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Abstract

In the last decade the ability to design and manufacture integrated circuits with 

higher transistor densities has led to the integration of complete systems on a single 

silicon die. These are commonly referred to as System-on-Chip (SoC). As SoCs 

processes can incorporate multiple technologies it is now feasible to produce single 

chip camera systems with embedded image processing, known as Imager-on-Chips 

(IoC). The development of IoCs is complicated due to the mixture of digital and 

analog components and the high cost of prototyping these designs using silicon 

processes. There are currently no re-usable prototyping platforms that specifically 

address the needs of IoC development.

This thesis details a new prototyping platform specifically for use in the development 

of low-cost mass-market IoC applications. FPGA technology was utilised to 

implement a frame-based processing architecture suitable for supporting a range of 

real-time imaging and machine vision applications. To demonstrate the effectiveness 

of the prototyping platform, an example object counting and highlighting application 

was developed and functionally verified in real-time. A high-level IoC cost model 

was formulated to calculate the cost of manufacturing prototyped applications as a 

single IoC. This highlighted the requirement for careful analysis of optical issues, 

embedded imager array size and the silicon process used to ensure the desired IoC 

unit cost was achieved. A modified version of the FPGA architecture, which would 

result in improving the DSP performance, is also proposed.
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1 Introduction

The visual system forms an important part of the human sensory system. The 

capacity of the human eyes to adapt to selectively focus on areas of interest in the 

field of view provides an effective means to collect visual information. The 

connection of the eye to the brain enables further processing to be performed and 

comparisons to be made with previous observations using relevant prior knowledge. 

This combined effort results in the valuable ability to process, analyze and interpret 

the world around us. Examples demonstrating our flexibility to interpret different 

situations include; the subtleties of lip reading to the ability to strike a fast moving 

cricket ball with a bat. These seem relatively simple tasks, given enough practice, 

and are taken for granted but in almost all cases the complexity of the processing 

required is not apparent. It is only when these everyday tasks are analyzed in detail 

that their mathematical complexity is revealed.

“Machine vision is concerned with the automatic interpretation of images of real 

scenes in order to obtain information and thereby to control or monitor machines or 

processes” [1]. Despite the complex nature of most vision tasks there are several 

advantages of using machine vision system rather than a human operator, namely 

consistency, precision, cost, flexibility and operational speed. Whilst there are a 

wide range of applications that exist for computer vision to be applied to, there are 

usually 4 stages common to all, these are:-

1. Acquisition -  obtain image from camera.

2. Processing -  apply algorithms to enhance parts of the image that are of 

interest.

3. Feature extraction -  identify and quantify important features.

4. Decision and control -  make a decision given a set of known data or rules and 

then output a control signal to change a process or output relevant 

information.

An example of a typical application is the identification of manufacturing faults for 

items on a production line. An algorithm is implemented to compare a snapshot
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image of each item with a stored image of a known defect free item. This is often 

referred to as comparison with a golden reference. If one or more of the visual 

characteristics of the item differ from the golden reference the production line 

supervisor can be notified and the issue addressed.

The last 20 years has seen an increase in the adoption of machine vision systems. In 

2003 the European vision market was estimated at $420 million and the North 

American vision market at $1.6 billion [2,3]. In 2004, the world machine vision 

market was estimated at $6.6 billion [3].

STMicroelectronics holds a world leading position in CMOS image sensors, with 

primary markets in web cameras and digital stills cameras. There is an expectation 

that an ever increasing proportion of future mainstream imaging applications will 

require some form of embedded vision processing. Examples of this kind of 

embedded processing include the ability to track or recognize objects in real-time, 

thus enabling numerous possible applications, such as, airbag deployment or security 

via face recognition. Embedded vision processing differs from traditional vision 

processing in the sense that some or all of the processing is performed within the 

camera unit rather that on a separate host computer. The main advantage of this 

partitioning of processing is that there is less latency between capturing an image and 

its interpretation. It also reduces the demands of communication bandwidth between 

camera and any connected external systems as the data transmitted is usually a 

control signal rather than a stream of images. Systems based on this processing 

paradigm are called smart cameras.

In the last decade the increasing ability to integrate complete systems onto a single 

die has resulted in the manufacture of very dense integrated circuits comprising of 

over 100 million transistors [4, 5, 6]. These complex system-level integrated circuits 

are commonly referred to as System-on-Chip (SoC). As SoC design flows can 

incorporate multiple technologies into a single package, it has become feasible to 

produce single chip camera systems. In this thesis these SoC camera systems are 

defined as Imager-on-Chip (IoC). The imaging and machine vision industry has 

recognised the opportunity to configure IoCs to perform vision tasks. As a result, IoC

2



based autonomous smart camera systems are gradually becoming commercially 

available [7].

Unfortunately, while the geometry of transistors is continuing to shrink in line with 

Moore’s Law, allowing more complex circuits to be realized, the ability to design 

new devices based on these new silicon technologies is not improving at the same 

rate. It is generally accepted that this design capability gap is steadily increasing due 

to the technology improving by 60% a year while design methodology improves by 

only 20% [8]. Therefore without dramatically increasing the size of design teams, 

the design and verification time for new products will also increase with SoC 

complexity. To address this issue, companies in the mid 1990s started adopting 

design re-use programmes. In such a programme, new design components are 

created with re-use in mind by parameterising interfaces and functionality. These 

flexible design components are often referred to as virtual components or Intellectual 

Property (IP) blocks. IP blocks are assembled together within a database system to 

provide system designers with a library of pre-verified and well-documented re­

usable designs for future projects. It is generally accepted that the benefits of using 

such a methodology are mid to long term given that an IP block for re-use can 

require 10 to 100 times the development effort as a design for one off use [9]. 

Traditional software design flows have also been changed as it is generally no longer 

possible to develop the software once design, manufacture and debugging of the 

hardware has occurred. As a result, hardware and software must be co-developed 

adding to the complexity of the overall system design flow. The requirement for co­

design has led to the extension of re-use programmes to include a platform-based 

design (PBD) methodology.

Platform-based design is an evolutionary step in IP re-use. Several different 

definitions for a platform have been summarised in recent literature [10]. PBD can 

be generically defined for this body of work as the use of a defined architectural 

platform with a library of associated pre-qualified hardware and software IP, which 

can be configured in a variety of forms to meet the requirements of a new product. 

These platforms have predominantly been domain specific in order to provide system 

optimisation for the required range of possible derivative products, such as for 

multimedia or wireless applications [11].
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Traditionally, prototyping platform-based designs would have initially involved 

manufacturing multi-project wafers (MPW) at the intended or older lower cost 

silicon process. These MPW consist of several different circuit designs on a single 

silicon substrate and hence manufacturing costs are apportioned over all the projects 

that have submitted a design for prototyping. Unfortunately the viability of this 

approach has reduced with the shift to processes with feature sizes of 0.1pm or less 

and given the low volumes of ICs fabricated. At these small feature sizes the cost of 

MPW runs increases dramatically when compared to MPW run at around 1pm 

feature size. A further complication is caused by the slots available for MPW runs in 

fabrication plants, as usually these need to be booked in advanced. Even a large 

company with in-house fabrication facilities may have to accept long turn-around 

times due to extra steps such as packaging of ICs. These facets to multi-project 

wafer production for the purpose of early prototyping can further exacerbate the 

existing time-to-market pressures and project costs for a new product.

Fortunately, the improvements to silicon technologies have allowed programmable 

logic based devices to realize large capacities. This has occurred to such a degree 

that the latest 90nm process Field-Programmable Gate Arrays (FPGAs) have up to 

1 OMbits of programmable memory and approximately 200K programmable logic 

cells, providing millions of useable gates [12]. As a result, many companies use 

FPGA technology to perform real-time or near full clock rate functional verification 

of new platform designs using these large devices. Indeed, Xilinx is now marketing 

several platform FPGAs not only for verification purposes but as a replacement for 

platform-based application specific integrated circuits (ASIC) for high value and 

medium to low volume applications [13]. The key advantage of these FPGAs is their 

ability to be rapidly re-programmed, providing turn-around times of hours compared 

to the several weeks required by MPW runs. The approximate cost for these large 

capacity FPGAs is in the region of $1K to $10K which compares favourably with a 

typical cost of a typical MPW run. For example a 25mm2 die size using UMC 

processes through Europractice costs $17K at 0.25pm feature size and $85K at a 

0.13pm feature size [14].
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The disadvantage of the utilisation of FPGA technology is apparent when attempting 

to prototype IoC architectures. The analog components of CMOS and charge- 

coupled device (CCD) sensors cannot be mapped onto the array of logic elements 

found in current FPGAs. Even the latest Field Programmable Analog Arrays 

(FPAA) are unsuitable due to the fact the high density structures essential for the 

instantiation of the photosensitive array cannot currently be provided.

The aim of this research was to investigate and develop a new prototyping platform 

for low-cost mass-market IoC applications. This was achieved by designing a 

system architecture suitable for supporting a wide range of applications. A library of 

image processing IP blocks was created to interface both with this system 

architecture and future ST Imaging products. To calculate the cost of manufacturing 

a prototyped application as a single integrated circuit, a high-level IoC cost model 

was formulated.

In this thesis, it is proposed that a frame-based processing architecture is the most 

applicable means for image processing, when prototyping IoC applications. This 

architecture has the distinct advantage of separating the processing elements from the 

CMOS image sensor. This is unlike mesh-based or linear processing arrays, which 

are generally tightly coupled with an image sensor. Each architectural component 

can be developed and tested independently as an IP block before integrating the 

complete system into an IoC. Custom IP blocks can also be functionally verified in 

real-time using reusable FPGA technology and optimised for specific applications.

The thesis is organised as follows. Chapter 2 reviews research performed in the field 

of vision system design and prototyping systems, with particular emphasis on single 

chip vision system implementations. A summary of the image processing and 

machine vision market and current, emerging and future applications driving current 

research is also presented. Chapter 3 details the system requirements for the types of 

IoC that are envisaged to be prototyped using the developed platform. In addition, 

the system partitioning scheme used and system specifications are defined. The 

printed circuit board (PCB) design, fabrication and test flows for new systems are 

described in Chapter 4, followed by the FPGA-level hardware and software design in 

Chapter 5. An outline of an example application is provided in Chapter 6. An IoC
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manufacturing cost model is explained in Chapter 7 and applied to a single chip 

system that could support the example application. Chapter 8 critically discusses the 

results obtained with a conclusion provided in Chapter 9, including suggestions for 

future work.
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2 Literature Review

As the research would encompass several different topics a broad literature search 

was initially performed. A brief history of the uses of image processing and machine 

vision was obtained followed by an assessment of the current market. Emerging and 

future applications were investigated in addition to current applications of these 

technologies. Three specific areas were then studied, namely; smart camera 

implementations, highly-integrated vision IoC and prototyping system design. This 

provided the necessary understanding of the relevant fields in order to address the 

architectural design of the new IoC prototyping platform.

2.1 History of Machine Vision and Related Image Processing

The progress of machine-vision research can be separated into 3 stages [15]. These 

three stages demonstrate that machine vision was driven by available computing 

power. The first stage started in the 1970s with the main applications area of factory 

automation. General-purpose mainframe computers were linked to image acquisition 

devices, however their limited processing power and high cost made it very difficult 

to justify their large scale use outside high-value markets, such as PCB and 

semiconductor production [16]. As a result, their penetration into industry was 

limited [17]. The research at this time, was performed in areas of detecting positions, 

shapes and defects using windowing, pattern matching and feature extraction 

techniques. Computing power limited most of the processing to binary images. 

Increasing computing power with a reduction in system cost led to the start of the 

second stage in the 1980s. The advent of Reduced Instruction Set Computer (RISC) 

based systems meant grey-level image processing could now be applied to image 

processing and vision problems. Office automation was now becoming feasible with 

many applications, for example, ATMs, mail sorting machines and document 

readers. Research primarily focused on text and image recognition, using 

technologies such vector conversion, data structuring and context analysis. The third 

and current stage started in the 1990s. According to Ejiri the main application area 

in the 1990s was social automation which included the domains of traffic
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management, communications, welfare, medical systems and the environment [15]. 

The vision research topics at that time included; biometric identification/ recognition, 

abnormality monitoring and behaviour understanding using real-time video analysis, 

sensor fusion and networked machine vision systems. This has been realized by the 

introduction of more embedded systems and systems that are capable of colour 

processing.

Many technology companies continue to manufacture vision systems focused on 

narrow niche applications where repeat business is possible [17]. To survive in such 

niche markets usually requires these companies to have global market penetration. It 

has been noted recently however that with availability of low cost embedded vision 

systems, or ‘smart’ cameras, machine vision is entering new manufacturing areas 

where previously the technology would have been too expensive to implement [18]. 

If this trend is to continue and for machine vision to migrate into other new 

applications areas, uptake of greater levels of integration, programmable processors 

and use of technologies such as CMOS image sensors will be required to provide 

flexible systems with greater processing power at increasingly lower costs.

2.2 Current Market and Applications

In 2002, the worldwide machine vision was estimated at $5.2 billion [19]. This was 

the first significant decline, in recent history, from the previous year and was 

attributed to the worldwide recession at that time. The worst impacted sales figures 

were from the semiconductor industry but these still attributed to over a third of the 

total revenue for Europe and North America. The effects of this decline were limited 

by the growth in the adoption of general-purpose machine vision systems for 

manufacturing, which were sold to a wide range of end-user industries. At this point 

in time, the percentage of the total world machine vision revenue generated by 

geographic region was as show in Figure 2.1.
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Figure 2.1 M achine Vision Revenue Generated by G eographic Region in 2002 |19 |

The machine vision market has steadily continued to grow throughout 2004. This 

revenue however, has not yet matched that generated in 2000. The number o f units 

shipped has increased over the last two years by 27 % resulting in a gain o f 13% in 

revenues. This has led to sales o f $6.6 billion. This is mainly attributed to the 

increased use o f machine vision in the Pacific Rim region, in particular Japan and 

China [20]. The large discrepancy between revenue accumulated and units shipped, 

can be explained by the increased adoption o f lower cost smart cameras, vision 

sensors and embedded vision processors. A clear example o f this can be seen in the 

European market in 2003. Smart cameras accounted for an estimated 10250 o f a 

total o f 30500 general purpose vision system units shipped. This only accounted for 

less than 6% of the $261.5 million general purpose machine vision market [2]. 

Forecasts expect approximately a 9% annual growth in revenue through to 2008 [20]. 

This predicted due to smart cameras entering new markets currently not addressed by 

current vision systems and by evidence that the worldwide downturn in capital 

equipment expenditure finished in 2003.

Revenues generated in 2002 from the major end-user industries can be seen below 

for Europe and North America in figure 2.2. Europe’s figures for wood and metal 

fabrication industries were not available.

Figure 2.2 M ajor end-user industries for machine vision in 2002 by revenue, Europe (left) and

North America (right) |19 |
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As can be seen in both charts above, the end-user industries for machine vision are 

indeed varied. Though appealing to focus on one particular market segment e.g. the 

semi-conductor industry representing 37% (North America) and 27% (Europe), this 

can be dangerous given the volatile nature of some of the end-user industries. 

Traditionally, the semiconductor industry followed a 4 yearly boom-bust cycle whilst 

displaying a compound annual growth rate of approximately 17%. Evidence 

indicates however that this is unsustainable in the long-term and that the growth rate 

is beginning to slow [21]. Recent figures by the Semiconductor Industry Association 

(SLA) and research organizations, such as Gartner Inc. and the World Semiconductor 

Trade Statistics (WSTS) group, suggest that there will be another decline in 2006 

[22, 23, 24]. However, some forecast that the boom-bust cycles are no longer 

predictable and the period of time between a boom and bust is decreasing, hence 

leading to a potentially more volatile market.

Less semiconductor fabrication facilities are likely to be built by individual 

companies since the average cost of a state-of-the-art plant has risen from $0.7 

billion in 1994 to $3 billion in 2003 [25]. It is also estimated that a company would 

require annual revenues of over $6 billion to support the latest 300mm wafer 

technology plants, leaving only a select few able to run such a plant without 

partnerships with other semiconductor companies [26, 27]. This is unlikely to 

improve if the trend over the last 10 years reported by a Goldman Sachs continues, 

where build costs are increasing by a factor of 7 while the semiconductor industry's 

revenues have grown fivefold [25]. Despite these problems, there is still a current 

transition to fabrication plants capable of processing 300mm wafers and this is likely 

to require increasing numbers of automated materials handling systems [28]. This 

transition is expected to be a contributor to a 55% rise in capital expenditure in 2004 

[29]. Although the long term prospects for the semiconductor market are uncertain, 

the rise in capital expenditure could lead to a short term increase in revenue for 

machine vision systems in this sector.

As has been demonstrated in the semiconductor industry, relying on a single market 

for income when developing machine vision systems can be a great financial risk. 

The lack of flexibility within these machine vision systems would lead to a product 

which is unsuitable for other markets. Hence, developing general purpose machine
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vision system s results in a p roduct that is flexible and independent o f  one single 

market.

2.3 Emerging and Future Applications

C urrent applications for general purpose  m achine vision system s (G P M V ) are found 

in a wide range o f  industries. T yp ica lly  the majority  o f  these have  been industrial 

inspection applications, for exam ple ,  grading, sorting, fault de tection  and au tom ated  

handling. Security  app lica tions have also benefited for G P M V  system s and have 

included, intruder m onito r ing  and vehicle registration plate identification. O ne 

particular aspect which  is lim iting  the uptake o f  machine vision is the typical system 

cost. The average cost o f  a G P M V  system in Europe in 2003 w as  approx im ate ly  

$10K. W hile this does not indicate the range o f  prices it does possib ly  indicate the 

typical high-cost o f  a G P M V  system  [2]. Understandably, this high cost is a concern  

for industries looking to use general m ach ine  vision as a w ay  o f  add ing  value to a 

low-cost product, rather than as a cost reduction tool or essential addition.

C M O S  image sensor te ch no logy  has improved and resulted in the expansion  o f  

G P M V  system s into new  em erg ing  applications. Extended dynam ic  ranges o f  

around 120dB for logarithm photo  transfer-based image sensors is facilitating their  

use in ou tdoor applications w here  lighting can not be controlled [30]. F igure 2.3 

be low  dem onstra tes  how  linear photo  transfer-based conventional im agers cannot 

adapt to spatially vary ing  lighting conditions.

Figure 2.3 Adaptation of image sensors to lighting, conventional (teft) and extended dynamic

range (right) [31]



Further efforts to extend the dynamic range of CMOS imagers have included the 

amalgamation of logarithmic and linear mechanisms into a single imager to provide a 

range of up to 140dB [32],

Two market sectors benefiting from this recent technology are transport applications. 

An example of the application of systems with a high dynamic range is Honeywell 

Airport Systems camera-guided aircraft-docking system [33]. As a newly arrived 

aircraft approaches the gate, a monitor on the wall facing the pilot, displays the 

correct stopping distance to the pilot for the plane to align with jetway. This system 

has to operate 24 hours a day in all weather conditions as well as be able to cope with 

reflections and varying lighting conditions. Another example can be found in the 

automotive industry where the dramatically changing light conditions and speeds of 

vehicles in motion, require high-performance real-time systems. Wide-spectrum, 

high-speed camera systems are used with permanent scene illumination from near- 

infra red headlights. Pedestrians can be detected from over 100m away while 

oncoming cars with headlights at full-beam can be recorded in the same image [33]. 

These are yet to become mainstream products due to their high cost. As the cost of 

vision systems fall, it is expected that the automotive industry will begin the 

integration of systems for vehicle guidance, collision avoidance, intelligent 

headlights and smart airbag deployment.

Recent fears of global terrorism have raised interest in the use of machine vision for 

security purposes. Visual biometrics, such as face or fingerprint recognition, have 

been a common application of such technology. In particular, camera based 

surveillance systems are becoming increasingly popular. The increased use of 

CCTV has required the transition from analog to digital systems capable of being 

networked together. This has created greater bandwidth requirements. As smart 

cameras are lower in cost, it is quite likely the industry will start adopting these 

systems as they provide two main advantages as a result of integrated processing.

The processing of images for exceptional events means only images of interest need 

to be sent to a human operator, hence reducing the need for multiple video screens to 

be observed simultaneously and reducing the communication bandwidth requirement 

between camera and operator. Current algorithm research in the area is looking to 

identify not just when someone should not be present but what their exhibited
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behaviour may indicate, by using posture recognition [34]. For example, 

distinguishing between someone walking along a footpath by a fence and someone 

climbing over a fence.

A factor which may increase the number of new applications using GPMV systems is 

the recent proliferation of wireless technology as shown by the uptake of low-cost 

mobile phones with imagers. To date, this coalescence of technologies has largely 

been unexplored, yet there are notable exceptions such as the Nokia Observation 

Camera [35].

2.4 Board-Level Integrated Smart Vision Systems

In the early 1990s, the advent of low cost microprocessors and digital signal 

processors resulted in the ability to develop board-level integrated vision systems.

An Edinburgh University spin-out company, VLSI Vision Ltd (VVL), developed the 

Imputer, a general purpose smart camera based on their low-cost CMOS imaging 

technology. Unlike the majority of the solutions available at that time, it integrated 

the complete system onto a single motherboard and did not require a host computer 

to operate. Initially, a 256x256 image sensor, frame grabber, frame store, 8-bit 8052 

microcontroller and external IO were integrated onto a PCB measuring 100 x 50mm 

[36]. The Imputer was programmed using the C language and a windows-based 

software development suite. A large library of image processing functions was also 

provided. These included correlators, transforms, convolvers, morphological filters, 

logical operators and image segmentation algorithms. The Imputer also had the 

option of the addition of a 16-bit Motorola 56002 DSP co-processor. This DSP has 

the capability to provide up to a 3000 fold performance increase for some image 

processing algorithms. The Imputer was later updated to replace the sensor, 

microcontroller and DSP with a single 32-bit Intel i960 and a 512x512 CMOS image 

sensor. This updated product resulted in similar performance but reduced the design 

complexity of the systems PCB [37]. The Imputer family of products were used for 

a range of applications, from people tracking to component inspection and remote 

vision until it ceased production in the late 1990s when the Motorola DSP was no
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longer available [36][38]. VVL was shortly after acquired by STMicroelectronics to 

enrich there intellectual property portfolio.

The two processing architectural approaches used by the Imputer family of products 

are still popular with vision system design companies today. The well-known vision 

company, DVT, uses both approaches in its 500 series of smart cameras. The lower 

end cameras use general purpose microprocessors, such as the Hitachi SH4, to 

achieve performance in the range of 60-360 million instructions per second (MIPS) 

[39]. The latest 550 series utilise the popular Texas Instruments DSPs to provide a 

boost in processing performance up to 3600 MIPS. Other high-profile smart camera 

producers, such as Vision Components, Cognex and PPT Vision, tend to opt for 

solely microprocessor or DSP based product lines. In the case of the Vision 

Components, the smart camera lines are DSP based using either Texas Instruments or 

Analog Devices parts to obtain performance in the region of 1200MIPS and 31- 

375MIPS respectively [40][41][42]. On the other hand, PPT Vision uses a 

1000MIPS PowerPC microprocessor for its Impact T series of smart cameras [43].

The other devices used in smart vision cameras typically include FPGAs, ASICs and 

neural network processors. A specific commercial example of the use of neural 

networks for vision products is the Pulnix ZiCAM, with its Zero Instruction Set 

Computer (ZISC) patented technology. Each ZISC processor has 78 neurons with 

64byte inputs. These processors can be linked together to perform parallel 

processing. Currently cameras with up to four ZISC processors are available [44]. 

Smart cameras that use FPGA technology are usually provided with a 

microprocessor or DSP, as is the case Wintriss Engineering’s 5150-Pixel Line-Scan 

Vision Processing Camera. The 5150-pixel model combines a FPGA to perform 

some initial pixel processing followed by image analysis by the Motorola PowerPC 

[45].

Performing a paper-based detailed analysis on these smart cameras would be difficult 

as companies typically do not provide comprehensive benchmark results for different 

image processing functions. This is, in part, due to a lack of common benchmarking 

techniques and metrics for smart camera systems. Irrespective of this problem, some 

broad observations can be made, these are;
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• A typical smart camera unit with lens assembly has a unit cost in the range of 

$2K-10K.

• Most systems use CCD imagers except in the case of the low cost systems 

which use CMOS imagers.

• On-board RAM is between 2MB and 128MB.

• Resolution available is usually between 640x480 and 1280x1024 pixels.

• Continuous acquisition frame rate span from 10 to 110 frames per second 

(fps).

• Some use real-time operating systems, such as VxWorks.

• The great majority are aimed at industrial vision applications

An interesting evolution has been in the way in which these smart cameras are set-up 

for an application. Traditionally, the systems would be programmed in an assembly 

language or a high-level language, like C, with a supplied set of image processing 

functions. More recently, smart camera suppliers, namely Pulnix and Cognex, have 

provided software which learns by example, or uses techniques suitable for non­

software engineers such as spreadsheet entry. The vision application developer’s 

perspective of these camera systems may be heavily influenced by this type of 

product differentiation, given its benefits of less complexity and potentially faster 

development times, rather than raw instruction processing performance and system 

cost.

2.5 System-Level Integrated Smart Vision Systems

The next developmental step for smart vision system design has been the integration 

of the complete system onto a single integrated circuit, also known as vision sensor 

or vision chip. The emergence this type of system was during the early 1980s. One 

of the first examples to be designed and implemented on silicon was Richard Lyon's 

optical mouse IC [46]. This chip used a simple digital motion tracking algorithm to 

determine the direction and distance traveled by the mouse over a mouse mat with a 

fixed patterned surface. Most of these early systems were application specific and 

only capable of spatial processing techniques as a result of the complexity of
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implementing delay or on-chip storage for previous images. As the remit of the 

project includes the use of the sponsor array-based CMOS sensor technology, 

biological and architecturally-implicit processing based vision sensors will only be 

briefly covered from a processing point-of-view.

2.5.1 Biological and Architecturally-implicit Processing based Vision Sensors

Vision sensors that use inherent processing provided by biological human or animal 

vision structures or, indeed, by the underlying sensor technology itself are commonly 

known as retina-based or fovea-based sensors. These sensors almost exclusively 

implement spatial image processing functionality from simple local smoothing 

operations to global object orientation detection.

Retina-based sensors, often referred to as silicon retina, are based on a model of 

human or animal vision. Research interest has particularly been focused on detecting 

local or global changes in light intensity and the ability to detect edges. The 

structures implemented on silicon usually include the use of an approximation of a 

Gaussian filter. This smoothing filter reduces the noise within the image before any 

further image processing is performed. Resistive networks are commonly used to 

create this smoothing effect.

Resistive networks act in an exponential manner by diffusing charge over the 

complete network depending on the value of the resistors. The simplest example of 

this is Mahowald and Mead's silicon retina, upon which others have been based [47, 

48, 49, 50]. A 1-D version of this was used for matching images for a stereo retina 

image sensor [51].

Delbriick also used Mahowald and Mead's silicon retina elements for derivative 

system. This derivative system was designed to use feedback to control a lens 

assembly to focus the image onto the retina. This was based on the premise that an 

image will be in focus when there is a maximum difference between itself and its 

spatially smooth version. Once a value for the maximum difference value had been 

found, a signal was sent to change the lens control [52]. Standley also showed how
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similar resistive networks could be used to detect the position and orientation of an 

object [53].

Another type of retina sensor technology is based on diffusive networks. Examples 

of this technology include the Solar Illumination Monitoring Chip by Venier et al. 

which could measure the azimuth, intensity and elevation of the sun [54]. The layout 

of the pixels for the system where linear-polar coordinate based. Each pixels 

photocurrent was compared to the global average. If the intensity was higher than 

the global average the angular and radial currents were outputted. The summations 

of the angular currents were taken for all the other pixels on the same angle and 

separate summations were also taken for polar currents for all the other pixels on the 

same polar coordinate. These two sets of summations were processed to provide the 

azimuth and the elevation of the Sun.

Andreou and Boahen's silicon retina also used diffusive networks. A compact two 

layer hexagonally arranged network structure of 210x230 pixels was implemented. 

The system was inspired by vertebrate visual systems and as such, was suitable for 

processing acquired images to reduce noise while enhancing edges [55][56].

Meitzler et al. used Andreou retina cells for a spatial-temporal vision chip capable of 

detecting movement in one dimension [57]. This was achieved by sampling and 

holding an image and then, on subsequent images, each retina cell passed its value to 

the two adjunct cells. Each cell then performed two absolute differences using the 

value from the right cell and the sampled and held value and then repeated the 

process with the value from the left cell. The currents corresponding to left and right 

motion were then summed on global lines ready to be differenced off-chip to 

calculate a movement vector. Meitzler further developed the system to form a 50x50 

two dimensional array version of the vision chip, capable of two computational 

processes, namely centroid and displacement computation [58]. The chip was aimed 

at the constrained application of sun tracking in high altitude balloons. This task was 

simplified by the fact there exists high contrast between the sun and the dark sky at 

an attitude of 35km. The rationale for developing a vision chip for this application 

was due to the limits of a low video bit-rate link from the balloon to a base station 

and the low power system requirement of less than 1 Watt. The allocation of 1 Watt
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for pow ering the vision chip w as as a result o f  the use o f  solar p o w er  to pow er  the 

balloons electronic system s [59].

Fovea-based or log-polar sensors, which can incorporate retinal characteristics, have 

an organisation o f  photoreceptors  sim ilar to that o f  the hum an visual system. Unlike 

silicon retina based system s, the photoreceptors  are not laid ou t in a linear density  

structure but a variable density  and variable photoreceptor size, in a polar formation. 

T he  densest region o f  pho to receptors  is at the centre o f  the sensor  called  the foveal 

region. Outside the foveal region, the density  o f  the photoreceptors  decrease  and 

their  size increases with d istance from the centre. This  structure a llow s for high 

spatial resolution in the region-of-in terest (ROI), whilst a llows the peripheral area to 

also be surveyed therefore  using selective data  reduction and hence  reducing the 

v ideo  bandwidth  requirem ents  and the pow er consum ption  w hen  com pared  to a large 

array-based sensor. This  capabili ty  m akes  this type o f  sensor particu lar  useful for 

robotics applications or  track ing  objects  w here  changes in the peripheral area can be 

used to direct the foveal to a new  ROI. Unfortunate ly  these structures  have 

d isadvantages; a lower resolution com pared  to  conventional im agers  and increased 

com plex ity  o f  design and use [60], Figure 2.4 shows 3 exam ples  o f  the com m on  

structures im plem ented in silicon.

Figure 2.4 Micrographs of three different CMOS fovea image sensors, (a) a disjoint fovea array 

and peripheral ring structure, (b) a disjoint fovea array and peripheral array and (c) a 

continuous fovea and retinal ring structure [61,62, 63]

T he key problem with (a) and to a lesser extent (b) in figure 2.4, is the d iscontinu ity  

from the fovea to the peripheral photosensitive  structure. This  has been a com m on  

problem  in early sensors [64] and exacerbates  the mapping o f  the im age  into 

C artesian  coordinate array. T he exam ple  in (c) has a more co m p lex  layout tow ards



the centre of the fovea which results in implementation problems due to the scaling 

of transistors and the small geometry effects.

The advantages that retina and fovea sensors provide are generally not required for 

the needs of the majority of current mainstream applications. The extra complexity 

required, such as mapping images to Cartesian coordinates, also reduces their 

attractiveness to the end-user. The problems due to the spacing between 

photosensitive elements, caused by the supporting architectures, also reduce the 

overall proportion of the sensor array which contributes towards photosensitivity. 

This is known as a low fill factor [65]. These are partly the reason that the majority 

of CMOS and CCD based image sensors use simple support structures with tightly 

packed photosensitive Cartesian array structures, which are more conducive to 

traditionally image processing techniques and provide potentially higher fill factors.

2.5.2 On-Chip Explicit Computational Processing Based Vision Sensors

On-chip explicit computational processing based architectures implement the 

photosensitive elements separately from the image processing elements. Vision 

sensors of this nature can be found to span a wide spectrum of architectures, from the 

integration of algorithmic logic units (ALU) at pixel level, to the separation of a 

sensor and processor by a communication bus on a multi-chip module (MCM). As 

has been the situation with biological and architecturally-implicit processing based 

vision sensors, the majority of the early literature on vision sensors has been 

application specific. Typical examples come from the biometric, automotive and 

automated visual inspection domains, such as fingerprint verification and vehicle 

monitoring [66, 67]. The ever decreasing transistor geometries however now mean it 

is possible to implement larger general purpose computational structures on-chip. In 

this section, three different architectures for general-purpose vision chips will be 

reviewed, they are mesh processing, linear processing array and frame processing.
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2.5.2.1 Mesh Processing A rchitectures

A m esh  p rocessing  architecture  is constructed o f  a tw o  d im ensiona l  array o f  

p rocessing e lem ents  each directly connected to a photo-sensitive  e lement. A s the 

processing for every  pixel can occur concurrently , high fram e rates over lOOOfps are 

possible, as has been show n by  K om uro  et a l.4s S3PE architec ture  [68, 69], Eklund et 

a l .’s N S IP  [70] and K agam i et a l .’s SPA RSIS system [71]. Th is  high speed 

processing  ability  enables  its use for a wide range o f  applica tions not possible with 

other system s, such as robotic  applications requiring very  high speed tracking and 

object m anipula tion .

The S3PE (Sim ple  and Sm art Sensory Processing Elem ent)  architecture, upon which 

the SPA R SIS  is also based, uses bit-serial processing techniques. Bit-serial 

p rocessing is a m ethod  that perform s a multi-bit operation on each bit sequentially. 

A lthough processing  using this m ethod  is slower than bit-parallel processing, it 

results in the realisation o f  com pact circuits and the ability to  perform  variable bit 

length operations. Each processing  element (PE) consists  o f  a  bit-serial A LU , 3 

latches and a 24bit local m em ory  with bitwise addressing. T h e  A L U  has been 

im plem ented  using a full-adder, a carry register and som e m ultip lexers  providing the 

ability to perform  one operation  per clock cycle, from a selection o f  18 logical and 

arithm etic  operators. It com m unica tes  with its 4 ne ighbouring  PEs, a zero signal and 

its associated pho to -de tec to r  using an 8 bit-serial I/O port, f igure 2.5.

D eco d e r
P ro c e s s in g  E lem en t

D-Latch

D-Latch
*B_ENnstruciion

fssTiJ^abit
_ “ Local Memory;

D -Latch

_  . Photo D etector 
Output
Circuit

output

4-r*ighbc*»

Figure 2.5 Architecture of S3PE [72]

T he 24bit local m em o ry  and I/O port are a llocated to the sam e address space. As all 

processing and I/O opera tors  are perform ed by accessing  local m em ory , the
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instruction code is simplified. Each instruction is divided into 4 parts; read addresses 

A, B, (5bits each), operation code (5bits) and write address (5bits).

The S3PE architecture has been extended by Kagami et al. to form a new dual 

pipeline architecture called SPARSIS [71]. The extension was developed to provide 

an efficient control structure of the single instruction multiple data (SIMD) PE array. 

This was achieved by connecting a 32-bit reduced instruction set computer (RISC) 

processor via an integrated control and data path shared with the existing vision chip 

architecture. It’s specific functions within the vision chip are :-

1. integer processing

2. program control operations, including branches and function calls

3. transmitting SIMD instructions to the PE array

4. parallel data I/O with the PE array and feature value extraction

The addition of the RISC processor also provides the opportunity for the system to 

be re-configured for different light levels and dynamic ranges using a software- 

controlled A/D conversion.

The SPARSIS system was prototyped by implementing the PE array and RISC 

processor separately. A 64x64 pixel PE array was fabricated using a 0.35pm CMOS 

technology. The controller incorporating the RISC processor was synthesized and 

fitted to a Xilinx FPGA and consisted of approximately 27000 logic gates. Providing 

a clock rate of 40 MHz for the controller allowed an instruction rate of 10 MHz for 

the PE array. A set of execution times for several sample programs are provided in 

Table 1.

Program Steps (time)
Dilation or erosion (binary input) 5 (0.5 ps)

4-neighbour x,y edge detection (binary input) 9 (0.9 ps)

4-neighbour smoothing (8-bit input) 99 (9.9 ps)

Centroid detection (binary input) 1716(171.6 ps)

Table 2.1 Execution times of sample programs for the SPARSIS architecture
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Despite providing low processing times for local operators, such as edge detection, 

the time required to perform global operations, as with most SIMD array-based 

processors, is poor. This can be explained by the situation whereby using pixel 

information from a PE on a distant pixel requires pixel information to be passed PE 

by PE until reaching the current PE. As a result, the required communication time is 

proportional to the distance the information must travel.

The NSIP (near-sensor image processing) architecture reduces this problem by 

incorporating a global logic unit (GLU) in every pixel. This combined circuit allows 

image data to be passed between a cardinal neighbouring GLUs by selecting one of 

four direction bits. As the GLUs can communicate without using the system clock 

for sampling data, pixel data can be transmitted to a distant GLU within a single 

clock period [72].

Komuro et al. highlighted the communication problem between distant PE in the 

S3PE architecture [73]. A more flexible architecture was developed where the PE 

network was reconfigurable in a way which allowed cumulative multiple global 

operations to be performed by chaining PEs together. This was achieved by 

connecting the output of one PE’s 1-bit ALU to the input of another PE’s 1-bit ALU 

and hence creating an n-bit ALU.

Using the new architecture, the centroid of a 256x256 pixel binary image was 

calculated using 440 local instructions and 65 non-local instructions. Using a lOMhz 

instruction clock, as used with SPARSIS, a total processing time of 64ps was 

achieved compared to 3.4ms for the simple mesh-connected version and 171.6ps for 

an image size 16 times smaller using SPARSIS [73].

An interesting example of a novel mesh-based architecture is that of the Dudek and 

Hicks’ SCAMP vision chip. Unlike the previous example discussed in this section, 

this architecture uses an array of analogue processing elements and processes local 

data as analogue samples in a SIMD fashion. Each APE (Analogue Processing 

Element) includes an ALU, photodetector, registers (A to K), activity flag register 

and I/O port, as shown in figure 2.6.
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Figure 2.6 Architecture o f (a) Single APE (left) and (b) the SCAMP architecture with a single

APE marked (right) [74,75]

Im age acquis it ion  is ach ieved  by the use o f  a special purpose  register p lane called 

PIX. T h e  value  held in this register plane corresponds to the state o f  the 

pho todetec to r  array. A s  w ith  the SPA R SIS  architecture the exposu re  t im e is 

controllable  and due  to  the non-destructive read-out m echan ism  m ultip le  exposure 

t im es can be ach ieved . Each register plane (A-K) is constructed  from switch-current 

m em o ry  cells and can hold  a grey-level image. A rithm etic  opera tions can be 

perform ed pixel-w ise  on these data planes. As the ana logue  bus is operating in 

current m ode, su m m ation  can be directly perform ed on the bus using several source 

planes concurren tly . M ultip lication  is perform ed using the m ultip lie r  register M. 

S C A M P  also supports  register plane to register plane transfers . Inter-APE 

com m unica tion  is enab led  using the N E W S  register w hich  p rov ides  access to the 

four nearest cardinal ne ighbours  in the array. The activity flag register, FLA G , is set 

or reset depend ing  on the result o f  a com parison operation. Th is  enables local 

au to n o m y  o f  an A P E  from the array and prevents an A P E  perfo rm ing  S IM D  

instructions w ithout the  F L A G  register being set.

A prototype S C A M P  chip  w ith  a array o f  21x21 A PEs, random -access  I/O logic, on- 

chip D/A  converter  and control logic was fabricated using a digital 0 .6pm  C M O S 

process technology . In addition, an off-chip program  store and instruction sequencer 

w as im plem ented  to p rov ide  instructions to the S C A M P  vis ion  chip. T he  m axim um  

perform ance w as  over  1.1 G IPS  (Giga Instructions Per Second)  w ith  a peak pow er 

d issipation o f  be low  4 0 m W  and A PE s clocked at up to 2 .5M hz. Several execution 

tim es for a lgorithm s im plem ent on the S C A M P  chip are p rovided  in Table  2.
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Algorithm Execution Time

Smoothing using 3x3 convolution template 5.6ps

Sharpen using 3x3 convolution template 6.0ps

Edge detection with Sobel template 11.6ps

Median Filter in 3x3 neighbourhood 61.6ps

Histogram with 64 Bins 205.6ps

Table 2.2 Time of execution of several algorithms on the SCAMP vision chip [74]

Since the first prototype a new SCAMP 2 architecture has been developed. The 

SCAMP 2 optimises the SCAMP architecture to reduce the area of the APE to 

approximately 25% its original size and reduce power consumption from 85pW to 

12pW per APE. This has partly been achieved by lowering the instruction 

processing rate from 2.5MIPS per APE to 1MIPS per APE [74][76]. The tradeoffs 

of processing performance for area and power reductions were deemed necessary for 

the architecture to become more scalable, as another prototyped chip, the SCAMP 3, 

had been envisaged. The SCAMP 3 was fabricated with a 128x128 APE array.

