

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

Smart Vision in System-on-Chip Applications

Cade Cenric Wells MEng (Wales)

A thesis submitted to

The Universities of

Edinburgh

Glasgow

Heriot-Watt

Strathclyde

for the Degree of

Doctor of Engineering in System Level Integration

Copyright © Cade Cenric Wells 2005

ProQuest Number: 10754010

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10754010

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

(GLASGOW)
UNIVERSITY
LIBRARY:A ----- — J

Abstract

In the last decade the ability to design and manufacture integrated circuits with

higher transistor densities has led to the integration of complete systems on a single

silicon die. These are commonly referred to as System-on-Chip (SoC). As SoCs

processes can incorporate multiple technologies it is now feasible to produce single

chip camera systems with embedded image processing, known as Imager-on-Chips

(IoC). The development of IoCs is complicated due to the mixture of digital and

analog components and the high cost of prototyping these designs using silicon

processes. There are currently no re-usable prototyping platforms that specifically

address the needs of IoC development.

This thesis details a new prototyping platform specifically for use in the development

of low-cost mass-market IoC applications. FPGA technology was utilised to

implement a frame-based processing architecture suitable for supporting a range of

real-time imaging and machine vision applications. To demonstrate the effectiveness

of the prototyping platform, an example object counting and highlighting application

was developed and functionally verified in real-time. A high-level IoC cost model

was formulated to calculate the cost of manufacturing prototyped applications as a

single IoC. This highlighted the requirement for careful analysis of optical issues,

embedded imager array size and the silicon process used to ensure the desired IoC

unit cost was achieved. A modified version of the FPGA architecture, which would

result in improving the DSP performance, is also proposed.

Acknowledgments

I would like to thank:

• STMicroelectronics, Edinburgh and the EPSRC for their financial support

during the doctoral research.

• My academic supervisor, Dr David Renshaw, for his support and guidance

during the last four years.

• My secondary academic supervisor, Dr Iain Lindsay.

• My industrial supervisor and mentor, Ed Duncan, for his encouragement and

advice during the doctoral research and the publication of papers.

• STMicroelectronics Imager Development Director, Graham Townsend, for

his support during the research project.

• The STMicroelectronics Imager IP design team: Marie Torrie, Andy Kinsey,

David Grant, Gary McGillivray, Brian Paisley, William Mair, David Storrar

and Ewen Brown for the help provided using development tools.

• The STMicroelectronics Hardware design team: Martin Turner, Jonathan

Adler and Russell Simpson for their guidance on PCB design.

• The STMicroelectronics Image Sensor design team: Dr Graeme Storm, Dr

Mathew Purcell, William Holland for their advice on CMOS image sensor

design issues.

• My wife, Claire, for her everlasting encouragement, understanding and for

proof-reading my Thesis.

Declarations

Some parts of the work presented in this thesis have been published in the following
articles:

1. Wells CC, Duncan E, Renshaw D. An FPGA based prototyping platform for

imager on chip applications. Proceedings of the IEEE International

Conference on Field Programmable Technology (FPT04). 2004 Dec 6-8;

Brisbane, Australia. p307-310.

2. Wells CC, Duncan E, Renshaw D. A model for imaging system-on-chip

manufacturing costs. Proceedings of the IEEE International Symposium on

System-on-Chip (SoC 2004); 2004 Nov 16-18; Tampere, Finland. p53-56.

Table of Contents

1 Introduction.. 1

2 Literature Review.. 7

2.1 History of Machine Vision and Related Image Processing...........................7

2.2 Current Market and Applications..8

2.3 Emerging and Future Applications... 11

2.4 Board-Level Integrated Smart Vision Systems..13

2.5 System-Level Integrated Smart Vision Systems...15
2.5.1 Biological and Architecturally-Implicit Processing based Vision Sensors

16
2.5.2 On-Chip Explicit Computational Processing Based Vision Sensors 19

2.5.2.1 Mesh Processing Architectures...20
2.5.2.2 Linear Processing Array Architectures...25
2.5.2.3 Frame Processing Architectures..29

2.5.3 Summary..34

2.6 Vision System Prototyping... 37

2.7 Summary.. 38

3 System Requirements, Analysis and Specifications... 41

3.1 Requirements...41

3.2 Specifications...43
3.2.1 FPGA Backplane Selection...43
3.2.2 Daughter Board Analysis and PCB Component Selection......................45
3.2.3 System Buses Analysis and Specification... 49
3.2.4 Detailed IMPBUS Specification...51
3.2.5 FPGA Design Analysis and Specification... 53
3.2.6 System Firmware.. 61
3.2.7 Cost Issues... 62

3.3 Summary.. 63

4 FPGA System Design, Test and Results... 64

4.1 FPGA Design Flow..64

4.2 FPGA Top Level Mapping... 65

4.3 Core Architecture...66
4.3.1 Register Bank.. 67
4.3.2 Memories.. 69
4.3.3 SDRAM Decoder...70
4.3.4 Sensor Interface..73
4.3.5 Video Generator.. 76
4.3.6 Ping-pong Unit..80
4.3.7 System Control Unit... 83

4.3.8 Network Control...87

4.4 DSP IP Block Library... 89

4.5 Simulation and Functional Verification..101

4.6 System Programming...103

4.7 FPGA Conversion to SoC... 104

4.8 Results.. 105

4.9 Summary.. 111

5 IoC Manufacturing Cost Modelling...112

5.1 CMOS Imager Area Issues... 112

5.2 Cost Model...114

5.3 Application of Model to Example IoC..116

5.4 Summary.. 119

6 Discussion and Conclusions... 120

6.1 Discussion..120
6.1.1 PCB Work... 121
6.1.2 FPGA Work.. 123

6.1.2.1 The Instruction Set.. 123
6.1.2.2 The DSP IP Block Library..127
6.1.2.3 Available Processing Tim e...129
6.1.2.4 FPGA Resource Usage.. 130
6.1.2.5 Minimum Object Size and Maximum Object Velocity.................. 133
6.1.2.6 Processing Architecture Comparison with Other Systems............135

6.1.3 The Complete Prototyping System..136
6.1.4 IoC Manufacturing Cost Modelling...140

6.2 Recommendations for Future work... 142

6.3 Example Re-Design of Prototyping Platform...145
6.3.1 Scalability of Current Platform to Higher Image Resolutions................145

6.3.1.1 Daughter Board and FPGA Backplane...146
6.3.1.2 FPGA Memory Sub-Systems.. 146
6.3.1.3 Sensor Interface, Video Generator and Ping-pong Unit................151
6.3.1.4 System and Network Control Units and DSP IP Blocks................ 152
6.3.1.5 Available Processing Time... 153
6.3.1.6 Summary..154

6.3.2 Re-designed Architecture..154
6.3.2.1 Overview of New Architecture...155
6.3.2.2 Memory Sub-system... 158
6.3.2.3 Microcontroller & I2C Interface..162
6.3.2.4 Ping-Pong Unit.. 165
6.3.2.5 Configurable DSP block... 167
6.3.2.6 Bus Network Controller.. 172

6.3.3 Analysis of Suggested New Architecture.. 173
6.3.3.1 DSP Performance.. 174
6.3.3.2 Cycles Available for DSP... 174

6.3.3.3 Microcontroller Instruction Execution Speed and Code Size........176
6.3.3.4 Pin Count, FPGA Logic Cell and Memory Usage.........................178
6.3.3.5 Summary..182

6.3.4 Colour Processing.. 182

6.4 Conclusions...184

References.. 186

Appendix A ..201

Appendix B ..202

B.l Design and Fabrication Process Overview... 202
B. 1.1 Schematic Entry... 202
B .l.2 Layout and Routing..205
B. 1.3 PCB Manufacture... 206
B. 1.4 Component Population...206
B .l.5 Functional Testing.. 207

B.2 Results..208

B.3 Summary..211

Appendix C ..212

List of Figures

Figure 2.1 Machine Vision Revenue Generated by Geographic Region in 2002........ 9
Figure 2.2 Major end-user industries for machine vision in 2002 by revenue, Europe

(left) and North America (right)... 9
Figure 2.3 Adaptation of image sensors to lighting, conventional (left) and extended

dynamic range (right)..11
Figure 2.4 Micrographs of three different CMOS fovea image sensors, (a) a disjoint

fovea array and peripheral ring structure, (b) a disjoint fovea array and
peripheral array and (c) a continuous fovea and retinal ring structure................18

Figure 2.5 Architecture of S3PE.. 20
Figure 2.6 Architecture of (a) Single APE (left) and (b) the SCAMP architecture with

a single APE marked (right)... 23
Figure 2.7 Architectures of (a) IVP MAPP2500 (left) and (b) Chen et al.’s PASIC

(right)..26
Figure 2.8 Top-level architecture of the Philips Xetal Vision Chip...........................27
Figure 2.9 Top-level architecture of Ni and Guan Smart CMOS Image Sensor....... 28
Figure 2.10 Top-level architecture of Fang et al.’s Smart Vision SoC.......................30
Figure 2.11 Top-level architecture ofNeuricam’s VISoc based smart camera......... 31
Figure 2.12 The three approaches to general purpose processing on vision chips.... 34
Figure 2.13 Top level block diagram of Ateme Digital Media Evaluation Kit 6414 38
Figure 3.1 STMicroelectronics Backplane ..44
Figure 3.2 Top-Level Daughter Board Bus Diagram..51
Figure 3.3 FPGA memory address map... 55
Figure 3.4 Top-level IP block architecture in the FPGA.. 59
Figure 4.1 Top-level pin mappings for the FPGA...66
Figure 4.2 The three phases of development for the core architecture.......................67
Figure 4.3 Single instance of an example 8-bit register from the register bank........ 69
Figure 4.4 Co-processor’s SDRAM read (top) and write (bottom) timing

requirements..72
Figure 4.5 Sensor VGA image frame and timings at 25FPS....................................... 75
Figure 4.6 Bayer colourisation pattern used in STMicroelectronics' colour image

sensors... 76
Figure 4.7 ITU-R BT.656 PAL video timing requirements for a 27 MFlz clock...... 78
Figure 4.8 Control mechanism for Video generator's line memory and FIFO...........80
Figure 4.9 Top-level block diagram of Video generators FSM.................................. 80
Figure 4.10 Test patterns visible for test_sel=l (left) and test_sel=2 (right)..............83
Figure 4.11 Top-level interfaces of system control unit..84
Figure 4.12 I/O interface for DSP IP co-processor blocks... 90
Figure 4.13 3x3 neighbourhood filter operation on an image..................................... 94
Figure 4.14 Sobel vertical mask (left), input Lenna image (middle) and processed

image (right)..94
Figure 4.15 Representation of the 3x3 filter's datapath.. 96
Figure 4.16 Preference of connected pixels in Getobjs algorithm..............................97
Figure 4.17 Object database item format...97
Figure 4.18 Getsobjs algorithm flow chart..99
Figure 4.19 Binary input image (top) and processed image using Getobjs Matlab

script (bottom)..100
Figure 4.20 Functional verification and simulation flow...102

Figure 4.21 Programming method for the STV0674 co-processor........................... 104
Figure 4.22 Three types of available time slot for uninterrupted image processing 107
Figure 4.23 Distance an object must travel across the lens field of view.................109
Figure 5.1 Typical CMOS imager architecture..112
Figure 5.2 An example IoC to support the demonstration application..................... 117
Figure 5.3 Manufacturing cost graph for example IoC..118
Figure 6.1 Clock cycles required to process each pixel using the 3x3filter DSP IP

block...128
Figure 6.2 Methods of reordered pixel sub-sampling for improve performance......139
Figure 6.3 Two different FPGA memory maps taking into account the use of off-chip

SDRAM...150
Figure 6.4 Reordered FPGA memory map..151
Figure 6.5 New proposed FPGA architecture..157
Figure 6.6 I/O interface for the SDRAM controllers...160
Figure 6.7 New proposed FPGA memory map..161
Figure 6.8 DP8051 microcontroller sub-system..163
Figure 6.9 DP8051 Memory Map.. 164
Figure 6.10 New DSP sub-system... 167
Figure 6.11 DSP address generator I/O interface..168
Figure 6.12 Example DSP pipeline configuration...170
Figure 6.13 I/O interface for new DSP IP blocks..170
Figure B.l Peak current at rising clock edge.. 204
Figure B.2 Sub system locations on topside of PCB.. 210
Figure B.3 A photograph of the complete PCB attached to the FPGA backplane ..210
Figure C.l Screenshots of a coffee mug and Dilbert toy detected and highlighted by

the system...213

List of Tables

Table 2.1 Execution times of sample programs for the SPARSIS architecture......... 21
Table 2.2 Time of execution of several algorithms on the SCAMP vision chip....... 24
Table 2.3 Comparison of Neuricams VISoc and proposed SmartPupilla...................32
Table 2.4 Comparison of the three approaches to processing in vision chips............34
Table 3.1 Interconnections between sub-systems, DSP IP blocks and memories on

the FPGA...60
Table 4.1 Minimum set of I/Os for the FPGA Register Bank....................................68
Table 4.2 Minimum register map for FPGA Register Bank....................................... 69
Table 4.3 Top-level memory interface to system architecture for an Image bank 70
Table 4.4 VO interface for the SDRAM decoder...71
Table 4.5 SDRAM commands and associated signals to start read and write

transactions..72
Table 4.6 I/O interface for the sensor interface...74
Table 4.7 I/O interface for the Video generator...77
Table 4.8 SAV and EAV code sequence...79
Table 4.9 I/O interface for the Ping-pong unit...81
Table 4.10 I/O interface for the system control unit... 84
Table 4.11 Instruction list supported by prototyping system...................................... 85
Table 4.12 Supported operations by DSP block library.. 92
Table 4.13 Instruction execution time.. 105
Table 4.14 Processing times and cycles per pixel for the DSP IP block library 106
Table 4.15 Resource usage by FPGA system component.. 108
Table 4.16 FPGA memory utilisation.. 109
Table 4.17 Maximum object velocity in m/s to still guarantee detection..................109
Table 4.18 Minimum detectable object size..110
Table 5.1 Values used for cost model.. 117
Table 5.2 Area size for imager and complete IoC ...118
Table 5.3 Cost of the IoC at a given process and unit quantity................................ 118
Table 6.1 Worst case instruction execution tim e...123
Table 6.2 Improved instruction worst-case execution time...................................... 126
Table 6.3 LC usage and percentage of total FPGA LC by IP block.........................132
Table 6.4 Number of LCs used by each sub-system type of the FPGA architecture

... 133
Table 6.5 Platform’s Memory Requirements (in Bytes) to Support Higher Image

Sizes.. 146
Table 6.6 Platform’s Memory Requirements to Support Higher Image Sizes 147
Table 6.7 Interconnect Address Scheme.. 169
Table 6.8 Shared memory access priorities allocation...172
Table 6.9 Number of 96MHz clock cycles to perform an SDRAM Read and Write

..176
Table 6.10 Logic Element and ESB usage in the new architecture..........................179
Table A.l 1 IMPBUS pin mappings for the STV0674.. 201
Table C.l Application code for object count and highlight demonstration............ 214

List of Equations

Equation 2.1 Dynamic Power Dissipated by CMOS logic... 35
Equation 4.1 The calculation of protection bits PO to P3.. 79
Equation 4.2 Threshold equation... 92
Equation 4.3 Copy equation... 93
Equation 4.4 Getcoords Equations... 93
Equation 4.5 Absdiff equation... 93
Equation 4.6 Equation for the spatial domain neighbourhood operator 3x3filter..... 93
Equation 4.7 Maximum number of cycles to perform Threshold DSP operation ... 106
Equation 4.8 Maximum number of cycles to perform Filter3x3 DSP operation 106
Equation 4.9 Maximum number of cycles to perform Rectangle operation 106
Equation 4.10 Maximum number of cycles to perform Getcoords operation 106
Equation 4.11 Maximum number of cycles to perform Absdiff operation............. 107
Equation 4.12 Maximum number of cycles to perform Copy operation.................107
Equation 5.1 IoC system cost model... 114
Equation 5.2 Die cost calculation...114
Equation 5.3 Die yield model...114
Equation 5.4 Area of d ie ...115
Equation 5.5 Area of sensor..115
Equation 5.6 Area of pixel array...115
Equation 5.7 Area of digital logic...115
Equation 5.8 Area of analog address units..115
Equation 5.9 Area of miscellaneous analog components..116
Equation 5.10 Inter-process scaling factor..116
Equation 6.1 Maximum cycles available for processing per image frame...............175

List of Abbreviations

A/D Analog-to-Digital
ADC Analog-to-Digital Convertor
ALU Arithmetic Logic Unit
ASIC Application-Specific Integrated Circuit
ATM Automatic Teller Machine
CAS Column Address Select
CCD Charge-Coupled Device
CIF Common Image Format
CMOS Complementary Metal-Oxide Semiconductor
DAC Digital-to-Analog Convertor
DRC Design Rule Checks
DSP Digital Signal Processing
EAV End of Active Video
EEPROM Electrically erasable and programmable ROM
EOF End Of Frame
ESB Embedded System Block
FIFO First In First Out
FPGA Field Programmable Gate Array
FPS Frames Per Second
GLU Global Logic Unit
GOPS Giga-Operations Per Second
GPIO General-Purpose Inputs and Outputs
GPMV General-Purpose Machine Vision
I/O Inputs and Outputs
IC Integrated Circuit
IEEE Institute of Electrical and Electronics Engineers
IoC Imager-on-Chip
IP Intellectual Property
LC Logic Cells
LE Logic Elements
LED Light Emitting Diode
LPA Linear Processing Arrays
LUT Look-Up Table
MAC Multiply and Accumulate
MCM Multi-Chip Module
MIPS Million Instructions Per Second
MPW Multi-Project Wafer
NASA National Aeronautics and Space Administration
NLU Neighbourhood Logic Unit
NTSC National Television System Committee
OCNN Optimisation Cellular Neural Network
PAL Phase Alternation Line
PBD Platform-Based Design
PCB Printed Circuit Board
PCI Peripheral Component Interconnect
PDA Personal Digital Assistant
PE Processing Element

PLL Phase-Locked Loop
PLU Pixel Logic Unit
RAM Random Access Memory
RISC Reduce Instruction Set Computer
ROI Region Of Interest
ROM Read Only Memory
SAV Start of Active Video
SDRAM Synchronous Dynamic Random Access Memory
SIMD Single-Instruction Stream Multiple-Data Stream
SoC System-on-Chip
SRAM Static Random Access Memory
UART Universal Asynchronous Receiver-Transmitter
USB Universal Serial Bus
VGA Video Graphics Array
VLSI Very Large-Scale Integration
WSTS World Semiconductor Trade Statistics

1 Introduction

The visual system forms an important part of the human sensory system. The

capacity of the human eyes to adapt to selectively focus on areas of interest in the

field of view provides an effective means to collect visual information. The

connection of the eye to the brain enables further processing to be performed and

comparisons to be made with previous observations using relevant prior knowledge.

This combined effort results in the valuable ability to process, analyze and interpret

the world around us. Examples demonstrating our flexibility to interpret different

situations include; the subtleties of lip reading to the ability to strike a fast moving

cricket ball with a bat. These seem relatively simple tasks, given enough practice,

and are taken for granted but in almost all cases the complexity of the processing

required is not apparent. It is only when these everyday tasks are analyzed in detail

that their mathematical complexity is revealed.

“Machine vision is concerned with the automatic interpretation of images of real

scenes in order to obtain information and thereby to control or monitor machines or

processes” [1]. Despite the complex nature of most vision tasks there are several

advantages of using machine vision system rather than a human operator, namely

consistency, precision, cost, flexibility and operational speed. Whilst there are a

wide range of applications that exist for computer vision to be applied to, there are

usually 4 stages common to all, these are:-

1. Acquisition - obtain image from camera.

2. Processing - apply algorithms to enhance parts of the image that are of

interest.

3. Feature extraction - identify and quantify important features.

4. Decision and control - make a decision given a set of known data or rules and

then output a control signal to change a process or output relevant

information.

An example of a typical application is the identification of manufacturing faults for

items on a production line. An algorithm is implemented to compare a snapshot

1

image of each item with a stored image of a known defect free item. This is often

referred to as comparison with a golden reference. If one or more of the visual

characteristics of the item differ from the golden reference the production line

supervisor can be notified and the issue addressed.

The last 20 years has seen an increase in the adoption of machine vision systems. In

2003 the European vision market was estimated at $420 million and the North

American vision market at $1.6 billion [2,3]. In 2004, the world machine vision

market was estimated at $6.6 billion [3].

STMicroelectronics holds a world leading position in CMOS image sensors, with

primary markets in web cameras and digital stills cameras. There is an expectation

that an ever increasing proportion of future mainstream imaging applications will

require some form of embedded vision processing. Examples of this kind of

embedded processing include the ability to track or recognize objects in real-time,

thus enabling numerous possible applications, such as, airbag deployment or security

via face recognition. Embedded vision processing differs from traditional vision

processing in the sense that some or all of the processing is performed within the

camera unit rather that on a separate host computer. The main advantage of this

partitioning of processing is that there is less latency between capturing an image and

its interpretation. It also reduces the demands of communication bandwidth between

camera and any connected external systems as the data transmitted is usually a

control signal rather than a stream of images. Systems based on this processing

paradigm are called smart cameras.

In the last decade the increasing ability to integrate complete systems onto a single

die has resulted in the manufacture of very dense integrated circuits comprising of

over 100 million transistors [4, 5, 6]. These complex system-level integrated circuits

are commonly referred to as System-on-Chip (SoC). As SoC design flows can

incorporate multiple technologies into a single package, it has become feasible to

produce single chip camera systems. In this thesis these SoC camera systems are

defined as Imager-on-Chip (IoC). The imaging and machine vision industry has

recognised the opportunity to configure IoCs to perform vision tasks. As a result, IoC

2

based autonomous smart camera systems are gradually becoming commercially

available [7].

Unfortunately, while the geometry of transistors is continuing to shrink in line with

Moore’s Law, allowing more complex circuits to be realized, the ability to design

new devices based on these new silicon technologies is not improving at the same

rate. It is generally accepted that this design capability gap is steadily increasing due

to the technology improving by 60% a year while design methodology improves by

only 20% [8]. Therefore without dramatically increasing the size of design teams,

the design and verification time for new products will also increase with SoC

complexity. To address this issue, companies in the mid 1990s started adopting

design re-use programmes. In such a programme, new design components are

created with re-use in mind by parameterising interfaces and functionality. These

flexible design components are often referred to as virtual components or Intellectual

Property (IP) blocks. IP blocks are assembled together within a database system to

provide system designers with a library of pre-verified and well-documented re­

usable designs for future projects. It is generally accepted that the benefits of using

such a methodology are mid to long term given that an IP block for re-use can

require 10 to 100 times the development effort as a design for one off use [9].

Traditional software design flows have also been changed as it is generally no longer

possible to develop the software once design, manufacture and debugging of the

hardware has occurred. As a result, hardware and software must be co-developed

adding to the complexity of the overall system design flow. The requirement for co­

design has led to the extension of re-use programmes to include a platform-based

design (PBD) methodology.

Platform-based design is an evolutionary step in IP re-use. Several different

definitions for a platform have been summarised in recent literature [10]. PBD can

be generically defined for this body of work as the use of a defined architectural

platform with a library of associated pre-qualified hardware and software IP, which

can be configured in a variety of forms to meet the requirements of a new product.

These platforms have predominantly been domain specific in order to provide system

optimisation for the required range of possible derivative products, such as for

multimedia or wireless applications [11].

3

Traditionally, prototyping platform-based designs would have initially involved

manufacturing multi-project wafers (MPW) at the intended or older lower cost

silicon process. These MPW consist of several different circuit designs on a single

silicon substrate and hence manufacturing costs are apportioned over all the projects

that have submitted a design for prototyping. Unfortunately the viability of this

approach has reduced with the shift to processes with feature sizes of 0.1pm or less

and given the low volumes of ICs fabricated. At these small feature sizes the cost of

MPW runs increases dramatically when compared to MPW run at around 1pm

feature size. A further complication is caused by the slots available for MPW runs in

fabrication plants, as usually these need to be booked in advanced. Even a large

company with in-house fabrication facilities may have to accept long turn-around

times due to extra steps such as packaging of ICs. These facets to multi-project

wafer production for the purpose of early prototyping can further exacerbate the

existing time-to-market pressures and project costs for a new product.

Fortunately, the improvements to silicon technologies have allowed programmable

logic based devices to realize large capacities. This has occurred to such a degree

that the latest 90nm process Field-Programmable Gate Arrays (FPGAs) have up to

1 OMbits of programmable memory and approximately 200K programmable logic

cells, providing millions of useable gates [12]. As a result, many companies use

FPGA technology to perform real-time or near full clock rate functional verification

of new platform designs using these large devices. Indeed, Xilinx is now marketing

several platform FPGAs not only for verification purposes but as a replacement for

platform-based application specific integrated circuits (ASIC) for high value and

medium to low volume applications [13]. The key advantage of these FPGAs is their

ability to be rapidly re-programmed, providing turn-around times of hours compared

to the several weeks required by MPW runs. The approximate cost for these large

capacity FPGAs is in the region of $1K to $10K which compares favourably with a

typical cost of a typical MPW run. For example a 25mm2 die size using UMC

processes through Europractice costs $17K at 0.25pm feature size and $85K at a

0.13pm feature size [14].

4

The disadvantage of the utilisation of FPGA technology is apparent when attempting

to prototype IoC architectures. The analog components of CMOS and charge-

coupled device (CCD) sensors cannot be mapped onto the array of logic elements

found in current FPGAs. Even the latest Field Programmable Analog Arrays

(FPAA) are unsuitable due to the fact the high density structures essential for the

instantiation of the photosensitive array cannot currently be provided.

The aim of this research was to investigate and develop a new prototyping platform

for low-cost mass-market IoC applications. This was achieved by designing a

system architecture suitable for supporting a wide range of applications. A library of

image processing IP blocks was created to interface both with this system

architecture and future ST Imaging products. To calculate the cost of manufacturing

a prototyped application as a single integrated circuit, a high-level IoC cost model

was formulated.

In this thesis, it is proposed that a frame-based processing architecture is the most

applicable means for image processing, when prototyping IoC applications. This

architecture has the distinct advantage of separating the processing elements from the

CMOS image sensor. This is unlike mesh-based or linear processing arrays, which

are generally tightly coupled with an image sensor. Each architectural component

can be developed and tested independently as an IP block before integrating the

complete system into an IoC. Custom IP blocks can also be functionally verified in

real-time using reusable FPGA technology and optimised for specific applications.

The thesis is organised as follows. Chapter 2 reviews research performed in the field

of vision system design and prototyping systems, with particular emphasis on single

chip vision system implementations. A summary of the image processing and

machine vision market and current, emerging and future applications driving current

research is also presented. Chapter 3 details the system requirements for the types of

IoC that are envisaged to be prototyped using the developed platform. In addition,

the system partitioning scheme used and system specifications are defined. The

printed circuit board (PCB) design, fabrication and test flows for new systems are

described in Chapter 4, followed by the FPGA-level hardware and software design in

Chapter 5. An outline of an example application is provided in Chapter 6. An IoC

5

manufacturing cost model is explained in Chapter 7 and applied to a single chip

system that could support the example application. Chapter 8 critically discusses the

results obtained with a conclusion provided in Chapter 9, including suggestions for

future work.

6

2 Literature Review

As the research would encompass several different topics a broad literature search

was initially performed. A brief history of the uses of image processing and machine

vision was obtained followed by an assessment of the current market. Emerging and

future applications were investigated in addition to current applications of these

technologies. Three specific areas were then studied, namely; smart camera

implementations, highly-integrated vision IoC and prototyping system design. This

provided the necessary understanding of the relevant fields in order to address the

architectural design of the new IoC prototyping platform.

2.1 History of Machine Vision and Related Image Processing

The progress of machine-vision research can be separated into 3 stages [15]. These

three stages demonstrate that machine vision was driven by available computing

power. The first stage started in the 1970s with the main applications area of factory

automation. General-purpose mainframe computers were linked to image acquisition

devices, however their limited processing power and high cost made it very difficult

to justify their large scale use outside high-value markets, such as PCB and

semiconductor production [16]. As a result, their penetration into industry was

limited [17]. The research at this time, was performed in areas of detecting positions,

shapes and defects using windowing, pattern matching and feature extraction

techniques. Computing power limited most of the processing to binary images.

Increasing computing power with a reduction in system cost led to the start of the

second stage in the 1980s. The advent of Reduced Instruction Set Computer (RISC)

based systems meant grey-level image processing could now be applied to image

processing and vision problems. Office automation was now becoming feasible with

many applications, for example, ATMs, mail sorting machines and document

readers. Research primarily focused on text and image recognition, using

technologies such vector conversion, data structuring and context analysis. The third

and current stage started in the 1990s. According to Ejiri the main application area

in the 1990s was social automation which included the domains of traffic

7

management, communications, welfare, medical systems and the environment [15].

The vision research topics at that time included; biometric identification/ recognition,

abnormality monitoring and behaviour understanding using real-time video analysis,

sensor fusion and networked machine vision systems. This has been realized by the

introduction of more embedded systems and systems that are capable of colour

processing.

Many technology companies continue to manufacture vision systems focused on

narrow niche applications where repeat business is possible [17]. To survive in such

niche markets usually requires these companies to have global market penetration. It

has been noted recently however that with availability of low cost embedded vision

systems, or ‘smart’ cameras, machine vision is entering new manufacturing areas

where previously the technology would have been too expensive to implement [18].

If this trend is to continue and for machine vision to migrate into other new

applications areas, uptake of greater levels of integration, programmable processors

and use of technologies such as CMOS image sensors will be required to provide

flexible systems with greater processing power at increasingly lower costs.

2.2 Current Market and Applications

In 2002, the worldwide machine vision was estimated at $5.2 billion [19]. This was

the first significant decline, in recent history, from the previous year and was

attributed to the worldwide recession at that time. The worst impacted sales figures

were from the semiconductor industry but these still attributed to over a third of the

total revenue for Europe and North America. The effects of this decline were limited

by the growth in the adoption of general-purpose machine vision systems for

manufacturing, which were sold to a wide range of end-user industries. At this point

in time, the percentage of the total world machine vision revenue generated by

geographic region was as show in Figure 2.1.

□ J a p a n 35 7%

B N o rth A m e ric a 29 4%

□ E urope 25 .2%

□ R est of \AA>rId 9 7%

Figure 2.1 M achine Vision Revenue Generated by G eographic Region in 2002 |19 |

The machine vision market has steadily continued to grow throughout 2004. This

revenue however, has not yet matched that generated in 2000. The number o f units

shipped has increased over the last two years by 27 % resulting in a gain o f 13% in

revenues. This has led to sales o f $6.6 billion. This is mainly attributed to the

increased use o f machine vision in the Pacific Rim region, in particular Japan and

China [20]. The large discrepancy between revenue accumulated and units shipped,

can be explained by the increased adoption o f lower cost smart cameras, vision

sensors and embedded vision processors. A clear example o f this can be seen in the

European market in 2003. Smart cameras accounted for an estimated 10250 o f a

total o f 30500 general purpose vision system units shipped. This only accounted for

less than 6% of the $261.5 million general purpose machine vision market [2].

Forecasts expect approximately a 9% annual growth in revenue through to 2008 [20].

This predicted due to smart cameras entering new markets currently not addressed by

current vision systems and by evidence that the worldwide downturn in capital

equipment expenditure finished in 2003.

Revenues generated in 2002 from the major end-user industries can be seen below

for Europe and North America in figure 2.2. Europe’s figures for wood and metal

fabrication industries were not available.

Figure 2.2 M ajor end-user industries for machine vision in 2002 by revenue, Europe (left) and

North America (right) |19 |

15%

□ Sem iconductor

□ E lectronics

□ M iscellaneous

□ Food

□ Pharm /M edical D evices

□ W ood

□ Automotive

□ C ontainers

□ Printing

□ P lastics

□ Fab Metals

9

As can be seen in both charts above, the end-user industries for machine vision are

indeed varied. Though appealing to focus on one particular market segment e.g. the

semi-conductor industry representing 37% (North America) and 27% (Europe), this

can be dangerous given the volatile nature of some of the end-user industries.

Traditionally, the semiconductor industry followed a 4 yearly boom-bust cycle whilst

displaying a compound annual growth rate of approximately 17%. Evidence

indicates however that this is unsustainable in the long-term and that the growth rate

is beginning to slow [21]. Recent figures by the Semiconductor Industry Association

(SLA) and research organizations, such as Gartner Inc. and the World Semiconductor

Trade Statistics (WSTS) group, suggest that there will be another decline in 2006

[22, 23, 24]. However, some forecast that the boom-bust cycles are no longer

predictable and the period of time between a boom and bust is decreasing, hence

leading to a potentially more volatile market.

Less semiconductor fabrication facilities are likely to be built by individual

companies since the average cost of a state-of-the-art plant has risen from $0.7

billion in 1994 to $3 billion in 2003 [25]. It is also estimated that a company would

require annual revenues of over $6 billion to support the latest 300mm wafer

technology plants, leaving only a select few able to run such a plant without

partnerships with other semiconductor companies [26, 27]. This is unlikely to

improve if the trend over the last 10 years reported by a Goldman Sachs continues,

where build costs are increasing by a factor of 7 while the semiconductor industry's

revenues have grown fivefold [25]. Despite these problems, there is still a current

transition to fabrication plants capable of processing 300mm wafers and this is likely

to require increasing numbers of automated materials handling systems [28]. This

transition is expected to be a contributor to a 55% rise in capital expenditure in 2004

[29]. Although the long term prospects for the semiconductor market are uncertain,

the rise in capital expenditure could lead to a short term increase in revenue for

machine vision systems in this sector.

As has been demonstrated in the semiconductor industry, relying on a single market

for income when developing machine vision systems can be a great financial risk.

The lack of flexibility within these machine vision systems would lead to a product

which is unsuitable for other markets. Hence, developing general purpose machine

10

vision system s results in a p roduct that is flexible and independent o f one single

market.

2.3 Emerging and Future Applications

C urrent applications for general purpose m achine vision system s (G P M V) are found

in a wide range o f industries. T yp ica lly the majority o f these have been industrial

inspection applications, for exam ple , grading, sorting, fault de tection and au tom ated

handling. Security app lica tions have also benefited for G P M V system s and have

included, intruder m onito r ing and vehicle registration plate identification. O ne

particular aspect which is lim iting the uptake o f machine vision is the typical system

cost. The average cost o f a G P M V system in Europe in 2003 w as approx im ate ly

$10K. W hile this does not indicate the range o f prices it does possib ly indicate the

typical high-cost o f a G P M V system [2]. Understandably, this high cost is a concern

for industries looking to use general m ach ine vision as a w ay o f add ing value to a

low-cost product, rather than as a cost reduction tool or essential addition.

C M O S image sensor te ch no logy has improved and resulted in the expansion o f

G P M V system s into new em erg ing applications. Extended dynam ic ranges o f

around 120dB for logarithm photo transfer-based image sensors is facilitating their

use in ou tdoor applications w here lighting can not be controlled [30]. F igure 2.3

be low dem onstra tes how linear photo transfer-based conventional im agers cannot

adapt to spatially vary ing lighting conditions.

Figure 2.3 Adaptation of image sensors to lighting, conventional (teft) and extended dynamic

range (right) [31]

Further efforts to extend the dynamic range of CMOS imagers have included the

amalgamation of logarithmic and linear mechanisms into a single imager to provide a

range of up to 140dB [32],

Two market sectors benefiting from this recent technology are transport applications.

An example of the application of systems with a high dynamic range is Honeywell

Airport Systems camera-guided aircraft-docking system [33]. As a newly arrived

aircraft approaches the gate, a monitor on the wall facing the pilot, displays the

correct stopping distance to the pilot for the plane to align with jetway. This system

has to operate 24 hours a day in all weather conditions as well as be able to cope with

reflections and varying lighting conditions. Another example can be found in the

automotive industry where the dramatically changing light conditions and speeds of

vehicles in motion, require high-performance real-time systems. Wide-spectrum,

high-speed camera systems are used with permanent scene illumination from near-

infra red headlights. Pedestrians can be detected from over 100m away while

oncoming cars with headlights at full-beam can be recorded in the same image [33].

These are yet to become mainstream products due to their high cost. As the cost of

vision systems fall, it is expected that the automotive industry will begin the

integration of systems for vehicle guidance, collision avoidance, intelligent

headlights and smart airbag deployment.

Recent fears of global terrorism have raised interest in the use of machine vision for

security purposes. Visual biometrics, such as face or fingerprint recognition, have

been a common application of such technology. In particular, camera based

surveillance systems are becoming increasingly popular. The increased use of

CCTV has required the transition from analog to digital systems capable of being

networked together. This has created greater bandwidth requirements. As smart

cameras are lower in cost, it is quite likely the industry will start adopting these

systems as they provide two main advantages as a result of integrated processing.

The processing of images for exceptional events means only images of interest need

to be sent to a human operator, hence reducing the need for multiple video screens to

be observed simultaneously and reducing the communication bandwidth requirement

between camera and operator. Current algorithm research in the area is looking to

identify not just when someone should not be present but what their exhibited

12

behaviour may indicate, by using posture recognition [34]. For example,

distinguishing between someone walking along a footpath by a fence and someone

climbing over a fence.

A factor which may increase the number of new applications using GPMV systems is

the recent proliferation of wireless technology as shown by the uptake of low-cost

mobile phones with imagers. To date, this coalescence of technologies has largely

been unexplored, yet there are notable exceptions such as the Nokia Observation

Camera [35].

2.4 Board-Level Integrated Smart Vision Systems

In the early 1990s, the advent of low cost microprocessors and digital signal

processors resulted in the ability to develop board-level integrated vision systems.

An Edinburgh University spin-out company, VLSI Vision Ltd (VVL), developed the

Imputer, a general purpose smart camera based on their low-cost CMOS imaging

technology. Unlike the majority of the solutions available at that time, it integrated

the complete system onto a single motherboard and did not require a host computer

to operate. Initially, a 256x256 image sensor, frame grabber, frame store, 8-bit 8052

microcontroller and external IO were integrated onto a PCB measuring 100 x 50mm

[36]. The Imputer was programmed using the C language and a windows-based

software development suite. A large library of image processing functions was also

provided. These included correlators, transforms, convolvers, morphological filters,

logical operators and image segmentation algorithms. The Imputer also had the

option of the addition of a 16-bit Motorola 56002 DSP co-processor. This DSP has

the capability to provide up to a 3000 fold performance increase for some image

processing algorithms. The Imputer was later updated to replace the sensor,

microcontroller and DSP with a single 32-bit Intel i960 and a 512x512 CMOS image

sensor. This updated product resulted in similar performance but reduced the design

complexity of the systems PCB [37]. The Imputer family of products were used for

a range of applications, from people tracking to component inspection and remote

vision until it ceased production in the late 1990s when the Motorola DSP was no

13

longer available [36][38]. VVL was shortly after acquired by STMicroelectronics to

enrich there intellectual property portfolio.

The two processing architectural approaches used by the Imputer family of products

are still popular with vision system design companies today. The well-known vision

company, DVT, uses both approaches in its 500 series of smart cameras. The lower

end cameras use general purpose microprocessors, such as the Hitachi SH4, to

achieve performance in the range of 60-360 million instructions per second (MIPS)

[39]. The latest 550 series utilise the popular Texas Instruments DSPs to provide a

boost in processing performance up to 3600 MIPS. Other high-profile smart camera

producers, such as Vision Components, Cognex and PPT Vision, tend to opt for

solely microprocessor or DSP based product lines. In the case of the Vision

Components, the smart camera lines are DSP based using either Texas Instruments or

Analog Devices parts to obtain performance in the region of 1200MIPS and 31-

375MIPS respectively [40][41][42]. On the other hand, PPT Vision uses a

1000MIPS PowerPC microprocessor for its Impact T series of smart cameras [43].

The other devices used in smart vision cameras typically include FPGAs, ASICs and

neural network processors. A specific commercial example of the use of neural

networks for vision products is the Pulnix ZiCAM, with its Zero Instruction Set

Computer (ZISC) patented technology. Each ZISC processor has 78 neurons with

64byte inputs. These processors can be linked together to perform parallel

processing. Currently cameras with up to four ZISC processors are available [44].

Smart cameras that use FPGA technology are usually provided with a

microprocessor or DSP, as is the case Wintriss Engineering’s 5150-Pixel Line-Scan

Vision Processing Camera. The 5150-pixel model combines a FPGA to perform

some initial pixel processing followed by image analysis by the Motorola PowerPC

[45].

Performing a paper-based detailed analysis on these smart cameras would be difficult

as companies typically do not provide comprehensive benchmark results for different

image processing functions. This is, in part, due to a lack of common benchmarking

techniques and metrics for smart camera systems. Irrespective of this problem, some

broad observations can be made, these are;

14

• A typical smart camera unit with lens assembly has a unit cost in the range of

$2K-10K.

• Most systems use CCD imagers except in the case of the low cost systems

which use CMOS imagers.

• On-board RAM is between 2MB and 128MB.

• Resolution available is usually between 640x480 and 1280x1024 pixels.

• Continuous acquisition frame rate span from 10 to 110 frames per second

(fps).

• Some use real-time operating systems, such as VxWorks.

• The great majority are aimed at industrial vision applications

An interesting evolution has been in the way in which these smart cameras are set-up

for an application. Traditionally, the systems would be programmed in an assembly

language or a high-level language, like C, with a supplied set of image processing

functions. More recently, smart camera suppliers, namely Pulnix and Cognex, have

provided software which learns by example, or uses techniques suitable for non­

software engineers such as spreadsheet entry. The vision application developer’s

perspective of these camera systems may be heavily influenced by this type of

product differentiation, given its benefits of less complexity and potentially faster

development times, rather than raw instruction processing performance and system

cost.

2.5 System-Level Integrated Smart Vision Systems

The next developmental step for smart vision system design has been the integration

of the complete system onto a single integrated circuit, also known as vision sensor

or vision chip. The emergence this type of system was during the early 1980s. One

of the first examples to be designed and implemented on silicon was Richard Lyon's

optical mouse IC [46]. This chip used a simple digital motion tracking algorithm to

determine the direction and distance traveled by the mouse over a mouse mat with a

fixed patterned surface. Most of these early systems were application specific and

only capable of spatial processing techniques as a result of the complexity of

15

implementing delay or on-chip storage for previous images. As the remit of the

project includes the use of the sponsor array-based CMOS sensor technology,

biological and architecturally-implicit processing based vision sensors will only be

briefly covered from a processing point-of-view.

2.5.1 Biological and Architecturally-implicit Processing based Vision Sensors

Vision sensors that use inherent processing provided by biological human or animal

vision structures or, indeed, by the underlying sensor technology itself are commonly

known as retina-based or fovea-based sensors. These sensors almost exclusively

implement spatial image processing functionality from simple local smoothing

operations to global object orientation detection.

Retina-based sensors, often referred to as silicon retina, are based on a model of

human or animal vision. Research interest has particularly been focused on detecting

local or global changes in light intensity and the ability to detect edges. The

structures implemented on silicon usually include the use of an approximation of a

Gaussian filter. This smoothing filter reduces the noise within the image before any

further image processing is performed. Resistive networks are commonly used to

create this smoothing effect.

Resistive networks act in an exponential manner by diffusing charge over the

complete network depending on the value of the resistors. The simplest example of

this is Mahowald and Mead's silicon retina, upon which others have been based [47,

48, 49, 50]. A 1-D version of this was used for matching images for a stereo retina

image sensor [51].

Delbriick also used Mahowald and Mead's silicon retina elements for derivative

system. This derivative system was designed to use feedback to control a lens

assembly to focus the image onto the retina. This was based on the premise that an

image will be in focus when there is a maximum difference between itself and its

spatially smooth version. Once a value for the maximum difference value had been

found, a signal was sent to change the lens control [52]. Standley also showed how

16

similar resistive networks could be used to detect the position and orientation of an

object [53].

Another type of retina sensor technology is based on diffusive networks. Examples

of this technology include the Solar Illumination Monitoring Chip by Venier et al.

which could measure the azimuth, intensity and elevation of the sun [54]. The layout

of the pixels for the system where linear-polar coordinate based. Each pixels

photocurrent was compared to the global average. If the intensity was higher than

the global average the angular and radial currents were outputted. The summations

of the angular currents were taken for all the other pixels on the same angle and

separate summations were also taken for polar currents for all the other pixels on the

same polar coordinate. These two sets of summations were processed to provide the

azimuth and the elevation of the Sun.

Andreou and Boahen's silicon retina also used diffusive networks. A compact two

layer hexagonally arranged network structure of 210x230 pixels was implemented.

The system was inspired by vertebrate visual systems and as such, was suitable for

processing acquired images to reduce noise while enhancing edges [55][56].

Meitzler et al. used Andreou retina cells for a spatial-temporal vision chip capable of

detecting movement in one dimension [57]. This was achieved by sampling and

holding an image and then, on subsequent images, each retina cell passed its value to

the two adjunct cells. Each cell then performed two absolute differences using the

value from the right cell and the sampled and held value and then repeated the

process with the value from the left cell. The currents corresponding to left and right

motion were then summed on global lines ready to be differenced off-chip to

calculate a movement vector. Meitzler further developed the system to form a 50x50

two dimensional array version of the vision chip, capable of two computational

processes, namely centroid and displacement computation [58]. The chip was aimed

at the constrained application of sun tracking in high altitude balloons. This task was

simplified by the fact there exists high contrast between the sun and the dark sky at

an attitude of 35km. The rationale for developing a vision chip for this application

was due to the limits of a low video bit-rate link from the balloon to a base station

and the low power system requirement of less than 1 Watt. The allocation of 1 Watt

17

for pow ering the vision chip w as as a result o f the use o f solar p o w er to pow er the

balloons electronic system s [59].

