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SUVVARY OF THESIS
WELL-BOUNDED OPERATORS

by B.H. LIM

This thesis is primarily concerned with the structure theory of
well-bounded operators and the relationships between various classes of
well-bounded operators and prespectral operators.

In chapter I, we follow Ringrose (11) to discuss well-bounded operators
in a non-reflexive Banach space;X. It turns out that well-boundedness of
T&L(X) is equivalent to the existence of a family of projections

t) : t£R”on X*, called the decomposition of the identity for T,
satisfying certain natural properties and such that
'

<Jrx,x*/ = b <pcx*J> - jA>AX,E(t)x*A> dt (x £X, x**£ X*).

In this case, the family "E(t) : t£R”"is not necessarily unique, and a
necessary and sufficient condition for its uniqueness is given.

In chapter II and III, we discuss three subclasses of well-bounded
operators. These are well-bounded operators decomposable in X and well-
bounded operators of type (A) and type (B). The main results are that if
T is?&well—bounded operator decomposable in X then it is uniquely
decomposable and that if T is a well-bounded operator of type (a), the
algebra homomorphism from AC(j) into L(x) can be extended to an algebra
homomorphism from UBV(j) into L(x). We also give some examples in the last
section. In chapter III, we follow Spain (14) to use an elementary integration
theory to establish directly the characterisation of the type (b) operators.
(Theorem I11.4.3J. We also show that if T is.well-bounded operator of type
(B) and |p*(t) : t£ Rj 1is the unique decomposition of the identity for T,
then for f£AC(j), we have

f(T) - £(t) dF(t)



where the integral exists as a strong lim it of Riemann sums. Moreover,
F(s) - F(s-) is a projection on X onto Tx = sx and the residual
spectrum of T is empty.

In the fourth and final chapter, we prove some results concerning
relationships betv/een various classes of well-bounded operators and prespectral
operators. The main results are that an adjoint of an operator TC-L(x)
with S (t)cr is"scalar-type operator of class X if and only if T is
well-bounded with a decomposition of the identity of bounded variation
and that a well-bounded spectral operator isc,tscalar—type spectral operator
and of type (B). Moreover, a well-bounded prespectral operator which is
decomposable in X is a scalar-type operator. Finally, we give a counter-

example showing that there is a well-bounded operator of type (B; which

is not a scalar-type spectral operator.
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INTRODUCT ION

The theme of this dissertation is "well~bounded éperators on Banach
spaces', N | '
Well-bounded operators were first introduced by Smart (ﬂ3). He proved
‘that if T is a well-bgunded_operaﬁcr'on a‘reflexive Banach space X, then
for any real number t, there exists a unique pfojection F(t) such that
(i) F(t) commutes with any bounded opgrator qommuting with T,
(ii) ||F(t)|| ¢ 2 X, far all t€¢R, | _
(iii) F(4) =0 for t <a and F(t)'= I for t 3 b where [a,b] is

a bounded interval containing éng); )

(iv) F(s) = F(s)F(t) = F(t)F(s) for s ¢ t .
(v)  1im F(t)x = F(s)x for all x in X,
_ t— s+ . )
(vi) 1lim - F(t) = F(s-) exists. in the strong operator topology.

t—s

(vii)  6(7/F(£)X) < (-00,t ] _ﬁ S(T) and |
S(r/(z - F(t))x) <[ +,00) (1 6(T) for all real t.
He also proved the existence of the "scalar operator"l
S = f‘) ¢ ap(t)
&~
where the integral exists as a strong limit of Riemann sums, Ringrose (10)
improved this result and showed that _ |
T = i_ t ar(t) |
" The approéch used by Smart andrRingrose was based in part on the fact that
a well-bognded operator admits a functional calculus for absolutely continuous
functions.
Sills (12) presente@ a different method for obtaining the spectral
theorem for this operator..The method consists in introducing Arens

% ' .
miltiplication in 4C_ ([ 0,17]) the second dual space of AC([ 0,1]) and



‘ ii
in identifying a collection of idempotents in ACﬁ*(['O,1f]) oorresponding
to the non-zero multiplicative linear fuhctionals on L°°([,o,i ]) which is
isometrically'isomorphic to AC§§[ 0,1:]); these can be associated with the
points of [:Q,1 ]. If T is well-bounded on X;.there is an algebra
homomorphism from ACO([(L1 7) into L(X) and if X is refléxive,,this
homomorphism can be extended to a homomorphism of the algebra ACﬁ*(['O,1 ])
into L(X). The oxtended homomorphism maps the idempofents of ACg*([ 0,77)
. into projection operators from which the integral representation of T can
be derived, Moreovem, the‘extendedrhomomorphism is defined on a ggo%iont
algebra of Ac'g%( [0,1]) which turns out to be a copy of BV _([ 0,1 1).

In chapter I, we follow Ringrose (11) t6 discuss well-bounded operators
in a non-reflexi#e Banach space X, It turns out that well-boundedness of
T€ L(X) is equivalent'to the existehoe of a‘fa.mily of_ projections

iE(t) : téR 5 on X*, called the decomposition of the identity for T,
satisfying certain natural propertles and such that A )

{Tx,x%) = b x, x*> f x, E(t)x*> at  ( xéXx, x¥ex* ),
In this case, the family {IE(t) teIi} is not necessarily unique, and a
necessary and sufficient condition for its uniqueness is grven.

In chapter II and III, we discuss three subclasses of well-bounded
operators, These are welilbounded operatorg decomposable in X and well-
bounded operators of type (A) and type (B). The main results are that if
T is a well-bounded operator decompo;able in X then it“is uniquely
decomposable and that if T is a wellfbomnded operator of type (A), the algebra
homomorphism from AC(J) into L(X) can be extended to an algebra
homomorphism from NBV(J) into L(X). Wefalso give some examplos in the last:
section., In chapter III, we follow Spain(14) to use an olementary integration

theory to‘establish directly the characterisation of the type (B) operators,



iii
(Theorem III.4.3,). We also show that if T is well-bounded operator of type
(B) and {F*(t) ;ffeflﬁ'is the unique decomposition of the identity for T,
then for i‘GAC(J),'we have . L |

£(1) = L_ £(t) ar(t)

where'the‘integral exists as a strong limit of'Riemaﬁn sums, Moreover,
F(s) - F(s-) is a projection on X onto { x: Tx = sx; and the residﬁal
spectrum of T is empty.

In the fourth and fipal chapter, we prove some results concerning
relatiénshipg between.various élassgs of wellfboupded operatqrs and
prespectral 6perators. The main results are that aﬁ adjoint of an operator
Té L(X) with 6(P) C R is scalar-type operator of class X if and only if T
is well-bounded’witﬁ a decomposition of the identity of bounded variation
and that a wellTbounded sPectral operator is'scalar-type spectral operator
and of type (B), Mqrécver, a well-bognded p?espectra; operator which is
decoﬁposable in X is a scaiar-type operator, Finally, we give a
‘counterexample showing that phere_is a well-?ounded operator of type (B)

which is not a scalar-type spectral operator,

~



L(x)

NOTATION

Banach algebra of bouﬁded linear operators on X, .
denotes the value of the functional x¥* in X¥ at x in X,
_Real line,

'Complex plane,

The set of all natural numbers,
denotes the closeq subspace generated by M.
denotés the linear subspace generated by M.

essential supremum of lfl.

denotes the characteristic function of the sep‘t .

denotes the spectrﬁm of the linear operator T,

denotes the resolvent set of the linear operator T,

denotes the restriction of T to Y.

denotes the limit in the strong operator topology.

denotes the wegk closure of M,

" denotes the strong closure of ;l

These symbols denote inclusion,

This symbol means " is identically equal to



CHAPTER I:

THEVSTRUCTURE OF GENERAL WELL-BOUNDED OPFRATORS:-

1. ?re,liminaries e

Let J=[a,b] bea compact interval in the real line R. Let BV(J) be
the Banach aigebra. of complex~valued functions of bounded variation bn J with
worm |1111] -

£l = [£(0)] + var(£,3)
where var(f,J) is ithe total variation of f over J.
. Let AC(J) be the Banach subalgebra of absolutely continuous functions
on J, For f in AC(J), Y |
I = 1£(e)] + Ealf'(t)l at,

‘Let ACO(J) and BVO(J) be the Banach subalgebras of AC(J) and BV(J)
consisting of the functions in AC(J) and BV(J) respectively that vanish at b.

Let NBV(J) be the Banach subalgebra of BV(J) consisting of those functions
f in BV(J) which are normalized by the requirement that f is continuous on
the left on (a,b ]. | . ‘ -

Let (P (J) ve the subalgebra of AC(J) consisting of the polynomials
on J. ()D(J) is dense in ac(J). |

Let T be a bounded operator on X, We define p(‘I‘) in the natural way

n

for each polynomlal p by settlng o(T)" ’Z\ oo T where p(s) Z}Q=O as .

The map px—-}p(’I') is an algebra homomorphism,

We say that T is wellebounded if there nﬁ a compact interval J and a
constant K such that :
e()]] < x[|lpl]] e { (). (1)

If T is well-bounded then so is T% (with the same J and K),
| Smart (1 3) introduced this definition and proved the foiiowing

fundamental result,



‘ " 2
1.1, Lemma:-~ 4Let T in L(X) be a well—bounded operator with natural algebra
homomorphism qb P p—> p(T) from (F)(J) into L(X). Let X and J be chosen
such that (1) is satiéfied. Then ¢ has a unique extension to an algebra
homomorphism (also denoted by) qﬁ ; f——£(T) from AC(J) into L(X) such
that | | '
(1) emI] < x[]|z]]] o (e ac(3)),

(ii) if S in L(X) satisfies TS = ST, then |

sf(r) = £(T)s (reac(d)),

(iii) £(1%) = £(1)* - | (feac(d)).
Proof; If f is absolutely continuous, then the_derivative f' of £ is in
L1[ a,b:]. There exists a sequence q of polynomials.such that

S.|qn -f'| —> o0 ~ as n—>00.

Let | pn(t) = - $+qn(u) du + £(b) .
Obviously, P, is a pglynomial and , .

]||P - f]|] = .glq -~ — 0 as n— bo .
Then  |]p (1) - p (D] ¢ KHIP -pIH—-—>0 as myn —> 0O ,

so that pn(T) converges ip the uniform operato:‘topology to an operator
(independgnf the choice of pn) which will be called f(T). Thus the extension
is unique, Moreover, it is obvious that
He@l] <x el ( £eac(a) ).

Since 56 is an algebra homomorphism from G)(J) into L(X) by continuity of ¢
it is also an algebra homomorphism from AC(J) into L(X) Since (11) and '
(iii) are true far polynomials,_by continuity of’96 , they.muégg%; true for
absolutely continupus functions.'Thié completes the proof,

Tpr notion of a decompositioﬁ of the-identity was introduced by Ringrose

in (11),



. ) -3
%e2., Definition:~ A decémposition of the identity for X (on J) is a family
{E(s) : sé-R} of projections on X¥ such that

(1) E(s) =0 ‘ s < a, E(s) = I s Db,
(ii) E(s)E(t) = B(t)E(s) = E(s) | s ¢ t,
(iii) ‘thei'e is a cénstant K such that . ' ;
- JIEGI sk (seRr), |
(iv) the function s l———><x,E(s)x*> is Lebes-gﬁe measurable for xé¢X
and x*e X*, | | | ' | |
(v) if x €X, x¥e X¥,8¢ [ a,b) and if the function tn—>f:<x,n(u)x*> du
is right differentigble_at S, then'the right derivativgvat s is .(x,E(s)x¥> ,
(vi) for each xeX, the map x*»—-}{x,fl(-\ )x;*> from X* into L% (a,b)
is continuous when X* and L%°(a,b) are given their weak%-topologies (as duals
of X and'Ll(a,b)). » | |

1.3. Definition:~ An operator T in L(X) is said to be decomposable (on J)
if there is a decomp031tlon of the 1dent1ty for X (on J) such that '

(T;c,x‘h) = b{x,x*} - S {x, E(t)x*> at  (xeX, x*ex*), (2)
‘In this case, we say that the family {E(s) '8 GR} is a decomposition of’

the identity for T.

2. The structure of well-bounded operators (Genera]_.):-

In this section, we shall show that T is well~bounded on J if and only
if T is decomposab;e on J, and two constants K coincide, Also, we can choose
the family {E(s) : s¢R} so that

~ s#E(s) = E(S)S* | (s¢R)
for all Sé L(X) sa,tlsfylng ST = TS, Furthermore the algebra homomorphism of

Lemma 1. 1 is g:wen by

(f(T)x x*y = £(b) Lx, x*> f(x E(t)x*) f'(t) dt (xéx XH*E X, feAc(J)) (3)



o We need the_foilov}ipg‘penma to prove our first theorem.
2.%. lempg:- If g, fﬂi’f"&""’fﬁ be any n+l linear functionals on é Banach
space X, and if f.'(;c) 2 0 for i=1,2,...n, implies g(x) = 0 , then g is a
11nea.'r cbmblnatlon of the f
Proof:- Consider the: linear mapplng s X——-—)C , defined by
U(x) = [fj(m),.....,,fm(x)] , (xeX)
én the subspace U(X) of C" , defingg?ithepapping#) by
C,{D(Ux) =4>j[f1(x),...'.,fn(X)] = g(x)
The map (# is well-defined, since.U(x)A = U(y) implies that U(x-y) = 0,
so that,by hypotheéis,’g(x) = g(y). I? is obvious that q& is.a linear _
funcj;i_onal on the sﬁbspa,ce U(X) of Cn. By.Hahn-Banach theorem, 11: can be =-.t.
extended to a linear functiopai't. '¢/ on Cn. Hence ¢/ has the form 7
/ n

75[3’1""‘%] “Z{-: Biyy (Bj€Cy i=1,..0,n)
Thus . ' g(x) =ZL=! Bifi(x) » (B;€ Cyi=l,...om) . ‘
2,2, Theorem;~- Let {E(t) te€. Rk be a deconipositi_on of the idgntity for X,

Then there is a unique operator T in L(X) which satisfies (2).
Proof: The uniqueness of such an operator is trivial, and it is there-fore

suff1c1ent 'co construct one, B ) _
Let L(x,x*) be the bilinear form on XX X¥ deflned by

L(x,x%) = b {x,x¥) {(x,E(t)x%Q dt  (xeX, xwz—x*) (4)

Q

W& may deduce from 11.2,(iii) that »
| Soes) 1 ¢ | Jol 4 K0} 11l 1] 5)
We now choose and fix an element x in X and considef L(x,x%*) as a linear
functional on X*, By virtue: of condition (vi) of §.7.2, |
gi(x,E(t)x*) dt
is @ continuous function of x¥* (¢ X#) if we consider X* with its weak¥-

" topology. This is true also of <>é,x'39. Hence L(x,x*) is a weak¥-continuous



linear functional on X¥*, There exists a weak¥*-neighbourhood
N(O,x1,....,xn,E) = & x¥e X% ¢ | {xk,x*>| < ¢ for k = 1,..‘.,n§
which is' mapped by L(x,*) into the unit sphere of C. For x¥te X¥*, let ‘
' Hx%(‘)’r = % xwe X3 . <x*,xﬂ> =0 } .
and _suppose that x*e QF,H@ whereé? 1s deflned by (x* &‘) ,<xi?x*>
(i =1,...,n). Then xg 4 N(O 1X19eeerX s £) and hence [L(x,x’é)l <1,

Since ﬁ:}' H{c‘ is a linear space, it contains mx')é' for every integer m,

Hence m [L(x,x*é‘)l = lL'(:'c_,rmc"fo’f.)l < 1, feouwhich we conclude thz;.t
L(x,x‘g') = 0. That is, L(x,x—‘zg) = 0 whenever (xi,'x‘é} =0 for i = 1,...,n.
It follows from Lemma 1 that o
| L(x,-};Z:‘ ai‘SPi for somé ai'e- C(i=1,...,n).
Let y = ZZ.Y:‘ ai& Then : - '
L(x x#*) = (x" y> = <y,x-”)
Hence for each x ¢ X, there is an element y = y(x) in X such that
L(x,x%) = <y,x*>‘ (x;" € X*), (6)
It is obvious that y depends linearly on ¥ and frc_ym (5) we deduce that
vl & { 1ol + %o - 2)} [Ixl].
Hence there is an qperator T in L(X).such that Tx =y  (x¢ X). The required
results now follows from (4) and (6). | |
2.3. Theorem:- Let [E(t’) s té€ R} ‘be a decomposition of the identity for X,
and let T be the associated decomposable operator defined by (2). Then
(1) T is well-bounded and satisfies (1), |
(ii) if ft—ﬁf(T) is the a_lgebra. homomorphism of Lemma 1,1 then
{e(T)x, xﬁ = £(v) (x, x*> J(x E(t)x*) f'(t) dt  (x¢€X, x*e x*)
Proof: We shall show by mduct:.on that S , ,
Ty = 8 ey J Gomo)d w7 at (xex, prex®) (1)

for all p031t1ve integers n,



6
When n = 1; (7) is validv by (2) and if we assume the validity of (7) for a
particular integer n then '
(T T k) = (T(T x) x*>
| = b {T%,x*y - f (Tnx B(t)x¥) dt. |
- }bn (xyx%) - f CxyB(8)xd nt™! dt}
f fb’%x E(t)x*) - r(x,m( )E(t)x*) ns™! s}dt.(e)
Now, . '
S‘Lr{x,}:(s)n(t)ﬁ>ns -1 ds dt ,
f “ (x,E(s)xx) ns™! ds + f (=, E(t)x*) ng"”"! dsj dt
Jb {x, B8 )3%) g™ (b-s)ds + f’(x E(t)xy (b7 5 t7)at
By substituting this value for' the last integra.l in (8), we obtain

<Tn+1x, > = n+1<x,r*> I <x E(t)x*> (n+1 " as,
This completes the inductive proof of (7) It follows that for any polynomal D,
{p(T)x,x% = p(0) {x, x*> j GHE(H)x%) p'(8) at . (9)
mus | (o | ¢ el ] Lxl] {1a)] + 1o ()] et
" ekl x|l {1 {19(e)] + ver(p, )
and therefore Hp(T)]I % |p(v)| + var(p,J)}
This proves the f:.rst part of the theorem,
Let x&X, x¥*é€ X¥* bﬁ fixed and define
L, (£) = {E(Dx,oy . (feac(), ‘
Ly(£) = £(b) Lx,x¥> - Jq(x,E(tjx*> ft) at  (£e4c(3)),
and by virtue of (9), ) .
Iy(p) = Ty(p) | -
for every polynomial . _Tero_m_ t_h_ev arg_ument in the_e proof of Lemma 1,1, we
know that (P(J) forns a dense subset of AC(J). Hence L, (£) = Lz(f)

(f€AC(J)) as required,



Z.4. Theorem: -

Under the hypothes@s of Theorem?3, define

Mg = E(s)X*, . N, = £O$ (1 - B(%))x*

and let Ls (respectively RS) be the class of all functionsin AC(J) such that

f(t) = 0 when t ¢

homomorphlsm of
(1) M = {
(ii) N, = {

s (respegtively t 3 s). Then, if f +—3f(T*) is the algebra
Lemma. 1.7, . |
X*e X f(T*)x* =0, fel } ’

X*CX* 1 £(T¥)x¥ = 0, £ER },'

S
(1ii) M /) N ={x*c—X*:T*x*=Sx*} .

