc (59.8, SD 2.41) with radius 40 pixels when compared to images 

with new vessels at the optic disc (66.6, SD 2.58). There has been no reports on 

similar work to compare these results to.

Circular intensity profiling is a promising automated technique for identifying new 

vessels within the optic disc. More examples have to be collected and further work 

has to be performed in this area. Some techniques that could be applied would 

involve the removal of the normal vessels and assessing the remaining intensity
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profiles or quantifying the number of pixels between turning points as an assessment 

of vessel width.

8 .6 . D is c u s s io n

The aim of this work was to develop an automated computerised system to aid in the 

screening of diabetic retinopathy. To achieve this custom written software was 

developed to enable the integration of image acquisition, image processing, neural 

network (NNW) training and testing algorithms to be performed in a structured 

manner.

Images were collected from the Diabetic Review Clinic at Glasgow’s GGH. The 

images were pre-selected by the author to represent an array of normal retinal 

examples and those containing specific features attributed to diabetic retinopathy. 

Images were initially graded by junior ophthalmologists at the time of photographic 

referral and subsequently graded by a consultant ophthalmologist. As the images 

were pre-selected from a review clinic they do not give a true representation of the 

screening population. This may account for the high sensitivities and specificities 

achieved. Therefore to provided an unbiased representation of the trained NNWs 

performance a future requirement would be to test the system on random images 

classified by trained screeners and taken from the screening population. The added 

benefit of this validation is that it would also test whether the current system is robust 

enough to identify retinal features from other digital fundus cameras with a similar 

success rate to that described in this thesis.

Further investigation into identifying other retinal pathologies will also have to be 

introduced into the screening algorithm. Diabetic retinopathy is a life long 

progressive disease, there are many other sight threatening conditions that also 

develop with age. Therefore the system must be developed so that patients are not 

misclassified.
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The structure for this development is in place. This work has shown that NNWs are 

an efficient tool for feature classification therefore the same principles can be 

adapted for feature recognition associated with age related macular degeneration 

(ARMD) and glaucoma. Both these conditions can develop features similar to 

diabetic retinopathy. In glaucoma high intraocular pressure (IOP) can result in flame 

shaped haemorrhages while patients with ARMD can develop microaneurysms and 

lesions which are similar to DR exudates. These examples would be taken from the 

screening population so that the trained NNWs would be properly validated.

So far features have been classified in isolation and therefore cannot be directly 

compared to the clinical situation. One possible solution is to develop a multiple 

output NNW. The problem with this approach is that training times will increase. 

Moreover the performance will be compromised due to the greater need for feature 

generalisation. Another possibility is to develop a tiered classification structure 

which will identify the most severe features first.

Some progress was achieved in identifying the growth of new vessels. A NNW was 

trained to identify these features in the peripheral retina. Unfortunately the results 

obtained were poor due to the limited number of features collected. It may be 

valuable to repeat this process if access to screening centres provides a greater 

collection of new vessel examples. Promising results were shown in our analysis of 

optic discs. The use of circular intensity profiles revealed a significant difference 

(p<0.001) between the number of turning points (associated with vessel edges) 

between normal optic discs and those that have new vessels. These results were 

obtained from a small data set of images and again would benefit from re-analysis 

with a larger dataset. Progress was also made in diagnosing sight-threatening 

exudative diabetic maculopathy.

In conclusion, the author has developed a custom written program which enables 

image acquisition, image processing, neural network training and testing to be 

performed in a structured manner. The results obtained by the author agree with 

those reported by Gardner et a l 1996 and Sinthanayothin et a l 1999. Both used 

neural networks to automatically identify background diabetic retinopathy features.
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Moreover, the author has successfully combined feature location information 

enabling the identification of people with sight threatening exudative maculopathy. 