Fovea-based or log-polar sensors, which can incorporate retinal characteristics, have

an organisation o f photoreceptors sim ilar to that o f the hum an visual system. Unlike

silicon retina based system s, the photoreceptors are not laid ou t in a linear density

structure but a variable density and variable photoreceptor size, in a polar formation.

T he densest region o f pho to receptors is at the centre o f the sensor called the foveal

region. Outside the foveal region, the density o f the photoreceptors decrease and

their size increases with d istance from the centre. This structure a llow s for high

spatial resolution in the region-of-in terest (ROI), whilst a llows the peripheral area to

also be surveyed therefore using selective data reduction and hence reducing the

v ideo bandwidth requirem ents and the pow er consum ption w hen com pared to a large

array-based sensor. This capabili ty m akes this type o f sensor particu lar useful for

robotics applications or track ing objects w here changes in the peripheral area can be

used to direct the foveal to a new ROI. Unfortunate ly these structures have

d isadvantages; a lower resolution com pared to conventional im agers and increased

com plex ity o f design and use [60], Figure 2.4 shows 3 exam ples o f the com m on

structures im plem ented in silicon.

Figure 2.4 Micrographs of three different CMOS fovea image sensors, (a) a disjoint fovea array

and peripheral ring structure, (b) a disjoint fovea array and peripheral array and (c) a

continuous fovea and retinal ring structure [61,62, 63]

T he key problem with (a) and to a lesser extent (b) in figure 2.4, is the d iscontinu ity

from the fovea to the peripheral photosensitive structure. This has been a com m on

problem in early sensors [64] and exacerbates the mapping o f the im age into

C artesian coordinate array. T he exam ple in (c) has a more co m p lex layout tow ards

the centre of the fovea which results in implementation problems due to the scaling

of transistors and the small geometry effects.

The advantages that retina and fovea sensors provide are generally not required for

the needs of the majority of current mainstream applications. The extra complexity

required, such as mapping images to Cartesian coordinates, also reduces their

attractiveness to the end-user. The problems due to the spacing between

photosensitive elements, caused by the supporting architectures, also reduce the

overall proportion of the sensor array which contributes towards photosensitivity.

This is known as a low fill factor [65]. These are partly the reason that the majority

of CMOS and CCD based image sensors use simple support structures with tightly

packed photosensitive Cartesian array structures, which are more conducive to

traditionally image processing techniques and provide potentially higher fill factors.

2.5.2 On-Chip Explicit Computational Processing Based Vision Sensors

On-chip explicit computational processing based architectures implement the

photosensitive elements separately from the image processing elements. Vision

sensors of this nature can be found to span a wide spectrum of architectures, from the

integration of algorithmic logic units (ALU) at pixel level, to the separation of a

sensor and processor by a communication bus on a multi-chip module (MCM). As

has been the situation with biological and architecturally-implicit processing based

vision sensors, the majority of the early literature on vision sensors has been

application specific. Typical examples come from the biometric, automotive and

automated visual inspection domains, such as fingerprint verification and vehicle

monitoring [66, 67]. The ever decreasing transistor geometries however now mean it

is possible to implement larger general purpose computational structures on-chip. In

this section, three different architectures for general-purpose vision chips will be

reviewed, they are mesh processing, linear processing array and frame processing.

19

2.5.2.1 Mesh Processing A rchitectures

A m esh p rocessing architecture is constructed o f a tw o d im ensiona l array o f

p rocessing e lem ents each directly connected to a photo-sensitive e lement. A s the

processing for every pixel can occur concurrently , high fram e rates over lOOOfps are

possible, as has been show n by K om uro et a l.4s S3PE architec ture [68, 69], Eklund et

a l .’s N S IP [70] and K agam i et a l .’s SPA RSIS system [71]. Th is high speed

processing ability enables its use for a wide range o f applica tions not possible with

other system s, such as robotic applications requiring very high speed tracking and

object m anipula tion .

The S3PE (Sim ple and Sm art Sensory Processing Elem ent) architecture, upon which

the SPA R SIS is also based, uses bit-serial processing techniques. Bit-serial

p rocessing is a m ethod that perform s a multi-bit operation on each bit sequentially.

A lthough processing using this m ethod is slower than bit-parallel processing, it

results in the realisation o f com pact circuits and the ability to perform variable bit

length operations. Each processing element (PE) consists o f a bit-serial A LU , 3

latches and a 24bit local m em ory with bitwise addressing. T h e A L U has been

im plem ented using a full-adder, a carry register and som e m ultip lexers providing the

ability to perform one operation per clock cycle, from a selection o f 18 logical and

arithm etic operators. It com m unica tes with its 4 ne ighbouring PEs, a zero signal and

its associated pho to -de tec to r using an 8 bit-serial I/O port, f igure 2.5.

D eco d e r
P ro c e s s in g E lem en t

D-Latch

D-Latch
*B_ENnstruciion

fssTiJ^abit
_ “ Local Memory;

D -Latch

_ . Photo D etector
Output
Circuit

output

4-r*ighbc*»

Figure 2.5 Architecture of S3PE [72]

T he 24bit local m em o ry and I/O port are a llocated to the sam e address space. As all

processing and I/O opera tors are perform ed by accessing local m em ory , the

20

instruction code is simplified. Each instruction is divided into 4 parts; read addresses

A, B, (5bits each), operation code (5bits) and write address (5bits).

The S3PE architecture has been extended by Kagami et al. to form a new dual

pipeline architecture called SPARSIS [71]. The extension was developed to provide

an efficient control structure of the single instruction multiple data (SIMD) PE array.

This was achieved by connecting a 32-bit reduced instruction set computer (RISC)

processor via an integrated control and data path shared with the existing vision chip

architecture. It’s specific functions within the vision chip are :-

1. integer processing

2. program control operations, including branches and function calls

3. transmitting SIMD instructions to the PE array

4. parallel data I/O with the PE array and feature value extraction

The addition of the RISC processor also provides the opportunity for the system to

be re-configured for different light levels and dynamic ranges using a software-

controlled A/D conversion.

The SPARSIS system was prototyped by implementing the PE array and RISC

processor separately. A 64x64 pixel PE array was fabricated using a 0.35pm CMOS

technology. The controller incorporating the RISC processor was synthesized and

fitted to a Xilinx FPGA and consisted of approximately 27000 logic gates. Providing

a clock rate of 40 MHz for the controller allowed an instruction rate of 10 MHz for

the PE array. A set of execution times for several sample programs are provided in

Table 1.

Program Steps (time)
Dilation or erosion (binary input) 5 (0.5 ps)

4-neighbour x,y edge detection (binary input) 9 (0.9 ps)

4-neighbour smoothing (8-bit input) 99 (9.9 ps)

Centroid detection (binary input) 1716(171.6 ps)

Table 2.1 Execution times of sample programs for the SPARSIS architecture

21

Despite providing low processing times for local operators, such as edge detection,

the time required to perform global operations, as with most SIMD array-based

processors, is poor. This can be explained by the situation whereby using pixel

information from a PE on a distant pixel requires pixel information to be passed PE

by PE until reaching the current PE. As a result, the required communication time is

proportional to the distance the information must travel.

The NSIP (near-sensor image processing) architecture reduces this problem by

incorporating a global logic unit (GLU) in every pixel. This combined circuit allows

image data to be passed between a cardinal neighbouring GLUs by selecting one of

four direction bits. As the GLUs can communicate without using the system clock

for sampling data, pixel data can be transmitted to a distant GLU within a single

clock period [72].

Komuro et al. highlighted the communication problem between distant PE in the

S3PE architecture [73]. A more flexible architecture was developed where the PE

network was reconfigurable in a way which allowed cumulative multiple global

operations to be performed by chaining PEs together. This was achieved by

connecting the output of one PE’s 1-bit ALU to the input of another PE’s 1-bit ALU

and hence creating an n-bit ALU.

Using the new architecture, the centroid of a 256x256 pixel binary image was

calculated using 440 local instructions and 65 non-local instructions. Using a lOMhz

instruction clock, as used with SPARSIS, a total processing time of 64ps was

achieved compared to 3.4ms for the simple mesh-connected version and 171.6ps for

an image size 16 times smaller using SPARSIS [73].

An interesting example of a novel mesh-based architecture is that of the Dudek and

Hicks’ SCAMP vision chip. Unlike the previous example discussed in this section,

this architecture uses an array of analogue processing elements and processes local

data as analogue samples in a SIMD fashion. Each APE (Analogue Processing

Element) includes an ALU, photodetector, registers (A to K), activity flag register

and I/O port, as shown in figure 2.6.

22

reaisters
(A .B .C .D .H .K)

PIX

A
B
C
D
H
K

^ ♦ N E W S

M (m ultip lier)

FLAG

|iO

Figure 2.6 Architecture o f (a) Single APE (left) and (b) the SCAMP architecture with a single

APE marked (right) [74,75]

Im age acquis it ion is ach ieved by the use o f a special purpose register p lane called

PIX. T h e value held in this register plane corresponds to the state o f the

pho todetec to r array. A s w ith the SPA R SIS architecture the exposu re t im e is

controllable and due to the non-destructive read-out m echan ism m ultip le exposure

t im es can be ach ieved . Each register plane (A-K) is constructed from switch-current

m em o ry cells and can hold a grey-level image. A rithm etic opera tions can be

perform ed pixel-w ise on these data planes. As the ana logue bus is operating in

current m ode, su m m ation can be directly perform ed on the bus using several source

planes concurren tly . M ultip lication is perform ed using the m ultip lie r register M.

S C A M P also supports register plane to register plane transfers . Inter-APE

com m unica tion is enab led using the N E W S register w hich p rov ides access to the

four nearest cardinal ne ighbours in the array. The activity flag register, FLA G , is set

or reset depend ing on the result o f a com parison operation. Th is enables local

au to n o m y o f an A P E from the array and prevents an A P E perfo rm ing S IM D

instructions w ithout the F L A G register being set.

A prototype S C A M P chip w ith a array o f 21x21 A PEs, random -access I/O logic, on-

chip D/A converter and control logic was fabricated using a digital 0 .6pm C M O S

process technology . In addition, an off-chip program store and instruction sequencer

w as im plem ented to p rov ide instructions to the S C A M P vis ion chip. T he m axim um

perform ance w as over 1.1 G IPS (Giga Instructions Per Second) w ith a peak pow er

d issipation o f be low 4 0 m W and A PE s clocked at up to 2 .5M hz. Several execution

tim es for a lgorithm s im plem ent on the S C A M P chip are p rovided in Table 2.

23

Algorithm Execution Time

Smoothing using 3x3 convolution template 5.6ps

Sharpen using 3x3 convolution template 6.0ps

Edge detection with Sobel template 11.6ps

Median Filter in 3x3 neighbourhood 61.6ps

Histogram with 64 Bins 205.6ps

Table 2.2 Time of execution of several algorithms on the SCAMP vision chip [74]

Since the first prototype a new SCAMP 2 architecture has been developed. The

SCAMP 2 optimises the SCAMP architecture to reduce the area of the APE to

approximately 25% its original size and reduce power consumption from 85pW to

12pW per APE. This has partly been achieved by lowering the instruction

processing rate from 2.5MIPS per APE to 1MIPS per APE [74][76]. The tradeoffs

of processing performance for area and power reductions were deemed necessary for

the architecture to become more scalable, as another prototyped chip, the SCAMP 3,

had been envisaged. The SCAMP 3 was fabricated with a 128x128 APE array.

Unlike the example of mesh systems that used digital processing, the SCAMP family

has the advantage of only having to use a single capacitor to store analogue variables.

Also, as the data buses within the APE are analogue, only 1 wire is required unlike N

wires forN-bit wide digital data. As analogue processing is utilised there is no need

to implement an A/D convertor in each APE. The disadvantages with the SCAMP

family include a low fill factor of 5.6% to 8.4% [77]. The other main disadvantage is

that of the accuracy of analogue processors as they are limited by errors and inherent

noise. The accumulative effect of the errors within the SCAMP’s analogue circuitry

reduces the accuracy to below the equivalent of 7-bits, although this has been

deemed sufficient for many low-level image processing operations [74].

Several general limitations of the pixel mesh processing technique have meant only a

relativity small number of research groups have been working on this architecture.

As the number of transistors used in the PE effects its area, the complexity of the PE

is restricted to retain a suitable fill factor for each pixel. The programmability is, in

many cases, a problem due to the SIMD instruction compilation and the timing

requirements to achieve parallel instruction delivery to each PE. The proximity of

PE to each other and the photosensitive circuit can also lead to cross-talk effects and

24

the emergence of fixed pattern noise (FPN) affecting the acquired images. Although

for applications which require high processing rates and low power requirement, this

form of architecture is an optimal solution. The ability to parallel process, reduces

the need to implement very complex circuitry within a pixel as the cumulative

processing power of all the processing elements can be immense. This provides the

opportunity to reduce the processing frequency to a level that is sufficient for the

application and therefore in the process reduce the vision chips power requirements

significantly. A further advantage of the proximity of processing elements to the

photosensitive elements is that of the easy implementation of fast global and local

adaptation to light levels through close control of sampling and the A/D control

process.

2.5.2.2 Linear Processing Array Architectures

Linear processing array architectures typically only use one processing element and

analog-to-digital converter per column. When compared to the pixel mesh processing

architecture this approach has the advantage of the ability to integrate a more

compact and uniform CMOS imager with a high fill factor while still retaining a

level of parallel processing and low power consumption. It has also been shown that

the linear processing arrays used can provide greater computational performance

than mesh based pixel processing arrays with careful architectural enhancements

[78].

Two examples of smart vision sensors that use this technology are Integrated Vision

Products’ MAPP2x00 and Chen et al.’s PASIC. MAPP2x00 relates to a family of

products developed from 1987, with the latest member of the family being the

MAPP2500. Both the PASIC and MAPP2500 use bit-serial processing within their

ALU to reduce the complexity of implementations in much the same way as the pixel

mesh processing architecture previously presented. Also, temporary bit-line memory

exists in each to allow for interline and neighbourhood image processing. In the case

of MAPP2500, this consists of 96 general purpose registers (R0-R96) capable of

storing 512 bits and 256bits by 128 lines SRAM for the PASIC [79, 80]. The PASIC

25

and MAPP2500’s A/D converters are capable of a grey-level resolution of up to 8-

bits. Figure 2.7 shows the architecture for both the PASIC and MAPP2500.

256x256 photo sensors

Cod trot

2 5 6 8 b u t c r i a l A /D c o n v e r te r !

Two 256 Sbit bi-diroclionil shin icginea
snd 258 8-10-8 bit parallel comjxroori

Global OR to
control oBil

ROM and exienal memory Interfax

E jll M e m o ry W 3

Figure 2.7 Architectures of (a) IVP MAPP2500 (left) and (b) Chen et aL’s PASIC (right) [79,80]

Typically both systems are aimed at spatial applications, although the PASIC does

have access to frame buffers via an external memory interface which could allow the

implementation of temporal algorithms, for example inter-frame differencing. The

implementation of the ALU structures also differs between the two. The PASIC

approach is to use 256 ALUs consisting of three 1-bit registers feeding a full adder

with sum and carry output. Each ALU has access to 128-bit memory and two 128x8-

bit bi-directional shift registers via a bus. The ALUs have also been extended to

provide 6 Boolean functions for the 3 inputs from the registers in addition to the

ability to load each of the three registers with both inverted and non-inverted data.

There are a total of 16 ALU address and control instructions. The MAPP has 80

different instructions to control 3 dedicated 512-bit logic units, PLU, NLU and GLU.

The PLU performs bitwise Boolean algebraic operations on local pixel data,

conversely, the NLU processes pixels in a way that is dependant on the pixel nearest

neighbours allowing, for example, template matching, edge enhancement and

filtering operations. Eight of the instructions control the GLU and provide

operations, such as, marking vertical connectivity between objects in two image line

and a fill operation that sets the bits between two objects active. Both PLU and NLU

logic units operate on complete lines and complete operations in one clock cycle

whereas the GLU requires two clock cycles.

26

T he M A P P vision sensor is p rim arily a im ed at, and hence prim arily optim ised for,

range im aging systems. In such applications high frame rates are required to obtain a

3D profile o f an object. T he course-gra ined instruction set a llow s such an

application to be perform ed in only 4 instructions and tw o status registers readouts

[79]. In contrast the PA SIC is a general purpose vision system with a collection o f a

small num ber o f s im ple instructions from w hich m ore co m p lex a lgorithm s can be

constructed.

T he Philips Xetal chip is one o f the m ost recent and advanced linear p rocessing array

based architectures. It is especially designed for p re-p rocess ing images acquired

though its integral 30fps V G A format C M O S image sensor. Curren tly no frame

m em ory is provided which limits the Xetal to non-tem poral tasks. W hilst the

architecture o f the Xetal seem s sim ilar to the M A P P and PA SIC , in that it has an

active pixel array connected to a parallel A /D converter, linear processor array and

line mem ories, there are tw o distinct d ifferences betw een the two. C om pared to the

previous two exam ples , the linear processing array does not w ork bit- serially but

with 10-bit word w id ths o f data. This has been show n to increase pow er efficiency

[81]. Also, the linear p rocessing array (LPA) only consis ts o f 320 processing

elem ents rather than the full width o f the sensor array o f 640, as this w as deem ed the

m ost efficient with dealing Bayer type co lour filters. A kin to the PA SIC , the pixel

and neighbourhood processing is perform ed by the linear array w here as global

com puta tions are executed by the global control processor, such as exposure-tim e

control and w hite-balancing (figure 2.8). A nother task perfo rm ed by the global

control processor is that o f passing instructions to the LPA.

Figure 2.8 Top-level architecture of the Philips Xetal Vision Chip [82]

27

Each processor in the LPA contains an accumulator, an adder and a multiplier.

Unlike the previous examples, data can be obtained directly from 6 different columns

facilitating effective convolution algorithms. It is this data transfer mechanism and

its embedded multiplier per processor that enables the Xetal to reach a performance

of 5000 million operations a second at 1.6W at 30fps [81]. The program memory can

contain up to 1024 instructions and has been shown to be sufficient for a range of

low to medium level real-time vision tasks, such as optical character recognition and

skin-region detection [82].

Another approach to LPA architecture has been the implementation of a 256 x 256

pixel CMOS imager and fast on-chip analog image processing functions for line-

based stereo vision applications. Rather than mapping algorithms onto an array of

ALU, Ni and Guan’s Smart CMOS Image Sensor implements 4 separate processor

arrays; Histogram Equalisation to allow adaptation to changing illumination,

Gaussian Filter to remove noise, spatial-temporal differentiation and minima and

maxima extraction to detect edges (see figure 2.9).
H u; liq DoO

Raw Decoder!

Control Bus

Figure 2.9 Top-level architecture of Ni and Guan Smart CMOS Image Sensor [83]

In terms of processing, the Gaussian filtering, spatial-temporal differentiation and

max/min extraction can be performed on a line of pixel within 12ps [83]. This is

significant as all the operations, with the exception of histogram equalisation, can be

done with the television’s line blanking period. In order to generate a continuous

television video signal, the histogram equalisation is pipelined with the other

operations by using the capacitors within the Gaussian filter as temporary storage.

The worst case power consumption of this sensor chip has been measured at 0.2W.

28

The largest difference between the mesh and LPA architectures is that of the LPA’s

partitioning of the sensing array from the processors. This has the inherent

advantage of optimising the sensing array to a greater extent in relation to its fill

factor, silicon area and hence sensitivity range. This further enhances the

opportunity to develop the sensor array and processing arrays separately before

integration, which could reduce the costs of prototyping. This method of prototyping

the two components separately was used in developing the Xetal based vision sensor.

A parallel processing paradigm is utilised, although to a less extent than mesh

processing, allowing a low processing frequency and hence low power while still

achieving high performances. The linear processor also simplifies algorithms that

process within a column as communication is not required between the processing

elements in the same column as pixel data is read a line at a time. Unfortunately,

LPA architectures generally require higher power levels due to circuits such as the

AID converters running at 128-512 times the frequency of pixel processing

architectures. The area of the processors in a linear array is usually restricted by the

column width and hence limits their complexity. This in part confines the LPAs

applicability to low to mid-level vision tasks. The ability to program these processor

arrays in a high-level language such as C is difficult as a further result of the

simplicity of the processing elements. This is seen with the Xetal, which is

programmed using a custom assembly language and the MAPP2500 which is

provided with a specific set of algorithms suitable for its expected application

domain of range imaging.

2.5.2.3 Frame Processing Architectures

Frame processing architectures are typically found in conventional board-level

integrated smart vision systems. This architecture separates the processing

element(s) from the sensor array by a serial or limited parallel communication bus.

Typically, a whole image frame is transmitted by the sensor array to a processing

pipeline which performs the necessary operation on-the-fly or to a frame store for

further processing. The main argument for not using this approach for system-level

integrate circuits is that of the communication bottleneck between the processing

element(s) and the sensor array. As a result, there are less examples of this form of

29

vision chip architecture in the recent literature than those based on mesh and linear

processing arrays.

Fang el al.’s proposed a smart vision SoC integrating a 10-bit 1024x1024 pixel

image sensor, a smart image window handler, microprocessor and neural processor

into a single 30mm by 30mm SoC in a 0.18pm CMOS technology, see figure 2.10

[84], The system was designed for the use in NASA scientific missions although it

has been deemed suitable to other military, industrial and commercial vision

applications.

Ultra fast Smart Vision S}ftcmvO)i-Chip

Column/
Row
Parallel
Hu*.

PCI
i. -■ e

Figure 2.10 Top-level architecture of Fang et aL’s Smart Vision SoC [84]

The on-chip microcomputer controls the sub-systems and enables communication

with an external host system, if required. It is constructed from an embedded

PowerPC 750 processor with a data memory, a program memory, a UART and a

multi-bus interface unit. The multi-bus interface unit conforms to IEEE 1394,

commonly know as iLink or Firewire, I2C and PCI standards. The connection of

Smart Window Handler to the image sensor allows the control of data acquisition

and data transmission to the on-chip neural computer. This occurs by requesting an

N by N sub-window of data from the sensor array at a rate up to 30 frames a second.

This sub-sampled data is then read from the array, depending on the required

row/column addressing scheme and transmitted, on a 10-bit wide data bus to the

neural network computer. The programmable neural computer is based on an

optimization cellular neural network (OCNN), with memory for synapse weights and

a learning and post operation co-processor. The OCNN consists of a 1024 by 1024

cell matrix providing suitable computational power for a wide range of tasks.

30

Despite the system p erfo rm ance estim ate , which is in the region o f 1012 operations

per second, the die size o f the com ple te SoC would result in a very high cost per unit

and hence be unsuitable for a w ide range o f applications. This die size can be

attributed to the 64M B o f em b ed d ed D R A M and approxim ately 7M B o f em bedded

S R A M for frame store, da ta store and neural netw ork related m em ories . Fang et al.

prototyped a version o f this system on a m ulti-chip m odule (M C M). To

accom m odate the com ple te system on the sam e substrate, the M C M ’s d im ensions

were required to be 50m m by 100m m and had a mass o f 0.2kg. Using the proposed

3D die stacking techniques com bined with a sub 0.5 micron sil icon-on-insulator

C M O S process technology, the neural a r ray ’s d im ensions w ere estim ated at o f 30m m

by 30m m by 5m m . At 4 M H z, the M C M was found to consum e 1W [85].

A sm aller exam ple o f a fram e p rocess ing architecture is that o f the V ISoc, p roduced

com m ercia lly by the Italian c o m p an y N euricam . The com ple te system, with the

exception o f off-chip S R A M and F L A S H mem ories, has been fabricated in a 0 .35pm

C M O S process and occup ies an area o f 5.93 x 5.98 mm. T he typical pow er

d issipation has been m easured at 1.3W at an operational speed o f 60 M H z [84], T h e

V ISoc com prises o f a 3 20x256 G reysca le C M O S imager, a 32-bit em bedded integer

RISC processor with 0 .5K B instruction cache, a neural p rocessor called T O T E M , a

parallel and serial I/O and a m e m o ry interface. Externally from the chip is a 512K B

FL A S H m em ory for s toring program code and initial set-up, such as sensor

calibration data, and a 1 M B S R A M for storing tem porary data and for use as a fram e

buffer, see figure 2.11.

f~T!
SENSOR
ARRAY

I A T) CON V.

N tU R A t

C A M E R A M O I H T . I |

Figure 2.11 Top-level architecture of Neuricam’s VISoc based smart camera [86]

T h e integrated C M O S im ager has a logarithm ic response to light with a dynam ic

range o f over 120 dB. This increases its suitability for applications w hich require a

31

system that can adapt to changes in lighting, such as automotive applications. The

pixel addressing for the sensor array is controlled by the RISC processor via a 17-bit

address bus. On selection of a pixel, a signal is sent to an A/D converter (ADC) to

generate a 10 bit word. This word is then transmitted to the frame buffer in off-chip

SRAM using a direct memory access (DMA) channel without intervention from the

RISC processor. The performance bottleneck for this operation is caused by the

maximum sampling rate for the ADC, of 15 Mpixel/s. This limits the full frame

(320x256 pixels) read-out to 180fps. Sub-sampling pixels from the array by

windowing a smaller region of interest will result in a higher achievable frame rate.

The TOTEM co-processor has an array of 32 parallel integer multiply-and-

accumulate (MAC) units that have access to on-chip weight memory. This allows

the architecture to act as a multi-layer perceptron neural network and hence can

implement learning and recognition operations. The performance of this co­

processor is in the order of 300 Million MAC per second. Although the RISC

processor is primary used for controlling the VISoc sub-systems, it is also capable of

general purpose processing and has an additional processing power of 60 MIPS.

McBader of Neuricam has proposed an extension to the VISoc architecture called

SmartPupilla [87]. It is aimed at serving a wider range of applications though the use

of a larger imager, a large on-chip memory, the addition of a parallel pre-processor

and a faster system clock rate. Table 3 below shows the relative differences between

SmartPupilla and VISoc.

VISoc SmartPupilla
CMOS Sensor Array Size 320x256 640x480

Maximum Full Frame Rate 180 frame per second 130 frames per second

Pixel Resolution 10-bit 10-bit

On-chip Processing 32-bit RISC 32-bit RISC+DSP

On-chip Memory 93.5 Kbits -3 2 Mbits

Off-chip Memory 1MB SRAM Not required

Neural Network 32-node Parameterisable

Clock Frequency < 6 0 MHz >100 MHz

Processing Power 60 RISC MIPS 100 RISC MIPS

Power Dissipation < 1.3 W < 2W

Process 0.35 pm 0.18 pm or 0.13 pm

Die Size < 36 mm2 - 150 mm2

Table 2.3 Comparison of Neuricams VISoc and proposed SmartPupilla

32

Unlike the VISoC, the SmartPupilla architecture features an image pre-processor

based on a parallel array of 16 programmable processing elements. A combined

DMA controller enables an image stored in embedded RAM to be addressed in 25

modes. These modes have been chosen as they are commonly used in image

processing algorithms. The addressing sub-system also detects overlaps in images

distributed to the parallel processor and reduces the need for redundant pixel data

reads. The image pre-processing architecture was prototyped on a Xilinx XCV200E

FPGA and achieved data throughputs of up to 667fps at 50 MHz, using a 256x256

pixel image. The SmartPupilla’s peak performance is estimated to reach 3.23 GOPS.

Typically, frame processing architectures have several distinct advantages. The

primary advantage is that there are no limitations on the design of the processing

elements implemented. The use of frame buffers, in many systems, also allows

image storage and the application of complex multi-inter-frame operations to a range

of frames, hence extending its flexibility and allowing a wider selection of temporal

algorithms to be realised. The fill factor of the embedded image sensor can be high

and the pixel arrays can be optimised for size. As the embedded image sensor is

separate from the processing logic, it can also be more easily shielded from noisy

digital components by using techniques such as guard rings and careful floorplanning

to position supply and ground lines [86].

In terms of disadvantages, frame processing architectures typically consume more

power than that of LPA and mesh processing based vision chips. In frame

processing architectures that do not use any image storage, a fast processing element

or complex pipeline is require to processing incoming images. Frame processing

architectures that use image storage require additional power for the memory sub­

systems. The use of image storage also has the disadvantage of the latency of a

frame memory write and a very large silicon area if the memory is implemented on-

chip. It is for these reasons that MCM and off-chip memory are used to allow the

implementation of the memory in the most cost efficient process, which is often a

different process than that used in the vision chip itself.

33

2.5.3 Summary

A wide variety of chip-based vision systems have been presented in the last two sub­

sections. The general purpose vision systems discussed have displayed different

levels of system costs, flexibility, power requirements and processing performance.

The three approaches used for general purpose processing in vision chips are

summarised in figure 2.12 and their attributes summarised in table 2.4 below. Grey

highlighting in table 2.4 indicates the most favourable approach for each attribute

and the arrows in figure 2.12 indicate the direction of pixel read out to the processing

element(s).

Mesh Processing

H H H
H H H

Linear Processing

r~' i—i "~i

Frame Processing
 ►

□
Photosensitive
Pixel Element

A/D & Processing
Element

Figure 2.12 The three approaches to general purpose processing on vision chips

Attribute Mesh Linear Frame

Typical clock speed of processing elements Very low Low High

Flexibility in design of processing elements Very poor Poor Good

Suitability for temporal processing Very poor Poor Good

Typical fill factor Poor Average Good

Ability to shield photo-sensitive pixel array

from processing element switching noise

Poor Average Good

Ability to prototype processing elements and

pixel array separately

Poor Average Good

Typical level of processing performance Very good Good Average

Power requirements per operation Good Good Average

Ease of programming Poor Poor Average

Table 2.4 Comparison of the three approaches to processing in vision chips

34

As can be seen in figure 2.12, the three approaches differ with respect to the level of

parallel processing occurring and the locality of the processing elements to the

photosensitive pixel array. Whilst there are quite distinct differences between the

attributes for mesh processing and frame processing, linear processing with

processing elements separated from pixel elements while still performing parallel

processing, has mid-range values.

Examining table 2.4 would indicate that in situations that require high performance at

low power, mesh processing is the best approach. This can be explained by the fact

that the combined performance of an array of ALU units, often allows the processing

clock frequency to be reduced while still fulfilling performance requirements. As

frequency is directly related to the power dissipation of CMOS devices (see equation

2.1), huge power consumption savings can be made. This may make the device

suitable for low power systems and mobile battery powered applications.

P = a V 2DDfC

where P is power dissipated (W)

a is percentage of gates switching

Vdd is supply voltage (V)

f is switching frequency (Hz)

C is switching capacitance (F)

Equation 2.1 Dynamic Power Dissipated by CMOS logic [88]

Conversely, in situations which require a flexible or complex processing element to

be designed and/or temporal processing to be performed, a frame based approach is

the most suitable. While the frame based approach does not typically have the large

array of parallel processing elements as with mesh and linear array processing,

parallel processing can also used in frame-based processing architecture. Despite the

lack of a wide communications channel between the sensor and processing element,

parallel processing can be achieved by implementing parallel processing within the

processing element itself. This is a popular approach as most image processing and

machine vision algorithms can be mapped onto an array of multiplier and

35

accumulator-based processing elements. An example of this is the neural network in

Neuricam’s VISoc [86].

Another advantage of frame based processing architectures is that of the flexibility in

designing the photosensitive pixel array. As the processing element is detached from

the photosensitive pixel array, the dimensions of the processing element do not affect

and limit the design and compactness of the pixel array. Without the extra structures

for processing around each pixel element, the pixel elements can be closely packed

together shrinking the pixel array area. This has the effect of increasing the ratio of

photosensitive area to non-photosensitive area, i.e. increasing the fill factor. An

alternative to shrinking the pixel array area would be to use the area gained to

increase the size of each photosensitive pixel and make it more sensitive to light.

This would potentially make the frame processing based architecture more suitable

for low light applications than a mesh based architecture. The separation of the

processing element and pixel array is also particularly conducive to vision chip

development, as the processing element can be prototyped separately from the pixel

array. This has the advantage of potentially reducing the need for prototyping on

silicon in the early stages of product development and hence reduce the overall

development costs.

The majority of processing architectures must be programmed in some form of

assembly language. Generally with traditional PCB-level GPMV systems, the C

programming language is used due to its international adoption for many platforms

and it’s relative ease of use. The use of assembly language, especially machine

specific such as Xetal, complicates the use of the vision system by an end user. Only

frame based systems such as Neuricams VISoc and SmartPupilla and Fang et al.’s

Vision Chip, currently provide the opportunity to be programmed with a higher-level

language due to the inclusion of an embedded RISC processor for system control.

The reason behind this apparent flaw is that compilers often do not produce

optimised or even suitable code for SIMD arrays of processing elements. It is likely

that software development packages will have to be improved or vision architectures

adjusted before the mass-adoption of vision chips for developing complex vision

applications.

36

As has been already explained, the lack of on-die memory for image storage is due to

the current cost of implementing enough memory for complete images on-chip. The

proposed SmartPupilla vision sensor has embedded SRAM, which in a 0.18pm

process, would occupy 115mm2, approximately 76% of the total die area [87]. As

transistor geometries shrink, large capacity integrated memories will probably start to

become an appealing option in conjunction with frame based processing, especially

with the need for deeply embedded single-chip vision systems.

2.6 Vision System Prototyping

The prototyping of integrated circuits has developed rapidly within the last decade to

result in the availability of a myriad of solutions. These range from large flexible

prototyping platforms for SoC designs to domain specific platforms with emphasis

on software and minimum of hardware prototyping. One of the largest of these

systems is that of the Aptix System Explorer family. These platforms provide a

solution for verifying complex SoC designs. This is achieved using the provision of

software to map SoC designs onto a multi-FPGA based reconfigurable hardware

platform. The hardware also supports the connection of multiple system modules to

a large complex PCB backplane via their patented programmable interconnects. The

latest version of the family, the MP4CF, includes enough interconnects for up to 20

FPGA modules, each with a Xilinx Virtex V2000E FPGA providing more than 3

millions ASIC-equivalent gates and 10 Mbits of RAM [89]. The interconnects can

also be used with other Aptix modules to allow the addition of microprocessors,

memory devices and analog and digital converters.

The French company Ateme produces a development kit suitable for prototyping

imaging systems. Its entry level product, the Digital Media Evaluation Kit (DMEK)

6414, consists of a backplane PCB with a 500Mhz Texas Instruments TM320C6414

DSP, 16MB of SDRAM, 4MB of FLASH, 30Kgate and 50Kgate Altera FPGA, as

well as a selection of audio and digital I/O [90]. A selection of daughter boards can

be connected to the backplane providing access to Analog I/O, Ethernet and a VGA

CMOS Image sensor, see figure 2.13.

37

Figure 2.13 Top level block diagram of Ateme Digital Media Evaluation Kit 6414 [90]

W hile the large, m ore com plex systems, p rovide the m ost flexibility they can also be

ex trem ely expensive. On the o ther hand, dom ain specific pro to typ ing system s m ay

be obta inable at a m uch lower cost but the choice o f com ponen ts availab le to the

end-user m ay be very limited. This also ex tends to the problem o f integrating a

com ple te vision system onto a single chip. I f the hardw are IP b locks for each

discrete com ponen t cannot be licensed from their respective provider, it m ay not be

possib le to migrate the end product to a single chip. It is often the case that even i f

the licences can be obtained, the high cost o f royalty schem es for th ird-party IP m ay

m ake the end-product unsuitable for use in m any low-cost applications. It is

therefore incredibly im portant to carefully select the discrete ICs and IP used in

FPG A to ensure an easy path to migrate to a greater level o f integration. T he

ex trem e o f this situation is that the im aging deve lopm ent platform has to be designed

in-house, using only com ponen ts for which the co m pany ow ns the necessary usage

rights.

2.7 Summary

This review has covered the history o f m achine vision and its current, em erg ing and

future applications. Board-level integrated sm art vision system s have been also

discussed followed by a broad array o f system -level integrated smart vision system s

and suitable prototyping systems.

T he approach taken for this doctoral research w as the design o f a pro to typ ing system

consis ting o f a genera l-purpose reconfigurable F P G A backplane P C B and custom

38

daughter board with the required set of peripherals for image processing and machine

vision applications. This provides the flexibility of a FPGA device for implementing

custom logic while fixed function devices, common to all application are included on

the custom daughter board. This solution is similar to that of the Ateme Digital

Media Evaluation Kit but shares the Aptix System Explorers Family’s ability to

increase the available logic resources by changing the FPGA backplane. This is an

important feature as the size of custom logic for future vision chip prototypes is

unknown. This method of prototyping has the additional advantage of significantly

lower costs fabrication cost when compared to using multi-project wafers. As the

FPGA can be reconfigured the system can also be functionally tested at each stage of

the development cycle.

As the research was based within the imaging division of STMicroelectronics it was

required that the company’s Cartesian array based CMOS imager technology would

be used. This point and the fact that STMicroelectronics CMOS imager outputted

images in a serial pixel stream meant the frame processing architecture would be the

most effective implementation. Typically better fill-factors can also be achieved than

mesh arrays and LPAs as the processing elements are not integrated with the sensor

array. This provides better photosensitivity which important for many machine

vision application. The selection of frame-based processing is conducive to

implementing numerous hardware co-processors which could be optimised for

common image processing and machine vision operators and complex algorithms.

This multiple co-processor concept is unlike the vast majority of vision systems, with

the notable exception of Ni and Guan Smart CMOS Image Sensor. The primary

rationale for not using this concept is that potentially more area is consumed than the

use of a general ALU and unless most or all the co-processor are used concurrently

the system implementation could be seen as unoptimised. But there are several

reasons why this co-processing paradigm is valid in this situation, they are;

• Quick exploration of design space and rapid prototyping for the developer of

new products as it may not be necessary to have to write large amounts of

program code. This could be particularly useful when demonstrating a

product still in development to a potential customer.

39

• Potentially reduce the complexity of the end product users programming

model and code size, as these co-processors could be operated by simply

making function calls.

• Careful design of the hardware co-processors would allow their use in the

large portfolio of other products that use frame-based processing within the

division, i.e. useful in lowering development time, and hence cost, by re-use.

• Co-processors can be optimised for speed and/or power to be more efficient

than a single ALU or neural network.

• Only a small subset of the library of co-processor related to the processing

critical path may need to be included and hence providing a very compact

solution to an application.

• Possibility of concurrently processing several pixel streams from different

images using several co-processors or forming pipelines of co-processor to

perform several operations on one pixel stream.

• Most suitable for applications using temporal and spatial processing.

It could also be argued that the ever increasing number of gates available as a result

of new technology processes and the fact many new mass-market application require

portability, that designs are being more constrained by power requirements than area.

Therefore, to some extent, extra area to support the co-processors is becoming less of

an issue. The use of these co-processors and a frame-based processing approach,

enables each architectural component to be developed and tested independently as an

IP block before being mapped onto a SoC. The final general point for using a frame-

based approach is that in applications that require low to medium volumes, the

system could stay as a multi-chip FPGA-based solution rather than going to the time

and expense of integrating the complete system into a SoC.

40

3 System Requirements, Analysis and Specifications

The initial stages in designing an electronics system consist of 2 key steps. The first

of these steps is the capture of a set of requirements which the end system must fulfil.

In the second step, it is then possible to produce system specifications based on these

requirements. This allows the designer to concentrate the design effort to engineer a

system that exactly meets the specifications. Integral to the specifications is the

partitioning of the system into software and hardware sub-systems. These 2 steps are

discussed in this chapter for the new prototyping system.

3.1 Requirements

The primary source of requirements was from the original project brief provided by

STMicroelectronics and hence were only very broadly defined. These were;

1. Lay the groundwork for future realisation of tracking and recognition of

object in real-time.

2. Produce a core set of re-usable operators.

3. Ideally, provide generic architectures capable of addressing many

applications.

In addition to the project brief, the literature for the original VLSI Vision Imputer

Family was examined. The typical requirements of applications that used the

Imputer architecture were;

1. Support for image resolutions of 256x256 pixels.

2. Support for 8-bit greyscale processing.

3. Ability to program user-define algorithms in C.

4. Real-time operation for image processing.

The second source of system requirements was from a Managing Director of a local

machine vision company. The information provided was useful as the company

41

could eventually become a customer and user of the prototyping system. The

company’s requirements were;

1. Support for image resolutions to CIF standards, i.e. 352x288 pixels.

2. Support for 8-bit greyscale unsigned processing.

3. Protect the end-user from the complexity of the underlying hardware

architecture.

4. Ability to program user-define algorithms in C.

5. Support for fixed point processing and floating point processing in special

cases.

6. Operate at 20fps at CIF resolution.

7. Provision of memory capacity for 8 CIF images.

The third source of requirements was that of current, emerging and future mass-

market applications. Trying to encompass all the requirements from a very wide

range of applications would lead to over specification in order to support specific

applications, for example, support for processing thousands of frames per second as

required by an optical mouse. Hence a final constrained superset of requirements

were generated. These were;

1. Provide a greater opportunity for system migration to a single IC by using

devices where STMicroelectronics owned their intellectual property rights.

2. Provide image capture support of up to an 8-bit greyscale 640x480 pixel

(VGA) image.

3. Operate at up to 25fps.

4. Provide the opportunity for direct connection to a host computer.

5. Provide video output to a PAL video monitor.

6. Provide control of several actuators and indication devices, such as motors

and LEDs.

7. Provide user definable switches for prototyped applications.

8. Maximum bill of materials cost for the prototyping system of $1500.

42

3.2 Specifications

During the system specification and system partitioning steps, important design

constraints may be placed on the system development. Producing a detailed

specification for the implementation of the system would usually need mathematical

modelling, simulation and evaluation of algorithms to be performed. This would

indicate the suitability of the specified system and may raise any issues regarding the

partitioning of the system. As no set of algorithms were provided or any

requirements in terms of data processing or instruction execution speeds, it was not

possible to accomplish this process by modelling or simulation. As a result, the

system components were selected with cost, intellectual property ownership and

datasheet-specified performance in mind.

STMicroelectronics required the use of their CMOS image sensors within the

project. This requirement prevented the development of mesh or linear array based

processing architectures, as the image sensor provided would be physically separate

from its associated processing element. This dictated that a frame-based processing

approach had to be adopted. Also, although the original project brief did not specify

the explicit development of a new hardware prototyping platform, a decision was

made to implement a prototyping platform first and then a set of re-usable operators

in the form of hardware IP blocks. The primary reason for this initial design decision

was that without a prototyping platform, operations would have been required to be

implemented in software, e.g. SystemC, or as mathematical simulations using a tool

such as Matlab. This would have prevented the operations from being tested in real­

time conditions.

The analysis, specifications and system partitioning are listed in the following sub­

sections.

3.2.1 FPGA Backplane Selection

Image Processing and machine vision algorithm processing was to be performed

within a reconfigurable FPGA device. The FPGA device chosen was an Altera

APEX 20K600E SRAM-based FPGA, mounted on an in-house available

43

STM icroelec tronic Backplane, see figure 3.1. This backplane w as chosen as there

w ere no other in-house solutions available at the start o f the project. An additional

deve lopm ent time o f 3-6 m onths w ould have been required to develop a new

backp lane and was deem ed not have added further value to the project.

FPGA Set o f Pin
C onnec to rs

EPC2

L E D B ank and
P ush -B u tton

Sw itches
(U ser-def ined)

Figure 3.1 STMicroelectronics Backplane

T h e FPG A provided a typical usable gate count o f 600000, 311296 bits o f R A M , 4

phase-locked loops (PLL) and 508 user I/O outputted to 4 sets o f pin connec to rs . As

the F PG A retained it configuration using em bedded SR A M , at p o w er-o ff its

configuration was lost. T he inclusion o f four non-volatile A ltera EPC2 m e m o ry

devices a llowed the configuration to be stored after pow er-dow n and the F P G A to be

reconfigured at power-up. W hilst a ST M icroelec tronics backplane with a larger

A P E X 20K 1000E FPG A , provid ing a further 400K useable gates, was available ,

advice from the STM icroelec tron ics Im ager IP team, w as that t im ing c losure w ou ld

have been more difficult to achieve. Th is is explained by the increased size o f the

F P G A die and hence increased dis tances betw een pins and logic b locks g iv ing rise to

increase pin-to-pin and logic block to logic b lock transm ission delays.

T he use o f an FPGA for processing is on ly feasible with a frame based p rocess ing

architecture. Although linear array based processing architectures separate the

process ing elements from the photosensitive array, the com m unica tions bus betw een

the photosensitive array and FPG A w ould have to be immense. For exam ple , a linear

array architecture connected to a V G A (640x480 pixel) image sensor with an 8-bit

bus per pixel column, w ould require a 5120 wire bus connected to the F P G A . T here

44

are currently no FPGA devices with this many I/O pins. Even if pixel data was sent

to the FPGA bitwise, a 640 wire bus still would be required. A bus of 640 wires

would still lead to the requirement of a very complex PCB to maintain signal

integrity and timing requirements. The only other alternative for the implementation

of a mesh or linear processing based architecture would have been to prototype

designs in silicon. This was not a feasible option, given the costs and timescales

involved with the silicon implementation of designs.

