

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

Lindam and Tiamat: Providing

Generative Communications in a

Changing World

by

Gareth P. M cSorley

A thesis submitted to the

Faculty of Information and Mathematical Sciences

at the University of Glasgow

for the degree of

Doctor of Philosophy

January 2006

(c) Gareth P. McSorley 2006

ProQuest Number: 10753990

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10753990

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

'GLASGOW
UNIVERSITY
LIBRARY:

I f I could only be half the man you were,
I would be twice what I am now.

But, even that which I am, I owe to you,
And your eternal kindness and love.

For Grandpa

Abstract

When generative communications, as exemplified by Linda [Gel85], were origi

nally proposed, they were intended as a mechanism for coordination of parallel

processes. Since that time, they have been adapted to a variety of distributed

environments with great success, as can be seen in commercial systems such as

T Spaces [WMLF98]. The time, space and identity decoupling afforded to coor

dinating entities by generative communications also seems to be ideally suited to

mobile environments where devices can come and go frequently and often with

out warning. Such a rapidly changing environment, however, presents a new set of

challenges and attempts to introduce the generative communications paradigm into

these environments have, so far, met with limited success. Indeed evaluation of re

search platforms, such as LIME (Linda In a Mobile Environment) [PMR99,MPR01]

and L2imbo [DFWB98] have led some to conclude that the generative communi

cation paradigm is not well suited to mobile environments.

It is my belief, however, that it is the research platforms in question, rather than

the paradigm, which do not fit well with mobile environments. These platforms

either attempt to impose tight constraints on an inherently loosely constrained

environment, or require significant alterations to the semantics of generative com

munications. I believe that these systems do not work well as they are not designed

around the environment, rather they are forced onto the environment. I will begin

by examining why these systems do not suit their environment. This done, I will

then show that the conclusions drawn from these systems, namely that generative

communications are unsuitable for mobile environments, are incorrect. Further,

through construction and examination of a proof of concept system built around

an environment-centric design, I will show that generative communications can

be provided in a mobile environment with few (minor) semantic alterations. An

evaluation of some of the mechanisms used will also be presented along with char

acterisation of the operation of the system. A comparison with existing mobile

solutions will be used to highlight how the environment-driven design results in a

system which better suits the nature of the target environment.

Acknowledgements

There is a plethora of people who have assisted, helped, encouraged, supported or just

plain forced me through the course of undertaking this work. I am grateful to each and

every one, whether I have remembered them as I write this list or not.

I would like to thank Dr. Huw Evans for his continued support, boundless “wisdom” ,

for always being willing to participate in a good old fashioned rant and for introducing me

to the single most disgusting word in the English language.

Jana Urban deserves endless credit for putting up with me while doing my corrections,

as well as being a dab hand with a drawing package or two.

I would like to extend my sincerest gratitude to Dr. Peter Dickman for being my

supervisor and for supporting me through my work. I am extremely grateful for his help

and guidance when I found myself without supervisor, topic or direction.

I would also like to thank Dr. Karen Renaud for acting as my Second Supervisor.

I am grateful to Dr. Iain “Del-Boy” Darroch for being a good friend as well as a great

officemate and for his limitless knowledge of useless sporting information.

I am grateful to (in no particular order): Dr. Michael Dales for his friendship, his

scathing wit, and for showing everyone how a PhD should be done; Dr. Andy King for

some truly wonderful turns of phrase and associated imagery; Dr. Tony Printezis for his

invaluable advice and for making me feel less of a geek; Dr. Rolf Neugebauer for dispelling

all my beliefs about healthy living; Lyndell St. Ville for redefining “laid-back” in the way

only someone from a sun-drenched island can; Ji-Hyang Lee for all the coffee; Jonathan

Paisley for possessing intimidating amounts of technical knowledge; and to my flatmate

Gregory “Stress Bunny” Huczynski for stressing so much th a t no one else has to, may he

one day be convinced.

I would like to extend my sympathies to my temporary officemates Dr. Nigel Harding

and Susan Fairley — I’m impressed they managed to stick it out as long as they did.

I would like to thank the Engineering and Physical Sciences Research Council — with

out their financial input, this work would never have been possible.

Thanks also go to everyone at Little Italy, Tinderbox, The Atrium, Naked Soup,

Domino’s Pizza and Pizza Hut for keeping me fed and caffeinated.

Finally, I am, and always will be, grateful to my parents and family for their continued

love, kindness and support.

Contents

1 Opening Statements 1

1.1 Thesis S ta tem en t... 2

1.2 C ontribu tions... 2

1.3 Document O u t l in e ... 3

2 Context and M otivation 4

2.1 An Increasingly Mobile E nvironm ent... 4

2.2 A Brief Primer on L in d a .. 5

2.2.1 T u p le s ... 5

2.2.2 Tuple S p a c e s .. 6

2.2.3 A nti-T uples.. 7

2.2.4 D eco u p lin g .. 8

2.2.5 Applications .. 9

2.2.6 S u m m a ry ... 12

2.3 E n v iro n m e n t... 13

2.3.1 R esources... 14

2.3.2 C o n n e c tiv ity ... 15

2.3.3 M obility .. 16

2.3.4 Change P erv ad es .. 16

2.4 Mobility and L in d a .. 17

2.4.1 E x a m p le s ... 17

2.5 Disadvantages... 21

2.6 S u m m a ry .. 22

3 Related Work 23

3.1 Historic Linda System s... 23

iii

CONTENTS iv

3.2 State of the Art System s... 24

3.2.1 T Spaces ... 24

3.2.2 Jav aS p ace s ... 28

3.2.3 Event H e a p ... 30

3.2.4 E Q U I P .. 31

3.2.5 C om parison.. 32

3.2.6 Differences .. 34

3.2.7 Suitability ... 34

3.3 Other Linda Systems and Extensions.. 35

3.3.1 Javelin ... 35

3.3.2 York K ernel... 37

3.3.3 L ogO p... 38

3.3.4 L ig ia .. 38

3.3.5 Optimising Destructive and Non-Destructive R ead s...................................39

3.3.6 Physical Mobility and Linda ... 40

3.3.7 Logical Mobility and L i n d a ... 40

3.3.8 Linda for the G r i d ... 40

3.3.9 Emergent Technologies and L i n d a .. 41

3.4 Peer-to-Peer... 41

3.4.1 S earch in g ... 41

3.4.2 H ash in g .. 42

3.4.3 S u m m a ry ... 42

3.5 Other W o rk ... 43

3.5.1 Publish and S u bscribe .. 43

3.5.2 Jini ... 44

3.6 S u m m a ry ... 45

4 Mobile Linda Systems 46

4.1 L2imbo .. 46

4.1.1 The L2imbo M o d el... 46

4.1.2 The L2imbo Implementation .. 48

4.2 LIME: Linda In a Mobile E n v iro n m en t.. 50

4.2.1 Transiently Shared Tuple S p a c e s ... 51

4.2.2 Reactive Program m ing... 52

CO NTENTS v

4.2.3 LIME in a Mobile Environm ent.. 53

4.3 C o re L im e ... 55

4.4 PeerS paces ... 56

4.5 Summary and Conclusions.. 57

5 The Lindam M odel 59

5.1 Definition of T e rm s... 59

5.2 Design P rin c ip les ... 60

5.2.1 R esou rces ... 60

5.2.2 C o n n e c tiv ity ... 61

5.2.3 Mobility and C hange.. 61

5.3 Assumptions .. 62

5.4 Linda™ .. 62

5.4.1 Opportunistic Logical Tuple Spaces .. 63

5.4.2 Direct Remote Communications .. 66

5.4.3 Resource M anagem ent.. 67

5.5 Linda S e m a n tic s .. 68

5.6 S u m m a ry ... 68

6 Tiamat 70

6.1 Tiam at A rch ite c tu re ... 70

6.1.1 T u p le s ... 71

6.2 Lease M a n a g e r ... 72

6.2.1 Programmer M odel... 72

6.2.2 Im plem entation... 73

6.3 Tuple S p a c e .. 74

6.3.1 Matching S e m a n tic s .. 74

6.3.2 E v a l ... 76

6.3.3 Core D ata S tru c tu re .. 77

6.3.4 Locking Mechanism .. 79

6.3.5 Using Alternative Tuple S p aces .. 80

6.4 Communications M an ag e r .. 82

6.4.1 Initial P ro to ty p e .. 82

6.4.2 Protocol O peration ... 83

CO NTENTS vi

6.4.3 Improving the Communications M a n a g e r ..85

6.4.4 Distributed C onsensus... 97

6.5 Linda S e m a n tic s ... 99

6.6 S u m m a ry .. 100

7 Analysis 101

7.1 A pplications... 101

7.1.1 Web Proxy S e rv e r/C lie n t...101

7.1.2 Fractal Generator ..103

7.1.3 S u m m a ry ..105

7.2 Extensions to L i n d a ...105

7.2.1 L e a s in g ...105

7.2.2 Consensus Problem ..106

7.2.3 Direct Remote Communications ..106

7.2.4 S u m m a ry ..106

7.3 Comparative A n a ly s is ..107

7.3.1 L I M E ..107

7.3.2 C oreL im e... 107

7.3.3 L2i m b o ...107

7.3.4 P e e rS p a c e s .. 108

7.3.5 S u m m a ry ..108

7.4 S u m m a ry .. 109

8 Experiments 110

8.1 Tiam at E v a lu a tio n .. 110

8.1.1 Communications O v e rh e a d ..110

8.1.2 Synchronisation C o s ts ... 112

8.1.3 Multiple N o d e s .. 114

8.2 Heartbeat Evaluation ..115

8.2.1 Communications Savings ...116

8.2.2 System A w areness..118

8.3 Summary and Conclusions..120

CO NTENTS vii

9 Future Work 121

9.1 Adaptive Overlay N e tw o rk s ...121

9.2 Localised Temporal T o p o lo g ies ..122

9.3 Social R o u t in g ... 123

9.4 Secure Tiamat ... 123

9.5 Transactions .. 124

9.6 Performance Im p ro v em en ts .. 125

9.7 Suitability of Ant A lg o rith m s... 125

9.8 S u m m a ry ...126

10 Summary and Conclusions 127

10.1 Thesis Statement and Dissertation O v e rv ie w .. 127

10.2 Contributions and A ch ievem en ts...128

10.3 C onclusions..129

A Machines 130

A .l Machine A ...130

A.2 Machine B ...130

A.3 Machine C ...131

A.4 Machine D ..131

A.5 Machine E ...131

A.6 Machine F ...132

A.7 Machine G ..132

A.8 Machine H ...132

A.9 Machine I ...133

B Trademarks 134

Bibliography 135

List of Figures

2.1 An out operation... 6

2.2 An eval operation.. 7

2.3 Some matching examples... 8

2.4 An in operation.. 8

2.5 A rd operation * . . . 9

2.6 Blocking operations... 9

2.7 Replicated worker example... . . . 10

2.8 Trellis example.. 11

2.9 Marketplace example... 12

2.10 Marketplace example (cont.)... 13

2.11 Mobile data delivery, original architecture... 20

2.12 Mobile data delivery, tuple space architecture.. 21

4.1 Linda semantic alteration in L2imbo... 49

4.2 Engagement of ITS’s to form host-level tuple space..51

4.3 Engagement of host-level tuple spaces to form federated tuple space................... 52

5.1 The Linda^ model... 63

5.2 Opportunistic Logical Tuple Space operation... 65

6.1 A Tiamat instance... 71

6.2 Lease negotiation time-line.. 72

6.3 Tiamat tuple space — core data structure.. 77

6.4 Unsatisfied operations are passed to the communications manager.......................82

6.5 Initial prototype discovery operation................................ 84

6.6 Returning of results... 85

viii

L IST OF FIGURES ix

6.7 Pseudo-code for heartbeat algorithm... 87

6.8 Heartbeat state transition diagram.. 88

6.9 Heartbeat operation with two nodes.. 90

6.10 Heartbeat operation as new node arrives..91

6.11 Heartbeat operation after node departure.. 92

6.12 Space available in network packet...96

7.1 Original web proxy/client architecture.. 102

7.2 New web proxy/cient architecture.. 102

7.3 Original fractal generator architecture...104

7.4 New fractal generator architecture..104

8.1 Experimental Setup for First Experiment...I l l

8.2 Experimental Setup for Second Experiment...113

8.3 Synchronisation cost experimental results.. 114

8.4 Multiple node cost experimental results..115

8.5 Node arrival/departure patterns... 117

8.6 Average heartbeats per node for various arrival/departure patterns................. 118

8.7 System awareness over time... 119

List of Listings

6.1 The Tuple I n te r f a c e ... 71

6.2 The LeaseR equester C l a s s .. 73

6.3 The A ntiTuple Interface.. 75

6.4 The E valab le In te r f a c e .. 76

x

Chapter 1

Opening Statem ents

The past few years have seen a growth in the number of devices available whose purpose is

to provide computing power on the move. W ith advances in technology, this trend looks

only set to increase. With these devices have come a wide and varied number of wireless

networking technologies which allow them to communicate with fixed infrastructure and

with each other. Developing software for this mobile space, however, presents application

developers with a substantial amount of change in the system which must be accounted

for and managed.

In order to relieve the application developer of some of the burden of managing this

change, middleware that can model the change through some abstraction is needed. Pro

viding an accurate system which abstracts over some elements of change is necessary to

help manage the changing world. The middleware then becomes responsible for the de

tail of which devices or resources are available at a given time and leaves the application

developer to develop applications. This work describes the issues and challenges of using

the generative communications paradigm for providing tha t middleware. Generative com

munications involve processes communicating and coordinating with one afiother through

collections of data called tuples. Tuples are placed in, and retrieved from, an independent

shared memory known as a tuple space. The generative communications approach offers

participating entities the advantages of being decoupled in time, space and identity. These

decouplings help to address some of the issues involved in a mobile environment.

1

CHAPTER 1. OPENING STATEM ENTS

1.1 Thesis Statem ent

2

Generative communications were originally designed for the coordination of

parallel processes. However, they have also found a home in a variety of

distributed environments including environments involving mobility. Much of

the research carried out in these environments has been problematic and has

led some to conclude that generative communications are unsuitable for such

mobility-oriented situations. I believe, however, that this is incorrect and is

more a reflection on the systems used in this research than of the suitability

of the approach. I will demonstrate how previous research platforms have been

unsuitable for mobile environments. I will furthermore propose a model and

construct a proof of concept implementation to demonstrate that, with some

minor semantic alterations, the generative communications paradigm can be

provided in a mobile environment. I will measure and examine the character

istics of the operation of such a system and will compare the system to existing

research to demonstrate that an environment-centric design results in a system

which is better suited to the defined mobile environment.

1.2 Contributions

The main contributions of this work are:

• The proposal of a novel model, Linda™, for providing Linda-like semantics in a

mobile environment.

• A proof of concept implementation, Tiamat, of tha t model to demonstrate viability

and operability.

• Demonstration of the viability of Tiam at as a communications platform.

• Experimental evaluation of the characteristics of the Tiam at system.

• A demonstration of the value of a tuple space system in a mobile environment.

• Highlighting of an often overlooked problem tha t is exacerbated in a mobile environ

ment (distributed consensus).

• A comparison of the new model and implementation with previous work, highlighting

previous systems’ unsuitability for mobile environments.

CH APTER 1. OPENING STATEM ENTS 3

1.3 Document Outline

The remainder of the dissertation is organised as follows: Chapter 2 sets the context for the

work as well as motivating the need for such an infrastructure. Chapters 3 and 4 outline the

related work with chapter 4 taking a particular focus on those Linda systems which have

previously attempted to operate in mobile environments. Chapter 5 describes the Linda™

model for providing generative communications in a mobile environment with chapter 6

then discussing Tiamat, an implementation of tha t model. Chapter 7 evaluates the model

and implementation through comparison with existing research. Chapter 8 follows on

from this to provide quantitative evaluation of Tiamat through experimentation. Chapter

9 presents some future avenues for extension of this work. Chapter 10 provides a summary

of and concludes this dissertation.

Chapter 2

Context and M otivation

This chapter provides an introduction to the context in which the dissertation is set. The

chapter begins with an examination of the trend toward a more pervasive and mobile com

puting environment in section 2.1. There then follows an introduction to the traditional

Linda system and semantics in section 2.2. A more detailed description of the proposed

environment is presented in section 2.3 followed by a discussion of how the Linda model

can be used to provide coordination in such an environment in section 2.4.

2.1 An Increasingly M obile Environment

Recent years have seen a growing trend toward mobile computing. As technology advances,

computing devices have become smaller and more powerful. Modern mobile phones are

now capable of much more than just making phone calls and can perform many of the

complicated tasks that were traditionally the domain of PDAs and computers. The most

recent phones are even capable of running Java applications and processor-intensive games

[Nok04], W ith their increasing miniaturisation, computers are finding many new niches to

occupy, from watches [NKR+02] to smart clothing [Man96]. Along with the pervasion of

computing power has also come a pervasion of networking capabilities. Wireless protocols

such as Bluetooth™ [KarOO] and 802.11 [OP99] have allowed portable devices to make use

of existing networking infrastructure, or even to form ad-hoc networks of their own. This

trend seems set to continue with the IEEE publishing details of a range of networking

protocols for use in such devices [HG99,OP99,Swe04], allowing for a wide variety of types

and scales of networks.

For application developers, however, this move toward mobile computing presents some

4

CHAPTER 2. C O N TEXT AND M O TIVATIO N 5

potential difficulties. With the increase in mobile networked devices comes a corresponding

increase in the amount of change that a system will experience during its operation as

the various devices come and go. Managing this potential change (i.e. maintaining a

view of what resources/devices are present over time) is likely to prove time-consuming

for application developers, thereby detracting from their focus on the application itself.

Middleware which manages the change, removing from the client the need to determine

which devices or resources happen to be available, is needed to once again allow the

application developers to focus on developing interesting applications.

This dissertation focuses on one approach to providing such middleware which shows

great promise, called generative communications. Generative communications provide an

asynchronous coordination mechanism which are exemplified in a system called Linda

[Gel85].

2.2 A Brief Primer on Linda

This section presents an overview of Linda, the canonical example of generative program

ming. The core concepts of the Linda system are described together with descriptions of

the operational semantics. Readers who are familiar with Linda can skip this section.

The Linda system is based on three core concepts: tuples, presented in section 2.2.1;

tuple spaces, presented in section 2.2.2; and anti-tuples, presented in section 2.2.3. This

is followed by a description of the decouplings offered by Linda in section 2.2.4. Finally,

there is a description of some types of application to which Linda is well suited in section

2.2.5.

2.2.1 Tuples

A tuple is an ordered collection of data of arbitrary type. An example of a tuple would

be:

< “Andy” , 27, Bald>

This example tuple has three fields: the first is the actual (or value) "Andy"; the second

is the actual 27; and the third field is the actual Bald. As well as actuals, the fields of a

tuple can contain formals which can be thought of as wild-cards for the appropriate types.

For example, consider the following tuples:

CHAPTER 2. C O N TEXT AND MOTIVATION 6

Tuple SpaceTuple Space

' Process '

out(<"A ndy".27.B ald>)

 ̂ Process

Figure 2.1: An o u t operation.

< “Andy” , Age, Bald>

< "The Complete Robot” , "Asimov, I” , ISBN>

The first tuple contains two actuals, “Andy” and Bald and a single formal, Age. The

second contains the two actuals, "The Complete Robot" and "Asimov, I" along with the

formal ISBN. The role of actuals and formals will be elaborated upon in section 2.2.3 when

anti-tuples and retrieval operations are discussed.

2.2.2 T u p le Spaces

Processes coordinate by placing tuples into, and retrieving them from, a tuple space,

which behaves as an unordered bag. In the Linda originally proposed for parallel systems,

the space would be an area of shared memory specifically set aside for that purpose. In

distributed versions of Linda the space will most likely reside on a single server machine;

nonetheless, its purpose and operation remain the same.

Linda provides two operations which can be used to populate the tuple space: ou t;

and eval. The o u t operation1, which can be seen in figure 2.1, takes a tuple and places it

into the tuple space where it will be available to other processes.

The eval operation is used to place active tuples into the tuple space. Active tuples

contain, in place of one or more actuals or formals, some calculation or piece of code which

must be performed in order to obtain a normal (i.e., non-active) tuple. For example, in

figure 2.2 a process can be seen placing an active tuple into the space. It is the responsibility

of the Linda system, not the interacting processes, to perform the necessary calculations

and place the resultant tuple into the space. Active tuples cannot be retrieved from the

'To begin with, the names of the operations can seem a little counter-intuitive. It often helps to think
of the operations from the perspective of the process making use of the space.

CHAPTER 2. CO NTEXT AND MOTIVATION 7

Process

eval(<"Huw",sum(l6.l<)).Grey>)

Tuple SpaceTuple SpaceTuple Space

Figure 2.2: An eval operation.

space, only the resultant tuple can be retrieved.

Whichever mechanism is used to place the tuples into the tuple space, they can only

be accessed through the use of anti-tuples.

2.2.3 A n ti-T u p les

An anti-tuple is a tuple which is used as part of a retrieval operation. As such, anti-

tuples consist of an ordered collection of actuals or formals. During retrieval operations

(described below) anti-tuples are compared to tuples looking for a match. An anti-tuple

is said to match a tuple if the following conditions are true:

1. Both anti-tuple and tuple have the same number of fields.

2. Each field in the anti-tuple has the same type as the corresponding field in the tuffie.

3. If a field in the anti-tuple contains an actual, then the corresponding field in the

tuple must contain either an identical actual or a formal.

Some examples of matching can be seen in figure 2.3.

There are two operations which are used to retrieve tuples from the tuple space: in

and rd . Both operate in a similar fashion and both operations take an anti-tuple as

a parameter. The anti-tuple is compared to the other tuples in the tuple space. If a

matching tuple is found it is returned to the process that initiated the operation. If

the space contains more than one matching tuple, one is selected for return in a non-

deterministic manner. The in operation is called a destructive read because, if a match is

found, the matching tuple will be removed from the space, as shown in figure 2.4. The rd

operation is called a non-destructive read as it takes a copy of the matching tuple leaving

the original in the space, as shown in figure 2.5. In both cases, if no match is found then

CHAPTER 2. CONTEXT AND MOTIVATION 8

T u p l e <("Andy" 27 Bald

Anti--Tuple > A n d y ,,| 27 [Bald

Match
Tuples have same number
o f fields and actuals
all match.

< /A ndy“ 27 Bald
No Match
Different numbers of
fields in tuple and
anti-tuple.

<"Andy“ I Bald I 27
\ -------------------- 1------------------------ J ______

/ ’Andy" [27 | Bald

No Match
Fields 2&3 in tuple
do not have same
type as anti-tuple.

<("Andy“ j~ 27 \Hair Colour O'Andy" 27 _Coloury

> A n d y " l 32 1 Bald <

No Match
Field 2 contains
different actuals.

Match
Formals match any
actual.

> A n d y M| A ge | Bald <(

Figure 2.3: Some matching examples.

Tuple Space

'H om er'

Tuple Space

Process

in(<"H om er">)

v-------- j

r Process

H om er

Figure 2.4: An in operation.

the operation will block until a matching tuple is placed into the space, as shown in figure

2.6. Note that there is no upper limit on how long these operations will block awaiting a

match.

There are also probing versions of the in and rd operations which do not exhibit this

blocking behaviour: inp and rdp. These will scan the tuples in the space as before. If a

match is found it will be returned (and the original removed from the space in the case

of inp). If no match is found, however, the operations will not block and will instead

immediately return a null tuple.

2.2.4 D ecoupling

The Linda system offers three forms of decoupling: space; time; and identity. Interactions

through the tuple space are decoupled in terms of physical space as two coordinating en-

CH APTER 2. CO NTEXT AND MOTIVATION 9

^ "Marge" ^ ^ "Apu" ^

<̂ 'Maggie"^

M arge" ^ ^ "A pu" ^

<^ " M a g g i e " y

Tuple Space

Figure 2.5: A rd operation.

"Homer""Homer"

Tuple Space

Process

rd(<"K arr>)

Process

rd(<"Lenny">)

J

c Process

rd(<"Karl">)

Process A

rd(<"Lenny">)

V_ J
P rocesses block

aw aiting a match

Figure 2.6: Blocking operations.

tities need not be co-located in order to make progress (although they must both have

access to the tuple space at some point). The tuple space is an asynchronous communi

cation mechanism and so also allows decoupling in time - two coordinating entities need

not be connected to the tuple space, or even exist, at the same time in order to make

progress. Finally, since all interactions take place through the tuple space, coordinating

entities need not be aware of which other entity they are coordinating with, only tha t they

are coordinating with someone. This undirected and anonymous form of communication

will be termed “identity decoupling” in this dissertation. As will be shown in section 2.4

it is these decouplings which make Linda desirable in a mobile environment.

2.2.5 A p p lica tio n s

The Linda paradigm is a versatile coordination mechanism and can be used in a wide

variety of situations. There are, however, some types of application to which Linda is

ideally suited. The list that follows is adapted from [CroOO]. This list is by no means

comprehensive, nor does it indicate that Linda is the only paradigm which can be used in

CHAPTER 2. CONTEXT AND MOTIVATION 10

WorkerMaster

^
Calculation

in (< cacu la lio n ,an y _ iii>)
ou t(< resu lt,any_ id>)ou t(< cacu la lion .m y_ id>)

ou t(< cacu la tion .m y_ id>)
in(<rcsulL,m y_id>)
in (< resu ll.m y_ id>) Worker

in (< cacu la lion .any_ id>)
ou l(< resu ll,any_ id>)Result

Master
WorkerTuple Space

o u t(< c ac u 1 a lio n .m y jd >)
out(< cacu la lion ,m y_ id>)
in(< resu lt,m y_ id>)
in(< resu lt,m y_ id>)

in (< cacu la tion ,any_ id>)
ou t(< resu lt,any_ id>)

Worker

in (< cacu la tion .any_ id>)
ou t(< resu ll ,an y _ id >)

Figure 2.7: Replicated worker example.

these situations, merely that it is well suited to such situations.

R ep lica ted W orker

The replicated worker (or master/worker) application is one in which a single master node

wishes to have some operation or calculation performed by a number of worker nodes.

The use of a tuple space fits naturally into this problem. The master node places tuples

containing data which encapsulate the calculations that need to be performed. The workers

retrieve these tuples from the space, perform the calculation and then wrap the results in

a new tuple which is placed in the space and retrieved by the master. A simple example

of the replicated worker application can be seen in figure 2.7.

This kind of application benefits greatly from the decouplings offered by Linda. The

decoupling in identity means that the master does not have to know how many workers

are available or how to identify them, this is dealt with through the space. The decoupling

in time and space mean that the workers need not exist, nor be connected to the tuple

space, at the same time as the master in order for work to be done.

C om m and

Command is a specialisation of Replicated Worker in which the actual code required to

perform the calculations is also embedded in the tuples. In this instance the workers

become generalised “dumb computers” which execute any block of code they are given.

This application benefits from the use of Linda in the same way as the replicated

worker.

CHAPTER 2. CO NTEXT AND M OTIVATION 11

Calcu^l^

Final Stage Worker

Stage 2 Worker '

in(<slagc l,any_id>)
out(<stagc2,any_id>)

Stage 3 Worker '

in (<siage 2,any _id>)
ou tK siag e 3.any_id>)

in(<stage 3.any_id>)
ouI(<rcsull,any_id>)

 ̂ Master

out(<caculation,m y_id>)
in(<result.m y_id>)

 ̂ Stage 1 Worker '

in(<caculation.any_id>)
out(<stage l.any_id>)

Figure 2.8: Trellis example.

Trellis

The trellis is a multilayer form of the replicated worker in which the workers make up

a chain, with each one taking the output from the previous node and performing some

subsequent computation on it. Only once the data has passed through all of the layers is

it retrieved from the space by the master node. This can be seen in figure 2.8.

The trellis benefits from the use of a tuple space in much the same way as the replicated

worker. The decoupling in identity, however, has added benefits for a trellis as it allows

for a separation of concerns when constructing the workers. Each worker has only to know

the form of the tuple output by the previous layer and need know nothing about the layer

above. This allows for extra layers to be added to the trellis with relative ease as none of

the workers for the layers below the insertion point need be modified.

M ark e tp lace

Marketplace problems operate much like an auction but in reverse. In a normal auction

a seller would put an item up for auction. This item is then bid on by buyers until the

close of the auction at which point the highest buyer has won. In a marketplace or reverse

auction, the buyer places a description of the desired item into the tuple space (figure

2.9(a)). This description tuple is retrieved by the sellers who then decide what amount

they would be willing to sell this item for. Each seller then places a bid acceptable to

them into the space (figure 2.9(b)). Once the auction has finished, the buyer collects

CHAPTER 2. CONTEXT AND MOTIVATION 12

Seller I S eller 2(Seller 2Seller 1
rd(<any_id,any_item>)
ou t(<auc _i d, my _offer>)

rd(<any J d ,any_i tem>)
out(<auc_id,my_offer>)rd(<any_id,any_item>)rd(<any_id,anyjlem>)

Tuple Space T u p le Space

TSuyer Steller 3Steller 3Buyer

rd(<any_id,any_item>)
out(<auc_id,my _offer>)

in(<any_id,any_item>)out(<auc_id,item_desc>)

(a) Buyer outputs item details. (b) Sellers retrieve item details and put offers
into space.

Figure 2.9: Marketplace example.

all the offers from the space and decides which bid it is willing to take (figure 2.10(a)).

This bid is put back into the space where it is retrieved by the appropriate seller (figure

2.10(b)).

The marketplace benefits from the use of the tuple space as the buyer does not have

to manage the acceptance of all the bids, this is dealt with through the space. This also

means that the buyer process could initiate the auction and then go to sleep, or detach,

only returning at the end of the auction and reading the bids. The buyer does not have

to remain active for the duration of the entire auction. The identity of the buyer and of

the sellers can also be kept secret through the space until the auction is completed.

2.2.6 S u m m ary

The Linda system provides a coordination mechanism based around a tuple space which

is an unordered bag of tuples. Six operations on the space are provided: o u t and eval are

used to populate the space with tuples; in, inp, rd and rd p are used to retrieve tuples

from the space based on a pattern match with a provided anti-tuple.

The tuple space provides three forms of decoupling to processes: space, two processes

CHAPTER 2. CO NTEXT AND MOTIVATION 13

Seller Seller 2
Seller 2Seller 1

in(<auc_id,accepUny_offcr>)J

auc J d ,o f f e r 1

au c _ id .accep t.m in_offer

au c _ id ,o ffe r3

Tuple Space
Tuple Space

Steller 3Buyer Steller 3Buyer

in(<auc_id,min_offei>)
outf<aucJd,accept.min_offer>)

(a) Buyer retrieves offers. (b) Buyer places accepted offer in space.

Figure 2.10: Marketplace example (cont.).

need not be co-located to coordinate; time, two processes need not be active at the same

time to coordinate; and identity, processes need not know the identity of the process they

are coordinating with in order to make progress.

Before examining the value of Linda in a mobile environment, the next section will

examine the various characteristics which define such an environment.

2 .3 E n v ir o n m e n t

Following on from the discussion in section 2.1, it can be seen tha t the environment of

interest in this work consists of a large collection of heterogeneous computing devices and

platforms that will range from small computers embedded in clothing up through mobile

phones and PDAs to powerful desktop and server machines. These devices vary in terms of

three primary characteristics: resources', connectivity; and mobility. This section highlights

the environment under consideration in which these devices operate. Examination of the

core characteristics of this environment are discussed in turn in sections 2.3.1, 2.3.2 and

2.3.3 before looking at the overarching nature of the environment in section 2.3.4.

CHAPTER 2. CO NTEXT AND M O TIVATION 14

2.3.1 R esources

Resources is a collective term describing the facilities, services and consumables which

are available to a device. In this environment devices will possess resources of varying

type which can be split into three categories: consumables; recyclables; and services.

Consumables are resources which once used cannot be recovered by the device. Examples

of consumables include battery life2, CPU cycles and even money (if, for example, other

resources charged for their usage). Recyclables axe resources which once used may be

recovered at some point in the future. Typical examples include backing storage, active

memory space and screen real estate. Whereas recyclables and consumables represent the

actual resources themselves, services represent a higher level of abstraction over a piece

of software, hardware or some combined functionality provided to local applications or to

other devices. Services will typically rely upon and consume one or more consumables

or recyclables. Each recyclable or consumable may be used by multiple services. For

example, memory (a recyclable resource) may be consumed when providing the services

of persistence (to provide in-memory caching) or a graphical user interface (to store the

window contents).

