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SUNMMARY

It has been recognised since 1925 (Eddington: "The Internal
Constitution of the Stars" (C,U;P; 1930, », 285) that von Zeipel's
paradox for uniformly rotating stars could be regolved if a large~
scale circulation were set up in meridian planes, Investigations
since then have shown, amongst other things, that the velocity of the
circulation currents is inversely »nroportional to the density, Thus,
even though the currents are very slow deep inside a star, they become
very fast near the surface, If simple, zero density boundary
conditions are applied at the surface, there is a formal singularity
there,

Although the surface layers of non-rotating stars are now
understood in considerable detail, the same cannot be said for
rotating stars, It appears that a detailed theory of the surface
layers nmust take circulation into account, The main purpose of thie
thesis is to develop such a theory, with particular emphasis on the
remcval of the surface singularity,

This singularity must arise from the neglect of some
important physical factor, It has normally been assumed that viscous
and inertial forces are negligible, and this assumption must clearly
be questioned when the theory predicts very large velocities;
However, a preliminary investigation by the author (Smith: Z;fur
Astrophys, 63 166 1966) suggested that this assumption is valid

arbitrarily near the surface if the rotation speed is slow enough,



An assumption which is certainly invalid whatever the rotation speed

is that the photon mean free path is short near the surface, That
assumption is imolicit in the use of an equation for the radiative flux
of a form normally used only in the theory of stellar interiors,
Accordingly, a theory of the surface layers has been developed in this
thesis which uses the non-local radiative transfer equation appropriate
to the theory of stellar atmospheres,

It is found that, although the use of a non-local transfer
equation does remove the formal singularity at the surface, the
circulation speeds near the surface are still unrealistically large,
When the assumption that viscous and inertial forces can be neglected
is re-examined, it is found that, although inertial forces do become
important near the surface, these forces are not sufficient to damp the
speed of the flow, However, the circulation violates a stability
criterion based on the Richardson number (see, for example, L, Prandtl,
Lissentials of Fluid Dynamics, Blackie 1952), and the flow becomes
turbulent in a thin surface layer, Turbulence sets in when the flow
speeds are of the order of the speed of sound, and turbulent viscosity
then acts to prevent the speeds from further increasing, A
qualitative mocdel of the turbulent surface layer has been developed,
on the basis of order-of-magnitude estimates, Although no detailed
prediction is given for the emergent flux, it is concluded that the
commonly uscd von Zeipel gravity-darlkening cannot be correct when

a turbulent layer is present,
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In Chapter 1 of this thesis a general survey is given of

w

previous woxrit in tie field of rotvating stars, with particular reference
to the problem of meridional circulation, In the first section of the
chapter some relevant observations are discussed; in the second scection
a discussion is given of the theoretical results which led to the
formulation of the present problem,

In order to make the problem tractable, it was necessary to
male various assumptions and simplifications, These are discussed in
Chapter 2,

The interior model adopted is thatv of Roxburgn, Griffith and
Sweet (1965), These authors did not discuss the problem of meridional
circulation, and the first stage of the present investigation was to
derive the circulation in the outer layers of their model, “his work,
which has been published (Smith 1966), is described in Chapter 3,

‘"he medel described in Chapter 3 is not realistic, since the
transfor of radiation is not properly itreated, In Chapters 4 to 6 a
model is devcleoped which does give a proper treatment of radiative
transfer, but vhich is bascd on the assumption thwet viscous and inertial
forces are neglicible,

It is found in Chapter 6 that the flow becomes turbulent near
the surface, The cffect of this turbulonce is discussed in Chapter 7,
where a qualitative model of a turbulent layer is developed, with

nm

particular reference to conditions at the surface, he final model is
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summarized in Chapnter 8,

The work in Chapters 3 to 8 of the thesis was done by the
author, with thc exception of section 3 of Chapter 4, vhich is a
discugsion of various well-lmon methods of solution of the transfer
cquation, end Chapter 5, which is mostly a« presentation of knowm theory

in a form suitacle for use in whe present groblem,

The work for this thesis was carvied out while the author was
a rescarch student, and later & nember of staff, in the Department of
Astronomy in the University of Glasgow, One year of the rescarch
studentshin was speat in the Department of Apnlied IHathematics and
Theoretical Physics in the University of Cambricge, and the author is
grateful to both Universitics for »nrovision of facilitics, He also
wishos to aclmowledge the receipt of a grant from the Sciencc Rescarch
Council for the period from October 1763 to October 1966,
nleasurc to thank Professor P, A, Sweet for his
constant guidance and encouragcment and for time spent in velueble
discugsion of the problem, 1lie author is also very grateful to
Professor L, Hestel, vho supervised him while in Cambridge,

Finally, the author wrishes to record his thanks to his wife

for invaluable heln in the preparation of the typescrint,
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CHAPTER 1

Introduction

"Therefore, seeing we also are compassed about with so great
a cloud of witnesses, let us ,,,, run with patience the race that is
set before us, .,."

The New Testament, Letter to the Hebrews, Ch,1l2, v,1,

I Observations

1 ,Rotation

Tt has been known since the time of Galileo (1612), who
recorded the motion of spots across the Sun's disk, that the Sun
rotates about its axis, VWhen it was realised that the stars were
bodies similar to the Sun, it was reasonable to suppose that, in
general, the stars also rotated, However, since a star does not
present a visible disk, evidence of rotation is not so easily or
directly obtained as it is for the Sun,

The method of measuring stellar rotétional velocities
appears to have been suggested first by Captain W, de W, Abney (1877),
although it was thirty-two years before the first successful
measurement was made, by Schlesinger at the Allegheny Observatory
(1909), Abney's method used the fact that the radial velocity,
measured by the Doppler effect, varies across the disk of a star if

the star is rotating, Although it is not possible to measure the

radial velocities at opposite limbs separately, as can be done for the

i



Sun, the variation across the disk wili cause a broadening of lines in
the star's spectrum, sAbney illustrates this effect by supposing the
stellar disk to be divided into three strips, one approaching the
obscrver, one stationary and one receding, The light from the
central strins gives rise to an unshifted line, while the lines
produced by the two outer strips are Donpler-shifted in opposite
directions, In a real star the velocity in the line of sight varies
smoothly over the disk and one brocdened line results, lleasurement
of the width of this line gives the line-of-sight component of the
equatorial velocity of rotetion, The measurecments are comdilicated in
nractice by the need to estimate the contribution of other broadening
mechanisms,; such as turbulence :.nd, especially in early type stars,
the Stark effect,

slthough ibney's method is the one in general use today,
Schlesinger's observation was made in a rather different way, while
observing the velocity-curve of d Librae, wn Algol-type eclinsing
binary, The effect he observed (Schlesinger 1909, 19113 Forbes 1911)
was due to the faint companion's suc.essive obscuration of the limbs of
the bright star at partial eclipse, cuusing the measured radial velocity
to be first greater and then less than expected, He found the bright

star to be rotating in the same direction as the orbital motion, with

& line-of-sight component of velocity of 35 km/sec_

bince  that first measurement, many observations have been
made of stars of all types, The best recent measurements have been

sumnarised by Allen (1963, p.204), An interesting, and still
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unexplained, feature of the results is the strong dependence of
equatorial velocity on spectral type (Fig, 1), first recognised by
Struve (1930), This dependsnce has been confirmed by detailed
éurveys by (among others) Su Shu Huang (1953) and Boiarchuk and
Kopylov (1958), On average, stars of early spectral type rotate
fagter than t-ose of later type, which rotate only slowly, if at all,
The Sun, for example, of type G2V, has an equatorial velocity of about
2 km/sec,

In main sequence siars (Luminosity class V) the division
between fast and slow rotators occurs at about spectral type F, at a
point where eénother division can be made, The structure of stars
varies systematically with their central and surface temperutures,
The central teuperature determines the process of nuclear energy
generation «nd the surface temperature determines the degree of
ionisation of the surface gas, Late-type stars have outer convection
zones (Fig, 2), caused by hydrogen ionisation, which become negligible
at about spectral type T (I1/11,> 1,7 ; StrBmgren 1965, Baker 1963),
" Early-type sturs, whose fully-ionized outer layers are in radiative
equilibrium, begin to develop convective cores at about the same
spectral type (StrBmgren 1965), due to the change-over from the
proton-proton chain to the more temperature-sensitive CN cycle as a
method of hydrogen-burning,

Thus it ap)ears‘that, in general, stars with convective
cores and radiative envelopes are fast rotators, while stars with

radiative cores and outer convection zones (like the Sun) are slow

-3-
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T'Tie dependence of <vesin i> on spectral type is represented
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for stars of the luminosity classes III, IV7and V (after Boiarchuk and
Kopvlovl. The open circles indicate values obtained after cor-
rection for the exclusion of Ap V or Am stars.

for stars of the luminosity class V after correction for the exclusion
of Ap or Am and Be stars.

for stars of the luminosity classes I and II (after Boiarchuk and

Kopylovl). 1UItl)

—uik 6o v

Spectral Type

Fig. 2. --Regions in the Hertsprung-Russell Diagram. Re-
gions C and C' correspond to stars with a convective zone,
D without a convective zone. In region CIl stars present
electromagnetic and equatorial mass loss ; in region OQil,
only electromagnetic mass loss.



rotators, E;P,J, van den Heuvel has given a recent discussion of this
correlation (1965) and has suzgested a sblution in terus of the
magnetic braking of late-type stars by a éo—rotating corona, the
braking occurring after the star his recwched the main sequence; A
recent paper on the solar wind by Brandt (1966) lends some support to
this idea, On the othef hand, Schatzman (1962) favours magnetic
braking in the pre-main-sequence phase of evolution, His ideas have
recently been sunported by Wilson (1966) and by detailed calculations
by Hestel (1967), Other lcess conventional solutions have been
proposed (e,gz. Gough 1966) but no cxplanation has yet gained general
accentance,

Whatever the explanation may be, the correlation enables a
simnlification to be made in the study of the coffects of rotation,
The effects will be greatvest in early-type stars with radiative envelopnes
and small in stars with outer convection zones, which are notoriously
more difficult to treat in detail, Accordingly, it is reasonable to
restrict oncself, in the first instance, to considering the theory of
meridional circulation, onc of the eifects of rotation, in radiative
atmosvheres, The theory is quite different in zones in convective
equilibrium (Biemmann 1951,1958; Kippenhahn 1959,1960,1963) and
convective zones will not be consicdered in this thesis, A brief
revicew of the theory in convective envelopes has becn given by lestel
(1965), The )roblem is complicated by the need to introduce an
anisotropic (tensor) viscosity, whose radial component is larger

than the other com»onents,



2 . Turbulence

Measurements of rotation by Abney's method are complicated
by the fact that lines may be broadencd by turbulent motions as well
as by rotation, Ilost observations of turbulence have been madc of
late-type stars (sce, for cxample, Bell and Rodgers 1964,1967) ond thore
is 1little evidence for turbulence in early-type stars, The
shenomenon has been observed in early-type stars, however (Underhill
1967, persomal communication), and, in view of the prediction of this
thesis that there arce turbulent motions in the surface layers of a
rotating early-type star, it is worth considering very briefly the
difficulvties involved in obscrving turbulence,

Pirst of all, the broadening due to turbulence must be
distinguished frow that due to rotation, In the paper in which the
phenomsnon of turbulence in stuors was first conclusively demonstrated,
Struve and Elvey (1934) showed that this could be done by usings the
curve of growth, since the gradient of the curve of growth is affectad
by turbulence but nut by rotation,