Unlike the example of mesh systems that used digital processing, the SCAMP family 

has the advantage of only having to use a single capacitor to store analogue variables. 

Also, as the data buses within the APE are analogue, only 1 wire is required unlike N 

wires forN-bit wide digital data. As analogue processing is utilised there is no need 

to implement an A/D convertor in each APE. The disadvantages with the SCAMP 

family include a low fill factor of 5.6% to 8.4% [77]. The other main disadvantage is 

that of the accuracy of analogue processors as they are limited by errors and inherent 

noise. The accumulative effect of the errors within the SCAMP’s analogue circuitry 

reduces the accuracy to below the equivalent of 7-bits, although this has been 

deemed sufficient for many low-level image processing operations [74].

Several general limitations of the pixel mesh processing technique have meant only a 

relativity small number of research groups have been working on this architecture.

As the number of transistors used in the PE effects its area, the complexity of the PE 

is restricted to retain a suitable fill factor for each pixel. The programmability is, in 

many cases, a problem due to the SIMD instruction compilation and the timing 

requirements to achieve parallel instruction delivery to each PE. The proximity of 

PE to each other and the photosensitive circuit can also lead to cross-talk effects and
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the emergence of fixed pattern noise (FPN) affecting the acquired images. Although 

for applications which require high processing rates and low power requirement, this 

form of architecture is an optimal solution. The ability to parallel process, reduces 

the need to implement very complex circuitry within a pixel as the cumulative 

processing power of all the processing elements can be immense. This provides the 

opportunity to reduce the processing frequency to a level that is sufficient for the 

application and therefore in the process reduce the vision chips power requirements 

significantly. A further advantage of the proximity of processing elements to the 

photosensitive elements is that of the easy implementation of fast global and local 

adaptation to light levels through close control of sampling and the A/D control 

process.

2.5.2.2 Linear Processing Array Architectures

Linear processing array architectures typically only use one processing element and 

analog-to-digital converter per column. When compared to the pixel mesh processing 

architecture this approach has the advantage of the ability to integrate a more 

compact and uniform CMOS imager with a high fill factor while still retaining a 

level of parallel processing and low power consumption. It has also been shown that 

the linear processing arrays used can provide greater computational performance 

than mesh based pixel processing arrays with careful architectural enhancements

[78].

Two examples of smart vision sensors that use this technology are Integrated Vision 

Products’ MAPP2x00 and Chen et al.’s PASIC. MAPP2x00 relates to a family of 

products developed from 1987, with the latest member of the family being the 

MAPP2500. Both the PASIC and MAPP2500 use bit-serial processing within their 

ALU to reduce the complexity of implementations in much the same way as the pixel 

mesh processing architecture previously presented. Also, temporary bit-line memory 

exists in each to allow for interline and neighbourhood image processing. In the case 

of MAPP2500, this consists of 96 general purpose registers (R0-R96) capable of 

storing 512 bits and 256bits by 128 lines SRAM for the PASIC [79, 80]. The PASIC
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and MAPP2500’s A/D converters are capable of a grey-level resolution of up to 8- 

bits. Figure 2.7 shows the architecture for both the PASIC and MAPP2500.

256x256 photo sensors

Cod trot

2 5 6  8 b u  t c r i a l  A /D  c o n v e r te r !

Two 256 Sbit bi-diroclionil shin icginea 
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control oBil
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Figure 2.7 Architectures of (a) IVP MAPP2500 (left) and (b) Chen et aL’s PASIC (right) [79,80]

Typically both systems are aimed at spatial applications, although the PASIC does 

have access to frame buffers via an external memory interface which could allow the 

implementation of temporal algorithms, for example inter-frame differencing. The 

implementation of the ALU structures also differs between the two. The PASIC 

approach is to use 256 ALUs consisting of three 1-bit registers feeding a full adder 

with sum and carry output. Each ALU has access to 128-bit memory and two 128x8- 

bit bi-directional shift registers via a bus. The ALUs have also been extended to 

provide 6 Boolean functions for the 3 inputs from the registers in addition to the 

ability to load each of the three registers with both inverted and non-inverted data. 

There are a total of 16 ALU address and control instructions. The MAPP has 80 

different instructions to control 3 dedicated 512-bit logic units, PLU, NLU and GLU. 

The PLU performs bitwise Boolean algebraic operations on local pixel data, 

conversely, the NLU processes pixels in a way that is dependant on the pixel nearest 

neighbours allowing, for example, template matching, edge enhancement and 

filtering operations. Eight of the instructions control the GLU and provide 

operations, such as, marking vertical connectivity between objects in two image line 

and a fill operation that sets the bits between two objects active. Both PLU and NLU 

logic units operate on complete lines and complete operations in one clock cycle 

whereas the GLU requires two clock cycles.
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T he M A P P  vision sensor is p rim arily  a im ed at, and hence prim arily  optim ised for, 

range im aging systems. In such applications high frame rates are required to obtain a 

3D  profile o f  an object. T he  course-gra ined  instruction set a llow s such an 

application to be perform ed in only 4 instructions and tw o  status registers readouts

[79]. In contrast the PA SIC  is a general purpose  vision system  with a collection  o f  a 

small num ber o f  s im ple  instructions from w hich  m ore  co m p lex  a lgorithm s can be 

constructed.

T he  Philips Xetal chip is one o f  the m ost recent and advanced  linear p rocessing  array 

based architectures. It is especially  designed for p re-p rocess ing  images acquired  

though its integral 30fps V G A  format C M O S  image sensor. Curren tly  no frame 

m em ory  is provided which  limits the Xetal to non-tem poral tasks. W hilst the 

architecture o f  the Xetal seem s sim ilar to the M A P P  and PA SIC , in that it has an 

active pixel array connected  to a parallel A /D  converter, linear processor array  and 

line mem ories, there are tw o distinct d ifferences betw een  the two. C om pared  to the 

previous two exam ples , the linear processing  array does not w ork  bit- serially but 

with 10-bit word w id ths  o f  data. This has been show n to increase pow er efficiency 

[81]. Also, the linear p rocessing array (LPA ) only  consis ts  o f  320 processing 

elem ents  rather than the full width o f  the sensor array  o f  640, as this w as deem ed  the 

m ost efficient with dealing Bayer type co lour  filters. A kin  to the PA SIC , the pixel 

and neighbourhood processing  is perform ed by the linear array w here  as global 

com puta tions are executed by the global control processor, such as exposure-tim e 

control and w hite-balancing  (figure 2.8). A nother  task perfo rm ed  by the global 

control processor is that o f  passing instructions to the LPA.

Figure 2.8 Top-level architecture of the Philips Xetal Vision Chip [82]
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Each processor in the LPA contains an accumulator, an adder and a multiplier.

Unlike the previous examples, data can be obtained directly from 6 different columns 

facilitating effective convolution algorithms. It is this data transfer mechanism and 

its embedded multiplier per processor that enables the Xetal to reach a performance 

of 5000 million operations a second at 1.6W at 30fps [81]. The program memory can 

contain up to 1024 instructions and has been shown to be sufficient for a range of 

low to medium level real-time vision tasks, such as optical character recognition and 

skin-region detection [82].

Another approach to LPA architecture has been the implementation of a 256 x 256 

pixel CMOS imager and fast on-chip analog image processing functions for line- 

based stereo vision applications. Rather than mapping algorithms onto an array of 

ALU, Ni and Guan’s Smart CMOS Image Sensor implements 4 separate processor 

arrays; Histogram Equalisation to allow adaptation to changing illumination, 

Gaussian Filter to remove noise, spatial-temporal differentiation and minima and 

maxima extraction to detect edges (see figure 2.9).
H u; liq DoO
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Figure 2.9 Top-level architecture of Ni and Guan Smart CMOS Image Sensor [83]

In terms of processing, the Gaussian filtering, spatial-temporal differentiation and 

max/min extraction can be performed on a line of pixel within 12ps [83]. This is 

significant as all the operations, with the exception of histogram equalisation, can be 

done with the television’s line blanking period. In order to generate a continuous 

television video signal, the histogram equalisation is pipelined with the other 

operations by using the capacitors within the Gaussian filter as temporary storage. 

The worst case power consumption of this sensor chip has been measured at 0.2W.
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The largest difference between the mesh and LPA architectures is that of the LPA’s 

partitioning of the sensing array from the processors. This has the inherent 

advantage of optimising the sensing array to a greater extent in relation to its fill 

factor, silicon area and hence sensitivity range. This further enhances the 

opportunity to develop the sensor array and processing arrays separately before 

integration, which could reduce the costs of prototyping. This method of prototyping 

the two components separately was used in developing the Xetal based vision sensor. 

A parallel processing paradigm is utilised, although to a less extent than mesh 

processing, allowing a low processing frequency and hence low power while still 

achieving high performances. The linear processor also simplifies algorithms that 

process within a column as communication is not required between the processing 

elements in the same column as pixel data is read a line at a time. Unfortunately,

LPA architectures generally require higher power levels due to circuits such as the 

AID  converters running at 128-512 times the frequency of pixel processing 

architectures. The area of the processors in a linear array is usually restricted by the 

column width and hence limits their complexity. This in part confines the LPAs 

applicability to low to mid-level vision tasks. The ability to program these processor 

arrays in a high-level language such as C is difficult as a further result of the 

simplicity of the processing elements. This is seen with the Xetal, which is 

programmed using a custom assembly language and the MAPP2500 which is 

provided with a specific set of algorithms suitable for its expected application 

domain of range imaging.

2.5.2.3 Frame Processing Architectures

Frame processing architectures are typically found in conventional board-level 

integrated smart vision systems. This architecture separates the processing 

element(s) from the sensor array by a serial or limited parallel communication bus. 

Typically, a whole image frame is transmitted by the sensor array to a processing 

pipeline which performs the necessary operation on-the-fly or to a frame store for 

further processing. The main argument for not using this approach for system-level 

integrate circuits is that of the communication bottleneck between the processing 

element(s) and the sensor array. As a result, there are less examples of this form of
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vision chip architecture in the recent literature than those based on mesh and linear 

processing arrays.

Fang el al.’s proposed a smart vision SoC integrating a 10-bit 1024x1024 pixel 

image sensor, a smart image window handler, microprocessor and neural processor 

into a single 30mm by 30mm SoC in a 0.18pm CMOS technology, see figure 2.10 

[84], The system was designed for the use in NASA scientific missions although it 

has been deemed suitable to other military, industrial and commercial vision 

applications.

Ultra fast Smart Vision S}ftcmvO)i-Chip
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Figure 2.10 Top-level architecture of Fang et aL’s Smart Vision SoC [84]

The on-chip microcomputer controls the sub-systems and enables communication 

with an external host system, if required. It is constructed from an embedded 

PowerPC 750 processor with a data memory, a program memory, a UART and a 

multi-bus interface unit. The multi-bus interface unit conforms to IEEE 1394, 

commonly know as iLink or Firewire, I2C and PCI standards. The connection of 

Smart Window Handler to the image sensor allows the control of data acquisition 

and data transmission to the on-chip neural computer. This occurs by requesting an 

N by N sub-window of data from the sensor array at a rate up to 30 frames a second. 

This sub-sampled data is then read from the array, depending on the required 

row/column addressing scheme and transmitted, on a 10-bit wide data bus to the 

neural network computer. The programmable neural computer is based on an 

optimization cellular neural network (OCNN), with memory for synapse weights and 

a learning and post operation co-processor. The OCNN consists of a 1024 by 1024 

cell matrix providing suitable computational power for a wide range of tasks.
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Despite  the system p erfo rm ance  estim ate , which is in the region o f  1012 operations 

per second, the die size o f  the  com ple te  SoC would  result in a very high cost per  unit 

and hence be unsuitable  for a w ide  range  o f  applications. This die size can be 

attributed to the 64M B  o f  em b ed d ed  D R A M  and approxim ately  7M B  o f  em bedded  

S R A M  for frame store, da ta  store and neural netw ork related m em ories . Fang et al. 

prototyped a version o f  this system  on a m ulti-chip  m odule  (M C M ). To  

accom m odate  the com ple te  system  on the  sam e substrate, the M C M ’s d im ensions  

were  required to be 50m m  by 100m m  and had a mass o f  0.2kg. Using the proposed 

3D  die stacking techniques com bined  with a sub 0.5 micron sil icon-on-insulator  

C M O S  process technology, the neural a r ray ’s d im ensions w ere  estim ated at o f  30m m  

by 30m m  by 5m m . At 4 M H z, the M C M  was found to consum e 1W  [85].

A sm aller exam ple  o f  a fram e p rocess ing  architecture is that o f  the V ISoc, p roduced  

com m ercia lly  by the Italian c o m p an y  N euricam . The com ple te  system, with  the 

exception o f  off-chip S R A M  and F L A S H  mem ories, has been fabricated in a 0 .35pm  

C M O S  process and occup ies  an area o f  5.93 x 5.98 mm. T he typical pow er 

d issipation has been m easured  at 1.3W at an operational speed o f  60 M H z [84], T h e  

V ISoc com prises o f  a 3 20x256  G reysca le  C M O S  imager, a 32-bit em bedded  integer 

RISC processor with 0 .5K B  instruction cache, a neural p rocessor called T O T E M , a 

parallel and serial I/O and a m e m o ry  interface. Externally from the chip is a 512K B  

FL A S H  m em ory  for s toring program  code  and initial set-up, such as sensor 

calibration data, and a 1 M B S R A M  for storing tem porary  data and for use as a fram e 

buffer, see figure 2.11.
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Figure 2.11 Top-level architecture of Neuricam’s VISoc based smart camera [86]

T h e  integrated C M O S  im ager has a  logarithm ic response to light with a dynam ic  

range o f  over 120 dB. This  increases its suitability for applications w hich require  a
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system that can adapt to changes in lighting, such as automotive applications. The 

pixel addressing for the sensor array is controlled by the RISC processor via a 17-bit 

address bus. On selection of a pixel, a signal is sent to an A/D converter (ADC) to 

generate a 10 bit word. This word is then transmitted to the frame buffer in off-chip 

SRAM using a direct memory access (DMA) channel without intervention from the 

RISC processor. The performance bottleneck for this operation is caused by the 

maximum sampling rate for the ADC, of 15 Mpixel/s. This limits the full frame 

(320x256 pixels) read-out to 180fps. Sub-sampling pixels from the array by 

windowing a smaller region of interest will result in a higher achievable frame rate.

The TOTEM co-processor has an array of 32 parallel integer multiply-and- 

accumulate (MAC) units that have access to on-chip weight memory. This allows 

the architecture to act as a multi-layer perceptron neural network and hence can 

implement learning and recognition operations. The performance of this co­

processor is in the order of 300 Million MAC per second. Although the RISC 

processor is primary used for controlling the VISoc sub-systems, it is also capable of 

general purpose processing and has an additional processing power of 60 MIPS.

McBader of Neuricam has proposed an extension to the VISoc architecture called 

SmartPupilla [87]. It is aimed at serving a wider range of applications though the use 

of a larger imager, a large on-chip memory, the addition of a parallel pre-processor 

and a faster system clock rate. Table 3 below shows the relative differences between 

SmartPupilla and VISoc.

VISoc SmartPupilla
CMOS Sensor Array Size 320x256 640x480

Maximum Full Frame Rate 180 frame per second 130 frames per second

Pixel Resolution 10-bit 10-bit

On-chip Processing 32-bit RISC 32-bit RISC+DSP

On-chip Memory 93.5 Kbits -3 2  Mbits

Off-chip Memory 1MB SRAM Not required

Neural Network 32-node Parameterisable

Clock Frequency < 6 0  MHz >100 MHz

Processing Power 60 RISC MIPS 100 RISC MIPS

Power Dissipation < 1.3 W < 2W

Process 0.35 pm 0.18 pm or 0.13 pm

Die Size < 36 mm2 -  150 mm2

Table 2.3 Comparison of Neuricams VISoc and proposed SmartPupilla

32



Unlike the VISoC, the SmartPupilla architecture features an image pre-processor 

based on a parallel array of 16 programmable processing elements. A combined 

DMA controller enables an image stored in embedded RAM to be addressed in 25 

modes. These modes have been chosen as they are commonly used in image 

processing algorithms. The addressing sub-system also detects overlaps in images 

distributed to the parallel processor and reduces the need for redundant pixel data 

reads. The image pre-processing architecture was prototyped on a Xilinx XCV200E 

FPGA and achieved data throughputs of up to 667fps at 50 MHz, using a 256x256 

pixel image. The SmartPupilla’s peak performance is estimated to reach 3.23 GOPS.

Typically, frame processing architectures have several distinct advantages. The 

primary advantage is that there are no limitations on the design of the processing 

elements implemented. The use of frame buffers, in many systems, also allows 

image storage and the application of complex multi-inter-frame operations to a range 

of frames, hence extending its flexibility and allowing a wider selection of temporal 

algorithms to be realised. The fill factor of the embedded image sensor can be high 

and the pixel arrays can be optimised for size. As the embedded image sensor is 

separate from the processing logic, it can also be more easily shielded from noisy 

digital components by using techniques such as guard rings and careful floorplanning 

to position supply and ground lines [86].

In terms of disadvantages, frame processing architectures typically consume more 

power than that of LPA and mesh processing based vision chips. In frame 

processing architectures that do not use any image storage, a fast processing element 

or complex pipeline is require to processing incoming images. Frame processing 

architectures that use image storage require additional power for the memory sub­

systems. The use of image storage also has the disadvantage of the latency of a 

frame memory write and a very large silicon area if the memory is implemented on- 

chip. It is for these reasons that MCM and off-chip memory are used to allow the 

implementation of the memory in the most cost efficient process, which is often a 

different process than that used in the vision chip itself.
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2.5.3 Summary

A wide variety of chip-based vision systems have been presented in the last two sub­

sections. The general purpose vision systems discussed have displayed different 

levels of system costs, flexibility, power requirements and processing performance. 

The three approaches used for general purpose processing in vision chips are 

summarised in figure 2.12 and their attributes summarised in table 2.4 below. Grey 

highlighting in table 2.4 indicates the most favourable approach for each attribute 

and the arrows in figure 2.12 indicate the direction of pixel read out to the processing 

element(s).

Mesh Processing

H H H
H H H

Linear Processing

r~' i—i "~i

Frame Processing 
 ►

□
Photosensitive 
Pixel Element

A/D & Processing 
Element

Figure 2.12 The three approaches to general purpose processing on vision chips

Attribute Mesh Linear Frame

Typical clock speed of processing elements Very low Low High

Flexibility in design of processing elements Very poor Poor Good

Suitability for temporal processing Very poor Poor Good

Typical fill factor Poor Average Good

Ability to shield photo-sensitive pixel array 

from processing element switching noise

Poor Average Good

Ability to prototype processing elements and 

pixel array separately

Poor Average Good

Typical level of processing performance Very good Good Average

Power requirements per operation Good Good Average

Ease of programming Poor Poor Average

Table 2.4 Comparison of the three approaches to processing in vision chips
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As can be seen in figure 2.12, the three approaches differ with respect to the level of 

parallel processing occurring and the locality of the processing elements to the 

photosensitive pixel array. Whilst there are quite distinct differences between the 

attributes for mesh processing and frame processing, linear processing with 

processing elements separated from pixel elements while still performing parallel 

processing, has mid-range values.

Examining table 2.4 would indicate that in situations that require high performance at 

low power, mesh processing is the best approach. This can be explained by the fact 

that the combined performance of an array of ALU units, often allows the processing 

clock frequency to be reduced while still fulfilling performance requirements. As 

frequency is directly related to the power dissipation of CMOS devices (see equation 

2.1), huge power consumption savings can be made. This may make the device 

suitable for low power systems and mobile battery powered applications.

P = a V 2DDfC

where P is power dissipated (W)

a is percentage of gates switching 

Vdd is supply voltage (V ) 

f  is switching frequency (Hz)

C is switching capacitance (F)

Equation 2.1 Dynamic Power Dissipated by CMOS logic [88]

Conversely, in situations which require a flexible or complex processing element to 

be designed and/or temporal processing to be performed, a frame based approach is 

the most suitable. While the frame based approach does not typically have the large 

array of parallel processing elements as with mesh and linear array processing, 

parallel processing can also used in frame-based processing architecture. Despite the 

lack of a wide communications channel between the sensor and processing element, 

parallel processing can be achieved by implementing parallel processing within the 

processing element itself. This is a popular approach as most image processing and 

machine vision algorithms can be mapped onto an array of multiplier and
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accumulator-based processing elements. An example of this is the neural network in 

Neuricam’s VISoc [86].

Another advantage of frame based processing architectures is that of the flexibility in 

designing the photosensitive pixel array. As the processing element is detached from 

the photosensitive pixel array, the dimensions of the processing element do not affect 

and limit the design and compactness of the pixel array. Without the extra structures 

for processing around each pixel element, the pixel elements can be closely packed 

together shrinking the pixel array area. This has the effect of increasing the ratio of 

photosensitive area to non-photosensitive area, i.e. increasing the fill factor. An 

alternative to shrinking the pixel array area would be to use the area gained to 

increase the size of each photosensitive pixel and make it more sensitive to light.

This would potentially make the frame processing based architecture more suitable 

for low light applications than a mesh based architecture. The separation of the 

processing element and pixel array is also particularly conducive to vision chip 

development, as the processing element can be prototyped separately from the pixel 

array. This has the advantage of potentially reducing the need for prototyping on 

silicon in the early stages of product development and hence reduce the overall 

development costs.

The majority of processing architectures must be programmed in some form of 

assembly language. Generally with traditional PCB-level GPMV systems, the C 

programming language is used due to its international adoption for many platforms 

and it’s relative ease of use. The use of assembly language, especially machine 

specific such as Xetal, complicates the use of the vision system by an end user. Only 

frame based systems such as Neuricams VISoc and SmartPupilla and Fang et al.’s 

Vision Chip, currently provide the opportunity to be programmed with a higher-level 

language due to the inclusion of an embedded RISC processor for system control. 

The reason behind this apparent flaw is that compilers often do not produce 

optimised or even suitable code for SIMD arrays of processing elements. It is likely 

that software development packages will have to be improved or vision architectures 

adjusted before the mass-adoption of vision chips for developing complex vision 

applications.
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As has been already explained, the lack of on-die memory for image storage is due to 

the current cost of implementing enough memory for complete images on-chip. The 

proposed SmartPupilla vision sensor has embedded SRAM, which in a 0.18pm 

process, would occupy 115mm2, approximately 76% of the total die area [87]. As 

transistor geometries shrink, large capacity integrated memories will probably start to 

become an appealing option in conjunction with frame based processing, especially 

with the need for deeply embedded single-chip vision systems.

2.6 Vision System Prototyping

The prototyping of integrated circuits has developed rapidly within the last decade to 

result in the availability of a myriad of solutions. These range from large flexible 

prototyping platforms for SoC designs to domain specific platforms with emphasis 

on software and minimum of hardware prototyping. One of the largest of these 

systems is that of the Aptix System Explorer family. These platforms provide a 

solution for verifying complex SoC designs. This is achieved using the provision of 

software to map SoC designs onto a multi-FPGA based reconfigurable hardware 

platform. The hardware also supports the connection of multiple system modules to 

a large complex PCB backplane via their patented programmable interconnects. The 

latest version of the family, the MP4CF, includes enough interconnects for up to 20 

FPGA modules, each with a Xilinx Virtex V2000E FPGA providing more than 3 

millions ASIC-equivalent gates and 10 Mbits of RAM [89]. The interconnects can 

also be used with other Aptix modules to allow the addition of microprocessors, 

memory devices and analog and digital converters.

The French company Ateme produces a development kit suitable for prototyping 

imaging systems. Its entry level product, the Digital Media Evaluation Kit (DMEK) 

6414, consists of a backplane PCB with a 500Mhz Texas Instruments TM320C6414 

DSP, 16MB of SDRAM, 4MB of FLASH, 30Kgate and 50Kgate Altera FPGA, as 

well as a selection of audio and digital I/O [90]. A selection of daughter boards can 

be connected to the backplane providing access to Analog I/O, Ethernet and a VGA 

CMOS Image sensor, see figure 2.13.
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Figure 2.13 Top level block diagram of Ateme Digital Media Evaluation Kit 6414 [90]

W hile  the large, m ore  com plex  systems, p rovide the m ost flexibility  they  can also be 

ex trem ely  expensive. On the o ther hand, dom ain  specific  pro to typ ing  system s m ay 

be obta inable  at a m uch  lower cost but the choice o f  com ponen ts  availab le  to the 

end-user  m ay  be very limited. This  also ex tends to the problem  o f  integrating a 

com ple te  vision system onto  a single chip. I f  the hardw are  IP b locks for each 

discrete com ponen t cannot be licensed from their respective provider, it m ay  not be 

possib le  to migrate the end product to a single chip. It is often the case  that even i f  

the licences can be obtained, the high cost o f  royalty  schem es for th ird-party  IP m ay 

m ake the end-product unsuitable  for use in m any low-cost applications. It is 

therefore  incredibly im portant to carefully  select the discrete ICs and IP used in 

FPG A  to ensure an easy  path to migrate  to a greater level o f  integration. T he 

ex trem e o f  this situation is that the im aging deve lopm ent platform has to be designed 

in-house, using only com ponen ts  for which the co m pany  ow ns the necessary  usage 

rights.

2.7 Summary

This  review  has covered the history o f  m achine  vision and its current, em erg ing  and 

future applications. Board-level integrated sm art vision system s have been also 

discussed  followed by a broad array  o f  system -level integrated smart vision system s 

and suitable prototyping systems.

T he  approach taken for this doctoral research w as the design o f  a pro to typ ing  system 

consis ting  o f  a genera l-purpose  reconfigurable  F P G A  backplane  P C B  and custom
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daughter board with the required set of peripherals for image processing and machine 

vision applications. This provides the flexibility of a FPGA device for implementing 

custom logic while fixed function devices, common to all application are included on 

the custom daughter board. This solution is similar to that of the Ateme Digital 

Media Evaluation Kit but shares the Aptix System Explorers Family’s ability to 

increase the available logic resources by changing the FPGA backplane. This is an 

important feature as the size of custom logic for future vision chip prototypes is 

unknown. This method of prototyping has the additional advantage of significantly 

lower costs fabrication cost when compared to using multi-project wafers. As the 

FPGA can be reconfigured the system can also be functionally tested at each stage of 

the development cycle.

As the research was based within the imaging division of STMicroelectronics it was 

required that the company’s Cartesian array based CMOS imager technology would 

be used. This point and the fact that STMicroelectronics CMOS imager outputted 

images in a serial pixel stream meant the frame processing architecture would be the 

most effective implementation. Typically better fill-factors can also be achieved than 

mesh arrays and LPAs as the processing elements are not integrated with the sensor 

array. This provides better photosensitivity which important for many machine 

vision application. The selection of frame-based processing is conducive to 

implementing numerous hardware co-processors which could be optimised for 

common image processing and machine vision operators and complex algorithms. 

This multiple co-processor concept is unlike the vast majority of vision systems, with 

the notable exception of Ni and Guan Smart CMOS Image Sensor. The primary 

rationale for not using this concept is that potentially more area is consumed than the 

use of a general ALU and unless most or all the co-processor are used concurrently 

the system implementation could be seen as unoptimised. But there are several 

reasons why this co-processing paradigm is valid in this situation, they are;

• Quick exploration of design space and rapid prototyping for the developer of 

new products as it may not be necessary to have to write large amounts of 

program code. This could be particularly useful when demonstrating a 

product still in development to a potential customer.
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• Potentially reduce the complexity of the end product users programming 

model and code size, as these co-processors could be operated by simply 

making function calls.

• Careful design of the hardware co-processors would allow their use in the 

large portfolio of other products that use frame-based processing within the 

division, i.e. useful in lowering development time, and hence cost, by re-use.

• Co-processors can be optimised for speed and/or power to be more efficient 

than a single ALU or neural network.

• Only a small subset of the library of co-processor related to the processing 

critical path may need to be included and hence providing a very compact 

solution to an application.

• Possibility of concurrently processing several pixel streams from different 

images using several co-processors or forming pipelines of co-processor to 

perform several operations on one pixel stream.

• Most suitable for applications using temporal and spatial processing.

It could also be argued that the ever increasing number of gates available as a result 

of new technology processes and the fact many new mass-market application require 

portability, that designs are being more constrained by power requirements than area. 

Therefore, to some extent, extra area to support the co-processors is becoming less of 

an issue. The use of these co-processors and a frame-based processing approach, 

enables each architectural component to be developed and tested independently as an 

IP block before being mapped onto a SoC. The final general point for using a frame- 

based approach is that in applications that require low to medium volumes, the 

system could stay as a multi-chip FPGA-based solution rather than going to the time 

and expense of integrating the complete system into a SoC.
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3 System Requirements, Analysis and Specifications

The initial stages in designing an electronics system consist of 2 key steps. The first 

of these steps is the capture of a set of requirements which the end system must fulfil. 

In the second step, it is then possible to produce system specifications based on these 

requirements. This allows the designer to concentrate the design effort to engineer a 

system that exactly meets the specifications. Integral to the specifications is the 

partitioning of the system into software and hardware sub-systems. These 2 steps are 

discussed in this chapter for the new prototyping system.

3.1 Requirements

The primary source of requirements was from the original project brief provided by 

STMicroelectronics and hence were only very broadly defined. These were;

1. Lay the groundwork for future realisation of tracking and recognition of 

object in real-time.

2. Produce a core set of re-usable operators.

3. Ideally, provide generic architectures capable of addressing many 

applications.

In addition to the project brief, the literature for the original VLSI Vision Imputer 

Family was examined. The typical requirements of applications that used the 

Imputer architecture were;

1. Support for image resolutions of 256x256 pixels.

2. Support for 8-bit greyscale processing.

3. Ability to program user-define algorithms in C.

4. Real-time operation for image processing.

The second source of system requirements was from a Managing Director of a local 

machine vision company. The information provided was useful as the company

41



could eventually become a customer and user of the prototyping system. The 

company’s requirements were;

1. Support for image resolutions to CIF standards, i.e. 352x288 pixels.

2. Support for 8-bit greyscale unsigned processing.

3. Protect the end-user from the complexity of the underlying hardware 

architecture.

4. Ability to program user-define algorithms in C.

5. Support for fixed point processing and floating point processing in special 

cases.

6. Operate at 20fps at CIF resolution.

7. Provision of memory capacity for 8 CIF images.

The third source of requirements was that of current, emerging and future mass- 

market applications. Trying to encompass all the requirements from a very wide 

range of applications would lead to over specification in order to support specific 

applications, for example, support for processing thousands of frames per second as 

required by an optical mouse. Hence a final constrained superset of requirements 

were generated. These were;

1. Provide a greater opportunity for system migration to a single IC by using 

devices where STMicroelectronics owned their intellectual property rights.

2. Provide image capture support of up to an 8-bit greyscale 640x480 pixel 

(VGA) image.

3. Operate at up to 25fps.

4. Provide the opportunity for direct connection to a host computer.

5. Provide video output to a PAL video monitor.

6. Provide control of several actuators and indication devices, such as motors 

and LEDs.

7. Provide user definable switches for prototyped applications.

8. Maximum bill of materials cost for the prototyping system of $1500.
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3.2 Specifications

During the system specification and system partitioning steps, important design 

constraints may be placed on the system development. Producing a detailed 

specification for the implementation of the system would usually need mathematical 

modelling, simulation and evaluation of algorithms to be performed. This would 

indicate the suitability of the specified system and may raise any issues regarding the 

partitioning of the system. As no set of algorithms were provided or any 

requirements in terms of data processing or instruction execution speeds, it was not 

possible to accomplish this process by modelling or simulation. As a result, the 

system components were selected with cost, intellectual property ownership and 

datasheet-specified performance in mind.

STMicroelectronics required the use of their CMOS image sensors within the 

project. This requirement prevented the development of mesh or linear array based 

processing architectures, as the image sensor provided would be physically separate 

from its associated processing element. This dictated that a frame-based processing 

approach had to be adopted. Also, although the original project brief did not specify 

the explicit development of a new hardware prototyping platform, a decision was 

made to implement a prototyping platform first and then a set of re-usable operators 

in the form of hardware IP blocks. The primary reason for this initial design decision 

was that without a prototyping platform, operations would have been required to be 

implemented in software, e.g. SystemC, or as mathematical simulations using a tool 

such as Matlab. This would have prevented the operations from being tested in real­

time conditions.

The analysis, specifications and system partitioning are listed in the following sub­

sections.

3.2.1 FPGA Backplane Selection

Image Processing and machine vision algorithm processing was to be performed 

within a reconfigurable FPGA device. The FPGA device chosen was an Altera 

APEX 20K600E SRAM-based FPGA, mounted on an in-house available
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STM icroelec tronic  Backplane, see figure 3.1. This  backplane w as chosen as there  

w ere  no other in-house solutions available  at the start o f  the project. An additional 

deve lopm ent time o f  3-6 m onths  w ould  have been required to develop  a new  

backp lane  and was deem ed not have added  further value to the project.

FPGA Set o f  Pin 
C onnec to rs

EPC2

L E D  B ank and 
P ush -B u tton  

Sw itches  
(U ser-def ined)

Figure 3.1 STMicroelectronics Backplane

T h e  FPG A  provided a typical usable gate count o f  600000, 311296  bits o f  R A M , 4 

phase-locked  loops (PLL) and 508 user I/O outputted  to 4 sets o f  pin connec to rs .  As 

the F PG A  retained it configuration  using  em bedded  SR A M , at p o w er-o ff  its 

configuration  was lost. T he  inclusion o f  four non-volatile  A ltera  EPC2 m e m o ry  

devices  a llowed the configuration  to be stored after pow er-dow n and the F P G A  to be 

reconfigured  at power-up. W hilst a ST M icroelec tronics  backplane with a larger 

A P E X  20K 1000E  FPG A , provid ing  a further 400K  useable gates, was available , 

advice  from the STM icroelec tron ics  Im ager IP team, w as that t im ing  c losure  w ou ld  

have  been more difficult to achieve. Th is  is explained by the increased size o f  the 

F P G A  die and hence increased dis tances  betw een  pins and logic b locks g iv ing  rise to 

increase pin-to-pin and logic block to logic b lock transm ission delays.

T he  use o f  an FPGA for processing is on ly  feasible with a frame based p rocess ing  

architecture. Although linear array based processing architectures separate  the 

process ing  elements from the photosensitive  array, the com m unica tions  bus betw een  

the photosensitive array and FPG A  w ould  have to be immense. For exam ple ,  a linear 

array  architecture connected to a V G A  (640x480  pixel) image sensor with  an 8-bit 

bus per pixel column, w ould  require a 5120 wire bus connected  to the F P G A . T here
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are currently no FPGA devices with this many I/O pins. Even if pixel data was sent 

to the FPGA bitwise, a 640 wire bus still would be required. A bus of 640 wires 

would still lead to the requirement of a very complex PCB to maintain signal 

integrity and timing requirements. The only other alternative for the implementation 

of a mesh or linear processing based architecture would have been to prototype 

designs in silicon. This was not a feasible option, given the costs and timescales 

involved with the silicon implementation of designs.

3.2.2 Daughter Board Analysis and PCB Component Selection

As STMicroelectronics required the use of their CMOS image sensors, a new 

daughter board with a sensor interface needed to be designed. All other hardware 

components to support the image sensor were to be implemented on a single 

daughter board PCB, as it was not possible to implement these components on the 

backplane. This PCB, connected with the pin connectors on the backplane, would 

provide the necessary data paths, control signals and clock signal to the FPGA, while 

obtaining power from the backplanes voltage regulation circuitry.

Several options were available for implementing the daughter board PCB 

architecture. These were:

1. Implement the daughter board PCB with minimum support structures and 

implement a direct connection between the sensor and FPGA for the 

transmission of pixel data and control signals.

2. Implement the PCB with a general purpose microprocessor or microcontroller 

to act as an intermediary between the sensor and FPGA for sensor control 

purposes.

3. Implement the PCB using the associated STMicroelectronics sensor co­

processor which would provide sensor control via an embedded 

microcontroller and initial image processing/enhancement in hardware.
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The decision was taken to opt for the third choice, as implementing the sensor 

attached to its co-processor, would provide the greatest flexibility. The advantages 

of this approach were:

• It was a tried and tested in-house solution and could be implemented 

at a low cost and with relative ease.

• A lull development suite existed for the sensor co-processor and in- 

house support for its use was available.

• The co-processor would aid the testing of the sensor.

• The co-processor offered embedded hardware providing USB

communications support.

• The co-processor could perform initial image processing.

• No FPGA resources would be required for sensor control, unlike 

option 1.

The use of a sensor co-processor has disadvantages. These were that it was a more 

complex solution at PCB level than option 1 and that many of the co-processors 

functions may not be used. A DSP option was not applicable as STMicroelectronics 

asked that the library of operators be implemented as hardware DP blocks rather than 

software. The DSP would also not have provided a more efficient solution for the 

control of the sensor than the sensor co-processor or option 2’s microprocessor.

As a result of the initial design analysis and design decisions, the specified core 

components of the PCB were;

1. A STMicroelectronics 100-pin (TQFP) STV0674 sensor co-processor 

designed for use with CIF and VGA ST CMOS image sensors and provides 

full exposure control, colour processing and sensor mode control. Using 

JPEG compression of image data, the co-processor can operate in three 

modes; as a USB Webcam camera; streaming audio and video at up to 30fps 

to a PC, a CIF or VGA stills camera; storing images to external memory, 

‘camcorder’; streaming audio and video to external memory for uploading 

later to a PC. The co-processor also contains an 8-bit 8052 microcontroller 

capable of running program code from on-chip 32Kbyte ROM and 32Kbyte
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RAM [91]. This co-processor is required to act as a system ‘housekeeper’. 

As the housekeeper, the co-processors main role in the prototyping platform 

would be power-up device configuration, sensor control, image capture, 

image transfer to/from the FPGA backplane and a host PC via a 12Mbit USB

1.1 connection, if required. The microcontroller would also allow 

applications to be programmed in C and control of other board-level devices 

using its general purpose inputs and outputs (GPIO). All the PCB support 

components will be implemented to allow USB communications to a PC, 

audio in, via a board-mounted microphone, audio out, via a board-mounted 

piezoelectric buzzer, loudspeaker connector and earphone connector. 

Although not essential, these extra components may enable the 

implementation of a wider range of end applications and simplify any system 

or application debugging. An ST sensor socket is provided to allow 

interchange of different 36-pin sensor modules as well as a connector for 

flexible ribbon cable-based sensor modules , although it is expected that a 

410 series CIF sensor or 500 series VGA sensor will be used in most 

applications developed with the system.

2. Four memory devices should be supported, providing a range of volatile and 

non-volatile memory options to the end-user of the prototyping platform. 

These are;

i. Two 54-pin (TSOP(II)) 128Mbit Samsung Single Data Rate 

Synchronous Dynamic RAM (DRAM) ICs. Part No. K4S281632D 

with maximum frequency of 133 MHz [92]. These provide a 16-bit 

wide data bus, compatible with the SDRAM interface on the 

STV0674 co-processor and capable of storing up to 54 VGA images 

each. These two memory devices are directly connected to the FPGA 

and as such, the co-processor does not have direct access. These are 

expected to be used for low cost high capacity short-term image 

storage.

ii. One 44-pin (TSOP(II)) 64Mbit Samsung NAND FLASH IC. Part No. 