As well as possessing different types of resources, devices will possess varying numbers

of resources, which refers to the amount of distinct resources possessed by the device (note

that number is not the same as quantity, see below). For example, a server machine

will possess a large number of resources, such as a backing store, an active memory, the

capacity for processing, and a host of software services, such as persistent storage, network

routing or file-sharing. Other devices will possess relatively few resources, for example,

a simple PDA might only possess an active memory (which doubles as a backing store),

some capacity for processing and a display.

Resources present on devices will also be of varying quantity. Where number described

the amount of distinct resources possessed by the device, quantity relates to the amount

of those resources available. Some devices will possess copious (albeit still finite) amounts

of resources, such as server arrays with gigabytes of memory, terabytes of backing storage

and multiple high-performance CPUs. Others will be resource impoverished, such as PDAs

and mobile phones possessing a few megabytes of total storage and a single, low-end CPU.

Finally, resources will vary in terms of quality. The active memory on a server machine

2Even though batteries can be replaced or recharged, once battery power is consumed it cannot be
recovered by the device, rather it requires outside intervention - hence its classification as a consumable.

CH APTER 2. C O N TEXT AND M O TIVATION 15

will have fast access times and be connected by high-throughput buses, while in comparison

the memory in a PDA will be slow to respond and have a more limited bus capacity.

2.3 .2 C on n ectiv ity

Connectivity refers to a device’s ability to connect to other devices in the system. Con

nectivity will vary in terms of availability, performance and reliability.

Availability describes how often a particular device is likely to be contactable. Some

devices will be highly available, maintaining a near-permanent connection to a wide area

network, while other devices connect only intermittently and only form a small, isolated,

ad-hoc network with a small set of other devices. A device may have a very high perfor

mance satellite connection, but will only connect briefly, once a day due to the high power

demands. The 3G (UMTS) network [KN05] is similar, its high performance is let down by

poor coverage at present, whereas the GSM network [Har04] has very low performance (9.6

kbps) but the more pervasive infrastructure makes it far more available. Availability can

depend on cultural, environmental, behavioural and technological factors and not simply

the network technology available.

Performance describes the theoretical capabilities of the network and encompasses a

variety of individual properties, for example, latency and bandwidth.

Reliability is a description of how well a connection performs in reality. As with avail

ability, reliability also depends on external factors. An 802.l lg [OP99] wireless network

is capable of 54Mbps transfer rate, but if the access point is on the other side of a metal

wall your maximum transfer rate is likely to be much lower.

Connectivity varies over the whole spectrum of devices, from well connected server

machines with their high-bandwidth always-on Internet connections, to PDAs which may

have only short-range, low-bandwidth connections such as Bluetooth [KarOO] and which

may depend on other devices — such as a nearby mobile phone — to extend their connec

tivity. The connectivity of a device may even vary over time, for example, a laptop which

is connected to a high-speed Ethernet connection (low latency, high bandwidth) may, at

a later time, be operating through an analogue phone line and modem (high latency, low

bandwidth). Much of a device’s connectivity will depend on the resources available to it,

however, external factors may also play a part.

CHAPTER 2. C O N TEXT AND M O TIVATIO N 16

2.3 .3 M obility

Mobility refers to the tendency of a device to move around in the physical world and can

be defined in terms of frequency, duration and promiscuity. Frequency refers to how often

the device is likely to move, from the mobile phone which is frequently carried by its owner

to new locations, to the 80kg+ server array which may move only a couple of times in its

entire life. Duration is how long the device is likely to remain at a given location (it is

usually the inverse of frequency, but can be separate, e.g. a device which only very rarely

connects to a network would have low frequency and low duration). Promiscuity describes

how often these devices will visit new locations. Devices with low promiscuities may only

move between two locations, such as a laptop being carried between work and home,

while other devices with a higher promiscuity may rarely see the same location twice, for

example, an on-board computer in a taxi. It is important to consider what drives the

motion of these devices. While not excluding the possibility that some of these devices

may be entirely autonomous (an Unmanned Aerial Vehicle [DGK+00], for example), the

majority are carried by humans. Even those which are not carried by humans (e.g., in-car

computer systems) are still likely to have their motion driven by the movement of humans.

This presents a potential avenue for further research which is discussed in section 9.3.

2.3 .4 C hange Pervades

It is expected tha t the majority of devices in the environment will be the equivalent of

modern PDAs, phones and laptops. While this may not be the situation at the moment, it

is not hard to imagine a situation in the near future where each person may account for a

mobile phone, a PDA, an on-board computer in their car, some smart clothing, probably

a laptop, a couple of desktops and a share of some servers. This results in the majority of

devices in the environment possessing a relatively small number of low quantity resources.

Their connectivity will be defined by mid to low availability, reliability and performance.

Their mobility will generally be high frequency with varying promiscuities.

All of the above factors combine to produce one overriding characteristic for this envi

ronment - change. This is not a static setup where homogeneous nodes attach to some well

structured network and then remain there, barring any failure. Resources will constantly

be in the process of being consumed and recycled. Devices will move frequently and un

predictable This movement will carry them from areas of high connectivity to areas of

isolation and back again. The set of available services will change as devices come and go.

CHAPTER 2. CO N TEXT AND M O TIVATION 17

Change pervades this environment and it is important that any model designed to operate

within it considers change as a normal component of the system operation, rather than as

an exception.

The notion of change as an integral component within mobile environments has also

been identified in previous research [KMS+93, YJK98].

2.4 M obility and Linda

The decoupling in space, time and identity which have made Linda useful in parallel and

distributed environments also make it a desirable paradigm for mobile environments. In

such a malleable environment it is difficult, if not impossible, for two devices to guarantee

co-location for sufficient time to coordinate effectively. The decoupling in space and time

offered by Linda helps to alleviate this problem by allowing two processes to coordinate

even if they are never in the same place at the same time. Decoupling in identity will allow

a device to move around and make use of any resources and services which happen to be

available. This can be done without the need for the node to maintain a comprehensive

list of which nodes provide which services in which locations. By using the tuple space

the node will be able to coordinate with other nodes as they become available.

The desired operational platform for Linda in a mobile environment is as follows. Co-

located nodes will share a tuple space through which they can coordinate using the basic

operations. When a node becomes disconnected from the shared tuple space it should still

be able to perform tuple space operations, so that coordinating applications located on the

device can still make progress. When the node comes into contact with other nodes any

tuples inserted into the shared tuple space during its isolation should become available to

it. Also, any outstanding in or rd operations should check the newly available tuples for

possible matches.

2.4.1 E xam ples

In order to outline how tuple spaces could be used in a mobile environment, and to highlight

the advantages of this approach, it is useful to examine potential applications.

CH APTER 2. CO N TEXT AND M O TIVATIO N 18

Web Proxy/C lient

In order to simplify the management of a shared Internet connection, and to allow for

monitoring or security, it is common practise to use a proxy server to provide Internet

access. Rather than contact the other Internet hosts directly, all requests are given to the

proxy server which contacts the remote hosts on the client’s behalf. This is an example of

the traditional client/server model where a single server machine, the proxy, is responsible

for handling the requests of many clients.

Even in a static environment this model has some issues, foremost of which is the fact

that the server acts as a bottleneck and a single point of failure. Although it is possible

to provide static load balancing by providing multiple servers and using some scheme

to spread the clients over them, dynamic load balancing is more troublesome. It either

requires modification of the clients, or provision of a load balancing server which assigns

the requests to clients. Modification of the clients is costly in terms of development time

and resources. The provision of servers will provide better performance than doing the

load balancing in software, but this creates a new bottleneck at the load balancing server.

Load balancing can also be provided in the network routing hardware as well. Routers

tend to be built on dedicated hardware with specialised operating systems and software

and so will likely provide very high performance. Also, since this load balancing is now

simply another facet of the network, the system is more resilient to failure3 and as long

as network communication is possible, then load balancing will take place. However, such

routers tend to be quite expensive, are unlikely to be available in ad-hoc environments

and their configuration may not be accessible to the system developer.

In a mobile environment other undesirable qualities emerge. Firstly, any mobile clients

must be informed which machine acts as the proxy (or if one is needed at all), requiring the

provision of a standardised discovery mechanism. Secondly, the traditional model requires

that the client remain connected to the server for the duration of the exchange. In a

mobile environment this may not be feasible.

When a mobile version of Linda is used to support this application, it becomes less of

a client/server model and more of a master/worker model. The clients now act as masters,

wrapping their requests into tuples which are then placed into the space. The proxy server

becomes a worker, which takes request tuples from the space and contacts the appropriate

3Note that this depends on the network being well architected. If all of the servers connect to the same
router, then there is still a single point of failure as before.

CHAPTER 2. C O N TEXT AND M O TIVATION 19

remote host. The result of the request is wrapped in a tuple and placed back into the

space.

By using the tuple space for coordination, the bottleneck of the proxy has been re

moved. Instead, multiple servers can be started, each of which will retrieve request tuples

from the space. Should one fail, another will take over transparently. Load balancing can

also be dealt with by starting new proxies.

Discovery mechanisms for the proxies axe no longer needed thanks to the decoupling

in identity, as the client need not be aware of which host holds the proxy. A client places

its request into the space and awaits a result. Also, intermittent connectivity is addressed

by the decoupling in time and identity. Even if the client is not present when the result is

placed into the space, it can retrieve it later.

Fractal Generation

The distributed fractal generator is one of the canonical examples of the master/worker

architecture. While fractal generation specifically may not be a common requirement in a

mobile environment, the more general pattern of master worker is, as it allows potentially

resource impoverished devices to benefit from the collective resources of others. The fractal

generator is presented here as an exemplar of this type of application and the benefits it

can bring.

Fractal calculations axe specified by one or more master nodes and then performed

by some number of worker nodes. This arrangement places the burden of managing the

workers, ensuring that each is kept active and is not overloaded, on the masters. This can

prove difficult in the situation where multiple masters are using the same set of workers.

For this reason such systems axe often built with a load balancing server which manages

the workers.

As with the previous example, there is a bottleneck and single point of failure in the

load balancing server. Furthermore, in a mobile environment there may be a substantial

amount of work necessary to keep track of the workers as they come and go.

This problem naturally maps to the tuple space paradigm. The masters wrap the

required calculations or operations into tuples which axe then placed into the space. At

some point in the future workers will retrieve these tuples, perform the calculation, wrap

the result in another tuple and place it back into the space for retrieval by the master.

This arrangement offers many of the same benefits as in the web client and proxy

CHAPTER 2. CO NTEXT AND MOTIVATION 20

-M obile Portiorv-

f t
C onsum er

T ypes A 8 D

f t
C onsum er

T ypes A, B, C 8 D

C onsum er
^Types B & C

B)
Type: &WJ

Pro* lucer
Types B 8 C

Type:

C onsum er
T ypes B & C

C onsum er
T ypes C 8 D

Figure 2.11: Mobile data delivery, original architecture.

example. Masters need not determine the identities of any worker nodes or load balancing

servers in order to work, all that has to be done is to place the appropriate tuples into

the space. The master may still be able to receive results which become available while it

is absent by retrieving the relevant tuple from the space. The system can also engage in

dynamic load balancing by starting new workers as necessary.

M obile D a ta D elivery

This example describes a real-world problem to which the paradigm of generative com

munications was applied. The solution described has been successfully deployed in a

commercial environment. Due to the commercial nature of the system, only a high level

overview can be presented here.

A production system consisted of a large number of mobile nodes which produced

various different, types of data. These nodes would only connect intermittently to the

network so that consumers could access their data. As well as these mobile data producers

there were also a number of fixed nodes, and another couple of mobile nodes, which

consumed various pieces of data stored on these devices. The situation is depicted in

figure 2.11. Although it would be possible for the static nodes to monitor the set of

visible4 nodes and perform data extraction from those visible nodes when appropriate,

this represented a significant amount of repeated effort, both in terms of development as

well as runtime state management, across all the systems.

The solution to the problem was to provide a tuple space similar to that described

above. The space could not simply reside on a single fixed node as some of the consumers

were also mobile and were forming ad-hoc networks with the data producers so the space

4The set of visible nodes is a subset of the mobile nodes which can currently be communicated with.

CHAPTER 2. CONTEXT AND MOTIVATION 21

-Mobile Portion-S ta tic Portion-
-rd(B), rd(C]

OUt(A), out(B]-rd(A), rd(D)
C onsum er

T ypes B & C
C onsum er

T ypes A & D
P roducer

T ypes A & B

'out(B). out(C^

5T --

Tuple Space
P roducer

T y p es B & C
-out(C), out(D)-

C onsum er
T ypes A, B C S D

— — --------- rd(B), rd(C)- P roducer
T ypes C & D

C onsum er
T ypes B & C

-rd(c). rd< Di-

Figure 2.12: Mobile data delivery, tuple space architecture.

had to be mobility aware. The resultant architecture is similar to tha t depicted in figure

2.12. In this improved system, both the producers and the consumers benefit from the

decouplings offered by the tuple space. The consumers of data are relieved of the burden

of managing the changing set of visible node, instead they simply express their data need

by performing in or rd operations on the space. The producers simply place all of their

data into the space and do not need to be concerned about which server manages which

data type. For the mobile consumers the interaction model remains the same as the fixed

consumers, the tuple space absorbs the change and presents a unified set of operations to

all nodes.

Although other solutions would be possible, the use of tuple spaces in this scenario

offered a clean, simple model.

2 .5 D isa d v a n ta g e s

At this point, it is worth identifying those applications to which the generative program

ming approach is not well suited.

Tuple spaces in general are ill-suited to situations where large amounts of data must

be exchanged between two points. Although a tuple space may be used to set up such an

exchange, other directed communications mechanisms will probably be better suited to the

task of actually transporting the data. The identity decoupling in a tuple space prevents it

from making some of the optimisations which a directed communication mechanism may

utilise.

Tuple spaces are also ill-suited to carrying data streams or other forms of highly se

quential data. The non-deterministic nature of retrievals from the space mean that anyone

CH APTER 2. CO N TEXT AND M O TIVATIO N 22

attempting to receive the stream may have trouble receiving it in order. In these circum

stances a separate mechanism (usually the implanting of a field containing the sequence

number into the tuple) must be employed to ensure appropriate retrieval of the data.

The time decoupling offered by the space also makes it ill-suited to dealing with any

time-critical or time-sensitive data as there are no guarantees as to how quickly such

information will be returned by the space.

2.6 Summary

This chapter has described the context and environment in which the rest of the work

presented in this dissertation will be set. An introduction to Linda has been provided

along with examples highlighting its potential use and possible advantages in a mobile

environment.

Chapter 3

Related Work

This chapter contains a discussion of other research which provides context and background

for the work presented in this dissertation. Section 3.1 describes the historic Linda systems.

By contrast, section 3.2 examines two “state of the a rt” commercial distributed Linda

platforms alongside two prominent tuplespace research platforms. Section 3.3 examines

other Linda systems and the extensions they have provided to the basic Linda model. This

is followed by a discussion of peer-to-peer systems in section 3.4. Finally, other related

work is presented in section 3.5.

3.1 Historic Linda System s

Linda was originally proposed in [Gel85] and was designed to allow parallel processes to

coordinate through a shared tuple space. C-Linda [CG90] represents one of the very first

implementations of the Linda model. Basic by modern standards, it was only capable

of operating on a single tuple space. All of the fundamental primitives were provided,

including eval, which was performed by forking a new process to evaluate the tuple. The

C-Linda implementation was incredibly faithful to the original Linda model, so much so,

in fact, that many people came to think of it as actually being Linda. Although interesting

from a semantic perspective (it was a direct implementation of the original Linda semantics

as described in section 2.2) the system does not consider distribution.

23

CHAPTER 3. RELATED W ORK 24

3.2 State of the Art System s

T Spaces [WMLF98] and JavaSpaces [W+98] are two powerful, commercial, distributed

generative communication platforms. Both systems offer the tuple space abstraction to

devices on a client/server basis. Event Heap [JF02, Joh02, JF04] and EQUIP [Gre02b,

Gre02a], on the other hand, represent “state of the art” research platforms also based

around the tuple space paradigm.

Although the centralised nature of the tuple space in these systems may not impact

their usefulness in a distributed setting, it does reduce it in a mobile environment. Due

to the changeable nature of a mobile environment, as outlined in section 2.3, the presence

of other devices for the provision of services cannot be relied upon. This means tha t cen

tralised architectures, where one machine must be visible to all others, are not appropriate

in a mobile environment.

These systems presented as the “state of the art” in the current research and commer

cial fields will now be considered. T Spaces is presented in section 3.2.1, JavaSpaces follows

in section 3.2.2, Event Heap is detailed in section 3.2.3 and EQUIP is discussed in section

3.2.4. The similarities and differences between the various platforms are then presented in

sections 3.2.5 and 3.2.6, respectively, followed by an examination of how suitable they are

for our environment in section 3.2.7.

3.2.1 T Spaces

T Spa-ces [WMLF98,LMW99,L+01] is a tuple space system designed and implemented by

IBM. Based on a traditional client/server model, it provides a coordination infrastructure

for networked applications. Implemented in Java [Sun02], T Spaces offers the traditional

Linda primitives, albeit with different names — Write, Read, Take, WaitToRead and Wait-

ToTake replace ou t, rd p , inp, rd and in respectively. No version of the eval primitive is

provided. T Spaces offers the following extensions to the traditional Linda model:

M u ltip le T uple Spaces

T Spaces servers can contain multiple distinct tuple spaces which can then be accessed by

any connecting client (assuming appropriate group membership, see below). In addition to

this, a client is permitted to perform concurrent operations on multiple T Spaces servers.

CHAPTER 3. RELATED W O RK 25

C lie n t/S e rv e r A rc h ite c tu re

Tuple spaces axe stored on and managed by T Spaces servers. Clients then connect to the

server and perform operations on the tuple spaces stored there.

A ccess C o n tro l

Access to tuple spaces is managed through access groups. Each access group defines a

set of permissions with regard to which tuple spaces members of the group can access

and which operations they are allowed to perform on those spaces. The T Spaces server

maintains a list of users and which access groups they axe currently members of. When a

client connects to a T Spaces server, the server determines which particular user the client

is and, correspondingly, which access groups it is a part of. The server will prevent the

client from accessing any tuple spaces or performing any operations for which it has no

permission. Sufficiently privileged clients axe allowed to modify group permissions or even

create new tuple spaces.

Set B ased R etriev a l

Two extra primitives, Scan and ConsumingScan, axe provided. These are analogous to

Read and Take, but return the set of all matching tuples in the space.

T h e R h o n d a O p e ra to r

Described as a rendezvous operator, Rhonda takes a tuple and an anti-tuple and matches

them with the tuple and anti-tuple from another process executing a Rhonda operation. If,

for example, process 1 executes Rhonda(<“A”>,<String>) which writes the tuple < ‘‘A”>

and requests any tuple with a string value, and process 2 executes Rhonda(< "B” >,<String>),

then process 1 will receive the tuple < ‘,B">, while process 2 will receive <"A ">. The

Rhonda operator can be used to provide synchronisation between processes, although this

would mean that the processes axe no longer decoupled in time.

E ven t N o tifica tio n

Clients in the T Spaces system can register interest in events. An event is simply any

operation on the space. The client provides an object with a call-back method which is

called when the specified event takes place.

CHAPTER 3. RELATED W O RK 26

Typed Tuples

Tuples in T Spaces are in fact Java objects and, as such, axe typed. As per the Java type

system, templates (anti-tuples) can match subtypes of the specified class. The fact tha t

tuples are Java objects also means that it is possible to associate methods and, therefore,

behaviour with the tuple. The only real disadvantage with this extension is tha t it alters

the matching semantics of the Linda model. A tuple is no longer defined solely in terms

of its contents, rather the tuple itself has a definite type. Imagine two unrelated classes A

and B, which have exactly the same number and type of fields. Since the Java type system

is not based on structural equivalence, but rather on name equivalence1, a search for a

tuple of class A will never return a tuple of class B even though they may be equivalent

in all other respects.

Typed Tuple Fields

The fields contained within tuples axe also Java objects and, as such, also benefit from

subtype matching and the ability to have associated behaviour.

Extensible Prim itive Set

Each T Spaces server has a series of factories which provide the actual implementations

of the various primitives. These factories can also be set, at runtime, to distribute new

implementations of the various primitives or even new operations altogether. The system

allows different implementations or operations to be provided to different clients.

Queries

The T Spaces system offers the facilities of a query language to allow more powerful

searches of the tuple space. Queries are based on searching for named fields within the

objects. Examples of the query operations possible can be seen in table 3.1. This table,

and the following explanations are reproduced verbatim from [WMLF98].

1. Query 1 is a regular structure Match query, where the query values are fed directly

into the read operator. In this example, the query will return the first tuple of the

form < “Superman” , 75, Rock(“Kryptonite”)> .

:The full name of a class in Java comprises the name given to the class, for example, java. lan g . Object,
along with the identity of the classloader which originally loaded the class.

CHAPTER 3. RELATED W O RK 27

Query # Query Type Query Example
1 Regular resultTuple = ts. read (“Superman”, 75, new Rock(“Kryptonite”));
2 Match queryTuple = new Tuple(“Superman”, 75, Rock);

resultSetTupIe = ts.scan(new MatchQuery(queryTuple));
3 Index queryTuple = new Tuple(new IndexQuery(“Superheros”, “Spiderman”));

resultSetTupIe = ts.scan(queryTuple);
4 Range queryTuple = new Tuple(new (IndexQuery(“Superheros”, new Range(“A”, “L”)));

resultSetTupIe = ts.scan(queryTuple);
5 And queryTuple — new Tuple(new AndQuery(

new IndexQuery(“Superheros”, new Range(“A”, “L”)),
new IndexQuery(“Age”, new Range(new Integer(lO), new Integer(30)))));

resultSetTupIe = ts.scan(queryTuple);
6 Or queryTuple = new Tuple(new OrQuery(

new IndexQuery(“Age”, new Range(new Integer(lO), new Integer(30))),
new IndexQuery(“Age”, new Range(new Integer(60), new Integer(90)))));

resultSetTupIe = ts.scan(queryTuple);

Table 3.1: T Spaces Query Examples

2. The Match query’s functionality is similar to the regular structure Match query, but

it takes a query tuple as input. In this example, the query will return all tuples of

the form < “Superman” , 75, Rock>, where the values for the third parameter, Rock,

can be any valid Rock value.

3. The Index query is either an exact match or a range. In this example, it is an exact

match on the value “Spiderman” . This query will return all tuples of any structure

that have a Superhero field of the String type, with the value “Spiderman” .

4. The fourth one is an example of an Index query using a Range predicate. This query

will return all tuples of any structure tha t have a Superhero name in the range of

“A” through “L” .

5. The fifth one is an example of an And query. And and Or queries can be arbitrarily

nested and used in any combination with other query types. This query will return

all tuples of any structure tha t have a name in the range of “A” through “L” and

an age in the range of 10 through 30.

6. Query 6 is an example of an Or query and is left as an exercise to the reader.

Transactions

T Spaces provides a transaction system which allows multiple tuple space operations to

be applied as if they were one single atomic operation.

CHAPTER 3. RELATED W O RK 28

3.2 .2 JavaSpaces

The JavaSpaces package [W+98, FAH99] consists of a series of interfaces and abstract

classes which comprise a Java-based, Linda-like model proposed by Sun Microsystems for

use in distributed systems. The main Linda primitives are present although with different

names — Write, ReadlfExists, TakelfExists, Read and Take replace o u t, rd p , inp, rd

and in respectively. As with T Spaces, no equivalent to the eval primitive is provided.

JavaSpaces itself is provided as a model to be implemented by other developers, such as

the GigaSpaces system from GigaSpaces Technologies Ltd. [Gig02a, Gig02b, Gig03]. Sun

also provide their own JavaSpaces implementation called Outrigger [Out02], JavaSpaces

offer the following extensions to the traditional Linda model:

C lie n t/S e rv e r A rc h ite c tu re

JavaSpaces, much like T Spaces, uses a strict client/server model.

M u ltip le T up le Spaces

Each JavaSpaces client is allowed to access multiple JavaSpaces servers concurrently.

Tim eouts

Each of the JavaSpaces primitives can be provided with a timeout value. In the case of

the ReadlfExists and TakelfExists primitives, the value is used in the case where the only

matching tuples are currently locked as part of a transaction (see below). The timeout

value determines how long the primitive will wait for the transactions to settle and see

whether the tuples become available or not. For the Read and Take primitives the timeout

value states how long the primitive will block, waiting for a suitable tuple to become

available. The timeout value can range from “no time at all” (i.e., return immediately) to

“wait indefinitely” (i.e., block).

E v en t N o tifica tions

Clients in the JavaSpaces system are allowed to register interest in any tuples matching a

given template which are entered into the space. The client registers a listener with the

server which is called in the event of a suitable tuple being added to the space. This allows

the client to continue executing while awaiting the event rather than blocking.

CHAPTER 3. RELATED W O RK 29

Leases

Leases are a particularly interesting feature of JavaSpaces which avoid any garbage being

left in the system. Whenever a tuple is placed in the tuple space, the client is returned

a lease object which states how long the object is guaranteed to remain in the space.

Specific lengths of lease can be requested by the client, although the decision of how long

the lease will be is ultimately left up to the space itself. Once the lease has expired the

space can safely remove the object. If the creating client wishes the object to remain, it

must renew the lease. An expanded description of the leasing facilities provided can be

found in [SunOO]. Event notification requests are also leased.

Typed Tuples and Fields

As in T Spaces, both the tuple fields and the tuples themselves are Java objects and have

the same associated benefits and disadvantages.

Transactions

JavaSpaces provides a transaction system which allows multiple tuple space operations

to be applied as if they were one single atomic operation. It has been shown that the

transaction system currently presented is not serialisable2 [BZ02], although extensions to

make it serialisable are also presented in the same work.

GigaSpaces Extensions

As well as the above extensions to the Linda model, GigaSpaces also provides some further

extensions. Batch operations for each of the basic primitives are provided, allowing large

numbers of tuples to be placed into or read from the space. GigaSpaces also provides

clustering technology [Gig02a, Gig03], designed to allow access to multiple spaces through

a single proxy. The clustering technology is based on replication, although the exact

mechanism used is not well described. It is hard to determine, from the available literature,

what associated consistency issues there may be.

2 A transactional mechanism is serialisable if operations which take place within a transaction could be
modelled as taking place one after the other without the need to interleave them with operations outwith
the transaction. Serialisability is a criterion for correctness in the execution of transactions.

CH APTER 3. RELATED W O RK 30

3.2 .3 Event H eap

Stanford’s Event Heap [JF02, Joh02, JF04] was designed to support the development and

operation of collaborative applications. To this end the designers made some modifications

to the basic tuple space model:

Client/Server Architecture

Again, Event Heap is based around a centrally stored data space accessed by clients.

Self Describing Tuples

Event Heap tuples (called events) are composed of a set of fields which bear three a t

tributes: type; value; and name. Types and values are used in the same manner to other

systems. The name attribute is used to identify the field and, according to the design

ers, to allow developers to infer the meaning of tuples. These names are also used in the

matching mechanism to identify which fields you want to match on.

Typed Tuples

Each tuple in Event Heap has a special field called “EventType” . This field stores the

type of the tuple itself. A type implies a certain minimal set of other fields will be present

in a tuple. Tuple types can be extended simply by adding extra fields to the type.

Sequencing

Event Heap employs a FIFO3 sequencing mechanism. This mechanism ensures that, if a

client performs an operation which matches multiple tuples, then the system will return

the earliest matching tuple which the client has not seen already. The system also provides

a mechanism to snoop on the tuples without affecting the sequencing.

Expiration

Tuples in Event Heap also have a special field called “TimeToLive” which allows tuples to

expire after a given time period has elapsed. This allows for garbage collection of tuples

which have not been retrieved. It also allows developers to express immediacy in their

applications where something should happen soon or not at all.

3First In, First Out.

CHAPTER 3. RELATED W ORK 31

Query Registration

Event Heap allows applications to register templates (anti-tuples) with the system. A

callback mechanism is also registered along with the template. Should any tuples which

match these templates be inserted into the space then the system will callback the regis

tered client through the mechanism given.

Directed Tuple Routing

The Event Heap system also defines another set of tuples fields to the tuples to allow for

some degree of direction to be established over the communication channel. For example,

by default, the system will populate a field called “SourceApplication” with the name of the

application which produced the tuple. This allows other applications to explicitly consume

only data from that application. Similar fields also exist which note which application

consumed a particular tuple to allow for subsequent tuples to be targeted to tha t consumer.

3.2 .4 E Q U IP

The EQUIP data space [Gre02b,Gre02a] was developed as part of the EQUATOR Interdis

ciplinary Research Collaboration in the UK [EQU05]. Much like the Event Heap, EQUIP’s

dataspace is primarily aimed at the support and construction of collaborative applications

and workspaces. One of the strongest focuses in EQUIP is in facilitating the interoperation

of applications developed in different programming languages. The following extensions

to the basic Linda model are provided in EQUIP:

Replicated Client/ Server

The EQUIP architecture is largely client/server based, however some of the tuples (called

events in EQUIP) on the server are replicated down to the client. Clients can express

a desire for tuples by expressing patterns to the server. Any tuples which match these

patterns are automatically passed down to the client’s local space. Clients can also use

this local space for local-only tuples which are not passed up to the server. Otherwise all

tuples are passed to the server and then replicated to interested clients.

CHAPTER 3. RELATED W O RK 32

M ultiple Tuple Spaces

An application using EQUIP can create dataspace servers as and when required. These

servers are accessed through a simple URL scheme where servers are given a name of the

form “equip: / /h o st: port/ spacename” .

Event Subscription

Although based on the tuple space paradigm, EQUIP primarily provides event based in

teraction with the system. Clients register for events using patterns and provide a callback

mechanism to receive them. When events are generated which match those patterns, the

appropriate call back is made.

State Sharing

As well as the even mechanism, EQUIP makes provision for collaborating applications to

share state. A shared piece of state will be stored in the local data space for the client

interested in that state. When the state is changed, then “update” events are sent out

that change the client’s local copy of the state. If the item represented by the state goes

away, then a delete event will be sent out and the state will be removed from all client

spaces.

Language Independent Pattern M atching

One of the key goals of EQUIP was to allow interactions across programming language

boundaries. To that end, EQUIP employs a completely language independent type and

class system by using a subset of the CORBA Interface Definition Language (IDL) [Vos97].

EQUIP presently provides language bindings for C + + and Java. This IDL is also used in

the serialisation, equality testing and pattern matching facilities within EQUIP. This allows

applications to produce data for, or consume data from, other applications independent

of their language.

3.2.5 C om parison

Similarities

The systems described above represent the “state of the a rt” in commercial and academic

Linda-like systems. An examination of their similarities will identify those extensions of

CH APTER 3. RELATED W O RK 33

the Linda model which have been deemed the most important.

All of the systems described above allow clients to access multiple different spaces.

However, they do differ slightly in their models of server composition. In T Spaces and

EQUIP each server can contain multiple distinct tuple spaces. In the JavaSpaces and

Event Heap model4, the server is the space. In these systems, there is nothing to prevent

the running of multiple servers on the same machine, but this is not quite the same. The T

Spaces and EQUIP architectures allow clients to create and destroy tuple spaces as needed.

Therefore, clients can create a tuple space to achieve a particular task, and then remove

it once the task is complete. This is not as easy to do using the JavaSpaces or Event

Heap model (it would require external operating system calls to launch/kill instances of

JavaSpaces as desired).

T Spaces and JavaSpaces both include typed tuples and fields. This means tha t both

tuples, and their associated contents are stored as Java objects. This allows for a greater

degree of flexibility during the matching process through Java’s support for polymorphism.

This object-oriented nature also extends the power of the tuple space since it enables tuples

to contain functionality (in the form of method implementations) as well as state. This

extended functionality does, however, prevent the use of structural matching. EQUIP also

represents tuples using objects using the language independent IDL. Event Heap is the

only system presented here which does not base its tuple typing around objects. Tuple

types are represented by a field on the tuple. Types can be extended by adding fields, but

there is no concept of inheritance or relationships between types.

The final commonality between all of the systems is the use of event notification.