(iv) M

=

(v) the subspa.cesM » N are invariant under T3 and 6(T*/Ms) C [ ays ] ,

.G(T*/N)CES’D] (a<s\b)

Proof: (1) The

result is obvious if s&;_ [a, , since

(o) (szb)

° @) (s<a)

We may therefore suppose that se[a,b), Let x%g X%, then

&=

e Mg

E(t)‘ax* (slgt<b)_

= ¢ E(t)x*> £z, x*> (s ¢ t-g b, x&X)
= (x E(t)xk) = (x,xt) for almost all tc[s b] and xeX. (By §1. 2(v))

<=é {eyxy

(%) at - f(x,E(t)x*> £1(t) dt = 0 (feL,, xeXx)
Q : Q : :

& ) x) - ) (GE(s)x*y £ (5) dt = 0 (feLl,, xeX)
= {x, £(T)x%) = 0 (fe Ls,'xéX) -
S £(T#)x* = 0 (fe1,).

This proves (i).

(iv) If s e[ a,b)

The proof of (ii) is similar, and is omitted,

» the result’ follows from the fact that x¥*g¢ MS is equivalent

to: for xe X,{E(t)x*y = (x,x*), for almost all t in [s,b], Since M_ is

constant on each

when s&g ]:a,b).

of the complementary intervals of [a,b), the result is trivial,



(v): Since L, and R are ideals in the Banach algebra AC(J), it follows
eas:"Lly from (i) and (ii) that M, and 11\19 are inyaria.nt under £(T%) (fe AC(T))
and in particular, under T,
Suppose that r & [a,s]and that g in AC(J) is such that | .

| (br)e(t) =1 (actgs) . ;
Then the function (tdr)g(t)-b‘n = g(t)(t=r) - 1
‘is in L_ and by (i) ' |

(T#- rT)g(T#)x¥ = x% = g(T#)(T# = c)x* = ¢ = 0 (x¥éM_ ).
Thué T# —rI, as an _operator acting on Ms, hg.s 'blrle inverse g(T*). It follows
that rk 6(Tx/ Ms).vHence G(T*/MS)C [a,8] . The moof of the second
inclusion is similar, . ' o o
(iii) We first note that, by taking s=b in (v)"we have & (T#)C [a,b].
From this, it is obvious that

M NN, = Jo}= [xre xw s macw - s;'c%'}

when s * (_a,'b] . We may therefore suppose that s éf_a,lg.l. We claimed that

M AN, = {x*e X# 2 f(T*)x%« = f(s)x* (fe¢ Aq('J))}‘ ) (10)
In fact, if £(T#)x* = f(s)x* ( £€AC(J)), then £(TH#)x* = O

when f¢ LSURS so Xx¥ & Msn NS'

Conversely, if x¥ ¢ Ms;{'\ N, and f € Ac(q), then the function g defined by
g(t) = £(t) - £(s)- |
can be expressed a,s the sum of some 8y in Ls 5,_,3-!1‘1{_,8‘2 in Rs and hence
£(T#)x% - f£(s)x* = g(T#)xH “ » |
= g (T*)x - g, (T#)x¥
' = 0
This proves (10).

By taking £(t) = t, we deduce that TH#x* =  sx% whenever x¥¢ Msﬂ Ny



On the other hand, if T¥*x¥ =  sx¥%, then

f(me)x* = f(s)x*
#rhenever f is a polynomiai )and hence (by the continuity of the homomorphism
f—>£(T%*) in Lemma T.1 ) whenever f is in AC(J).I
Corollary 7. G(r)c (asb] . ; :
Proof: We have alreadly seen that in mroving (iii) that € (1%) € [ayb] .
Hence the result folléws immediately, .
Q_O_M 2: If T is a decomposabie operatoi' then the subspaces Ms’Ns
depend only on T and not on the choiece of the decomposition of the identity
|B(t) : te R} . |
Proof: The result follows immediately from Theorem 4(i) and (dii).
. Now, let T be a well-bounded operator on X, Followiﬁg Ringrosé _(‘H)
we shall construct a decompositior} of the identity {E(t) t t GR) for X
such that (2) is satisfied, First, we need the following lemmas. |
2.5, Lemma: Let L be a bounded linear functional on 4C(J). Then there exist

a constant m and a function v in Lw(a.,b) such that

L(f) = mLf(b) - vKWL(t) af () (£€ ac(3)) .
Proof: Since AC(J) is a closed subspace of BV(J), by the Hahn-Banach

theorem, L can be extended to a linear functional (also denoted by) L on

BV(J). Let w () = (X (a;t]) | a<tgh
= o t=a
m = w (b),

For every f in AC(J) and £ > O, there is a step function
n / )
fg = a.

where a= u < Up< eepoo<u = b , such that

Hlg-2c111 < €  em



T0

L(£g)= Zj a; L( X (u.,

)
i-1 ,ui]
=Zn a. ( W(ui) - W-'( u-_,‘n))

=1 1 i -
= w(oe, = 3 W) (o - g y) .
b 4 _ v
= w()ge(e) - | w(t)ax(s) (£ehc()).
b L - .
Moreover, 5Qw(t)ndt < L IL(X(a,t.JHndt g
< 1" (oa). -
If we let Em be the set where IwL(t)l >m and/u Lebesgue measure on R,
this shows that |
n ( .
o wuE) s (] (b-a) .
ie. ' /u(Em) / (v=a) < (L] /m) .

Letting n—yo00, we find that U (Em) =0 ifm > |L|,

Thus IIWLH oo '§ |L] i.e. V‘v'LG Lw(a{b) .
Goviously, m g |L|.

Bence max | m, Il < I5,
On the other hand, let g in ACO(J), then
lu(e)| = IfiwL(t)g'(ﬂc_itl
¢ w1 1el Tl |
- For every £€AC(J), £f(%) = £(b) + (£(x) - £(v)}
Let g(x)=fo-£(v), so  £(x) = £(b) + g(x);
()] = 1u@)] < Hwlloo el < Hugll bl
o< el
Rence 1] = max fm, |lwll pol-

2.6, Lemma:~ Given any x ¢ X, x¥¢& X%, there exists a function W in Loo(a,b)

’ )

uniquely determined to within a mill i‘unctio_n)such\that
Ly £(T#)x#) = £(b) x> -j: wx’x*(t) ar(t) o o (m)
where f~— £(T%) is the algebra homomorphism in Lemma 1.1 . The function

w % satisfies
Xy X
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ol | o€ K [ e#]] IIXII
Ca.ss
and its equivalencevdepends linearly on both x and x*,
Proof: For fixed x¢ X and x*é-x*, define _ ,
| L, o{f) = (x,f(T*?x*) | (reac() ).
‘It is obvious from Lemma 1.1 that Lx X3 is a continuous linear functional
H
on AC(J) and that

o, e [l 1]

x,x*ll
Hence there exist a constant mx;x and a i?nctlon w | - in T (a,b) such that
I.x;x*(f) il N £(v) - -f& wx’x*(t) dt ( feac(y) )
o max Ol gl gl ) e x Txel] x|
By con51der1ng the function f(t)..ﬂ we obtaln, m . = <k x*)» Hence
Lz, £(T*)x¥y = £(b) {x,x*) = r’ x*(t) df('E) (reac(d) ).
V Furthermore, the 1ntegra1'1n this equation 1s.un1que1y determined and depends
linearly on both x and x¥*, for any f in AC(J).‘Hence the equivalence class
w . » is likewise uniquel& determined and a linear function of both x and x*,
Now, let NBVO(J) be the subalgebra of NBV(J) consisting of those
fgngtions f in NBV(J) whose continuous singular parts vanish identieally,
i,e, £ can be written in form f = fac + fb where face-AC(J) and fb is a pure
break function( a uniformly convergent sum of step functions). In fact,
£,(t) = (£(s) = £(s) ).
We shall attempt to use (11) as a method of defining an operator f(T*)

a's8 ¢t

for a genmeral f in NBV (J) If we choose & with a g & < b, then

~>((;Co éJeNBV (J). Formal substitution in (11) yeilds

LF’X( co0, g (T = W (s,
(’-oo's] (T#) can be defined in this

way for each sé-R, it is necessary that the functionswi’x* themselves (not

Hence in order that a linear operator

merely their equivalence classes) shall depend linearly on both x¢ X and
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x*e X, Therefore’wx,x* has to be restrictea, We are thus led to the problem
of selecting representatives from the equivalence classes of 1%° functions
in such a way that a linear relation between equivalence classes implies the
corresponding relation between the‘ functions representing these classes.:

Thié problem was solved by J .> Von Newnénnfwith perfeétly general
algebraic relations, However, Ringrose gives below a less spphistic'atéd
construqtion of a se‘l_: of represeptatives which has the properties that we
requ:'gre». In the followix;g lemmas, we use the symbol ! §°' to,denote equa,lity
almost everywhere on [a,b) and ' = ' for equality everywhere on (a,b),

Let Sﬁ be the filter on (0,80) generates by -)(O,-ﬁ]: n=1,2,......} :
and let ed» be ? hs filter base on ’B(O,OO) where B(O,dg is the Cech
compactlflcatlon of (0 DO) ' _
2,7, Lemma:~- Let QXbe ultrafilter on (3(0 °°) containing % Let w be any
funqtlpn which is essentially bounded g.nd Lebesgue measurable on the interval
[a,b). Then for every s_in [a,b)

w,(s) - Z}lliné J‘:w(s+ht)dt
exists. Furthermore, if v,w,z ¢1°°(a,b), then
(i): iy Lwand if v = w, then vy E w@ .

(ii): ié bounded and Lebesgue measurable on [a,b) and s

Sups([a,b)lw'u(s)l = ||v] Im- .
(iii): if wiis continuous on the right throughout [asb), then w = Vo
(iv): if ¢, d are constants and cw + dv < z, then cwy + dvg; = 7y o
(v): 2 £ wv and v, 1is continuous on the right throughout [=,b),
then ZqL = LYRTEE
Proof: Since B(O o) is compact the ultrafilter (u converges to some
po1nt a of B(0,00),
We may define w(s) = O when s § [a,0). For fixed w and s, the function

r(h) = J:w(si-h't)dt
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is contimous on ;(0,00) and

l r(h) | = [ﬁ w(s+ht) at |
' < jz l ‘w(s+ht)\ at
s Hvllew, (12)

Since r is bounded,’ there is a unique continuous function ro‘onl[S(O,OO)
whose restriction to (O,Qo) is r, Thus . | |
Wy () = %f&ncr(h) - .';hi_&ro(h)‘ =z (a).
This completes the proof 9f the first part of the lemma,
(i) The result is trivial,
(ii) Brom (12) we h.ave
sup sé[a;b)wu(s) g | IWT |00

$0 Wy is a bounded and Lebesgue measurable on [2,b). .
Let G = {te'[a,b) : ,u(t) = w(t)} . By (i), Wy = w and #[a,b) N\ G is of
.Lebesgu‘e measure zero, Hence . ' .

v lpgs 592y gl w(8) | = sup olm(8)] ¢ supy oo lmy(e)],
' Thus Supte[a,b)l w,u(t) | = |]wl| loo - o )
(iii) Suppose w is continuous on the right throughout [a,b). For every s¢(a,b)
€ > 0, there exists a > 0 such that o L

| w(s+ht) - w(s) | < € ' with | h| < § , té[O,T_ll .
for all s¢ [a,b) . ' ' ‘

Hencé ‘ w,u(s) = _w(s) R

y .
(iv) Since (cw + av )/u" 1im j (cw + dv )(s¢ht) dt
. hge %

g .
lim Sicw(s+ht) dt + 1imf dv(s+ht) dt
30 J, hso |,
u . .

_ = oWy + dY'bL
and by (i), (ew + av )/u = 7.
Hence W + dv,bL =z . l‘

.(v) The proof is similar to (iv) and is omitted.
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We shal'l‘ refer to w,u as the /u-representative of the equiv,a.lencé
class conta.ining Wo .

Now, we shall_ extend the algebra homomorphism fr— f(‘I‘) of Lemma 1.1
to a homomorp{)ism of the algebra N'BVO(J) into L(X*) such that for all x in
X and x¥in X¥, . | j
(x,qu(‘l‘*)x*>= £(b) <x,x*> -f[a;b) wx;x'*(t) af(t) ( féNEVO'(J)) (13)
where wx;x* are the functions of Lemma 6, which are selected.by taking in each
case the Ql-representative of the relevant equivalence clas‘s.

2.8, _Iﬁn_m;g;- (1) Suppose that wx;x* are the functions mentioﬂed in the last
paragraph, Then, given any f¢ NBVO(J>, there is a unique operator fM(T*)
in L(X*) such that (13) is satisfied,

(i1) Yor ony [ in Ac(J), i‘,u(’l‘%) - £(T%),

Proof: (1) Since Wx,x* is the u-reprgsentative of an equivale.nce class
which depends linearly on both x and x¥%, we @ay dedu;e from Lemma.7(iv)

that the function LA itself has the same property, Furthermore,

’

W 4 raro) Meseel®) T = 11w o llpg < X [leel] Il

For every f in NBVO(J), f can be written in the form f = f_  + f, where
f . is in AC(J) and fb(t) =Zass<t ( £(s+) - £(s) ) . Hence the integral .
X[a,b) Wx,x*(t) as(t)
is well-defined and _ ,
{[a,b)wx,x*(t? df(t) = {[a,b)wk,ﬁ(t) dfa-c(t) + ffa,b)wx,x*(t) dfb'('t‘)
= ' V ‘ -
;- f[_’a,b)wx,m‘f(t)f ac(t) at +za.st‘<b wx,x*(t) ( f“""? £(t) ).
Thus the equation . " '
| L(x,x*) = £(b) {x,x¥) = g[a,b)wx,x*(t) af(t)
.defines & bilinear form L on XxX*, Also-
| 2 | el [Ixl] | 150)] o K var(£,9) }

< K = fx]] [l
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It £ easily lf.ollgws from this fact t_hg,t,given any x¥ in X%, the equation
| (x,f,u (T*)x*) = L (x,x¥)
defines uniguely a linear functional f_,u ('T*)x;’* on X and that the:;:operafor
f,u(T*) has all the required properties,
(i1): When f&ac(J), we may deduce from (11‘1).an'd (13) that r,u@*) = £(T*),
2.9. Lemma: Suppose that S€ L({X) and ST = TS, Then .
| Sey (T*) = £q) (T¥)s% ( fensv (J) ).
Proof: For any x€X and x¥*& X¥, |
(x,S*fM(T*)x*> = <Sx,fu(T%)x*>' |

= £(v) (sx, x¥y - L,ét;b)wsﬂc;x,vf(t) di‘(i':)

and _ o
<x,fu('l‘*)s"zx*> = £(b) <x,S*x*> - f[a,b)wx,s*bc*(t) ar(t).

It follows that fu(T*)S* = S*fu(T*) if and only if _ _ _
f[a,b) {wSx’ﬁ(t) - Wx,sm(t)} ag(t) =0 (xeX, xxexx ). (14).

By*virtue of Lemma 11.1(i_) and Lemma 7(ii), (14) ié satisfied wheriever
f €AC(J). Tt follows that ) |

wsx”,‘;* ” 4 W?F’ggc;*.'
Thus these two f_unctions are Q/L ~ represepfatives of the same _equivalence.
class and are thgre’_f'ore ident:.i.cally equal’, Hence (174) is satisfied for
every f¢ NBVO(J), as requi.ired.
2.10, Thegrem, The mapping f‘—}f(u(T*) is an algebra homomorphism from
NBV _(J) into L(x*),
Proof: It is immediate from (13) that_ t}_'xis mapping is linear, It remains
to es,tabiish the multiplicative properiy, ‘
Let f, g € NBV (J), x¢X, and x¥*¢ X¥, In the computations that follow, we
shall omit the suffix uBy vi:tu&f;‘ of Lemma (ii), this causes no inconsistenc&.

We have



| | 76
<x,f(T*)g(Te§)x*> = £(b) Qc,g('r*)x*> - j[a,b) T g(TH)k (t) af(t) .
= £(b)g(b) Lx,x%) - f(lo)f[a UMM OR. 0

[a,b)wx,g(T*)x*(t) df(")

while

zx,fg(‘l‘-k)x%> = fg(b) (x x* > J[ b))% x*(t) di‘g(t) .
=f(b)g(b) (x,x‘n> -f[a b)wx x*<t)f(t+) dg(t)

. . -f[a;b) x'x.,(t}g(t-t-) af(t).
So Zx,f(T*)g(T*)x*> Ix, fg(T’A‘)xw>
- Sy [ ) - g(T*)x*m} ae(t) - f<b>f[ " x'x*(mg(t)

f[ b)f(t) a( f[a g (s) ag(s) )
j[’_u b) (t+> X, x‘)(-(t) (T.){.)x.;,.(t)} df(t

' [awb) [fa,t] x x*(s) dg(s) df(t)
= J’[a;b) {8‘(t+)wx,x-k(t) - xyg(T*)x*(t) [fa,tj , x*(s) dg(s)} ar(s). (%

By virtue of Lemma 1.T the left-hand side of (15) is zero whenever f, g¢ AC(T).
By f1x1ng g a.nd varying f, we deduce that o |
g(t'k)‘." xoult) = g(T%)x*<t) ffa t) x;x*(s) dg(s) L0 (xexX, xite x=) (16)
whenevern gc AC(J). .Slnce the functions '
g(t+), f[a;tJVJx;x;*(s) dg(s)

are both continuous from.the right on [a,b), we may deduce from Lemma 7 (iii)
(v) that each of the three terms in (1;6)‘:'13 the Ql-representative of its
equivalence class, Hence, by pemma 7(Viv),t_he‘left-hand side of (16) vanishes
identiwally whenever gé& AC(J). We may there,fo?e deduce from (15) that

- £()g(T*) = £g(T*) - (gewv (3), geac(s) ), (1)
Howev_er, when ggAC(J), g(T) commites with T and so (Lemma, 9) g(T*) commutes
with £(T%) for every £& NBV (J), Since, further, fg(t) = gf(t), we may
rewrite (17) in the form ,

(IR - gr(zx)  (cews (3), gec(D)
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which is equivalent to
£(T*)g(T*) = £g(T*) (reac(s), gemsv (3) ).
We may now deduce from (15) by varying f in AC(J) that (156? holds whenever
géNBVO(J). The same argument as before showsthat the left-hand side of (16)
vanishes 'identically» (g(-NBVO(J)) and hence that '
| f(mee(m) = te(m)  ( f,ge BV (3) ) . |
2.11. Lemma;~ Let E(s) =X(-Oo;s] (T) and for each s in R and >0 ,let
k ;h(t) be an abspihutely continmuous function defined as follows:
1 t g s
ks;h(t) = {1+ (s=t)/n s ¢t ¢sth

0 s+h ¢ t

Then in the weak operator topology on L(X*),
= i * '
E(S) lﬁ.m ks,h(T ) (18)

Proof: If xéX and x*é X*, we have

(x E(s)x*> X( 00 SJ (b) (x,x*> f[‘a,b) (t) dX(.-oo;s] (t)

0 s <a
= Wx,x*(s) o a§s<l_)
Cxyx%> s 2b .,

Slnce W _— is the l"2/{-z'epuresenta.tive of its equivalence class, it follows

that, when a s <b,

<x, (S)}C*) = x,x*‘s)

- lin fl W, (s+ht) at
, fu ° |
. = h { s, h(b> {x, x*> J.La s)%x (t) d(k (t))

f[s L NORTCN o)) frm b)wx'x*(t)d(k (t))}

fin { kg n(0) ey - f[a o)y, (8D kg (t))}.

