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Preface

This thesis is an account of work carried out between October 2001 and Octo

ber 2005 towards interferometry for spaceborne gravitational wave detectors.

Chapter 1 gives a brief overview of the nature of gravitational waves and of 

present and future detectors, particularly the planned space based gravita

tional wave detector LISA. This work is derived from published literature.

Chapter 2 examines the critical technologies for LISA that will be tested on 

the technology demonstrator mission LISA Pathfinder. Of these technologies 

the interferometry of the LISA Technology Package on board LISA Pathfinder 

is described and the expected noise sources defined. This work is derived from 

published literature.

Chapter 3 describes the design and construction of a prototype optical bench 

interferometer. This optical bench was created to demonstrate the possibility 

of building similar benches for LISA Pathfinder and eventually LISA. The 

design of the optical bench was carried out by D. I. Robertson, H. Ward and 

the author. The bench was constructed by the author with assistance from 

J. Hough and J. Bogenstahl. The associated optical and electrical equipment 

built to enable the optical bench construction were assembled by the author 

with input from D. I. Robertson and H. Ward.
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Chapter 4 describes a series of tests on the prototype optical bench to de

termine its intrinsic stability. The laser injection bench was the work of the 

author. The phasemeter was designed and constructed by H. Ward. The series 

of tests were carried out principally by the author with D. I. Robertson and 

H. Ward. The optical bench was also tested using a prototype LISA Technol

ogy Package phasemeter designed and built at the Albert Einstein Institute, 

Hannover. G. Heinzel, V. Wand and A. Garcia from the Albert Einstein In

stitute were present in Glasgow and assisted in the experiments.

Chapter 5 describes the construction of the LISA Technology Package engi

neering model at the Rutherford Appleton Laboratory, Oxford. The engineer

ing model was built by K. Middleton of the Rutherford Appleton Laboratory 

with on site assistance from the author and G. Heinzel of the Albert Einstein 

Institute, Hannover. The hydroxide-catalysis bonding technology used was 

transferred to the Rutherford Appleton Laboratory by the author with advice 

from J. Hough.

Chapter 6 reports on the current effort at the University of Glasgow towards 

building the flight model LISA Technology Package optical bench interferom

eter. This work is being carried out by a team including D. I. Robertson, 

H. Ward, M. Perreur-Lloyd and the author. F. Steier of the Albert Einstein 

Institute, Hannover assisted this work during the summer of 2005.

Chapter 7 describes an ongoing experiment investigating weak light phase 

locking relevant to the LISA mission. This experiment utilises the proven 

stable optical bench described in Chapters 3 and 4 and was carried out by 

the author with assistance from H. Ward and D. I. Robertson. Advice on rf  

circuitry was given by G. Newton.

Chapter 8 presents the conclusions of the reported work.
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Appendix A describes the design and construction of an optical signal gen

eration test bench to provide signals for a prototype phasemeter. The test 

bench provided both LISA Technology Package and LISA type signals. The 

test bench was designed by D. I. Robertson, H. Ward and the author. The test 

bench was constructed by the author and the tests carried out by D. I. Robert

son.

Appendix B describes a study carried out by the author at the Rutherford 

Appleton Laboratory on the fibre positioning unit for LISA. This work will be 

used to carry out tests of potential technologies, which will be completed by 

staff at the Rutherford Appleton Laboratory. M. Caldwell and K. Middleton 

assisted the author with this work.

Appendix C is report that was submitted to the Albert Einstein Institute, Han

nover as part of an extensive study being conducted there to define sideband- 

induced noise in the LISA Technology Package interferometer. The experiment 

described was constructed and executed by the author.
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Summary

The existence of gravitational waves is predicted by Einstein’s General The

ory of Relativity. They can be considered as a wave-like distortion of four 

dimensional spacetime. Gravitational waves are produced by systems with 

time varying quadrupole mass moment. Spacetime is a stiff elastic medium, 

implying that waves traveling through it will have small amplitudes and this 

makes their detection very challenging.

There are well established efforts towards the detection of gravitational waves 

using ground-based systems. These detectors are limited by a lower frequency 

limit of ~  10 Hz set by the gravity gradient wall, which is a consequence 

of being in a gravitationally noisy environment. However, there are many 

predicted sources of gravitational radiation of relatively large amplitude at 

lower frequencies. Thus to complement the ground based network of detectors 

a spaceborne detector, the Laser Interferometer Space Antenna (LISA), is 

planned.

Gravitational wave detection by interferometry on Earth involves displacement 

measurements of order 10-18 m /\/H z on tens of millisecond timescales and over 

arm lengths of kilometers. In contrast, LISA requires the monitoring of 5 mil

lion kilometer baselines at a noise level of 10-12m /\/H z  and over 1000 second 

timescales. So while the displacement sensitivities required of LISA may ap
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pear routine in the context of current ground-based detectors, the frequency 

regime and distances involved introduce new challenges.

In order to try and reduce some of the technological risks of LISA, a pre

cursor mission (called LISA Pathfinder) will be flown to demonstrate per

formance of technologies that cannot be adequately demonstrated on Earth. 

LISA Pathfinder contains an experiment called the LISA Technology Package 

(LTP). The work presented in this thesis deals mainly with investigations of 

the interferometry that will be used in the LTP and in LISA, with particular 

emphasis on the identification of sources of excess noise and of methods to 

minimise their effects.

LTP will use interferometry to monitor the distance between two inertial proof 

masses. The goal is to demonstrate the performance of the intertial sensors 

to within an order of magnitude of that required for LISA. To do this the 

interferometer sensitivity is relaxed an order of magnitude from the LISA goal 

but is still technically very challenging.

The approach adopted to demonstrate the interferometry for LTP was to build 

a stable optical bench using hydroxide-catalysis bonding of optical components 

to a low thermal expansion baseplate. This is the construction approach to be 

used in LTP and likely to be adopted for LISA. The stability of the optical 

bench was then tested using an LTP style heterodyne interferometer arrange

ment and demonstrated to be stable to 10p m /\/H z from 3 mHz to 30 mHz, 

with the exception of a minor spectral feature of temperature driven excess 

noise when operated in a laboratory environment.

The experience gained by constructing and testing the optical bench strongly 

influenced the techniques used to construct the engineering model LTP bench 

and the techniques that will be used for building the flight model. A significant
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result of the interferometry investigations was the discovery of a previously 

unexpected noise source. This involved spurious coupling of fluctuations in 

relative length of the optical fibres used to convey light to the interferometer. 

Techniques to reduce the significance of the noise source were demonstrated 

and have now been adopted for LTP.

The stable optical bench was then used as part of an experiment designed 

to provide essential information for the interferometry of LISA. Due to the 

unprecedented armlength of the LISA interferometer the light received at the 

end of an arm has light power at the ~  100 pW level. The corresponding shot 

noise sets the level of phase information that can be determined. In the design 

of LISA this fundamental effect is planned to set the limit to sensitivity over a 

significant part of the frequency spectrum; other noise sources must therefore 

be reduced to have lesser significance.

In one mode of LISA operation a local laser on each of the three LISA space

craft is phase-locked to the weak incoming light from another distant space

craft. This weak-light phase locking has never been adequately demonstrated 

at LISA frequencies and noise performance. To address the need for such 

a demonstration the stable optical bench developed during the prototyping 

of the LTP interferometer is now being adapted to mimic the core part of a 

LISA phase locking arrangement. Essentially the proven dimensional stabil

ity of the interferometer is being used to replace the equivalently stable LISA 

arm length. The phase locking system requires extremely phase stable signal 

chains to reach the LISA sensitivity, of which the rf  amplifier and demodula

tion topologies are seen as one of the few remaining noise sources preventing a 

full weak-light phase locking system being realised. The experimental progress 

is described, together with a route to the near term goal of a demonstration 

at the LISA performance goals.
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Also reported is work describing the design and construction of a phase mea

surement test bench that provides optical signals to stimulate LTP and LISA 

prototype photodiodes and phase readout systems.

A study into the requirements and current options of actuators for fibre posi

tioning needs on LISA is presented. This will lead to experimental testing of 

a potential actuator.

Finally, a report submitted as part of a large investigation into the cause of the 

previously identified noise source is included. It examines the production of 

frequency shifted laser beams by acousto-optic modulators driven by rf  signals 

containing two spectral components and the resultant beat notes observed 

when the light is detected by a photodiode.
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Acronyms

Much of the content of this thesis discusses space-based projects which tend 

to be acronym-rich. All acronyms are defined prior to use but an acronym list 

is included for reference.



A cron ym D efin ition

AEI Albert Einstein Institute

AIGO Australian International Gravitational Observatory

AOM Acousto-Optic Modulator

BP Band Pass filter

BS Beamsplitter

CAD Computer Aided Design

CCLRC Council for the Central Laboratory of the Research Councils

CEA Combined Error Angle

CMM Coordinate Measurement Machine

CTE Coefficient of Thermal Expansion

d.c. Direct Current

DRS Disturbance Reduction System

EA Error Angle

EM Engineering Model

EOM Electro-Optic Modulator

ESA European Space Agency

FFT Fast Fourier Transform

FIOS Fibre Injector Optical Subassembly

FOV Field Of View

GPIB General Purpose Instrumentation Bus

HF High Frequency

HP High Pass filter

IGR Institute for Gravitational Research

LCA LTP Core Assembly

LCGT Large-scale Cryogenic Gravitational wave Telescope

LF Low Frequency

LIGO Laser Interferometer Gravitational wave Observatory
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A cronym D efin ition

LISA Laser Interferometer Space Antenna

LP Low Pass filter

LPF LISA Pathfinder

LTP LISA Technology Package

M Q Solar Mass

NA Numerical Aperture

NASA National Aeronautics and Space Administration

Nd:YAG Neodymium-doped Yttrium Aluminium Garnet

OB Optical Bench

OMS Optical Metrology Subsystem

PBS Polarising Beamsplitter Cube

PC Personal computer

PD Photodiode

PFM Proto-Flight Model

PMS Phase Measurement System

POB Prototype Optical Bench

ppm parts per million

PSD Power Spectral Density

QPD Quadrant Photodiode

RAL Rutherford Appleton Laboratory

Vf Radio Frequency

SMART Small Missions for Advanced Research of Technology

ST-7 Space Technology 7

TNO Netherlands Institute for Applied Geoscience
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Chapter 1

Gravitational waves and 

detectors

1.1 The origin of gravitational waves

General relativity predicts the existence of gravitational radiation [3] and that 

it manifests itself as a wave-like distortion of spacetime. It also restricts the 

number and type of polarisation states of gravitational radiation and shows 

that radiation propagates at the speed of light. Hermann Bondi provided a 

rigorous proof [4] that gravitational radiation is a physically observable phe

nomenon: that gravitational waves carry energy.

This deformation of spacetime can be described by the Einstein curvature 

tensor G, and the source by the stress energy tensor T. These are related as

T = 8 ^ G > <L1)

where the coupling constant contains the speed of light, c, and the Gravita

tional constant G. From the large coupling constant in equation 1.1 we can
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deduce that spacetime is a very stiff elastic medium. Waves travelling through 

the fabric of spacetime will be small in amplitude with high energy density, 

so even when dealing with large amounts of energy from violent astrophysical 

events the observable effects at a distance will be small.

The constraints imposed by mass having a single sign and the conservation of 

momentum result in gravitational radiation being quadrupole in nature, with 

monopole and dipole radiation being forbidden. The spherically symmetric 

collapse of a star would therefore not create gravitational waves, whereas a 

binary system will radiate gravitational waves.

The quadrupole nature of gravitational radiation, coupled with its very weak 

interaction with matter, imply that a source of gravitational radiation large 

enough to be detected would have to come from fast, coherent motion of large 

amounts of matter. This denies us the opportunity of performing experiments 

using laboratory manufactured gravitational waves [5] and so instead we have 

to look to nature to provide us with sources of gravitational radiation. We 

find that there are many possible astrophysical sources such as supernovae, 

pulsars, binary stars and the Big Bang. We also find that the radiation from 

even these enormously energy rich sources is challengingly difficult to detect. 

When these signals are detected, however, they will provide astrophysical data 

of a kind that has never been seen before, as gravitational waves pass almost 

unhindered through matter in contrast to other forms of radiation currently 

observed.

General relativity, unlike classical electromagnetism, is non-linear. This causes 

problems when trying to resolve the curvature of spacetime into separate com

ponents, forcing us to adopt an assumption that is not rigorously correct, i.e. 

that we can apply the principle of superposition to gravitational waves. Far 

from the sources of strong gravitational radiation we can consider gravitational



1.2 Sources of gravitational waves 3

waves to be superimposed as plane waves on a locally flat background. Once 

we have made this approximation, we can then solve Einstein’s equations for 

weak fields and derive a wave solution. This leads us to the two possible 

polarisation states for gravitational waves, h+ and hx .

When a gravitational wave passes through a region its effect is to change the 

curvature of the spacetime within. If this region contains free masses then the 

effect on the masses as seen by an observer will be a change in the separation 

of the masses that depends on the amplitude and polarisation of the wave 

(see Figure 1.1). The effect of a gravitational wave passing through a ring 

of free test particles will be that the ring is compressed in one axis whist 

being elongated in a perpendicular axis when the wave has a phase of 7r/2 , 

then return to its undisturbed state when the phase of the wave is 7r. The 

previously elongated axis then becomes compressed and vice versa at phase 

37t / 2 . Finally the ring returns to its undisturbed state when the wave reaches 

a phase of 7r. In attempting to detect the passage of such a wave we can 

recognise that this perpendicularly opposite motion lends itself ideally to the 

use of a Michelson interferometer [6]. The optics involved have to be isolated 

in order to act as independent ‘free’ masses. This is the basic idea used in 

ground based laser interferometric gravitational wave detectors.

1.2 Sources of gravitational waves

There are many potential sources of gravitational radiation that could produce 

radiation of a detectable level with suitable frequency. The theoretical analysis 

of these sources informs the design of detectors and also the methods used to 

search for gravitational wave signals in the data. Perhaps the most interesting 

gravitational radiation that will be detected is that from sources which have
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Figure 1.1: Illustration showing the two independent linear polarisations of a 

gravitational wave acting on a ring of free particles. Wave has amplitude 0.2 

(Source [1]).

not yet been anticipated. This kind of a discovery could open whole new 

debates as to the nature of the universe.

Some postulated sources of measurable gravitational radiation are:

•  Spinning neutron stars whose centre of mass does not lie on their rotation 

axis (possibly due to small irregularities on the surface) will emit gravitational 

waves. The system would emit gravitational radiation as twice the rotation 

frequency due to the mass distribution having a period every half rotation 

cycle and this could be well into the detection band for ground-based (higher 

frequency) detectors. Furthermore, a neutron star acting in this way could 

provide a long lived signal if it were accreting material from a neighbour and 

replenishing the energy it was losing by gravitational radiation.

•  Binary star systems will emit gravitational radiation similarly to spinning 

neutron stars. In a binary system the orbital motion produces gravitational 

waves which carry energy away from the system. This results in the orbit 

decreasing and eventually the inspiralling trajectory will lead to the two ob

jects merging. This sequence of events produces a distinct gravitational wave
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signature: a chirp signal. The periodic signal will increase in amplitude and 

frequency until the final merger. These signals will sweep from low frequency 

through all the detector bands and will provide a good source of astronomy.

•  Type II supernovae are the violent collapse of a massive stellar core to form 

a neutron star or a black hole. If the collapse is not spherically symmetric a 

burst of gravitational radiation will be emitted. The exact waveform resulting 

from such an occurrence is very difficult to predict and so detection would 

allow the reverse to occur: the observation could assist the efforts to model 

such an event.

•  The observation of a gravitational wave stochastic background would provide 

interesting information. One possible source of a stochastic background is the 

gravitational waves produced from ~  10-24s after the Big Bang. Stochastic 

background measurements could be made by both ground and space based 

(lower frequency) detectors [7].

•  Black holes of mass ~  10 M0 are expected to be found in binary systems 

in similar numbers to neutron star binaries. Due to the greater mass (and 

therefore energy) associated with these black holes they will be visible from 

further distances. Gravitational waves from binaries containing black holes 

are prime candidates for the first ground-based detection and may even be 

detected by the first generation of detectors.

•  Supermassive black holes (having mass >  106 M0 ) are a very exciting source 

for space-based detectors. We do not yet know how they are formed but 

we do know they exist. These black holes can emit gravitational radiation 

when linked as a binary, similarly to the lower mass black holes, but with 

lower frequency and emitting radiation of much larger amplitude. If these 

sources exist they will be seen by LISA. Supermassive black holes can also
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emit gravitational waves when capturing smaller compact bodies.

A review of gravitational wave sources potentially detectable with first and 

second generation detectors can be found in [5].

1.3 Gravitational wave detection

The enormity of the task of measuring gravitational waves becomes apparent 

when we realise that we are trying to measure strain amplitudes of the order 

10-21. For an interferometer with 1km long arms, this translates to a move

ment of approximately 10-18 m. The tiny magnitude of this movement tells 

us that any noise included in our measurement will have to be very low to 

avoid completely washing out the signal. Noise sources associated with grav

itational wave detectors include thermal noise, seismic noise, shot noise and 

laser (intensity and frequency) noise [8].

The search for gravitational waves is ongoing and direct detection is yet to be 

accomplished. In 1975 Hulse and Taylor reported on the discovery of a binary 

system containing a pulsar (PSR 1913+16) [9] (this was also followed up in the 

1976 publication [10]). They pointed to the opportunity of measuring the rate 

of loss of orbital energy to test relativistic gravitation theories. This binary 

system was studied over many years, culminating in the publications [11, 12]. 

This work indirectly shows evidence of gravitational wave emission and is in 

excellent agreement with general relativity. Hulse and Taylor jointly received 

the Nobel Prize for Physics in 1993 for ‘the discovery of a new type of pulsar, 

a discovery that has opened up new possibilities for the study of gravitation
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1.3.1 Ground based detectors

Despite the considerable challenges of direct gravitational wave detection many 

first generation ground based detectors are currently on-line, with the second 

generation in the advanced planning stages.

Resonant bar detectors

The field of experimental gravitational wave detection began in earnest with a 

resonant bar detector antenna that was planned and built by Joseph Weber [13, 

14]. The basic design included a large cylindrical aluminium bar with strain 

gauges used to monitor the amplitude of the resonant modes. The principle 

was that when a gravitational wave of frequency close to the longitudinal 

resonant frequency of the bar passes through the detector, the bar will become 

excited. The change in amplitude of the resonant mode, A L is proportional 

to the dimensionless wave amplitude h «  A L /L  where L  is the length of the 

bar. The sensitive strain gauge is then used to measure the amplitude of the 

resonant mode.

This technique is still used today in more advanced bar detectors:

•  The Allegro detector is a 2300 kg aluminium bar located in Louisiana, USA 

and has been operating since 1991. It is cooled to 4.2 K to reduce the effects 

of thermal noise due to random vibration of atoms.

•  The Auriga detector is a 2230 kg aluminium bar located in Padova, Italy and 

has been operating since 1997. It is cooled to 200 mK.

•  The Explorer detector is a 2270 kg aluminium bar located at CERN in 

Geneva, Switzerland and it has been operating since 1990. It is cooled to
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2.6 K.

•  The Nautilus detector is a 2260 kg aluminium bar located in Rome, Italy 

and it has been operating since 1995. It is cooled to 130 mK.

• The Niobe detector is a 1500 kg niobium bar located in Perth, Australia and 

has been operating since 1993. It is cooled to 5K. Niobium has been used for 

its high Q factor, which gives a longer ring down and enables increased signal 

to noise measurements.

•  The MiniGRAIL detector is a 1150 kg CuAl(6%) sphere [15] being commis

sioned in the Netherlands. Spherical detectors are being investigated as they 

are omnidirectional, whereas the bar detectors are limited in this respect. This 

detector will be cooled to 20 mK.

•  The Mario Schenberg detector is a 1150 kg CuAl(6%) sphere [16] being com

missioned in Brazil. This detector will be cooled to 20 mK.

A review of the bar detector status in 2002 can be found in [17].

Laser interferometric detectors

Resonant bar detectors are limited to monitoring very narrow frequency bands, 

dictated by their physical dimensions. This has led to the development of a 

different style of gravitational wave detector in which the physical material 

between the end faces of the bar detector is removed and interferometry is used 

as the readout technique. This has the advantage of allowing broad frequency 

ranges to be observed and also allowing much longer length antennae.

The ground-based network of laser interferometric gravitational wave detectors
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is now well established and scientific results are already being harvested [18, 

19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. A thorough review of the ground 

based detectors in 2000 can be found in [8].

The sensitivity of detectors is usually stated in terms of h , the dimensionless 

strain amplitude of a gravitational wave. A strain in space caused by the 

passing of a gravitational wave of amplitude h would have the effect of changing 

the distance between two free masses. This occurs as

X  =  "2 • M

where the masses are separated by a distance L and A L  is the induced change 

in separation. Thus we can see that increasing the armlength of the detector 

improves the sensitivity although it increases the resources needed to build a 

detector.

The current ground based laser interferometric detectors are:

•  The Laser Interferometer Gravitational wave Observatory (LIGO) project 

consists of three interferometers: a 4 km and a 2 km armlength detector in 

Hanford, Washington and a 4 km armlength detector in Livingston, Louisiana. 

All three interferometers have Fabry-Perot cavities in the arms and power 

recycling schemes to increase light storage time (and hence phase shift due 

to gravitational wave interference). This detector network is currently the 

most sensitive gravitational wave detector in operation. The best reported 

strain sensitivity to date was seen during the second science run (S2) and 

was 3 x 10-22/\/H z  at 200 Hz [30]. The next generation of LIGO, Advanced 

LIGO, is already planned and will improve on LIGO’s performance by an order 

of magnitude in strain sensitivity which should be enough to start making 

detections on reasonable time scales. One of the major upgrades to achieve 

this improvement will be the introduction of advanced suspension systems [31],
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as demonstrated by GEO 600. Advanced LIGO should have a best sensitivity 

of ~  2 x 10-24/\/H z  at around 300 Hz [32].

•  The VIRGO interferometer is a French-Italian collaboration based situated 

near Pisa, Italy. It is a 3 km armlength detector with power recycling and 

Fabry-Perot arm cavities. Commissioning is still in progress and the latest sen

sitivity curves show a best strain performance of lO -^ /v H z  at 300 Hz [33]. 

The most notable distinction between VIRGO and the other detectors is the 

isolation system used to ensure the optical components act as ‘free’ test masses. 

The VIRGO detector uses an isolation system called the ‘Superattenuator’ de

signed to provide a factor of 1012 reduction of seismic noise at a few Hz to 

enable to the detector to measure down these low frequencies.

•  GEO 600 is a British-German collaboration located near Hannover, Germany. 

It has a 600 m armlength, although this is effectively doubled by having folded 

arms, with both signal and power recycling implemented. The philosophy of 

GEO 600 is to use advanced technology to compensate for the smaller scale 

arms in order to obtain sensitivities roughly comparable to the first generation 

longer baseline detectors over part of the frequency spectrum. This results 

in technology demonstration that can (and will) be implemented in the next 

generation of ground-based laser interferometric gravitational wave detectors. 

This includes the use of advanced suspension systems which form the baseline 

for Advanced LIGO. GEO 600 has a very high duty cycle and latest published 

strain sensitivity of ~  3 x 10~21/\/H z  at 1kHz [25].

•  TAMA300 is a Japanese detector located in Tokyo with 300 m armlength. 

It has Fabry-Perot cavities in the arms and the latest data taking run (DT9) 

produced a maximum strain sensitivity of 2 x 10-21/\/H z  at 1 kHz [34]. There 

are plans to build a 3 km armlength detector in Japan that will be cooled to 

cryogenic temperatures to reduce thermal noise, the Large-Scale Cryogenic
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Gravitational wave Telescope (LCGT).

• AIGO is currently an 80 m test bed located near Perth, Australia. It is being 

used to investigate high power lasers for use in advanced laser interferometer 

gravitational wave detectors and Euler spring based suspensions [35]. There 

are plans to turn the facility into a ~  km armlength facility.

Having a global network of detectors will be essential when gravitational waves 

are detected on Earth to provide coincidence measurements and to infer the 

orientation of the source.