Diffuse and ischaemic maculopathy cannot be identified from standard two- 

dimensional images. This problem may be addressed by integrating the current 

system with visual acuity and macular thickness measurements. Recent technological 

advancements have resulted in new commercial systems that are capable of 

providing fast and accurate retinal thickness measurements. Optical coherence 

tomography (OCT) is a non-invasive procedure that can be combined with the 

current system to provide a real practical solution to the automated screening 

problem. The author has also proposed a method of analysing the circular intensity 

profile of the optic disc to identify new vessels. There are no other studies to date 

that have reported any success in classifying these sight threatening features. The 

next stage is to test the current computer program on images collected from a 

diabetic screening service. However, before the system can operate as a stand-alone 

screening tool is must be capable of identifying other pathologies. This will require 

further careful investigation.
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A p p e n d i x  I

I m a g e  c l a s s i f i c a t i o n  a n d  f e a t u r e s  i d e n t i f i e d  b y  a  c o n s u l t a n t

OPHTHALMOLOGIST

NVE NVD M 'P T H Y  PRE-PRO PROUF B'GND OTHER FEATURES R Eye L Eye

1 E,H
2 E, H, CWS

3 ? E, H, CWS

4 E

5 OV, Lx

6 ? E, H, CWS

7 E, H

8 Rx E

9 ? -Rx E, H, CWS, Lx
10 E, H, TV
11 H

12

13 Rx E, H
14 Rx E, H, Lx

15 Rx E, H, Lx

16 E, H, AV
17 E, H, CWS, Lx

18 H
19 H, OV

20 Rx E, H, Lx
21 E, H
22 E, H
23 ? E
24 E, H
25 E, H, TV

26 E, H
27 E, H

28 ? E, H
29 E, H, Lx

30 Rx E, H
31 asteroids

32 asteroids

33 ? E, H
34 nasal view

35 ? ? E, H, CWS

36 ? E, H
37 H

38 E, H
39 E,H

40 ? H

41 H, CWS

42 E, H
43 E, H
44 E, H

45 E, H, nasal view
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NVE NVD M 'P T H Y  PRE-PRO PROLIF B'GND OTHER FEATURES R Eye L Eye

46 E, H

47 E, CWS

48 E, H

49 E, H, Lx

50 reflex artefact

51 ? E, H

52 E

53 E, H

54 regressed

55 E, H, OL

56 E, H

57 E, H

58 E, H
59 normal

60 H

61 ? E, H

62

63 artefact at macula

64 Rx E, H
65 Rx H, Lx

66 Rx H, OV, Lx

67 Rx H, OV, Lx

68 E, H
69 E
70 E, regressed
71 E

72 E, H, OV

73 E, H, CWS

74 H, CWS, OV

75 ______ I
76 E, H, Lx

77 E, H
78 E, H

79 Rx E, H, CWS, Lx

80 ? E

81 H

82 ? E, H

83
84 E, H

85 ? E, H

86 E

=87 Rx E, H, Lx

88 ? E, H

89 ? E, H

90 ? E, H, CWS

91 regressed

92 post surgery

93

94 ? E, H, CWS

95 H, CWS, nasal view

96 ? E, H

97 vitreous haemorrhage

98 vitreous haemorrhage
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NVE NVD M 'P T H Y  PRE-PRO PROLIF B'GND OTHER FEATURES R Eye L Eye

99

100 ? E, H
101 E, H
102 H

103 E, H
104 lesion at fovea

105 post vitreous surg

106 post vitreous surg
107 E, H, CWS

H

E, H

108

109 OL, scar tissue

110 Rx Lx

111 H

112 Lx

113 H, OL

114 Lx

115 Lx

116 H, Lx
117 E, H, Lx

118 E, H, OL, Lx

119 E, H
120 E, H, Lx
121 young normal
122 young normal

123 E, H, CWS
124 E, H
125 E, H
126 E, H
127 E, H, CWS

128 E, H

129 H

130 E, H
131 H

132 ? H, CWS

133 H

134 H

135 H

136 E

137 E, H
138 E, H
139 E, H

140 E, H
141 E, H
142 E, H
143 E, H, Lx
144 OL, poor quality
145 ? E, H
146 E, H
147 E

148 E, Lx, poor quality

149 E, H
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NVE NVD M 'P T H Y  PRE-PRO PROLIF B'GND OTHER FEATURES R Eye L Eye