3.2.2 Daughter Board Analysis and PCB Component Selection

As STMicroelectronics required the use of their CMOS image sensors, a new

daughter board with a sensor interface needed to be designed. All other hardware

components to support the image sensor were to be implemented on a single

daughter board PCB, as it was not possible to implement these components on the

backplane. This PCB, connected with the pin connectors on the backplane, would

provide the necessary data paths, control signals and clock signal to the FPGA, while

obtaining power from the backplanes voltage regulation circuitry.

Several options were available for implementing the daughter board PCB

architecture. These were:

1. Implement the daughter board PCB with minimum support structures and

implement a direct connection between the sensor and FPGA for the

transmission of pixel data and control signals.

2. Implement the PCB with a general purpose microprocessor or microcontroller

to act as an intermediary between the sensor and FPGA for sensor control

purposes.

3. Implement the PCB using the associated STMicroelectronics sensor co­

processor which would provide sensor control via an embedded

microcontroller and initial image processing/enhancement in hardware.

45

The decision was taken to opt for the third choice, as implementing the sensor

attached to its co-processor, would provide the greatest flexibility. The advantages

of this approach were:

• It was a tried and tested in-house solution and could be implemented

at a low cost and with relative ease.

• A lull development suite existed for the sensor co-processor and in-

house support for its use was available.

• The co-processor would aid the testing of the sensor.

• The co-processor offered embedded hardware providing USB

communications support.

• The co-processor could perform initial image processing.

• No FPGA resources would be required for sensor control, unlike

option 1.

The use of a sensor co-processor has disadvantages. These were that it was a more

complex solution at PCB level than option 1 and that many of the co-processors

functions may not be used. A DSP option was not applicable as STMicroelectronics

asked that the library of operators be implemented as hardware DP blocks rather than

software. The DSP would also not have provided a more efficient solution for the

control of the sensor than the sensor co-processor or option 2’s microprocessor.

As a result of the initial design analysis and design decisions, the specified core

components of the PCB were;

1. A STMicroelectronics 100-pin (TQFP) STV0674 sensor co-processor

designed for use with CIF and VGA ST CMOS image sensors and provides

full exposure control, colour processing and sensor mode control. Using

JPEG compression of image data, the co-processor can operate in three

modes; as a USB Webcam camera; streaming audio and video at up to 30fps

to a PC, a CIF or VGA stills camera; storing images to external memory,

‘camcorder’; streaming audio and video to external memory for uploading

later to a PC. The co-processor also contains an 8-bit 8052 microcontroller

capable of running program code from on-chip 32Kbyte ROM and 32Kbyte

46

RAM [91]. This co-processor is required to act as a system ‘housekeeper’.

As the housekeeper, the co-processors main role in the prototyping platform

would be power-up device configuration, sensor control, image capture,

image transfer to/from the FPGA backplane and a host PC via a 12Mbit USB

1.1 connection, if required. The microcontroller would also allow

applications to be programmed in C and control of other board-level devices

using its general purpose inputs and outputs (GPIO). All the PCB support

components will be implemented to allow USB communications to a PC,

audio in, via a board-mounted microphone, audio out, via a board-mounted

piezoelectric buzzer, loudspeaker connector and earphone connector.

Although not essential, these extra components may enable the

implementation of a wider range of end applications and simplify any system

or application debugging. An ST sensor socket is provided to allow

interchange of different 36-pin sensor modules as well as a connector for

flexible ribbon cable-based sensor modules , although it is expected that a

410 series CIF sensor or 500 series VGA sensor will be used in most

applications developed with the system.

2. Four memory devices should be supported, providing a range of volatile and

non-volatile memory options to the end-user of the prototyping platform.

These are;

i. Two 54-pin (TSOP(II)) 128Mbit Samsung Single Data Rate

Synchronous Dynamic RAM (DRAM) ICs. Part No. K4S281632D

with maximum frequency of 133 MHz [92]. These provide a 16-bit

wide data bus, compatible with the SDRAM interface on the

STV0674 co-processor and capable of storing up to 54 VGA images

each. These two memory devices are directly connected to the FPGA

and as such, the co-processor does not have direct access. These are

expected to be used for low cost high capacity short-term image

storage.

ii. One 44-pin (TSOP(II)) 64Mbit Samsung NAND FLASH IC. Part No.

K9F6408. The FLASH is required to be directly connected to the

STV0674 and the FPGA, via an 8-bit wide data bus. A 64Mbit

47

FLASH is capable of storing up to 27 VGA images. This is expected

to be used for long-term non-volatile image or program code storage.

iii. One 8-pin (DIP8) 256Kbyte STMicroelectronics Electrically Erasable

& Programmable ROM (EEPROM) IC. Part No. 24C256. This part

should be to directly connected to the I2C port on the STV0674 and

hence provide non-volatile storage of application specific program

code via a serial interface.

iv. One 3.3V compliant Smartmedia memory card slot connector,

supporting up to 128Mbit removable memory cards. Connected to the

FPGA and STV0674 by sharing the NAND FLASH 8-bit wide data

bus. Note: Smartmedia and Flash device cannot be utilised

concurrently for any application due to bus contention. This is

expected to provide a useful alternative to a PCB-fixed FLASH

device.

3. Video signal generation suitable for output to a video monitor will be

supported using the STMicroelectronics 28-pin (S028) STV0119a Video

Encoder IC. This IC generates the analog composite video output from 8-bit

wide time multiplexed 4:2:2 chrominance and luminance in an ITU-R BT.656

format. The video data supplied to this video encoder will be sourced

directly from the FPGA in an 8-bit greyscale form.

4. Actuators will be controlled by the switching of STV0674’s GPIO connected

to a STMicroelectronics 16-pin (PowerDIP) ULN2064B Quad Darlington

switches IC. This IC can output 1.5A to each Darlington output at a

sustainable voltage of at least 35 V. As the switch IC also has integral

suppression diodes, they are suitable for driving inductive loads, such as

electric DC motors, stepper motors and solenoids [93]. The four outputs from

the switch IC must be connected to screw terminals to provide the most

flexible method of interfacing external devices

5. Test and debug facilities should be provided in the form of a JTAG connector

linked to the STV674 and a user-define port on the FPGA, in addition to the

2nd JTAG connector on the backplane which will be primarily used for FPGA

48

programming. All input and output signals to and from the video encoder

and the sensor connector should be made accessible at the edge of the PCB

via pin connectors. Three different coloured 1.8mm LEDs (Red, Yellow and

Green) and three jumper switches toggling between ground and 3.3V, should

be in a combined configuration in order to only occupy 3 GPIO connections

to the STV0674.

6. Two board-level clock domains are required to drive the STV0674 sensor co­

processor, STV0119a video encoder and the FPGA on the backplane. A 12

MHz and 27 MHz clock signal are required and will be generated using a

crystal oscillator with the 12 MHz clock signal sent to the STV0674 and the

27 MHz clock signal sent to the STV0119a but both to the FPGA. Clock

drivers should be used to transmit all clock signals to the necessary

components, with resistor-capacitor networks providing the ability to balance

clock delays between daughter board components and the FPGA.

7. Three voltage supplies are required for the daughter board’s systems. These

are 1.8V, 3.3V and 5V. 1.8V and 3.3V are supplied via the connection to the

FPGA backplane, whereas 5 V should be generated using a voltage regulator.

Two layers of the PCB should be dedicated to a power plane and a ground

plane. To reduce the possible effects of crosstalk, analog voltage supplies

should be separated from the digital supplies via star-points on the power

plane. For the same reason, the analog ground plane should also be split

using star-points to provide separate grounds to the audio circuitry of the

sensor and the co-processor’s PLL.

3.23 System Buses Analysis and Specification

The decision to use a sensor co-processor to control the sensor and relay pixel data to

the FPGA, had the effect of limiting the types of buses used due to the limitations of

the co-processor’s interfaces. The initial unavoidable bottleneck within the system

was as a result of the data out interface on the available image sensors. This

interface was only of a width of 5 wires and a maximum speed of 24MHz, providing

49

a bandwidth of 120Mbits/s. The second bottleneck existed between the co-processor

and FPGA. As the co-processor only had general-purpose I/O (GPIO), I2C interface

and USB interface, the bandwidth was limited to 2Mbit/s per pin, 400kbits/s and

12Mbits/s respectively. Fortunately, the GPIO could be driven by the co-processor’s

hardware SDRAM control module, providing a bandwidth of a maximum of

384Mbits/s at a fixed SDRAM bus speed of 24MHz. This was chosen as the main

communications bus between the co-processor and FPGA. As the bandwidth was

more than 3 times the bandwidth of the sensor’s data bus, the option to use the co­

processor between the sensor and FPGA was deemed just as effective as a direct

connection from the sensor to the FPGA. This bus was referred to as the IMPBUS to

distinguish it from the two SDRAM buses from the FPGA to the two SDRAM

modules. Due to the fixed interface requirements on the other PCB level

components, there was no choice in the selection of the remaining buses.

The prototyping system had 6 specified buses as follows;

1. IMPBUS - a shared 39 wire Memory/Communication bus operating at a

maximum frequency of 24 MHz connecting the co-processor with the

FLASH memory, Smartmedia connector and FPGA. This bus is the only

pathway for communication between the co-processor and FPGA.

2. SENSORBUS - a uni-directional 5 wire data bus operating at a maximum

frequency of 24 MHz between the sensor video output port and the video

input port of the co-processor.

3. VIDBUS - a uni-directional 8 wire data bus operating a maximum frequency

of 27 MHz connecting the video out port of the FPGA to the video encoder.

4. USERBUS - a shared 12 wire bus operating at a maximum frequency of

12Mhz facilitating control of the 3 LEDs, 3 input switches, 4 actuator

switches and JTAG debugging provision for the co-processor.

5. I2C Bus- a shared 2 wire bus operating at a maximum frequency of 400 kHz

for co-processor control of the video encoder, sensor and EEPROM.

6. SDRAM A/B Bus - two 38 wire combined SDRAM data, address and control

buses operating at an expected frequency of 24 MHz. These two buses

provide a direct path from the FPGA to the SDRAM ICs on the daughter

board.

50

Figure 3.2 illustrates how these buses interconnected the different components in the

prototyping system.

SDRAM A BUS

SDRAM B BUS

USERBUS

IMPBUS

IX BUS

VIDBUS

SENSORBUS

128MBit
SDRAM B

128MBit
SDRAM A

VVL410/
VVL5xx

Sensor

STV0119a
Video

Encoder

256KByte
EEPROM

64MBit
FLASH/

Smartmedia

JTAG
Connector,
LEDS and
Switches

FPGA

STV0674
Co-processor

Inter-board
Connectors

Figure 3.2 Top-Level Daughter Board Bus Diagram

3.2.4 Detailed IMPBUS Specification

Unlike the other buses, the USERBUS and IMPBUS were custom bus specifically

designed for the prototyping system and hence did not have any publicly available

datasheets. As the USERBUS was used to control on/off switching of devices,

JTAG test signals and user-defined signals, no communication protocol was defined.

Conversely, the IMPBUS had an important multi-purpose role within the system,

which included inter-chip communications and therefore warrants further

specification. The table A.l in Appendix A lists the STV0674 ports, special function

pins, actual pins and their mappings for the IMPBUS.

Three different modes of operation existed for the IMPBUS. The first mode was

FLASH or Smartmedia card access and could operate separately or concurrently with

the third mode, which was 16-bit bi-directional communication between the FPGA

51

and STV0674. The second mode had exclusive access over the bus for SDRAM

transaction between the STV0674 and FPGA. The IMPBUS was designed for clock

speeds of up to 2 MHz when communicating directly to and from the STV0674 and

FPGA. This is due to the limitation that GPIO on the STV0674 could only toggle at

a maximum of 2MHz. As a result, the maximum possible bandwidth was 32Mbits/s.

SDRAM operations across the bus could be performed at 24 MHz, using the clock

from the SDRAM controller located on the STV0674 and hence achieve a maximum

bandwidth of 384Mbit/s. It was expected that the embedded memory in the FPGA

and the two SDRAM attached to the FPGA, would be mapped into the co-processors

addressable SDRAM space. This would provide the opportunity to access the

FPGAs embedded RAM by implementing an FPGA resident SDRAM address

decoder and using the same memory control commands as used when

communicating directly with an SDRAM. The key advantage of this mechanism was

that the maximum bandwidth was over a magnitude larger than that which the

IMPBUS communications could provide, making it the best method for transmitting

a large amount of data between the FPGA and STV0674 co-processor. Another

advantage over IMPBUS communications was that SDRAM transactions were

controlled by a dedicated hardware core and did not require any microcontroller bus

control protocol emulation overhead, unlike the 16-bit communication mode. But a

disadvantage was that only the co-processor could initialise and control the SDRAM

transactions.

A specific IMPBUS communication protocol was not selected as the use of the bus

may need to differ between applications. In some circumstances the constraint of a

fixed bus protocol could have increased the complexity of the embedded software on

the co-processor. This fixed protocol could have lead to unsatisfactory bus control

execution times when a simpler and faster bus protocol could be devised by the

application developer. Three extra wires were provided for a parity signal, bus clock

and bus ownership indication to allow a greater control for error correction,

synchronisation and bus contention, while reserving 16 wires for data transmission.

52

3.2.5 FPGA Design Analysis and Specification

Initial analysis of the prototyping system’s requirements indicated that several FPGA

design issues needed to be addressed. The digital encoder IC required video data to

be encoded to the ITU-R BT.656 digital video standard and outputted on the 8-bit

bus at 27 MHz to sustain the correct video timings for a PAL 50 fields per second

video format. Each of these fields consisted of half an interlaced video frame, hence

combining a field with its subsequent field would form one frame. As the sensor

produced a video output at only 25 frames a second, each frame had to be outputted

twice to meet the PAL video timing requirements. This indicated the need to use a

frame buffer. As the sensor and video encoder operated asynchronously to each

other and their timing requirements were hard deadlines, the frame buffer mechanism

had to cope with potential skews between the two data domains.

The specification of the use of greyscale images for imaging processing at the

beginning of the project had the advantage of significantly reducing the memory

requirement for the frame buffer. Limiting the system to greyscale was not seen as a

problem, as the majority of image processing can still be done without using colour

data [94]. The sensor pixel was outputted in a YUV format, where each pixel is made

from a luminance sample, Y, and two chrominance samples, U and V. Each sample

was 8-bit wide, creating a 24-bit pixel with 16.7 million possible values. Using the

luminance sample only, reduced the memory requirement to a third of the original

value. For example, a single 8-bit greyscale VGA (640 by 480 pixels) frame had

memory storage requirements of 2457600 bits. As the FPGA used on the backplane

had 311269 bits, only a maximum 12.7% of a VGA image could be stored on-chip.

Taking into account that the system was aimed at low-cost applications, this problem

was overcome by sub-sampling the VGA image to create an image of 80 by 60

pixels. Where more memory is required, the external SDRAMs or a backplane with

a FPGA containing greater memory sources could be used. The option of a smaller

image size, allowed up to 8 whole images to be stored within the FPGA. Sensor

video stream decoding and sub-sampling was performed in a sensor interface IP

block fed from an asynchronous FIFO. At this point, the 80x60 pixel images were to

be outputted to a monitor. The image would be scaled-up horizontal and vertically by

53

a factor of 8 to reconstruct a VGA image. This scaling process duplicated each pixel

a further 7 time to increase the line length from 80 to 640 pixels.

The Altera FPGA provided the option of implementing the frame buffer as a single­

port memory, i.e. read or write at one time, or a pseudo dual-port memory, allowing

a reading from one port and concurrently writing to the other port. A true dual-port

memory would have two independent ports, each capable of being read and written

independently of the other port. As with all the Altera 20K FPGAs, true dual-port

memories cannot be implemented. The use of pseudo dual-port memory creates more

complex control structures than a single memory and has the potential to reduce the

memory’s maximum operating frequency. Other limitations include the following:

• There may be instances where an image is read out during or before it has

been processed resulting in a partially processed or unprocessed image being

visible on the monitor.

• Where memory requirements exceed the FPGAs resources, external SDRAM

memories would be required. SDRAM are single-port memories and

therefore it would be necessary to re-design the FPGA’s memory interfaces.

To bypass these limitations, a two single-port RAM configuration was chosen for

implementation of the image memory banks. A limitation of using only two memory

banks for image storage, is that during cycles when an image is being read out to the

video encoder, operations such as absolute differencing, are complicated due to

sharing of the same memory bank. Adding a further image bank would alleviate the

problem by always providing an image bank solely for uninterrupted image

processing. This would of course be at the cost of adding latency on the image read

out to the video encoder by one frame period. An extra image bank was not

implemented, as applications initially developed using three on-chip image banks

could not be as easily implemented later, using the two off-chip SDRAM ICs.

An IP block was specified to interleave or “ping-pong” image data between the two

image banks. This allowed the system to write new image data into one image bank,

while reading image data from the other image bank to the video generator. Using

54

the interleaving mechanism ensured that the frame rate could be maintained at 25fps.

The size chosen for these image banks was 16Kbytes, each capable of storing 3

images. Three further memory banks were required, one for the storage of temporary

data, one as a register bank and another for storing instructions for the system

controller. Temporary data was stored in a 4KByte scratch pad as it was expected

that some image processing IP blocks may need concurrent access to image banks

and another separate bank for variable data. The register bank was used to control

the different functions within the system, e.g. activation of image processing

functions or test modes. A total of 256 Bytes were allocated for the register bank.

The instruction store was allocated 256 Bytes providing enough capacity for 256

instructions or literal values.

The combined size of all the memory allocated in the FPGA was 37376 Bytes. This

figure was 96% of the total number of memory bits available on the Altera FPGA

used. Some of the remaining memory was used for FIFO structures. The memory

map for the FPGA was specified as in figure 3.3.

Address

OxAOFF-
OxAOOO ■

0x9000 -

0x5000

0x1000

OxOOFF
0x0000

Unallocated

Instruction Store

Scratch Pad

Image Bank 2

Image Bank 1

Unallocated

Register Bank

Figure 3.3 FPGA memory address map

55

Each block of allocated memory was allocated to start on hex addresses that would

be simple to remember and easily decoded. As the pixel data used in the system was

a byte in size, the memory widths chosen for the memories were also byte-wide. This

design decision would simplify the design of data ports on IP blocks and memories

and reduce the internal FPGA wiring requirements for buses. A reduction in bus

widths generally can result in less possibility of skew between data bus wires and can

potentially reduce problems in meeting timing requirements. The disadvantages of

using byte wide memories are that it reduces the number of pixels readable per cycle

to one and limits the width of instructions within the instruction store.

A system controller was implemented in conjunction with the instruction store, to

provide a programmable mechanism to control all the sub-systems within the FPGA.

As the memory instantiated in the FPGA was 8-bit wide, the system controller had to

use specialized course-grained instructions to perform the necessary operations. The

system controller could access the instruction store independently from the rest of the

system. This was advantageous as the programs were separate from the data

memory allowing simultaneous access. This provided higher performance and

ensured the constant flow of instructions to the system controller without interfering

with other memory operations. This form of memory partitioning is known as

Harvard architecture and is found in most modem DSPs [95].

A different method for providing a programmable mechanism could have been the

inclusion of a microprocessor or microcontroller on the FPGA instead of the custom

system controller. It has become popular for FPGA system designers to use either

the Nios family of microprocessors when using Altera FPGAs or the Microblaze

family when using Xilinx FPGAs. Both 32-bit microprocessors are provided by the

FPGA vendor as soft IP blocks optimised for the vendor’s FPGA architectures.

Although these IP blocks are low cost and relatively easy to implement, licensing for

use in silicon designs such as IoCs can be complicated by licensing issues and high

costs. Generally these IP blocks are only offered for use in the vendors FPGA,

encouraging the use of the vendor’s FPGAs for the end-product. As end-products

from the prototyping platform are likely to be a single chip, these devices probably

would not be cost effective.

56

Tensilica provides the 32-bit Xtensa family of soft IP block microprocessors. These

have the advantage that the company is fabless and not tied to any particular silicon

technology. The development suite provided by Tensilica allows processors to be

customized for a particular application, by changing the processors architecture and

allowing the instruction set to be extended using new instructions. These instructions

control optimized logic that results in more efficient processing performance. As a

third party vendor there are still potential licensing and cost issues with the use of

their microprocessors.

A similar microprocessor to Tensilica’s Xtensa which is available freely for

commercial use under a GNU GPL licence, is the SPARC compatible Leon 2,

developed originally for the European Space Agency. This is also a configurable 32-

bit soft IP block microprocessor which may be extended by the addition of up to a

further 5 instructions. Although this may seem the most appealing option for a

microprocessor, as with the majority of open source software and hardware, there is

no specific company offering user support.

All four processors discussed have the advantage that compared to the system

controller, they are far more flexible and more computationally powerful. These

processors could have been used for some image processing functions that would be

more efficiently implemented in software than as a hardware DSP IP block. As well

as controlling the sub-systems in the FPGA, they could also be programmed to

control the sensor from the FPGA, removing the need for the sensor co-processor.

The disadvantages of all the processors are:

• All are 32-bit and would consume larger amounts of FPGA resources when

compared to the system controller.

• The complexity of the IP block microprocessors could reduce the overall

system clock frequency attainable, due to their affect on the place and route

of the design onto the FPGA.

• The pixel data and memory architecture is only 8-bit and therefore the 32-bit

microprocessors are unlikely to be more efficient than the 8-bit optimised

system controller for many functions.

57

• The design flow is likely to become more complex for the prototyping

platform’s software, as new tools may be required and programming code

would need to be ported or re-written for the new microprocessor.

• STMicroelectronics does not have IP ownership of these microprocessors and

therefore there maybe problematic or expensive licensing issues.

Irrespective of the advantages of the inclusion of a soft IP block microprocessor,

STMicroelectronics requested that the FPGA design should not use any third party

IP. This left no other option than to design the system controller, as no in-house

processors were made available. If a mesh and linear array processing approach had

been adopted, it would have been essential to add a microprocessor onto silicon die.

Its inclusion would have been to perform the high-level image processing functions

that both architectures are incapable of performing.

External access to the FPGA was provided by the IMPBUS and a SDRAM decoder.

The SDRAM decoder converted SDRAM read and write transactions into internal

reads and writes to the banks of memory embedded in the FPGA. It supported two

data widths from the IMPBUS. These were 8-bit or 16-bit wide data which was

transformed into multiple internal 8-bit wide data transactions. The SDRAM

transactions provided flexibility in allowing the FPGA part of the prototyping

system, to be used with processors or co-processors, other than the STV0674

provided. The disadvantage of this approach was that in a situation where the co­

processor required information from the FPGA, it would still expect valid data to be

returned from the FPGA within a given time window. The reason for this was that

the co-processor’s SDRAM controller communicated to the FPGA, as if it was an

SDRAM module. This could causes problems if latency in the FPGA architecture

resulted in strict memory timing deadlines for outputting data not being met. It was

expected that a high system clock frequency for the FPGA system would prevent

these timing issues from occurring. Without the implementation of the SDRAM

decoder and the use of the SDRAM bus, all communications between the sensor co­

processor and FPGA would be at the slow rate of 2Mbits/s per pin.

58

Figure 3.4 shows the simplified top-level IP block architecture specified for

implementation within the FPGA, including the SDRAM decoder and it connection

to the rest of the sub-systems via a bus network.

STV0674
Co-processorImage Sensor

IMPBUS
24 MHzSENSORBUS

24 MHz

VIDBUS
27 MHz

Video Encoder

Read
Side

Video
Generator

Async.
FIFO

Async.
FIFO

Write
Side

SDRAM
Decoder

Sensor
Interface

Image Bank 1
(16 KBytes)

Image Bank 2
(16 KBytes)

Instruction
Store (l-store)

(256 Bytes)

Example DSP
IP Block

Example DSP
IP Block

System Control

Register Bank
(256 Bytes)

Scratch Pad
(4 KBytes)

Network Control

Ping-
Pong

Backplane
Switches

<---
< —>

USERBUS
2 MHz

Figure 3.4 Top-level IP block architecture in the FPGA

The bus network specified for the FPGA architecture consisted of multiple point-to-

point buses synchronized with the system clock. As only a small number of

interconnections existed within the architecture, it was seen to be unnecessary to

implement a traditional bus structure, such as, STMicroelectronics’ ST-Bus, IBM’s

CoreConnect or Arm’s AMBA, or a network-on-chip structure, given their

associated control overheads. These point-to-point buses provided low latency

communications links from sub-systems and DSP IP blocks to memories. As the

register bank was used as a means for one sub-system or DSP IP block to indirectly

control another, minimal direct wiring was required between DSP IP blocks and/or

sub-systems. Hence, all sub-systems only required a direct connection to the register

bank rather than a traditional shared bus providing full connectivity between all sub­

systems. A small network controller was implemented to provide arbitration over

the network of point-to-point buses, using multiplexer structures and a priority

mechanism based on system status. This network controller primarily controlled the

access to the different shared memory banks. Table 3.1 show the possible

interconnections between the different parts of the architecture.

59

Image

Bank 1

Image

Bank 2

Scratch

Pad

Register

Bank

Instruction

Store

SDRAM Decoder Yes Yes Yes Yes Yes (*)

System Controller Yes Yes Yes Yes Yes

DSP IP Blocks (Each) Yes Yes Yes Yes No

Ping-Pong Unit Yes Yes No No No

(*) In limited situations
Table 3.1 Interconnections between sub-systems, DSP IP blocks and memories on the FPGA

The limitation of using architecture with IP block interfaces designed for point-to-

point buses, is that it may be more complex to re-use the IP blocks within a

traditional shared bus structure. This issue could be addressed by using a ‘wrapper’

around each IP block to translate signals from the point-to-point bus interface, into a

format suitable for a new bus structure, for example Arm’s AMBA bus.

The original project requirements from STMicroelectronics requested a core set of

re-usable operators. This was extended during the project to specify that the

operators ideally should be useable in other future STMicroelectronics products.

This requirement further justified a frame based approach to processing, as

processing elements for mesh and linear array processing architecture are specifically

designed for a single architecture, i.e. generally not for reuse in a wide range of

potential architectures. As a result, it was deemed applicable to develop optimised

hardware DSP IP blocks with standardised interfaces, to interface with a point-to-

point bus structure. Each DSP IP block could be optimised for a specific operation,

unlike processing elements in mesh and linear array based processing arrays. This

had the distinct advantage that future STMicroelectronics products could use just the

DSP IP blocks they required, rather than general-purpose unoptimised processing

elements.

As the emphasis for these DSP IP blocks was to lay the foundations for the future

realisation of tracking and object recognition, several operations were selected. The

selection of these operations was as a result of the analysis of demonstration

applications, implemented on the original VLSI Vision Imputer. The specific

operations selected were:

60

• Draw rectangle

• Threshold image

• Get maximum and minimum coordinates of all active pixels

• Absolute difference between two images

• Copy an ROI or Image to a new memory address

• 3x3 neighbourhood convolution filter

• Find all active objects within an image and store their attributes

Although these were selected for their suitability for tracking and object recognition,

since they are low-level operations they would be used in a wide range of

applications or form the basis of more complex algorithms and operators. For

example, absolute differencing is also used in image compression techniques and the

3x3 filter for a whole host of low pass, high pass and edge detect operations found in

most image enhancement applications. The limitation of the DSP IP block operator

selection, is that some of the more simple operations, such as ‘Add literal value to

pixel’, would have to be performed by using the microcontroller in the sensor co­

processor. Despite this limitation, the selection of DSP blocks provides a range of re­

usable frameworks for the development of new DSP IP blocks which maybe required

by the end user of the system. The major difference between the frameworks of the

DSP IP blocks, is the number of connections provided to the point-to-point bus

network and the memory addressing scheme supported.

3.2.6 System Firmware

Initially, it is expected that the application developer will start development with the

standard STV0674 Webcam camera firmware patch as a base for new applications.

This will provide the opportunity to perform functionality tests on the sensor/co­

processor pairing and USB communications. Following preliminary testing the

standard patch will be modified to initialise the video encoder, switches, LEDs and

configure the sensor, if required. On completion of any modifications of FPGA-

resident image and machine vision processing architecture, the firmware can be

augmented with suitable application code.

61

3.2.7 Cost Issues

During the analysis and specification of the two PCB prototyping platforms, the issue

of the relative cost of each design decision was addressed. In particular, the decision

to use a frame-based architecture allowed the use of a reprogrammable FPGA rather

than being forced to implement a mesh or linear array based architecture in silicon.

If a multi-project wafer production run was used, the cost would have been likely to

be in the region of two magnitudes different compared to the relatively low cost of

the FPGA and daughter board. Also, given that the imager would have to be

integrated onto the silicon die, this would add further risk of higher costs due to the

complex implementation requirements of a mixed-signal CMOS imager architecture.

Four other cost aware design decisions were:

1. The selection of memory devices supported by the prototyping platform only

included low-cost solutions such as non-volatile FLASH memory and high

capacity SDRAM ICs instead of high cost, low to medium capacity SRAM

ICs.

2. The use of the sensor co-processor removed the requirement for valuable

FPGA resources for a sensor control IP block or the cost of licensing a

general purpose FPGA-embeddable microprocessor.

3. Using a two PCB approach to prototyping reduces the need to redesign both

PCB designs if the FPGA’s support architecture needs future changes to

support a new FPGA device. This is in addition to the cost benefit of using

an in-house solution for the FPGA backplane rather than using a third party

solution.

4. The decision to use a STMicroelectronics video encoder IC instead of a D/A

convertor IC, reduced the requirement for a more complex video generator IP

block to be design for the FPGA. The reduction in design and

implementation time would be expected to result in a reduction in overall

development cost.

62

The main cost disadvantage as a result of a design decision, was that of using a

separate co-processor and system controller. This decision would typically require

two different software design flows, rather than a single unified approach. The

complexity of two design flows could lead to longer development times for

application developers and hence larger development costs.

3.3 Summary

This chapter has contained the requirements, analysis and specification which the

design of the prototyping system was based upon. Further justification has been

provided in the adoption of a frame based processing architecture, with emphasis on

STMicroelectronics requirements of the use of their frame based sensor technology

and the need for re-usable hardware based operators in the form of DSP IP blocks.

The main PCB components have been listed and the primary bus structures between

them defined. Particular attention has been paid to the IMPBUS due to its unusual

configuration, flexibility and given it is the primary bus between daughter board and

FPGA backplane. Details have also been provided with respect to the image

processing architecture to be implemented within the FPGA on the backplane.

63

4 FPGA System Design, Test and Results

This chapter concentrates on the methodology used to create the on-chip architecture

for use in the FPGA on the backplane. The description of the architecture has been

separated into two sections, firstly the core architecture which is essential for the

correct functionality of the prototyping system and secondly an IP block library

providing further flexibility. The simulation and functional verification flows have

also been discussed. Details regarding the development of the PCB daughter card

connected to the FPGA backplane are located in appendix B.

4.1 FPGA Design Flow

The FPGA system required a design flow which would ensure that every IP block

developed for the core architecture and IP block library had undergone the same

development process. Given that the FPGA system would be used by application

developers, the IP blocks had to be carefully integrated into the compete architecture.

This was achieved by individually simulating each new IP block. Each block was

then simulated as part of the system and functionally verified at full operational

frequency within the prototyping system on the bench. The top-level FPGA design

flow used is outlined below.

1. FPGA architectural analysis and Verilog implementation

i. Assess the number of FPGA I/O pins required to support the necessary

off-chip data and control buses in addition to clock and reset signals.

ii. Produce Verilog HDL code for mapping the FPGA pins to the internal

interfaces of an instantiated core module, representing the architecture to

be developed in the FPGA.

iii. Produce a new file containing the core level description of the

architecture and the I/O interface to the FPGA pin mappings.

2. IP block design (perform steps for each IP block)

i. Specify the I/O interface for the IP block in a new design file.

64

ii. Implement the IP block in synthesizable Verilog in the new design file.

iii. Perform checks on the correctness of the Verilog code and check that it

meets re-usability, readability and synthesizability requirements.

iv. Write a Verilog test algorithm that performs a series of tests on the IP

block by applying different combinations of values to the IP block inputs.

v. Perform a Verilog simulation by instantiating the IP block under test and

the test algorithm and executing the Synopsys VCS simulator. If

functioning correctly move on the IP block integration stage.

3. IP block integration (perform steps for each IP block)

i. Initiate the IP block within the core level description file.

ii. Perform the necessary wiring to the core level’s I/O interface.

iii. Increment/create the system’s Verilog test bench to include the new IP

block test algorithm. This differs from testing during the IP block design

as the test bench should only apply signals to the core levels I/O interface.

iv. Perform Verilog simulation using Synopsys VCS simulator.

v. Synthesize the complete FPGA design to a netlist using Synplify.

vi. Compile and fit netlist design to create a FPGA bit stream programming

file using Quartus II.

vii. Perform timing analysis and check that there is sufficient slack along all

internal FPGA wire paths.

viii. Download design to FPGA/EPC2 using the Altera Byte Blaster cable and

Altera MAX+PLUS II software programming tool.

4. Post integration system verification (perform steps for each IP block)

i. Generate a test plan for the FPGA which can be executed at PCB level,

either automatically or using user input from switches.

ii. Verify the functionality of whole prototyping system with the new IP

block using the test plan.

4.2 FPGA Top Level Mapping

The first step in an FPGA design is the definition of the top level mapping of the

external I/O pins of the FPGA to internally defined wires. This mapping takes the

65

type of signal into account to ensure that the FPGA’s pins are be correctly

configured. The original daughter card PCB was modified it to directly connect the

output of the sensor access port to the FPGA. The reason for this modification was

to reduce any processing overhead on the co-processor, reduce latency of the transfer

of image frames to the FPGA for processing and reduce the utilisation of the

IMPBUS. The addition of this sensor data input port on the FPGA, resulted in an

increase in the total number of pins defined to 140, excluding ground and power

supply pin mappings. The top level pin mapping for the FPGA is shown in figure

4.1.

Backplane Switches IMPBUS I/O [38:0]

Sensor Data and Clock In [5:0] SDRAM A I/O

12 MHz Clock SDRAM B I/O [37:01

27 MHz Clock USERBUS I/O [4:0]

Reset Digital Video Out

Figure 4.1 Top-level pin mappings for the FPGA

4.3 Core Architecture

The development of the core architecture connect to the top-level pin mapping was

divided into 3 separate phases. Each of these phases resulted in a functional system

with the new architectural extensions easily demonstrable on the bench. The three

phases were:

1. The construction of the SDRAM decoder and register bank (marked in orange in

figure 4.2). This phase demonstrated that data could be written from the

STV0674 co-processor to the FPGA at a given address within the register bank

2. The development of the sensor interface, video encoder, ping-pong unit and two

image banks (marked in green in figure 4.2). The completion of this phase

demonstrated the architecture’s ability to meet the required hard deadlines for the

sampling of sensor data and its storage and output in a suitable format, at 25fps to

the video encoder IC.

66

3. The implementation o f the system controller, instruction store and scratch pad

memory (marked in blue in figure 4.2). This enhanced the FPGA-based

architecture allowing instruction storage and autonomous processing to control

the various sub-systems without the intervention o f the co-processor.

ST V 0 6 7 4
C o -p ro c e s s o rIm a g e S e n s o r

IM PB U S
2 4 M HzS E N S O R B U S

2 4 M Hz

VIDBU S
2 7 M Hz

B a c k p la n e
S w itc h e s

V id eo E n c o d e r

U S E R B U S
2 M Hz

Phase 1

Phase 2

Phase 3

V id eo
G e n e ra to r

R e a d
S id e

A sy n c
FIFO

A sync.
F IF O

SDRAM
D e c o d e r

W rite
S id e

S e n s o r
In te rfac e

In stru c tio n
S to re (l-s to re)

(2 5 6 B y te s)

E x a m p le D S P
IP B lock

E x a m p le D S P
IP B lock

S y s te m C on tro l

R e g is te r B ank
(2 5 6 B y tes)

N e tw ork C ontro l

P in g -
P o n g

Im a g e B an k 1
(1 6 K B ytes)

Im a g e B an k 2
(1 6 K B ytes)

S c ra tc h P a d
(4 K B ytes)

Figure 4.2 The three phases o f developm ent for the core architecture

The DSP IP block library, bus network and network control unit (marked in white in

figure 4.2) were developed throughout the three phases and hence converged on an

optimal solution for each phase. The following sub-sections provide detail on each

o f the core architectural components at the end o f phase 3.

4.3.1 Register Bank

The register bank was the key component in the FPGA architecture as it stored the

system configuration and current status in a readable, and in many cases writable,

byte-wide configuration. The activation o f new operations from the system

controller required the use o f the register bank as an intermediate means o f

controlling the ping-pong unit and DSP IP blocks. This provided a mutual exclusion

mechanism that ensured the ping-pong unit or DSP IP blocks could only be

configured by one other sub-system in any given clock cycle. Data stored in the

register bank structure could be accessed in two ways, namely, directly, where a wire

67

was permanently connected to the output of the register, or indirectly using a

memory-like read request. Typically, all system control and DSP IP block execution

requests were controlled by the direct method to ensure the lowest latency. A write

to a register used a synchronous memory-like write request, except in the case of a

DSP IP block execution acknowledgment. This exception allowed the register bank

to be freely readable and writable using the memory-like interface during the

acknowledgement of the execution of a DSP IP Block. This was particularly

important as after a DSP IP block received an execution request, it may need to

access the register bank to obtain configuration data. The minimal recommended

configuration for the register bank required the input/output interface as shown in

table 4.1. Connections on the left side, indicate inputs and connections on the right,

the outputs. Buses of wires are indicated by <n:0>, where n is the number of wires,

minus one, in the bus.

I/O Name Description
pc val <7:0> Program counter value
regdin <7:0> Register data in
reg addr <7:0> Register address select

pc_val<7 0> p ing_pong_cfg<7 0> clk48 System clock
— regdin<7:0> env active Active pixel data flag

reg _ ad d r< 7 0 > regdout<7 0>
ip matrix busy DSP IP blocks busy
odd even Odd/Even frame flag

clk48 rdstrobe n Read request (active low)
--------- env_active test_sel<7 0>

ip_m atnx_busy

--------- resetn Asynchronous System Reset
(active low)

switch value Switch value flag
---- odd_even config_com plete_n ---- wrstrobe n Write request (active low)
---- rdstrobe n ping pong cfg<7:0> Ping-pong configuration

rese t_n dsp_ctrl_rst
regdout <7:0> Register data out
test sel <7:0> Test mode select

---- switch_value configcom pleten I-store access select (active
__ w rstrobe n pingpong d sp Ctrl val __ low)

dsp Ctrl rst System controller reset
p ingp ongd sp ctrlva l Ping-pong deactivate

Table 4.1 Minimum set of I/Os for the FPGA Register Bank

These I/O were mapped to the first 10 addresses in the register bank and are listed in

table 4.2.

68

Address Name Type Function
OOOOh device id Readable / Writable Device Identification Number
000 lh rev number Readable / Writable Device Revision Number
0002h blank 0 Readable / Writable Not Used
0003h blank 1 Readable / Writable Not Used
0004h dsp_ctrl Readable / Writable System Controller and Program Counter Reset,

I-Store Configuration Control and Ping-Pong
Deactivate

0005h PC Readable System Controller’s Program Counter value
0006h bp Ctrl Readable / Writable Status o f 3 Backplane push-button switches
0007h ping pong Ctrl Readable / Writable Image bank selection and freeze-frame control
0008h test select Readable / Writable Test mode select
0009h status_out Readable Active image data grab flag, DSP IP blocks

busy flag and odd/even frame flag.

Table 4.2 Minimum register map for FPGA Register Bank

The typical structure of the register bank involved the repetition of similar register

structures to create an array of register instances. Due to the complex nature of the

schematics produced during synthesis of the register bank, only one register instance

is provided in figure 4.3, which illustrates a typical structure.

Example Register

Figure 4.3 Single instance of an example 8-bit register from the register bank

4.3.2 Memories

The image banks, I-store and scratch pad single-port memories in the core

architecture possessed the same interface, internal structure and operated

synchronously with the system clock. To all intent purposes, these single-port

memories acted as static RAMs (SRAM). Table 4.3 shows the common top-level

interface for these memories. The width of a memory address input varied

depending on the size of the memory.

69

 a<13:0> q<7:0>---------

 -------d<7:0>

 elk

 cs_n

 we_n

Table 4.3 Top-level memory

A single parameterisable Verilog memory model was used to instantiate and

synthesize these four memories. As the design decision was taken to implement two

image banks, this limited the size of each image bank to 16Kbytes, as it was not

possible to implement two 32Kbyte image banks within the FPGA due to lack of

memory resources. The Altera 20K FPGA used in the prototyping platform,

constructed memories from embedded systems blocks (ESB), each containing 2,048

programmable bits. Therefore, each 16KByte Image bank, 4KByte Scratch pad and

I-store used 64,16,4 ESBs respectively. Once an address had been set-up on the

memory interface ready for a rising clock edge, valid data for that address would be

outputted on the data output ready for the next rising clock edge. As the memory

bank data I/O interface had been specified to be byte-wide, the resultant pixel

read/write rate was fixed at one pixel per clock cycle.

4.3 J SDRAM Decoder

A SDRAM decoder was used to convert 16-bit data read and 8-bit data write

SDRAM transactions from the IMPBUS. The SDRAM transactions were converted

to 8-bit data read and write transactions suitable for the on-chip SRAM memories

and Register Bank. The implementation of the decoder was as a direct result of the

design decision to use a sensor co-processor as an intermediate between the sensor

and FPGA. As such, this SDRAM transaction conversion process was used as the

primary form of communication between the co-processor and the FPGA-based

architecture. The SDRAM decoder could only access one of the image banks, I-

Store or scratch pad or register bank at one time.

I/O Name Description

a <13:0> Memory address

d <7:0> Data in

elk System clock

cs_n Chip select (active low)

we_n Write enable (active low)

q <7:0> Data out

interface to system architecture for an Image bank

70

A strict set of timing requirements had to be adhered to for each transaction to be

correctly completed. These timings were dictated by the SDRAM hardware control

block within the co-processor. The co-processor supported single 16-bit word reads

and byte writes and burst (4 words) writes and reads. The reads incurred a fixed two

cycle latency from setting up the address on the bus, until the first valid data was

available. Unfortunately, the burst modes were not available when controlling the

SDRAM bus with the co-processor embedded micro-controller. As it was expected

that the micro-controller would be used to control SDRAM transactions between it

and the FPGA, only word reads and byte writes were supported with the SDRAM

decoder. The SDRAM decoder also supported DQM data masking during write

transactions to ensure data was written to the correct on-chip address. The I/Os for

the decoder are summarised in table 4.4. The timing requirements for the co­

processors SDRAM controller are shown in figure 4.4.

I/O Name Description
dram a < 1 3 :0 SDRAM address
dram dqm<13:0> SDRAM data mask

— dram _a< 13 0> dram _d_out< 15 0> dram d in <15:0> SDRAM data in
dram dqm < 10> mem d in < 7 :0 On-chip memory data in

m em _a_out<23 0> elk System clock
d ra m _ d jn < 1 5 0>

mem d out<7 0> dram cas n SDRAM column select (active low)
---- m em _d_in<7:0> dram elk SDRAM synchronization clock
---- data bank sel

elk dram cs n SDRAM chip select (active low)
dram ras n SDRAM row select (active low)
dram w en SDRAM write enable (active low)

---- dram elk
m em _bank_1_sel reset n Asynchronous System Reset (active low)

— dram _cs_n dram d out < 1 5 :0 SDRAM data out
m em _bank_2_sel mem a out On-chip memory address out

mem d out On-chip memory data out
dram _w_en data bank sel Data Bank select flag

— reset_n w_en i store bank sel Instruction Store select flag
mem bank 1 sel Image Bank 1 select
mem bank 2 sel Image Bank 2 select
regb an k sel Register Bank select
w_en On-chip memory write enable (active

low)

Table 4.4 I/O interface for the SDRAM decoder

71

A1Q jT

~X POUT M *~iy QOUT Mj*2y POUT M + 3y
CAS Latency

Symbol Min Typ. Max Units

*CK 41.67 ns

tCH 20.11 20.83 21.55 *CK

>CL 20.11 20.83 21.55 *CK

•AC 24.76 ns

•o h 0 ns

•CMS 20.27 ns

•CMH 20.02 ns

•a s 20.67 ns

•d s 20.12 ns

•dh 21.82 n s

•rod 1 •c k

•ra s 2 *CK

•rc 4 •c k

•r p 2 •c k

•rrd 2 •c k

•ah 19.79 n s

Figure 4.4 Co-processor’s SDRAM read (top) and write (bottom) timing requirements [91]

Although Figure 4.4 shows multiple word read and writes, the timings are also

applicable for single word or byte transactions. SDRAM transactions started with an

“ACTIVE” command which involved the assertion of the SDRAM addresses most

significant bits. This was followed on the next SDRAM clock cycle by either a

“READ” or “WRITE”, with the remaining least significant 9-bits of the SDRAM

address. The commands given by the co-processor were constructed using the

control lines of the IMPBUS. These commands and associated control signals are

listed below in table 4.5.