1.3.2 Detectors in space

Ground based detectors are prevented from measuring below approximately 

10 Hz due to gravity gradient noise. This is the disturbance of the test masses 

by changes in the local mass distribution, e.g. seismic waves, turbulence in 

the atmosphere. This is a result of the inverse square law of gravitational 

attraction. Even birds flying past 100 m away will cause the test mass to move 

more than a gravitational wave passing through the system. It is possible to 

reduce these effects to some extent by building a detector in a gravitationally 

quieter environment (underground, for example), but only small improvements 

in the detector frequency range can be gained. These kind of effects are limited 

to low frequencies, however, as local mass distributions on Earth tend to be 

stable at frequencies greater than a few Hertz.

This noise source is a frustration for gravitational wave detection as there are 

many expected sources at lower frequencies, as indicated in Section 1.2. Thus 

to conduct gravitational wave detection and astronomy at low frequencies we 

move to a gravitationally quiet environment: space.
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LISA (Laser Interferometer Space Antenna) [36] is the planned space-based 

gravitational wave detector, a triangular spaceborne detector with five million 

kilometer long arms, due for launch around 2015. The primary objective of 

LISA is to observe gravitational waves at low frequency (10-4 to 10_1 Hz). A 

gravitational wave acting on LISA will change the length of one 5 x 109 m arm 

relative to the other. This fluctuation will be measured with sub-Angstrom 

accuracy allowing gravitational wave strains (A I/I) even of the order 10~23 to 

be detected over one year with a signal to noise ratio of around five [37].

By looking at this frequency range LISA has the advantage of being guaran

teed to detect gravitational radiation as there are abundant sources within 

the expected sensitivity range, such as massive black holes and galactic bi

naries. Space-based and ground-based detectors will be looking at different 

frequency regions allowing entirely complementary observations to be made 

(see Figure 1.2).
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Figure 1.2: Graph showing how space based and ground based observations will 

complement each other by covering a different frequency range with similar 

sensitivities (Source [1]).



Chapter 2

Testing critical technologies for 

LISA

LISA is a large scale joint ESA/NASA mission which will combine many tech

nologies, of which the concept of ‘drag free’ test masses (effectively the end 

mirrors of the interferometer) cannot be adequately tested in the lg  environ

ment of Earth. To address this, and other critical technologies, a smaller scale 

mission is planned for launch in 2009. The mission is called LISA Pathfinder 

(previously called SMART-2) and is an intermediate step to reduce the tech

nological risks faced in the LISA mission. One of the experiments aboard LISA 

Pathfinder is the LISA Technology Package [38] and it aims to demonstrate the 

thrusters, drag-free test mass concept [39] and ultra-stable interferometry to 

levels similar to those required for LISA. The noise sources and couplings will 

be characterised to give confidence that the LISA performance can be achieved. 

LISA Pathfinder will also contain NASA’s LISA technology demonstrator, the 

ST-7 experiment [40], which has recently been de-scoped.

In LISA gravitational waves will change the separation of inertial test masses,

14
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the vector describing the change in separation depending on the amplitude, 

origin and polarisation of the wave. The movement of the test masses relative 

to each other will be measured and information about the gravitational wave 

deduced. Thus it is essential that we can trust that when no gravitational wave 

passes through the system no unexpected movement of the test mass occurs, 

as non-inertial movements of test masses can produce similar effects to those 

being sought.

The aim of the LTP experiment is to show the quality of drag-free performance 

to within an order of magnitude of LISA requirement, but to characterise noise 

sources to LISA levels.

LTP will consist of two test masses (one surface of each acting as a mirror 

in an interferometer) with an optical bench between them housed in a single 

spacecraft. Laser light will be coupled onto the optical bench and heterodyne 

interferometry used to measure the movement of the masses relative to the 

optical bench and to each other. The interferometer outputs will be read out 

by a phasemeter which provides low noise measurements of test mass positions 

and angles. These signals can also be used as inputs to the controllers.

Using the information gained from LTP, LISA will be constructed with confi

dence that the behaviour and performance of the test masses (which are optical 

components in the interferometer and the fundamental intertial reference) is 

well understood.

To obtain data of sufficiently high sensitivity from the LTP measurements the 

inherent noise within the interferometer has to be less than 10p m /\/H z over 

the frequency range of interest (3 mHz to 30 mHz, relaxing as l / / 2 at lower 

frequencies). The optical bench must also remain structurally sound and well 

aligned after the violent disturbance experienced during launch into orbit.
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2.1 LTP interferom etry

The baseline for the LTP is a non-polarising heterodyne Mach-Zender interfer

ometer [41, 42], This has been selected in favour of polarising interferometers 

as there were concerns th a t polarisation leakage could lead to cross-coupling 

between beam paths. A consequence of this is th a t the beams can no longer 

be perpendicularly incident on the test masses.

The concept of heterodyne interferometry is shown in Figure 2.1. The laser 

is split a t point A into two equal beams th a t pass through two acousto-optic 

m odulators (AOMs). The AOMs are driven a t two frequencies separated by 

the heterodyne frequency, /het, which is of order 1 kHz. The AOMs are not 

situated on the stable interferometer baseplate due to therm al considerations.

Stable structure

AOM 1

QPD2 IFibresAOM 2

Figure 2.1: Schematic showing the principle o f the heterodyne interferometry.

The beams pass through fibres (this is not a requirem ent of the interferom etry 

but a practical means of coupling light onto a baseplate) and are recombined 

at point D. Half of the light travels a different route and is recombined at 

point E. The heterodyne signal from quadrant photodiode 1 (QPD1) is sent 

to the phase measurement system (PMS), as is the  heterodyne signal from 

QPD2.

The phase at the QPDs depends on the difference in path  length between the



2.1 LTP interferometry 17

blue and red beams. This includes the path length variations introduced by 

differential temperature changes in the fibres (the main source of path length 

noise in this system). Thus the phase at the QPDs is given by

<t>QPDl =  ( A  — > D )b lu e  — { A  — !► D ) red

=  {A — *  B)biue +  (B — ► D)biue — (A — ► D ) red, (2 .1 )

4>QPD2 =  (A —► £ % /ue — (i4  —► E ) red

— (-*4 ► B^blue  "P ( B  ► E^blue  (-*4 ► D ^red

- ( £ > - >  E )red. (2.2)

So combining Equations 2.1 and 2.2

=► <t>QPD2 =  <t>QPDl ~  (B —► f2)uue +

+  ( £  —► E )w ue — ( D  - *  E ) red, (2 .3 )

4> q p d i  +  [(-B — ► E )  v i a  C\ =  4>qpd2 [{B — ► E )  u ia  E ] ,  (2 .4 )

ie .  the phase at QPD2 is related to the phase at QPD1 by the difference in path

lengths for the two different routes from point B to E: path length variations 

prior to the initial beamsplitters on the ultra-stable substrate should cancel 

out.

Thus the important measurement is the p h a s e  c h a n g e  of one interferometer 

output compared to the other as this is due to the path length variations on 

the optical bench. If we include the drag free test masses as components in 

the interferometer then the phase change becomes a measure of their motion.

There are four interferometers (used to measure the performance of the drag- 

free motion along the beam axis and also the alignment of the two test masses) 

in the LTP set-up:
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•  a reference interferometer (shown in Figure 2.2),

•  an interferometer with large path length difference that measures the laser 

frequency noise as shown in Figure 2.3 (see Section 2.2.2),

•  an interferometer called x\  that measures the position of one test mass in 

relation to the interferometer baseplate (shown in Figure 2.4) and

•  an interferometer called X\ — X2 that measures the distance between the two 

test masses (shown in Figure 2.5).

The complete LTP optical layout is shown in Figure 2.6. Much of the optical 

modeling for LTP has been carried out using OptoCad, a program written by 

Roland Schilling, as in these Figures. The optical layout was initially designed 

by Gerhard Heinzel and the design was further advanced by Felipe Guzman 

Cervantes. The distance between the test masses is of order 300 mm and this 

must be monitored by the interferometer to 10 pm /\/H z, over a range of many 

microns. The light travels different distances in the two fibres to facilitate 

beam path length matching at the interference points.

The optical bench is located between the two test mass enclosures, at the 

heart of the LTP core assembly. The interferometer consists of a Zerodur®  

baseplate of dimensions 212 x 200 x 45 mm with 22 reflecting optical compo

nents hydroxide-catalysis bonded [43, 44] to one of the 212 x 200 mm faces. 

Zerodur® is a glass ceramic chosen mainly for its ultra-low thermal coefficient 

of expansion [45]. The optical components are to be made of fused silica due 

to its excellent optical properties at 1064 nm. The light is coupled onto the 

optical bench using quasi-monolithic fibre injectors, custom designed and built 

for the application.
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Figure 2.2: Optical model of the LTP reference interferometer.

<r

Figure 2.3: Optical model of the LTP frequency noise interferometer.
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Figure 2.4: Optical model o f the LTP X\ interferometer.
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Figure 2.5: Optical model of the LTP  X\ — x 2 interferometer.
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Testmass 1

PDA1 PDFA

BEAM 1

BEAM 2

PDRB

PD12B

IPD12A
PDA2' PDRA'

Testmass 2

F e l ip e  Guzmin C e rv a n te s . 23 Mar 2006

Figure 2.6: Optical model of the LTP  optical bench interferometer. Dimensions 

are in metres.
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2.2 LTP noise sources

The noise sources described in this Section are for well aligned interferome

ters. A discussion of alignment tolerances for similar interferometry is given 

in Section 3.1.5. Each interferometer noise source for LTP has to be kept a 

factor of 10 below the measurement goal of 10pm /\/H z, i.e. each noise source 

is allocated a maximum noise budget of 1 pm /\/H z at 3 mHz. This is to avoid 

any correlated noise sources adding linearly and generating more noise than 

expected.

2.2.1 Laser power fluctuations

There are two frequency regimes where laser power noise matters for the LTP 

interferometer: adding noise into the phase measurement at the heterodyne 

frequency and adding radiation pressure noise at the test mass in the measure

ment band.

At the heterodyne frequency the laser power noise can couple into the mea

surement by producing a signal of randomly varying phase at the heterodyne 

frequency. The signal adds to the ‘real’ heterodyne signal producing apparent 

fluctuations in its phase.

If we consider a fractional variation in laser power, 8 P /P , where 8P  is the laser 

power variation and C • P  is the signal size at the heterodyne frequency (with 

C the contrast of the interference), then we can relate this to the maximum al

lowable noise contribution from this source: 1 pm/>/Hz, or 2n x  10-6 radians in
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terms of relative phase of heterodyne signal as (taking the worst case C =  80%):

SP
<  2tt x lO-Vv/HJ

xp
= > - p  <  5 X 1 0 - / V 5 .

This level of power variations is not expected to be a difficult requirement at 

the heterodyne frequency [46].

In the measurement band, where we are concerned about radiation pressure 

effects on the test masses, the laser power noise, 8 P , can be related to the 

induced displacement fluctuations, Sx, by

2 8P
8x =   -  ,

mcuJz

where m  is the mass of the test mass, c is the speed of light and u  =  2 n f  and 

/  is the frequency of the measurement.

The test masses will be cubes of side ~  4.5 cm and made of a gold/plantinum  

alloy, having a density ~ 2 x  104kg/m 3. Thus m «  2 kg.

Again looking at the fractional power variation and a maximum displacement 

fluctuation of 1 pm /\/H z:

6P m cu j2 .
T  < ~ l ^ 5x

«  3 x K T V v'Hz •

at 10 mHz and where P has been taken to be 1 mW, which is representative of 

the expected light power in the LTP interferometer arms.

Again this level of laser power noise is not expected, but the fibres may in

troduce additional power fluctuations to the beams on the optical bench. The 

laser power immediately after each fibre on the optical bench will be measured 

(using the pick-off beamsplitters labeled BS11 and BS16 in Figure 2.6) using
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single element photodiodes. These signals can be used as part of a feedback 

loop to provide an error signal to the AOM drive signals to reduce the laser 

power noise.

2.2.2 Laser frequency noise

If there is a difference in the path lengths of an interferometer then it will be 

sensitive to laser frequency noise. In the case of LTP, even if the interferome

ters were constructed with equal paths optical components (the test masses) 

are required to move during some modes of operation. This results in the 

path lengths becoming unbalanced and laser frequency noise coupling into the 

measurement.

Laser frequency noise (Si/) couples to apparent path length change (Sx) as

Sx =  A x —  , (2.5)
v

where v  is the laser frequency and A x  is the path length difference between the 

different arms of the interferometer. Taking the path length difference to be 

1 mm (this is a reasonable manufacturing tolerance) and the noise contribution 

budget of 1 pm \/H z gives a requirement that the laser frequency noise is less 

than ~  3 x 105 H z/\/H z. This is around two orders of magnitude lower than 

expected for the LTP [46] laser, so some strategy is required to reduce its effect.

A common method of reducing laser frequency noise is to lock the laser fre

quency to a stable reference (usually a stable optical cavity or a molecular 

transition, e.g. an iodine cell). While either of these solutions could in princi

ple be applied to LTP they would add mass and complexity and are therefore 

not attractive. For LTP the baseline solution is to have an additional in

terferometer to measure the laser frequency fluctuations. This interferometer
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purposely has a large path length difference ( ~  40 cm) to maximise the cou

pling of laser frequency noise. The measured signal can then be used either as 

part of a stabilisation loop or to correct the data post-factum.

2.2.3 Path length changes

There are two ways in which the optical bench can generate noise sources: 

physical path length changes between reflective components and changes in 

optical path length through transmissive components. Both of these are tem

perature driven. The expected temperature fluctuations experienced by the 

optical bench at the mechanical interfaces are <  10- 4 K /\/H z, from 1-30- 

mHz ([2], requirement OMS-7.2.5-3).

Physical path length changes

The physical expansion of the Zerodur® baseplate depends on the temperature 

fluctuation noise, 8T, and the thermal coefficient of expansion, a  (which is 

2 x 10-8 /K  for expansion class 0 Zerodur® [45]). How this effects the apparent 

path length depends on the separation of the components. Taking the worst 

case situation (the longest path in the interferometer) the relevant path is from 

the reference signal recombination beamsplitter to the x\ — X2 recombination 

beamsplitter. This beam path includes beams that reflect off the test masses, 

but even though the test masses are not attached to the baseplate, the test mass 

housings are attached to the baseplate via Zerodur® side-slabs and the test 

masses are relatively stationary with respect to them, meaning this path length 

can be considered the most prone to expansion of the Zerodur® baseplate.
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The path length from BS5 to BS10 is (using the labeling of Figure 2.6):

M14 (12 cm)

M12 (18.5 cm)

M il (7 cm)

BS2 (2 cm)

BS1 (3 cm)

TM1 (11 cm)

BS3 (17 cm)

M4 (2 cm)

TM2 (17 cm)

M5 (12 cm)

BS10 (3 cm) .

This gives a total path length, /, of ™ 1.05 m. From this we can calculate a 

worst case apparent path length change of

61 =  a  x l  x  6T  

=  2.1 x 10~12 m .

This is a factor of ^  2 above the individual noise source budget, but this is very- 

much a worst case analysis for the path length change due to the Zerodur®  

baseplate expansion. In practice the temperature changes across the optical 

bench will be very uniform. This will result in the observed effect being greatly 

reduced due to common mode expansion of the individual interferometer arms.

Optical path length changes

The optical thickness of the beamsplitters varies with temperature due to the 

expansion of the material and change in refractive index. The beamsplitters
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have a thickness of 7 mm but the beams are incident on the beamsplitters at 

45° and consequently traverse the beamsplitter at ~  29°. This results in a 

beam path length in the beamsplitters of 8 mm. The maximum number of 

beamsplitters passed by any beam is three (in both of the frequency noise 

paths), giving a total optical path in the beamsplitter material, Z, of 24mm.

The beamsplitters will be made of fused silica which has a refractive index (n) 

of 1.45, a coefficient of thermal expansion (CTE) of around 0.51 x 10-6 /K  and 

a change of refractive index with temperature (dn/dT) of ~  9.7 x 10_6/K .

Knowing these values we can calculate the apparent path length variation due 

to this effect:

SI = n x CTE +  •—  
dT

x l  x ST

=  25 x 10~12m /V lz  .

This is significantly above the noise budget of 1 pm /\/H z but this is an extreme 

worst case calculation. Each interferometer has been designed such that both 

arms pass through the same number of beamsplitters, meaning that most of 

this noise is expected to be common to both arms and cancel out. The ground 

based tests that have been carried out endorse this (one of which is described 

in Chapter 4).

2.2.4 Phase information lost at quadrant photodiodes

Quadrant photodiodes are needed on the LTP to give angular information of 

test mass position. These quadrant photodiodes have four quadrants separated 

by 45 /im inactive strips. There are two ways in which light can be lost at 

the photodiodes: beam clipping at the extremities of the photodiodes and light 

lost at the inactive photodiode slits.
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Beam clipping will be avoided by using photodiodes with suitably large active 

area compared to beam size but some light will obviously be lost at the inactive 

strips.

For the ideal case of overlapping, colinear, interfering beams with flat wave

fronts, the information lost at the photodiode slits would not alter the phase 

measurements. All the interferometer arms have different lengths but use light 

from the same sources. It is not possible to match the wavefronts of all the 

beams at every photodiode as the only variables are the sizes and curvatures 

of the beams at the two fibre injectors and the distance from the fibre injec

tors. Thus, the wavefronts will have some curvature and there will be some 

mismatch of curvature at the photodiodes.

Beam jitter from the fibre injectors will be minimal and the photodiodes will 

be located on the optical bench baseplate, reducing the effects of beam jitter 

coupling into the phase measurement to an insignificant level. However, in 

some modes of operation the test masses will be moved from their nominal po

sitions and thus one of the wavefronts will move with respect to the photodiode 

slits. This effect is described in more detail in Section 4.3.4.

2.2.5 Stray light

Stray light is the term used to describe light arising from, for example, back 

reflections from nominally transmissive surfaces. These beams can potentially 

reach the photodiodes and contribute to the measured phase. If all the surfaces 

involved in directing the stray beams to the photodiode are stable with respect 

to the optical bench and laser frequency noise is suppressed, then they will not 

cause additional noise.
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The concern for these beams is that they can reflect from surfaces not rigid 

with respect to the optical bench and then influence the phase of the measured 

signals, adding spurious noise. This is discussed for the LTP case in [47]. The 

requirement on the stray light contribution for each beam is to be attenuated 

to at least 10-6 of the signal amplitude ([2] requirement OMS-4.3.3-6).

To reduce the effect of stray light, optical modeling is used to predict the source 

of stray beams in order to place beam blocks in appropriate places. Figure 2.7 

shows the stray light beams and Figure 2.8 shows the implementation of the 

beam dumps. This is discussed fully in [48].

The following conditions for the stray light analysis are set:

•  stray beams are generated at the reflective surfaces with 0.5% of the incident 

power,

•  stray beams with a relative amplitude of 10-6 and above are shown,

•  the optical windows (on the test mass housing) reflect the stray beams to

wards the optical bench baseplate at an angle of 5° to the incoming beam 

and

•  the test mass tilts have a maximum of ± 2  mrad.

2.2.6 Measurement noise

Spurious noise must not be added to the measured signals at the signal process

ing stage. The style of phasemeter chosen for LTP uses a single-bin discrete 

Fourier transform method [46]. This involves converting each measured hetero

dyne frequency into a digital signal that is used to measure both longitudinal
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Figure 2.7: Optical model of the LTP interferometers showing all stray beams.
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Figure 2.8: Optical model of the LTP interferometers showing the stray beam 

dumps.
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test mass motion and angular shifts using differential wavefront sensing. These 

signals can be used as error signals as part of a feedback loop to stabilise the 

test mass position.

2.3 Validation of LTP style interferometry

While the drag free test masses cannot be ground tested the interferometry 

can, by replacing the test masses with mirrors attached to the baseplate in the 

same way as the other mirrors and beamsplitters. One less interferometer is 

required in this case as there is no need for a measurement of two test masses’ 

‘combined movement.’

Prototype tests have been conducted verifying the performance of LTP style 

interferometry and these are described in Chapters 3 and 4. This is also 

reported in [49].



Chapter 3

LISA Pathfinder prototype 

optical bench design and 

construction

LTP requires interferometry to measure the relative displacement of intertial 

test masses. The experimental programme described here was to design and 

construct a prototype optical bench and then to use heterodyne interferometry 

to determine its stability. The aims of this series of experiments were to 

develop and test the construction techniques required to build such a bench, 

demonstrate heterodyne interferometry at the desired sensitivity, demonstrate 

the required stability of the bench, and to investigate noise sources in the 

bench and interferometry.

32
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3.1 Design of the prototype optical bench

3.1.1 Design considerations

The LTP measurement requirements were reviewed and an interferometer lay

out was devised to provide the simplest functional demonstration of the key 

LTP measurement principles using a representative optical bench.

This resulted in a prototype interferometer including the following features in 

common with the planned LTP interferometer:

•  an optical bench (OB) baseplate made from material with a low coefficient 

of thermal expansion,

•  optical components rigidly fixed to the baseplate,

•  light fibre coupled onto the OB baseplate and

• heterodyne interferometry used to measure path length changes.

It differed significantly from the LTP interferometer by not having any optical 

components outwith the prototype OB baseplate. The aim of the LTP OB is 

to measure the displacement between the two test masses and also between the 

prototype OB and one test mass, thus the two inertial test masses are separate 

from the prototype OB. The prototype has no external components and the 

‘inertial test mass’ mirrors can be considered as being replaced by mirrors on 

the bench itself i.e. it is a null test.

By having arm lengths of the order of a meter the prototype optical bench is 

similar LTP.
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3.1.2 Choice of materials 

Optical component material

The choice of optical component material is important both for mechanical 

stability and for the optical properties of the beamsplitters, which are the only 

transmissive elements in the system. One potentially significant noise source 

in the test interferometer is thermally driven optical path length changes in 

the bulk material of the beamsplitters. The combined effect of a change in 

temperature on the optical path length will depend on the refractive index (n), 

the coefficient of thermal expansion (a) and the rate of change of refractive 

index with temperature (dn/dT) of the material. We can construct a thermal 

coupling factor that combines these effects into a single measure and use this 

to compare the performance of different beamsplitter materials. We restricted 

the search to materials which had previously been successfully bonded using 

the hydroxide-catalysis bonding technique, and that had high transmission 

of light at A =  1064 nm. The data for the materials considered is shown in 

Table 3.1.

The properties of the various natural and synthetic fused silicas are very simi

lar, and are better than the easily available alternatives. We therefore chose to 

have the beamsplitters and mirrors manufactured from Suprasil on the grounds 

of availability and cost. Suprasil has a refractive index of 1.45 at 1064 nm, 

a dn/dT of 9.7 x 10-6 per degree (measured at 644 nm) and coefficient of 

thermal expansion equal to 0.51 x 10-6/K , giving a thermal coupling factor 

of ~  8 x 10-6 /K . For a total optical path in the material of 1.7 cm (three 

passes through beamsplitters) this corresponds to a temperature sensitivity of 

1.4 x 10-7 m /K . For a target displacement noise of 10 p m /\/H z we will require 

a temperature stability of 7 x 10- 5 K /\/H z. In practice the amount of trans-



3.1 Design of the prototype optical bench 35

mission in each interferometer path is balanced so we expect largely common 

mode effects which will make this noise source less significant, as described in 

Section 4.3.9.