Thus , u

. <x,E(s)x*> kl-iné (x,ks;h(T*)x*> . ( xéx, x*é X ),
, .t |
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2,12, Lemma:~ The operators { E(s) : sé-R} introduced in Lemma 17 form a
decomposition of the identity for X, The associated decomposable operator
is T, _ N
Proof: Since 7(2( -5 S](1:) = X(;m;sj(t) it follows that E(s)? = E(s)
andysg.E(S) is a pro;ectlon in X*. WQ now.have to verify that the conditions
(1)evueey(vi) in § 11.2.are satisfied, Now, (i) and (iv)_ follow® from (18)
and (ii) is an immediate consequence of the corresponding relations for the
functions X (-t ‘t] and X . Since
[12(8)]| < mx( oyl € X
(111) 1s satisfied, Since - is the (LL-representatlve of its equivalence ’
class we may deduce from (18) that .
<x,E(8)x*> = lim g 4x, L(s+ht)x%> at (x¢é X, x¥te X*)
from which property (v) follows at once, A
It remains to prove (vi), From (10) (18) and Lemma 1,17 (iii), we
deduce that
<f(T)x x*> = f(b) <x x*>~ fzx E(t)x*> f'(t) dt (féAC(J),xex,x*ex*) (19)
Given u in L (a,b) set _ L .
£ (s) = L u(t) at.
Then f_¢€ AC(J). For any fixed x¢é X, the mapping A of L1(a,b) into X defined by
. Au = £ (T)x
is clearly a continuous linear operator,-and by using (19), we obtain
(u,g.*x*) = (ru,) = (fu('r)x,x*> = f:_ <x_,E(t)x’>~">_.u(t) at .
Thus the mapping consi@ered in condition (vi) of_g 1.2 is A%, and is the
ad joint of a continuous linear operator A apd'so it has the requi:ed mroperty.
| V This completes the proof that: {E(s) : sGIt; is a decomposition of the
identity for X, By taking £(t) =t in (19), it follows that the sssociated

decomposable operator is T,
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Now, we can summarize: the main results of this section in the follow=~
ing theorem, Part(iii) ié a consequence of Lemma 9. |
2., 13. Theorem:- Lei T be_a'we11~bounded operator on X, Then,

(i) T is decompoéable 5 ' -" . .

(ii)_if <LL is the ultrafilter mentioned in Lemma 7, then the operators
%E(t) : tGIZ} defined by (18) are projections ard form a decomposition of
the identity for X, whose associated decomposable operator is TS ‘ -

(iii) The decomposition of the identity {~E(t) :,t"3§ Qonstructed as in'
(ii) has the following property: if S& L(X) and ST = TS, then

| s%ss(t) = B(t)s% . (%R ).

Combining the results in Theorem 3 and  13, we get the following result.
2;ﬂ4. Theorem; An operator T is well=-bounded if and only #f T is decomposable,
3. gpe uniqueness pgobiem:-

Given a decomposable operator T, we may ask whether or not the associated
decomposition of the identity € unique, When this the case, we shall say that
T is uniquely decomposable, We'shall give an example to.show that ,in general,
T is not uniquely decomposable,

We now intréduqe a number of definitiopg §nd notation which will be of
fgnc_iamental importance_t}ﬁroughout this section .
| 3.7, Definition:=- Let'ué?L1(a?b). We shall say that u is g C-limitable on

the right at a point s of [:a,b)'if the indefinite iptégral of u is S

' differentiable on the right at's. This property_is not.affected if the values
of u are altered on a null set, and depepds;only on_the quivglence class

of u, It is therefore meaningfgl to refer to this definition when u is khown
oply to within a null function.

3.2, Definition:~ A function uf-L1(a,b) is C-continuous on the right at a point

S — _ 2

‘s of [a,b) if it is C-limitable on the rigﬁt at s and/\derivative of the

indefinite integral of u at the point s is equal to u(s).
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3.3. Theorem:~ Let ‘I‘GL(X) be well-bounded and satisfy (m). Then T is
uniquely decomposable if and only if for every x ¢ X and x¥¢é Xf", the function ‘

W of Lemma 2.6 is C-limitable on the right throughout [a-,b).

X% i
Proof: The decdmpos‘ition of the i-dentityA {E(t) : t¢R & as' constructed
in § Z'Qatisfies '

(t<a)
(tyb).

o - {2

(20)

It follows from Theorem 2,4 corollary 2, that all such decompositions
satisfy (20),
Suppose now that { E(t) 2 té R} is one of these decompositions.
From Theorem 2,3 (ii) and Lemmas®,t (iii), 2.6, we may deduce that
Lo L .
§a<x,E(t)x*> £1(t) at = wa’x*(t)f-(t) at (reac(d))
and hence that
x,E(t)x* = . x*(t)

for almost all t in [a,b] , If we assume that each of the functions -
is C-limitable on the right throughout [:a: b), then the same ‘is true of
the functlons <x E(t)x*> Property (v) in § 1.2 now 1mp11es that

{x,B(s)x%) = ,Lin S(x B(s+ht)x*> dt

e §o ™ xx(s¥ht) at ( x€ X, X*E X%, ag & <b ),

We deduce that E(s) is uniquely determined when s ¢ [a,b) and we have already
proved this to be the case when s%— (a,b).

'Conversely, suppose on the contrary that there exist x¢ X, ﬁéx* and
sé [a,b) such that Wx;x* is not C-l_imitable on the right at s, thgn we may
choose ultrafilters U, , U, on (0,00) such that

. 1 ) . i -
\"1?1]'-1% Jé Wx-, x*( s+ht) dt + qu_}mo gowx,x*( s+ht) dt.
| 2

{E(t)u): 1;63} is *the decomposition of the identity obtained by

taking ’U = (UZ ( i=1,2.) throughout \§ 2, then
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[x E(s) > ia 51 ’x*(s+ht) dt  ( i=1,2 ).

Hence E(s)(])¥ E(s)(Z) and there exist two distinct decompositions of the
identity which give rise to the operator T,
Corollary: Sﬁppose that T €L(X) is decomposable but not uniquély. Then there
exist two'disfindt assobiatgd dgcomposition of the‘identity, 3oth having
property (iii) of Theorem 2,13 o '
Proof: The two decgmpositions constructed in the proof of the last theorem
hgvg this property. |
3.4, Exapple: Let X be the complex Banach space L®[0,1] @ Lt CO,T] with

the norm deflned as follows:

) 1] = Il + flyu)l & (xe1®[o,1] , ye 1" [0,1] ),
Define operators S,N ard T on X by ‘ _
S : %x(t),y(t)}-————)%tx(t),ty(t)i (t ¢ [o,7] ))
No: §x(t),y(t) k——) { 0, x(t) f (te[o,1] ')')

T = 'S + N“, _ o
We claim that T is well-bounded; In fact, if p is a compiéx polymomial,
a'routine calculation shows that
p(T): %X(t),y(t)f {p(t)x(t), p' (t)x(t)+§(x)y(t)} (tefo,1) )

and
4

) P
o wmm ) 1] =Ml floxrwl o
| (sup)lp(t)l][llxll,,o] [loxl + [ 1]
sl%mlp(tj [1elle] « [1=t1] f1o1]
[qup Ip(t)IH lglj
< (e, Ip] & var( i Co, 1}))(||1x,y ||)
< ( |p(.1> |+ 2var (3, (0,3]) ) C [z} 11)
2 (|p(m)] + var (p, [0,1]))
= 2 sl

’I\

Hence Ilp(m)[l <

N
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Thus T is é well-bounded operator. It is easily seen that ( by its uniqueness)
that the homomorphism of Lemma 1.7 is determined by the equation
(0 x(0),y(6) fr—le(e)x(e), 07 (8)x(s) + f(t)y(t)} (tefo,1], réAC([o 1))
For every xi@y¥e L'fo,1] @ LM]:OJI} < x* and e Ac([0,7]),we have
{f(T){x,y}, x* @ ¥*> |
'=<hxfx+mf,ﬁ®y0
Ve TR {T'x + fy,y*>
jfn* Jﬂm*+ffw*
f(m)J x(t)x*(t) at - f ( j x(u)x*(u) au) af(t) + fix(t)y(t)f{(t) dt
ety ae - [Py w) e
£(1) {4y} X*®W> f U (x(u)x(a)ry (wly*(u) au - x(t)y*(t)}f'(t)dt
Hence the function w = i,y gy O Lemma 2.6 are given by

w(t) = i:(.x(u)xf(u) + y(u)y*(u) ) du - x(t)y*(t) .

If we let x(t) = 1, y(t) =1, x“"(t) = ¢, and

2 + sin(log|t~%|) + cos(loglt-gl) t %
y*(t)={ |
0 - t =3

then, it is easily to verify that yéf(t) is not C-limita.ble on the right' at
t = 4, It follows that, for such%x,y}‘an@'x*@y*, W{ ,y}‘, x*Q@ y¥ is not
C-limitable on the right Fhrgughout [O,1).'Wé daducé from Theorem 3 that T
is not uniquely decomposable.

To end this chapter, we notethat the homomorphism of Lemma 1.1 can be
extended to a homomorphism from NBV(J ) into L(x*) whenever T is uniquely
decomposable, Slnce, in th:Ls case, by Theorem 3, the u-representa.tlve of

the

W s is the limit of\sequence of continuous functions whose nth member is
A
1 _
wn(s) = nL wx’x*(s+t) at

and hence is a Borel measurable function,



23

CHAPTER II:

SOME SPECIAL CLASSES OF WELL~BOUNDED OPERATOﬁS:f
| in this chapter'and the follow;ng chapter, we shall deal with three
subclasses of.Well-boundedloperators. These are well-bounded operators
decomposaﬁle'in X and well-bounded operators of type (&) and type (B).
Let T be a wellfbounded ope;ator on X, T is called decﬂmposable in
X if and only if there is a family % F(t) : ¢ R} of projections on X such
that 5{ F*(t) 3 teR} forms a decomposition of the identity for T. We shall
prove in.§.1 that if T is decomposable.in X then it is uniquely decoméosable.
T is said to be of type (A) if and only if it is decomposable in X and its
unique.decomposition of_the identity { F*(#) : té.R.§ satisfies
‘liiln_)sfF(t)x = F(s)x for all s¢R and x in X, T is said to be of type () if
and only if it is of type (A)vand its unique decomposition of identity
§F(t)* : '&é‘R% sgt‘isfies thg condition: |
For each s in.R, as t—)s-, F(t)'oomverggs in the strong operator topology
to an operator, henceforth denoted 'byl F(s-). _
The first notion was introduced by Ringrose (11) and the other two were

introduced by Berkson and Dowson (4).

1. Broperties: of well-bounded operators decomposable in X:-

~ The following results are due to Ringrose (11).
T.7. Theorem:- Suppose that T in L(X) iz decomposable in X. Let
{F(t) : téR} be a family of projections ip X whose adjoints {F(t)* : te R}
form a decomposition of the identity for T and satisfy (2), Let s¢fa,b] .
Then - ' . |

(1) R(s)e(m) = £(mF(s)  (£feac(d))

where f~—3f(T) - is the algebra homomorphism of Lemma 1.3.1.
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(i1): ©( 1/ P(s)() ) S (28 ],
o ( /(1-F(s))(x) )< [s,b),
- (i41) T is uniquely décomposaple.

(iv) if 8 € L(X) and ST = 1S, then

SF(s) F(s)s

(v) G:Lven any x in X and x¥% in X¥, the function (F(t)x,x*> is everywhere

4 C-contlnuous on the rlght

Proof: (i), Since (x F( )x*> (F(s)x,x*> the equation in Theorem I,3,2

may be rewritten in the form
Ce(m)x,xy = £(b) Geyx¥)y - f(F(t)x X% df(t) (xéX, x*éx*) (21)

By using this and the relation F(t)F(s) = F(s)F(t), we obtain

(r(e)e(@hxyxxy = Le(mx ek ,
= £(b) {x,F¥(s)x¥y L—L(F(t)x,?*(s)x*> af(t)
= £(b) (F(s)x,;c_*) -ja<F(t)F(S)x.X*> af(t)
=" {e(D)F(s)x, 3%y - ( xeX, xve X% ),
Hence F(s)f(T) £(T)F(s) - ( reac(a) ).

(ii): Suppose that r§ [s,b] . Then, there exists g in AC(J) such that
(t=r)g(t) = 1 | ‘('s- <t gb ),
Then the function
(t-r)g(t‘) - U= g(t) () = T |
is in L (as defined in Theorem I.2 .4) and Theorem I1,2,4 (i) implies that
| (Ts-rI)g(T#)x¥* - X =0 = g(T5#) (TH#=rI)x* ~» x*
for all x#€( I-Fx(s) )(%*), ‘ .
i, (DArD)g(To)xk = xv = G(0¥)(DerT)oe (e e (1-Ms)) (39)).
From fhis and by use of (1) and Lemma I.1.7 we obté.in |
(T-rl)g(T)(I-F(s)) = I-F(s) = g(T)(T-rI)(I-F(s))

Hence, if a.ll the operators are restlcted to the subspaé%\F(s)(X), g('l‘) is



25
the inverse of T-rI, Thus r & &¢( T/(I-F(s))(X) ) and
S (n/(z8(s))(x) ) € [s,0] .
The proof that ‘G( 7/:E(8)(X) )C [a,s] is similar,
(iii): Suppose that {'E(t) : té-Rf is any decomposition of the identity

" which givesrise to the operator T md has the property (1ii) oi‘rThec?rem I.2.13.
Since (by(1)) F(t) commutes with T, it follows that F*(t) commutes with E(t).
\g%géﬁi%iﬁ are commuting projeqtionsw§th_t§e same range space (Theorem I.2.4,
@orollary 2) and are therefore equal. Thuse ;IF*(t) : t€ R}'is the only
decomposi#ign of thé:identity-ofAthis-typg and from the'cbrollary to

Theorem I.B.Blwe dedgcg that T is uniquely decomposable,

(iv): By Theorem I.2.ﬁ3(ii) there exists a decompositiop Qf the identity .
{E(t) : téIi} such that the p;operty (iii) of Theorem I.2.13 is satisfied,
From (iii) we have B(t) = F%-(t_); hemce it follows that SF(t) = F(t)S
whenever TS = ST,

(v) Since T is uniquely decomposable, the functions W oy aTe C~limitable

’
on the right throughout,[a,b). Hence the function <?(t)x,xf> ?‘which is the
q}_—represeptative of the equivalence classrcontaining,wk;x% ,_is C-continuous
on the right, Tt is constant,_and.hence (@riyialiy) quontinuous on the right
on each of the complement intérvals of [a,b).

T.2. Theorem:-»Suppose that T is a well-bounded ppe:atcr on.a weakly complete
Banach space X, Then T is uniquely decomposable if and only if T is
decomPOSable iﬂ X. '

Proof: The implication in one direction has already been established in
Theorem 1(iii),

Suppose that T is uniquely decomposable, Then the functionswi are

g X*

C-limitable on the right throughout [a,b). Hence by Lemma I.2.11,
*) = i O
,<x,E(s)x’> - h];>1§+ <x, ks,h(T )xl > ‘

= lim /. (D)x x*} X e X, X*EX* ),
h—>o+<s,h ‘9 ( ’ )
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Since X is weakly complete, we deduce that as h-50+ through any sequence,

s h(T)x conveges in weak topology of X. For each x in X, define F(s)x =

lim k
h—ﬂ;&&- S,h

Hence T is decomposable- in X,

(T)x. It is clear that F(s) isaprojection on X and F¥(s) = E(s).

1.3, Deflnltlon.- If X is a Banach spa.ce and V&X, the set
vl - { x* 1 x*e X%, (y,x¥) = 0 for all ye’-V}

is called the annihilator a::oﬁwmm of V,

N.4. Theorem:~ Let T be & décomposable operator on a Banach space X and.
suppose that 6;) (73) ='(43 . Then T is decomposable in X,

Proof: Let VS

'
s

where RS and Ls are dei'lned as 1n Theorem I, 2.4, Then by Theorem I,2.4, (1)

(ii) and Lemma I.2,1 (ii), we have vél = N, and WS‘L =

]

B {f(T)x : fER, x€X }

ll

{f(‘l‘)x P £EL, x¢X }

M.
s

Now, E(s)X# = Mg,

(1-E(s))(X¥) S N_,
E(s)(x#) + (I-E(s))(X%*) = X%
Msn NS = (0)3
the last equation holds because GP(T*) = ?S, we deduce that
N, = (I-E(s))(X*) and that '
o Y
Ms +. Ns | X#, |
Hence E(s) is the p#ojection from X* onto M, parallel to N_.
It is clear that _
1 Iagd |
(Vo+w )™ = VIOV = MAN_ = (0).
On the other hand, for every x¥*¢ V : + WS‘L s there exists: yRe v :; and
- z¥%e W;' such that x* = y¥* + z* and then
&yx¥) = (xy}f*> + (x,z*> =0 (x"vsﬂ Ws*)
, ) l 4
o
Hence . x*&( Vs_ﬂ Ws ).
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'L+W1'=M + N_ = X¥#
s 8 s

1
ie. (VAW )2V s

Thus  ( VNV )‘L = X¥,
| It follows that 'V AW, = (0) and V_+W_ =X,

Let F(s) be the projection from X ontp VS parallel to Ws‘ It'is obvious that
F*(s)'= E(s),.iSince the above construction of Fv(s)vcan be carried out for any
s¢ [a,b) and we let F(s) = O for all s<a and F(s) = I for all syb, we deduce
‘that T is decomposable in.‘X.

We shall give an example in the last section to show that there is a:

uniéluely_ decomposable operator which is not decomposable in X,

2, The structure of well-bounded operators of type (4):~

In this section, we shall show that when T is _well-_-bgunde& of type (A),
the algebra homomorphism from AC'(J) into L(X) of. Lemma I,1.1 can be extended
to a homomorphism of the Bamach algebra NBV(J) int9 L(X) §uch that it can be
expressed in terms of a Riema.nn-Stieltjes integra}. F_irst, we shall give a
sufficient condition for the existence of Riemann-Stieltjes integral,l

We say that a sequénce u = (uk : 0 <k ¢m) is a partition of J, if

&=U_ <U.< +0000.<U_=Db, We note that u canmean ( I ;...,I_) where
[o] . m . 8 : . : ! m

1
I = [uk-i’uk] (T gkgm), We write u 3u' (-u is a refinement of u') if
end only if each closed interval I, (1 gk ¢m ) is contained in some

J of all partitionsof J is directed
. We shall denote by u + u' the totality of dividing points

!t = 1 ! : 3 ‘ s
Ij uj-L’ujJ (.} & j €£n)e The family U

by the relation 3
in both u and u' arranged in linear order,
Let £ be a com_plex-va.lued _functic_m‘ on J and g be a function on J taking
values in a Bané.ch space X, Vhen uéUJ, we define
o= Y tlay) - £l ) ) with u_
y 841 = L,g v/ (L) = £loy ) ) with w ;g <y
Now, let I be any subinterval of J, i.e, I = (c,d ] with agcxdgb.