K9F6408. The FLASH is required to be directly connected to the 

STV0674 and the FPGA, via an 8-bit wide data bus. A 64Mbit
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FLASH is capable of storing up to 27 VGA images. This is expected 

to be used for long-term non-volatile image or program code storage.

iii. One 8-pin (DIP8) 256Kbyte STMicroelectronics Electrically Erasable 

& Programmable ROM (EEPROM) IC. Part No. 24C256. This part 

should be to directly connected to the I2C port on the STV0674 and 

hence provide non-volatile storage of application specific program 

code via a serial interface.

iv. One 3.3V compliant Smartmedia memory card slot connector, 

supporting up to 128Mbit removable memory cards. Connected to the 

FPGA and STV0674 by sharing the NAND FLASH 8-bit wide data 

bus. Note: Smartmedia and Flash device cannot be utilised 

concurrently for any application due to bus contention. This is 

expected to provide a useful alternative to a PCB-fixed FLASH 

device.

3. Video signal generation suitable for output to a video monitor will be 

supported using the STMicroelectronics 28-pin (S028) STV0119a Video 

Encoder IC. This IC generates the analog composite video output from 8-bit 

wide time multiplexed 4:2:2 chrominance and luminance in an ITU-R BT.656 

format. The video data supplied to this video encoder will be sourced 

directly from the FPGA in an 8-bit greyscale form.

4. Actuators will be controlled by the switching of STV0674’s GPIO connected 

to a STMicroelectronics 16-pin (PowerDIP) ULN2064B Quad Darlington 

switches IC. This IC can output 1.5A to each Darlington output at a 

sustainable voltage of at least 35 V. As the switch IC also has integral 

suppression diodes, they are suitable for driving inductive loads, such as 

electric DC motors, stepper motors and solenoids [93]. The four outputs from 

the switch IC must be connected to screw terminals to provide the most 

flexible method of interfacing external devices

5. Test and debug facilities should be provided in the form of a JTAG connector 

linked to the STV674 and a user-define port on the FPGA, in addition to the 

2nd JTAG connector on the backplane which will be primarily used for FPGA
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programming. All input and output signals to and from the video encoder 

and the sensor connector should be made accessible at the edge of the PCB 

via pin connectors. Three different coloured 1.8mm LEDs (Red, Yellow and 

Green) and three jumper switches toggling between ground and 3.3V, should 

be in a combined configuration in order to only occupy 3 GPIO connections 

to the STV0674.

6. Two board-level clock domains are required to drive the STV0674 sensor co­

processor, STV0119a video encoder and the FPGA on the backplane. A 12 

MHz and 27 MHz clock signal are required and will be generated using a 

crystal oscillator with the 12 MHz clock signal sent to the STV0674 and the 

27 MHz clock signal sent to the STV0119a but both to the FPGA. Clock 

drivers should be used to transmit all clock signals to the necessary 

components, with resistor-capacitor networks providing the ability to balance 

clock delays between daughter board components and the FPGA.

7. Three voltage supplies are required for the daughter board’s systems. These 

are 1.8V, 3.3V and 5V. 1.8V and 3.3V are supplied via the connection to the 

FPGA backplane, whereas 5 V should be generated using a voltage regulator. 

Two layers of the PCB should be dedicated to a power plane and a ground 

plane. To reduce the possible effects of crosstalk, analog voltage supplies 

should be separated from the digital supplies via star-points on the power 

plane. For the same reason, the analog ground plane should also be split 

using star-points to provide separate grounds to the audio circuitry of the 

sensor and the co-processor’s PLL.

3.23 System Buses Analysis and Specification

The decision to use a sensor co-processor to control the sensor and relay pixel data to 

the FPGA, had the effect of limiting the types of buses used due to the limitations of 

the co-processor’s interfaces. The initial unavoidable bottleneck within the system 

was as a result of the data out interface on the available image sensors. This 

interface was only of a width of 5 wires and a maximum speed of 24MHz, providing
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a bandwidth of 120Mbits/s. The second bottleneck existed between the co-processor 

and FPGA. As the co-processor only had general-purpose I/O (GPIO), I2C interface 

and USB interface, the bandwidth was limited to 2Mbit/s per pin, 400kbits/s and 

12Mbits/s respectively. Fortunately, the GPIO could be driven by the co-processor’s 

hardware SDRAM control module, providing a bandwidth of a maximum of 

384Mbits/s at a fixed SDRAM bus speed of 24MHz. This was chosen as the main 

communications bus between the co-processor and FPGA. As the bandwidth was 

more than 3 times the bandwidth of the sensor’s data bus, the option to use the co­

processor between the sensor and FPGA was deemed just as effective as a direct 

connection from the sensor to the FPGA. This bus was referred to as the IMPBUS to 

distinguish it from the two SDRAM buses from the FPGA to the two SDRAM 

modules. Due to the fixed interface requirements on the other PCB level 

components, there was no choice in the selection of the remaining buses.

The prototyping system had 6 specified buses as follows;

1. IMPBUS -  a shared 39 wire Memory/Communication bus operating at a 

maximum frequency of 24 MHz connecting the co-processor with the 

FLASH memory, Smartmedia connector and FPGA. This bus is the only 

pathway for communication between the co-processor and FPGA.

2. SENSORBUS -  a uni-directional 5 wire data bus operating at a maximum 

frequency of 24 MHz between the sensor video output port and the video 

input port of the co-processor.

3. VIDBUS -  a uni-directional 8 wire data bus operating a maximum frequency 

of 27 MHz connecting the video out port of the FPGA to the video encoder.

4. USERBUS -  a shared 12 wire bus operating at a maximum frequency of 

12Mhz facilitating control of the 3 LEDs, 3 input switches, 4 actuator 

switches and JTAG debugging provision for the co-processor.

5. I2C Bus- a shared 2 wire bus operating at a maximum frequency of 400 kHz 

for co-processor control of the video encoder, sensor and EEPROM.

6. SDRAM A/B Bus -  two 38 wire combined SDRAM data, address and control 

buses operating at an expected frequency of 24 MHz. These two buses 

provide a direct path from the FPGA to the SDRAM ICs on the daughter 

board.
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Figure 3.2 illustrates how these buses interconnected the different components in the 

prototyping system.

SDRAM A BUS

SDRAM B BUS

USERBUS

IMPBUS

IX  BUS

VIDBUS

SENSORBUS

128MBit 
SDRAM B

128MBit 
SDRAM A

VVL410/
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STV0119a
Video

Encoder

256KByte
EEPROM

64MBit
FLASH/

Smartmedia

JTAG 
Connector, 
LEDS and 
Switches

FPGA

STV0674
Co-processor

Inter-board
Connectors

Figure 3.2 Top-Level Daughter Board Bus Diagram

3.2.4 Detailed IMPBUS Specification

Unlike the other buses, the USERBUS and IMPBUS were custom bus specifically 

designed for the prototyping system and hence did not have any publicly available 

datasheets. As the USERBUS was used to control on/off switching of devices,

JTAG test signals and user-defined signals, no communication protocol was defined. 

Conversely, the IMPBUS had an important multi-purpose role within the system, 

which included inter-chip communications and therefore warrants further 

specification. The table A.l in Appendix A lists the STV0674 ports, special function 

pins, actual pins and their mappings for the IMPBUS.

Three different modes of operation existed for the IMPBUS. The first mode was 

FLASH or Smartmedia card access and could operate separately or concurrently with 

the third mode, which was 16-bit bi-directional communication between the FPGA
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and STV0674. The second mode had exclusive access over the bus for SDRAM 

transaction between the STV0674 and FPGA. The IMPBUS was designed for clock 

speeds of up to 2 MHz when communicating directly to and from the STV0674 and 

FPGA. This is due to the limitation that GPIO on the STV0674 could only toggle at 

a maximum of 2MHz. As a result, the maximum possible bandwidth was 32Mbits/s. 

SDRAM operations across the bus could be performed at 24 MHz, using the clock 

from the SDRAM controller located on the STV0674 and hence achieve a maximum 

bandwidth of 384Mbit/s. It was expected that the embedded memory in the FPGA 

and the two SDRAM attached to the FPGA, would be mapped into the co-processors 

addressable SDRAM space. This would provide the opportunity to access the 

FPGAs embedded RAM by implementing an FPGA resident SDRAM address 

decoder and using the same memory control commands as used when 

communicating directly with an SDRAM. The key advantage of this mechanism was 

that the maximum bandwidth was over a magnitude larger than that which the 

IMPBUS communications could provide, making it the best method for transmitting 

a large amount of data between the FPGA and STV0674 co-processor. Another 

advantage over IMPBUS communications was that SDRAM transactions were 

controlled by a dedicated hardware core and did not require any microcontroller bus 

control protocol emulation overhead, unlike the 16-bit communication mode. But a 

disadvantage was that only the co-processor could initialise and control the SDRAM 

transactions.

A specific IMPBUS communication protocol was not selected as the use of the bus 

may need to differ between applications. In some circumstances the constraint of a 

fixed bus protocol could have increased the complexity of the embedded software on 

the co-processor. This fixed protocol could have lead to unsatisfactory bus control 

execution times when a simpler and faster bus protocol could be devised by the 

application developer. Three extra wires were provided for a parity signal, bus clock 

and bus ownership indication to allow a greater control for error correction, 

synchronisation and bus contention, while reserving 16 wires for data transmission.
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3.2.5 FPGA Design Analysis and Specification

Initial analysis of the prototyping system’s requirements indicated that several FPGA 

design issues needed to be addressed. The digital encoder IC required video data to 

be encoded to the ITU-R BT.656 digital video standard and outputted on the 8-bit 

bus at 27 MHz to sustain the correct video timings for a PAL 50 fields per second 

video format. Each of these fields consisted of half an interlaced video frame, hence 

combining a field with its subsequent field would form one frame. As the sensor 

produced a video output at only 25 frames a second, each frame had to be outputted 

twice to meet the PAL video timing requirements. This indicated the need to use a 

frame buffer. As the sensor and video encoder operated asynchronously to each 

other and their timing requirements were hard deadlines, the frame buffer mechanism 

had to cope with potential skews between the two data domains.

The specification of the use of greyscale images for imaging processing at the 

beginning of the project had the advantage of significantly reducing the memory 

requirement for the frame buffer. Limiting the system to greyscale was not seen as a 

problem, as the majority of image processing can still be done without using colour 

data [94]. The sensor pixel was outputted in a YUV format, where each pixel is made 

from a luminance sample, Y, and two chrominance samples, U and V. Each sample 

was 8-bit wide, creating a 24-bit pixel with 16.7 million possible values. Using the 

luminance sample only, reduced the memory requirement to a third of the original 

value. For example, a single 8-bit greyscale VGA (640 by 480 pixels) frame had 

memory storage requirements of 2457600 bits. As the FPGA used on the backplane 

had 311269 bits, only a maximum 12.7% of a VGA image could be stored on-chip. 

Taking into account that the system was aimed at low-cost applications, this problem 

was overcome by sub-sampling the VGA image to create an image of 80 by 60 

pixels. Where more memory is required, the external SDRAMs or a backplane with 

a FPGA containing greater memory sources could be used. The option of a smaller 

image size, allowed up to 8 whole images to be stored within the FPGA. Sensor 

video stream decoding and sub-sampling was performed in a sensor interface IP 

block fed from an asynchronous FIFO. At this point, the 80x60 pixel images were to 

be outputted to a monitor. The image would be scaled-up horizontal and vertically by
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a factor of 8 to reconstruct a VGA image. This scaling process duplicated each pixel 

a further 7 time to increase the line length from 80 to 640 pixels.

The Altera FPGA provided the option of implementing the frame buffer as a single­

port memory, i.e. read or write at one time, or a pseudo dual-port memory, allowing 

a reading from one port and concurrently writing to the other port. A true dual-port 

memory would have two independent ports, each capable of being read and written 

independently of the other port. As with all the Altera 20K FPGAs, true dual-port 

memories cannot be implemented. The use of pseudo dual-port memory creates more 

complex control structures than a single memory and has the potential to reduce the 

memory’s maximum operating frequency. Other limitations include the following:

• There may be instances where an image is read out during or before it has 

been processed resulting in a partially processed or unprocessed image being 

visible on the monitor.

• Where memory requirements exceed the FPGAs resources, external SDRAM 

memories would be required. SDRAM are single-port memories and 

therefore it would be necessary to re-design the FPGA’s memory interfaces.

To bypass these limitations, a two single-port RAM configuration was chosen for 

implementation of the image memory banks. A limitation of using only two memory 

banks for image storage, is that during cycles when an image is being read out to the 

video encoder, operations such as absolute differencing, are complicated due to 

sharing of the same memory bank. Adding a further image bank would alleviate the 

problem by always providing an image bank solely for uninterrupted image 

processing. This would of course be at the cost of adding latency on the image read 

out to the video encoder by one frame period. An extra image bank was not 

implemented, as applications initially developed using three on-chip image banks 

could not be as easily implemented later, using the two off-chip SDRAM ICs.

An IP block was specified to interleave or “ping-pong” image data between the two 

image banks. This allowed the system to write new image data into one image bank, 

while reading image data from the other image bank to the video generator. Using
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the interleaving mechanism ensured that the frame rate could be maintained at 25fps. 

The size chosen for these image banks was 16Kbytes, each capable of storing 3 

images. Three further memory banks were required, one for the storage of temporary 

data, one as a register bank and another for storing instructions for the system 

controller. Temporary data was stored in a 4KByte scratch pad as it was expected 

that some image processing IP blocks may need concurrent access to image banks 

and another separate bank for variable data. The register bank was used to control 

the different functions within the system, e.g. activation of image processing 

functions or test modes. A total of 256 Bytes were allocated for the register bank. 

The instruction store was allocated 256 Bytes providing enough capacity for 256 

instructions or literal values.

The combined size of all the memory allocated in the FPGA was 37376 Bytes. This 

figure was 96% of the total number of memory bits available on the Altera FPGA 

used. Some of the remaining memory was used for FIFO structures. The memory 

map for the FPGA was specified as in figure 3.3.

Address

OxAOFF- 
OxAOOO ■

0x9000 -

0x5000

0x1000

OxOOFF
0x0000

Unallocated

Instruction Store

Scratch Pad

Image Bank 2

Image Bank 1

Unallocated

Register Bank

Figure 3.3 FPGA memory address map
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Each block of allocated memory was allocated to start on hex addresses that would 

be simple to remember and easily decoded. As the pixel data used in the system was 

a byte in size, the memory widths chosen for the memories were also byte-wide. This 

design decision would simplify the design of data ports on IP blocks and memories 

and reduce the internal FPGA wiring requirements for buses. A reduction in bus 

widths generally can result in less possibility of skew between data bus wires and can 

potentially reduce problems in meeting timing requirements. The disadvantages of 

using byte wide memories are that it reduces the number of pixels readable per cycle 

to one and limits the width of instructions within the instruction store.

A system controller was implemented in conjunction with the instruction store, to 

provide a programmable mechanism to control all the sub-systems within the FPGA. 

As the memory instantiated in the FPGA was 8-bit wide, the system controller had to 

use specialized course-grained instructions to perform the necessary operations. The 

system controller could access the instruction store independently from the rest of the 

system. This was advantageous as the programs were separate from the data 

memory allowing simultaneous access. This provided higher performance and 

ensured the constant flow of instructions to the system controller without interfering 

with other memory operations. This form of memory partitioning is known as 

Harvard architecture and is found in most modem DSPs [95].

A different method for providing a programmable mechanism could have been the 

inclusion of a microprocessor or microcontroller on the FPGA instead of the custom 

system controller. It has become popular for FPGA system designers to use either 

the Nios family of microprocessors when using Altera FPGAs or the Microblaze 

family when using Xilinx FPGAs. Both 32-bit microprocessors are provided by the 

FPGA vendor as soft IP blocks optimised for the vendor’s FPGA architectures. 

Although these IP blocks are low cost and relatively easy to implement, licensing for 

use in silicon designs such as IoCs can be complicated by licensing issues and high 

costs. Generally these IP blocks are only offered for use in the vendors FPGA, 

encouraging the use of the vendor’s FPGAs for the end-product. As end-products 

from the prototyping platform are likely to be a single chip, these devices probably 

would not be cost effective.
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Tensilica provides the 32-bit Xtensa family of soft IP block microprocessors. These 

have the advantage that the company is fabless and not tied to any particular silicon 

technology. The development suite provided by Tensilica allows processors to be 

customized for a particular application, by changing the processors architecture and 

allowing the instruction set to be extended using new instructions. These instructions 

control optimized logic that results in more efficient processing performance. As a 

third party vendor there are still potential licensing and cost issues with the use of 

their microprocessors.

A similar microprocessor to Tensilica’s Xtensa which is available freely for 

commercial use under a GNU GPL licence, is the SPARC compatible Leon 2, 

developed originally for the European Space Agency. This is also a configurable 32- 

bit soft IP block microprocessor which may be extended by the addition of up to a 

further 5 instructions. Although this may seem the most appealing option for a 

microprocessor, as with the majority of open source software and hardware, there is 

no specific company offering user support.

All four processors discussed have the advantage that compared to the system 

controller, they are far more flexible and more computationally powerful. These 

processors could have been used for some image processing functions that would be 

more efficiently implemented in software than as a hardware DSP IP block. As well 

as controlling the sub-systems in the FPGA, they could also be programmed to 

control the sensor from the FPGA, removing the need for the sensor co-processor. 

The disadvantages of all the processors are:

• All are 32-bit and would consume larger amounts of FPGA resources when 

compared to the system controller.

• The complexity of the IP block microprocessors could reduce the overall 

system clock frequency attainable, due to their affect on the place and route 

of the design onto the FPGA.

• The pixel data and memory architecture is only 8-bit and therefore the 32-bit 

microprocessors are unlikely to be more efficient than the 8-bit optimised 

system controller for many functions.
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• The design flow is likely to become more complex for the prototyping 

platform’s software, as new tools may be required and programming code 

would need to be ported or re-written for the new microprocessor.

• STMicroelectronics does not have IP ownership of these microprocessors and 

therefore there maybe problematic or expensive licensing issues.

Irrespective of the advantages of the inclusion of a soft IP block microprocessor, 

STMicroelectronics requested that the FPGA design should not use any third party 

IP. This left no other option than to design the system controller, as no in-house 

processors were made available. If a mesh and linear array processing approach had 

been adopted, it would have been essential to add a microprocessor onto silicon die. 

Its inclusion would have been to perform the high-level image processing functions 

that both architectures are incapable of performing.

External access to the FPGA was provided by the IMPBUS and a SDRAM decoder. 

The SDRAM decoder converted SDRAM read and write transactions into internal 

reads and writes to the banks of memory embedded in the FPGA. It supported two 

data widths from the IMPBUS. These were 8-bit or 16-bit wide data which was 

transformed into multiple internal 8-bit wide data transactions. The SDRAM 

transactions provided flexibility in allowing the FPGA part of the prototyping 

system, to be used with processors or co-processors, other than the STV0674 

provided. The disadvantage of this approach was that in a situation where the co­

processor required information from the FPGA, it would still expect valid data to be 

returned from the FPGA within a given time window. The reason for this was that 

the co-processor’s SDRAM controller communicated to the FPGA, as if it was an 

SDRAM module. This could causes problems if latency in the FPGA architecture 

resulted in strict memory timing deadlines for outputting data not being met. It was 

expected that a high system clock frequency for the FPGA system would prevent 

these timing issues from occurring. Without the implementation of the SDRAM 

decoder and the use of the SDRAM bus, all communications between the sensor co­

processor and FPGA would be at the slow rate of 2Mbits/s per pin.
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Figure 3.4 shows the simplified top-level IP block architecture specified for 

implementation within the FPGA, including the SDRAM decoder and it connection 

to the rest of the sub-systems via a bus network.
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Switches

<---
< —>

USERBUS 
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Figure 3.4 Top-level IP block architecture in the FPGA

The bus network specified for the FPGA architecture consisted of multiple point-to- 

point buses synchronized with the system clock. As only a small number of 

interconnections existed within the architecture, it was seen to be unnecessary to 

implement a traditional bus structure, such as, STMicroelectronics’ ST-Bus, IBM’s 

CoreConnect or Arm’s AMBA, or a network-on-chip structure, given their 

associated control overheads. These point-to-point buses provided low latency 

communications links from sub-systems and DSP IP blocks to memories. As the 

register bank was used as a means for one sub-system or DSP IP block to indirectly 

control another, minimal direct wiring was required between DSP IP blocks and/or 

sub-systems. Hence, all sub-systems only required a direct connection to the register 

bank rather than a traditional shared bus providing full connectivity between all sub­

systems. A small network controller was implemented to provide arbitration over 

the network of point-to-point buses, using multiplexer structures and a priority 

mechanism based on system status. This network controller primarily controlled the 

access to the different shared memory banks. Table 3.1 show the possible 

interconnections between the different parts of the architecture.
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Image 

Bank 1

Image 

Bank 2

Scratch

Pad

Register

Bank

Instruction

Store

SDRAM Decoder Yes Yes Yes Yes Yes (*)

System Controller Yes Yes Yes Yes Yes

DSP IP Blocks (Each) Yes Yes Yes Yes No

Ping-Pong Unit Yes Yes No No No

(*) In limited situations 
Table 3.1 Interconnections between sub-systems, DSP IP blocks and memories on the FPGA

The limitation of using architecture with IP block interfaces designed for point-to- 

point buses, is that it may be more complex to re-use the IP blocks within a 

traditional shared bus structure. This issue could be addressed by using a ‘wrapper’ 

around each IP block to translate signals from the point-to-point bus interface, into a 

format suitable for a new bus structure, for example Arm’s AMBA bus.

The original project requirements from STMicroelectronics requested a core set of 

re-usable operators. This was extended during the project to specify that the 

operators ideally should be useable in other future STMicroelectronics products.

This requirement further justified a frame based approach to processing, as 

processing elements for mesh and linear array processing architecture are specifically 

designed for a single architecture, i.e. generally not for reuse in a wide range of 

potential architectures. As a result, it was deemed applicable to develop optimised 

hardware DSP IP blocks with standardised interfaces, to interface with a point-to- 

point bus structure. Each DSP IP block could be optimised for a specific operation, 

unlike processing elements in mesh and linear array based processing arrays. This 

had the distinct advantage that future STMicroelectronics products could use just the 

DSP IP blocks they required, rather than general-purpose unoptimised processing 

elements.

As the emphasis for these DSP IP blocks was to lay the foundations for the future 

realisation of tracking and object recognition, several operations were selected. The 

selection of these operations was as a result of the analysis of demonstration 

applications, implemented on the original VLSI Vision Imputer. The specific 

operations selected were:
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• Draw rectangle

• Threshold image

• Get maximum and minimum coordinates of all active pixels

• Absolute difference between two images

• Copy an ROI or Image to a new memory address

• 3x3 neighbourhood convolution filter

• Find all active objects within an image and store their attributes

Although these were selected for their suitability for tracking and object recognition, 

since they are low-level operations they would be used in a wide range of 

applications or form the basis of more complex algorithms and operators. For 

example, absolute differencing is also used in image compression techniques and the 

3x3 filter for a whole host of low pass, high pass and edge detect operations found in 

most image enhancement applications. The limitation of the DSP IP block operator 

selection, is that some of the more simple operations, such as ‘Add literal value to 

pixel’, would have to be performed by using the microcontroller in the sensor co­

processor. Despite this limitation, the selection of DSP blocks provides a range of re­

usable frameworks for the development of new DSP IP blocks which maybe required 

by the end user of the system. The major difference between the frameworks of the 

DSP IP blocks, is the number of connections provided to the point-to-point bus 

network and the memory addressing scheme supported.

3.2.6 System Firmware

Initially, it is expected that the application developer will start development with the 

standard STV0674 Webcam camera firmware patch as a base for new applications. 

This will provide the opportunity to perform functionality tests on the sensor/co­

processor pairing and USB communications. Following preliminary testing the 

standard patch will be modified to initialise the video encoder, switches, LEDs and 

configure the sensor, if required. On completion of any modifications of FPGA- 

resident image and machine vision processing architecture, the firmware can be 

augmented with suitable application code.
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3.2.7 Cost Issues

During the analysis and specification of the two PCB prototyping platforms, the issue 

of the relative cost of each design decision was addressed. In particular, the decision 

to use a frame-based architecture allowed the use of a reprogrammable FPGA rather 

than being forced to implement a mesh or linear array based architecture in silicon.

If a multi-project wafer production run was used, the cost would have been likely to 

be in the region of two magnitudes different compared to the relatively low cost of 

the FPGA and daughter board. Also, given that the imager would have to be 

integrated onto the silicon die, this would add further risk of higher costs due to the 

complex implementation requirements of a mixed-signal CMOS imager architecture.

Four other cost aware design decisions were:

1. The selection of memory devices supported by the prototyping platform only 

included low-cost solutions such as non-volatile FLASH memory and high 

capacity SDRAM ICs instead of high cost, low to medium capacity SRAM 

ICs.

2. The use of the sensor co-processor removed the requirement for valuable 

FPGA resources for a sensor control IP block or the cost of licensing a 

general purpose FPGA-embeddable microprocessor.

3. Using a two PCB approach to prototyping reduces the need to redesign both 

PCB designs if the FPGA’s support architecture needs future changes to 

support a new FPGA device. This is in addition to the cost benefit of using 

an in-house solution for the FPGA backplane rather than using a third party 

solution.

4. The decision to use a STMicroelectronics video encoder IC instead of a D/A 

convertor IC, reduced the requirement for a more complex video generator IP 

block to be design for the FPGA. The reduction in design and 

implementation time would be expected to result in a reduction in overall 

development cost.
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The main cost disadvantage as a result of a design decision, was that of using a 

separate co-processor and system controller. This decision would typically require 

two different software design flows, rather than a single unified approach. The 

complexity of two design flows could lead to longer development times for 

application developers and hence larger development costs.

3.3 Summary

This chapter has contained the requirements, analysis and specification which the 

design of the prototyping system was based upon. Further justification has been 

provided in the adoption of a frame based processing architecture, with emphasis on 

STMicroelectronics requirements of the use of their frame based sensor technology 

and the need for re-usable hardware based operators in the form of DSP IP blocks. 

The main PCB components have been listed and the primary bus structures between 

them defined. Particular attention has been paid to the IMPBUS due to its unusual 

configuration, flexibility and given it is the primary bus between daughter board and 

FPGA backplane. Details have also been provided with respect to the image 

processing architecture to be implemented within the FPGA on the backplane.
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4 FPGA System Design, Test and Results

This chapter concentrates on the methodology used to create the on-chip architecture 

for use in the FPGA on the backplane. The description of the architecture has been 

separated into two sections, firstly the core architecture which is essential for the 

correct functionality of the prototyping system and secondly an IP block library 

providing further flexibility. The simulation and functional verification flows have 

also been discussed. Details regarding the development of the PCB daughter card 

connected to the FPGA backplane are located in appendix B.

4.1 FPGA Design Flow

The FPGA system required a design flow which would ensure that every IP block 

developed for the core architecture and IP block library had undergone the same 

development process. Given that the FPGA system would be used by application 

developers, the IP blocks had to be carefully integrated into the compete architecture. 

This was achieved by individually simulating each new IP block. Each block was 

then simulated as part of the system and functionally verified at full operational 

frequency within the prototyping system on the bench. The top-level FPGA design 

flow used is outlined below.

1. FPGA architectural analysis and Verilog implementation

i. Assess the number of FPGA I/O pins required to support the necessary 

off-chip data and control buses in addition to clock and reset signals.

ii. Produce Verilog HDL code for mapping the FPGA pins to the internal 

interfaces of an instantiated core module, representing the architecture to 

be developed in the FPGA.

iii. Produce a new file containing the core level description of the 

architecture and the I/O interface to the FPGA pin mappings.

2. IP block design (perform steps for each IP block)

i. Specify the I/O interface for the IP block in a new design file.
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ii. Implement the IP block in synthesizable Verilog in the new design file.

iii. Perform checks on the correctness of the Verilog code and check that it

meets re-usability, readability and synthesizability requirements.

iv. Write a Verilog test algorithm that performs a series of tests on the IP 

block by applying different combinations of values to the IP block inputs.

v. Perform a Verilog simulation by instantiating the IP block under test and 

the test algorithm and executing the Synopsys VCS simulator. If 

functioning correctly move on the IP block integration stage.

3. IP block integration (perform steps for each IP block)

i. Initiate the IP block within the core level description file.

ii. Perform the necessary wiring to the core level’s I/O interface.

iii. Increment/create the system’s Verilog test bench to include the new IP 

block test algorithm. This differs from testing during the IP block design 

as the test bench should only apply signals to the core levels I/O interface.

iv. Perform Verilog simulation using Synopsys VCS simulator.

v. Synthesize the complete FPGA design to a netlist using Synplify.

vi. Compile and fit netlist design to create a FPGA bit stream programming 

file using Quartus II.

vii. Perform timing analysis and check that there is sufficient slack along all 

internal FPGA wire paths.

viii. Download design to FPGA/EPC2 using the Altera Byte Blaster cable and 

Altera MAX+PLUS II software programming tool.

4. Post integration system verification (perform steps for each IP block)

i. Generate a test plan for the FPGA which can be executed at PCB level, 

either automatically or using user input from switches.

ii. Verify the functionality of whole prototyping system with the new IP 

block using the test plan.

4.2 FPGA Top Level Mapping

The first step in an FPGA design is the definition of the top level mapping of the

external I/O pins of the FPGA to internally defined wires. This mapping takes the
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type of signal into account to ensure that the FPGA’s pins are be correctly 

configured. The original daughter card PCB was modified it to directly connect the 

output of the sensor access port to the FPGA. The reason for this modification was 

to reduce any processing overhead on the co-processor, reduce latency of the transfer 

of image frames to the FPGA for processing and reduce the utilisation of the 

IMPBUS. The addition of this sensor data input port on the FPGA, resulted in an 

increase in the total number of pins defined to 140, excluding ground and power 

supply pin mappings. The top level pin mapping for the FPGA is shown in figure 

4.1.

Backplane Switches IMPBUS I/O [38:0]

Sensor Data and Clock In [5:0] SDRAM A I/O 

12 MHz Clock SDRAM B I/O [37:01

27 MHz Clock USERBUS I/O [4:0]

Reset Digital Video Out

Figure 4.1 Top-level pin mappings for the FPGA

4.3 Core Architecture

The development of the core architecture connect to the top-level pin mapping was 

divided into 3 separate phases. Each of these phases resulted in a functional system 

with the new architectural extensions easily demonstrable on the bench. The three 

phases were:

1. The construction of the SDRAM decoder and register bank (marked in orange in 

figure 4.2). This phase demonstrated that data could be written from the 

STV0674 co-processor to the FPGA at a given address within the register bank

2. The development of the sensor interface, video encoder, ping-pong unit and two 

image banks (marked in green in figure 4.2). The completion of this phase 

demonstrated the architecture’s ability to meet the required hard deadlines for the 

sampling of sensor data and its storage and output in a suitable format, at 25fps to 

the video encoder IC.
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3. The implementation o f the system controller, instruction store and scratch pad 

memory (marked in blue in figure 4.2). This enhanced the FPGA-based 

architecture allowing instruction storage and autonomous processing to control 

the various sub-systems without the intervention o f the co-processor.
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Figure 4.2 The three phases o f developm ent for the core architecture

The DSP IP block library, bus network and network control unit (marked in white in 

figure 4.2) were developed throughout the three phases and hence converged on an 

optimal solution for each phase. The following sub-sections provide detail on each 

o f the core architectural components at the end o f phase 3.

4.3.1 Register Bank

The register bank was the key component in the FPGA architecture as it stored the 

system configuration and current status in a readable, and in many cases writable, 

byte-wide configuration. The activation o f new operations from the system 

controller required the use o f the register bank as an intermediate means o f 

controlling the ping-pong unit and DSP IP blocks. This provided a mutual exclusion 

mechanism that ensured the ping-pong unit or DSP IP blocks could only be 

configured by one other sub-system in any given clock cycle. Data stored in the 

register bank structure could be accessed in two ways, namely, directly, where a wire
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was permanently connected to the output of the register, or indirectly using a 

memory-like read request. Typically, all system control and DSP IP block execution 

requests were controlled by the direct method to ensure the lowest latency. A write 

to a register used a synchronous memory-like write request, except in the case of a 

DSP IP block execution acknowledgment. This exception allowed the register bank 

to be freely readable and writable using the memory-like interface during the 

acknowledgement of the execution of a DSP IP Block. This was particularly 

important as after a DSP IP block received an execution request, it may need to 

access the register bank to obtain configuration data. The minimal recommended 

configuration for the register bank required the input/output interface as shown in 

table 4.1. Connections on the left side, indicate inputs and connections on the right, 

the outputs. Buses of wires are indicated by <n:0>, where n is the number of wires, 

minus one, in the bus.

I/O Name Description
pc val <7:0> Program counter value
regdin <7:0> Register data in
reg addr <7:0> Register address select

pc_val<7 0> p ing_pong_cfg<7 0> clk48 System clock
— regdin<7:0> env active Active pixel data flag

reg _ ad d r< 7 0 >  regdout<7  0>
ip matrix busy DSP IP blocks busy
odd even Odd/Even frame flag

clk48 rdstrobe n Read request (active low)
--------- env_active test_sel<7  0> 

ip_m atnx_busy

--------- resetn Asynchronous System Reset 
(active low)

switch value Switch value flag
---- odd_even config_com plete_n ---- wrstrobe n Write request (active low)
---- rdstrobe n ping pong cfg<7:0> Ping-pong configuration

rese t_n  dsp_ctrl_rst
regdout <7:0> Register data out
test sel <7:0> Test mode select

---- switch_value configcom pleten I-store access select (active
__ w rstrobe n pingpong d sp  Ctrl val __ low)

dsp Ctrl rst System controller reset
p ingp ongd sp ctrlva l Ping-pong deactivate

Table 4.1 Minimum set of I/Os for the FPGA Register Bank

These I/O were mapped to the first 10 addresses in the register bank and are listed in 

table 4.2.
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Address Name Type Function
OOOOh device id Readable / Writable Device Identification Number
000 lh rev number Readable / Writable Device Revision Number
0002h blank 0 Readable /  Writable Not Used
0003h blank 1 Readable / Writable Not Used
0004h dsp_ctrl Readable / Writable System Controller and Program Counter Reset, 

I-Store Configuration Control and Ping-Pong 
Deactivate

0005h PC Readable System Controller’s Program Counter value
0006h bp Ctrl Readable / Writable Status o f 3 Backplane push-button switches
0007h ping pong Ctrl Readable / Writable Image bank selection and freeze-frame control
0008h test select Readable / Writable Test mode select
0009h status_out Readable Active image data grab flag, DSP IP blocks 

busy flag and odd/even frame flag.

Table 4.2 Minimum register map for FPGA Register Bank

The typical structure of the register bank involved the repetition of similar register 

structures to create an array of register instances. Due to the complex nature of the 

schematics produced during synthesis of the register bank, only one register instance 

is provided in figure 4.3, which illustrates a typical structure.

Example Register

Figure 4.3 Single instance of an example 8-bit register from the register bank

4.3.2 Memories

The image banks, I-store and scratch pad single-port memories in the core 

architecture possessed the same interface, internal structure and operated 

synchronously with the system clock. To all intent purposes, these single-port 

memories acted as static RAMs (SRAM). Table 4.3 shows the common top-level 

interface for these memories. The width of a memory address input varied 

depending on the size of the memory.
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 a<13:0> q<7:0>---------

 -------d<7:0>

 elk

 cs_n

 we_n

Table 4.3 Top-level memory

A single parameterisable Verilog memory model was used to instantiate and 

synthesize these four memories. As the design decision was taken to implement two 

image banks, this limited the size of each image bank to 16Kbytes, as it was not 

possible to implement two 32Kbyte image banks within the FPGA due to lack of 

memory resources. The Altera 20K FPGA used in the prototyping platform, 

constructed memories from embedded systems blocks (ESB), each containing 2,048 

programmable bits. Therefore, each 16KByte Image bank, 4KByte Scratch pad and 

I-store used 64,16,4 ESBs respectively. Once an address had been set-up on the 

memory interface ready for a rising clock edge, valid data for that address would be 

outputted on the data output ready for the next rising clock edge. As the memory 

bank data I/O interface had been specified to be byte-wide, the resultant pixel 

read/write rate was fixed at one pixel per clock cycle.

4.3 J  SDRAM Decoder

A SDRAM decoder was used to convert 16-bit data read and 8-bit data write 

SDRAM transactions from the IMPBUS. The SDRAM transactions were converted 

to 8-bit data read and write transactions suitable for the on-chip SRAM memories 

and Register Bank. The implementation of the decoder was as a direct result of the 

design decision to use a sensor co-processor as an intermediate between the sensor 

and FPGA. As such, this SDRAM transaction conversion process was used as the 

primary form of communication between the co-processor and the FPGA-based 

architecture. The SDRAM decoder could only access one of the image banks, I- 

Store or scratch pad or register bank at one time.

I/O Name Description

a <13:0> Memory address

d <7:0> Data in

elk System clock

cs_n Chip select (active low)

we_n Write enable (active low)

q <7:0> Data out

interface to system architecture for an Image bank
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A strict set of timing requirements had to be adhered to for each transaction to be 

correctly completed. These timings were dictated by the SDRAM hardware control 

block within the co-processor. The co-processor supported single 16-bit word reads 

and byte writes and burst (4 words) writes and reads. The reads incurred a fixed two 

cycle latency from setting up the address on the bus, until the first valid data was 

available. Unfortunately, the burst modes were not available when controlling the 

SDRAM bus with the co-processor embedded micro-controller. As it was expected 

that the micro-controller would be used to control SDRAM transactions between it 

and the FPGA, only word reads and byte writes were supported with the SDRAM 

decoder. The SDRAM decoder also supported DQM data masking during write 

transactions to ensure data was written to the correct on-chip address. The I/Os for 

the decoder are summarised in table 4.4. The timing requirements for the co­

processors SDRAM controller are shown in figure 4.4.

I/O Name Description
dram a < 1 3 :0 SDRAM address
dram dqm<13:0> SDRAM data mask

— dram _a< 13 0> dram _d_out< 15 0> dram d in <15:0> SDRAM data in
dram  dqm < 10> mem d in < 7 :0 On-chip memory data in

m em _a_out<23 0> elk System clock
d ra m _ d jn < 1 5  0>

mem d out<7 0> dram cas n SDRAM column select (active low)
---- m em _d_in<7:0> dram elk SDRAM synchronization clock
---- data bank sel

elk dram cs n SDRAM chip select (active low)
dram ras n SDRAM row select (active low)
dram w en SDRAM write enable (active low)

---- dram  elk
m em _bank_1_sel reset n Asynchronous System Reset (active low)

— dram _cs_n dram d out < 1 5 :0 SDRAM data out
m em _bank_2_sel mem a out On-chip memory address out

mem d out On-chip memory data out
dram _w_en data bank sel Data Bank select flag

— reset_n  w_en i store bank sel Instruction Store select flag
mem bank 1 sel Image Bank 1 select
mem bank 2 sel Image Bank 2 select
regb an k sel Register Bank select
w_en On-chip memory write enable (active 

low)

Table 4.4 I/O interface for the SDRAM decoder
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A1Q jT

~X POUT M *~iy QOUT Mj*2y POUT M + 3y
CAS Latency

Symbol Min Typ. Max Units

*CK 41.67 ns

tCH 20.11 20.83 21.55 *CK

>CL 20.11 20.83 21.55 *CK

•AC 24.76 ns

•o h 0 ns

•CMS 20.27 ns

•CMH 20.02 ns

•a s 20.67 ns

•d s 20.12 ns

•dh 21.82 n s

•rod 1 •c k

•ra s 2 *CK

•rc 4 •c k

•r p 2 •c k

•rrd 2 •c k

•ah 19.79 n s

Figure 4.4 Co-processor’s SDRAM read (top) and write (bottom) timing requirements [91]

Although Figure 4.4 shows multiple word read and writes, the timings are also 

applicable for single word or byte transactions. SDRAM transactions started with an 

“ACTIVE” command which involved the assertion of the SDRAM addresses most 

significant bits. This was followed on the next SDRAM clock cycle by either a 

“READ” or “WRITE”, with the remaining least significant 9-bits of the SDRAM 

address. The commands given by the co-processor were constructed using the 

control lines of the IMPBUS. These commands and associated control signals are 

listed below in table 4.5.