Table 3.1: Optical properties of potential beamsplitter substrates

Material Refractive 

index (n)

Wavelength 

of refractive 

index mea

surement 

(nm)

dn/dT

(xlO -6)

Wavelength 

of dn/dT  

measure

ment (nm)

a

(x lO -6 )

Thermal

coupling

factor

nxC T E

-f-dn/dT

(x lO -6 )

BK7 1.509 581 2.8 546 7 13

Fused sil

ica

1.46 587 7.1 N /A 0.5 8

Zerodur® 1.54 587 13 650 0.02-0.1 

de

pend

ing on 

class

13 domi

nated by 

dn/dT

ULE® 1.48 N /A 11 N /A 0.03 de

pends 

on tem

pera

ture

11 domi

nated by 

dn/dT

Suprasil 1.45 1064 9.7 644 0.51 10

Sapphire 1.75 1064 13 N /A 8 27

Spectrosil 1.45 N /A ~ 8 N /A 0.54 9



3.1 Design of the prototype optical bench 36

Baseplate material

ULE®, an ultra-low expansion titanium silicate glass1 was chosen as the mate

rial for the baseplate due to its extremely low coefficient of thermal expansion 

(<  ±0.03 x 10_6/K  at 25°C [50]). Zerodur® (a glass ceramic) had been used 

in previous tests [51] and has very similar properties to ULE® but in this 

case ULE® was more readily available. A square of ULE®  of side 400 mm, 

and 25 mm thick was decided on. This is approximately a factor of two larger 

than the final size of the LTP OB and was chosen to be representative of the 

scale of the LTP OB but to allow a less restricted working area for aligning 

and bonding the interferometers. The baseplate has holes along its edges for 

the mounting of Invar plates onto which fibre injectors and photodiodes may 

be attached. Invar is a controlled expansion iron/nickel alloy with thermal 

coefficient of expansion 2 x 10~6/K .

3.1.3 Layout of interferometer

The optical layout of the interferometer consists of two beams forming three 

recombination points via six mirrors and nine beam splitters as labeled in 

Figure 3.1. The light is introduced onto the prototype OB using the two fibre 

couplers to the left of the diagram. One beam has been frequency shifted (by 

an acousto-optic modulator (AOM) prior to the fibre) by 80 MHz and the other 

(by a separate AOM) by 80.01 MHz. This results in a 10 kHz beat note when 

the beams are recombined.

There are three beam recombinations on the prototype OB (LTP will have 

four); giving the reference, measurement and frequency noise signals. The

1Trade name Corning 7971, composition 92.5% SiC>2 , 7.5% TiC>2
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Figure 3.1: Layout o f optical paths on the prototype optical bench
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phase of the three outputs are monitored at the three named photodiodes on 

the left of Figure 3.1. The other two photodiodes are monitor photodiodes to 

measure the laser power injected onto the prototype OB by the two fibres.

Each pair of interferometer arms make the same number of passes through 

transmissive optics (i.e. reference paths through one per arm, measurement 

paths through three per arm and frequency noise paths through two per arm). 

As all the optical components are nominally at 45° incidence angle to the 

beams this means that each pair of arms has a balanced path length in the 

glass. This is to make the path length changes due to a thermally driven 

change in refractive index (dn/dT) as common mode as possible.

The minimum requirement of the prototype OB is to provide an output optical 

signal whose phase can be measured with respect to a reference. The phase 

difference between two measured optical signals, (j>diff is

27xd
(pdiff =  - y

=  ^  (3.1)
c

where u is the light frequency, A is the wavelength of the light and d  is the 

path length difference. The phase variation (8<f>) between the two measured 

phases will change if the laser frequency changes (as 8v) or if the path length 

changes (as 6d):

_. 27r v  _. 27rd _
8(f) =   8d H 8u . (3.2)

c c

The reference interferometer on the OB is used to remove the effects of path 

length changes on the laser injection bench and in the fibres. A third interfer

ometer is also used on the OB to provide a measure of laser frequency noise, this 

interferometer purposely has a large path length difference (see Section 4.3.5).
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3.1.4 Beam path lengths

Any interferometer with unbalanced optical path lengths in its two arms will 

be sensitive to laser frequency noise as described in Equation 3.2. In order 

to minimise this, the prototype optical bench interferometer was designed to 

have perfectly matched path lengths, but in practice an error of order a few 

millimetres can be expected during construction. To deal with this effect the 

laser frequency noise measuring interferometer is included in the optical set-up 

and is used as detailed in Section 4.3.5.

The beam path length differences were manipulated in the CAD model of the 

optical layout and the critical measurements are shown below (the number of 

significant figures reflects the CAD accuracy, not the alignment tolerances). 

All distances are quoted from the centre of the nominal reflection points.

Measurement interferometer path length difference

The critical distances for the paths making the measurement interferometer 

are: [(BS7 to BS3) - (BS7 to BSl)], the difference between reference and 

measurement paths for light of frequency v  and [(BS2 to BS3) - (BS2 to BSl)], 

the difference between reference and measurement paths for light of frequency 

v  +  Sv.

•  The distance from BS7 to BS3 is:

5.7272 +  99.8077 4- 153.1212 +  143.7574 +  5.7272 +  112.9291 =  521.0698 mm

• The distance from BS7 to B Sl is:

66.8788 +  116.0501 +  5.7272 =  188.6561mm
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•  The distance from BS2 to BS3 is:

5.7272 +  182.9291 +  113.1212 +  226.8787 +  29.8079 +  5.7272 =  564.1913 mm

•  The distance from BS2 to BSl is:

70 +  5.7272 +  156.0503 =  231.7775 mm

•  Giving:

= *  (BS7 to BS3) - (BS7 to B Sl) =  332.4137 mm 

and

= »  (BS2 to BS3) - (BS2 to B Sl) =  332.4138 mm 

as required.

Frequency noise interferometer path length difference

The critical distances for the frequency noise paths are: [(BS7 to BS5) - (BS7 

to BSl)], the difference between reference and frequency noise paths for light 

of frequency v  and [(BS2 to BS5) - (BS2 to BSl)], the difference between 

reference and frequency noise paths for light of frequency v  +  8v. These should 

be as different as possible to accentuate the frequency noise.

•  The distance from BS7 to BS5 is:

5.7272 +  99.8077 +  153.1212 +  143.7574 +  40 +  40 =  489.4135 mm

•  The distance from BS7 to B Sl is:

66.8788 +  116.0501 +  5.7272 =  188.6561mm

• The distance from BS2 to BS5 is:
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70 +  40 +  112.9289 +  5.7272 =  228.6570 mm

• The distance from BS2 to B Sl is:

70 +  5.7272 +  156.0503 =  231.7775 mm

•  Giving:

= >  (BS7 to BS5) - (BS7 to B Sl) =  299.7574 mm 

and

= *  (BS2 to BS5) - (BS2 to B Sl) =  -3.1205 mm.

This gives a frequency noise path length difference of 302.8779 mm

Distance from fibre coupler to reference photodiode recombination point

Coupler to BSl via BS7 =  240 +  66.8788 +  116.0501 +  5.7272 =  428.6561 mm

Coupler to BSl via BS2 =  120 +  70 +  5.7272 +  156.0503 =  351.7775 mm.

So, after input couplers the path via BS7 is 76.8786 mm longer than via BS2. 

This difference is compensated before the fibre couplers (on the laser injection 

bench). While not strictly necessary this was implemented to keep common 

mode phase changes caused by laser frequency changes to a minimum.

Cancelation of fibre noise

Crucially, beam path variations from the laser injection bench (which is in 

air and a relatively unstable temperature environment compared to the OB 

in a vacuum enclosure) and the fibres are, in principle, canceled out in the 

phase measurement between the reference and measurement interferometers. 

These phase changes should produce purely common mode phase changes at 

the interferometer outputs. All the path variations prior to BS7 and BS2
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should therefore, in principle, not enter into the measurements.

3.1.5 Tolerances

To achieve good fringe contrast at the output of the interferometers the two 

beams must be well matched in size and curvature and well aligned in angle 

and overlap. The two beams are launched onto the optical bench with a beam 

diameter of ~  1 mm which ensures very similar beam size and curvature at 

the interferometer output. There are four remaining degrees of freedom in 

alignment: two angles and two displacements. These can be broken down into 

two components for each alignment: vertical (the plane perpendicular to the 

beam paths) and horizontal (the plane parallel to the beam paths).

We set ourselves the target of a phase change across the beam diameter of less 

than A /10 due to angular misalignment. For a beam diameter of 1 mm and a 

wavelength of 1 m this is an alignment of 100/iradians (~22arcsec).

We set ourselves a target of lateral beam displacement at 10% of the beam 

diameter, 100 /mi for a 1mm diameter beam.

Vertical alignment tolerances

The bonding method used results in a bond thickness of the order of 100 nm [43]. 

Over a 5 mm bond the bonding layer has uniform thickness to a small frac

tion of this, resulting in the bond contributing negligible angular deviation to 

the component positioning. Hence alignment in the vertical direction can be 

achieved by the manufacture of the baseplate and components, in conjunction 

with introducing the beams parallel to the baseplate.



3.1 Design of the prototype optical bench 43

For the vertical beam alignment to be maintained the recombined beams have 

to make an angle less than ~  22 arcsec. This is the total error build up due to 

baseplate and component build up. This is the defining tolerance as a 22 arcsec 

angular deviation over the distances involved in the interferometers (~ 0 .5 m )  

would cause a lateral beam displacement of ~  50 /mi.

The critical element of the reflective components is the perpendicularity of the 

bonding surface to the reflective surface - if the reflective surface is not at 90 ° 

to the incident beam then the beam will reflect at twice the deviation from 

90°. This error can build up at each reflection point. The reference beams

have a combined total of four reflections, the measurement beams six and

the frequency noise beams eight. A tolerance of component perpendicularity 

of 3 arcsec was agreed with the manufacturer (this corresponds to a roll off 

of around 75 nm over a 5 mm flat and tighter tolerances would have proved 

difficult to manufacture). This would contribute a very worst case error of 

24 arcsec (out of specification) but the risk of this was considered extremely 

minimal2.

The baseplate must be polished flat for bonding as well as to control vertical 

beam alignment. The constraint for bonding applies over length scales of order 

the size of the components to be bonded and requires a flatness of A /10 (this 

applies to the component surface to be bonded as well as the baseplate).

Deviations in flatness of the baseplate over large lengthscales (L) will cause 

local variations in the gradient (a) of the baseplate with the maximum gradient 

being given by
7T d j  .  *

Q-max =  4^rad. (3.3)

2This would be a very extreme worst case situation of linear addition of all the errors in 

such as way as to maximise their effect. In practice there is very likely to be some cancelation 

of this error build up, even if there was a systematic error in the components.
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The reasonably easily achieved polishing accuracy over lengthscales of 100 mm 

is A/4, corresponding to a max of 0.4 arcsec. The surface polish of the bench was 

therefore specified as flat to an accuracy of A /10 or better over lengthscales of 

30 mm and with a deviation of no more than A/4 per 100 mm.

These manufacturing constraints are sufficient to remove the need for vertical 

alignment of components.

Horizontal alignment tolerances

The method of horizontal alignment must enable the components to be posi

tioned and bonded within tolerance such that the interference quality at each 

of the three recombination points is within specification.

One possibility would be to use a fixed template (as described in 3.1.7) to 

position the mirrors and beamsplitters. The angular beam alignment tolerance 

of 100/irad and size of components (20 mm on the long side) result in an 

angular positioning of components at the ~  1 fim  level. This would be very 

difficult (if possible) to achieve using fixed mechanical references.

The preferred alternative was to incorporate a degree of adjustability into 

the construction process, allowing fine adjustment of some components using 

an optical readout to determine correct positioning of the components. This 

method involves placing the component on the baseplate and carrying out 

fine adjustment immediately prior to or during the bonding process and is 

described in Section 3.1.9.

There now follows a discussion of the resolution required for the fine adjustment 

of the horizontal beam angle and position, considering how a misalignment in 

component position would affect the output beam for both the reflected and
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the transmitted beams.

Factors effecting reflected beams

Angular misalignment occurs when the angle between the incoming beam and 

the reflecting surface is other than that intended. All beams on this OB are 

intended to make an angle of 45° with reflecting surfaces. If there is an angular 

misalignment of a component, there will be a corresponding angular shift of 

the beam. There will also be a lateral shift in beam position, although this is a 

small effect and we are less sensitive to it. For a component misalignment of 86, 

the beam path will be reflected at an angle 286 away from the intended angle. 

This misalignment would result in reduced contrast of the interference fringes 

when the beams are recombined. Thus the 100//rad tolerance on angular 

position of beams means that 50 //rad resolution is required in component 

placement.

Lateral beam misalignment can also arise independently of angular alignment 

when the component is placed at a distance along the beam path other than 

that intended. If the component has the specified orientation with respect to 

the beam, but not the specified position, the reflected beams will be shifted lat

erally by the magnitude of misplacement. Assuming the component is bonded 

to the baseplate as defined by the template, any non-angular misalignment 

arises from the tolerance to which the template is engineered which, in our 

case, is less than ±0.05 mm. Such an error reduces the overlap of the two 

recombined beams. This effect does not depend on distance traveled by the 

beam after deviation.

Although component thickness does not affect the reflected beams, it would 

result in an unplanned lateral offset error if the component was manufactured
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to a thickness other than that for which the template was designed. Thus, the 

components must be of nominal thickness to within 70 fim  (100 /im xsin45°).

Factors effecting transmitted beams

Angular misalignment of the components would affect the transmitted beams 

as well as the reflected beams. The lateral shift due to transmission through a 

component has been calculated for 45° in the design of the OB. If the beam is 

not incident at this angle it will be following a different path to that intended. 

Figure 3.2 shows the magnitude of beam deviation with angle around the 

region of interest. The nominal beam shift (1.56 mm) has a tolerance of 100 fim  

associated with it (as it is purely a lateral shift) and it is clear that the entry 

angle can be more than a degree from nominal and still be within tolerance. 

This suggests that this alignment will not be a source of significant error.
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.01.56
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Figure 3.2: Lateral beam shift on transmission with changing entry angle.

If the components are not at the design thickness the beam will be laterally 

translated by a different amount than that assumed. This will alter the lateral 

shift as shown in Figure 3.3. It can be seen that this effect would be apparent



3.1 Design of the prototype optical bench 47

in the reflected beams first and is not significant in this context. A purely 

lateral shift on placement of component would not affect the transmitted beams 

significantly.
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1.45;
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Figure 3.3: Lateral beam shift on transmission with changing component thick

ness.

3.1.6 Component Design

Other specifications were that that the beamsplitter coating was specified to be 

50 ±  1% and the mirror coating to have >  95% reflectance. The rear surface 

of both mirrors and beamsplitters was anti-reflection coated to reduce any 

problems that may be caused by stray beams. This coating was specified as 

having a reflectivity of <  0.2%. The final specification was that none of the 

coating should contaminate the bonding surface as this could cause problems 

both with the bonding of the component and with the accuracy of the angle 

between the bonding surface and the mirror surface.

The mirrors and beamsplitter dimensions were chosen to be 20 x 20 x 5 mm, 

with one of the 20 x 5 mm surfaces to be bonded to the optical bench, a mirror
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or beamsplitter coating applied to one of the 20 x 20 mm faces and an anti

reflection coating on the other. This is representative of the LTP components. 

The thickness of the beamsplitters is a compromise between reducing the path 

length of light in the beamsplitters, ease of manufacture, and ease of handling 

when bonding the interferometer. An aspect ratio of around four was the 

maximum that provided reasonable handling characteristics and was therefore 

chosen. The mirrors could, in principle, have had a lower aspect ratio as they 

do not require such precise handling, but using the same dimensions as the 

beamsplitters provided a modest cost saving without any performance penalty.

3.1.7 M ethod of construction

As a quasi-monolithic optical bench of this complexity had never been con

structed previously a system was devised to locate the components with the re

quired accuracy. The bonding technique has been verified several times [43,44], 

although not for components requiring fine adjustment while bonding.

The fundamental principle was to locate two sides of each component in their 

nominal positions by placing them against a metal superstructure (in the form 

of a brass template). The template was designed so that the position and 

orientation of the component surfaces were defined by two machined, perpen

dicular surfaces. Small radii were removed from the critical corners between 

the perpendicular brass faces as it is not possible to machine an exact right 

angle, an example is shown in Figure 3.4.

The construction of the OB consisted of two phases: the bonding of the non- 

adjustable components and the bonding of the adjustable components.
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Figure 3.4: Close up of brass template showing locating surfaces and corners

with radii removed.

3.1 .8  N on -ad ju st able com p on en ts

The brass tem plate alone was used to position the nine non-adjustable com

ponents. The tem plate design was created from the CAD layout of the optical 

bench. The tem plate was made from a piece of 400 x 400 x 4 mm brass 

with regions machined out corresponding to each component on the optical 

baseplate.

The tem plate was to be placed above the baseplate prior to (and during) 

bonding. Fixing holes were drilled around the edge of the brass, m atching the 

fixing holes on the U LE®  baseplate. The fixing holes for the tem plate were 

oversized so th a t it could be easily removed when the components had been 

bonded in place. The area around where a component was to be bonded was 

made large enough for easy access while bonding w ithout being large enough 

to degrade the structural stability of the brass sheet, or interfere with the other 

features of the template.
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The tem plate was designed so th a t the beam height (12 mm above the base

plate) was above the brass. Marks were etched into the brass during machining 

to assist in determining m irror/beam splitter locations and also which way the 

reflective side was to face. A photograph of the tem plate is shown in Figure 3.5. 

This also shows the adjustable hinges described in Section 3.1.9.

Figure 3.5: The brass alignment template for bonding the prototype optical

be7ich. The hinges for aligning adjustable components are shown attached to 

the template.

To ensure th a t the components lay against the two defining tem plate faces, in 

keeping with the principle of the tem plate, the optical bench (and tem plate) 

were inclined at ~  5° during bonding. This angle of inclination is enough to 

ensure tha t the components rest against the brass faces whilst not tilting  off 

vertical. The tem plate was designed such th a t all the components rest on the 

critical surfaces from the same direction, removing the need to reposition the 

tem plate for each bond.
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3.1.9 Adjustable components

When bonding the adjustable components in place adjusters were fixed to the 

template. In these cases adjusters take the place of the machined, perpendic

ular surfaces of the brass template.

For each recombination two degrees of freedom are required (two are fixed) 

to align the beams - angular and lateral position. The method chosen was to 

adjust the angle of two reflected beams to obtain the desired alignment. The 

optical beams were introduced to the interferometer for this procedure. This 

allowed the alignment to be judged by looking at the contrast of the interfer

ence. Using the final optical beams to optimise the alignment automatically 

compensates for any small misalignment due to machining tolerances of the 

template affecting the positioning of the non-adjustable components.

To control the positioning of the adjustable components, adjusters were de

signed and manufactured. The adjusters work on the same principle as the 

template: two defining faces are used to locate a component. A CAD drawing 

of a left-handed adjuster is shown in Figure 3.6 (the right handed adjuster is 

a mirror image). These are designed not to interfere with any optical beams 

so that they can be used in conjunction with the laser to align the critical 

components.

When using the adjusters the beams from the heterodyne injection bench were 

used to illuminate the quadrant photodiode. To obtain the required resolution 

of adjustment the mechanism consisted of a micrometer driving a lever arm. 

The micrometers used had a nominal resolution of 10 /i m (with a more than 

ample ±  5 mm of travel) and the lever arm measured 72 mm from hinge to mi

crometer contact point. This translates to an angular resolution of 29.2 arcsec 

per adjuster.
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Figure 3.6: CAD drawing o f left handed fine adjuster. The light blue cuboid

represents a mirror/beamsplitter component.

Tapped holes were made in the brass tem plate in the appropriate places to 

attach the adjusters in place next to each of the six components where ad

justability  was necessary.

D evelop m en t o f a tech n iq u e to  p reven t op tica l con tactin g  during  

a lignm ent

The adjustable technique described relies on being able to place the component 

on the baseplate close to the nominal position and then make fine adjustm ents. 

The component can then be removed, bonding fluid applied and the component 

replaced for the bonding to take place. The first problem with this procedure 

is th a t when two very flat and clean surfaces are brought into close proximity 

during the dry alignment phase they are very likely to optically contact. If 

this phase is om itted, then during the bonding phase there is a settling tim e of 

around 30 seconds from the component placement until the bond has started  

to form, but this does not provide sufficient tim e to align the interferometer.
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In an attempt to avoid optical contacting whilst still allowing fine component 

positioning a series of tests were conducted during which a component was 

floated on a buffer fluid. For the buffer fluid to be a suitable candidate for this 

application it must have suitably low viscosity to allow component position

ing and evaporate without leaving any residue that could interfere with the 

bonding process.

The alkanes octane, nonane and decane were investigated. Alkanes are hydro

carbons that contain only single bonds, the simplest being methane. These 

alkanes were chosen due to their low viscosity and their availability with low 

residue on evaporation properties (the tested products had a residue on evap

oration of <  5 ppm). The range of different alkanes were tested in order to 

identify the one with the most suitable rate of evaporation.

Octane was selected as having the most suitable evaporation rate and bonding 

tests were carried out on surfaces that had been prepared for bonding and 

then coated in octane. The octane was then allowed to evaporate (in a clean 

environment) and a bond was made with no further treatment or cleaning of 

the surfaces. This is an important aspect of the process as it was not possible 

to clean the baseplate area to be bonded after component positioning.

Approximately 10 fi 1 of octane allowed three minutes of adjustment time for 

components of 20 x 5 mm footprint without risk of optical contacting. The 

process is repeatable and so it is possible to align an interferometer with much 

reduced time pressure. It should be noted that the risk of scratching the 

surfaces increases with each removal and replacing of the components, which 

could result in inferior bond quality.

A feature of this method of alignment is that the buffer fluid does not neces

sarily form an even layer and this can result in misalignment of the two beams
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in the vertical direction. This is seen as a phase difference between the hetero

dyne signals (measured using a quadrant photodiode) from the top quadrants 

and the lower quadrants. This effect reduces as the octane evaporates and is 

removed when the actual bonding fluid is used. The signals monitored during 

alignment are the contrast of the individual quadrants and the left to right 

quadrants’ phase difference (or alternatively the summed contrast of all four 

quadrants, which depends on the contrast and phase of the four quadrants). 

Final small adjustments can be made after the application of the bonding fluid, 

although there is very limited scope for this during the rapid settling of the 

bond.

This technique for adjustable component bonding was successfully used in 

the prototype optical bench construction. This resulted in it later being used 

during the LTP optical bench engineering model (see Chapter 5) and it will also 

be used in the LTP optical bench flight model construction (see Chapter 6).

3.2 Construction

In the following account of the construction process the details of the bonding 

procedure have been omitted for clarity. They are found in [43, 44].

The baseplate, template and components were cleaned to a high degree using 

previously developed methods. The bonding was undertaken in a laminar flow 

cabinet, which was in a semi-clean laboratory. The components were cleaned in 

the semi-clean area and moved to the ultra-clean cabinet for the final cleaning 

stage. The particulate count inside the cabinet was measured using a particle 

counter, which registered zero counts over five minutes for 0.1, 1 and 10 fim 

particles. This was a considered a satisfactory environment for the bonding.
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3.2 .1  V erification  o f  com p onent p erp en d icu larity

Following delivery of the components, the perpendicularity of the reflecting 

face to the bonding face was tested. This was done by ‘water bonding’3 the 

bonding surfaces of two mirrors together to create a  composite 40 x 20 x 5 mm 

piece which is nominally flat as shown in Figure 3.7. Figure 3.8 shows the view 

through a water bond (looking along the long axis of a  composite piece).

Figure 3.7: Photograph of

a ‘composite component’ -

two normal components wa- Figure 3.8: Photograph viewing

ter bonded together through a water bond

The flatness of the composite piece was then tested using a grazing incidence 

interferom eter (Logitech GI20 Flatness Measurement System [52]), as indi

cated in Figure 3.9. In the case of a component having non-perpendicular 

bonding and reflection surfaces, the interferometer shows a departure from a 

nominal flat piece.

3This bonding procedure is virtually identical to the hydroxide-catalysis bonding used 

in the final interferometer, the only difference being that water rather than a hydroxide 

solution is used. This is a bond with similar properties to the hydroxide-catalysis bond but 

the bond can be unmade by soaking in deionised water and the process does not damage 

the surfaces.
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The bonds are sufficiently strong (even after a short am ount of tim e before the 

bond has fully set) to m aintain the relative positions of the two components 

under small loads, i.e. moving and placing the composite structure on the 

interferometer.

The components were then de-bonded. One component was ro tated  through 

180° about the bonding surface and they were re-bonded in this new orienta

tion.

The composite mirror was measured in both orientations to remove the risk of 

imperfect components appearing within specification by having compensating 

errors. This could occur due to a chance matching of component error angles or 

by some systematic effect during manufacture causing m atching error angles. 