150 E, Lx

151 ? E, H, CWS
152 E, H

153 E, H
154 E, H
155 ? E, H

156 E, H
157 poor quality

158 E, H

159 E, H, OL

160 ? E, H
161 E, H
162 E

163 E, H
164 E, H, OL,scar tissue @disc

165 E, Lx

167 E, H

168 ? E, H, CWS
169 E, H

170 E, H :

171 E, H
172 E, H, TV

173 ? E, H
174 E, H
175 E, H, CWS
176 E
177 Lx

178 H, Lx

179 H

180 E, Lx
181 E, H
182 poor quality

183 E, H

184 poor quality

185 poor quality

186 E, H, CWS
187 E.H ______
188 E, H, Lx

189 E, H, Lx

190 E, H

191 H, poor quality

192 E, poor quality

193 E, H
194 E, H

195
196 E, H
197 E, H, CWS
198 not diabetic

199 E, H

200 E, H
201 H

202 E, H, Lx

203 Rx E, H, Lx
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NVE NVD M 'P T H Y  PRE-PRO PRO LI F B'GND OTHER FEATURES R Eye L Eye

204 Rx H, Lx

205 H

206 poor quality

207 E, H

208 E, H

209 E, H

210 H .

211 ? H

212 ? H

213 E
214 H

215 H

216 E, H
217 ? Non diabetic

218 E, H
219 Rx poor quality

220 E, H, CWS, AV

221 H, CWS
222 E, H, CWS

223 E, H, CWS, TV
224 ? E, H, TV

225 E, H

226 poor quality
227 H

228 H

229 H, AV
230

231 E, H
232 poor quality

233 H

234 E, H
235 normal

236 normal

237

238 H

239 E

240 E, H
241 H, advanced DED

242 Lx

243 Lx
244 advanced DED

245 Lx

246 OL, Lx
247 advanced DED

248 poor quality

249 ? E, H, TV

250 ? H

251 ? E, H
252

253

254 E, TV

255 normal
256 E, H
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NVE NVD M 'P T H Y  PRE-PRO PROLIF B'GND OTHER FEATURES R Eye L Eye

257 E, H

258 E, H

269 E, H

260 ??? jo ? M'pathy

261 nasal view

262 OL : X ' : v

263 mag disc

264 ??? E, H

265 E, H

266 H

267 E, H

268 Rx Rx

269 E, H

270 nasal view

271 E, H, CWS
272 age changes? Drusen

273 E, H

274 E

275 poor quality

276
277
278
279
280 ? ? poor quality

281
282
283
284 ? E

285 E, H, Lx

286 E, H

287 poor quality

288 poor quality

289 poor quality

290
291 E

292 E, H

293 E, H, Lx

294 ? E, H

295 H

296
297
298 E, H

299 E, H

300
301 E, H

302 ? E, H

303 posterior pole

304 nasal view

305 ? E, H

306 E, H
307 ? poor quality

308 poor quality

309 E, H
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NVE NVD M 'P T H Y  PRE-PRO PROLIF B'GND OTHER FEATURES R Eye L Eye

310 E, H

311 ? E, OL

312 E

313 E

314

315 H

316 ? E, H

317 ? E, H

318 E, H

319 Rx E, H

320 ? E, H

321 H

322 ? E, H

323 E, H

324 ? E, H, AV

325 ? E, H, AV

326 Rx

NB. The '? ' represen t im ages which m ay be c la ssed  as m acu lopathy but the oph thalm ologist cou ld  
not be 100%  certa in  w ithout the pa tien t c lin ica l records.