JavaSpaces, Event Heap and EQUIP all provide facilities to register interest in a particular

pattern or type of tuple and then be notified whenever a tuple matching tha t pattern or

type is inserted into the space. The T Spaces system provides a much more flexible event

notification system. In T Spaces each and every operation on the server can be viewed as

an event and, as such, any client may register interest in it. Thus, clients in the T Spaces

environment are not limited to only watching for tuple insertions.

4The original implementation of Event Heap was built on top of T Spaces and, therefore, would have
allowed for multiple spaces in a single instance. However, recent implementations have replaced T Spaces
with a custom built space and this is no longer the case.

CHAPTER 3. RELATED W O RK 34

3.2 .6 D ifferences

Aside from the common operations, each system offers its own distinct set of extensions

not offered by the others.

The JavaSpaces system offers a means of garbage collection in the tuple spaces through

the use of leases. Due to the nature of tuple spaces, it is impossible to identify when a

particular tuple can be considered garbage. There is no knowledge available of which

clients exist, and even if there was, it could not be guaranteed tha t an interested client

would not appear at a later time. The use of leases addresses this problem by only allowing

tuples to exist for a specified amount of time. This does, however, mean tha t clients must

bear the burden of coping when their tuples are removed from the system. Event Heap

offers similar facilities through the use of the “TimeToLive” fields on tuples. T Spaces and

EQUIP provide no means of garbage collecting tuples.

Only the commercial solutions provide any form of transactional facilities, allowing the

client to perform multiple tuple space operations as one atomic operation. The JavaSpaces

system allows multiple servers to participate in a single transaction. Transactions in the

T Spaces system, while permitting operation over multiple tuple spaces, require tha t all

of those tuple spaces must be located on the same server.

Event Heap is the only system which employs a sequencing mechanism to allow for

unique retrieval of tuples from the space.

EQUIP is the only system to provide language independence. It is also the only system

to provide an explicit state sharing mechanism.

On the commercial side, aside from leases and distributed transactions, the T Spaces

system offers all the functionality of the JavaSpaces system plus more. The T Spaces

system offers expanded event notification, an extensible operation set, a new operator

(Rhonda), set based operations and the facility to perform queries over the tuple spaces.

In order to provide these operations the current implementation of T Spaces uses a fully

fledged relational database to provide its storage and retrieval facilities.

3.2 .7 Su itab ility

While the systems outlined above describe the state of the art in commercial and academic

systems, neither system is designed with an ad-hoc, heterogeneous network in mind. Such

an environment makes different demands of the system. One of the goals of the T Spaces

system, for example, is to make the client side as lightweight as possible to allow for use

CH APTER 3. RELATED W O RK 35

on PDAs and other, similar devices. While this is useful, no such claims are made of the

server end. Indeed, given the heavyweight query facilities provided by the server, it is

likely to incur storage and processing overheads as a consequence of maintaining indexes.

While this may seem ideal in a client/server environment where it is acceptable to rely on

the provision of a powerful server machine with plenty of storage, it is unsuitable for the

kind of mobile environment previously outlined where the provision of a server machine

cannot be assumed.

Another problem with these systems in a mobile context, is that, while they are all

distributed in nature, they axe based on traditional client/server models. Clients connect

to a server, perform their operations and then disconnect. Due to this strict connection-

oriented operation, this model is likely to prove unsuitable for the environment of interest

in this work. In a mobile networking environment, it cannot be guaranteed tha t the

devices which wish to cooperate will be in constant contact with any given server, or, for

that m atter, any other device. Even the replication mechanism in EQUIP is unsuitable for

this environment as all replicated tuples are removed when disconnected from the server.

3.3 Other Linda System s and Extensions

This section examines the wide variety of implemented Linda systems and the extensions

to the basic model which they propose.

3.3.1 Javelin

The Javelin [Gre97] tuple space system was developed at the University of Glasgow by

Robert Greig. Developed shortly before the release of the JavaSpaces system (section

3.2.2) the primary goal of Javelin was to implement the Linda coordination model in Java

and, using the facilities provided by Java, attem pt to construct a fault-tolerant distributed

implementation. The implementation allowed for typed tuples as seen in JavaSpaces and

T Spaces (section 3.2.1), with the same subclass matching.

All of the basic Linda primitives are provided in Javelin. Javelin supports the eval

primitive through use of a preprocessor. The preprocessor, which is run prior to compila

tion, looks for subclasses of tuple which have eval methods defined. It then takes these

classes and wraps them up in a custom class which implements Java’s Runnable interface.

This allows the custom class to be spawned as a separate thread at runtime in order to

CH APTER 3. RELATED W O RK 36

perform the required calculations.

Javelin also provides support for various forms of distribution. In all cases the client

connects to the outside world through a local “communicator” object which hides the

details of the distribution from the client. In the basic version, the clients connect to a

single tuple space on another server. In a second version, replication is used to achieve some

degree of fault-tolerance, but with a significant performance trade-off. Tuple space servers

are bundled together in “group spaces” , each of which consists of one master and a number

of slaves. All operations are performed on the master and then replicated onto the slaves.

If the master fails, one of the slaves takes over. While this system can tolerate the failure

of all but one host in a group space, it results in a significant performance drop due to

the cost of replicating every action across multiple machines. This approach also struggles

in the face of network partitions. Imagine a replicated space spread over a collection of

hosts which are then subject to the network partitioning into two fragments. From the

point of view of each fragment, it can be difficult to discern the network partition from

the simultaneous failure of all of the hosts in the other fragment. As such, each fragment

simply picks up where it left off, assuming the other one has ceased operating. This has

the potential to result in multiple copies of the same tuple existing in separate parts of

the network which could later reconnect. Even if the system were to try and keep track of

all operations performed for later synchronisation should the network reform, it still does

not prevent the system from distributing multiple copies of a given tuple in the meantime.

Also it does not know how long it may be disconnected for, or even if it will ever become

connected to the same set of hosts again, resulting in a potential waste of space in storing

a theoretically infinite amount of synchronisation information which may never be used.

A third form of distribution attem pts to improve performance by associating a par

ticular class of tuples with each server. By spreading out the data types across multiple

machines, Javelin hopes to reduce the load on any given machine. This is a simple form

of a more general technique known as hashing. Hashing has recently become a popular

mechanism for use in peer-to-peer systems (see section 3.4.2).

In all three cases the system relies on a known name server to locate the tuple or group

spaces.

CHAPTER 3. RELATED W O RK 37

3.3.2 York K ernel

The York Kernel [RW96] is a distributed Linda implementation developed at the University

of York in England. The York Kernel is designed to operate with multiple tuple spaces

and includes a number of new primitives. The first of which is the co llect primitive.

The collect primitive allows a client to move all tuples matching a given anti-tuple from

one tuple-space to another. The copy-collect primitive, a non-destructive version of the

co llect primitive, is also provided. It was proposed as a solution to the multiple rd

problem [RW98]. The multiple rd problem is characterised by a client which wishes to

non-destructively read all tuples matching a given anti-tuple in a tuple space (e.g., to

collect statistical information). If the client simply performs multiple rd operations, it is

not guaranteed to read all of the tuples due to the non-deterministic way in which the

tuple is selected. Instead the client must perform repeated in operations, copy all of the

tuples and then place all of the tuples back in the space through repeated use of the o u t

primitive. The copy-collect primitive avoids the need for this disruptive and expensive

alternative solution.

The York Kernel also has a set of extended primitives referred to as the BONITA

primitives [RW97]. These primitives allow fully asynchronous interaction with the tuple

space. While the Linda model promoted asynchronous message passing between clients,

the clients interacted with the system in a very synchronous way. The in and rd primitives

are good examples as the client must block until a matching tuple is inserted into the space.

The BONITA primitives all follow a similar path of operation. First, the client connects

and uses the d isp a tch primitive. The dispatch primitive is overloaded and has a version for

each of the other primitives in the system. The d isp a tc h does not block, but immediately

returns a request id. The tuple space performs the requested operation without any further

intervention from the client. The client can check whether the operation has completed

using the a rriv e d primitive, which takes a request id and returns true if the request has

been completed and false if it has not. The o b ta in primitive is a blocking primitive which

takes a request id and returns the tuple or result associated with tha t request when it

arrives. Through the use of these three primitives all operations on a tuple space can be

performed asynchronously.

CH APTER 3. RELATED W O RK 38

3 .3 .3 LogOp

The LogOp system [SM02a] proposes the use of logical operators for interacting with mul

tiple tuple spaces. The three logical operators, OR, AND and NOT, allow the implicit

parallelisation of the operations over multiple tuple spaces, improving the expressiveness

of the model and providing a performance boost over the alternative of serialising the

operations over multiple spaces. The basic Linda operations are provided, but can be

combined with logical primitives with the following effects:

OR: This operator causes tuple space operations to affect one or more tuple spaces from

a given list. In the case of o u t, one space, chosen in a non-deterministic manner,

will receive the tuple. In the case of rd and in, the operation, if at least one space

contains a matching tuple, will return a list containing a single matching tuple from

any of the specified spaces which possess one. If there are no matching tuples in

any space the operations will block until at least one matching tuple is inserted into

one of the specified spaces, rd p and in p behave the same as rd and in with the

exception that they will not block if no tuples can be found.

NOT: This operator is given a list of tuple spaces and it then performs the equivalent

of an OR operation over the complement of th a t list. Although this adds no extra

functionality, it may be more convenient if an application developer only wishes to

exclude a small number of tuple spaces from a large set.

AND: This operator causes tuple space operations to affect a given list of tuple spaces.

In the case of ou t, this results in a replication of the tuple. In the case of rd and

in the operations will return a single tuple from every specified space only once a

match has been found at every space. In the case of in p and rd p the operations will

either return a single matching tuple from each space, or they will return nothing.

3 .3 .4 Ligia

The Ligia system [MW98] is a distributed Linda implementation, which is an implemen

tation of previous work on tuple space garbage collection [MW97]. In Ligia, there is a

single universal tuple space which can be accessed at all times. Processes can also create

new spaces to which they are given handles. These handles are used to form a reachability

graph for the tuple spaces. This graph is then used to determine which tuple spaces are

no longer necessary in the system, as a consequence of being unreachable, and can be

CHAPTER 3. RELATED W O RK 39

removed. This means that garbage collection is only done on the level of spaces. Ligia

does not provide a mechanism for collecting garbage tuples within a space.

Other than garbage collection, Ligia provides little else in the way of extensions to

the Linda model. It is a simple centralised implementation. Clients can access multiple

tuple spaces. The eval primitive is implemented in some form, but does not generate a

tuple as in the Linda model. Its exact behaviour cannot be determined from the literature

presently available.

3.3 .5 O ptim ising D estru ctive and N on -D estru ctiv e R eads

Work by Rowstron [RowOO] has proposed a potential optimisation to Linda systems by

allowing tuples which have been removed as a result of an in operation to be returned

to subsequent rd operations under a strictly defined set of conditions. This is designed

to allow optimisation in situations where, for example, one process was responsible for

updating a list while other processes were reading it. In this example, the items of the

list are stored as tuples with a field indicating their position in the list. There is also a

tuple which stores the length of the list. Whenever the process responsible for modifying

the list wants to add or remove an item it must remove the tuple containing the length

of the list from the space, modify it, and return it. As long as the tuple is removed, the

processes reading the list will be blocked.

The system instead allows these processes to read a copy of the tuple even though it

has actually been removed, known as a “ghost” tuple. “Ghost” tuples will remain in the

space even after the destructive read, but:

• They cannot be returned as the result of another destructive read.

• The process which removed the tuple from the space cannot see the “ghost” tuple.

• The “ghost” must be removed from the space when the process which removed the

original tuple terminates or inserts any tuple into the space.

This set of conditions is designed to ensure tha t no individual process is capable of seeing

the inconsistency inherent in “ghost” tuples (i.e., tha t it can rd the tuple which it knows

cannot be in the space).

In the above scenario, once the optimisation has been put in place, the reader nodes

are no longer blocked by the updates performed by the list management node. They axe

CH APTER 3. RELATED W O RK 40

instead allowed to read a “ghost” of the list length tuple even if it has just been removed

by the list manager.

The optimisation has been shown to provide benefit and has also been proven to

maintain the correctness of the system [NPR00].

3.3 .6 P h ysica l M obility and Linda

There have been a number of attem pts to provide the Linda coordination model in an en

vironment with physical mobility: Limbo [DWFB97]; L2imbo [DFWB98,FDS+ 99]; Lime

[PMR99, MPR01, MPR03]; CoreLime [CW Ola, CW O lb]; and PeerSpaces [BMMZ02,

BMMZ03]. Due to the high-degree of relevance of these systems for the work presented in

this dissertation, they are presented in chapter 4 to allow for a more in-depth discussion.

3 .3 .7 Logical M obility and Linda

Logical mobility describes the ability of software components, usually referred to as soft

ware agents, to move from one device to another. The space, time and identity decouplings

offer similar advantages to mobile agents as they do to coordinating mobile hosts. This

has led to a number of systems which make use of generative communications to enable

coordination between mobile agents [OZ98, Row98, CLZ99, BLP00, C W O lb , MPR03]. A

good examination of the issues and systems involved in providing generative communica

tions can be found in [CIZ99]. The work in this dissertation is focused only on physical

mobility and is not concerned with providing facilities or support for logical mobility.

3.3 .8 L inda for th e Grid

Grid computing [FK99, DRBJS03, GGF04] is a varied field concerned with the provision

and use of computing resources and services over well-connected, but geographically dis

parate sites. Grid computing has traditionally relied upon web services to provide access

to the services in the system. Work by Bjornson et al. has suggested tha t a tuple space

could be used in place of these web services [BS04]. They have built a system which

coordinates the performance of tasks by grid based systems and the returning of results

from those tasks through a single centralised tuple space. Work by Hawick et al. [HJP02]

has proposed an architecture for providing grid based SuperSpaces. These SuperSpaces

are formed by connecting separate tuple spaces together using software components called

Transactional Workers. Transactional Workers link together a subgraph of the tuple spaces

CHAPTER 3. RELATED W O RK 41

and are responsible for forwarding queries to appropriate spaces and then routing the tu

ples back to the space where the request originated. At present, the construction of these

SuperSpaces appears to be statically defined.

3.3.9 E m ergent Technologies and Linda

Emergent technologies rely upon the interactions of simple localised behaviours (often in

spired by natural or biological phenomena) to produce more complicated global behaviours.

A good introduction to this class of systems is presented in [Res94].

Many of these systems are oriented around ants which use random walks and pheromone

trails to produce a wide variety of behaviours. It has been suggested tha t such algo

rithms could be used to provide generative communications across a number of hosts

[MT03,MZL03]. Due to the often random or unpredictable nature of these technologies,

it is difficult to provide an evaluation of their applicability. This will be discussed further

in section 9.7.

3.4 Peer-to-Peer

The controversy and associated expansive media coverage surrounding Napster has re

sulted in that system becoming almost synonymous with the phrase peer-to-peer (p2p).

In reality, p2p encompasses a much larger class of system of which Napster is only one

example. p2p systems can be identified by their decentralised architectures and methods

of operation. Their intended environment has a lot of commonality with the one described

in 2.3 — the systems are designed to operate without the provision of dependable, cen

tralised nodes5 and must adapt to changes in the environment as nodes arrive or depart

(although this arrival or departure is not necessarily due to physical mobility). This sec

tion examines some of the more interesting facilities commonly provided in p2p systems.

A good introduction to the problem space can be found in [OraOl].

3.4.1 Searching

One of the most common uses for p2p systems is to provide a decentralised distributed

searching facility. The nature of the item being searched for can be anything from files or

5This was not the case in Napster, which used a central server to index the data on the peers and
provide the search facilities over that data. It was this centralised architecture which proved to be its
downfall as it gave the Recording Industry Association of America a target for litigation. It is also the
reason why it is not a particularly interesting p2p system.

CH APTER 3. RELATED W O RK 42

documents to the best recipe for raspberry cheesecake. Many of these searching algorithms

[Gnu03, JXT04] use a flooding broadcast to locate the information. This can result in

individual nodes receiving (and in some cases responding to) multiple copies of the same

search request (although a time to live is usually defined for the broadcast packets to

attem pt to reduce this). Some systems attem pt to remove this potential inefficiency,

either through the provision of more structured overlay networks [RFH+01,ED02], through

alternative query routing algorithms [HHL01, WRB03] or through a combination of both

[LRS02].

As well as basic searches some systems offer other forms of search. Freenet [CSWH01]

focuses on providing anonymous searching for sensitive information as well as protecting

the identity of the publisher of such data. Waldman et al in Publius [WACOO] takes this

idea further by making the data stored on the network resistent to tampering or censorship.

There are also a variety of techniques used to speed up searches or improve their

chances of finding relevant data. Some systems make use of replication to pull the data

towards the node which requests it in order to make it more available to others. This

also has the useful property that data which is in high demand will quickly be propagated

throughout the system reducing the load on individual nodes.

3.4 .2 H ashing

One other technique used primarily to speed up searching is the use of distributed hashing

which involves splitting the data set across a number of hosts based on some hashing

function, the aim being to reduce the burden on any single server. However, within a

p2p environment it presents new challenges as the system needs to be able to adapt the

hashing algorithm and ensure data availability as devices come and go. If a static hashing

algorithm is used, then the algorithm will continue trying to place data on or retrieve data

from machines which have already departed. There are a number of approaches to solving

this problem [RD01,SMK+01,HW02].

The use of such hashing to improve the scalability in client/server based tuple space

systems has already been proposed in [OG02].

3.4 .3 Sum m ary

This section has looked at some of the interesting systems within the domain of peer-to-peer

systems. Although there are some im portant differences between mobile and peer-to-peer

CHAPTER 3. RELATED W O RK 43

environments (for example, p2p nodes are not usually resource impoverished), there are

also many similarities. As such, it is likely that at least some of the research conducted

in one environment may be applicable in the other. One possible such application will be

discussed in section 9.1.

3.5 Other Work

This section describes other related work which does not fit into the earlier structure.

Publish and subscribe systems are outlined in section 3.5.1 while the Jini connection

technology is described in section 3.5.2.

3.5.1 P u blish and Subscribe

In publish and subscribe systems, participants are split into two categories: publishers,

who are responsible for producing data; and subscribers, who consume the data. Sub

scribers register interest in types of data they are interested in and it is the responsibility

of the middleware to attem pt to route any published data to the appropriate set of sub

scribers. The publish and subscribe paradigm offers an identity decoupling similar to that

exhibited by generative communications as subscribers do need to be aware of which entity

is acting as the publisher. However, time and space decoupling are not always provided

in publish and subscribe systems. Although some systems will store published data for

late subscribers, many only provide delivery to those who have registered interest and are

available at the time of publication. There are a variety of publish and subscribe systems

designed for use in mobile environments [CFH+03,FGKZ03,FPM04].

Analysis by Busi et al [BZOla] has proven tha t the publish and subscribe paradigm

is interchangeable with generative communications6. This means tha t the choosing what

paradigm to use is analogous to choosing which programming language to choose. The

final decision will depend on the nature of the problem along with the developer’s per

sonal competency or familiarity with either approach. Some problems to which generative

communications are particularly well suited have been already been outlined in section

2.2.5.

6 The conversion from publish and subscribe was performed through the provision of agents responsible
for managing the state of the dataspace. As such the publish and subscribe system largely became a
communication mechanism between the tuple space and the consumers.

CH APTER 3. RELATED W ORK 44

3.5.2 Jini

Jini is a decentralised connection technology designed by Sun Microsystems [Edw99]. It

is designed to provide a dynamic resource discovery service among networks of connected

devices. Jini devices join communities of devices by registering their services in one or more

lookup servers. Services have a set of named attributes associated with them represented

by strings. Other clients can then query the lookup server to find services with matching

attributes. The lookup server returns a proxy object which provides the client with access

to the (possibly remote) service (this proxy object is published by the service provider at

the same time as the other service information, such as attributes). This proxy object

contains all the functionality needed to access the service it represents. It is im portant to

note that the lookup server is in fact just another service in the system. This is crucial to

providing some form of decentralised structure and also facilitates the creation and use of

specialist lookup servers. Clients use multicast to obtain an initial reference to a lookup

service. While this structure ensures that clients do not have to have knowledge of any

specific lookup service, there is still a requirement tha t a lookup server must be running

in order for the system to function. If mobile devices are taken into account, it cannot

guaranteed that there will always be a lookup server available when a service is desired.

Also, if there is only one lookup server in a given community, then it marks a single point

of failure for tha t community. Recent work in adapting Jini to mobile devices has taken

this into account and requires that all mobile devices run their own lookup server [KamOO].

Jini provides a highly adaptable framework for building networks of communicating

device and of particular interest is the use of leases [SunOO]7. Leases allow Jini clients

to come and go in a lightweight manner. When the provider is advertising a service via

its proxy in a lookup server, a lease is negotiated. When the lease expires, the service

becomes unavailable and the lookup server will discard it. To avoid this happening, the

provider can renew the lease. Proxy objects contain similar leases to the service provider.

Leases prevent service providers from having to announce the departure or removal of that

service, they simply allow the leases to expire. Once the leases have expired, the service

will be removed from lookup servers and clients will dispose of the proxy objects. The use

of leases also allows the system to repair itself in the event of a failure. In the case of a

provider crashing, much like tha t of a provider leaving the network, the provider which

7The leases in JavaSpaces (section 3.2.2) are based on the set of specifications as defined by the Jini
specification.

CHAPTER 3. RELATED W O RK 45

crashes will fail to renew any leases for any of its advertised proxy objects. Clients will also

know to dispose of any existing proxy objects for the service provider. Thus the system

eventually removes all reference to the failed service. In the case of a network failure the

procedure is the same again, with any affected services eventually being removed from the

system.

3.6 Summary

This chapter has highlighted various pieces of other research which either set context,

provide background information or serve as comparison to the work presented in this

dissertation. A more detailed discussion of the most similar pieces of research is presented

in chapter 4.

Chapter 4

M obile Linda System s

This chapter takes a closer look at all of the available previous attem pts to provide gen

erative communications in a mobile environment. L2imbo is presented in section 4.1. The

LIME system is examined in section 4.2. CoreLime, a derivative of LIME, is discussed in

section 4.3. Finally, PeerSpaces is presented in section 4.4.

4.1 L2imbo

The L2imbo1 system [DWFB97, DFWB98, FDS+ 99, Wad99], developed at Lancaster Uni

versity, is designed to provide support for adaptive mobile applications through intelligent

use of quality of service (QoS) information. The L2imbo system attem pts to provide

generative communications through a decentralised architecture.

4.1 .1 T he L2im bo M odel

The model provides the traditional Linda primitives in, rd and o u t. Four extensions to

the basic Linda model are provided: multiple tuple spaces; tuple typing; QoS attributes;

and system agents.

M u ltip le T uple Spaces

The model provides support for clients to use multiple tuple spaces. Tuple spaces are

created and destroyed by placing appropriate tuples in a common, universal tuple space

(for more details see “system agents” , below). Tuple spaces can be created with particular

lrThe system was originally named Limbo, but was renamed due to the name already being in use by
another research group.

46

CHAPTER 4. MOBILE LINDA SYSTEM S 47

characteristics, e.g., persistence or access control. The clients of the system can then access

these tuple spaces by obtaining a handle from the universal tuple space.

T up le T yp ing

All tuples in the system are typed in a similar way to T Spaces (section 3.2.1) and JavaS-

paces (section 3.2.2). However, instead of using the type hierarchy defined by the language,

the Limbo model provides facilities for clients to define their own hierarchies dynamically.

In brief, a client can nominate one tuple-type to be considered a subtype of another by

placing a special tuple in the universal tuple space. The hierarchies are scoped per space

and any restrictions (e.g., multiple-inheritance, cyclical hierarchies) are imposed by a type-

manager for that space, if one is implemented.

QoS A ttr ib u te s

The model proposed introduces the concept of deadlines which can be associated with

either tuples or anti-tuples. Deadlines function in a manner similar to tha t of leases in

systems like JavaSpaces (section 3.2.2). In the case of a tuple, the deadline represents

the upper limit for how long the tuple is guaranteed to remain in a tuple space (barring

any in operations on it). In the case of an anti-tuple, the deadline represents the time

for which the appropriate rd or in operation is allowed to block. As in JavaSpaces, in p

and rd p are implemented in terms of in and rd respectively with a low or zero deadline.

Deadlines can also be used in the system to reorder tuple space operations to provide QoS

guarantees; the system could, for example, decide to order operations in terms of closest

deadline first in order to meet as many deadlines as possible.

S y s tem A gen ts

The Limbo model introduces the concept of system agents. System agents provide facilities

for tuple space clients to interact with the system. One example of a system agent is the

agent responsible for the creation and destruction of tuple spaces. As mentioned above,

when a client wishes to create a new tuple space, it places a tuple into the universal tuple

space. The system agent reads the tuple, creates the appropriate tuple space (if possible)

and then places a tuple containing the tuple space handle into the universal tuple space.

Another type of system agent is the type management agent. Type management agents

are responsible for maintaining the user defined type hierarchy and deciding if a particular

CHAPTER 4. MOBILE LINDA SYSTEM S 48

request can be serviced by a sub-type. Bridging agents are used to connect tuple spaces.

They organise the movement of tuples from one space to another. QoS monitoring agents

watch various aspects of the system and make the information available to the clients via

the tuple space. Other forms of agent can be implemented as necessary.

4.1 .2 T he L2im bo Im plem entation

L2imbo provides a decentralised implementation of the above model. The L2imbo system

provides decentralisation through a combination of replication and the Distributed Tuple

Space (DTS) protocol. The DTS protocol provides facilities for spreading tuple spaces out

among separate mobile hosts. Each tuple space belongs to its own multicast group, and

clients attem pt to maintain a consistent replicated version of the space. This is achieved by

multicasting messages whenever an operation is performed on the space. Clients monitor

these messages and use them to update their copy of the space. The universal tuple space

mentioned in the model is implemented as one of these shared tuple spaces.

The DTS provides facilities for disconnected operation. Each tuple within a tuple

space has a single owner associated with it. Only the owner is allowed to remove a tuple

from the space, but the current owner can pass ownership on as desired. When a host

disconnects from the network it retains its local copy of all tuples. While it is disconnected

it can rd any tuples in the space. However, it is only permitted to perform an in operation

on tuples in the space for which it is the current owner. It can be sure tha t no one else

can perform a similar in operation in its absence since it is the owner. For tuples it does

not own it cannot assume tha t no one is performing an in operation and so, to avoid

allowing multiple in operations on the same tuple, it will not perform the in. Once the

host reconnects, it informs the rest of the system of any removals performed. The host

must therefore buffer any information regarding the removal of tuples during the period of

disconnection, which could potentially constitute a large amount of data. The host then

uses the contents of subsequent messages to determine if any tuples were placed in the

space in its absence. If they were, then the host sends out a request for a copy of the

appropriate tuple.

There are a variety of issues with this particular implementation, the majority of which

stem from the DTS protocol and its implications. By introducing the concept of ownership,

the L2imbo system forfeits many of the characteristics which make Linda desirable in the

first place. The decoupling in identity is lost, as a client must have knowledge of the

CHAPTER 4. MOBILE LINDA SYSTEMS 49

Process A Process B Process A Process B

Disconnected replicas of
same space.

Disconnected replicas of
same space.

Figure 4.1: Linda semantic alteration in L2imbo.

intended recipient of a tuple in order to pass on ownership. The client is also required to

communicate directly with the recipient in order to transfer ownership (although this is

concealed from the application), breaking the space and time decoupling.

The replicated nature of L2imbo raises the issue of resource consumption. In order

to make use of a tuple space as a coordination mechanism, a client must be willing to

keep its own replica of the tuple space — a potentially substantial burden on a resource

impoverished device. This problem is then exacerbated by the issue of ownership. Since

only owners are permitted to remove tuples from a space, there is the potential for infinite

resource consumption. If a client, which shall be labelled Bob, deposits a sizable number

of tuples in the space and then leaves, no other client can remove those tuples until Bob

returns, if ever. If Bob does not return then the tuples will continue to consume resources

on all of the clients participating in that space.

The behaviour of the DTS protocol when the node is disconnected also causes a sig

nificant modification of the traditional Linda semantics. Due to the manner of operation,

it is possible that clients in the system can continue to perform rd operations on a given

tuple after that tuple has been removed from the space and returned to some client as a

result of an in operation. This does not adhere to the Linda model, where the subject of

an in operation is removed from the space.

This break in the semantics can most clearly be seen in a simple example shown in

figure 4.1. On the left of the picture, two processes, A and B , are shown making use of

a L2imbo space containing only two tuples. Tuple Ta is owned by process A and tuple

Tb is owned by process B. At some point the two spaces become disconnected, but due to

CH APTER 4. MOBILE LINDA SYSTE M S 50

the replication mechanism they both still contain the two tuples. After this disconnection,

each process performs two operations, shown on the right in the figure: A performs an in

on tuple Ta followed by a rd on tuple Tb] B performs an in on tuple T b followed by a rd

on tuple Ta - In the traditional Linda semantics, regardless of the timing of the operations,

there is no way of serialising these operations such tha t all four will be satisfied. Either A

will have removed tuple Ta from the space as the first operation, causing the subsequent

rd by B to fail, or B will have removed tuple Tb from the space as the first operation,

causing the subsequent rd by A to fail. In L2imbo, if the two replicated spaces are not in

communication (or the appropriate messages are lost), it is possible for all four of these

operations to be satisfied as the in operations will have no impact on the other replicated

space. Although the ability to return as the result of a rd operation, tuples which have

already been returned as the result of a in operation was proposed as an optimisation

in [RowOO, NPR00] (section 3.3.5), it was only allowable under strict conditions. The

L2imbo system does not meet these conditions.

Issues could also arise from the need to propagate large numbers of messages. Every

operation on a tuple space generates a message to the multicast group. While some of

the messages can be queued and sent in bulk to reduce overheads, it is not clear how

suitable this is for a mobile environment. If the tuple space is under heavy load the

messages could begin to consume significant amounts of network bandwidth, which may

be a precious resource. Part of the problem stems from the unreliable nature of multicast

communications. Since the system cannot be sure tha t every message will reach every

participant, it must be pessimistic and multicast as many operations as possible in the

hope that, eventually, some messages will reach each client. This is the reason for notifying

the group of rd operations on tuples, as, through this, clients can learn of tuples for which

they may have missed the o u t multicast.

4.2 LIME: Linda In a M obile Environm ent

The goal of the LIME [PMR99, MPR01, MPR03] system, developed at Washington Uni

versity at St. Louis, is to provide Linda-like facilities in a mobile environment. It was

designed to handle both physical mobility (host machines moving around, joining and

leaving the network) and logical mobility (in the form of mobile software agents which can

move from one host to another) through the use of transiently shared tuple spaces.

CH APTER 4. MOBILE LINDA SYSTE M S 51

HostHost
Agent BAgent AAgent BAgent A

Engagement

Host-Level Tuple SpaceITS

Figure 4.2: Engagement of ITS’s to form host-level tuple space.

4.2 .1 Transiently Shared Tuple Spaces

The LIME model is oriented around mobile agents. Each mobile software agent in the

system has access to at least one tuple space, called the Interface Tuple Space (ITS), which

is permanently associated with that agent. An ITS contains any tuples the agent wishes

to share with the rest of the world (they can also have private spaces, visible only to the

agent). This ITS supports the basic Linda operations in, rd , inp , rd p and o u t. When

the agent is alone on an unconnected host, the ITS only provides access to tha t agent’s

tuples. However, the extent of what is visible through the ITS can be altered. When more

than one agent exists on a host, their tuple spaces are “engaged” creating a host-level tuple

space. This tuple space is then shared among the agents, becoming visible through the

ITS. Figure 4.2 shows this model in operation. Two agents, A and B, are located on the

same host. Each has access to the set of tuples in their ITS (represented by the different

fill patterns). When the two agents engage, they form a host-level tuple space and now

have access to the union of the two collections of tuples.

When two hosts become connected through the network, a similar engagement takes

place between the two host-level tuple spaces. This creates a federated tuple space which,

again, becomes shared among all the agents in the system. This process can be repeated

as more hosts become connected, increasing the size of the federated tuple space. This is

shown in figure 4.3. Hosts 1 and 2 become connected and engage. All four agents from

the hosts now view the same shared tuple space through their ITSs.

The goal of the LIME system is that all tuple space primitives should maintain the

same semantics irrespective of the nature of what is currently viewed through the ITS, be

it local, host-level or federated.