An illustration of this effect is shown in Figure 3.9.

Interferometer Temporary bond
reference flat

error angle

Figure 3.9: Diagrams showing ‘composite’ mirror (side view) o f components 

‘P ’ and ‘Q ’. The blue rectangles indicate the mirror coating: a. showing can

celation o f component error angles due to non-perpendicularity of bonding and 

reflecting surfaces, b. manifestation of error angle showing component imper

fection.
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Measurement resolution

A complete fringe of the GI20 interferometer corresponds to a change of 2 //m  

in the distance from the interferometer reference flat to the measured piece [52]. 

It is possible to resolve to better than one fifth of a fringe which corresponds 

to ~  20 //radians (~  4 arcseconds) over 20 mm, which is suitable resolution for 

verification of component perpendicularity for this application.

This measurement is of a combined error and it is not possible to disentangle it 

to determine the absolute angular error between bonding and reflecting faces 

for each component unless one angle is already known.

Bond thickness variations

A bond has finite thickness but it may also have some variation in thickness 

across its length. A variation in bond thickness would appear as a variation 

in error angle and in a worst case scenario could compensate for the error 

angle, making a defective component appear within tolerance as shown (greatly 

exaggerated) in Figure 3.10. Bond thickness varies with the concentration 

of bonding fluid used, becoming thicker with higher ratio of sodium silicate 

solution to water.

A variation across the bonding surface (5 mm) of 35 nm would appear as an 

error angle of ~  1 arcsecond (7 //radians). Measured bond thicknesses for bonds 

made using weak concentrations of bonding fluid (similar to those used for 

these tests and expected to be similar to that of a water bond) are 81 ±  

3 nm [43]. It is not expected that a variation as large as 35 nm will be present 

in a bond of thickness 81 nm, suggesting that the error angle contribution due 

to bond thickness variation should be smaller than the resolution required.
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Interferometer 
reference flat

/
Bond with varying thickness

Figure 3.10: Diagram showing ‘composite’ mirror (side view) with variation

of bond thickness negating component error angle

In terpretation  o f com b ined  error angle

The components were placed on the interferometer such th a t there was an air 

wedge between both mirrors and the reference flat, which generates fringes 

across both surfaces4. This results in a number of fringes, n, across one m ir

ror and n +  £ across the other (where 6 is dictated by the error angle). The 

combined error angle for this orientation can then be calculated.

When one component is removed, rotated by 180° about the  bonding surface 

and re-bonded, a different combined error angle will be seen (unless one or 

both pieces are square). For two components, a and b, with error angles E A a 

and E A b, then the largest combined error angle {C E A f)  would be

C E A i = E A a +  E A b

and the other possible combined error angle, C E A 2 (for the other component 

orientation), would be

C E A 2 = E A a -  E A b.

Measuring C E A \  and C E A 2 allows the calculation of E A a and E A b, but not

4 In practice this is usually unavoidable

error angle

V
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the determ ination of which component contributed which error angle. 

R esu lts o f te sts

The first pieces tested using this technique showed a deviation from flatness 

of ~  60 arcsec, well outside the expected 6 arcsec. An example measurem ent 

is shown in Figure 3.11, where the superimposed red line has been drawn to 

show the method used for fringe counting. The two mirrors show a difference 

in slope with respect to the interferometer flat of approxim ately 3.5 fringes, 

corresponding to an angle of ~  70 arcsec. Further inspection of the remaining 

pieces showed th a t in many cases the bonding surface was contam inated by 

spillage of the optical coatings.

Figure 3.11: Flatness measure

ment of two water bonded compo

nents before repolishing.

Figure 3.12: Flatness measure

ment of two water bonded compo

nents after repolishing.

All the pieces were returned to the manufacturer and the fault in the m anu

facturing process was traced. A remedial repolishing technique was identified 

and the pieces were corrected and individually measured by the m anufacturer. 

The pieces were again tested on return from the m anufacturer and found to 

be within specification. Figure 3.12 shows an example of the flatness of the 

conjugate water bonded piece after repolishing. The fringe difference is less 

than one third of a fringe, corresponding to less than  6 arcsec.
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3.2.2 Non-adjustable component bonding

The nine non-adjustable components were located and bonded using only the 

template as a reference. Only four bolts were used to attach the brass template 

to the ULE® baseplate. This allowed fast removal of the template in case of 

an unacceptable bond, thus giving full access to the bond and maximising 

the chances of successfully removing the bond with little or no damage to the 

component or baseplate.

Initially the template is located aligned to the baseplate using the fixing holes. 

When the first two components have been bonded they become the reference 

for locating the template. In this case the template can be removed and 

then realigned to these bonded components. This becomes important if the 

template has to be removed and replaced for some reason, e.g. re-cleaning. For 

this reason, two cubes with a long baseline between them were chosen to make 

replacement of the template as accurate as possible.

The components were bonded nearest to the bonding technician (who is ‘down 

wind’ of the baseplate) to minimise the risk of contaminating areas of the 

baseplate to be bonded to. In the case of any contamination that could not 

be removed with a jet of clean air, the removal of the template is necessary to 

re-clean the area.

It can be seen from Figure 3.1 that when nine of the components are bonded 

(relying on the accuracy of the template), namely B S l, BS2, BS3, M l, BS4, 

BS5, M2, M3 and BS6, the reference photodiode and the frequency noise 

photodiode can each be illuminated with one beam.

Figure 3.13 shows the brass template above the baseplate with the nine non- 

adjustable components in place. In the foreground of the photograph the
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invar mounting bracket can be seen. This is for attaching the fibre injectors 

and quadrant photodiode for the adjustable component bonding.

Figure 3.13: OB after first nine components have been bonded, showing the

brass alignment template in position above the baseplate

3.2 .3  A d ju stab le  com p on en t b on d in g

W ith all the non-adjustable components in place the laser beams are intro

duced onto the OB. W hen BS7 and BS8 are correctly placed the reference 

recombination is completed. BS7 and BS8 are judged to  be in the correct 

position when the alignment of the two beams hitting  the reference photodi

ode are colinear and overlapping with the required precision, i. e. the required 

contrast of the heterodyne beatnote fringes is seen.

The same process was followed for the frequency noise photodiode using M4 

and M5. W ith M4 and M5 in place we can see th a t the final recom bination 

to the measurement photodiode is now illuminated by one beam, so the  last 

two components (M6 and BS9) can be positioned using the same technique to
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complete the measurement recombination.

A quadrant photodiode was used to monitor the alignment. The quadrant 

photodiode was centered on the beam from already bonded components and 

the two final components in the path positioned using the adjusters with a 

bonding technique th a t was developed specifically for this use.

Figure 3.14 shows the adjusters in position immediately after the final two 

components (M4 and M5) had been bonded. Figure 3.15 shows the completed 

optical bench with brass tem plate removed.

Figure 3.14: Prototype optcial bench during bonding showing fibre couplers

and quadrant photodiode attached to invar m ount (foreground) and adjusters 

(back right)

3.3 Contrast o f output signals

The contrast of the interference fringes at the interferom eter ou tput depends 

on collinearity, overlap, power matching and mode m atching of the beams. It
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Figure 3.15: Fully bonded optical bench with fibre couplers attached to invar

mount

should be noted th a t the contrast of the output signals from the prototype 

optical bench is not as critical as for the LTP optical bench as all beams 

are fixed and d.c. components can be removed by filtering. The contrast is 

calculated from measurements of the heterodyne signal by

Maximum signal - Minimum signal ^
Contrast =  —— :--------- :  —   :   . (3.4)

Maximum signal -f Minimum signal

The heterodyne signals as measured upon installation of the  OB in the clean 

facility after bonding are shown in Figure 3.16.

The contrast of the reference and measurement paths is ~  58% and ~  55% 

respectively, while th a t of the frequency noise signal is ~  12%. Clearly the 

beams interfering to give the frequency noise signal are significantly misaligned. 

The reference and measurement signals are acceptable. All of the signals show 

lower contrast than when initially bonded and the change in signal is a ttribu ted  

to movement of the fibre couplers relative to the optical bench. These couplers 

are bolted onto the invar shelf, which is bolted to the U L E ®  bench. The glass 

to metal fixings are thought to have shifted slightly during transit from the
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Figure 3.16: Heterodyne signals at the output of the optical bench upon instal

lation.

bonding lab to the interferometry lab: the risk of cracking the ULE(r) limits 

the extent to which the bolts may be tightened5.

Investigation revealed tha t the frequency noise beams exhibited good relative 

angular alignment but had significant lateral misalignment. An additional 

beam splitter was placed on the OB in one of the frequency noise arms (rotated 

at an angle less than 90° to the beam) to help reduce the lateral misalignment 

by acting as an inclined optical flat. This also introduces a power m ismatch 

between the two interferometer arms and also a different number of transm is

sions through components, but these only have a second order effect on the 

contrast. This is the least critical interference and lower contrast here will 

not degrade the overall interferometer performance. The resulting (improved)

5This design of fibre injector is a simple solution with obvious limitations. The fibre 

injectors for the LTP engineering and flight models are bonded to the baseplate. This 

makes alignment significantly more difficult but fixes the beam location with respect to the 

interferometer rigidly.
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signal is shown in Figure 3.17.
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Figure 3.17: Heterodyne signals at the output o f the optical bench (with im 

proved contrast in the frequency noise arm).

The reference signal now has a contrast of ~  52 % and the m easurem ent signal 

a contrast of ~  50 % while the frequency noise signal has an improved contrast 

of ~  41 %.

The angles of the beams onto the optical bench were optim ised using by ad

justing the fibre couplers. This led to improved contrasts of ~  69%  for the 

reference interference, ~  68% for the measurem ent interference and ~  58% 

for the frequency noise interference. These signals are perfectly adequate to 

drive the phasemeter inputs (after suitable filtering).

Returning the beam positions to  their bonding alignments by repositioning of 

the  fibre couplers would improve these signal contrasts further. This was not 

necessary and using the reduced contrast signals was considered preferable to 

risking useable signals in an effort to increase contrast by a few percent.



Chapter 4

LISA Pathfinder prototype 

optical bench interferometry

4.1 Experimental setup

A schematic of the overall setup is shown in Figure 4.1 and consists of three 

parts: beam preparation, optical bench (in vacuum tank) and phase measure

ment system.

The optical beams were prepared on an optical table (described in Section 4.1.1) 

next to the vacuum tank and supplied to the OB via single mode polarisation 

maintaining fibres and fibre feedthroughs. After circulation on the OB the re

combined beams passed through a window and onto the measurement photo

diodes (see Section 4.1.2). The photodiodes were mounted outside the vacuum 

chamber for convenience with the option of locating them on the invar shelf 

(bolted to the ULE® baseplate) if required. The fibre injectors’ alignment to 

the OB is very critical and so these were always mounted on the invar shelf.

6 6
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The signals from the photodiodes were fed into the phase measuring system 

(PMS) as described in Section 4.1.2.

Vacuum enclosure ^  N

■

AOMs

Laser injection bench

Fibres

Phasem eter Filters, gam  a n d  com para to rs

[)AQ and  
LabVIEW 
interface

s ' ?F
— < e -

2
— « * .... JUWn

Optical
Bench

V  V  V

P ho tod iodes

T ransim pedance
am plifiers

Figure 4.1: Schematic layout o f laser injection bench, prototype optical bench, 

measurement photodiodes and phase measurement system. The optical beam 

colour key used in Figure 3.1 is also used here.

4.1 .1  Laser in jection  b en ch

A laser beam preparation bench was required to  produce two frequency shifted, 

but otherwise identical, single mode laser beams to be fibre coupled onto the 

optical bench. This was achieved using light (of wavelength 1064 nm) from 

one laser split into two beams and frequency shifted using two independent 

acousto-optic m odulators (AOMs), one operating at 80 MHz and the other at

80.01 MHz. A labeled photograph of the injection bench is shown in Figure 4.2.
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Figure 4.2: Photograph o f the laser injection bench. Beam paths are shown

using the same colour key as Figure 3.1.



4.1 Experimental setup 69

To obtain light transmission through the fibres the beams must be mode 

matched to the fibre core diameter. To do this the beam parameters must 

be known and appropriate lenses must be chosen and positioned on the beam  

propagation axis to provide a beam of the correct diameter and curvature at 

the fibre.

The expansion of a Gaussian beam is given by

w(*)=r°2+SJ (41)
where u (z)  is the beam radius at a distance z  from a waist of uq and A is the 

wavelength of the light [53]. Where the position of the waist (z =  0) is not 

known we can replace z with Z\ — a and expect to get

r , Xl2 A2 2 2A2a A2a2 2
=  1 ~ 2 z l  -  ~ 2 ~ 2 Z l  +  o 2 +  V o -  ( 4 '2 )1T2 UJq 1T2 (jJq 7T2UJq

The laser beam diameter was measured at several locations along the beam  

propagation axis and the waist position and size calculated by plotting [u(zi)]2 

against z\ and fitting to a hyperbola using M atlab® [54], as shown in Fig

ure 4.3. This yields the coefficients of z\ in Equation 4.2 from which the size 

of the laser waist and its position (u>o and a) were calculated.

Once these parameters were known the evolution of the beam was mapped 

such that the beam size and curvature at the fibre were matched.

The laser used was an 800 mW Innolight Nd:YAG non planar ring oscillator 

with internal ‘noise eater’ [55]. The AOMs were made using Te02 cells by AA 

Opto-Electronique, model AA.M T.80/B20/A1@1.06 /mi. These were driven 

by two phase locked Agilent 8648A signal generators and Motorola CA2832C 

power amplifiers. The Motorola amplifiers were chosen for their low noise 

performance [56]. They provide wideband linear amplification: 35.5 dB of gain

mailto:A1@1.06
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Figure 4.3: Plot showing beam parameter fitting. The red crosses are measured 

data points and the blue line is the fitted data.
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from 1-200 MHz with 1.6 W  maximum output power (ensuring they could not 

damage the AOMs which are rated to 2.5 W rf  input power).

The optical fibres were manufactured by OZ Optics and were single mode 

polarisation maintaining fibres with FC connectors (model HPUC-23AF-1064- 

P-6.2AS-11).

This injection bench was used to provide the signals for alignment of the final 

OB components during the construction phase (Section 3.1.9) and for the 

stability tests described in this Section. For this reason it was constructed on 

a separate bench for transportability.

4.1.2 Phase measurement system

The phase measuring system consisted of front end photodiodes, signal condi

tioning electronics and a digital phasemeter (read out using a data acquisition 

card with Lab VIEW interface).

The principle of operation was to employ a ‘stopwatch’ style phasemeter that 

counted the number of fast clock cycles between consecutive rising edges of the 

heterodyne beatnotes, as shown in Figure 4.4. The phase difference between 

the waveforms is obtained by measuring t , the time interval between rising 

edges of the reference and measurement signals.

The time for one full reference cycle, T, is measured in order to scale the signal 

and therefore make the relative phase measurement insensitive to frequency 

drifts.
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Reference
signal

Measured
signal

Figure 4.4: Principle of the ‘stopwatch} style phasemeter. 

P h o to d io d e s

The three 10 kHz measurement front ends used were silicon photodiodes with 

an active area of 41.3 mm2, supplied by RS, stock number 651-995. The ac

tive area is square with side 6.4 mm. Each photodiode had a custom built 

transimpedance amplifier and 330 kHz filter. The circuit diagram is shown in 

Figure 4.5. The cases were connected to the circuit ground but isolated from 

the optical table using insulating posts. The opamps were LT 1028.

+15V

RS 651-995

32k

toPMS

LT 1028

Figure 4.5: Circuit diagram of the 10 kHz measurement photodiodes.
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Signal conditioning

The phasemeter requires digital input signals, as shown in Figure 4.4. The orig

inal heterodyne signals are sine waves, however, and so some manipulation of 

the signals is required, without corrupting the phase information. Each signal 

was high pass filtered, amplified and fed into a comparator chip (AD790 [57]).

This made the switching point of the comparators insensitive to changes in 

the amplitude of the heterodyne signal. Also to this end, components with 

low temperature coefficients were used and corner frequencies were suitably 

far from the measurement frequency. Finally, the signals were converted to 

digital waveforms by the comparator.

Digital phasemeter

The phasemeter used in these experiments was an enhanced version of that 

developed for the experiments described in [58].

The data is accumulated in two Altera® Flex®  logic chips and read out (at a 

chosen rate) to a PC by a National Instruments Digital I/O  card. Lab VIEW  

software was used to record the data, which was later processed using Matlab. 

A photograph of the two Altera® chips on the printed circuit board is shown 

in Figure 4.6.

The phasemeter is capable of reading in five signals - one reference and the 

four measured channels (whose phase is compared to the common reference).

The fundamental limiting noise source for this phasemeter is quantisation 

noise, which is a function of the signal and fast clock frequencies.
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Figure 4.6: Photograph of the logic chips in the ‘stopwatch ’ style phasemeter.

The phasem eter incorporated additional features (tha t are outw ith the scope of 

this thesis) in order to measure down to the noise levels required. These include 

measuring two separate tim e intervals for each cycle and taking particular care 

of counting at cycle boundaries (required for multiple cycle phase shifts). On 

board averaging was also implemented and led the final ou tpu t da ta  rate to 

the controlling computer being adjustable up to ~  100 Hz.

The type of phasem eter selected for LTP uses a fast analogue to digital con

verter to digitise the heterodyne signals. The phase differences are then deter

mined digitally by discreet Fourier transform  [46]. A prototype phasem eter of 

this kind was tested with this OB as detailed in Section 4.3.7.
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4.2 Test environment

The performance measurements of the prototype OB interferometer were con

ducted in a class 1000 clean room with temperature controlled clean air. The 

OB was housed in a 1 m diameter vacuum tank which could be evacuated using 

a magnetically levitated 10001/s turbo pump backed by a scroll pump. The 

system is designed to achieve pressures of order 10-6 Torr. The air cleaning and 

conditioning system is specified to maintain the temperature in the laboratory 

to within 1° of 20° C. The temperature in the lab and in the vacuum tank was 

monitored and recorded during data taking. The pressure in the vacuum tank 

during experimental runs was ~  2 x 10~2 mbar, which is adequate to passively 

shield against local temperature variations and convection currents. Locating 

the OB in a closed tank also reduces optical path length changes due to air 

currents.

Figures 4.7 and 4.8 show typical temperature variations in the test facility. 

The vacuum tank provides a thermal environment more than two orders of 

magnitude quieter than the ambient laboratory in the mHz region.

4.3 Optical bench noise performance

On the prototype optical bench a reference signal is generated by splitting 

some of the light from each of the fibre couplers and combining them to form 

an interference (a 10 kHz beatnote). The measurement beatnote comes from 

light that has traveled a further distance around the optical bench and is then 

similarly combined. If one path changes differentially in length by one wave

length (1.06//m) with respect to the other then the phase difference between 

the two interferometer outputs would change by one cycle.
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Figure 4.7: Time series o f temperature variations in the test facility.
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Figure 4.8: Power spectral density of temperature variations in the test facility.
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A change in phase can be caused by a genuine change in relative optical path 

by movement of one the mirrors/beamsplitters (for example due to differential 

expansion of the baseplate), by a refractive index change of one of the trans

missive components (effectively changing the optical path length through the 

component) or by other, second order, effects that couple into the measure

ments.

The advantage of having the reference interferometer on the low expansion 

baseplate as well as the measurement interferometer is that all path length 

variations prior to the reference interferometer should be irrelevant. There axe 

many such path length variations before the optical bench due to the laser 

injection bench being in air and the light traveling through fibres. This means 

that the phase of the interferometer outputs can be varying significantly with 

respect to the signals used to drive the AOMs. It could be expected that 

this would not be a source of degradation in performance but in practice this 

turned out not to be true, as described in Section 4.3.6.

4.3.1 Initial performance

Figures 4.9 (time series) and 4.10 (power spectral density (PSD)) show prelimi

nary measurements of the path length stability on the optical bench compared 

to the LTP interferometry goal with the experimental set up shown in Fig

ure 4.1. This data was taken with the OB in the vacuum enclosure but at 

atmospheric pressure.

Figures 4.11 (time series) and 4.12 (PSD) show the stability measurements 

with the vacuum enclosure evacuated to ~  2 x 10~2 mbar. The convection cur

rent reduction introduced by the vacuum significantly improved the stability 

measurement, although the noise level is clearly still above the LTP goal.
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Figure 4.9: Time series showing initial noise performance o f optical bench. 

The data was taken over 16 hours.
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Figure 4.10: PSD showing initial noise performance o f optical bench. The 

green curve is the measurement channel and the blue curve is the frequency 

noise channel. The red line is the LTP  interferometry goal.
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vacuum. The data was taken over 17 hours.
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Figure 4.12: PSD showing noise performance o f optical bench under vacuum. 

The green curve is the measurement channel and the blue curve is the frequency 

noise channel. The red line is the LTP  interferometry goal.
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This Section describes the investigations undertaken to identify the sources of 

excess noise and the experimental implementation of their removal.

4.3.2 Amplitude stabilisation

The laser power level in each arm of the interferometer varies due to fluctu

ations in laser output and variations in the transmission through the system  

(for example in the fibres). The prototype optical bench was designed such 

that the light power of the two different frequency beams can be monitored 

using the transmitted beams through BS8 and BS9 (as shown in Figure 3.1). 

In practice the beams were directed by mirrors separate to the OB to power 

monitor photodiodes sited outside the vacuum tank.

This light was used to stabilise the light in each arm to investigate if low 

frequency laser power variations were coupling into the measurement. The 

drive power to the AOMs was used as the actuator. AOMs work by propagating 

an acoustic wave through a suitable, acousto-optic, material (Te0 2  in this case) 

resulting in an index of refraction variation. When light is incident at the 

Bragg angle on this ‘acoustic grating’ light is diffracted. The 1st order beam 

will have been frequency shifted by the rf  drive frequency and the power of 

the shifted beam is proportional to the rf drive power. Thus, the rf  drive to 

these modulators can be used as the actuator for power stabilisation of the 

light on the OB, as shown schematically in Figure 4.13.

No difference in the noise performance was seen when the amplitude stabilisa

tion servo was in use with a gain >  100 and a bandwidth of 20 kHz.
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Figure 4.13: Layout o f the power stabilisation servo. Wires are denoted by 

black lines and laser light (of all frequencies) by red lines. Only one A O M  and 

feedback path is shown for clarity.

4 .3 .3  R edu cing  r f  pickup

Systems handling high frequency signals can emit some of the signals if the 

system is not perfectly impedance matched. These signals can be picked up 

elsewhere in the system and mixed with other signals a t any non-linear junction 

(for example a photodiode).

Of concern in this instance are the 80 MHz and 80.01 MHz drive signals to the 

AOMs. These signals are of order 1.5 W each. The mixing of one of these 

signals with some of the other would cause a 10 kHz signal and could appear 

a t the measurement photodiodes. The phase of this electrical pickup 10 kHz 

signal may not be locked to the phase of the optical 10 kHz signal, causing an 

apparent phase change. This was found to be the case in the initial system 

and considerable effort was put into improving the r f  shielding and impedance
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matching.

One of the main improvements was the introduction of high quality cabling for 

all rf carrying signal lines, terminated with SMA connectors. The cable used 

was Filotex®  Quickform® 86 which has a silver plated copper covered steel 

inner conductor separated from the outer conductor of tin soaked copper braid 

by a PTFE dielectric spacer. This was used as it has screening properties close 

to that of semi-rigid cables whilst having greater flexibility. The high power 

amplifiers were placed in conductive sealed tins which were grounded to reduce 

their radiation and reception of rf  signals. Particular care was taken to shield 

the amplifiers due to the relatively large size of the signals at these points. The 

level of unwanted rf  signal was reduced to ~  80 dB below that of the main 

signals.

4.3.4 Beam  size and position investigations

Investigations were undertaken to ensure that a combination of factors includ

ing beam size were not coupling into the phase measurements. Each interfering 

beam carries phase information and by monitoring the change in ‘net’ phase 

from the two beams we deduce path length changes on the optical bench. Thus 

if some of this information is lost there is a risk that a spurious path length 

change will be recorded.