We define
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W(g,I) = 1-u-b$ Hg(t'l) it g(tz)ll . t19 te €I }
© which is called the oscillation of g on I and

w(SgAf,T) = Lu.b { 15 gac -2 ,gatl] : u, e UJj.

We say .that g is Riemann-Stieltjes integrable with respect to f, if

He

1:‘@ szugdf exists as a net limit inystrong topology of X and define
R - Sfag af = 1imuj_§ug4 £,
2.1. Lemma;~ If g is.a. bounded i‘uncfciog on J'a.nd f is of bounded variation
on J, for I = [c,a], let £(I) = £(d) - £(c), then
- w(Sg Af,I) < w(g.,I)'va.r(f,I).
Proof:= Take a.ny"part'itions ‘1_1' = { I"l‘"""’Im' ) and u' '.=(I1",.-..,In")
of I and set u =u' +u''; then,

lZ-::g(vi)f(Ii") - ZJ-?. glv,')e(L )]
IS‘;fg<vj')f(Iij) - zi)j g(vj“h‘(Iij)_[
wle, 1) 2y51£(1; )1

w(g,I) var(f,I),

A 1

A

Hence w(Sgdf,I) ¢ w(g,I).va.r(f,I).

2.2. Theorem:~ If f is a continuous function of bounded variation on J and
g is a bounded function, then sufficient condition that fa g daf exist is
that the set D of all discontirMities of g be countable.

Proof:~ Since D is a'coﬁntable set, we can let D = -{tn tn = 1,2 c00ee j.
For each n and & > O there exists an open interval Jn with tné Jno (;‘Lnterior
of J_ ) such that 'var(f,Jn) <o ad 3N Iy = sﬁ whenever i # j. So
there exists a sequence f Jn)X of disjoint open intervals: such that

Z-n Va'r(f’an) < £ .

. oo
Since Jn are open intervals, G = UMJn is an open set, Let F be the closed
set complementary to G relative to J, i,e, F = J\\G, Then g is continuous for

each pointis of F)a.nd consequentiy uniformly continuous)so that there exists
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4 > 0 such that |
1] &(t) - e(s) || < € with | t-s | <%
and w( g, [s-%, s+ 5]) < 2¢.

] ul] = max % luk - gk;1f| Dk = 1,,_..._,m} . Let I',... L be the closed
interval of u containing at least one po;‘.nt F and I’l”"”'?Is” be the
complementary intervals none of which contains a point of ¥, Then
<S " - 00 '
Ziz‘var(f,li.) PN var(i‘,In) < £ |
and so . .
25 wle1,") ") < g
el W(_g’Ii Yar(f,Ii < M
where M = Sup Ilg(t)“ o
On the other hand,
Y‘ -'1
25, wlg, I var(2,1,')
. :
$2¢ Z)-,‘V%I‘(fglj')
< 2 € var(f,J) .
Consequently, Zu w(g,I)var(f,I) < 2_€_( M + var(£,J) )
for any subdivis$ion such that |[u|]| < <.

Moreover, if u' be any partition such that u' 3> u, then, by rearrangement

of terms so as to bring together the terms in:eath subinterval of u, we find

.-

that . o . .
HZﬂg(vi)( f(ui).- f(ui;q) ) - Z\)fl g(v‘;)( f(us') - i‘(uj_,l:') )|
RS ).T‘ W(Sgd f, Ii) | :
€ Z;f, W(g,Ii)va;'(f,Ii) (by Lemma .17)
< 2_£(M+var(f,J) )

Fimally, for any two pebtitions u',u” such that u'zu, u" 3 u,
H S, gaf - = wgar]] ’
sl 2, eaf =3 gat|l+ ]l 2 gaf- 2 wgatll
< 4&(M*var(s,]) ) '
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Hence the 1ntegral ‘S. g df exists, .
2.3. Theorem:~ ( Integra.tlon by parts ) If J g df exlsts s then J € dg
-.exists and j fdg = g(b)f(b) - g(a)f(a) - ‘(L g df,
Proof: If .5: g df e:'usts- th_er}élven £>0, there exists a u, € UJ such that
o jb _
ag;df- ZugAf“<g for all u »u, .

Select au »u . Then

&
Z;,f(v )(glu, ) - g(um)) g(b)f(b> - g(a)f(a) + j g af ||

- S0 et ety ) - £v) - [ea |l .

H Eifo{ g(ui)(f(vi+,, f(v )-i- g(u )é'(u ) - f(v )S - Lg af H <g .

\<v25...... gv =-u‘ =D ) includes u

Slnce_v=(a=u £V, gu 1 1

1 1

a.nd sov 2 Consequently f f dg emsts and is equal to

u, .
£(0)g(b) - £(a)g(a) - J g af.
2.4. Lemma:- Le1‘: h bg a right continuous function on R_ ‘With values in a -
) metricjspace (M, )0 ). Then h'has. only‘a. countable number of discontinuities,
Proof:~ For each discontifmity t of h, define

a(t) = Iim, f’ih(t )sh(t,)). |
Let S = ht¢r:a(t) >L | and let s ve any point inS ., Since h is o
continuous on the right, there exist § 0 \0 such that

a(t) ¢ -Y]{ (tef §+ Eas St2&) )
i,e. 'Sn Q ( s+ & ,._‘s’l|-2 En) = 95 .
Choose a rational number in.( s+ £y 542 En ). This maps_.v S, one-to=one into
the set of all rational numbers, Henqe S’n is countg.ble.'Thus the set of all
discontinuities: of h, being Ug: Sn, is countable,

. Ve note that the discontinuities of ‘a. function of bounded variation

are all of the first kind, i.e. £(t+) and f(t-) exist for each %, and are
at most counta.bleA in number,

.....

Let £ be in NBV(J) and let itn tn=1 2,..,.}- be the set of all
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discontinuities of f, Then,
Sl ) - g6 ) | g var(s,d)
and it follows tha'b the serles
305 Cete) =260 K gt
is absolutely and un:.formly convergent on [a,b]
So let £, (t) = ZH( (s +) - £(t )X(t b](t) and
£ (t) = £(¢) - £, (t) -
Then fc is a continuous func;tion of boundedvvariation on [a,‘p] o Hence f can |
be rewritten in the form f = fc + fb , where fc_is & continuous function on
[a.,b] and fb is‘ a uniformly convergent sum gf step functions, This notion =
will be need in the proof of our main result. |
Now, we can prove our ma:".n reéult in this section, _

2.5. Theorem:=~ Let T be a well-bounded operator of type (A) on X and let K
be chosen so that S 4
I e() I < x [|sll]
Then, the hemomorphism of Lemma I,1,1 can be extended to a homomorphism \}/
of the Bamach algebra NBV(J) into L(X) such that

(\}’(f)x x*) = f(b) <x e sé(i‘(t)x x*> df(t) (xéX xHEXH, fc—NBV(J))
whére {F*(t) : téR} is the unique decomposition of the identity for T,
Fur thurmore, v | :
Y 1 s x [Hel]] ( fev(s) )
If § in L(X) and ST = TS, then SY/(f) Y(£)s for all £ in NBV(J),
" Proof: Since T is well-bounded of type (A) for each x¢&X, the function
t+—>F(t)x is continuous on the right in.the strong topology and by Lemma 4
its set of discontinuities is countable..; Ipbreover

AT EGx ] s x (1] .

It follows from Theorem 2 that L |

R-Sj F(t)x af (t) exists,
a0 © '
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For each n, the function f (t) = (£(t +) - .f )X(t bj(t) has a

n
dlscontlnulty at t n If uéUJ included t (i.e. J k s, t uy =t ) then

= - 3 = 1 .
2 B )xart, s (f(t +) f(t ) F(t')x with we= ¥ € 8" gw .

' Hence o -sj F(t)x af, -1mU 2 P( )fo

= lim,, (£t +) - f(t )F(t )x

>fb +
= (f(tn+) - £t ))R(t )x.

It follows that L ‘ ] ’

R-S j F(t)x af,(t) = Z:a.(f(?n")_ - (s ))R(t )x.

Thus R-SJ F(t)x df(t) exists, ‘

Now we define yV: NBV(J)—> L(X) by | | ' _ .

 Y(o)x = £(b)x - R~Sj F(t)x af(t) (£e NBV(J), xéX), (22)

)
Then for each X¥*e X¥,x €X and £ &€ NBV(J)

s, & Yy At = {3, 5 )xdfx*>
11mU Z <F( )X, x8 af = <11mU > F( )x Af, x*>
= (& f" F(t)x af(t), x*>
Hence R-S f <& ( t)x x*y af(t) exists and _
R-S f LR(t)x, %% df(t) - (R-s fLF(t)x df(t),x*> .
It follows that
<\P(f)x,x* <f(b)x :x*> (R-sfp(t)x df(t),xw>
| = f(b) Ix, x*> - R-SJ <F(t)x x*> af(t),
Moreover, from (22) , . : |
@] < 1 [l - [lres] 0 asco)l
| < )] + K var(£,3))] |x]].
It follows that' . _
Y@ s «lligl]]l (rensv(a)).

Hence the map ’\!/ is linear a.nd'bou'nded} also .
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.4/('tk———913) x = x (xex)
i.e. ﬁ’( b—1 ) = T . |
[ S ,
and < Y( t—> t )x,x*> =1 <x,x‘rf> -L(F(t)x,x?‘}tdt

[]

, o {rx,x% > (xeX, xkeX* ),
Hence \}/( t—t ) =T, |
Moreover, from (22) and Theorem 3, :
\}/(f = £f(a)F(a) + RS f £(t) ar(t)x. - | " (23)
Since  F(s)F(t) = F(t)F(s) = F(s) when s ¢ t, we have o
{e(a)p(a) + S0e(v, )(F(u,) - Fluy ) }{g(a)F(a) PSR e (B ) - B )}
= tg(a)F(a) - 27 £(v, Je(v, )(F(u ) = Pluy_ 1))} ( f,geNBV(I), uev,). ‘
Hence Y(£) Y (g) = \//ug) . |
Thus \}/is an algebra homomorphism. By Lemma I.1.1
Vi) = s(n) (£eac(3)

where f r~>f(f:) is the algebra homomorphism mentioned in Lemma I.1.T .-

Finally, by Theorem 1.1 , SP(t) = F(t)S (t€R) and so by the definition

of \P(f), we have

s¥(o) = Vs (rews(a) ).
3; AEX Eles $~ . o~ )
3.1. Example:~ Let X = C[O, 1]] and define T'in L(X) by
- (Te)(8) =€ x(t) ,  (0gtetl)
Obviously, (T%)(t) = tn_ x_(t) (n = 0,1',2,.....),

Hence, for any complex polynomial p,

() = s(x(t) .

It follows easily that

[Ip(T)]] ¢ &up te(o, 1le(t)l &

Thus T is a well-bounded operator. It is ciea,t‘\r that the homomorrphism of
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Lemma I,7,% is determined by the equation ‘
(£(m)x)(t) = £(e)x(t)  (xeX, £éac( [0,1]) ).

We shall now make the usual identification of X* with the space of Radon

.

measures on [AO,1I] . When y€ X%, x€X, f£€AC( 0,1 ),we have

@y = f o) are)

Jeo g £C8) glfm] x(t) ay(t) I

f e - £ (t)at,
| W f x0) ay(0) - [ | x) ) s
Hence the functions v -in Lemma I.2,6 are given by ' -

wx;y(t) - jtoyc] x(u) dy(u), o (24)

It is clear that W v is contimuous (hence C-limitable) on the right
T My, .

throughout [0',1). Hence T/és uniquely decomposable, Froxp (24) we deduce
that

x(u) a(B(t)y)(w); = &,E(t) - W (t) = f x(u) ay(u) .

‘f:D,ﬂ )_/ < ’ y> X, ¥ £o, ] 34 )

Thus E(t)y is the restriction of the measure y to the interval [O,t] ..
Now, suppose that_dn the contrarj that there is an operator F(t) on

X whose adjoint is E(%). Then

[ @e))() ay(u)
© Tl

FlE)x,y) = <x,E(t)y)
jtd,-t] x(u)‘-‘ dy(u) . N .
Hence (F(t)x)(u) = '[:O,t] (u)x(g). '
However, if we take t=% and x(u) = 1, then
y[:o’t]x % X T

This is a contradiction. Thus, there is no operator on X whose aﬁ,joint is

E(t). Hence T is uniguely decomposable,_ bgt not decomposable in X.
3.2. Example:- Let X = 170,1] . Define ¥ in L(X) by !
(Tx)(t) = t x(¢) ( xe1%70,1], +¢[0,1] )

Then, if p is any complei polynomial,
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(p(T)x)(t) = p(t)x(t).

It follows that
o |
[atelxl] = fls(0)x(e)] at ¢ sup o, 1J|]p<t>|f|x<t>| at
AT s sup oo, 1le(‘c)l

’ Hence T 15 well~bounded operator., Moreover, the homomorphism in Lemma I.1.7
is determined by
(f(T)x)(t) £(£)x(t) (f éAC(CO 1]) x(—X)
Now, X% is isometrically :Lsomorphlc w1th the Banach space ba{LO 1] I/*]}
cons1st1n5 of all f:m:l.tely additive complex-—valued set functlons >\_
defined onc;g , the 6—-algebra. of Lebesgue mea,surable sete, wh:).ch vanish
on sets of Lebesgue measure zero, and which have finite total variation on
[O 'l] with respect to i the norm of X belng glven by
HAI = verp (X, [on])
The correspondence is.given'by ‘ : _ .
CLxxH Y = jro’i]x(tv) A(at)  ( xxexs, )€ baf[o,ﬂ ,i,}x}),
(See, for example, Theorem IV.8.15 of (6) ) | . .
Let {E(t) : téR& be the decomposrtlon of the 1dent1ty fOr T corngructed
- in Chapter I § 2, Then, by Lemma I,2.11,
{xB(s)AY = lin <x, (T*>>\>
llm <k (T)x, >\>

‘UL
lim L (8)x(t) X (at)
-L) 1] 55h

[} il

ho
- .
- jco s:;(t? A(dt) +h];;Lg\ L’g . h)( 1 + (s-‘t)/h)x(tf) X (at).

It is easily seen that

lim j (1+ (s-t)/h )x(t)A(dt) = 0,
C

hﬂ ¢ Sth)

Hence
| {xy B(s)AY = Lo‘sj x(i;} A (at). ' ,
Thus (EEXNE) = A(BN[0,s])  (Aeva{lon), Sf#ilééf).
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For each real s define a projection F(s) on X by
(P(s)x)(t) = X(_w’sj(t)x(t) (xex, te (0,17 ).

It is obvious that F#(s) = E(s). Hence the well-bounded operator T is

decomposable in X, Howgver, let x(t)v-'-i Ty '
|| F(e)x - (s )x ||, = |D(£'O;'s] () - X[‘O;;,],(t) o
X (o, ) oo

= 1 ( s,s'e[0,1], s3s').

Henceo the strong operator limits lim F(s) and lim F(s) fail to exist at
- = ur . S—u- : .

any point 42 u of (0,11). Hence T is .not a well-boundedr operator of type (A).

3.3. Example:~ Let X be a Banach space of all convergent sequences x = {xn}
of complex numbers under the norm
[ x || =sup x| .

The pairing of X* with {' given by
oQ

{oy ) = 1 nl,,l;na *n t Zpay ,xn_ynHI

where y = {yn & Ja f induces an isometric isomorphism of ﬁ_:‘ onto X¥, Define

T, in L(X) by

Pixd = f-dke}- -

Obviously, if p is any polynomiél ’

. ’ -
»(T) {xni-/ = { p(- )Xn % .
It follows that = | -
|| o()x [| ¢ sup| p(-'y]{)xn | e
< supté[;1 ,0]| p(t) lSuPnlxnl. : |
Hence , |
RIEC R |

supté [_‘n’o] l p(t) lo
Thus T is well-bounded, '

It is easily seen that thg homomorphism of Lemma I,2,1 is given by

f(T)&x.nj. - {f(«-k)xn} .
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Let {E(t) : teR} be the decomposition'of the idéntity for T
corgructed in‘Chaptér 1. § 25 then by Lemma I1.2.711,
<x,E(s)y>' 11m <x, (T*)y>.

}I\le <ks h(T)x,y> | (xéx, ye X* )

a\
where Q/L is the ultyafilter mentioned in Lemma I.2.7 and k (t) iS the

]

It

function deflned in Lemma I.2.11. For each s € [-1 0) there exists a

posrblve integer m such that SGL -]- m—%). We assume that h>0 and

I .
h < | s+ 'mTl_l’,then -
. : I
(s - Lt} o>
= ' L '
Y, nl-%no{ (- )x; L‘ n)x £
Hence
: m
(x,E(s)y> = ng X ( xeX, ye X ),
Thus

56) {y, ) = [0prereeireestgOreneaes Jo(s€ k- 7).
Moreover, if sé[_-],O)., there _is‘a. és' > 0 such that'the function |
(x,E(~ )y> is constant in ]:s;s+ §s). Hence <x,E(' )y> is contimous on
the right throughout [=-1,0). It follows that <x,E(-'.)y>" is C-limitable on
the right fhroug&xoat [:‘l,O). Hence {E(s) 3 SGRf is: the unique

decomposition of the identity for T, Define the function F(*) by

; S0 e
F(s){rn} = {x1,...,,xm,0,....} sGLJ-, n;(_-l')
*xns 530

It is easyf¥y to verify that
F*(s) = E(s) for each seR.
It follows that T is decomposable in X, Furthermore, if s ¢R, there is’ Gs >0

such that the function F(+) is constant in [ s, s+ és ). Hence F(+) is
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contimious on the right in the strong_operator topology. However, let ‘xn }
be the sequence whose terms are Ty tben _

|| F(=d)x = (=)x |} =1
for all pqsit;vé‘intege:s_m and n with m # n, Hence éi%_wF(s) fails to exist,
Thus the well-bounded operator T is_of type (A) but‘not of typef(B).
We note that the first example is due_tq Ring?osex(11), and the second

and third example are due to Berkson and Dowson (4),
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CHAPTER III:= ’
THE STRUCTURE OF WELL~BOUNDED OPERATORS OF TYPE (B):

1. Integration the.ory:‘-

The integrals desgribed here are based on the mpdified Stielfjes
integrals'of-Krabbe‘(9). We sha;l usé them‘to'describe the_extegsion of the
algebra hémomorphiém of wgl}-bounded.operatorg of'type (B). |

Let UJ be the family of all partit;ons ofr Je We reca..lf.l. that
u = (uk: O¢kgm ) >V = (v.: 0 g j '3 n) if and only ?..f each [uk-i’uk]
(# < k ¢ m) is contained in some [ 5 ,vJ] (1 ¢ §<n).