Secondly, the size of the turbulent velocities can be
cstimated in scveral w.ys, These have been conveniently summarized
by Su Shu fu.ng (19503, wno distinguishes the following three methods:
(i) line~profilc measurements; these refer to both large «nd small

eddies, which brocden the line in different manners,
(ii) curve of growth mcasurements; this is the commonest method, and
yields the most »robable velocity of the small eddies, It gives

no information zbout large eddies,
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(iii) Donpler-shift measurements; these refer to individual large
eddies,

In general, the results from the three methods differ, If measure-

ments are available from both of the first two methods, the differences

may be used to find the snectrum of the turbulence, Unfortunately,

line-profile measurements are often not available and it is then

imlossible to say how the enerpy is distributed between various sizes

of eddies, The inter revation of the observed turbulent wvelocity is

uncertain in thot case,

3. Magnetism and abundance sxomalies

Like rotation, o magnet.c field produces non-spherical
distoriions in a star wnd the effects have to be distinguished,
The first stellar magnetic field was measured by Babcocl (1947), who
found « field of 1500 gauss in 78 Vir,, a peculiar A-star (A2p),
uging the~Zeeman effect, Babcock's later work sugrestvs that stellar
nagnetic fields are probably ubiquitous(Babcock l958a) and that
strong ccherent magnetic fields exist in all rajidly rotuting stars
with surface convection zones (BLabcock 1958b), The measured fields
are oftei. of the order of kilo;aucs, and they all vary with time, some
irregalarly,  ovever, Babcock's claim that rapid rotaetion and strong
negnetic fields wre correlated is based on circumst.ntial evidence,
gsince he could not measure both in the same star - the Zecman effect
can only be measurcd in stars vith anarrow spectral lines, @nd not in

those with lines broadened by rotation, Babcock's argument is

-6~



based on two facts: that most of the marmetic stars wvhich he observed
wexe of spectral type A, and that it is in this spectral class that
the mean angular velocity of stars rvaches a maxinum as a function of
srectral type (Talker 1965L),

In order to test his claim, it is necessary to look more
closely at the stars in ivhich magnetic fields have been detected to
see if there is any direct evidence for rotation, Two groups of
shary-lined i-stars are important for %his purpose (Slettebalk 1954),
Cne is that of the metallic line stars (Am) defined by Roman, llorgan
and Lggen (1948), of which a few possess weal: magnetic fields (e few
hundred geuss - Babcock 1958b), Abt (1961) has sugzested that the
Am stars are provably all bincries with inherently slow rotction,
Strittmatter wnd Sargent (1966) give evidence to suyport the
interpretation of the .m stars as intrinsically slow rotators, ond
use This interpretuation to determine empirically the spproximate Hosition
of the zero-rotation main sequence for clusters in which Am stars are
found (see also nert section),

The otier groun com.orises the neculiar A-stars (Ap),
discussed by, for example, Deutsch (1956),lwhich all nossess strong
fields, There iz disagrecnent as to vhether these stars urc
intrinsically slow rotvators or whether they cre rajsid rotators seen
vole-on, «s suggested by Babcock (1958b), Ividence for bot
possibilities has been discussed recently by Walker (1965a,b, 1966)
who concludes finally (1966), from a study of sbundances, thatb,

although some A) siars may be seen sole-on, Ap stars in general

-7-
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probable magnetic stars.



cannot be ranidly rotating normal A-stars seen pole-on, A similar
conclusion was reached by Sargent and Searle (1966), and by Sargent
and Strittmatter (1966), wwho showed that the abnommally weak helium
lines in certain B-stars cannot be explained as being oproduced by
aspect effects in rapidly rotating stars, as had been suggested by
Huong and Strave (1956) and by Guthrie (1964),

However, the main controversy (and the argunent is by no
means over! centres on the A-stars, in vhich spectral class Babcock
found most sta s with magnetic fields, Indeed, his results (Fig, 3)
suggest that there are very few magnetic stars outside the rwnge BS
to F2, but this conclusion is rather doubtful bececausc of observational
selection, For ease of mcasurcment, sharp-lined stars, such as Ap or
fm, are to be preferred, and Tig, 3 provubly only means that Bobcoock
observed far wmore st .rs of this kind than of any other, and therefore
an unnaturally high »roportion of A-stars, Indeed, he points this
out in his cotalogue (Babeock 1958a), There is no observational
re.son why BO-stars, for example, should not also nossess large
magmetic fields,

It is obviously important to obtain good theoreticwl models
of rotating stars in order to be able to decide more definitely
between the various interpietations of the obs:rvations of the Am and
Ap stars, In sarticular, it is important o kunow what effect
circulation currents could have ncar the surfacc, since some observed
abundances migh® perhaps be expleined if it were possible, for cxample,

for material to be mixed throughout the star by the currents, This
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thesic confimms that that is unlikely, Circulation currents moy also
be expected to affect magnetic fields, However, it seems likely that
in stars with strong magnetic fields there is no circulation (Meatel
1966, personal conmunication - sue Chanter 7). Strongly magnetic

stars will not, therefore, be cunsidered in this thesis,

4 Rotational sprcad of the main sequence

Although magnetic fields undoubtedly exist and are of
inpertance in many rotating stars, they arec not themselves necessarily
effects of rotaution, ‘the main intrinsic effect of rotation is to
distort the fi ure of a rotating stor from a sphere, The axis of
rotation necessarily introduces a preferred direction in space and it
is to be cxpected that various observed quantities will vary with thoe
angle of inclinction, i, of the rotation axis to the line of sight,
Even the measured equatorial rotation velocity is a function of i,
since, if v, is the actual cquatorial velocity, the measured gquantity
is vesin i, Actual rotition velocities can be found only if i can
be determmined, as in eclipsing binary systcms, Otherwise,
statistical analysis is needed to find average valucs of Ve for a
given snectral type, and it has not been possible until very recently
to find Ve for a »articular stur, A method for doing so has now been
described by Roxburgh, Sargent and Strittm.titer (1966), The method
makes use of the effccet of rotation on the luminosity and sectral
type (or colour) of a star,

The first cuantitative estimate of this effect was made by

-9~



Sweet and Roy (1953), who showed that rotation could produce a spread
in a Hertzs»orung~-Russell diagram of as much as half a magnitude for a
given spectral type, This could account for at lcast nurt of the
observed soread in the upper half of the main sequconce of clusters
(Strittmatter 1966), even though their results neced some modification
(Sweet 1965, nersonal communication), 4 more detailed discussion of
the spread due to rotition is contained in .ippendix I, where a
criticism of a method of obtaining the zero-rotation main sequence for
clusters is given, A discussion of theoretical results is given in

section II 5 of this chupter,

I1,Theoxry

1,.The origin of meridian circulation

Circulation currents in the atmospheres of rotuting stars
cannot be directly observed, and their presence must be inferred from
their effect on other guantitics which can be observed, It is
therefore essenticl to have a theoretical model which will give the
elfects of circulation on the surface conditions in stors, It is
the aim of this thesis to provide such o model, In the rest of this
cha ster a summary will be given of the most important »revious work
on circulation in rotating stars,

The first important theoreticcl result is that due to von
Zeipel (1924a,b), whose famous paradox concerns the rate of energy

gencration in a uniformly rotating star, Von Zcipel's result was that

«10-



0 |
e C 1 —-—2—1-;6‘-)— (1,1)

wvhere € is the rate of energy generation .t a point where the density
is p,_rl.is the constant angulcr speed of rotation and G is the
gravitational constant, It is clear that, since the dengity
decreases to zero in the outer layers of a star, the energy generation
must become negative at some critical density near the surface, that
is, energy will be absorbed rather than liberated, It appears that
von Zeipel himself believed this result (Bdcington 1925), bput it is
not now taken seriously, although there is still a place in the theory
for a critical density, as will be seen later (Mestel 1956), The
paradox was resolved almost simultaneously by Vogt (1925) wund
Ladington (1925), Iddington gives a very clear discussion of the
problem in his book (1930, PD 282-283),

Von Zeidel's resuli dejends on ti:e strict mainten:nce of
radiative equilibrim, thot is, on the balancing of the divergence of
the radiative flux only by (nucle.r) energy generation, The »naradox
mey be resolved by removing thig strict condition, In that case,
ecuilibrium must be maintained by some additional form of energy
transoort, An obvious traansport process is convection, lowever,
convection in this context has not the mecning usually understood in
stellar structure, An atmeosphere in radiative ecuilibrium is said to
be unstable ageinst (ordinary) convection if the temperature gradient
is greater than the adiabatic temperature gradient (Schwarzschild's

criterion (1906) ~ this critezion is altered in the presence of a

1]



magnetic field with a vertical component, which tends to stabilize the
atmosphere (Gough and Tayler 1966)), Convection then starts, and the
temperature gradient settles down to a value nearly ecucl to, and
slightly greater than, the adiabatic value, In that case most of the
energy is carried by the convection currents and radiative energy
transport can be ignored,

However, if th: atmosphere is radiatively stable, as is
assumed in the present cose, ordinary convection will not appear,
Insteud, large-scale laminar circulation currents are set up, caused
by the break-down in radictive equilibrium, the temperature gradient
remaing subadiabatic and the radiative flux carries most of the energy,
The large-scale “convection" currents carry only enough energy to
maintain a steady state, and the structure is still essentially that
of a region in radiative equilibrium, The circulation is coniined
to meridian planes and is generally refexr.ed to as meridizn, or
meridional, circalation, Circulation of this kind mzy also occur in
zones of weak convection where much of the energy is carried by

radiation, In that case, the flow is turbulent (Kipgenhahn 1959),

Onoe effect of the circulation currents is to mix the material
of the star, Colculoations by Bddington (1929) sug ested thet the
currents were foct enouch to keen the star well-mixed and therefore
of homogeneous com»yogition, Hovever, an inhomogeneous model was

successful in explaining the existence of red giants (Hoyle and
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Lyttleton 1942), cnd when detailed work on the evolution of well-

mixed stars come to be done by the Bondis and others about 1950 it

became apprarent that there was some disagrecment with observation (see

llestel's suwmary (1959)\, This discrepancy ﬁas exvyliined when

Eddington's culculations were corrected by Sweet (1950) and 8pik (1951),
; N

They found thut the speed of the currents in the interior was a

million times slower than Dddington had wnredicted, so that the time

recuired for complete mixing is too great for stars to be even nearly

honogencous,

Purther work on this problem was done by lestel (1953), who
investigzated the effect of a non-constant molecular weight, It was
found that inhomogeneities of that kind alsoc cause circualation cuirents
("u—currenos”), These currents wrc in the oprozite sense to the
Eddinston-Sweet circualation and further r=duce the mixing effect of
the latter, It is now gencrally .greed that the mixing by meridional
circulation currcnts is negligible for the purposes of stellar
evolution, Thig has been questioncd by Porfir'ev (1963), who points
out that the above res.lts arc based on the assumption of uniform

h]

rotation, which will be rapidly destroyed by che circulation itself,
Llthough this is true in the absence of ony constraint, the assumption
may bc justified if a suitable constraint is nostulated, as will be
seen later, Porfir'ev sreoduces o cuantitative theory to suport his
contention that the sneed of the currents is fast enough in a non-

uniformly rotating star to cause mixingz, and his second section

oy
denends on the invalid assumpiion that the surface of a ster is a
“. th% s\‘m'\\ov ok wag deva w\(cq h'ﬂ G-‘-ot*m ((9&5)_
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streamline of the circulation, Also, his work on rotation without
meridien circulation appears to be conticdicted by that of Roxburgh
(1964a,b), Schwarzschild's »oaper on the same subject (1947) is wrong
because of the incorrect truncation of a series (Roxburgh 1964a) cnd

it is likely that Porfir'ev's paper is wrong for a similar reason,

3 . Stoady state configurations

The circulation currents arising in a star in unifomm
rovation carry anguiar momcntum, The resultant Coriolis forces
will rapidly destroy the uniformity of the rotution unless there is
some constraint, Such constraints will be considered shortly. In
the absence of constraints, only two final stcady states are possible,
“he star must settle dowvn in a state of non-uniform rotation, either
without meridian circulation or with mcridian circulation and with the
-ngular momentum per unit mass constant on stream lines of the
circulation (Roxburgh 1964a), The latter case is extremely difficult
to treat, as the rotation law is iﬁ ageneral unknown if the streanm
lines are mwmknuwa while the formm of the stream lines is itself
tetemined by the rotetion law, This kind of problem recurs in
every cose where steady circulation could arise, and no solution is
yet knowm, A solution for the case of zero circulation has been
given by Roxburgh (1964a,b), In that case the angular velocity is a
function of the radius only and decreascs outw.rds, His work
rcplaces esrlier (incorrect) work by Schworzschild (1947) and two

rather artificial models due to Rosseland (1936), Roxturgh has ..1so
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shown(1966), by an exiension of von Zeinel's theorcm (1924a,b), that,
in a rotating star with no constraints, therc is no stoady state
configuration -‘here the angulcr velocity dejends only on the distance
from the rotation axis,