ACTIVE READ WRITE

dram csn Low Low Low

dramcasn High Low Low

dram_ras_n Low High High

dram_w_en High Low High

Table 4.5 SDRAM commands and associated signals to start read and write transactions

Implementing the write transaction decoding within the SDRAM decoder was

relatively simple as no signals were transmitted back to the co-processor following a

write. This functionality had one main timing requirement which was that the

72

system must be able to process and store the byte of data in a single cycle. The

timing requirements for a read word transaction were more complex. After the

assertion of a read word transaction on the bus, the co-processor required the full 16-

bit word to be a valid output ready for sampling after two 24 MHz cycles, i.e.

83.34ns. This is known as the CAS latency. This was further complicated by the

fact that the systems memory structure and data bus are 8-bit wide and therefore two

bytes must be read from on-chip memory to output a 16-bit word on the external bus.

This extra byte read required an extra system clock cycle.

The process used to collect and construct the 16-bit word, following the detection of

the start of a read transaction, was as follows:

1. Sample read address at system clock edge from the IMPBUS. Output first

memory address as a read request on the selected on-chip memory bus.

2. Collect first byte and store as least significant byte of 16-bit word and output

second memory address, i.e. increment the first address by one, as a read

request on the selected on-chip memory bus.

3. Collect second byte and output complete 16-bit word on IMPBUS bus ready

for DQ sampling by the co-processor.

The system clock is not necessarily in synchronisation with the SDRAM data clock

on the IMPBUS. A system clock frequency of 24MHz or more, may result in the

sampling of the read address up to 20.83ns (ten) after the rising edge of the SDRAM

clock. This would leave only 62.5 Ins to output the 16-bit word on the external bus.

Hence a minimum system clock period of 20.83ns, and clock frequency of 48 MHz,

was required to complete the aforementioned three step process to collect and

construct the 16-bit word. This clock frequency assumes the output data path for the

second byte does not contain a register and that the 16-bit output is latched on the

next system clock cycle until a new read transaction takes place.

4.3.4 Sensor Interface

It was decided that the original method of transmitting image data to the FPGA via

the co-processor would be overly complicated. A sensor interface was designed to

73

directly process image data from the image sensor. As STMicroelectronics had

requested that their sensors were used, this required a 5-wire data interface to be

implemented to connect to the sensor 5-wire bus. The incoming 5-bit VGA image

data at 25fps from the sensor’s five wire data bus was sampled and queued in an

asynchronous FIFO to be processed by the sensor interface. The FIFO was used as a

means to sample the data on the rising edge of the sensor clock, while allowing the

data to be read to the sensor interface running on the system clock domain. This was

important as the sensor clock varied depending on the mode of the co-processor.

Although, the prototyping system was set to a specified sensor clock rate, the use of

the FIFO allowed for more flexibility in the use of the system with other future

unforeseen sensor modules. The only control signal passed from the FIFO to the

sensor interface, was an FIFO empty signal, which was used to prevent reads from

the FIFO when no data was present. Two 5-bit nibbles were concatenated to form

bytes before the 8-bit embedded codes were processed. As the image sensor

produced 8-bit image data value, only the top 8-bits of each nibble pair were used,

with the first nibble in each pair representing the least significant bits. Therefore,

two nibbles formed one pixel.

Embedded codes within the sensor data allowed complete images to be correctly

interpreted, sub-sampled by a factor of 8 and outputted in the correct sequence and

format, to the ping-pong unit. In addition to the image data, an active data flag

indicating valid pixel data to the ping-pong unit was implemented. A vertical

synchronisation pulse was also outputted to the ping-pong unit after decoding a start

of frame line code. Table 4.6 shows the I/O for the sensor interface and figure 4.5

shows the format of each sensor image frame.

sdata<4:0> image_data<7:0>

sub_sam p_x<3:0>

sub_sam p_y<3:0»

env_active
elk

reset_n

sensor_fifo_empty v_sync

I/O Name Description
sdata <4:0> Image data from sensor via FIFO
sub samp x<3:0> Horizontal sub-sampling factor (default 8)
sub samp_y<3:0> Vertical sub-sampling factor (default 8)
elk System Clock
reset n Asynchronous System Reset (active low)
sensor fifo empty FIFO empty flag
image data <7:0> Reconstructed 8-bit image data
env active Active data flag
v sync Vertical synchronisation flag

Table 4.6 I/O interface for the sensor interface

74

Line
0
1

19
25

509
510

523

SAV (6 pixels)

1_______

EAV (6 pixels)

I
Start of Frame Line

Blank Lines

Dark Lines

Visible Lines
(Image area: €44x484 pixels

Area sampled: 640x480 pixels}

End of Frame Line

Blank Lines

Video Data (644 pixels) tanking

->
(260 pixels)

Total line lenath: 916 pixels

Figure 4.5 Sensor VGA image frame and timings at 25FPS

As can be seen from figure 4.6, each frame had a total of 916x524 pixels, equalling

479984 pixels in total. Each nibble was outputted at a default sensor clock frequency

of 24 MHz resulting in a pixel clock frequency of 12 MHz. This pixel clock rate,

gave a frame time of 0.040s and hence a frame rate of 25.00fps.

The SAV and EAV codes shared the same first six, 5-bit nibbles of 3FF-3FF-000,

know as an escape code. Following the SAV’s escape code, a line code indicating the

type of line data was received. A 31C Hex code identified the line as the start of

frame line and the vertical synchronisation pulse was outputted for a duration of 1

system clock cycle. On receipt of a 2D8 Hex code, the sensor interface recognised

the line as a visible data line and start sub sampling. Every 8th pixel on every 8th line

was transmitted to the ping-pong as an active data pixel until the complete 80 by 60

pixel image had been transmitted. The selection of pixels was important as

STMicroelectronics colour image sensors possess a Bayer colourisation filter mask,

over the visible pixel array. Therefore, as the silicon varies in sensitivity to different

frequencies of light, only pixels with the same colour filter should be used to create

75

the sub-sampled image [96]. Green filter pixels were selected for sub-sampling. If a

greyscale sensor was used this would not affect the sub-sampling process. Figure 4.6

displays the Bayer colourisation pattern used.

Odd Columns Even Colum ns

(1,3,5,7,..) (2,4,6,8,..)

Odd Rows

(1,3,5,7,..)

Even Rows

(2,4,6,8,..)

Figure 4.6 Bayer colourisation pattern used in STM icroelectronics' colour image sensors

The precise timing o f the sensor interface was implemented using a single 15 state

Mealy finite state machine (FSM) running at full system clock frequency.

4.3.5 Video G enerator

Video data to be outputted to the video encoder IC, was required to be organised into

an ITU-R BT.656 compliant 8-bit 4:2:2 YCbCr video stream with embedded codes

for either PAL (625 line) or NTSC (525 line) systems. The video generator module

performed this task. An image stored in one o f the two image banks was read by the

ping-pong unit in a raster fashion into a 9-bit wide, 128 address deep asynchronous
jL

FIFO. The 9 bit was used as a flag to indicate the first pixel in an image. Keeping

the size o f the FIFO limited to 128 addresses, ensured that only one o f the FPGA

ESB memory resources was used. The video generator only read data from the FIFO

when it was not empty and the encoder start flag was set to high. Table 4.7 shows

the video generators I/O and its connection to the asynchronous FIFO and an

associated line memory.

76

active_x<9.0> Iin9_m em _a<9:0>

acdve_y< 9 0>

line_m em _q<7:0>
Iin9_m9m_d<7:0>

vdata_fifo<8.0>

vdata_out<7:0>

clk27

9n co d er_ sta rt
Iin9_m9m_w9n

fifo_empty

init_test rd_fifo_req

rese t_ n

video_std
v_sync

I/O Name Description
active x <9:0> Active horizontal output image size
active_y <9:0> Active vertical output image size
line mem q <7:0> Line memory data out
vdata fifo < 8 :0 Video data in from FIFO
clk27 27 MHz clock
encoder start Encoder start-up flag
fifo empty FIFO empty flag
init_test Initialise test pattern generator flag

(unused)
resetn Asynchronous System Reset (active

low)
video std Video standard select (PAL 0/NTSC 1)
line mem a < 9 : 0 Line memory address out
line mem d < 7 :0 Line memory data out
vdata out < 7 :0 ITU-R BT.656 encoded video data out
line mem wen Line memory write enable
rd fifo req Read FIFO request flag
v sync Vertical synchronisation flag

Table 4.7 I/O interface for the Video generator

Video data from the FIFO was in the form of an 80x60 pixel image which was

interpolated with extra pixels to scale the image to a size dictated by inputs active_x

and active_y, set as 640x480 by default. This was achieved by writing each 80 pixel

line into a line memory at the same time it is read out. The line was then read back

from the line memory a further three times. Each time a pixel was read from the

FIFO or from the line memory, it was repeated a further seven times. This created a

scaled image of 640x240 pixels. Unlike the sensors image format, the video

generator had to produce a 25fps interlaced image. Each image frame was made up

of two fields. These consisted of half the vertical video data and had to be outputted

at 50 fields per second to reconstruct a 25 frames per second video stream. Hence,

for every sensor image obtained, two ‘half images’ had to be outputted by the video

generator in the same period of time. The combination of two 640x240 pixel images

recreated the full-sized 640x480 image. The active video data in each line was 720

pixels, regardless of whether a PAL or NTSC video mode was selected. The video

modes had a vertical resolution of 576 lines, for PAL, and 480 lines, for NTSC [97].

Eighty padding pixels (value 10 Hex) were added at the end of each line of the

640x480 image and also, in the case of PAL, 48 pixel lines after the 240th line.

Figure 4.7 displays the interlaced vertical and horizontal timing requirements for a

PAL ITU-R BT.656 digital output from the video generator.

77

Line 0

Blanking

Blanking

Blanking

Line 310

Line 335

Line 623

Line 624
Standing Interval

Line 22

Field 0
(Even)

Line 312

Field 1
(Odd)

EAV Standing
Interval

SAV Blanking or Active Video

<--- ---------►
4 Sam ples 280 S am ples 4 Sam ples 1440 S am ples (720 pixels)

Figure 4.7 ITU-R BT.656 PAL video timing requirements for a 27 MHz clock

T he t im ing o f the system w as m aintained by a M ealy FSM . As with the sensor data,

em bedded codes w ere required in the v ideo data to indicate the type o f line. T he

ITU -R BT.656 format, dictated that for an 8-bit digital video, the valid range o f

values a lum inance or greyscale pixel should be 16 to 235 and for a ch rom inance (Cb

or Cr) pixel, 16 to 240 [97]. Values that fell out with these values w ere to be clipped

to the m ax im u m or m in im um value allowed. B lanking lum inance pixels w ere

assigned a value o f 16 w hereas the unused chrom inance values, Cb and Cr, w ere

perm anently assigned a default value o f 128. This is due to the fact that the system

only operated in a greyscale mode. Table 4.8 show s the construction at the start and

end o f the video codes.

78

Bit 7 (MSB) Bit 6 BitS Bit 4 Bit 3 Bit 2 Bit 1 BitO

1*‘ Byte 1 1 1 1 1 1 1 1

2nd Byte 0 0 0 0 0 0 0 0

3rd Byte 0 0 0 0 0 0 0 0

4th Byte 1 F V H P3 P2 PI PO

Table 4.8 SAV and EAV code sequence

As seen in the table above, F is the field number 0 or 1 and V is the value 1 only

during vertical blanking lines. To recognise if the code sequence is a SAV or EAV,

H is set to 0 for SAV and 1 for EAV. PO to P3 are protection bits which can be used

by the receiver of the video data to detect 1-bit and 2-bit errors and correct 1-bit

errors. The equations for PO to P3 are show in equation 4.1 below.

P0 = F ® V @ H
P\ = F@ V
P2 = F ® H
P3 = V@ H
where ® is Exclusive - OR

Equation 4.1 The calculation of protection bits PO to P3 [98]

The 4:2:2 nomenclature refers to the ratio of luminance, Y values, to chrominance,

Cb and Cr values. For every four luminance values transmitted, two chrominance

values were transmitted. Following an SAV code, the order of the 27MHz samples

making up a pixel for a 4:2:2 is Cb-Y-Cr-Y. This sequence must be repeated until

the end of the active line. The implementation of the video generator was in two

parts. The first part was that of the FIFO and line memory control to re-produce a

640x480 image from an 80x60 pixel image. The second part is the generation of the

ITU-R BT.656 video stream with the correct timings by a Mealy FSM. The control

mechanism and top-level diagram for the FSM structure, without the system clock

and reset, are shown respectively in figures 4.8 and 4.9.

79

Iine_mem_q [7:0]
vdata_fifo [7:0]

v_data
[7:0] w en

line mem a
[9:0]

w vdatajn
[8:01

<— wr_fifo_req

— ►fifo full

firstjine
i.e. if (y = 0)

first_pixel;

fifb_empty <

rd_fifo_req
rd_req

Line
Memory

(1024x8-bit)

Async.
FIFO
(128x
9-bit)

Address
Generator

Figure 4.8 Control mechanism for Video generator's line memory and FIFO

SAV & EAV Code
Generator

Field & Vertical
Blanking Timing

Generator

Vertical Active Line
Counter

Scanline Counter

Horizontal Blanking
Pixel Counter

Horizontal Active
Pixel Counter

v_data [7:0]-------
rd_req *___

FSM Video
Generator

video_std
and v_sync

.vdata_out [7:0]

_encoder_start

-active_x [9:0]

active_y [9:0]

fifo_empty

Figure 4.9 Top-level block diagram of Video generators FSM

4.3.6 Ping-pong Unit

The purpose of the ping-pong unit was to read an image frame from the sensor

interface and write it into an image bank whilst simultaneously reading an image

from the other image bank and writing it into the asynchronous FIFO attached to the

video generator. The ping-pong unit had to ensure that both the video generator and

sensor interface were synchronised. Once a frame had been written to one memory

80

and a frame read twice from the other memory, the ping-pong unit swapped memory

interfaces between the read side and the write side. This enabled the system to

maintain a default frame rate of 25fps while only using single-port memories. Table

4.9 shows the ping-pong unit’s I/O.

m em _q_l <7:0> imagB_data_out<8:0>

m em _q_2<7:0>

ping_pong_ctrl<1:0>

mBm_a_1 <13:0>

roi_*<9:0> mem_a_2<13:0>

roi_y<9:0>

elk

end_of_fram0

encoder_bank_sel m em _w _en_1

anv_activB

fifo_full

m 0 m_w_0 n_2

pingpong_dsp_ctrl odd_ovan

rasat_n

pingpong_rd_bank_ctrl

sanso r_ b an k _ s0 l

v_sync wr_fifo_req

I/O Name Description
mem q^l <7:0> Memory bank 1 data output
mem q_2 <7:0> Memory bank 2 data output
ping_pong_ctrl <1:0> Indicates accessibility o f both

memory banks
r o ix <9:0> Horizontal size of image to read

and write
roi_y <9:0> Vertical size of image to read and

write
elk System clock
encoder_bank_sel Selects intra-bank offset address

for reading
env active Active data signal from sensor
fifo full Video generator FIFO full flag
pingpong dsp Ctrl Freeze frame select (active high)
resetn Asynchronous System Reset

(active low)
sensor_bank_sel Selects intra-bank offset address

for reading
v sy n c Vertical synchronisation signal

from sensor
image data out<8:0> Video data out to video generator
mem a 1 < 1 3 :0 Memory bank 1 address select
mem a 2 < 1 3 :0 Memory bank 1 address select
end o f frame End o f frame flag
mem w en 1 Memory bank 1 write enable
mem w en 2 Memory bank 2 write enable
oddeven Indicates which bank to write to

(high: bank 1 and low: bank 2)
pingpon g rd bank Ctrl Flag to indicate a read is taking

place
wr fifo req Write to FIFO request

Table 4.9 I/O interface for the Ping-pong unit

The ping-pong unit consisted of four main sub-units; the image bank controller, the

read unit, the write unit and an odd/even signal generator. The odd/even signal

generator unit controlled all of the other sub-units. Its function was to provide a

signal to toggle read/write functions between the two image banks when the rising

edge of the vsync pulse was detected. The odd/even signal could be overridden by

an active high pingpongdspctrl input, which would set the system to freeze frame

mode, i.e. continuously read from one image bank without ever updating the image.

The ping_pong_ctrl input could also override the ping-pong unit by forcing reads

81

from a specified bank or prevent access to all banks. For example, value 1 would set

reads from bank 1 and conversely, value 2 would set reads from bank 2. Value 3

would block reads from all banks and force the video generator to output a blank

screen. The image bank controller used the odd/even signal to toggle the signals from

the read unit and the write unit between the two external memory interfaces. The

design of the image bank controller was such that it allowed the images to be locked

into either being read or written into the top or bottom half of each image store.

Setting sensor_bank_sel bit-line high from the register bank forced an image to be

written into the top half of a memory store and thus preserve any data in the bottom

half.

The write unit performed a single image frame write, during cycles when env active

was high and pingpong dsp ctrl was low. The write mechanism generated the

necessary addresses for all of the image data writes and reset the addressing

generator when a v_sync signal was detected. Unlike the write unit, the read unit

performed two reads of an image frame to maintain the data rate and achieve 50

fields per second. The read data was written to the video generator’s FIFO, at system

clock speed, whenever it was not full. This had to be performed at a frequency not

lower than 13.5 MHz so as to prevent the video generator from being starved of data

and blank pixels being incorporated into the active video data stream. The FIFO

provided the opportunity to complete a pre-fetch of 128 bytes of data at the start of

every image frame read, whilst the video generator was outputting blanking lines.

As with the write unit, addressing was generated and finally reset by the v sync

pulse from the sensor interface.

A test generator was designed for the ping-pong unit to provide a test pattern in place

of the sensor data. Setting either bit of test_sel[l :0] high in the register bank would

activate the test generator. Once activated the test generator ‘highjacked’ the

interface between the sensor and the ping-pong unit. The test pattern outputted to the

ping-pong unit was that of a greyscale ramp. This was selected as the STV0119a

Video Encoder IC’s test mode was a set of test bars and it was deemed sensible to be

able to distinguish between the two. The test patterns visible on a PAL monitor are

shown in figure 4.10.

82

Figure 4.10 Test patterns visible for test_sel=l (left) a°d test_sel=2 (right)

4.3.7 System Control Unit

A s a design decision w as m ade to not incorporate a m icroprocessor into the F P G A , a

system control unit w as provided as a m echanism for contro lling the d ifferen t s u b ­

system s within the FPG A architecture. It is unlike modern control units found in

m icroprocessors, m icrocontro llers and digital signal processors for several reasons.

T hese are as follows:

1. M ost instructions found in these o ther architectures are typ ica lly 12-bit to 64-

bit in length. T he system controller uses separate 8-bit w ide instructions and

literal values, as a result o f the system -w ide decision to only use b y te -w ide

m emories.

2. M ost instructions configure and execute co-processor opera t ions ra ther than

perform ing typical A L U -ty p e operations.

3. M inim al or no processing is perform ed on large sets o f da ta by the system

controller.

4. The instruction store (I-store) can only be written to, via the S D R A M decoder

using an external device, such as the co-processor.

Table 4.10 illustrates the input and output interface o f the system control unit. F igure

4.11 shows how these interface to the instruction store, FIFO and genera l-pu rpose

m em ory interface.

83

dsp_ctr1_fifo_wr_used<3:0> pc<7:0>

in s tru c t on<7.0>

reg_q< 7:0>

reg_a< 15 0>

elk reg_d< 7 0>

config_com plete_n

ctrl_rst

dsp_ctn_fifo_rd

dsp_ctr1_fi fo_empty
dsp_ctrt_fifo_reset

end_of_fram e

ip_busy

dsp_ctrl_fi fo_wr

re se t_ n reg_w _en

system _sta rt

I/O Name Description
dsp Ctrl fifo wr used
<3:0>

Pre-fetch FIFO used words

instruction <7:0> Instruction data path
reg q <7:0> System memory data in
elk System clock
configcom pleten I-store and system configuration

complete signal
Ctrl rst Control unit reset (synchronous)
dsp Ctrl fifo empty Pre-fetch FIFO empty
end o f frame End of frame flag
ip busy DSP IP block active flag
reset_n Asynchronous System Reset (active

low)
system start Control unit activate signal
pc <7:0> Program counter and I-store address
reg a <15:0> System memory address
reg d <7:0> Data out to System memory
dsp Ctrl fifo rd Pre-fetch FIFO read request
dsp Ctrl fifo reset Pre-fetch FIFO reset
dsp Ctrl fifo wr Pre-fetch FIFO write request
reg w en System memory write strobe

Table 4.10 I/O interface for the system control unit

System control unit boundary

Instruction pre-fetch and branch unit

bez_yal
[7:0]

bez cmd

rst cmd

(dsp_ctrl_fifo_wr_used [3:()jL
and dsp_ctrl_fifo_reset
and 3spJctrl_FiTo_empty)~

pc [7:0]<

Pre-fetch FIFO
(16x8-bit)

dsp^ctrl^_fifo^rdi k

d ^p ctrlfi fo_wr
_ i

istoreq [7:0]

Instruction

(I-store)

instruction [7:0]

reg_a [15:0]*

Instruction decode and execute unit

reg d [7:0]*

reg q [7:0]*

reg_w_en

Example
Memory

Bank

f r"'f r r t...
elk reset_n ctrl rst ip busy system start end_of_ffame configcom pleten

where * denotes indirect access via network control

Figure 4.11 Top-level interfaces of system control unit

84

The system controller supported a total of 35 different operations. Twenty six of

these operations internally controlled the system control unit, performed loads or

moves to and from memory. The remaining nine operations controlled other external

sub-systems or image processing co-processing blocks via the register bank. Given

the instruction opcodes currently allocated, up to a further 191 operations could be

assigned opcodes. The 35 operations are listed below in table 4.11.

Instruction Name Opcode Description
NOP 0x00 No operation
WAIT EOF 0x01 Wait for end o f frame flag to go active
WAIT BUSY 0x02 Wait for DSP IP block busy flag to go inactive
LOOP 0x05 Unconditional loop to I-store start address
MOVE MEMMEM OxOF Copy memory byte to new address
MOVE MEMREG GPRO 0x10 Copy memory byte to internal general-purpose register 0
MOVE MEMREG GPR1 0x11 Copy memory byte to internal general-purpose register 1
MOVEREGMEMGPRO 0x12 Copy memory byte from general-purpose register 0 to

new memory address
M OVEREGM EM GPR1 0x13 Copy memory byte from general-purpose register 1 to

new memory address
LOAD MEM 0x14 Load memory address with literal data byte
ADD REG GPRO 0x15 Add literal value to general-purpose register 0
ADD REG GPR1 0x16 Add literal value to general-purpose register 1
ADD REG ADDR RD 0x17 Add literal value to read address register
ADD REG ADDR WR 0x18 Add literal value to write address register
SUB REG GPRO 0x19 Subtract literal value from general-purpose register 0
SUB REG GPR1 OxlA Subtract literal value from general-purpose register 1
SUB REG ADDR RD OxlB Subtract literal value from read address register
SUB REG ADDR WR OxlC Subtract literal value from write address register
LOAD REG GPRO OxlD Load general-purpose register 0 with literal value
LOAD REG GPR1 OxlE Load general-purpose register 1 with literal value
LOAD REG ADDR RD LO 0x1 F Load literal value to lower byte o f read address register
LOAD REG ADDR RD HI 0x20 Load literal value to upper byte o f read address register
LOAD REG ADDR WR LO 0x21 Load literal value to lower byte o f write address register
LOAD REG ADDR WR HI 0x22 Load literal value to upper byte o f write address register
BEZ 0x30 to

0x3 F
Branch if equal to zero. First 4 bits o f instruction
indicated which general-purpose register to evaluate

BNEZ 0x40 to
0x4F

Branch if not equal to zero. First 4 bits o f instruction
indicated which general-purpose register to evaluate

STOP PINGPONG 0x03 Disable Ping-pong unit
START PINGPONG 0x04 Enable Ping-pong unit
THRESHOLD 0x06 Perform threshold operation on ROI using a value stored

in the register bank
RECTANGLE 0x07 Draw rectangle
GETCOORDS 0x08 Get max and min coordinates cover o f all active pixels
ABSDIFF 0x09 Perform absolute difference
COPY OxOA Copy image or ROI to new memory address
GETOBJS OxOB Get all active objects parameters and build object

database in Scratch pad memory
FILTER3X3 OxOC Perform 3x3 neighbourhood filter using weights stored

in the register bank

Table 4.11 Instruction list supported by prototyping system

85

By default, the system controller was inactive at power-on and the instruction store

was empty. The external co-processor was given full access to the system to allow

the automatic programming of the instruction store. Once the instruction store had

been programmed, the config_complete_n signal went active low. This signal was

followed by the system_start signal which initiated the instruction pre-fetch

mechanism, instruction decode and execute unit.

The instruction pre-fetch and branch unit operated in a relativity simple manner.

This ensured the pre-fetch FIFO was always full by writing instructions to it from the

instruction store by incrementing the program counter. This process continued until

either a reset, loop or branch signal was received. The complete system control unit

and FIFO, could be externally reset at any time by setting the reset register, which in

turn, set the ctrl rst signal active high. In the case of a loop command, the internal

rst cmd signal from the decode and execute unit pulsed high, causing the program

counter to be reset to 0 and the FIFO to be flushed of data. Branch operations set the

bez cmd high and asserted the 8-bit value to be decremented from the program

counter on bez_val. This operation also flushed the FIFO and started filling the

FIFO with data from the instruction store, using the new program counter value as an

address.

The instruction decode and execute unit was also reset by the rst_cmd and was also

stalled by an empty FIFO. The instructions decoded by the decode unit could be

divided into two groups; those that required a literal value to execute an operation

and those that did not. Instructions without a literal value usually changed the

system control units internal state, activated a DSP co-processor block or triggered a

MOVE operation. External memory operations, such as a MOVE, had to use a read

or write address register. These two registers were 16-bit wide and provided access

to the lull system memory mapped address range. The use of these registers was a

result of using not allowing literal values to be used as addresses. This was deemed

acceptable as adding a target address to the instruction, would either limit the

possible address range to a small number of addresses, or add the burden of requiring

addresses to be stored with the instructions. It was also anticipated that few external

memory moves would be used in a typical application developed with the

prototyping system and the time required for a move was still several magnitudes

86

smaller than the time intensive image processing operations. The two 16-bit registers

could be incremented, decremented or loaded using operation literal values. Loading

the registers could be achieved by loading either the upper or lower byte per clock

cycle. Again, this was not seen as a hindrance, as it was expected that external

memory accesses would take place in the same data address localities, for example

within the scratch pad memory or 8-bit addressable register bank.

The group of instructions requiring operands, all used the same process for decoding

and executing operations. Once an instruction had been decoded, the literal value

was obtained on the next clock cycle, as it was stored in the subsequent address in

the instruction store. The instruction was then executed. This allowed for a reduction

in the size of the mealy FSM used to 39 states. In the case of branch instructions, the

first four bits of the opcode were used to determine which of the internal general

purpose registers were to be evaluated. Although the branch mechanism decremented

the program counter, it was possible to branch forward due to the wrap-a-around

characteristics of registers. For example, branching from program decimal address

45 to address 177, would require the literal to be the value 123. The implementation

of a 256 byte program memory made this branching possible.

Two of the most important instructions were WAIT EOF and WAIT BUSY as both

would be required in all but a few applications developed. WAIT_EOF could be

executed to wait for a new image to be written from the sensor into memory, before a

set of image processing operations could be executed. Typically, each image

processing instruction would be followed by a WAIT_BUSY instruction, preventing

the system controller from executing any more instructions, until the co-processor

had finished. In some cases however, the time during image processing operations

would be used for updating other memories or registers.

4.3.8 Network Control

Following the specification that point-to-point buses be used, rather than a traditional

shared bus, a method was required to ensure that the buses could be controlled and

that a mutual exclusion mechanism would be in place to prevent conflicts to shared

87

resources, such as memory banks. The end result of this requirement was the

implementation of a network control unit integrated into the bus network. This conrol

unit provided low latency control of the point-to-point data bus structures within the

complete system architecture. These point-to-point data bus structures were

interconnected between a sub-system or DSP block and a memory, as most inter-sub­

system communication occurred via the register bank. The latency in the bus control

and associated network was kept to a minimum by not using clocked registers and

using multiplexers and priority select structures. Given the large number of signals

involved and that the network control unit was integrated into the bus network, an

I/O diagram has not been provided.

Five different memory interfaces existed within the FPGA system, with only one

sub-system or IP block granted access during any clock cycle. As discussed

previously, the instruction store was only accessible by the SDRAM decoder when

the config complete n signal was high and the system control unit signal was low.

The memory interface access controls for the register bank, image banks and scratch

pad memory, worked on the same four level priority system, with priority one being

the highest level and resulting in granted access to the memory. These levels are as

follows;

1. The SDRAM controller always has the greatest access priority and enables

access to all memory banks irrespective of the system’s status. The SDRAM

controller is responsible for controlling the programming of the system.

2. DSP blocks have the second level of priority. As many DSP blocks do not

require access to the register bank, they typically do not take access control of

the register bank or release lull control to the system controller after

configuring themselves in the first few clock cycles of their initialisation.

The network control unit ensures that DSP block has default access to the

most recently obtained image, unless instructed otherwise.

3. The System controller generally has access to the register bank and data

memory by default and typically does not require access to the image banks.

4. The ping-pong unit has the lowest level of priority but it only required access

to the image banks. This allowed it to generally co-exist with the system

controller as their access to memory banks rarely conflict.

The ping-pong unit was given a lower priority than the DSP block as in some

circumstances only a partial image may need to be written from the image sensor for

processing to be performed. The WAIT BUSY function could also be used to

ensure that the DSP block only took control for processing in a memory bank at the

end of a complete image write to memory. Also, as the video generator included a

FIFO and line memory, the frequency of reads from a memory bank was low. Hence

it was possible for a DSP block to temporally override access to the image bank

currently being read by the ping-pong unit. This would normally have no noticeable

effect on the output video but allow a DSP block to execute concurrently with the

ping-pong read mechanism. In instances where frequent access was required by a

DSP block, the pingpong_rd_bank_ctrl flag from the ping-pong block, could be

monitored by the DSP block, to prevent it accessing a memory bank in the same

clock cycle as the ping-pong read unit.

The network control unit offered two methods for address translation mapping to the

correct memory. The first method was the direct method, which involved a memory

bank select line being activated and a memory address passed unaltered to the

selected memory. The second method was the indirect method. The indirect method

took a full 16-bit address and translated the address into a memory select signal and

an offset memory address. No significant difference was observed between the two

schemes except that the direct method reduced the need for slightly more

complicated addressing within the network control unit. This reduction in

complexity slightly improved the ability of the design synthesis process to meet

timing requirements for greater system clock frequencies. The in-direct method was

more appealing however given that the DSP blocks interface was simpler.

4.4 DSP IP Block Library

The DSP IP block library consisted of seven co-processor IP blocks that performed

image processing operations over a whole image or a region of interest (ROI). It was

expected that almost all image processing within the prototyping system would be

performed by these co-processors. Each co-processor generated memory addressing

89

schem es to access the register bank and image banks. As S T M icroelec tron ics had

requested that the D SP IP blocks should be reusable, the IP b lo c k ’s interfaces needed

to be standardised, yet rem ain flexible. As m entioned in section 4.3, the interface o f

each co-processor to the bus ne tw ork and m em ories could be either direct or indirect.

T hese co-processors could also have either a single m em ory interface port or a dual

port depending on the d es ig n e r’s cho ice and requirem ents w hen des ign ing a D SP

block. A diagram encom pass ing the standard I/O interfaces is show in figure 4.12.

Clock, reset,
maximum image
size se lect &
enable

elk
reset_n
ip_start

max_roi_x
max_roi_y

ROI select,
active data
flag & data in
port

sub_roi_x1_1
sub_roi_y1_1
sub_roi_x2_1
sub_roi_y2_1
env_active_1

data in 1

Secondary ROI sub [oi x, 2
select,Active sub_roi_y1_2
data flag & data env_active_2

in. poet___________ Ta!aTn_-if
FIFO port for
secondary
memory port

empty_2
full_2

q_2

DSP IP
Block

->■ ip_busy
-► ip_reset_n
-► data_out_1
-► addr_out_1
-► w en out 1

Busy signal,
enable rese t &
primary output
memory port

im g_bank1_sel

img_bank2_sel

scratch_bank_sel
reg_bank_sel

Memory bank
se lec ts (Direct
addressing)

-► data_out_2
- > addr_out_2
- > w en out 2

S econdary output
memory port

-► fifo_reset_2
-► rd_req_2
-► wr_req_2
- > d 2

FIFO port for
secondary
memory port

; Compulsory I/O j ! Optional I/O
•____ I I___I

Figure 4.12 I/O interface for DSP IP co-processor blocks

T he design decision to only use tw o im age banks, with one bank being written into

by the sensor interface and the ano ther concurren tly reading out to the v ideo

generator, had tw o effects on the design and control o f the D SP IP blocks. T hese

were:

1. Processing o f the current im age w as only easily possib le at the end o f each

sensor im age frame, w hen the sensor had stopped w riting into the m em o ry

bank. T he m eant that the addressing and control o f the D SP IP b locks had to

be optim ized for their execution at the end o f each sensor frame.

2. Image processing opera tions using two image banks for processing had to be

designed to ovoid m em o ry read conflicts with the p ing-pong unit, when the

p ing-pong unit w as supp ly ing pixel data to the video generator.

90

The ipstart signal originating from the register bank, activated the DSP block. On

the next clock cycle an active low acknowledgement signal was sent directly back to

the register bank, to reset the ip start signal. During the same clock cycle, the

ip busy flag was activated and remained so, until the system was reset or the DSP

operation was completed. The parameters of the maximum image size, were given

by max_roi_x and max_roi_y, and were sampled in addition to the region of interest

given by the sub roi inputs. At this point in the co-processor operation’s execution

further configuration data could be read from the register bank or from one of the

memory banks.

When env active l was high this was indicative that the ping-pong interface was

writing data to an image bank. The optional env_active_2 input indicated if the ping-

pong unit was reading data from the other image bank. These signals helped the

DSP block prevent memory access conflicts when requiring the reading or writing of

data to and from an image bank. The secondary memory port and associated FIFO

were only used in those instances where two streams of data were required for

concurrent processing, such as an absolute difference operation.

Three different types of addressing schemes were supported by the DSP block

architectures. These were;

1. Raster scheme - Image data was read and written to and from a memory

from the top line to the bottom line by reading left to right on each line.

Images were written and read from the image banks in this way also.

Typically, the read and write addresses only needed to be incremented by one

for every new read or write.

2. Structured scheme - Image data was read and written in a set predictable

pattern following a simple rule set. For example, drawing a rectangle on an

image required the drawing of 2 vertical and 2 horizontal interconnected

lines. As an image was stored in a raster format, drawing the vertical line

required the address to be incremented by the width of the image to write the

next pixel below the current pixel. The horizontal lines however only

required the address to be incremented by one for each new pixel write.

91

3. Random scheme - Image data is read and written in a pattern which is not

easily predicted or is greatly affected by the contents of the input image.

Most common image processing functions use predictable addressing pattern, such as

the raster and structured types listed above [99]. These addresses were generated

using mealy FSM. The FSMs were coded to enable their re-use as a template for

new algorithms, as a part of the requirement for the architecture to allow new DSP IP

blocks to be developed in the future. Seven DSP IP blocks were developed to

demonstrate the aforementioned different types of addressing and the use of the

secondary memory port (dual port). These blocks are listed in table 4.12.

DSP Block Name Dual Port Operation Type Addressing Scheme Read / Write
THRESHOLD No Point Raster Yes / Yes
COPY No Point Raster Yes / Yes
GETCOORDS No Point Raster Yes / No
RECTANGLE No Point Structured No / Yes
ABSDIFF Yes Point Raster Yes / Yes
GETOBJS No Neighbourhood Random Yes / Yes
FILTER3X3 No Neighbourhood Raster Yes / Yes

Table 4.12 Supported operations by DSP block library

The first five DSP blocks in table 4.12 are simple operations and can be defined as;

1. A threshold DSP block, reads pixels and compares them to a value retrieved

from the register bank. If the pixel value is greater to this threshold value, the

pixel is written back as a decimal value 255 otherwise it is written back as a

value 0. This can be explained mathematically for image u and threshold

value t by the following equation;

u - 1 if u{x ,y)>t
0 if u(x ,y)<t

Equation 4.2 Threshold equation

2. A copy DSP block, performs a translation of an image or ROI from one

location to another address location stored in the register bank. This IP block

can be defined mathematically using displacements x<j and yd, as;

92

>yHev) = « ((* + * d)> (y +))

Equation 4.3 Copy equation

3. A getcoords DSP block, reads an image and stores the minimum and

maximum x and y values in four pre-defined locations, Ri to R4, in the

register bank.

Rj = u{mm{x)) where u(x,y) = 255
R2 = u(min(y)) where u(x,y) = 255
R3 = w(max(x)) where u(x,y) = 255
R4 = w(max(>>)) where u{ x, y) = 255

Equation 4.4 Getcoords Equations

4. The rectangle operation, draws from an address location, a rectangle with the

dimension specified by the sub roi inputs. Pixels are written using the value

stored in the register bank, which as default is the mid-value 128. The order

of line drawing is horizontally from top left to top right, vertically to bottom

right, horizontally to bottom left and back to top left.

5. The absdiff DSP block, uses two synchronised image data streams, each from

a different image banks and calculates the magnitude of the difference of

pixel values between the identical pixel locations within the two images, u

and v. The equation for this operation is shown in equation 4.5.

u(x,y) = u (x ,y) -v (x ,y) i f u(x,y) > v(x,y)
v(x, y) - u{x, y) i f u(x, y) < v(x, y)
0 i f u(x,y) = v(x,y)

Equation 4.5 Absdiff equation

The last two of the image processing blocks, the getobjs operation and 3x3 filter were

more computationally complex than the other DSP blocks. The 3x3 filter is a spatial

domain neighbourhood filter operating on the pixels that form an image. This is

typically expressed as;

v(x,y)=T[u(x,y)]

Equation 4.6 Equation for the spatial domain neighbourhood operator 3x3fllter

93

W here v(x,y) is the output image and T is the opera tor on image input im age u, over

som e ne ighbourhood o f (x,y). Filter3x3 uses a 3x3 pixel m ask over each pixel in an

image and adds together all nine m ultip lications o f the value o f u(x,y) with the

co rrespond ing m ask value (weights) to form pixel v(x,y). A s no data exists outside

the im age only the inner image o f the d im ensions 1 to x-1 and 1 to y-1 can be

correc tly processed. This can be show d iagram m atica lly as in figure 4.13.

(x,y)
Part o f image that
can be processed
(1,1) to (x-1,y-1)

y

Figure 4.13 3x3 neighbourhood Alter operation on an image

T he d eve lopm en t o f a 3x3 filter for the IP library w as particularly im portant as it

form ed the basis o f m any image enhancem ents , such as sm ooth ing (low pass filter),

sharpen ing (high pass filter) and edge enhancem ent. An exam ple o f one o f these is

the Sobel vertical edge enhancem ent mask, show n in figure 4.14 with the c o m m o n ly

used Lenna 512x512 pixel image and resultant im age processed using PC based

software.

-1 0 1

-2 0 2

-1 0 1

Figure 4.14 Sobel vertical mask (left), input Lenna image (middle) and processed image (right)
[100]

94

As can be seen from the right image in figure 4.14, vertical lines from the original

image have been enhanced to a far greater extent than the horizontal lines.

In the implementation of the filter DSP block, the nine weights for the mask were

obtained from a pre-defined set of memory addresses in the register bank. Each

weight was in a two’s complement format using 4-bits and providing a range of -7 to

+7. Image data was then read from an image bank to fill three shift registers, each

with the capacity to hold one image line, i.e. 80 pixels. The output of each shift

register was fed to a bank of three multipliers and the first shift register’s output

connected to the input of the second shift register. The output of the second shift

register was also connected to the input of the third shift register, as shown in figure

4.15. From all three shift registers, data was read into the 3x3 array of 12-bit output

multipliers and summed to form an output raster image data stream. Data continued

to be read from the image bank into the input of the first shift register at the same

rate at the output data, i.e. one pixel per clock cycle. This ensured that the process

was not starved of data. As the system only used 8-bit positive integers, any negative

output pixel values were clipped at 0. An 8-bit shift operation on the output also

allowed downscaling of the output pixel values by factors of two.

95

Pixel Input

-> Shift Register 1 - - w r(xj
> > /

Shift Register 2

Shift Register 3

Wt 4

XX Kx

Wt 2 / w t 1

XT Kx

Number of
bit shifts

Pixel Output

Figure 4.15 Representation of the 3x3 filter's datapath

The getobjs operation is a useful DSP IP block as it provided the ability to segment

different objects out of a thresholded image and store each object’s specifications in

a database within scratch pad memory. This operation forms the basis of many

object recognition and object tracking algorithms. Typically segmentation

operations perform multiple passes over an image. The initial pass labels active

object pixels and subsequent passes perform connectivity checks between pixels and

labels interconnect pixels with the same label. Once each interconnected pixel group

has a single distinct label, it is recognised as an object. As a result of the design

decision to implement an 8-bit data architecture, only 254 different labels could be

used, when 0 was used as a non-active pixel and 255 an active pixel. Using a typical

labelling algorithm could possibly result in an insufficient number of labels to

complete the first pass. To prevent this outcome, a new more complex algorithm was

devised and implemented which was not based on a previous reference algorithm.

The devised algorithm performed a single raster scan pass over an image. Upon

finding an active pixel, it was labelled with the current object number along with any

96

active pixels in the surrounding 9 pixels. The locations of the newly labelled

surrounding pixels were stored in the upper 2048 bytes of the scratch pad memory.

Instead of reading the image in a raster scan fashion the algorithm tracked around the

inside of the object until no more active pixels where found. The tracking path’s

direction inside the object was determined by figure 4.16, with lower numbers

representing the highest priority. This gave a preference to interconnected pixels on

the vertical and horizontal plane.

Figure 4.16 Preference of connected pixels in Getobjs algorithm

The algorithm then used the stored locations of active pixels as starting points to find

any remaining active pixels that had not been found on the first track around the

inside of the object. Once all the store pixels had been read, the algorithm stored the

objects information in the scratch pad in the format shown in 4.17 and returned to the

original raster scan path over the image to find new active pixels. A more detailed

algorithm description can be found in flow chart form in figure 4.18.

OxAOOO

0x9000

Temporary store o f
pixel coordinates

(2048 bytes)

Reserved area for
found object data

(2048 bytes)

Scratch Pad

Item Database Entry Item
7 Vertical centre o f object
6 Horizontal centre o f object
5 Maximum y
4 Maximum x
3 Minimum y
2 Minimum x
1 Number o f active pixels
0 Object number

Figure 4.17 Object database item format

Unlike the previous operations, this DSP IP block required a detailed algorithm to

create a suitable memory addressing scheme. Rather than implement this block in

97

Verilog, it was decided to first prototype the algorithm using the Matlab software

package. The algorithm was implemented in a single Matlab code file using the

standard set of commands with no additional libraries. This enabled the prototyping

of the algorithm in a shorter space of time than using a hardware description

language and electronics simulation.

As Matlab is a high-level language for algorithm development, data visualization and

numerical computation it does not map it’s written code onto electronic components.

Therefore, as with other programming languages such as C or C++, Matlab does not

take signal timings or registers operations into account. Also, Matlab code is

processed sequentially as there is no concept for parallelism as with languages such

as Verilog or VHDL. This meant that when the Matlab code was converted into a

Verilog IP block, parts of the algorithm were optimised to be performed in parallel.

Delays as a result of register operations and accessing memory banks were

scrutinised to prevent any unnecessary latency from being introduced. An interface

wrapper was designed using the standard DSP IP block I/O interface and the

necessary logic introduced to control timings for external I/O transactions. This

process of conversion was done manually and formed a 50 state Mealy FSM.

98

counters and
pointers

Any more
pixels to

read?
Yes

Increment
raster address

Read pixel

Pixel
active?

Increment
scratch pad

read address
pointer

Read 8
surrounding

pixels

Any remaining
ixel x,y in scratch

pad?

Read next
labelled and
stored pixel

x,y

Any pixels
active?

Label active
pixels

Write objects
details in next

available
entry in

scratch pad.

Store each
active pixel’s
x,y in scratch

pad

Jump to a
connected

pixel

I Reset scratch
pad labelled

pixel
read/write

address
pointer

Write number
of objects
found into

register bank

Is obiect number
254?

Figure 4.18 Getsobjs algorithm flow chart

99

Figure 4 .19 show a binary 80x60 pixel test image and the associated ou tput image

from the prototyped object segm entation script getobjs. T he script w as ex tended to

draw a rectangle around each object using the stored values in the scratch pad

m em ory and output the num ber o f objects on screen. Please note: the greyscale

palette o f the output image has been changed post-processing, in order that the

h ighlighted objects are clearly distinguishable. Also , w hen draw ing a rec tangle for

an object that on ly consisted o f a line o f pixels, M atlab h ighlighted the ob jec t using

dots rather than a continuous white line or rectangle.

10

20

30

40

50

80
10 20 30 40 50 60 70 80

10

20

30

40

50

60
10 20 30 40 50 60 70 80

Figure 4.19 Binary input image (top) and processed image using Getobjs Matlab script (bottom)

Number of objects: 23

100

4.5 Simulation and Functional Verification

Simulation and functional verification of the FPGA architecture was performed

throughout several development stages. These stages included modification of the

core system architecture for new DSP IP blocks (before and after integration) and for

benchmarking new demonstration applications. Synopsys VCS version 6.0 was used

as a simulation environment. Numerous Verilog simulation scripts and test benches

were written to check the functionality of the various parts of the architecture.