ACTIVE READ WRITE

dram csn Low Low Low

dramcasn High Low Low

dram_ras_n Low High High

dram_w_en High Low High

Table 4.5 SDRAM commands and associated signals to start read and write transactions

Implementing the write transaction decoding within the SDRAM decoder was 

relatively simple as no signals were transmitted back to the co-processor following a 

write. This functionality had one main timing requirement which was that the

72



system must be able to process and store the byte of data in a single cycle. The 

timing requirements for a read word transaction were more complex. After the 

assertion of a read word transaction on the bus, the co-processor required the full 16- 

bit word to be a valid output ready for sampling after two 24 MHz cycles, i.e. 

83.34ns. This is known as the CAS latency. This was further complicated by the 

fact that the systems memory structure and data bus are 8-bit wide and therefore two 

bytes must be read from on-chip memory to output a 16-bit word on the external bus. 

This extra byte read required an extra system clock cycle.

The process used to collect and construct the 16-bit word, following the detection of 

the start of a read transaction, was as follows:

1. Sample read address at system clock edge from the IMPBUS. Output first 

memory address as a read request on the selected on-chip memory bus.

2. Collect first byte and store as least significant byte of 16-bit word and output 

second memory address, i.e. increment the first address by one, as a read 

request on the selected on-chip memory bus.

3. Collect second byte and output complete 16-bit word on IMPBUS bus ready 

for DQ sampling by the co-processor.

The system clock is not necessarily in synchronisation with the SDRAM data clock 

on the IMPBUS. A system clock frequency of 24MHz or more, may result in the 

sampling of the read address up to 20.83ns (ten) after the rising edge of the SDRAM 

clock. This would leave only 62.5 Ins to output the 16-bit word on the external bus. 

Hence a minimum system clock period of 20.83ns, and clock frequency of 48 MHz, 

was required to complete the aforementioned three step process to collect and 

construct the 16-bit word. This clock frequency assumes the output data path for the 

second byte does not contain a register and that the 16-bit output is latched on the 

next system clock cycle until a new read transaction takes place.

4.3.4 Sensor Interface

It was decided that the original method of transmitting image data to the FPGA via 

the co-processor would be overly complicated. A sensor interface was designed to

73



directly process image data from the image sensor. As STMicroelectronics had 

requested that their sensors were used, this required a 5-wire data interface to be 

implemented to connect to the sensor 5-wire bus. The incoming 5-bit VGA image 

data at 25fps from the sensor’s five wire data bus was sampled and queued in an 

asynchronous FIFO to be processed by the sensor interface. The FIFO was used as a 

means to sample the data on the rising edge of the sensor clock, while allowing the 

data to be read to the sensor interface running on the system clock domain. This was 

important as the sensor clock varied depending on the mode of the co-processor. 

Although, the prototyping system was set to a specified sensor clock rate, the use of 

the FIFO allowed for more flexibility in the use of the system with other future 

unforeseen sensor modules. The only control signal passed from the FIFO to the 

sensor interface, was an FIFO empty signal, which was used to prevent reads from 

the FIFO when no data was present. Two 5-bit nibbles were concatenated to form 

bytes before the 8-bit embedded codes were processed. As the image sensor 

produced 8-bit image data value, only the top 8-bits of each nibble pair were used, 

with the first nibble in each pair representing the least significant bits. Therefore, 

two nibbles formed one pixel.

Embedded codes within the sensor data allowed complete images to be correctly 

interpreted, sub-sampled by a factor of 8 and outputted in the correct sequence and 

format, to the ping-pong unit. In addition to the image data, an active data flag 

indicating valid pixel data to the ping-pong unit was implemented. A vertical 

synchronisation pulse was also outputted to the ping-pong unit after decoding a start 

of frame line code. Table 4.6 shows the I/O for the sensor interface and figure 4.5 

shows the format of each sensor image frame.

sdata<4:0> image_data<7:0>

sub_sam p_x<3:0>

sub_sam p_y<3:0»

env_active
elk

reset_n

sensor_fifo_empty v_sync

I/O Name Description
sdata <4:0> Image data from sensor via FIFO
sub samp x<3:0> Horizontal sub-sampling factor (default 8)
sub samp_y<3:0> Vertical sub-sampling factor (default 8)
elk System Clock
reset n Asynchronous System Reset (active low)
sensor fifo empty FIFO empty flag
image data <7:0> Reconstructed 8-bit image data
env active Active data flag
v sync Vertical synchronisation flag

Table 4.6 I/O interface for the sensor interface
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Line
0
1

19
25

509
510

523

SAV (6 pixels) 

1_______

EAV (6 pixels)

I
Start of Frame Line

Blank Lines

Dark Lines

Visible Lines 
(Image area: €44x484 pixels 

Area sampled: 640x480 pixels}

End of Frame Line

Blank Lines

Video Data (644 pixels) tanking 

->
(260 pixels)

Total line lenath: 916 pixels 

Figure 4.5 Sensor VGA image frame and timings at 25FPS

As can be seen from figure 4.6, each frame had a total of 916x524 pixels, equalling 

479984 pixels in total. Each nibble was outputted at a default sensor clock frequency 

of 24 MHz resulting in a pixel clock frequency of 12 MHz. This pixel clock rate, 

gave a frame time of 0.040s and hence a frame rate of 25.00fps.

The SAV and EAV codes shared the same first six, 5-bit nibbles of 3FF-3FF-000, 

know as an escape code. Following the SAV’s escape code, a line code indicating the 

type of line data was received. A 31C Hex code identified the line as the start of 

frame line and the vertical synchronisation pulse was outputted for a duration of 1 

system clock cycle. On receipt of a 2D8 Hex code, the sensor interface recognised 

the line as a visible data line and start sub sampling. Every 8th pixel on every 8th line 

was transmitted to the ping-pong as an active data pixel until the complete 80 by 60 

pixel image had been transmitted. The selection of pixels was important as 

STMicroelectronics colour image sensors possess a Bayer colourisation filter mask, 

over the visible pixel array. Therefore, as the silicon varies in sensitivity to different 

frequencies of light, only pixels with the same colour filter should be used to create

75



the sub-sampled image [96]. Green filter pixels were selected for sub-sampling. If a 

greyscale sensor was used this would not affect the sub-sampling process. Figure 4.6 

displays the Bayer colourisation pattern used.

Odd Columns Even Colum ns

(1,3,5,7,..) (2,4,6,8,..)

Odd Rows

(1,3,5,7,..)

Even Rows

(2,4,6,8,..)

Figure 4.6 Bayer colourisation pattern used in STM icroelectronics' colour image sensors

The precise timing o f the sensor interface was implemented using a single 15 state 

Mealy finite state machine (FSM) running at full system clock frequency.

4.3.5 Video G enerator

Video data to be outputted to the video encoder IC, was required to be organised into 

an ITU-R BT.656 compliant 8-bit 4:2:2 YCbCr video stream with embedded codes 

for either PAL (625 line) or NTSC (525 line) systems. The video generator module 

performed this task. An image stored in one o f the two image banks was read by the 

ping-pong unit in a raster fashion into a 9-bit wide, 128 address deep asynchronous
jL

FIFO. The 9 bit was used as a flag to indicate the first pixel in an image. Keeping 

the size o f the FIFO limited to 128 addresses, ensured that only one o f the FPGA 

ESB memory resources was used. The video generator only read data from the FIFO 

when it was not empty and the encoder start flag was set to high. Table 4.7 shows 

the video generators I/O and its connection to the asynchronous FIFO and an 

associated line memory.
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active_x<9.0> Iin9_m em _a<9:0>

acdve_y< 9 0>

line_m em _q<7:0>
Iin9_m9m_d<7:0>

vdata_fifo<8.0>

vdata_out<7:0>

clk27

9n co d er_ sta rt
Iin9_m9m_w9n

fifo_empty

init_test rd_fifo_req

rese t_ n

video_std
v_sync

I/O Name Description
active x <9:0> Active horizontal output image size
active_y <9:0> Active vertical output image size
line mem q <7:0> Line memory data out
vdata fifo < 8 :0 Video data in from FIFO
clk27 27 MHz clock
encoder start Encoder start-up flag
fifo empty FIFO empty flag
init_test Initialise test pattern generator flag 

(unused)
resetn Asynchronous System Reset (active 

low)
video std Video standard select (PAL 0/NTSC 1)
line mem a < 9 : 0 Line memory address out
line mem d < 7 :0 Line memory data out
vdata out < 7 :0 ITU-R BT.656 encoded video data out
line mem wen Line memory write enable
rd fifo req Read FIFO request flag
v sync Vertical synchronisation flag

Table 4.7 I/O interface for the Video generator

Video data from the FIFO was in the form of an 80x60 pixel image which was 

interpolated with extra pixels to scale the image to a size dictated by inputs active_x 

and active_y, set as 640x480 by default. This was achieved by writing each 80 pixel 

line into a line memory at the same time it is read out. The line was then read back 

from the line memory a further three times. Each time a pixel was read from the 

FIFO or from the line memory, it was repeated a further seven times. This created a 

scaled image of 640x240 pixels. Unlike the sensors image format, the video 

generator had to produce a 25fps interlaced image. Each image frame was made up 

of two fields. These consisted of half the vertical video data and had to be outputted 

at 50 fields per second to reconstruct a 25 frames per second video stream. Hence, 

for every sensor image obtained, two ‘half images’ had to be outputted by the video 

generator in the same period of time. The combination of two 640x240 pixel images 

recreated the full-sized 640x480 image. The active video data in each line was 720 

pixels, regardless of whether a PAL or NTSC video mode was selected. The video 

modes had a vertical resolution of 576 lines, for PAL, and 480 lines, for NTSC [97]. 

Eighty padding pixels (value 10 Hex) were added at the end of each line of the 

640x480 image and also, in the case of PAL, 48 pixel lines after the 240th line.

Figure 4.7 displays the interlaced vertical and horizontal timing requirements for a 

PAL ITU-R BT.656 digital output from the video generator.
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Line 0

Blanking

Blanking

Blanking

Line 310 

Line 335

Line 623

Line 624
Standing Interval

Line 22

Field 0 
(Even)

Line 312

Field 1 
(Odd)

EAV Standing
Interval

SAV Blanking or Active Video

<----------------------------------------------------- ---------►
4 Sam ples  280 S am ples 4 Sam ples  1440 S am ples  (720 pixels)

Figure 4.7 ITU-R BT.656 PAL video timing requirements for a 27 MHz clock

T he t im ing  o f  the system w as m aintained by a M ealy  FSM . As with the sensor data, 

em bedded  codes  w ere  required in the v ideo  data to indicate the type o f  line. T he  

ITU -R  BT.656 format, dictated that for an 8-bit digital video, the valid range o f  

values a lum inance  or greyscale pixel should  be 16 to 235 and for a ch rom inance  (Cb 

or Cr) pixel, 16 to 240 [97]. Values that fell out with these values w ere to be clipped 

to the m ax im u m  or m in im um  value allowed. B lanking  lum inance  pixels w ere 

assigned a value o f  16 w hereas  the  unused chrom inance  values, Cb  and Cr, w ere  

perm anently  assigned a default value o f  128. This is due to the fact that the system  

only  operated  in a greyscale  mode. Table  4.8 show s the construction at the  start and 

end o f  the video codes.
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Bit 7 (MSB) Bit 6 BitS Bit 4 Bit 3 Bit 2 Bit 1 BitO

1*‘ Byte 1 1 1 1 1 1 1 1

2nd Byte 0 0 0 0 0 0 0 0

3rd Byte 0 0 0 0 0 0 0 0

4th Byte 1 F V H P3 P2 PI PO

Table 4.8 SAV and EAV code sequence

As seen in the table above, F is the field number 0 or 1 and V is the value 1 only 

during vertical blanking lines. To recognise if the code sequence is a SAV or EAV, 

H is set to 0 for SAV and 1 for EAV. PO to P3 are protection bits which can be used 

by the receiver of the video data to detect 1-bit and 2-bit errors and correct 1-bit 

errors. The equations for PO to P3 are show in equation 4.1 below.

P0 = F ® V @ H  
P\ = F@ V  
P2 = F ® H  
P3 = V@ H
where ® is Exclusive -  OR 

Equation 4.1 The calculation of protection bits PO to P3 [98]

The 4:2:2 nomenclature refers to the ratio of luminance, Y values, to chrominance, 

Cb and Cr values. For every four luminance values transmitted, two chrominance 

values were transmitted. Following an SAV code, the order of the 27MHz samples 

making up a pixel for a 4:2:2 is Cb-Y-Cr-Y. This sequence must be repeated until 

the end of the active line. The implementation of the video generator was in two 

parts. The first part was that of the FIFO and line memory control to re-produce a 

640x480 image from an 80x60 pixel image. The second part is the generation of the 

ITU-R BT.656 video stream with the correct timings by a Mealy FSM. The control 

mechanism and top-level diagram for the FSM structure, without the system clock 

and reset, are shown respectively in figures 4.8 and 4.9.
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Iine_mem_q [7:0]
vdata_fifo [7:0]

v_data
[7:0] w en

line mem a
[9:0]

w vdatajn
[8:01 

<— wr_fifo_req

— ►fifo full

firstjine 
i.e. if (y = 0)

first_pixel;

fifb_empty <

rd_fifo_req
rd_req

Line
Memory

(1024x8-bit)

Async.
FIFO
(128x
9-bit)

Address
Generator

Figure 4.8 Control mechanism for Video generator's line memory and FIFO

SAV & EAV Code 
Generator

Field & Vertical 
Blanking Timing 

Generator

Vertical Active Line 
Counter

Scanline Counter

Horizontal Blanking 
Pixel Counter

Horizontal Active 
Pixel Counter

v_data [7:0]-------
rd_req *___

FSM Video 
Generator

video_std 
and v_sync

.vdata_out [7:0] 

_encoder_start 

-active_x [9:0]

active_y [9:0] 

fifo_empty

Figure 4.9 Top-level block diagram of Video generators FSM

4.3.6 Ping-pong Unit

The purpose of the ping-pong unit was to read an image frame from the sensor 

interface and write it into an image bank whilst simultaneously reading an image 

from the other image bank and writing it into the asynchronous FIFO attached to the 

video generator. The ping-pong unit had to ensure that both the video generator and 

sensor interface were synchronised. Once a frame had been written to one memory
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and a frame read twice from the other memory, the ping-pong unit swapped memory 

interfaces between the read side and the write side. This enabled the system to 

maintain a default frame rate of 25fps while only using single-port memories. Table 

4.9 shows the ping-pong unit’s I/O.

m em _q_l <7:0> imagB_data_out<8:0>

m em _q_2<7:0>

ping_pong_ctrl<1:0>

mBm_a_1 <13:0>

roi_*<9:0> mem_a_2<13:0>

roi_y<9:0>

elk

end_of_fram0

encoder_bank_sel m em _w _en_1

anv_activB

fifo_full

m 0 m_w_0 n_2

pingpong_dsp_ctrl odd_ovan

rasat_n

pingpong_rd_bank_ctrl

sanso r_ b an k _ s0 l

v_sync wr_fifo_req

I/O Name Description
mem q^l <7:0> Memory bank 1 data output
mem q_2 <7:0> Memory bank 2 data output
ping_pong_ctrl <1:0> Indicates accessibility o f  both 

memory banks
r o ix  <9:0> Horizontal size of image to read 

and write
roi_y <9:0> Vertical size of image to read and 

write
elk System clock
encoder_bank_sel Selects intra-bank offset address 

for reading
env active Active data signal from sensor
fifo full Video generator FIFO full flag
pingpong dsp Ctrl Freeze frame select (active high)
resetn Asynchronous System Reset 

(active low)
sensor_bank_sel Selects intra-bank offset address 

for reading
v sy n c Vertical synchronisation signal 

from sensor
image data out<8:0> Video data out to video generator
mem a 1 < 1 3 :0 Memory bank 1 address select
mem a 2 < 1 3 :0 Memory bank 1 address select
end o f frame End o f frame flag
mem w en 1 Memory bank 1 write enable
mem w en 2 Memory bank 2 write enable
oddeven Indicates which bank to write to 

(high: bank 1 and low: bank 2)
pingpon g rd bank Ctrl Flag to indicate a read is taking 

place
wr fifo req Write to FIFO request

Table 4.9 I/O interface for the Ping-pong unit

The ping-pong unit consisted of four main sub-units; the image bank controller, the 

read unit, the write unit and an odd/even signal generator. The odd/even signal 

generator unit controlled all of the other sub-units. Its function was to provide a 

signal to toggle read/write functions between the two image banks when the rising 

edge of the vsync pulse was detected. The odd/even signal could be overridden by 

an active high pingpongdspctrl input, which would set the system to freeze frame 

mode, i.e. continuously read from one image bank without ever updating the image. 

The ping_pong_ctrl input could also override the ping-pong unit by forcing reads
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from a specified bank or prevent access to all banks. For example, value 1 would set 

reads from bank 1 and conversely, value 2 would set reads from bank 2. Value 3 

would block reads from all banks and force the video generator to output a blank 

screen. The image bank controller used the odd/even signal to toggle the signals from 

the read unit and the write unit between the two external memory interfaces. The 

design of the image bank controller was such that it allowed the images to be locked 

into either being read or written into the top or bottom half of each image store. 

Setting sensor_bank_sel bit-line high from the register bank forced an image to be 

written into the top half of a memory store and thus preserve any data in the bottom 

half.

The write unit performed a single image frame write, during cycles when env active 

was high and pingpong dsp ctrl was low. The write mechanism generated the 

necessary addresses for all of the image data writes and reset the addressing 

generator when a v_sync signal was detected. Unlike the write unit, the read unit 

performed two reads of an image frame to maintain the data rate and achieve 50 

fields per second. The read data was written to the video generator’s FIFO, at system 

clock speed, whenever it was not full. This had to be performed at a frequency not 

lower than 13.5 MHz so as to prevent the video generator from being starved of data 

and blank pixels being incorporated into the active video data stream. The FIFO 

provided the opportunity to complete a pre-fetch of 128 bytes of data at the start of 

every image frame read, whilst the video generator was outputting blanking lines.

As with the write unit, addressing was generated and finally reset by the v sync 

pulse from the sensor interface.

A test generator was designed for the ping-pong unit to provide a test pattern in place 

of the sensor data. Setting either bit of test_sel[l :0] high in the register bank would 

activate the test generator. Once activated the test generator ‘highjacked’ the 

interface between the sensor and the ping-pong unit. The test pattern outputted to the 

ping-pong unit was that of a greyscale ramp. This was selected as the STV0119a 

Video Encoder IC’s test mode was a set of test bars and it was deemed sensible to be 

able to distinguish between the two. The test patterns visible on a PAL monitor are 

shown in figure 4.10.
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Figure 4.10 Test patterns visible for test_sel=l (left) a°d test_sel=2 (right)

4.3.7 System Control Unit

A s a design decision w as m ade  to not incorporate a m icroprocessor into the  F P G A , a 

system control unit w as provided as a m echanism  for contro lling  the d ifferen t s u b ­

system s within the FPG A  architecture. It is unlike modern  control units found  in 

m icroprocessors, m icrocontro llers  and digital signal processors for several reasons. 

T hese  are as follows:

1. M ost instructions found in these o ther architectures are typ ica lly  12-bit to  64- 

bit in length. T he system controller uses separate 8-bit w ide  instructions and 

literal values, as a result o f  the system -w ide  decision to only  use b y te -w ide  

m emories.

2. M ost instructions configure  and execute  co-processor opera t ions  ra ther than  

perform ing typical A L U -ty p e  operations.

3. M inim al or no processing is perform ed on large sets o f  da ta  by the system  

controller.

4. The instruction store (I-store) can only be written to, via the S D R A M  decoder  

using an external device, such as the co-processor.

Table  4.10 illustrates the input and output interface o f  the system control unit. F igure 

4.11 shows how these interface to the instruction store, FIFO and genera l-pu rpose  

m em ory  interface.
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dsp_ctr1_fifo_wr_used<3:0> pc<7:0>

in s tru c t on<7.0> 

reg_q< 7:0>

reg_a< 15  0>

elk reg_d< 7 0>

config_com plete_n

ctrl_rst

dsp_ctn_fifo_rd

dsp_ctr1_fi fo_empty
dsp_ctrt_fifo_reset

end_of_fram e

ip_busy

dsp_ctrl_fi fo_wr

re se t_ n reg_w _en

system _sta rt

I/O Name Description
dsp Ctrl fifo wr used 
<3:0>

Pre-fetch FIFO used words

instruction <7:0> Instruction data path
reg q <7:0> System memory data in
elk System clock
configcom pleten I-store and system configuration 

complete signal
Ctrl rst Control unit reset (synchronous)
dsp Ctrl fifo empty Pre-fetch FIFO empty
end o f frame End of frame flag
ip busy DSP IP block active flag
reset_n Asynchronous System Reset (active 

low)
system start Control unit activate signal
pc <7:0> Program counter and I-store address
reg a <15:0> System memory address
reg d <7:0> Data out to System memory
dsp Ctrl fifo rd Pre-fetch FIFO read request
dsp Ctrl fifo reset Pre-fetch FIFO reset
dsp Ctrl fifo wr Pre-fetch FIFO write request
reg w en System memory write strobe

Table 4.10 I/O interface for the system control unit

System control unit boundary

Instruction pre-fetch and branch unit

bez_yal
[7:0]

bez cmd

rst cmd

(dsp_ctrl_fifo_wr_used [3:()jL 
and dsp_ctrl_fifo_reset 
and 3spJctrl_FiTo_empty)~

pc [7:0]<

Pre-fetch FIFO 
(16x8-bit)

dsp^ctrl^_fifo^rdi k

d ^p ctrlfi fo_wr
_  i

istoreq [7:0]

Instruction

(I-store)

instruction [7:0] 

reg_a [15:0]*

Instruction decode and execute unit

reg d [7:0]*

reg q [7:0]*

reg_w_en

Example
Memory

Bank

f r"'f r r t...
elk reset_n ctrl rst ip busy system start end_of_ffame configcom pleten

where * denotes indirect access via network control

Figure 4.11 Top-level interfaces of system control unit
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The system controller supported a total of 35 different operations. Twenty six of 

these operations internally controlled the system control unit, performed loads or 

moves to and from memory. The remaining nine operations controlled other external 

sub-systems or image processing co-processing blocks via the register bank. Given 

the instruction opcodes currently allocated, up to a further 191 operations could be 

assigned opcodes. The 35 operations are listed below in table 4.11.

Instruction Name Opcode Description
NOP 0x00 No operation
WAIT EOF 0x01 Wait for end o f frame flag to go active
WAIT BUSY 0x02 Wait for DSP IP block busy flag to go inactive
LOOP 0x05 Unconditional loop to I-store start address
MOVE MEMMEM OxOF Copy memory byte to new address
MOVE MEMREG GPRO 0x10 Copy memory byte to internal general-purpose register 0
MOVE MEMREG GPR1 0x11 Copy memory byte to internal general-purpose register 1
MOVEREGMEMGPRO 0x12 Copy memory byte from general-purpose register 0 to 

new memory address
M OVEREGM EM GPR1 0x13 Copy memory byte from general-purpose register 1 to 

new memory address
LOAD MEM 0x14 Load memory address with literal data byte
ADD REG GPRO 0x15 Add literal value to general-purpose register 0
ADD REG GPR1 0x16 Add literal value to general-purpose register 1
ADD REG ADDR RD 0x17 Add literal value to read address register
ADD REG ADDR WR 0x18 Add literal value to write address register
SUB REG GPRO 0x19 Subtract literal value from general-purpose register 0
SUB REG GPR1 OxlA Subtract literal value from general-purpose register 1
SUB REG ADDR RD OxlB Subtract literal value from read address register
SUB REG ADDR WR OxlC Subtract literal value from write address register
LOAD REG GPRO OxlD Load general-purpose register 0 with literal value
LOAD REG GPR1 OxlE Load general-purpose register 1 with literal value
LOAD REG ADDR RD LO 0x1 F Load literal value to lower byte o f read address register
LOAD REG ADDR RD HI 0x20 Load literal value to upper byte o f read address register
LOAD REG ADDR WR LO 0x21 Load literal value to lower byte o f write address register
LOAD REG ADDR WR HI 0x22 Load literal value to upper byte o f write address register
BEZ 0x30 to 

0x3 F
Branch if  equal to zero. First 4 bits o f instruction 
indicated which general-purpose register to evaluate

BNEZ 0x40 to 
0x4F

Branch if not equal to zero. First 4 bits o f instruction 
indicated which general-purpose register to evaluate

STOP PINGPONG 0x03 Disable Ping-pong unit
START PINGPONG 0x04 Enable Ping-pong unit
THRESHOLD 0x06 Perform threshold operation on ROI using a value stored 

in the register bank
RECTANGLE 0x07 Draw rectangle
GETCOORDS 0x08 Get max and min coordinates cover o f all active pixels
ABSDIFF 0x09 Perform absolute difference
COPY OxOA Copy image or ROI to new memory address
GETOBJS OxOB Get all active objects parameters and build object 

database in Scratch pad memory
FILTER3X3 OxOC Perform 3x3 neighbourhood filter using weights stored 

in the register bank

Table 4.11 Instruction list supported by prototyping system
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By default, the system controller was inactive at power-on and the instruction store 

was empty. The external co-processor was given full access to the system to allow 

the automatic programming of the instruction store. Once the instruction store had 

been programmed, the config_complete_n signal went active low. This signal was 

followed by the system_start signal which initiated the instruction pre-fetch 

mechanism, instruction decode and execute unit.

The instruction pre-fetch and branch unit operated in a relativity simple manner.

This ensured the pre-fetch FIFO was always full by writing instructions to it from the 

instruction store by incrementing the program counter. This process continued until 

either a reset, loop or branch signal was received. The complete system control unit 

and FIFO, could be externally reset at any time by setting the reset register, which in 

turn, set the ctrl rst signal active high. In the case of a loop command, the internal 

rst cmd signal from the decode and execute unit pulsed high, causing the program 

counter to be reset to 0 and the FIFO to be flushed of data. Branch operations set the 

bez cmd high and asserted the 8-bit value to be decremented from the program 

counter on bez_val. This operation also flushed the FIFO and started filling the 

FIFO with data from the instruction store, using the new program counter value as an 

address.

The instruction decode and execute unit was also reset by the rst_cmd and was also 

stalled by an empty FIFO. The instructions decoded by the decode unit could be 

divided into two groups; those that required a literal value to execute an operation 

and those that did not. Instructions without a literal value usually changed the 

system control units internal state, activated a DSP co-processor block or triggered a 

MOVE operation. External memory operations, such as a MOVE, had to use a read 

or write address register. These two registers were 16-bit wide and provided access 

to the lull system memory mapped address range. The use of these registers was a 

result of using not allowing literal values to be used as addresses. This was deemed 

acceptable as adding a target address to the instruction, would either limit the 

possible address range to a small number of addresses, or add the burden of requiring 

addresses to be stored with the instructions. It was also anticipated that few external 

memory moves would be used in a typical application developed with the 

prototyping system and the time required for a move was still several magnitudes
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smaller than the time intensive image processing operations. The two 16-bit registers 

could be incremented, decremented or loaded using operation literal values. Loading 

the registers could be achieved by loading either the upper or lower byte per clock 

cycle. Again, this was not seen as a hindrance, as it was expected that external 

memory accesses would take place in the same data address localities, for example 

within the scratch pad memory or 8-bit addressable register bank.

The group of instructions requiring operands, all used the same process for decoding 

and executing operations. Once an instruction had been decoded, the literal value 

was obtained on the next clock cycle, as it was stored in the subsequent address in 

the instruction store. The instruction was then executed. This allowed for a reduction 

in the size of the mealy FSM used to 39 states. In the case of branch instructions, the 

first four bits of the opcode were used to determine which of the internal general 

purpose registers were to be evaluated. Although the branch mechanism decremented 

the program counter, it was possible to branch forward due to the wrap-a-around 

characteristics of registers. For example, branching from program decimal address 

45 to address 177, would require the literal to be the value 123. The implementation 

of a 256 byte program memory made this branching possible.

Two of the most important instructions were WAIT EOF and WAIT BUSY as both 

would be required in all but a few applications developed. WAIT_EOF could be 

executed to wait for a new image to be written from the sensor into memory, before a 

set of image processing operations could be executed. Typically, each image 

processing instruction would be followed by a WAIT_BUSY instruction, preventing 

the system controller from executing any more instructions, until the co-processor 

had finished. In some cases however, the time during image processing operations 

would be used for updating other memories or registers.

4.3.8 Network Control

Following the specification that point-to-point buses be used, rather than a traditional 

shared bus, a method was required to ensure that the buses could be controlled and 

that a mutual exclusion mechanism would be in place to prevent conflicts to shared
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resources, such as memory banks. The end result of this requirement was the 

implementation of a network control unit integrated into the bus network. This conrol 

unit provided low latency control of the point-to-point data bus structures within the 

complete system architecture. These point-to-point data bus structures were 

interconnected between a sub-system or DSP block and a memory, as most inter-sub­

system communication occurred via the register bank. The latency in the bus control 

and associated network was kept to a minimum by not using clocked registers and 

using multiplexers and priority select structures. Given the large number of signals 

involved and that the network control unit was integrated into the bus network, an 

I/O diagram has not been provided.

Five different memory interfaces existed within the FPGA system, with only one 

sub-system or IP block granted access during any clock cycle. As discussed 

previously, the instruction store was only accessible by the SDRAM decoder when 

the config complete n signal was high and the system control unit signal was low. 

The memory interface access controls for the register bank, image banks and scratch 

pad memory, worked on the same four level priority system, with priority one being 

the highest level and resulting in granted access to the memory. These levels are as 

follows;

1. The SDRAM controller always has the greatest access priority and enables 

access to all memory banks irrespective of the system’s status. The SDRAM 

controller is responsible for controlling the programming of the system.

2. DSP blocks have the second level of priority. As many DSP blocks do not 

require access to the register bank, they typically do not take access control of 

the register bank or release lull control to the system controller after 

configuring themselves in the first few clock cycles of their initialisation.

The network control unit ensures that DSP block has default access to the 

most recently obtained image, unless instructed otherwise.

3. The System controller generally has access to the register bank and data 

memory by default and typically does not require access to the image banks.

4. The ping-pong unit has the lowest level of priority but it only required access 

to the image banks. This allowed it to generally co-exist with the system 

controller as their access to memory banks rarely conflict.



The ping-pong unit was given a lower priority than the DSP block as in some 

circumstances only a partial image may need to be written from the image sensor for 

processing to be performed. The WAIT BUSY function could also be used to 

ensure that the DSP block only took control for processing in a memory bank at the 

end of a complete image write to memory. Also, as the video generator included a 

FIFO and line memory, the frequency of reads from a memory bank was low. Hence 

it was possible for a DSP block to temporally override access to the image bank 

currently being read by the ping-pong unit. This would normally have no noticeable 

effect on the output video but allow a DSP block to execute concurrently with the 

ping-pong read mechanism. In instances where frequent access was required by a 

DSP block, the pingpong_rd_bank_ctrl flag from the ping-pong block, could be 

monitored by the DSP block, to prevent it accessing a memory bank in the same 

clock cycle as the ping-pong read unit.

The network control unit offered two methods for address translation mapping to the 

correct memory. The first method was the direct method, which involved a memory 

bank select line being activated and a memory address passed unaltered to the 

selected memory. The second method was the indirect method. The indirect method 

took a full 16-bit address and translated the address into a memory select signal and 

an offset memory address. No significant difference was observed between the two 

schemes except that the direct method reduced the need for slightly more 

complicated addressing within the network control unit. This reduction in 

complexity slightly improved the ability of the design synthesis process to meet 

timing requirements for greater system clock frequencies. The in-direct method was 

more appealing however given that the DSP blocks interface was simpler.

4.4 DSP IP Block Library

The DSP IP block library consisted of seven co-processor IP blocks that performed 

image processing operations over a whole image or a region of interest (ROI). It was 

expected that almost all image processing within the prototyping system would be 

performed by these co-processors. Each co-processor generated memory addressing
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schem es to access the register bank and image banks. As S T M icroelec tron ics  had 

requested that the D SP  IP blocks should  be reusable, the IP b lo c k ’s interfaces needed 

to  be standardised, yet rem ain  flexible. As m entioned in section 4.3, the interface o f  

each co-processor to the bus ne tw ork  and m em ories  could be either direct or indirect. 

T hese  co-processors  could  also have  either  a single m em ory  interface port or a dual 

port depending  on the d es ig n e r’s cho ice  and requirem ents  w hen des ign ing  a D SP  

block. A  diagram  encom pass ing  the standard  I/O interfaces is show  in figure 4.12.
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maximum image 
size se lect & 
enable

elk
reset_n
ip_start

max_roi_x
max_roi_y

ROI select, 
active data 
flag & data in 
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sub_roi_y1_1 
sub_roi_x2_1 
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- > d  2
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secondary  
memory port

; Compulsory I/O j ! Optional I/O
•____ I I___I

Figure 4.12 I/O interface for DSP IP co-processor blocks

T he design decision to only  use tw o  im age banks, with one bank being written  into 

by the sensor interface and the ano ther concurren tly  reading out to the v ideo 

generator, had tw o effects on the design and control o f  the D SP IP blocks. T hese  

were:

1. Processing o f  the current im age w as only  easily possib le  at the end o f  each 

sensor im age frame, w hen  the sensor had stopped w riting  into the m em o ry  

bank. T he m eant that the addressing  and control o f  the D SP  IP b locks had to 

be optim ized for their  execution at the end o f  each sensor frame.

2. Image processing  opera tions using two image banks for processing  had to  be 

designed to ovoid  m em o ry  read conflicts with the p ing-pong  unit, when  the 

p ing-pong unit w as supp ly ing  pixel data to the video generator.
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The ipstart signal originating from the register bank, activated the DSP block. On 

the next clock cycle an active low acknowledgement signal was sent directly back to 

the register bank, to reset the ip start signal. During the same clock cycle, the 

ip busy flag was activated and remained so, until the system was reset or the DSP 

operation was completed. The parameters of the maximum image size, were given 

by max_roi_x and max_roi_y, and were sampled in addition to the region of interest 

given by the sub roi inputs. At this point in the co-processor operation’s execution 

further configuration data could be read from the register bank or from one of the 

memory banks.

When env active l was high this was indicative that the ping-pong interface was 

writing data to an image bank. The optional env_active_2 input indicated if the ping- 

pong unit was reading data from the other image bank. These signals helped the 

DSP block prevent memory access conflicts when requiring the reading or writing of 

data to and from an image bank. The secondary memory port and associated FIFO 

were only used in those instances where two streams of data were required for 

concurrent processing, such as an absolute difference operation.

Three different types of addressing schemes were supported by the DSP block 

architectures. These were;

1. Raster scheme -  Image data was read and written to and from a memory 

from the top line to the bottom line by reading left to right on each line. 

Images were written and read from the image banks in this way also. 

Typically, the read and write addresses only needed to be incremented by one 

for every new read or write.

2. Structured scheme -  Image data was read and written in a set predictable 

pattern following a simple rule set. For example, drawing a rectangle on an 

image required the drawing of 2 vertical and 2 horizontal interconnected 

lines. As an image was stored in a raster format, drawing the vertical line 

required the address to be incremented by the width of the image to write the 

next pixel below the current pixel. The horizontal lines however only 

required the address to be incremented by one for each new pixel write.
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3. Random scheme -  Image data is read and written in a pattern which is not 

easily predicted or is greatly affected by the contents of the input image.

Most common image processing functions use predictable addressing pattern, such as 

the raster and structured types listed above [99]. These addresses were generated 

using mealy FSM. The FSMs were coded to enable their re-use as a template for 

new algorithms, as a part of the requirement for the architecture to allow new DSP IP 

blocks to be developed in the future. Seven DSP IP blocks were developed to 

demonstrate the aforementioned different types of addressing and the use of the 

secondary memory port (dual port). These blocks are listed in table 4.12.

DSP Block Name Dual Port Operation Type Addressing Scheme Read / Write
THRESHOLD No Point Raster Yes / Yes
COPY No Point Raster Yes / Yes
GETCOORDS No Point Raster Yes / No
RECTANGLE No Point Structured No / Yes
ABSDIFF Yes Point Raster Yes / Yes
GETOBJS No Neighbourhood Random Yes / Yes
FILTER3X3 No Neighbourhood Raster Yes / Yes

Table 4.12 Supported operations by DSP block library

The first five DSP blocks in table 4.12 are simple operations and can be defined as;

1. A threshold DSP block, reads pixels and compares them to a value retrieved 

from the register bank. If the pixel value is greater to this threshold value, the 

pixel is written back as a decimal value 255 otherwise it is written back as a 

value 0. This can be explained mathematically for image u and threshold 

value t by the following equation;

u - 1 if  u{x ,y)>t  
0 if  u(x ,y )<t

Equation 4.2 Threshold equation

2. A copy DSP block, performs a translation of an image or ROI from one 

location to another address location stored in the register bank. This IP block 

can be defined mathematically using displacements x<j and yd, as;
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Equation 4.3 Copy equation

3. A getcoords DSP block, reads an image and stores the minimum and 

maximum x and y values in four pre-defined locations, Ri to R4, in the 

register bank.

Rj = u{mm{x)) where u(x,y) = 255 
R2 = u(min(y)) where u(x,y) = 255 
R3 = w(max(x)) where u(x,y) = 255 
R4 = w(max(>>)) where u{ x, y) = 255

Equation 4.4 Getcoords Equations

4. The rectangle operation, draws from an address location, a rectangle with the 

dimension specified by the sub roi inputs. Pixels are written using the value 

stored in the register bank, which as default is the mid-value 128. The order

of line drawing is horizontally from top left to top right, vertically to bottom

right, horizontally to bottom left and back to top left.

5. The absdiff DSP block, uses two synchronised image data streams, each from 

a different image banks and calculates the magnitude of the difference of 

pixel values between the identical pixel locations within the two images, u 

and v. The equation for this operation is shown in equation 4.5.

u(x,y) = u (x ,y ) -v (x ,y )  i f  u(x,y) > v(x,y) 
v(x, y) -  u{x, y) i f  u(x, y) < v(x, y)
0 i f  u(x,y) = v(x,y)

Equation 4.5 Absdiff equation

The last two of the image processing blocks, the getobjs operation and 3x3 filter were 

more computationally complex than the other DSP blocks. The 3x3 filter is a spatial 

domain neighbourhood filter operating on the pixels that form an image. This is 

typically expressed as;

v(x,y)=T[u(x,y)]

Equation 4.6 Equation for the spatial domain neighbourhood operator 3x3fllter
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W here  v(x,y) is the output image and T  is the opera tor  on image input im age u, over 

som e ne ighbourhood  o f  (x,y). Filter3x3 uses a 3x3 pixel m ask  over each pixel in an 

image and adds together all nine m ultip lications o f  the value o f  u(x,y) with the 

co rrespond ing  m ask  value (weights) to form pixel v(x,y). A s no data exists  outside 

the im age only  the inner image o f  the d im ensions  1 to x-1 and 1 to y-1 can be 

correc tly  processed. This can be show d iagram m atica lly  as in figure 4.13.

(x,y)
Part o f  image that 
can be processed 
(1,1) to (x-1,y-1)

y

Figure 4.13 3x3 neighbourhood Alter operation on an image

T he d eve lopm en t o f  a 3x3 filter for the IP library w as particularly  im portant as it 

form ed the basis o f  m any image enhancem ents ,  such as sm ooth ing  (low pass  filter), 

sharpen ing  (high pass filter) and edge enhancem ent.  An exam ple  o f  one o f  these  is 

the Sobel vertical edge  enhancem ent mask, show n  in figure 4.14 with the c o m m o n ly  

used Lenna  512x512  pixel image and resultant im age processed using PC based 

software.

-1 0 1

-2 0 2

-1 0 1

Figure 4.14 Sobel vertical mask (left), input Lenna image (middle) and processed image (right)
[100]
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As can be seen from the right image in figure 4.14, vertical lines from the original 

image have been enhanced to a far greater extent than the horizontal lines.