Some iterative numeric:il work on the case of steady
circalation has been attcméted by i Mehesvaran (1966, personal
communication) who finds that the circalation breaks up into several

K .
ZONcs, Thiz may be sym tomatic of the result found by X, Fricke
(1967, nersonal communication; to be gublished), who has been
investigating the stebility of steady-state configurations rithout
constraints, IHe finds that Roxburgh's model (Roxburgh 1964a,b) is
unstable to small perturbations, He hes also investigoeted the
vroblem of stead;” circulrtion in the radiative zone of a Cowling
mocel, Usingz the Boussincsqg approximaition, he has been able to
show that this configuration is also unstable, He concludes that no
stabls stcady state configuration is possible for o non-uniformly
rotating ster without construints,

The theoretician is therefore forced to consicer the problem
of rotati n in the prescnce of congtraints, Since constraints are
nscessary in any case, it scems best in the first instance to consider
constrainits which keen the rotation unifomm, That case heg the
advontage of simplieivyr, lso, there is some observational evidence
thet unifom rotation may be the most rcalistic assumytion (TR,
Stoeckley 1967, »ersonal oommunication),

One nlausible constraint is viscosity, In stellar
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conditions, hovever, molocular (nd raciutive viscosities are both so
smell that viscous forces arc gencrally negligible compared to
centrifugal forces, cven near the surfuoce (Smith 1966), In the
interior of a star the ceffect of viscous forces on the rotation law
is certainly ncgligiblic (Jeans 1929), If there is turbulence, the
situation is different, Turbulent viscosity is many timcs grector
thon radictive viscosity end may have an impdortant effect, This
situation has been cousidered by Kippenhahn (1959) and Osaki (1966)
and will be discussed in devail in Chapter 7, The problem is greatly
com ;licated by the still inadequate state of the theory of turbulence,

4 process which may sometimes be cffective is the braking of
& star by the radiative transiort of =n;ular momcatum (Jeans 1925,
1929). However, in most cascs this effect is much smaller theu
that of the Coriolis forces and cui be ignored (Mestol 1955),

The incffectivencess of theso processes and the prevalcence

of magnctic ficld: in stars, noted in section I 3, suggests that
magnetic forces wrce the most likeoly ones to have an aospreciable coffect
on rotation, This has becn supported by most of the recent work on
mognetic svars, As in a non-magnetic svar, strict uniformity of
rovation is not possible because of the perturbing eflfect of the

1T

circulation, Ylowover, in & magnetic star two steady states with

@

o
/

circulation ar. amenable to treatment (FHoxburgh 1963), In one of

%

Giscussed recently by Howard, lloore and Spiegel (1967), This

he rotation may also be affected by thc "spin-down" mechanism

mechanism should also tend to meke the rotation uniform,
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these tlie centrifugal force is teken ws the dominant perturbation,
with nearly uniform rotetion maintained by a weak noloidal field,

In the other case the dominent nerturbation is e toroidal magnetic
field of o narticular form, Taile the first case may be relevant

to early-type rotating stars, the second scems unlikely to have any
application in view of theories of the origin of magnetic fields in
stars (Roxburgh 1963, llestel 1965), all of which suggest much stronger
noloidal ficlds than the sccond case would allow, No soluticn has
yet becn obtained for any other case,

As before, a steady state without meridian circulation can
also be cousidered, Various s»ecial mocdels of non-unifomly rotating
magnetic stars without circulation have becn sivudied by Roxburgh and
Strittmatter (Roxburgh 1966, Roxburgh and Strittmatter 1966a,b),
These models differ from the non-magnetic models considered by
Roxburgh (1964a,b) in that the angular velocity increases outwards
r..ther than inwards, These models arc not ruled out by Fricke's
investigations on stability, Howover, the models uscd are rather
artificiar, since the magnetic ficld is »Hurely toroidal, being built
up by Diecxmamnm's "tattery" effect (19503, It is knowm (Mestel and
Roxburgh 1962) that even a very weak poloidal field is enough to
pravent the "baitery! from overcting, cénd it therefore seems unlikzly
that the models of Roxburgh and Strititmetter are anplicable to many
real stars,

Thus, of the cascs for which solutions exist, the only oncs

which sceiz likely to be relevant to rcal stars arc the case of a non-
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magnetic star in steady non-uniform rotation without circulation and
the case of a magnetic stor with circulation and in ncarly vwniform
rotation, The latter is thorefore the only steady state model

available as a basis for o closer study of meridian circulation,

4 _Surface conditions

The construction of rotating model stars is so complex that
until recently the simplest boundary conditions have becn taken, In
general this has meant taking simple zero pressurc and temperature
conditions at the surface, In this way a model can be constructed
vhich gives a good descrintion of the interior of the star but says
very itittle about the outer layers, Boundary conditions for the
velocity field arce also required, ond it is usuaally assumed that the
velocities at the surface are finite and that there is no net
cutward flow of matter through any closed surface surrounding the star,
(See, for example, Sweet 195Q)

Unfortunately, it scens that these boundary conditions for
the velocity ficld are inconsistent with the simple zero pressure and
tempersture boundary conditions for the structure, That result is

t t
implicit in Opik's Laper (1951), Opik used a perturbation theory to
deter.iine the circulation currents in a uniformly rot.ting star,
employing en oxtension of von Zeipel's orgument (Zddington 1930),
Although his theory wan accuratc only to the first order in the ratio
of centrifugal force to gravity, he rotained a second order temm,

proportional to 1/densit vhich becamne dominant near the surface
.p .p y' .
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This term did not cause trouble in Bpik's model, which had a surface
convection zone in which the theory was invalic, There was therefore
no suggestion of a singularity at the surface,

However, certain difficulties present themselves even
without considering Bpik's second order temm, llestel has noted (1953)
that, although the radlial component of the velocit: field in Sweet's
model (1950) is finite, the tongential commonent has singularities at
the surface and atv the boundaxry of a convection zone, A model of
viscous dissipation was roposed to resolve this problen,

A more detciled study of the beh.viour of the circulation
near the surface has been published by Balker and Kippenhahn (1959),
They showed that, near the surface of & aon-uniformly rotating stor,
the radial comaonent of the velocity ficléd was proportional to
l/density, even using a first order werturbation theory, Their wajer
showed that the finite radial component in Sweet's work (1950) was due
entirely to tiue use of uniform rotetion., o s)ecial case of the more

general class of rotation laws

C

() = C, + 2 (1.-2)

r2sin26

(Cl, 02 constants) for which a first order narturbation theory yields
a finite radial comjonent a2t the surfoce,
Although this result siiowed unifoxm rotation to be a special

il
case when a first order perturbation theory is used, Opik's result

threw some doubt on thie validity of e perturbation tleory near the
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surface, since in his model the second order term dominates over the
first order term «s the surface is approached, To be sure why the
singularity occurs, one shoulcd investigate the bchaviour of the
velocity field near the surface without resorting to a perturbation
theory, This has recently been done by Ilestel (1966), It is now
clear that the l/density derendence is a general feature of the
velocity field for any rotution law, and thot uniiorm rotation is a
snecial case only in the sense that the 1/density terms are of second
order in the ratio of centrifugal force to gravity due to the exact
cancellation of the singular first order tems, A slightly less
general form of the same result had already been found by the
aoresent author (Smith 1966) with the use of o Roche gravitational
notential, This work is described in Chapter 3,

It is therefore clear that the use of a uniformly rotating
mocdel is valid but that a more realistic model of the surface layers
is requireq, The »resent thesis describes such a model,

The main assumptions made in the above models are
(1) that viscous ond inertial forces are negligible compared to the

centrifugel forces due to rotation
(ii) that the loecel equation of energy trunsfer 13}C£.grad T

(G? = radiative flux, T = temperature) can be &ged,
Thile the author has shown thuat assumotion (i) is consistent with the
results obtained from a Roche medel (Saith 1966), the second
agssumption is clearly dubious in the outer layers of a star, since it

assumes vhat the pioton mean free path is much less than the scale
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height, Mestel's work (1956) suggests that it is the form of the
local e¢u..tion vhich leads directly to the l/density singularity, but
even without that resuli one vould be surprised if a loeal equation
were to give rezlistvic results in a region where thé photon mean free
path is comperatively long, 4ll previous stadies of stellar
atmoswherss have required to use the non-local tfansfef equabtion
(which reduces to the local equation at great de sths in the star -~ see,
for example, Chandrasckhar 1939, po 208-211) an? one would hardly |
xnect a rotating stellar atmosphere to he different in that respect,
The only reason that a non-local equation has not been used
until recently in the study of rotating stafs ig that a 150&1 aquation
is easier to handie mathematicglly and cives erfoctl:s adeguate results
for the overall structure of the star, Only when the structure of
the atmospherc is considered is a non-local treatment necessary,

It is found that the use of a nrmn-local transfer equation
leads to the .rorc realistic resulv that the velocity iz finite at the
surface, A formal proof of this result may be given very briefly,
using known results; for example, it may be proved from p, 11 of
Chandrasekhar's book on radiative transfer (1950 - hereafter referred
to as R,T,) by using equation (9) of the author's paper (Smith 1966),
However, to find the value of the velocity at the surface is more
difficult, and requires a solution of the non-local transfer equation

4

in a non-gpherical atmosphere, An approximate solution is derived in

this thesis (Chapters 4 to 6),
Recently, Osaki (1966) has also produced a theory of a

o . -~
- - . - -
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rotating atmosphere with a non-local transfer equation, He assumes
that the atmosphere is locally plane-parellel and uses the exact
plane-parallel solution of the transfer equation to show that the
condition of radiative equilibrium is grossly violated, Unfortunately,
although his treatment adequately represents the variation of various
quantities with latitude, he does not take any systematic account of
the effect of curvature in the atmosphere and it is not clear how one
would extend his model to include cuxrvature effects, The equations
in Chapters 4 and 5 of this thesis represent exactly the effects of
curvature, although so far the equations have only been solved in the
plane-parallel approximation,

The present author agrees with Osaki that the condition of
radiative equilibrium is grossly violated, so that the non-local
theoxy is singular in the sense that it predicts unrealistically large
circulation speeds; This result was obtained independently of
Osaki,