Functional verification typically encompassed some of the same tests but was

executed in real-time at full system clock frequency on the prototyping system.

Figures 4.20 shows the process flow used for simulation and functional verification

and the constraints and optimisations.

101

System Co-processor
Design Files Design Files

(35 Total) (206 Total)

System
Test Bench

Files

Simulator
Config.

File

VS6502
Sensor
Model

128 Mbyte
SDRAM
Model

64 Mbit
FLASH
Model

Constraints
File

Synthesis
Config. Files

Synplify Pro
Ver. 7.61
Synthesis

Tool

Technology
Library

Synopsys
VCS Ver. 6.0
Simulation

Tool

P& R
Config. Files

Technology Specific
Netlist and Forward
Annotated Timing
Constraints

Simulation
Report

Altera Quartus
Ver. 3

Place & Route
(P&R) Tool

JTAG
Config. Files

Device Specific
Configuration Files

Altera
Max+plus II
Download

Tool

*

Constraints for Synthesis

Net Constraint Max
Frequency

Input to PLL 12 MHz
Output from PLL 192 MHz
System clock tree 24 MHz
Video clock tree 27 MHz

Bit data
streams to
EPC2 or
FPGA (4)

Optimisations for Synthesis
and Place & Route

• Optimise for timing
• Use FSM optimisation
• Perform Cliquing
• Max Fan-out from node

set at 1400

Figure 4.20 Functional verification and simulation flow

102

4.6 System Programming

Two programmable elements were present within the prototyping platform. These

were the STV0674 sensor co-processor and the system control unit located within the

FPGA architecture. Two methods could be used to control the FPGA architecture,

namely programming the I-store and running the control unit or via function calls

from the co-processor. Although the use of function calls to execute the different

DSP operations may seem appealing, the latency involved with the function call

mechanism is greater than using the I-store and system control unit. It is for this

reason that it is recommended that users of the prototyping system program the I-

store. Programming the I-store was typically performed by the co-processor at

power-on by performing SDRAM writes across the IMPBUS to the FPGA. Another

option was to fix the operation of the system control unit during the FPGA synthesis

by replacing the I-store RAM Verilog module with a ROM module that had been

configured with the desired program. Using both methods, the 8-bit addressable I-

store was always programmed from the start address 0x00. If no program was

detected by the control unit at start-up, the system defaulted to outputting

unprocessed video to the video encoder.

To enable the co-processor to program the I-store, the co-processor had to be patched

with the correct firmware, either by the EEPROM or by using an in-system

programming and debugging device via the JTAG port on the daughterboard. This

firmware also correctly configured the sensor and the video encoder via the I2C bus

before downloading the program code to the I-store. The sensor was configured to

run at 25fps in a VGA mode, with all auto-exposure and gain controls turned off.

Without configuring the sensor, it would default to auto-exposure and gain mode.

This would result in the image being continually altered, depending on the amount of

illumination within the scene. The auto-exposure and gain mode would prevent

inter-frame differencing functioning correctly. The video encoder was configured to

a PAL mode, receiving data as a slave device and inverting DAC codes to

compensate for an inverting video output stage on the daughterboard. Figure 4.21

shows the programming method used for the co-processor.

103

It must be noted that future users may wish to add new DSP IP blocks to the FPGA

architecture to increase the systems versatility. This could be achieved by swapping-

out one or more of the seven blocks. The remaining interfaces could be connected to

the new blocks or by extending the network control interface, register bank,

instruction set and system control unit, by replication of the current Verilog code.

Co-processor FPGA System Co-processor
Firmware C Files Control Unit Firmware Library

Program Hex File Files

Keil pVision 2
C Complier

Complied
processor-

specific
EEPROM

Programmer

f
FS/2 JTAG Bit stream

Firmware h transmitted
Downloader direct to the

co-processor

Figure 4.21 Programming method for the STV0674 co-processor

4.7 FPGA Conversion to SoC

The conversion of a FPGA design to a SoC design is complex. In the case of the

prototyping system, not only the FPGA based design needs to be integrated into a

single chip but also the sensor co-processor, video encoder and sensor. It is expected

that when the user of the prototyping system has a suitable design for integration, an

in-house STMicroelectronics design team would perform the system-level

integration to create a single chip. Given that STMicroelectronics owns the

104

intellectual property rights for most of the board-level components, the licensing

issues may not be as complex when compared to agreeing licensing terms with a

third party. It is likely that the integration of these components is eased by the design

files residing in-house. Due to the commercially sensitive nature of

STMicroelectronics design flows, no details can be provided.

4.8 Results

This section describes the results gained from analysis of the FPGA architecture.

The results relating to the instruction decoding and execution are provided, followed

by the number of cycles to complete the execution of each of the DSP IP blocks.

The resources required for each part of the FPGA system will also be stated. The

effect that processing time has on the system frame rate will be outlined.

The time taken to decode each instruction was one system clock cycle. Table 4.13

lists the number of clock cycle to execute each instruction. Instructions that require

literal values to execute have been marked with an asterisk.

Instruction Name Number
of cycles

Instruction Name Number
of cycles

NOP 1 LOAD MEM* 2
WAIT EOF 1 ADD REG GPRO* 2
WAIT IPBUSY 1 ADD REG GPR1* 2
STOP PINGPONG 1 ADD REG ADDR RD* 2
START PINGPONG 1 ADD REG ADDR WR* 2
LOOP SUB REG GPRO* 2
THRESHOLD 1 SUB REG GPR1* 2
FILTER 3X3 1 SUB REG ADDR RD* 2
RECTANGLE 1 SUB REG ADDR WR* 2
GETSCOORDS 1 LOAD REG GPRO* 2
ABSDIFF 1 LOAD REG GPR1* 2
COPY 1 LOAD REG ADDR RD LO* 2
GETOBJS 1 LOAD REG ADDR RD HI* 2
MOVE MEMMEM 3 LOAD REG ADDR WR LO* 2
MOVE MEMREG GPRO 3 LOAD REG ADDR WR HI* 2
MOVE MEMREG GPR1 3 BEZ* 5
MOVE REGMEM GPRO 1 BNEZ* 5
MOVE REGMEM GPR1 1

Table 4.13 Instruction execution time

105

The simulated DSP IP blocks maximum processing times were calculated using

whole 80x60 pixel images and in the case of the getobjs operation, using an image

with every pixel interconnected and set to the decimal value 255, i.e. one object

filling the whole image. The processing times were measured from the rising edge of

the ipbusy signal to the falling edge of the ipbusy signal. These processing times

can be seen in table 4.14. All operations read and/or write data back to the primary

image bank.

DSP IP Block Simulated number of
cycles at 80x60 pixels

Cycles per pixel
(to four decimal places)

THRESHOLD 9601 2.0002
FILTER 3X3 9528 1.9850
RECTANGLE 277 1.0036
GETSCOORDS 4805 1.0010
ABSDIFF 14404 3.0008
COPY 14401 3.0002
GETOBJS 79216 16.5033

Table 4.14 Processing times and cycles per pixel for the DSP IP block library

Equations 4.7 to 4.12 provide the calculation of the maximum number of cycles

required for the completion of each DSP IP block. The letter x represents the

horizontal ROI size and y represents the vertical ROI size. These equations were

developed using their Verilog descriptions and tested in simulation.

cy°leMAx = 2xy + \

Equation 4.7 Maximum number of cycles to perform Threshold DSP operation

Cycle max = 2(ix(y - 4))+ (2(x - 1)))+(3* + 1)+ i i

Equation 4.8 Maximum number of cycles to perform Filter3x3 DSP operation

Cyelem a x = 2 (* - l) + 2 (y - l) + l

Equation 4.9 Maximum number of cycles to perform Rectangle operation

CycleMAx = xy + 4+1

Equation 4.10 Maximum number of cycles to perform Getcoords operation

106

cy deMAx =3xy + 3 + l

Equation 4.11 Maximum number of cycles to perform Absdiff operation

Cycle max = 3 ^ + 1

Equation 4.12 Maximum number of cycles to perform Copy operation

The available time slots to conduct uninterrupted processing on an incoming image

are shown in figure 4.22.

One VGA Frame at 25fps (959968 cycles total)

One Active Line

Inter-pixel Inter-line Last active line to EOF
(7 cycles) (13368 cycles) (35037 cycles)

Figure 4.22 Three types of available time slot for uninterrupted image processing

The number of measured cycles displayed in figure 4.22 takes into account that only

a 640x480 pixel image is sampled from the incoming 644x484 pixel sensor image.

Typically, most or all of the processing is performed at the end of the frame when the

complete image is available for processing. In situations where a processing loop

cannot be completed within the 35037 cycles at the end of each frame, a

STOP_PING instruction can be executed at the start of each processing loop

followed by a START PINGPONG instruction at the end of each loop. This ensures

that no incoming sensor images are stored and that the video generator continues to

output the same image until the processing loop is completed and the next v_sync

signal is asserted. This method allows the system to automatically degrade the

output frame rate from 25fps to 12.5fps, 8.33fps, 6.25fps and downwards, providing

the processing loop takes approximately the same time to execute for each new

image.

107

999

Table 4.15 shows the FPGA resources used by each system component, optimised

for timing, at a system clock frequency of 24 MHz. In addition to providing figures

for the number of registers, the number of each type of logic cell (column 3-5)

making the total number of logic cells (column 2) has be provided. The total design

uses 37.6% of the 24320 available logic cells within the FPGA.

Registers Logic Cells
(LC)

Register
Only LC

LUT Only
LC

Register/
LUT LC

Top-Level Pius Structure 0 43 0 43 0
Top-level Architecture 118 599 91 481 27
192 MHz PLL 3 3 1 0 2

3x3Filter Block 2150 2946 1966 796 184
Absdiff Block 98 290 8 192 90
Copy Block 41 53 2 12 39
Getcoords Block 31 80 3 49 28
Getobjs Block 330 2207 29 1877 301
Rectangle Block 50 167 12 117 38
Thresold Block 27 76 3 49 24

Video Test Pattern Generator 42 64 0 22 42
System Control Unit 117 549 0 432 117
Ping-Pong Unit 32 51 1 19 31
Video Generator 94 183 9 89 85
Sensor Interface 49 93 20 44 29
SDRAM Decoder 105 127 76 22 29

Sensor Video Async. FIFO 117 228 100 111 17
Video Generator Async. FIFO 64 113 14 49 50
System Control Unit FIFO 150 264 120 114 30
Absdiff FIFO 150 264 128 114 22

Register Bank 276 600 233 324 43
I-Store 0 8 0 8 0
Line memory 0 0 0 0 0
Scratch Pad 1 11 1 10 0
Image Bank 1 3 65 3 62 0
Image Bank 2 3 65 3 62 0
Total 4051 9149 2823 5098 1228

Table 4.15 Resource usage by FPGA system component

Table 4.16 shows the memory resources used in the FPGA for each memory device

and the percentage of the 152 ESB used in the Altera Apex 20K600E FPGA.

108

Address Depth Data Bit Width Total Size in Bits Used ESBs
Image Bank 1 16384 8 131072 64
Image Bank 2 16384 8 131072 64
Scratch Pad 4096 8 32768 16
I-Store 256 8 2048 1
Line Memory 1024 8 8192 4
Async. Video FIFO 128 9 1152 1

Total 306304 150
% of Available 98.40 98.68

Table 4.16 FPGA memory utilisation

As many machine vision applications involve tracking objects, it is useful to gauge

the maximum speed an object can travel to still be detected in at least one frame. An

assumption is made that an object is large enough to be detected by one of the 4800

sub-sampled pixels and that it can escape detection by passing through the sensors

field of view within the period of a sensor frame. A lens with a 50° field of view has

been assumed. Using the model in figure 4.23 and basic trigonometric functions,

half the distance the object is required to travel can be calculated. Table 4.17

contains the maximum velocity an object can travel at to still be detected by the

system.

Half the distance the object must travel in
the period o f a frame to escape detection

< ►

Distance from
object

Figure 4.23 Distance an object must travel across the lens field of view

Distance
(m) 25 FPS 12.5 FPS 8.33 FPS 6.25 FPS 5.00 FPS 4.17 FPS

1 27.58 13.79 9.19 6.90 5.52 4.60
2 55.17 27.58 18.39 13.79 11.03 9.19
5 137.92 68.96 45.97 34.48 27.58 22.99

10 275.84 137.92 91.95 68.96 55.17 45.97

Table 4.17 Maximum object velocity in m/s to still guarantee detection

109

Sub-sampling of the sensor images affects the systems ability to reliably detect small

objects. As only one pixel in every 8x8 pixel block is sampled, the object must be at

least the size of an 8x8 pixel block to guarantee detection. Using the model in figure

4.23 the minimum object size has been calculated for four distances from the lens.

Table 4.18 shows these values.

Distance
(m)

Horizontal
Sensor

Pixel Size
(mm)

Vertical
Sensor

Pixel Size
(mm)

Minimum
Horizontal

Object Size
(mm)

Minimum
Vertical Object

Size (mm)

Minimum
Object Area

(mm2)

1 3.45 4.60 27.58 36.78 1014.54
2 6.90 9.19 55.17 73.56 4058.14
5 17.24 22.99 137.92 183.90 25363.39

10 34.48 45.97 275.84 367.79 101453.57

Table 4.18 Minimum detectable object size

Three technical challenges were encountered during the development of the FPGA.

The first was that the video outputted to the monitor began to slowly shift vertically

and horizontally as a result of an error in the timing produced by the video generator.

The second was an intermittent fault that became apparent through data transmission

errors across the six inter-board connector during the testing of the SDRAM decoder.

This was resolved by replacing the old connecters with a set that connected more

firmly to the socket on the daughterboard and the pins on the backplane. The third

challenge was the limited size of the data scratch pad memory, which served to have

an effect on the functioning of the Getobjs IP block. It was noted that when one

large object with a size of 80x60 pixels was used in tests, up to 6833 bytes of scratch

pad memory was required to store all of the temporary data. Unfortunately, due to

the restrictions on the amount of FPGA-embedded memory, it was not possible to

run tests on the bench with a larger scratch pad memory. As such, the figure for the

maximum number of cycles required for the Getobjs operation was generated using a

double sized scratch pad in simulation. The use of standard 4KByte scratch pad

memory yield an execution time of 53757 cycles, compared to 79216 cycles for a

8KByte scratch pad. The execution time of the 4KByte memory was lower due to

the getobj IP block ceasing to write further temporary data to the scratch pad and

hence prevent a memory overflow by reducing the size of the search path for that

110

object. This resulted in the system detecting two objects instead of one when a

visible object was close to the size of the complete screen.

Details of an example application prototyped on the system have been included in

Appendix C.

4.9 Summary

This chapter has covered the development of the FPGA-based architecture for the

prototyping system. It has detailed the functionality of the load/store based system

control unit and associated instruction store. The video data flow has been described

through the sub-systems, with particular emphasis on the interleaving of data

between the two image banks. Seven DSP IP blocks from the IP library have been

detailed, their performance given and the equations used to calculate the number of

cycles required for their execution provided. The simulation, functional verification

and system programming mechanisms have been explained from the stand-point of

the files required and their process flow.

I l l

5 IoC Manufacturing Cost Modelling

A s the prototyping system w as aim ed at low-cost m ass-m arket applications, it w as

thought beneficial to develop a cost m odel that could p rovide som e indication as to

the m anufacturing cost o f a s ingle chip IoC. Several design and system -level cost

m odels are described in available literature [101, 102, 103]. T hese m odels are

limited in that they only address general SoC designs and do not take into account

additional issues such as, a result o f the inclusion o f an array o f pho to-sensitive

e lem ents and associated support structures. The ability to m odel m anufac tu r ing cost

is further exacerbated by the com m erc ia l ly sensitive nature o f the data required for

cost calculations. A s a result, a m anufacturing model w as deve loped using public ly

available data to provide an indication o f the costs involved.

5.1 CMOS Imager Area Issues

C M O S imagers contain analog and digital com ponents, see figure 5.1. In term s o f

area, the most area-dom inate com ponen t is the analog pixel sensor array.

Configuration
Data

ADC

Column AddrTiming and
Control

Pixel sensor
array

Digital Analog

Image Data Out

Figure 5.1 Typical CMOS imager architecture

T he pixel array consists o f num erous photo-sensitive e lem ents that transduce photons

into electrons. T he size o f each e lem ent determ ines its sensitivity to light, with

larger elem ents being m ore sensitive. M ost image sensors that have arrays o f

640x480 pixels (V G A) typically have pixel element d im ensions o f 5 .6pm by 5 .6pm

[104, 105, 106]. Below these d im ensions, the optical diffraction limits o f lenses start

1 1 2

to become apparent and result in the degradation of the overall output image quality.

Although beyond the scope of this manufacturing model, the design of each pixel

element is crucial to the collection of light. The more transistors used in a pixel

element, the less space that is available to implement the photodiode. Typically,

CMOS image sensors have 3 to 4 transistors per element and a photodiode with a fill

factor of 40%. To improve the amount of light collected over the complete pixel

element, micro lenses are overlaid on each element. This increases the amount of

light collected, to provide a fill factor greater than 90%.

Another optically-related limiting factor, is the complete area of the pixel array. As

the array is shrunk in size, it becomes increasing difficult to accurately focus the

image onto the pixel array. To achieve optimum accuracy as the pixel array

decreases, the lens assembly and mechanical placement process result in an increased

lens tooling and assembly cost.

The silicon process technology used to manufacture the image sensor has a

substantial financial impact on the final IC cost. The use of the latest technology

typically allows the digital parts of the sensor to be designed or scaled to a smaller

area but analog parts usual cannot be easily designed or scaled below a 0.25pm

process [101]. This can be explained by the decreased supply voltages used by

smaller processes. Analog components ideally require a large voltage range to

operate effectively. To circumvent this limitation, smaller processes are still used for

the digital and analog components but the gate oxide thickness for the analog

components is increased. This approach is called a dual oxide process and enables

the analog components to be fabricated on the same die as the digital logic. It allows

a higher operation voltage for the analog components while benefiting from a smaller

process size for the digital components.

These area related issues may result in the imager becoming the dominate part within

an IoC. A potential risk is that the IoC design becomes no longer financially feasible

due to a large cost associated with a large die size and the cost sensitive nature of the

target market. This places most of the design emphasis on the optimisation of the

pixel and array dimensions. Careful selection of the silicon process technology used

is also required to ensure a feasible product.

113

5.2 Cost Model

The system cost model for an IoC is given in equation 5.1. Ĉ stem is the system cost,

Cdie is the cost of a yielded die, Ctest is the test cost, Cpackagmg is the cost of packaging,

Cnre is the non-recurring expense and n is the number of parts produced. It must be

noted that this model does not account for packaging yield.

C = C + C + C + ^ NREsystem die test packaging
n

Equation 5.1 IoC system cost model

The die cost can be calculated using equation 5.2, where Cdie is the cost of a yielded

die, Cwaf is the cost of a wafer, Ydie is the die yield, A waf h the area of the wafer, A die is

the area of the die and Uwqf is the utilization of the wafers area for die.

n _ C waf C „ —
* {U^fAwaf) v

die
A die

Equation 5.2 Die cost calculation

To calculate the overall die yield, 7 ^ , the commonly used ITRS die yield model was

applied. See equation 5.3.

y - V y = Y1 die S R X S
^ die D 01 +

a ;

Equation 5.3 Die yield model [107]

In equation 5.3, Ydie is the overall die yield, Ys is the gross limited yield and YR is the

random-defect limited yield, a is the cluster factor which models the defect

distribution amongst most fabrication facilities. Adte is the area of the device die and

Do is the electrical fault density.

114

Optical and electrical test costs, Ctesh were approximated using a value of $0.02 per

pin. Package cost variable, Cpackagmg, was approximated at $0.01 per pin. CNRE was

taken as the mask set costs, as this is the dominant non-recurring expense during

manufacture.

To calculate the area of the die, a summation of each system component was

performed. An assumption has been made that the area occupied by interconnects

between each component is negligible. Equation 5.4 shows an example equation for

a typical IoC.

Where Adie is the area of the device die, A d s p is the area of the DSP , Asensor is the

area of the sensor, Avideo is the area of the video encoder including 8-bit DAC, Auc is

the area of the 8-bit micro-controller, A r o m is the area of the ROM, A m is the area

of the PLL and A s r a m is the area of the SRAMs.

A model for producing approximate values for A senSor was devised based on a

theoretical VGA sensor design in a 0.25pm process. Equations 5.5 to 5.10 form this

model.

sensor

Equation 5.4 Area of die

sensor array

Equation 5.5 Area of sensor

A — y "V Aarray new s new pixel

Equation 5.6 Area of pixel array

cirl scale cnorm

Equation 5.7 Area of digital logic

/
newP A +■* c s 'r tio ■* r/Wirscale row

P Ascale cot
V y norm)

Equation 5.8 Area of analog address units

115

A - p Am scale mnorm

Equation 5.9 Area of miscellaneous analog components

P =scale

f r>2 A
new

P 2V norm /

Equation 5.10 Inter-process scaling factor

Where Aarray is the area of the pixel, Actri is the area of the digital control, timing and

interface logic, Aaddr is the area of the analog address units, line memory and ADCs

and Am is the miscellaneous analog components such as power management. P scaie is

the scaling factor for area from one process to another and for equations 7.8 and 7.9,

if P new < 0.25 then Pscaie = 0.9 for 0.18pm and Pscale = 0.92 for 0.13pm. P„0rm, xnorm

and y„orm are constants in the model i.e. silicon process, 0.25, pixel array row size,

640, and pixel array column size, 480, respectively. The remaining constants for a

VGA imager are; digital logic (Acnorm) at 5mm2, row address unit (Arow) at 1mm2,

column address/decode unit (Acof) at 4mm2 and miscellaneous analog components

(Amnorm) at 3mm2. Pnew is the silicon process at which to calculate the die area. Xnew

and Ynew are the required pixel array row and column size.

5.3 Application of Model to Example IoC

As a demonstration of the use of the model, an IoC that was suitable to support the

application discussed in appendix C was created. Figure 5.2 shows the integrated

sub-systems that would be required to support the example application. In addition

to the FPGA’s sub-systems (marked as DSP), the 8-bit microcontroller has been

added with a 64 KByte metal programmable ROM, video encoder, 8-bit DAC,

simple power management, general-purpose I/O and an I2C bus controller.

116

CMOS
Imager
(80x60)

DSP

8-bit uC Misc. SRAM

16KByte SRAM I2C
Ctrl.

16KByte SRAM cr>
o

g Video Enc. 64 Kbyte ROM

PLL Power Man.

Figure 5.2 An example IoC to support the demonstration application

The Altera 20K gate counting method was used to produce the equivalent number of

gates from the number of logic elements (LE) used in the FPGA architecture. This

was calculated by multiplying the number of LEs by a factor of 12 [108]. The area

was then obtained by dividing the gate count by the gate density for a given process.

The die areas of the ROM and RAMs, A r o m and A r a m , were obtained using Dolphin

Integration’s memory generator for TSMC processes [109]. Auc and Avideo were

approximated at 1 OK gates and 4K gates plus the area of the DAC, respectively. The

I2C controller was estimated as 3600 gates and the power management at 300 gates.

The pixel area, Apixei, of the CMOS imager was set to 5.6pm by 5.6pm for the

example IoC with an array size of 80 (xnew) by 60 (ynew) pixels. The other values

used in the calculations are summarised in table 5.1 for an 8 inch wafer production.

0.35pm 0.25pm 0.18pm 0.13pm
Mask set costs (US$) [110] 50000 85000 250000 600000
C^(US$) 1000 1500 2000 2500
D0 (mm2) 0.003 0.004 0.006 0.01
Gate Density (gates/mm2) [111] 25000 50000 100000 200000
a [107] 2
Uwaf 0.97

Ys 0.8
A„af (mm2) 31416
Number of pins required by IoC 44

Table 5.1 Values used for cost model

The total area for the system and the imager at different processes, are shown in

figure 5.2. It can clearly be seen, that as the process decreases in size, the imager die

size becomes more dominant in the complete die area.

117

Process

(pm)

Imager Size

(mm2)
Total System Die Size

(mm2)

% of Total Die as Imager

0.35 17.10 44.20 38.69
0.25 8.78 20.10 43.68
0.18 6.01 11.22 53.57
0.13 4.44 7.08 62.71

Table 5.2 Area size for imager and complete IoC

The values obtained for the example IoC unit cost are tabulated in table 5.3. These

have been used to create the graph in figure 5.3. For comparison, the fixed cost of

producing the two-board prototyping system was approximated at $1400 US and

indicated on the graph for a single unit quantity.

Silicon Technology Process
Units 0.35 0.25 0.18 0.13
0 50000.0000 85000.0000 250000.0000 600000.0000
1 50003.3813 85002.6579 250002.3037 600002.0989
5 10003.3813 17002.6579 50002.3037 120002.0989
10 5003.3813 8502.6579 25002.3037 60002.0989
50 1003.3813 1702.6579 5002.3037 12002.0989
100 503.3813 852.6579 2502.3037 6002.0989
500 103.3813 172.6579 502.3037 1202.0989
1000 53.3813 87.6579 252.3037 602.0989
5000 13.3813 19.6579 52.3037 122.0989
10000 8.3813 11.1579 27.3037 62.0989
50000 4.3813 4.3579 7.3037 14.0989
100000 3.8813 3.5079 4.8037 8.0989
500000 3.4813 2.8279 2.8037 3.2989
1000000 3.4313 2.7429 2.5537 2.6989
5000000 3.3913 2.6749 2.3537 2.2189
10000000 3.3863 2.6664 2.3287 2.1589

Table 5.3 Cost of the IoC at a given process and unit quantity

1000000 ? - - —

• 0.26u
A 0.18u

0.13u

Prototyping System

100000

10000

Units manufactured

Figure 5.3 Manufacturing cost graph for example IoC

118

The silicon processes attributed with the lowest unit cost for a given number of units

manufactured are shown on figure 5.3. Examining the graph it can be seen that after

40 units there is clearly a benefit of fully integrating the prototyping system into an

IoC.

5.4 Summary

Using publicly available data, a high-level IoC manufacturing cost model has been

presented. Optically-related CMOS imager issues which may affect the end unit cost

of an IoC have also been highlighted. An IoC has been specified which would

support the application detailed in appendix C. The unit cost of this example IoC has

been calculated using the cost model for four technology processes at different unit

quantities. The model highlighted the importance of carefully selecting the

technology process used, the size of the imager array implemented and the quantity

of units produced to meet a required die unit cost.

119

6 Discussion and Conclusions

This thesis has described the development of an IoC application prototyping system.

Chapter two reviewed the current literature for vision systems and directed the

research towards the implementation of a frame-based architecture using FPGA

technology. Chapter three detailed the system’s requirements and specifications with

particular emphasis on the board-level bus structures. Chapter four and five

described the board-level and FPGA-level architecture implemented and the results

obtained during testing. An IoC manufacturing cost model was presented in chapter

six to calculate the cost of implementing single chip IoC applications. In this chapter

results from the previous chapters are discussed and a range of improvements to the

prototyping system and possible areas of future research presented.

6.1 Discussion

The aim of this research was to investigate and develop a new prototyping platform

for low-cost mass-market IoC applications. A frame processing based system

architecture was devised. This consisted of a re-usable FPGA backplane and

daughter card containing the necessary components to support a range of image

processing and machine vision applications. A technology independent on-chip

architecture was implemented on the FPGA. Given the technology-independent

design and the STMicroelectronics components selected, the integration of the

system into a single IoC should be feasible. An example object counting and

highlighting real-time application was implemented to demonstrate that the system

was suitable for the implementation of machine vision applications. Using the

manufacturing cost model, the costs of implementing the application as an IoC at

different TSMC silicon processes has been provided. In this chapter, the results of

the implementation of PCB, FPGA architecture and complete prototyping system are

discussed. The implications of the cost model will also be discussed and

recommendations for future work detailed.

120

6.1.1 PCB Work

As no suitable daughter board for connection to an STMicroelectronics backplane

was available, development of a new daughter board was necessary.

STMicroelectronics requested that wherever possible its components should be used.

The combination of the daughter board and FPGA worked sufficiently to meet the

project requirements. At an approximate unit cost of US$1400 it compares

favourably with similar systems, such as the Ateme DMEK6414 at approximately

US$6000 per unit.

An advantage of the complete two board system was the opportunity to upgrade the

FPGA by replacing the backplane. The decision to mount the daughter board on top

of the FPGA backplane allowed the whole system to be easily handled while

operational. The ability to easily handle the complete system was particularly useful

during the testing of the object segmentation applications, as the system could be

aimed at a target area or an object with relative ease. Once the minor board

modifications had been made, the performance of the system met specification. Four

different CMOS image sensors were tested with the system and all functioned

correctly.

A disadvantage of the two board system was that no direct connection between the

sensor and FPGA was implemented. If the daughter PCB was to be redesigned this

board-level architectural issue should be addressed. Whilst the decision to provide

access to only SDRAM and FLASH memory devices was driven to provide low-cost

high-capacity memory devices, two SRAM devices may have been more suitable.

The addition of two SRAM ICs would have provided the opportunity to develop IoC

applications requiring image sizes greater than 80x60pixels without the control

overheads of SDRAM. It may also be possible to use or modify the 54-pin SDRAM

IC TSOP(II) footprints to support SRAM devices. The ability to easily move the

complete system while operational was partly attributable to the tight coupling of the

six inter-board connectors. As a result of the thickness of connector pins it is

feasible that at frequencies above 24 MHz the transmission delays may become

unacceptable, signals within the same bus may become skewed with each other or

cross-talk effects between wires may be noticed. At the low frequencies that data

121

was transmitted across these connectors, there were no issues regarding signal timing

or signal integrity issues as a result of capacitance effects. To assess these issues

further, electrical testing of the complete system is required. The size of the PCB

could be minimised by reducing the empty spaces on the left side and bottom edge of

the board by a more compact placement of components.

The key bottleneck in the prototyping system’s architecture was that of the IMPBUS

and STV0674 co-processor. As the SDRAM controller was specified for use when

communicating with the FPGA, the maximum data transmission speed across the

IMPBUS was at 384Mbit/s at 24MHz. This was as a result of the STV0674 clock

domain structure and the design of the co-processor’s SDRAM controller. This

operational bus frequency supports 25fps video streams of a maximum resolution of

1600x1200 with an 8-bit pixel depth. This resolution does not take into account the

overhead of non-burst SDRAM transactions, which are three cycles for every byte-

read and byte-write cycle. As only one cycle in every four cycles read or wrote data,

the overhead was 75%. This lowered the effective data transmission speed across the

IMPBUS to a maximum speed of 92Mbit/s at 24MHz. This would support a

maximum resolution of 800x600 8-bit pixels at 25fps. As the maximum resolution

of the sensors to be used with the prototyping system was 640x480, this bottleneck

was not deemed to be problematic, unless an image stream had to be read from and

written to the FPGA concurrently.

To reduce the transmission of data over the IMPBUS, the sensor’s data bus and clock

line were fed into the FPGA using a ribbon cable rather than via the co-processor and

IMPBUS. A potential solution to the IMPBUS bottleneck would have been to have

implemented the co-processor’s 8052 compatible microcontroller in the FPGA. Due

to licensing issues this was not possible. An alternative solution would have been to

implement a microprocessor with USB port and fast GPIO, at board-level. This

would have removed the requirement of SDRAM transactions for communication

across the IMPBUS. The disadvantage of this approach would be the requirement to

obtain a suitable development suite and modify the original 8052 code to execute on

the new processor. It is also very likely that the Altera 20KE FPGA GPIO pins

would limit the maximum bus speed to less than 100MHz.

122

6.1.2 FPGA Work

The FPGA architecture developed was based on 8-bit data paths and a load-store

system control unit with an associated instruction store. A library of hardware DSP

algorithms was implemented to perform the image processing operations within the

architecture.

6.1.2.1 The Instruction Set

The first set of results obtained for the FPGA system was the number of cycles each

instruction needed to execute. The time taken to decode each of these instructions

was one system clock cycle. It can be seen in table 4.13 that approximately half of

all the instructions were required to obtain their literal values on a separate clock

cycle. The execution time was also affected for memory operations by the set up of

an address in the 16-bit read or write address registers. The requirement to set up

these addresses could result in the worst-case values show in table 6.1. It must be

noted that the instruction decode time has also been added to each value.

Instruction Name Number of
cycles

Instruction Name Number of
cycles

NOP 2(1) LOAD MEM* 3 + 6 (2-3)
WAIT EOF 2 (n/a) ADD REG GPRO* 3(1)
WAIT IPBUSY 2 (n/a) ADD REG GPR1* 3(1)
STOP PINGPONG 2 (n/a) ADD REG ADDR RD* 3(1)
START PINGPONG 2 (n/a) ADD REG ADDR WR* 3(1)
LOOP (Jump absolute) 5(1-3) SUB REG GPRO* 3(1)
THRESHOLD 2 (n/a) SUB REG GPR1* 3(1)
FILTER 3X3 2 (n/a) SUB REG ADDR RD* 3(1)
RECTANGLE 2 (n/a) SUB REG ADDR WR* 3(1)
GETSCOORDS 2 (n/a) LOAD REG GPRO* 3(1)
ABSDIFF 2 (n/a) LOAD REG GPR1* 3(1)
COPY 2 (n/a) LOAD REG ADDR RD LO* 3(1)
GETOBJS 2 (n/a) LOAD REG ADDR RD HI* 3(1)
MOVE MEMMEM 4 + 6 + 6 (n/a) LOAD REG ADDR WR LO* 3(1)
MOVE MEMREG GPRO 4 + 6 (2-3) LOAD REG ADDR WR HI* 3(1)
MOVE MEMREG GPR1 4 + 6 (2-3) BEZ* (Jump relative) 6(2-3)
MOVE REGMEM GPRO 2 + 6 (2-3) BNEZ* (Jump relative) 6(2-3)
MOVE REGMEM GPR1 2 + 6 (2-3)

Table 6.1 Worst case instruction execution time

The typical values for common 16-bit and 32-bit instruction processors have been

added to table 6.1 in brackets. The figures for the developed architecture compare

123

poorly with most microcontrollers and microprocessors. Four explanations are

provided in relation to these values.

1. The instruction non-pipelined decode mechanism developed for the system

control unit is sub-optimal as a result of adding an extra cycle onto the

execution of every instruction.

2. The use of an intermediate mode by storing data required for an operation

following the instruction in program memory increases the execution time of

almost half the instructions by one cycle.

3. The specification of the 16-bit read and write addresses in registers for

indirect memory addressing, adds an extra 3 cycles for every byte of an

address register changed during a MOVE operation.

4. The absolute and relative branching mechanism has a performance below

most other processors due to FIFO latencies.

It could be argued that as a result of the use of the DSP IP blocks, very little of the

complete application time is taken up processing instructions. Several modifications

could be made to the system control unit without impacting negatively on the

remainder of the system. The easiest of these to implement are listed below.

1. Pipeline the decode mechanism to remove the unnecessary extra clock cycle.

2. Implement an optional direct memory addressing scheme by storing a 16-bit

memory address in the two subsequent bytes after an instruction. In the case

of MOVEMEMMEM it would require four subsequent bytes after an

instruction.

3. Add more general-purpose registers to hold frequently used values, i.e.

reduce the frequency of memory transactions. The system architecture can

currently support up to 16 of these registers in total.

4. Add an increment by one and decrement by one instruction for register

operations and post-execution increment or decrement addressing for

memory operations.

The second set of potential modifications is more complex than the first set. These

are:

124

5. Change the instruction length to 16-bits by concatenating a literal value as the

least significant byte with the instruction. This would save an additional

execution cycle for almost half of all operations and reduce the number of

FSM states by one. This would require the instruction stores word width to

be doubled, along with the FIFO (unless removed) and all intra-system

control unit data-paths. A mechanism would have to be implemented to

convert the I-stores 16-bit data into 8-bit words for the purpose of writing and

reading to and from the SDRAM decoder.

6. Reorganise the instructions opcodes to make more effective use of the 16-bit

long instructions. This could be based on the instruction’s frequency of use.

The instruction set could also use instruction compression techniques as used

by ARM and Atmel’s Thumb based microcontrollers.

7. As the FIFO currently pre-fetches only one instruction, it could be removed.

This would remove the latency of the FIFO reset and re-filling process.

The implementation of the first four modifications would probably require

approximately 300 FPGA logic cells. Modifications 5-7 would result in the

requirement of an extra ESB memory block, if the I-store depth was maintained, and

a modest reduction of up to 200 logic cells as a result of the removal of the pre-fetch

FIFO.

Table 6.2 shows the effect of implementing one, two, five and seven from the list of

potential modifications.

125

Instruction Name Number of
cycles

Instruction Name Number of
cycles

NOP KD LOAD MEM* 1 + 1 (2-3)
WAIT EOF 1 (n/a) ADD REG GPRO* 1(1)
WAIT IPBUSY 1 (n/a) ADD REG GPR1* 1(1)
STOP PINGPONG 1 (n/a) ADD REG ADDR RD* 1(1)
START PINGPONG 1 (n/a) ADD REG ADDR WR* 1(1)
LOOP (Jump absolute) 3 (1-3) SUB REG GPRO* 1(1)
THRESHOLD 1 (n/a) SUB REG GPR1* KD
FILTER 3X3 1 (n/a) SUB REG ADDR RD* 1(1)
RECTANGLE 1 (n/a) SUB REG ADDR WR* 1(1)
GETSCOORDS 1 (n/a) LOAD REG GPRO* 1(1)
ABSDIFF 1 (n/a) LOAD REG GPR1* 1(1)
COPY 1 (n/a) LOAD REG ADDR RD LO* 1(1)
GETOBJS 1 (n/a) LOAD REG ADDR RD HI* 1(1)
MOVE MEMMEM 3 + 2 (n/a) LOAD REG ADDR WR LO* 1(1)
MOVE MEMREG GPRO 3 + 1 (2-3) LOAD REG ADDR WR HI* 1(1)
MOVE MEMREG GPR1 3 + 1 (2-3) BEZ* (Jump relative) 3 (2-3)
MOVE REGMEM GPRO 1 + 1 (2-3) BNEZ* (Jump relative) 3 (2-3)
MOVE REGMEM GPR1 1 + 1 (2-3) I

Table 6.2 Improved instruction worst-case execution time

It is evident from table 6.2 that MOVE MEM operations are still outside an

acceptable range. If only 8-bits were required to access the relevant memory read

address, they could be added as an operand to the instruction. The

MOVE MEMREG operations would then be reduced to three clock cycles. This

partial address mode could allow the other MOVE instructions to have their

execution times decreased by one cycle. In the case of the MOVE MEMMEM the

memory write address could be fetched during the memory read latency and hence

reduce its execution time to three clock cycles also. This would allow an 8-bit read

address to be provided with the instruction and a full 16-bit write address retrieved

on the next clock cycle ready for the following clock cycle in which a write to

memory would be performed.

Several methods exist for improving branch performance but many of them would

significantly increase the size of the system control unit. These include branch

prediction based on opcode or instruction history, pre-fetch of a branch target

instruction and caching of recently fetched instructions.

126

6.1.2.2 The DSP DP Block Library

Table 4.13 and equations 4.7 to 4.12 demonstrate the number of cycles required to

execute the DSP IP block on a complete 80x60 pixels image. All DSP IP blocks

require an initial clock cycle to start their address generator and sample the ROI

values at their input. Rectangle and getcoords IP blocks, both have cycles per pixel

in the region of one. This is explained by both blocks performing only writes or

reads on the image data. In the case of the rectangle IP block, the number of cycles

is equal to the number of pixels written after the one cycle set-up. The getcoords DP

block performs a read of every pixel in an image and then writes the minimum and

maximum values for x and y into the register bank, in the last four clock cycles.

The threshold IP block performs a read-modify-write operation. It would be

expected that the absdiff IP block and copy IP block would have a very similar value

for the cycles per pixel. This is not the case, as the design of the threshold IP block

was different to the other two IP blocks. The threshold block was optimised to

perform reads and writes on consecutive cycles. This was achieved by not using a

register in the output data path, i.e. the data input port was wired directly to the data

output port with a compare function built into the datapath. This optimisation would

be possible with the copy and absdiff IP blocks, without causing timing closure

problems during the synthesis process. As can be seen by equation 4.11, the absdiff

IP block had an extra three cycles compared to the copy IP block. These three cycles

were required to set-up the FIFO on the secondary memory port and start filling the

FIFO with image data.

The filter3x3 IP block had an unusual cycle per pixel count as a result of its internal

architecture. The constant value of 11 in equation 4.8 is the number of cycles

required to obtain the nine weights. The (3x+l) term, is the time taken to fill the

three shift registers with image data. Two cycles were required to read-modify-write

each pixel as a result of the pipelined structure. The 2((x(y-4))+(2(x-l))) part of the

equation, relates to the number of cycles for processing each pixel. This last part of

the equation is clarified in figure 6.1.

127

First pixel
processed

2(x-l)

2x(y-4)

2(x-l)

Last pixel
processed

Figure 6.1 Clock cycles required to process each pixel using the 3x3filter DSP IP block

There are two optimisations which could be performed on the filter3x3 block. The

first is to pipeline the reads performed for filling the shift registers and obtaining the

weights. This would reduce the cycles count by two. The second optimisation is to

remove the first shift register and start feeding pixel data into the multipliers as soon

as the first pixel from the third line has been obtained. This would reduce the time

required to fill the registers to 2x+l and reduce the register count of the 3x3 filter IP

block by approximately 600 register logic cells.

The getobjs IP block required 16.5 cycles per pixel to obtain information on each

object within an image. An equation was not presented, as the equation execution

time is dependant upon the number of objects in the scene and their size and shape.

The number of cycles required during the initial reading of the pixels however can be

calculated. Every pixel is read at least once. Only four pixels can be obtained when

at the comer of an image and six pixels while on the edges of an image. This

provides a figure of 42364 cycles for an 80x60 pixel image, during which only reads

are taking place. This figure does not include pixel coordinates reads from the

scratch pad or the pixel values read at these coordinates. This would indicate that

53% of clock cycles are spent obtaining the pixels in the first instance. It is always

the case that once the algorithm cannot find any more pixels to label it uses the

coordinates of a previous object pixel to continue its search. For large objects that

appear as a filled shape, already processed neighbourhoods of pixels are re-read.

This is inefficient and therefore could be optimised. This could be achieved by

removing addresses of pixel coordinates from the scratch pad where all the pixel’s

neighbouring pixels had been labelled. This could save an extra 8 cycles per stored

set of pixel coordinates that are no longer required, as the labelled neighbouring

128

pixels would not have to be re-read. Another optimisation could be the caching of

recently read pixels or the storage of neighbourhoods that did not need reading as

they had already been labelled.

A further optimisation for the getobjs IP block is the better handling of the scratch

pad memory. In the situation of a single object filling the image, only eight bytes

would be required from the 2048 bytes in lower half of the scratch pad memory to

store the objects parameters. This could be improved by writing temporary data

starting from the highest address, i.e. 4095, down until the first set of object

parameters. This would provide up to a further 2040 bytes for temporary data. Once

all of the temporary data had been processed, it was no longer needed and could be

overwritten by object parameters or new temporary data relating to a new object.

The threshold, 3x3filter, and copy DSP IP blocks could have their cycles per pixel

reduced to one, if they were used in a situation were data was read from one image

bank and output to another image bank. This assumes that either the video generator

was not used or the IP blocks could interleave data safely between reads by the ping-

pong unit. This is not applicable for absdiff, as this DSP IP block currently has to

read images from both image banks. The getobjs DSP IP block could also benefit

from the use of a dual-port configuration to allow concurrent reads and writes

between two image banks and the scratch pad.

6.1.2.3 Available Processing Time

Figure 4.22 showed the available time slots for uninterrupted image processing.

During the project only the last 35037 cycles of each frame was used for processing.

Applications that required more time to execute, caused the system to automatically

decrease the output frame rate of the video generator. This mechanism worked well

as demonstrated by the example application. It is possible to increase the amount of

time at the end of each frame window by changing the output of the vertical

synchronisation pulse, v_sync, from the sensor interface. This could be achieved by

outputting the v sync signal at the start of the active video lines, instead of at the

start of each sensor frame. This shifts 25 line times of the next frame to the end of

129

the current frame, effectively extending the time between the last active line and the

end of frame. An extra 45800 cycles would be gained from this shift, a total of

4.77% of the total frame time. The total time available for processing at the end of

each frame would be increased to 80837 cycles (3.37ms) representing 8.42% of the

total frame time.

To gain any further processing time using 80x60 pixel images, the inter-pixel and

inter-line time slots would be required to be utilised. Using the DSP IP interface

could prove to be a problem when trying to process within the inter-pixel time slots if

the horizontal resolution of the image was increased. For example, an increase of

horizontal image size from 80 pixels to 320 pixels would reduce the inter-pixel time

to one cycle. With one cycle it would not be possible to perform the necessary pixel

processing functions. Ideally the inter-pixel time slots could be used to perform point

operations on each pixel as they arrived. Instead of using the current DSP IP

interface a configurable pipeline could be introduced between the sensor interface

and ping-pong unit. This could be used to implement various functions including

statistics gathering, such as image histogram or filter operations to remove noise. In

addition to the possible pipeline processing of data from the sensor interface, a

processing pipeline could also be added to the output to the video encoder. This

could perform post-processing functions, such as graphics or text overlay on images.