If a beam is large compared with the photodiode, a significant proportion of 

the light may be lost off the active area of the photodiode (clipped)1. With

1For the prototype OB experiments single element photodiodes were used, so clipping 

can only occur at the photodiode active area edge. For the LTP interferometers quadrant 

photodiodes will be used to extract relative beam angle data. This means that this loss of 

information at the photodiode slits must be considered as well as edge effects.
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this lost light there is an associated loss of phase information. If there was no 

motion in the system then this would not affect the measurement as the phase 

difference is always being measured.

For the prototype optical bench experiments the photodiodes were not rigidly 

mounted with respect to the optical bench, potentially resulting in large jitter 

of the interfering beams with respect to the edge of the photodiode.

For the ideal case of perfectly overlapping beams whose wavefronts are matched, 

beam clipping and jitter could occur with no effect on the net phase. However, 

if we take the example of flat interfering wavefronts but with an angle between 

them, then this is not the case. Figure 4.14 shows two beams with plane wave

fronts (wavefront 1 and wavefront 2) viewed orthogonally to the direction of 

propagation. If both wavefronts were in the same orientation as wavefront 1 

(which has been arbitrarily designated ‘zero’ phase) then it is clear that the 

clipping due to beam jitter would have no effect on the measured phase. How

ever, with this angular tilt between the two beams as shown the phase does 

change with beam jitter: with the photodiode active area clipping in position 1 

the net phase is ‘negative’ but when the beam moves across the photodiode to 

position 2 the net phase is zero.

The magnitude of beam jitter was measured using a scanning knife edge beam 

analyser in place of the photodiodes. The measurement precision was limited 

by the analyser noise but placed a conservative upper limit to the spectral 

density of beam jitter of <  20 /rni/v^Hz.

Whilst some care was taken to achieve well matched beams with good align

ment and overlap, the main defence against beam jitter and beam size coupling 

into the noise measurement was to use large area photodiodes. The idea being 

that provided all the light stayed on the photodiodes then relative beam tilts,
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Figure 4.14: Diagram showing effect of beam jitte r  on measured phase at pho

todiode.

curvatures and overlap would become irrelevant.

The design of the bench allowed for a maximum misalignment of the two 

interfering wavefronts of ^  over the beam at the recombination point (where 

the beam radii were ~  1.5 mm). This gives an angular misalignment of the 

two phase fronts of 67 /zrad.

The photodiodes used had square active areas of side 6.4 mm. The beam 

diameters at the photodiodes are shown in Table 4.1, where the beam diameter 

is defined as beam width at ^  of the maximum intensity. Beam 1 and 2 refer 

to the two different frequency interfering beams.

Table 4.1: Beam diameters (in pm) at output photodiodes.

Reference Measurement Frequency noise

Beam 1 1560 1800 1580

Beam 2 1940 2270 2325

Beam jitter

Wavefront #1

The apparent longitudinal motion induced by the clipping shown in the sim
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plified 1-D case shown in Figure 4.14, assuming uniform beam intensity, is the 

product of the photodiode radius (3.2 mm), the angle between the wavefronts 

(67 fuad) and the ratio of beam displacement to photodiode size. This also 

assumes that the beam jitter acts completely in the measurement band. This 

results in a worst case expected spurious longitudinal signal of 6.7 x 10-10 m, 

which is significantly above the desired noise contribution of 1 x  10-12 m.

The assumption that the beams have uniform intensity profiles is far from 

realistic. The beams will have a Gaussian profile which will have low intensity 

at the beam wings, resulting in the clipping of the phase fronts having less of 

an impact than calculated above. From [59] we know that an ideal Gaussian 

beam of radius u) passing through an aperture of radius a has a normalised 

transmitted power of

p  =  l  -  e-W /™ 2) . (4 .3 )

So, an active area three times the beam diameter would give a fractional 

power loss e~18. An active area of only twice the beam diameter would give 

a fractional power loss of e-8 . This is, of course, provided the beam is well 

centered.

The largest beam diameter is 2.33 mm and so a results in a minimum fractional 

power loss of -  e"15. This can be factored into the calculation of spurious 

longitudinal signal, giving a factor ~  10-7  reduction of the effect for this more 

realistic model, suggesting that if the beam is well centered on the photodiode 

then the magnitude of jitter seen will not add excess noise to the measurement.

The approach adopted was to mount the photodiodes on translation stages 

with 10 fim resolution in both axes orthogonal to the direction of beam propa

gation. This allowed very accurate centering of the beams on the photodiodes.

The stability was also measured with lenses in each of the output beams (im
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mediately before the photodiodes), despite this introducing the possibility of 

multiple reflection stray light induced noise. The advantage was th a t the beam 

sizes were much smaller than  the photodiodes with the lenses in place. No dif

ference was seen with or w ithout the lenses and consequently all subsequent 

tests were conducted w ithout lenses.

To further investigate the effect of the <  2 0 /im /v /Hz jitte r  on the phase of 

the heterodyne signal one output beam  was split onto two photodiodes. This 

guarantees a  common optical signal on the two photodiodes and the phase 

difference m easurem ent will be one of the phase measuring system noise floor. 

Using one photodiode signal as a reference, the other photodiode was moved 

across the beam  in ~  130 gm  steps every five seconds. These scans were taken 

in both directions orthogonal to beam propagation and a typical result is shown 

in Figure 4.15.
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Figure 4.15: Apparent phase change as a photodiode is moved across an output 

beam.

The effect of beam clipping can be seen a t the extrem es of the plotted d a ta
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(the green line). The superimposed lines drawn on the graph correspond to 

gradients (ratio of apparent path length change to beam movement on the 

photodiode) of 0.42pm //nn (solid line) and 0.15pm ///m  (dashed line). If we 

assume a typical gradient over the photodiode of 0.3pm //m i then the beam 

jitter would have to be at least 30 /mi/'s/Hz (at the measurement frequency) 

to bring the noise floor to the 10pm /\/H z target level. This indicates that this 

is not a limiting noise source.

4.3.5 Frequency noise

Frequency (or phase) noise arises due to variations in the ‘absolute’ frequency 

of the laser. This can couple into the phase of the interferometer output if the 

path lengths are not matched, as described in Section 2.2.2.

The pathlengths of the measurement interferometer were designed to be equal 

but build tolerances might result in a path length difference of a few mm. 

A third interferometer was also included on the OB with large path length 

difference: the frequency noise interferometer has a path length difference of 

~  300 mm. Laser frequency noise dominates the output of this interferometer 

and so it can be used to measure the frequency noise. This signal can be used 

either to subtract the effects of laser frequency noise from the data or as the 

error signal for a laser frequency stabilisation servo.

Path length difference calibration

In order to subtract the effects of laser frequency noise we need to measure 

the path length difference in the reference interferometer. To do this the laser 

frequency was modulated at 1 Hz by applying a voltage to the piezo-electric



4.3 O p tica l bench  n o ise  perform ance 88

crystal glued to the laser crystal. This produced a signal at the m odulation 

frequency in the m easurem ent and frequency noise interferom eter ou tputs ac

cording to Equation 2.5, as shown in Figures 4.16 (time series) and 4.17 (PSD).

signal 
freq. noise

o>

-10
98 99 100 101 102 103

time (seconds)

Figure 4.16: Times series plot showing effect of 1 Hz modulation o f laser fre

quency on measurement and frequency noise output signals.

From Equation 2.5, the relative size of these signals gives the ratio of frequency 

noise coupling between the two channels as

^ % m ea s   meas ^
fnoise &%fnoise

where A x  is again the path  length difference and Sx  the apparent pa th  length 

change due to laser frequency variation. The subscript ‘m eas’ refers to the 

measurement paths and the subscript ‘fnoise’ refers to the  frequency noise 

paths.

From the PSD shown in Figure 4.17 we have the ratio

A X r r i p n c

A x fnoise

0 A 
60

(4.5)
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Figure 4.17: Phase spectral density plot showing effect o f 1 Hz modulation of 

laser frequency on measurement and frequency noise output signals.

and as we know th a t A x f noise is 0.3 m, we can calculate A x mea3 as 2 mm. This 

is a realistic value for construction of an interferom eter using the techniques 

described in C hapter 3.

Laser frequ en cy no ise  su b traction

We can now use the knowledge of A x meas to  subtract the effect of laser fre

quency noise from the measurem ent data. The result of processing the da ta  

in this way is shown in Figure 4.18.

The measurem ent of laser frequency noise can also be used to stabilise the laser 

frequency. This approach was implemented using the phase difference between 

the reference and frequency noise signals as an error signal. The error signal 

(after amplification and filtering) was fed back to the laser piezo-electric crys

tal (for the higher frequencies) and laser crystal tem perature control (for low
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Figure 4.18: Phase spectral density plot showing noise performance o f the pro

totype optical bench with and without frequency noise correction. The red line 

is the L T P  interferometry goal. The residual noise bulge above the interferom

etry goal is due to noise sources that had not been identified at that time.

frequencies) to stabilise the  laser frequency. The servo system had a bandw idth 

of 800 Hz and a gain of ~  103 at 1 Hz.

Figure 4.19 shows the apparent path  length stability  of the prototype optical 

bench showing very similar performance to th a t obtained using laser frequency 

noise subtraction. Note th a t in this test a frequency m odulation applied to the 

laser at 0.8 Hz. The 0.8 Hz m odulation signal with its sidebands is apparent 

in the plot of the frequency stabilised noise performance. Frequency noise 

subtraction of this d a ta  removes these spikes but does not change the rest 

of the noise curve. This shows th a t either system could be implemented to 

remove laser frequency noise effects and th a t the system  is now lim ited by 

something other than  laser frequency noise.
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Figure 4.19: Phase spectral density plot showing noise performance of the pro

totype optical bench with frequency stabilisation servo implemented. The green 

curve exhibits the frequency modulation spikes, which are removed by frequency 

noise subtraction (magenta curve). The red line is the LTP  interferometry goal.

4 .3 .6  F ibre noise  in vestiga tion s

The phase difference of interest from a distance m easurem ent perspective is 

between the outputs of the measurem ent interferom eter and the reference in

terferometer. The signals th a t generate the 10 kHz beatnotes originate from 

two phase locked signal generators at 80 MHz and 80.01 MHz. These drive 

(via power amplifiers) the AOMs on the injection bench th a t frequency shift 

the light. An additional 10 kHz signal is generated by another phase locked 

oscillator.

The phase variation between the optical outputs and this electrical 10 kHz is 

large. This is expected as the free space beams are subjected to differential 

pa th  length changes caused by traveling through different AOMs, having dif

ferent paths through air and traveling through different fibres before they get
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to the stable optical bench. All of these effects will now be referred to as ‘fibre 

noise.’

The phase difference between signals of optical and of electrical origin was 

anticipated but was expected to be common mode between the reference and 

other interferometers (due to the reference interferometer also being on the 

stable OB). To try and identify the remaining excess noise in the stability 

performance this phase difference was reduced.

Path length stabilisation by piezo actuator

The initial method of locking the electrical phase to the optical phase was to 

place a mirror before one of the fibres (between injection bench and optical 

bench) on a piezo actuator. The actuator had a range of 100 fim  and is shown 

in Figure 4.20. The other beam remained unchanged as the piezo actuator 

has sufficient range to stabilise the path lengths. The error signal for the 

feedback loop was the phase difference between the electrical and reference 

optical heterodyne signals.

The noise performance of the optical bench with laser frequency and path 

length stabilisation servos operating is shown in Figure 4.21. The noise now 

meets the LTP interferometry goal over the whole frequency band of interest 

apart from some remaining excess noise in the mHz region. This noise has 

the same spectral shape as the temperature fluctuations in the laboratory at 

the time of data taking (shown in Figure 4.22). Further data runs were taken 

and different temperature variations were seen but the excess noise in the 

performance measurement always followed the temperature variations (this 

is discussed further in Section 4.3.9). The peak in temperature variations 

around the mHz region is due to the laboratory temperature control having a



4.3  O ptica l bench noise perform ance 93

Fibre coup ler

Mirror on  p iezo  a c tu a to r  m o u n t

Figure 4.20: Photograph of the piezo mounted mirror for path length stabilisa

tion. The beam path is indicated by a red line.

heating/cooling cycle of ~  5 minutes.

W hy path  len gth  stab ilisa tion  is needed

By measuring the measurement optical heterodyne signal with respect to  the 

reference optical heterodyne signal it was thought th a t the intrinsic optical 

bench stability would be seen - even though both signals would be varying 

with respect to the electrical signals th a t drive the AOMs. In practice this 

was only the case when the optcial signal was stabilised with respect to the 

electrical signals.

For the effect seen to occur there must be a signal with the phase of the elec

trically generated signal present on the light a t the measurem ent photodiodes. 

This results in a signal (at the heterodyne frequency) whose phase is uncorre

lated with the phase of the optical signals. This can be considered as a small 

vector with varying phase dragging the phase of the ‘sta tionary ’ optical signal,
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Figure 4.21: PSD showing noise performance of the optical bench with the piezo 

mount path length servo in operation. The red line is the LTP  interferometry 

goal.
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Figure 4.22: Temperature spectrum during the data run shown in Figure 4-21. 

The larger variations are from a sensor mounted on a measurement photodiode 

and the other three curves are from sensors mounted inside the vacuum tank.
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as shown in Figure 4.23.

10 kHz optical heterodyne

Spurious 10 kHz vector

Figure 4.23: Diagram showing how a small vector at the heterodyne frequency 

of varying phase can influence the optical phase measurement.

Here the vector is shown n /2  out of phase with the optical signal. This would 

not effect the noise measurement as the phase measurem ents are not against 

an absolute reference, i.e. a static phase offset is innocuous. W hen the phase 

of this vector changes, however, there will be a resulting signal coupled into 

the measurement leading to changes in the apparent phase of the optical het

erodyne signal and the potential for excess noise in the final measurement.

Thus, by locking the optical signal to the electrical signal the phase mea

surement includes the offset due to the small spurious vector but the noise 

performance will not be affected by it.

P ossib le  origins o f th e  spurious 10  kHz vector

Direct electrical interference into the photodiode front ends was excluded after 

careful investigation. However, electrical cross-talk of r f  signals resulted in 

each AOM being driven by a small amount of r f  signal intended for the other 

AOM. This manifested as a 10 kHz beat in the light from a single AOM th a t 

was ~  90 dB below the main heterodyne signal size. Despite considerable 

effort it did not seem to be possible to reduce this coupling significantly in our 

experimental configuration.
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We observed amplitude modulation of the diffracted light at the AOM drive 

frequency and multiples thereof. While in principle these signals should not 

produce a 10 kHz beat signal, undesired non-linearities in the photodiode front 

ends could allow the generation of spurious 10 kHz components.

Following the Glasgow experiments it became obvious that active fibre path 

length stabilisation would have to be incorporated into LTP. However it was 

felt that further study of the small vector problem was also warranted and 

this has since been undertaken in a study led by colleagues at the Albert 

Einstein Institute in Hannover. As part of these further investigations a study 

of beatnote production as a function of amplitude of rf  signals at an AOM 

was carried out; this is presented in Appendix C. A report on the overall study 

can be found in [60].

Path length stabilisation by fibre heaters

Whilst the piezo actuation method for path length stabilisation worked well, it 

was unclear at the time that a piezo could be flown on board LTP. Consequently 

a different method of varying the path length in the fibres was investigated.

Both fibres had 30 cm of Nichrome heater wire coiled around them and were 

heated above ambient temperature (so that they could be driven differentially). 

Figure 4.24 shows a section of one of the fibres.

A similar control system to that employed for the piezo feedback loop was used 

to stabilise the path lengths using the fibre heaters. The noise performance was 

similar to that for the piezo actuated path length stabilisation, even though 

the bandwidth and gain of the fibre heater servo are lower than for the piezo 

mounted mirror. The noise sensitivity is shown in Figure 4.25 with the tem
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Nichrome 
heater wire

Figure 4.24: Photograph of a section of fibre with heater wire. The wire is 

insulated from the optical table by a sheet of acetate.

perature variation during the run shown in Figure 4.26, showing th a t either 

stabilisation system is suitable for mitigating the effects of the  ‘little vector’ 

noise source.

4 .3 .7  T ests w ith  a p ro to typ e  LTP sty le  p h asem eter

The prototype optical bench stability was also m easured using a prototype LTP 

AOM unit (developed by Contraves) and an LTP style phasem eter (developed 

by AEI, Hannover). This equipment is described in [46].

The performance with the LTP style phasemeter is shown in Figure 4.27. The 

performance is similar at low frequencies where the performance of the optical 

bench is the limiting factor and better in the 0.1 to 3 Hz range due to the lower 

quantisation noise of this phasemeter.

rfiS mm >
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Figure 4.25: PSD showing noise performance of the optical bench with the fibre 

heater path length servo in operation. The red line is the LTP  interferometry 

goal.
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Figure 4.26: Temperature spectrum during the data run shown in Figure 4-25. 

The larger variations are from a sensor mounted on a measurement photodiode 

and the other three curves are from  sensors mounted inside the vacuum tank.
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Figure 4.27: PSD showing noise performance of the optical bench with the piezo 

mounted mirror path length servo in operation, the LTP  prototype A O M  unit 

and LTP style phasemeter. The red line is the LTP  interferometry goal.

4.3 .8  N oise  perform ance using quadrant p h o to d io d es

The measurement photodiodes for LTP will be quadrant photodiodes to allow 

simultaneous readout of test mass angular position. However this means th a t 

some of the phase information is lost due to the presence of the th in  strips 

between the quadrants. This can have a similar effect to beam  clipping in cou

pling beam jitte r to apparent path  length noise, as described in Section 4.3.4.

The performance of the prototype optical bench was tested using a quadrant 

photodiode in place of the single element photodiode for the reference measure

ment. The four quadrants were summed to act as a single element photodiode.

The noise level achieved was ~  100pm /\/H z, much worse than  for the single 

element diode. This is probably due to a combination of beam  jitte r  and the 

lost phase information from the unmeasured area between the quadrants. In 

this case the quadrant photodiodes are mounted outside the vacuum tank  and
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the prototype optical bench is inside, so there will be much greater beam jitter 

than in LTP where the photodiodes are mounted on the optical bench.

4.3.9 Identifying tem perature dependency

The apparent strong correlation between temperature and phase around 3 mHz 

was investigated. The experiments on the prototype optical bench were con

ducted with the optical bench in a temperature stabilised environment, but 

the temperature stability on LTP is expected to be at least two orders of 

magnitude quieter than in the test facility [2].

In order to track down the thermally sensitive apparatus a series of tests was 

carried out. The first items eliminated were the phasemeter and associated 

filters and comparators which were tested and found to be suitably temperature 

stable.

Three other main areas were tested for thermal sensitivity: the photodiodes, 

fibre injectors and optical bench. This was done by heating the local area 

(using a resistor for the photodiodes and small lamp bulbs for the photodiodes 

and optical bench) at a known modulation frequency (suitably low such that 

thermal time constants did not prevent significant temperature change of the 

device under test). The performance of the system was then measured and 

inspected for a change in apparent path length stability at the modulation 

frequency.

While the heating elements and temperature monitors were as closely coupled 

to the device under test as possible, there remains an unquantified error in 

the actual component temperature variations. As a result of this these results 

should be taken as estimates.
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P h o to d io d e  th erm al sen sitiv ity

The photodiodes are subjected to the largest tem perature variations of the 

investigated components as they are situated outside the vacuum enclosure 

and so do not benefit from the passive therm al isolation of the vacuum tank.

Figure 4.28 shows the apparent path length stability when the reference pho

todiode was heated using a 33 U resistor driven by a 5V P_P square wave at 

3 mHz. The tem perature spectrum  is shown in Figure 4.29. The blue curve 

(monitoring the tem perature of the photodiode) clearly shows the tem perature 

m odulation.

01/04/2004,18:14:52. «lo=040401_3.tx1
T-r-TTT"! 1 ) ..! --------!—I I M ;i;i I
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Figure 4.28: PSD showing apparent path length stability o f optical bench with 

reference photodiode being heated at 3 mHz.

The measured coupling of apparent path length change to  therm al variation 

was ~  3 x 102 pm /K . This is likely to be a significant over estim ate, though, 

as all three photodiodes are situated close together and therefore experience 

very similar tem perature environments resulting in some of the tem perature 

response being common mode.
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Figure 4.29: Temperature spectrum during the data run shown in Figure 4-28. 

The blue (top) curve shows the temperature spectrum as measured at the ref

erence photodiode.

This was repeated at 1 mHz and the coupling factor was found to be similar. 

Fibre in jector  th erm al sen sitiv ity

The fibre injectors could couple tem perature variations into the apparent path 

length m easurem ent by im parting an angular movement on the beam. Small 

filament bulbs were placed close to the fibre injector m ounts to test the therm al 

sensitivity, a photograph of the set up is shown in Figure 4.30 and the result of 

the therm al m odulation are shown in Figures 4.31 (PSD) and 4.32 (measured 

therm al spectrum ). These plots show three different m odulation frequencies 

from three independent sets of heaters, heating different areas of the optical 

bench.
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Fibre injector 1

Fibre injector 2

Figure 4.30: Photograph of the fibre injector heaters. The superimposed green 

arrows indicate direction o f light through the fibres onto the optical bench and 

the heaters are circled in red.
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Figure 4.31: PSD o f apparent path length difference whilst temperature modu

lating areas o f the optical bench. The main bench was heated at 4 mHz, fibre 

injector m ount 1 at 5 mHz and B S7 at 6 mHz.
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Figure 4.32: PSD of measured temperature variations during temperature mod

ulation o f the optical bench during the run shown in Figure 4-31.

O ptical bench therm al sen sitiv ity

Thermal variations on the optical bench itself could couple into the appar

ent path length measurement in two ways: physical expansion of the U LE®  

baseplate material altering component separation and changes in optical path  

length in transmissive components (a combination of both physical length 

changes and change in refractive index).

For these effects to couple in to the path  length m easurem ent they would have 

to act differentially between the interferometer paths and so in practice we 

would expect the impact to be significantly reduced by their common mode 

nature.

A photograph of the heater positions on the optical bench is shown in Fig

ure 4.33. The nine heaters above the optical bench substra te  are ~  5 cm above 

the ULE®  surface. A PSD of the apparent pa th  length stability of the opti

cal bench when just the nine substrate heaters were in operation (at 8 mHz)
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is shown in Figure 4.34 with the measured tem perature spectrum  shown in 

Figure 4.35.

Figure 4.33: Photograph o f the prototype optical bench in the vacuum enclosure 

with heaters. The bulk optical bench heaters are circled in green, the fibre 

injector heaters in blue and the individual component heater in red.

D iscussion  o f therm al se n s itiv ity  in vestigation s

The first thing to note from the tem perature and phase measurem ents is th a t 

there is significant cross coupling between therm al m odulation of different areas 

of the bench. This is due to difficulties in locally heating individual areas and 

also in measuring the tem peratures accurately. This reinforces the caveat th a t 

these results are indicative only.

From Figures 4.31 and 4.32 the effect on apparent path  length stability  due to 

therm al variations of various components can be estim ated:

• Substrate ~  2.5 x 104 pm /K ,
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Figure 4.34: PSD of apparent path length difference whilst temperature modu

lating the optical bench ‘uniform ly’ at 8 mHz.
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Figure 4.35: PSD of measured temperature variations during temperature mod

ulation of the optical bench during the run shown in Figure 4-34-
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•  Fibre coupler ~  lOOpm/K,

•  Individual transmissive component ~ 2 x 104 pm /K .

Figures 4.34 and 4.35 also suggest a coupling of around 2 x 104 pm /K  for the 

substrate.

From these results we estimate that a temperature stability of ~  5 x 10_4K /\/H z  

would easily allow the target path length stability of 10 p m /y/Uz to be achieved. 

The expected temperature fluctuations experienced by the optical bench at the 

mechanical interfaces are <  10-4  K /\/H z, from 1 -3 0 -mHz ([2], requirement 

OMS-7.2.5-3) and as such are more than compatible with this upper limit.