Let M{u) be the family of sequences u¥* -'(uk* : 1 ¢ k ¢m) such that

u ¥ <u (1§ksm)

b S P S

for each u in UJ.
A pair @ = (u,u*) with ue¢ UJ and u¥e M(u) is called a marked partition

of J, We write ny for the family of marked partitions of J and define the

rre-order 3 on ny by setting (u,u*) > (v,v¥*) if and only if u 2 Ve

I i (e en s u < u } .
Let‘nJ {u (u,u)enJ.uk1<u <uk,15k5m .
T [~ %*
and let ny = {u =(u,u"f)én,.uk=uk, 1 5k5m} .
i - D AN T
The sets UJ, Ty Mg ‘and nJ are directed by > ., Also, ny and ny are
cofinal in e o

Let P and ¥ be  functions ‘on J, one taking values in C, the other
in L(X) or C. When ue Mgy W define
> 3Fa®) -2 P @) -l ,))
The following integrals are defined as net limits in the strong operator
topology (when they ex1st)
IIM?_ - st lin S P IA'LL)
This is the ordlna:ry Stleltges refinement: 1ntegral a.nd has been

discussed in Chapter 2,
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o o o
[ Bdg- ey ¥ B(T o)
J 3
. Thi.s integral is called a right Cauchy integral,
SN ‘ -
((3dg-st 1 TP (Tad)
J g o .
This integral is called a modified Stieltjes integral,

Let ‘é(J) be the family of functions E(-) from R into L(X) satisfying

(1) E(s) = E(s+) = sib_%;.:m E(t), SER,
(ii) E(e=) = st lin E(t) exists, sE€R,
(iii) EB(s) = b, ' s <a,
(iv) E(s) = B(b), ‘s 3 b,

T.7., Lemma:- Let E§ £(J). Then sHp [|E(s)|]| = syp HE(S)H < oo .
Proof: Let x&X, Since E(s+) a.nd-E(s—) exist (seJ), I]E(t)x” is bounded
‘for all t in some neighborhood of s, Since J is compact, supJI IE(s)xll is
finite, By the uniform boundedness principle, supJ| |E(s)]| is finite, and
clearly, supy||E(s)|| = sup;|[E(s)|| <o . |
For T in L(X) and -©<c < d g0 , we define o'
X . (-{;) t’l’ tC—.[c,d )
o ) =) - 2
EC,d) .J 0 t&,fc,d' ) ’
We note that if a < ¢ <4 ¢ b, then o
Txtc,d )E 'g(J) and
X ¢ €.
[ b,00)
: SV X, X, - £
Let Eu =2, E(uk_,‘ ['uk-1 ’ﬁy\é) + E'(b) {b,QO)» vwhen B€ E(J) and
u = (uk :0skg m)& UJ. Then, EuC—Z ?,(J)- '

~ Let g be any function in BV(.J), we define

‘ n g& NBV(J)
ﬂ? = {i ‘ .
ny e BV(INN\mBv(J) .

The following integral is also defined as a net limit in the strong
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operator tobology ( when it exists): ’
§ Edg = st lim Z E(g43) ( geBv(3), BCE(I) ).
g _, |
It is easy to verify that if <§ E. dg and § B, dg exlst, then
] §J_(E1+§ dg = §E dg + &E dg .
Now, we shall’ prove the e_xn'.stence of above integral, First, we need
the following elementary results, ' . .
T.2. I_Jgrgm_a_..- lim sup || E(s)x - E, (s)x || = 0 ( xeXx, EG"€(J) ).
U | |
Proof: Let EE&-E(J), X X, Let 3 >O.. A
For each s in [[a,b ), there exists r_ ( s<r_ <D ) such that
Il B(t)x - B(¢+')x [] ¢ & when t,t'¢ l:s,r:s),’ since E(s) = E(s+)‘.
For each s in (a,b ], there exists 1, (a <1 <'s.) such that
] B(t)x - B(t')x || & when t,t'G [ls,s), since E(s-) exists.,
The sets l:a,x*.a), (lb,b,:], (ls,rs) ( a<s < b) form an open cover of .
7. Let [a,ra), (1, 1, (13.,1-8') ( j in some finite set ) be a finite
subcover, ’ ’

»rg (jin
J J

some finite set )e Then for any u = (u t0gkg m) > v, _s:mce any [uk 1],uk)

Let v be the partition with points a, b, T a? 1b’ sJ, 1s

is a subset of [ar ; Elb,b) El y S ) or [s ,r ) (some g), we have
: J J

sup; || E(s)x - B (s)x || < &.

Hence lim sup; || B(s)x - Eﬁ(s)x || =0 xe X, Eéz(J).

: U
1,3 Lemmas~ J

(1) 56 TX[b o0) 88 =0, “ chV(J) TCL(X),
(11) §=T 1 X[ ,) ag=<g<t>-g<s>>m, g€ BV(7), TEL(X); Q¢ SCE <
i) § 5 de - 2 Bl ) sl - sly))

- st;léim ZEu(gAW-r) v gkeBV(‘J),EGf_(J),uGUJ.

’ J
Proof. (i): Let u.(.ﬂ‘I Then
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ZTY[ b’oo)(gaﬁ) = E-TTX[b,oO)(uf\é)(g(uk) - g(uk-‘])). _

{ (g(®) - glu__,))T uit = b,
: B k *
Hence ° € -b’
, st‘nélm 2 TX[b,oo)(gAu) =0 N
5 . / . ;
(ii) Let a < s < b, T1C—n§ yusy(a,s,b ) (no condition if s = b), Then

s =u_ for some nwith 1 ¢n'gm, and
5 X, oyea®) = 2 (el = gluy 7+ X, ) @8 e(@) - gl ;)

| (g(un;1) - gla))r, uw¥=u =s,

{ (g(s) - gla))T, u¥ cu =5 .

Hence st llm Z TY[a )(gA 1) = (8‘(8) - g(a.))’l‘ Since

X[s £) o) - X[av,s) (acoc<tsn),
Hence ‘I‘XE ,t) dg = 5} TX[_a,,t) d@ - §3T, [a,s) dg
(g(t) - g(a))T - (g(s) - g(a))r
(g(t) - e(s))T .

(iii) From the definition of E , it is obvious that the result follows

directly from (i) and (ii). |
1.4, Theorem:- Let g be in BV(J) and E in ‘E(J) Then gf E. dg exists, and
§Edg—stlm§JEdg ,

mso, 1§ 5l ¢ verleDous|ntal], (25)

1§ Baexll < varle,dsupyl[B(a)xll, xex. —  (26)
Proof: It is easify to verify that

|I52(ea ) - Sr(gan)|| < var(g,? Jsup | |E(s) - F(s)]],  (27)

(geBV(3), B, FEE(I))

- and | | ’
|13 E(gat)x - 2 Flgad)x]| < var(g,d)sup;||B(s X~ F(s)x||  (28)

(geBV(J), E,F& £(J), xeX).
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Setting F = 0 in (27) and (28),~we have

|1 2 E(gan)]| < var(g,d)sup,|[B(s)||

and I l S E(gat)x|]| < va.r’(g,J)sule |B(s)x
Hence (25) and (26) follow immediately.

Now, let ueU., let v, w e 7® . and let x& X, Then

g 18t v, J
|1 2 B(ga¥)x - 2 Elgawx|| .
s 12 B(gav)x - ZE(ga¥)x|| + || Z E(gAW)x - SE (gAW)XH

+ |l ZE (ga¥)x - = E (gaWxl]

< 2 var(g,J)supJI ]E(s)x - E (s)xH +]] 5B (gav)x -

Then, Lemma 2 and Lemma 3 show that H S E(gav)x - | EE(gAw)x] | —> [

g
J° J

bounded strongly Gauchy net in L(X) and so converges to its unique strong

25 ¥ and W increase in n® , Therefore, {IE(gA'G) : ven } is a uniformly

limit, Hence §j‘ E dg esists, Moreover,
‘ ||§3E ig x - fgndgxll
- {%(E -B) g x ||
s var(g, Jsupg|| E (s)x - E(s)x ll

It follows from Lemma 2 that
:%Edg-st lim gE dg
; u .
Us

1.5. Theorem:- Let E€ &(J), geBV(J) and let {ga : a eﬁe‘) be a net in
BV(J) with sup var(g J) < oo and g(s) = lim g, (s) (sed ).
Then %Edg=stlm££!dg
.Proo‘f: Let ueUJ Then .
éE dg - £E dg,, j{j (B-E )dg - §I(E_-,Eu)dgq + {;rEu&(g-ga).
Let x in X, It follows from Theorem 4 and Lemma 3:7(iii) that

HiEdgx- éEdg xH

$ H§(E-E>dgxll + 11§ ;) ag_ xll + II§JEu d(g—g)xll

A
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< var(g,J)supJ| lE(s)x - Eu(s)xH + sg‘p' va:f'(go:,J)| IE(s)x - Eu(s)xll
+ sup | |E(s)xl| V1 (g-g)(w) - (g-g,)(u_,)] -
< (var(g,J) + Slé_p 'var(ga,~J)>SupJ| IE(S)X - Eu(S)Xl I
+ sngl |E(s)x] | E:"l(g-ga)(uk) - (g.ga)(uk;1)l

and this expression can be made abbitrarily small by choosing 'ul_fine ehough

(Lemma 2) and then a large enough, Hence

) %Edg-st 11m§Edg
Let S(g,E) = g(b)E(b) - §>JE dg when g€ Bv(J) EcE(s).

" T.6., Lemma:

(i) S(g,){[s;oo)'l’) = g(s)T ) ) g &BV(J), T¢L(X) ,a <5 € b,
(i1) |Is(e,B)l| < [llglllsup,||E(s)]] g¢BV(3), E€ E(JI),

(ii1) |[s(eB)x|| < |llglllsup | |B(s)x||  geBV(d), E€ €(J),

(iv) s(Y ,E) = E(s) . E€E(J), sed,

Proof: (i ) (11) and (iii) follow directly from Lemma 2 and Theorem 3.
(iv) If s = b, then
s( XJ,E ) - E(b) - <§3JE dXJ
= E(b),

If s <b, 'then

S(Xﬁa;s)l;f): - %JE dy[_a. s]

- st lim f§JE l:a g (Theo‘rem 4) ,
- srt 11m ij(uk 1)( XLa g (u, ) >([a s] u 1))

J
- stUl:Lm (- E(un-‘l)) where se [un-‘l ,un)
Uy . , ‘

st lim E (s)

E(s) |  (Lemma 2)
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1.7. Lemma:~ Let ge BV(J) and ﬁenJ(g,r) where
' n
J
nJ(g,I‘) { by

Define & = &(a) X g(u“) X(u

Then g €BV(J) and

gé NBV(J)9

g &BV(IINNBV(J).

‘g(s) ;Jég}g) gﬁ(s . s&J,

Also, var(gﬁ,J) s 2 suleg(s)l if g is real mpnotonié increasing,
Proof: It is obvious that %QBV(J) and gﬁ(a)ln gla), Ifa <s g b and
u 3 (a,s,b) ( no condition if s = b ) then s = u, for some n (i gng m) .and

g(u) | ge NBV(J),

- ) = u%) = .
i) = e { g(u,) + geBV(IN\IBV(J).
Therefore " 1in gﬁ(s) = g(s) ( seJ ) .

n'J(g,I‘
If g is real monotonic 1ncreasmg, then. var(g’,J) 2 supJ[g(s)l and
& is also monotonic increaSing. Hence |
var(g;,7) < 2 suprlg(s)] < 2 supgle(s)].
1.8 Theorem:~ Let EC—f(J). Then N
' g(a)E(a) + §Jg dB ge NBV(J)
S(g,E) = . Y . . BV(T)
| g(a)E(a) + jjg dB g €BV(J) N\NBVLY),
Proof: Let TlenJ(g,r). Then . ‘ '

5l = 8@y 8 + ST, 0P - - s(X g5

= g(a)E(a) + X g(BaT) ‘ . (Lemma 6).
Since every g in BV(J) can be expressed in the form

+ t + t

BT s T 45

282 7 383
where tié C (1 = 1,2,3,4), and &5 is real monotonic-increasing. It suffices
to prove the case where g is real monotonic increasing, Then, the result follows

from Lemma 8 and Theorem 5,
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Ve shall write fg dE instead of S(g,E) when g¢ BV(J) and ec€(3).
J

2. A convergénce theorem in BV(J) :-

Let Zj‘ be the algebra of subsets of [a,b) genérated by sets of the
form [s,f) (é. £8 <t ghb )? Let % be the'set of all linear qombinations
of characteristic functions of sets in ZT . Let &5 be the c1<;Sure of :@
in the supremum norm. Tlfxen it is easy t_q verify f.hat_ Qj ig é, Banach space
under the supremuin norm, It follopvs.from Lemma 1.1 ( or (8), ’I'heo,rem'4.5_>
that Q——- consists of all functions, vanishing on (~o0,a) énd. on [ b,090),
and right continuous and left limitable on R,

l
From the scalar ver51on of Theorem 1 .4 the integral jj— w dg exists

for g in BV(J) and w in J- Moreover, if w = l%m wn. in the supremum norm
where {W ]I C ;D , then N
? !
j:)' w dg = 11}1m jy'wn dg. - _ (29)

and from the scalar version of Lemma 3, .
S X sy te = el6) - elo). | (30)
We use this notion to prove the follow:.ng well knowm result,
2.17. Theorem:- There is an isometric 1somorph1sm between ,Q and BV (J)

determined by the :gdentlty

: : ,
Lw,wky = jrw‘dg - ( we G w*c-(%f, gedv (3) ). (31)
Proof: It follows from Theorem 1,4 that ~
. L N
|55 weg | ssup w(s)] el (wed, gesv (3)).

Eence,. for each g' in BVO(J),( 31) defines a point w¥* in Q;' with
el | o< eIl - (32)

To -show that every W*er}fis given by some g(:BVb(J), we have only to

gls) =

define | - { -Xcs;b),w*) .(a &8 <b)

‘s=b .



47
We shall show that g is of bounded variation., Consider

u=(u :0skcg m)€ Uy and let

J S
A= omm (a(w) - 8le ) (k=1, 2,0y m)
where . { 0 - ifc‘=0'
S c =
& 5/|ol it o 4 0.

Obviously, xk(g(uk);-g(uk'_ﬂ) L
| - |g<uk>7g<uk'.1>| © (k=12 e, m),
Then, St lg(u,) - k‘1)| | |
- 20 M(g(u ~&(u,_,))
m>l (- X[u b)"’*> ( X 1,1:)"’%))_
= >‘m( Xu b)’w*>
E”H XU(XP ,b) -.X[u b)’w*> + <Xm£u 1,b)’w*>
: < ‘)%Y[uk-1’“k)’w> o
Hw*ll,max{lk.l, A ‘XMT

[ | .

i

/A

N

Hence g is of bogndeq variation apd
var(g,d) ¢ ||wel| . - | (33)
From (30) we_have .
_L X[s b) dg = - 8‘(3 <XL b>,W"> .
Hence (31) holds for every function w in % . Since % is dense in QJ-
and therefore, since both s'ides of._(3‘!) eré continuous in w, it follows that
(31) holde for a1l we &5 . Moreover, it follows from (32), (33) that
var(g,J) = ||w¥||.
Since the linearity of correspondence between w %* and g is éle_ar, the theorem

is proved,
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2.2, Lemma:- Let { g, t ac 6‘} be a unifornly bounded net in BV (J) and let
ge BV (7). Then g = lim'ga in the Qj ~topology of BV (J) if and only if
g(s) = lim ga(s)‘ (a <8 <b).
Proof: From (30), we have

<'><[s 0)8) * L‘-X[s p) 08 = &ls) (assdf),'

If g = lm g, in the ;Q-J- -topology of BV (J) then

g(s) = (- XLS b),g> 11m { - XLS b),g > = 11m g, (s) (a <S5 < b)
Conversely, if g(s) = lim gaés) (a ¢ s <b), then 11: follows from
' S
Theorem 1.5 that . . .
. N ‘ 2 : 2 A .
{w,8) =£ w dg = limjwdg =11m(w,g7 (W(:Q).
J G J : J
Hence g = 11m 8y in the Q-— -topology of BV (J)
2.3. Theorem:~ Let g¢BV(J), Then there is a net {g : aeG} in AC(J) such
that g = 11m 8, pointwise on J and S%I_) lllg IH 4 Illg |||
Proof: S:ane g can be written as ( g - g(b) X ) + g(b)y we see that it
suffices to show that if gé BVO(J) then there is a net {ga : a€ G}m AC(J)
such that g = 1lim g_ pointwise on [a,b) and sup var(g. ’,’J) P var(é;,J).
Now, for each w in Qj_ , we define
P (f) = JJ,W ar (lfé ac _(3) ).
It is easy to verify that P is a bounded linear functional on ACO(J) and.
12,11 = sup; [w(s)].
Therefore 2— can be 1dent1f5;lw1th a subspace of AC *(J)

From Theorem f, each function g in BVO(J) defines a bounded linear

_gvfc_ig_ ' (WG‘Q]‘)

var(g,J).

functional Lg on cQJ- by

L g(W)

and R W}

By the Hahn-Banach theorem, we can extend Lg to a linear functional (also

denoted by ) L, on ACO*(J) without increasing its norm, So.Léé Acg-*(J).
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By Goldstiné's Theorem (6,V.4.5.) there is a net {ga : cc(-_Slj in ACO(J)
converging to Lg in the AC;‘)’f(J_)-topp}ogy‘of AC'Z)H"(J) and satisfying |
var(ga,J) < ||Lg] ] = var(g,J). Then, g = li631 g, in the oc%— ~topology of BVO(J),

so it follows from Lemma 2 thit g(s) = lim ga(s) (a s <D),

3. Naturally ordered nets of operators:- _ , .
Suppose {Ea : aegr is a set of commuting projections oﬁ X, A_i'pno’jection
E such that |
- w Y nm) e
(1-B)) = Ng(T-EBIX)
is the supremum of {Ea : aé@}a.nd is denoted by \'éEa.'
A net { E : a(:B'S. of projections is said to be n_a’curally.Aordered if

E, < ]53Is whenever a < B .

Spain in (14), extended ‘this teminology and said that the net'{"r':'CJL : ac 6‘}
is a naturally ordered net of operators if Ea = EaE;3 = EﬁEa N whenev.er a < B.

We need the fotlowing Lemma which is due to Banach (7,Theorem 6, P.58).
3¢1. Lemma:= Let G be a subset of X and y be any point of X. Then, there
esists a segfience (Sgn‘] which is a linear combination of elements in G
with lim g =y if and only if for each x¥ ¢ X%,

n->00 11 - :

(X,X*)f '

implies that LY, x*> = 0,

0. ' (x(:G)

Proof: ~ ‘ Suppose there exists a sequence {gn\' which is a linear combination

of elements of G.with 1lim g, = ¥. Then, for each x¥& X¥,

" n-700
{Xyx#) = 0O (xeq)
implies that <g;,x*> -0 (nel) -
and hence o (Fyx¥) = <Y1‘37n'1°ogn,r*>

= 0,
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Conversely, suppose that for Ieach x¥*& X%,
{xyx%) = 0 (x&G)
inplies that  (y,x¥» = 0, | - -
If y& G, then the resulf. is -obvious. -We may assume that y?gt(}. .Leﬁ M = sp EG} .
We shall éhow tha.t yeﬁ. Suppose on the contrary that yégﬁ. Thez;x, by the

Hahh Banach theorem, there is a functional z¥&X¥* with

(y,Z*? = o (34)
and S (xyz¥y = O | (xeu), - (35)
Hence, (35) implies thg.t ’ . .