In the implementation of the filter DSP block, the nine weights for the mask were 

obtained from a pre-defined set of memory addresses in the register bank. Each 

weight was in a two’s complement format using 4-bits and providing a range of -7 to 

+7. Image data was then read from an image bank to fill three shift registers, each 

with the capacity to hold one image line, i.e. 80 pixels. The output of each shift 

register was fed to a bank of three multipliers and the first shift register’s output 

connected to the input of the second shift register. The output of the second shift 

register was also connected to the input of the third shift register, as shown in figure 

4.15. From all three shift registers, data was read into the 3x3 array of 12-bit output 

multipliers and summed to form an output raster image data stream. Data continued 

to be read from the image bank into the input of the first shift register at the same 

rate at the output data, i.e. one pixel per clock cycle. This ensured that the process 

was not starved of data. As the system only used 8-bit positive integers, any negative 

output pixel values were clipped at 0. An 8-bit shift operation on the output also 

allowed downscaling of the output pixel values by factors of two.
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Figure 4.15 Representation of the 3x3 filter's datapath

The getobjs operation is a useful DSP IP block as it provided the ability to segment 

different objects out of a thresholded image and store each object’s specifications in 

a database within scratch pad memory. This operation forms the basis of many 

object recognition and object tracking algorithms. Typically segmentation 

operations perform multiple passes over an image. The initial pass labels active 

object pixels and subsequent passes perform connectivity checks between pixels and 

labels interconnect pixels with the same label. Once each interconnected pixel group 

has a single distinct label, it is recognised as an object. As a result of the design 

decision to implement an 8-bit data architecture, only 254 different labels could be 

used, when 0 was used as a non-active pixel and 255 an active pixel. Using a typical 

labelling algorithm could possibly result in an insufficient number of labels to 

complete the first pass. To prevent this outcome, a new more complex algorithm was 

devised and implemented which was not based on a previous reference algorithm.

The devised algorithm performed a single raster scan pass over an image. Upon 

finding an active pixel, it was labelled with the current object number along with any
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active pixels in the surrounding 9 pixels. The locations of the newly labelled 

surrounding pixels were stored in the upper 2048 bytes of the scratch pad memory. 

Instead of reading the image in a raster scan fashion the algorithm tracked around the 

inside of the object until no more active pixels where found. The tracking path’s 

direction inside the object was determined by figure 4.16, with lower numbers 

representing the highest priority. This gave a preference to interconnected pixels on 

the vertical and horizontal plane.

Figure 4.16 Preference of connected pixels in Getobjs algorithm

The algorithm then used the stored locations of active pixels as starting points to find 

any remaining active pixels that had not been found on the first track around the 

inside of the object. Once all the store pixels had been read, the algorithm stored the 

objects information in the scratch pad in the format shown in 4.17 and returned to the 

original raster scan path over the image to find new active pixels. A more detailed 

algorithm description can be found in flow chart form in figure 4.18.

OxAOOO

0x9000

Temporary store o f  
pixel coordinates 

(2048 bytes)

Reserved area for 
found object data 

(2048 bytes)

Scratch Pad

Item Database Entry Item
7 Vertical centre o f object
6 Horizontal centre o f object
5 Maximum y
4 Maximum x
3 Minimum y
2 Minimum x
1 Number o f active pixels
0 Object number

Figure 4.17 Object database item format

Unlike the previous operations, this DSP IP block required a detailed algorithm to 

create a suitable memory addressing scheme. Rather than implement this block in
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Verilog, it was decided to first prototype the algorithm using the Matlab software 

package. The algorithm was implemented in a single Matlab code file using the 

standard set of commands with no additional libraries. This enabled the prototyping 

of the algorithm in a shorter space of time than using a hardware description 

language and electronics simulation.

As Matlab is a high-level language for algorithm development, data visualization and 

numerical computation it does not map it’s written code onto electronic components. 

Therefore, as with other programming languages such as C or C++, Matlab does not 

take signal timings or registers operations into account. Also, Matlab code is 

processed sequentially as there is no concept for parallelism as with languages such 

as Verilog or VHDL. This meant that when the Matlab code was converted into a 

Verilog IP block, parts of the algorithm were optimised to be performed in parallel. 

Delays as a result of register operations and accessing memory banks were 

scrutinised to prevent any unnecessary latency from being introduced. An interface 

wrapper was designed using the standard DSP IP block I/O interface and the 

necessary logic introduced to control timings for external I/O transactions. This 

process of conversion was done manually and formed a 50 state Mealy FSM.
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Figure 4.18 Getsobjs algorithm flow chart
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Figure 4 .19 show  a binary 80x60 pixel test image and the associated  ou tput image 

from the prototyped object segm entation  script getobjs. T he  script w as ex tended  to 

draw  a rectangle  around each object using the stored values in the scratch pad 

m em ory  and output the num ber  o f  objects  on screen. Please note: the greyscale  

palette o f  the output image has been changed  post-processing, in order  that the 

h ighlighted  objects are clearly  distinguishable. Also , w hen  draw ing  a rec tangle  for 

an object that on ly  consisted o f  a line o f  pixels, M atlab  h ighlighted  the ob jec t using 

dots rather than a continuous white  line or rectangle.
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Figure 4.19 Binary input image (top) and processed image using Getobjs Matlab script (bottom)

Number of objects: 23

100



4.5 Simulation and Functional Verification

Simulation and functional verification of the FPGA architecture was performed 

throughout several development stages. These stages included modification of the 

core system architecture for new DSP IP blocks (before and after integration) and for 

benchmarking new demonstration applications. Synopsys VCS version 6.0 was used 

as a simulation environment. Numerous Verilog simulation scripts and test benches 

were written to check the functionality of the various parts of the architecture. 

Functional verification typically encompassed some of the same tests but was 

executed in real-time at full system clock frequency on the prototyping system. 

Figures 4.20 shows the process flow used for simulation and functional verification 

and the constraints and optimisations.
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Figure 4.20 Functional verification and simulation flow
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4.6 System Programming

Two programmable elements were present within the prototyping platform. These 

were the STV0674 sensor co-processor and the system control unit located within the 

FPGA architecture. Two methods could be used to control the FPGA architecture, 

namely programming the I-store and running the control unit or via function calls 

from the co-processor. Although the use of function calls to execute the different 

DSP operations may seem appealing, the latency involved with the function call 

mechanism is greater than using the I-store and system control unit. It is for this 

reason that it is recommended that users of the prototyping system program the I- 

store. Programming the I-store was typically performed by the co-processor at 

power-on by performing SDRAM writes across the IMPBUS to the FPGA. Another 

option was to fix the operation of the system control unit during the FPGA synthesis 

by replacing the I-store RAM Verilog module with a ROM module that had been 

configured with the desired program. Using both methods, the 8-bit addressable I- 

store was always programmed from the start address 0x00. If no program was 

detected by the control unit at start-up, the system defaulted to outputting 

unprocessed video to the video encoder.

To enable the co-processor to program the I-store, the co-processor had to be patched 

with the correct firmware, either by the EEPROM or by using an in-system 

programming and debugging device via the JTAG port on the daughterboard. This 

firmware also correctly configured the sensor and the video encoder via the I2C bus 

before downloading the program code to the I-store. The sensor was configured to 

run at 25fps in a VGA mode, with all auto-exposure and gain controls turned off. 

Without configuring the sensor, it would default to auto-exposure and gain mode. 

This would result in the image being continually altered, depending on the amount of 

illumination within the scene. The auto-exposure and gain mode would prevent 

inter-frame differencing functioning correctly. The video encoder was configured to 

a PAL mode, receiving data as a slave device and inverting DAC codes to 

compensate for an inverting video output stage on the daughterboard. Figure 4.21 

shows the programming method used for the co-processor.
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It must be noted that future users may wish to add new DSP IP blocks to the FPGA 

architecture to increase the systems versatility. This could be achieved by swapping- 

out one or more of the seven blocks. The remaining interfaces could be connected to 

the new blocks or by extending the network control interface, register bank, 

instruction set and system control unit, by replication of the current Verilog code.

Co-processor FPGA System Co-processor 
Firmware C Files Control Unit Firmware Library 

Program Hex File Files

Keil pVision 2 
C Complier

Complied
processor-

specific
EEPROM

Programmer

f
FS/2 JTAG Bit stream

Firmware h transmitted
Downloader direct to the

co-processor

Figure 4.21 Programming method for the STV0674 co-processor

4.7 FPGA Conversion to SoC

The conversion of a FPGA design to a SoC design is complex. In the case of the 

prototyping system, not only the FPGA based design needs to be integrated into a 

single chip but also the sensor co-processor, video encoder and sensor. It is expected 

that when the user of the prototyping system has a suitable design for integration, an 

in-house STMicroelectronics design team would perform the system-level 

integration to create a single chip. Given that STMicroelectronics owns the
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intellectual property rights for most of the board-level components, the licensing 

issues may not be as complex when compared to agreeing licensing terms with a 

third party. It is likely that the integration of these components is eased by the design 

files residing in-house. Due to the commercially sensitive nature of 

STMicroelectronics design flows, no details can be provided.

4.8 Results

This section describes the results gained from analysis of the FPGA architecture.

The results relating to the instruction decoding and execution are provided, followed 

by the number of cycles to complete the execution of each of the DSP IP blocks.

The resources required for each part of the FPGA system will also be stated. The 

effect that processing time has on the system frame rate will be outlined.

The time taken to decode each instruction was one system clock cycle. Table 4.13 

lists the number of clock cycle to execute each instruction. Instructions that require 

literal values to execute have been marked with an asterisk.

Instruction Name Number 
of cycles

Instruction Name Number 
of cycles

NOP 1 LOAD MEM* 2
WAIT EOF 1 ADD REG GPRO* 2
WAIT IPBUSY 1 ADD REG GPR1* 2
STOP PINGPONG 1 ADD REG ADDR RD* 2
START PINGPONG 1 ADD REG ADDR WR* 2
LOOP SUB REG GPRO* 2
THRESHOLD 1 SUB REG GPR1* 2
FILTER 3X3 1 SUB REG ADDR RD* 2
RECTANGLE 1 SUB REG ADDR WR* 2
GETSCOORDS 1 LOAD REG GPRO* 2
ABSDIFF 1 LOAD REG GPR1* 2
COPY 1 LOAD REG ADDR RD LO* 2
GETOBJS 1 LOAD REG ADDR RD HI* 2
MOVE MEMMEM 3 LOAD REG ADDR WR LO* 2
MOVE MEMREG GPRO 3 LOAD REG ADDR WR HI* 2
MOVE MEMREG GPR1 3 BEZ* 5
MOVE REGMEM GPRO 1 BNEZ* 5
MOVE REGMEM GPR1 1

Table 4.13 Instruction execution time
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The simulated DSP IP blocks maximum processing times were calculated using 

whole 80x60 pixel images and in the case of the getobjs operation, using an image 

with every pixel interconnected and set to the decimal value 255, i.e. one object 

filling the whole image. The processing times were measured from the rising edge of 

the ipbusy signal to the falling edge of the ipbusy signal. These processing times 

can be seen in table 4.14. All operations read and/or write data back to the primary 

image bank.

DSP IP Block Simulated number of 
cycles at 80x60 pixels

Cycles per pixel 
(to four decimal places)

THRESHOLD 9601 2.0002
FILTER 3X3 9528 1.9850
RECTANGLE 277 1.0036
GETSCOORDS 4805 1.0010
ABSDIFF 14404 3.0008
COPY 14401 3.0002
GETOBJS 79216 16.5033

Table 4.14 Processing times and cycles per pixel for the DSP IP block library

Equations 4.7 to 4.12 provide the calculation of the maximum number of cycles 

required for the completion of each DSP IP block. The letter x represents the 

horizontal ROI size and y  represents the vertical ROI size. These equations were 

developed using their Verilog descriptions and tested in simulation.

cy°leMAx = 2xy + \

Equation 4.7 Maximum number of cycles to perform Threshold DSP operation

Cycle max = 2(ix(y -  4))+ (2(x - 1)))+(3* + 1)+ i i

Equation 4.8 Maximum number of cycles to perform Filter3x3 DSP operation

Cyelem a x  = 2 ( * - l ) + 2 ( y - l )  + l 

Equation 4.9 Maximum number of cycles to perform Rectangle operation

CycleMAx = xy  + 4+1

Equation 4.10 Maximum number of cycles to perform Getcoords operation
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cy deMAx =3xy + 3 + l 

Equation 4.11 Maximum number of cycles to perform Absdiff operation

Cycle max = 3 ^  + 1

Equation 4.12 Maximum number of cycles to perform Copy operation

The available time slots to conduct uninterrupted processing on an incoming image 

are shown in figure 4.22.

One VGA Frame at 25fps (959968 cycles total)

One Active Line

Inter-pixel Inter-line Last active line to EOF
(7 cycles) (13368 cycles) (35037 cycles)

Figure 4.22 Three types of available time slot for uninterrupted image processing

The number of measured cycles displayed in figure 4.22 takes into account that only 

a 640x480 pixel image is sampled from the incoming 644x484 pixel sensor image. 

Typically, most or all of the processing is performed at the end of the frame when the 

complete image is available for processing. In situations where a processing loop 

cannot be completed within the 35037 cycles at the end of each frame, a 

STOP_PING instruction can be executed at the start of each processing loop 

followed by a START PINGPONG instruction at the end of each loop. This ensures 

that no incoming sensor images are stored and that the video generator continues to 

output the same image until the processing loop is completed and the next v_sync 

signal is asserted. This method allows the system to automatically degrade the 

output frame rate from 25fps to 12.5fps, 8.33fps, 6.25fps and downwards, providing 

the processing loop takes approximately the same time to execute for each new 

image.
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Table 4.15 shows the FPGA resources used by each system component, optimised 

for timing, at a system clock frequency of 24 MHz. In addition to providing figures 

for the number of registers, the number of each type of logic cell (column 3-5) 

making the total number of logic cells (column 2) has be provided. The total design 

uses 37.6% of the 24320 available logic cells within the FPGA.

Registers Logic Cells 
(LC)

Register 
Only LC

LUT Only 
LC

Register/ 
LUT LC

Top-Level Pius Structure 0 43 0 43 0
Top-level Architecture 118 599 91 481 27
192 MHz PLL 3 3 1 0 2

3x3Filter Block 2150 2946 1966 796 184
Absdiff Block 98 290 8 192 90
Copy Block 41 53 2 12 39
Getcoords Block 31 80 3 49 28
Getobjs Block 330 2207 29 1877 301
Rectangle Block 50 167 12 117 38
Thresold Block 27 76 3 49 24

Video Test Pattern Generator 42 64 0 22 42
System Control Unit 117 549 0 432 117
Ping-Pong Unit 32 51 1 19 31
Video Generator 94 183 9 89 85
Sensor Interface 49 93 20 44 29
SDRAM Decoder 105 127 76 22 29

Sensor Video Async. FIFO 117 228 100 111 17
Video Generator Async. FIFO 64 113 14 49 50
System Control Unit FIFO 150 264 120 114 30
Absdiff FIFO 150 264 128 114 22

Register Bank 276 600 233 324 43
I-Store 0 8 0 8 0
Line memory 0 0 0 0 0
Scratch Pad 1 11 1 10 0
Image Bank 1 3 65 3 62 0
Image Bank 2 3 65 3 62 0
Total 4051 9149 2823 5098 1228

Table 4.15 Resource usage by FPGA system component

Table 4.16 shows the memory resources used in the FPGA for each memory device 

and the percentage of the 152 ESB used in the Altera Apex 20K600E FPGA.
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Address Depth Data Bit Width Total Size in Bits Used ESBs
Image Bank 1 16384 8 131072 64
Image Bank 2 16384 8 131072 64
Scratch Pad 4096 8 32768 16
I-Store 256 8 2048 1
Line Memory 1024 8 8192 4
Async. Video FIFO 128 9 1152 1

Total 306304 150
%  of Available 98.40 98.68

Table 4.16 FPGA memory utilisation

As many machine vision applications involve tracking objects, it is useful to gauge 

the maximum speed an object can travel to still be detected in at least one frame. An 

assumption is made that an object is large enough to be detected by one of the 4800 

sub-sampled pixels and that it can escape detection by passing through the sensors 

field of view within the period of a sensor frame. A lens with a 50° field of view has 

been assumed. Using the model in figure 4.23 and basic trigonometric functions, 

half the distance the object is required to travel can be calculated. Table 4.17 

contains the maximum velocity an object can travel at to still be detected by the 

system.

Half the distance the object must travel in 
the period o f a frame to escape detection

< ►

Distance from 
object

Figure 4.23 Distance an object must travel across the lens field of view

Distance
(m) 25 FPS 12.5 FPS 8.33 FPS 6.25 FPS 5.00 FPS 4.17 FPS

1 27.58 13.79 9.19 6.90 5.52 4.60
2 55.17 27.58 18.39 13.79 11.03 9.19
5 137.92 68.96 45.97 34.48 27.58 22.99

10 275.84 137.92 91.95 68.96 55.17 45.97

Table 4.17 Maximum object velocity in m/s to still guarantee detection

109



Sub-sampling of the sensor images affects the systems ability to reliably detect small 

objects. As only one pixel in every 8x8 pixel block is sampled, the object must be at 

least the size of an 8x8 pixel block to guarantee detection. Using the model in figure 

4.23 the minimum object size has been calculated for four distances from the lens. 

Table 4.18 shows these values.

Distance
(m)

Horizontal 
Sensor 

Pixel Size 
(mm)

Vertical 
Sensor 

Pixel Size 
(mm)

Minimum 
Horizontal 

Object Size 
(mm)

Minimum 
Vertical Object 

Size (mm)

Minimum 
Object Area 

(mm2)

1 3.45 4.60 27.58 36.78 1014.54
2 6.90 9.19 55.17 73.56 4058.14
5 17.24 22.99 137.92 183.90 25363.39

10 34.48 45.97 275.84 367.79 101453.57

Table 4.18 Minimum detectable object size

Three technical challenges were encountered during the development of the FPGA. 

The first was that the video outputted to the monitor began to slowly shift vertically 

and horizontally as a result of an error in the timing produced by the video generator. 

The second was an intermittent fault that became apparent through data transmission 

errors across the six inter-board connector during the testing of the SDRAM decoder. 

This was resolved by replacing the old connecters with a set that connected more 

firmly to the socket on the daughterboard and the pins on the backplane. The third 

challenge was the limited size of the data scratch pad memory, which served to have 

an effect on the functioning of the Getobjs IP block. It was noted that when one 

large object with a size of 80x60 pixels was used in tests, up to 6833 bytes of scratch 

pad memory was required to store all of the temporary data. Unfortunately, due to 

the restrictions on the amount of FPGA-embedded memory, it was not possible to 

run tests on the bench with a larger scratch pad memory. As such, the figure for the 

maximum number of cycles required for the Getobjs operation was generated using a 

double sized scratch pad in simulation. The use of standard 4KByte scratch pad 

memory yield an execution time of 53757 cycles, compared to 79216 cycles for a 

8KByte scratch pad. The execution time of the 4KByte memory was lower due to 

the getobj IP block ceasing to write further temporary data to the scratch pad and 

hence prevent a memory overflow by reducing the size of the search path for that
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object. This resulted in the system detecting two objects instead of one when a 

visible object was close to the size of the complete screen.

Details of an example application prototyped on the system have been included in 

Appendix C.

4.9 Summary

This chapter has covered the development of the FPGA-based architecture for the 

prototyping system. It has detailed the functionality of the load/store based system 

control unit and associated instruction store. The video data flow has been described 

through the sub-systems, with particular emphasis on the interleaving of data 

between the two image banks. Seven DSP IP blocks from the IP library have been 

detailed, their performance given and the equations used to calculate the number of 

cycles required for their execution provided. The simulation, functional verification 

and system programming mechanisms have been explained from the stand-point of 

the files required and their process flow.
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5 IoC Manufacturing Cost Modelling

A s the prototyping system  w as aim ed at low-cost m ass-m arket applications, it w as 

thought beneficial to develop  a cost m odel that could p rovide  som e indication as to 

the m anufacturing cost o f  a s ingle chip IoC. Several design and system -level cost 

m odels  are described in available  literature [101, 102, 103]. T hese  m odels  are 

limited in that they only  address general SoC designs and do not take  into account 

additional issues such as, a result o f  the inclusion o f  an array  o f  pho to-sensitive  

e lem ents  and associated support structures. The ability to m odel m anufac tu r ing  cost 

is further exacerbated by the com m erc ia l ly  sensitive nature o f  the data required  for 

cost calculations. A s a result, a m anufacturing  model w as deve loped  using public ly  

available data to provide  an indication o f  the costs involved.

5.1 CMOS Imager Area Issues

C M O S  imagers contain  analog and digital com ponents, see figure 5.1. In term s o f  

area, the most area-dom inate  com ponen t is the analog pixel sensor  array.

Configuration
Data

ADC

Column AddrTiming and 
Control

Pixel sensor 
array

Digital Analog

Image Data Out

Figure 5.1 Typical CMOS imager architecture

T he pixel array consists  o f  num erous  photo-sensitive e lem ents  that transduce  photons 

into electrons. T he  size o f  each e lem ent determ ines its sensitivity  to light, with 

larger elem ents being m ore  sensitive. M ost image sensors that have arrays o f  

640x480 pixels (V G A ) typically  have  pixel element d im ensions  o f  5 .6pm  by 5 .6pm  

[104, 105, 106]. Below  these d im ensions, the optical diffraction limits o f  lenses start
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to become apparent and result in the degradation of the overall output image quality. 

Although beyond the scope of this manufacturing model, the design of each pixel 

element is crucial to the collection of light. The more transistors used in a pixel 

element, the less space that is available to implement the photodiode. Typically, 

CMOS image sensors have 3 to 4 transistors per element and a photodiode with a fill 

factor of 40%. To improve the amount of light collected over the complete pixel 

element, micro lenses are overlaid on each element. This increases the amount of 

light collected, to provide a fill factor greater than 90%.

Another optically-related limiting factor, is the complete area of the pixel array. As 

the array is shrunk in size, it becomes increasing difficult to accurately focus the 

image onto the pixel array. To achieve optimum accuracy as the pixel array 

decreases, the lens assembly and mechanical placement process result in an increased 

lens tooling and assembly cost.

The silicon process technology used to manufacture the image sensor has a 

substantial financial impact on the final IC cost. The use of the latest technology 

typically allows the digital parts of the sensor to be designed or scaled to a smaller 

area but analog parts usual cannot be easily designed or scaled below a 0.25pm 

process [101]. This can be explained by the decreased supply voltages used by 

smaller processes. Analog components ideally require a large voltage range to 

operate effectively. To circumvent this limitation, smaller processes are still used for 

the digital and analog components but the gate oxide thickness for the analog 

components is increased. This approach is called a dual oxide process and enables 

the analog components to be fabricated on the same die as the digital logic. It allows 

a higher operation voltage for the analog components while benefiting from a smaller 

process size for the digital components.

These area related issues may result in the imager becoming the dominate part within 

an IoC. A potential risk is that the IoC design becomes no longer financially feasible 

due to a large cost associated with a large die size and the cost sensitive nature of the 

target market. This places most of the design emphasis on the optimisation of the 

pixel and array dimensions. Careful selection of the silicon process technology used 

is also required to ensure a feasible product.
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5.2 Cost Model

The system cost model for an IoC is given in equation 5.1. Ĉ stem is the system cost, 

Cdie is the cost of a yielded die, Ctest is the test cost, Cpackagmg is the cost of packaging, 

Cnre is the non-recurring expense and n is the number of parts produced. It must be 

noted that this model does not account for packaging yield.

C = C + C  + C  + ^ NREsystem die test packaging
n

Equation 5.1 IoC system cost model

The die cost can be calculated using equation 5.2, where Cdie is the cost of a yielded 

die, Cwaf  is the cost of a wafer, Ydie is the die yield, A waf h  the area of the wafer, A die is 

the area of the die and Uwqf  is the utilization of the wafers area for die.

n  _  C waf  C „ —
*  {U^fAwaf) v

die
A  die

Equation 5.2 Die cost calculation

To calculate the overall die yield, 7 ^ , the commonly used ITRS die yield model was 

applied. See equation 5.3.

y  - V  y  = Y1 die S R X S
^  die D 01 +

a  ;

Equation 5.3 Die yield model [107]

In equation 5.3, Ydie is the overall die yield, Ys is the gross limited yield and YR is the 

random-defect limited yield, a is the cluster factor which models the defect 

distribution amongst most fabrication facilities. Adte is the area of the device die and 

Do is the electrical fault density.
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Optical and electrical test costs, Ctesh were approximated using a value of $0.02 per 

pin. Package cost variable, Cpackagmg, was approximated at $0.01 per pin. CNRE was 

taken as the mask set costs, as this is the dominant non-recurring expense during 

manufacture.

To calculate the area of the die, a summation of each system component was 

performed. An assumption has been made that the area occupied by interconnects 

between each component is negligible. Equation 5.4 shows an example equation for 

a typical IoC.

Where Adie is the area of the device die, A d s p  is the area of the DSP , Asensor is the 

area of the sensor, Avideo is the area of the video encoder including 8-bit DAC, Auc is 

the area of the 8-bit micro-controller, A r o m  is the area of the ROM, A m  is the area 

of the PLL and A s r a m  is the area of the SRAMs.

A model for producing approximate values for A senSor was devised based on a 

theoretical VGA sensor design in a 0.25pm process. Equations 5.5 to 5.10 form this 

model.

sensor

Equation 5.4 Area of die

sensor array

Equation 5.5 Area of sensor

A  —  y  "V Aarray new s  new pixel

Equation 5.6 Area of pixel array

cirl scale cnorm

Equation 5.7 Area of digital logic

/
newP A +■* c s 'r tio  ■* r/Wirscale row

P  Ascale cot
V  y  norm )

Equation 5.8 Area of analog address units
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A  -  p  Am scale mnorm

Equation 5.9 Area of miscellaneous analog components

P =scale

f  r>2 A
new

P 2V  norm /

Equation 5.10 Inter-process scaling factor

Where Aarray is the area of the pixel, Actri is the area of the digital control, timing and 

interface logic, Aaddr is the area of the analog address units, line memory and ADCs 

and Am is the miscellaneous analog components such as power management. P scaie is 

the scaling factor for area from one process to another and for equations 7.8 and 7.9, 

if P new < 0.25 then Pscaie = 0.9 for 0.18pm and Pscale = 0.92 for 0.13pm. P„0rm, xnorm 

and y„orm are constants in the model i.e. silicon process, 0.25, pixel array row size, 

640, and pixel array column size, 480, respectively. The remaining constants for a 

VGA imager are; digital logic (Acnorm) at 5mm2, row address unit (Arow) at 1mm2, 

column address/decode unit (Acof) at 4mm2 and miscellaneous analog components 

(Amnorm) at 3mm2. Pnew is the silicon process at which to calculate the die area. Xnew 

and Ynew are the required pixel array row and column size.

5.3 Application of Model to Example IoC

As a demonstration of the use of the model, an IoC that was suitable to support the 

application discussed in appendix C was created. Figure 5.2 shows the integrated 

sub-systems that would be required to support the example application. In addition 

to the FPGA’s sub-systems (marked as DSP), the 8-bit microcontroller has been 

added with a 64 KByte metal programmable ROM, video encoder, 8-bit DAC, 

simple power management, general-purpose I/O and an I2C bus controller.
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Figure 5.2 An example IoC to support the demonstration application

The Altera 20K gate counting method was used to produce the equivalent number of 

gates from the number of logic elements (LE) used in the FPGA architecture. This 

was calculated by multiplying the number of LEs by a factor of 12 [108]. The area 

was then obtained by dividing the gate count by the gate density for a given process. 

The die areas of the ROM and RAMs, A r o m  and A r a m ,  were obtained using Dolphin 

Integration’s memory generator for TSMC processes [109]. Auc and Avideo were 

approximated at 1 OK gates and 4K gates plus the area of the DAC, respectively. The 

I2C controller was estimated as 3600 gates and the power management at 300 gates. 

The pixel area, Apixei, of the CMOS imager was set to 5.6pm by 5.6pm for the 

example IoC with an array size of 80 (xnew) by 60 (ynew) pixels. The other values 

used in the calculations are summarised in table 5.1 for an 8 inch wafer production.

0.35pm 0.25pm 0.18pm 0.13pm
Mask set costs (US$) [110] 50000 85000 250000 600000
C^(US$) 1000 1500 2000 2500
D0 (mm2) 0.003 0.004 0.006 0.01
Gate Density (gates/mm2) [111] 25000 50000 100000 200000
a [107] 2
Uwaf 0.97

Ys 0.8
A„af (mm2) 31416
Number of pins required by IoC 44

Table 5.1 Values used for cost model

The total area for the system and the imager at different processes, are shown in 

figure 5.2. It can clearly be seen, that as the process decreases in size, the imager die 

size becomes more dominant in the complete die area.
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Process

(pm)

Imager Size 

(mm2)
Total System Die Size 

(mm2)

% of Total Die as Imager

0.35 17.10 44.20 38.69
0.25 8.78 20.10 43.68
0.18 6.01 11.22 53.57
0.13 4.44 7.08 62.71

Table 5.2 Area size for imager and complete IoC

The values obtained for the example IoC unit cost are tabulated in table 5.3. These 

have been used to create the graph in figure 5.3. For comparison, the fixed cost of 

producing the two-board prototyping system was approximated at $1400 US and 

indicated on the graph for a single unit quantity.

Silicon Technology Process
Units 0.35 0.25 0.18 0.13
0 50000.0000 85000.0000 250000.0000 600000.0000
1 50003.3813 85002.6579 250002.3037 600002.0989
5 10003.3813 17002.6579 50002.3037 120002.0989
10 5003.3813 8502.6579 25002.3037 60002.0989
50 1003.3813 1702.6579 5002.3037 12002.0989
100 503.3813 852.6579 2502.3037 6002.0989
500 103.3813 172.6579 502.3037 1202.0989
1000 53.3813 87.6579 252.3037 602.0989
5000 13.3813 19.6579 52.3037 122.0989
10000 8.3813 11.1579 27.3037 62.0989
50000 4.3813 4.3579 7.3037 14.0989
100000 3.8813 3.5079 4.8037 8.0989
500000 3.4813 2.8279 2.8037 3.2989
1000000 3.4313 2.7429 2.5537 2.6989
5000000 3.3913 2.6749 2.3537 2.2189
10000000 3.3863 2.6664 2.3287 2.1589

Table 5.3 Cost of the IoC at a given process and unit quantity

1000000  ?  - -  —

•  0.26u 
A 0.18u 

0.13u

Prototyping System

100000

10000

Units manufactured

Figure 5.3 Manufacturing cost graph for example IoC

118



The silicon processes attributed with the lowest unit cost for a given number of units 

manufactured are shown on figure 5.3. Examining the graph it can be seen that after 

40 units there is clearly a benefit of fully integrating the prototyping system into an 

IoC.

5.4 Summary

Using publicly available data, a high-level IoC manufacturing cost model has been 

presented. Optically-related CMOS imager issues which may affect the end unit cost 

of an IoC have also been highlighted. An IoC has been specified which would 

support the application detailed in appendix C. The unit cost of this example IoC has 

been calculated using the cost model for four technology processes at different unit 

quantities. The model highlighted the importance of carefully selecting the 

technology process used, the size of the imager array implemented and the quantity 

of units produced to meet a required die unit cost.
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6 Discussion and Conclusions

This thesis has described the development of an IoC application prototyping system. 

Chapter two reviewed the current literature for vision systems and directed the 

research towards the implementation of a frame-based architecture using FPGA 

technology. Chapter three detailed the system’s requirements and specifications with 

particular emphasis on the board-level bus structures. Chapter four and five 

described the board-level and FPGA-level architecture implemented and the results 

obtained during testing. An IoC manufacturing cost model was presented in chapter 

six to calculate the cost of implementing single chip IoC applications. In this chapter 

results from the previous chapters are discussed and a range of improvements to the 

prototyping system and possible areas of future research presented.

6.1 Discussion

The aim of this research was to investigate and develop a new prototyping platform 

for low-cost mass-market IoC applications. A frame processing based system 

architecture was devised. This consisted of a re-usable FPGA backplane and 

daughter card containing the necessary components to support a range of image 

processing and machine vision applications. A technology independent on-chip 

architecture was implemented on the FPGA. Given the technology-independent 

design and the STMicroelectronics components selected, the integration of the 

system into a single IoC should be feasible. An example object counting and 

highlighting real-time application was implemented to demonstrate that the system 

was suitable for the implementation of machine vision applications. Using the 

manufacturing cost model, the costs of implementing the application as an IoC at 

different TSMC silicon processes has been provided. In this chapter, the results of 

the implementation of PCB, FPGA architecture and complete prototyping system are 

discussed. The implications of the cost model will also be discussed and 

recommendations for future work detailed.
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6.1.1 PCB Work

As no suitable daughter board for connection to an STMicroelectronics backplane 

was available, development of a new daughter board was necessary. 

STMicroelectronics requested that wherever possible its components should be used. 

The combination of the daughter board and FPGA worked sufficiently to meet the 

project requirements. At an approximate unit cost of US$1400 it compares 

favourably with similar systems, such as the Ateme DMEK6414 at approximately 

US$6000 per unit.

An advantage of the complete two board system was the opportunity to upgrade the 

FPGA by replacing the backplane. The decision to mount the daughter board on top 

of the FPGA backplane allowed the whole system to be easily handled while 

operational. The ability to easily handle the complete system was particularly useful 

during the testing of the object segmentation applications, as the system could be 

aimed at a target area or an object with relative ease. Once the minor board 

modifications had been made, the performance of the system met specification. Four 

different CMOS image sensors were tested with the system and all functioned 

correctly.

A disadvantage of the two board system was that no direct connection between the 

sensor and FPGA was implemented. If the daughter PCB was to be redesigned this 

board-level architectural issue should be addressed. Whilst the decision to provide 

access to only SDRAM and FLASH memory devices was driven to provide low-cost 

high-capacity memory devices, two SRAM devices may have been more suitable. 

The addition of two SRAM ICs would have provided the opportunity to develop IoC 

applications requiring image sizes greater than 80x60pixels without the control 

overheads of SDRAM. It may also be possible to use or modify the 54-pin SDRAM 

IC TSOP(II) footprints to support SRAM devices. The ability to easily move the 

complete system while operational was partly attributable to the tight coupling of the 

six inter-board connectors. As a result of the thickness of connector pins it is 

feasible that at frequencies above 24 MHz the transmission delays may become 

unacceptable, signals within the same bus may become skewed with each other or 

cross-talk effects between wires may be noticed. At the low frequencies that data
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was transmitted across these connectors, there were no issues regarding signal timing 

or signal integrity issues as a result of capacitance effects. To assess these issues 

further, electrical testing of the complete system is required. The size of the PCB 

could be minimised by reducing the empty spaces on the left side and bottom edge of 

the board by a more compact placement of components.

The key bottleneck in the prototyping system’s architecture was that of the IMPBUS 

and STV0674 co-processor. As the SDRAM controller was specified for use when 

communicating with the FPGA, the maximum data transmission speed across the 

IMPBUS was at 384Mbit/s at 24MHz. This was as a result of the STV0674 clock 

domain structure and the design of the co-processor’s SDRAM controller. This 

operational bus frequency supports 25fps video streams of a maximum resolution of 

1600x1200 with an 8-bit pixel depth. This resolution does not take into account the 

overhead of non-burst SDRAM transactions, which are three cycles for every byte- 

read and byte-write cycle. As only one cycle in every four cycles read or wrote data, 

the overhead was 75%. This lowered the effective data transmission speed across the 

IMPBUS to a maximum speed of 92Mbit/s at 24MHz. This would support a 

maximum resolution of 800x600 8-bit pixels at 25fps. As the maximum resolution 

of the sensors to be used with the prototyping system was 640x480, this bottleneck 

was not deemed to be problematic, unless an image stream had to be read from and 

written to the FPGA concurrently.

To reduce the transmission of data over the IMPBUS, the sensor’s data bus and clock 

line were fed into the FPGA using a ribbon cable rather than via the co-processor and 

IMPBUS. A potential solution to the IMPBUS bottleneck would have been to have 

implemented the co-processor’s 8052 compatible microcontroller in the FPGA. Due 

to licensing issues this was not possible. An alternative solution would have been to 

implement a microprocessor with USB port and fast GPIO, at board-level. This 

would have removed the requirement of SDRAM transactions for communication 

across the IMPBUS. The disadvantage of this approach would be the requirement to 

obtain a suitable development suite and modify the original 8052 code to execute on 

the new processor. It is also very likely that the Altera 20KE FPGA GPIO pins 

would limit the maximum bus speed to less than 100MHz.
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6.1.2 FPGA Work

The FPGA architecture developed was based on 8-bit data paths and a load-store 

system control unit with an associated instruction store. A library of hardware DSP 

algorithms was implemented to perform the image processing operations within the 

architecture.

6.1.2.1 The Instruction Set

The first set of results obtained for the FPGA system was the number of cycles each 

instruction needed to execute. The time taken to decode each of these instructions 

was one system clock cycle. It can be seen in table 4.13 that approximately half of 

all the instructions were required to obtain their literal values on a separate clock 

cycle. The execution time was also affected for memory operations by the set up of 

an address in the 16-bit read or write address registers. The requirement to set up 

these addresses could result in the worst-case values show in table 6.1. It must be 

noted that the instruction decode time has also been added to each value.

Instruction Name Number of 
cycles

Instruction Name Number of 
cycles

NOP 2(1) LOAD MEM* 3 + 6 (2-3)
WAIT EOF 2 (n/a) ADD REG GPRO* 3(1)
WAIT IPBUSY 2 (n/a) ADD REG GPR1* 3(1)
STOP PINGPONG 2 (n/a) ADD REG ADDR RD* 3(1)
START PINGPONG 2 (n/a) ADD REG ADDR WR* 3(1)
LOOP (Jump absolute) 5(1-3) SUB REG GPRO* 3(1)
THRESHOLD 2 (n/a) SUB REG GPR1* 3(1)
FILTER 3X3 2 (n/a) SUB REG ADDR RD* 3(1)
RECTANGLE 2 (n/a) SUB REG ADDR WR* 3(1)
GETSCOORDS 2 (n/a) LOAD REG GPRO* 3(1)
ABSDIFF 2 (n/a) LOAD REG GPR1* 3(1)
COPY 2 (n/a) LOAD REG ADDR RD LO* 3(1)
GETOBJS 2 (n/a) LOAD REG ADDR RD HI* 3(1)
MOVE MEMMEM 4 + 6 + 6  (n/a) LOAD REG ADDR WR LO* 3(1)
MOVE MEMREG GPRO 4 + 6 (2-3) LOAD REG ADDR WR HI* 3(1)
MOVE MEMREG GPR1 4 + 6 (2-3) BEZ* (Jump relative) 6(2-3)
MOVE REGMEM GPRO 2 + 6 (2-3) BNEZ* (Jump relative) 6(2-3)
MOVE REGMEM GPR1 2 + 6 (2-3)

Table 6.1 Worst case instruction execution time

The typical values for common 16-bit and 32-bit instruction processors have been 

added to table 6.1 in brackets. The figures for the developed architecture compare
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poorly with most microcontrollers and microprocessors. Four explanations are 

provided in relation to these values.

1. The instruction non-pipelined decode mechanism developed for the system 

control unit is sub-optimal as a result of adding an extra cycle onto the 

execution of every instruction.

2. The use of an intermediate mode by storing data required for an operation 

following the instruction in program memory increases the execution time of 

almost half the instructions by one cycle.

3. The specification of the 16-bit read and write addresses in registers for 

indirect memory addressing, adds an extra 3 cycles for every byte of an 

address register changed during a MOVE operation.

4. The absolute and relative branching mechanism has a performance below 

most other processors due to FIFO latencies.

It could be argued that as a result of the use of the DSP IP blocks, very little of the 

complete application time is taken up processing instructions. Several modifications 

could be made to the system control unit without impacting negatively on the 

remainder of the system. The easiest of these to implement are listed below.

1. Pipeline the decode mechanism to remove the unnecessary extra clock cycle.

2. Implement an optional direct memory addressing scheme by storing a 16-bit 

memory address in the two subsequent bytes after an instruction. In the case 

of MOVEMEMMEM it would require four subsequent bytes after an 

instruction.

3. Add more general-purpose registers to hold frequently used values, i.e. 

reduce the frequency of memory transactions. The system architecture can 

currently support up to 16 of these registers in total.