Osaki proposed two models of the surface layers which
might be more realistic; In both models the rotation is non-uniform,
In one model, the angular velocity is supposed redistributed in such a
way that thgre is no circulation and the star is in radiative
equilibrium, In the other model, the circulation speeds are supposed
limited by tgrbulent dissipation, The present author rejects both
these models, It is found that the flow is unstable, so that
turbulence is certainly present, However, Osaki's turbulent model is

internally inconsistent, for reasons which will explained in
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Chapter 7, and the turbulent velocities turn out to be about one
hundred times 1arge£ than those estimated by Oseki, It has not
proved possible to obtain a quantitative model of the surface layers,
but it is cervain from the quaégiﬁative model given in Chapter 7 that
turbulent velocities of the order of the specd of sound are to be

expected near the surface of a rotating early-type star,

5, Observational consequences

The present thesis is the first detailed study of meridian
circulation in an atmosphere with non-local radiative transfer,
However, it is necessary to consider non-local effects to some extent
if the variation of brightness over the surface of a rotating star is
to be calculated, and several aathors have used the theory of stellar
atmospheres for this purposc, without considering circulation,

The surface variation of brightness was first studied by
Sweet and Roy (1953) who used a rotating Cowling-model star with a
local transfer equation and a limb-darkening coefficicnt of 0,6,

More detailed work has been done recently by (for example) Collins
(1963, 1965) and Roxburgh and Strittmatter (1965), These authors use
a combination of non-local transfer theory in a plane-parallel
atmosphere and the von Zeipel gravity-darkening, which is strictly
true only for a local transfer theory, It is not obvious a priori
that von Zeipel's result is a good approximation for a non-local

theory and it is not assumed by either Osaki or the present author,

Nonetheless, it is unlikely that their conclusions are much in exrror
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for stars without meridian circulation,

Both Collins and Roxburgh and Strittmatter use a Roche
gravitational potential, The main difference between their approaéhes
is that Roxburgh and Strittmatter use a rotating interior for their
stellar model based on the rotating stellar model of Roxburgh, Griffith
and Swect (1965), The use of this interior nodel enables them to
dispense with the assumptions made by Collins that the luminosity and
polar radius are the same in a rotating star as in a non-rotating star
of the same mass and chemical composition, Their results show these
assumptions of Collins to be incorrect, but are otherwisc in good
agreement with Collins' results, The main qualitative difference is
in the behaviour, for small rotation speeds, of stars inclined at a
small angle to the line of sight, The initial decrease in luminosity
ags the rotation speed incresses from_zero, caused by a lower central
temperature, is not found by Collins, Apaxrt from this, Collins'
assumptions give qualitatively correct results, In his later work,
Collins (Collins and Harrington 1966) has used the Roxburgh, Griffith
and Sweet rotating interior as a basis fo; the calculation of HB line
profiles for families of rotating B stars,

The most important result of work on the variation of
brightness over the surface of a rotating star is that the observed
luminosity and so the absolute magnitude of a star of a given mass
and chemical composition is a func¢tion of two things: the angle of

inclination, i, of the rotation axis to the line of sight and the speed

of rotation,J:L, The effective temperature, and so the colour, or
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spectral type, is also a function of i anﬂHIL, There is thus a

spread in a colour-magnitude diagram, due to the rotation of the stars
plotted on it, Rotating stars appewr to the right of a notional main
sequence for non-rotating stars, This was recognised by Sweet and Roy
(1953) who found a 11m1t1n5 spread of about nalf a magn1tude

Roxzburgh and Strlttmatter find a rather larger spread (Fig, 4)

Similar results have bcen found by Ireland (1965), who
considers the two extreme cases of a Roche model and of a model of
uniform density, He finds that these models give similar results
despite their great physical difference, Although hc dces not
specifically refer his results to a colour-magnitude diagram, he does
show: that rotation may chaonge tie spectral typse of a star by as many
as five sub-classes, a result more in agrcement with Roxburgh and
Strittmatter than with Sweet and Roy, It should be noted, however,
that Irelend makes no allowance for limb-darkening,

A1l the above work is for stars in uniform rotation,
Roxburgh and Strittmatter and Ireland have also considered non-uniformly
rotating stars (Roxburgh and Strittmatter 1966b; Roxburgh 1963 19663
Ireland 1967). A similar spread is found in the HR diagram,

Ireland (1967) finds that, for rapidly rotating stars, the spread in
luminosity is more sensitive to the degree of non-uniformity of the
rotation than to changes in the rotation speed itself, IHowever, he
uses a very special form of rotation law,

As noted by Roxburgh, Sargent ond Strittmatter (Roxburgh,

Sargent and Strittmatter 1956; Strittmatier 1966; Stritimatter
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and Sargent 1966), the theoretical predictions can, in principle, Dbe
combined with the observed sprecd in the main sequence to obtain a
zero-rotaion moin secuence for stellar clusters, A sumnary of the
method they suggest is given in Aodendix I, viere it is shown that it
is not at all clear that their methiod is reliable with the small
number of currently availcble cbservetions, lionetheless, it is now
possible, in »rincinle, to obtain v as well as v sin i for the
individual stars in a cluster,

If it is assumed that tie results obtained by Sorittmatier
et &l ave substuntia 1y correct, an interésting fact emerges, e
theoretical mocels which appear to agree mogt conviacingly with the
observationz are the models of non-uniforaly rotating stars witi.out
meridian cirecletion (Strittnatier and Sursgent 1986), The uniformly
rotating models sredict a spread in luminosity for a given colour
which is less than one fifth of that observed, This discrepancy
appears Lto be too lurge to be explained by the uncertainties in the
observations,

Hovrever, the uniformly rotating models must all contain
circulation currents, the effect of which has been ignored in previous

alculations (ef, Irveland 31965, »,35), It is possible that the

ineclusion of circulation ciarrents in the treatment of the surface
layers of uniformiy rotating stars may lced to a betiter agreement with

(B}

observation, At any rate, this thesis shiows tnatl the surface

con“itiong are rather different from those assumed in previous

unifomly rotuting models, and there is little doubt that the von
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Zeipel gravity-derkening assumed in these models is a poor approximation,

6 Binary stars

The tlhieory of roteting stellar atmos heres may be applied,
as indicated in section >, to obtain the angle of inclination of the
rotation axis to the line of sight, In binary stars, for which the

ngle of inclination can often be found by observing eclipses, the
theory has another applioation, The problem described below was, in
fact, the original motivation for the present thesis, and it is hoped
to return to this problem at & later date

In a close binary system, each stor is illuminated by the
other on tlhic inward-feacing hemichere, The rodiation from the other
star will be absorbed, or scattered, .nd eventually re-emitted, This
is the wel «lnom reflection effect (see, Tor examnle, Kopal 1959).
Recently (Ovenden 1963) some observations have been made of 57 Cyen
which do not seem to be explicable in terms of the normal reflection
effect (Vapier 1965), It is hoped thot the following considerations
may throw some light on the problem,

The external illumination mey be exnected to =zet up further
motions in the atmosnheric gas, ''he present thesis shows that these
motions will be turbulent, but the problem in a close binary syste
is complicaied by the lack of uxial symmetry and it is »nossible thavc
new lerge-scalce scweaning mey be set up within the wurbulent region,
vhich will redistribute the energyr in the incident radiction over the

surface of the star,



In the absence of external illumination, the boundary condition

for the intensity of radiation is that the iaward intensit; is zero at
he surface, For a close binery system, the external illumination on
eachh star of the system would be renresented by-an inward intensity at
the surface, varying in some »rescribed way over the henisvhere facing
the other stor and zero over the other hemisphere, If the systenm is
in synchronous rot.tion, so that the axes of rotation of the two stars
are parallel to each other and to the axis of rotation of the whole
system and the period of rotation of each star is the same as that of
its revolution about the common centre of gravity, the twc stars always
“resent the same face to each other and the »nroblem is independent of

L

time, ITonetheless, the problem is more compiicated thean that of a
single star, since the boundaory condition is not axizlly symmetric and
an extra independent variable is introduced, The non~oxially-
symmetric provlem has not becu attemnted, A solution has been obtained
only for the artificial axially-symmetric case of illumination parallel
to the axis of rotation (Sweet 1965 - unpublished).

Only circular orbits are truly synchronous, Elliptical
orbits, or gencral non-synchrcnous orbits, introduce the further
complication of time voriation, provubly slightly simnlified by the
existence of & periodic solution, This time-devendent, non~axially-

symmetric problen is well outwith the scove of the present thesis,
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CHAPTER 2

Degcrintion of the basic model

"The basisg or substratum - what you will -
Of the impending eighty thousand lines,”

C.S, Calverley, The Cock and the Bull,

1 . Agsumptions

To make the problem of meridian circulation mathemotically
tractable, it is necessary that the basic stellar model be reasonably
simple, although of course it must be sufficiently realistic that the
results obtained are meaningful, In this chapter various simplifying
agsumptions are discussed and the basic equations and definitions are
stated,

As mentioned in Chanter 1, only early-~type stars will be
conpidered, both because the effects of rotation are expected to be
larger in such stars (on observational grounds - see, for exainle,
van den Iieuvel 1965) and because deep convection zones are notv present
in their atr ospheres, Convection is not yet well enough understood
for a simple description to be known to be adequate, and it was thought
betlier to restrict the investigation to radiative atmospheres, such as
are to be expected in stars of early s ectral type,

Hven in carly-type stars there 1s a convection zone near the
sarfece, associated with the ionization of helium in the same way as

the deep convection zones of late~type stars zre associated with the
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ionization of hydregen, However, in stars earlier thean about 03 the
helium convection zone seems to have disapnearcd (Thaderhill 1950, 1951 )
and even when it is »resent (in stars later than 08) it is usually weak
and only starts at several optical depths below the surface (Underhill
15503 Ruditjobing 1947), EHelium ionizction effects will therefore be
ignored in this thesigf for the saize of simplicity, and the atmosphere
will be assumed to be stable against turbulent convection,
The role of helium in early-type atmospheres is further

discussed in a later paper vy lliss Underhill (1957) here she notes

that the nresence of a small amount of helium has 1little effect on the
temoerature end pressure distribution, That is, to find the structure
of the atmospherc of cn carly-typc star it is sufficient to assumic
thet 1t consists of »ure hydrogen, Since the digtribution of
molecular weight would in any case have been aszumed to be uomoreudous,
the assumption of pure hydrosen does not cause to be migsed any effect
duve to variation in molecular weight, such as the "p-currenis!
investigated by llestel (1953 - see Chapter 1, section II 2). Since
the join% effect of the p~currenis and the meridian circulation con be
found (to first order) simply by supernosing the velocity fields, iv

would seom to add little to the investigation to congider the p-currents

—

23 wel Desides, the velocities in the atmosphere of a star will be

found to be such that the material nezr the surface may be expected to

be extremely vell-nixed, The p~-currents woul

-
L

then be neg:igible,

€
In a private conversation (1967, ALIT IAU) iigs Underhill has

confirmed that this is a good approximation,
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The moleculer weight will thexefore be taken as a constant throughout,
of value 1/2 since at the temperatures concerned the hydrogen will be
virtually fully ionized,

A possible complication in early-type stars is the effect of
radiation pressure on the effective gravity, This problem glso has
been discussed by Miss Underhill (1949), Comparison of Table 1 of her
paper with the tables on pp 201, 207-8 of Allen's "Assrophysical
Quentities"® (1963) shows that, for main-~sequence stars later than about
08, the radiation pressure gradient is less than 10% of the gas pressure
gradient, Vhile this could chenge the effective gravity by an amount
comparable with the change due to rotation, the rodiation pressure is
still basically a small pexturvation, To isolate the eflect of a