{yyz¥) = 0,

which contradicts (34). Hence yeé M, Thus there exists. a sequence fgn}
which is a linear combination of elemt_ents in G such that
_ limeg, = ¥. . ,
3.2, Definitiord: Let {Ta taé 6‘7 be a net in L(X). Yy is a weak x-cll}ster
point of { Ta) f Yy, is a weak cluster point of the net T( ’I'ax 3 6—6-11' .
The definition is due to Barry (2) who proved the ;‘olflowing result,
3.3. Theorem:~- Let {Ea :aeb } be a ﬁaturally ordered uniformly
bounded net of projections on X. Then st 1°£nEa - \/(;E(I if and only if
{Ea T ac 5‘7 has a weak x-cluster point for each x in X,
Proof:- Suppose {Ea‘:' ae €} has a weak x~eluster point for each x in X,
For any x in X and aoc‘,— S, let Yy be a weak x-cluster point of fEa : 0;66.}.
For an{ ¢ >0 and x¥*EX¥, let | ' ’ -
Mg = {zi | Covpmny] < )
Then NE (yx) is a neighbourhood of Yy i; t}}e weak topolqu of X, Since Yy is

the weak cluster point of {‘Eax tac§ }‘, then there is a § 3 a, such that

B (Eﬁ(X) -y EE) | < g
o]
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Hence | (anx - anyx,xf9> |
= |<'anEﬁx -" anyx, x*>| | |
- |<El3x = Yy Eg-;:*} | < ¢ | ( x*e X3%),
Thus »an'?c = anyx ( aoéc)f (36)

Moreover, since yxe {Eax : qéskw , it follows from Lemma 7 that

= lim T x | (37)
' n '
where T = Z(_‘ck Eak . _
Clearly, for each n& N, there is a EOGS' such that EccTn = T'n whenever a 3> ﬁo .
Hence st 11m E T = T . A

Furthermore, it follows from (36) that |
s e 1= 11 2, -2 11
¢ supe B ] |1y, -ox |l

Thus 1lim E T x Eax uniformly in a., By the E,H, Moore theorem on the

nN=ro0 b

interchange of limits (6, 1,7,6)

y_ = lim lim BT x -
X S an

n->00

= lim 1lim ETx
ST AU

= lim E x |
. ¢ a ; ,
Set Ex = Yy (xeX), It is now easy to verify that E $s.a projection in X,
Finally, if x€¢BE(X)i,e., Ex = x, then x = Ve = lim T Xe Thus |
) ¢ N0

x(—.—s_p{ (jsxle(x)S . i.e. E(X) CsprGEa(x } . If xc(;l(:r - B, )(x) then
xc‘liori (1 - Ea)(X) = (I - B)(X). Thus (I - B)(X)Q ng(I_ - E(I)(x). Since
EE =EE=E end (I -E)(I-E)=1I=-E, itis clear that '
E(x) 2 §p E%Ea(x)} and (I <E)(X)C Q.(I - Ea_)(x). Therefore E = \éEa.

We shall also need the following result, which has a similar proof tof

Theorem 3.°
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3.4. Theorem:~ Let {Ea'; aéG} be a naturally ordered pr_liforx_nly bounded net
of ope:;'ators on X.» Then, st 16i_m Ea_exists if and only if { Ea : aC—f;]] has a.
weak x-cluster point for each x&¢ X, ‘ .

Proof: The proof is similar to Theorem 3 and is therefore omitted,

In this section, we follow Spain (v4), using an’elementéry integration
theory to establish directly the characterisation of well-bounded operators
of type (B) and then show that the algebrg hompmorphism mentiongd in Lemma I,1.1
can be extended to an algebra homogorphism from BV(J).into L(x).
+ We need the following no#ion,
4,1. Definition:~ Let M be a subset of X, The aBsolutely convex hull ( denoted

: N . n
by aco{M) ) of M is the set of all linear combinations Z aixi of elements

1=\
x; in M in which a.¢ C,|e | ¢ 1 and E?, I.ail .= 1. The closed absolutely
convex hull is the closure of aco(M) .énd.is denoted by aco(M). _
4.2, Lemma:- Let MCX be totally bounded, Then aco(M) is compact.
Proof: The:set a_CB(M), being a ciosed subset of é. compiete space X is
c.omplete. Hence it suffices to show thét EE_'S(M) is totally 'bounded.
Let ¢ > 0, Since M is totally bounded, t‘here is a finite subset
izw,.....,zn” C M such that - :
M - U[?, S(Zi’%) '
where S(zi,%‘-z is a sphgerev ,..’yd.tljx_cente;' zs g.nd radius -E'T .

Let XN = aco({z1,32,.....?zn7’ ). Now, 5.9_6 C U S(x,—%), But,

x c aco(M)
if y eaco(lM) then y = Z;m 0.Y.y Where y. & M, a. ¢ C la.l <1 and
’ . 11 Y4d 47 i A TR AV et LA
m ,
27 la;l = 1. Let v be a function on M into { 1,2,.....,n} such that

. L - 3
if xeM, lx zv_(x)l < r Then
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| v - 5;:“1 Z,}(yi) | = Zi: a;(y; = ZV(yi)) |
N Z\Tt |ai[ [yi = zv(yi)l
< £

— L}
— U . ¢ t
and thus aco(M) C XeN S(x,—i- ). ,
g{{t@ . . - . .
Yowi ¥ = { Fiegz tag€Cy logf < 7 and 2 lay | - 1}22% Let

Y = { (a, ,,...,an)ECn : |ail <1, 5:' Iail = -1} . Then, the mgppirlg #>

defined by

Cfl (3'1""'311) = S{S‘ @z,
is a continuous mapping o? th.e'gompa.ct set Y onto N. Thus N is-";.‘c{)mpact
and hence totally bounded? Thgn, ther‘e is a finite subset {wj,'...,wm } _of
N such that N C U‘T‘ S(Wi."y%)' But then__EE{E;(M) c U:, S(Wi’ ¢ ). Hence
aco(M) is totally bounded, This cvompletes the pi'oof.
Now, we give three C9nditioné on a well-bounded operator equivalent to
the definition of type (B). o o
4,3. Theorem:- Let T be a Well-boupded opemEor on X and let J = [a,b'], K
be chosen so'that (1) is satisfied, Let f'r—j;‘(ﬂf) be the algebra homomorphism'
from AC(J) into L(X) mentioned in Lemma I,1.1, Then the following conditions
are equivalent: _ | )
(i) T is of type (B).. | | 7 '
(ii) For every x in X, f —>1(T)x is a compact linear map of_AC(J) into X.
(iii? For every x in X, £—>f(T)x is weakly compact linear map of AC(J)
into X.- |
(iv) There exists.a family {.E(s) : sé—R} of projections on X such that
E€€(l) ,E®) =1 , | | .
B(t)E(s) = E(s)E(t) = B(s) (s<t),

Il B(s) || <X | (‘seR), ,

and | T = ﬁs-.dE(s) o

J
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Proof: We show that (i) = (ii) =(iii) = (iv) ==x1i).
(1) == (ii). Let iE*(s) : seR% be the unique decomposition of the identity
.for. T, By the definition of type (B) operator, we hate Eé'g(J). We de_finequ;l;\,é
from 'AC(J) into L(X) by P ‘

Vi) - jj £aE  reac(d),
The map \i/ is linear and bognded; also )

¥l - (2w

Moreower, ' ' @ |
(Y (s o =[5 agnladey
= b{x,x® - fj(ﬁ:(s)x,x*) ds
= Ix,x% L '
Hence \}/( s —vys) = 1T, ‘ . o
Since E(1)B(s) = E(t)B(s) = E(s) ( s <t ), it follows that
{f(a)E(a) + Ef(EAa)} {g(a)E(a) + 3 g(EAE)}
= fg(a)Eta) + = fg(E0T)) l

\

f,g € 4C(J), u en

7 .
Hence \‘/(f)\{/(g) = \Y(fg). . A ". )
Thus \s/ is an algebra homomorphism, By Lemma I,71.1,
Vi) - () T (reac(a) ).
For each x in X,- we let .fx = { Ey(s")x : SC‘R,} . Since
E(s) = 0 (s <a) and E(s) = I . (s ). Then, for any

$ >0, - f = {E(s)x':se[a-‘-g,b]} . Let ¢ > 0, By the same
argument 4§ the proof of Lemma 1.2, there exists s, (= a~-3), 82(= 8)yeecee
sn(=b) such that . o ‘

EC Uy s@s Jxg ).
Hence Ty is totally bounded. By Lemma 1, m(fx) is compact. Moreover,

let £ e aC(J3), |[|f]]] <1 and T e n_. Then,

. J’
f(b)E('b)x - ZE(fa@)x

e (o) - 3G - 2o, Ex € @)



Therefore f(zj e 3e0( & ), Hence, for each x in X, £ —>f(T)x is a coxﬁpact
" linear map from AC(J) into X, . .
(11)=>(111) Trivial, _ ) _ ‘ o
(iii)%‘“r(iv) Let M be the ultrafilter on [3(0 ©0) mentioned in Lemma I.2.7.
For each xCX and x¥e X*, we define ) ' |
(f) =t T)x x*} - (feac(s) ),
It is obyious't_hat.Lx;x*“is a bounded linear functional on AC(J). By
Lemmas I,2.5 and 1.2.7, wé haize'
Ly ) = () - jj
where mx;x*e.c, wxl %€L 23), s _
- ‘ Ty, x*( ) = %m‘j (s+ht) at .
Then, {x,x¥) = Lx;x*(sh—ﬂi) =Tydx oo
Let k_ . be the -function defined in Lemma I.2.171, Then

s,h 4

- . « _ - . _ .
| <ks h(T)x,x > L, x*(ks,h) s "% (s+ht) it (a ¢s .< s+h < b).

x x*(s)f'(s) ds (x eX,x*e X*, e.AC(J))}

FKow, for each x€X, let o
Vk‘ { ,h(T)X: $s<s+h<b}w'.-
By hypothesis, "?’{x is weakly compéct Hence'k may therefore be considered
as a compact space, For fixed s in [a,b), we define a vector-valued functlon
Tg from (0,9°) into the compact space %x as follows:
TS'(h')=k' (T)x (0<h<oo)
since || () ] = 1] 5, 5@ 11 <5 NIy 111 sl ] <% 1l
thené:o 'Z:g is bounded, Moreover? for every h,h'(—:— (0,00),
IRV RTEN ks;hmx- K e (D ||
OIS (T)xll
RN TTT™]

h-n] ,
= (h

m

<X |]x|]



56
Hence, TS is cvontinuous on (0,00). It follows from Stone's Theorem (7,6;5)
- that there is a unique continuous function ‘Es on B(O,OO) whose restriction
to (0,00) is- g . Let'a be the limit of Ql s then
vin (G < in (L), xee) - (& () (e xx ).
Hence, fo(zl*keéch s c—[a,b),'we dei‘ln?
B(s)x = g (a).

Obviously, B(s)x ¢ .‘%}x and since

e (60 a4

llim <k (T)x‘x"“>

-j. llmf x'x.(s+h‘t:) d‘c

#e X '
o Wx,x*(s) (x*exx ) .
Hence <E(s)x,x*> = v x"f( ) ( x eX, x*cX*) (38)
Let E(s) =0 (s <a) ,and E(s) =I (s 3b). »
Since k hkt X =\kt kks I ks b for 0 <h < t-s, 0 < k, we have

E(s)BE(t) = B(t)E(s) = E(s)
when s < t, By Theorem 3.4, and the weak cdmpa.ctness of %x’ the strong
limits E(s+) and E(s-) exist for all s in R, | |
From (38), we have

{E(s)x,x%)>

i}

B i .
1i . ht) dt
h(-::"fOin’r*(S*' )
T N Wx,x*(sf) .
E( s+)x,x*> (ags <b,),

Therefore E(s) =B(s+) (ags <b ), hence each E(s) is a projection.
‘I‘hus EC-‘S(J) R |

Morecover, since

(e

X X*(S v-——)S)

b { x,x¥) (S) ds

,-ja xx*

b {x,x*) - j;‘:(E (s)x,x*) ds

s d <B(s)x,x*).
5 )
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Hence S® dE.,

* Finally, since <E(s)x x*) %llm <k (T)x x')f> ( x*eX¥ ) and
a7y
| | (ks,h(T ey | s | ks,h )T =l Hx*_‘|| K||>CH 1P
fonce, | (aede> | <k sl Ilarl] Grex, xve ).
Thus | _ 11 B(s) || <X ( SER ) , |

(iv) =>(i). It suffices to show that {F*(s) se'R}~ forms a decomposition
of the identity for T, The conditions (i),(i1),(i4i) of Definitirn I,1.2
follow immediately, Since Eef(J),'it follows that { x,B*(s)x¥® = (B(s)x,x*>
is everywhere right-continuous on R, for each xeX and x¥*¢€ X¥, Henqe
conditions (iv) and (v) are satisfied, Moreover, since T gs dE, then
{x, x’*f} J s d(E(s)x x*>
= b<x x‘*) j’ (x E*(s)x‘n ds ,
From the froof of Theore.m I.2. 3, we deduce that
E(D)x,x%y = £(b) {x, x*> j {x, E*(s)xw f'(s) ds ( £eac(y) )
_It remain to proof (v1). Pix x in X and consider the map A from L (J) into X
defined by . o '
= fu(T)x
where. ‘
b
£ (s) = SS u(t) dt ( uerl(s) ),
A is clearly bounded and linear, For.u in L’(J) and x* in X*, we_hé.ve
{u, A*x*) <Au x*) =1, (T)x, x*> | _
S <{x, E*(s)x*> u(s) ds .
It follows that. tl:xe map A* frqm X* into I'.°°(J ) is given by
Ak = x,E¥(- Jx¥ >

Since A is pontinuous, A* is continuous wher_x X¥* and L°°(J) are entiowed wi_th-
their weak*-topoldgja,'l‘his completes the proof that (iv) implies (i).

In our. next theorem, we give some properties of well-bounded operators

of type (B).
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4.4, Theorem:- Let T be a well-bounded operator of type (B) on X and let
7= [a,b] be chosen so that (1) is satisfied, Let {F¥(t) 1 t€R} be the

unique decomposition of the identity for T,

. .L
(1) | £(7) = Ja-f(’c) ar(+) ( feAc_(J) )

' where the integral exists as a strong limit of Riemann sums, (This is valid

for well-bounded operator; of type M) ) . ‘
(ii) If for some s in R'and x.in X we have (T-sI)2 = 0, then also
(T-sI)x = 0, (This is yalid for an“arbitraz.y ﬁelljbounded; operz_ator.)
(iii) For each s in R, F(s) = F(s-) is a projection on X whose range is
given by ‘ o )
{F(s) - F(s-)} (X) - {xC—X : Tx = sx} .
(1v) The residual spec@:rum' of T is empty. “
Proof: (1) For eachAx'éX«, it follows f_rom». the proof of Theorem iI.2.§6'that
£f(T)x = £(b)x. - R-S_(:F(t)x ar(s) ( feac(y) ),
For any & > 0, we may assume that f is abselutely l'continuous on‘[a.-‘?_ ,b].
It is easy to verify that : |

Q
R-SJ F(t)x ar(t) = 0,
- a-¢ : _
4ence . L

£(o)x - -sja F(t)x af(t) + R-SjF(t)x df(t)

a

£(1)x
£(b)x - R-sj F(t)x ag(t).

]

Then, from Theorem I1.2,3, we deduce that

R -SS f(t) dF(t)x ex:.sts and b
f(b)x - '-F(b)x + fla=¢ )F(a- )x + R-sj £(t) ar(s)x

G-¢ -

R-S Jf(t) arF(t)x. - .
e '
Let & —> 0. Then, L

£(T)x = R-Sj £(t) ar(t)x.

Q.
This completes the proof of (i),

f

£(T)x



(ii) If (T-sI)%% = 0, then for any M > O,
| (I*M(T-si)z)x = x
so that (I + M(T-s1)%) "% = x.
Thus - )
| [(2-s1)(x + W(2-s1)%) "] |
kx| 111 (t=s)(1 #10(6=5)2)7T] ||

1
K| |x]| £u=,

| 1(2-s1)x] |

N ]

A

Hence (T-sI)x =0. o A _

(111) Since F(8)F(s) = F(s)F(t) = F(s) for s <%, then,
F(s)F(s-) = F(s-)B(s) = F(s-) (seR).

Bence F(s) - F(s-) is a projection, o | :

Now, let x € {F(s) - F(s-)} (X). For any ¢ >0, letu = (u £ 0 < Kk

be a partition of [ a~¢ ,b ]. Then
Z@‘ uf(F(uy )x = Flu, _ 1) x) _ _

fF(s)x - F(s-)x} ‘ ( e‘;e(ux;_vun] )

= utx ,
n

un

This is valid for any partition of La-g ,b'].

Hence, it follows from (i)‘that .
Tx = sx . -

Conversely, let Tx = sx* and G >0, then

’.I.’F(s - 6)x = F(s - e)Tx = sF(s - e)x

T{I - F(s + 6)}x= fI -F(s + 9)}_‘1‘::- s{I - F(s +.e)} x

Since by Theorem II.1.1 ,
G(r/r(s - 0)(X)) C (- 008 - 9]
&(r/(x - F(s + 0))(x) € [s+, oo)

Hence F(s - 6)x = {I - F(s + 9)} x =0,

s
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m )

Thus x = {F(s + 6) - E(s -,6)}»_:: for any 6 > 0. Letting & —> 0 yields

\

X = {F(s)-- F(s-)} x
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and _thé proof of (iii) is complete,
(iv) It follows from I,2,4 that
ix*e X# 1 THc* = sx*} = Fx(s)(x*) () { I-F*(s-)}(x*)
- {Fx(s) - F(s-)} (),
Hence,.by. (iii), s is an eigem_/ai'l.ue for T if‘and only if it is an eigenvalue
for T*, anq so by Exercise VII,5,9 of (6) (p.SSIi) the residual spectrum of
T is empty. ' |
We end this section with the following result. _
4.5. 'I‘heorem:- Let T be a w_ell-boundéd operator_of 'Eyﬁe () on X ‘and let
J= [a,b ], X b_e' chosen so that (1) is satisfied. Thel:l the élgebra._ hoQOorphisrﬁ
f +5f(T) can be extended to an algebra homomorphism \j/'from BV(J) into L(X)
.such that ' '
WY@ Il <xlllzlll Ceemv())
If S.€: L(X) and ST = TS, then s\}((f) = \//(f)s ~-(‘ re 3v(J) ).
Furthermore let {g-a T ae G'} be a uniformly boundegl nef, in AC(J) .Cm‘werging
pointwise to a func'bion g in BV(J). Then \[/(g) = st féj.m \{/(ga). Also,
{#4g ;gCBVJﬁ {ﬂT):fGANJ)}S .
Proof: Let in*(s): se R} be the uniéue‘decémposi?ion of the identity for T.

By the definition of a type (B) operator; Eé'fE,(J). We define"\}/ from BV(J)

\P(f) F | (fGBV(;I) );

The argument in the proof of Theorem 3 ( (i) =(ii) ) shows that \// is an

into L(X) by

algebra homomorphism from BV(J) into L(X) and if feAC(J) then \//(f) = f(T).
Moreover, it follows from Lemma 7,6 that : )
INOU = 11 [ £ a 11 ¢ sumgl ] 266 11 1112111 < %l 1e11].