Whenever a host disconnects, disengagement takes place and all departing spaces are

removed from the federated view. Logical mobility is also supported through this engage

ment and disengagement mechanism. If an individual agent wishes to migrate, it first

CHAPTER 4. MOBILE LINDA SYSTEM S 52

Host 2
Agent DAgent C

Host 1
Agent BAgent A

Host-Level Tuple Space

Engagement

Y Y

Host 2Host 1
Agent DAgent CAgent A Agent B

Federated Tuple Space

Figure 4.3: Engagement of host-level tuple spaces to form federated tuple space.

disengages its ITS from the system and then re-engages when it arrives at its new desti

nation (which may or may not be part of the same federated tuple space). The migrating

agent takes with it any tuples stored within its ITS.

4.2 .2 R eactive Program m ing

LIME also introduces a reactive programming model to Linda. This is similar to event

notification in JavaSpaces (section 3.2.2) and T Spaces (section 3.2.1). In LIME, a process

can register a reactive statement, consisting of an anti-tuple and a section of code, with a

tuple space. Immediately after a tuple is inserted into the space, each reactive statement

in turn (selected in a non-deterministic manner) is evaluated. If the tuple being inserted

matches the anti-tuple for the reactive statement then the corresponding code segment

is executed. Each reactive statement must be evaluated before any further tuple space

operations can be performed. Reactions can be defined as executing once only, or once per

tuple. If once only is specified, the reaction will unregister itself the first time the code

fragment is executed (i.e., a matching tuple is inserted). When once per tuple is specified,

the reaction will remain registered, but will only execute at most once for any given tuple.

CHAPTER 4. MOBILE LINDA SYSTEM S 53

4.2 .3 LIM E in a M obile E nvironm ent

The tightly constrained nature of the LIME model is in conflict with the highly dynamic

nature of a mobile environment. This disparity between model and environment also

manifests itself in the implementation. This section examines the issues present in both

the LIME model and the associated implementation.

T h e L IM E M odel

The primary problem with the LIME model lies in its attem pt to maintain a globally

consistent view across all tuple spaces. While this is feasible within a given host, or

perhaps even a small number of hosts, it is likely to prove impractical for large networks

involving many hosts, where large latencies may result in operations on the federated space

becoming increasingly expensive.

One proposed solution to this problem, presented in [PRMOO], is to assign each host a

set of preference vectors defining information or activities in which the host is interested.

These vectors are then used to group the hosts in an attem pt to place hosts with the

most interests in common in the same group. Essentially, the preference vectors are fed

into a mathematical function which calculates how “happy” two hosts would be together

(essentially a measure of how many interests they have in common). The system then

employs various techniques to attem pt to maximise the happiness of all the groups in the

system. This approach suffers from a number of problems.

First of all, connection no longer guarantees communication, tha t is, just because two

hosts are connected does not mean that they will eventually be in the same group. As such,

two hosts who wish to perform some coordinated task may be unable to do so as they never

end up in the same group. There is also a naming issue in the preference vectors. Imagine,

for example, two hosts who are both interested in cats. One host has the word “cats” in

its preference vector, but the other has “felines” and, as a result, they never end up in the

same group. To address this issue would require either a sophisticated matching algorithm

able to incorporate the nuances of language, a centralised name service, agreement on the

part of developers on a common ontology or the intervention of a third party standards

body to define an appropriate ontology.

Preference vectors also only store the concept of interest with no concept of intent.

Consider a large group of hosts, some of which are interested in obtaining information on

coffee and some of which have lots of information on coffee. Each of the hosts then has

CHAPTER 4. MOBILE LINDA SYSTEM S 54

the word “coffee” , and only the word “coffee” , in their preference vectors. In this way

every host will be just as happy with any other host in the system and the division into

groups performed by the system will be arbitrary. However, this means there will be no

way of ensuring that the system does not result in groups of hosts all seeking information

on coffee with no one to obtain it from, or groups of hosts all with lots of information on

coffee, but no one interested in reading it.

The LIME model also calls for the engagement/disengagement operations to be atomic

across all hosts in the federated space. This means tha t other operations cannot proceed

while hosts are engaging/disengaging. This could prove disastrous in an environment where

machines come and go rapidly, potentially causing significant delays in normal tuple space

operation processing as the engagements/disengagements are dealt with.

The reactive programming model included in LIME also raises certain issues. In par

ticular, the option to have a reaction occur “once per tuple” implies tha t either any “once

per tuple” reaction must maintain a list of all of the tuples which they have acted on

already2 or the tuples must maintain a list of those “once per tuple” reactions which have

been encountered. In either situation, assuming a sufficiently large system there can be

no guarantee that there will be sufficient storage space to maintain either of these lists.

Also, in theory, the contents of the code fragments provided in a reactive statement

can be an arbitrary piece of code of the programmer’s choice. This means tha t these code

fragments can have adverse effects on the running of the LIME system. In the worst case,

the code fragment could execute one of the blocking primitives on the tuple space (i.e.,

in or rd). If no matching tuple is ever inserted then the operation will never return, the

reactive statement will never complete and the tuple space will be unable to make any

further progress. In other cases the reactive statement may contain an infinite loop or even

form an infinite reaction loop by performing an o u t, which triggers some other reactive

statement which then does the same, resulting in livelock3.

T h e L IM E Im p lem en ta tio n

There are a number of issues which arise from the current implementation of LIME. While

not inherent flaws in the model, they axe a consequence of trying to implement a model

2 Also implying that each tuple must be assigned some unique identifier as content is not guaranteed to
be unique.

3This has the potential to be an even more significant problem as it may result from a reaction that
has been placed into the system by some other client application. As such, the programmer will be unable
to foresee it until runtime.

CHAPTER 4. MOBILE LINDA SYSTE M S 55

that is not sympathetic to its intended environment and as such merit discussion.

The majority of the disadvantages to the LIME approach stem from the engagement

and disengagement operations required in the model. Firstly, the need for explicit dis

engagement does not allow machines to come and go as they please, as they will do in

a mobile environment. Instead, all machines must announce their intention to leave and

allow the system to atomically remove them from the federated space. This is impractical

in an environment where the machine can disappear from the network without any notice

(imagine a user with a PDA leaving the catchment area of the network, a laptop running

out of battery power or, indeed, a process crashing).

Secondly, the mechanics of engagement/disengagement do not stand up well to the

rigours of a mobile, ad-hoc network environment. The implementation requires tha t a

single host acts as the engagement leader, and it is through this host th a t all other machines

join a federated space. This approach has the inherent problem tha t each federated space

exists only as long as the leader is present. If chosen badly, the machine may depart

before construction of the federated space can even finish. Finally, since machines can

only depart or join one at a time, no provision is made for the network partitioning, or for

two federated spaces combining.

4.3 CoreLime

CoreLime is a simplified LIME variant developed by Carbunar et al. at Purdue Univer

sity in order to address many of the scalability issues which LIME presented [CW O la,

CW O lb]. It attempts to simplify the ambitious model presented by LIME whilst still

trying to maintain the semantics of the various primitives.

The most fundamental difference between LIME and CoreLime lies in the federated

tuple spaces, or, indeed, the lack thereof. CoreLime does away with federated tuple spaces

altogether. Mobile agents still have ITSs and they can form host-level spaces similar to

tha t shown in figure 4.2. Host-level tuple spaces are no longer perm itted to form federated

tuple spaces. This removes many of the global synchronisation problems which arose from

trying to maintain a consistent view of the world. All the LIME operations are now carried

out only on co-located ITSs. No remote communications axe perm itted at all. Instead,

clients are expected to take advantage of the logical mobility facilities to access other host-

level tuple spaces. If a client wished to perform an in on a remote, host-level tuple space,

CHAPTER 4. MOBILE LINDA SYSTEM S 56

it would first create a new mobile agent which would then migrate to the specified host.

There, it would engage with the other agents and become a part of the host-level tuple

space. This agent would then be able to perform the requisite in before migrating back

to the original host and delivering the retrieved tuple to the client. Similar steps can be

taken to use the other basic primitives on remote tuple spaces.

The CoreLime model also alters somewhat the semantics of reactive statements. Reac

tion statements are now executed concurrently with the user code, avoiding the termination

issues present in the traditional LIME model.

The CoreLime system is a step in the right direction. It removes many of the ineffi

ciencies present in the LIME model, and yet retains much of the functionality in the form

of host-level tuple spaces. However, CoreLime loses much of what made LIME interesting

in the first place. CoreLime removes the ability to federate the tuple spaces. While this

removes those issues related to global consistency, the application developer must now

bear the burden of discovering which tuple spaces are available, connecting to them and

performing operations on them. This is in stark contrast to the model originally envisioned

by the LIME team, where the application developer interacted only with the ITS and the

underlying infrastructure dealt with the communication to, and operations on, other tuple

spaces.

As far as can be told, there is, at the time of writing, no implementation of the

CoreLime model.

4.4 PeerSpaces

PeerSpaces [BMMZ02,BMMZ03] is a system designed to provide generative communica

tions in a peer-to-peer environment. Although PeerSpaces is not strictly designed for use

in a mobile environment, there are enough similarities between mobile and peer-to-peer

environments to warrant discussion of the system.

The PeerSpaces model has been implemented as a service on top of the JXTA [JXT04]

framework developed by Sun Microsystems. JXTA provides a generalised set of low-level

services to aid in the development of peer-to-peer applications.

PeerSpaces uses the JXTA framework to construct an overlay network of PeerSpaces

nodes with each node containing a local tuple space. Operations which cannot be handled

by the local space are passed out to the remote instances using a flooding broadcast. A

CHAPTER 4. MOBILE LINDA SYSTEM S 57

time to live (TTL) field determines the horizon over which the search is performed.

The PeerSpaces system has the advantage of providing a self-organising network which

can deal with nodes coming and going through the JXTA framework. PeerSpaces also

benefits from ongoing efforts to incorporate improved security features into the JXTA

framework. However, there are some disadvantages which make PeerSpaces less than ideal

for mobile environments. Firstly, the JXTA framework makes extensive use of XML in all

of its communication protocols. The extra information embedded in the XML creates an

increase in the amount of data which must be sent as well as an increase in processing and

parsing overhead. Both of these are likely to have an impact on resource impoverished

devices.

Secondly, the PeerSpaces system does not provide a resource management mechanism.

Nodes at present are not capable of controlling the amount of work they carry out on

behalf of other nodes or local applications. This is crucial in a mobile environment where

resources axe scarce. The concept of data expiry (similar to leases) has, however, been

proposed as a future extension.

The costs of constructing and maintaining an overlay network in the face of increasing

amounts of network change are not, at present, well studied or understood. It is possible

that, as the amount of change experienced in the system increases, the amount of effort

expended in maintaining the overlay network could outweigh any benefits derived from

its presence. In addition to this, the flooding broadcast is wasteful of bandwidth and

processing resources, especially at high TTLs. In a mobile environment such waste could

prove troublesome.

4.5 Summary and Conclusions

This chapter has taken a closer look at previous and current attem pts to provide Linda-like

semantics in a mobile environment. In every case there are some incongruities between

the model and the environment which lead to various issues either in the model itself

or in the resultant implementations. In the case of L2imbo, there is a substantial drain

on precious resources for participating in the space combined with the breaking of the

Linda semantics at the expense of its useful decouplings. In LIME, the drive to provide

global consistency along with explicit connection and disconnection operations has led

to a model which does not gel with a highly dynamic environment and a problematic

CHAPTER 4. MOBILE LINDA SYSTEM S 58

implementation. CoreLime, while attempting to solve some of the issues with LIME, has

discarded LIME’s core abstraction, namely the federated spaces. Instead the burden of

managing the changes in the environment is once again passed to the application developer

to bear. PeerSpaces, due to its design as a peer-to-peer system, has not had call to consider

resource consumption as a priority and as such lacks the resource control tha t is necessary

for impoverished mobile devices.

The problems with the various attem pts to provide Linda in a mobile environment

have led some to conclude that the paradigm is ill-suited to such environments. The next

two chapters, however, present a model (chapter 5) and corresponding implementation

(chapter 6) which show that, by taking an environment-centric approach to design, the

advantages of Linda can be made available to application developers wishing to develop

applications for mobile environments.

Chapter 5

The Lindam M odel

The previous chapter highlighted the various issues present in existing systems which

attem pt to provide generative communications in a mobile environment. This chapter

presents Linda™, a model for providing generative communications which has been de

signed around the constraints and demands of the underlying environment. Linda™ pro

vides the abstraction of opportunistic logical spaces allowing Linda-like semantics to be

provided in the face of environmental change. Linda™ also provides leases as a means of

fine-grained resource management.

The chapter opens with some brief notes on the terminology used within the chapter

in section 5.1. Section 5.2 takes the discussion of the environment from section 2.3 and

highlights the resultant implications which must be considered in the design of Linda™.

Section 5.3 enumerates the core design assumptions. The primary features of the Linda™

model are outlined in section 5.4. Finally, section 5.5 summarises the extensions which

have been made to the Linda model in Linda™. Tiamat, an implementation of the Linda™

model, is presented in chapter 6.

Much of the work presented in this chapter has previously been published in [ME03].

5.1 Definition of Terms

M o b ility /M o b ile : The work described is interested solely in physical mobility (i.e.,

when devices are moving around the physical world) and is not concerned with logical

mobility (i.e., where software components move from one location to another). Unless

explicitly stated otherwise, it can be assumed tha t the words mobile and mobility

refer exclusively to physical mobility.

59

CHAPTER 5. THE LINDAM MODEL 60

N o d e/D ev ice : The word node is used to indicate any active participant in a Linda™

system. A single device can contain several nodes (running in separate virtual ma

chines for example); however, for the purposes of this discussion, it is assumed that

each device represents a single node and hence the terms node and device are used

interchangeably.

5.2 Design Principles

As discussed in the previous chapter, many of the existing systems for providing genera

tive communications in mobile environments did not fully consider the environment they

were supposed to operate in, resulting in a variety of issues in both the resultant models

and implementations. In Linda™ the goal is to avoid the same issues by adopting an

environment-centric design.

This section examines what impact, if any, the various characteristics outlined in the

description of the environment from section 2.3 will have on the design of the Linda™

model. It begins by looking at the impact of resources in section 5.2.1, followed by con

nectivity in section 5.2.2 and the effects of mobility and change in section 5.2.3.

5.2.1 R esources

It is assumed that the majority of devices in the environment will possess relatively few and

often limited resources, and, as such, these resources must be carefully managed. While it

is true that, with advances in technology, certain resources could become more abundant

in the future, there are also likely to be corresponding increases in the complexity and

resource requirements of devices. This situation is already experienced by mobile phone

manufactures who, despite numerous improvements in battery technology, are finding

th a t even the improved power supplies are insufficient to meet the demands created by the

increasingly complicated features packed into their phones [Bie04]. Although some devices

within the environment will be resource rich, they will not be in the majority. It would

not be prudent to design a system in which resources are assumed to be bountiful. This

would be designing for the exception rather than the rule. It is better to design for the

general case and provide extensions or optimisations for the exceptions at a later stage.

It is important to note tha t Linda™ will represent only one piece of software on a device.

While it is important that Linda™ be capable of managing the consumption of resources

CHAPTER 5. THE LINDAM MODEL 61

resulting directly from its actions or use, its purpose is not to manage the resources of the

entire device. Such decisions must be taken at a lower level where the state and operation

of the entire device can be assessed. One discussion of how such decisions can be made

and managed can be seen in work by Neugebauer [Neu03]. For Linda™, the implication is

that, while the mechanism for managing resources must be provided, the policy will come

from elsewhere.

5.2.2 C onn ectiv ity

The issues involved in designing and implementing low-level network protocols for opera

tion within mobile ad-hoc environments, as well as the potential interactions with existing

network protocols, is a vast research area and is outwith the scope of this work. It is

through such work that the characteristics of a device’s connectivity will be defined. As

such, Linda™ focuses on how to provide generative communications once such communica

tions channels are in place rather than the intricacies of establishing and managing those

channels at low-levels of protocol.

5.2 .3 M obility and Change

It is important that any model designed for an environment which is characterised by

change should incorporate change as part of the normal system operation, not as an

exceptional circumstance. This is another example of programming for the majority. This

means tha t the Linda™ model should allow devices to come and go frequently without

causing disruption to their own or other devices’ operations.

The frequent mobility and high degree of change exhibited by the environment mean

it would not be prudent to depend upon the presence of other machines, as mobility may

eventually separate devices from those they axe dependent on. In extreme cases, devices

may become completely isolated from others. It is therefore assumed tha t all devices

are operating in an ad-hoc fashion rather than rely expressly on the provision of certain

infrastructure. As such, it is important that Linda™ be designed to allow devices and

their applications to operate in such isolated conditions and can take advantage of, but

not depend upon, other devices if they happen to be present

CHAPTER 5. THE LINDAM MODEL

5.3 Assumptions

62

This section takes the environmental discussions from sections 2.1 and 5.2 and distills

them into a set of assumptions which drive the remainder of the design.

It is assumed in this work that...

• ...the majority of devices will be improverished in one or more resources. It is not

assumed that any resource in particular is in short supply, rather tha t the middleware

must provide mechanisms for the management of resources which can be driven by

external policy.

• ...the majority of devices in the system will be independantly mobile. This means

that no machine can rely upon the provision of a specific other machine to make

progress.

• ...operation in isolation is desireable. In other words, any coordinating applications

or processes residing on a single machine should be able to make progress without

the provision of any other machines.

• ...the environment will be heterogeneous in terms of architecture and capabilities of

devices. No single architecture or platform can be relied upon.

• ...the environment will be heterogeneous in terms of network availability. Even when

other machines are present, it should not be assumed tha t it will be possible to

establish or maintain connection with them.

5.4 Linda™

It was established in section 2.4 tha t the decoupling offered by generative communications

would be advantageous in a mobile environment. As such, the primary goal of the Linda™

model is to provide the well understood semantics of the traditional Linda system in the

environment outlined in section 2.3. This section describes how the Linda™ model provides

those semantics in a mobile environment: opportunistic logical tuple spaces are described

in section 5.4.1; the facilities for direct remote communications are presented in section

5.4.2; and section 5.4.3 introduces leases, the mechanism for resource management.

CHAPTER 5. THE LINDAm MODEL 63

Device Device
out

Process Process Process

in/rd

in/rdout

Device

(T u p le)

(T uple) (T u p le)

out
Process

in/rd
in/rd

in/rd Process

out out

Figure 5.1: The Linda™ model.

5.4.1 O p p o rtu n is tic Logical T up le S paces

From the perspective of a local, application-level process1, Linda™ provides a single space,

as depicted in figure 5.1, through which the process can coordinate with other processes.

The single space allows a process to interact with other processes through a single ab

straction providing a single set of operations. Processes need not concern themselves with

whether the other process they are coordinating with resides locally or remotely (although

they can do so if desired, see section 5.4.2). The processes can perform the normal tuple

space operations (as described in section 2.2) on this space and receive results accordingly.

D esign

As detailed in section 5.2.3, devices in this environment cannot depend on any other device

to provide services or facilities. This immediately dismisses the possibility of client/server

architectures. Instead, each node must be able to operate independently and, as a result,

must contain its own tuple space. While this does place extra resource demands on the

participating devices, it is the only way of guaranteeing the device has access to a tuple

space2. The provision of local tuple spaces allows coordinating processes located on the

same device to make progress even while the device is in complete isolation. The local

h e n c e f o r t h referred to as a ‘p ro cess -
2W h ile it w ou ld , in th eory , b e p o ss ib le to rem o v e so m e o f th e lo c a l sp a c e s b y id e n tify in g th o s e d e v ic e s

w h ich p rim arily o p era te in th e p resen ce o f o th e r d e v ic e s (e .g ., w h en so m e o n e is u s in g th e ir P D A , th e ir
p h o n e is rarely far aw a y), d e te r m in in g w h e n /w h e r e th is w o u ld b e a p p lic a b le w o u ld b e far from tr iv ia l for
a n y real sy s te m . It w ou ld a lso b eco m e e v e n m o re c o m p lic a te d sh o u ld th e d y n a m ic s o f th e s y s t e m ch a n g e .

CHAPTER 5. THE LINDAM MODEL 64

tuple space must be capable of handling the basic Linda operations (see section 2.2). Aside

from this requirement, all other aspects of the operation of the local space are left to the

implementation.

In order to provide the appearance of a single space two possibilities presented them

selves: replication and composition. Replication would involve each device maintaining

its own replica of the whole tuple space. Along with the issues of maintaining consistency,

as discussed in section 4.1.2, replication places substantial resource demands on a device

since each device must agree to store a complete replica of the space. Composition in

volves forming a single space out of a number of other spaces. This has the advantage that

each device must only maintain a subset of the overall space locally. Since the majority

of devices in this environment are resource impoverished (as discussed in section 2.3.4)

it was decided that replication would place too great a burden on participating devices

and, for this reason, the single space presented to the processes should be a composition of

the local spaces from each process. This single space presented is called an Opportunistic

Logical Tuple Space (OLTS).

O p e ra tio n o f O p p o rtu n is tic Logical T up le S pace

The OLTS presented to a process is composed of the local space on the device along with

the local spaces of any other devices which are currently visible. Another Linda™ node

is considered visible if it can be communicated with via some mechanism. The exact

means of this communication may be implemented in different ways, e.g., through direct

communication only, or routed through other nodes, as can its scope, e.g., local nodes only,

or those connected via the Internet3. The concept of visibility is depicted in figure 5.2.

Part (a) shows two isolated Linda™ devices. In this case the logical tuple space presented

to processes residing on the device consists solely of its local space. If these devices become

visible to one another, then the single logical tuple space will now be a combination of the

two physical local spaces, as shown in (b). This allows the process on each device access

to the tuples stored both locally as well as those stored on the other devices.

When a process performs a tuple space operation on the OLTS the same operation is

performed on the local space. When writing to the space with o u t or eval, the default

operation only contacts the local space. In the case of reading from the space with in,

inp, rd or rdp , as well as performing the operation on the local space, Linda™ determines

3The Lindam model does not depend on any particular implementation of visibility, only the concept
of visibility.

CHAPTER 5. THE LINDAM MODEL 65

Visible Device BDevice ADevice A Device B

Local
Tuple
Space

Locai
Tuple
Space

Local
Tuple
Space

Local
Tuple
Space

OLTS for Device A OLTS for Device B

Device B Device CDevice A

Local
Tuple
Space

Local
Tuple
Space

Tuple
Space

Figure 5.2: Opportunistic Logical Tuple Space operation.

which nodes are currently visible. The operation, including a copy of the associated tuple,

is then propagated to the set of currently visible nodes, thus forming the OLTS. These

nodes will then perform the operation on their respective local spaces. If a matching

tuple is found in a remote node, it will be returned to the node from which the operation

originated, assuming it is still visible. If the node is no longer visible then the tuple is

placed back into the space. In the case where multiple remote nodes locate matching

tuples, the first one to be returned to the originator will be accepted and the others will

be returned to their respective spaces.

O p p o rtu n is tic vs. G lobal C onsistency

The devices in the previous example are both presented with identical OLTSs. Linda™,

however, makes no guarantees that such views will always be globally consistent; the

opportunistic nature of the space means it is possible for separate processes using Linda™

to see different logical spaces. This scenario is depicted in part (c) of figure 5.2 where a

third node, C, becomes visible to node B, but not to node A. Node B now has a logical

tuple space consisting of all three tuple spaces. The logical tuple spaces for nodes A and

C, however, consist only of their own local space along with the space from node B.

Although global consistency is not provided, constructing the logical tuple space op

portunistically, as operations are performed, removes the need for explicit connection and

disconnection operations4. In accordance with the design principle identified in section

5.2.3, this means that, from the perspective of the individual nodes, other Linda™ nodes

4 A lth o u g h th e m o d e l d o e s n o t req u ire e x p lic it c o n n e c t io n a n d d isc o n n e c t io n o p e r a t io n s , it d o e s n o t
p rec lu d e a p a r ticu la r im p le m e n ta tio n from p ro v id in g su ch o p e r a t io n s a s o p tio n a l. T h is c o u ld b e d e sir a b le
to a llow a p p lic a tio n d e v e lo p e r s to c h o o se w h e th e r n o d e s p a ss iv e ly or a c t iv e ly p er c e iv e c h a n g e in th e s e t o f
v is ib le n o d e s .

CHAPTER 5. THE LINDAM MODEL 66

can enter or leave the scope of visibility without affecting the semantics of any ongoing

operations (although, if their local space contains matching tuples, their arrival or depar

ture may affect the result of the operation). As such, the opportunistic model gels well

with the environment.

I t should also be noted tha t none of the applications described in section 2.2.5 actually

required global consistency to function — only the ability for a single application to see

the tuples of another is required and this functionality is provided by the OLTS.

This opportunistic model also allows Linda™ to adapt to changes in the mobile envi

ronment and, from the process’ perspective, such change is absorbed by the model and

manifests as the removal or insertion of a number of tuples from or into the OLTS. By

being absorbed by the model, change becomes a normal part of the lifecycle of the system,

as called for in section 5.2.3, rather than an exceptional circumstance.

5.4 .2 D irect R em ote C om m unications

The abstraction over underlying change provided by the logical tuple space allows processes

to function without direct knowledge of remote Linda™ nodes. However, it is im portant to

appreciate that in some situations, processes can make good use of such information and

that Linda™ should not prevent a process from obtaining this knowledge if it so desires.

As such, Linda™ offers processes the means to interact with specific nodes when required.

This functionality is particularly useful in the case of o u t and eval where the local space

may refuse to accept the tuple due to resource shortages (see Section 5.4.3), or in the

case where the process wants to make tuples available to other Linda™ nodes even after

it leaves.

In order to support this, each local tuple space in Linda™ contains a special tuple.

This tuple contains a handle on the space as well some information about tha t space,

e.g., whether the local space provides a persistence mechanism or not. Processes can read

these tuples and use the handles to perform operations on specific remote spaces. All of

the operations have special versions which take these handles and perform the operation

requested on the remote space specified. If the destination is no longer available, the

operation is abandoned.

An alternative means of supporting direct remote communications is also provided in

the case of o u t and eval by way of a third version of each operation. These take a tuple

that was returned as a result of a prior in, inp , rd or r d p operation. Linda™ will then

CHAPTER 5. THE LINDAM MODEL 67

attempt to satisfy the operation at the node where the given tuple was obtained (which

may be a remote node or may be the local node). If the desired destination is no longer

visible, the operation fails.

5.4.3 R esource M anagem ent

As discussed in section 5.2.1, Linda™ should provide a mechanism through which the po

tentially limited resources of the device can be managed. For this reason, the Linda™, model

includes leasing as a mechanism for fine-grained resource management within Linda™

nodes. These leases operate in a similar fashion to the leases used in JavaSpaces (see sec

tion 3.2.2) and the QoS guarantees in L2imbo (see section 4.1), although Linda™ leases can

encompass more than just time information. Due to the asynchronous, identity-separated

nature of generative communications, it is not normally possible to identify tuples as being

garbage, meaning that any resources consumed by the tuple can never be recovered. In

Linda™, the leasing model allows tighter controls to be placed on how long tuples may

reside in the space before being removed. By also extending the leasing mechanism to

all operations, and by allowing lease expiration to be defined in terms of resources used,

as well as time, a Linda™ node can control access to its resources on a resource by re

source basis, The leasing mechanism also allows application programmers to specify upper

boundaries on the availability of their tuples.

Linda™ defines a leasing model in which every operation on the tuple space is leased.

Whenever a process performs an operation, it must first negotiate a lease with a Linda™

node. These leases represent the effort, in terms of resources, a Linda™ node is willing to

dedicate to carrying out the operation. These leases may be based on time or on other

measures such as the number of remote nodes contacted. Each lease incorporates the

concept of expiration, after which the leased resource may be reclaimed if applicable. The

final decision as to what lease is actually granted, or if a lease is granted at all, is made by

the Linda™ node. Each node is responsible for managing only its own resources and, as

such, cannot make guarantees on behalf of another node. For this reason, leases are only

valid for the node which grants them and are not transferable across nodes. Any Linda™

node which, during the course of performing an operation, places demands on another, is

responsible for negotiating any further leases.

Due to the unpredictable nature of the environment, the leases offered do not represent

absolute guarantees. Rather they represent a best-effort on the part of the system to

CHAPTER 5. THE LINDAM MODEL 68

satisfy the process’ request. If circumstances change substantially, a Linda™ node may

revoke the lease; although this behaviour should only be employed as a last resort to avoid

undermining the leasing system altogether.

For the o u t operation, once the lease expires, the tuple may be removed from the space

at any time. For the eval operation, when the lease expires the resultant computation (if

it has not already finished) may be halted and the tuple may be removed. In the case of

in, inp, rd and rd p , once the lease expires the Linda™ node may stop trying to satisfy

the request and, assuming no match has already been found, return nothing.

5.5 Linda Semantics

The Linda™ model attem pts to provide the well understood Linda semantics in a mobile

environment. Over the course of designing the Linda™ model, however, it became clear

that certain extensions to the semantics could prove useful. The extensions presented in

this chapter are:

o u t, eval: The o u t and eval operations have changed somewhat due to the introduction

of leases. Tuples placed into the space will no longer remain there indefinitely, and

instead may be deleted from the space at any point after their lease has expired. This

is vital in order to allow the control and reclamation of space in order to preserve

resources.

in , rd : The in and rd operations will no longer block indefinitely but may be terminated

at any point after their leases have expired. This too is necessary to avoid the

indefinite consumption of resources.

inp , rdp : Remain unchanged.

Further extensions to the semantics as a result of the implementation will be presented

in section 6.5 and section 7.2 will summarise these extensions.

5.6 Summary

This chapter has presented the Linda™ model for providing Linda-like semantics in a mo

bile environment. At the heart of the model is the concept of the Opportunistic Logical

Tuple Space which provides each process with the abstraction of a single tuple space. The

CHAPTER 5. THE LINDAM MODEL 69

OLTS allows each device to possess its own tuple space, as required in section 5.2.3, which

are then connected opportunistically as operations are performed to provide the abstrac

tion of a single logical space. The opportunistic nature of the OLTS means tha t no explicit

connection or disconnection operations are required, meeting the design principle in section

5.2.3. As discussed in section 5.4.1, the OLTS also allows change in the underlying system

to be modelled as part of the normal operation of the model, rather than as an exceptional

circumstance. Also described were the extensions to the basic Linda model which have

been incorporated into Linda™, namely leases and direct remote communication. Leases

allow for fine-grained resource control to meet the design principle introduced in section

5.2.1, as well as the capacity for tuple garbage collection. Direct remote communication

is provided to allow application developers to break through the OLTS abstraction when

absolutely necessary.

An implementation of the Linda™ model, Tiamat, will be presented in the next chapter.

Chapter 6

Tiamat

This chapter describes Tiamat, a proof of concept implementation of the Linda™, model.

An overview of the architecture of Tiamat is discussed in section 6.1. This is followed by

a closer examination of the three main components of the architecture: the lease manager

in section 6.2; the tuple space in section 6.3; and the communications manager in section

6.4. Section 6.5 contains a discussion of the modifications to the Linda semantics made

during the implementation of Tiamat.

Some of the work presented in this chapter has previously been published in [ME03].

6.1 Tiamat Architecture

The Tiamat system has been implemented in Java. Java was chosen due to the ease

of portability and the fact that VM implementations are available for a wide variety of

devices including mobile devices such as PDAs and mobiles phones tha t are expected to

be prevalent in the environment (section 2.3.4). An overview of the architecture of a

Tiamat instance is presented in figure 6.1. The system consists of three components: the

lease manager, which is responsible for the allocation and management of leases; the tuple

space, which stores the tuples; and the communications manager, which is responsible for

propagating operations to and receiving responses from other remote Tiam at instances,

thus implementing the Opportunistic Logical Tuple Space (OLTS).

A single Java VM can host multiple Tiam at instances. Each instance operates inde

pendently of the others and instances operating in the same VM do not share any Tiamat

runtime data structures or other resources. A Java RMI [PM01] interface is also provided

to allow multiple processes on the same machine to use a single space.

70

CHAPTER 6. TIAMAT 71

TiamatLease
Manager OperationsOperation

Tuple SpaceA pplication^
ResponseResponse

Network
CommunicationsOperation Operations Communications

ManagerApplication
Response

Response

Figure 6.1: A Tiamat instance.