The evidence that temperature variations can affect the apparent path length 

stability provide an explanation of the residual noise in the sensitivity curves 

(such as Figure 4.21), whose spectral features coincide with those of the tem

perature variations during measurements. The most likely route by which the 

thermal variations couple in to the apparent path length stability is via a 

combination of the substrate and optical components of the optical bench and 

the measurement photodiodes. The substrate and optical components have 

similar levels of coupling to temperature noise while the photodiodes have a 

much weaker coupling. However the photodiodes are in a less stable ther

mal environment. The net result is that both have similar effects on system  

performance.



Chapter 5

LISA Pathfinder engineering 

model optical bench 

construction

The lessons learned in designing, constructing and testing the prototype optical 

bench were applied in the building of the LTP engineering model (EM) optical 

bench. This bench was built at the Rutherford Appleton Laboratory in Oxford 

with on-site support from the University of Glasgow and the Albert Einstein 

Institute, Hannover.

This chapter looks at the progression from prototype optical bench to EM 

construction, with reference to the links between the two.

108
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5.1 Design goals

The prototype optical bench was built to prove the intrinsic stability of quasi- 

monolithic optical benches. The EM was built to demonstrate the applicability 

of this type of optical bench for the LTP mission.

The major differences for the LTP OB are that light leaves the baseplate to 

reflect off external mirrors and that it includes an extra interferometer. This 

leads to a more complicated layout, but the principles of construction and 

operation are the same as for the prototype optical bench.

The optical design of the LTP OB has four interferometers: a reference, a 

frequency noise, one that measures one test mass position with respect to 

the OB and one that measures the position of the test mass separation. The 

nominal beam paths are the same as for the planned flight model shown in 

Figure 2.6. The specific EM optical prescription is described in [61].

The LTP interferometer is to measure the position of the test masses to 

10 pm / VTTz but first it must withstand launch vibrations and eventually op

erate in the LTP Core Assembly (LCA) environment.

The EM OB was similar in design to the planned LTP flight model but there 

were aspects that will not be seen in the final version. These were not con

structed in a representative manner due to time constraints. Further studies 

prior to the flight model construction were planned in order to develop the 

technological shortfalls (described in Chapter 6 ).



5.2 Size and com p on en t d en sity 1 1 0

5.2 Size and com ponent density

The baseplate face on which the mirrors and beam splitters are bonded is 

smaller than  the prototype optical bench area and the components are more 

densely populated. This raises issues tha t were dealt w ith in the design phase, 

namely an increased danger of beam clipping and a more restricted working 

volume for component placement. One consequence of this was the design 

of the adjusters used for component placement, shown in Figure 5.1. It can 

be seen th a t these adjusters are significantly different to those used in the 

construction of the POB and this is discussed in Section 5.4.

Figure 5.1: The adjustable arms used to position components prior to bonding 

(photograph courtesy of CCLRC Rutherford Appleton Laboratory).

The smaller area in which the components can be placed is a consequence 

of mass and volume restrictions in the spacecraft. The baseplate is thicker 

than  the prototype optical bench baseplate due to the added strength  needed 

for launch and to allow for the inserts which join the OB to the rest of the 

experiment.
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5.3 Fibre injectors

The fibre injectors for the EM needed to be attached to the Zerodur® base

plate in order for the interferometers to remain aligned after shake testing. 

The solution adopted was to use common off the shelf parts. These were not 

flight qualified but had the potential to become so with qualification testing 

and any resulting redesign.

The fibre injectors were off the shelf Shaeffer and Kirchoff model 60FC-4-A6.2- 

03 [62], shown in Figure 5.2. A base was glued to the Zerodur® onto which 

the fibre injectors were clamped. The alignment strategy was to use shims 

between the fibre injectors and the baseplate to adjust the height and angle of 

the optical beams. The shims were iteratively machined to achieve the desired 

alignment. This proved to be a relatively course alignment procedure with 

the limited level of development possible in the time restricted programme. 

Measurements taken after construction of the OB was complete indicated that 

positioning and alignment to within 100 fim  and 100  ̂ rad of the nominal values 

was achieved.

Another issue with the EM fibre injectors was the materials used in their 

construction. There are strict limits on the magnitude of magnetic moment 

generated by the materials on LTP in order to avoid the test masses being 

disturbed by magnetic fields. Items in close proximity to the test masses have 

to be particularly magnetically clean. Thus the EM fibre injectors are not 

allowable for the flight model, but custom injectors to a similar design could 

have been made using non-magnetic materials (such as titanium).
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Figure 5.2: The engineering model fibre injectors (photograph courtesy of

CCLRC Rutherford Appleton Laboratory).

5.4 A lignm ent strategy

To optimise the quality of the interference a t the ou tput of each interferom

eter two degrees of freedom have to be adjusted, as seen in Section 3.1.9. In 

the construction of the prototype optical bench, these two degrees of freedom 

were controlled using angle adjusters on two consecutive components sim ulta

neously. This was a very difficult process and as a result was changed for the 

EM construction.

During the EM all the adjustable alignment was carried out by m anipulating 

a single component in both translation normal to the reflective surface and 

angular adjustm ent, thus giving the two degrees of freedom required. This is 

achieved by using two micrometers with extended m etal rods attached. The 

rods end in tooling balls which contact the back surface of the component to 

be adjusted. The component can then be pushed and steered into the correct
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position by adjusting the micrometers. Figure 5.3 shows a schematic of this 

principle.

Anglular adjustm ent Lateral adjustm ent

Original
alignm ent

Adjusted \  

alignm ent

Figure 5.3: The principle of adjustable component manipulation fo r  the en

gineering model optical bench construction. The black (solid) lines indicate 

initial adjuster and component position and the red (dashed) lines after adjust

m ent

The correct component position is determined using an optical readout of the 

interference contrast between the two beams: one th a t is practically stationary  

while the component is moved and a second th a t is aligned to the first, as 

described in Section 3.1.9.

This m ethod was found to be more convenient than  the two component ad

justm ent m ethod and contrasts in excess of 80% were obtained for all the 

interferometers.
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5.5 Photodiodes

Quadrant photodiodes were used for the EM. Quadrant photodiodes are needed 

(even though they show worse performance than single element photodiodes) 

for the differential wavefront sensing [63]. They were glued to the Zerodur® 

baseplate to ensure stability.

5.6 Repairing broken components

During the build phase three components were inadvertently snapped off. They 

had been bonded for more than a week, allowing the bonds to reach near full 

strength. The components failed in the bulk material (either the fused silica 

or the Zerodur®) giving an indication of how strong the bonding technique is. 

This left an uneven surface in the place were components needed to be, with 

no possibility of bonding a replacement component.

The solution adopted was to bond adaptor plates over the broken areas. These 

took the form of two parallel feet (~  20 x 4 mm area) supporting a raised flat 

platform to which the spare components were bonded. These can be seen in 

the photograph of the completed optical bench (Figure 5.4).

While this situation was less than ideal it provides a valuable emergency re

covery for this kind of incident. The repairs survived all the environmental 

tests and did not degrade the noise performance.
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Figure 5.4: The completed engineering model optical bench (photograph cour

tesy of CCLRC Rutherford Appleton Laboratory).

5.7 Test results

The EM OB was tested at at the Netherlands Institu te  for Applied Geoscience 

(TNO) by staff from TNO, the Albert Einstein Institu te, Hannover and As- 

trium  GmbH.

The EM optical bench was integrated into a larger subassembly for qualifica

tion testing. The results are discussed fully in [63]. The environm ental testing 

(involving therm al cycling between 0°C to 40 °C and vibrational tests up to 

25g at the struts) showed th a t no components had moved a significant amount 

(if at all). The functional tests were all as expected. The performance tests 

showed a large therm ally driven variation due to the test mass dummy mirrors
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being mounted in metal mounts. When the linear drift was compensated for 

(in post processing of the data) the performance met the LTP mission goal 

nearly everywhere.



Chapter 6

LISA Technology Package 

optical bench developments

The LTP proto-flight model (PFM) optical bench interferometer is currently in 

the final stages of design, and construction is due to start in Glasgow shortly. 

The PFM closely resembles the EM and has the same functions. The main 

differences are tighter alignment tolerances, new design of fibre injectors, light- 

weighting of the baseplate, increased fracture control planning, redesigned pho

todiode mounts and a more rigorous testing regime.

This chapter discusses some of the changes from EM to PFM and outlines the 

changes to hardware and construction methods.

6.1 Fibre injectors

There was not sufficient time available during the EM project to sufficiently 

develop the fibre injectors or the alignment method into a viable flight solution.

117
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This left the PFM program with the options of either developing the EM design 

into suitable PFM hardware or to develop a new fibre injector and alignment 

strategy.

The EM injectors could have been manufactured using non-magnetic materials 

but the components would still have to be successfully thermal vacuum and 

vibration cycled (in sufficient numbers to provide reliable statistics) to prove 

flight worthiness. W ith the items being manufactured by a third party there 

was limited scope to redesign any undesirable features of the injectors. Also, 

the alignment technique (using shims machined to the correct height and tilt 

by iterations) had not been proven to reach the required alignment accuracy 

needed for the PFM. In the light of these required developments it was decided 

to design, test and construct a new fibre injector system specifically for the 

PFM.

This is perhaps the most significant change from EM construction to PFM  

construction as it, unusually, involves the creation of novel equipment at an 

advanced stage in the mission programme.

6.1.1 New fibre injector design

The new design for the fibre injectors is to use a quasi-monolithic fused silica 

assembly. This removes concerns over magnetic materials and means that 

components can be joined using hydroxide-catalysis bonding, as is used to 

attach the mirror/beamsplitter components to the baseplate. Figure 6.1 shows 

a sketch of the design of the fibre injector.

The welded pellet is a fused silica cylinder that is laser welded to the single 

mode polarisation maintaining fibre core. The fibre used is Fujikura Europe
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Silica spacerW elded pellet Lens

Fibre

Figure 6.1: Sketch showing the new fibre injector design. The laser beam is

indicated in red.

Ltd model SM-98-P- 6/125 UV/UV-400. The welding technology was devel

oped by L ightP ath®  Technologies Inc. [64] for optical comm unication purposes 

and is chosen for use in this case as there is effectively no join and no free space 

between fibre end and fibre injector. The fibres have had the pellets welded 

in place and Figure 6.2 shows a photograph of one of the  fibres with welded 

pellet clamped in an aluminium V-groove. Figure 6.3 shows a reconstructed 

Gaussian beam profile from the d a ta  used to measure the beam  param eters.

/ •

m

Figure 6.2: Photograph o f a fibre Figure 6.3: Screen capture o f re-

with welded pellet (clamped in a constructed 3-D profile of beam a

metal V-groove). short distance from  pellet end.

The fused silica spacer is needed as the supplier does not m anufacture the 

welded pellets with an output beam  diam eter large enough to  fulfil the inter-
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ferometry needs. The fused silica spacer enables the beam to expand further 

and also provides a convenient block of material to attach the fibre injector to 

a super-structure. Finally, the last element in the optical chain is a lens used 

to collimate the beam.

While it is advantageous to have the fibre injectors made in a monolithic 

manner to increase mechanical stability and avoid misalignment after assembly, 

this also requires that the manufacture of the components and the construction 

of the injector must be carried out to high precision, as the fibre injector output 

beam is tightly specified.

A driver behind the specification of beam parameters at the fibre injector out

puts is the contrast of the output signals. The interferometers have a difference 

in path length of the two arms from fibre injector to photodiode of ~  350 mm 

(except the frequency noise interferometer which is roughly matched). The 

parameters controlled by fibre injector geometries are the wavefront curvature 

matching and the beam radii. The current design has the beam waist at the 

fibre injector outputs with radii of 0.7 mm.

6.1.2 Fibre injector construction

The pellet ends are not certified flat on delivery (as is needed for bonding) and 

the beam axis relative to the output face is toleranced to only 3°. Consequently 

the pellets will be soft waxed into a square glass V-groove and the whole front 

face (including pellet front face) polished to A/10. The beam direction with 

respect to the V-block (and pellet) front face will then be measured and the 

V-block re-polished so that the beam exits the pellet normally.

The beam from the pellet will then be characterised. Figure 6.4 shows the
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beam profile measurements of one fibre injector (prior to polishing). This was 

used to determine the beam  waist radius and position with respect to the pellet 

face (as described in Section 4.1.1 using equation 4.2). This generated values 

for the beam waist of 3.81pm. a distance of 3.3 mm behind the pellet face. 

This is in agreement with the expected values: the fibre mode field diam eter 

is nominally 6 .6  ±  1 pm  and the pellet length is specified as 3.3 mm.

x IQ'® Beam radius squared a s  a function of position on z-axis
1.6

1.4

1.2

1

0 8

0.6

0 4

0.2

0
7 8 95 60 1 2 3 4

Position on z-axis (m) ^g-3

Figure 6.4: Plot of the beam radius squared as a function o f distance from  the 

pellet end. Red crosses show measured data points and the blue line shows the 

fitted hyperbola from  which the beam parameters were extracted.

The beam profile param eters were also determ ined using Gnuplot [65] to fit to 

the data. The result is shown in Figure 6.5 (with the inverse plot also shown) 

with the extrapolated fit representing the expansion of the beam. This m ethod 

yielded a beam waist of 3.59 pm  a distance of 4.8 mm behind the pellet face, 

in reasonable agreement with the M atlab®  prediction.

This information leads to  the specification of the collimating lens focal length.
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Figure 6.5: Plot of the beam radius as a function of distance from  the pellet

end. Red crosses show measured data points and the blue dashed line shows 

the fitted hyperbola.
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The next stage will be to have spherical lenses of the appropriate focal length 

manufactured. The pellet and lens will then be positioned so as to provide the 

nominal beam at the lens output, but with a free space gap between them. 

This air gap will be measured1 to determine the length of fused silica spacer 

required (taking into account the refractive index difference), which will then 

be manufactured.

Once the pellet, spacer and lens are manufactured they will be bonded to

gether, using the optical beam to verify correct alignment of pellet to lens 

whilst positioning.

The light coupled onto the optical bench must be of fixed, linear polarisa

tion. To meet this requirement a polarising beamsplitter cube (PBS) will be 

fixed onto a rectangular fused silica block using epoxy and the fibre injector 

bonded so that the light from its output travels through the PBS. This group 

of components is known as the fibre injector optical subassembly (FIOS).

6.1.3 Fibre injector optical subassembly alignment

The coordinate system used in the LTP Optical Metrology Subassembly Re

quirement Specification document [2] is adopted here, and is shown in Fig

ure 6 .6 .

One of the changes from the EM to the PFM is the tighter tolerance for beam

position at the test masses (see Section 6.2). There are two critical degrees

of freedom that are dictated by the FIOS alignment (assuming the mirror

and beamsplitter faces are perpendicular to the flat baseplate): the z-axis

XA coordinate measuring machine (as described in Section 6.11) will be used to measure 

this distance to an accuracy of ~  1 fim.
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M 2

Figure 6 .6 : Diagram showing the coordinate system for the optical bench inter

ferometer. Taken from the LTP Optical Metrology Subassembly Requirement 

Specification [2].

alignment (i.e. the vertical height above the optical bench) and the rotational 

0-axis (i.e. the rotation about the x-axis or equivalently tilt out of the plane of 

the optical bench). Alignments in other axes alignment are not as critical for 

the FIOS positioning as the succeeding components can be used for the fine 

adjustment of the ‘horizontal’ alignments.

The beam position at the test masses must be within a ±  50 pm  error box and 

an angle of 100 /iradians to the nominal. The concept of alignment that will 

be used to align these is illustrated in Figure 6.7, where the FIOS is indicated 

by a rectangular cuboid for simplicity.

A silica block (shown as a post with a flat here) will be bonded to the base

plate with an alignment tolerance of ~  100 pm  and this will dictate the FIOS 

alignment along the x-axis and provide a guide for the y-axis alignment. The 

reference flat on the FIOS fused silica spacer will provide a bonding area to 

attach the FIOS to the post (and hence the baseplate) and also provides the
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Fibre injector 
surface to  be 
bonded  to  post

— — Light in fibre

Light In free space

Alignment axes
Bonded to  baseplate

Figure 6.7: Diagram showing the concept o f fibre injector alignment with

respect to the baseplate.

(j) and r/ rotational alignment. A CAD drawing of the current fibre injector 

design, showing both fibre injectors, is shown in Figure 6 .8 .

6.2 A lignm ent tolerances

The PFM  requires tighter alignment tolerances than  for the  EM for path  length 

matching and beam position at the test masses (and as a  consequence fibre 

injector alignment). The details of alignment tolerances can be found in the 

Technical Note [6 6 ].

The alignment of the  fibre injectors has been discussed in Section 6.1.3. The 

positioning of the beam  combining beam splitters for the PFM  will be done 

using a strategy similar to th a t used for the EM, as described in Section 5.4. 

More components will also be positioned in this way for the PFM  to m atch the
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Figure 6 .8 : CAD drawing showing the fibre injector optical subassemblies in

place. The ruler has 10 m m  graduations fo r reference.

path lengths in the interferom eters, namely M l (path length com pensator for 

the X\ measurement path) and M5 (path  length com pensator for the X\ — x 2 

measurement path).

The z-axis and 0 (which translates to 77 after reflection at BS1 ) rotational 

alignment of the beam at the test masses is set by the FIOS alignment (and the 

error build up from off-perpendicular components an d /o r uneven baseplate). 

The other degrees of freedom (which can be considered as ‘horizontal’ to the 

z-axis ‘vertical’) must be controlled by reflective component placement: BS1 

for test mass 1 and M4 for test mass 2. Figure 6.9 shows a diagram  of the 

positioning strategy for aligning the beam reflected from M4 to test mass 2 

(which has a longer lever arm  than  BS1 to test mass 2  and thus requires more 

sensitive alignment).

For the beam to hit the  ±  50 pm  target in the  y-direction the angle 2a is 

250/xrad, giving a =  125/irad (this is the required angluar movement of com

ponent M4). This angle corresponds to a movement of one actuator of 1.25 /rm, 

which is a factor of around 1 0 0  greater than  the minimum resolution of the
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1 cm

0.2 m

M4,

50 urn from nominal 
y-position

Nominal y-position 
onTM2

from BS3
Y-direction

Figure 6.9: Schematic showing alignment o f the beam to test mass 2 using

mirror M f. The distance o f 0.2 m is exaggerated slightly as a precaution so as 

not to underestimate the required sensitivity.

actuators acquired for the task. Tests will be conducted to ensure th a t other 

effects, such as repeatability of positioning components, do not prevent this 

requirement being met.

6.3 A lignm ent strategy

6.3.1 B eam  m easu rem en t

In order to align the beam  to the PFM  requirements the centre of the beam 

must be defined to a t least as high a precision, including m easurem ent error.

It is possible to centre a  beam ’s optical centre on a quadrant photodiode (QPD) 

to within a few microns. If the centre of the photodiode can be determ ined in 

relation to some physical reference then th a t reference can be positioned with
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respect to the optical bench and thus the QPD used as a target to m onitor 

beam position.

This is the key technique in the alignment plan for the PFM . In order to realise 

it a calibrated QPD (i.e. one whose centre position is known with respect to 

its casing) and the ability to measure physical distances to a few microns over 

tens of centimetres is required.

One possible flaw in this strategy arises if the beam being measured has an 

irregular shape such th a t the optical centre (the median point of intensity) is 

different to the geometrical centre (the median point as defined by distance 

from the beam ‘edge’). This should not be a problem here as the beams will be 

good quality Gaussian beams with > 95% roundness, as shown in Figure 6.3. 

The beam centre will be defined as the optical centre, as this is what the QPD 

measures. The QPDs will be m ounted in a  cubic alum inium  casing of side 

~  5 cm, as shown in Figure 6.10.

Figure 6.10: CAD drawing of quadrant photodiode mount. The hole visible at 

the centre o f the left side face is the photodiode location.
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6.3 .2  P recision  m etro logy

A coordinate measuring machine (CMM) will be used to measure the relative 

positions of the baseplate, optical components and the calibrated QPD. The 

CMM operates using a contact probe attached to  an arm  th a t can be moved 

in three dimensions by a gantry. The probe can also ro tate  to many angles 

covering a hemisphere. The stylus at the probe tip  touches the surface being 

measured and can either take series of points or an analogue scan. A photo

graph of the CMM is shown on the left hand side of Figure 6.11 with a close 

up on the right hand side, showing one of the ~  21 x 20 x 4.5 cm baseplate 

blanks (before machining and polishing) being m easured and the QPD m ount 

on an xyz translation stage.

M easuring  stylus Z ero d u r b a se p la te

QPD m o u n t

Figure 6.11: Photograph o f the coordinate measuring machine used fo r  preci

sion metrology (left) and one o f the Zerodur(r) baseplate blanks being measured 

(right).

The CMM will be used to calibrate the QPD. The photodiode m ount will be 

characterised: the top, front and two side faces will be measured to give a
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model of the individual machined mount. A beam will be centered on the 

photodiode (by translating the beam  and m onitoring the d.c. level of the four 

quadrant signals), w ith the beam normal to the front face of the photodiode.

The QPD will then be ro tated  through 180° around the beam  axis and centered 

to the beam (the beam will remain unmoved) and remeasured. An example 

illustration is shown in Figure 6.12. The photodiode offsets X and Y are 

initially unknown, but they are likely to  be of order 1 mm due to machining 

tolerances. Knowledge of the photodiode position is required at the micron 

level, so tighter tolerances would not be advantageous as calibration would still 

be required.

2.Y

QPD rotated 180 degreesBeam centered on QPD
(X and Y unknown) and centered on beam

Figure 6.12: Diagram showing quadrant photodiode calibration, viewing along 

beam axis. In the right hand diagram the m ount has been rotated 180° and is 

indicated using red dashed lines.

Using the measured m ount positions the values 2.X and 2.Y can be found and 

the QPD position relative to the m ount is known. The QPD can then be 

centered on a beam and by m easuring the m ount position the beam  position 

can be inferred. By moving the QPD to another position along the beam 

axis and measuring the beam  position again, the beam direction can also be 

obtained. The distance between measurem ents should be as large as practically
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possible to increase the lever arm effect and achieve higher accuracy.

The calibrated quadrant photodiode can then be used to monitor all beams 

in sequence as the optical bench is constructed. In this mode of operation 

the knowledge of the photodiode centre position will be used to position the 

QPD where the beam should nominally pass, using the CMM to measure the 

relative positions of the baseplate and the QPD. This method will be used to 

align the fibre injector subassembly to the baseplate and then the mirrors and 

beamsplitters.

It will also be used as a target in place of the test mass to ensure that the 

beam hits the required error cube on the test mass when the optical bench is 

assembled.

Using these tools the PFM alignment tolerances can be met and also pro

vide an as-built optical model of the interferometer. Monitoring of the beam 

alignments (transferring coordinates between mechanical and optical models) 

will allow any minor adjustments to component position to be made during 

the construction, removing the error build up that can occur when relying on 

template positioning of components.

6.4 Alternative adjustable bonding technique

Bonding components that require fine adjustment is difficult due to the short 

settling time available between placing the component and the bond starting 

to set. As both surfaces are very flat and clean it is not possible to place 

one against the other without fluid between them as optical contacting occurs. 

For this reason a technique was developed during the prototype optical bench 

construction (Section 3.2.3) to enable fine adjustment of critical component
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positions. This technique was subsequently used in the engineering model 

construction.

The technique involves using a buffer fluid to float the component while it is 

manipulated into position (monitored using an optical readout). The fluid 

gradually evaporates and so the component must be removed periodically 

(~  every three minutes), more fluid applied and the component replaced. When 

the alignment position has been determined by the adjuster positions and re

peatability of replacement has been shown the component is removed and the 

buffer fluid allowed to evaporate.

The component is then replaced using bonding fluid. While this technique 

has been proven to offer the alignment resolution and ultimate bond strength 

required for the PFM, it is a difficult procedure and has some risks associated 

with it: repeated removal and replacing of the component can lead to scratches 

on the surfaces that result in an inferior bond. Also, the buffer fluid has higher 

viscosity than bonding fluid it forms a thicker layer and introduces a vertical 

tilt to the component. This results in the QPD top and bottom quadrants not 

being in phase during alignment until the bonding fluid is used instead of buffer 

fluid, which leaves approximately 30 seconds for the final fine adjustment (if 

required).