If SeL(X) and ST=TS, then by Theorem II.13.1(1V), we have

SE(s) fE(s)S - ( ser ).
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Hence it follows from the definition of \¢((f) that
C Wes = sV, |

Now, '1et {gé : aeg} be a_uniforxply bounded net ‘in'AC(J) éonverging
peointwise tova ‘function g in BV(J)., From Theorem 1.5, we deduce.that

st Lin \J/(ga); :stéimﬁ g, 4B =j?g & =Yg . "(39)
Moreover, .given g in BV(J),‘it follows from Theorem 2,3 that there ivs a
uniformly bdéunded ngt { ga' :'aeg}" in AC(J ) converging pointwisé fo é.
function g in BV(J). Then, by (39), we. have '

Ve = st Lim g (7). '

Hence H/(g) : gE:BV(J)}C{f(‘I‘) : féAC(J)}S .

5. Well=-bounded operators on a reflexive Banach space:-

Throughout this section, X will denote a reflexive Banach space, Our.
main result is that every well-bounded operator on X is of type (B). First,
we need the following result,

5.1. Theorem:- Let Y be a Banacl_a spac'e‘and U be a bounded operator from Y
into X, Then U is weakly compact. ]

_Proof:vSince X is /refléxive, we have X = X**;P'f; Hence U¥#¥* is a map from Y**
into X, Iﬁ is easily seen that Ut is continuoug when Y;"* is endowed with

the weak*-topology and X'with the weak topology,

Now, let S and S¥*¥* be‘ﬁhe.cillosgd unit spiheres in Y and Y*¥* respectively,

By the theorem of Alaoglu (_6, V.4.2), S¥% is compact in the weald?-topolo_&r.

It follows that the cont_l/z;mous image U*k(S*w) is wea}_cly compact, Bu‘cp »
U(s) ¢ u(8) ¢ U%—%(S%c”’r) where S = {3? : yéS} and y.___93r\ is the natural |
embedding of Y into Y#¥*, Hence U(S)" is weakly compact. Thus U is weakly ‘

compact,

Now, we are in position to prove our main result,
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5.2. Theorem:~ Every well=bounded operator T on X is of type (B).
Proof: Let f‘»——)fg‘l‘) be the a.lgebra homomor phism from AC.(J) into L(X)
mentioned in Lemma I.)‘.‘l . Then, for each x in X, fr—-—) £(T)x is' a linear
map from AC(J) into X, Sin’ce X Vis* refle;cive,‘ it folloxjrs‘ from Theorem 1 thz'a.t-r
f—£(T)x is weakly compact and hence, by Theorem 4,3, T is of type (B).

We restate our main result- in the, followj.ng form.v

5e¢3. Theorem: - . L_et T ;De a bourided operator _on_X. Tlfxen‘f_ﬂ is well=-bounded
- if and only if there exist a éompact interval J = [a,b ], a constant K and

a family {E(s) i s ER} of projections such that

(1) 1EG)]] < x | . (ser)
(ii)- E(s) =0 (s <a), B(s)=I (s »b)
(iii) B(s)E(t) = B(t)E(s) =E(s) = (s <%)

(iv) lim, _,é* E(t)x = B(s)x

t—>s-

(vi) T = S‘)@s ae(s).

Proof: Suppose T is well-bounded Then the result follows from Theorem 2 and

(v) lim ‘ E(%) 'exists in the strong operator topology.

Theorem 4,3. Conversely, let {E(s) : seR}\ ’pe a family of pcrojegtions
satisfying conditions (i) —(vi), Then EeE(J). For any f in AC(J), 'we define
R |
Then, the argument in the proof of Theorem 4,3 ((3 )——}(11)) shows that ‘{/
is an algebra homomorphlsm. Moreover, by (vi),
\‘/(s —>s) = T ~ and

Y (s—) = ‘(@1 di(s) = I,.

Then, we conclude that

V(p) = fl}(s) aE(s) = P(?)

for any complex polynomial p,



Hence, it follows from Lemma 1,6 that

()] = 11 §e(e) asta)] |
¢ sugl[5()1] 1]12]]]
¢ wlblll.

Thus T is well-bounded.,
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CHAPTER IV:=-

CN WELL=-BOUNDED AND SCALAR-TYPE OPERATORS: =

7. Some relationships between well;bounded and scalar-type operators:-

Inrhis section, we shall use various p?operties of scalar-type operators,
prespectrél operatars‘and spectral operators, For the definitions and properties
of these classes of operators the reader is referred‘to {3) and (6).

1.1, Definition:~- Let T be a well-bounded operator on X, 4 deéomposifioﬂ of
the identity ~{E(§) : séﬁR} for T is said to be of bounded variation if and
only if the funct.ion (x,E(‘)x*> is of bounded variation on R for everyxx
in X and x¥ ip X¥*, _ , _
1.2: Theorexfx:- Let T b“e a bounded operatar on X and G.(T)Q R, Then the
following conditions are equivalent: |
(i) T is a Wel}-bouhded operator with a decompqgition of ‘the iden@?ty of
‘bounded variation, | .
(ii) There are a compact interval J and a consté%tp4 such that
[12(D] < 4t supg|p(e)] ~
for every complex polynpmial P.
(iii) T* isa scalar-type operator'of clgés'x; If (i) holds, then T is a
uniquely decomposable well-bqunded operatar, )
Proof: We prove the second statement of the theoreﬁ.first.ASuppose that
{E(t) : tc&R} is a degoppqsition of the identity of bounded variation for
T, Then from Theorem I.3.3? we deduce tbat
(T )x,x*) = f(‘b)(x,x’_ﬂ'} - j:(;c,E(t)x*) fr(t) at ( feac(d) )
for each x in X and x* in X*¥, .It follows that if Wx;x* is the func’qion
constructed in Lemma I.2,6, thén. . o .
(t) = <x,E(t)x*) (ae.on[ab] ).

Now, since <:F,E(‘)x*>> is in BV(J), its discontinuities are at most countable.

w
X X%
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Hence it is equal a,e. to a right continuous function u__, in BV(J) and so
, , .
| Uy xk(t) Ty x*(t) A (ae.on [an] ).
It follows that the 1ndef1n1te integral of w x;* is differentiable on the
X, S

right, w1th r1ght-ha.nd derlvatlve ux,x* at ey_ery.poin’c of [a,b), Hence>by
Theorem I.4.3>?3 is unlqueljdecomposable. Moreover, by condition (v) of .
Definition I,1.2, . . ’ N ‘
u, x*("> = <x E(t)x*} (tela,m)).

Since the function- <x,E(%)x‘*> is constant on the intervals (~o0,a) and
. [b, oo), this functio_n is contimuous on_th‘e right at every poinf of R,

We now prove the first Statement of the theorem. Suppose that (1) holds.
Then we can find a decomposition of the identity {E(s) : s-éR} for T, a
compact interval J = [ a.,‘b]' and a constant K such that ,

E(s)=0 (ssa), E() =1 (s3b), lB(s)] ] s X (seR )
and for every x in X, x* in X%, the functi&n {-xV,E(')x*}: . is a right
continuous fux?ction of bounded variation on R, Létj Z be the algebra of
subsets of (a?b] expressible as a finite dis j‘oint um_‘.o"n‘ of intervals of the
form (ai,bi ]. We define /u on 2 as follows. . , _

| ) /(,( U(a b])=‘= {E(b)-E(a)} .
It is easy to verify that /AA is well-defined and finitely additive on Z .
For x in X and x* in X% - : :
T <%, /u(O (a,sb, ])x*>| LE_“.: |<x,(E(bi) - E(ai»x*)l
< var (x,E(')x*> < oo .
Hence by the uniform boundednessA principle there is a constant M such that
HRCE] < u (6> ).
Now, .
| o JUBed | s [Ixl] ] (Se 2,
ard so & from Lemma III,1.5 of (6) (p.97) ,grm
var < 0e> < o |lxl] |levl ]
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Let p be am} complex polynomial. Then Lo '
Co(T)x, 0 = p(b) (x, x*) - S {x, E(t)x*) p'(t) dt
* = p(p) {x,x¥) - S (x,E(8)x#yidp(t)  (xe€X, x*CX*).
On 1ntegrat1n,3 by parts, we obtain |
& o(T)x,x¥y = ﬁyp(t) a {x, E(t)xw> (xeX, sheXxx ),
| <p(@x,xx> | ¢ supy|p(8)] var (x,E(- )x%>
g4 x| []xt|| sup |e(t)];

[1e(T)]] < 4 m sup |p(t)]

N

for every complex polynomial p, Thus (i) implies (11) Now suppose that (i)
.holds. By the Weierstrass polynomial‘ theorem We may extend.the map p ;—-}p(T)
in the obvious way to get a contimuous algebra homomorphism of C(J) into L(X)
such tha'b _

Hf(T)“ 4 M sulef(t)l
and so,by Theorem XVII.2.4 of (6) (p 2184) (11) implies (111) Now suppose
| that (iii) holds, Then by Thecrem 5.2 of.(3) (p.306) T% has a uniqué resolution
of the identity, ‘%() say, of class X, Let J(ah[‘.av,b:[ be a compact
interval containing S (T) such that a 6_('1‘) and let p be any complex
polynomial, Then if H%( )| ¢ M, we ha.ve B

[o(m) ] = [a(T)|| < 4 M sup;|p(t)] 1
oo =4 M supJ|P(b) - _f:& p'(s) ds|

(40)

Hence T and T* are well-bounded, Now, lét fe& AC(J) Then by the Weierstrass
polynomial theorem *&here is a sequence f P of polynomials converging
'unlformly to.f on J. The 1nequa.11ty (40) shows that { D (T)} converges in
the norm of L(X) to an operator f(T) and, moreover, f(T) is independent of
the approximating sequence chosen. Also the map fr—£(T) is multiplicative

and

Hf(’l’ﬂ-lv s4 M snliJlf(t)l <4mlle]ll] (feac(l)).
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Hence by uniqueness §1ause in Lemma I.1.1, “the map f~—>f£(T) is the
homomorphism of AC(J) into L(X) described in the statement of that Lemma.
Define _ . N . A

B6) = Y (o] (rer)  (a)
We shall show that - { E(t) ten} ~is a decomposition of the identity of
bounded variation for T. Let x€X and x¥*e X*, Since ’g (+) is of class X,
it follows that | o S

Lim <x,E(t+h'-)x%> = lin (x,"g(.(-oo,ﬂ%l]))
BRCIE (CERRD)

. = (x,E’J(t)x"*)_ o (tQR),
Henc;e (x,E(-)x*) is everywhere right-continuc;s. Moreover, since o
{x, é/( )x*> is; a bounded countably additive set function, by Lemma III,1,5
of (6), we have ' . .
var (x,%l(')X*) s 4 M x| |l

Hence var { x,E(° )x*> < 4 XM | lx| | |]=x%*]].

P

Thus the function CxyB( e )x) is of bounded variation on R. The conditions
(1), (ii), (iii) of Definition I.1.2 follow: immediately from (41).
Conditions (iv) and (v) followsfrom the fight-confi’nuilty of < x,E(«)x*> ,
If renc(d),

(f(T)x,x*}

X E(TH)x% ) = jif(t) a { %, E(t)x%>
£(0) {xpx¥ ) - f;(:c,E(t)xf*}» ar(t), (42)
on integrating by parts. In particular, let £(t) = t; we have
Txy, x> = b {x,x¥) —'ﬁ(x,E(t‘)x;%) dt.

It remains to prove (vi). Fix x in X and cbnsider

Au = fu(T)x,

where

s

b . .
1 (s) = f u(t) as (e 1'(2),
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A is clearly bounded and linear, For u in L1(J) and x% in X%, we have
<Ag,x%> = <fﬁ(T)x,x*>
< x,fu(’l‘%)x*) _
fz £ (v) d(x,E(t)x*)
b
PG E(8)x%)> u(t) at

A .

<u,A’>bc*>

n

using (42) and then integrating by parts, It follows that the map A% from X* 4
into I?(J) is given by A . .
bt = Cx,E( ')x*) .

Since A is continuous,'A* is continuous when X;X' and LOO(J) are endowed wj.th
their weak¥*~topologies, This completes the? proof that (iii) implies (i). _
1.3. Theorem:~ Let X be weakly complete , and T in L(Xx) satisfy 6(T)cR.
Then the followiﬁg three conditions are equiva.lent. |

(1) T is a well'-bounded oberator with a dec/bmposition of the identity of
bounded variation, -

(ii) There are a compact interval J a.nd a ;:onstant M such that

[1o(?)]] < 4 M supy|o(t)]

for every complex polynomial p. |

(iii) T is a sca]_.a.r-type épectra.l t;perator. -
If this is the case, then T is decomposable in X,
Proof: The equivalenrce pf‘ (i) and (i) was shown in the previous theorem.
Now, assume (iii) holds. Then there is a resolution of identity ~?(-) of
class X% such that . ' .

. _ T =f6(ﬂ t%(dt)

Let J = [_a,b ] be a compact interval containing 6—(T) and p be a.ny complex

o) - jf: (t) Y (a0

polynomial, Then

and
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: L .
| ¢n(Tx,xx>] = | Lp(t)%(dt)x,x*}l
< 4 supg|p(e)] (|l [fa]]
where M is the constarit such that II%(')H & M. Hence
CHeMI s 43supgla(e)]. o |
This proves that (111) -—> (11) Now assume (11) holds, By the Welerstrass
polynomial- - theorem ve may extend ﬁhe map p._.?p(T) in the obvious way to get
a continuous algebra homomorphism. of c(J) ihto.L(X) such that
| (D] 41 supJ|f(t)|
Then,since X is weakly complete, by Theorem XVII.2,5 of (6)(p.2186) (ii)
implies (iii). | . | o
1t (i)fbolds, then by Theorem‘ 2, T is uniquely decomposable and hence‘
by Theorem II.1,2, T is @ecomposable in X,

1.4. Theorem:~- A scalar-type spectral operator T with G(T)QR is a..well-

7

bounded operator of type (B)," |
Proof: Let “%() be the resolution of the identity for T. Then T¥* is a
scalar~type 'operator with uniQue res(alution of the identity *(') of class
X, by Theorem 3,11 of (3) (p.299). Hence T is well-bounded with unique
decompos:.tlon of the identity {E(s .sCR} g:.ven by

E(s) = ?*((-aoﬁ:” o seR ).
Let P(s) = %((-@o,; 1), then F#(s) = E(s) ( s€R ). Hence T is

decdmposable in X, Let xeX. For any strictly decreasing sequence ftn.t

(respectively, strictly increasing sequence {snt ) of real numbers
converging to t (respectly, to s;), then by using the countable additivity of

V%('), we have

}l:‘;u;o(F(tn) - F(t))x = 1im §{((t t ] )x
= ln g(%((taﬂ,t ])x= .

Thus lim F(t )x = | F(t')# ( xex ).

N-700
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Siﬁce U (—OO,S ] = (-OO,SJ ’

i

4

[

8
™

= lim 9((;“'sn T)x

lim F(s )x . (xeXx ).
n->0

]

Hence .

lim F(sn)x= %{‘(-w,s :I}x . | (xex ).
It follows that, in the strong operator topo'logy, _':1.5_.7m$+F(’c) S\F(s),
_tlér‘rql‘ Ft) = —g/( oo,s] p.and so T is well-bounded of type (B).

In order to prove further relatlonshlps between the classes of scalar-
type operators and Well-bound.ed pperators we requn';re(itbe concept of the
single-~valued extension property. Let ’I‘(—':‘L(X) and x€ X, An X-valued function
f is called an analytic extension of (fI~T)-1x if and only if it is defined
and analytic on an open set D(f) containing F(T) and such that _

(F1-1)£(F) = x : 5 e ().
It is clear that for such an extensmn . . | _

) - (Fr-m ¥ ef.

1.5, Definition:i= The function (‘fI ~ T) x is said to have the single-valued
extension property if for every pair f,g of such extensions we have
f(‘f) g('f) for all 'f in D(f){\D g) The union of the sets D(f) as f varies
over all analytic extens:.ons of ('fI - T) x is called the resolvent set of x
and is denoted by f’(x). The ;pectrum 6-(x) of x is defined to be the complement
of f(x) in the complex pla.ne_. '

- It is clear that if (TI - 7)™ has the single-valued extension proéerty,
then there is a m.v.cima.l analytic extension x('f) of ('S’I - ’1‘)-1x whose domain
is f(x) Ir (‘fl’ - T)qx has' the single-ya.lued extension property for every |
x in X, then T is said to have the single~valued extension pi'operty. It
follows readily from the definitions that if Te'L(X) and 6(T) is nowhere

dense, then T has the single-valued extension property.



T
We need the following lemmas. v |
1.6, Lemma:~ Let T€L(X) and let Y be a closed subspace of X with TYCY
such that E(T'/Y')‘ is nowhere dense. Then f(T) < f(T/Y),
Proof: If A€ f(T) then (AI -7 )-1 exists as a bounded linear operator -
on X, Suppose on the contrdly that )\é( f’(T/Y). ie. \€6(7/Y), then
(XI -7 )-171 }@Y Since otherwise (){I - T )-1/‘{ is a bounded linear
operator on Y inverse to ()\I -7 )/Y. Hence there is'y in Y and y¥* in vt
such that . | h | |
{RT-1) > 4 0. L 3)
Tt is well-known that theiresolvent function R(F,T) = (f’ I- 7 )71 defined
on JQ (T) is'analytic in )O(T).;Henc?e the f‘ﬁnction defined by |
PCF) = CFT-1)hy)
is continuous on f("l’). It follows from (43) that there is a neighbourhood
¥ () such that . ~ :
D) = ((Fr-1)Tyyxy Ao (Feng(AD.
Therefore, for all f ¢ N?_ (>\) _ ‘
| (fr-r Yy oy,
and hence .f ¢ 6_(T/Y)
Thus N£(>\) C © (T/Y) which contradicts the fact that & (T/Y) is

nowhere dense. Therefore /A € f(T/Y) and hence fme )D (T/Y).

7.7. Lemma:~  Let T, in L(X), have nowhere dense spectrum, Let Y be closed
sﬁbspac,e of X with TY&:Y such -that 6(T/Y) is nowhere dense, Then if yeY
and gx(y),_ EI(Y) denote the spectra of y with respect to T and T/Y,
respectively, we have 6;((3’) = GY(Y). :

Proof: Let yx("?) and yy('_f) be the maximal X-valued and Y-valued analytic

functions satisfying

(1 -7 w§) = v,
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Let R (y) and Ry(y) be the closed subspacesdefined by
R =B {(Fr-20 s Fer@)
R(y) =B {(F1/r-2/1 )Ty s Fefam] .
Since by Lemna 6, £ (T/Y)2 f (1), we have
R(y) 2 Ry(y). - . (44)

Let  fiy(y) anda  fi(y) be the démainsof definition of Yx(_f) and y, (T)

1]

it

respec’civ‘ely. Sinbe a Yiva.lued i‘unction is- aiso X-valued the maximality of
fx(y) implies that )OY(y) C fx(y) Now, by hypothesis, f(T) is dense in
the plane, and there is therefore‘ a sequence %f(‘l‘) converging to each point
Px(y) Since yx(_f) is analytic we have yx(‘f) &R (y) for every 'f in
Jox(y) Hence . N )
R(y) =55 {5 (§) : FeP )} .