1 - [

particul.r serturbotioa, it is useful

£

to congider it as the ouly one
acting, iherefore, since the radiation pressure clearly huas no

dominant effect, it will be omiited from the model discussed in this

R 3 ™,
LSS L it

Pfarther reasons for omitting it are that the effect of

62

radiction pressurc has zlread; been considered (Underhill 1945) and

that its inclusicn unduly complicates the cequations

.
It should be noted that, for o« detailed model atmosphere,
either the radiation pressure (for 0 stars) or a helium ionization
zone (for stars later than sbout 08) should be considered, In the
light of the above discussion, however, the models with these effects
included should not differ qualitatively from the models without the

effects, ‘'he nmodel used in this thesis may therefore be expected to

renresent roughly stars with spectral types in the range 05 to AOQ,
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IPor definiteness, the data below for a BO star will be used when making
numerical estimates,

Under the conditions of the Vogi-Lussell theorem (see, for
example, Chandrasekhar 1939), a star is uniquely determined by its
mass and chemical comnosition, Since these paremeters are not affected
by rotation (unless the stor is rotating so fast that there is mass loss
at the equator or the central tem»rerature changes sufficiently to alter
significantly the rate of nucleur reactions), a rotating star may bec
uniquely specified by its rotation speed and the mass and chemical
composition of its non-rotating counterpart, which will not in general
be of the same spectral type (Ireland 1955), A t;pical non-rotating

O34gm), N

BO star (4llen 1563) hes a uass of about 17, (I = 3,4x1
e ‘i . = 11 . iy
radius of about 7,Jhﬂ) (R =5,3x10 cm) snd a luminosity of about
1'3’<104LG> (LO = 4,9« 1037erg/sec3, These values will be adopted
for the non-rotating star of the same mass and ciiomicol composition as
., bt a4 s 40 .
the rotating model under considerction, A value of 2,2 x10 K will
be used for the effective temperature, This does not cuite agree
g an 4o .
with Allen's value (2,1% 107 K), but was chosen to satisfy %Dprox1mately
1 . 2 4 . 3 AP s s
the relcation Lo = 4nll a'Te (see section 3 of this chaguer),

In a2 more detailed investigation, the radius, luminosity and
cffective temperature would emerge as results of an integration of the
complete structur: cquutions of the star, However, since stellar
interiors are in general fairly well understood, and the present thesis

is investigating essentially only the qualitative surface properties

of the stor, it did not secm worth repeating stonderd inverior
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integrations, Of course, the rotation of the star will alter its
internal structure to & certain extent, TFortunately, this effect has
already been discussed (Roxmxmﬁh Griffith and Swcet 1965) and it is
*

possible to use an existing rotating interior model as a basis for the
new atmospheric investigation,

To obtein a simple, self-consistent, steady~state model,
Roxburgh, Griffitih and Sweet ci:ose to consider a uniformly rotating star
with a weak poloidal magnetic field, Thoe role of this magnetic field
(cf, Chapter 1, sectio: II 3 and Roxburgh 1963) is solely to kecep the
rotation wniform by balancing the (toroidal) Coxriolis forces due to
the meridian circulation, In reality, the rotation is unlikely to be
conpletely wmiform, However, since unifomm rotation coo2s not scem to
be a singular case, it is permissible to mcke the convenicnt
idealisation that the rot.tion is strictl; unifomn, It is assuned
that any meridian plane component of the magnetic force is negligible
compared to the centrifugel forces due to the rotution, This
assumdtion ncs the gre.t nerit that a magnetic ficld never ajpears

explicitly in the s ructurc cquations,

%-

The data guoted zbove do not quite agree with the mass/radius, mass/
luminosity diagrons given by loxburgh et al (1965), This is not
important, since the only umesicel results taken from that paper are
on the variation of R and I with rotation spced (Roxburgh und
Strittoatter 1963, This variation appezrs to be virtually independent

of the exact model adopted,



As a first approximation, it will also be assumed that the
sneed of the meridian circulation is slow enough that viscous and
inertial forces are negligible compared with the centrifugal forces
(cf, Chapter 1, section II 3), This assumption is made in the first
place as a mathematical convenience, bdut it will be seen to be at
least partially justified, Oaly very near the surface (Chapters 6, 7)
Cocs viscosity have to be considercd, and the inertial forces are
always negiigible,

‘e steady-state cquatin of motion for the stellar material

(assumed to be o perfect ges) can then be written sinply o

1 2 :
-EgradP = grad{i) + .ﬂ.@ (2,1)

where P ond p are the prescure and density, @ is the gravitotional
potential, L1 is the rotation speed (o constant) and & is ithe vector
distonce from the axis of rotation, The gravitationel potential of a

geseous, self-yravitating mass in roivation is rather comolicated,

particularly if the rotation is rapid, It would be convenient: to
find an aphroximation which simplified the muthematics while still
retaining the essence of the physical situation,
Such an a)proiimation has been developed by Roxburgh,

Griffith and Sweet (1965 = this paper will hereafter be referred to
as 1GS), In thoir model the star is essentially divided into two
regions, In the outer region tine density is sufficiently low that
the gravitational netential é can be teken as due entirely to the

material of the jzner region, It is therefore found by solving
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lLapiace's equation, Assuming that the inner region contains essentially
211 the mass of the star (an assumption which must, of course, be

checked when the whole model has been assembled, However, Eddington's
nodel stars (Bddington 1930) sugzest that it is likely to be a good

approximation), the solution is

oM Zq *‘?—\ an '
d - — i1+ > 2rW (2.2)
r L c1r R

where G = gravitational constant, II = nass of inner region (= mass of
star), r = distance from centre, Pn(u) is the Legendre polynomial of
order n, B = cos O where 6 is the angle between the rotation axis and

he radius vector, and the a are arbitrary constants, The a are

determined by the degree of distortion from the spherical of the inner
region, It was found by Moneghan and Roxburgh (1965) that the
gravitational effect of the distortion of the inmer region is small
(in polytropes) compared with the centrifugal forces and that only the

P2 term needs to be considered, For preseant purposes, even this term

can be ignored, that is, gll the a  mey be taken as zero (as is in fact

done in RGS) and (¢ is represented simply by the Roche potential

£
G ‘
@ = 7 . (2.3)

In the inrer region of the star, the mass is not negligible,
but @, the ratio of centrifugal force to gravity, is small, even if
this ratio is unity at the surface, This fect allows the use of a
first order perturbation theory, similar o that used by Chandrasekhar

(1933) and Sweet and Roy (1953). Details of this theory, and the
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criteria used to fit the two regions, are given fully in RGS, where it
is shown that the approximations are likely to lead to errors of less
than one per cent, The present theory of meridian circulation makes
no explicit use of the structure of the inner region, and it will not
be further considered here,

Various other assumptions are made, It is clearly
reasonable to asgume symmetry about the axis of rotation and about the
equatorial plane, It is also reasonable to assume that there are no
nuclear energy sources in the surface layers, Indeed, no energy
production is likely by any means near the surface, It ig also
assumed that there is no energy dissipation in the surface layers,
This assumption is re-examined in Chanter 7; The only plausible
dissipative mechanism is viscosity, and the assumpiion of negligible
viscous forces suggests that viscous dissipation is likely to be
negligible as well,

As already mentioned, energy transfer is supposed to be
solely by radia#ion, and by a large-scale laminar circulation in
meridian nlanes, The transfer of radiation can be treated in two
ways, In a "local" theory (nomally used mainly in stellaxr

interiors), the radiative flux :} can be written as

F--r T gear (2.4)

(see, for example, Schwarzschild 1958), Then given by this formula,
jﬂnhé'ﬂﬂﬂ on 1oeal walnes of T A and grad T (T is the temperature,

" Jdepends on local values of T,
C~is Stefan's constant and w is the opacity), In the outer layers
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of a star, where the photon mean free path is long, it would be
surprising if such a local theory were to be adequate, Nonetheless,
local thermodynamic equilibrium, which might also be expected to fail
vhere the mean free path is long, will be assumed, and it seemed worth
investigating the results of a local theox;%

In fact, it will be secn that the local theory does fail,
The assumption of local thermodynamic equilibrium is not invalidated
by this result, the accuracy of the LTE approximation holding
remarkably close to the surface of a star (Kourganoff 1952 p,8), but it
is necessary to use a non-local theoxry for the transfer of radiation,
The relevant equations will be quoted in the summary in the next
section,

Finally, the opacity must be considered, Tor mathematical
simplicity, it is convenient to consider a gray atmosphere with
either a Kramer's opacity (neC o™ e ) or simply n = constant,
corresponding to an electron-scattering atmosphere; 'The latter is
certainly the simpler and will be adopted throughout, although it
nust be recognised that this is not a particularly good approximation

for the atmosphere of a BO star, However, the mathematics becomes

rather complex in the non-local theory and it secmed better in the

>
The local theory was investigated before llestel (1966) had shown that

the 1/density dependence was a general feature, However, even if that
result had becn known, it would still have been useful to have the results

i

of the local theoxry for comparison with the non-~local theory,
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first place to aim for mathematical simplicity rather than for a highly

accurate physical picture; The electron~scatiering opacity should be

good enough to give a qualitatively accurate result, It secms

unlikely that a more accurate opacity law would alter the results of

Chapters 6 and 7 enough to change their 31gn1flcanoe For an

atmogphere of pure hydrogen, » has the value 0,38 (Allen 1963 p,94)

To summarise, then, the initial azsumptions are as follows,

in no particular order:

(1) Steady-state,

(ii) Uniform rotation, maintained against Coriolis forces by a weak
magnetic field,

(iii) Star divided into two regions; Roche gravitational potential
in outer region, the only region considered;

(iv) Axial end equatorial symmetry,

(v) Perfect gas - pure hydrogen atmosphere,

(vi) Radiation pressure negligible,

(vii) Non-rptating star of same mass and chemical composition would
be BO,

(viii) Atmosphere stable against convection, other than large scale
circulation,

(ix) Magnetic, viscous and inertial forces negligible compared with
centrifugal forces,

(X) No energy production or dissipation in the atmosphere,

(xi) Local thermodynamic equilibrium;

(xii) Gray atmosphere with constant (electron-scattering) opacity.
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2 . Equations

With the above assumptions, the equations to be solved are
rclatively simple

Since the interior is not being considered, the

only equations recuired are those which apply in the atmosphere, and
these will now be summarised

Consider first the equation of motion, In view of

assumptions (i) and (ix), the hydrostatic approximation (equation (2,1))
may be uged,

Since uniform rotation and a Roche gravitational
ntial are being assumed (assumptions (ii) and (iii)), it is

possible to define a joint potential'g?'by

GIM
":P' = — + Ji,ﬂ?rzsinze
r

. (2.5)

The meridian~plane component of the equation of motion may then be
written in the convenient form

grad P = p grad‘ﬂ?