These risks can be reduced, though. The current plan for the PFM construc

tion involves suspending the next mirror/beamsplitter in the sequence above 

the baseplate prior to bonding, using an adjustable gantry system. In this 

way the reflective plane of the component will be manoeuvred into the nom

inal position and orientation. The adjusters will then be brought up to the 

component surface, thus removing all the course alignment using buffer fluid 

and the number of placing/removal cycles required. However, it would still be 

preferable to have no time constraints involved in the bonding process.
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A bonding technique is being developed a t Glasgow University (not solely for 

use on the PFM  construction) where one of the bonding surfaces is lightly 

ground. This involves initially polishing the surfaces to the required A /10 

and then grinding one of the surfaces with a  fine paste to increase the local 

surface roughness. A photograph of a 20 x 20 x 5 mm fused silica component 

with a ground bonding surface is shown in Figure 6.13. This has the  benefit 

of preventing optical contacting when the two surfaces are placed in contact. 

Bonding fluid can then be introduced to the join by a wicking process: this 

would be ideal for alignment of optical components as the nominal component 

position can be found and the component does not have to  be moved for 

bonding.

Figure 6.13: Photograph o f a ground surface on a representative fused silica

component.

Preliminary tests were conducted to investigate the effect of m anually grinding 

the surface of representative LTP m irror components on the perpendicularity 

of their reflective face to  their bonding face (based on similar techniques to 

those described in Section 3.2.1). The grind (which was as light as possible 

to prevent optical contacting) was found to change the surface figure signif

icantly, resulting in the angle between the two relevant surfaces changing by 

33arcseconds after grinding. This rules the ground surface bonding m ethod 

out for aligning of the m irrors and beam  splitters, although it is likely th a t 

with additional effort a m ethod of grinding the surface could be found th a t
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does not alter the component perpendicularity.

There is an application for the ground surface bonding during the PFM con

struction that does not depend on maintaining the perpendicularity of the 

component: attaching the FIOS to the fused silica post (which is bonded to 

the baseplate). Careful alignment of the FIOS is required and the tolerance 

for alignment of the rotation that would be altered by grinding the bonding 

surface is large (of order 1°). For the technique to be used in this instance 

the strength of the ground bonds would need to be verified: polished-polished 

surface bonding is a well established and verified method but ground-polished 

surface bonding is a new development.

To this end a series of tests were conducted on representative test components. 

The force required to break the bond was measured after varying amounts of 

time since bonding. The test plan is detailed in [67] and the full report on 

the tests in [68]. The test pieces were 20 x 15 x 7 mm fused silica blanks 

(chosen to be representative of the PFM mirrors and beamsplitters) whose 

bonding surface was lightly ground by hand then bonded to 25 mm fused silica 

flats. These had a ‘peeling’ force applied by holding the flat and applying a 

force at the top of the component. Figure 6.14 shows nine of the 12 bonded 

pieces tested and Figure 6.15 shows one of the pieces in the strength testing 

apparatus.

The required force these components must withstand to qualify this technique 

for flight is 80g. Normally a bond would be left for in excess of a week to reach 

full strength but in this case they were tested (in groups of three) at varying 

time intervals. This was to try and gain an insight into the curing behaviour 

of ground bonding as this was a completely new process. The results of these 

investigations are shown in Figure 6.16.
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Figure 6.14: Photograph o f nine Figure 6.15: Photograph o f a

of the 12 ground bonding strength test piece (TM 006) in the strength

test pieces. testing machine.
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Figure 6.16: Plot showing the force required to break the ground bonds (in terms 

of equivalent number of g) against the time since bonding. The blue triangles 

are data points and the red line is the 80g static load qualification threshold. 

The four batches of three components shown were tested after approximately 

one hour, five hours, 16 hours and seven days.
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The components have a mass of ~  5g  and so a force of lg  is equivalent 

to 0.0491 N. In this test the force was applied to the point of the component 

furthest from the bond. The requirement for flight qualification defines a static 

force acting at the centre of mass of the component, therefore a factor of two 

has been included in the plot (the actual breaking force is twice the breaking 

force required acting at the centre of mass).

In general the technique appears to produce bonds considerably stronger than 

required - all bonds tested comfortably exceeded the 80g threshold before 

breaking and many were nearly an order of magnitude above this. There 

is, however, one rogue point from the third batch of tests that broke under 

an equivalent load of 127g. This point causes concern as it is so far from the 

position of the other tested bonds with the same time since bonding. There 

are a number of features of these tests that could account for this but there 

is no known reason and the bond did not visually appear any different to the 

others.

Further tests of this method will follow to improve the statistics of the analysis, 

although the immediate tests will concentrate on components that have been 

bonded for in excess of a week as this is all that will be relevant to the PFM  

construction.



Chapter 7

Weak light phase locking for

LISA

7.1 Introduction

The space based gravitational wave detector LISA requires high precision in

ter ferometric measurements to be made with very low detected light powers. 

This is a consequence of having limited laser power, limited emitter and re

ceiver diameter and a large separation between emitter and receiver. This 

results in a beam emitted from one spacecraft with a waist of 40 cm diameter 

expanding to a diameter of around 17 km after having traveled the 5 x 109m 

between spacecraft. The equation giving the beam radius is:

(7 .1 )

where w(z)  is the beam radius at a distance z from a waist of ojo and A is the 

wavelength of the light [53].

137
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It is clear that only a very small fraction of the emitted light will fall within 

reach of the receiving telescope. The received light power (Pr) is related to the 

emitted light power (Pt) by

p-=4 v Pt (7-2)
for the case of a Gaussian beam with its waist at the transmitting mirror of 

diameter d, at a distance L  from the receiver. For current designs [36] this 

yields a received power of ~  400 pW. This is the source of the most dominant 

noise in the round trip distance measurement as we cannot measure the phase 

below the shot noise limit set by the detected photocurrent:

cycles/>/Hz (7.3)

where e is the charge of an electron and i is the photocurrent due to the weak 

light, assumed significantly smaller than that of the local oscillator light. Thus 

the limit to which the received light phase can be known is a few ̂ cycles/\/H z  

and any operational mode of LISA must be able to measure the phase to near 

this limit. One possible mode of operation involves locking the local laser light 

to the incoming, weak light.

Doppler shifts between LISA spacecraft will change the frequency of the beat-

note between lasers on separate spacecraft by up to 15 MHz. A successful

locking scheme for LISA must have sufficient range to accommodate this shift.

This chapter describes a programme of work to demonstrate phase locking at 

LISA power and performance levels in a laboratory experiment.
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7.2 Concept

To test the idea of locking the light em itted from a LISA spacecraft to the 

incoming weak light, the phase locking loop between two LISA spacecraft can 

be considered as depicted in Figure 7.1. In this model one spacecraft acts as 

the m aster and the other as the slave.

1W 400pW
s/c s/c

400pW

Figure 7.1: Conceptual schematic o f the phase locking loop between two LISA  

spacecraft showing incoming weak light and outgoing phase locked light. Laser 

beams are indicated by red lines.

We can simplify a single LISA spacecraft to the relevant components as shown 

in Figure 7.2. At the slave spacecraft the m aster light (with very low intensity) 

is mixed with some of the slave light (~  1 mW) to generate a beatnote a t a 

specific offset frequency a t the photodiode.

The beatnote is used to offset lock the slave laser to the m aster laser at the 

chosen offset frequency using a feedback servo to the laser crystal tem perature 

control and piezo. Offset locking is a scheme whereby the incoming light is 

mixed with a small fraction of the outgoing light and this signal is then electri

cally mixed with a signal of a chosen frequency. This combined signal is then 

fed back to the laser to force the outgoing light to be separated in frequency 

from the incoming light by the designated frequency. In this way the new laser 

light directed to the m aster spacecraft carries all the information of the re

ceived light but with much greater power at a slightly shifted frequency. This
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~ 4 0 0 p W

~1W
Laser

Figure 7.2: Conceptual schematic o f a single arm o f one LISA  spacecraft show

ing incoming weak light and outgoing phase locked light. Laser beams are in

dicated by red lines.

model lends itself to laboratory dem onstration as all the param eters present 

in the LISA situation can be reproduced.

7.3 Laboratory dem onstration

The final laboratory dem onstration will consist of two Nd:YAG non-planar ring 

oscillator lasers phase locked together as shown in Figure 7.3. The light from 

the m aster and slave lasers are combined at two points, one with comparable 

power levels in each arm  and one with the m aster light heavily attenuated. 

This produces two beatnotes of constant phase difference (assuming no path 

length variations in the interferometers) but of different am plitude. The slave 

laser light is offset locked to the m aster light using the low am plitude signal 

to simulate the LISA case. The full power interference is used to provide an 

independent measurement of the stability of the lock. The shot noise of the full
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power beatnote is a factor of ~  1000 lower than  for the low power beatnote.

A tten u ator

15.01M H z 15M Hz

10kHz W

© - *  PMS

Slave

M aster

M easu rem en t

Figure 7.3: Conceptual schematic o f experimental layout to demonstrate weak 

light phase locking. Laser beams are indicated by red lines. The 10 kHz refer

ence fo r the PM S is generated by mixing the two signal generator outputs in 

order to achieve the stability needed.

7.3.1 P h a se  sta b ility  o f in terferom eters

Path  length variations between the two interferometers must be kept to a very 

low level. Previously this has been a ttem pted  by using polarisation schemes 

where both  beams follow identical paths to make any path  length variations 

common mode [51]. This can lead to difficulties in ensuring th a t the individual 

interferom eters are behaving in a completely separate manner.

The creation of a suitably stable optical system using polarising optics is very
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challenging and a preferable approach is to have the two interferometers as 

separate entities, but each with a suitable intrinsic stability. This need is 

addressed by using the prototype LTP optical bench whose stability was proven 

by tests described in Chapter 4.

While the optical chain prior to the optical bench is different to the LTP 

tests, the optical bench remains the same apart from one modification. The 

prototype optical bench was built to have equal power in the interferometer 

arms. For this application the light in one arm of an interferometer has to be 

heavily attenuated. The attenuator is described in Section 7.4.7.

7.3.2 The need for signal demodulation

The phasemeter can only measure the phase difference of ~k H z signals, as 

it relies on the fast clock frequency being much larger than the heterodyne 

frequency. For this application the fast clock was set at 20 MHz. In order to 

measure the phase stability of the 15 MHz phase lock the signals were demod

ulated to 10 kHz. This introduces a new area for phase instabilities to enter 

into the measurement and is discussed in Section 7.4.2.

The low power beatnote signal is detected on a high frequency photodiode. 

It is then passed through an amplifier chain, band pass filtered and split two 

ways. One of the signals enters the rf  port of a mixer and is demodulated 

to d.c. at the mixer output using a 15 MHz signal from an Agilent 33120A 

signal generator which drives the local oscillator port of the mixer. The mixer 

output is low pass filtered and used as the error point of the locking servo. The 

servo feeds back to both the temperature control of the slave laser crystal and 

to a piezo attached to the laser crystal. Applying signals to these actuators 

yields a change in laser frequency: the temperature control dominates the low
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frequency (below 1 Hz) region and has large range while the piezo has a smaller 

range but can operate at higher frequencies.

The low power beatnote signal can simultaneously be demodulated to a conve

nient heterodyne frequency and injected into the phase measurement system  

(PMS) which is described in Section 7.4.1. The phase of the heterodyne signal 

can then be measured relative to the phase of a stable reference signal (from a 

signal generator phase locked to the demodulating signal generator) or to the 

phase of another optically generated signal. Using this signal, an output of 

the PMS can be used to drive the low frequency feedback path for the phase 

lock in order to avoid mixer flicker noise and low frequency electronic noise in 

the analogue servo. This additional feedback path is indicated in Figure 7.4.

The high power beatnote is demodulated using a separate signal generator 

(phase locked to the 15 MHz generator) to provide an out of loop input to the 

PMS. The phase stability of this signal compared to the phase of the electrical 

reference signal gives an independent measure of the phase locking quality. 

The aim of the experiment is to be shot noise limited by the low power light, 

as measured by the full power signal, over the frequency range appropriate for 

LISA.

In order to demonstrate phase locking at the LISA level, frequency stabilisation 

of the light is required. This is because the path lengths of the interferometer 

arms are not exactly equal, giving a coupling of frequency noise to phase noise. 

The frequency noise is measured and removed as described in Section 4.3.5. 

This interferometer has been omitted from Figure 7.3 for clarity.
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Attenuator

Master

Slave

15.01MHz 15MHz

©<-(5)->© (5)-K3)
PMS

15.01MHz

10kHz

M easurem ent HP

Figure 7.4: Schematic of experimental layout to demonstrate weak light phase 

locking showing the dual path analogue and digital feedback. Laser beams are 

indicated by red lines. The 15 MHz and 15.01 MHz signal generators are phase 

locked together.
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7.4 Subsystems

There now follows a discussion of preliminary investigations conducted to 

demonstrate that the subsystems of the experiment operate without introduc

ing excess noise into the integrated system. The amplitude of the low power 

beatnote ultimately planned for use in this experiment gives a shot noise lim

ited phase noise of around 6 /icycles/VTiz over the frequency range of interest, 

so the combined noise contribution of the measurement chain must be below 

this. These investigations were sequential and conducted as the experiment 

was constructed.

7.4.1 The phase measurement system  and associated  

electronics

The first experiment to be conducted is the simplest possible: phase locked sig

nal generators driving a phasemeter. Even this small scale experiment requires 

significant effort to reach the LISA stability goal. The phasemeter used in the 

prototype optical bench stability tests described in 4.1.2 has demonstrated 

performance close to the required level. Some minor modifications were made 

for this experiment.

The simplest set up of three phase locked Agilent 33120A signal generators 

supplying 10 kHz signals to the phasemeter via comparators was tested, as 

shown in Figure 7.5, with one signal used as a reference to which the other 

two have their phase compared. The results are shown in Figure 7.6. This 

demonstrates that the phasemeter is capable of measuring phase differences 

down to 2/icycles/\/H z which is below the expected limits imposed by shot 

noise.
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Figure 7.5: Diagram showing set up for phase stability testing o f comparators 

and phasemeter.
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Figure 7.6: PSD showing result of test set up shown in Figure 7.5. Channels 

one and four are two measurement channels and channel five is the difference 

between one and four. The red line is the LTP  interferometry goal, shown fo r  

reference. The LISA goal is 6 / icycles/\f~Hz.
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The next test was to introduce mixers to the chain. The mixers used were 

Minicircuits model SBL-1 . The stability of these mixers is vital as separate 

mixers are needed to demodulate each of the optical signals from the high fre

quency photodiodes. The experimental set up is shown in Figure 7.7 and the 

results are shown in Figure 7.8. Significant noise is seen in channels one and 

four (the measurement channels). This noise was tracked to one of the com

parators which was later changed. In this run the noisy comparator was used 

in the reference channel chain and so the noise is common mode in the phase 

difference measurements, as demonstrated by the phase comparison between 

channels one and four (labeled ‘channel five’ on the plot).

10.2MHz

10.2MHZ+10.22kHz

10.22kHz

Comparato3~ > ~
Comparator!

Channel 4 

Channel 1

jcomparatoi Ref

Phase meter

Figure 7.7: Diagram showing set up for phase stability testing of mixers.

These signals were filtered immediately prior to the comparators using four 

pole low pass Chebychev filters [69] with a corner frequency at 14 kHz. The 

amplitude response of one of the filters is shown in Figure 7.9. Filtering is 

required as the PMS is sensitive to noise at harmonics of the heterodyne fre

quency, which exist at the mixer outputs. 15 MHz passive band pass filtering is 

used on the high frequency signals to reduce high frequency harmonics which 

could be picked up and demodulated elsewhere in the system. These harmonics 

can generate excess noise if the signal pick up is not phase stable with respect 

to the signal being measured.
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Frequency (Hz)

Figure 7.8: PSD showing result o f test set up shown in Figure 7.7. Channels 

one and four are two measurement channels and channel five is the difference 

between one and four. The red line is the LTP interferometry goal, shown for  

reference. The LISA goal is 6 [icycles/sqrtHz.

...I.....

Lin Spec 1 Loghtag

901/04 11:43:43

Figure 7.9: Amplitude response of the 10 kHz low pass filters used prior to the 

phasemeter.
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7.4.2 Signal d em od u la tion

We require a demodulation signal to transfer the phase information of the 

15 MHz beatnotes to a convenient frequency for the phasem eter. This leads 

to the signal splitting and demodulation scheme depicted in Figure 7.10; a 

corresponding circuit layout is illustrated in photograph 7.11.

15 MHz 15.01MHz
Frequency no ise  p.d. R eference p .dWeak light p.d. j^hase lock

- *  - '
Filtering, gain, 
comparator |

filtering 
and gain

Filtering, gain, 
comparator

Filtering, g a in J I  Filtering, gain, 
comparator | |  comparator

10k optical 
signal

10k optical 
reference

10k electrical 
reference

10k low frequency 
phase lock

Laser tem p era tu re  and  piezo  feedback

Figure 7.10: Diagram showing the signal splitting and demodulation scheme for  

the full experiment. ‘L P ’ denotes a low pass filter, ‘S ’ a 50:50 signal splitter, 

‘p .d .’ a photodiode and ‘X ’ mixers. The red dashed line indicates the limits 

of the circuit board used to demodulate the high frequency signals to 10 kHz 

outputs. The constituents of the PM S are within the blue dashed line.

The circuit board has the following inputs:
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15.01 MHz 
signal from

Reference
photodiode
signal

Frequency noise
photodiode
signal

15 MHz signal 
from generator

Weak light
photodiode
signal

Low pass filters

Figure 7.11: Photograph o f the signal splitting and demodulation board. One of 

the 50:50 signal splitters is boxed with a blue dashed line and one of the mixers 

with a green dashed line. The 10 kHz outputs go to the filters and PMS.
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•  the output of the photodiode measuring the weak light beatnote, which will 

be used to lock the lasers,

•  the output of the optical reference photodiode (measuring the same light as 

the weak light but with both beams unattenuated),

•  the output of the frequency noise photodiode,

•  the 15MHz signal generator output (the offset lock frequency), and

• the 15.01 MHz signal generator output (used to demodulate signals to 10 kHz 

for the PMS).

Prom these signals the board outputs the following 10 kHz signals to the phase 

measuring system:

• an electrically generated (no optical influence) reference signal,

•  an optical measurement beatnote signal (the combination of the 15.01 MHz 

electrical signal and the unattenuated interference signal),

•  an optical frequency noise beatnote signal, and

• a signal from the weak light photodiode that is used to provide the low 

frequency phase locking error point.

In addition to these, the demodulation board also produces a signal from the 

weak light photodiode that is driven to zero by the analogue phase locking 

servo.

The signal sizes and rf  power levels at each mixer input must also be managed 

to obtain the desired performance although this is not discussed here.
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If the demodulation signals are not relatively stable for each demodulation 

then spurious phase noise will appear. Phase stability is also required of the 

15 MHz signals being used to set the offset lock and of the low frequency signal 

used as an electrical reference for the PMS1.

This aspect of the experiment is not relevant to LISA as there the received 

signal stability is a feature of the dimensional stability of the armlengths, 

however it must be addressed for a laboratory demonstration of this kind.

Following extensive investigations it was concluded that only two signal gen

erators should be used throughout as the phase lock between generators had 

insufficient stability to use more than one generator at each frequency. The sig

nals from the two generators are split and the signal sizes adjusted to provide 

the required signals for locking and demodulation.

The demodulation board was tested using electrically generated signals (sim

ilar to the tests described in Section 7.4.1) and developed by using different 

components, building techniques and by adding filters until the signals pro

duced were phase stable.

7.4.3 Testing o f r f  amplifiers

Once the demodulation board and PMS had been proven stable when supplied 

with phase stable input signals, they could be used to test other parts of the 

signal chains. This involves using the input ports for signals other than the 

designated use.

The optical signals from the high frequency photodiodes at the output of the

1A phase locked signal generator operating at 10 kHz proved to have poor phase stability 

when compared with the beatnote between a 15 MHz and a 15.01 MHz generators.
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optical bench require amplification. As each signal will be amplified by an in

dependent amplifier, the amplifiers are required not to  introduce spurious un

correlated phase changes. The M otorola amplifiers referred to in Section 4.1.1 

were used, although further r f  shielding was applied.

Figure 7.12 shows the test set up for the amplifiers. The a ttenuators shown 

are to balance the signals appropriately and had previously been tested for 

phase stability.

15 MHz channel Reference

Amplifier15 MHz
Frequency noise

Channel 1
Attenuator

Attenuator
Amplifier Reference ad .

Channel 2

Attenuator

15.01 MHz

PMS

Figure 7.12: Diagram showing the set-up being used to test the amplifiers using 

only electrically generated signals. ‘S ’ indicates a 50:50 signal splitter and ‘X ’ 

a mixer. The red dashed line indicates the lim its o f the demodulation board 

and the blue dashed line the PMS.

For the purpose of the test two phase locked 15 MHz and 15.01 MHz signal 

generators were used to mimic the expected photodiode signals. These were 

then introduced onto the demodulation board via the amplifiers being tested. 

Upon demodulation the phase of the 10 kHz beatnotes between the electrically 

generated reference and the two amplifier chains should be phase stable, unless 

some part of the  chain is causing instability. Figure 7.13 shows the resulting 

stability curve. The overall stability shows some excess noise which will have



7.4 S u b system s 154

to be reduced.

26/11/2004, 20:35:32, file=041126_32.txt
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  Interferometry goal
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Figure 7.13: PSD showing phase stability of the amplifiers. Channels one

and two are the phase stability of the amplifiers with respect to the electrical 

reference. The red line shows the interferometry target sensitivity, which is set 

by the shot noise limit of the weak light interference.

Considerable effort was made to improve the amplifier performances, and par

ticularly to bring them both to the same phase stability. The amplifiers are 

nominally identical and the difference in phase stability highlights the difficulty 

of realising such electrical circuitry.

Other low noise amplifiers (such as Minicircuits M ARIA) were tested with 

voltage controlled supplies but were found be less phase stable than  the Mo

torola amplifiers. The amplifier testing will continue until a suitable system  is 

in place.

W ith the electrical measurement chains performing at a near satisfactory level 

optical signals were introduced. Although signal generators tend to have mul
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tiple harmonics in their output, these can usually be filtered relatively easily 

using bandpass filters. ‘Real’ signals have higher background noise around the 

desired beat signal and this could introduce noise sources not seen when using 

electrically generated signals.

7.4 .4  O ptica l sign al generation

The two laser beams are fibre coupled onto the stable optical bench using 

single mode, polarisation maintaining fibres similar to those described in Sec

tion 4.1.1. A photograph of the laser preparation bench is shown in Fig

ure 7.14. The optical bench is housed in a vacuum chamber, under a  vacuum 

of ~  2 x 10-2 mbar, in order to reduce the effects of refractive index fluctua

tions in the air.

Fibre couplers

Lasers

Scanning cavity

High frequency 
photodiode

Figure 7.14: Photograph of the laser preparation bench.

The prototype optical bench described in Chapters 3 and 4 is used to combine
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the beams. The beams from the optical bench illuminate high frequency pho

todiodes (manufactured by EG&G, model C30642G [70]) outside the vacuum 

tank. The signals are stripped of their d.c. components and the rf  compo

nent is amplified to the appropriate level by low noise wideband amplifiers. 

These signals are then demodulated and supply the phasemeter measurement 

channels.

7.4.5 Phase locking servo

The free running lasers can be initially many GHz separated in frequency and 

the phase locking servo will not capture lock under these conditions. The 

beatnote of the two laser frequencies is manually driven to ~100 MHz using 

the temperature control of one laser crystal. For this stage the beatnote is 

monitored using the high frequency photodiode (connected to a high frequency 

spectrum analyser) and then the scanning Fabry-Perot cavity, both shown 

in Figure 7.14. The scanning cavity has a free spectral range of 300 MHz. 

Convenient operating temperatures and injection currents must be chosen so 

that both lasers run single mode.

The phase locking is then accomplished by a dual feedback path to the slave 

laser. Analogue electronics are used to offset lock the slave laser to the free 

running master light in the region from ~  0.5 Hz to a few kHz (the laser piezo 

has a resonance at 320kHz which limits the upper frequency of the gain). 