E -  Exudate, H -  H aem orrhage, Lx -  Laser burns, OV -  O ccluded vessels, TV -  

Tortuous vessels, OL -  O m ega loop, Rx -  treated, AV -  AV nipping

Images were selected from this group to create training and test data sets.
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A p p e n d i x  II

N e u r a l  n e t w o r k  ASCII f i l e  f o r  a  s i n g l e  f e a t u r e

132 134 134 134 133 132 132 133 134 136
133 131 131 132 134 136 134 133 129 133
133 134 135 136 133 130 132 135 133 132
133 134 134 135 136 137 137 138 133 133
132 132 134 136 134 133 132 132 131 131
130 130 134 139 139 139 139 139 136 132
133 134 136 139 137 135 133 132 135 139
137 136 137 139 140 141 142 143 139 138
136 134 135 136 138 140 139 139 139 139
139 139 140 141 141 141 139 138 136 133
133 134 136 139 139 140 140 141 138 135
136 138 141 144 142 140 139 139 137 132
134 136 137 138 136 134 134 134 136 139
139 140 141 143 140 137 136 135 135 139
138 137 136 136 134 132 135 139 142 146
143 140 140 140 138 136 133 130 123 138
137 136 136 136 137 139 143 147 145 144
141 138 137 136 132 129 123 118 115 134
133 132 133 134 138 143 143 144 143 142
140 138 132 127 119 112 115 118 117 133
133 133 134 136 138 140 140 140 139 138
133 128 122 116 119 123 121 119 116 133
134 136 136 137 136 135 134 134 129 125
120 115 120 125 121 118 116 115 121 133
135 137 136 136 133 131 128 126 121 116
117 119 119 119 117 115 122 130 135 134
133 133 132 132 125 119 118 117 119 121
116 112 112 113 121 130 135 140 141 135
130 126 121 117 117 117 120 123 123 124
121 118 124 131 135 139 142 145 145 131
123 116 114 113 117 121 119 118 122 126
131 136 138 140 140 140 144 148 148 122
115 109 113 117 116 115 119 123 130 137
141 146 143 140 142 144 145 146 146 114
113 112 113 114 115 117 125 133 137 142
145 148 145 142 145 148 146 145 144 119
115 112 116 121 126 131 135 139 142 146
147 149 146 144 145 147 147 147 147 115
118 121 127 134 137 140 141 142 145 149
148 148 147 146 145 145 146 148 148 &
20 D:\Test\Js0025zl . bmp 410 111 430 131

* The first 400 numbers are the green bit colour information values, the & ' indicates to the 
NNW that the next piece o f information is the output classification value and the 7 ’ begins a 
comment which holds the image name from which the feature was taken and its location 
within the image in terms o f its TopLeft, BottomRight co-ordinates. This later information is 
required for assessing the network's performance and determining i f  there is a particular 
reason why the network may have misclassified an area
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A p p e n d ix  I I I

A p h e l io n  s o u r c e  c o d e  f o r  o p t ic  d is c  d e t e c t io n

(this code was not written by the author)

Public source?,target$,objt$ 
Sub main

============' user changeable parameters
const percent=75
const keepfiles=0 ' =0 to store, =1 to skip storage of 

processed files
const roiLLX=80 ' region of interest which cuts out black

surround and writing 
const roiLLY=80 
const roiURX=639 
const roiURY=47 9
const startrad=150 ' assume that disc border is within

this radius of max point
source$= "c:\ale\normals\" 1 source directory 
target$= "c:\ale\processed\" ' target directory 
objt$= "c:\ale\objects\" 1 objects directory

Dim b$(4)
Const crlf = Chr$(13) + Chr$(10) 
dim maxLLX as double 
dim maxLLY as double 
dim maxURX as double 
dim maxURY as double 
dim thresh as double 
dim i as integer 
ChDir (source?)
v$ = Dir$("*.bmp") 
s$ = source? & v$ 
t$ = target$ & v$
o$ = objt$ & Left$(v$,Len(v$)-4) & ".dat" 
i = 0