Using the inter-line time slots provides more time to perform processing and would

allow the use of line processing algorithms. This could easily be achieved using the

current DSP IP interface. Even if the vertical resolution was increased by a factor of

four to 240 lines, 2376 cycles would still be available for processing use. With an

image size of 320x240 pixels, three full line two-cycle line operations could be

executed. To facilitate the use of line based algorithms, the addition of an inter-line

strobe could be provided to indicate when an inter-line time slot is available.

6.1.2.4 FPGA Resource Usage

As stated in the results chapter, the FPGA used 37.6% of logic cells and 98.7% of the

available embedded system blocks, each containing 2048bits of memory.

130

Examination of the types of logic cells used by the system’s sub-system and DSP IP

blocks indicated the following:

• The top-level architecture is heavily biased to using only the look-up table

(LUT) parts of the logic cells. This is explained by the fact that the usage

figure provided in table 4.16 also includes the network controller and point-

to-point bus network. These two components require very few registers, as

most of the required circuitry is made from multiplexers and simple priority

structures. These can be implemented using the 4-input LUTs embedded in

each of the Altera FPGA’s logic cells [112].

• Instantiated memory devices require very few or no registers as each ESB

block has registered inputs and output, if required.

• The PLL used is one of four PLLs embedded into the FPGA fabric. The

three registers used, generate three clock domains, 96, 48 and 24 MHz.

• The FIFOs used a balance of registers and LUT. This is understandable

given that the FPGA synthesizer and logic fitter can make more efficient use

of registers, as the storage elements in each FIFO, rather than ESBs. It is

interesting to note that the registers only LCs and LUT only LCs have not

been combined to increase the use of register/LUT combined configurations.

This points to the high-level of control structure required per register element

used, forcing use of an extra LC per register. This is also evident with the

two asynchronous FIFOs which require careful read and write control

between two clock domains. In the case of asynchronous FIFOs, the balance

is slightly more skewed to LUT only LCs when compared to the synchronous

FIFOs. The number of registers used by the asynchronous video FIFO was

much lower than the other FIFOs as it also used an ESB. The use of the ESB

was probably as a result of a logic mapping optimisation, given the FIFOs

depth and data width of 9-bits rather than a multiple of two.

• Most of the other system IP blocks had a majority of LUT only LCs. An

obvious exception to this was the 3x3filter DSP IP block. This exception can

be explained by the use of three 80 register long shift registers. These shift

registers accounted for 1848 of the total 1966 registers only LCs and no LUT

or Register/LUT combination LCs. Another exception was the SDRAM

decoder IP block. This is explained by the registers required for the

131

conversion o f the 16-bit data and 23-bit addresses from the IM PB U S clock

dom ain to the F P G A ’s clock dom ain .

T h e percen tage o f the F P G A ’s total LCs for each o f the system blocks has been

prov ided in table 6.3. IP Blocks with associated F IFO s have had their LC count

am algam ated .

IP Block Name Number of Logic Cells (LC) % of Total LC used
3x3Filter Block 2946 32.20
Getobjs Block 2207 24.12
System Control Unit + FIFO 813 8.89
Register Bank 600 6.56
Core-level Architecture 599 6.55
Absdiff Block + FIFO 554 6.06
Sensor Interface + FIFO 321 3.51
Video Generator + FIFO 296 3.24
Rectangle Block 167 1.83
SDRAM Decoder 127 1.39
Getcoords Block 80 0.87
Threshold Block 76 0.83
Image Bank 1 65 0.71
Image Bank 1 65 0.71
Video Test Pattern Generator 64 0.70
Copy Block 53 0.58
Ping-Pong Unit 51 0.56
Top-Level Pins Structure 43 0.47
Scratch Pad 11 0.12
I-Store 8 0.09
192 MHz PLL 3 0.03
Line memory 0 0.00

Total 9149 100

Table 6.3 LC usage and percentage of total FPGA LC by IP block

A s is stated in table 6.3, the 3x3Filter and getobjs D SP IP blocks occupy the vast

m ajo rity o f the LC used, with a com bined F P G A LC usage o f 56.32% . Using the

recom m ended optim isation o f rem oving a shift register from the 3x3filter would

bring its LC usage to approxim ate ly 2330 LCs. G iven the size o f the 3x3filter and

the getobjs IP block, it m ay be argued that they should not be included unless

abso lu te ly necessary . In the case o f the getobjs block, a small general-purpose

p rocessor core m ay be m ore area efficient but at the cost o f increased processing

tim e. This option is less applicable to the 3x3fil te r as it can perform nine

m ultip lica tions, a sum m ation and a shift per c lock cycle and hence process a pixel

132

per clock cycle. T h e im plem entation o f this function on a small genera l-purpose

processor core w ould generally require in excess o f nine clock cycles per pixel given

the com puta tionally expensive nature o f multiplier operations.

Table 6.4 show s the num ber o f L C s used and their gate equivalen t for three types o f

sub-system s w ith in the F P G A architecture.

Sub-System Type % Total LCs Gates Equivalent
(12 Gates per LC)

DSP IP Blocks 66.48814078 72996
Core System Architecture 26.03563231 28584
Memory Elements 7.47622691 8208

Total 100 109788

Table 6.4 Number of LCs used by each sub-system type of the FPGA architecture

As calculated in table 6.4, the D S P IP block occupies tw o-th irds o f the total LCs

used. The value g iven for the gate count, for the m em o ry e lem ents, excludes the

ESB used in the FPG A . Including the ESB in the gate equ iva lence calculation ,

would add a further 1225216 gates to the total, for the 306304 bits used and using a

four gates per bit conversion factor. It is interesting to note that the size o f the

com plete system, excluding E S B s is relativity small in com parison to m odern SoC

designs. In fact, m an y individual IP blocks currently des igned have gate counts in

excess o f lOOKgates. It m ust be noted that 12 gates per LC is on ly an estim ation.

This figure has been obta ined from the Altera 20K gate coun t m ethodo logy used in

the IoC m anufac tu r ing cost m odel. T he d isadvantage o f the gate coun t m e thodo logy

is that it is based on an average LCs to gates value ob ta ined by the synthesis o f over

100 designs using on ly one techno logy library and one synthesis tool for com parison .

6.1.2.5 M in im um O bject Size and M axim um Object V eloc ity

T he m in im um size and m ax im um velocity o f an object detec tab le by the system

using a lens a ssem bly with 50° field o f view indicates the pro to typ ing sy s te m ’s

suitability for certain applications. As the ob jec t’s d istance from the lens increases,

the m axim um velocity an object can be detected linearly increases. T h e size o f the

133

object must also increase linearly. As the resolution support for the current

architecture is 80x60 it would probably be suitable within the following situations:

• Medium complexity object inspection or object recognition at less than one

metre from the lens and very simple object recognition past five metres.

Typically this kind of operation would be based on the objects shape unless

consistent lighting was used, which would allow the luminance of the object

to be assessed.

• Measuring approximate dimensions of objects within one metre from the

lens.

• Find position and orientation of a known object within one metre from the

lens.

• Detect simple faults on an object. For example, a missing label off a plastic

drinks bottle.

• Object tracking of moving objects at a distance of five metres and above.

An interesting use of the prototyping system, is in the detection of speeding vehicles.

Current Gatso speed cameras can detect and measure car speeds of up to 160mph or

71.52ms'1. Gatso cameras take two photographs after measuring the speed of the

vehicle using radar. These photographs can then later be used to verify the speed of

the vehicle by measuring the distance travelled between the two photographs.

Hypothetically, the prototyping system could be used to replace the radar element of

the Gatso. This could be achieved by determining if a vehicle has broken the speed

limit and then instructing two photographs to be taken at close to road level for later

speed analysis. Assuming the prototyping system’s CMOS imager was directed

vertically down onto a single lane of a road, two images could be taken and the

approximate speed of the vehicle obtained. Using the same model as in figure 4.23

and assuming the system was attached to a 10 metre high lamppost, the maximum

speed at which a vehicle could be detected is half of the values in table 4.18. This

also assumes that measurements are performed from the leading edge of the vehicle.

Therefore, at 10 metres and a frame rate of 12.5fps, a vehicle would escape speed

assessment if it travelled at a speed greater than 154.27mph or 68.96ms'1. This is a

134

similar figure to that of the Gatso cameras. At 10 metres above the road, a car with

the real-world dimensions of 4m by 2m would appear as a 29x10 pixel object.

The technical issue of the minimum size of objects detectable could be reduced by

replacing the sub-sampling mechanism with a pixel averaging mechanism. The

current configuration of the sensor interface could, in an unlikely event, allow an

object with a very precise shape and containing 4800 holes, to be up to 302400 pixels

in size and not be detected. This is because none of the 4800 sub-sampled pixels

would detect a pixel from the object. Pixel averaging would prevent this happening

and reduce noise but at a disadvantage of very small objects of interest not being

detected.

6.1.2.6 Processing Architecture Comparison with Other Systems

Undertaking a detailed comparison with other similar frame-based integrated vision

systems is difficult for two reasons. Of the three frame-based architectures described

in the literature review, Fang’s vision chip and Neuricam’s SmartPupilla are

theoretical architectures. Neuricam’s VISoC vision chip is the only system in current

production. A comparison is further compounded by the fact that all three provide

little of no performance-related information. Ideally models or samples of these

systems would be required for benchmarking the developed architecture,

unfortunately these are not available. Despite these issues it is still possible to

perform a limited comparison between the developed system architecture and the

Neuricam’s VISoC architecture.

Both the developed architecture’s system control unit and VISoC RISC processor

have the ability to process a maximum of one million instructions per MHz. This

assumes that the instruction decoder in the system control unit has been pipelined.

This figure is comparable to popular 32-bit microprocessor IP cores, such as the

Altera NIOS II at 1.16 MIPS/MHz, Xilinx Microblaze at 0.8 MIPS/MHz and

Tensilica’s Xtensa V 1.2 MIPS/MHz [113][114][115]. Both the developed

architecture and VISoC benefit from embedded DSP elements. As VISoC uses a

neural network and the developed architecture uses DSP IP blocks, it is difficult to

135

perform a suitable performance comparison. Both architectures share one distinct

advantage over many of the non-frame-based architectures, which is their ability to

be programmed using a higher-level language, such as C. This is only applicable

when the developed architecture’s DSP blocks are called using function calls from

the STV0674 co-processor. As discussed previously, the function call mechanism

adds latency to the execution of a DSP IP block as a result of the use of the SDRAM

decoder.

It is possible that the microcontroller from the STV0674 could be integrated directly

into the on-chip bus structure and hence remove some latency for DSP IP block

execution. Several IP processor cores, such as ARC700, Leon 2 and Xtensa V,

approach this issue by allowing their instruction set to be augmented with new

instructions. These new instructions execute hardware accelerator circuitry to

improve execution times for computational expensive calculations. Unfortunately, as

with the developed system, this is a far more complicated task than writing an

algorithm in software. Typically, the developers using the prototyping system would

only design new DSP IP blocks when the gain in processing performance was

required, as a result of part of an algorithm lying within the processing critical path.

A further advantage of using optimised hardware DSP IP blocks, it that they

typically offer more processing performance per clock cycle than most general

purpose DSP or microprocessors. This could potentially lead to the processing part

of an IoC having lower power requirements then a traditional DSP or

microprocessor.

As is the case with most Harvard architectures, it is difficult to write self modifying

programs. In fact, the current configuration of the architecture does not allow this

process to take place unless initiated by the co-processor. Typically in vision

application, the ability to write self modifying programs is not required.

6.1.3 The Complete Prototyping System

As has been demonstrated, the prototyping system is suitable for the implementation

of vision applications. It has also been shown how an application can be coded in a

136

small number of instructions, for example the object counting and highlight

application only used 56 instructions. It must be noted that the average power

consumption of 3.8 W would be dramatically reduced to the region of less than

500mW if the system was integrated into an IoC.

Several limitations were found with the FPGA component of the prototyping system.

The primary limitation was that of meeting timing constraints. Using the design flow

optimised for timing, the configuration of the FPGA architecture used for example

application had a maximum operational system clock frequency of 27.1 MHz. This

was acceptable for the functional verification of the application but prevented read

transactions across the IMPBUS completing correctly. This was due to insufficient

time to obtain the two bytes required to construct the requested 16-bit words.

Generally, the lack of read functionality was not a problem as the programming of

the I-store and configuration of the registers only required IMPBUS write

transactions. The addition of further DSP IP blocks could further reduce its

maximum operation frequency. A possible solution to this problem could be the

replacement of the Altera 20K600 FPGA to the 20K1000 or 20K1500 part. Using a

FPGA with more resources may offer the opportunity to better group interconnected

logic cells in IP blocks, with an aim of increasing the maximum clock frequency.

The use of a larger FPGA does not necessarily guarantee an improvement in the

designs maximum operation frequency, as the distance travelled by signal could

increase and lead to further signal delays. This was evident during the development

of the prototyping system as even the mid-size FPGA used had direct pin-to-pin

delays of up to 20ns.

The FPGA design flow used, also supported Altera’s LogicLock methodology. This

allowed specific IP blocks to be placed in fixed locations on the FPGA floorplan. It

may be possible using the methodology to obtain higher operation clock frequency

but this would further complicate the design flow of application designers. It is also

possible that the system architecture developed could be slightly re-designed for

better FPGA-based results. Again this is not an ideal solution, as it would be better

for the system design to be process independent, especially if end applications were

to be integrated as an IoC.

137

Another limitation was the lack of 50 Hz flicker detection and cancelling. As a result

intermittent flickering pixels and pulsing light sources were seen during the

execution of the demonstration application. Ideally, a pipelined IP block could be

placed within the data path from the sensor interface to the ping-pong unit to detect

flickering and aid in the cancelling-out of these effects.

The stipulation for the use of a STMicroelectronics VGA sensor during the research

had an important impact on the maximum possible frame rate. The VGA sensor

operated between 25 and 30fps. This provided rigid timing requirements for the

sampling of images. As a result of application processing times, the system, in the

majority of cases, reverted to 12.5fps because the application execution time

extended beyond the available time slot at the end of each frame’s sampling period.

Many integrated vision chips have imagers with controllable image sampling rates

which allow the applications to decide when to grab an image frame. For example,

the VISoc can sample images up to 180fps, depending on scene illumination. This

ability would have greatly enhanced the prototyping system, by enabling a higher

frame rate in instances when an application only requires a very small amount of

extra processing time at the end of each frame’s sampling period. Using a sensor

with a faster frame rate would have also been useful in extending the prototyping

system’s ability for high-speed applications. A faster frame rate would result in

more time available for image processing, as the image sampling at the sensor

interface would be completed in a shorter period of time.

Other methods for improving the performance of the system by providing more

usable processing time slots are as follows:

• Use a greyscale image sensor, i.e. without a Bayer colour filter mask. This

would enable the top left pixels in the image to be grabbed for use as the sub­

sampled image. See figure 6.2a.

• Only perform processing on the top half of the images. This would allow the

remaining half of the image to be discarded and the remaining frame time

used for processing. See figure 6.2b.

138

• U se horizontal shuffle setting on a S T M icroelec tron ics image sensor. This

forces the sensor to read out all the p ixels on each even co lum n first, fo llow ed

by the odd co lu m n ’s pixels for that line. This would result in longer inter-line

times, w hich can be used for processing, at the expense o f reduc ing the in ter­

pixel times by half. See figure 6.2c.

Sub-sampled Pixel

Unused
Unused

(b) Only Use Top-Half (c) Use HorizontalCurrent (a) Use
Sampling Greyscale Sensor of Image Shuffle

Figure 6.2 Methods of reordered pixel sub-sampling for improve performance

T he com parison o f the pro to typ ing system with o ther similar system s is difficult.

There are no know n pro to typ ing system s that cater for the specific d eve lopm en t o f

IoCs. T h is is typically due to the fact that only a few sem iconducto r com panies

p roduce C M O S Im ager sensors and do not public ly offer pro to typing system s o f this

nature. T hese com panies also do not openly offer C M O S sensors as IP b locks to third

parties, p robably due to the design com plex ities and fabrication requirem ents .

Typically , the only m ethod o f p roducing an IoC is by partnering with, or contrac ting

a sem iconducto r com pany to perform the design and fabrication processes. A ny

available IoC deve lopm ent p latform s are likely to be developed in-house and their

details not published due to their com m erc ia l ly sensitive nature.

General conclusions can be drawn about the advantages o f the deve loped p ro to typ ing

system w hen com pared to general proto typing system. Firstly, the deve loped system

has been optim ised for v ision tasks. It is re lativity small and the unit cost is low.

Secondly, an IP hardw are and software architecture has been provided in addition to

the tw o PCBs used. A prescribed and verified design flow has also been provided.

T he intellectual p roperty rights to m ost o f the selected board-level and all o f the

FPG A -level com ponen ts are ow ned by STM icroelec tron ics . This will aid the

integration o f designs to IoC process from a business and technical s tandpoint.

139

6.1.4 IoC Manufacturing Cost Modelling

The imager component of the IoC manufacturing model was validated internally

using several STMicroelectronics sensor designs from the last five years. Due to the

commercially sensitive nature of the figures obtained, these cannot be disclosed. The

process of externally validating the model was made difficult. This was as a result of

the lack of CMOS image sensors within the literature that provide information on die

area and the technology process size used. Details of two image sensors were

obtained. The first was the Bums and Hornsey’s 80x80 CMOS image sensor in a

0.18pm process [121], Using the cost model, a value was obtained within +13.6% of

the correct value. The second image sensor was the Fillfactory LUPA 1300 1280 x

1024 CMOS image sensor in a 0.5pm process [122]. This required an extension of

the cost model to take into account the scaling of the analog and digital components

to a larger process. The model calculated a value within +5.9% of the correct value.

As a high-level model, these figures were acceptable. Ideally, if the relevant

information regarding other IoC-type systems, such as Neuricam’s VISoC, could be

obtained, then the whole cost model could be verified to a greater extent. It is also

unlikely that the actual costs involved with the manufacture of the IoC would be

provided, unless fabricated through a vender, such as Europractice. If more time had

been available, then the example system in Appendix C could have been synthesised

with a suitable CMOS imager and the area results compared to the values calculated

by the model.

As was previously shown, for a small IoC based on the developed FPGA architecture

with an integrated 80x60 imager, integration using a 0.35pm process becomes

financially beneficial at approximately 40 units. Retargeting the design to a 0.25pm

process proved to only be financially viable at 50K units and for a 0.18pm process at

approximately 500K unit. Moving to a 0.13pm process would require a production

run of five million units. The salient reason for the very high production

requirements at 0.13pm is the high mask set cost, the inability to easily scale or

design the analog component below 0.25pm and the higher defect density for newer

processes. At 10 millions units, the lowest unit cost is in a 0.13pm process. In this

process, the total die area is 7.08mm2, of which 4.44mm2 is the imager, and the unit

cost is $2.16, of which $1.32 is fixed costs. As the imager’s pixel array area is only

140

0.15mm2 or 2.1% of the total die area, it may be advantageous it increase the pixel

size. This increase would potentially improve the pixel sensitivity to light as a result

of an increased photodiode and reduce optical related issues, such a lens assembly

placement.

It may be argued that the use of a low cost 90nm-based FPGA does not justify the

financial risk of IoC integration. As a result of the cost of using two external

SRAMs, an FPGA with enough embedded memory would be required.

Unfortunately, embedded memory within a die is expensive in terms of area.

Typically, FPGA manufacturers would rather use this die area for logic cells or

embedded DSP blocks. This results in a requirement to select a FPGA that has more

logic cells than required in order to obtain enough memory to implement the image

banks and other memories.

The most low-cost, suitable FPGA from Xilinx, is the 90nm Spartan 3E XC3S500E

with up to 360kbits of memory and from Altera it is the 90nm Cyclone II EP2C35

with up to 483kbits of memory [116] [117]. Both of these FPGAs have

approximately 400-500k usable gates. The Xilinx Spartan 3E FPGA costs

approximately $9 for a device upto 1.2 million gates and $2 for a device with

lOOkgates in quantities of 500k units [118]. The Altera Cyclone II EP2C35 FPGA

costs $22 in quantities of 250k units [119]. As both of these FPGAs have volatile

configuration storage, they require configuration devices which further add to the

system cost. The requirement for a configuration device could be removed by using

a non-volatile FPGA based on FLASH memory, for example the Lattice XP range of

FPGAs. Despite this, separate video encoder ICs and sensor would still be required,

further increasing the overall system cost. At such high volumes, the low-cost

FPGAs are not a cost effective solution when compared to a fully integrated IoC. As

a result, it is likely that low-cost FPGAs would only be suitable when producing up

to approximately 1000 units. This figure has taken into account that FPGAs also cost

more in small volumes.

Mid-ground between the fully integrated IoC and the FPGA-based multi-chip

solution is that of a structured ASIC. A structured ASIC uses an array of fixed

elements, similar to an FPGA, which can be used to implement multiple designs by

141

changing the metal layers above the silicon. This reduces the mask set costs as the

manufacturing company can apportion their costs over several customers’ projects.

This design methodology is still in its infancy as many companies are currently

trying to form viable and sustainable business models.

The use the cost model has indicated, in the case of the example, that low-cost mass-

market vision systems benefit to a great extent by full integration to a single IoC. It

is likely that as pixel array sizes increase and digital processes decrease in size it will

become more appealing to implement more DSP functions on the same die as the

imager. This has now been realised with the launch of the STMicroelectronics

VS6524 highly-integrated camera module. The VS6524 integrates a VGA CMOS

imager with a video processor to perform various image processing functions, such

as colour space conversion, gamma correction and defect pixel correction. It has

been manufactured in a 0.18pm ST CMOS imaging process and has been aimed at

the mobile phone and PDA market. The VS6524 has a unit cost of $6, in large

volumes, for the chip, flexible connector and lens assembly [120].

6.2 Recommendations for Future work

There are several recommendations regarding future improvements that could be

made to the prototyping system. These are listed and separated into three categories;

PCB, FPGA and System-wide related recommendations.

PCB Recommendations

1. Redesign the daughter board PCB to include the modifications discussed in

Appendix B.2 on page 209 and 6.1.1 on pages 121-122.

2. Add the option of two low-latency SRAMs to allow an upgrade path from the

FPGA’s embedded memory resources.

3. Add the five wire sensor data bus and clock line from the sensor to the

backplane connectors. The FPGA can then be configured to accept data

across this bus.

142

4. Perform signal timing and integrity checks to ascertain the maximum

operational frequency for IMPBUS and memory bus communications.

FPGA Architecture Recommendations

1. Implement the seven recommendations in chapter 6.1.2.1 on pages 124-126

for improving the system controller. This will require an extra 100-200 logic

cells and an ESB.

2. Add inter-general-purpose register operations. Depending on the number of

operations implemented, this change would probably require in the region of

100 logic cells.

3. Extend the choice of DSP IP blocks, using the current DSP IP block

addressing structures and interfaces for point and neighbourhood operations.

It is particularly important to implement arithmetic and morphology DSP IP

blocks. Point operations are likely to require 500-2000 logic cells per IP

block and neighbourhood operations are likely to require 2000-3000 logic

cells per IP block.

4. Enable selectable sub-sampling schemes as described in Chapter 6.1.3 on

pages 138-139. This would make better use of available inter-line processing

slots and require less than 100 extra logic cells.

5. Integrate the co-processor’s 8052 microcontroller core, I2C controller and

sensor configuration unit into the FPGA to remove the need for the sensor co­

processor. A total of 1200-1800 logic cells would be used to implement this

recommendation.

6. Implement an anti-flicker detection and cancellation unit in the FPGA

architecture.

Recommendations for the Complete Prototyping Platform

1. Develop further applications for the prototyping system within the domain of

object tracking and object recognition.

2. Synthesise the example IoC application as outlined in Chapter 6, to target a

multi-project wafer process and compare results to that of the IoC

manufacturing cost model’s values for die area. Once fabrication is

143

performed, functional verification should be conducted with the IoC, using

the simulations and the FPGA-based system for comparison.

3. Implement the entire DSP IP block library in a software language, such as C.

This will allow functions that do not reside in the application execution’s

critical path, to be implemented in software on the embedded 8052

microcontroller.

4. Scale the architecture to support 25fps 640x480 pixel video processing.

To implement the fourth recommendation would only require the FPGA’s

architecture to be modified. The image banks would have to be scaled to support

640x480 8-bit images, dramatically increasing the number of ESBs used for each

image stored from 19 to 1200. The consequences of increasing the size of both image

banks are several-fold. The bus network and addressing scheme used in all DSP

blocks, the network control unit, ping-pong unit and system control unit, would

require extensions to support a minimum of 20-bit addressing. The number of

extensions could be reduced by using the direct addressing method as described in

Chapter 4.3.8 on page 89. The structure of the instruction set and SDRAM decoder

would also have to be augmented to support the larger memory map. The sampling

mechanism for the sensor interface and video encoder would require minor

modifications. Most of the IP blocks could remain unchanged with the exception of

the 3x3filter which would require larger shift registers to accommodate lines of 640

pixels. In order to support the correct functioning of the getobjs DSP IP block, the

scratch pad memory would also have to be increased significantly.

Two areas of recommended further research are as follows:

1. Investigate the possibility of prototyping parallel processing architectures,

using multiple video streams or create deep multi-operation pipelines within

DSP IP blocks to improve the pixel processing rate.

2. Further investigate the architectural implications of using colour images for

processing. The use of colour images may be useful for skin tone detection

or object recognition and segmentation by colour histogram profiling.

144

6.3 Example Re-Design of Prototyping Platform

Using selected recommendations in sub-section 6.2, this sub-section implements a

re-design of the prototyping platform. Initially, the current prototyping platform is

assessed for its ability to provide support for applications using higher image

resolutions. During the assessment, areas which need to be modified to support

higher resolutions are highlighted and the required changes stated. The modified

version of the prototyping platform is then used as a base upon which to re-design

the platform to provide higher processing performance.

6.3.1 Scalability of Current Platform to Higher Image Resolutions

The CMOS image sensors provided by STMicroelectronics were all limited to a

640x480 pixels (VGA) resolution at up to 30 frames per second. With this in mind,

the majority of the original prototyping platform was designed to support this

resolution and frame rate. Implementing a platform to expressly support higher

resolutions would have been complicated given that there would have been no simple

process by which to test the platform. It was also postulated that low-cost mass-

market machine vision and image processing applications would generally not

require any resolution higher than 640x480 pixels, as this is approximately the

effective resolution of a standard home television. Although the original platform

was designed for VGA resolutions, the memory resources in the FPGA limited the

useable image size to 80x60 8-bit pixels. In this sub-section, each of the FPGA-

based sub-systems is analyzed to assess their suitability for use if the platform was

required to support a greater image size.

Two assumptions have been made during the following analysis. The first

assumption is that the system clock frequency is kept at the current frequency of

24MHz. The second assumption is that the image size required to be support is

640x480 pixels at 25fps and that the sensor used in the platform is a

STMicroelectronic 8-bit greyscale VGA CMOS image sensor, i.e. without a Bayer

colourisation filter mask. The lack of a Bayer filter allows every pixel to be read

145

from the image sensor without the need to adjust the silicon’s absorption

characteristics for different frequencies of light.

6.3.1.1 Daughter Board and FPGA Backplane

The daughter board and FPGA backplane have no issues with supporting a VGA

resolution at board-level. This assumes that the sensor data is fed directly into the

FPGA rather than via the sensor co-processor.

6.3.1.2 FPGA Memory Sub-Systems

The issue of memory in the original version of the prototyping platform limited the

usable resolution to 80x60 pixels. Assuming that the same configuration of memory

banks exists when larger image sizes are used and that each image bank can contain

2 image, the memory requirement (in bytes) for common resolutions are listed in

table 6.5.

Image Size Supported

80x60 320x240 640x480 1280x1024 1600x1200

Image Bank 1 9600 153600 614400 2621440 3840000

Image Bank 2 9600 153600 614400 2621440 3840000

Scratch Pad 6833 109328 437312 1749248 2733200

Video Line Memory 80 320 640 1280 1600

I-Store 256 256 256 256 256

Register Bank 256 256 256 256 256

Async. Video FIFO 144 144 144 144 144

Total 26753 417360 1667264 6993920 10415312

Table 6.5 Platform’s Memory Requirements (in Bytes) to Support Higher Image Sizes

As can be seen in table 6.5 increasing the current image size of 80x60 pixels to the

next common image size of 320x240 pixels, requires almost 16 times more memory.

The values for the scratch pad entries have been estimated assuming that 6833 bytes

146

are required for each block of 80x60 pixels. The values for I-store and the register

bank remain fixed as these would not be affected by scaling. The asynchronous

Video FIFO is listed as 144 bytes, as its implementation is 9-bits wide and 128

elements long.

As memory addressing works on powers of two, it is complicated to implement

memories with exactly the correct number of bytes require for each bank. This

unfortunately leads to image banks being scaled in size to meet the requirement of

the address scheme. Table 6.6 shows the actual number of bytes required for each

memory bank to allow standard memory addresses to be used.

Image Size Supported

80x60 320x240 640x480 1280x1024 1600x1200

Image Bank 1 16384 262144 1048576 4194304 4194304

Image Bank 2 16384 262144 1048576 4194304 4194304

Scratch Pad 8192 131072 524288 2097152 4194304

Video Line Memory 128 512 1024 2048 2048

I-Store 256 256 256 256 256

Register Bank 256 256 256 256 256

Async. Video FIFO 144 144 144 144 144

Total 41728 656512 2623104 10488448 12585600

Table 6.6 Platform’s Memory Requirements to Support Higher Image Sizes

The total memory resources of the Altera Apex 20K600E FPGA in the prototyping

platform is 38912 bytes. This would indicate that not even the 80x60 image

resolution could be supported. The disparity between the number of bytes for the

80x60 pixel image resolution in table 6.6 and the maximum available for the FPGA

is due to two implementation differences. Firstly, it must be noted that the video

generator’s line memory was implemented on the original platform using 1024 bytes

to support up to 640x480 pixel images and not 128 bytes. This design decision was

taken to allow the video generation sub-system to be re-used in other

STMicroelectronics products. Secondly, the scratch pad memory in the original

platform was implemented with 4096 bytes which was an insufficient amount of

147

memory for the getobjs operation, as discovered during the testing of the object

counting and highlighting application in appendix C. As can be seen from table 6.6

none of the other image sizes can be supported due to a lack of FPGA memory

resources, i.e. the platform’s FPGA architecture is not scalable to support image sizes

greater than 80x60 8-bit pixels with a half sized (4096bytes) scratch pad.

Two options are available to correct the scalability of the platform. The first option

is to use an FPGA with larger memory resources. The second option is to use the

daughter boards SDRAM ICs, as originally intended for applications using larger

image sizes.

Two of the current FPGAs with the largest memory resources are the Xilinx Virtex 4

FX (XC4VFX140) and the Altera Stratix II (EP2S180) with 1242000 bytes and

1172880 bytes respectively [123] [124]. Both FPGAs do not have sufficient memory

resources for an implementation of two image banks storing two 640x480 8-bit

images each. Another issue with the implementation of the larger FPGAs is that

their footprints and pin configurations are different than the Apex 20K FPGA

currently used. As the current FPGA foot print is a 672-pin fine-line BGA and the

Xilinx Virtex 4 part is only available in 1517 or 1760 pin configurations and the

Altera Stratix II in 1020 or 1508 pin configurations, the FPGA backplane would need

to be completely redesigned to support either of the larger FPGAs. Using the Xilinx

FPGA also compounds the problem of its implementation as its tool chain is different

to the Altera part after the initial Verilog synthesis process.

The second option of implementing an embedded SDRAM controller and using the

prototyping platforms SDRAM ICs for the two image banks is far more attractive

from a system cost or ease of implementation standpoint when compared to the use

of a larger FPGA. The specific advantages of this approach are:

• Each SDRAM IC provides 128 Mbits of memory, equating to a storage

potential of up to 54 8-bit VGA images.

• Embedded FPGA memory can be re-used for a larger scratch pad memory

bank or new DSP IP blocks.

148

• No re-design of the FPGA backplane or daughterboard is required.

• The data ports on the SDRAM ICs are 16-bit wide and hence allow 2 pixels

per cycle to be written or read.

The disadvantages of SDRAM usage are:

• The need to design and implement an SDRAM control unit to support two

concurrent transactions to the two SDRAMs. This requires additional FPGA

logic block resources.

• The added latency of setting-up addresses and reading data from the

SDRAMs. This issue can be reduced by using burst modes which perform

reads or writes on subsequent memory addresses after each memory clock

cycle.

• The requirement to refresh the SDRAMs after a fixed period of time to retain

the stored information correctly. During a refresh no data reads or writes can

take place.

The SDRAMs have an advantage that if a prototyped design was integrated into a

single IoC, embedded DRAM provides higher densities hence lower costs per Mbit,

lower power consumption and lower soft error rate (SER) than embedded SRAM

technologies [125].

Using the SDRAM approach with VGA image sizes affect the systems memory map.

Two possible memory maps are presented in figure 6.3.

149

Address

0x2020FF-
0x202000-

0x201000-

0x101000-

0x001000-

OxOOOOFF-
0x000000-

Unal located
Instruction Store

Scratch Pad

SDRAM Image Bank 2

SDRAM Image Bank 1

Unallocated

Register Bank

Address

0x20020FF-
0x2002000-

0x2001000-

0x1001000

0x0001000-

OxOOOOOFF-
0x0000000-

Unal located
Instruction Store

Scratch Pad

SDRAM Image Bank 2

SDRAM Image Bank 1

Unallocated

Register Bank

(a) Limiting SDRAM Use to Two VGA Images (b) Full SDRAM Use

Figure 6 3 Two different FPGA memory maps taking into account the use of off-chip SDRAM

As the SDRAM memory configuration stores data in 16-bit words, only 24-bits are

required to access their full 16777216 bytes but as the data architecture is 8-bit, an

extra bit is required to select which byte of the 16-bit word should be read or written.

This would require an upper/lower byte select mechanism to be implemented in the

SDRAM control unit for each of the two SDRAMs.

As can be seen in figure 6.3 (column b), making the whole of each SDRAM byte

addressable requires 26-bits, whereas limiting the SDRAM address space to the

storage requirement of two VGA images per SDRAM, requires 22-bits. The scratch

pad memory has been set as 4096 bytes. This is because implementing the required

scratch pad for the getobjs algorithm would require 524288 bytes, which is more

than all the memory resources available in the Altera Apex 20K FPGA. The use of

the SDRAM memories raises the issue of extending the addressing interfaces on the

DSP IP block and sub-system within the FPGA. It is still more attractive to allow the

full use of the SDRAM (figure 6.3 column b) as it allows the system to be scalable

for use with larger image sizes in the future. Rearrangement of the memory map can

yield a decrease in the bits required for addressing to 25 bits, as shown in figure 6.4.

150

Address

0x2FFFFFF-

0x2000000-

0x1000000-

0x0002FFF-

0x0002000 -
0x0001OFF‘
0x0001000-
OxOOOOOFF-
0x0000000-

SDRAM Image Bank 2

SDRAM Image Bank 1

Unallocated

Scratch Pad

Unallocated
Instruction Store

Unallocated
Register Bank

Figure 6.4 Reordered FPGA memory map

The memory map in figure 6.4 is used for the remainder of the scalability analysis of

the prototyping platform.

6.3.1.3 Sensor Interface, Video Generator and Ping-pong Unit

Minimal changes would be required to the sensor interface as it was originally

designed to support VGA image capture at 25fps. The only change required would

be to remove or bypass the image sub-sampling mechanism that is used to create

80x60 pixel images. Higher resolutions than VGA probably require a faster clock

rate and/or the sensor image data interface and bus width extension from 5 wires to 8

wires and thus prevent the need of two sensor clock cycle to construct each 8-bit

pixel. Unfortunately, the latter would only possible by redesigning the daughter

board or by direct wiring between the sensor module and FPGA input pins.

The video generator in the FPGA could also be simplified, if only VGA sized image

were used, by the removal of the requirement for an image scaling mechanism from

80x60 pixels to 640x480 pixels, as the images would arrive at the video generator at

the correct size, i.e. 640x480 pixels. The rate of 13.5 MHz currently used in the

video generator would be sufficient to maintain a suitable pixel data rate. If images

151

larger than 640x480 were used by the prototyping system, a cropping or scaling-

down mechanism would need to be implemented.

The effective pixel data rate from the sensor interface to the ping-pong unit and from

the ping-pong to the video generator would increase by a factor of 64. As a result, at

a system clock frequency of 24MHz, the ping-pong will write a pixel every two

clock cycles from the sensor interface to an image bank and read a pixel every clock

cycle from an image bank to the video generators async fifo to retain the correct

pixel flow. This would limit the inter-pixel processing time available to one cycle,

which is unlikely to be sufficient for most operations, especially read-modify-write

operations over the whole VGA image. The memory access for processing from the

image bank also used by the video generator would be limited to the start and end of

the image fields, as the inter-pixel time available for processing would be less than

one cycle. This indicates that while the ping-pong unit supports the use of VGA

images at 25fps, the processing performance capable by the FPGA architecture is

particularly limited. The issue of improving performance will be covered in section

6.3.2.

As a result of implementing an extended memory map, the ping-pong unit would

need to be extended to support 25-bit addresses for image memory bank access. The

use of the off-chip SDRAM would also necessitate the use of a delay mechanism in

the ping-pong unit, also known as wait-states, to allow the ping-pong unit to take into

account the latency between a read request and the return of valid data from the

SDRAMs.

6.3.1.4 System and Network Control Units and DSP IP Blocks

To support the extended memory map, the system control unit, network control unit

and the point-to-point network structure would require the address buses and

addressing interfaces to be extended to support 25-bit addressing. For the system

control unit, its 16-bit external read and write address registers would also require

extending to 25-bits. This would have a resultant effect of requiring the

152

implementation of four new instructions to load the additional 9-bits of the extended

read and write address registers.

The use of the extended memory map would also affect the DSP IP blocks. Their

address interfaces would have to be extended as with the other sub-systems and their

counter-based addressing mechanisms extended to 25-bits. The FSMs used to

generate memory addresses would also require the insertion of wait states to take into

account the latency of data from the off-chip SDRAMs.

The DSP IP block specific modifications would include elongating the 3x3filter’s

shift registers from 80 elements to 640 elements to hold a complete line from a VGA

image. The getobjs DSP IP block would also need to be modified to use SDRAM

rather than the on-chip scratch pad, or only operate on small areas of each VGA

image, given that the required memory to build the object database for a VGA image

is in excess of the available FPGA memory resources.

6.3.1.5 Available Processing Time

The processing time available per frame helps to indicate the level of performance

capable by the prototyping platform. As stated in section 6.3.1.3 image processing is

limited to the timeslot after of each new frame has been written to memory. Using

the recommendation in section 6.1.2.3, the frame synchronisation pulse could be

adjusted to gain the 25 lines at the start of the next image frame for processing. This

would increase the number of cycles available for processing per image from 35037

to 80837 cycles. As 480 lines are now sampled to construct a 640x480 image, the

previously unsampled lines of 474 to 480 are now used and hence reduce the

available time for processing by 7 lines. Therefore actual time available for

processing is 68013 cycles, i.e. 7.08% of the frame period may be used for

contiguous image processing.

Assuming a DSP IP block processes each pixel at a rate of 1 pixel every 2 cycles and

only one pixel may be read or written to the SDRAM every cycle, only 11% of a

153

whole VGA image may be processed in any frame period to maintain a video rate of

25fps. This is insufficient performance for all but the most basic applications.

6.3.1.6 Summary

The analysis of the current prototyping platform indicates that the changes required

to support 640x480 pixel (VGA) images at 25fps are mainly related to the use of

SDRAM, inclusion of a dual SDRAM control unit and the extension of the

architecture to support a 25-bit address memory map.

The amount of available processing time per image frame has drastically reduced,

due to a 64-fold increase in data throughput requirements. This effectively confines

most of the image processing to the end of each image frame write from the sensor

interface via the ping-pong unit. Compounding the reduction in available processing

time, the amount of data to process in each VGA image has been increased by 64

times. Given that it was difficult to maintain a video rate of 25fps in applications

using 80x60 pixels, it is very unlikely, except in very simple applications, that the

rate will be maintainable at 25fps when processing VGA images. Therefore,

although the suggested architectural changes would support VGA image based

applications, the performance is likely to be a limiting factor for these applications.

The issue of processing performance needs to be addressed to ensure that the

prototyping system would still provide a viable platform for prototyping marketable

VGA image processing based products.

6.3.2 Re-designed Architecture

As shown in the previous section, the modifications required to support 640x480

images at 25fps are relatively easy to perform. The key issue is that the image

processing performance of the system would be insufficient for most applications.

This section details a new improved version of the architecture based on the

modifications in section 6.3.1 and the recommendations for improvements in section

6.2. Initially the top-level of the architecture is outlined and this is then followed by

154

sub-sections detailing the required architectural changes to each sub-system in the

FPGA.

The specific aim of the new architecture is to be able to process 640x480 8-bit pixel

images at a suitable level of performance to allow a wide range of developed

application to maintain a frame rate of 25fps. The current STMicroelectronics

CMOS VGA image sensor will be used in the new architecture.

6.3.2.1 Overview of New Architecture

Although many of the recommendations in section 6.2 would improve performance,

the level of performance gain would be insufficient for processing VGA images at

25fps. This is due to the limited time available for processing in each frame and that

that the FPGA architecture’s DSP IP blocks can only perform 1 DSP operation per

pixel per cycle. This limits the maximum pixel processing performance to 24 million

operations per second (MOPS) at a clock frequency of 24MHz. During the synthesis

of the FPGA architecture, the maximum attainable clock frequency for the complete

system was found to be approximately 60MHz. Even at this maximum frequency,

the FPGA architecture still does not achieve a suitable processing rate and therefore a

more complex architecture solution is required.

Two possible groups of FPGA architecture recommendations could be implemented

as part of the new improved FPGA architecture. The first is to improve the

performance of the system controller by implementing changes 1 and 2 from the list

on page 143. The second is to implement an 8051 microcontroller core and I2C

control unit on the FPGA as suggested in recommendation 5. Improving the system

control unit would be relatively simple and only require a low number of FPGA

resources but would only yield relatively modest overall system performance

increase. The best option is to implement the microcontroller for the following

reasons;

• It can perform the same functions as the system controller and hence the

system controller could be removed, freeing resources for use elsewhere.

155

• The inclusion of the microcontroller and an I2C control unit on the FPGA

also removes the need for the sensor co-processor IC, as the sensor and video

encoder can be controlled by using I2C bus. This allows the removal of the

SDRAM decoder unit as communications are no longer required to and from

the sensor co-processor.

• It is more flexible than the system controller due to the capability to perform

some image processing. This is particularly useful for implementing DSP

operations that are more effectively executed in software than as a hardware

IP block.

• Unlike the system control unit it can be easily programmed in C, using the

current design and tool flows.

The disadvantage of the inclusion of the microcontroller is that a large number of

resources are required and that there maybe licensing issues.

The 4th recommendation of using configurable sub-sampling schemes to improve

performance is not feasible as almost all the pixel in the pixel array are being read

out to form a 640x480 pixel image rather than a small 80x60 pixel image. The 6th

recommendation of implementing an anti-flicker detection and cancellation unit will

not be implemented in the new architecture as it does not directly improve processing

performance.

To vastly improve performance of the FPGA architecture, the recommendation for

parallel processing on page 144 is used. A combination of the use of multi-operation

pipelines and multiple video stream is probably the most effective method for

improving performance. Figure 6.5 shows the new proposed FPGA architecture for

the prototyping system.

156

I2C B U S
400kH z

Im age S e n so r Ctrl
V ideo E ncoder Ctrl

EEPROM

Im age S e n so r

SDRAM A BUS
_ 96 MHz ^SE N SO R B U S

24 MHz

SDRAM B BUS
^ 96 MHz ^

SDRAM C BUS
^ 96 MHz ^

SDRAM D BUS
_ 96 MHz ^VIDBUS

27 MHz

V ideo E ncoder

B ackp lane
S w itches

R ead
S ide

Video
G e n era to r

Async.
FIFO

W rite
S ide

Async.
FIFO

RA M RO M

SD R A M IC
(128 Mbit)

SDRAM IC
(128 Mbit)

S e n s o r
In terface

SDRAM Ctrl 3

SDRAM Ctrl 3

R eg is te r Bank
(256 B ytes)

l2C In terface

SDRAM Ctrl 1

SDRAM Ctrl 2

D SP A d d ress
G e n era to r 1

D SP A ddress
G e n era to r 2

8051 M icrocontroller

P ing-
P ong

B ank of C onfigurable D SP
B locks

O n New
M emory C ard

O n C urren t
D augh te r

C ard

SD R A M IC
(128 Mbit)

SDRAM IC
(128 Mbit)

U SER BU S

FP G A Architecture

Figure 6.5 New proposed FPGA architecture

C om paring the new proposed architecture in figure 6.5 to the original a rchitecture in

figure 3.4, four m ain d ifferences can be noted. T hese are:

1. The S D R A M decoder, system controller and instruction store have been

replaced with an 8051 microcontroller w ith a p rogram and data m em ory and

an I2C interface.