Semantic separation is necessary when two different applications make use of the same

type of tuple, but for very different purposes. If the two applications share the same tuple

space, they will begin to interfere with each other due to the reuse of the particular tuple

class. In Tiamat, the separate applications would be run in separate VMs and the Tiamat

instances in those VMs set to use a different port for visibility (see section 6.4.1). In this

way the applications are allowed to operate without interfering.

6.1.1 T up les

A tuple in Tiamat is implemented as a Java object which implements the provided interface

tiam at .tu p le s .T u p le presented in listing 6.1. While modifying a tuple in situ might be

useful for certain applications it would make it more difficult to manage resources; the

system would not be able to make a static assessment of the storage requirements for

a particular tuple at the time of the operation. Instead, the system would be forced

to trap each modification of the tuple and ensure that it does not exceed its resource

limits. The cost associated with trapping every field modification makes this impractical.

To remedy this, whenever a tuple is passed to Tiamat, before any other operation takes

place, a copy of the tuple is taken using the Java serialisation mechanism. As such, all

tuples must implement the ja v a . i o . S e r ia l iz a b le interface. To enforce this, the Tuple

interface extends S e r ia l iz a b le . The Java serialisation mechanism was chosen to remove

the need to custom-craft a copy mechanism. Most Java programmers are also likely to be

package t i amat . tuples ;
"A

im port j ava . io . S e r i a l i z a b l e ;
publ i c i n t e r f a c e Tuple ex t ends S e r i a l i z a b l e {
}

Listing 6.1: The Tuple Interface

CHAPTER 6. T IAMAT 72

Lease Manager ResourceLease Requester

^ £2a3S2e«on
T im e

Figure 6.2: Lease negotiation time-line.

familiar with its semantics. Although copying a tuple can be a potentially costly operation

(particularly for large tuples), it ensures that the application cannot modify the tuple once

it has been placed into the space. It would also have been possible to provide a class which

represents tuples rather than an interface. This approach, however, would make it more

difficult to adapt existing applications to use Tiamat. With an interface, any object can

be designated as being a tuple without having to modify the class hierarchy. Since Java

does not allow multiple-inheritance existing class hierarchies would have to be modified to

accommodate a tuple class.

6 .2 L e a se M a n a g e r

As described in the Linda™ model in section 5.4.3, every operation is leased to allow for

resource management. The assignment of leases in Tiamat is handled by the lease manager

which acts as the first port of call for any operation.

6.2.1 P ro g ra m m e r M odel

For the application programmer, all interaction with the lease manager takes place through

Lease Requesters. Every operation in Tiamat requires that a lease requester is provided

along with the tuple for the operation. The lease requester is responsible for negotiating

the exact details of the lease for a single operation on the space. This negotiation consists of

three stages: request; offer; accept/reject. This is shown in figure 6.2. The lease requester

CHAPTER 6. TIAM AT 73

requests a lease with the duration1 desired by the application. The lease manager takes

this request and offers the requester a lease based on the resources available to it. The lease

that is offered may have a smaller duration than tha t requested if insufficient resources

are available (the lease manager may refuse to offer any lease at all). It may also have a

larger duration if, for example, the lease manager allocates particular resources in blocks

to simplify their management. Once a lease is offered, the lease requester must either

accept or decline the lease. If the lease is declined, or if no lease is offered, then no further

action is taken by Tiamat. If the lease is accepted then the operation is passed to the

tuple space (see section 6.3).

Where appropriate, any resources which are to be consumed should be considered to

be consumed at the point of offering the lease to prevent the application disrupting the

system by delaying its response. Such potential for disruption can be seen clearly in the

case of leases based around time. If an application requested and was offered a lease with

a long lifetime at a time when the system was under low load, but delayed its acceptance

until the system was under heavy load, it could effectively usurp the authority of the lease

manager.

6.2 .2 Im plem entation

Lease requesters are represented by the tiamat. leases .LeaseRequester class, the code

for which can be seen in listing 6.2. LeaseRequester is an abstract class, each subclass

of which is designed to request a different type of lease (e.g., one which is limited by time

or by number of remote communications permitted). Providing the LeaseRequester as

an abstract class allows for the use of new types of lease by creating a new subclass of

LeaseRequester for that type and modifying the lease manager to evaluate and issue

leases of that type.

The programmer configures a LeaseRequester instance to look for a particular type

1As discussed in section 5.4.3 the duration of a lease may be temporal or may be defined in terms of
other resources.

package t i a m a t . le a se s ;
p u b lic a b s t r a c t c la ss L easeR equester {

p u b lic a b s t r a c t Lease req u es t () ;
p u b lic a b s t r a c t LeaseResponse of fe r (Lease 1);

}
Listing 6.2: The LeaseR equester Class

CHAPTER 6. T IAM AT 74

of lease by choosing the appropriate subclass and to look for a particular duration (either

temporal or another appropriate measure) by passing the appropriate parameters to the

constructor. This LeaseR equester is then passed in during the method invocation which

starts the operation. The lease manager calls the request method on the L easeR equester

which returns a t i a m a t . l e a s e s . Lease object representing the lease which it desires. The

lease manager examines the lease and then either constructs another Lease object repre

senting the lease it is willing to offer, or throws a tiam a t . l e a s e s . LeaseR efusedException

if it is unwilling to offer any lease at all. A copy of this lease is then passed to the offer

method on the LeaseR equester. An instance of t ia m a t. l e a s e s . LeaseResponse is then

returned by this method indicating acceptance or rejection of the lease. A copy of the

lease is passed to ensure that the application cannot make modifications to the duration

of the lease.

6.3 Tuple Space

Assuming that the lease offered by Tiamat has been accepted by the application, the

tuple for the operation, along with its newly assigned lease, is then passed to the local

tuple space, as described in the Linda™, model in section 5.4.1. The local space will

either store the tuple and lease or search for possible matches, as appropriate. The local

tuple space currently provided in Tiam at is a custom-built tuple space which features

extended matching semantics and a fine-grained locking mechanism for concurrent access.

The main reason for custom building a tuple space for Tiamat, as opposed to using an

existing tuple space implementation, was to establish exactly what was required of a tuple

space implementation in order to be used to provide the Linda™ semantics. The resulting

requirements are discussed further in section 6.3.5. The tuple space in Tiam at can be used

as a stand-alone tuple space with no modifications.

6.3.1 M atch ing Sem antics

As discussed in section 2.2, the traditional Linda semantics only allow a search for fields

in a tuple with either an exact value match (actuals) or a type match (formals). As

introduced in section 3.3, in Java-based tuple spaces, the matching semantics are often

extended to take advantage of Java’s polymorphism and better fit the semantics of Java

(and those of object-oriented languages in general). The tuple space created for use in

CHAPTER 6. TIAM AT 75

Tiamat will allow subclasses to be matched to tuples. It also allows for the creation and

use of user-defined match semantics.

The default matching semantics provided in the tuple space work as follows: Assume

that tuple A is the tuple being used for the search (i.e., the input to an in, inp , rd or rd p)

and tuple B is the tuple it is being compared to for a match. The first level of comparison

is at the type level, if B is not the same class as or a subclass of A, then there is no match.

If it is, then the fields must be compared. Each field in A is compared to the corresponding

field in B using the field’s equals method. If the result is true, then the fields match. Java

‘null’ values are used as wild-cards in the search tuple, so if an object reference field in A

is null then it will match any value in the corresponding field in B.

The matching mechanism will always prefer an exact class match to a subclass match.

This is done to try and increase the number of potential matches the system can make.

If the matching mechanism were to match on subclasses first, then any later requests for

tuples specifically of that subclass may not find a match.

Using a different set of semantics, for example searching for an exactly null value, is

made possible through the A ntiTuple interface presented in listing 6.3. The A ntiTuple

interface contains two methods: match; and tuplelD. The match method takes a single

Tuple and returns true if the given Tuple instance matches the A ntiTuple instance and

false if it does not. The tu p le ID method returns a C lass object representing the class

of object being sought by this A ntiTuple. By implementing the A ntiTuple interface and

providing an implementation for the match method an arbitrary set of matching semantics

can be provided. In order to know what class is being searched for, an appropriate C lass

object must be provided to the A ntiTuple; the interface does not explicitly define the

mechanism for doing this.

Allowing the match method to contain arbitrary code raises the possibility of the Tuple

object which is passed in being modified. This would result in an in situ modification,

already identified as being undesirable in section 6.1.1. To avoid this situation, the match

, ----------------------

package t i a m a t . tu p les ;
pub l ic i n t e r f a c e AntiTuple ex ten d s Tuple{

public boolean match (Tuple t) ;
public Class t u p l e ID () ;

}__

Listing 6.3: The A ntiTuple Interface

CHAPTER 6. TIAM AT 76

method is passed a copy of the Tuple instead.

6.3.2 Eval

Often overlooked in many tuple space implementations is the eval operation. However,

it can provide a useful mechanism in a mobile environment for allowing processor impov

erished devices to offload computational tasks to more powerful machines without having

those machines know the nature of the computation beforehand.

The tuple space used in Tiam at provides the eval operation in the form of an inter

face presented in listing 6.4. The tiam a t . t u p l e s . E valab le interface extends Tuple and

exports a single method doEval. When an eval operation is started, the tuple in question

is passed to a pool of threads. At some point, one of these threads will take the tuple

and call the doEval method. This method should contain the application level code. Once

the doEval method returns, the tuple is placed into the space as if it were part of an o u t

operation.

While this offers a quick and simple way of providing the eval operation, it has a

number of drawbacks. The fact tha t the user can put arbitrary code into the doEval

method raises the potential for deadlock, livelock or infinite loops to arise, all of which

provide a drain on resources. While the eval threads can be (and are) kept at the lowest

priority to ensure they have minimal impact on the operation of the rest of the system,

this does not altogether solve the problem — even at low priority the threads will still be

consuming resources. It also makes providing meaningful leases to eval operations very

difficult. Static code analysis to determine how long an arbitrary piece of code will take

to complete could only provide a guess at best and is, in fact, an instance of the halting

problem. To compound matters, since Java no longer allows the forceful termination of

threads, once a lease is expired there may be no way of bringing the eval operation to a

close.

Determining how long an arbitrary piece of code will take to run or identifying badly

behaved code through static analysis is incredibly difficult, if not impossible, and is far

package t i a m a t . tu p le s ;
pub l ic i n t e r f a c e Evalab le ex ten d s Tuple{

public void doEval () ;
}

Listing 6.4: The E valab le Interface

CHAPTER 6. T IA M A T 77

Class FooClass Foo

Tuples

Anti-Tuples

Class SubFoo SubFoo2 Class SubFoo3

Subclasses

Figure 6.3: Tiam at tuple space — core data structure.

outside the boundaries of this work. Developers should already be aware of these issues

as they are also present when making use of Java threads. For the time being, it is

suggested tha t application developers exercise the same caution in the development of

doEval methods as when they are developing threads. Also, the lease manager must be

pessimistic about the potential costs of an eval operation.

6.3.3 Core D a ta Structure

The core data structure of the tuple space is a tree which represents the hierarchy of

the Java classes which are in use in the space. A portion of the structure is depicted in

figure 6.3. Each node represents a single class and contains four lists: an unordered list

of all the tuples of that class currently stored in the space; two unordered lists containing

anti-tuples2 for tha t class which are still awaiting a match; and a list containing references

to the nodes for the subclasses of tha t class. These nodes are also stored in a hash-table

keyed on class, to allow for quick retrieval of the class during searches. Note tha t although

Object objects cannot be placed into the tuple space (they cannot implement the Tuple

interface), an entry is still maintained for them. This is used since A ntiTuples can still

be used to search for items of class Object (indicating they will accept any tuple which

meets their other criteria).

2 An anti-tuple is a high-level, general term for any tuple which has been provided as the input for an
in, inp, rd or rdp operation. This should not be confused with the specific, implementation level, Java
interface, AntiTuple which is a tuple that is implemented to provide extended matching facilities. An
anti-tuple can be a class which implements Tuple (indicating that it uses the default matching semantics)
or AntiTuple (indicating it provides its own matching semantics).

CHAPTER 6. TIAM AT 78

Separate lists are kept for those anti-tuples which represent rd operations and those

that represent in operations. Splitting the anti-tuples into two can raise the number of

matches created by a single tuple, since an individual tuple can be used to satisfy multiple

rd operations but only a single in operation. During a matching operation, therefore,

tuples are checked against the rd list before the in list.

Unlike the list of subclasses, there is no need to maintain an explicit reference to the

superclass as this can be obtained when needed from the Java system.

O p era tio n s

The function of the data structure is best explained through examination of the various

tuple space operations. Throughout the following discussion it is assumed that the system

is operating in a single-threaded environment. For a description of how the system copes

with concurrency, see section 6.3.4.

For the o u t operation, assuming the tree is already constructed, the system gets the

C lass object for the tuple and uses the hash-table to retrieve the appropriate class entry.

The lists of anti-tuples contained in tha t entry are then scanned. If a match is found in

the in list, the tuple is returned to the caller of the in operation, the anti-tuple is removed

from the list and the o u t operation concludes. If no matching anti-tuple is found or the

only matches are in the rd list, then the system works its way up the tree of classes and

checks for matching anti-tuples in the superclasses. Again, a matching in anti-tuple will

result in the conclusion of the operation. If the only matching anti-tuples are from rd

operations then the process will continue until the top of the tree is reached. At this point

the system returns to the node at which the search began and adds the tuple to the list

of tuples stored there.

For the in and rd operations, assuming the tree is already constructed, the process is

similar to that of the o u t operation, only in the opposite direction. The system begins

by retrieving the hash-table entry for the class and searching the list of tuples there. If

no match is found, then the tuple lists in each of the subclasses are searched. If no match

is found there, then the subgraph for tha t subclass is searched. Once the operation has

searched all of the subclasses, if no match has been found, it returns to the starting node

and adds the anti-tuple to the appropriate list. The in p and rd p operations omit this

final step. Since these operations return immediately if no match is found, there is no

need to store the anti-tuple.

CHAPTER 6. T IA M A T 79

C o n s tru c tio n

Construction of the tree takes place on-the-fly as operations are performed. Most of the

construction is done during o u t operations. When an o u t operation is performed and the

appropriate node is not located, then tha t node is constructed. The node must then be

attached to the appropriate point in the tree. This is done by taking the node’s superclass

and checking the hash-table for a node representing it. If the superclass already has a

node then all tha t remains is to update the subclass list on the superclass’s node. If the

superclass is also lacking a node, then it too must be constructed and the system must

then check for its superclass. This continues until a class is reached for which a node

already exists and which contains a matching anti-tuple or the top of the class hierarchy

is reached.

For the in and rd operations, if no node is found for the appropriate class, then that

node, and only tha t node, must be constructed. There is no point in traversing up the

hierarchy as only subclasses can provide a match. There is no point in (nor mechanism

for) searching down the hierarchy, as if there were any matching tuples from subclasses,

then the node would already exist.

For the in p and rd p operations, if no node is found for the appropriate class, the

operation can return since there are no tuples of either this class or any of its subclasses

in the space. No tree construction takes place in this instance.

6.3 .4 Locking M echanism

The description above assumes a single thread of operation. The Tiam at system is designed

to operate in concurrent environments providing generative communications to multiple

applications across a number of devices. For this reason it was im portant tha t the system

deal with concurrent accesses to the tuple space. While a global lock on the tuple space

is a possible solution, it would have been impractical and limiting. If, for example, two

applications were looking for tuples in separate branches of the class hierarchy, it would

make sense to allow them both to search the space at once. In order to provide finer

grained concurrent access, the appropriate locking mechanisms had to be built into the

tuple space itself.

The primary goal of the locking mechanism designed for this tuple space is to allow

concurrent accesses and modifications to the core data structure while maintaining one

invariant: there should never be a situation where a tuple and a matching anti-tuple should

CHAPTER 6. TIAM AT 80

both be stored in the space.

Initially it will be assumed tha t all necessary portions of the data structure have been

constructed. When an o u t operation is performed, the system starts by retrieving the

appropriate node from the hash-table and then attem pts to take out a node-level lock on

tha t node. Each node in the tree has its own node-level lock which ensures tha t only one

process can be reading or modifying the lists in that node at any given time. Once the

node-level lock is obtained, the system searches the lists as before. If no match is found,

then the superclass’s node is retrieved and the system attem pts to obtain a node-level lock

on that. Note that the node-level lock on the original node is maintained (the reasons

for which will become clear below). Once the lock is obtained, the superclass’s node is

searched. If no match is found then the lock is released and the next superclass’s node

is retrieved and a lock taken out on it. This continues until either a matching anti-tuple

from an in operation is found or the top of the hierarchy is reached. The node-level lock

on the original node is maintained throughout. Once searching is complete, the tuple is

added to the list of stored tuples in the original node (assuming it was not matched during

the search) and the node-level lock is released.

For the in and rd operations, the locking operation is almost identical, with one

exception. Once the starting node has been retrieved, locked and searched, the operation’s

anti-tuple is added to the appropriate list and the lock is released. The system then

attem pts to get the node-level lock for the first subclass which is then searched and released.

This continues in a depth-first search of the entire sub-hierarchy from the initial node.

As the operations proceed, the in and rd will become blocked by any o u t operation;

however, since they will not be holding any locks, the o u t operations will continue unhin

dered. Once the o u t operations have finished searching the tree, they release their locks

and the in and rds are allowed to continue. Since the in and rd operations are blocked

by an ongoing o u t they cannot skip over that class until the appropriate tuple has been

placed into the space, thereby ensuring that a potential match cannot be overlooked.

6 .3 .5 U sing A lternative Tuple Spaces

As was stated at the outset of this section, part of the motivation for implementing a new

tuple space for Tiamat was to investigate what demands were made of such a tuple space.

Having built the space, it is now clear that, while other tuple space implementations could

be used at the heart of Tiamat, there is one complicating factor — leases. The Linda™

CHAPTER 6. T IAM AT 81

model requires that every operation be leased. In practical terms, this means tha t every

tuple (which is representative of an operation) will have an associated lease which must be

stored along with it. Any implementation must therefore be able to manage the association

between tuples and their lease. In the tuple space which was custom built for Tiamat,

leases are incorporated into the design. In T iam at’s tuple space implementation, leases

are wrapped up with the tuples when they are placed into the space. The majority of

tuple space implementations, however, do not expect to have to deal with leases. There

are three suggested approaches to address this issue: bundling; hashing; and source-code

modification.

Bundling involves placing the tuple and its lease in a wrapper object which is then

passed to the space as if it were a tuple. As long as the matching semantics provided

ignore the lease and look at the contents of the tuple during matching this will work.

However, this could make garbage collection impractical, if not impossible. Assuming the

space provides only the basic tuple space operations, the collector would first need to know

a set of operations which, when performed, would retrieve every tuple from the space at

least once. Assuming such a set of operations could be determined, the collector would

then have to examine each lease, decide which tuples are garbage and then remove them

from the space. If the space provides some of the extended Linda operations (see section

3.3), copy-collect in particular, or provides some way to iterate over all of the tuples in

the space, then garbage collection is not difficult.

Hashing would involve setting up an auxiliary hash-table. The hash-table would be

keyed on tuple and would store the lease associated with a given tuple. The tuple itself

would then be stored in the space. This workaround would allow for the easy scanning

of lease information for the purposes of garbage collection. In addition, since a reference

to the tuple is already stored along with the lease as the hash-table key, retrieving the

appropriate tuple for each lease is easy. This workaround could fail in cases where the

tuple space takes a copy of the tuple to be stored. Depending on the tuple’s hashcode and

equals methods, once the copy has been taken, it may no longer be possible to match it to

the original tuple or its associated lease. Tiam at cannot defer the copying process to the

tuple space as it must have a static copy of the tuple for the lease manager to decide on an

appropriate lease. There could also be complications if the space made any modifications

to the tuple it was storing as, again, it may not be possible to match the tuple to its lease

afterwards.

CHAPTER 6. TIAMAT 82

TiamatLease
Manager 2) Operation^

Tuple Space
1) in or rd Operation

3) No matchApplication

Communications
Manager

4) Request
for remote
operation

Figure 6.4: Unsatisfied operations are passed to the communications manager.

Modification is the most drastic workaround and would entail modifying the behaviour

of the tuple space to deal with leases in an appropriate manner. Although this would result

in the best outcome with the fewest complications, it would only be possible if the source

code to the tuple space was available. It is also likely to be the most time-consuming

and labour-intensive of the workarounds depending on the complexity and nature of the

particular tuple space implementation.

6 .4 C o m m u n ic a t io n s M a n a g e r

As described in the Lindam model (section 5.4.1), in the case of a basic o u t or eval opera

tion, once the tuple has been inserted into the local space, no more action is taken. In the

case of the in, inp. rd or r d p operations, there may be a further stage. If no appropriate

match is found in the local tuple space, these operations are passed to the Communications

Manager as shown in figure 6.4. The Communications Manager is responsible for establish

ing communications with, receiving operations from, and propagating operations to, other

Tiamat nodes. The following sections describe an initial prototype of the communications

manager (section 6.4.1) and an improved version (section 6.4.3).

6.4.1 In it ia l P ro to ty p e

O p e ra tio n a l D escrip tion

An operation is passed to the Communications Manager only if it cannot be satisfied

locally. The communications manager determines which nodes are visible (see section

titled “Visibility” below) and then contacts each visible node in turn and propagates the

operation to them until either the operation is satisfied or all visible nodes have been

contacted.

CHAPTER 6. TIAM AT 83

As described in section 5.4.3, leases are only valid for the Tiam at instance in which they

are issued, since no instance can be responsible for the allocation and management of the

resources of another. As such, the Communication Manager is responsible for negotiating

new leases with the remote instances. The Lease object currently attached to the tuple is

given to a LeaseRequester and this is passed along with the tuple to the remote instances.

The LeaseRequester will request a lease identical to the one it has.

Visibility

Visibility is a core concept in the Lindam model (see section 5.4.1), with its exact definition

being left up to the implementation. A Tiamat instance is defined as visible if it responds

to a multicast on a known port. This approach to visibility is not necessarily the most

reliable, as there may be instances tha t can be communicated with, but do not get the

multicast, because standard multicast is a lossy protocol. However, lossy multicast is

appropriate for a simple implementation, works well in small scale networks and is ideal

for a proof of concept3.

More elaborate schemes are possible using other instances as proxies to forward infor

mation, most likely forming some sort of overlay network. This, however, is non-trivial

and is discussed further in section 9.1.

As mentioned in section 6.1, multicast can also be used to provide semantic separation

for applications. If two applications, A and B, which use the same class of tuple for

different purposes4 both want to use Tiamat, they can avoid interference by each having

their Tiamat instances use a different multicast port. Since the Tiam at instances being

used by A will now not respond to multicasts coming from instances being used by B, they

will not be considered visible and no interference will occur.

6.4.2 P rotoco l O peration

When the communications manager receives an operation which needs to be propagated

to other nodes, the first step is to find out which nodes are visible. This is achieved by

sending out a multicast packet with the appropriate message as shown in figure 6.5(a).

3This mechanism was also employed in favour of an existing discovery protocol as it is provided by
default in the JDK and has low overheads in terms of space used in the UDP packet which will become
important in section 6.4.3.

4Determining where and when this can happen is a deployment issue. The system architect would need
to identify the potential clash before-hand. This is a general problem with any generalised data store as
the storage is independent of semantics. Exact mechanisms for determining these clashes axe outwith the
scope of this dissertation.

CHAPTER 6. TIAMAT 84

Tiamat Tiamat

Multi c a s t (" H e l l o ” , ID,
i PAddre ss , Port)

Tiamat Tiamat

Tiamat Tiamat
Uni cast ("Response”,-.)

No
MatchTuple,LeaseRequesterTS TS

Tiamat Tiamat

Match MatchTS TS

(a) O r ig in a to r m u lt ic a s ts t o d isco v e r (b) N o d e rece iv es r e sp o n se s an d p r o p a g a te s
o th e r n o d es . o p e r a t io n .

Figure 6.5: Initial prototype discovery operation.

Any visible nodes will respond to this packet via unicast. Once they are in communication,

the communications manager will negotiate a lease with and pass the appropriate tuple

on to the receiver as shown in figure 6.5(b). If any receiving node has a match for the

operation, then it contacts the originating node via multicast once again to inform it of

the match. Assuming this is the first such response, the communications manager will

accept the result and return it to the calling application, depicted in figure 6.6(a). If any

subsequent nodes contact the originator with a result, then the communications manager

will reject them as shown in figure 6.6(b).

Cache Lists

While the above implementation of visibility is simple, it is also inefficient — every remote

operation requires the same phase of multicasting even if nothing has changed. In order to

remove some of this inefficiency, Tiamat implements cache lists where references to Tiamat

instances that have previously responded to the visibility multicast are retained.

When a remote operation has to be performed, Tiamat begins by attem pting to contact

the Tiamat instances in the cache list first. If any instance on the cache list cannot be

reached via unicast, its entry is removed. Only if the operation has not been satisfied

when the end of the list is reached does the system resort to performing the multicast.

Any instances which respond to the multicast are added to the end of the list.

This mechanism of removing Tiamat instances which do not respond, and adding new

instances to the end of the list, also has the effect of pushing those instances which have

CHAPTER 6. T IAMAT 85

No
Match

(a) O r ig in a to r r ece iv e s an d a c c e p ts first re- (b) O r ig in a to r re jec ts s u b s e q u e n t r esp o n se ,
sp o n se .

Figure 6.6: Returning of results.

remained in contact for the longest to the top of the list. In the case of devices whose

movements are closely related (for example, a person’s phone and their PDA), this has the

advantage of ensuring that the instances at the top of the list are most likely to respond.

This is an unexpected benefit of the list management.

6.4 .3 Im p ro v in g th e C o m m u n ic a tio n s M a n a g e r

The above implementation results in one core weakness which must be addressed, only

nodes which respond to the initial multicast or are already in the cache list will receive

the operation. The protocol does not make any provision for propagating operations to

nodes which appear after that point. This can be broken down into two smaller problems:

detection, noticing that a new node has become visible; and reconciliation, passing on any

outstanding operations which the new node is not presently aware of. These two problems

are addressed by heartbeats and synchronisation respectively.

D iscovery: H e a r tb e a ts

In the original implementation, a node only checks for visible nodes at the time the op

eration takes place. It would, in the general case, be undesirable for each operation to

depend on another, subsequent operation in order to detect that new nodes have become

visible as the time period between operations is completely unpredictable. A more reliable

mechanism is needed and this is where a heartbeat comes in.

TiamatTiamat

No
MatchTSTS

Tiamat Tiamat

Match MatchTS TS

Tiamat

TS

Tiamat ,Tuple placed
back in TS

M atchTS

T i a m a t

Tiamat

CHAPTER 6. T IAM AT 86

In the simplest implementation, every node in the system would emit a periodic heart

beat via multicast. By monitoring the set of heartbeats received, a Tiam at instance can

keep track of the set of visible nodes. However, this approach is not very scalable. If

large numbers of nodes are present, then the amount of heartbeat traffic could drastically

reduce the amount of bandwidth available for normal application-level traffic and have a

negative impact on the performance of the system. Also, where the degree of change is

low, the amount of unnecessary heartbeats being generated represent a significant waste

of energy and other resources in the system as a whole.

The standard for 802.11 [OP99] wireless ad-hoc networks solves this problem by having

a single node be responsible for broadcasting the beacon packet which maintains the

network. The beacon packet is broadcast at known intervals so that, if a packet is not

seen, one of the other network participants can take on the responsibility within a short,

random timeframe (the randomness being used to reduce the chances of clashing). This

approach is better in terms of scalability, but places all the resource costs of maintaining

the network on a single node. This also means tha t clients can only perceive a change in

the presence of the node currently responsible for emitting the beacons. If one of the other

nodes should leave, there is no mechanism in place for detecting this.

In a different, but not entirely dissimilar, situation, fireflies can be seen to exhibit

the desirable property of global synchronisation without centralisation. A firefly flashes

through the buildup of a mixture of chemicals. Once the buildup of chemicals reaches a

certain threshold they react releasing a bright flash of light. A short time before flashing,

the firefly reaches a “point of no return” from which point a flash is inevitable. At any

time up until that point the firefly can “abort” the current flash and restart the process.

When gathering in numbers the fireflies attem pt to flash in unison. This is achieved using

a very simple algorithm5. Each firefly monitors its surroundings looking for flashes. If it

sees a certain threshold of light during its chemical buildup, it will abort and start again

(assuming it has not reached the point of no return). The end effect of this algorithm is

that all the fireflies in the group wind up flashing at the same time.

Drawing on inspiration from the mechanism fireflies use to synchronise their flashes,

Tiamat deploys a variant of the system used in 802.11 networks in which each node takes

a fair share of the effort needed to maintain the heartbeats. The operation of the system

is depicted in pseudo code in figure 6.7. The operation of an individual node will be

5A simplified version of this algorithm is described here. For more details the interested reader can refer
to [Res94].

CHAPTER 6. T IAMAT 87

Idle: P a s s iv e :

TimeToBeat = 2 mins TimeToBeat = 2x

w h ile (Time ToBeat— ! = 0){ w h i l e (TimeToBeat— != 0){
ifCbeat h ea r d){ ifCbeat h ea rd){

if(new node) add to l i s t if(new node) add to l i s t

goto A c t iv e e ls e s e t counter to 0

} C o n secu tiveB ea ts = 0

} if (b e a t i s p a s s iv e) {
send beat if (TimeToBeat < r) {
goto Id le TimeToBeat += x

}

}A c tiv e :

TimeToBeat = sqaajcejrooX (TimeToBeat) }
w h i le (TimeToBeat— != 0){ }

ifCbeat h ea rd){ send b eat

if(new node) add to l i s t increm ent coun ter fo r a l l nodes in known l i s t

} remove any nodes w ith count o f 3 from l i s t

} ConsecutiveB eats++
send beat

goto P a ss iv e
\ i (C o n se c u t iv e B e a ts > 3) go to Id le

Figure 6.7: Pseudocode for heartbeat algorithm.

explained first, followed by a description of the overall system behaviour. Some exper

imental evaluation of this mechanism is described in the next chapter along with some

improvements to the basic system.

Each node has three states: idle; active; and passive. These states, and the transi

tions between them, are shown in figure 6.8. Every node begins in the idle state. The

node is currently unaware of any other nodes in the surrounding area and has not heard

any heartbeats from other nodes. In the idle state the node will send out an idle beat

periodically with relatively low frequency to reduce power consumption during extended

periods of disconnection (once every two minutes in the current implementation, although

this is configurable at runtime). The heartbeat packet contains the ID for the node, its IP

address, the port on which it can be contacted and its current state6. The node remains in

the idle state until it hears any heartbeat from any other node. At this point, it switches

to the active state and the new node is added to a list of known nodes'. The purpose of

the active state is to make that node’s presence known quickly. The node takes the square

('S ta te p la y s an im p o r ta n t role in th is a lg o r ith m a n d , a s su c h , th e s t a t e o f a n o d e is o fte n u sed to
d esc r ib e it an d a n y h e a r tb e a ts it e m its w h ile in th a t s ta te . For e x a m p le , a n o d e in th e a c t iv e s t a t e w o u ld
b e d esc r ib ed as an a c t iv e n o d e a n d w o u ld b e sa id to e m it a c t iv e b e a ts .

7 T h is list rep la ces th e c a ch e lis t s a b o v e , b u t h as th e sa m e fu n c t io n a lity .

CHAPTER 6. T IAMAT

Start

Beat Heard
TTB ==

Id le

[Add Node to

lisl
Send Beat TTB = 2 min

TTB = VTTB

Beat heard

Add Node to
listActive

TTB ==0

Send Beat

Beat Heard

Add Node
li

Yes

No < # C B > 3 ?

Passive } t t b == o

Counter(Nod;$]imm

Key

State I Event ► Action

No Decision Yes

TTB = Time until next Beat

#CB = Number of Consecutive Passive
Beats

Counter(AH:
Nc

Rem ov^H
where

Counter^

#CB = U |
— _

No No

TTB < x Yes TTB +;’assive -Y es

Figure 6.8: Heartbeat state transition diagram.