-Similarly, ﬁy(y) = S‘p{yy('f) P Fe fY(y)} .
Since fY(y) < }OX(y)’ we have
R(y) & R (y) - (45)

From (44) and (45) RY(y) = R (y), and so yx(?) is a Y-valued function. By
the maximality of )OY(y) it now follows ;bhat Fx(y) Q}QY(y). Hence

B &) = Pyy)y Byly) = 6(n), ana 3y (F) = 3 (F) (5 € £, ).
7.8, Lemma:- Let T, in L(X), have the single-valued extension property.
Then the spectrum S(x)fbf x is void if and only if x = O,

Proof: If S(x) is void, then the hypotheses imply that x(‘f) is everywhere
define'd-gingle-va.lged, ‘and hence entire, By Liouvillg's theorem, x(‘f) is

constant, Moreover, the series’
R

-1 ©o
<?I~T>’_= bt

converges in the uniform operator topology prov1ded that l’f[ sup{ PNE >\G€(T)}.

Hence, for xje X*

i‘m =vaim (€ .-.'-1x.
Jim (Al -t ((F1- 1))
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R,

- {x,x% {Tx,x%*)
A

=0 , 4
Thus <x(')f),x*> = 0 for all °f and all x¥¢ X*, It follows that x('f)‘ =
and thus x (‘fI - )x(f) 0. The comverse is obvious,
) Before proving our next result we observe that if TEL(X) and G( )CR fpleﬂ
and_ so T% has'the_ smgle-va.lued‘ extension property.
1.9. Theorem:- Let T be a well-bounded eperator on X, and let {E(s) s C—R}
be a decompos1t10n of the 1dent1ty for T, Then A _
E(S)X*={ € X% 3 6(}’)(:(-0053} . ‘(seR ).
Proof: It was shown in Theorem I,2.4 that for every s in R, E(s)X* is a closed -
subspace of X¥ invariant under T;* and -this subspace does not d'ependL on the |
particular decomposition of the identity chosen, Since by Theorem I.2713
_ there is a decomposition of the identity for T which commutes with T¥,
there is no 1ess of generality in assuming that T#E(s) ='E(s,)T* ( seRr ).
It was shomn in Theorem I,2.4 that g(T*/E(s)Xl*) C (=o0,s ] and in the
course of proving Theorem II,1.1 that G(T/(I* - E(s))x%) ¢ [ s,09). :]:_.e*ti
yEE(s)X* and Y = BE(s)X%*, Then by Lemma 7
S@&) = b(y) & Slrx/m(s)x¥) g ( oy ] |
where €Y(y) denotes the epectrum of ¥y wii':h‘r:'especi': to T*/E(S)X*, so the‘t
4 E(s )x* c {y(—;X* : €(y) C (-oO,s ]} R
Conversely, let 6(3’) C (-oo,s] and 0 > O Then since
E(s+0)T# = T*E(s+e)
we have _ .
(F1* - o )( 1% - B(s+0) )y (f)
= ( ¢ - E(s+0))(FI¥ - T*)y(jf)'
= ( I* - B(s+0) )y

so ( I¥ - E(s+e))y('f) is a.n analytic extension ef (‘fI* - T ‘)-1:(I* - E(e+9.))y

~



to f(y). Hence'f((‘I* - E(s+6))y) 2 f (y) sosthat
| B(( - 5(s+e))y) € 6(y) @ (-o0,8 ],
Let Y = { ¥ - E(;+e)} X, Then, by Lemma 7
6 (( 1% - B(s+0))y) = ©,(( 1# - B(s+6))y) o
- C Sr#/{rx - B(s+e)] x¢) ¢ [ s+6,00).

Hence 6(( I* - E(s+6))y) is void and so'.by Lemma 8,-E(s+e)y =y for all 6 > O,

Therefore)by Theorem I,2.4, x¥*C E(S)Xf". Thus

2e)x - {yext: € c (~ogs]]
apd the proof'is completg. . | » _
1.10. Theorem: - ', Let Ty in L(X),‘ be a well-bounded operator which is
decomposable in X. Then if {F(s) :' seR} is the family of projections on
X whose ad;]'oints form the unique decomposit;oh of the identity for T, we have

F(s)X = _{_x;-;x : 6(x) ¢ (~o0,5 ] } ~ (ser).

Proof: By Theorem II.1.1, we have G(T/F(S)X) c (-oo,s] and
G(T/(I - F(s))X)Q[ s,00),for all s in 1'2.-Moreover, _sincé_ F(t)F(s) = F(s)
for a1l s < t, wechave F(s)X QJCQS F(t)X. On the other hand, if F(t)x = x
for 211 t > s, then fér any x¥ in X¥, the fupc‘i;-ion <F(t)x,x*> = <x,x*>
is constant on (s?oo), It follows from Theorem IlI.1_.1(v) that

<F(s')x,x;)('> - '(x,x*.>

for all x* ¢ X*, Hence ’F(s)x = x, Thus.

H

F - N '
(s)x 1y F(EX.
The argument of Theorem 9, then sfoiceS' to establish the present thegrem,
.11, Theorem:-  Suppose that T, in L(X), is both a spectral operator and
a\well-boun_ded operator. ‘Then"l' is a scalar-type spectral operator.

Proof: Let () ©be the resolution of the identity for T, and let

S = fS'(T) sﬁ(ds).
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Since T is well-bounded, by Theorem I1.2.13, _it possesses a decomposition of
the identity {E(s) : s(:R} with the following property: if A€L(X) and
AT = TA then. - » _ |
3E(s) = E(s)a* (seR).

Now ’by Theore"m 9, _ . ,

Be) = {yexs: B@C(xas]}  (sen).
Also by Theorem 3,11 of (3), T* is a prespectral operator on X* with unique
resolution of the. identity —9%‘( .) of class X. Hence by Theorem XV,3.4 of (6),

#(-o0,s 1)x* ={ yex*: 6€(y)c -oo,s]} :
‘Since -%((-oo s ])T = 9((-00,5 1), we have
. #\‘((.-oo,s 1)E(s) = B(s)&#((~00,s ] ).
Therefore ‘?‘Yf((-oo,s ]) and E(s) are commting projectionswith the same
range and so are equal, It fo]_.lo_ws that for ail_x in X and y- in X%, the
function <X,E(~ )y) is everywhere continuous on the right and of bounded
variatq;on on R, Since -tE(s) : s@R} is a decomposition of the identity
for T , we have ’ ‘ L i .
<Tx,y> = b{x,yy - J&<x,E(s)y> ds (xe X,y(—.X*) (46)
where J = [ a,b] is the corﬁpact interval such that _
E(s) =0 (.s <a) and lE(s’)=I (s 3_; ).
Then (x,E(s)x*} = O whenever s < a. Hence (46) can be rewritten as
follows: o ‘ Lo
{Ix,y) =iz, - £ {x,B(s)y) ds
for any 6 > O On 1ntigrat1ng by parts, we obtain
»(Tx,y} = Ja_es d<x,E(s<)y>. o ( X &X, yC_X*)

However, by Corollary 1 of Theorem I.2.4, &(T) € [ a,b J¢ [ a-6,0 ], and

S0

{(sx,yy = fa.s /L((ds) = J s a{x,E(s)y) ( x€x, yex* )

a-8
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where /A(') = <’?('>x,y> . It follows that T = S and this completes the
proof. _ : . . ..

1.12. Theorem:~ Suppose that TA, in L(X),. is bo{:h a prespectra.l operator of
class T and a well-boupded operator decomposable in X, Then T is a sdalar- :
type operé.tor of classT. o _ ‘
Proof: Let {F(s) : sc—R}ﬁe thca"famiiy of projectigns on X whose adjoints
form the unigue decoinpositipn of the identity for T, Let_ v

' B(s) = P¥(s) - (ser ).

Let. '?() be the r.ésolution. of the identity of class T7fo'r 7, and let
S = J;‘( s as) .-
-

 Rex-fxex: 6() C (<081}  (ser).
Also by Theorem XV,3.4 of (6) ‘ S
_‘gf((-oo,s])x - {xex:6(x) ¢ (-o0,8 1] (seR).
Now, ((-o0,s ]) commtes with T and s by Theorem II,1.%(iv),
Y e0,010Gs) = o H((-00,8 1) (ser ).

Hence 9((-00,8_]) and F(s) are commting projectiéns/ with the same range

By Thecrem 10,

and so are equal, It follows that for all x in X and y_in T-' the function
4 F(f)x,y> is everywhere contimuous on the right and of bounded variation
on R. ‘Since {E(s) sevR}"’ is‘a dec;omposition of the identity for _T; we ha.vg

{Tx,y> =1 <‘ Xy¥ P - ji(x,E(s)y) ds

= b <X9Y> - K(ECS)X’Y> ds .
Without loss oi‘ generality we may assurﬁe that.E(a) = 0, otherwise we may
replace a by a-6 (é,ny 6 > 0) as shown in the proof of Theorem 11, On
integrating by parts, we obtain- - |
(Tx,y) = L s alF(s)xy) .. (xex,yeT ).

However by Corollary 1 of Theorem I.2.4, 6(T)C [ a,b ], and so
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<Sx,y> = f& s/(,L(ds? = as d(F(s)x,y> , ( xeX, yé?)
where /J(‘) = <’%(')x,_y> . Since T' is total, S = T, and the proof is
complete, ' '
Ve conclude this section by giving an example of an operator which is
both prespectral and well-bounded, but which is not a scg.larftype opergtor.
1.13. Example:- Let X be the complex Banach space L°°[ O,ﬂ] () 1! [0,1]

with the norm defined as follows: if fe& L [:,0,1\] -and geL1[O,1 ]

Heshll = Nellg + ) la(e)] .
Define operators S,N and T on X by _ _ _
S : {f(t),g(t)} —_— {tf(t).,tg(t)} (telo,m] ),
Nz {f(t),g(t)} —ﬁ{ 'o,f(t)-f (tel[o0,1] ),
T = S + N,

We have ;hown in the Exampl_e I.3.4 that T is well-bounded operatqr.
Moreover, it is easy to verify that'S is a scala:p-type opera.tor‘on X with
a resolution of the identity E(-) of class L'[ 0,1 ] @ L[ 0,1 ]

given by ' ‘ - o

B0 + ] 2(8),6(8) — { Welw)e(e), (wle(w)} (T¢3,)
where EF denotes the s.-algebra of Borel subsets of & complex plane,
Observe that E(T)N = NE(T) (T_eif)' and so by Theorem 3,5(ii) of (3) (p.296)
T is prespectral on X Wi*:b/h a resolution of the identity E(-) of class

L] [ 0,1 ] ® ™[ 0,1 ]_. ‘T =5 + N is the corresponding Jordan decompositibn
of T, Also T is ‘not a scalar-tyi)e_ Qperator; for, if this were the case, then
since G(T) =[o,n ].,. T would have 4unique Jordan decomposition T + O by

Theorem 5.2 of (3) (p.306).



2. A counterexamples=-

In the last section, we have shown that a §calar-type spgctral operator
with real spectrum is also a Well_-bound;d. operator of type' (B). We shall show
that the converse is not true. The following counterexample is due to Dowson
and Spain ‘(5). _ . ,

1
- = 7,
q

1
Let 1 <p £ 00 and —i)- +

Let Z be the locally compact abelian group of integers with counting
measure, Let Z” be its dual group, the circle, which is isomorphic to the int=

erval [ 0,2n ] with its endpoints identified, Haar measure on [ 0,2n ] is

A,

Let B be the Hilbert form defined on Lp(Z) X Lq‘(Z) by

B(f;K)' m_oo éo E(m)A(n

_ n=-0 men
where the dash implies the omission of the terms in which m = n.

Tt is well-known that there is constant Bé, depending on p such that
* &8 Do/ "
| > 2 L——(?M“) sBISILIAL. (a7
h'l:-Oo n—-OO
We need the 10110W1ng result which is due to Steckln (15)
2.1. Theorem:- Let f be of bounded va.ria.tion on [0,211:] with £(0) = £(2n).

Define

. : I :
: _ , -int
Ck = -2-5 Jo f(t) e at .

Then the map F: 'f — C *f is a bounded linear operator on LP(Z) where

c =. iick’] and ¢ % f (n) = m- c.. m‘f(m)

Proof: Let A € 1%(2) . Consider
. N

n, - 5 3o nm-g(mb\(n)

. m=-N N=-N '

- o S @A + DU mf(no\(n)
mz-N Nz-N :

where the dash implies the omission of the terms in which m = n,
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Since N M/
| TN' | = mzv n:ZNcn m’f(m)k (n) |
N f -1(n-m)t (m))\(n)
T E ay ey |

1

PR .>(§Z’*§(m>k('ﬁ> (rilama) d‘“v"',

W= e

On integrating by parts, we ha.ve ’ ( )
N ~i({n~
oy |- fr _f(m)mn)eln'mt)df(t)l |
01n-q=-~ SRt S

L supj & Efle) ) ) 7 | v, [0,en )

E Acloyi) " =N n=-n p-om

B

¢ 52 var(£,[ 0,2x T, IIAH ( From (47) ).

Hence

SN H‘fll IIXII +—;var(f[02nj)llf‘ll IPNIN
= (|o,| +—2—p—var(f[02n])|l"§ll IPNIP

Since the right-hand side of the above inequality is independent of N, we let

N~ p0,and ob‘taln

IZSonm‘fm))\(n)l (o] + —Bvar(f[oznj) IFH AL,

.. W-wn-.m
iLe. IZ(c~f)(n)>\(n)I |
s oyl +_~var<frozn]mj’n HXII

for a11 A€ LY(2) , which implies that F(F) = ¢ *'j’ € 1%(z) and
. . B . . Pl

RN s el + FRvars,[0,22]) 11T,

Hence F is a bounded linear operator on LP(Z) with

HEI < e | + —P-var(f [0 211])

Now, let ([ : LZ(Z‘\) ——)LZ(Z) be the Plancherel extension of the

Fourier transform a.nd I_Let AN be the inverse of T

(T = 5 (5w o™ a6 (nezzen@).  4o)
o

Then,
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If x, y € LZ(ZA), then by (48) and Parseval's formula, we have

Pl -
L J x(t)y(t) ¢ 1 gt
T Jg

Tl (n) -

§ 1 T’ -imt 'l N int  -imt
= T )(m) L(y)(m~n)
: : ms-po :
Hence ‘| (xy) = T(x) * (y) where % depotgs convolution.

]

Let ee

egln) = (1 - ™) jomni  (n#0 ). Thus eeé 1%(z) (p>1).

TX[O,G] | ( 95'6 < 2151 ). Then ee(O)

o/2n and

' Moreover, it is easy to verify that the set i eq i 0 <8¢ Qn} is
dominated in LP(Z) (p > 1) . o
Let j be the 1dent1ty function from I:O 2n] on‘to [0 211_], i,e.
i(t) =t (te[0,2n]) eand let 5 - TJ.. Then vé(o) =% and

é(n) = ._:1_ (n #0), The Hilbert transform H is defined on LP(Z) (p > 1)

by

H‘f ‘? * (suuay 1/n,..., 1/2 -1,0,1 1/2,....,1/n,....). (49)
It follows from Theorem 1 that E(\e) : f,___, ey * -f (0 <0 < 2n)
defines a bounded linear operator on LP(z) (p > T)Va.nd

B ¢ 50+ B/ox (0<0g2n),
:oe[o2n]f =K<1+3/fom,

Hence sup {||E(e)]
Now, let p be fixed in the range (1,2). Let 0 < 0 ¢ ¢ ¢ 2 and let

tel’twe1?(z). Then

| B(o JE(6) = o, * (s, *F)
LXLO L<\([OQJ'§>
L0<[o,«>JXEo e]f)

X[ 0, e]‘f) .
e * -f = E(e)j’.

"
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Similarly,  E(0)E(e)§ = B(6)F . In particular, £%(0) = B(0). Hence

{E(e) : 056 ¢ 2‘71} is a uniformly bounded family of projections on LP(z).

Since :
1 ' ‘ 2 L
’|| eg - e(.D ||2 '%(EE foli)c[ 0,9_j$t) - TX:[.Q’¢.](t) | < at )
| | - (lewol/on ), ,
we have 1im(p__>e e(p(n) = ee(n) N ( nez )_.

By lLebesgue's dominated convergence theorem,
1i e ~e "
m oo |l %2 |1,

For'??E.Lp(Z) and n 3 1 define

?n = ,0 ?(-n) -f(-nﬂl), .. ,‘f(n..n) f(n) o,.”

75 Ceg = ol < HCF =50 % g = o 11, 11, 7 (o - eI,
s HCF-%,) mu? ) % el
o+ lrg?n (eq = eI,
c2e [1F-F 00, + [Tally leg - eIl

Then

Hence, if 0 < 6 < 21
E(9+)= lim (pﬁ9+E(¢) = E(G)?
E(e-) = 1im , , E(e) = E(6), .
E(0+) = B(0) = 0, © B(2r-) =E(2n) = I,
the l_imits. being defined in the strong operator tép’ology. Therefore, by
Theorem III1,5,3 4
T = f t dE(t)
: [oxx}" .
is a well-bounded operatar of type (B).

Let (t, : k = 0,7,....,m) be a partition of [ 0,2n ] and let p be any.

complex polynomial, Then for every ‘f in L¥(2),
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K%:'_p’c)[E(t)-v‘(tlﬂ)]“f
=T§§(’°)[X[ot] X[OtkTJ "3:}

Therefore ' _ p(T)'j' = T(f?) N ] '(50)
Inmmmm@, T?=Th§)=é*?;tmgT=nIfﬁ:

Now? suppose that T is a scalar-type spectral operator, Then by
‘Theorem 1,3, there are a compact interval J containing.é;(T) and a constant
M such that

Hp(2)]] < 4 ¥ supy|p(t)] (51)

for every complex polynbmial p. From (48) and (50) we obtain
1 (37 ~int
(2(m)ep () = 5 [ o(e) T ax (52)

for every complex polynomial p, Let f be any complei fgnction continuous on
[0,211]; then

£(7T =Jv f de( ¢, -

(1) o1 (t) aE(+)
is a bounded linear operator on LP(2Z) and from (51),(52) and the Weierstrass

polynomial approximation theorem,

(2(2)e,, (o) =—~j () I g

This gives a contradiction, since not every cqmplex function ?ontinuous on

[ 0,2n] has LP(z)-sumable Fourier coefficients (16, V.4.11), We have
therefore shown that if 1 < p < 2 then T = nI + il is well-bounded but not
scalar-type spectral, Now consider the case‘2 < p <oo and lét ﬂ/p + ﬂ/q ='
Then 1 <q < 2 and from (49) ~H* is the Hilbert transform on pq(z), Therefore
T =qI% + i(-H¥%) is'well-boundéd but not sealar-type spectral, Since

[1p(T)]] = |lo(e)] ], it follows from Theorem 1.3 that T is well-bounded but
not scalar~type spectral, We observe at thzs point that T is not even spectral

if T <p<2o0r2c«<np <co, by Theorem 1.4, Finally, if p = 2, then



oo 00 —_— o
<E@F,\) - Z 2 eg(nn)Fn) Aln)
'g’(m) e (m-n) Aln)

“P'w M=-00
= T s0A) .

Hence the projections {E(G) : 86¢& _[O,2n]} are ‘self-ad_j‘oin‘t and so T is

self-adjoint. Hence in this case T is both scalar-~type spectral'a:nd well-

tounded,
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