4. Add an increment by one and decrement by one instruction for register 

operations and post-execution increment or decrement addressing for 

memory operations.

The second set of potential modifications is more complex than the first set. These 

are:
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5. Change the instruction length to 16-bits by concatenating a literal value as the 

least significant byte with the instruction. This would save an additional 

execution cycle for almost half of all operations and reduce the number of 

FSM states by one. This would require the instruction stores word width to 

be doubled, along with the FIFO (unless removed) and all intra-system 

control unit data-paths. A mechanism would have to be implemented to 

convert the I-stores 16-bit data into 8-bit words for the purpose of writing and 

reading to and from the SDRAM decoder.

6. Reorganise the instructions opcodes to make more effective use of the 16-bit 

long instructions. This could be based on the instruction’s frequency of use. 

The instruction set could also use instruction compression techniques as used 

by ARM and Atmel’s Thumb based microcontrollers.

7. As the FIFO currently pre-fetches only one instruction, it could be removed. 

This would remove the latency of the FIFO reset and re-filling process.

The implementation of the first four modifications would probably require 

approximately 300 FPGA logic cells. Modifications 5-7 would result in the 

requirement of an extra ESB memory block, if the I-store depth was maintained, and 

a modest reduction of up to 200 logic cells as a result of the removal of the pre-fetch 

FIFO.

Table 6.2 shows the effect of implementing one, two, five and seven from the list of 

potential modifications.
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Instruction Name Number of 
cycles

Instruction Name Number of 
cycles

NOP KD LOAD MEM* 1 + 1 (2-3)
WAIT EOF 1 (n/a) ADD REG GPRO* 1(1)
WAIT IPBUSY 1 (n/a) ADD REG GPR1* 1(1)
STOP PINGPONG 1 (n/a) ADD REG ADDR RD* 1(1)
START PINGPONG 1 (n/a) ADD REG ADDR WR* 1(1)
LOOP (Jump absolute) 3 (1-3) SUB REG GPRO* 1(1)
THRESHOLD 1 (n/a) SUB REG GPR1* KD
FILTER 3X3 1 (n/a) SUB REG ADDR RD* 1(1)
RECTANGLE 1 (n/a) SUB REG ADDR WR* 1(1)
GETSCOORDS 1 (n/a) LOAD REG GPRO* 1(1)
ABSDIFF 1 (n/a) LOAD REG GPR1* 1(1)
COPY 1 (n/a) LOAD REG ADDR RD LO* 1(1)
GETOBJS 1 (n/a) LOAD REG ADDR RD HI* 1(1)
MOVE MEMMEM 3 + 2 (n/a) LOAD REG ADDR WR LO* 1(1)
MOVE MEMREG GPRO 3 + 1 (2-3) LOAD REG ADDR WR HI* 1(1)
MOVE MEMREG GPR1 3 + 1 (2-3) BEZ* (Jump relative) 3 (2-3)
MOVE REGMEM GPRO 1 + 1 (2-3) BNEZ* (Jump relative) 3 (2-3)
MOVE REGMEM GPR1 1 + 1 (2-3) I

Table 6.2 Improved instruction worst-case execution time

It is evident from table 6.2 that MOVE MEM operations are still outside an 

acceptable range. If only 8-bits were required to access the relevant memory read 

address, they could be added as an operand to the instruction. The 

MOVE MEMREG operations would then be reduced to three clock cycles. This 

partial address mode could allow the other MOVE instructions to have their 

execution times decreased by one cycle. In the case of the MOVE MEMMEM the 

memory write address could be fetched during the memory read latency and hence 

reduce its execution time to three clock cycles also. This would allow an 8-bit read 

address to be provided with the instruction and a full 16-bit write address retrieved 

on the next clock cycle ready for the following clock cycle in which a write to 

memory would be performed.

Several methods exist for improving branch performance but many of them would 

significantly increase the size of the system control unit. These include branch 

prediction based on opcode or instruction history, pre-fetch of a branch target 

instruction and caching of recently fetched instructions.
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6.1.2.2 The DSP DP Block Library

Table 4.13 and equations 4.7 to 4.12 demonstrate the number of cycles required to 

execute the DSP IP block on a complete 80x60 pixels image. All DSP IP blocks 

require an initial clock cycle to start their address generator and sample the ROI 

values at their input. Rectangle and getcoords IP blocks, both have cycles per pixel 

in the region of one. This is explained by both blocks performing only writes or 

reads on the image data. In the case of the rectangle IP block, the number of cycles 

is equal to the number of pixels written after the one cycle set-up. The getcoords DP 

block performs a read of every pixel in an image and then writes the minimum and 

maximum values for x and y into the register bank, in the last four clock cycles.

The threshold IP block performs a read-modify-write operation. It would be 

expected that the absdiff IP block and copy IP block would have a very similar value 

for the cycles per pixel. This is not the case, as the design of the threshold IP block 

was different to the other two IP blocks. The threshold block was optimised to 

perform reads and writes on consecutive cycles. This was achieved by not using a 

register in the output data path, i.e. the data input port was wired directly to the data 

output port with a compare function built into the datapath. This optimisation would 

be possible with the copy and absdiff IP blocks, without causing timing closure 

problems during the synthesis process. As can be seen by equation 4.11, the absdiff 

IP block had an extra three cycles compared to the copy IP block. These three cycles 

were required to set-up the FIFO on the secondary memory port and start filling the 

FIFO with image data.

The filter3x3 IP block had an unusual cycle per pixel count as a result of its internal 

architecture. The constant value of 11 in equation 4.8 is the number of cycles 

required to obtain the nine weights. The (3x+l) term, is the time taken to fill the 

three shift registers with image data. Two cycles were required to read-modify-write 

each pixel as a result of the pipelined structure. The 2((x(y-4))+(2(x-l))) part of the 

equation, relates to the number of cycles for processing each pixel. This last part of 

the equation is clarified in figure 6.1.
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processed
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2x(y-4)
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Last pixel 
processed

Figure 6.1 Clock cycles required to process each pixel using the 3x3filter DSP IP block

There are two optimisations which could be performed on the filter3x3 block. The 

first is to pipeline the reads performed for filling the shift registers and obtaining the 

weights. This would reduce the cycles count by two. The second optimisation is to 

remove the first shift register and start feeding pixel data into the multipliers as soon 

as the first pixel from the third line has been obtained. This would reduce the time 

required to fill the registers to 2x+l and reduce the register count of the 3x3 filter IP 

block by approximately 600 register logic cells.

The getobjs IP block required 16.5 cycles per pixel to obtain information on each 

object within an image. An equation was not presented, as the equation execution 

time is dependant upon the number of objects in the scene and their size and shape. 

The number of cycles required during the initial reading of the pixels however can be 

calculated. Every pixel is read at least once. Only four pixels can be obtained when 

at the comer of an image and six pixels while on the edges of an image. This 

provides a figure of 42364 cycles for an 80x60 pixel image, during which only reads 

are taking place. This figure does not include pixel coordinates reads from the 

scratch pad or the pixel values read at these coordinates. This would indicate that 

53% of clock cycles are spent obtaining the pixels in the first instance. It is always 

the case that once the algorithm cannot find any more pixels to label it uses the 

coordinates of a previous object pixel to continue its search. For large objects that 

appear as a filled shape, already processed neighbourhoods of pixels are re-read.

This is inefficient and therefore could be optimised. This could be achieved by 

removing addresses of pixel coordinates from the scratch pad where all the pixel’s 

neighbouring pixels had been labelled. This could save an extra 8 cycles per stored 

set of pixel coordinates that are no longer required, as the labelled neighbouring
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pixels would not have to be re-read. Another optimisation could be the caching of 

recently read pixels or the storage of neighbourhoods that did not need reading as 

they had already been labelled.

A further optimisation for the getobjs IP block is the better handling of the scratch 

pad memory. In the situation of a single object filling the image, only eight bytes 

would be required from the 2048 bytes in lower half of the scratch pad memory to 

store the objects parameters. This could be improved by writing temporary data 

starting from the highest address, i.e. 4095, down until the first set of object 

parameters. This would provide up to a further 2040 bytes for temporary data. Once 

all of the temporary data had been processed, it was no longer needed and could be 

overwritten by object parameters or new temporary data relating to a new object.

The threshold, 3x3filter, and copy DSP IP blocks could have their cycles per pixel 

reduced to one, if they were used in a situation were data was read from one image 

bank and output to another image bank. This assumes that either the video generator 

was not used or the IP blocks could interleave data safely between reads by the ping- 

pong unit. This is not applicable for absdiff, as this DSP IP block currently has to 

read images from both image banks. The getobjs DSP IP block could also benefit 

from the use of a dual-port configuration to allow concurrent reads and writes 

between two image banks and the scratch pad.

6.1.2.3 Available Processing Time

Figure 4.22 showed the available time slots for uninterrupted image processing. 

During the project only the last 35037 cycles of each frame was used for processing. 

Applications that required more time to execute, caused the system to automatically 

decrease the output frame rate of the video generator. This mechanism worked well 

as demonstrated by the example application. It is possible to increase the amount of 

time at the end of each frame window by changing the output of the vertical 

synchronisation pulse, v_sync, from the sensor interface. This could be achieved by 

outputting the v sync signal at the start of the active video lines, instead of at the 

start of each sensor frame. This shifts 25 line times of the next frame to the end of
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the current frame, effectively extending the time between the last active line and the 

end of frame. An extra 45800 cycles would be gained from this shift, a total of 

4.77% of the total frame time. The total time available for processing at the end of 

each frame would be increased to 80837 cycles (3.37ms) representing 8.42% of the 

total frame time.

To gain any further processing time using 80x60 pixel images, the inter-pixel and 

inter-line time slots would be required to be utilised. Using the DSP IP interface 

could prove to be a problem when trying to process within the inter-pixel time slots if 

the horizontal resolution of the image was increased. For example, an increase of 

horizontal image size from 80 pixels to 320 pixels would reduce the inter-pixel time 

to one cycle. With one cycle it would not be possible to perform the necessary pixel 

processing functions. Ideally the inter-pixel time slots could be used to perform point 

operations on each pixel as they arrived. Instead of using the current DSP IP 

interface a configurable pipeline could be introduced between the sensor interface 

and ping-pong unit. This could be used to implement various functions including 

statistics gathering, such as image histogram or filter operations to remove noise. In 

addition to the possible pipeline processing of data from the sensor interface, a 

processing pipeline could also be added to the output to the video encoder. This 

could perform post-processing functions, such as graphics or text overlay on images.

Using the inter-line time slots provides more time to perform processing and would 

allow the use of line processing algorithms. This could easily be achieved using the 

current DSP IP interface. Even if the vertical resolution was increased by a factor of 

four to 240 lines, 2376 cycles would still be available for processing use. With an 

image size of 320x240 pixels, three full line two-cycle line operations could be 

executed. To facilitate the use of line based algorithms, the addition of an inter-line 

strobe could be provided to indicate when an inter-line time slot is available.

6.1.2.4 FPGA Resource Usage

As stated in the results chapter, the FPGA used 37.6% of logic cells and 98.7% of the 

available embedded system blocks, each containing 2048bits of memory.
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Examination of the types of logic cells used by the system’s sub-system and DSP IP 

blocks indicated the following:

• The top-level architecture is heavily biased to using only the look-up table 

(LUT) parts of the logic cells. This is explained by the fact that the usage 

figure provided in table 4.16 also includes the network controller and point- 

to-point bus network. These two components require very few registers, as 

most of the required circuitry is made from multiplexers and simple priority 

structures. These can be implemented using the 4-input LUTs embedded in 

each of the Altera FPGA’s logic cells [112].

• Instantiated memory devices require very few or no registers as each ESB 

block has registered inputs and output, if required.

• The PLL used is one of four PLLs embedded into the FPGA fabric. The 

three registers used, generate three clock domains, 96, 48 and 24 MHz.

• The FIFOs used a balance of registers and LUT. This is understandable 

given that the FPGA synthesizer and logic fitter can make more efficient use 

of registers, as the storage elements in each FIFO, rather than ESBs. It is 

interesting to note that the registers only LCs and LUT only LCs have not 

been combined to increase the use of register/LUT combined configurations. 

This points to the high-level of control structure required per register element 

used, forcing use of an extra LC per register. This is also evident with the 

two asynchronous FIFOs which require careful read and write control 

between two clock domains. In the case of asynchronous FIFOs, the balance 

is slightly more skewed to LUT only LCs when compared to the synchronous 

FIFOs. The number of registers used by the asynchronous video FIFO was 

much lower than the other FIFOs as it also used an ESB. The use of the ESB 

was probably as a result of a logic mapping optimisation, given the FIFOs 

depth and data width of 9-bits rather than a multiple of two.

• Most of the other system IP blocks had a majority of LUT only LCs. An 

obvious exception to this was the 3x3filter DSP IP block. This exception can 

be explained by the use of three 80 register long shift registers. These shift 

registers accounted for 1848 of the total 1966 registers only LCs and no LUT 

or Register/LUT combination LCs. Another exception was the SDRAM 

decoder IP block. This is explained by the registers required for the
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conversion  o f  the 16-bit data and 23-bit addresses from the IM PB U S clock  

dom ain  to the F P G A ’s clock dom ain .

T h e  percen tage  o f  the F P G A ’s total LCs for each o f  the system blocks has been 

prov ided  in table 6.3. IP Blocks with associated  F IFO s have had their LC count 

am algam ated .

IP Block Name Number of Logic Cells (LC) % of Total LC used
3x3Filter Block 2946 32.20
Getobjs Block 2207 24.12
System Control Unit + FIFO 813 8.89
Register Bank 600 6.56
Core-level Architecture 599 6.55
Absdiff Block + FIFO 554 6.06
Sensor Interface + FIFO 321 3.51
Video Generator + FIFO 296 3.24
Rectangle Block 167 1.83
SDRAM Decoder 127 1.39
Getcoords Block 80 0.87
Threshold Block 76 0.83
Image Bank 1 65 0.71
Image Bank 1 65 0.71
Video Test Pattern Generator 64 0.70
Copy Block 53 0.58
Ping-Pong Unit 51 0.56
Top-Level Pins Structure 43 0.47
Scratch Pad 11 0.12
I-Store 8 0.09
192 MHz PLL 3 0.03
Line memory 0 0.00

Total 9149 100

Table 6.3 LC usage and percentage of total FPGA LC by IP block

A s is stated in table 6.3, the 3x3Filter and getobjs  D SP IP blocks occupy  the vast 

m ajo rity  o f  the LC used, with a com bined F P G A  LC usage o f  56.32% . Using the 

recom m ended  optim isation  o f  rem oving a shift register from the 3x3filter would  

bring  its LC usage to approxim ate ly  2330 LCs. G iven  the size o f  the 3x3filter and 

the getobjs  IP block, it m ay be argued that they  should  not be included unless 

abso lu te ly  necessary . In the case o f  the getobjs  block, a small general-purpose 

p rocessor  core m ay  be m ore area efficient but at the cost o f  increased processing 

tim e. This  option is less applicable to the 3x3fil te r  as it can perform nine 

m ultip lica tions, a sum m ation  and a shift per c lock  cycle  and hence process a pixel
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per clock cycle. T h e  im plem entation  o f  this function on a small genera l-purpose  

processor core w ould  generally  require in excess o f  nine clock  cycles per pixel given 

the com puta tionally  expensive  nature o f  multiplier operations.

Table  6.4 show s the num ber  o f  L C s used and their  gate equivalen t for three types o f  

sub-system s w ith in  the F P G A  architecture.

Sub-System Type % Total LCs Gates Equivalent 
(12 Gates per LC)

DSP IP Blocks 66.48814078 72996
Core System Architecture 26.03563231 28584
Memory Elements 7.47622691 8208

Total 100 109788

Table 6.4 Number of LCs used by each sub-system type of the FPGA architecture

As calculated in table  6.4, the  D S P  IP block occupies  tw o-th irds  o f  the total LCs 

used. The value g iven for the gate count, for the m em o ry  e lem ents, excludes the 

ESB used in the FPG A . Including the ESB in the gate equ iva lence  calculation , 

would  add a further 1225216 gates to the total, for the 306304  bits used and using a 

four gates per bit conversion  factor. It is interesting to  note that the size o f  the 

com plete  system, excluding  E S B s is relativity small in com parison  to m odern  SoC 

designs. In fact, m an y  individual IP blocks currently  des igned  have gate counts  in 

excess o f  lOOKgates. It m ust be noted that 12 gates per  LC is on ly  an estim ation. 

This figure has been obta ined  from the Altera 20K gate coun t m ethodo logy  used in 

the IoC m anufac tu r ing  cost m odel. T he  d isadvantage o f  the  gate coun t m e thodo logy  

is that it is based on an average LCs to gates value ob ta ined  by the synthesis  o f  over 

100 designs using on ly  one techno logy  library and one  synthesis  tool for com parison .

6.1.2.5 M in im um  O bject Size and M axim um  Object V eloc ity

T he m in im um  size and m ax im um  velocity  o f  an object detec tab le  by the system 

using a lens a ssem bly  with 50° field o f  view indicates the pro to typ ing  sy s te m ’s 

suitability for certain  applications. As the ob jec t’s d istance  from the lens increases, 

the m axim um  velocity  an object can be detected linearly increases. T h e  size o f  the
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object must also increase linearly. As the resolution support for the current 

architecture is 80x60 it would probably be suitable within the following situations:

• Medium complexity object inspection or object recognition at less than one 

metre from the lens and very simple object recognition past five metres. 

Typically this kind of operation would be based on the objects shape unless 

consistent lighting was used, which would allow the luminance of the object 

to be assessed.

• Measuring approximate dimensions of objects within one metre from the 

lens.

• Find position and orientation of a known object within one metre from the 

lens.

• Detect simple faults on an object. For example, a missing label off a plastic 

drinks bottle.

• Object tracking of moving objects at a distance of five metres and above.

An interesting use of the prototyping system, is in the detection of speeding vehicles. 

Current Gatso speed cameras can detect and measure car speeds of up to 160mph or 

71.52ms'1. Gatso cameras take two photographs after measuring the speed of the 

vehicle using radar. These photographs can then later be used to verify the speed of 

the vehicle by measuring the distance travelled between the two photographs.

Hypothetically, the prototyping system could be used to replace the radar element of 

the Gatso. This could be achieved by determining if a vehicle has broken the speed 

limit and then instructing two photographs to be taken at close to road level for later 

speed analysis. Assuming the prototyping system’s CMOS imager was directed 

vertically down onto a single lane of a road, two images could be taken and the 

approximate speed of the vehicle obtained. Using the same model as in figure 4.23 

and assuming the system was attached to a 10 metre high lamppost, the maximum 

speed at which a vehicle could be detected is half of the values in table 4.18. This 

also assumes that measurements are performed from the leading edge of the vehicle. 

Therefore, at 10 metres and a frame rate of 12.5fps, a vehicle would escape speed 

assessment if it travelled at a speed greater than 154.27mph or 68.96ms'1. This is a
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similar figure to that of the Gatso cameras. At 10 metres above the road, a car with 

the real-world dimensions of 4m by 2m would appear as a 29x10 pixel object.

The technical issue of the minimum size of objects detectable could be reduced by 

replacing the sub-sampling mechanism with a pixel averaging mechanism. The 

current configuration of the sensor interface could, in an unlikely event, allow an 

object with a very precise shape and containing 4800 holes, to be up to 302400 pixels 

in size and not be detected. This is because none of the 4800 sub-sampled pixels 

would detect a pixel from the object. Pixel averaging would prevent this happening 

and reduce noise but at a disadvantage of very small objects of interest not being 

detected.

6.1.2.6 Processing Architecture Comparison with Other Systems

Undertaking a detailed comparison with other similar frame-based integrated vision 

systems is difficult for two reasons. Of the three frame-based architectures described 

in the literature review, Fang’s vision chip and Neuricam’s SmartPupilla are 

theoretical architectures. Neuricam’s VISoC vision chip is the only system in current 

production. A comparison is further compounded by the fact that all three provide 

little of no performance-related information. Ideally models or samples of these 

systems would be required for benchmarking the developed architecture, 

unfortunately these are not available. Despite these issues it is still possible to 

perform a limited comparison between the developed system architecture and the 

Neuricam’s VISoC architecture.

Both the developed architecture’s system control unit and VISoC RISC processor 

have the ability to process a maximum of one million instructions per MHz. This 

assumes that the instruction decoder in the system control unit has been pipelined. 

This figure is comparable to popular 32-bit microprocessor IP cores, such as the 

Altera NIOS II at 1.16 MIPS/MHz, Xilinx Microblaze at 0.8 MIPS/MHz and 

Tensilica’s Xtensa V 1.2 MIPS/MHz [113][114][115]. Both the developed 

architecture and VISoC benefit from embedded DSP elements. As VISoC uses a 

neural network and the developed architecture uses DSP IP blocks, it is difficult to
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perform a suitable performance comparison. Both architectures share one distinct 

advantage over many of the non-frame-based architectures, which is their ability to 

be programmed using a higher-level language, such as C. This is only applicable 

when the developed architecture’s DSP blocks are called using function calls from 

the STV0674 co-processor. As discussed previously, the function call mechanism 

adds latency to the execution of a DSP IP block as a result of the use of the SDRAM 

decoder.

It is possible that the microcontroller from the STV0674 could be integrated directly 

into the on-chip bus structure and hence remove some latency for DSP IP block 

execution. Several IP processor cores, such as ARC700, Leon 2 and Xtensa V, 

approach this issue by allowing their instruction set to be augmented with new 

instructions. These new instructions execute hardware accelerator circuitry to 

improve execution times for computational expensive calculations. Unfortunately, as 

with the developed system, this is a far more complicated task than writing an 

algorithm in software. Typically, the developers using the prototyping system would 

only design new DSP IP blocks when the gain in processing performance was 

required, as a result of part of an algorithm lying within the processing critical path.

A further advantage of using optimised hardware DSP IP blocks, it that they 

typically offer more processing performance per clock cycle than most general 

purpose DSP or microprocessors. This could potentially lead to the processing part 

of an IoC having lower power requirements then a traditional DSP or 

microprocessor.

As is the case with most Harvard architectures, it is difficult to write self modifying 

programs. In fact, the current configuration of the architecture does not allow this 

process to take place unless initiated by the co-processor. Typically in vision 

application, the ability to write self modifying programs is not required.

6.1.3 The Complete Prototyping System

As has been demonstrated, the prototyping system is suitable for the implementation 

of vision applications. It has also been shown how an application can be coded in a
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small number of instructions, for example the object counting and highlight 

application only used 56 instructions. It must be noted that the average power 

consumption of 3.8 W would be dramatically reduced to the region of less than 

500mW if the system was integrated into an IoC.

Several limitations were found with the FPGA component of the prototyping system. 

The primary limitation was that of meeting timing constraints. Using the design flow 

optimised for timing, the configuration of the FPGA architecture used for example 

application had a maximum operational system clock frequency of 27.1 MHz. This 

was acceptable for the functional verification of the application but prevented read 

transactions across the IMPBUS completing correctly. This was due to insufficient 

time to obtain the two bytes required to construct the requested 16-bit words. 

Generally, the lack of read functionality was not a problem as the programming of 

the I-store and configuration of the registers only required IMPBUS write 

transactions. The addition of further DSP IP blocks could further reduce its 

maximum operation frequency. A possible solution to this problem could be the 

replacement of the Altera 20K600 FPGA to the 20K1000 or 20K1500 part. Using a 

FPGA with more resources may offer the opportunity to better group interconnected 

logic cells in IP blocks, with an aim of increasing the maximum clock frequency.

The use of a larger FPGA does not necessarily guarantee an improvement in the 

designs maximum operation frequency, as the distance travelled by signal could 

increase and lead to further signal delays. This was evident during the development 

of the prototyping system as even the mid-size FPGA used had direct pin-to-pin 

delays of up to 20ns.

The FPGA design flow used, also supported Altera’s LogicLock methodology. This 

allowed specific IP blocks to be placed in fixed locations on the FPGA floorplan. It 

may be possible using the methodology to obtain higher operation clock frequency 

but this would further complicate the design flow of application designers. It is also 

possible that the system architecture developed could be slightly re-designed for 

better FPGA-based results. Again this is not an ideal solution, as it would be better 

for the system design to be process independent, especially if end applications were 

to be integrated as an IoC.
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Another limitation was the lack of 50 Hz flicker detection and cancelling. As a result 

intermittent flickering pixels and pulsing light sources were seen during the 

execution of the demonstration application. Ideally, a pipelined IP block could be 

placed within the data path from the sensor interface to the ping-pong unit to detect 

flickering and aid in the cancelling-out of these effects.

The stipulation for the use of a STMicroelectronics VGA sensor during the research 

had an important impact on the maximum possible frame rate. The VGA sensor 

operated between 25 and 30fps. This provided rigid timing requirements for the 

sampling of images. As a result of application processing times, the system, in the 

majority of cases, reverted to 12.5fps because the application execution time 

extended beyond the available time slot at the end of each frame’s sampling period. 

Many integrated vision chips have imagers with controllable image sampling rates 

which allow the applications to decide when to grab an image frame. For example, 

the VISoc can sample images up to 180fps, depending on scene illumination. This 

ability would have greatly enhanced the prototyping system, by enabling a higher 

frame rate in instances when an application only requires a very small amount of 

extra processing time at the end of each frame’s sampling period. Using a sensor 

with a faster frame rate would have also been useful in extending the prototyping 

system’s ability for high-speed applications. A faster frame rate would result in 

more time available for image processing, as the image sampling at the sensor 

interface would be completed in a shorter period of time.

Other methods for improving the performance of the system by providing more 

usable processing time slots are as follows:

• Use a greyscale image sensor, i.e. without a Bayer colour filter mask. This 

would enable the top left pixels in the image to be grabbed for use as the sub­

sampled image. See figure 6.2a.

• Only perform processing on the top half of the images. This would allow the 

remaining half of the image to be discarded and the remaining frame time 

used for processing. See figure 6.2b.
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•  U se  horizontal shuffle setting on a S T M icroelec tron ics  image sensor. This  

forces the sensor to read out all the p ixels  on each even co lum n first, fo llow ed 

by the odd co lu m n ’s pixels for that line. This  would  result in longer inter-line 

times, w hich can be used for processing, at the expense  o f  reduc ing  the in ter­

pixel times by half. See figure 6.2c.

Sub-sampled Pixel

Unused
Unused

(b) Only Use Top-Half (c) Use HorizontalCurrent (a) Use
Sampling Greyscale Sensor of Image Shuffle

Figure 6.2 Methods of reordered pixel sub-sampling for improve performance

T he com parison  o f  the pro to typ ing  system with o ther similar system s is difficult. 

There  are no know n pro to typ ing  system s that cater for the specific d eve lopm en t o f  

IoCs. T h is  is typically  due to the fact that only  a few sem iconducto r  com panies  

p roduce C M O S  Im ager sensors  and do not public ly  offer pro to typing  system s o f  this 

nature. T hese  com panies  also do not openly  offer C M O S  sensors as IP b locks to third 

parties, p robably  due to the design com plex ities  and fabrication requirem ents . 

Typically , the only  m ethod  o f  p roducing  an IoC is by partnering with, or contrac ting  

a sem iconducto r com pany  to perform the design and fabrication processes. A ny 

available  IoC deve lopm ent p latform s are likely to be developed  in-house and their  

details not published due to their  com m erc ia l ly  sensitive nature.

General conclusions can be drawn about the advantages o f  the deve loped  p ro to typ ing  

system w hen com pared  to general proto typing  system. Firstly, the deve loped  system  

has been optim ised for v ision tasks. It is re lativity small and the unit cost is low. 

Secondly, an IP hardw are  and software architecture  has been provided in addition  to 

the tw o PCBs used. A prescribed and verified design flow has also been provided. 

T he intellectual p roperty  rights to m ost o f  the selected board-level and all o f  the 

FPG A -level com ponen ts  are ow ned  by STM icroelec tron ics . This will aid the 

integration o f  designs to IoC process  from a business and technical s tandpoint.
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6.1.4 IoC Manufacturing Cost Modelling

The imager component of the IoC manufacturing model was validated internally 

using several STMicroelectronics sensor designs from the last five years. Due to the 

commercially sensitive nature of the figures obtained, these cannot be disclosed. The 

process of externally validating the model was made difficult. This was as a result of 

the lack of CMOS image sensors within the literature that provide information on die 

area and the technology process size used. Details of two image sensors were 

obtained. The first was the Bums and Hornsey’s 80x80 CMOS image sensor in a

0.18pm process [121], Using the cost model, a value was obtained within +13.6% of 

the correct value. The second image sensor was the Fillfactory LUPA 1300 1280 x 

1024 CMOS image sensor in a 0.5pm process [122]. This required an extension of 

the cost model to take into account the scaling of the analog and digital components 

to a larger process. The model calculated a value within +5.9% of the correct value. 

As a high-level model, these figures were acceptable. Ideally, if the relevant 

information regarding other IoC-type systems, such as Neuricam’s VISoC, could be 

obtained, then the whole cost model could be verified to a greater extent. It is also 

unlikely that the actual costs involved with the manufacture of the IoC would be 

provided, unless fabricated through a vender, such as Europractice. If more time had 

been available, then the example system in Appendix C could have been synthesised 

with a suitable CMOS imager and the area results compared to the values calculated 

by the model.

As was previously shown, for a small IoC based on the developed FPGA architecture 

with an integrated 80x60 imager, integration using a 0.35pm process becomes 

financially beneficial at approximately 40 units. Retargeting the design to a 0.25pm 

process proved to only be financially viable at 50K units and for a 0.18pm process at 

approximately 500K unit. Moving to a 0.13pm process would require a production 

run of five million units. The salient reason for the very high production 

requirements at 0.13pm is the high mask set cost, the inability to easily scale or 

design the analog component below 0.25pm and the higher defect density for newer 

processes. At 10 millions units, the lowest unit cost is in a 0.13pm process. In this 

process, the total die area is 7.08mm2, of which 4.44mm2 is the imager, and the unit 

cost is $2.16, of which $1.32 is fixed costs. As the imager’s pixel array area is only
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0.15mm2 or 2.1% of the total die area, it may be advantageous it increase the pixel 

size. This increase would potentially improve the pixel sensitivity to light as a result 

of an increased photodiode and reduce optical related issues, such a lens assembly 

placement.

It may be argued that the use of a low cost 90nm-based FPGA does not justify the 

financial risk of IoC integration. As a result of the cost of using two external 

SRAMs, an FPGA with enough embedded memory would be required.

Unfortunately, embedded memory within a die is expensive in terms of area. 

Typically, FPGA manufacturers would rather use this die area for logic cells or 

embedded DSP blocks. This results in a requirement to select a FPGA that has more 

logic cells than required in order to obtain enough memory to implement the image 

banks and other memories.

The most low-cost, suitable FPGA from Xilinx, is the 90nm Spartan 3E XC3S500E 

with up to 360kbits of memory and from Altera it is the 90nm Cyclone II EP2C35 

with up to 483kbits of memory [116] [117]. Both of these FPGAs have 

approximately 400-500k usable gates. The Xilinx Spartan 3E FPGA costs 

approximately $9 for a device upto 1.2 million gates and $2 for a device with 

lOOkgates in quantities of 500k units [118]. The Altera Cyclone II EP2C35 FPGA 

costs $22 in quantities of 250k units [119]. As both of these FPGAs have volatile 

configuration storage, they require configuration devices which further add to the 

system cost. The requirement for a configuration device could be removed by using 

a non-volatile FPGA based on FLASH memory, for example the Lattice XP range of 

FPGAs. Despite this, separate video encoder ICs and sensor would still be required, 

further increasing the overall system cost. At such high volumes, the low-cost 

FPGAs are not a cost effective solution when compared to a fully integrated IoC. As 

a result, it is likely that low-cost FPGAs would only be suitable when producing up 

to approximately 1000 units. This figure has taken into account that FPGAs also cost 

more in small volumes.

Mid-ground between the fully integrated IoC and the FPGA-based multi-chip 

solution is that of a structured ASIC. A structured ASIC uses an array of fixed 

elements, similar to an FPGA, which can be used to implement multiple designs by
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changing the metal layers above the silicon. This reduces the mask set costs as the 

manufacturing company can apportion their costs over several customers’ projects. 

This design methodology is still in its infancy as many companies are currently 

trying to form viable and sustainable business models.

The use the cost model has indicated, in the case of the example, that low-cost mass- 

market vision systems benefit to a great extent by full integration to a single IoC. It 

is likely that as pixel array sizes increase and digital processes decrease in size it will 

become more appealing to implement more DSP functions on the same die as the 

imager. This has now been realised with the launch of the STMicroelectronics 

VS6524 highly-integrated camera module. The VS6524 integrates a VGA CMOS 

imager with a video processor to perform various image processing functions, such 

as colour space conversion, gamma correction and defect pixel correction. It has 

been manufactured in a 0.18pm ST CMOS imaging process and has been aimed at 

the mobile phone and PDA market. The VS6524 has a unit cost of $6, in large 

volumes, for the chip, flexible connector and lens assembly [120].

6.2 Recommendations for Future work

There are several recommendations regarding future improvements that could be 

made to the prototyping system. These are listed and separated into three categories; 

PCB, FPGA and System-wide related recommendations.

PCB Recommendations

1. Redesign the daughter board PCB to include the modifications discussed in 

Appendix B.2 on page 209 and 6.1.1 on pages 121-122.

2. Add the option of two low-latency SRAMs to allow an upgrade path from the 

FPGA’s embedded memory resources.

3. Add the five wire sensor data bus and clock line from the sensor to the 

backplane connectors. The FPGA can then be configured to accept data 

across this bus.
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4. Perform signal timing and integrity checks to ascertain the maximum 

operational frequency for IMPBUS and memory bus communications.

FPGA Architecture Recommendations

1. Implement the seven recommendations in chapter 6.1.2.1 on pages 124-126 

for improving the system controller. This will require an extra 100-200 logic 

cells and an ESB.

2. Add inter-general-purpose register operations. Depending on the number of 

operations implemented, this change would probably require in the region of 

100 logic cells.

3. Extend the choice of DSP IP blocks, using the current DSP IP block 

addressing structures and interfaces for point and neighbourhood operations.

It is particularly important to implement arithmetic and morphology DSP IP 

blocks. Point operations are likely to require 500-2000 logic cells per IP 

block and neighbourhood operations are likely to require 2000-3000 logic 

cells per IP block.

4. Enable selectable sub-sampling schemes as described in Chapter 6.1.3 on 

pages 138-139. This would make better use of available inter-line processing 

slots and require less than 100 extra logic cells.

5. Integrate the co-processor’s 8052 microcontroller core, I2C controller and 

sensor configuration unit into the FPGA to remove the need for the sensor co­

processor. A total of 1200-1800 logic cells would be used to implement this 

recommendation.

6. Implement an anti-flicker detection and cancellation unit in the FPGA 

architecture.

Recommendations for the Complete Prototyping Platform

1. Develop further applications for the prototyping system within the domain of 

object tracking and object recognition.

2. Synthesise the example IoC application as outlined in Chapter 6, to target a 

multi-project wafer process and compare results to that of the IoC 

manufacturing cost model’s values for die area. Once fabrication is
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performed, functional verification should be conducted with the IoC, using 

the simulations and the FPGA-based system for comparison.

3. Implement the entire DSP IP block library in a software language, such as C. 

This will allow functions that do not reside in the application execution’s 

critical path, to be implemented in software on the embedded 8052 

microcontroller.

4. Scale the architecture to support 25fps 640x480 pixel video processing.

To implement the fourth recommendation would only require the FPGA’s 

architecture to be modified. The image banks would have to be scaled to support 

640x480 8-bit images, dramatically increasing the number of ESBs used for each 

image stored from 19 to 1200. The consequences of increasing the size of both image 

banks are several-fold. The bus network and addressing scheme used in all DSP 

blocks, the network control unit, ping-pong unit and system control unit, would 

require extensions to support a minimum of 20-bit addressing. The number of 

extensions could be reduced by using the direct addressing method as described in 

Chapter 4.3.8 on page 89. The structure of the instruction set and SDRAM decoder 

would also have to be augmented to support the larger memory map. The sampling 

mechanism for the sensor interface and video encoder would require minor 

modifications. Most of the IP blocks could remain unchanged with the exception of 

the 3x3filter which would require larger shift registers to accommodate lines of 640 

pixels. In order to support the correct functioning of the getobjs DSP IP block, the 

scratch pad memory would also have to be increased significantly.

Two areas of recommended further research are as follows:

1. Investigate the possibility of prototyping parallel processing architectures, 

using multiple video streams or create deep multi-operation pipelines within 

DSP IP blocks to improve the pixel processing rate.

2. Further investigate the architectural implications of using colour images for 

processing. The use of colour images may be useful for skin tone detection 

or object recognition and segmentation by colour histogram profiling.
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6.3 Example Re-Design of Prototyping Platform

Using selected recommendations in sub-section 6.2, this sub-section implements a 

re-design of the prototyping platform. Initially, the current prototyping platform is 

assessed for its ability to provide support for applications using higher image 

resolutions. During the assessment, areas which need to be modified to support 

higher resolutions are highlighted and the required changes stated. The modified 

version of the prototyping platform is then used as a base upon which to re-design 

the platform to provide higher processing performance.

6.3.1 Scalability of Current Platform to Higher Image Resolutions

The CMOS image sensors provided by STMicroelectronics were all limited to a 

640x480 pixels (VGA) resolution at up to 30 frames per second. With this in mind, 

the majority of the original prototyping platform was designed to support this 

resolution and frame rate. Implementing a platform to expressly support higher 

resolutions would have been complicated given that there would have been no simple 

process by which to test the platform. It was also postulated that low-cost mass- 

market machine vision and image processing applications would generally not 

require any resolution higher than 640x480 pixels, as this is approximately the 

effective resolution of a standard home television. Although the original platform 

was designed for VGA resolutions, the memory resources in the FPGA limited the 

useable image size to 80x60 8-bit pixels. In this sub-section, each of the FPGA- 

based sub-systems is analyzed to assess their suitability for use if the platform was 

required to support a greater image size.

Two assumptions have been made during the following analysis. The first 

assumption is that the system clock frequency is kept at the current frequency of 

24MHz. The second assumption is that the image size required to be support is 

640x480 pixels at 25fps and that the sensor used in the platform is a 

STMicroelectronic 8-bit greyscale VGA CMOS image sensor, i.e. without a Bayer 

colourisation filter mask. The lack of a Bayer filter allows every pixel to be read
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from the image sensor without the need to adjust the silicon’s absorption 

characteristics for different frequencies of light.

6.3.1.1 Daughter Board and FPGA Backplane

The daughter board and FPGA backplane have no issues with supporting a VGA 

resolution at board-level. This assumes that the sensor data is fed directly into the 

FPGA rather than via the sensor co-processor.

6.3.1.2 FPGA Memory Sub-Systems

The issue of memory in the original version of the prototyping platform limited the 

usable resolution to 80x60 pixels. Assuming that the same configuration of memory 

banks exists when larger image sizes are used and that each image bank can contain 

2 image, the memory requirement (in bytes) for common resolutions are listed in 

table 6.5.

Image Size Supported

80x60 320x240 640x480 1280x1024 1600x1200

Image Bank 1 9600 153600 614400 2621440 3840000

Image Bank 2 9600 153600 614400 2621440 3840000

Scratch Pad 6833 109328 437312 1749248 2733200

Video Line Memory 80 320 640 1280 1600

I-Store 256 256 256 256 256

Register Bank 256 256 256 256 256

Async. Video FIFO 144 144 144 144 144

Total 26753 417360 1667264 6993920 10415312

Table 6.5 Platform’s Memory Requirements (in Bytes) to Support Higher Image Sizes

As can be seen in table 6.5 increasing the current image size of 80x60 pixels to the 

next common image size of 320x240 pixels, requires almost 16 times more memory. 

The values for the scratch pad entries have been estimated assuming that 6833 bytes
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are required for each block of 80x60 pixels. The values for I-store and the register 

bank remain fixed as these would not be affected by scaling. The asynchronous 

Video FIFO is listed as 144 bytes, as its implementation is 9-bits wide and 128 

elements long.