The phasemeter is used to provide a digital output for the frequencies below 

~  0.5 Hz via a digital to analogue converter.

An EOM was placed in the slave light beam after noise at the heterodyne 

frequency was observed. This actuator was implemented as only limited gain at 

this frequency can be provided by the internal laser actuators. Improvements
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to the servo system were made and preliminary investigations suggest the 

EOM path may not be needed: narrow band, high frequency noise around the 

heterodyne frequency was injected into the loop and no effect was seen in the 

low frequency phase noise spectrum.

7.4.6 Test of measurement electronics using optical sig

nals

With the interferometers and phase locking servo in place, the measurement 

electronics can be tested using optical signals. The slave laser was locked 

15 MHz from the master laser frequency using the phase locking servo.

For the purpose of these tests only one interferometer is needed. The beatnote 

of the two lasers is initially split electronically immediately before the ampli

fiers, as shown in Figure 7.15. The beatnote is demodulated and used to lock 

the lasers. It is also used to measure the phase lock, i.e. this is an in-loop 

measurement. The current best result of this set up is shown in Figure 7.16.

Channel two is the apparent phase stability of the locking signal compared to 

the electrical reference signal. This can be driven arbitrarily quiet, depending 

only on the loop gain of the system. Channel one is the measurement channel 

apparent stability with respect to the electrical reference. Encouragingly, this 

appears to be limited by the electrical noise seen in Figure 7.13. Whether this 

is actually the case will be known when suitably phase stable amplifier systems 

are assembled.
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Figure 7.15: Diagram showing the set up fo r  the test o f the measurement

electronics using an optical signal.
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Figure 7.16: PSD showing apparent phase stability o f the independently mea

sured in-loop signal (channel one) and the locking signal (channel two) with 

respect to the electrical reference signal. The red line shows the interferom

etry target sensitivity, which is set by the shot noise lim it o f the weak light 

interference.
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7.4.7 Attenuation

For the experiment to be relevant to LISA, the beam combination that is used 

for the phase locking must be heavily unbalanced, i.e. one beam must be atten

uated. In the case of LISA this is an unwanted but unavoidable result of having 

large distances between spacecraft. The optical bench was originally designed 

to operate with equal power in each arm, so for the laboratory demonstration 

the attenuation is achieved by reflecting most of the light from one arm out of 

the optical system.

The ejection of light is achieved by placing four mirrors at an angle to the beam 

such that the attenuated transmitted beam continues in the same direction 

that the unattenuated beam traveled. For the specific mirrors used, this angle 

was 27° yielding a transmission of 2.5% through each mirror. By placing 

these mirrors as matched pairs the beam direction was maintained. These 

mirrors were assembled on a microscope slide as a unit prior to being placed 

in the beam and are shown in Figure 7.17 and in situ on the optical bench in 

Figure 7.18. These mirrors provide an attenuation reducing a beam of lm W  

to rsj 400 pW.

If the additional material in one beam path introduces noise due to the extra 

beam path in fused silica then equivalent (but anti-reflection coated) pieces 

shall be placed in the other arm to balance transmissive paths in the two 

arms and thereby benefit from common mode rejection of temperature driven 

refractive index fluctuations.
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Figure 7.17: Photograph o f the beam attenuator subassembly.

Figure 7.18: Photograph of the beam attenuator subassembly in place on the 

optical bench (circled in red).
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7.5 Current status

The current issue appears to be the relative phase stability of the amplifier 

chains. The cause of the excess noise here is not yet fully understood but is 

under investigation. Once the amplifier chains are in place work can continue 

on testing the amplifier chains using a real optical signal.

The experiment will then be slightly modified so that the optical signal used 

to lock and measure will be optically split and two photodiodes used to pro

vide the locking and measurement signals. This is to demonstrate that the 

individual photodiodes are not contributing excess noise (this would not be 

seen in the electrical splitting test as it would be common to both locking and 

measurement channels).

Once the optical splitting test has been successfully conducted the experiment 

will be run using the interferometers on the optical bench (initially with full 

light powers in each arm). This is not anticipated to be a difficult step as the 

optical bench has proven stability and therefore should not generate excess 

noise.

The final stage will be to lock the lasers using the weak light beatnote (which is 

already installed) and measure the apparent stability of the lock using the mea

surement (‘full’ power) interferometer. Success at this stage will mean that one 

approach to weak light phase locking at the LISA performance requirements 

will have been demonstrated.



Chapter 8

Conclusions

Ground-based gravitational wave detectors are currently taking data and could 

soon make the first direct detection of a gravitational wave. If detections are 

not made with this generation of detectors then it is widely believed that 

the second generation of detectors will open the field of gravitational wave 

astronomy.

To complement the ground-based work and access many interesting sources not 

available to ground-based detectors LISA is due for launch in the next decade. 

LISA Pathfinder will develop some of the many technological challenges that 

LISA faces. This thesis has discussed some of the issues relating to the optical 

interferometry to be used for LISA and LISA Pathfinder.

Techniques for the construction of optical benches able to satisfy the demand

ing requirements of ultra-stable low frequency space interferometry have been 

developed. These techniques have been used to construct the first optical bench 

of a new genre, which was demonstrated to be stable to the 10pm/-\/Hz from 

3 mHz to 30 mHz, with the exception of a minor spectral feature of temperature
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driven excess noise when operated in a laboratory environment.

Valuable lessons learned during the construction and testing of the prototype 

optical bench have aided the successful construction and testing of the LTP 

engineering model optical bench interferometer.

The engineering model in turn has informed aspects of the flight model inter

ferometer construction, which is currently under way. The tighter tolerances 

for the flight model have raised many additional challenges which are being 

addressed using new techniques and the development of custom components, 

all of which will be vital information when the time comes for designing and 

building the LISA optical benches.

While the LISA Pathfinder mission is required for investigation of the perfor

mance of some critical subsystems of LISA, there are other aspects of LISA 

technology that can be demonstrated on Earth. The continuing work on in- 

terferometry for LISA is reported, particularly the development of weak light 

laser phase locking. In this the demanding mixture of high frequency electron

ics and picometre stability low frequency interferometry with light at the few 

picoWatts level results in the experiments being affected by a variety of subtle 

problems. The experimental progress described is expected to provide useful 

insights into the problems to be encountered for the final LISA phase locking 

scheme and their solutions.



Appendix A

Optical test bench

This Appendix describes the design and construction of an optical test bench 

for prototype LISA Technology Package (LTP) and LISA phase measurement 

systems (PMS). This work was undertaken as part of an ESA programme of 

work [71]. The results of the testing are reported in full in [72] (for the LTP 

section) and [73] (for the LISA section).

A .l Approach

The requirements for testing a LTP type PMS are quite different to those for 

testing a LISA type PMS. For the LTP tests a signal of frequency between 0.5- 

2 kHz is required with a modulation depth of up to 90%. The LISA PMS tests 

require a signal in the frequency range 0.1-20 MHz with contrast of <  4 x 10-4 .

The approach adopted was to divide the test bench into two separate blocks 

to produce suitable optical signals to stimulate photodiodes with phase-stable 

electrical reference signals. The light source was a monolithic NdiYAG laser

164
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with a wavelength of 1064 nm. The light was am plitude m odulated a t the 

desired frequency using the schemes described below.

A. 1.1 LTP m od u la tion  schem e

The LTP arm  of the test bench was set up as shown in Figure A .I.

AOM

Laser

Device
Under
Test

RF am p

--<1 Reference
signal

Signal generator ( f\j

Figure A .l: Schematic layout o f the LTP  side o f the optical test bench.

The beam passes though an acousto-optic m odulator (AOM) and the light

diffracted into the first order is split three ways:

• one beam is part of a closed loop servo,

• one beam is the optical reference and

• one beam is diverted to the device under test.

The modulation for the LTP arm  is achieved via a control loop th a t forces 

the laser power at the AOM output to follow a user defined input. This is 

achieved using the r f  drive to the AOM as an actuator. Figure A .2 shows how
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the optical signal responds when the r f  drive power has a  signal applied to it. 

The closed loop servo is used to remove this non-linearity. Figure A.3 shows 

an independent measurement of the optical signal and the drive signal when 

the control loop is active.
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Figure A.2: Drive signal to A O M  (blue) and optical signal (red) with no control 

loop.

The expected control loop performance was modeled and is plotted with the 

actual performance in Figure A.4. This shows a good m atch between predicted 

and experimental results with the control loop having a high bandw idth, good 

gain and phase margins. The overall effect is th a t the non-linearity of the 

AOM is no longer an issue. The phase of the signal from the device under test 

can thence be compared the reference phase to verify the LTP style PMS.

A. 1.2 LISA m od u la tion  schem e

The light after the AOM providing the LTP m odulation signal can be stabilised 

and used as the input for the LISA m odulation signal (n.b . in this mode of
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Figure A.3: Drive signal to AO M  (blue), in loop signal (orange) and indepen

dent optical signal (red) with control loop on (the red line is entirely obscured 

by the blue trace).
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Figure A.4: Modeled (blue) and actual (red) control loop performance.
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operation the LTP arm is used to stablise the light and so cannot be used 

simultaneously). This is accomplished by supplying the AOM drive with a 

stable d.c. signal. This stable input light can then be m odulated using an 

electro-optic m odulator (EOM). This is a necessary transition  as the AOM is 

suitable for low frequency signals of large am plitude variation and the EOM 

is capable of driving high frequency signals.

When a signal is applied to the EOM the plane of polarisation of the light at 

the EOM output is rotated. The EOM is followed in the optical chain by a 

polarisor, the net effect being th a t the amplitude of the light is varied as the 

input signal.

The light from the polarisor is then split into two beams, as shown in Fig

ure A.5.

EOM

HQStabilised  
light source

D evice
Under
Test

Reference 
f signal

Figure A.5: Schematic layout o f the LISA side o f the optical test bench.

Similarly to the LTP arm, the signal from the device under test can then be 

compared with the reference signal to verify the LISA style PMS.
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A .2 Test bench layout

Figure A.6 shows the layout of the optical test bench and Figure A .7 shows the 

test bench from the perspective of optical m atching, with distances between 

the components shown in mm.
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Figure A.6: Schematic layout of optical test bench showing the beam path and 

optical elements.

Figure A.8 shows a photograph of the optical test bench. The overall control 

scheme is provided by PC through a GPIB connection to function generators.
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Figure A.7: Schematic layout of optical test bench showing the beam power and 

optical matching.
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Figure A.8: Photograph o f optical test bench. The superimposed red lines in

dicate the LTP  test beams and the blue lines the LISA test beams.
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Optical fibre positioning unit

The correlation between laser beam direction and collimation from an optical 

fibre output and the position of the fibre end relative to the collimating lens, as 

well as overall pointing stability, must be well characterised to address design 

issues on the optical bench for the space based gravitational wave detector 

LISA [37]. A schematic of one of the LISA optical benches is shown in Fig

ure B .l (the fibre positioning unit is at the bottom left). It is clear from this 

diagram that the control of the fibre positioning unit is vital to the successful 

operation of the other components as a beam misdirection here would have 

ramifications at every other stage.

As well as being stable in the locked mode, the fibre positioning unit must also 

be able to move with fine resolution in a controlled manner. There is the need 

for redundancy in the system so that should a fibre or laser fail a backup can 

replace the failed hardware. The contingency plan is for the failed fibre end (or 

fibre end attached to the failed laser) to be moved away from the optical bench 

and a spare into its place. Also, the beam from the telescope is required to be 

defocussed during the acquisition phase by a movement of fibre end relative to
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Figure B .l: Schematic o f the LISA optical bench. 

collimating lens.

This Section outlines the design of an experiment th a t aims to gather da ta  

on precision positioning units. To make this relevant to LISA issues stability 

measurements will be taken on long time scales. Tem perature sensitivity will 

also be tested.

B .l LISA requirem ents

For LISA to achieve required sensitivities the beams to be em itted via the 

telescopes have a corresponding stability: the pointing error. These beams 

must be collimated during measurement periods to  maximise the signal at 

each detector although a specific amount of defocus is required during the 

acquisition phase. The fibre positioning unit for LISA will have to be stable 

enough and have suitable positioning capabilities to satisfy the constraints
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shown below.

Pointing error budget (p  rad) ± 0 .5 0  (ref [74])

Defocus for acquisition phase (//rad) ± 1 1

B.2 Relating fibre end movement to optical 

bench field of view and to telescope field 

of view

To appreciate how adjusting the fibre position will affect the overall point 

ahead angle (the angle between emitted and received beams) we need to know 

the relation between the fibre position to optical bench field of view and the 

optical bench field of view to telescope field of view. The field of view is 

the solid angle from which the detector receives radiation. After considering 

the practicalities of lens and fibre mounting it was thought more practically 

viable (and in line with current LISA plans) to adjust the fibre end position 

with respect to the coupling lens i.e. the lens remains fixed in position. So to 

control the light direction we need to control the fibre end and this depends 

on the actuator applying the force.

Figure B.2 shows how moving the fibre end laterally by a distance 8x will alter 

the output field of view. Figure B.3 shows the effect of fibre end translation 

on the optical bench field of view (only the divergent situation is shown for 

clarity - if the fibre end was moved in the opposite direction, the beam would 

converge at the same rate that the shown beam diverges).

Figures B.4 and B.5 show how the changing optical bench field of view alters 

the telescope field of view. It should be noted that the telescope introduces
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Lens
Optimum beam 
position

Beam after small fibre translation

Figure B.2: Effect of lateral fibre end movement on optical bench field o f view.

Lens
Optimum beam 
position

Beam after small fibre translation

Figure B.3: Effect o f fibre end translation on optical bench field o f view.
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an angular magnification of ga th a t has the effect of increasing the optical 

bench field of view by the magnification, i.e. the optical bench field of view 

corresponds to the telescope field of view multiplied by ga . The prim ary optics 

to be used for LISA are 30 cm Dall-Kirkham telescopes with an angular afocal 

magnification of 60 x.

60.0

Convex
secondary mirror

Negative lens

Telescope primary

Figure B.4: Effect of optical bench field of view on telescope field o f view for  

lateral translation.

60.0

Convex
secondary mirror

Negative lens

Telescope primary

Figure B.5: Effect o f optical bench field of view on telescope field o f view fo r  

defocus.
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B .2.1  C alcu latin g  lateral tran sla tion  o f  fibre end  to  te le 

scop e field o f v iew  relation sh ip

Figure B.6 shows a sketch indicating the param eters used to calculate the 

relationship between lateral translation of fibre end and the telescope field of 

view.

Lens o f focal length f  (m)

Figure B.6: Diagram showing parameters for calculating effect o f lateral dis

placement of fibre end.

The light leaves the fibre end with a numerical aperture (N A )  which corre

sponds to an angle of sin-1 ( NA) .  Using this, /i is given by

h  — f  +
tan(sin N A )

(B .l)

and then l2 by

lo — (B.2)

We can see th a t the ray height is given by
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Rayheight =  /{tan (sin  1A^A)} (B.3)

and thus the optical bench field of view by

0 =  tan - l x  +  /{tan (sin  1N A )}
U

(B.4)

where 9 is the optical bench field of view. The telescope field of view is related 

to the optical bench field of view as

rp , c I , - Optical bench field of view , .
lelescope field of view = --------------------------------------  (B.5)

6 a

Figure B.7 is obtained by plotting suitable values of fibre end position (x) 

against telescope field of view. From this we can see that a 0.58285 /xm adjust

ment at the fibre end yields a 0.5 //rad change in the telescope field of view. 

This suggests a comprehensive data set would contain measurements every 

10 nm over a 1 //m range around the critical value.

B .2 .2 Calculating defocus of beam from fibre to  tele

scope field o f view relationship

Using a similar process as in Section B.2.1, we arrive at Figure B .8 for beam  

defocus. Note that moving the fibre along the optical axis to the left or to 

the right in this sketch causes the same magnitude of defocus. The beam is 

required to be convergent for acquisition but I have shown the divergent beam 

here also as it is needed to calculate 1%.
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Figure B.7: Lateral translation of fibre end versus telescope field of view.

We know that in this case li =  /  dh d. We can calculate I2 using the thing lens 

equation:

=  l  T~
/  f+d

(B.6)

and the ray height is given by

Rayheight =  { /  4 - d} x {tan(sin 1N A )} . 

From this we can calculate the optical bench field of view;

(B.7)

=  ta n . i ^ R f y | i g h t j
(B.8 )

We convert the optical bench field of view to telescope field of view as in 

equation B.5 and plot fibre position against telescope field of view as shown in
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Lens o f focal length f  (m)

Ray height

<  X  >

Figure B.8: Diagram showing parameters fo r  calculating effect o f defocus.

Figure B.9. From this we see th a t to achieve the required 11 /irad change in 

telescope field of view for acquisition we must move the fibre end towards the 

collimating lens by 29.38 pm. This positioning accuracy required for defocus 

is of the order 100x less sensitive than for lateral translation.
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Figure B.9: Lateral translation o f fibre end versus telescope field o f view.
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B.3 Measurement requirements

The actuator motion needs to be measured to an accuracy that will demon

strate whether it is capable of fulfilling the requirements for the fibre position

ing unit. For the smallest measurement (lateral translation of the fibre end 

relative to coupling lens) the maximum acceptable change in optical bench field 

of view is 30 /zrad. This corresponds to an actuator translation of 0.58285 /zm. 

The behaviour of the actuator needs to be characterised up to and beyond this 

point, so a target resolution of the measuring system should be of the order 

of 1 /zrad. If the measurement occurs at a distance of 1 m from the coupling 

lens, this translates to a change in beam waist of 1 /zm. It is proposed that 

the actuator shall move a mirror that is part of a Mach-Zender interferometer. 

The interference pattern at the output of the interferometer can be observed 

and the movement of the mirror inferred.

Control tests will be conducted without an actuator in the system to ensure 

that the noise level inherent to the apparatus is below the sensitivity we are 

trying to measure. Temperature sensitivity will also be characterised.

B.4 Current status

An in depth study of available actuator technologies has been carried out and 

an actuator has been chosen. An actuator stage using a UHVL Inchworm® 

motor from EXFO Burleigh Products Group will be tested (model number: 

UHVL-1100) which has 25 mm of travel and a specified resolution of 20  nm. 

This shall be driven by a single axis controller (model number: 8200-1-1) with 

GPIB interface. The data acquisition system is to be finalised.
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Since starting on the study it has been realised that an investigation into actu

ator technology is also required for the LISA telescope articulation mechanism 

which may require actuation at the 0.1 nm  level. While it is unlikely this exper

iment will measure movements of that size it will be a relevant first test of this 

technology for both the fibre positioning unit and the telescope articulation 

mechanism.

The actuator tests will be carried out at the CCLRC Rutherford Appleton 

Laboratory in Oxford.



Appendix C

Investigation of amplitude 

modulation created by 

acousto-optic modulators

An investigation to study the magnitude of amplitude modulated light present 

on light from acousto-optic modulators was undertaken as part of a study 

headed by the Albert Einstein Institute in Hannover.

In the context of this work acousto-optic modulators are employed to frequency 

shift the light. Of particular interest is the beatnote signal at a photodiode 

when an acousto-optic modulator is driven by two frequencies.

The following report is entered as it was presented.
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An investigation of signal generation at a photodiode 
when two frequencies of light with different amplitude

are present.

Christian Killow 
Institute for Gravitational Research,

Department of Physics and Astronomy,
University of Glasgow,

Glasgow.
G12 8QQ

March 10, 2005

Abstract

During stability tests of the prototype optical bench (OB) at Glasgow two acousto- 
optic modulators (AOMs) were driven at slightly different frequencies. It was noted 
that light of both frequencies was present on the signal from the output photodiodes 
even when light from only one AOM was present (these signals were not due to direct 
electrical rf  pick-up at the photodiode).

This investigation was undertaken to establish how the level of spurious hetero
dyne frequency signal (arising from the two frequencies of light having been mixed 
at the photodiode) varies with the level of drive frequency signals.

It was found that the level of spurious signal varies linearly with the difference 
between the two drive frequency signal amplitudes over a wide range of laser powers 
and rf  drive levels.

1
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1 Introduction
The set up for the monolithic optical bench (OB) stability tests a t Glasgow comprised 
of one laser (Nd:YAG NPRO laser operating a t 1064 run) split and directed through two 
individual acousto-optic modulators (AOMs). One AOM was driven a t 8 0 MHz and the 
other at 80.01 MHz. The AOMs were aligned so as to  deliver most of the light into the first 
order. This was in order to generate a beatnote a t a convenient frequency (~kHz) upon 
beam recombination. These beams were sent through fibres and onto the OB where they 
were split and recombined in three places, making three Mach-Zender interferometers. The 
recombined beams left the OB and were measured using single element silicon photodiodes.

When one beam was blocked before travelling through an AOM, a  small am ount of 
signal at 10 kHz (the heterodyne frequency) was detected a t the photodiode, suggesting 
th at both 80 and 80.01 MHz signals were present a t the photodiode. This 10 kHz signal 
was not present when the second beam was blocked, eliminating direct electrical r f  pick-up 
as the source. The mechanism for a signal a t the heterodyne frequency appearing a t the 
photodiode under these circumstances is the mixing of light beams shifted in frequency 
from the original by the two drive frequencies.

The level of r f drive to the AOMs was of order 1.5 W, which was provided by using 
signal generators and power amplifiers. While much care was taken to avoid pick-up 
between the two transmission lines, it is very difficult to  keep this level of r f  power from 
being omnipresent a t some level in a  compact experimental arrangem ent.

2 Test set up
The apparatus was set up as shown in figure 1. A Nd:YAG NPRO laser operating a t 
1064 nm was directed through a single AOM and the beam was incident on a  single element 
silicon photodiode. Some of the laser beam was also directed into a Fabry-Perot scanning 
cavity (not shown) to ensure the laser was running single mode for all measurements.

Power
am p

81 MHz
AOM

rf probe

81.002 MHz

Laser
rf analyser

FFT
analyser

Figure 1: Schematic layout of experiment. ‘A ’ represents a signal attenuator, ‘R ’ represents 
17 Ohm resistors.

The AOM drive was from two signal generators, combined using a  resistive network, and 
power amp. A high frequency probe attached to a  spectrum  analyser was used immediately 
before the power amplifier to measure the absolute and relative levels of the signals from

1



186

the two generators. The output of the photodiode was connected to either an oscilloscope 
(for dc light level measurements) or FFT analyser (to measure the amplitude of the 2 kHz 
signal).

The aim was to drive the AOM with two frequencies (whose amplitude could be varied) 
and measure the beatnote level from the photodiode under varying conditions. The drive 
frequency for the AOM was 81 MHz with the second drive frequency being 2 kHz away at 
81.002 MHz. These values were chosen for the spectral purity of the generators and as a 
heterodyne frequency of the order of 2 kHz is expected for LISA Pathfinder.

3 R esults and conclusions
Data was taken showing that the actual drive to the AOM (after the power amplifier) was 
linear as the signal generator output level was increased over the entire range that readings 
were taken.

Figure 2 shows the dc light level at the photodiode as a function of r f  drive (the power 
amplifier adds ~  3 5 dB to this). This shows how the optical power level in the diffracted 
beam varies non-linearly with applied rf  power.
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Figure 2: Plot showing dc light level at photodiode as a function of r f  drive from signal 
generator

Figure 3 shows the size of the 2 kHz signal from the photodiode against the difference in 
signal size of the drive frequencies for three different set ups. The variables are as follows:

•  Laser injection current (il =  0.765 A, i2 =  1.1 A)

•  dc voltage from photodiode (v l =  0.368 V, v2 =  1.95 V, v3 =  0.834 V)

2
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S t »  of 81 007 MHz signal reM tw  lo  #1 M Hz(dB)

Figure 3: Plot showing magnitude of 2 kHz signal as a function of 81.002 MHz amplitude 
ujith respect to 81 MHz amplitude. Points are. experimental data, solid lines are fits.

The solid lines indicate the fits (as calculated by M atlab) for which the gradients are 
all approximately 1 and the offset varies slightly. Thus the level of spurious 2 kHz signal 
varies linearly with the difference between the two drive frequency signal amplitudes over 
a wide range of laser powers and r f  drive levels.
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