CHAPTER 6. T IAM AT 89

root of the current time left until its next heartbeat and uses this as the new time until

its next heartbeat8. Once a node has emitted an active heartbeat, it switches into passive

mode. In passive mode, the node is attem pting to enter a loop of heartbeating in which

each node takes a turn. The mechanism for this is as follows. The node delays for a given

time period, say 2x , before emitting its next heartbeat. This delay is split evenly into two

distinct phases. During the first x of the delay the node will only note any new nodes

in its known nodes list, but will not change its behaviour, nor its state, in any way. If,

at any point during the second period it sees another passive beat, then it will add x to

its current timer. No action is taken on active or idle beats save to add tha t node to the

known nodes list if it is not already known. Only delaying in the second half of the delay

ensures an upper bound for how long the node will be delaying for. This ensures the node

cannot be continuously usurped by newly arrived nodes (who will delay only by 2x when

first entering the passive state) and ensures the responsiveness of the system in the face

of nodes departing or failing. The value chosen for x affects the rapidity with which the

system detects change: the smaller x is, the faster the system reacts, but the more network

traffic it generates over a given time frame. Since this value is configurable, Tiam at allows

the application developer to decide upon the tradeoff. A passive node which sees no other

heartbeats in between a configurable number (usually 3) of its own passive heartbeats will

assume there are no nodes nearby and revert back to the idle state to conserve energy.

In order to allow the detection of node departure, the list of known nodes contains a

counter, when a node sends out a passive beat it increments the counters for all the nodes

in its known nodes list. Whenever it sees a heartbeat from a node, the counter is reset to

zero. If the counter reaches some threshold, then the appropriate node is removed from the

known node list. Setting the threshold low gives an aggressive eviction strategy which will

be responsive to change, but will suffer from premature eviction if heartbeats are being

lost in the network or nodes briefly move out of visibility before returning. A higher value

results in fewer premature evictions, but more stale node entries in the known node list.

A threshold of three was chosen for Tiam at as it was felt this gave a good balance between

caution and responsiveness.

The overall effect of this algorithm is best described in an example system of two nodes,

A and B, that both begin in the idle state. A and B come into communications contact

8The square root is an arbitrary choice here, the important point is that the node should not use a fixed
value. If a fixed value were used and a number of idle nodes happened to all hear the same heartbeat,
then all the idle nodes could flood the network with their responses. The square root ensures a reasonable
random spread of responses.

CHAPTER 6. T IAMAT 90

idle active

Figure 6.9: Heartbeat operation with two nodes.

with one another as shown in figure 6.9. At some point one of the nodes, in this example

A, emits an idle beat. B detects this idle beat and switches into the active state. Shortly

thereafter, B emits an active heartbeat and switches into passive mode. Node A sees the

active beat from B, switches into active mode and emits an active beat of its own. At this

point both nodes know about each other (i.e., their known node list is populated), they

are both in passive mode and have delayed by 2x (in this example x is 5, the time units

are undefined) before emitting their first passive beat. Since B entered the passive state

before A, it will emit the passive beat before A, and delay by 2x again. When A sees this

beat it adds x to its current delay, this still leaves it with a delay of less than the 2x of B

so it will beat next. When A beats, it delays for 2x again and B adds x to its delay. This

pattern continues with each node taking a turn to beat. The exact period of the passive

heartbeats will depend on the timing of the various events but the system is guaranteed

to emit a heartbeat every 2x time units in the very worst case, and no more often than

every x time units9.

To continue the example, a third node, C, now comes within contact of the other two

nodes. There are two possible scenarios: either C will see a beat from A or B before it is

able to send out an idle beat; or C will send out an idle beat before seeing a beat from A or

9It is possible with this algorithm for two nodes to heartbeat at the same time (or more accurately
within d of each other, where d is the network induced delay in the heartbeat packets). In this instance
both nodes delay by the same amount and so will beat at the same time again next time. This situation
represents a waste of effort, but is also unlikely (the exact timing of heartbeats is largely random as the
various nodes are started independent of one another). As such, it was felt that avoiding it would only
complicate the existing algorithm for little end benefit and so no workaround was incorporated. It might
be possible to have nodes in such a position induce a random element to their next delay, but this may
only succeed in them colliding with the beats of other nodes.

CHAPTER 6. TIAMAT 91

time

A

B

d=4+5 d=10 d=2+5 d=4+fy
~A A

&
d=3

d=2+5
A

d=iO d=4+5 d=2+5

d=3+55,S ______AC d=1+5 C
d=3+5

d=!0

Arrival

d=5 d=10

d=3+5d=10

d=10

idle active

Figure 6.10: Heartbeat operation as new node arrives.

B. The only difference between the two cases is that, in the latter case, A and B will know

about C before C sends out its active beat. Other than that, they operate identically, so

the former instance will be considered here. The example is shown in figure 6.10.

C sees the passive beat from one of the nodes already in the cycle, in this case A.

It switches to active mode and, soon after, emits an active beat and switches to passive

mode with a delay of 2x. A and B see this active beat, but do not change their behaviour,

they simply note the node in the known nodes list (if C had managed to send an idle beat

before seeing a passive beat from A or B, then they would already know about it and

would not add it at this point). As can seen in the figure, C then falls into step within the

passive cycle with A and B and each node now sends one out of every three heartbeats.

If C now departs from the system, then one of the other nodes will pick up the slack,

as shown in figure 6.11. Once again, the timings may vary from the example given, but

in the case of a node failing to heartbeat, another node is guaranteed to pick up the slack

within 2x time units of a missed beat in the worst case, and within x of the missed beat

in the typical case. In terms of responsiveness, the time taken by A and B to register the

departure of C is roughly given by the formula:

|P | x x x Threshevict

Where \P\ is the number of passive nodes currently left in the passive cycle, x is the passive

delay constant noted above, and Threshevict is the threshold for evicting nodes from the

CHAPTER 6. T IAMAT 92

B

Count(C)=1
d=10 d=4+5

Count(C)=
d=10

d=10

d=4+5—A—

Count(C)=3
d=10

> C removed
d=4+5

d=1+5 d=10 td=1+5 d=10
Coun (C)=1 Count(C)=2 Count(C)=3 > C removed

Communication not possible

d=3+5 d=2+5 '

Node departs

d=10
Passive
count=1

d=10
Passive
count=2

d=10
Passive
count=3

idle

Figure 6.11: Heartbeat operation after node departure,

list of known nodes.

C, which is now on its own, will revert back to its idle state after a specified number of

passive beats unless it encounters other nodes. In other words, its responsiveness is given

by the formula:

x x Threshidif,

Where x is the passive delay constant and Threshidie is the number of consecutive passive

heartbeats which a single node will emit before reverting to the idle state. It is interesting

to note that an isolated node will typically realise it is alone before any passive nodes it

has left behind realise it has gone.

R econciliation: A n ti-T up le S y n ch ro n isa tio n

While the heartbeats allow nodes to detect change in the set of visible nodes, there is still

the issue of reconciliation to be dealt with. There are a number of solutions to this issue,

each with its own advantages and disadvantages. Independent of these solutions is the

decision of whether or not a node should pass on anti-tuples which it has received from

other nodes. How fruitful this is depends on how the results from tuples are routed back.

If it is the case that the routing mechanism is closely tied to visibility (as is the case in

Tiamat) and any contactable node is very likely to also be visible, then there is little point

in passing on tuples from other nodes for two reasons: if the originating node is not visible,

then, even if the new node contains a satisfying tuple, it will likely be unable to return it;

CHAPTER 6. TIAM AT 93

and, if the originating node is visible, then it will be able to do the synchronisation itself

and the system will avoid doing repeated work. This latter case is the approach used in

Tiamat.

Once that initial decision is made, the focus becomes the tradeoffs between the various

solutions which lie across three main dimensions: computational cost; space overhead; and

network cost. The simplest solution is to send a newly discovered node a copy of all of the

anti-tuples10 stored within the local space and receive a copy of their anti-tuples in return.

Although obviously costly in terms of network usage, this places no storage overheads on

the system. The solution also incurs some computational cost as each node must scan the

list of anti-tuples it receives and extract only the new ones. This solution will be referred

to as send-all.

If it is important to reduce network usage, an alternative is to timestamp every anti

tuple and pass on only those which are new to the new node. This solution reduces the

network cost since duplicate anti-tuples are not sent. Computational cost is also kept

low, although there is still some expenditure, usually to organise the anti-tuples in such

a way as to allow for quick retrieval. However, this introduces a potentially large storage

overhead. For each anti-tuple a timestamp must now be kept (this can actually be a logical

timestamp so its cost is dependant on the number of anti-tuples likely to be active at any

given time), and for each node, we must keep a note of the highest timestamp received

from that node. This list could be potentially very large if the number of distinct devices

seen during any time period is high. As such, a mechanism to manage the size of tha t

list over time must be employed. One solution would be to drop any entries more than a

given time period old. For any nodes whose entries are removed, the system would simply

fall back to a complete exchange mechanism.

This approach also incurs one problem as a result of the resource management mech

anism in Linda™. In a traditional timestamping system, the assumption is, tha t if you

have seen the item with timestamp x you have also seen all the items with timestamp

< x. In Linda™ and Tiamat, it is possible, through the leasing mechanism, for a node

to refuse to accept anti-tuples. There are no guarantees tha t because one anti-tuple is

rejected, all subsequent ones will also be rejected. As such, the set of stored anti-tuples

at a remote node can be more “patchy” than the basic timestamping algorithm assumes.

There are two possible approaches to dealing with this. One is to adopt a once refused,

10Remember, tuples are not replicated in the Tiamat implementation, so only the anti-tuples need to be
passed across.

CHAPTER 6. TIAM AT 94

always refused policy, so that timestamps can be used once again. The other is to keep

more complicated lists of exactly which timestamps have been seen and which have not.

The former means that anti-tuple refusal is permanent, even if the resources to accept

that anti-tuple become available in the future, but does not introduce the storage and

computational overheads of maintaining the more complex lists of timestamps.

Timestamps also do not help detect the removal of anti-tuples. For example, if the

originating node has found a match for a given anti-tuple, it will be removed from the

space. However, this fact is not conveyed in the timestamping alone. As such, a secondary

mechanism would have to be put in place to convey this information if desired. Note that

this information is not required for operation — any stale anti-tuples will be caught by

the originator when a match is returned, as depicted earlier in figure 6.6(b) — but does

reduce wasted effort in the system.

If storage is at an absolute premium, then storage overheads can be reduced at the

expense of added computation through the use of checksums [SM02b], When a synchroni

sation takes place, anti-tuples are divided into predetermined groups, for example by class.

For each group of anti-tuples a checksum is calculated over the group. The other node does

the same. The checksums are then compared and, if they match, the nodes know they have

the same set of anti-tuples for that group. If they are different, then the nodes exchange

a list of anti-tuples for each of those groups which did not have matching checksums. If

the groups of anti-tuples are particularly large, it may be worth further subgrouping them

and repeating the algorithm if the first checksum fails. Since checksums are calculated on

the fly there is no storage overhead, although some storage space may be used to cache

checksum values to allow for quicker synchronisation when a set of anti-tuples does not

change. If the tuplespaces contain very similar sets of anti-tuples, then the network usage

will also be reduced compared to the complete exchange mechanism. This improvement in

network usage reduces as the number of differences within groups increases and can even

result in an increase in network usage in extreme cases where the total size of the mis

matched checksums sent is greater than the size of the anti-tuples which did not have to be

sent. The computational cost of generating these checksums is dependent on the number

of anti-tuples represented by each checksum, since each anti-tuple must be incorporated

into the checksum in some way. The most common mechanism for generating checksums

is to make use of hashing algorithms [Kno75]. Note tha t checksums are not infallible. It

is possible, albeit unlikely, tha t two distinct sets of anti-tuples could generate the same

CHAPTER 6. TIAM AT 95

hash and, as a result, a false positive could be registered. It is im portant to choose a good

hashing algorithm in order to reduce the chances of this occurring as much as possible.

If computational cost is not an issue at all, checksums can be improved further through

the use of rolling checksums, similar to the mechanism employed in rsync [Tri99] to syn

chronise the contents of files on different machines. This mechanism is a uni-directional

synchronisation for sending additional information from a sender to a receiver. First of

all the receiver splits its copy of the data into discrete chunks of some size, say s. For

each block the receiver calculates two checksums. The first is a strong checksum, whose

purpose will become clear later on. The second is a weaker, rolling checksum. The rolling

checksum has the property that, if the checksum for a number of sequential items, say

the first 24 anti-tuples in a list, is known, then the checksum for the next overlapping

set of sequential items, i.e. the 2nd to the 25th anti-tuples in the same list, can be eas

ily calculated from the known checksum along with the values of the first item from the

previous block and the last item from the new block (i.e. the 1st and 25th anti-tuples in

the list). This allows the sender to easily find the matching block in its list by “sliding”

the rolling checksum down the list until a match is found. Once a match is found, the

sender calculates the stronger checksum for tha t block and compares it with the one it

was sent. This step bolsters the weakness of the rolling checksum with the extra reliability

of a stronger checksum without the need to calculate it for each overlapping block. Once

the match is confirmed, the sender sends any data before the start of this block, but after

the end of the previous matched block, to the receiver. This allows the receiver to adapt

its copy of the data where appropriate to match the copy at the sender. This technique

works best when some sort of ordering over the data set can be assured (but this is not

required). This ordering should be such that, if data item A comes before data item B in

one node, the same should be true in the other node, although there may be other items in

between A and B which the first node does not possess. Rolling checksums are incredibly

expensive in terms of computational demands due to the need to repeatedly calculate the

checksums (even with the reduced cost of the rolling checksum). However, they can result

in an improvement over the basic checksum system.

Tiamat implements a flexible synchronisation mechanism. The communications man

ager holds a set of SynchronisationM anager instances. Each instance defines a mecha

nism for synchronising a class of anti-tuples. Which manager to use is defined on a class

CHAPTER 6. T IAMAT 96

Unused Space
1464 bytes5" ®

1500 bytes

Figure 6.12: Space available in network packet.

by class basis and is changeable at runtime11. This allows the system to make the best use

of the resources available. At present the decision is made by the application developer,

but this could later be improved by the automation of this selection based on the presently

available resources.

The current prototype provides only a SynchronisationM anager for the send-all mech

anism described above. This was chosen for two reasons: firstly, both timestamping and

checksum based synchronisation rely upon it as a fall back mechanism; secondly, it is

simpler to implement than the rolling checksums.

P ay load U tilisa tion

As well as the two extensions to deal with anti-tuple propagation, the improved version

of the communications manager contains one further extension. When a node emits a

heartbeat, any new nodes will immediately contact it and attem pt a synchronisation.

This occurs even if the nodes have no tuples/anti-tuples in common. It would be helpful

to either reduce the number of unnecessary exchanges or at least prioritise exchanges to

make the best use of them. For this reason it was decided to make use of the extra payload

space in the heartbeat packets.

When sending out the heartbeats, the amount of data sent in an individual heartbeat is

relatively small when compared to the maximum packet size for a typical wireless network

(as shown in figure 6.12). Research has shown [XP99] that when using UDP multicast the

size of an individual packet has little impact on the probability of that packet being lost.

This means that the extra space in heartbeat packets is essentially going to waste.

Instead of wasting this space a node can place a set of data items in here representing

the types of anti-tuples it currently has stored that are awaiting a match. The identifier

11 It is w orth p o in tin g o u t th a t ch a n g in g th e sy n c h r o n isa tio n m e c h a n ism a t r u n tim e for a p a r ticu la r c la s s
m a y n o t reap im m ed ia te b en e fits . For e x a m p le , if th e sy n c h r o n is a tio n is sw itc h e d from c h e c k su m s to t im e s
ta m p in g , th e n th e sy s te m m ust d o on e fu ll se n d -a ll sy n c h r o n isa tio n in ord er for th e t im e s ta m p in fo r m a tio n
to b e g a th e red . T h e b en efits o f th e t im e s ta m p in g w ill o n ly b e se en o n th e se c o n d sy n c h r o n isa tio n .

CHAPTER 6. TIAM AT 97

for the type (comprising the fully qualified name of the class combined with the fully

qualified name of the classloader which loaded it) is hashed into a 64-bit number using

the MD5 hashing algorithm [Riv92] (to reduce the space consumption). If the number of

distinct types is less than one hundred and eighty, then all the hashes can be placed into

the packet. If not, then they are ordered in terms of number of anti-tuples of tha t type,

highest first, and a special marker is placed at the end of the packet to signify tha t more

types are available. Using this information, another node can make a decision on whether

or not it can satisfy the anti-tuples at another node. In the case where there are more

tuples than can be represented, at least the client can prioritise the contacting of nodes

based on the number of outstanding tuples.

6.4 .4 D istributed C onsensus

During the implementation of the Tiam at system, a problem was encountered which could

not be solved. The problem arose only in an unlikely set of circumstances, but could

have potentially significant consequences. The problem is a variant of the well studied

distributed consensus problem [Lyn96], which, unfortunately, has been shown to be un-

solvable in the general case. In Java it is possible that, during an exchange of data over

a network, one Tiamat instance could experience an IOException while the other thinks

that the exchange has been satisfactorily completed. This gives two possible situations:

the sender thinks that the datum has been sent but the receiver has not received it, called

receiver exception; or the receiver has received the datum, but the sender thinks it has

failed, called sender exception. For a given network protocol, only one of these situations

should arise12.

This problem is not limited to Java but can occur in any communications system in

which failure of the communication channel is possible. The problem seems to go unmen

tioned in the majority of distributed systems work; indeed, none of the other mobile Linda

systems discussed in chapter 4 make any mention of the problem. In normal circumstances,

the problem is unlikely to occur often (it requires the loss of the last packets of the com

munication in only one direction), however, the constantly changing nature of a mobile

environment is likely to increase the failure rate of traditional communication channels as

devices move out of communication range or move into particularly noisy areas, and so

cause a corresponding increase in the chances of this problem arising.

12 A receiver exception arises in the case of a protocol which uses NACKs and a sender exception in the
case of a protocol which uses ACKs.

CH APTER 6. TIAM AT 98

It is also important to note that, while further communication between sender and

receiver could possibly remedy the problem, it is impossible to guarantee tha t such com

munication will be able to take place (particularly in the face of the failure of a communi

cation channel). As such, it is im portant to consider the potential impact of the problem

and examine what possible actions can be taken in such an event.

There is the potential for this inconsistency to have an effect on an application’s se

mantics. In the case of a receiver exception, the system will experience tuple loss since

the sending instance will have no reason to hold onto the tuple. This could possibly be

circumvented by holding on to the tuple for a period of time after it has been sent, but,

as discussed, there is no guarantee tha t the receiver will be able to get in touch again.

This would also represent a drain on resources proportional to the length of the time the

tuple is held for, which would occur every time a tuple was sent, not just those in which

a problem occurred (as the sender is unaware of any problem). Given the unlikely nature

of the problem, along with the resource impact of this solution, it is highly uneconomical

and for this reason has not been implemented in Tiamat.

In the case of a sender exception, the tuple will be duplicated. The copy tha t was

received will be used normally, while the sender, having failed to send the tuple, will place

the tuple back into the local space. Depending on the expected semantics, this could

be disastrous (if, for example, the tuple represents exclusive access to a resource). This

could be circumvented by always discarding the tuple when the sender sees an exception.

Remembering that, in the vast majority of cases, when the sender sees an exception it

means tha t the tuple has not been sent, this solution will result in tuple loss every time

there is a communication error. This high loss rate is likely to be undesirable in most

situations. If, however, duplication must be avoided then these losses may be acceptable.

Such a decision can only be made at the application level.

In Tiamat, the default behaviour is to assume tha t a sender exception indicates that

the tuple has not been sent and tha t the tuple should be placed back into the space.

However, Tiamat also makes allowances for those applications which cannot handle tuple

duplication. Tuples can be marked as unique, which indicates to the communications

manager that they should always be discarded should a sender exception occur. Assuming

the number of tuples labelled as unique is going to be relatively small, it may be worth

implementing a quarantine system for these tuples in order to reduce the frequency with

which they are lost. The sender, upon seeing the exception, would place the tuple into

CHAPTER 6. TIAM AT 99

quarantine. It would then spend a predetermined amount of time trying to contact the

receiver and determine if the tuple was received correctly. If the receiver cannot be reached

then the tuple must be discarded. Receivers must keep track of any unique tuples they

have received. However, since the number of these tuples is likely to be low and the

information only needs to be stored for the same amount of time as the sender will spend

trying to re-establish communications, this will not be a substantial burden.

Since the Tiamat system cannot determine which tuples should be unique, this decision

is left to the application developer. A special version of the out operation is provided which

allows a tuple to be flagged as unique. This also serves a dual purpose in tha t it makes the

application developer aware of the problem. It is im portant tha t the application developer

understands that these situations may occur during operation of the system. This gives

the developer the option of coding to deal with them. If the application developer is

not informed, it could lead to later problems as applications start to exhibit undesirable

behaviour. This is also likely to be difficult for the application developer to debug as he

will not be aware such things are possible.

6.5 Linda Semantics

The Tiamat implementation of the Linda™ model makes two major modifications to the

basic Linda semantics in the form of loss and duplication. These are in addition to the

extensions which resulted from the Linda™ model described in section 5.5. Since the

original Linda system was designed for single memory space systems, these problems did

not arise13, but in the context of a distributed system they are unavoidable.

Loss can arise either due to the distributed consensus problem or due to the depar

ture/failure of other nodes in the system. As such it is im portant for application developers

to consider the potential for loss and program accordingly.

Duplication can only arise in the case of distributed consensus problems. As such, it is

unlikely to occur, but application developers must still be aware tha t it is possible. If du

plication will have catastrophic effects on the operation of their system, then a workaround

is available.

A summary of all the modifications or extensions made to the Linda model made

during the course of this work will be presented in section 7.2.

13To be more accurate, neither could arise due to the Linda system itself. Obviously, if applications
began to misbehave, then the resultant behaviour is undefined.

CHAPTER 6. TIAM AT 100

6.6 Summary

This chapter has described the Tiamat implementation of the Linda^ model, highlighting

each of its constituent components and discussing how they work together. The chapter

has also identified and discussed the distributed consensus problem.

Chapter 7

Analysis

This chapter provides an analysis and evaluation of the Linda™ model and the Tiam at

implementation. Two sample applications, adapted from third party code, are presented

in section 7.1, to demonstrate that the Linda™ model and its implementation in Tiam at

are operable. There then follows a discussion of the ways in which Linda™ and Tiam at

deviate from or expand upon the traditional Linda semantics and why each was felt to be

necessary in section 7.2. Finally, Linda™ and Tiam at are evaluated through a personal

comparative analysis between them and existing research (from chapter 4) in section 7.3.

7.1 Applications

In order to examine the functionality of the Tiam at system and, at the same time, examine

the consequences of programming with the Linda™ model, two third-party applications

were ported to use Tiamat as their coordination infrastructure. Both applications stem

from the examples discussed in section 2.4.1. The first is the web client and proxy server,

the second is the fractal generator.

7.1.1 W eb P roxy S erver /C lien t

As outlined in section 2.4.1, the traditional architecture used for web proxies is strictly

client/server and is shown in figure 7.1. Web clients (e.g., a browser) connect to the proxy

and make HTTP requests. The proxy retrieves the relevant item, be it a page, image or

application, and returns it to the client. Although this architecture is sufficient in a static

network setup, it has some disadvantages in a mobile environment.

Firstly, when a mobile client moves around the network, the proxy which it is using

101

CHAPTER 7. ANALYSIS 102

J1TTP Retjnpci

Result

 ResuU

Proxy Server

The Internet
h t t p r ,

P ro x y S erv e r
Result

Figure 7.1: Original web proxy/client architecture.

Tiamat

The Internet
oui«H T rP Requej?unyJd>)
in«ResuH,myJd>) Result

Proxy Server

iu(<H T TP R e q ues t,any_ id»
out(<Result.any_id>)

Figure 7.2: New web proxy/cient architecture.

may become inaccessible. This means that there must be an infrastructure which allows

the client to find and connect to new proxy servers. Secondly, if a mobile client is only

connected intermittently, then it may have trouble using the proxies. In a traditional setup

the client must remain available in order to receive the web item. If it is disconnected

from the server, then the server will discard the item. By adapting the proxies and clients

to use Tiamat to coordinate, it should be possible to overcome these problems.

Figure 7.2 shows the modified architecture of the web client/proxy using Tiamat. The

client, instead of connecting to the proxy, connects to a small adaptor program on the same

device. This adaptor takes HTTP requests, wraps them up into tuples, attaches an ID and

then places them in the tuple space. The client adaptor then performs an in operation for

a tuple with the same ID field. There is another adaptor program for the proxy. It should

ideally be run on the same physical machine as the proxy itself to improve performance

and to simplify administration, but can also be run on another static node within the same

network. This proxy adaptor performs in operations looking for HTTP request tuples.

These tuples are removed and the HTTP request is unwrapped and then passed to the

CHAPTER 7. ANALYSIS 103

proxy, which processes it normally. When the proxy returns a result, the proxy adaptor

wraps the returned item along with the original request ID in a new tuple and places it

back in the space. This result tuple is then retrieved by the original requesting client

adapter and the result is given back to the web client.

This system circumvents the problems of proxy discovery and interm ittent connectivity

outlined above. Due to the decoupling in identity offered by the Linda™ model, clients do

not need to know which proxy they are using, only tha t there is a proxy available. As a

result, a mobile client application will not have to modify its behaviour or configuration as

it moves around. The decoupling in time and space offered by Linda™ mean that, should

a client with intermittent connection make a request of a proxy, the client may still be

able to receive the tuple from the space the next time the proxy is visible (assuming the

lease has not expired).

In addition, this improved architecture makes it easier to replace a web proxy for

whatever reason (e.g., maintenance, fault rectification etc.) without having to inform all

of the clients. It also allows for dynamic load-balancing by starting up more instances of

the proxy and proxy adaptor as needed.

The code for the two adaptors consists of around 200 lines of code. The client used

was the Mozilla web browser [Moz04]. The server was the Squid web proxy. The system

required no modification to the code of either the client or proxy. The system required no

understanding of the client and proxy beyond their paths of communication.

7.1.2 Fractal G enerator

The distributed fractal generator is one of the canonical examples of the master/worker

architecture described in section 2.2.5. While fractal generation specifically may not be a

common requirement in a mobile environment, the more general pattern of master/worker

is as it allows potentially resource impoverished devices to benefit from the collective

resources of others. The fractal generator is presented here as an exemplar of this type of

application and the benefits it can bring. The fractal calculations are generated by one or

more masters node and then performed by some number of worker nodes. The architecture

of the original fractal generator can be seen in figure 7.3. The master nodes connect to a

load balancing server which then farms out the fractal calculations to a series of worker

nodes. These worker nodes then return the result of the calculation directly back to the

appropriate master.

CHAPTER 7. ANALYSIS 104

W orker
Result

Master H C alculations Load B alancing
Server

C alculation

Result

Result

Figure 7.3: Original fractal generator architecture.

Worker

Calculation

in (< cacu la lion .any_ id>)
o u t(< resu ll,any_ id>)

oul(<cacula tion .m y_id>)
o m (<cacula tion .m y_id>)
in(<resu ll.m y_id>)
in(<rcsu!t,m y_id>)

Tiamat Worker

in (< cacu la lion .any_ id>)
ou t(< rcsu ll,any_ id>)Result

^Master
/ Worker

oul(<cacula lion .m y_id>)
ou t(< cacu la tion .m y_ id>)
in(< resu lU ny_ id>)
in(<resu ll.m y_id>)

in(<eaculation,any_id>)
iHJt(<nssult,any_id>)

Worker

in (< cacuIation ,any_ id>)
o u l(< resu ll.any_ id>)

Figure 7.4: New fractal generator architecture.

Although the traditional architecture works fine in a static environment, it causes

problems in a mobile environment. The two core issues are the same as for the web proxy

server and client — namely the need for a discovery mechanism for the load balancing

server and dealing with the possibility that the master may not always be connected to

receive results. In addition, it is worth noting that, in this particular architecture, the

load balancing server constitutes a single point of congestion and failure in the system.

The improved architecture using Tiamat is presented in figure 7.4. The load balancing

server is removed entirely and the master and workers now coordinate entirely through the

tuple space. Two small adaptor programs were written. One thread in the master adaptor

takes the calculations from the master node and wraps them up in tuples, along with an

ID code representing the master node (as there may be more than one in operation), which

are then placed in the tuple space. Another thread performs in operations for any result

tuples bearing the appropriate ID. The worker adaptors perform in operations looking for

calculation tuples. These are then retrieved and the calculation is passed to the worker.

The result from the calculation is then wrapped up in a result tuple and placed back in

CHAPTER 7. ANALYSIS 105

the space.

As before, the various forms of decoupling offered by the Linda™, model offered signif

icant benefits to the application. Masters do not need to determine the identities of any

worker nodes or load balancing servers in order to work, all they have to do is place the

appropriate tuples into the space. The master may still be able to receive results which

become available while it is absent by retrieving the relevant tuple from the space (assum

ing that the lease has not expired). The system can engage in dynamic load balancing by

starting new workers as necessary.

7.1.3 Sum m ary

The porting of two third-party applications to Tiam at demonstrates both the functionality

and operability of the platform as well as its usefulness. Both ports were performed with

the writing of small (<200) amounts of code, yet the inclusion of the tuple space for

coordination provided clear advantages.

7.2 Extensions to Linda

The Linda™ model and Tiamat axe designed to provide the Linda semantics in a mobile

environment. During their conception and implementation there were some extensions

to the traditional Linda semantics. In each case this was done to either improve the

functionality of the system or to make it fit the environment. This reviews the extensions

presented in sections 5.5 and 6.5.

7.2.1 Leasing

The leasing mechanism represents the biggest modification to the traditional Linda se

mantics (traditionally tuples live forever and blocking operations block indefinitely until

a match is found), but this particular extension is necessary to allow for resource man

agement, one of the design principles from section 5.2.1. W ithout leases there would be

no mechanism for garbage collecting tuples, which could lead to wasted resources. On

devices which are likely to be resource impoverished this is highly undesirable. Provid

ing the leasing mechanism offers a simple and well studied [BGZ00, BGZ01,BZ03] means

of controlling resource consumption. Finally, due to their use in many other distributed

systems, developers are likely to be familiar with their use and function.

CHAPTER 7. ANALYSIS 106

7.2.2 C onsensus P roblem

Distributed consensus is not a modification to the semantics, as such, but rather the ac

knowledgement of a peculiarity of the environment. In an environment where the commu

nication channels are subject to failure, it is impossible to guarantee tha t two distributed

nodes will be able to reach a consensus [Lyn96]. In the case of Tiamat, the consensus

involved is whether or not a tuple has been successfully sent from one node to another.

This consensus problem, when it arises, has the potential to alter the semantics of the

system by duplicating tuples. While there is no way of preventing the problem, it is still

important to make the application developer aware tha t the problem can exist and, where

appropriate, allow the application developer to select the policy tha t best suits the desired

semantics for his application.

At the time of writing, Linda™, and Tiamat are the only mobile tuple space systems

which are explicit about the impact of and policies available for distributed consensus.

7.2.3 D irect R em ote C om m unications

Direct remote communication allows the application developer to break through the ab

straction provided by Tiamat and plane tuples in, or direct operations to, a specific remote

space. Although this extension is not necessary to allow Linda™ or Tiam at to function, it

allows for application-level optimisations. For example, imagine one of the worker nodes

in the fractal generator system (section 7.1.2) tha t resides on a mobile node. While per

forming a calculation, the application becomes aware (through some other mechanism)

tha t the device is about to be disconnected from the network. In this case, it would be

better for the worker not to place the tuple back into its own space as no one else may

be able to reach it for the foreseeable future. The worker would instead place the tuple

into the master’s space, or the space of another worker, to increase the chances of it being

retrieved successfully. This is an example of how being able to perform direct remote

communication can be used to perform application-level optimisations.

7 .2 .4 Sum m ary

The extensions made to the basic semantics are necessary either in order to fit the en

vironment (as in sections 7.2.1 and 7.2.2) or to empower the application developer to

make application level optimisations (as in section 7.2.3). Aside from these modifications,

CHAPTER 7. ANALYSIS 107

the Linda semantics are preserved and provided to the application developer through the

abstraction of an opportunistic logical tuple space.

7.3 Comparative Analysis

This section will evaluate Linda™, and Tiamat by examining the major differences between

them and each of the tuple space systems outlined in chapter 4.