As memory addressing works on powers of two, it is complicated to implement 

memories with exactly the correct number of bytes require for each bank. This 

unfortunately leads to image banks being scaled in size to meet the requirement of 

the address scheme. Table 6.6 shows the actual number of bytes required for each 

memory bank to allow standard memory addresses to be used.

Image Size Supported

80x60 320x240 640x480 1280x1024 1600x1200

Image Bank 1 16384 262144 1048576 4194304 4194304

Image Bank 2 16384 262144 1048576 4194304 4194304

Scratch Pad 8192 131072 524288 2097152 4194304

Video Line Memory 128 512 1024 2048 2048

I-Store 256 256 256 256 256

Register Bank 256 256 256 256 256

Async. Video FIFO 144 144 144 144 144

Total 41728 656512 2623104 10488448 12585600

Table 6.6 Platform’s Memory Requirements to Support Higher Image Sizes

The total memory resources of the Altera Apex 20K600E FPGA in the prototyping 

platform is 38912 bytes. This would indicate that not even the 80x60 image 

resolution could be supported. The disparity between the number of bytes for the 

80x60 pixel image resolution in table 6.6 and the maximum available for the FPGA 

is due to two implementation differences. Firstly, it must be noted that the video 

generator’s line memory was implemented on the original platform using 1024 bytes 

to support up to 640x480 pixel images and not 128 bytes. This design decision was 

taken to allow the video generation sub-system to be re-used in other 

STMicroelectronics products. Secondly, the scratch pad memory in the original 

platform was implemented with 4096 bytes which was an insufficient amount of
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memory for the getobjs operation, as discovered during the testing of the object 

counting and highlighting application in appendix C. As can be seen from table 6.6 

none of the other image sizes can be supported due to a lack of FPGA memory 

resources, i.e. the platform’s FPGA architecture is not scalable to support image sizes 

greater than 80x60 8-bit pixels with a half sized (4096bytes) scratch pad.

Two options are available to correct the scalability of the platform. The first option 

is to use an FPGA with larger memory resources. The second option is to use the 

daughter boards SDRAM ICs, as originally intended for applications using larger 

image sizes.

Two of the current FPGAs with the largest memory resources are the Xilinx Virtex 4 

FX (XC4VFX140) and the Altera Stratix II (EP2S180) with 1242000 bytes and 

1172880 bytes respectively [123] [124]. Both FPGAs do not have sufficient memory 

resources for an implementation of two image banks storing two 640x480 8-bit 

images each. Another issue with the implementation of the larger FPGAs is that 

their footprints and pin configurations are different than the Apex 20K FPGA 

currently used. As the current FPGA foot print is a 672-pin fine-line BGA and the 

Xilinx Virtex 4 part is only available in 1517 or 1760 pin configurations and the 

Altera Stratix II in 1020 or 1508 pin configurations, the FPGA backplane would need 

to be completely redesigned to support either of the larger FPGAs. Using the Xilinx 

FPGA also compounds the problem of its implementation as its tool chain is different 

to the Altera part after the initial Verilog synthesis process.

The second option of implementing an embedded SDRAM controller and using the 

prototyping platforms SDRAM ICs for the two image banks is far more attractive 

from a system cost or ease of implementation standpoint when compared to the use 

of a larger FPGA. The specific advantages of this approach are:

• Each SDRAM IC provides 128 Mbits of memory, equating to a storage 

potential of up to 54 8-bit VGA images.

• Embedded FPGA memory can be re-used for a larger scratch pad memory 

bank or new DSP IP blocks.
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• No re-design of the FPGA backplane or daughterboard is required.

• The data ports on the SDRAM ICs are 16-bit wide and hence allow 2 pixels 

per cycle to be written or read.

The disadvantages of SDRAM usage are:

• The need to design and implement an SDRAM control unit to support two 

concurrent transactions to the two SDRAMs. This requires additional FPGA 

logic block resources.

• The added latency of setting-up addresses and reading data from the 

SDRAMs. This issue can be reduced by using burst modes which perform 

reads or writes on subsequent memory addresses after each memory clock 

cycle.

• The requirement to refresh the SDRAMs after a fixed period of time to retain 

the stored information correctly. During a refresh no data reads or writes can 

take place.

The SDRAMs have an advantage that if a prototyped design was integrated into a 

single IoC, embedded DRAM provides higher densities hence lower costs per Mbit, 

lower power consumption and lower soft error rate (SER) than embedded SRAM 

technologies [125].

Using the SDRAM approach with VGA image sizes affect the systems memory map. 

Two possible memory maps are presented in figure 6.3.
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Address

0x2020FF-
0x202000-

0x201000-

0x101000-

0x001000-

OxOOOOFF-
0x000000-

Unal located
Instruction Store

Scratch Pad

SDRAM Image Bank 2

SDRAM Image Bank 1

Unallocated

Register Bank

Address

0x20020FF-
0x2002000-

0x2001000-

0x1001000

0x0001000-

OxOOOOOFF-
0x0000000-

Unal located
Instruction Store

Scratch Pad

SDRAM Image Bank 2

SDRAM Image Bank 1

Unallocated

Register Bank

(a) Limiting SDRAM Use to Two VGA Images (b) Full SDRAM Use

Figure 6 3  Two different FPGA memory maps taking into account the use of off-chip SDRAM

As the SDRAM memory configuration stores data in 16-bit words, only 24-bits are 

required to access their full 16777216 bytes but as the data architecture is 8-bit, an 

extra bit is required to select which byte of the 16-bit word should be read or written. 

This would require an upper/lower byte select mechanism to be implemented in the 

SDRAM control unit for each of the two SDRAMs.

As can be seen in figure 6.3 (column b), making the whole of each SDRAM byte 

addressable requires 26-bits, whereas limiting the SDRAM address space to the 

storage requirement of two VGA images per SDRAM, requires 22-bits. The scratch 

pad memory has been set as 4096 bytes. This is because implementing the required 

scratch pad for the getobjs algorithm would require 524288 bytes, which is more 

than all the memory resources available in the Altera Apex 20K FPGA. The use of 

the SDRAM memories raises the issue of extending the addressing interfaces on the 

DSP IP block and sub-system within the FPGA. It is still more attractive to allow the 

full use of the SDRAM (figure 6.3 column b) as it allows the system to be scalable 

for use with larger image sizes in the future. Rearrangement of the memory map can 

yield a decrease in the bits required for addressing to 25 bits, as shown in figure 6.4.

150



Address

0x2FFFFFF-

0x2000000-

0x1000000-

0x0002FFF-

0x0002000 - 
0x0001OFF‘ 
0x0001000- 
OxOOOOOFF- 
0x0000000-

SDRAM Image Bank 2

SDRAM Image Bank 1

Unallocated

Scratch Pad

Unallocated
Instruction Store

Unallocated
Register Bank

Figure 6.4 Reordered FPGA memory map

The memory map in figure 6.4 is used for the remainder of the scalability analysis of 

the prototyping platform.

6.3.1.3 Sensor Interface, Video Generator and Ping-pong Unit

Minimal changes would be required to the sensor interface as it was originally 

designed to support VGA image capture at 25fps. The only change required would 

be to remove or bypass the image sub-sampling mechanism that is used to create 

80x60 pixel images. Higher resolutions than VGA probably require a faster clock 

rate and/or the sensor image data interface and bus width extension from 5 wires to 8 

wires and thus prevent the need of two sensor clock cycle to construct each 8-bit 

pixel. Unfortunately, the latter would only possible by redesigning the daughter 

board or by direct wiring between the sensor module and FPGA input pins.

The video generator in the FPGA could also be simplified, if only VGA sized image 

were used, by the removal of the requirement for an image scaling mechanism from 

80x60 pixels to 640x480 pixels, as the images would arrive at the video generator at 

the correct size, i.e. 640x480 pixels. The rate of 13.5 MHz currently used in the 

video generator would be sufficient to maintain a suitable pixel data rate. If images
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larger than 640x480 were used by the prototyping system, a cropping or scaling- 

down mechanism would need to be implemented.

The effective pixel data rate from the sensor interface to the ping-pong unit and from 

the ping-pong to the video generator would increase by a factor of 64. As a result, at 

a system clock frequency of 24MHz, the ping-pong will write a pixel every two 

clock cycles from the sensor interface to an image bank and read a pixel every clock 

cycle from an image bank to the video generators async fifo to retain the correct 

pixel flow. This would limit the inter-pixel processing time available to one cycle, 

which is unlikely to be sufficient for most operations, especially read-modify-write 

operations over the whole VGA image. The memory access for processing from the 

image bank also used by the video generator would be limited to the start and end of 

the image fields, as the inter-pixel time available for processing would be less than 

one cycle. This indicates that while the ping-pong unit supports the use of VGA 

images at 25fps, the processing performance capable by the FPGA architecture is 

particularly limited. The issue of improving performance will be covered in section

6.3.2.

As a result of implementing an extended memory map, the ping-pong unit would 

need to be extended to support 25-bit addresses for image memory bank access. The 

use of the off-chip SDRAM would also necessitate the use of a delay mechanism in 

the ping-pong unit, also known as wait-states, to allow the ping-pong unit to take into 

account the latency between a read request and the return of valid data from the 

SDRAMs.

6.3.1.4 System and Network Control Units and DSP IP Blocks

To support the extended memory map, the system control unit, network control unit 

and the point-to-point network structure would require the address buses and 

addressing interfaces to be extended to support 25-bit addressing. For the system 

control unit, its 16-bit external read and write address registers would also require 

extending to 25-bits. This would have a resultant effect of requiring the
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implementation of four new instructions to load the additional 9-bits of the extended 

read and write address registers.

The use of the extended memory map would also affect the DSP IP blocks. Their 

address interfaces would have to be extended as with the other sub-systems and their 

counter-based addressing mechanisms extended to 25-bits. The FSMs used to 

generate memory addresses would also require the insertion of wait states to take into 

account the latency of data from the off-chip SDRAMs.

The DSP IP block specific modifications would include elongating the 3x3filter’s 

shift registers from 80 elements to 640 elements to hold a complete line from a VGA 

image. The getobjs DSP IP block would also need to be modified to use SDRAM 

rather than the on-chip scratch pad, or only operate on small areas of each VGA 

image, given that the required memory to build the object database for a VGA image 

is in excess of the available FPGA memory resources.

6.3.1.5 Available Processing Time

The processing time available per frame helps to indicate the level of performance 

capable by the prototyping platform. As stated in section 6.3.1.3 image processing is 

limited to the timeslot after of each new frame has been written to memory. Using 

the recommendation in section 6.1.2.3, the frame synchronisation pulse could be 

adjusted to gain the 25 lines at the start of the next image frame for processing. This 

would increase the number of cycles available for processing per image from 35037 

to 80837 cycles. As 480 lines are now sampled to construct a 640x480 image, the 

previously unsampled lines of 474 to 480 are now used and hence reduce the 

available time for processing by 7 lines. Therefore actual time available for 

processing is 68013 cycles, i.e. 7.08% of the frame period may be used for 

contiguous image processing.

Assuming a DSP IP block processes each pixel at a rate of 1 pixel every 2 cycles and 

only one pixel may be read or written to the SDRAM every cycle, only 11% of a
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whole VGA image may be processed in any frame period to maintain a video rate of 

25fps. This is insufficient performance for all but the most basic applications.

6.3.1.6 Summary

The analysis of the current prototyping platform indicates that the changes required 

to support 640x480 pixel (VGA) images at 25fps are mainly related to the use of 

SDRAM, inclusion of a dual SDRAM control unit and the extension of the 

architecture to support a 25-bit address memory map.

The amount of available processing time per image frame has drastically reduced, 

due to a 64-fold increase in data throughput requirements. This effectively confines 

most of the image processing to the end of each image frame write from the sensor 

interface via the ping-pong unit. Compounding the reduction in available processing 

time, the amount of data to process in each VGA image has been increased by 64 

times. Given that it was difficult to maintain a video rate of 25fps in applications 

using 80x60 pixels, it is very unlikely, except in very simple applications, that the 

rate will be maintainable at 25fps when processing VGA images. Therefore, 

although the suggested architectural changes would support VGA image based 

applications, the performance is likely to be a limiting factor for these applications. 

The issue of processing performance needs to be addressed to ensure that the 

prototyping system would still provide a viable platform for prototyping marketable 

VGA image processing based products.

6.3.2 Re-designed Architecture

As shown in the previous section, the modifications required to support 640x480 

images at 25fps are relatively easy to perform. The key issue is that the image 

processing performance of the system would be insufficient for most applications. 

This section details a new improved version of the architecture based on the 

modifications in section 6.3.1 and the recommendations for improvements in section

6.2. Initially the top-level of the architecture is outlined and this is then followed by
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sub-sections detailing the required architectural changes to each sub-system in the 

FPGA.

The specific aim of the new architecture is to be able to process 640x480 8-bit pixel 

images at a suitable level of performance to allow a wide range of developed 

application to maintain a frame rate of 25fps. The current STMicroelectronics 

CMOS VGA image sensor will be used in the new architecture.

6.3.2.1 Overview of New Architecture

Although many of the recommendations in section 6.2 would improve performance, 

the level of performance gain would be insufficient for processing VGA images at 

25fps. This is due to the limited time available for processing in each frame and that 

that the FPGA architecture’s DSP IP blocks can only perform 1 DSP operation per 

pixel per cycle. This limits the maximum pixel processing performance to 24 million 

operations per second (MOPS) at a clock frequency of 24MHz. During the synthesis 

of the FPGA architecture, the maximum attainable clock frequency for the complete 

system was found to be approximately 60MHz. Even at this maximum frequency, 

the FPGA architecture still does not achieve a suitable processing rate and therefore a 

more complex architecture solution is required.

Two possible groups of FPGA architecture recommendations could be implemented 

as part of the new improved FPGA architecture. The first is to improve the 

performance of the system controller by implementing changes 1 and 2 from the list 

on page 143. The second is to implement an 8051 microcontroller core and I2C 

control unit on the FPGA as suggested in recommendation 5. Improving the system 

control unit would be relatively simple and only require a low number of FPGA 

resources but would only yield relatively modest overall system performance 

increase. The best option is to implement the microcontroller for the following 

reasons;

• It can perform the same functions as the system controller and hence the 

system controller could be removed, freeing resources for use elsewhere.
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• The inclusion of the microcontroller and an I2C control unit on the FPGA 

also removes the need for the sensor co-processor IC, as the sensor and video 

encoder can be controlled by using I2C bus. This allows the removal of the 

SDRAM decoder unit as communications are no longer required to and from 

the sensor co-processor.

• It is more flexible than the system controller due to the capability to perform 

some image processing. This is particularly useful for implementing DSP 

operations that are more effectively executed in software than as a hardware 

IP block.

• Unlike the system control unit it can be easily programmed in C, using the 

current design and tool flows.

The disadvantage of the inclusion of the microcontroller is that a large number of 

resources are required and that there maybe licensing issues.

The 4th recommendation of using configurable sub-sampling schemes to improve 

performance is not feasible as almost all the pixel in the pixel array are being read 

out to form a 640x480 pixel image rather than a small 80x60 pixel image. The 6th 

recommendation of implementing an anti-flicker detection and cancellation unit will 

not be implemented in the new architecture as it does not directly improve processing 

performance.

To vastly improve performance of the FPGA architecture, the recommendation for 

parallel processing on page 144 is used. A combination of the use of multi-operation 

pipelines and multiple video stream is probably the most effective method for 

improving performance. Figure 6.5 shows the new proposed FPGA architecture for 

the prototyping system.
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Figure 6.5 New proposed FPGA architecture

C om paring  the new  proposed  architecture in figure 6.5 to the original a rchitecture  in 

figure 3.4, four m ain  d ifferences can be noted. T hese  are:

1. The S D R A M  decoder, system controller and instruction store have been 

replaced with an 8051 microcontroller w ith  a p rogram  and data  m em ory  and 

an I2C interface.

2. The tw o  16Kbyte S R A M  image banks and 4K B yte  scratch  pad have  been 

replaced by 4 S D R A M  controllers and off-chip  128M bit S D R A M s.  T w o  o f  

the S D R A M s used are on the  daughter board  and tw o  are on a new  PCB 

attached to the unused  pin banks on the F P G A  backplane.

3. T he  individual D SP  IP blocks have been replaced by tw o D S P  address 

generators and a configurab le  m atrix  o f  D S P  operators.

4. T he  bus ne tw ork  controller is shown to be m ore  integrated into bus network. 

This is not as a result o f  a large change in the functionality  o f  the bus netw ork  

but as a c larification that it is connected to all the sys tem s point- to-poin t 

buses rather than a single tw o-w ay  connection  as in figure 3.4.
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This new system configuration is described in the next sub-sections in terms of the 

microcontroller sub-system, ping-pong sub-system, memory sub-system, DSP 

component and the bus network controller.

6.3.2.2 Memory Sub-system

The new proposed architecture uses 4 SDRAM ICs for image banks and general 

storage. Two of the SDRAM ICs currently exist on the daughter board and two 

would need to be incorporated onto a new memory expansion board attached to the 

unused pin banks on the FPGA backplane. As the Apex 20K FPGAs support the use 

of SDRAM up to a clock frequency of 133MHz, a SDRAM clock frequency of 

96MHz was chosen for the new architecture [126]. The reason this frequency was 

selected, was that it is a multiple of the 24MHz system clock. Using the FPGA’s 

PLL, it is easy to output a 96MHz clock and derived in-phase clocks of 48MHz and 

24MHz. At 96MHz this would provide up to a four fold increase in memory 

transaction speed per bank when compared to the original architecture. The use of 

the additional two banks also increases the memory band by an additional factor of 2. 

A fiirther performance increase is gained from the ability to fetch upto 16-bits, i.e. 2 

pixels, per clock cycle. The cumulative effect of these improvements results in a 

bandwidth increase of 16 times the original FPGA memory architecture. The most 

important aspect of the inclusion of two extra memory banks is that while one bank 

is being written by the sensor interface and another read from by the video generator, 

two banks may be solely used for image processing. Unfortunately, unlike the 

internal SRAM memories used in the original architecture, SDRAM IC require a 

time overhead for demultiplexing and setting up address, reading data and 

performing a refresh process to retain data. The effect that these overheads have on 

performance will be calculated in section 6.3.3.

In order to control the 4 SDRAM ICs, the new architecture requires 4 SDRAM 

controllers to be used. These SDRAM controllers are identical to each other and 

operate at 96MHz. The SDRAM controllers will be the only IP blocks in the 

architecture to run solely at this frequency and therefore it should be possible through 

careful design and floorplanning to meet the target clock frequency. It is suggested
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that the Altera SDR SDRAM controller or a similar IP block be used for the new 

architecture [127]. The SDRAM controller should have the following characteristics 

and commands to obtain the most optimal performance;

1. CAS latency of 2 clock cycles.

2. 16-bit data path widths.

3. Burst length of 8 data words for DSP operations only.

4. Single data word transactions for the 8051.

5. Data masking for write operations executed from the 8-bit 8051 

microcontroller.

6. Auto refresh of SDRAM to retain the integrity of stored data.

7. Auto configuration of the SDRAM’s mode register for CAS latency, burst 

length, burst type and write burst mode.

8. NOP command (0) -  No operation command.

9. READ command (1) -  Starts single word read operation from 8052.

10. WRITE command (2) -  Starts single word write operation from 8052.

11. BURST_READ command (3) -  Start 8 word read operation from a DSP 

address generator or ping-pong unit.

12. BURST WRITE command (4) - Start 8 word write operation from a DSP 

address generator or ping-pong unit.

Unlike the majority of typical SDRAM controllers, for ease the user does not have to 

have direct control over the sub-commands used to construct read and write memory 

tractions, for example refresh and precharge. The specific sub-commands, timings 

and the signal required to be transmitted to the SDRAM ICs may be found in the 

SDRAM manufacturers datasheets, for example [92]. The interface for the SDRAM 

controller is shown in figure 6.6.
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FPGA Network Interface

elk (96MHz) ------
reset_n ------
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cmd_ack <----
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ready <----

SDRAM
Controller

Off-Chip SDRAM Bus

4"  " ► data<15:0>

address <13:0>

control signals <6:0>

Figure 6.6 I/O interface for the SDRAM controllers

The SDRAM controller allows two types of transactions; single word or burst 8 word 

read and writes. When no operation is required, the cmd < 2 :0  is set to zero by the 

network bus controller. When data is set-up on the data in bus, an address on the 

address bus and a write command is issued to the controller, the controller outputs a 

command acknowledgement and starts the memory transactions. In the case of 

single word write transactions, the data set-up on the data in bus is sampled and 

outputted to the SDRAM on the next cycle after the command acknowledgement. 

During burst write transactions, the SDRAM controller expects 8 data words to be 

set-up on the bus on consecutive clock cycles. Both transactions require a further 

clock cycle for the automatic precharge of the SDRAM bank. Following a read 

command, the controller also outputs a command acknowledge signal on the 

following clock cycle and starts the read transaction with the address provided.

Three cycles following the command acknowledgment, valid data is asserted onto 

the data out bus. In a similar manner to burst write transactions, burst read 

transactions output 8 words of data on consecutive clock cycles followed by an 

automatic precharge cycle. It must be noted that during the automatic refresh of the 

SDRAM the controller will not send a command acknowledgment following any 

command request unit the refresh process is completed. The ready signal from the 

SDRAM controller remains low until a write transaction completes or valid read data 

is available, when the ready signals pulses active high. This signal is used to enable
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the microcontroller to function with off-chip memories that have latency due to 

multiplexed addressing and read latency.

SDRAM memory transactions requested by the 8051 microcontroller only deal with 

8-bit words. When an 8-bit word is outputted from the microcontroller the network 

bus controller duplicates the 8-bits to form a 16-bit word. This 16-bit word is then 

set-up on the data_in input and a mask (datajmask <1:0>) used to select the lower or 

upper byte to be written. When a read request is made, the data mask is not used by 

the SDRAM controller but by the network controller to select which of the upper and 

lower byte, read from the SDRAM, should be sent onto the microcontroller.

The memory map for the new proposed architecture is shown in figure 6.7. The 

reason for not including the scratch pad is to provide the most memory resources 

possible to the DSP IP block designer. As the microcontroller has on-chip RAM for 

its exclusive use and the DSP IP blocks now have access to fast SDRAM, it was no 

longer necessary to include additional on-chip memory.

Address 

0x27FFFFF

0x2000000

0x1800000

0x1000000

0x0800000
OxOOOOOFF 
0x0000000

Figure 6.7 New proposed FPGA memory map

The microcontroller’s RAM and ROM are not represented in figure 6.7, as they are 

not accessible by the rest of the system. These memory blocks are covered in section

SDRAM Image Bank 4

SDRAM Image Bank 3

SDRAM Image Bank 2

SDRAM Image Bank 1

Unallocated 
Register Bank
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6.3.2.3. Only the microcontroller will require access to the register bank via the 

memory interface. The DSP IP blocks using the register bank will have direct 

connection to and from specific registers and thus bypass the memory interface. This 

will reduce the address complexity for the DSP IP blocks and associated address 

generators.

6.3.2.3 Microcontroller & I2C Interface

An 8051 microcontroller has been specified for proposed architecture. The 

advantage of using this microcontroller core is that it is code compatible with the 

microcontroller in the sensor co-processor. This allows re-use of the majority of the 

co-processor’s program code and the re-use of the current software tool chain. Other 

possible 8-bit processor cores that could have been included were the Z80 and 

Microchip PIC C165X. The 16-bit processors, such as Motorola 68000 and Intel 

80186, were deemed to require too many FPGA resources.

The original Intel 8051 microcontroller, requires 12 or 24 cycles per instruction but 

there are many recent versions of the microcontroller that process instructions in 1-2 

cycles, for example the Dolphin Integration’s Flip 8051 Cyclone [128], Cast R8051 

[129] and Digital Core Design’s DP8051 [130]. The DP8051 was selected for the 

new architecture, as it provides sufficient performance for the control of the FPGAs 

sub-systems. Compared to the other 8051 cores available, the DP8051 has the 

distinct advantage of possessing three dedicated memory interfaces for up to a 64KB 

program ROM, a 256byte data RAM and up to 16Mbytes of addressable external 

memory. The ability to address 16Mbytes of external memory would allow a whole 

128Mbit SDRAM bank addressable space to be accessed at any one time. Other 

8051 microcontrollers, such as the Cast 8051, only allow up to 64kbytes of 

addressable external memory.

The IP vendor Digital Core Design specifies that the DP8051 can be implemented in 

an Altera APEX 20KE FPGA (as on the backplane) with clock speeds up to 68 MHz, 

although it will be implemented in the new architecture with a 48MHz clock [131]. 

The lower clock frequency should make it easier to meeting timing requirement
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during place and route of the microcontroller. The DP8051 also has a compatible 

400kHz I2C master interface, also available from Digital Core Design, which is 

shown in the proposed microcontroller sub-system in figure 6.8. Please note that 

only the I/O ports used within the system are shown in the diagram. The 48MHz 

system clock and reset have been excluded from each block component on the 

diagram to improve readability.
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sfirdataout
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Figure 6.8 DP8051 microcontroller sub-system

The components and signals in figure 6.8 can be separated into 4 groups. The first 

grouping is the 256 byte data memory, marked RAM, and its associated memory 

buses. The data memory is used for storing temporary data during the execution of 

the microcontroller program code.

The second group involves the 16Kbyte ROM. It is expected that the ROM will be 

used to store program code to be executed on the microcontroller. Although the 

DP8051 supports up to 64Kbytes ROM, 16Kbytes was deemed sufficient for most 

programs, especially since the original architecture had an instruction store of only 

256bytes.
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The third group consists of the interface to the register bank and four off-chip 

SDRAMs. As the DP8051 can only access up to 128Mbits, a bank select mechanism 

(bank_sel) was implemented using a 3-bit register fed by a user controllable output 

port. In the microcontroller’s default state, the register bank’s address space is 

accessible. Setting bank_sel to 1 to 4 selected the appropriate off-chip SDRAM. 

Internally, the DP8051 only supports 64Kbytes and therefore despite the external 

memory interfacing supporting the full system memory map, a memory windowing 

scheme is required. The memory windowing automatically allows 45056 bytes of 

the external memory map to be internally addressable at any one time, in addition to 

the 16kbyte ROM and 256 byte RAM. The memory map for the DP8051 is shown in 

figure 6.9.
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Figure 6.9 DP8051 Memory Map
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As the microcontroller only reads and writes 8-bit data and not 16-bit, the LSB bit of 

the mem_addr bus is used to select the upper or lower bytes by masking using the 

datajnask signal on the SDRAM controllers during read or write transactions. Also, 

the read transactions from the SDRAMs involve several cycles of latency. The 

DP8051 accounts for this by using wait-states and reading the ready signal from the 

SDRAM controller in-use, to indicate when valid data is available.

The fourth group involves the I2C interface unit. DP8051’s special function registers 

(SFR) are used to drive 8-bit data, addresses and a write enable signal (sfr_we) to the 

I2C interface unit to initialise read and write transactions on the off-chip I2C bus.

The SFRs are also used to receive data from the I2C interface unit. An interrupt wire
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has been included between the DP8051 and I2C interface to trigger a hardware 

interrupt if an off-chip device transmits unrequested data to the FPGA. This is an 

unlikely event as the current configuration of the EEPROM, CMOS image sensor 

and video encoder only allow them to function as slave devices. The advantage of 

using the special function registers for this purpose, is that the registers are directly 

addressable in the microcontroller’s memory map and are therefore serves as a 

simple mechanism for reading and writing data to and from the I2C interface unit.

For further information on the I2C bus specification, consult [132].

6.3.2.4 Ping-Pong Unit

As mentioned in section 6.3.1.3, only minor modifications are required to the sensor 

interface and video generator. Assuming images are only read in at 640x480 pixels, 

the sub-sampling in the sensor interface could be removed. Assuming only full 

640x480 frames images were to be transmitted to the monitor rather than scaled-up 

sub-VGA images, the video generators line memory could be removed as no image 

scaling would be required. The video generator’s address generator, shown in figure 

4.8, could then be simplified as it would only be required to read 320 alternate image 

lines per field, to create the final interlaced 640 line VGA image consisting of two 

fields. Both asynchronous FIFO would have to remain to allow data to be 

transmitted between different clock domains.

The ping-pong unit would require changes to both its read mechanism and write 

mechanism. These changes would be in the form of modified address generator units 

to support burst memory transactions. In the original architecture, the ping-pong unit 

had the highest level of priority over image bank, with the exception of the SDRAM 

decoder. This meant that under normal operation, it always had exclusive use of the 

image banks when required. In the new architecture, the larger image size results in 

the requirement for a pixel to be written every other 24MHz clock cycle and read 

every 1-2 clock cycles. As the time between memory access is so small, it is difficult 

for other system components, such as the microcontroller, to gain temporary access 

to the memory being used. This is generally not an issue as the other system
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components are likely to be accessing the 2 (out of 4) SDRAM banks not currently 

being used by the ping-pong unit.

The new architecture ping-pong write unit stores pixels to be written into an image 

bank in a 16-bit wide 64 word deep asynchronous FIFO. The first pixel and second 

pixel entering the FIFO are concatenated to form a 16-bit word, with the first pixel 

occupying the lowest significant bits. When the FIFO is filled with at least 16 pixels,

i.e. eight 16-bit words, a write request is made to the bus network controller. If 

access is not granted immediately because another sub-system is accessing the 

memory bank, the ping-pong write unit continues to write pixels into the FIFO. As 

all the DSP address generators and microprocessor can only read or write up to 8 

words to memory in any transaction, the ping-pong’s write unit is granted access 

quickly. Overflow is prevented from occurring because once the FIFO contains 48 

words, i.e. nearly full, it priority is upgraded from lowest to the highest priority in the 

system allowing it to write pixel data out once any current bus network access has 

finished. The data written out of the write FIFO to the memory is performed at 

96MHz, i.e. 8 times the pixel rate, which is also twice as fast as the FIFO can be 

filled.

The ping-pong’s read unit also incorporates a 16-bit wide 64 elements deep 

asynchronous FIFO. When the FIFO is not full, a read request is made to the 

required memory bank via the bus network controller. All other sub-systems have a 

higher priority over shared memory banks than the read unit. This is unless the read 

unit’s FIFO contains less than 16 words, in which case the read unit has the 2nd 

highest priority in the system. Writes into the FIFO from memory occur at 96MHz, 

while read from the FIFO occur at 24MHz to guarantee the required pixel rate for the 

video generator of 13.5MHz. In the unlikely situation when a single memory bank is 

used by both the write and read ping-pong units, the write unit is granted priority by 

the bus network controller. If the write unit was not granted priority, valuable 

information could be lost before being processed, causing important events to go 

undetected. If the FIFO for the video generator is empty, the video generator will 

output black pixels. This only causes a problem for the person viewing the monitor, 

as the processing has already occurred. It must be noted that the ping-pong read unit 

must re-submit its read request with an incremented address to take into account the
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number of pixels that have been ‘lost’. Failing to adjust for ‘lost pixels’ would result 

in too many pixels being outputted in the current frame and hence skewing the 

image.

6.3.2.5 Configurable DSP block

In the original FPGA architecture, only one DSP operation could be performed in 

any given cycle. To improve the image processing performance, the DSP sub­

system has been redesigned to incorporate two separate video streams and a 

programmable bus matrix to support the construction of pipelines of up to 7 DSP 

operation stages. Figure 6.10 shows the top-level of the DSP sub-system containing 

3 example DSP blocks with only the datapaths shown for clarity.

datajn  
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Bus Network 
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DSP Address
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6 Interconnect 
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Dual Port DSP 
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Figure 6.10 New DSP sub-system

As can be seen in figure 6.10, the address generators have been separated from the 

DSP IP blocks to reduce the duplication of addressing logic. Figure 6.11 shows the 

interface for the address generators.
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Figure 6.11 DSP address generator I/O interface

The address generators are activated from the register bank by setting the least 

significant bit high of the 8-bit addr_gen register to activate the first address 

generator or the second least significant bit high for the 2nd generator. Upon 

initialisation the DSP generators sample the minimum and maximum x and y 

coordinates from the register bank to select the region of interest (ROI) for 

processing and the output x and y coordinates to specify where to write the processed 

image data to. The first address to be read is output on the mem addr port with a 

value of 1 on the cmd bus to request a read transaction. The address generator waits 

for an acknowledgement signal from the bus network controller to indicate that the 

memory is available. When the ready signal goes high, the address generator 

samples two pixels from the 16-bit incoming data bus and writes them at 96MHz to a 

128 element asynchronous FIFO. The seven remaining data words of the burst read 

transaction are also stored in the FIFO. The next address in the ROI is then 

calculated. It must be noted that both address generators only generate Raster 

addressing as this addressing scheme is suitable for most image processing 

operations. The read transaction process is repeated while the FIFO contains not 

more than 120 words. The read process finally terminates once all the pixels from 

the ROI have been read.

When the FIFO is not empty and the wait signal not high, a data word consisting of 

two pixels is read from the FIFO at 48MHz outputted on the data_in bus in 

conjunction with a logic high data in rdy signal. This indicates to any attached DSP
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IP block, that valid data is available for processing. While data remains in the FIFO 

the process repeats.

If the da t aou t rdy  is set high, the DSP address generator samples 16-bit data from 

the data_out bus and writes it into a second 128 element deep asynchronous FIFO at 

48MHz. When 8 or more words of data are stored in the FIFO, a burst write 

transaction is requested by setting the cmd signal to a value of 2 and outputting the 

write address. Following the receipt of a logic high cmd ack, the first 16-bit word is 

output onto mem d out on the next cycle. The remaining seven data words are 

outputted on subsequent 96MHz cycles. Once the last write transaction has been 

performed, the finish signal is pulsed to reset the appropriate bit (i.e. 1st or 2nd LSB) 

of the addr_reg register in the register bank.

Between the address generators and DSP IP blocks exists a collection of 6 

interconnect busses and an input and output bus per address generator. These buses 

have nodes that are configurable to enable connections to be made between 

interconnect buses and the data input (data_in_l) and data output ( da t a ou t l )  of 

each of the DSP IP blocks. Node configuration is performed by setting a register in 

the register bank for each of the 6 interconnects and the 2 input and 2 output buses. 

Each of the ten registers contains two 4-bit addresses. The least significant 4 bits 

sets the incoming connection to the associated bus and the remaining 4 bits set the 

outgoing connection from the bus. This mechanism provides the facility to connect 

up to 13 different DSP IP blocks and/or 2 DSP address generators input and output 

buses. Table 6.7 shows the addresses to be stored in the register bank to set-up 

connections between DSP IP blocks and DSP address generators using the 

programmable nodes.

Address Connection
15 DSP IP Block 13

4 DSP IP Block 2
3 DSP IP Block 1
2 DSP Address Generator 2 Input or Output
1 DSP Address Generator 1 Input or Output
0 None

Table 6.7 Interconnect Address Scheme
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For example, if a three stage pipeline was set-up using DSP IP block 3,12,7 and 

address generator 1, the registers would be set as in figure 6.12.

Output Bus 1 (data out) Register = 0001_1001

DSP IP 
Block

DSP IP 
Block 3

DSP IP 
Block 7

Address 
Generator 1

Input Bus 1 (data_in) Interconnect Bus 1 Interconnect Bus 2 
Register = 0101 0001 Register = 11100101 Register = 10011110

Figure 6.12 Example DSP pipeline configuration

As can be seen in figure 6.12, only 4 out of the 10 node configuration registers need 

to be set. It must be noted that the user is responsible for ensuring that only one bus 

feeds each DSP IP block to prevent bus contention.

The inclusion of the separate address generators and pipeline mechanism, removes 

the need to incorporate an address generator into each DSP IP block. This has the 

effect of simplifying the I/O interfaces of DSP IP blocks in addition to reducing the 

resources required for their implementation. Figure 6.13 shows the I/O interface for 

the new DSP IP blocks.

elk -------► ------ ► da taout rdy
r e s e t n -------► ► data out<15:0>

data in rdy 1-------► Example DSP

data_in_l <15:0> ■".. ► IP Block

! data_in_rdy_2-------► -------► wait_l |
! data_in_2 <15:0> E ------ ► wait_2 !

| Optional 2nd data port I

Figure 6.13 I/O interface for new DSP IP blocks

The elk signal in figure 6.13 is a 48MHz clock signal and the reset_n signal is an 

active low system-wide reset signal. Upon receiving an active high pulse on the 

data in rdy l wire, the IP block samples 16-bits of data from the data in l bus. 

Each DSP operation is pipelined and operates on two pixels simultaneously to
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provide two pixels on the dataout  bus every 48MHz clock cycle. When each data 

word is outputted on data_out, it is accompanied by a logic high pulse on 

data_out_rdy. The data_out_rdy signal is routed along with data out and also 

controlled by the nodes to direct it into the data_in_rdy input of another DSP IP 

block or back to an address generator.

Operations requiring two input video streams can be implemented using an optional 

2nd data port. The dual port DP blocks function in a similar manner to the single port 

IP blocks. In a dual port configuration both data in l and data_in_2 have 16 

element deep synchronous FIFO mechanisms. When data arrives at either data_in 

ports, it is written into the relevant FIFO. Only when at least one 16-bit data word 

exists in each input’s FIFO, will the DSP operation take place. If either FIFO 

contains 8 or more data words, an active high wait signal corresponding to the 

correct input attached to the FIFO is sent to the address generator. This stops the 

address generator writing further data onto the configurable bus structure. The FIFO 

are 16 elements deep to allow any data currently being processing earlier on in a DSP 

IP block pipeline to be collected without overflowing. This mechanism ensures that 

two video streams entering a dual port DSP IP block remain synchronised.

The architecture adopted for the DSP sub-system has four advantages;

1. DSP operation pipelines can be constructed in real-time up to a length of 7 

stages to allow 7 operations to be simultaneously executed on a video stream 

from memory.

2. Two video streams can be processed in parallel and hence this improves the 

processing rate.

3. The interconnect structure could be easily scaled by adding more interconnect 

buses to support even longer pipelines.

4. The number of address generators could be increased to allow more 

concurrent video streams to be processed, i.e. the architecture is scalable.
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The disadvantages of the approach are;

1. The current configuration using two address generators only allows one dual 

port DSP IP block to be implemented at any given time. This reduces the 

flexibility of the pipeline.

2. The ROI horizontal size must be a multiple of 8 pixels as a result of the burst 

read mechanism used to obtain data from memory or some data received by 

the address generator may need to be discarded. This will reduce the 

performance of the system when processing many ROI with horizontal sizes 

of less than 8.

3. The mechanism required to set-up DSP operations is more complicated than 

the original architecture, due to the requirement to configure the node register 

in the register bank.

The third disadvantage could be minimised for the end user by writing 

microcontroller sub-routines to automatically connect the required DSP operations 

together to form pipelines followed by initialising the address generator.

6.3.2.6 Bus Network Controller

The new bus network controller performs a similar function to the controller in the 

original architecture. All data transactions between the microcontroller, ping-pong 

sub-system, DSP sub-system and memories are controlled by the unit. The network 

controller selects which sub-system has access to a shared memory resource 

depending on a set of priorities. Table 6.8 shows the priorities for each of the sub­

systems.

Priority (1 is highest) Sub-System
1 Ping-Pong Write Unit (FIFO near full)
2 Ping-Pong Read Unit (FIFO near empty)
3 Microcontroller
4 Address Generator 1
4 Address Generator 2
5 Ping-Pong Write Unit
5 Ping-Pong Read Unit

Table 6.8 Shared memory access priorities allocation
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As there are 4 SDRAM banks and a maximum of 5 possible sub-systems requiring 

memory access at any given time, careful algorithm design will minimise the number 

of memory access request conflicts. It should be noted that only the DP8051 

microcontroller accesses the register bank via its memory interface and that the 

majority of the time the microcontroller should not need access to the 4 SDRAM 

banks. As the register bank does not have a controller generating command 

acknowledgement or valid data ready signals these are generated by the bus network 

controller.

In addition to granting priorities, the network controller ensures that when an address 

and a transaction request is received, the address is decoded and sent to the correct 

SDRAM controller or the register bank. The network controller also connects the 

datapaths between a memory and the sub-system that requested it. As the 

microcontroller only uses 8-bit data, read and write transactions convert 8-bit data to 

and from 16-bit data and use masking to ensure that the correct byte is read or 

written to the SDRAM.