(2,6)
which shows tha surfaces of constant P and constant iE'001P01dc, 1)
that P P(ﬁp} Hence also p =

p(i@) and equation (2,6) may be written
in the alternative form

2R

(2.'6)

Because of agsumptions (v) anr. (vi), the equation of state is simply

B
P = =of (2.7)
(1% = gas constant, m = mean molecular weight = 1/2) which shows that
T is also a function of Agionly 1ese¢ results show that it is
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convenient to use‘\l as a coordinate, A coordinate system based on'gz'
is defined in the next section,

The coincidence of suxfaces of constant precssure, density
and temperature, which considerably simplifies the subsequent
mathenatics, depends crucially on assumptions (ii) and (1}:). Some
of the difficulties which arise when aszumption (ix) is not valid are
discussed in Chapter 7, A joint potential can still be defined if
the rotation law is of the form fL. = L (®) (& = distance from
axis of rotation), but the only function of this form which leads to a
self-consistent and tractable model is {L = constant, Any more
general function leads to a singularity on the axis if a magactic field
(with .Q. ©%constant on field lines) is invoked to maintain a steady
stote (of, Ilestel 1965, 1966),

Since the equation of motion is being used in the hydrostatic
approximation, it gives no information about the circulation currents,
The circulation velocity v has two, meridiar&pla;ne, components which
are related by the continuity equation, For a compresiible fluid in
a steady stote this maey be written

div(py) = O - (2.8)(a)
or
Spy_,_d_s_ = 0 over any closed surface, (2,8)(’0)
The component of ¥ perpendicular to a [ -surface is determined by the

equation of thermal equilibrium, which, by assumption (x), is

= v.orad log (B/p) = - div 3 (2,9)

P d
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(cf, Sweet 1950), Here Y ig the ratio of the principal specific heats
of the gas and‘Ziis the radiative flux, Y will be assumed throughout
to be 5/3,
Thether the radiativs flux is given by & local or a non-local
equation, it must satisiy the energy balance equation
L = g'z,_@ﬁ over a surfuce g’ = constant, (2.10)
In this equation L is the total luminosity of the star and is determined
by the interior solution, Its value depends on the rotavion speed
(Ro xburgh and Strittmatier 1965; sce also Appendix VI), Equation
(2,10) takes its simple fom because the surface of integration is a
level surface, It is derived from the more general energy balasice
equation (discussed in Avpendix IIT) by using equation (2,8\(b),
Euations (2,6) to (2,10) are five equations for three scalar
and 3o vector functions, To complste the sot, an expression for the
. o "‘,}. . ) o . < .
vector functio < 1is necessury, and sufficient, The expression

denends on whether a local or a non~local treatment is to be used, In

the local theory, the expression for 'ff is simply (ecaatloq (2 ))

- m3 am ‘
~ L oA
J 3w o ag&HY (2,11)

where & 1is Stefan's constant and w is the opacity (constant, by

assumption (xii)), In the non-local theory, one may write
- s Py I
4= (o) (2,12)

4 4 . s
where },, I and g are the components of 2 in the (¥, X,¢)

t

coordinate systcu defined in the next section, The first two
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s

components of

14 Cf—ﬂ'

ere, respectively, parallel and perpendicular to gradfy'

s "R . , . \
and J g 1s the toroidal component, They are given by:

T= = 51 cos A des
d .
Fx= I sin A cos f do (2.13)

F4 = &f[ sin A sin n de

where: I is the intensity of radiation; A and n avre angles defining
the direction of I, A being the angle between the outward normal to
he local iﬁ surface and the direction of I and m being the angle
between the meridian (;'\ = constant and the projection of the direction
of T on tha surface ﬂﬁ = constant (see Figs, 9 and 10 in Chavnter 4);
dw is an element of solid angle about the direction of I,

The intensity I is given by the differential eqguation

% = = Uup (I - B) (2,14)

(the "trunsfer equation®; see, for example, Kourganoff 1952), Hewe
the derivative is in the direction of I and B is the integrated Planck

funciion (by agsuwaption (xi)), given by

I (2.15)

3, Definitions

‘fhis chepter will be completed by defining two parameters
and describing the coordinate systcus used,

Ecuation (2,5) may be written:
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e 3 |
v - G 1 1+ Le I gine ’ (2,16)
o 33 i
where - ~
g3 |
‘f.' _ - L
- GII ’ (2.17)

The paramefer & is a measure of «, the ratio of centrifugal force to
gravity at the surface, If € << 1, a perturbation theory may be used
to solve the ejuations, as is shown later, Strictly, €& £a,but &
and « may vpe taken to be the same for most Hurposes, The relation
between then is discusscd in Appendix V,

A Turther paremeter &, is defined by

e = £ _ Bt (2‘18)
' T R T mGM ¢

where H = pressure scale height in an isotliemal atmosphere of

temperature Te, and Te is a mean effective temperature, defined by
L= 4miort (2,19)

€, is independent of the rotation speed, and is about 1073 (8,5x10_4
for the assumed BO star), Its significance will be discussed in
Chapter 5,

In these formulae, R is the radius and Lo is the luminosity
of the correshonding non-rotating star, The physical significance
of It and Te is blurred somewhat in a non-spherical star, but they are
useful to define & scale for the srystem,

Mnally, the two main coordisate systerms used musi be

described, They are ag follows,
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(a) Spherical polar coordinates (r,@,¢).
(b) The orthogonal set ('@ ,7(, ¢), lere '@ is defined by ecuation

constant are chosen

(2.5) or by equetion (2,16) and the surfaces X
to be orthogonal to the surfaces ’g = constant, That is, they are

chosen so thut
gracl”—gg . srad 'X = 0 everywhere (2,20)

The general soluvion of this ccuation, with: the condition ¥ = constant,

ig:

36

]

3 ‘
%(cos 6 + 1log tan (6/2)) + 'EE-I;— cos £f(x) (2.21)

R3
where f is an arbitieary function of X, An cbvious particular
solution is
) =X (2.22)
and this is used for all the exact theory (Chapter 3). A solution
vhich is approxinate, but which gives more meaning to K oas a coordinate,

is used in the wnerturbation t:eory T is chosen in such o way that
o J e

6
X =9 +§6£3- sin 6 cos 6 + l—"g"éi-r—é sin 6 cos © (1 + sinze) +O(63)
R R :

) (2.23)
Hote that 9(_ = 6 when 0 =0, n/2 and n,

It should be noted that, sincc ’? increases inwards, the

. y . .o . A
coordinctes (‘y s X s @) forn a left-handcd coordinate system, Also,
-( - - . - 3 .

-'}L!' does not have tie dimensions of a length, co that it is not a

natural coordin..te to work with, t is therefore convenient in the



perturbation theor; to define a new variable s , with the dimensions

of a length, such that surfaces of constant g and constant Y coincide

and such that s increases oulwards, he coordinates (s,Y ,¢) fomm
. ] . -~ .

a right-hinded system, and therefore fjs = - j‘ﬂ . leasons are given

in Appendix IV, section 5, for choosing a particular definition for s

which has the above properties, That definition is used throughout

tl:e main text,



CIIAPTER 3

Meridian circulation

in an atmosphere with a local enexgy transmort ccuation

"Singulavrity is almost invariably a clue,"

Sir A,Conan Doyle, The Adventures of Sherlock Holmes,

1.The equations

In this chapter the meridian circulation velocity field in
the atmosphere of the Roche model describec in Chapter 2 is determined

using the local energy transvort equation for ha‘_ This work has

—®

~

bean published as a short paner in Zeitsclirift fdr Astrophysilz (Smith
1966), 't should be noted that in sections 1 and 2 there is no
restriction on the value of fi., The gencral expressions for the
velocit, would therefore be valid for rapidly rototing stors were it
not for the conclusions of section 4,

The basic equations arc equetions (2,3) to (2,11) of

Chapter 2, rejeated here for convenience,

-Q? = %% + %;fgrzsinzé (3;1)

gred P = p grad” or %%% = p (3;2)
P = %q'p'r (3..'3)

div (py) = O (3.-4)
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- v.grad log (B/p") = - aivD (3.5)
o :
L = ‘X r?’,'\._@ (306)
O X
V= const,
Fj\_ _Eéﬁﬂmrnd'ﬂ (3"7
2 3 up A =T Y !
(da is Stefan's constant; the asterisk is employed in this chapuer

to distinguish it fron the dimensionless variable;, ¢, dofined below,)
In the following formal theory, it is no more difficult to
treat u as variable tlhan it is to tolke w as a constant, In eguation

(3,7), therefore, 1t is tuken to be the Krame:'s opacity

M (3.8)

where Mor © and s arc coastante, The constant b = 6 + 8 + e is
also used,

These equations are not in a convenient form for solution,
The dimecasionless veriables of RGS will be used, with a slight chaage
in notation, “Therc tie notation differs from that of RGS, the

following translotion rules apnlys

!

C'=x, 1’1=V¥', kY =,‘¥* ’ p =%, t=tw-

The dimensionless variables arc defined by:

o
(2a/ N 3

e
Il

(@) =7 W.‘r

D
=
i

il

P k64n4573Lno)(GH)’b+l(m/1%)b+l"e(£f/2)%b!1/6 p =Ap say
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= A (GI‘.-IQ_):/S 273 0N

o =
T = (n/®R) ((:;1‘-&.0.)”'3 P
) 2, A ]
v = (1/4n) (€ /oqu)y " 2™ u
' L
and (N = (1/4x) (ﬂl/zaﬁ,{)lf‘ 3‘ .

Using equetion (3,8), and the sccond of equations (3.2), the

equations in dimensionless form are:

o= —ol-, + c?sinze (3..9)

o - 2 (3.10)

p = ot (3:11)

aiv (o*n) = 0 (3.12)

’f = -Lz'%gradc-w (3.13)

o}

%E;gradg-log(p/pﬂ) = - aiv, '} (3.14)
& . 2 (3.15)

d b
Yo Pu(y)
Equation (3,15) is derived from cquation (3_6) with the help of equation

(3,13), h is defined by

n(y) = -;%; Sggmd,'t.@_%, (3.16)

Y = const,

The propertics of the function h cre considered in Appendix II, In
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terms of h,; ecuation (3,13) cen be re-written us:
~t* 1
= - grad Al 1
i IﬂqyJ S ' (3.17)
The subscript o in the above equ.ticns denotes the use of the
dimensionless s>lierical poler coordinates (o‘, Eh.d) . 8o thot,for

examyle,

/2 13
o= (50 3509

gince axical symmetry is being assumed, The subscript wili be dropped
in what follows,

The great mavhematical adventage of this model arises from

S (=}

the decoupling of the structure ecuations from the cquations for the
meridian circulation, The run of temperature und pressure in the
- Ty PR o A Ponnr R ) - ) 2 18) 1 (2 14
otmosphere can be found from eguations (3.9), (3,10_, (3,15} and (3,106),
togethe: with suitable boundar; conditions, without reference to tic

cireulation curxreats, That was done in RGS in the spacial case whexr

the centrifugal forcoc is exuctly ccual to surface gravity at the

‘a

) : e KB | 3y
[ 4

e previous chapter!, The

-7

boundary conditions in this critical config:iration, in which the star

A‘r_ AN i

= v 1
Y lsurface

Y
= 3,277, (Sec RGS and Appendix II,) It will be seen that in fact the

is on the vergs of rototional break-up, are =1 =0 at

theory is not valid for such large values of «,

2, Derivation and discussion of the circuletion currents

The eguations for h, », t and p*‘are such that these functions
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can in practice only be found by numerical integration, Since a

procedure for the numerical solution of the equations has been laid

down in RGS, and since the primary interest in this thesis is in the

circulation currenvs, the functions h, p, t and p* will be supposed to

be knowm functions of ’\’f and the circulation velocity will be found in

+

texms of these known functions, using equations (3,12), (3.14) and

(3.'17).

For this purpose, it is convenient to use the non-~dimensional

form of the orthogenal coordinate system (<, X , 95 ) defined in the

last chapter, In the dimensionless variables ,'\V is defined by

equation (3,9) and X by

'X = %(cos 6 + log tan (6/2)) + OQCOSBB (3018)

The surfaccs ’\2! = constant are showvn in Fig, 5, The ’X-su.rfaces are

orthogonal to them, The meridian circulation velocity u may then be

expressed in temms of its componenis Ty y Yoy perpendicular and

tangential respectively to the surfaces 1{;‘ = constant; i,e,

grad’y grad™

&= Uyigragy] T U fgrady(]

The procedure for finding Uy Uy is as follows:

(1) Find grad log (p/p*Y), which is proportional to grad y,

(2) ¥ina Uy, from equations (3,14) and (3.17),
\3) Find uy from equation (3.12).