7.3.1 LIM E

One of LIME’s primary weaknesses was its attem pts to enforce global consistency on a

potentially large and rapidly changing network of devices1. As well as being ill-suited

to the environment, this also required the provision of explicit connection/disconnection

operations. It is unrealistic to expect devices in a mobile environment to announce their

departure in such a way, as departure will often be unpredictable. The design principles

distilled from the discussion of the environment in section 5.2.3 have resulted in Linda™ and

Tiamat providing an opportunistic mechanism for accessing remote spaces. This approach

has avoided the difficulties in providing a globally consistent view and has provided a

solution that more naturally fits the environment.

7.3.2 CoreLim e

CoreLime tries to address some of the issues presented by federation in the LIME system,

but goes too far. It strips the system of any kind of automated remote access, instead

requiring the application developer to bear the burden of locating, contacting and send

ing agents to other remote tuple spaces. Linda™ and Tiam at still allow the application

developer access to potentially many remote and local spaces through the abstraction of

a single logical space. The application developer is not required to concern himself with

the details of which spaces are located where2 and how to access them. This provides a

simpler model for the application developer to deal with.

7.3.3 L2im bo

The L2imbo system made extensive use of replication to provide access to a single tuple

space for multiple applications. In an environment where the participating devices are

2The weakness of global consistency has also been identified in [BZOlb].
2Although he may do if desired, see section 7.2.3.

CHAPTER 7. ANALYSIS 108

likely to be resource impoverished, the substantial burden represented by having to main

tain a replica of the entire space may be more than such devices axe willing or able to

bear. The design principles in section 5.2.1 have led Linda™ and Tiam at to avoid the use

of replication in favour of distributing the logical space over the set of opportunistically

visible hosts. As a result, Linda™ and Tiamat do not place such high demands on partici

pating devices. Furthermore, through the provision of the leasing mechanism, each device

has fine-grained control over how many resources are consumed by its local space.

One advantage of the replication mechanism used in L2imbo is tha t it is not affected

by the issue of Distributed Consensus in the same way at Tiamat. Because tuples are

replicated and not moved from one node to another, there is no communication failure

mechanism through which tuple loss can occur. Also, by requiring tha t a tuple can only

be removed from the space by its owner, unique withdrawal is guaranteed.

7.3 .4 PeerSpaces

Although the PeerSpaces system is not intended for use in mobile environments, it still

provides an interesting basis for comparison. PeerSpaces uses a structured overlay network

to perform routing for its queries. Although such overlay networks have already been shown

to perform well in wired and relatively static networks [OraOl], their ability to operate in

mobile and rapidly changing environments is not so well understood. In particular, it is

conceivable that such networks will show deterioration in the face of increasing amounts

of change as the work done to maintain the network begins to obscure the work performed

through the network. Linda™ and Tiamat at present opt for a more free-form approach,

where no overlay network is created in order to perform better in the face of increasing

frequency of change. Further research is needed to evaluate which of these approaches is

most appropriate, or whether the actual solution lies in hybrid overlay networks which try

to take the best of both solutions. This is discussed further in section 9.1.

As the PeerSpaces system is designed to operate on relatively resource rich machines,

no mechanisms are provided to allow for resource management.

7.3 .5 Sum m ary

In each case, Linda™ and Tiam at can be seen to provide some distinct advantage over

the other systems. Importantly, each of these advantages can be traced back to one or

more of the design principles given in section 5.2. This highlights the importance of

CH APTER 7. AN ALYSIS 109

the environment-centric design, which has resulted in Linda™ and Tiam at fitting more

naturally with their environment.

7.4 Summary

This chapter has demonstrated the functionality of Tiamat through sample applications.

It has also provided a clear discussion of why the extensions to the Linda system, which

were provided in Linda™ and Tiamat, were deemed necessary. Finally, it has provided a

limited evaluation of Linda™ and Tiamat in the form of a personal comparative analysis.

The following chapter will follow on from this to provide quantitative evaluation of the

Tiamat system through experimentation.

Chapter 8

Experiments

This chapter describes some experimental evaluations of the Tiam at system. A general

characterisation of the system is established through a series of experiments using the

web proxy/client application originally described in section 7.1.1. These experiments are

presented in section 8.1. This is followed by some further evaluation of the heartbeat

mechanism from section 6.4.3. Details of this evaluation can be found in section 8.2.

Details of all of the machines used for these experiments can be found in appendix A.

Here they will be referred to by their designations in tha t appendix.

8.1 Tiamat Evaluation

This section describes three experiments performed to establish various characteristics of,

or costs associated with, the Tiamat system. The first experiment, presented in section

8.1.1, was designed to measure the communications overhead and compare this with an

existing communications platform. The second experiment, described in section 8.1.2,

establishes the costs involved in the synchronisation mechanism used to propagate existing

operations to new nodes (previously discussed in 6.4.3). Section 8.1.3 describes the final

experiment in which the costs involved when multiple nodes axe present are discussed.

8.1.1 C om m unications O verhead

Purpose

The purpose of this experiment is to establish the communication overhead involved when

using Tiamat for generative communication between two processes. This will establish

a base “cost” , in terms of communication time, for using Tiamat. This baseline can

110

CHAPTERS. EXPERIMENTS 111

100 Mbps
Ethernet

Machine B Machine A

■"i Ad-hoc Wireless Network

Figure 8.1: Experimental Setup for First Experiment.

then be compared to the cost of using another communication system, in this case Java

RMI (Remote Method Invocation) [PM01], to establish the viability of T iam at’s run-time

performance.

M eth o d

The experimental setup is described in figure 8.1. Two laptops, A and B, are connected via

an ad-hoc wireless network. Machine B is connected to a web server via a high bandwidth,

low latency wired connection. This web server is set to serve a series of locally stored web

pages of predetermined size. This high speed connection, along with the fact tha t pages

are served locally, ensures that there is no significant delay in obtaining the web page,

only in communicating it between the two laptops.

Two communications mechanisms are used, Tiamat and Java RMI. When Tiam at is

used, it makes use of the web proxy/client application described in section 7.1.1. Machine

B, which is connected to the web server, acts as the proxy, removing request tuples from

the space, retrieving the appropriate page from the web server, wrapping the page in a

tuple and placing that tuple into the space. Machine A runs the client, wrapping the

address of the page required in a tuple, placing it in the space and then blocking while

awaiting a result.

The RMI setup has machine B, which is connected to the web server, advertise a web

proxy object via an RMI registry also running on machine B. This web proxy object has

a single method which takes in a page address, the appropriate page is retrieved from the

web server and then returned to the caller.

Seven sizes of page were tested ranging from 10 bytes to 10,000,000 bytes and increasing

by a factor of ten at each step. Each size of page was retrieved 10 times without being

timed to allow any appropriate caching mechanisms to be primed. A timer is then started

CH APTER 8. EXPERIM ENTS 112

Page Size (bytes) 100 1,000 10,000 100,000 1,000,000 10,000,000
Tiamat 26.42 32.10 56.38 212.45 1399.36 12674.76

RMI 57.77 56.78 66.39 170.58 1263.38 11841.68

Table 8.1: Web page retrieval times in ms.

at the client and the page retrieved a further 100 times before the timer is stopped. This

is important for the smaller pages where the time to retrieve a single page is relatively

small and could be heavily perturbed by the inclusion of measurement code. Aggregating

over a series of retrievals reduces this effect. This process is then repeated a further nine

times and an average is taken from the time to retrieve the page one thousand times.

In the case of Java RMI, the advertised object is retrieved only once at the start of the

run, not for each retrieval. As such, the times noted do not include the cost of the object

lookup and retrieval, only of the method invocation itself.

Results &: Conclusions

The results from these experiments are presented in table 8.1. This graph shows the

average time for a single retrieval of a page of a given size for each of the two systems.

Here it can be seen tha t the time taken for Tiam at to retrieve each page is comparable to

tha t of RMI. This is especially im portant with the smaller pages where the communications

overhead dominates the exchange. T iam at’s marginal slowdown on the larger pages is most

likely the result of the two serialisation/deserialisation steps used in Tiam at (first when

the tuple is entered into the space and again when it is communicated across the network).

Tiamat has been shown to have similar communications overhead and performance to

an established communications mechanism. This establishes T iam at’s viability for use to

provide communications between two nodes in an ad-hoc network.

8 .1 .2 Synchronisation C osts

Purpose

The purpose of this experiment is to establish the costs of the synchronisation mechanism

described in section 6.4.3.

M ethod

The experimental setup is shown in figure 8.2. Machine B is connected to a web server

CHAPTER 8. EXPERIMENTS 113

Machine B Machine A

"-i Ad-hoc Wireless Network

Machine A

100 Mbps
Ethernet

Web Server

Figure 8.2: Experimental Setup for Second Experiment.

via a high bandwidth, low latency link. B is running the Tiamat web proxy described in

section 7.1.1. This results in a single outstanding in at the proxy node. In addition to

this, one hundred1 outstanding in operations for other types of tuple are performed at

both the client and the proxy. A second node, running the web client application, is then

brought within communications distance of the proxy node. Once an ad-hoc network is

established between the two nodes (monitored by determining when a packet from one can

reach the other) a timer is started which stops once the appropriate page is returned to the

client. Since the outstanding operations are for a different type of tuple, the outstanding

operations will not return but must still be exchanged as part of the synchronisation.

The sizes of the anti-tuples used in these outstanding operations was varied during the

experiments to test the synchronisation cost. The values used for the sizes were 200, 1000,

2000, 4000, 6000, 8000 and 10000 bytes. Each experiment was repeated twenty times2 and

an average was taken.

R esu lts &: C onclusions

The results of this experiment are presented in figure 8.3. This shows that the overall

synchronisation cost is relatively low and scales linearly with the size of the outstanding

operations, which is to be expected with the synchronisation mechanism employed.

'it is important to bear in mind that each outstanding blocking operation represents a corresponding
blocked thread. As such, it is not expected that each Tiamat node will experience a substantially large
number of outstanding operations at any given time. It was felt that 100 represented a suitable high end
limit for this testing.

2This experiment was run fewer times than the others as it required physical interaction from a human
being.

CHAPTER 8. EXPERIMENTS 114

Anti-Tuple Size Retrieval Time
200 bytes 320.2 ms

1000 bytes 548.2 ms
2000 bytes 677.2 ms
4000 bytes 1193.0 ms
6000 bytes 1605.4 ms
8000 bytes 1971.2 ms

10000 bytes 2822.2 ms

v>
£
a>
£
F
w
>
a>

3000

2500

2000

1500

1000

500

0
2000 4000 6000 8000 10000 120000

Bytes per Anti-Tuple {bytes}

Figure 8.3: Synchronisation cost experimental results.

8 .1 .3 M u ltip le N o d e s

P u rp o se

The purpose of this experiment is to establish the costs associated with having multiple

nodes participate in the system.

M eth o d

The experimental setup is similar to that of the experiment described in section 8.1.1.

However, in this experiment, as well as the web client and proxy, there are a number

of other nodes running Tiamat instances present in the ad-hoc network. These nodes

are not performing any operations, but must still be contacted when new operations are

performed. For this experiment, the operation of the system was altered slightly, instead

of traversing the known node list in order when propagating operations, the nodes were set

to traverse the list in a random order, to simulate the nodes arriving in a random order.

A fixed size of page (100 bytes3) is retrieved ten times without being timed in order to

prime caching mechanisms and then a further one hundred times while the response time

was measured. This measurement is then repeated ten times and an average is calculated.

The tests are run with 2, 3, 6, 9, and 18 nodes. In the case where 18 nodes were

used, each machine was running two Tiamat instances. Machines A through to I (A-I) are

used, with A-C being used for the three node setup, A-F being used for the six node setup

* The smallest size of page was chosen to ensure that the cost of contacting new nodes would not be
dwarfed by the cost of retrieving and transmitting the web page itself.

CHAPTER 8. EXPERIMENTS 115

Nodes Retrieval Time
2 26.42 ms
3 30.21 ms
6 51.43 ms
9 73.41 ms

18 167.23 ms

180

160

140

120

100

80

60

40

20

0
15 200 5 10

of Nodes

Figure 8.4: Multiple node cost experimental results.

and all nine being used for the remaining two setups, with two instances running on each

machine in the final setup.

R esu lts &: C onclusions

The results for this experiment are presented in figure 8.4. It can be seen that the overhead

for contacting each node averages about 7ms in total, this time is accounted for purely in

the cost of contacting that node and sending it the anti-tuple.

It is worth noting here that the web client/proxy system performs especially well here

because the anti-tuples in use are very small. If an application made use of larger anti

tuples then it would pay a greater overhead for sending them to each node resulting in an

increase in communications time. However, generality is not lost since, for the majority of

applications, anti-tuples are less specific than the tuples they are matching against. This

means they will contain less information and typically be smaller as a result.

8 .2 H e a r tb e a t E v a lu a t io n

The two experiments described below, in sections 8.2.1 and 8.2.2, are designed to examine

the advantages and disadvantages, respectively, of the heartbeat mechanism described in

section 6.4.3.

CHAPTER 8. EXPERIM ENTS 116

8.2.1 C om m unications Savings

Purpose

To examine the savings, in terms of the amount of data sent, resulting from using the

heartbeat mechanism described in section 6.4.3 when compared to simply having each

machine emit a periodic heartbeat.

M ethod

For this experiment, nine machines are joined in an ad-hoc wireless network. A number

of Tiamat instances are then started. The Tiam at instances do not have any operations

running, as all the experiment is interested in is the heartbeat mechanism which operates

even when no operations are being performed. Machines A-I are used for all experiments

even where the number of instances being started is less than nine, the remaining machines

remaining idle on the network4.

Two heartbeat mechanisms were used. In the first, each node emits a heartbeat every

500ms. The second mechanism is the one described in section 6.4.3. For these experiments,

the value of x was set at 500ms and the period for idle beats was set at 1000ms5.

The experiments were run with 3, 6, 9, 18 and 36 Tiamat instances. Only machines

A-C ran instances for the three instance setup, A-F were used for the six instance setup

and all nine machines, A-I, were used for the remaining three setups.

The arrival and departure of the nodes was defined by four scenarios: climbing; declin

ing; hill; and random. In the climbing scenario, 10% of the total number of nodes start

every 10% of the total time, so the arrival pattern is as shown in figure 8.5(a). Declining is

similar, but opposite, with all nodes present at the start and 10% leaving every 10% of the

time resulting in the pattern from figure 8.5(b). Hill is the climbing scenario immediately

followed by the declining one and can be seen in figure 8.5(c). In the random case, the

nodes arrive and depart at random.

For each setup the experiment was left to run for 5 minutes and the number of heart

beats sent by each node in the system was monitored. An average was then taken over

the number of nodes present in the system. In the case of the random arrival/departure

scenario, the experiments were run twenty times and the results averaged.

4 This setup made it easier to run multiple sets of experiments consecutively, without the need for human
intervention

5 This is probably slightly lower than the desired value for idle heartbeats, but was chosen in order to
ensure the experiments made reasonably rapid progress.

CHAPTER 8. EXPERIMENTS 117

100100

9 0 ------... j

 I I i..
 ! i I..

"1...>.... i
x ■ -

20 - 20
10 ------

100 I X

T im e (%) Time (%)

(a) C lim b in g arrival p a tte r n . (b) D e c lin in g d e p a r tu r e p a tte r n .

1 X

50 ------

I.... I

80 1X

T im e (%)

(c) H ill a r r iv a l/d e p a r tu r e p a tte r n .

Figure 8.5: Node arrival/departure patterns.

R esu lts &: C onclusions

The results for these experiments can be seen in figure 8.6. Figure 8.6(a) shows the

average number of heartbeats emitted by each node during the climbing arrival scenario.

The results for the hill and declining scenarios produced virtually identical results to that

of the climbing scenario6 (to within 0.2% of each other). Figure 8.6(b) shows the results

for the random arrival/departure pattern. The use of the heartbeat mechanism provided

as part of Tiamat shows a significant drop in the amount of traffic produced by the nodes

compared to the cruder approach of having every node emit a periodic heartbeat. However,

° S o m uch so th a t w h en p lo tte d o n th e sa m e g rap h it w a s im p o s s ib le to d is t in g u ish b e tw e e n th e m —
h e n c e th e reason o n ly o n e is p lo tte d h ere

CHAPTER 8. EXPERIMENTS 118

| T iam at Periodic |

o
? 200
O.
</>
S 1504>
€
J 100 -
z<V
2 50 -

>
< n -

]

10 20 30 40

N o d es

|-^P e rio d ic —- Tiamat |

$ „

t 350 -

a 300 ■
1 250 •

15 200 «>
1 150 -

| 100 ■

2 50 -
* 0 -

"S.

\

10

No

0 30 40

des

(a) C lim b in g , d ec lin in g an d h ill p a tte r n s . (b) R a n d o m p a tte r n .

Figure 8.6: Average heartbeats per node for various arrival/departure patterns,

as can be seen from the next experiment, this approach has a tradeoff.

8.2.2 S y stem A w areness

P u rp o se

To examine how the overall “awareness” of the nodes in the system is affected by the

heartbeat mechanism described in section 6.4.3 as opposed to simply having each machine

emit a periodic heartbeat. The awareness of an individual node is defined as the ratio of

nodes which it knows about to nodes which it could know about (i.e., nodes with which it

is able to communicate).

M eth o d

The setup is identical to that presented in the previous experiment (section 8.2.1). Also,

what is being monitored is different. Rather than monitoring the traffic in this instance it is

the list of known nodes at each node which is being monitored. Since the arrival/departure

patterns are known, it is easy to determine how many nodes should be visible at a given

point in time. From this it is possible to determine the awareness of an individual node

by dividing the length of the known node list by the number of nodes which should be

visible. This gives an awareness for each individual node.

CHAPTER 8. EXPERIMENTS 119

— Periodic — Tiamat — Tiamat (Improved)

741 2193 13899100
90
80
70
60
50
40
30
20
10
0

150005000 100000
Time (ms)

Figure 8.7: System awareness over time.

R esu lts & C onclusions

The results from one of these experiment are shown in figure 8.7. This graph shows, for the

last node to enter the system in the 36 node, climbing scenario, how its awareness varies

over time. This is shown for both the periodic heartbeat (shown in red) and the heartbeat

mechanism used in Tiamat (depicted in green). The emission of periodic heartbeats by all

nodes results in a system in which awareness is kept high as a newly arrived node quickly

hears from all other nodes present. The heartbeat mechanism proposed in section 6.4.3

does not have this advantage. As nodes which are in passive mode only emit heartbeats

in turn, a newly arrived node must wait for one complete cycle before it is aware of all the

nodes already present. As a result, the awareness of newly arrived nodes takes longer to

rise.

To combat this, a suggested improvement is proposed which would allow nodes to more

quickly discover an existing set of nodes. Whenever a node in the idle or active state hears

a passive beat, it contacts the node which sent the beat. It then retrieves the known node

list from that node. Since the passive node is already part of the passive cycle it should

already be aware of all of the nodes in the group (either from having watched them arrive,

or from the use of the same mechanism when it arrived). This should ensure a more rapid

rise in awareness levels. The reason for only doing this while in the idle or active states is

to avoid unnecessary traffic between nodes which have already settled into a passive cycle.

This improvement was implemented and also tested in this configuration. The results

for this can be seen in blue alongside the others in figure 8.7. It can be seen that the

CHAPTER 8. EXPERIM ENTS 120

improvement drastically reduces the time taken for the node to reach full awareness.

However, there are two further issues with this improvement. Firstly when two groups

of nodes, each of which have formed a passive cycle in isolation of the other, come within

contact range of one another, then the system falls back to having to wait for a complete

passive cycle in order for new nodes to be discovered. Secondly, if a large number of

nodes come into contact with a passive group at the same time, then the next member

of the passive group to emit a heartbeat could be swamped by responses. Neither issue

is particularly critical in the case of Tiamat. In the former case, the system does not

stop working, it merely works as it did before. The latter case is only relevant when large

numbers of nodes are present. Since Tiamat is designed for small, ad-hoc networks, this

is unlikely to be a major problem. For this reason, the mechanism has been implemented

in Tiamat as described immediately above, to help improve the system awareness.

Although not critical for Tiamat, solutions to these issues still merit further discussion.

The former may be resolved by having any node in a passive state, which hears a passive

beat from a node it is not already aware of, contact the node which sent the beat and

retrieving its known node list. The latter may be resolved by having nodes delay for

a small, random amount of time before contacting the node in question to retrieve the

known node list. In both cases, further investigation of these proposed solutions and any

alternatives is required.

8.3 Summary and Conclusions

Tiamat has been demonstrated to have basic communication overheads similar to tha t

of an established communications mechanism demonstrating the runtime viability of its

communications system. This chapter has also server to characterise the behaviour and

performance of Tiamat in the face of increasing numbers of nodes and outstanding oper

ations.

This chapter has also examined and quantified the tradeoff inherent in the heartbeat

mechanism employed within Tiamat. An improvement to the existing heartbeat mecha

nism has also been proposed and evaluated.

Chapter 9

Future Work

This chapter examines some avenues of future research which have been opened up by, or

could be used to benefit, the work contained within this dissertation.

9.1 Adaptive Overlay Networks

As mentioned in section 7.3.4, overlay networks have proved successful in a variety of

Peer-to-Peer systems. It is likely that their routing properties could also help improve the

propagation of operations (and hence extend the scope of visibility) in Tiamat. However,

at present, little research has been carried out into how such overlay networks behave or

perform within the context of a mobile environment, and, in particular, how well they

scale as the degree and frequency of mobility increases. Such performance and scalability

information could be used to identify those structures of overlay networks tha t are well

suited to use in a mobile environment or perhaps even propose new overlay networks for

use in such environments.

Following on from this, it would be interesting to see how these mobile overlay networks

relate and interact with overlay networks which are well suited to static environments. The

resulting taxonomy would provide the groundwork for an examination of hybrid overlay

networks.

Even in a highly mobile environment, there axe still portions of the network tha t do not

exhibit a high degree of change (e.g., the computing infrastructure in a computing science

department). Since not all devices in the environment behave the same way, it could

be useful to treat them in different ways. Providing a highly structured overlay network

which is periodically costly to either construct or maintain but provides excellent routing

121

CHAPTER 9. FUTURE W O RK 122

properties would be useful for the static portions of the environment, but unsuitable for

the mobile portion. Providing a highly adaptable, low-cost overlay network will benefit

the mobile devices, but will leave much of the potential of the fixed portions of the network

untapped. It would be better to provide some hybrid of these two overlay networks which

could allow static nodes to form highly structured overlays while providing facilities for

mobile nodes to connect to tha t network in a lightweight and dynamic manner. The need

for such research has also been identified in [CDHR02].

9.2 Localised Temporal Topologies

Even if such hybrid overlay networks are in place, there still remains another issue: how

to identify which nodes tend to be static and which axe more mobile. Although such

identification may be performed statically, it would be of more benefit to have the system

itself make the decision. This could allow the system to better adapt to changes in the

behaviour of devices in the environment (e.g., if a node previously identified as static

becomes mobile, or vice versa).

The nodes in the system would not be defined by a global or static topology as with

traditional networks. Instead, nodes would now have to examine the nature of the en

vironment around them and how it changes over time — which shall be referred to as a

Localised Temporal Topology (LTT). It would be interesting to see whether nodes can

determine, on-the-fly, useful and usable patterns in their own LTT. For example, a node

could attem pt to identify other devices with which it is frequently in contact. These as

sociated devices could then act as proxies for routing information to this device (see next

section) and vice versa.

Although LTT can give a device some information about the behaviour of the environ

ment around it, it alone cannot provide information about the device itself. For example,

if the device observes a large amount of change in the devices it can see, does tha t mean

that the device itself should be classed as mobile or the devices around it. In order to

address this issue, devices would have to collaborate to try and resolve such relativity

problems.

CHAPTER 9. FUTURE W ORK

9.3 Social Routing

123

As stated previously, the mobility behaviour of devices is likely to be driven by the move

ment of the users who carry them. This raises interesting potential for routing of infor

mation based on the social interactions of users. This social information could either stem

from the examination of Localised Temporal Topologies or from higher-level applications.

For example, if a calendar program on Bob’s PDA shows tha t he will be in a meeting with

Jane later that day, Sue’s machine, which has non-urgent data to be sent to Jane, could

use Bob’s PDA as a communication medium. For Linda™, and Tiamat, the social routing

facilities would increase the scope of the visibility by allowing the communication of tuples

and anti-tuples through social interactions.

Exploiting such behaviour will depend on how predictable these behaviours are. Again,

the examination and classification of these sorts of behaviours is largely outwith the remit

of Computing Science.

Another issue in this research would be the personal security and privacy implications

of using such data. If, in the above example, Jane and Bob are having a secret meeting

to have Sue ejected from the company, they may not wish to advertise the fact. Exposure

of LTT information could similarly reveal much about a device’s (and the associated

person’s) recent behaviour. Identifying information which could be sensitive is a non

trivial problem, since the distinction is highly dependent on human perception rather

than directly discernible information.

9.4 Secure Tiamat

The Tiamat system, at present, makes no provision for security of any kind, depending

instead on other software layers to provide such mechanisms. One interesting piece of

research would be in how security could be provided through the Tiam at system itself in

order to prevent abuse of the facilities offered.

The obvious point for such mechanisms to reside is within the lease manager (section

6.2). Since every operation in Tiam at must be leased, the lease manager is able to monitor

the overall behaviour of the Tiamat node. It would be useful, therefore, if the lease

manager could be adapted to identify and, possibly, prevent any abuses. Simple forms

of security mechanism could involve black/white lists to control access. Nodes may be

black listed if they exhibit undesirable behaviour, for example, starting eval operations

CHAPTER 9. FUTURE W O RK 124

which (apparently) never complete. Identifying undesirable behaviour could in itself prove

difficult. For example, how does the system distinguish between a node which is placing

a large number of tuples in the space as part of its normal operation and one which is

maliciously trying to consume resources?

Such security mechanisms would be strengthened by allowing lease managers to collab

orate. This would reduce the impact of malicious nodes moving their attention from one

node to another by forewarning other lease managers of the node’s behaviour. However,

this would also require mechanisms to allow the lease managers to form an appropri

ate network of trust. It would also be useful for the lease manager to collaborate with

any existing security infrastructure so that they could both benefit from the information

possessed by the other.

Another issue with securing a tuple space is that, in order to allow matching, the

contents of tuples must be unencrypted. While it would be possible to encrypt the fields

individually, this would still only allow an exact value matching and not any of the extended

matching facilities.

Some of the issues involved in introducing security to tuple space systems, as well as

recent proposals on how security could be provided, are presented in [BGLZ03,HR03].

9.5 Transactions

Although tuple spaces were originally proposed as a lightweight coordination mechanism,

many implementations have provided transactional facilities in order to allow more so

phisticated application behaviours. Most of these systems axe either designed for use

in distributed (but not mobile) environments or make use of the transactional facilities

designed for such environments.

However, it has been shown tha t such transactional facilities are not well-suited to

mobile environments as they result in high rates of transactional failure and unpredictable

execution costs [Ser04]. It would be of interest to examine the use of a transactional

facility designed for use in mobile environments to extend the Tiam at system [MB98,

LLK01,Ser04].

CHAPTER 9. FUTURE W O RK 125

9.6 Performance Improvements

In order to demonstrate the thesis statement (section 1.1), only a proof of concept im

plementation was required. Therefore, one piece of useful work would be to engineer an

implementation oriented around performance in order to make the use of Linda™, more de

sirable to application developers. One example of a possible potential improvement stems

from the storage of tuples. Indexing the tuples stored in a tuple space could reduce the

cost of searching the space during matching. In providing any performance improvements,

it would be important for the system engineer to consider the potential resource cost of

providing the performance improvement and ensure tha t the improvement will be used

often enough to warrant that cost.

9.7 Suitability of Ant Algorithms

Ant algorithms are one of the most prominent examples of a group of technologies, known

as emergent technologies, where complicated global behaviours “emerge” from the inter

actions of simplified localised processes. The nature of these systems can make it very

difficult to understand the overall behaviour of the system at runtime from an exami

nation of the system’s design and algorithms. These systems are also usually driven by

random choices dictated by probabilities chosen at the design of the system. The values

chosen for these probabilities can drastically alter the overall behaviour of the system and

it is not always obvious what that impact will be or how to select appropriate values to

achieve the desired behaviour.

One of the advantages of these algorithms is tha t the simple behaviours are very easy to

program, reducing development costs. However, there are at present no clearly established

metrics for evaluating the cost to benefit ratios for these algorithms from a resource usage

perspective. There is also insufficient information on how several such algorithms interact.

The SWARM Linda system [MT03] referred to in section 3.3.9 employs two ant based

algorithms to try and provide Linda across multiple hosts. Firstly, the system employs

brood sorting to cluster similar tuples together. A collection of ants wander randomly

between the spaces. Each ant has a template representing a type of tuple. If the ant

encounters a space containing a tuple which matches th a t template, and it is not already

carrying a tuple, it will pick up the tuple and move to a randomly chosen new space. If the

ant encounters a space containing a tuple which matches tha t template, and it is already

CHAPTER 9. FUTURE W O RK 126

carrying a tuple, it will drop the tuple and move to a new space. If the ant encounters

a space containing no matching tuples and it is carrying a tuple, there is an increasing

probability that it will drop the tuple before moving to a new space. The overall effect of

this algorithm is that some similar tuples may be clustered together in a single space. The

number of clusters which will be formed for a given type, the size of the clusters which

will be formed and the time it takes for a cluster to be formed are all determined by the

choice of the various probabilities which drive the system.

Secondly, the algorithm employs an ant based search for tuples. Ants wander the set

of spaces randomly looking for a tuple which matches a template they carry. The ant

maintains a short memory of where it has been to help it find its way back to the anthill

(the space where the original request was made). To assist in this process anthills emit a

pheromone which is diffused into the other nodes around it, weakening with distance from

the anthill, which is also used to help the ant find its way back home.

Evaluating the impact or effectiveness of this approach is difficult given current tech

niques. For example, it is unclear how the two ant algorithms will interact. Since the

search ants wander randomly, clustering the tuples into a small number of spaces may

reduce the probability of an ant finding a match to its template. Also, the brood sorting

algorithm imposes a constant cost on the system by placing it in a constant state of flux

— even if no tuple space operations are taking place. However, the algorithm’s impact is

highly dependent on the input probabilities and as such is hard to measure.

Until some of these issues are addressed and more reasonable estimates of emergent

technologies’ costs and benefits can be made, it is difficult to accurately evaluate their

effectiveness.

More work is also needed on techniques for crafting the probabilities which drive the

system so that the desired behaviours emerge. However, it could be possible tha t systems

which employs multiple ant algorithms could be driven by so many different variables tha t

predicting any specific behaviours could become exceptionally difficult.

9.8 Summary

This sections has presented a variety of research avenues which could be used to improve

or extend this research.

Chapter 10

Summary and Conclusions

10.1 Thesis Statem ent and D issertation Overview

In the introduction (section 1.1) my thesis statement was given as:

Generative communications were originally designed for the coordination of

parallel processes. However, they have also found a home in a variety of

distributed environments including environments involving mobility. Much of

the research carried out in these environments has been problematic and has

led some to conclude that generative communications are unsuitable fo r such

mobility-oriented situations. I believe, however, that this is incorrect and is

more a reflection on the systems used in this research than of the suitability

of the approach. I will demonstrate how previous research platforms have been

unsuitable for mobile environments. I will furthermore propose a model and

construct a proof of concept implementation to demonstrate that, with some

minor semantic alterations, the generative communications paradigm can be

provided in a mobile environment. I will measure and examine the character

istics of the operation of such a system and will compare the system to existing

research to demonstrate that an environment-centric design results in a system

which is better suited to the defined mobile environment.

Chapter 2 highlighted the context in which the work was set, establishing the growing

trend in mobile devices and highlighting how Linda could be used by application developers

working in such environments. Chapter 3 provided an overview of related work. Chapter

4 supported the thesis statement by examining the previous mobile Linda solutions. In

127

CHAPTER 10. SUM M ARY AND CONCLUSIONS 128

each case, it could be seen that some aspect of the model or implementation did not

fit well with the proposed environment. Chapter 5 presented a new model for providing

Linda semantics in a mobile environment. This was followed by a description of a proof of

concept implementation in chapter 6. The functionality of the model and implementation

were tested successfully by porting third-party applications to the infrastructure with

the outcomes and benefits being presented in chapter 7, demonstrating tha t generative

communications can be made to function in a mobile environment. This chapter also

compared the model and resultant implementations to the previous attem pts presented

in chapter 4 to highlight how, by keeping the environment at the heart of the design,

the model and implementation were better suited to mobile environments. Chapter 8

provided demonstration of the viability of Tiamat as a communications platform as well

as examining the characteristics of the implementation. Potential avenues for further

research or development were presented in chapter 9.