V

' Loop on all the images

e (v$ <> "")
u$ = "origin
w$ - "hsi " & i
x$ = "iband " &
y$ = "ret " & i
z$ = "out " & i
original = AphlmgNew(u$) 
hsi = AphlmgNew(w$) 
iband = AphlmgNew(x$) 
rct=AphImgNew(y$) 
out=AphImgNew(z$)

*
' Read the image from the disk, and get the intensity image
V

AphlmgRead original, s$
AphlmgRGBToHSI original, hsi
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AphlmgSplitBands hsi,iband,2
V

' cut out the writing and black border
I

AphlmgDisableRoi iband,0 
AphlmgAddRoi iband,

AphHRectRegion(roiLLX,roiLLY,roiURX,roiURY)
AphlmgSubCopy iband, ret 
AphlmgResetRoi iband 
AphlmgEnableRoi iband,0

I

' get the range
V

Dim range() as double 
AphlmgRange ret, range 
minf = range(0) 
maxf = range(1)
thresh=minf+(percent*(maxf-minf)/100)

f

' apply threshold and create objects
I

outObj = AphObjNew("discs")
AphlmgThresholdObj ret,outObj,AphThreshold(maxf,maxf)

I

' get the maximum coordinates
f

Dim moments() as double
AphObjMoments outObj,"REGION.EXTENTS.LL.X", moments 
maxLLX=moments(2)
AphObjMoments outObj,"REGION.EXTENTS.LL.Y", moments 
maxLLY=moments(2)
AphObjMoments outObj,"REGION.EXTENTS.UR.X", moments 
maxURX=moments(2)
AphObjMoments outObj,"REGION.EXTENTS.UR.Y", moments 
maxURY=moments(2)

*

' now get disc coordinates
f

dim point(2) as long 
dim value as integer 

' first discLLX
if ((maxLLX-startrad)<0) then 

point(0)=0
else

point(0)=maxLLX-startrad
end if
point(1)=maxLLY
value=AphImgGetPixel(ret,point) 
while (value<=thresh)

point(0)=point(0)+1 
value=AphImgGetPixel(ret,point)

wend
discLLX=point(0)

' then discURX
if ((maxLLX+startrad)> (roiURX-roiLLX)) then 

point(0)=roiURX-roiLLX
else

point(0)=maxLLX+startrad
end if
point(1)=maxLLY
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value=AphImgGetPixel(ret,point) 
while (value<=thresh)

point(0)=point(0)-1 
value=AphImgGetPixel(ret,point)

wend
discURX=point(0)

' first discLLY
if ((maxLLY-startrad)<0) then 

point(1)=0
else

point(1)=maxLLY-startrad
end if
point(0)=maxLLX
value=AphImgGetPixel(ret,point) 
while (value<=thresh)

point(1)=point(1)+1 
value=AphImgGetPixel(ret,point)

wend
discLLY=point(1)

1 then find discURY
if ((maxLLY+startrad)> (roiURY-roiLLY)) then 

point(1)=roiURY-roiLLY
else

point(1)=maxLLY+startrad
end if
point(0)=maxLLX
value=AphImgGetPixel(ret,point) 
while (value<=thresh)

point(1)=point(1)-1 
value=AphImgGetPixel(ret,point)

wend
discURY=point(1)

V

' create the out image
I

AphlmgCopy iband,out 
AphlmgSubtractConstFloor out,out,1 
AphlmgDisableRoi out,0 
AphlmgAddRoi

out,AphHRectRegion(roiLLX+discLLX,roiLLY+discLLY,roiLLX+discURX,roiL 
LY+discURY)

AphlmgFill out,255 
AphlmgResetRoi out 
AphlmgEnableRoi out,0
AphlmgThresholdObj out, outObj, AphThreshold(255,255) 
if keepfiles=0 then