First of all,. it is easily shown that

~50-
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- .
grad log (p/p*Y) -1 ; 1 { L. 4t 1’ grad (3,20)

using equations (3,10), (3,11), Hence from ecuations (3,11), (3,14),

(3.17) and (3,19),

o (3.21)

Since \r is known, a further step is possible, TFrom eguation (3.9),

grad¥y = ( - %—r’.‘ + 2¢gin" 8, 2osin 6 cos 6, O)
so that ;gradﬁyf = G(o>, 0)/s-2 (3.22)
3, T & . 2 .'/?. .
wherc G(cr, e) = (1 - 458in%6 + 4o sin e) (3.23)
Also it may be showm that
Vi = 4 (3.24)
Honce finally
. - -t
1) 4o _LdhG |
B¢ Thayen| -
Y - 1 |

This should be compared with the more general formula derived recently
by Hestel (1956),
To find ux , cquation (3,12) mist be solved, The boundary

condition Uy =0 when 0 =0 is used, A fommal solution is casily

i

obtained in the cooxdirate system (ﬂﬁ‘,jy ,g5 ), in which equation
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(3.12) can bhe written

{ 6 sin 61 2 sin 6 .
224 o - ) 26
MU \ P u"‘w’;' j grad X} J y)( { st lg'radnp (3. )

Uy is obtained from this by integrating with respect to’)ﬂ over a

surface 4p’= constant, On such a surface

X X
n —‘/ —_— A———— e ———
a ) o= p de + e~ de
Y 4 A
= A - i
0 d’ly g do + 376 a6

wnd so, eliminaving de~ and using equations (3.9), (3,18), (3.23)

ey i_cos 6 ¢( &, 8)
A ZSnldi—Za:ulﬂ

de on ’4r= constant

Of course, on qy's constant ¥ is a function of ﬂ¥‘and 0 given by

equation (3,9), wiilch cannot be explicitly solved for o, Hence
wg (W, (5, 0), ©) =

B
3cos*xG( e (¥,x),x) ‘h |o*uy gBine | (3.27)
2sinx(1=2:3(y,x )sirfk) L‘“ﬂ maXmJ ('\{, x) .
Jdg ’ '

This expression, albeit purely formal, shows the same
l/density dependence @8 is shown in the expression (3,25) for‘uﬂ',
The boundary conditions n =1t = 0 at the surface (discussed in Chapter
5) require p O.also at the surface (see the solution in RGS) and
so the circulation velocity has & singularity at the surface, As
explained in Chapter 1, this feature is not due to thc use of a Roche

notential (cf, Mestel 1966), However, neither can it be attributed

to the use of a perturbation theory, as might have been thought

4
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because of the results of Bpik (1951) and Baker and Kippenhelmn (1959).
The singularity implics that one of the physical assumptions made is
invalid;

The two least plausible assumptions made are
(l) the transfer of radiation can be described by a "local"™ equation

+

(2) inertial and viscous e.fects are negligible,

The first assumption is implicit in the use of equation (3_7)
for :}, wadich 2s’ & Hloeadl' equation ia the sense that’??(g) depends
only on the local values of p, ¥ and grad T at the point r, As noted
in the last chapter, it would not really be surprising if this
equation, the standard one in the tlhieory of stelliar interiors, were
inadequate in the atmosphere of a star, vhere the radictive Sransier
is usually described by the™on-local’ equations (2,12) to (2,15).

It will be shown in Chapter 4 that the non-local tleory does remove
the surface singulaxity,

However, assumption (2) could also be wrong, Initially, it
would sesm likely that the velocities in a non-local theory would
differ from the prescnt velocities only in a fairly thin layer near
the surface of the star, perhaps of the order of a scale height in
thickness, Thus at, say, one optical depth below the surface the

velocities might be expected to be almost as greagnas on the local

'

¥

Hote that this is a very pessimistic viewpoint, The fact, proved in

Chapter 6, that the non-local theory predicts larger velocities at one
optical depth than thce local theory could herdly have been anticipated

from the results so far,



In that case it is possible that viscous and inertial forces
could be 1mportant near the urface. To test this, the expressions
(3, 25) (3.27) will be used to dorive an order of magnitude estlmate
for the circulation velocities in terms of the rotation speed, It
will be seen that assumption (2) may still be made if the rotation

speed is suificiently slow,

3,.0rder of magnitude of the velocities at thc base of the atmosphere

Provisionally, slow rotation is assumed, This is defined
by a = a(Req)<<.l, where a(r) =‘fffg/GH = ratio of centrifugal force
to gravity in the cquatorial planc, agd Req is the equatorial radius
of the rotating star (cf, Appendix V)., The following values arc
taken for the constants involved:

T

8.3y 10! crg/deg/mole

G =6,7x10" dyne cmz/gm2

Y = 5/3
The values taken for the physical perameters are those given in
Chapter 2 (p, 32), assuming & BO star, o corrcetion for rotation
has been applicd to R or L, since the calculation below is only very
approximete, For simplicity an elecbran-gcatuerxnv opacity is
assumed (as in RGS), so that (cf, equation (3 8)) e = l, s = - 3,

b=4cnd uns= n o~ 0,38 for purc hydrogen (Allen 1963),

The density and temperature at unit optical depth (% = 1)
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are required, Tor slow rotation, it is epproximately true that

-

Friadil Y (3.28)
Also %-;:U“-: - on (3.29)

by definition, Assuming ga- C-?I’JI/R2 = constant, and that P = O at the

surface ("; = O)

Thus oz
P g wI T

The temperature at T = 1 is near cnough To' Hence
Tooqt T, ~ 2.2x 10% % (3.30)
Gilm 1 : -9 3
Prel v s— = ~5,8¢1077 @fem®  (3,31)
HRRT w€R
e

The avkward nart of equation (3.25) is h(ﬁlr), However, in

the case of slow rotation, an cxpansion in « can be used, Since

‘ GII 1 5
'ﬂ = 1+~§a(r) sin ©

i,
the surface value of “~+'=; is

g PREINCY &
o~ - —3 =) >
( Gh .Q.) R 1

Thus, since ’L‘iS >""lfs ’ h(’\‘f) can be expandec in powers of 1/’\lf . It

nay be showm (ef, Appendix II) that



n(y) = 1 - %wf %%JO% (3.32)
& 18,01 3.33
so that ?i‘w;} =€‘-ﬁ+ ‘q; + O(\ -.“’j ( )

Ihe expansion for h('gb ) may be used in a series solution of

equations (3, 10) and (3, 15) for small oC , t may be shown that
4 L1 45 zero order in « (3.34)
dl?’ 4

For large~y , ¢ may be written (fron(3.9) as

1 1 .2 )
o == +=sin 06 + ,,.
\lf[ W3 j
, 2 2 '
so that G(O' 0)= 1 -W psin’0 + .,

These expansions nay ve used in equation (3,25) to find an
expansion for Uy e The term in 1//\(/2 vanishes identically, leaving

tie leading temn

g = 2—;—%;7,%* (1 - 2 sin®) (3.35)

tote that the 6-dependence is just Pz(cos e) wnere P2 is the Legendre
polynonial of order 2,
Ury ay now be found by using the above expansions, and the

fact that

3 2,
|graax| = 2225 a(, o).

Bquation (3.27) yields an expansion for Uy vhose leading term is

Uy -%‘Lg%}‘ sin 26 (3.36)

To find numerical estimates, these expressions must be put in



dimensional form, Thus, for example,

. 1 11./3 s
. ___;_:__(.n. ;5121 A2 (1-ibme)
v T 4m o \2CH) A 9 w5 p(@in)h 2

Using "\\JN ¥ (2/06) and o - .0- &L , M, this gives

~ L. 11 o o0) &°
e 9 GE o (1 + 3 cos 20) &
(3.37)
Similarly V’)( ~ -9-§- "-\Lfﬁ% 7 sin 26 62
6 2
or Ve ~ 2,2%x 10 (1 + 3 cos 20) & cm/sec-l>
(3.38)
Vo 2,2,{106 T sin 20 a2 ciy/sec J

ugsing the values given above, (See also Appendix VII, section 4.)
It ie immediately apvarent that v@, and vx ars comparable
in size, which contradicts the usual approximation to the continuity

equation

found by assuming that A changes appreciably in a scale height H
while PV hes a scale of variation of R, | In fact, since vﬁoﬁ 1/p,
PYp is roughly constant in the atmosphere and the usual approximation
is not validg, The approxirmation to the continuity equation will he
found to be valid in the non-local theory, where the 1/ p dependence
does not appear,v

The next point to note is that the velocity is proportiocnal

2

to a to lowest order, Since a first ordex perturbation theory

predicts non-zero velocity temms (see, for example, Mestel 1965,
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equation (21)), this result is at first rather surprising, The
expansion has shown that first order terms appear, but cancel
identically (the term in 1/4/2 vanishes). This cancellation turns out
to be a consequence of the use of the Roche pocential, If the Roche
potential isg used in the derivation of lMestel's equation (21) instead
of a general gravitational potential, t.:e first order velocity is
indeed zero, This result throws doubt on the use of the Roche
potential, since there will, in general, be non-zero first order temms,
However, for uniform rotation these will be finite, or at worst
nroportional to p‘/p (Sweet 1950; llestel 1965), and so the second order
terms will dominate near the surface; The equations (3,37) may
thereforc be expected to give the right order of magnitude for th
velocities in the surface layers,

It will be seon later that the vanishing of the first order
terms is in part due to the use of a local theory, The non-local
theory yields non-vanishing first order terms even with a Roche
potential,

The third point to be noticed is the sign of the velocity
components, Since Uy is defined by equation (3,19) to be in the
direction of grad\V , and since \p increases inwards, the sign for Yoy
given by equation (3,37) means that the circulation rises at the
equator end sinks at the poles, contrary to the usual first order
result (Baker and Kippenhalm 1959; Sweet 1950), This circulation
reversal in the outer layexs was first mentioﬁgd by gpik (1951) and

has recently been rediscussed by Mestel (1966) , Since v., is
¥ Ta Eaglish - An 2ect ac \Q“Q"I on Thaliem , vnmabioms Ao Qo fha nowedon (G"‘YM WS,
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positive throughout, and X increases with €, the stream lines are as
shown in Fig, 6, whioh agrees
n ' o
with Opik's result, This is
a rather odd result, which
sugrests that the polar

regions continually lose mass,

The non-local theory will

shiow that this material in

fuct returns to the poles

Pig, 6, Local theory strcam lines, very near the surface,

4 Range of velidity of the tlieory
The equations (3,38) can now be used to test the validity of
assumption (2) of scction 2, Consider first the full steady-state

equation of motion (without the nagnetic forces):

grad P = grad @+ %\)grad aiv ¥V - \Jeurlcurl V (3.39)

(L)Y + i

where V = v + 18t is the general velocity of the stellar material

v = velocity in a meridicn plane
% = unit toroidal vector
and V = rodictive (lcinematic) viscosity
* 4
160 17 .
== (see, e,g,, Cowling 1953)
1oupc

Since v changes ranidly near the surfuce, while @ does not,

the meridian~nlane compyonent of equation (3,39) gives:
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2
inertial tems LYJ
H

|aa
]

V = viscous tems~ y \:_3
H2
centrifugal terms ~ oK

I

C

scale height = € 1 = 4,5x1080m,

where H =
An approximation for ¥V may be found as follows

Teking T~T_,

3
o1 T 1 B
3 »w p H 5 2
p3
' L
for slow rotation, and (using

S A

equation (3,34) and the definitions of t and Y/ )

&) ~1 Ze
dr 4 H
Hence vV~ & i --I’-- ~ 9,6,;108 cm2/sec (3,40)
5 2 32
pc” nR
For , v ‘ y the root mean square value of v is taken, that i
8 : \
ix| =\/%g(v?2 +v.%) sin 6 e ‘
o (3.41)
—~— .
- /%Ei-é@-fﬁ% o ~ 1.0 & |
> fo 4 -3
Then, using - i- = =~ 1,510
R
(3.42)

I o -
o 40 d3
Inertial temms are therefore negligible comnared with centrifugal
40 L 1, i,e, if

terms if 1
@< 0,3 , (3.43)



(In the author's paper (Smith 1966) slightly cruder estimates were used,
leading to the slightly less stringent result o<< 0,4, The result
is clearly cualitatively unchanged.)