2. The tw o 16Kbyte S R A M image banks and 4K B yte scratch pad have been

replaced by 4 S D R A M controllers and off-chip 128M bit S D R A M s. T w o o f

the S D R A M s used are on the daughter board and tw o are on a new PCB

attached to the unused pin banks on the F P G A backplane.

3. T he individual D SP IP blocks have been replaced by tw o D S P address

generators and a configurab le m atrix o f D S P operators.

4. T he bus ne tw ork controller is shown to be m ore integrated into bus network.

This is not as a result o f a large change in the functionality o f the bus netw ork

but as a c larification that it is connected to all the sys tem s point- to-poin t

buses rather than a single tw o-w ay connection as in figure 3.4.

157

This new system configuration is described in the next sub-sections in terms of the

microcontroller sub-system, ping-pong sub-system, memory sub-system, DSP

component and the bus network controller.

6.3.2.2 Memory Sub-system

The new proposed architecture uses 4 SDRAM ICs for image banks and general

storage. Two of the SDRAM ICs currently exist on the daughter board and two

would need to be incorporated onto a new memory expansion board attached to the

unused pin banks on the FPGA backplane. As the Apex 20K FPGAs support the use

of SDRAM up to a clock frequency of 133MHz, a SDRAM clock frequency of

96MHz was chosen for the new architecture [126]. The reason this frequency was

selected, was that it is a multiple of the 24MHz system clock. Using the FPGA’s

PLL, it is easy to output a 96MHz clock and derived in-phase clocks of 48MHz and

24MHz. At 96MHz this would provide up to a four fold increase in memory

transaction speed per bank when compared to the original architecture. The use of

the additional two banks also increases the memory band by an additional factor of 2.

A fiirther performance increase is gained from the ability to fetch upto 16-bits, i.e. 2

pixels, per clock cycle. The cumulative effect of these improvements results in a

bandwidth increase of 16 times the original FPGA memory architecture. The most

important aspect of the inclusion of two extra memory banks is that while one bank

is being written by the sensor interface and another read from by the video generator,

two banks may be solely used for image processing. Unfortunately, unlike the

internal SRAM memories used in the original architecture, SDRAM IC require a

time overhead for demultiplexing and setting up address, reading data and

performing a refresh process to retain data. The effect that these overheads have on

performance will be calculated in section 6.3.3.

In order to control the 4 SDRAM ICs, the new architecture requires 4 SDRAM

controllers to be used. These SDRAM controllers are identical to each other and

operate at 96MHz. The SDRAM controllers will be the only IP blocks in the

architecture to run solely at this frequency and therefore it should be possible through

careful design and floorplanning to meet the target clock frequency. It is suggested

158

that the Altera SDR SDRAM controller or a similar IP block be used for the new

architecture [127]. The SDRAM controller should have the following characteristics

and commands to obtain the most optimal performance;

1. CAS latency of 2 clock cycles.

2. 16-bit data path widths.

3. Burst length of 8 data words for DSP operations only.

4. Single data word transactions for the 8051.

5. Data masking for write operations executed from the 8-bit 8051

microcontroller.

6. Auto refresh of SDRAM to retain the integrity of stored data.

7. Auto configuration of the SDRAM’s mode register for CAS latency, burst

length, burst type and write burst mode.

8. NOP command (0) - No operation command.

9. READ command (1) - Starts single word read operation from 8052.

10. WRITE command (2) - Starts single word write operation from 8052.

11. BURST_READ command (3) - Start 8 word read operation from a DSP

address generator or ping-pong unit.

12. BURST WRITE command (4) - Start 8 word write operation from a DSP

address generator or ping-pong unit.

Unlike the majority of typical SDRAM controllers, for ease the user does not have to

have direct control over the sub-commands used to construct read and write memory

tractions, for example refresh and precharge. The specific sub-commands, timings

and the signal required to be transmitted to the SDRAM ICs may be found in the

SDRAM manufacturers datasheets, for example [92]. The interface for the SDRAM

controller is shown in figure 6.6.

159

FPGA Network Interface

elk (96MHz) ------
reset_n ------

cmd <2:0> 1 1
cmd_ack <----

address < 2 2 :0 I

data in <15:0> “ H
data_out <7:0> 4

datamask <1:0> I
ready <----

SDRAM
Controller

Off-Chip SDRAM Bus

4" " ► data<15:0>

address <13:0>

control signals <6:0>

Figure 6.6 I/O interface for the SDRAM controllers

The SDRAM controller allows two types of transactions; single word or burst 8 word

read and writes. When no operation is required, the cmd < 2 :0 is set to zero by the

network bus controller. When data is set-up on the data in bus, an address on the

address bus and a write command is issued to the controller, the controller outputs a

command acknowledgement and starts the memory transactions. In the case of

single word write transactions, the data set-up on the data in bus is sampled and

outputted to the SDRAM on the next cycle after the command acknowledgement.

During burst write transactions, the SDRAM controller expects 8 data words to be

set-up on the bus on consecutive clock cycles. Both transactions require a further

clock cycle for the automatic precharge of the SDRAM bank. Following a read

command, the controller also outputs a command acknowledge signal on the

following clock cycle and starts the read transaction with the address provided.

Three cycles following the command acknowledgment, valid data is asserted onto

the data out bus. In a similar manner to burst write transactions, burst read

transactions output 8 words of data on consecutive clock cycles followed by an

automatic precharge cycle. It must be noted that during the automatic refresh of the

SDRAM the controller will not send a command acknowledgment following any

command request unit the refresh process is completed. The ready signal from the

SDRAM controller remains low until a write transaction completes or valid read data

is available, when the ready signals pulses active high. This signal is used to enable

160

the microcontroller to function with off-chip memories that have latency due to

multiplexed addressing and read latency.

SDRAM memory transactions requested by the 8051 microcontroller only deal with

8-bit words. When an 8-bit word is outputted from the microcontroller the network

bus controller duplicates the 8-bits to form a 16-bit word. This 16-bit word is then

set-up on the data_in input and a mask (datajmask <1:0>) used to select the lower or

upper byte to be written. When a read request is made, the data mask is not used by

the SDRAM controller but by the network controller to select which of the upper and

lower byte, read from the SDRAM, should be sent onto the microcontroller.

The memory map for the new proposed architecture is shown in figure 6.7. The

reason for not including the scratch pad is to provide the most memory resources

possible to the DSP IP block designer. As the microcontroller has on-chip RAM for

its exclusive use and the DSP IP blocks now have access to fast SDRAM, it was no

longer necessary to include additional on-chip memory.

Address

0x27FFFFF

0x2000000

0x1800000

0x1000000

0x0800000
OxOOOOOFF
0x0000000

Figure 6.7 New proposed FPGA memory map

The microcontroller’s RAM and ROM are not represented in figure 6.7, as they are

not accessible by the rest of the system. These memory blocks are covered in section

SDRAM Image Bank 4

SDRAM Image Bank 3

SDRAM Image Bank 2

SDRAM Image Bank 1

Unallocated
Register Bank

161

6.3.2.3. Only the microcontroller will require access to the register bank via the

memory interface. The DSP IP blocks using the register bank will have direct

connection to and from specific registers and thus bypass the memory interface. This

will reduce the address complexity for the DSP IP blocks and associated address

generators.

6.3.2.3 Microcontroller & I2C Interface

An 8051 microcontroller has been specified for proposed architecture. The

advantage of using this microcontroller core is that it is code compatible with the

microcontroller in the sensor co-processor. This allows re-use of the majority of the

co-processor’s program code and the re-use of the current software tool chain. Other

possible 8-bit processor cores that could have been included were the Z80 and

Microchip PIC C165X. The 16-bit processors, such as Motorola 68000 and Intel

80186, were deemed to require too many FPGA resources.

The original Intel 8051 microcontroller, requires 12 or 24 cycles per instruction but

there are many recent versions of the microcontroller that process instructions in 1-2

cycles, for example the Dolphin Integration’s Flip 8051 Cyclone [128], Cast R8051

[129] and Digital Core Design’s DP8051 [130]. The DP8051 was selected for the

new architecture, as it provides sufficient performance for the control of the FPGAs

sub-systems. Compared to the other 8051 cores available, the DP8051 has the

distinct advantage of possessing three dedicated memory interfaces for up to a 64KB

program ROM, a 256byte data RAM and up to 16Mbytes of addressable external

memory. The ability to address 16Mbytes of external memory would allow a whole

128Mbit SDRAM bank addressable space to be accessed at any one time. Other

8051 microcontrollers, such as the Cast 8051, only allow up to 64kbytes of

addressable external memory.

The IP vendor Digital Core Design specifies that the DP8051 can be implemented in

an Altera APEX 20KE FPGA (as on the backplane) with clock speeds up to 68 MHz,

although it will be implemented in the new architecture with a 48MHz clock [131].

The lower clock frequency should make it easier to meeting timing requirement

162

during place and route of the microcontroller. The DP8051 also has a compatible

400kHz I2C master interface, also available from Digital Core Design, which is

shown in the proposed microcontroller sub-system in figure 6.8. Please note that

only the I/O ports used within the system are shown in the diagram. The 48MHz

system clock and reset have been excluded from each block component on the

diagram to improve readability.

ram data out<7:0>
interrupt Off-chip

I2C Busram addr<7:0>
sfirdataout

<7 :0ram we

ram_data_in
<7:0>

sfraddress
<7 :0

scl in

scl out
sfrd a ta in

<7 :0
mem we n

sda in
mem d out < 7 :0

sfr we
sda out

mem addr<23:0>Register
Bank &
Off-chip
SDRAMs

prgaddr < 1 3 :0bank sel < 2 :0

mem d in < 7 :0
prg_data < 7 :0

readyGroup 3

ROM
(16K x
8 bits)
Group

Group 1

RAM
(256 x
8 bits)

I C I/F

Group
DP8051
Micro­

controller

Figure 6.8 DP8051 microcontroller sub-system

The components and signals in figure 6.8 can be separated into 4 groups. The first

grouping is the 256 byte data memory, marked RAM, and its associated memory

buses. The data memory is used for storing temporary data during the execution of

the microcontroller program code.

The second group involves the 16Kbyte ROM. It is expected that the ROM will be

used to store program code to be executed on the microcontroller. Although the

DP8051 supports up to 64Kbytes ROM, 16Kbytes was deemed sufficient for most

programs, especially since the original architecture had an instruction store of only

256bytes.

163

The third group consists of the interface to the register bank and four off-chip

SDRAMs. As the DP8051 can only access up to 128Mbits, a bank select mechanism

(bank_sel) was implemented using a 3-bit register fed by a user controllable output

port. In the microcontroller’s default state, the register bank’s address space is

accessible. Setting bank_sel to 1 to 4 selected the appropriate off-chip SDRAM.

Internally, the DP8051 only supports 64Kbytes and therefore despite the external

memory interfacing supporting the full system memory map, a memory windowing

scheme is required. The memory windowing automatically allows 45056 bytes of

the external memory map to be internally addressable at any one time, in addition to

the 16kbyte ROM and 256 byte RAM. The memory map for the DP8051 is shown in

figure 6.9.

OxFFFF

OxFOOO

0x4000

0x0000

0x27FFFFF
Data RAM

Registers and
Off-chip
SDRAM

Mapping

Prog. ROM

0x0000

■X + OxBOOO
-X

DP8051 Internal
Memory Map

Figure 6.9 DP8051 Memory Map

System Memory
Map

As the microcontroller only reads and writes 8-bit data and not 16-bit, the LSB bit of

the mem_addr bus is used to select the upper or lower bytes by masking using the

datajnask signal on the SDRAM controllers during read or write transactions. Also,

the read transactions from the SDRAMs involve several cycles of latency. The

DP8051 accounts for this by using wait-states and reading the ready signal from the

SDRAM controller in-use, to indicate when valid data is available.

The fourth group involves the I2C interface unit. DP8051’s special function registers

(SFR) are used to drive 8-bit data, addresses and a write enable signal (sfr_we) to the

I2C interface unit to initialise read and write transactions on the off-chip I2C bus.

The SFRs are also used to receive data from the I2C interface unit. An interrupt wire

164

has been included between the DP8051 and I2C interface to trigger a hardware

interrupt if an off-chip device transmits unrequested data to the FPGA. This is an

unlikely event as the current configuration of the EEPROM, CMOS image sensor

and video encoder only allow them to function as slave devices. The advantage of

using the special function registers for this purpose, is that the registers are directly

addressable in the microcontroller’s memory map and are therefore serves as a

simple mechanism for reading and writing data to and from the I2C interface unit.

For further information on the I2C bus specification, consult [132].

6.3.2.4 Ping-Pong Unit

As mentioned in section 6.3.1.3, only minor modifications are required to the sensor

interface and video generator. Assuming images are only read in at 640x480 pixels,

the sub-sampling in the sensor interface could be removed. Assuming only full

640x480 frames images were to be transmitted to the monitor rather than scaled-up

sub-VGA images, the video generators line memory could be removed as no image

scaling would be required. The video generator’s address generator, shown in figure

4.8, could then be simplified as it would only be required to read 320 alternate image

lines per field, to create the final interlaced 640 line VGA image consisting of two

fields. Both asynchronous FIFO would have to remain to allow data to be

transmitted between different clock domains.

The ping-pong unit would require changes to both its read mechanism and write

mechanism. These changes would be in the form of modified address generator units

to support burst memory transactions. In the original architecture, the ping-pong unit

had the highest level of priority over image bank, with the exception of the SDRAM

decoder. This meant that under normal operation, it always had exclusive use of the

image banks when required. In the new architecture, the larger image size results in

the requirement for a pixel to be written every other 24MHz clock cycle and read

every 1-2 clock cycles. As the time between memory access is so small, it is difficult

for other system components, such as the microcontroller, to gain temporary access

to the memory being used. This is generally not an issue as the other system

165

components are likely to be accessing the 2 (out of 4) SDRAM banks not currently

being used by the ping-pong unit.

The new architecture ping-pong write unit stores pixels to be written into an image

bank in a 16-bit wide 64 word deep asynchronous FIFO. The first pixel and second

pixel entering the FIFO are concatenated to form a 16-bit word, with the first pixel

occupying the lowest significant bits. When the FIFO is filled with at least 16 pixels,

i.e. eight 16-bit words, a write request is made to the bus network controller. If

access is not granted immediately because another sub-system is accessing the

memory bank, the ping-pong write unit continues to write pixels into the FIFO. As

all the DSP address generators and microprocessor can only read or write up to 8

words to memory in any transaction, the ping-pong’s write unit is granted access

quickly. Overflow is prevented from occurring because once the FIFO contains 48

words, i.e. nearly full, it priority is upgraded from lowest to the highest priority in the

system allowing it to write pixel data out once any current bus network access has

finished. The data written out of the write FIFO to the memory is performed at

96MHz, i.e. 8 times the pixel rate, which is also twice as fast as the FIFO can be

filled.

The ping-pong’s read unit also incorporates a 16-bit wide 64 elements deep

asynchronous FIFO. When the FIFO is not full, a read request is made to the

required memory bank via the bus network controller. All other sub-systems have a

higher priority over shared memory banks than the read unit. This is unless the read

unit’s FIFO contains less than 16 words, in which case the read unit has the 2nd

highest priority in the system. Writes into the FIFO from memory occur at 96MHz,

while read from the FIFO occur at 24MHz to guarantee the required pixel rate for the

video generator of 13.5MHz. In the unlikely situation when a single memory bank is

used by both the write and read ping-pong units, the write unit is granted priority by

the bus network controller. If the write unit was not granted priority, valuable

information could be lost before being processed, causing important events to go

undetected. If the FIFO for the video generator is empty, the video generator will

output black pixels. This only causes a problem for the person viewing the monitor,

as the processing has already occurred. It must be noted that the ping-pong read unit

must re-submit its read request with an incremented address to take into account the

166

number of pixels that have been ‘lost’. Failing to adjust for ‘lost pixels’ would result

in too many pixels being outputted in the current frame and hence skewing the

image.

6.3.2.5 Configurable DSP block

In the original FPGA architecture, only one DSP operation could be performed in

any given cycle. To improve the image processing performance, the DSP sub­

system has been redesigned to incorporate two separate video streams and a

programmable bus matrix to support the construction of pipelines of up to 7 DSP

operation stages. Figure 6.10 shows the top-level of the DSP sub-system containing

3 example DSP blocks with only the datapaths shown for clarity.

datajn
*4—

data out

data_i n_ 1 v data_out_ 1 ̂ f

DSP IP
Block

DSP IP
Block

Bus Network
Interfaces

DSP Address
Generator 1 Memory

Bus
Network

DSP Address
Generator 2

--------- < H H >►

= 5
6 Interconnect

Buses

Dual Port DSP
IP Block

Figure 6.10 New DSP sub-system

As can be seen in figure 6.10, the address generators have been separated from the

DSP IP blocks to reduce the duplication of addressing logic. Figure 6.11 shows the

interface for the address generators.

167

data_out_rdy
data_in_rdy

datain <15:0>

data out<15:0>

finish*
wait

DSP Address Generator

► cmd<l:0>

► m em addr <26:0>

m e m d i n <15:0>

^ m e m d o u t <15:0>

cm dack
ready

48MHz Clock Domain 96MHz Clock Domain

Figure 6.11 DSP address generator I/O interface

The address generators are activated from the register bank by setting the least

significant bit high of the 8-bit addr_gen register to activate the first address

generator or the second least significant bit high for the 2nd generator. Upon

initialisation the DSP generators sample the minimum and maximum x and y

coordinates from the register bank to select the region of interest (ROI) for

processing and the output x and y coordinates to specify where to write the processed

image data to. The first address to be read is output on the mem addr port with a

value of 1 on the cmd bus to request a read transaction. The address generator waits

for an acknowledgement signal from the bus network controller to indicate that the

memory is available. When the ready signal goes high, the address generator

samples two pixels from the 16-bit incoming data bus and writes them at 96MHz to a

128 element asynchronous FIFO. The seven remaining data words of the burst read

transaction are also stored in the FIFO. The next address in the ROI is then

calculated. It must be noted that both address generators only generate Raster

addressing as this addressing scheme is suitable for most image processing

operations. The read transaction process is repeated while the FIFO contains not

more than 120 words. The read process finally terminates once all the pixels from

the ROI have been read.

When the FIFO is not empty and the wait signal not high, a data word consisting of

two pixels is read from the FIFO at 48MHz outputted on the data_in bus in

conjunction with a logic high data in rdy signal. This indicates to any attached DSP

168

IP block, that valid data is available for processing. While data remains in the FIFO

the process repeats.

If the da t aou t rdy is set high, the DSP address generator samples 16-bit data from

the data_out bus and writes it into a second 128 element deep asynchronous FIFO at

48MHz. When 8 or more words of data are stored in the FIFO, a burst write

transaction is requested by setting the cmd signal to a value of 2 and outputting the

write address. Following the receipt of a logic high cmd ack, the first 16-bit word is

output onto mem d out on the next cycle. The remaining seven data words are

outputted on subsequent 96MHz cycles. Once the last write transaction has been

performed, the finish signal is pulsed to reset the appropriate bit (i.e. 1st or 2nd LSB)

of the addr_reg register in the register bank.

Between the address generators and DSP IP blocks exists a collection of 6

interconnect busses and an input and output bus per address generator. These buses

have nodes that are configurable to enable connections to be made between

interconnect buses and the data input (data_in_l) and data output (da t a ou t l) of

each of the DSP IP blocks. Node configuration is performed by setting a register in

the register bank for each of the 6 interconnects and the 2 input and 2 output buses.

Each of the ten registers contains two 4-bit addresses. The least significant 4 bits

sets the incoming connection to the associated bus and the remaining 4 bits set the

outgoing connection from the bus. This mechanism provides the facility to connect

up to 13 different DSP IP blocks and/or 2 DSP address generators input and output

buses. Table 6.7 shows the addresses to be stored in the register bank to set-up

connections between DSP IP blocks and DSP address generators using the

programmable nodes.

Address Connection
15 DSP IP Block 13

4 DSP IP Block 2
3 DSP IP Block 1
2 DSP Address Generator 2 Input or Output
1 DSP Address Generator 1 Input or Output
0 None

Table 6.7 Interconnect Address Scheme

169

For example, if a three stage pipeline was set-up using DSP IP block 3,12,7 and

address generator 1, the registers would be set as in figure 6.12.

Output Bus 1 (data out) Register = 0001_1001

DSP IP
Block

DSP IP
Block 3

DSP IP
Block 7

Address
Generator 1

Input Bus 1 (data_in) Interconnect Bus 1 Interconnect Bus 2
Register = 0101 0001 Register = 11100101 Register = 10011110

Figure 6.12 Example DSP pipeline configuration

As can be seen in figure 6.12, only 4 out of the 10 node configuration registers need

to be set. It must be noted that the user is responsible for ensuring that only one bus

feeds each DSP IP block to prevent bus contention.

The inclusion of the separate address generators and pipeline mechanism, removes

the need to incorporate an address generator into each DSP IP block. This has the

effect of simplifying the I/O interfaces of DSP IP blocks in addition to reducing the

resources required for their implementation. Figure 6.13 shows the I/O interface for

the new DSP IP blocks.

elk -------► ------ ► da taout rdy
r e s e t n -------► ► data out<15:0>

data in rdy 1-------► Example DSP

data_in_l <15:0> ■".. ► IP Block

! data_in_rdy_2-------► -------► wait_l |
! data_in_2 <15:0> E ------ ► wait_2 !

| Optional 2nd data port I

Figure 6.13 I/O interface for new DSP IP blocks

The elk signal in figure 6.13 is a 48MHz clock signal and the reset_n signal is an

active low system-wide reset signal. Upon receiving an active high pulse on the

data in rdy l wire, the IP block samples 16-bits of data from the data in l bus.

Each DSP operation is pipelined and operates on two pixels simultaneously to

170

provide two pixels on the dataout bus every 48MHz clock cycle. When each data

word is outputted on data_out, it is accompanied by a logic high pulse on

data_out_rdy. The data_out_rdy signal is routed along with data out and also

controlled by the nodes to direct it into the data_in_rdy input of another DSP IP

block or back to an address generator.

Operations requiring two input video streams can be implemented using an optional

2nd data port. The dual port DP blocks function in a similar manner to the single port

IP blocks. In a dual port configuration both data in l and data_in_2 have 16

element deep synchronous FIFO mechanisms. When data arrives at either data_in

ports, it is written into the relevant FIFO. Only when at least one 16-bit data word

exists in each input’s FIFO, will the DSP operation take place. If either FIFO

contains 8 or more data words, an active high wait signal corresponding to the

correct input attached to the FIFO is sent to the address generator. This stops the

address generator writing further data onto the configurable bus structure. The FIFO

are 16 elements deep to allow any data currently being processing earlier on in a DSP

IP block pipeline to be collected without overflowing. This mechanism ensures that

two video streams entering a dual port DSP IP block remain synchronised.

The architecture adopted for the DSP sub-system has four advantages;

1. DSP operation pipelines can be constructed in real-time up to a length of 7

stages to allow 7 operations to be simultaneously executed on a video stream

from memory.

2. Two video streams can be processed in parallel and hence this improves the

processing rate.

3. The interconnect structure could be easily scaled by adding more interconnect

buses to support even longer pipelines.

4. The number of address generators could be increased to allow more

concurrent video streams to be processed, i.e. the architecture is scalable.

171

The disadvantages of the approach are;

1. The current configuration using two address generators only allows one dual

port DSP IP block to be implemented at any given time. This reduces the

flexibility of the pipeline.

2. The ROI horizontal size must be a multiple of 8 pixels as a result of the burst

read mechanism used to obtain data from memory or some data received by

the address generator may need to be discarded. This will reduce the

performance of the system when processing many ROI with horizontal sizes

of less than 8.

3. The mechanism required to set-up DSP operations is more complicated than

the original architecture, due to the requirement to configure the node register

in the register bank.

The third disadvantage could be minimised for the end user by writing

microcontroller sub-routines to automatically connect the required DSP operations

together to form pipelines followed by initialising the address generator.

6.3.2.6 Bus Network Controller

The new bus network controller performs a similar function to the controller in the

original architecture. All data transactions between the microcontroller, ping-pong

sub-system, DSP sub-system and memories are controlled by the unit. The network

controller selects which sub-system has access to a shared memory resource

depending on a set of priorities. Table 6.8 shows the priorities for each of the sub­

systems.

Priority (1 is highest) Sub-System
1 Ping-Pong Write Unit (FIFO near full)
2 Ping-Pong Read Unit (FIFO near empty)
3 Microcontroller
4 Address Generator 1
4 Address Generator 2
5 Ping-Pong Write Unit
5 Ping-Pong Read Unit

Table 6.8 Shared memory access priorities allocation

172

As there are 4 SDRAM banks and a maximum of 5 possible sub-systems requiring

memory access at any given time, careful algorithm design will minimise the number

of memory access request conflicts. It should be noted that only the DP8051

microcontroller accesses the register bank via its memory interface and that the

majority of the time the microcontroller should not need access to the 4 SDRAM

banks. As the register bank does not have a controller generating command

acknowledgement or valid data ready signals these are generated by the bus network

controller.

In addition to granting priorities, the network controller ensures that when an address

and a transaction request is received, the address is decoded and sent to the correct

SDRAM controller or the register bank. The network controller also connects the

datapaths between a memory and the sub-system that requested it. As the

microcontroller only uses 8-bit data, read and write transactions convert 8-bit data to

and from 16-bit data and use masking to ensure that the correct byte is read or

written to the SDRAM.

Signals are required to be transmitted at up to 96MHz through the network controller

and therefore the implementation of the bus network controller mainly consists of

simple priority based multiplexing structures. Unlike the original bus network, the

new network controller uses a register to pipeline all address, write data and control

signals to increase the likelihood of meeting the timing requirements. Also, as the

microcontroller’s memory interface only operates at 48MHz, a conversion process is

required to cross to and from the 96MHz memory clock domain. This is relatively

simple as all transactions originating from the microcontroller only read or write a

byte per transaction and not 8 data words as with the other sub-systems.

6.3.3 Analysis of Suggested New Architecture

As stated in section 6.3.1 although the original architecture could be relatively easily

scaled to support VGA images, the resultant DSP performance was very limited.

This sub-section details the comparison of various metrics between the original

173

architecture and the proposed architecture in order to highlight the improvements that

would result if the new architecture was implemented.

6.3.3.1 DSP Performance

The original architecture only allowed the execution of one DSP IP blocks at a time.

As it performed a maximum of one operation on one pixel every 24MHz clock cycle,

the maximum pixel processing rate was 24Mpixels/s. The new architecture has the

ability to process two video streams of 2 pixels per stream per 48MHz clock cycle. It

is also possible to configure the DSP reconfigurable bus network to create a pipeline

of 7 DSP IP block attached to address generator 1 and a single DSP IP block attached

to address generator 2. Therefore, in this configuration pipeline 1 can process 14

pixels per clock cycle and pipeline 2 can process 2 pixels per cycle. Therefore at

48MHz the maximum DSP performance is 768Mpixel/s, an increase of 32 times of

the original architecture’s performance.

6.3.3.2 Cycles Available for DSP

Despite the original architecture being capable of processing up to 24Mpixels/s, the

major limitation of the system was as a result of the lack of time available for

processing. This was caused by the requirement to use both memory banks for the

ping-pong mechanism. This was addressed in the new architecture in three ways,

namely by increasing the number of memory banks and the clock frequency of the

SDRAM, while increasing bandwidth of communications across the bus network and

through the network controller. This provided two whole memory banks dedicated

to DSP functions and increased the speed at which data could be transmitted to or

received from the DSP sub-system. This ensured that the DSP operation could take

place at a sustainable rate of 48MHz. The communications bandwidth was improved

by increasing the clock frequency of the memory sub-systems and bus network

controller from 24MHz to 96MHz, while extending the datapath widths from 8-bit to

16-bits. Hence, the bandwidth was increased by up to 8 times more than the original

architecture.

174

If the original architecture was modified as in section 6.3.1 to support VGA the

number of cycles available for contiguous image processing would be 68013 per

frame, as calculated in section 6.3.1.5. Using the new architecture would supply two

whole SDRAM banks for processing in addition to the 68013. Therefore, as the

bottleneck of the processing system is the DSP sub-system running at 48MHz, the

maximum number of cycles available for processing per image frame at 25fps is

calculated as in equation 6.1.

Cycles per frame = 68013 + 2
(48 MHz^

= 3908013 cycles
25 fps

Equation 6.1 Maximum cycles available for processing per image frame

As shown by equation 6.1, the number of cycles available for processing VGA

images is increased by 57 times.

Combining the maximum pixels processed per cycle and the cycles available for

processing, provides an indication of the amount of image data that can be processed.

The original architecture could achieve a maximum of 68013 pixels processed every

frame for single cycle read or write DSP operations and therefore a total of 1700325

pixels/s. However the new architecture could perform 8 operations on 2 pixels in

each of the 3908013 cycles per frame using pipelining and hence a total of 62528208

pixels/s. Given that most processing operations require one cycle to read the pixel

and one cycle to write the pixel back, read-modify-write (2 cycles) operations using

the original architecture would only allow a maximum of 850162 pixels/s to be

processed. To find the number of pixels that can be processed by read-modify-write

operations with the new architecture, the number of cycles for a 8 word burst read

and a burst write SDRAM transaction were calculated, as shown in table 6.9.

175

Clock Cycles Required SDRAM Read Transaction SDRAM Write Transaction
Network Bus Controller Latency 1 1
SDRAM Controller Latency 1 1
SDRAM Row Addressing 1 1
CAS Latency 2 n/a
Data In/Out 8 8

Total 13 11

Table 6.9 Number of 96MHz clock cycles to perform an SDRAM Read and Write

As shown in figure 4.4, a Precharge of the SDRAM bank is required for both reads

and writes followed by a NOP command. This has not been shown in table 6.9, as

these would occur during the same clock cycles as the network bus controller and

SDRAM controller latency of the sub-sequent SDRAM transaction. The total

number of 96MHz clock cycles for a combined read and write or 8 data words (i.e.

16 pixels) is 24 but this equates to a period equal to twelve 48MHz clock cycles.

Hence, the number of 48MHz clock cycles to obtain 1 data word is 12/8 = 1.5 cycles.

This reduces the number of pixels processed for read-modify-write operations to

62528208/1.5 = 41685472 pixels/s.

With an increase of pixels processable per second of over 49 times the original

architecture, it is now possible to process over 135 full 8-bit 640x480 pixel (VGA)

images per second. This drastically improves the system architecture for handling

VGA sized images, especially as the original architecture could only handle less than

3 full VGA images per second.

6.3.3.3 Microcontroller Instruction Execution Speed and Code Size.

The recommendation to include a microcontroller in the new architecture removes

the need for the off-chip sensor co-processor on the prototyping platform. Although

in final single IoC solutions, the off-chip co-processor core would have been

included automatically on the IoC, its inclusion in the new architecture will reduce

the time required to integrate IoC products. Also, as the DP8051 microcontroller

core is directly linked into the network bus controller, there is a decrease in the

latency of data transfers to/from memory. For example, the use of the off-chip 8051

and the original architecture required a minimum of 8 cycles to read a byte from the

176

register bank and write a byte back. This latency was due to the use of SDRAM

transactions across the IMPBUS and the SDRAM decoder. The new architecture

with the embedded DP8051 only requires 5 cycles, 3 read and 2 write.

This performance increase is particularly useful as the system controller’s functions

have been delegated to the embedded microcontroller. The removal of the system

controller simplifies the software development flow as program code can be

programmed in C on the microcontroller. Indeed, many simple image processing

operations may be more efficiently implemented in software as their performance in

software may be very similar to their hardware IP block implementation. It could

also be a possibility that the performance increase offered by DSP IP block

implementation over software implementation may not be required, as the operation

may not reside in the applications processing critical path. For example, the draw

rectangle algorithm is better implemented in software, as it is a very simple

algorithm. As the getobj DSP IP block requires 24% of the total logic cell usage in

the original architecture, it is more cost effective to redesign and implement the

algorithm in software. It was not possible to implement these DSP algorithms on the

system controller due to its limited range of instructions.

As a replacement for the system controller, it is unlikely that the microcontroller will

be any faster at decoding and executing DSP instructions. This is explained by the

fact that the system controller was designed, optimised and hard coded specifically

for DSP instruction execution. The microcontroller ability and handling of

conditional looping, ALU operations, function calls and a clock speed of 48MHz

instead of 24MHz, provides better general-purpose performance and easier coding of

applications compared to when using the system controller. At 48MHz, the

instruction processing speed should be up to 48MIPs, dependant on the mixture of

instructions used.

In terms of code size, both the DP8051 and original system controller use byte wide

instructions and literal values. Therefore the code sizes should be similar. The main

difference will be seen when executing a DSP instruction. Unlike the system

controller, the microcontroller will have to set the address of the correct register to

activate the DSP function before executing the DSP function by toggling the register.

177

This will require an overhead of up to several instructions and literals rather than just

one instruction used by the system controller. Fortunately, the code size of an

application should not be greatly affected, given that DSP functions are usually only

called several times per frame.

6.3.3.4 Pin Count, FPGA Logic Cell and Memory Usage

The use of two extra SDRAM devices and an I2C interface in the new architecture

affects the total number of I/O pins required. The addition of these to the

architecture and the removal of the IMPBUS increases the I/O pin count to 176 I/O

pins. This is an overall increase of 28.5%.

Table 6.10 shows a summary of the size of each of the architectures components

178

Component Name Number of Logic Elements Number of ESB
3x3Filter Block 1108 8
Register Bank 600 0
Core-level Architecture + Network control 599 0
Absdiff Block 210 0
Video Generator 183 0
Ping-Pong Unit 100 0
Sensor Interface 93 0
Video Test Pattern Generator 64 0
Top-Level Pins Structure 55 0
Threshold Block 36 0
192 MHz PLL 3 0

DP8051 Microcontroller 1750 (1301 0
I2C Controller 290 [133] 0
DSP Address Generator 1 250 0
DSP Address Generator 2 250 0
DSP Reconfigurable Node Network 200 0
SDRAM Controller 1 250 0
SDRAM Controller 2 250 0
SDRAM Controller 3 250 0
SDRAM Controller 4 250 0
DP8051 ROM (16KBytes) 16 8
DP8051 RAM (256 Bytes) 8 1

Sensor Interface FIFO 228 0
Absdiff FIFO 150 1
Ping-Pong Read Async. FIFO (128 x 16bit) 150 1
Ping-Pong Write Async. FIFO (128 x 16bit) 150 1
DSP Address Generator 1 Read Async.
FIFO (64 x 16-bit) 150 1
DSP Address Generator 1 Write Async.
FIFO (64 x 16-bit) 150 1
DSP Address Generator 2 Read Async.
FIFO (64 x 16-bit) 150 1
DSP Address Generator 2 Write Async.
FIFO (64 x 16-bit) 150 1
Video FIFO 113 1
Total 8206 25

Table 6.10 Logic Element and ESB nsage in the new architecture

As can be seen in table 6.10, the total number of logic elements required has reduced

from 9149 by 10.3%, to 8206 and the number of ESB required has dropped from 150

by 83.3% to 25. The decrease in logic elements is primarily as a result of the

removal of the getobj DSP IP block from the architecture. The removal of the two

16KByte on-chip memory banks has resulted in a dramatic decrease in the number of

179

ESB required. The reduction in the logic element and ESB usage may increase the

likelihood of meeting the timing requirement of the system.

The usage figures in table 6.10 for the implementation of the new architecture do not

include the getobjs, getcoords, copy and rectangle DSP IP blocks for several reasons.

The getobjs IP block was very large and hence very costly to implement in silicon

and therefore it is suggested it should be run in software on the DP8051

microcontroller. Both the getcoords and rectangle DSP IP blocks were very simple

and are more efficiently implemented in software. As the address generator could

read data and write it back to a different memory location, the copy DSP IP block is

redundant. Although the 3x3filter IP block uses more resources than any DSP IP

block or sub-systems, it should not be ported to run in software. The reason for this

decision is that it performs nine simultaneous multiplications which would not be

possible on the microcontroller. This DP block is also used in a large number of

applications and often may preside in its processing critical path. The values for the

remaining DSP IP blocks (3x3filter, Absdiff, Threshold) have had their LE count

reduced by 40LE per input data port, as an approximation of the reduction in LE, due

to the removal of their address generators and a simplification of their interfaces. An

approximate value of 40 LE was chosen as the original DSP IP copy block required

53 LE and it was estimated that the majority of LE were used for addressing.

The 3x3 filter block is the only DSP IP block requiring modification to support

640x480 images sizes. As 1848 logic cells are used for the implementation of three

80 element shift registers, the scaling of the architecture to VGA resolutions would

increase each shift register length to 640 elements. An increase to 640 elements

would require approximately 5120 logic cells per shift register, if one logic cell was

used per bit [134]. If three 640 element shift registers were implemented in the

FPGA, 15360 logic cells would be required. This is unacceptable given that this

would represent 63.2% of the total logic cells available in the Altera 20K600 FPGA!

In the current design of the 3x3filter IP block the first shift register in the chain is

redundant and can be removed, feeding pixels directing into the 2 shift register and

the first row of the filter multipliers. This reduces the resources used by the 2 shift

registers to 42.1% of the total FPGA resources.

180

An alternative approach would be to implement two 1024 byte memories and address

incrementing control logic. This maybe far more efficient in terms of logic cells

resource usage, while providing the same performance. It is possible to implement a

1024 element 8-bit line memory only using 4 ESB resources and no logic cells, as

shown by the line memory requirements in tables 4.15 and 4.16. As the addresses

generated for both line memories would be the same, a single address generator

could be implemented. A disadvantage of this approach would be the requirement to

use a memory clock speed of double the system clock speed, i.e. 96MHz. This clock

frequency is required to allow both a read and a write operation to each of the line

memory to take place in the period of a system clock cycle and hence maintain a

pixel data rate of 48MHz. This is the approach adopted for the new architecture and

results in a saving of approximately 1798 logic cells, assuming the new line memory

address generator would require 50 logic cells. The implementation of the two line

memories would require a total of 8 ESB blocks consisting of 2KBytes of RAM. The

inclusion of the reduction in LEs as a result of the removal of the address generator

would bring the total resources usage to 1108 LE and 8 ESB, as shown in table 6.10.

The register bank, core-level architecture and bus network controller are unlikely to

change greatly from their original LE and ESB values as their complexity has

increased at the same time as the support structures for 4 DSP IP blocks have been

removed. Therefore their values have been left unchanged.

The remaining changes in LE and ESB usage were:

• The LE usage for the video generator remains the same but the scaling to

640x480 pixel images removes the need for the associated line memory.

• The ping-pong unit’s LE usage has been estimated at 100 LE, almost a

doubling in LE count from the original architecture, as a result of

implementing a control structure for its FIFOs. The FIFOs themselves have

been approximated at 150 LE and 1 ESB, each using the video generator’s

FIFO as a base for calculation. These figures have also been used to estimate

the LE and ESB usage of the remaining FIFOs in the system.

181

• Using the percentage increase in the number of I/O pins as a guide, the total

number of LE used by the top-level pin structure has been estimated to

increase by 28% to 55LE.

• The recommendation to implement a microcontroller in the FPGA has

resulted in a cost of 1750LE [130] and a further 24 LE and 9 ESB for

implementing of the data RAM and program ROM. The inclusion of the I2C

interface also adds a further 290 LE to the systems total usage [133],

• The addition of 4 SDRAM controllers added a further 250 LE each. This

figure was obtained by using Altera’s reference SDRAM controller usage

figures as a base [127]. As Altera’s design did not include a ready/wait-state

signal, the count was increased for 218 to 250 LE to compensate for the extra

circuitry required. The address generators for the DSP operations were also

estimated at 250 LE.

6.3.3.5 Summary

The new architecture incorporating a microcontroller and the use of two parallel

processing pipelines has increased the DSP capability from 24Mpixel/s to

768Mpixel/s. The overall system performance has increased by 49 times. This has

required the inclusion of an extra two SDRAM banks to provide 4 banks totalling

64Mbytes of RAM. The resultant resource usage cost of increasing the performance

of the system has not been realised due to the removal of some of the DSP IP block

operations and the recommendation of executing some DSP operation in software on

the microcontroller.

The changes required at PCB level are minor and it is still possible to re-use the

original daughter board and FPGA backplane. It is expected that the power

requirements of the prototyping system will only increase as a result of the use of

SDRAM.

6.3.4 Colour Processing

An extension to the new architecture could be its adaptation for colour image

processing. Typically, traditional machine vision applications only use the

182

luminance pixel data, as this is more useful for detecting edges, boundaries and other

discontinuity. Using colour is difficult, as the colour of an observed object depends

on the environmental lighting and reflectivity of that object. An example application

where colour information is particularly useful is in skin tone detection, for example

the tracking of a person’s hand. It has been shown that despite human colour

perception of the skin colour of different races, once intensity has been factored out

the distribution of skin colour is clustered in a small area of colour-space [135]. This

allows the application algorithms to detect pixels that may represent an area of skin.

The effects of implementing colour processing on the new architecture are several

fold. The image data received from the sensor is formatted as luminance and two

sub sampled colour difference signals (YCbCr). Every 4 bytes contains two pixels,

i.e. 16bits per pixels. Storing the unprocessed data would require twice the memory

requirement of luminance alone which is used in the new system architecture. If the

pixel data were demultiplexed, each pixel would consist of 24bits, i.e. requiring 3

times the storage requirement of the current architecture’s pixels. As the architecture

has 64Mbytes of SDRAM memory available the increase in storage requirement is a

relatively minor issue.

The use of colour pixels significantly affects the processing rate of DSP operation

pipelines due to a three-fold increase in the size of pixel data. Its effect would be

realised as a reduction in the pixel processing rate of any DSP pipeline containing at

least one DSP operations using both luminance and chrominance pixel data. As a

result, the maximum processing rate of 768Mpixels/s for luminance only DSP

operations would fall to 256Mpixels/s.

If the pixel data was demultiplexed to 24-bits per pixel in the ping-pong unit, the

frequency required to write and read pixel data to memory would increase by three

times, if the widths of the data bus remained unchanged. The increase flow of data

on the bus network would also reduce the slack time available for the microcontroller

to access the SDRAM banks. As the microcontroller only operates on byte wide

data, its performance with software algorithms for 24-bit colour processing would be

further reduced.

183

In some instances algorithms may not use a luminance/chrominance (YCbCr) colour

space and instead use Red/Green/Blue (RGB) or Hue/Saturation/Luminance (HSL)

colour spaces. This could add extra latency in a DSP pipeline to perform a colour

space conversion before and after performing a DSP operation, as well as increasing

the number of logic cells required to implement a conversion IP block.

Overall the use of colour pixel data is likely to reduce the DSP rate of the FPGA

architecture by a factor of at least three. Therefore, if possible, it is desirable to

implement DSP algorithms which only require luminance pixel data.

6.4 Conclusions

A new two-board prototyping platform for the development of low-cost mass-market

IoC applications has been presented. Its key characteristic is its relatively low-cost,

modular and flexible structure, which enables a potentially wide range of imaging

and machine vision applications to be constructed from a common base. These

applications could include intelligent lighting control systems and children’s toys.

An example application was successfully implemented to demonstrate the system’s

suitability as a prototyping system. The developed hardware and software core

architecture and an image processing IP block library, allows application designers to

concentrate on application issues. The image processing IP blocks created were also

designed for use in other future STMicroelectronics products. The careful selection

of board-level components should reduce the potential cost-related and time-related

issues of intellectual property licensing. To calculate the cost of manufacturing a

prototyped application as a single integrated circuit, a high-level IoC cost model was

formulated. A total system cost was calculated for the example application, if

integrated as an IoC. This revealed that the IoC could be manufactured for less than

a $10 unit cost for a quantity of 10000 units. This model highlights the need for

analysis of applications to find the optimum sized embedded image sensor to meet

resolution and cost requirements. A new architecture has also been proposed using

recommendations from the completion of the old architecture to create a prototyping

system capable of supporting image processing and machine vision applications

requiring 640x480 pixel images (VGA) at a frame rate of 25fps. The new

184

architecture has shown that the inclusion of a microcontroller, two extra SDRAM

banks, two new DSP pipelines and a reallocation of DSP operations to software can

result in up to a 32 times increase in DSP performance to 768Mpixels/s. The

increase in the time available for DSP processing has increased the overall system

performance by up to 49 times.

This research has resulted in not only providing STMicroelectronics with a re-usable

IoC prototyping platform, avoiding the potential cost of developing prototyping

architecture for specific projects, but also demonstrated the suitability of frame-based

architectures for use in IoCs.

185

References

[1] Machine Vision Handbook. UK Industrial Vision Association, 2001.

[2] Braggins D. The European Machine Vision Market - a 20-year perspective.

Proceedings of the Industrial Vision Day; 2004 June 2; Lyngby, Denmark.

[3] The Machine Vision Market: 2003 Results and Forecasts to 2008. Automated

Imaging Association; 2004.

[4] ATI Radeon X800 3D Architecture White Paper. Canada: ATI Technologies Inc.;

2004.

[5] Bohr M. High Performance Logic, Technology and Reliability Challenges

[powerpoint presentation]. International Reliability Physics Symposium; 2003 Apr

1.

[6] Xilinx Extends High-End FPGA Leadership By Shipping World's Highest

Capacity & Capability FPGA. San Jose, California: Xilinx Inc.; 2003 Sept 16.