AphlmgWrite out, t$ ,"AphBmpFile"
end if
AphObjExport outObj, o$

V

' free images and objects
V

AphlmgFree original 
AphlmgFree hsi 
AphlmgFree iband 
AphlmgFree ret 
AphlmgFree out 
AphObj Free outObj

1 get the next image
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v$ = Dir$ 
i = i + 1
If (v$ <> "") Then

s$ = source? & v$
t$ = target$ & v$
o$ = objt$ & Left$(v$,Len(v$)-4) & ".dat"

End I f

Wend
AphlmgFreeAll 
i = percent 
call createAll(i)
MsgBox "End of the discs program !"

?
' End

End Sub

Sub createAll(j as integer)
Dim a$()
ChDir (objt$)
FileList a$,"*.dat"
If ArrayDims(a$) > 0 Then

Open "discs.dta" For Append As #1
Print #1,"discs macro with percent selected as " &

CStr(j)
for i=0 to 1+ArrayDims(a$)

Open a$(i) For Input As #2 
Line Input #2,lin$
Do While Not EOF(2)

Line Input #2,lin$
Print #l,a$(i) & Chr$(9);
Print #1,lin$

Loop
Close #2

next i 
close #1

end if 
End Sub
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A p p e n d ix  IV

A p h e l io n  s o u r c e  c o d e  f o r  m a c u l a  d e t e c t io n

(this code was not written by the author)

Public source?,target$,objt$ 
Sub main

1 user changeable parameters
const percent=75 ' threshold value for detecting minimum

point
const keepfiles=0 ' =0 to store, =1 to skip storage of 

processed files
const roiLLX=220 ' region of interest which excludes borders 

of image
const roiLLY=148 
const roiURX=499 
const roiURY=427
const startrad=100 ' assume edge of fovea is within this

value of min point
source$= "c:\ale\normals\" ' source directory 
target?= "c:\ale\processed\" ' target directory 
objt$= "c:\ale\objects\" ' objects directory

Dim b$(4)
Const crlf = Chr$(13) + Chr$(10) 
dim maxLLX as double 
dim maxLLY as double 
dim maxURX as double 
dim maxURY as double 
dim thresh as double 
dim i as integer 
ChDir (source?)
v? = Dir?("*.bmp") 
s? = source? & v? 
t? = target? & v?
o? = objt? & Left?(v?,Len(v?)-4) & ".dat" 
i = 0

V

' Loop on all the images
f

While (v? <> "")
u? = "origin " & i
w? = "hsi " & i
x? = "iband " & i
y? = "ret " & i
yl? = "rctin " & i 
z? = "out " & i 
original = AphlmgNew(u?) 
hsi = AphlmgNew(w?) 
iband = AphlmgNew(x?) 
rct=AphImgNew(y?) 
rctin=AphImgNew(yl?) 
out=Aph!mgNew(z?)
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' Read the image from the disk, and get the intensity image
I

AphlmgRead original, s$
AphlmgRGBToHSI original, hsi 
AphlmgSplitBands hsi,iband,2

V

' cut out the writing and black border
T

AphlmgDisableRoi iband,0 
AphlmgAddRoi iband,

AphHRectRegion(roiLLX,roiLLY,roiURX, roiURY)
AphlmgSubCopy iband, ret 
AphlmgResetRoi iband 
AphlmgEnableRoi iband,0

»

' invert and filter
I

Aphlmglnvert rct,rctin 
AphlmgGaussianFilter rctin,ret,11

I

' get the range
f

Dim range() as double 
AphlmgRange ret,range 
minf = range(0) 
maxf = range(1)
thresh=minf+(percent*(maxf-minf)/100)

I

' apply threshold and create objects
V

outObj = AphObjNew("foveas")
AphlmgThresholdObj ret,outObj,AphThreshold(maxf,maxf)