10.2 Contributions and Achievements

The main contributions and significant achievements made during the course of this re

search are:

• The proposal of a novel model, Linda^, for providing Linda-like semantics in a

mobile environment.

• A proof of concept implementation, Tiamat, of tha t model to demonstrate viability

and operability.

• Demonstration of the viability of Tiamat as a communications platform.

• Experimental evaluation of the characteristics of the Tiam at system.

• A demonstration of the value of a tuple space system in a mobile environment.

• Highlighting of an often overlooked problem tha t is exacerbated in a mobile environ

ment (distributed consensus).

• A comparison of the new model and implementation with previous work, highlighting

previous systems’ unsuitability for mobile environments.

CHAPTER 10. SU M M ARY AND CONCLUSIONS

10.3 Conclusions

129

In this dissertation I have presented a novel piece of research in the field of mobile Linda

systems and I have demonstrated the usefulness of this system and motivated the need

for the research. I then examined and evaluated previous work in the field showing that

there was still room for improvement. I examined the nature of the environment and

used this to address shortcomings in the available literature. This was then followed by

a concrete implementation of that model. I evaluated the functionality and usefulness of

the implementation through the porting of third-party code to use the system. I then

evaluated my work through comparison with the previous systems. I then performed

numerous experiments to establish the viability of Tiam at as a communications platform

as well as characterising the behaviour of the system. Finally, I looked to the future and

examined other possible avenues of research.

Appendix A

Machines

This appendix describes the machines which were used for the experiments introduced in

chapter 8.

A .l Machine A
Manufacturer:

Model:
Profile:

Processor Model:
Processor Speed:

Bus Speed:
Memory:

W ireless Adapter:
Wireless Modes:

Operating System:
Java Version:

Fujitsu Siemens
Lifebook C l 110
Laptop
Intel Pentium M 735
1.7 GHz
400 MHz
1024 Mb
Intel PRO/W ireless 2200BG
802.11b, 802.l lg
Linspire Live 5.0
HotSpot Client VM 1.5.0_02-b09

A .2 Machine B
Manufacturer:

Model:
Profile:

Processor Model:
Processor Speed:

Bus Speed:
Memory:

W ireless Adapter:
W ireless Modes:

Operating System:
Java Version:

Fujitsu Siemens
Lifebook S7010
Laptop
Intel Pentium M 725
1.6 GHz
400 MHz
512 Mb
Intel PRO/W ireless 2200BG
802.11b, 802.l lg
Linspire Live 5.0
HotSpot Client VM 1.5.0-02-b09

130

APPEND IX A. MACHINES

A .3 Machine C
M an u fac t u re r :

M odel:
Profile:

P ro cesso r M odel:
P ro cesso r Speed:

B us Speed:
M em ory:

W ire less A d ap te r:
W ire less M odes:

O p e ra tin g System :
Ja v a V ersion:

Hi-Grade
Notino W6700
Laptop
Mobile Pentium 4-M
2 GHz
400 MHz
512 Mb
Prism II
802.11b
Windows XP Professional SP2
HotSpot Client VM 1.5.0_02-b09

A .4 Machine D
M an u fac tu re r: Olivetti

M odel:
Profile:

P ro cesso r M odel:
P ro cesso r Speed:

B us Speed:
M em ory:

W ire less A d ap te r:
W ire less M odes:

O p e ra tin g System :
Ja v a Version:

Xtrema 323S
Laptop
Intel Pentium II
233 MHz
66 MHz
96 Mb
Compaq WL110
802.11b
Windows 2000 SP4
HotSpot Client VM 1.5.0_02-b09

A .5 Machine E
M an u fac t u r e r :

M odel:
Profile:

P ro cesso r M odel:
P ro cesso r Speed:

B us Speed:
M em ory:

W ire less A d ap te r:
W ire less M odes:

O p e ra tin g System :
Jav a V ersion:

Siemens Nixdorf
Scenic Mobile 710
Laptop
Intel Pentium II
233 MHz
66 MHz
96 Mb
Netgear WG511
802.11b, 802.1 lg
Windows 2000 SP4
HotSpot Client VM 1.5.0_02-b09

APPEND IX A. MACHINES

A .6 Machine F
Manufact urer:

Model:
Profile:

Processor Model:
Processor Speed:

Bus Speed:
Memory:

W ireless Adapter:

Wireless Modes:
Operating System:

Java Version:

Dell
Optiplex GXa
Desktop
Intel Pentium II
333 MHz
100 MHz
128 Mb
Buffalo AirStation WLI-CB-G54 k
Buffalo AirStation WLI-PCI-OP-PC PCMCIA-PCI Bridge
802.11b, 802.l lg
Windows 2000 SP4
HotSpot Client VM 1.5.0_02-b09

A .7 Machine G
Manufacturer:

Model:
Profile:

Processor Model:
Processor Speed:

Bus Speed:
Memory:

W ireless Adapter:

W ireless Modes:
Operating System:

Java Version:

Patriot
PII 300MMX
Desktop
Intel Pentium II
300 MHz
100 MHz
128 Mb
Buffalo Airstation WLI-CB-G54 k
Buffalo AirStation W LI-PCI-OP-PC PCMCIA-PCI Bridge
802.11b, 802.l lg
Windows 2000 SP4
HotSpot Client VM 1.5.0_02-b09

A .8 Machine H
Manufacturer:

Model:
Profile:

Processor Model:
Processor Speed:

Bus Speed:
Memory:

W ireless Adapter:
W ireless Modes:

Operating System:
Java Version:

Various
N/A
Desktop
AMD Duron
1 GHz
100 MHz
512 Mb
Mentor Wireless USB 2.0 A dapter
802.11b, 802.l lg
Windows XP Professional SP2
HotSpot Client VM 1.5.0_02-b09

APPENDIX A. MACHINES

A .9 Machine I
Manufacturer:

Model:
Profile:

Processor Model:
Processor Speed:

Bus Speed:
Memory:

W ireless Adapter:
W ireless Modes:

Operating System:
Java Version:

Various
N/A
Desktop
AMD Athlon XP 2400+
1.9 GHz
133 MHz
512 Mb
Mentor Wireless USB 2.0 Adapter
802.11b, 802.l lg
Windows XP Professional SP2
HotSpot Client VM 1.5.0_02-b09

Appendix B

Trademarks

• Windows, Windows XP and Windows 2000 are registered trademarks of Microsoft

Corporation in the United States and other countries.

• Intel and Pentium are registered trademarks of Intel Corporation.

• AMD, Athlon, Athlon XP and Duron are registered trademarks of Advanced Micro

Devices, Inc. in the United States and/or other countries.

• Linspire is a registered trademark of Linspire Inc.

• Java, HotSpot, JavaSpaces and Jini are trademarks or registered trademarks of Sun

Microsystems, Inc. in the United States and other countries.

• Buffalo and AirStation are trademarks of Buffalo, Inc.

• LifeBook is a trademark of Fujitsu Limited.

• Bluetooth is a trademark owned by Bluetooth SIG, Inc.

• Dell and Dell OptiPlex are trademarks of Dell Inc.

• T Spaces is a registered trademark of International Buisness Machines Corporation.

• All other trademarks and service marks are the property of their respective owners.

134

Bibliography

[BGLZ03]

[BGZOO]

[BGZ01]

[Bie04]

[BLPOO]

[BMMZ02]

Nadia Busi, Roberto Gorrieri, Roberto Lucchi, and Gianluigi Zavattaro. Sec-

Spaces: A Data-driven Coordination Model for Environments Open to Un

trusted Agents. In Antonio Brogi and Jean-Marie Jacquet, editors, Electronic

Notes in Theoretical Computer Science, volume 68. Elsevier, 2003.

Nadia Busi, Roberto Gorrieri, and Gianluigi Zavattaro. On the Expressive

ness of Distributed Leasing in Linda-like Coordination Languages. Techni

cal Report UBLCS-2000-5, Department of Computing Science, University of

Bologna, May 2000.

Nadia Busi, Roberto Gorrieri, and Gianluigi Zavattaro. Temporary D ata in

Shared Dataspace Coordination Languages. In Proceedings of the Jfth Inter

national Conference on Foundations of Software Science and Computation

Structures, pages 121-136. Springer-Verlag, 2001.

Celeste Biever. Phones Face Power Failure. In New Scientist, number 2436,

page 21, 28th February 2004.

Lorenzo Bettini, Michele Loreti, and Rosario Pugliese. Structured nets in

KLAIM. In Proceedings of the 2000 ACM symposium on Applied computing,

pages 174-180. ACM Press, 2000.

Nadia Busi, Cristian Manfredini, Alberto Montresor, and Gianluigi Zavattaro.

Towards a Data-driven Coordination Infrastructure for Peer-to-Peer Systems.

In Proc. of Workshop on Peer-to-Peer Computing Co-located with Network

ing’02, 2002.

135

BIBLIO G RAPH Y 136

[BMMZ03]

[BS04]

[BZOla]

[BZOlb]

[BZ02]

[BZ03]

[CDHR02]

[CFH+03]

[CG90]

[CIZ99]

Nadia Busi, Cristian Manfredini, Alberto Montresor, and Gianluigi Zavattaro.

PeerSpaces: Data-driven Coordination in Peer-to-Peer Networks. In S A C ’03.

ACM Press, 2003.

Rob Bjornson and Andrew Sherman. Grid Computing &; the Linda Program

ming Model: An Alternative to Web-Service Interfaces. Dr. Dobb’s Journal,

(364):16-17,20,22,24, September 2004.

Nadia Busi and Gianluigi Zavattaro. Publish/Subscribe vs. Shared Dataspace

Coordination Infrastructures: Is It Just a M atter of Taste? In Proceedings

of the 10th IEEE International Workshops on Enabling Technologies, pages

328-333. IEEE Computer Society, 2001.

Nadia Busi and Gianluigi Zavattaro. Some Thoughts on Transiently Shared

Dataspaces. In The Workshop on Software Engineering and Mobility (at ICSE

2001) , 2001.

Nadia Busi and Gianluigi Zavattaro. On the Serializability of Transactions in

Shared Dataspaces with Temporary Data. In Proceedings of the 2002 ACM

Symposium on Applied Computing, pages 359-366. ACM Press, 2002.

Nadia Busi and Gianluigi Zavattaro. Expired Data Collection in Shared Datas

paces. Theoretical Computing Science, 298(3):529-556, 2003.

M. Castro, P. Druschel, Y. Hu, and A. Rowstron. Topology-Aware Routing in

Structured Peer-to-Peer Overlay Networks. Technical Report MSR-TR-2002-

82, Microsoft Research, One Microsoft Way, Redmond, WA 98052, 2002.

M. Cilia, L. Fiege, C. Haul, A. Zeidler, and A. P. Buchmann. Looking into

the Past: Enhancing Mobile Publish/Subscribe Middleware. In Proceedings

of the 2nd international workshop on Distributed event-based systems, pages

1-8. ACM Press, 2003.

Nicholas Carriero and David Gelernter. How to Write Parallel Programs: A

First Course. MIT Press, Cambridge, MA, 1990.

Paolo Ciancarini, Andra Imicini, and Franco Zambonelli. Coordination Tech

nologies for Internet Agents. Nordic Journal of Computing 6, 215-240, 1999.

BIBLIO G RAPH Y 137

[CLZ99]

[CroOO]

[CSWH01]

[CWOla]

[CW Olb]

[DFWB98]

[DGK+00]

[DRBJS03]

[DWFB97]

Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli. Reactive Tuple

Spaces for Mobile Agent Coordination. In Proceedings o f the Second Interna

tional Workshop on Mobile Agents, pages 237-248. Springer-Verlag, 1999.

David Wallace Croft. Tuple Spaces — Research — VerticalNet, Inc.,

February 2000. h t t p : / / alum nus. c a l te c h . e d u /~ c ro f t /r e s e a rc h /a g e n t/

tu p le sp a c e s /.

Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet:

A Distributed Anonymous Information Storage and Retrieval System. Lecture

Notes in Computer Science, 2009:46+, 2001.

Bogdan Carbunar, Marco Tulio Valente, and Jan Vitek. CoreLime: A Coordi

nation Model for Mobile Agents. In ConCoord 2001: International Workshop

on Concurrency and Coordination, Lipari, Italy, July 2001.

Bogdan Carbunar, Marco Tulio Valente, and Jan Vitek. Lime Revisited. Lec

ture Notes in Computer Science, 2240:54, 2001.

Nigel Davies, Adrian Friday, Stephen Wade, and Gordon Blair. L2imbo:

A Distributed Systems Platform for Mobile Computing. AC M Mobile Net

works and Applications (MONET), Special Issue on Protocols and Software

Paradigms of Mobile Networks, 3(2):143-156, August 1998.

Patrick Doherty, Gosta Granlund, Krzystof Kuchcinski, Erik Sandewall, Klas

Nordberg, Erik Skarman, and Johan Wiklund. The WITAS Unmanned Aerial

Vehicle Project. In W. Horn, editor, EC AI 2000. Proceedings of the 14th

European Conference on Artificial Intelligence, pages 747-755, Berlin, August

2000.

D. De Roure, M.A. Baker, N.R. Jennings, and N.R. Shadbolt. The Evolution

of the Grid. In F. Berman, G. Fox, and A.J.G. Hey, editors, Grid Computing

— Making the Global Infrastructure a Reality, pages 65-100. John Wiley and

Sons Ltd, 2003.

Nigel Davies, Stephen Wade, Adrian Friday, and Gordon Blair. Limbo: A Tu

ple Space Based Platform for Adaptive Mobile Applications. In Joint Interna

http://alumnus.caltech.edu/~croft/research/agent/

BIBLIO G RAPH Y 138

[ED02]

[Edw99]

[EQU05]

[FAH99]

[FDS+99]

[FGKZ03]

[FK99]

[FPM04]

[Gel85]

[GGF04]

[Gig02a]

tional Conference on Open Distributed Processing and Distributed Platforms

(ICODP/ICDP ’97), Toronto, Canada, 1997. Chapman and Hall.

Huw Evans and Peter Dickman. Peer-to-Peer Programming with Teaq. In

Workshop on Peer-to-Peer Computing, co-located with Networking 2002, Pisa,

Italy, May 2002.

W. Keith Edwards. Core Jini. P T R Prentice-Hall, Englewood Cliffs, NJ

07632, USA, 1999.

EQUATOR IRC. h t t p : //www. e q u a to r . a c .uk, October 2005.

Eric Freeman, Ken Arnold, and Susanne Hupfer. JavaSpaces Principles, Pat

terns, and Practice. Addison-Wesley Longman Ltd., 1999.

Adrian Friday, Nigel Davies, Jochen Seitz, Matthew Storey, and Stephen

Wade. Experiences of Using Generative Communications to Support Adap

tive Mobile Applications. Distributed and Parallel Databases, Special Issue on

Mobile Data Management and Applications, 7(3):l-24, 1999.

Ludger Fiege, Felix C. Gartner, Oliver Kasten, and Andreas Zeidler. Sup

porting Mobility in Content-Based Publish/Subscribe Middleware. In Mid-

dleware2003, number 2672 in LNCS, pages 103-122, Rio de Janeiro, Brazil,

June 2003. Springer-Verlag.

Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for a New

Computing Infrastructure. Morgan Kaufmann Publishers, Inc., 1999.

Umar Farooq, Eric W. Parsons, and Shikharesh Majumdar. Performance of

Publish/Subscribe Middleware in Mobile Wireless Networks. In Proceedings of

the 4th International Workshop on Software and Performance, pages 278-289.

ACM Press, 2004.

David Gelernter. Generative Communication in Linda. AC M Transactions on

Programming Languages and Systems, 7(1):80-112, January 1985.

Global Grid Forum, 2004. h ttp ://w w w .g g f .o rg /.

GigaSpaces Technologies Ltd. GigaSpaces Cluster: White Paper, March 2002.

Available from www. g ig a sp a c e s . com.

http://www.ggf.org/

BIBLIO G RAPHY 139

[Gig02b]

[Gig03]

[Gnu03]

[Gre97]

[Gre02a]

[Gre02b]

[Har04]

[HG99]

[HHL01]

[HJP02]

[HR03]

GigaSpaces Technologies Ltd. GigaSpaces Platform: W hite Paper, February

2002. Available from www. g ig a sp a c e s . com.

GigaSpaces Technologies Ltd. P2P Cluster Patterns: W hite Paper, March

2003. Available from www.gigaspaces.com.

Gnutella — A Protocol for a Revolution, 2003. h t t p : / / r f c - g n u te l la .

so u rce fo rg e .n e t / .

Robert Greig. Javelin: A Distributed Linda System. Final Year Project

Report, University of Glasgow, 1997.

Chris Greenhalgh. Equip - extensible platform for distributed collaboration. In

Second Workshop on Advanced Collaboration Environments, held in conjunc

tion with the Eleventh IEEE International Symposium on High Performance

Distributed Computing (HPDC-11), July 2002.

Chris Greenhalgh. EQUIP: a Software Platform for Distributed Interactive

Systems. Technical report, University of Nottingham, 2002.

Lawrence Harte. Introduction to GSM: Physical Channels, Logical Channels,

Network, and Operation. Althos, November 2004.

Bob Heile and GTE Technology Organization. Solutions for the Last 10 Me

ters: An Overview of IEEE 802.15 Working Group on WPANs. In Proceedings

of the 3rd IEEE International Symposium on Wearable Computers, page 10.

IEEE Computer Society, 1999.

Zygmunt Haas, Joseph Y. Halpern, and Li Li. Gossip-Based Ad Hoc Routing.

Technical Report TR2001-1849, Department of Computer Science, Cornell

University, 2001.

K.A. Hawick, H.A. James, and L.H. Pritchard. Tuple-Space Based Middleware

for Distributed Computing. Technical Report DHPC-128, Computer Science

Division, University of Wales, Bangor, North Wales, October 2002.

Radu Handorean and Gruia-Catalin Roman. Secure Sharing of Tuple Spaces

in Ad Hoc Settings. In Riccardo Focardi and Gianluigi Zavattaro, editors,

Electronic Notes in Theoretical Computer Science, volume 85. Elsevier, 2003.

http://www.gigaspaces.com
http://rf

BIBLIO G RAPH Y 140

[HW02]

[JF02]

[JF04]

[Joh02]

[JXT04]

[KamOO]

[KarOO]

[KMS+93]

[KN05]

[Kno75]

[L+01]

[LLK01]

S. Hazel and B. Wiley. Achord: A Variant of the Chord Lookup Service for

Use in Censorship Resistant Peer-to-Peer Publishing Systems, 2002.

Brad Johanson and Armando Fox. The Event Heap: A Coordination In

frastructure for Interactive Workspaces. In WMCSA ’02: Proceedings o f the

Fourth IEEE Workshop on Mobile Computing Systems and Applications, Cal-

licoon, New York, USA, 2002. IEEE Computer Society.

Brad Johanson and Armando Fox. Extending tuplespaces for coordination in

interactive workspaces. J. Syst. Softw., 69(3):243—266, 2004.

Bradley Earl Johanson. Application Coordination Infrastructure for Ubiqui

tous Computing Rooms. PhD thesis, Stanford University, December 2002.

Project JXTA, 2004. h ttp ://w w w .jx ta .o rg .

Alan Kaminsky. JiniME: Jini Connection Technology for Mobile Devices.

Technical report, Information Technology Laboratory, Rochester Inst, of Tech

nology, Aug 2000.

James Kardach. Bluetooth Architecture Overview. Intel Technology Journal,

page 7, May 2000.

Kimberly Keeton, Bruce A. Mah, Srinivasan Seshan, Randy H. Katz, and

Domenico Ferrari. Providing connection-oriented network services to mobile

hosts. In Proceedings USENIX Symposium on Mobile & Location-Independent

Computing, pages 83-102, August 1993.

Sumit Kasera and Nishit Narang. SG Mobile Networks: Architecture, Proto

cols, and Procedures. Professional Engineering. Higher Education, February

2005.

G. D. Knott. Hashing functions. Computer Journal, 18(3):265-278, 1975.

Tobin J. Lehman et al. Hitting the Distributed Computing Sweet Spot with T

Spaces. Computer Networks (Amsterdam, Netherlands: 1999), 35(4):457-472,

March 2001.

Kam-Yiu Lam, Guo Hui Li, and Tei-Wei Kuo. A Multi-version D ata Model for

Executing Real-time Transactions in a Mobile Environment. In Proceedings of

http://www.jxta.org

BIBLIO G RAPH Y 141

[LMW99]

[LRS02]

[Lyn96]

[Man96]

[MB98]

[ME03]

[Moz04]

[MPR01]

[MPR03]

the 2nd A CM International Workshop on Data engineering for Wireless and

Mobile Access, pages 90-97. ACM Press, 2001.

Tobin J. Lehman, Stephen W. McLaughry, and Peter Wycko. T Spaces: The

Next Wave. In HICSS, 1999.

Qin Lv, Sylvia Ratnasamy, and Scott Shenker. Can Heterogeneity Make

Gnutella Scalable? In Revised Papers from the First International Workshop

on Peer-to-Peer Systems, pages 94-103. Springer-Verlag, 2002.

Nancy A. Lynch. Distributed Algorithms. The Morgan Kaufman Series in

Data Management Systems. Morgan Kaufmann Publishers, Inc., 1996.

Steve Mann. “Smart Clothing” : Wearable Multimedia Computing and “Per

sonal Imaging” to Restore the Technological Balance Between People and

Their Environments. In Proceedings of the Ĵ th AC M International Confer

ence on Multimedia, pages 163-174. ACM Press, 1996.

Sanjay Kumar Madria and Bharat K. Bhargava. On the Correctness of a

Transaction Model for Mobile Computing. In Proceedings of the 9th Interna

tional Conference on Database and Expert Systems Applications, pages 573-

583. Springer-Verlag, 1998.

Gareth P. McSorley and Huw Evans. Tiamat: Generative Communications in

a Changing World. In 1st International Workshop on Middleware for Perva

sive and Ad Hoc Computing, pages 37-44, Rio de Janeiro, Brazil, 16-20 June

2003.

The Mozilla Organization, 2004. h ttp ://w w w .m o z illa .o rg .

A. Murphy, G. Picco, and G.-C. Roman. Lime: A Middleware for Physical

and Logical Mobility. In Proceedings o f the 21st International Conference on

Distributed Computing Systems (ICDCS-01), pages 524-536, Los Alamitos,

CA, April 16-19 2001. IEEE Computer Society.

A. Murphy, G. Picco, and G. Roman. Lime: A Coordination Middleware

Supporting Mobility of Hosts and Agents, 2003.

http://www.mozilla.org

BIBLIO G RAPH Y 142

[MT03]

[MW97]

[MW98]

[MZL03]

[Neu03]

[NKR+02]

[Nok04]

[NPROO]

Ronaldo Menezes and Robert Tolksdorf. Adaptiveness in Linda-based Coor

dination Models. In Proceedings of the 1st International Workshop on Engi

neering Self-Organising Applications, LNCS 2977, Melbourne, Australia, July

2003.

Ronaldo Menezes and Alan Wood. Garbage Collection in Open Distributed

Tuple Space Systems. In Wanderley Lopes de Souza and Rogerio Drum

mond, editors, Proceedings of 15th Brazilian Computer Networks Symposium

— SB R C ’97, pages 525-543, Sao Carlos, Sao Paulo, Brazil, May 1997.

Ronaldo Menezes and Alan Wood. Ligia: A Java-based Linda-like Run-time

System with Garbage Collection of Tuple Spaces. Technical Report YCS 304

(1998), University of York, 1998.

Marco Mamei, Franco Zambonelli, and Letizia Leonardi. Tuples On The

Air: A Middleware for Context-Aware Computing in Dynamic Networks. In

Proceedings of the 23rd International Conference on Distributed Computing

Systems, page 342. IEEE Computer Society, 2003.

Rolf Neugebauer. Decentralising Resource Management in Operating Systems.

PhD Dissertation, Department of Computing Science, University of Glasgow,

April 2003.

Chandra Narayanaswami, Noboru Kamijoh, Mandayam Raghunath,

Tadanobu Inoue, Thomas Cipolla, Jim Sanford, Eugene Schlig, Sreekrish-

nan Venkiteswaran, Dinakar Guniguntala, Vishal Kulkarni, and Kazuhiko Ya-

mazaki. IBM’s Linux Watch: The Challenge of Miniaturization. Computer,

35(1):33-41, 2002.

Nokia — Latest Mobile Phones, 2004. h ttp ://w w w .n o k ia .co .U k /n o k ia /0 ,

8764,18062 ,00 .html.

Rocco De Nicola, Rosario Pugliese, and Antony I. T. Rowstron. Proving the

Correctness of Optimising Destructive and Non-destructive Reads over Tuple

Spaces. In Proceedings of the 4th International Conference on Coordination

Languages and Models, pages 66-80. Springer-Verlag, 2000.

http://www.nokia.co.Uk/nokia/0

BIBLIO G RAPH Y 143

[OG02]

[OP99]

[OraOl]

[Out02]

[OZ98]

[PM01]

[PMR99]

[PRMOO]

[RD01]

Philipp Obreiter and Guntram Graf. Towards Scalability in Tuple Spaces. In

Proceedings of the 2002 A CM Symposium on Applied computing, pages 344-

350. ACM Press, 2002.

Bob O’Hara and A1 Petrick. The IEEE 802.11 Handbook: A Designer’s Com

panion. Standards Information Network IEEE Press, 1999.

Andy Oram. Peer-to-Peer: Harnessing the Power of Disruptive Technologies.

O’Reilly & Associates, Sebastopol, CA, 2001.

Getting the Most out of Outrigger. White Paper, June 2002. h t t p : / / j a v a .

su n .co m /d ev e lo p er/p ro d u c ts /jin i/O u trig g erM o stO f-8 .p d f .

Andrea Omicini and Franco Zambonelli. TuCSoN: A Coordination Model

for Mobile Information Agents. In David G. Schwartz, Monica Divitini, and

Terje Brasethvik, editors, 1st International Workshop on Innovative Internet

Information Systems (IIIS ’98), pages 177-187, Pisa, Italy, 8-9 June 1998. IDI

— NTNU, Trondheim (Norway).

Esmond P itt and Kathy McNifF. Java.rmi: The Remote Method Invocation

Guide. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

2001.

Gian Pietro Picco, Amy L. Murphy, and Gruia-Catalin Roman. L lM E : Linda

Meets Mobility. In D. Garlan, editor, Proceedings of the 21st International

Conference on Software Engineering (IC SE ’99), pages 368-377, Los Angeles,

CA, USA, May 1999. ACM Press. Also available as Technical Report WUCS-

98-21, July 1998, Washington University in St. Louis, MO, USA.

Bryan D. Payne, Gruia-Catalin Roman, and Amy L. Murphy. Managing

Growth in Mobile Ad Hoc Networks Based on Linda in a Mobile Environment

(LIME). Dept. Computing Science Washington University at St. Louis, May

2000.

Antony Rowstron and Peter Druschel. Pastry: Scalable, Decentralized Object

Location, and Routing for Large-Scale Peer-to-Peer Systems. Lecture Notes

in Computer Science, 2218:329, 2001.

http://java

BIBLIO G RAPH Y 144

[Res94]

[RFH+01]

[Riv92]

[Row98]

[RowOO]

[RW96]

[RW97]

[RW98]

[Ser04]

[SM02a]

Mitchel Resnick. Turtles, Termites, and Traffic Jams: Explorations in Mas

sively Parallel Micorworlds. MIT Press, 1994.

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott

Schenker. A Scalable Content-Addressable Network. In Proceedings of the

2001 conference on Applications, technologies, architectures, and protocols for

computer communications, pages 161-172. ACM Press, 2001.

R. Rivest. RFC 1321 — The MD5 Message-Digest Algorithm.

h t t p : / / i e t f . o r g / r f c / r f c l 3 2 1 . t x t , April 1992.

Antony Rowstron. WCL: A Co-ordination Language for Geographically Dis

tributed Agents. World Wide Web, 1(3):167-179, 1998.

Antony Rowstron. Optimising the Linda in Primitive: Understanding Tuple-

Space Run-Times. In Proceedings of the 2000 ACM Symposium on Applied

Computing, volume 1, pages 227-232. ACM Press, March 2000.

A. Rowstron and A. Wood. An Efficient Distributed Tuple Space Implemen

tation for Networks of Workstations. Lecture Notes in Computer Science,

1123:510, 1996.

A. Rowstron and A. Wood. Bonita: A Set of Tuple Space Primitives for

Distributed Coordination. In Proc. HICSS30, Software Track, pages 379-388,

Hawaii, 1997. IEEE Computer Society Press.

A. I. T. Rowstron and A. M. Wood. Solving the Linda Multiple rd Problem

Using the copy-collect Primitive. Science of Computer Programming, 31(2-

3):335-358, July 1998.

Patricia Serrano Alvarado. Adaptable Transactions for Mobile Environments.

PhD Dissertation, LSR-IMAG Laboratory, Grenoble, 2004.

Jim Snyder and Ronaldo Menezes. Using Logical Operators as an Extended

Coordination Mechanism in Linda. In Proceedings of the 5th International

Conference on Coordination Models and Languages, pages 317-331. Springer-

Verlag, 2002.

http://ietf.org/rfc/rfcl321.txt

B IBLIO G RAPH Y 145

[SM02b]

[SMK+01]

[SunOO]

[Sun02]

[Swe04]

[Tri99]

[Vos97]

[VvRB03]

[W+98]

[WACOO]

[Wad99]

Torsten Suel and Nasir Memon. Handbook of Lossless Compression, chapter

Algorithms for Delta Compression and Remote File Synchronization. Aca

demic Press, August 2002.

Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakr-

ishnan. Chord: A Scalable Peer-To-Peer Lookup Service for Internet Ap

plications. In Proceedings of the 2001 AC M SIGCOMM Conference, pages

149-160, 2001.

Sun Microsystems Inc. Jini Distributed Leasing Specification, 2000. h t tp :

//wwws. su n . com /so ftw are/j i n i / s p e c s / j i n i 1 . lh tm l/ le a s e - s p e c .htm l.

Sun Microsystems Inc. Java Technology, 2002. h t tp : / / ja v a .s u n .c o m / .

Daniel Sweeney. WiMax Operator’s Manual: Building 802.16 Wireless Net

works. APress, 2004.

Andrew Tridgell. Efficient Algorithms for Sorting and Synchronization. Phd

dissertation, The Australian National University, February 1999.

Gottfried Vossen. The CORBA Specification for Cooperation in Heteroge

neous Information Systems. In CIA ’97: Proceedings of the First International

Workshop on Cooperative Information Agents, pages 101-115, London, UK,

1997. Springer-Verlag.

Werner Vogels, Robbert van Renesse, and Ken Birman. The Power of Epi

demics: Robust Communication for Large-Scale Distributed Systems. SIG

COMM Comput. Commun. Rev., 33(1):131—135, 2003.

J. Waldo et al. JavaSpace Specification — 1.0. Technical report, Sun Mi

crosystems, March 1998.

M. Waldman, Rubin A.D., and L.F. Cranor. Publius: A Robust, Tamper-

Evident, Censorship-Resistant Web Publishing System. June 2000.

Stephen P. Wade. An Investigation into the use of the Tuple Space Paradigm in

Mobile Computing Environments. PhD thesis, Lancaster University, Septem

ber 1999.

http://java.sun.com/

BIBLIO G RAPH Y 146

[WMLF98]

[XP99]

[YJK98]

P. Wyckoff, S. McLaughry, T. Lehman, and D. Ford. T Spaces. IBM Systems

Journal, 37(3):454-474, 1998.

George Xylomenos and George C. Polyzos. TCP and UDP performance over

a wireless LAN. In INFOCOM (2), pages 439-446, 1999.

Tao Ye, H.-Arno Jacobsen, and Randy Katz. Mobile awareness in a wide

area wireless network of info-stations. In MobiCom ’98: Proceedings of the

4th annual AC M /IEEE international conference on Mobile computing and

networking, pages 109-120, New York, NY, USA, 1998. ACM Press.

GUSGOwH
UNIVERSITY

J J BRARY I