[7] VISoc Intelligent Camera Short-Form Data Sheet. Trento, Italy: Neuricam S.p.A;

2002 .

[8] Claasen TACM. Platform design: the next paradigm shift to deal with

complexity. Proceedings of the 2003 International Symposium on VLSI Technology,

Systems, and Applications; 2003 Oct 6-8; Hsinchu, Taiwan, p. 8-12

[9] Keating M, Bricaud P, Rickford RJ. Reuse Methodology Manual for System-On-

A-Chip Designs. 3rd ed. Norwell, Massachusetts: Kluwer Academic Publishers;

2002.

[10] Altizer B. Platform-Based Design: The Next Reuse Frontier. Proceedings of the

Embedded Systems Conference; 2002 Mar 12-16; San Francisco, California.

186

[11] Martin G. Design Flows for IP Integration: A Tutorial. Medea+ Design

Automation Conference; 2003 Nov 4-6; Stuttgart, Germany.

[12] Altera Stratix II Device Handbook, ver.1.0; Altera Corp.; 2004.

[13] Xilinx Virtex-4 Revolutionizes Platform FPGAs White paper. San Jose,

California: Xilinx Inc.; 2004.

[14] General MPW schedule and prices 2004, Leuven, Belgium: Europractice IC

Service; 2004.

[15] Ejiri M. Robotics and Machine Vision for the Future. Proceeding of the

IEEE/ASME. International Conference on Advanced Intelligent Mechatronics; 2001

July 8-12; Como, Italy. 2:917-922.

[16] McGarry JE. An Outlook for Machine Vision. Automated Imaging Association

[online]. Available at:

http://www.machinevisiononline.org/public/articles/articlesdetails.cfm?id=l 134,

Accessed May 3, 2004.

[17] Soini AJ. Machine Vision technology take-up in industrial applications.

Proceeding of the 2nd IEEE International Symposium on Image and Signal

Processing and Analysis; 2001 June 19-21; Pula, Croatia, p. 332-338.

[18] Collins G., Silver B. Low-cost vision sensors. DEE Manufacturing Engineer

2001 Apr; 80(2):89-92.

[19] The Machine Vision Market: 2002 Results and Forecasts to 2007. Automated

Imaging Association, 2004.

[20] North American Vision Market Grows 4% in 2003, Reversing 2002 Declines.

Automated Imaging Association [online] 2004 Mar 5. Available at:

187

http://www.machinevisiononline.org/public/articles/articlesdetails.cfm?id=l

http://www.machinevisiononline.org/public/articles/archive.cfm?cat=20, Accessed

May 3, 2004.

[21] Richtmyer R. Shifting fundamentals sink traditional industry forecasting

methods. CNN Money 2002 Jan 8.

[22] LaPedus M. Analysts forecast IC market slowdown in '05, '06. Electronics

Supply & Manufacturing [online] 2004 June 7. Available at: http://www.my-

esm.com/showArticle?articleID=21401818. Accessed Dec 20, 2004.

[23] Clarke P. SIA sees 28.4% 2004 chip boom then two-year bust. EE Times

[online] 2004 June 10. Available at:

http://www.eetuk.com/mr/news?mmyyyy=06/2004. Accessed Dec 20, 2004.

[24] Boom-to-bust cycle looms for semiconductor industry. Silicon Strategies

[online] 2003 Oct 11. Available at:

http://www.siliconstrategies.com/article/showArticle.jhtml?articleId=l 6100200.

Accessed Dec 20, 2004.

[25] Shelton J. Fabless Vision. Future Fab International, 2003 Febl 1; vol. 14.

[26] Roelandts W. Creating Fabless Dynasties [powerpoint presentation], Fabless

Semiconductor Association, 2002 Mar 18.

[27] Fuller B. Fab costs, capacity glut seen pointing to consolidation. EE Times

[online] 2003 Mar 17. Available at:

http://www.eetimes.com/article/showArticle.jhtml7articlekNl 8308168. Accessed

Dec 20, 2004.

[28] Chasey AD, Merchant, S. Construction Challenges for the 300 mm Fab. 10th ed.

Semiconductor Fabtech; 1999. p. 145-153.

188

http://www.machinevisiononline.org/public/articles/archive.cfm?cat=20
http://www.my-
http://www.eetuk.com/mr/news?mmyyyy=06/2004
http://www.siliconstrategies.com/article/showArticle.jhtml?articleId=l
http://www.eetimes.com/article/showArticle.jhtml7articlekNl

[29] Fab Update: Capital Spending to Increase by 55%. Semiconductor International

[online] 2004 July 1. Available at: http://www.reed-

electronics.com/semiconductor/article/CA433426. Accessed Dec 20, 2004.

[30] Wilson A. CCD/CMOS sensors spot niche applications, Vision Systems Design

2003 June.

[31] SMaL Camera Technologies [online] Available at:

http://www.smalcamera.com. Accessed Dec 20, 2004.

[32] Storm GG, Hurwitz JED, Renshaw D, Findlater KM, Henderson RK, Purcel

MD. Combined Linear-Logarithmic CMOS Image Sensor. Proceedings of the IEEE

International Solid-State Circuits Conference; 2004 Feb 15-19; San Francisco. 1:116-

117.

[33] Hoefflinger B. Horizons in Vision - Vision Imaging Moves Outdoors. Vision

Systems Design [online] 2002 Dec. Available from:

http://vsd.pennwellnet.com/Articles/Article_Display.cfm?Section=Archives&Subsec

tion=Display&ARTICLE_ID=163617. Accessed Sep 4, 2004.

[34] Foresti GL, Regazzoni CS. New Trends in Video Communications, Processing

and Understanding in Surveillance Applications [Tutorial]. IEEE International

Conference on Image Processing, 2001 Oct 7-10; Thessaloniki, Greece.

[35] Observation Camera User Guide, Issue 2, Nokia, 2003.

[36] Vellacott O. CMOS in Camera. IEE Review 1994 May 19; 40(3):111-114.

[37] Stevenson I, Investigation of Imputer Architecture [dissertation]. Edinburgh:

Univ. Edinburgh; 1997.

[38] Galbraith I, Cairngorm Weather Station [online]. Available from:

http://www.phy.hw.ac.uk/resrev/aws/riming.htm. Accessed Sep 5, 2004.

189

http://www.reed-
http://www.smalcamera.com
http://vsd.pennwellnet.com/Articles/Article_Display.cfm?Section=Archives&Subsec
http://www.phy.hw.ac.uk/resrev/aws/riming.htm

[39] Overview of Legend 500 Series Smartlmage Sensors [video presentation], DVT

Corporation, April 24, 2004.

[40] Product Information VCSBC11-VCSBC38. Germany: Vision Components

GmbH, April 30, 2004.

[41] Product Information VCXX cameras. Germany: Vision Components GmbH,

May 3, 2004.

[42] Product Information VC20XX cameras. Germany: Vision Components GmbH,

May 3, 2004.

[43] Impact T10 Intelligent Camera. Eden Prairie, Minnesota: PPT Vision Inc., June

7, 2004.

[44] ZiCAM Datasheet, Rev. 2. Pulnix Inc., May 2004.

[45] OPSIS 5150ALC Vision Processing Camera System. Wintriss Engineering

Corporation.

[46] Lyon RF. The optical mouse, and an architectural methodology for smart

digital sensors. In proceeding of CMU Conference on VLSI Structures and

Computations; Oct 1981. Rockville, Maryland; Computer Science Press; 1981.

[47] Mahowald M. Analog VLSI chip for stereo-correspondence. Proceedings of the

IEEE International Symposium on Circuits and Systems; 1994 May 30-Jun 2;

London, England. 6:347-350.

[48] Mead C. Adaptive retina . In: Mead C, Ismail M, editors. Analog VLSI

implementation of neural systems. Boston, Massachusetts: Kluwer Academic

Publishers; 1989. p. 239-246.

190

[49] Bair W, Koch C. Real-time motion detection using an analog VLSI zero-

crossing chip. Proceeding of the SPIE, Visual Information Processing: From Neurons

to Chips; 1991. 1473:59-65.

[50] Kobayashi H, Matsumoto T, Yagi T, Tanaka K. Light-adaptive architectures for

regularization vision chips. Neural Networks; 1995. 8(1): 87-101.

[51] Mahowald M, Delbriick T. Cooperative stereo matching using static and

dynamic image features. In Mead C, Ismail M, editors. Analog VLSI implementation

of neural systems. Boston, Massachusetts: Kluwer Academic Publishers; 1989. p.

213-238.

[52] Mahowald M, Delbruck T. Cooperative stereo matching using static and

dynamic image features. In Mead C, Ismail M, editors. Analog VLSI implementation

of neural systems. Boston, Massachusetts: Kluwer Academic Publishers; 1989.

p.171-188.

[53] Standley DL. An object position and orientation IC with embedded imager.

IEEE Journal of Solid State Circuits 1991 Dec; 26(12): 1853-1859.

[54] Venier P, Landolt O, Debergh P, Arreguit X, Analog CMOS photosensitive

array for solar illumination monitoring. Proceeding of the 43rd IEEE International

Solid State

Circuits Conference; 1996 Feb 8-10; San Francisco, p. 96-97.

[55] Andreou AG, Boahen KA. A 590,000 transistor 48,000 pixel, contrast sensitive,

edge enhancing, CMOS imager-silicon retina. Proceedings of the 16th Conference on

Advanced Research in VLSI; 1995 Mar 27-29; Chapel Hill, Carolina. p225-240.

[56] Andreou AG, Boahen KA. A 48,000 pixel, 590,000 transistor silicon retina in

current-mode subthreshold CMOS. Proceedings of the 37th Midwest Symposium on

Circuits and Systems; 1994 Aug 3-5; Layfayette, Louisiana.l:97-102.

191

[57] Meitzler RC, Andreou AG, Strohbehn K, Jenkins RE. A sampled-data motion

chip. Proceedings of the 36th Midwest Symposium on Circuits and Systems; 1993

Aug 6-18; Detroit, Michigan. 1:288-291.

[58] Meitzler RC, Strohbehn K, Andreou AG. A silicon retina for 2-D position and

motion computation. Proceedings of the IEEE International Symposium on Circuits

and Systems; 1995 Apr 28-May 3; Seattle, Washington. 3:2096-2099.

[59] Andreou AG. Towards “Eyes” for Sensor Network Systems [presentation]. 2004

Telluride Workshop on Neuromorphic Engineering; 2004 Jun 27-Jul 17; Telluride,

Columbia.

[60] Van der Spiegel J, Etienne-Cummings R, Nishimura M. Biologically inspired

vision sensors. 23rd International Conference on Microelectronics; 2002 May 12-15;

Philadelphia, Pennsylvania. 1:125-131.

[61] Wodnicki R, Roberts GW, Levine MD. Design and Evaluation of a Log-Polar

Image Sensor Fabricated Using a Standard 1.2 mm ASIC CMOS Process. IEEE

Journal of Solid-State Circuits 1997 Aug; 32(8): 1274-1277.

[62] Etienne-Cummings R, Van der Spiegel J, Mueller P, Zhang MZ. A Foveated

Silicon Retina for Two-Dimensional Tracking. IEEE Transactions Circuits and

Systems II: Analog and Digital Signal Processing 2000 June; 47(6):504-517.

[63] Pardo F, Dierickx B, Scheffer D. CMOS foveated image sensor: signal scaling

and small geometry effects. IEEE Transactions on Electron Devices 1997 Oct;

44(10): 1731-1737.

[64] Debusschere I, Bronckaers E, Claeys C, Kreider G, Van der Spiegel J, Sandini

G et al. A retinal CCD sensor for fast 2-D shape recognition and tracking. Sensors

and Actuators 1990. p. 456-A60.

192

[65] Lule T, Benthien S, Keller H, Miitze F, Rieve P, Seibel K et al. Sensitivity of

CMOS based Imagers and Scaling Perspectives. IEEE Transactions on Electron

Devices 2000 Nov; 47(11): 2110-2122.

[66] Anderson S, Bruce WH, Denyer PB, Renshaw D and Wang G. A Single Chip

Sensor & Image Processor for Fingerprint Verification. Proceedings of the IEEE

Custom Integrated Circuits Conference; 1991 May 12-15; San Diego, California, p.

12.1/1-12.1/4.

[67] Skribanowitz J, Knobloch T, Schreiter J, Konig A. VLSI implementation of an

application-specific vision chip for overtake monitoring, real time eye tracking, and

automated visual inspection. Proceedings of the 7th International Conference on

Microelectronics for Neural, Fuzzy and Bio-Inspired Systems; 1999 Apr 7-9;

Granada, Spain, p. 45-52.

[68] Ishikawa M. 1ms VLSI vision chip system and its applications. Proceedings of

the 3rd IEEE International Conference on Automatic Face and Gesture Recognition;

1998 Apr 14-16; Nara, Japan, p. 214-219

[69] Komuro T, Ishii I, Ishikawa M. Vision chip architecture using general-purpose

processing elements for 1ms vision system. Proceeding of the 4th IEEE International

Workshop on Computer on Computer Architectures for Machine Perception; 1997

Oct 20-22; Como, Italy, p. 276-279.

[70] Eklund JE, Svensson C, Astrom A. VLSI implementation of a focal plane

image processor-a realization of the near-sensor image processing concept. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems 1996 Sept; 4(3):322-

335.

[71] Kagami S, Komuro T, Ishii I, Ishikawa M. A real-time visual processing system

using a general-purpose vision chip. Proceedings of the IEEE International

Conference on Robotics and Automation; 2002 May 11-15; Washington D.C.

2:1229-1234.

193

[72] Ishikawa M, Komuro T. Digital vision chips and high-speed vision systems.

Proceedings of the 2001 Symposium on VLSI Circuits; 2001 June 14-16; Kyoto,

Japan, p. 1-4.

[73] Komuro T, Kagami S, Ishikawa M. A Dynamically Reconfigurable SIMD

Processor for a Vision Chip. IEEE Journal of Solid-States Circuits 2004 Jan 1;

39(l):265-268.

[74] Dudek P, Hicks PJ. A General-Purpose Vision Chip with a Processor-Per-Pixel

SIMD Array. Proceedings of the European Solid State Circuits Conference; 2001

Sept 18-20; Villach, Austria, p.228-231.

[75] Dudek P. SCAMP [online]. Available from:

http://personalpages.umist.ac.uk/staff7p.dudek/projects/scamp/. Accessed: December

20, 2004.

[76] Dudek P. A Processing Element for an Analogue SIMD Vision Chip.

Proceedings of the European Conference on Circuit Theory and Design; 2003 Sept 1-

4; Krakow, Poland. 3:221-224.

[77] Dudek P. A 39x48 General-Purpose Focal-Plane Processor Array Integrated

Circuit. Proceedings of the IEEE International Symposium on Circuits and Systems,

2004 May 23-26; Vancouver, Canada. 5:449-452.

[78] Jonker PP. Why linear arrays are better image processors. Proceedings of the

12th IAPR International Conference on Pattern Recognition; 1994 Oct 9-13;

Jerusalem, Israel.

IEEE Computer Society Press, Los Alamitos, California; 1994. (3)334-338.

[79] Gokstorp M, Forchheimer R. Smart vision sensors. Proceedings of the 1998

International Conference on Image Processing, 1998 Oct 4-7; Chicago, Illinois.

1:479-482

194

http://personalpages.umist.ac.uk/staff7p.dudek/projects/scamp/

[80] Chen K, Danielsson PE, Astrom A. PASIC A sensor/processor array for

computer vision. Proceedings of the International Conference on Application

Specific Array Processors; 1990 Sept 5-7; Princeton, New Jersey, p. 352-366.

[81] Kleihorst RP, Abbo AA, van der Avoird A, Op de Beeck MJR, Sevat L,Wielage

P et al. Xetal: a low-power high-performance smart camera processor. Proceedings

of the 2001 IEEE International Symposium on Circuits and Systems; 2001 May 6-9;

Sydney, Australia. 5:215-218.

[82] Kleihorst R, Lee M-S, Abbo A, Cohen-Solal E. Real time skin-region detection

with a single-chip digital camera. Proceedings of the IEEE International Conference

Image Processing; 2001 Oct 7-10; Thessaloniki, Greece. 3:306-309.

[83] Ni Y, Guan J. A 256x256 pixel smart CMOS image sensor for line-based stereo

vision applications. IEEE Journal of Solid-State Circuits 2000 July; 35(7): 1055-

1061.

[84] Fang W-C. A system-on-chip design of a low-power smart vision system.

Proceeedings of the 1998 IEEE Workshop on Signal Processing Systems; 1998 Oct

8-10; Cambridge, Massachusetts, p. 63-72.

[85] Fang W-C. A smart vision system-on-a-chip design based on programmable

neural processor integrated with active pixel sensor. Proceeding of the 2000 IEEE

International Symposium on Circuits and Systems; 2000 May 28-31; Geneva,

Switzerland. 2:128-131.

[86] Albani L, Chiesa P, Covi D, Pedegani G, Sartori A, Vatteroni M. VISoc: a

Smart Camera SoC. Proceedings of the 28th European Solid-State Circuits

Conference; 2002 Sept 24-26; Florence, Italy, p. 367-370.

[87] McBader S. On the Feasibility of Miniaturised Vision Systems. European

Commission's Annals of the Marie Curie Fellowships; vol 3; 2004.

195

[88] Horowitz P, Hill W. The Art of Electronics. 2nd ed. Cambridge, England:

Cambridge Press; 1989. p. 970-971.

[89] Aptix System Explorer Product Brief. Aptix Corp.; 2000.

[90] DMEK 6414 Datasheet. ATEME SA, 2004.

[91] STV0674 Tri-mode CMOS digital camera co-processor Datasheet. Edinburgh:

STMicroelectronics Ltd.; July 2003.

[92] K4S281632D 128Mbit 2M x 16Bit x 4 Bank CMOS SDRAM Datasheet. Rev

0.1; Samsung Electronics; Sept. 2001.

[93] ULN2064B 50V - 1.5A Quad Darlington Switch Datasheet.

STMicroelectronics; Sept 2003.

[94] Gonzalez RC, Woods RE. Digital Image Processing. Reading, Massachusetts:

Addison-Wesley Publishing; 1993.

[95] Wolf WH. Computers as Components: Principals of Embedded Computing

System Design. San Francisco, US: Morgan Kaufmann Publishers; 2001. p. 58-59.

[96] Lyon RF, Hubei PM. Eyeing the Camera: Into the Next Century. Proceedings

of the 10th Color Imaging Conference; 2002 Nov 12; Scottsdale, Arizona, p. 349-355.

[97] ITU-R BT.656-5, Interfaces for Digital Component Video Signals in 525-line

and 625-line Television Systems Operating at the 4:2:2 Level of Recommendation

ITU-R BT.601; 1995.

[98] Jack K. Video Demystified - A Handbook for the Digital Engineer. 3rd ed. Eagle

Rock, Virginia: LLH Technology Publishing; 2001. p. 94.

196

[99] Panda P, Dutt N, Nicolau A. Memory issues in embedded systems on chip:

optimizations and exploration. Norwell, Massachusetts: Kluwer Academic

Publishers; Dec 1999.

[100] The Lenna Story [online]. Available at: http://www.lenna.org. Accessed Feb

23, 2005.

[101] Khare J, Heineken HT, d’Abreu M. Cost Trade-Offs in System On Chip

Designs. Proceedings of the 13th IEEE International Conference on VLSI Design;

2000 Jan 4-7; Calcutta, India, p. 178-184.

[102] Kahng A, Smith G. A New Design Cost Model for the 2001 ITRS. Proceeding

of the IEEE International Symposium on Quality Electronic Design; 2002 March 18-

21; San Jose, California, p. 190-193.

[103] 2005 IC Cost Model. Rev. 1; Georgetown, Massachusetts: IC Knowledge

LLC.; 2005.

[104] OV7640 Color CMOS VGA (640x480) CAMERACHIP. Ver 2.0; OmniVision

Technologies, Inc.; Feb 2004.

[105] MT9V011 -1 /4-Inch VGA Digital Image Sensor Datasheet. Micron

Technology, Inc.; 2004.

[106] VS6502 VGA Color CMOS Image Sensor Module Datasheet. Edinburgh:

STMicroelectronics Ltd.; July 2004.

[107] International Technology Roadmap for Semiconductors, 2003.

[108] Gate Counting Methodology for APEX 20K Devices. Application Note 110,

ver. 1.01; Altera Corp.; Sept 1999.

197

http://www.lenna.org

[109] Embedded Memory Generator. Dolphin Integration [online]. Available at:

http://www.dolphin.fr. Accessed Dec 20, 2004.

[110] Mahoney J. Sticker shock for photomasks. Electronic Business Online [online].

2003 Jan 5. Available at: http://www.reed-electronics.com/eb-

mag/index.asp?layout=article&stt=000&articleid=CA294465, Accessed May 3,

2004.

[111] TSMC technology portfolio. Hsinchu, Taiwan: TSMC; April 2003.

[112] Integrating Product-Term Logic in APEX 20K Devices. Application Note 112,

ver. 1.0; Altera Corp.; April 1999.

[113] Nios II Processor Reference Handbook, ver. 1.2; Altera Corp.; Jan 2005.

[114] MicroBlaze - The Low-Cost and Flexible Processing Solution. Product brief,

San Jose, California: Xilinx Inc.; 2005.

[115] Xtensa V Performance and Benchmarks [online]. Tensilica Inc., 2005.

Available at: http://www.tensilica.com/html/performance.html. Accessed Feb 2,

2005.

[116] Spartan-3E Data Sheet, ver. 1.0; Xilinx Inc.; Mar 1, 2005.

[117] Cyclone II Device Handbook, ver. 1.2; Altera Corp.; Feb 2005.

[118] Xilinx Shatters Price/Density Barrier For Low Cost Fpgas With New Spartan-

36 Family Starting At Less Than $2.00. Press Release #0531. Monterey, California:

Xilinx Inc.; Mar 1, 2005.

[119] Altera Demonstrates 90-nm Leadership as New Low-Cost Cyclone II FPGAs

Begin Shipping Early. Press Release. San Jose, California: Altera Corp.; Jan 21,

2005.

198

http://www.dolphin.fr
http://www.reed-electronics.com/eb-
http://www.tensilica.com/html/performance.html

[120] STMicroelectronics Delivers Best-in-Class Single-Chip VGA Camera in Tiny

Module for High-Volume Mobile Applications. Press Release. Geneva, Switzerland:

STMicroelectronics; Feb 9, 2005.

[121] Bums R, Homsey R. CMOS Image Sensor With Cumulative Cross Section

Readout. IEEE Workshop on CCDs and Advanced Image Sensors; 2003 May 15-17;

Elmau, Germany.

[122] Lupa 1300 Datasheet, ver. 3.0. Mechelen, Belgium: Fillfactory NV; July 10,

2004.

[123] Product Selector Xilinx Virtex-4 Series FPGAs. San Jose. Xilinx Corp; Spring

2005.

[124] Altera Stratix II Device Handbook. Datasheet, ver. 3.0. San Jose: Altera Corp.;

May 2005.

[125] Horikawa H. Merged-logic-type embedded DRAM suits high-performance

SoCs [online]. EEtimes. 2003 Mar 17. Available from:

http://www.eetimes.com/in_focus/silicon_engineering/OEG20030317S0054.

Accessed Aug 1, 2005.

[126] APEX 20K Device Family: External Memory [online]. Altera Corp. Available

from: http://www.altera.com/products/devices/apex/features/apx-memory.html.

Accessed Aug 1, 2005.

[127] SDR SDRAM Controller. White Paper, ver. 1.1. San Jose: Altera Corp.; Aug

2002.

[128] FLIP8051 Microcontroller family. Datasheet, Ver2.0, Dolphin Integration;

2002.

[129] CAST R8051 Altera Datasheet. WoodclififLake, NJ: CAST Inc; June 2004.

199

http://www.eetimes.com/in_focus/silicon_engineering/OEG20030317S0054
http://www.altera.com/products/devices/apex/features/apx-memory.html

[130] DP8051CPU Pipelined High Performance 8-bit Microcontroller. Datasheet, ver

4.0, Digital Core Design; 2005.

[131] DP8051CPU Pipelined High Performance Microcontroller [online]. Digital

Core Design, Jul 20 2005. Available at: http://www.dcd.pl/acore.php?idcore=43.

Accessed Aug 1, 2005.

[132] The I2C-BUS Specification, ver 2.1, Philips; Jan 2000.

[133] DI2CM I2C Bus Interface - Master. Datasheet, ver. 3.07, Digital Core Design;

2004.

[134] lpm_shiftreg Megafunction. Datasheet, ver 1.0. San Jose: Altera Corp.; Mar

2005.

[135] Yang J, Waibel A. A real-time face tracker. Proceedings of the 3rd IEEE

Workshop on Applications of Computer Vision; 1996 Dec 2-4; Sarasota, FL. p. 142-

147.

200

http://www.dcd.pl/acore.php?idcore=43

Appendix A
Multiplexed signals on IMPBUS

Port Name SFP Pin Special Bus Wire

MODE 1
FLASH
Access

MODE2
SDRAM
Access

MODE 3
Inter-chip

Communication
LCD1 3 91 CS N A N D -

LCD 3 16 65 CS SM C-

LCD 3 18 63 CD SM C -

LCD 3 19 62 WPO-

LCD 3 21 46 IMPBUS38 1MPCOMM MUTEX
NV P0 23 44 IMPBUS1 DQ1 IMPCOMM CLK
NV P0 24 33 IMPBUS3 DQ3 IMPCOMM PBIT
PI 25 5 IMPBUS5 1/00 DQ5
PI 26 4 IMPBUS7 I/Ol DQ7
PI 27 3 1MPBUS8 1/02 DQ8
PI 28 2 1MPBUS10 1/03 DQ10
PI 29 1 IMPBUS12 1/04 DQ12
PI 30 100 1MPBUS14 1/05 DQ14
PI 31 99 1MPBUS33 1/06 DQML
PI 32 98 1MPBUS0 1/07 DQO
P2 33 97 1MPBUS2 DQ2 IMPCOMM14
P2 34 96 1MPBUS4 DQ4 IMPCOMM15
P2 35 79 IMPBUS6 WE DQ6
P2 36 78 1MPBUS9 ALE DQ9
P2 37 77 IMPBUS11 CLE DQ11
P2 38 76 IMPBUS13 RB DQ13
P2 39 75 rMPBUS15 RE DQ15
P2 40 74 IMPBUS16 AO IMPCOMMO
P3 41 73 1MPBUS17 A1 IMPCOMM1
P3 42 72 IMPBUS18 A2 IMPCOMM2
P3 43 71 1MPBUS19 A3 IMPCOMM3
P3 44 54 IMPBUS20 A4 IMPCOMM4
P3 45 53 IMPBUS21 A5 IMPCOMM5
P3 46 52 IMPBUS22 A6 IMPCOMM6
P3 47 51 1MPBUS23 A7 IMPCOMM7
P3 48 50 IMPBUS24 A8 IMPCOMM8
P4 49 49 [MPBUS25 A9 IMPCOMM9
P4 50 48 1MPBUS26 A10 IMPCOMMIO
P4 51 47 IMPBUS27 A ll IMPCOMM11
P4 52 30 IMPBUS28 A12 IMPCOMM12
P4 53 29 1MPBUS29 A13 1MPCOMM13
P4 54 28 1MPBUS30 CLK
P4 55 27 IMPBUS31 CKE
P4 56 26 IMPBUS32 DQMH
P5 57 25 [MPBUS34 RAS
P5 58 24 [MPBUS35 CAS
P5 59 23 [MPBUS36 WE
P5 60 22 CS SDRAM - 1MPBUS37 CS CS
Where: ~ denotes inverted signal (i.e. active low)

CS_ denotes Chip Select signal for FLASH, SDRAM or Smartmedia cards
CD_ denotes Chip Detect signal for Smartmedia cards
WPO denotes Write Protect signal for Smartmedia cards

Table A.11 EMPBUS pin mappings for the STV0674

201

Appendix B

This appendix describes the methodology used in the design and fabrication of the

daughter board PCB. The first section outlines the complete design and fabrication

flow. The following sub-sections cover the daughter board PCB’s performance and

any associated PCB problems.

B.l Design and Fabrication Process Overview

The process flow used in the design and fabrication of the daughter board PCB was

based on the STMicroelectronics Hardware groups PCB methodology. This

consisted of 4 processes; schematic entry, layout and routing, PCB manufacture and

component population. These are described in the next 4 sub-sections followed by

the functional test plan.

B.1.1 Schematic Entry

The first process involved the creation of the necessary design information required

by an external contractor to fabricate the PCB. To generate this information, a PCB

design package called Viewlogic’s Viewdraw was utilised, as it was the only PCB

design package available at the sponsoring company. Several design procedures

were performed using this package. These stages are listed below in chronological

order.

1. Creation of symbols that are not in the present component libraries. This

included the clock driver, video encoder and Darlington Switch IC and

the video phono connector for the video monitor.

2. Drawing of a system schematic with symbols from the symbol library.

3. Indication of PCB components or areas for text and logo labelling.

4. Production of PCB netlist containing the interconnections of all

components.

5. Manual check for full component interconnection.

6. Generation of Bill of Materials (BOM), i.e. component list.

202

7. Outline drawing of component placement.

8. Statement of electrical specification for PCB, including power and ground

planes.

9. Creation of mechanical specification for PCB

During these procedures special consideration was taken to reduce future possible

problems. The two important design considerations were locality of densely

interconnected board components and the separation of analog and digital ICs.

These two constraints typically conflict with each other, for example, the primarily

digital STV0674 sensor co-processor needs to be located next to the mainly analog

sensor it supports. Power regulation and clock generation were also separated from

each other. The careful floorplanning scheme used reduced the chance of crosstalk

and thermal noise effects due to the heating of the power regulation IC.

A particular concern relating to the PCB floorplan was that of the length of track

routing between the PCB and the FPGA backplane. Ideally the length of these tracks

should be as short as possible to reduce signal transmission delays cause by resistor-

capacitor loads. The three most important buses for delay minimisation were the

IMPBUS and SDRAM A/B buses. An outline drawing of the PCB was produced

which laid out the bus-associated component as close to the backplane connector as

possible to reduce bus wire lengths and hence delays. The track delays for the

SDRAM buses dictates the maximum frequency the SDRAM IC can reliably operate

at. Also, if the FPGA was used to forward signals from the co-processor directly to

the SDRAM and back, the number of passes through the backplane connectors could

be up to 4, i.e. from 674 to FPGA, FPGA to SDRAM, SDRAM to FPGA and FPGA

to 674. This could seriously hamper the system’s ability to meet the co-processor

SDRAM transaction timing requirements given the potentially large total

transmission delay i.e. for a read delay.

The electric specification of the PCB included the separation of the signals on the top

and bottom surface of the PCB and the power and ground planes on two split layers

within the PCB. The main aim of this distribution was to reduce the possibility of

electrical short occurring between power and ground planes which could damage the

prototyping system.

203

Clocked digital logic consumes most of its power during the rising edge of each

clock pulse, when the logic is transitioning from one state to another, see figure B.l.

It is at this transition point the current supplied to the digital logic must rapidly

increase in a very short period of time. To supply enough current to ensure the

correct transition, a large power supply would typically be required. To reduce this

problem for the daughter card PCB, low impedance decoupling capacitors were

connected close to the power pins of the digital ICs. These capacitors can supply the

high currents required over a short time period and the lower current requires after

the transition in each clock cycle. The capacitors are recharged by the power supply

during the times between the current peaks.

Current

/
Peak Current

At Rising Clock

Average
- Current

Time

Figure B.l Peak current at rising clock edge

As only 2 clock domains are used to drive 12 digital ICs on the daughter board and

making the assumption that ICs on the same clock domain are synchronised, two

very large current requirement peaks could arise. Therefore, the information

regarding the correct number and capacity of capacitors required for each of these

ICs were obtained from the relevant datasheet.

The mechanism specification included the description of the position for holes on the

PCB and the precise locations of the 6 large backplane connections on the underside

of the PCB. Information regarding the attachment of heatsinks was also included, to

ensure the necessary distance from other components could be taken into account.

204

B .l.2 Layout and Routing

The second procedure was layout and routing of the PCB and was performed by a

sub-contracted company with extensive expertise in the area. An engineer from this

company was assigned to the project and provided status updates during the process

which included confirmation of the final component placement. The sub-contracted

company used their own priority automated design rule checks (DRC) on the

finished design set, followed by checks at STMicroelectronics before the sign-off

process was complete. The detailed in-house checks are listed below. Unfortunately

the sub-contracted company was unwilling to provide precise details on their own

DRC. The final post-layout and routing design files were provided in an industry-

standard Gerbers format.

Pads PowerPCB software package was used for DRC to ascertain if any errors were

present in the design. Three automated checks were performed, these were;

• Clearance - Checks all items to ensure that the clearance between objects

follows the clearance rules specified for the project.

• Connectivity - Details any nets that are not fully connected.

• Plane - Checks pad connections on the plane layers.

The subsequent checks on the Gerber files were visual and performed manually.

These were;

• Power and ground planes - Check for no shorts and that all used star-points.

• Components - Check for corrected component type, orientation and labelled

value.

• Connector - Check for correct positioning and type

• Track width - Check for suitable track width, especially power carrying

tracks.

• USB track length - Check that tracks used for the differential signal were

equal in length or with USB 1.1 tolerances and met signal delay

requirements.

205

• Bus track lengths - Check that all bus lines, in the same bus, were

approximately the same length. This was required to reduce time skew

between signals to ensure each data bit would be in synchronisation with the

other associated data bits.

• Check correct labels and logos for the PCB, i.e. ID number, version, ST Logo

and text describing the use or configuration of components.

B.l.3 PCB Manufacture

Once the set of checks had been performed on the Gerber files, three quotes were

obtained for the manufacture of the PCB, with the most cost favourable offer

accepted. A total of 8 PCBs were fabricated as it was thought that more than one may

be required in the future by the sponsoring company. The other reason for selecting

8 PCB to be manufactured was that at a size of200mm by 165mm the PCB could

only be produced 4 at a time, in what is know as a panel. The production of less than

4 PCBs per frame would not reduce the manufacturing cost to a great extent, due to

wasted material and fixed cost tooling charges. The PCB was fabricated with an

industrial standard hot air solder levelled (HASL) process. The PCB was specified

to have 4 layers (1 power, 1 ground, 2 surface routing) using 2 lithographic silk-

screens to add labelling to the top and underside of the PCB. A set of 2 resists were

also used to create the top and underside tracks on the PCB.

After manufacture, all of the PCBs were checked for electrical shorts from power

plans to ground and checked for shorts between component pads. A visual

inspection was also made to find any faults in the PCB fabric, such as cracks, track

breaks or surface grooves.

B.1.4 Component Population

The fourth procedure was the automated population of the PCBs with components by

a 3rd party company. Components had already been sourced from in-house or

external suppliers but some were fitted in-house at a later date due to unexpected

limited availability. Once the two PCBs had been received, a set of checks were

performed without power being supplied to the PCB. These checks were;

206

1. Check that the daughter card connects correctly to the backplane.

2. Look for short circuits on the PCB between tracks or components.

3. Check all power and ground rails with multi-meter for power to ground

shorts.

4. Check for broken tracks.

5. Ensure that no components are missing.

6. Check that components are not damaged, misaligned with solder pads or have

the wrong orientation.

7. Check that the components populating the PCB are the correct type and

value.

8. Check that all PCB connectors connect correctly to the appropriate cable

connectors.

B.1.5 Functional Testing

Nine function tests were created to check basic functionality of the system. There

were seven prerequisites before the tests could be carried out, these were;

1. Place system in a uniformly illuminated room, if possible.

2. Install STV0674 device drivers, the G2 Video application, V2W tool, Ipatch

and Camdebug on the host PC.

3. Fit an ST CMOS video sensor to board. For full functionality use a 6500

series sensor module attached to the horseshoe shaped connector, J8.

4. Attach daughter card to FPGA backplane.

5. Wire power supply to a current meter to allow the current to be measured for

excessive levels that may indicated shorts or wire contentions.

6. Connect speakers to the PC that is connected to the prototyping system.

7. Attach power supply to backplane and set voltage to 7.5V with a current limit

of 1A.

The nine tests, listed in the order in which they were performed, were;

207

1. USB enumeration test - see if the sensor and sensor co-processor is

recognised by the host PC.

2. Video acquisition from sensor - check video can be streamed from the sensor

via USB to a host PC and saved as a video file using G2 Video application.

3. Audio acquisition from microphone - check that audio with video can be

streamed from the sensor via USB to a host PC and saved as a synchronised

audio-video file.

4. Reset recovery - ensure that the system recovers correctly after a hardware

reset.

5. NAND FLASH read & write - check that data is written to and read from the

FLASH non-volatile memory and that the memory holds data after power­

down. This test was executed using the Camdebug application.

6. Smartmedia read & write - check that data is written to and read from the

Smartmedia card and that the memory holds data after power-down.

7. EEPROM code patching - ensure that new firmware patches can be

downloaded to the STV0674 sensor co-processor using Ipatch.

8. Video out - ascertain if colour bars can be outputted from the video encoder

by configuring its registers via the I2C bus using the V2W tool.

9. Darlington switch toggle - check that the Darlington switch ICs 4 outputs be

toggled on and off.

B.2 Results

The PCB was successfully completed and passed all 9 tests with only minor

modifications. The system drew an approximate current of 0.5W at 7.5V, the

majority of which was due to the power consumption requirements of the un­

configured FPGA backplane. During the PCB design and population process,

several mistakes were made by the subtracted companies. Incorrect labelling was

added to the Gerber file set, indicating that the crystal oscillators operated at

Terahertz rather than the correct frequency range in Megahertz. At the time of

population, the microphone and JTAG test switches on one PCB were damaged and

were replaced. It was also at this stage that the 6 inter-board connectors were

208

soldered onto the upper side of the PCB rather than on its underside, indicated by 6

connector footprints.

The minor post-production modifications that had to be made the prototyping system

to pass the tests were. These were;

• Replacing a surface-mount pull-up lM fl resistor for a 47k£2 resistor, to allow

the STV0674 co-processor to sense it was in a 100-pin package

configuration. This change was required as a result of a change in the

STV0674 co-processor’s silicon i.e. at the time the PCB was being designed

the co-processor was only in an early design stage.

• Changing a surface-mount 1M£2 resistor for a 1 OklQ resistor to prevent the

CMOS image sensor going into a permanent state of suspension.

• Adding a discrete pull-up lOkQ resistor to the ready/busy line of the FLASH

to ensure that the when FLASH operations had completed the ready/busy line

would go to a high logic level signally the device was ready for a new

command from the co-processor.

• Redirecting the 12 MHz and 27 MHz clock signal to the output pads of the

unpopulated crystal oscillator sockets on the FPGA backplane to feed the

clock signals directly into the FPGA clock inputs. This was required because

although the ‘FAST’ input pins selected had been indicated in the datasheet

as suitable for clock signals, the FPGA’s on-chip PLL would not output any

frequency higher than the ‘FAST’ inputs frequency.

• Spacer connectors were connected to the inter-board connector to raise the

height of the PCB above the FPGA backplane to prevent backplane

components touch the underside of the daughter board PCB.

All user-definable SPF pin were utilised on the STV0674 sensor co-processor to

provide the maximum flexibility for the system. The PCB sub-systems were mostly

separated from each other, reducing possible crosstalk effects. Figure B.2 shows the

areas occupied by different sub systems.

209

V ideo
G enera tion

Sensor
Interfaces
and A udio
I/O

Pow er
Regulation

Darlington Outputs Co-processor

Switches,
LEDS,
J T A G ;
USB Port

M em ory D evicesC lock Generation

C=D«Jo
CD-
CD -

Figure B.2 Sub system locations on topside of PCB

Figure B.3 is a photograph o f the com pleted PCB, populated with all the

com ponents , and connected to the FPG A backp lane using the 6 inter-board

connectors.

Figure B.3 A photograph of the complete PCB attached to the FPGA backplane

210

B.3 Summary

This appendix has presented on the first part of the project’s practical work. The

method for the development of the board-level architecture of the prototyping system

has been described. The results for the system have been given in the form of the

problems encountered, modifications required and the set of tests successfully

completed. A photograph of the complete PCB has also been provided to give a

better indication of the completed construction of the prototyping system.

211

Appendix C

An example application was implemented on the prototyping system to count the

number of objects in a scene, display the number of objects on the FPGA

backplane’s LEDs and highlight them on a video monitor using superimposed

rectangles. To achieve this, five of the seven DSP IP blocks were used in

conjunction with application code written for the system control unit and the default

system configuration code executed by the microcontroller in the sensor co­

processor. The application code initially grabbed a reference image which it absolute

differenced with subsequent images, to find inter-frame pixel value changes. The

differenced image was then thresholded, to remove small changes due to changes in

scene illumination and create a binary image. A search was performed on the binary

image to find the collection of interconnected pixels making up each object in the

scene. The parameters of each object were stored in the Scratch pad memory and

then used to draw a rectangle around each object. A very simple wire assignment

change to the Verilog design also allowed the number of objects found to be

displayed on the bank of 10 LEDs on the backplane in a binary format.

The application was simulated and then implemented on the prototyping system with

a system clock frequency of 24 MHz. The complete two board prototyping system

had an average power consumption of 3.8W at a sustained frame rate of 12.5FPS. A

total of 74 pins were used on the FPGA. The application code size for the system

controller was 87bytes, comprising of 56 instructions and 31 associated literal value.

The minimum execution time of the application was measured at 2.018ms (48442

clock cycles). The maximum execution time was measured at 3.858ms (92592 clock

cycles) with the standard 4Kbyte sized scratch pad memory and 4.918ms (118051

clock cycles) with a simulated 8KByte scratch pad. Figure C.l shows two

photographs of the video monitor displaying two objects that had been identified by

the system.

212

Figure C .l Screenshots o f a coffee mug and Dilbert toy detected and highlighted by the system

A s a result o f office lighting and the reflectivity o f the m onitor sc reen ’s surface,

som e strong reflections are visible. T he 50 Hz refresh rate o f the office fluorescent

strip lighting caused visible flickering pixels w hen pointing the system sensor at

ceiling light fittings or h ighly reflective surfaces. D ilbert’s black trousers, w hich

w ere within 10 pixel values o f the background in the reference image, w ere

th resholded out and therefore not recognised by the system. T he system control

u n i t ’s code for the dem onstra tion application is shown in table C . l .

213

0
2
4
6
8

10
12
14
15
16
17
19
21
22

23
24
25
26
27
29
30
32
33
35
36
37
38

40
42
43
45
46
48
50
51
53
55
56
58
60
61
62
63
64
66
68
70
72
74
76
78
79
81
83
84
85

Instructions Comments
LOAD_REG_ADDR_WR_HI 0x00
LOAD_REG_ADDR_WR_LO 0x1b Set draw rectangle to memory 1
LOAD MEM 0x01
LOAD_REG_ADDR_WR_LO 0x15 Set absdiff to read memory 1
LOAD_MEM 0x01
LOAD_REG_ADDR_WR_LO 0x0a Set threshold value
LOAD_MEM OxOd
WAIT_EOF Grab reference image
WAIT_EOF (*)
START_PINGPONG Start video ping-pong (p-p)
LOAD REG_ADDR_WR_LO 0x07 Set p-p Ctrl input/outputs
LOAD_MEM
WAIT_EOF

0x0c

STOP_PINGPONG Stop ping-pong
Absolute Difference reference and

ABSDIFF
WAIT_BUSY

current image

THRESHOLD
WAIT_BUSY

Threshold

LOAD_REG_ADDR_RD_LO
NOP

0x1a

LOA D_RE G_A D DR_R D_HI
NOP

0x00

LOAD REG ADDR_WR_LO OxOe
GETOBJS
WAIT BUSY

Find objects in image

MOVE_MEMRE G_G PR 0 Copy # of objects found to reg 0
BEZ 0x19 If # of object in reg 0 == 0 branch

Set read address register to first
LOAD_REG_ADDR_RD_LO
NOP

0x02 object in scratch pad database

LOAD_REG_ADDR_RD_HI 0x50
MOVE_MEMMEM Copy min X of object to regs
ADD_REG_ADDR_RD 0x01
ADD_REG_ADDR _WR 0x01
MOVE_MEMMEM Copy min Y of object to regs
ADD_REG_ADDR_RD 0x01
ADD_REG_ADDR_WR 0x01
MOVE_MEMMEM Copy max X of object to regs
ADD_REG_ADDR_RD 0x01
ADD_REG_ADDR_WR 0x01
MOVE_MEMMEM Copy max Y of object to regs
RECTANGLE Draw Rectangle
WAIT_BUSY
WAIT BUSY
ADD_REG_ADDR_RD 0x05 Inc. read address register by 5
SUB_REG_ADDR_WR 0x03 Dec. write address register by 3
SUB_REG_GPR0 0x01 Dec. number of objects by 1
LOAD_REG_ADDR_WR_ LO OxOe
BNEZ Oxlf Branch if no more object to highlight
LOAD_REG_GPR0 0x00 Reset reg 0 to zero
LOAD_REG_ADDR_WR_ _ H I 0x00 Configure copy function
NOP
LOA D_RE G_AD D R_W R_ LO 0x17
LOAD_MEM 0x04
COPY Copy reference image to current image
WAIT_BUSY
BEZ 0x48 Unconditional branch to (*)

Table C.l Application code for object count and highlight demonstration