I

' get the maximum coordinates
I

Dim moments() as double
AphObjMoments outObj,"REGION.EXTENTS.LL.X", moments 
maxLLX=moments(2)
AphObjMoments outObj,"REGION.EXTENTS.LL.Y", moments 
maxLLY=moments(2)
AphObjMoments outObj,"REGION.EXTENTS.UR.X", moments 
maxURX=moments(2)
AphObjMoments outObj,"REGION.EXTENTS.UR.Y", moments 
maxURY=moments(2)

V

' now get fovea coordinates
I

dim point(2) as long 
dim value as integer 

' first foveaLLX
if ((maxLLX-startrad)<0) then 

point(0)=0
else

point(0)=maxLLX-startrad
end if
point(1)=maxLLY
value=AphImgGetPixel(ret,point) 
while (value<=thresh)

point(0)=point(0)+1
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value=AphImgGetPixel(ret,point)
wend
foveaLLX=point(0)

' then foveaURX
if ((maxLLX+startrad)> (roiURX-roiLLX)) then 

point(0)=roiURX-roiLLX
else

point(0)=maxLLX+startrad
end if
point(1)=maxLLY
value=AphImgGetPixel(ret,point) 
while (value<=thresh)

point(0)=point(0)-1 
value=AphImgGetPixel(ret,point)

wend
foveaURX=point(0)

1 first foveaLLY
if ((maxLLY-startrad)<0) then 

point(1)=0
else

point(1)=maxLLY-startrad
end if
point(0)=maxLLX
value=AphImgGetPixel(ret,point) 
while (value<=thresh)

point(1)=point(1)+1 
value=AphImgGetPixel(ret, point)

wend
foveaLLY=point(1)

' then find foveaURY
if ((maxLLY+startrad)> (roiURY-roiLLY)) then 

point(1)=roiURY-roiLLY
else

point(1)=maxLLY+startrad
end if
point(0)=maxLLX
value=AphImgGetPixel(ret,point) 
while (value<=thresh)

point(1)=point(1)-1 
value=AphImgGetPixel(ret, point)

wend
foveaURY=point(1)

V

' create the out image
I

AphlmgCopy iband,out 
AphlmgSubtractConstFloor out,out,1 
AphlmgDisableRoi out,0 
AphlmgAddRoi

out,AphHRectRegion(roiLLX+foveaLLX,roiLLY+foveaLLY,roiLLX+foveaURX,r 
oiLLY+foveaURY)

AphlmgFill out,255 
AphlmgResetRoi out 
AphlmgEnableRoi out,0
AphlmgThresholdObj out, outObj, AphThreshold(255, 255) 
if keepfiles=0 then

AphlmgWrite out, t$ ,"AphBmpFile"
end if
AphObjExport outObj, o$
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' free images and objects
f

AphlmgFree original 
AphlmgFree hsi 
AphlmgFree iband 
AphlmgFree ret 
AphlmgFree rctin 
AphlmgFree out 
AphObjFree outObj

' get the next image 
v$ = Dir$ 
i = i + 1
If (v$ <> "") Then

s$ = source$ & v$
t$ = target$ & v$
o$ = objt$ & LeftS(v$,Len(v$)- 4 )  & ".dat"

End If

Wend
AphlmgFreeAll 
i = percent 
call createAll(i)
MsgBox "End of the foveas program !"

1
' End

End Sub

Sub createAll(j as integer)
Dim a$ ()
ChDir (objtS)
FileList a$,"*.dat"
If ArrayDims(a$) > 0 Then

Open "foveas.dta" For Append As #1
Print #1,"foveas macro with percent selected as " &

CStr(j)
for i=0 to 1+ArrayDims(a$)

Open a$(i) For Input As #2 
Line Input #2,lin$
Do While Not EOF(2)

Line Input #2,lin$
Print #l,a$(i) & Chr$(9);
Print #l,lin$

Loop
Close #2

next i 
close #1

end if 
End Sub
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