Signals are required to be transmitted at up to 96MHz through the network controller 

and therefore the implementation of the bus network controller mainly consists of 

simple priority based multiplexing structures. Unlike the original bus network, the 

new network controller uses a register to pipeline all address, write data and control 

signals to increase the likelihood of meeting the timing requirements. Also, as the 

microcontroller’s memory interface only operates at 48MHz, a conversion process is 

required to cross to and from the 96MHz memory clock domain. This is relatively 

simple as all transactions originating from the microcontroller only read or write a 

byte per transaction and not 8 data words as with the other sub-systems.

6.3.3 Analysis of Suggested New Architecture

As stated in section 6.3.1 although the original architecture could be relatively easily 

scaled to support VGA images, the resultant DSP performance was very limited.

This sub-section details the comparison of various metrics between the original
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architecture and the proposed architecture in order to highlight the improvements that 

would result if the new architecture was implemented.

6.3.3.1 DSP Performance

The original architecture only allowed the execution of one DSP IP blocks at a time. 

As it performed a maximum of one operation on one pixel every 24MHz clock cycle, 

the maximum pixel processing rate was 24Mpixels/s. The new architecture has the 

ability to process two video streams of 2 pixels per stream per 48MHz clock cycle. It 

is also possible to configure the DSP reconfigurable bus network to create a pipeline 

of 7 DSP IP block attached to address generator 1 and a single DSP IP block attached 

to address generator 2. Therefore, in this configuration pipeline 1 can process 14 

pixels per clock cycle and pipeline 2 can process 2 pixels per cycle. Therefore at 

48MHz the maximum DSP performance is 768Mpixel/s, an increase of 32 times of 

the original architecture’s performance.

6.3.3.2 Cycles Available for DSP

Despite the original architecture being capable of processing up to 24Mpixels/s, the 

major limitation of the system was as a result of the lack of time available for 

processing. This was caused by the requirement to use both memory banks for the 

ping-pong mechanism. This was addressed in the new architecture in three ways, 

namely by increasing the number of memory banks and the clock frequency of the 

SDRAM, while increasing bandwidth of communications across the bus network and 

through the network controller. This provided two whole memory banks dedicated 

to DSP functions and increased the speed at which data could be transmitted to or 

received from the DSP sub-system. This ensured that the DSP operation could take 

place at a sustainable rate of 48MHz. The communications bandwidth was improved 

by increasing the clock frequency of the memory sub-systems and bus network 

controller from 24MHz to 96MHz, while extending the datapath widths from 8-bit to 

16-bits. Hence, the bandwidth was increased by up to 8 times more than the original 

architecture.
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If the original architecture was modified as in section 6.3.1 to support VGA the 

number of cycles available for contiguous image processing would be 68013 per 

frame, as calculated in section 6.3.1.5. Using the new architecture would supply two 

whole SDRAM banks for processing in addition to the 68013. Therefore, as the 

bottleneck of the processing system is the DSP sub-system running at 48MHz, the 

maximum number of cycles available for processing per image frame at 25fps is 

calculated as in equation 6.1.

Cycles per frame = 68013 + 2
(  48 MHz^

= 3908013 cycles
25 fps

Equation 6.1 Maximum cycles available for processing per image frame

As shown by equation 6.1, the number of cycles available for processing VGA 

images is increased by 57 times.

Combining the maximum pixels processed per cycle and the cycles available for 

processing, provides an indication of the amount of image data that can be processed. 

The original architecture could achieve a maximum of 68013 pixels processed every 

frame for single cycle read or write DSP operations and therefore a total of 1700325 

pixels/s. However the new architecture could perform 8 operations on 2 pixels in 

each of the 3908013 cycles per frame using pipelining and hence a total of 62528208 

pixels/s. Given that most processing operations require one cycle to read the pixel 

and one cycle to write the pixel back, read-modify-write (2 cycles) operations using 

the original architecture would only allow a maximum of 850162 pixels/s to be 

processed. To find the number of pixels that can be processed by read-modify-write 

operations with the new architecture, the number of cycles for a 8 word burst read 

and a burst write SDRAM transaction were calculated, as shown in table 6.9.
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Clock Cycles Required SDRAM Read Transaction SDRAM Write Transaction
Network Bus Controller Latency 1 1
SDRAM Controller Latency 1 1
SDRAM Row Addressing 1 1
CAS Latency 2 n/a
Data In/Out 8 8

Total 13 11

Table 6.9 Number of 96MHz clock cycles to perform an SDRAM Read and Write

As shown in figure 4.4, a Precharge of the SDRAM bank is required for both reads 

and writes followed by a NOP command. This has not been shown in table 6.9, as 

these would occur during the same clock cycles as the network bus controller and 

SDRAM controller latency of the sub-sequent SDRAM transaction. The total 

number of 96MHz clock cycles for a combined read and write or 8 data words (i.e.

16 pixels) is 24 but this equates to a period equal to twelve 48MHz clock cycles. 

Hence, the number of 48MHz clock cycles to obtain 1 data word is 12/8 = 1.5 cycles. 

This reduces the number of pixels processed for read-modify-write operations to 

62528208/1.5 = 41685472 pixels/s.

With an increase of pixels processable per second of over 49 times the original 

architecture, it is now possible to process over 135 full 8-bit 640x480 pixel (VGA) 

images per second. This drastically improves the system architecture for handling 

VGA sized images, especially as the original architecture could only handle less than 

3 full VGA images per second.

6.3.3.3 Microcontroller Instruction Execution Speed and Code Size.

The recommendation to include a microcontroller in the new architecture removes 

the need for the off-chip sensor co-processor on the prototyping platform. Although 

in final single IoC solutions, the off-chip co-processor core would have been 

included automatically on the IoC, its inclusion in the new architecture will reduce 

the time required to integrate IoC products. Also, as the DP8051 microcontroller 

core is directly linked into the network bus controller, there is a decrease in the 

latency of data transfers to/from memory. For example, the use of the off-chip 8051 

and the original architecture required a minimum of 8 cycles to read a byte from the

176



register bank and write a byte back. This latency was due to the use of SDRAM 

transactions across the IMPBUS and the SDRAM decoder. The new architecture 

with the embedded DP8051 only requires 5 cycles, 3 read and 2 write.

This performance increase is particularly useful as the system controller’s functions 

have been delegated to the embedded microcontroller. The removal of the system 

controller simplifies the software development flow as program code can be 

programmed in C on the microcontroller. Indeed, many simple image processing 

operations may be more efficiently implemented in software as their performance in 

software may be very similar to their hardware IP block implementation. It could 

also be a possibility that the performance increase offered by DSP IP block 

implementation over software implementation may not be required, as the operation 

may not reside in the applications processing critical path. For example, the draw 

rectangle algorithm is better implemented in software, as it is a very simple 

algorithm. As the getobj DSP IP block requires 24% of the total logic cell usage in 

the original architecture, it is more cost effective to redesign and implement the 

algorithm in software. It was not possible to implement these DSP algorithms on the 

system controller due to its limited range of instructions.

As a replacement for the system controller, it is unlikely that the microcontroller will 

be any faster at decoding and executing DSP instructions. This is explained by the 

fact that the system controller was designed, optimised and hard coded specifically 

for DSP instruction execution. The microcontroller ability and handling of 

conditional looping, ALU operations, function calls and a clock speed of 48MHz 

instead of 24MHz, provides better general-purpose performance and easier coding of 

applications compared to when using the system controller. At 48MHz, the 

instruction processing speed should be up to 48MIPs, dependant on the mixture of 

instructions used.

In terms of code size, both the DP8051 and original system controller use byte wide 

instructions and literal values. Therefore the code sizes should be similar. The main 

difference will be seen when executing a DSP instruction. Unlike the system 

controller, the microcontroller will have to set the address of the correct register to 

activate the DSP function before executing the DSP function by toggling the register.
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This will require an overhead of up to several instructions and literals rather than just 

one instruction used by the system controller. Fortunately, the code size of an 

application should not be greatly affected, given that DSP functions are usually only 

called several times per frame.

6.3.3.4 Pin Count, FPGA Logic Cell and Memory Usage

The use of two extra SDRAM devices and an I2C interface in the new architecture 

affects the total number of I/O pins required. The addition of these to the 

architecture and the removal of the IMPBUS increases the I/O pin count to 176 I/O 

pins. This is an overall increase of 28.5%.

Table 6.10 shows a summary of the size of each of the architectures components
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Component Name Number of Logic Elements Number of ESB
3x3Filter Block 1108 8
Register Bank 600 0
Core-level Architecture + Network control 599 0
Absdiff Block 210 0
Video Generator 183 0
Ping-Pong Unit 100 0
Sensor Interface 93 0
Video Test Pattern Generator 64 0
Top-Level Pins Structure 55 0
Threshold Block 36 0
192 MHz PLL 3 0

DP8051 Microcontroller 1750 (1301 0
I2C Controller 290 [133] 0
DSP Address Generator 1 250 0
DSP Address Generator 2 250 0
DSP Reconfigurable Node Network 200 0
SDRAM Controller 1 250 0
SDRAM Controller 2 250 0
SDRAM Controller 3 250 0
SDRAM Controller 4 250 0
DP8051 ROM (16KBytes) 16 8
DP8051 RAM (256 Bytes) 8 1

Sensor Interface FIFO 228 0
Absdiff FIFO 150 1
Ping-Pong Read Async. FIFO (128 x 16bit) 150 1
Ping-Pong Write Async. FIFO (128 x 16bit) 150 1
DSP Address Generator 1 Read Async. 
FIFO (64 x 16-bit) 150 1
DSP Address Generator 1 Write Async. 
FIFO (64 x 16-bit) 150 1
DSP Address Generator 2 Read Async. 
FIFO (64 x 16-bit) 150 1
DSP Address Generator 2 Write Async. 
FIFO (64 x 16-bit) 150 1
Video FIFO 113 1
Total 8206 25

Table 6.10 Logic Element and ESB nsage in the new architecture

As can be seen in table 6.10, the total number of logic elements required has reduced 

from 9149 by 10.3%, to 8206 and the number of ESB required has dropped from 150 

by 83.3% to 25. The decrease in logic elements is primarily as a result of the 

removal of the getobj DSP IP block from the architecture. The removal of the two 

16KByte on-chip memory banks has resulted in a dramatic decrease in the number of
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ESB required. The reduction in the logic element and ESB usage may increase the 

likelihood of meeting the timing requirement of the system.

The usage figures in table 6.10 for the implementation of the new architecture do not 

include the getobjs, getcoords, copy and rectangle DSP IP blocks for several reasons. 

The getobjs IP block was very large and hence very costly to implement in silicon 

and therefore it is suggested it should be run in software on the DP8051 

microcontroller. Both the getcoords and rectangle DSP IP blocks were very simple 

and are more efficiently implemented in software. As the address generator could 

read data and write it back to a different memory location, the copy DSP IP block is 

redundant. Although the 3x3filter IP block uses more resources than any DSP IP 

block or sub-systems, it should not be ported to run in software. The reason for this 

decision is that it performs nine simultaneous multiplications which would not be 

possible on the microcontroller. This DP block is also used in a large number of 

applications and often may preside in its processing critical path. The values for the 

remaining DSP IP blocks (3x3filter, Absdiff, Threshold) have had their LE count 

reduced by 40LE per input data port, as an approximation of the reduction in LE, due 

to the removal of their address generators and a simplification of their interfaces. An 

approximate value of 40 LE was chosen as the original DSP IP copy block required 

53 LE and it was estimated that the majority of LE were used for addressing.

The 3x3 filter block is the only DSP IP block requiring modification to support 

640x480 images sizes. As 1848 logic cells are used for the implementation of three 

80 element shift registers, the scaling of the architecture to VGA resolutions would 

increase each shift register length to 640 elements. An increase to 640 elements 

would require approximately 5120 logic cells per shift register, if one logic cell was 

used per bit [134]. If three 640 element shift registers were implemented in the 

FPGA, 15360 logic cells would be required. This is unacceptable given that this 

would represent 63.2% of the total logic cells available in the Altera 20K600 FPGA! 

In the current design of the 3x3filter IP block the first shift register in the chain is 

redundant and can be removed, feeding pixels directing into the 2 shift register and 

the first row of the filter multipliers. This reduces the resources used by the 2 shift 

registers to 42.1% of the total FPGA resources.
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An alternative approach would be to implement two 1024 byte memories and address 

incrementing control logic. This maybe far more efficient in terms of logic cells 

resource usage, while providing the same performance. It is possible to implement a 

1024 element 8-bit line memory only using 4 ESB resources and no logic cells, as 

shown by the line memory requirements in tables 4.15 and 4.16. As the addresses 

generated for both line memories would be the same, a single address generator 

could be implemented. A disadvantage of this approach would be the requirement to 

use a memory clock speed of double the system clock speed, i.e. 96MHz. This clock 

frequency is required to allow both a read and a write operation to each of the line 

memory to take place in the period of a system clock cycle and hence maintain a 

pixel data rate of 48MHz. This is the approach adopted for the new architecture and 

results in a saving of approximately 1798 logic cells, assuming the new line memory 

address generator would require 50 logic cells. The implementation of the two line 

memories would require a total of 8 ESB blocks consisting of 2KBytes of RAM. The 

inclusion of the reduction in LEs as a result of the removal of the address generator 

would bring the total resources usage to 1108 LE and 8 ESB, as shown in table 6.10.

The register bank, core-level architecture and bus network controller are unlikely to 

change greatly from their original LE and ESB values as their complexity has 

increased at the same time as the support structures for 4 DSP IP blocks have been 

removed. Therefore their values have been left unchanged.

The remaining changes in LE and ESB usage were:

• The LE usage for the video generator remains the same but the scaling to 

640x480 pixel images removes the need for the associated line memory.

• The ping-pong unit’s LE usage has been estimated at 100 LE, almost a 

doubling in LE count from the original architecture, as a result of 

implementing a control structure for its FIFOs. The FIFOs themselves have 

been approximated at 150 LE and 1 ESB, each using the video generator’s 

FIFO as a base for calculation. These figures have also been used to estimate 

the LE and ESB usage of the remaining FIFOs in the system.
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• Using the percentage increase in the number of I/O pins as a guide, the total 

number of LE used by the top-level pin structure has been estimated to 

increase by 28% to 55LE.

• The recommendation to implement a microcontroller in the FPGA has 

resulted in a cost of 1750LE [130] and a further 24 LE and 9 ESB for 

implementing of the data RAM and program ROM. The inclusion of the I2C 

interface also adds a further 290 LE to the systems total usage [133],

• The addition of 4 SDRAM controllers added a further 250 LE each. This 

figure was obtained by using Altera’s reference SDRAM controller usage 

figures as a base [127]. As Altera’s design did not include a ready/wait-state 

signal, the count was increased for 218 to 250 LE to compensate for the extra 

circuitry required. The address generators for the DSP operations were also 

estimated at 250 LE.

6.3.3.5 Summary

The new architecture incorporating a microcontroller and the use of two parallel 

processing pipelines has increased the DSP capability from 24Mpixel/s to 

768Mpixel/s. The overall system performance has increased by 49 times. This has 

required the inclusion of an extra two SDRAM banks to provide 4 banks totalling 

64Mbytes of RAM. The resultant resource usage cost of increasing the performance 

of the system has not been realised due to the removal of some of the DSP IP block 

operations and the recommendation of executing some DSP operation in software on 

the microcontroller.

The changes required at PCB level are minor and it is still possible to re-use the 

original daughter board and FPGA backplane. It is expected that the power 

requirements of the prototyping system will only increase as a result of the use of 

SDRAM.

6.3.4 Colour Processing

An extension to the new architecture could be its adaptation for colour image 

processing. Typically, traditional machine vision applications only use the

182



luminance pixel data, as this is more useful for detecting edges, boundaries and other 

discontinuity. Using colour is difficult, as the colour of an observed object depends 

on the environmental lighting and reflectivity of that object. An example application 

where colour information is particularly useful is in skin tone detection, for example 

the tracking of a person’s hand. It has been shown that despite human colour 

perception of the skin colour of different races, once intensity has been factored out 

the distribution of skin colour is clustered in a small area of colour-space [135]. This 

allows the application algorithms to detect pixels that may represent an area of skin.

The effects of implementing colour processing on the new architecture are several 

fold. The image data received from the sensor is formatted as luminance and two 

sub sampled colour difference signals (YCbCr). Every 4 bytes contains two pixels, 

i.e. 16bits per pixels. Storing the unprocessed data would require twice the memory 

requirement of luminance alone which is used in the new system architecture. If the 

pixel data were demultiplexed, each pixel would consist of 24bits, i.e. requiring 3 

times the storage requirement of the current architecture’s pixels. As the architecture 

has 64Mbytes of SDRAM memory available the increase in storage requirement is a 

relatively minor issue.

The use of colour pixels significantly affects the processing rate of DSP operation 

pipelines due to a three-fold increase in the size of pixel data. Its effect would be 

realised as a reduction in the pixel processing rate of any DSP pipeline containing at 

least one DSP operations using both luminance and chrominance pixel data. As a 

result, the maximum processing rate of 768Mpixels/s for luminance only DSP 

operations would fall to 256Mpixels/s.

If the pixel data was demultiplexed to 24-bits per pixel in the ping-pong unit, the 

frequency required to write and read pixel data to memory would increase by three 

times, if the widths of the data bus remained unchanged. The increase flow of data 

on the bus network would also reduce the slack time available for the microcontroller 

to access the SDRAM banks. As the microcontroller only operates on byte wide 

data, its performance with software algorithms for 24-bit colour processing would be 

further reduced.
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In some instances algorithms may not use a luminance/chrominance (YCbCr) colour 

space and instead use Red/Green/Blue (RGB) or Hue/Saturation/Luminance (HSL) 

colour spaces. This could add extra latency in a DSP pipeline to perform a colour 

space conversion before and after performing a DSP operation, as well as increasing 

the number of logic cells required to implement a conversion IP block.

Overall the use of colour pixel data is likely to reduce the DSP rate of the FPGA 

architecture by a factor of at least three. Therefore, if possible, it is desirable to 

implement DSP algorithms which only require luminance pixel data.

6.4 Conclusions

A new two-board prototyping platform for the development of low-cost mass-market 

IoC applications has been presented. Its key characteristic is its relatively low-cost, 

modular and flexible structure, which enables a potentially wide range of imaging 

and machine vision applications to be constructed from a common base. These 

applications could include intelligent lighting control systems and children’s toys.

An example application was successfully implemented to demonstrate the system’s 

suitability as a prototyping system. The developed hardware and software core 

architecture and an image processing IP block library, allows application designers to 

concentrate on application issues. The image processing IP blocks created were also 

designed for use in other future STMicroelectronics products. The careful selection 

of board-level components should reduce the potential cost-related and time-related 

issues of intellectual property licensing. To calculate the cost of manufacturing a 

prototyped application as a single integrated circuit, a high-level IoC cost model was 

formulated. A total system cost was calculated for the example application, if 

integrated as an IoC. This revealed that the IoC could be manufactured for less than 

a $10 unit cost for a quantity of 10000 units. This model highlights the need for 

analysis of applications to find the optimum sized embedded image sensor to meet 

resolution and cost requirements. A new architecture has also been proposed using 

recommendations from the completion of the old architecture to create a prototyping 

system capable of supporting image processing and machine vision applications 

requiring 640x480 pixel images (VGA) at a frame rate of 25fps. The new
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architecture has shown that the inclusion of a microcontroller, two extra SDRAM 

banks, two new DSP pipelines and a reallocation of DSP operations to software can 

result in up to a 32 times increase in DSP performance to 768Mpixels/s. The 

increase in the time available for DSP processing has increased the overall system 

performance by up to 49 times.

This research has resulted in not only providing STMicroelectronics with a re-usable 

IoC prototyping platform, avoiding the potential cost of developing prototyping 

architecture for specific projects, but also demonstrated the suitability of frame-based 

architectures for use in IoCs.
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Appendix A
Multiplexed signals on IMPBUS

Port Name SFP Pin Special Bus Wire

MODE 1 
FLASH 
Access

MODE2
SDRAM
Access

MODE 3 
Inter-chip 

Communication
LCD1 3 91 CS N A N D -

LCD 3 16 65 CS SM C-

LCD 3 18 63 CD SM C -

LCD 3 19 62 WPO-

LCD 3 21 46 IMPBUS38 1MPCOMM MUTEX
NV P0 23 44 IMPBUS1 DQ1 IMPCOMM CLK
NV P0 24 33 IMPBUS3 DQ3 IMPCOMM PBIT
PI 25 5 IMPBUS5 1/00 DQ5
PI 26 4 IMPBUS7 I/Ol DQ7
PI 27 3 1MPBUS8 1/02 DQ8
PI 28 2 1MPBUS10 1/03 DQ10
PI 29 1 IMPBUS12 1/04 DQ12
PI 30 100 1MPBUS14 1/05 DQ14
PI 31 99 1MPBUS33 1/06 DQML
PI 32 98 1MPBUS0 1/07 DQO
P2 33 97 1MPBUS2 DQ2 IMPCOMM14
P2 34 96 1MPBUS4 DQ4 IMPCOMM15
P2 35 79 IMPBUS6 WE DQ6
P2 36 78 1MPBUS9 ALE DQ9
P2 37 77 IMPBUS11 CLE DQ11
P2 38 76 IMPBUS13 RB DQ13
P2 39 75 rMPBUS15 RE DQ15
P2 40 74 IMPBUS16 AO IMPCOMMO
P3 41 73 1MPBUS17 A1 IMPCOMM1
P3 42 72 IMPBUS18 A2 IMPCOMM2
P3 43 71 1MPBUS19 A3 IMPCOMM3
P3 44 54 IMPBUS20 A4 IMPCOMM4
P3 45 53 IMPBUS21 A5 IMPCOMM5
P3 46 52 IMPBUS22 A6 IMPCOMM6
P3 47 51 1MPBUS23 A7 IMPCOMM7
P3 48 50 IMPBUS24 A8 IMPCOMM8
P4 49 49 [MPBUS25 A9 IMPCOMM9
P4 50 48 1MPBUS26 A10 IMPCOMMIO
P4 51 47 IMPBUS27 A ll IMPCOMM11
P4 52 30 IMPBUS28 A12 IMPCOMM12
P4 53 29 1MPBUS29 A13 1MPCOMM13
P4 54 28 1MPBUS30 CLK
P4 55 27 IMPBUS31 CKE
P4 56 26 IMPBUS32 DQMH
P5 57 25 [MPBUS34 RAS
P5 58 24 [MPBUS35 CAS
P5 59 23 [MPBUS36 WE
P5 60 22 CS SDRAM - 1MPBUS37 CS CS
Where: ~ denotes inverted signal (i.e. active low)

CS_ denotes Chip Select signal for FLASH, SDRAM or Smartmedia cards 
CD_ denotes Chip Detect signal for Smartmedia cards 
WPO denotes Write Protect signal for Smartmedia cards

Table A.11 EMPBUS pin mappings for the STV0674
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Appendix B

This appendix describes the methodology used in the design and fabrication of the 

daughter board PCB. The first section outlines the complete design and fabrication 

flow. The following sub-sections cover the daughter board PCB’s performance and 

any associated PCB problems.

B.l Design and Fabrication Process Overview

The process flow used in the design and fabrication of the daughter board PCB was 

based on the STMicroelectronics Hardware groups PCB methodology. This 

consisted of 4 processes; schematic entry, layout and routing, PCB manufacture and 

component population. These are described in the next 4 sub-sections followed by 

the functional test plan.

B.1.1 Schematic Entry

The first process involved the creation of the necessary design information required 

by an external contractor to fabricate the PCB. To generate this information, a PCB 

design package called Viewlogic’s Viewdraw was utilised, as it was the only PCB 

design package available at the sponsoring company. Several design procedures 

were performed using this package. These stages are listed below in chronological 

order.

1. Creation of symbols that are not in the present component libraries. This 

included the clock driver, video encoder and Darlington Switch IC and 

the video phono connector for the video monitor.

2. Drawing of a system schematic with symbols from the symbol library.

3. Indication of PCB components or areas for text and logo labelling.

4. Production of PCB netlist containing the interconnections of all 

components.

5. Manual check for full component interconnection.

6. Generation of Bill of Materials (BOM), i.e. component list.
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7. Outline drawing of component placement.

8. Statement of electrical specification for PCB, including power and ground 

planes.

9. Creation of mechanical specification for PCB

During these procedures special consideration was taken to reduce future possible 

problems. The two important design considerations were locality of densely 

interconnected board components and the separation of analog and digital ICs.

These two constraints typically conflict with each other, for example, the primarily 

digital STV0674 sensor co-processor needs to be located next to the mainly analog 

sensor it supports. Power regulation and clock generation were also separated from 

each other. The careful floorplanning scheme used reduced the chance of crosstalk 

and thermal noise effects due to the heating of the power regulation IC.

A particular concern relating to the PCB floorplan was that of the length of track 

routing between the PCB and the FPGA backplane. Ideally the length of these tracks 

should be as short as possible to reduce signal transmission delays cause by resistor- 

capacitor loads. The three most important buses for delay minimisation were the 

IMPBUS and SDRAM A/B buses. An outline drawing of the PCB was produced 

which laid out the bus-associated component as close to the backplane connector as 

possible to reduce bus wire lengths and hence delays. The track delays for the 

SDRAM buses dictates the maximum frequency the SDRAM IC can reliably operate 

at. Also, if the FPGA was used to forward signals from the co-processor directly to 

the SDRAM and back, the number of passes through the backplane connectors could 

be up to 4, i.e. from 674 to FPGA, FPGA to SDRAM, SDRAM to FPGA and FPGA 

to 674. This could seriously hamper the system’s ability to meet the co-processor 

SDRAM transaction timing requirements given the potentially large total 

transmission delay i.e. for a read delay.

The electric specification of the PCB included the separation of the signals on the top 

and bottom surface of the PCB and the power and ground planes on two split layers 

within the PCB. The main aim of this distribution was to reduce the possibility of 

electrical short occurring between power and ground planes which could damage the 

prototyping system.
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Clocked digital logic consumes most of its power during the rising edge of each 

clock pulse, when the logic is transitioning from one state to another, see figure B.l. 

It is at this transition point the current supplied to the digital logic must rapidly 

increase in a very short period of time. To supply enough current to ensure the 

correct transition, a large power supply would typically be required. To reduce this 

problem for the daughter card PCB, low impedance decoupling capacitors were 

connected close to the power pins of the digital ICs. These capacitors can supply the 

high currents required over a short time period and the lower current requires after 

the transition in each clock cycle. The capacitors are recharged by the power supply 

during the times between the current peaks.

Current

/
Peak Current 

At Rising Clock

Average 
- Current

Time

Figure B.l Peak current at rising clock edge

As only 2 clock domains are used to drive 12 digital ICs on the daughter board and 

making the assumption that ICs on the same clock domain are synchronised, two 

very large current requirement peaks could arise. Therefore, the information 

regarding the correct number and capacity of capacitors required for each of these 

ICs were obtained from the relevant datasheet.

The mechanism specification included the description of the position for holes on the 

PCB and the precise locations of the 6 large backplane connections on the underside 

of the PCB. Information regarding the attachment of heatsinks was also included, to 

ensure the necessary distance from other components could be taken into account.
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B .l.2 Layout and Routing

The second procedure was layout and routing of the PCB and was performed by a 

sub-contracted company with extensive expertise in the area. An engineer from this 

company was assigned to the project and provided status updates during the process 

which included confirmation of the final component placement. The sub-contracted 

company used their own priority automated design rule checks (DRC) on the 

finished design set, followed by checks at STMicroelectronics before the sign-off 

process was complete. The detailed in-house checks are listed below. Unfortunately 

the sub-contracted company was unwilling to provide precise details on their own 

DRC. The final post-layout and routing design files were provided in an industry- 

standard Gerbers format.

Pads PowerPCB software package was used for DRC to ascertain if any errors were 

present in the design. Three automated checks were performed, these were;

• Clearance -  Checks all items to ensure that the clearance between objects 

follows the clearance rules specified for the project.

• Connectivity -  Details any nets that are not fully connected.

• Plane -  Checks pad connections on the plane layers.

The subsequent checks on the Gerber files were visual and performed manually. 

These were;

• Power and ground planes -  Check for no shorts and that all used star-points.

• Components -  Check for corrected component type, orientation and labelled 

value.

• Connector -  Check for correct positioning and type

• Track width -  Check for suitable track width, especially power carrying 

tracks.

• USB track length -  Check that tracks used for the differential signal were 

equal in length or with USB 1.1 tolerances and met signal delay 

requirements.
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• Bus track lengths -  Check that all bus lines, in the same bus, were 

approximately the same length. This was required to reduce time skew 

between signals to ensure each data bit would be in synchronisation with the 

other associated data bits.

• Check correct labels and logos for the PCB, i.e. ID number, version, ST Logo 

and text describing the use or configuration of components.

B.l.3 PCB Manufacture

Once the set of checks had been performed on the Gerber files, three quotes were 

obtained for the manufacture of the PCB, with the most cost favourable offer 

accepted. A total of 8 PCBs were fabricated as it was thought that more than one may 

be required in the future by the sponsoring company. The other reason for selecting 

8 PCB to be manufactured was that at a size of200mm by 165mm the PCB could 

only be produced 4 at a time, in what is know as a panel. The production of less than 

4 PCBs per frame would not reduce the manufacturing cost to a great extent, due to 

wasted material and fixed cost tooling charges. The PCB was fabricated with an 

industrial standard hot air solder levelled (HASL) process. The PCB was specified 

to have 4 layers (1 power, 1 ground, 2 surface routing) using 2 lithographic silk- 

screens to add labelling to the top and underside of the PCB. A set of 2 resists were 

also used to create the top and underside tracks on the PCB.

After manufacture, all of the PCBs were checked for electrical shorts from power 

plans to ground and checked for shorts between component pads. A visual 

inspection was also made to find any faults in the PCB fabric, such as cracks, track 

breaks or surface grooves.

B.1.4 Component Population

The fourth procedure was the automated population of the PCBs with components by 

a 3rd party company. Components had already been sourced from in-house or 

external suppliers but some were fitted in-house at a later date due to unexpected 

limited availability. Once the two PCBs had been received, a set of checks were 

performed without power being supplied to the PCB. These checks were;
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1. Check that the daughter card connects correctly to the backplane.

2. Look for short circuits on the PCB between tracks or components.

3. Check all power and ground rails with multi-meter for power to ground 

shorts.

4. Check for broken tracks.

5. Ensure that no components are missing.

6. Check that components are not damaged, misaligned with solder pads or have 

the wrong orientation.

7. Check that the components populating the PCB are the correct type and 

value.

8. Check that all PCB connectors connect correctly to the appropriate cable 

connectors.

B.1.5 Functional Testing

Nine function tests were created to check basic functionality of the system. There

were seven prerequisites before the tests could be carried out, these were;

1. Place system in a uniformly illuminated room, if possible.

2. Install STV0674 device drivers, the G2 Video application, V2W tool, Ipatch 

and Camdebug on the host PC.

3. Fit an ST CMOS video sensor to board. For full functionality use a 6500 

series sensor module attached to the horseshoe shaped connector, J8.

4. Attach daughter card to FPGA backplane.

5. Wire power supply to a current meter to allow the current to be measured for 

excessive levels that may indicated shorts or wire contentions.

6. Connect speakers to the PC that is connected to the prototyping system.

7. Attach power supply to backplane and set voltage to 7.5V with a current limit 

of 1A.

The nine tests, listed in the order in which they were performed, were;
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1. USB enumeration test -  see if the sensor and sensor co-processor is 

recognised by the host PC.

2. Video acquisition from sensor -  check video can be streamed from the sensor 

via USB to a host PC and saved as a video file using G2 Video application.

3. Audio acquisition from microphone -  check that audio with video can be 

streamed from the sensor via USB to a host PC and saved as a synchronised 

audio-video file.

4. Reset recovery -  ensure that the system recovers correctly after a hardware 

reset.

5. NAND FLASH read & write -  check that data is written to and read from the 

FLASH non-volatile memory and that the memory holds data after power­

down. This test was executed using the Camdebug application.

6. Smartmedia read & write -  check that data is written to and read from the 

Smartmedia card and that the memory holds data after power-down.

7. EEPROM code patching -  ensure that new firmware patches can be 

downloaded to the STV0674 sensor co-processor using Ipatch.

8. Video out -  ascertain if colour bars can be outputted from the video encoder 

by configuring its registers via the I2C bus using the V2W tool.

9. Darlington switch toggle -  check that the Darlington switch ICs 4 outputs be 

toggled on and off.

B.2 Results

The PCB was successfully completed and passed all 9 tests with only minor 

modifications. The system drew an approximate current of 0.5W at 7.5V, the 

majority of which was due to the power consumption requirements of the un­

configured FPGA backplane. During the PCB design and population process, 

several mistakes were made by the subtracted companies. Incorrect labelling was 

added to the Gerber file set, indicating that the crystal oscillators operated at 

Terahertz rather than the correct frequency range in Megahertz. At the time of 

population, the microphone and JTAG test switches on one PCB were damaged and 

were replaced. It was also at this stage that the 6 inter-board connectors were
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soldered onto the upper side of the PCB rather than on its underside, indicated by 6 

connector footprints.

The minor post-production modifications that had to be made the prototyping system 

to pass the tests were. These were;

• Replacing a surface-mount pull-up lM fl resistor for a 47k£2 resistor, to allow 

the STV0674 co-processor to sense it was in a 100-pin package 

configuration. This change was required as a result of a change in the 

STV0674 co-processor’s silicon i.e. at the time the PCB was being designed 

the co-processor was only in an early design stage.

• Changing a surface-mount 1M£2 resistor for a 1 OklQ resistor to prevent the 

CMOS image sensor going into a permanent state of suspension.

• Adding a discrete pull-up lOkQ resistor to the ready/busy line of the FLASH 

to ensure that the when FLASH operations had completed the ready/busy line 

would go to a high logic level signally the device was ready for a new 

command from the co-processor.

• Redirecting the 12 MHz and 27 MHz clock signal to the output pads of the 

unpopulated crystal oscillator sockets on the FPGA backplane to feed the 

clock signals directly into the FPGA clock inputs. This was required because 

although the ‘FAST’ input pins selected had been indicated in the datasheet 

as suitable for clock signals, the FPGA’s on-chip PLL would not output any 

frequency higher than the ‘FAST’ inputs frequency.

• Spacer connectors were connected to the inter-board connector to raise the 

height of the PCB above the FPGA backplane to prevent backplane 

components touch the underside of the daughter board PCB.

All user-definable SPF pin were utilised on the STV0674 sensor co-processor to 

provide the maximum flexibility for the system. The PCB sub-systems were mostly 

separated from each other, reducing possible crosstalk effects. Figure B.2 shows the 

areas occupied by different sub systems.
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Figure B.2 Sub system locations on topside of PCB

Figure B.3 is a photograph o f  the com pleted  PCB, populated with all the 

com ponents , and connected  to the FPG A  backp lane  using the 6 inter-board 

connectors.

Figure B.3 A photograph of the complete PCB attached to the FPGA backplane
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B.3 Summary

This appendix has presented on the first part of the project’s practical work. The 

method for the development of the board-level architecture of the prototyping system 

has been described. The results for the system have been given in the form of the 

problems encountered, modifications required and the set of tests successfully 

completed. A photograph of the complete PCB has also been provided to give a 

better indication of the completed construction of the prototyping system.
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Appendix C

An example application was implemented on the prototyping system to count the 

number of objects in a scene, display the number of objects on the FPGA 

backplane’s LEDs and highlight them on a video monitor using superimposed 

rectangles. To achieve this, five of the seven DSP IP blocks were used in 

conjunction with application code written for the system control unit and the default 

system configuration code executed by the microcontroller in the sensor co­

processor. The application code initially grabbed a reference image which it absolute 

differenced with subsequent images, to find inter-frame pixel value changes. The 

differenced image was then thresholded, to remove small changes due to changes in 

scene illumination and create a binary image. A search was performed on the binary 

image to find the collection of interconnected pixels making up each object in the 

scene. The parameters of each object were stored in the Scratch pad memory and 

then used to draw a rectangle around each object. A very simple wire assignment 

change to the Verilog design also allowed the number of objects found to be 

displayed on the bank of 10 LEDs on the backplane in a binary format.

The application was simulated and then implemented on the prototyping system with 

a system clock frequency of 24 MHz. The complete two board prototyping system 

had an average power consumption of 3.8W at a sustained frame rate of 12.5FPS. A 

total of 74 pins were used on the FPGA. The application code size for the system 

controller was 87bytes, comprising of 56 instructions and 31 associated literal value. 

The minimum execution time of the application was measured at 2.018ms (48442 

clock cycles). The maximum execution time was measured at 3.858ms (92592 clock 

cycles) with the standard 4Kbyte sized scratch pad memory and 4.918ms (118051 

clock cycles) with a simulated 8KByte scratch pad. Figure C.l shows two 

photographs of the video monitor displaying two objects that had been identified by 

the system.
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Figure C .l Screenshots o f a coffee mug and Dilbert toy detected and highlighted by the system

A s a result o f  office lighting and the reflectivity  o f  the m onitor  sc reen ’s surface, 

som e strong reflections are visible. T he  50 Hz refresh rate o f  the office  fluorescent 

strip lighting caused visible flickering pixels w hen  pointing the system  sensor  at 

ceiling  light fittings or h ighly  reflective surfaces. D ilbert’s black trousers, w hich  

w ere  within 10 pixel values o f  the background  in the reference image, w ere  

th resholded out and therefore not recognised by the system. T he  system  control 

u n i t ’s code for the dem onstra tion  application  is shown in table C . l .
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Instructions Comments
LOAD_REG_ADDR_WR_HI 0x00
LOAD_REG_ADDR_WR_LO 0x1b Set draw rectangle to memory 1
LOAD MEM 0x01
LOAD_REG_ADDR_WR_LO 0x15 Set absdiff to read memory 1
LOAD_MEM 0x01
LOAD_REG_ADDR_WR_LO 0x0a Set threshold value
LOAD_MEM OxOd
WAIT_EOF Grab reference image
WAIT_EOF (*)
START_PINGPONG Start video ping-pong (p-p)
LOAD REG_ADDR_WR_LO 0x07 Set p-p Ctrl input/outputs
LOAD_MEM
WAIT_EOF

0x0c

STOP_PINGPONG Stop ping-pong
Absolute Difference reference and

ABSDIFF
WAIT_BUSY

current image

THRESHOLD
WAIT_BUSY

Threshold

LOAD_REG_ADDR_RD_LO
NOP

0x1a

LOA D_RE G_A D DR_R D_HI 
NOP

0x00

LOAD REG ADDR_WR_LO OxOe
GETOBJS 
WAIT BUSY

Find objects in image

MOVE_MEMRE G_G PR 0 Copy # of objects found to reg 0
BEZ 0x19 If # of object in reg 0 == 0 branch 

Set read address register to first
LOAD_REG_ADDR_RD_LO
NOP

0x02 object in scratch pad database

LOAD_REG_ADDR_RD_HI 0x50
MOVE_MEMMEM Copy min X of object to regs
ADD_REG_ADDR_RD 0x01
ADD_REG_ADDR _WR 0x01
MOVE_MEMMEM Copy min Y of object to regs
ADD_REG_ADDR_RD 0x01
ADD_REG_ADDR_WR 0x01
MOVE_MEMMEM Copy max X of object to regs
ADD_REG_ADDR_RD 0x01
ADD_REG_ADDR_WR 0x01
MOVE_MEMMEM Copy max Y of object to regs
RECTANGLE Draw Rectangle
WAIT_BUSY 
WAIT BUSY
ADD_REG_ADDR_RD 0x05 Inc. read address register by 5
SUB_REG_ADDR_WR 0x03 Dec. write address register by 3
SUB_REG_GPR0 0x01 Dec. number of objects by 1
LOAD_REG_ADDR_WR_ LO OxOe
BNEZ Oxlf Branch if no more object to highlight
LOAD_REG_GPR0 0x00 Reset reg 0 to zero
LOAD_REG_ADDR_WR_ _ H I 0x00 Configure copy function
NOP
LOA D_RE G_AD D R_W R_ LO 0x17
LOAD_MEM 0x04
COPY Copy reference image to current image
WAIT_BUSY
BEZ 0x48 Unconditional branch to (*)

Table C.l Application code for object count and highlight demonstration