In the same way it may be shown thati

% ~ 7.200°0 @ << 1 for  a << 1,407 , (3.44)

Thus viscous terms can always be ignored, and inertial terms can be
ignored if the rotation is slow enough,

It should be noted that these results mean that the stellar
model used is not accurate for « = 1, the value adopted in RGS, since
in that case inertial temms are some 4C times greater than the centri-
fugal tems, However, the present order-of-magnicude calculation is
itself inaccurate unless « <L 1, so thal one is entitled to say only
that the inertial and centrifugal terms are likely to be com»paradle
near the surface for a« =1 ond that eguation (3;2) can no longer be
assumed to be valid for such ra) idly rotating stars,

Portunately, few stars are observed to rotate as fast as that,
Allen (1963) quotes a ﬁean value for o of about 10—l for BO stars, so
that to a reasonable approximation the above theory applies to the more
slowly rotating B stars, This conclusion might aprear to be in
disagreenent with the results of Waller (1965b), whose figures suggest
thaot all BO stars are rotating on the verge of break-un, | However,
the present author's computations, on the same data, do not support
Walker's result,

Thoever is right, there is still no doubt that somc stars
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exizt for which assumotion (2) is valid, Attention from now on will
be concentrated on such stars, for which only assumption (1) need be

discarded, The detzils of the non-local theory wiich replaces that

assumption will be given in Chanters 4 to 6,

However, it is appropriate to mention here a snag which will
appear again later in more formidaoble guaise,  lestel lias pointed out
(1965) that strong horizontal sheoring can sometimes give rise to
turbulence, the energy in the flow being sufficient to upset the
othermrise stable density stratification, This is on example of the
Kelvin-Helmnoltz instability, and a sufficient criterion for gtability

, e . £V’
is thoat the Richardson nunber

. gl /o)

(av/ax)?
should be greater then about 1/4, (See, e,8,y Chandrasekhar 1961,)
If the flow did become turbulent, the effective viscosity of the gus
would be much larger than the rodiative value and viscous effects might
not be negligible,

The resgults cuoted here are derived in Appendices IV and VII,

where the notution used is fully expleained, o lowest order (& << 1)

JR = gb(-pé/po) ‘ (3;45)
(dve/dr)g

’GStrictly speaking, this exsression for the Richardson number applies
only in en incompressible fiuid, However, the expression applicable
in a compressible fluid differs from it only by « foctor of order unity

- see Caoster 6, goction 5,
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where g = LLgeN
o R2 y2
y = 8/R (s =r to lowest order, and y = 1 at the boundary)

10
O Q =~

31/ 1.
Ry 1-y,

. - 7 8
and EY_Q) - 3204 é,L" %%QXTJ’ sin2e é’ 8y + 3y

ar 3 -8 (1-y)3 (1-y)*

From these results

( 111.)3 1 Ll"'.Y)'? |
J, = (3,45)
R 1472 w2eSr? sin®20¢t y17(8-55)2

Assuming the values above for G, M, n,€,, R end L, and teking y = 1

except in the term (1~y)7,

' 7

2 4
R sin 26€”
256
The critical value of J, is 1/4. J, = 1/4 if (1-y)T= 8205 4 o
. R X R 34,1056
taking sin“26~1/2 and € = 1077, if
1-y = 1,1,‘-10‘3 (3.47)

Since Jp >1/4 for 1-y greater than this value, insiability is only
possible in a very thin layer near the surface, Jp < 1/4 only in a
boundary layer of thickness

5= 1.1x10° R =1.3H (3.48)
that is, about one scale height or about one optical depth, Thus
ingtability is only possible (and the criterion does not require

instability for Jp < 1/4) in the region where it has already besn
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suggested that the local theory does not apply, It is therefore
logically permissible to ignore for the present the possibility of a
turbulent surface layer, in the hope that the non-local theory will
show thit the velocity gradient is small enough that turbulence can
never appear, That is not in fact so, and the consequences will be

discusged in Chapier 7,



lon-local radiative transfer in a non-spherical atmosphere,

CHAPTER 4

"I do attend here on the general,,."

W, Shakespeare, Otliello, Act III Be, iv,

1,The eguation of transfer

The non~local theoxry differs from the local theory

principally in its representation of the transfer of radiation

through the atn:osphere,

The local equation for the radiative flux,

3 - -

~

is repnlaced by the set of equations

where

3

~

(

. 3
FLIN S S
3 % p grad T ,

r}S,?‘X’"ﬂV)

f]; = SI cos A de

I sin A cos n dw

\

gI sin A sin n dw

at

S = - wp(z-n)
4

p - €L
n

(4;1)

(4.2)

(4;3)

(4.4)

(4.'5)

These equations have already been presented, in Chapter 2, where the

notation was explained,

The definition of s is given in Appendix IV,
< L
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Bquation (4;2) merely defines I}s’%ﬁ( end P‘}(ﬁ to be the comnonents of
?f" in the directions of grad s, grad X and gradgﬁ respectively,
Bquation (4,3) relates (i to the intensity of radiation I, which
satisfies the differential equation (4,4). Eouation (4,5) identifies
B as the integrated Planck function,

Since the temperature T appears in equation (4.5), this set
of equations must, of course, be solved in conjunction with the usual
structure equations, It is, however, useful to re2strict attention
for the moment to equations (4;2) to (4;5) and in particular te
consider equation (4,4), the "equation of transfer", in more detail,

The intensity I is a function of direction as well as of
position, a fact which complicates the general expression for dI/dl,
the derivative of I in the direction of I, Consider first the simnle
case of a non-rotating, spherically syummetric star, It is customary
in that case to take the wtmogphere ag stratified in plane narallel
layers, ©Since the functions describing the stiucture of the
atmogphere depend only on r, the distance from the centre of the star,
end since the radius of curvature of the atmosphere is large compared
with the mean free path of a photon, this is a very good approximation

(see Chanter 5), In that case
dr = cosAal (4.6)

where /\ is the angle between the radius vector and the direction dl
(Fig, 7). Since in this simple situation I must depend only on r and

A, anda ) is constant along dl, equstion (4,4) then reduces
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ﬁ/‘\
z
(r,d1)
dr ng/’,dl
T
Fig 7., See text,
immediately to
_@‘I“ _ ~
cosA - I-3 , )
r (4.7
where T = -S np dr!

Here 7 is the "optical depth", The lower limit of integration is
conventionally cihosen to make T = 0 at the'surface" of the star (see
Chapter 5),

If the mean free path of a photon is not small compared to
the stellar radius, as will be the case for stors with extended
envelopes (see, e.8.;s 1i%Crea 1928, Cliapnan 1966), the plane parallel

arproximation no longer holds, and egcuation (4,6) nust be supplemented

Fig. 8, See teut,
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by the equation

ra\ = -sinA a (4.8)

where the negative sign erises hecause /\ cecreases along 4l (Pig. 8).

In that caze, equetion (4,2) becones

H

- np (I - B) Mé)

.
7

1 gin A D
cos/\ar - T

(ef, R,T, p.23), This form of the trunsfer equation is velid at any
level in the atmosphere of ¢ non-rotating staxn,

In é rotating star, further generalizution is necessary,

Since the symmetry is axial, retiner than spherical, I will depend on

the co-latitude 6 as well as on r, altiough it will still be independent
of gé. Also, one angle is no loager sufficient to soHecify the direction
a1, I is thexrefore in gencral a function of the four varizbles r, 6,

/\ and_F{, where }{ measures the direction of I with respect to a
neridian plane, 45 = constant (see Fig:, 9 - 11, which will be

exnlained shortly).

However, bearing in mind the results of Anpendix IV, these
variables are not the nost suitable for a rotating star, t is better
to choose as position coordinates the variaebles s, ) defined in
Chapter 2 and S)pendix IV aud as anguler variables the angles A, n
defined in Chapter 2 and by Tigs, 9 - 11, The resulting equation will

then be in the correct fom for perturbation theory to be used in its

* . . . L .
In this conitext, H is the Greek letier "canital eta't, It should not
b o5

be confused with H, the scale height,
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solution,
If the correct form for equation (4,4) is to be obtained, it

is necessary to find

ar, . . _elds 2Lax I dr 9L dn |
XM S S AR YA @ Tona - (4.10)

To find the coefficients of the derivatives of I is a laborious
procedure, which is most easily carried out in two stages, These are:
(i) the calculation of dr/dl, 4e/dal, aN/dl and dH/dl in terms of

r, 0, N ’ H . Thig will give the gencral form of the transfer equation

in spherical nolar coordinates,

n
2
r

AR

L
}\“"‘...‘ 2
D "'l‘\( -~

4, -0 ( arbi"craxj;f)

Pig, 9. GSee text,




(ii) using the relations between (s,’,'(, A, n) end (z,0,A ,H ), and
using the results of stage (i), the calculstion of ds/dl, dj(/dl, dh/dl
and dn/dl in tems of s,%, A and n,

However, before procceding to this calcuiation it is
necessary to explain Figs, 7 - 11 in some detail, Fig, 9 shows
portions of the svheres r = constant, r+dr = constant, The point
P (r+dr, o6+d6) is obtained from the point O (r, 6) by moving a

cistonce dl in the direction of I, i,e, in the direction dl specified

Fig 10, BSee text,

L4

X Q04

60B

i it
x =3

OR=0N=0L=1

fi?—surface

% = constant

¢ (surface T = constant)
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by A\ andaH or by A and n.- The angles A and A are the angles
between the direction 4l and.the normals at O to the surfaces of
constant r and constant 'g’ (or s) respectively, The angles M and n
are, respectively, the angles beuireen the meridian (‘P = constant
through O and the projection of ¢l on to the surfaces of constant r and
constant '\If (o:c s) through O, The nommal directions to these surfaces
are shown by the arrows labelled r, n respectively, x + dr, n denote
the normal directions to the corresponding surfaces through P,

The angle between the nommals to the surfaces of constant "J;-f

and constant r through O is denoted by FAR It is defined by

(4.'11)

By’

cos A =1,

where : denotes a wnit vector, By definition

__graal .
lgrad il (4.12)
2 = (1,0,0) in spherical polars

fa )

Hence: r’b o
1l - e'ﬁgsin 6
A
cos LN = = 5

Py
(1 - 2€%,sin0 +& %Gsinze)

(4:13)

It is not possible to express this exactly as an explicit function of
s a.nd?(,, However, AN may be found from this equation, to any
desired order in & , as a function of (r, g) or of (s,x), For
nresent purposes, A is simply regarded as a known function and it is
not explicivly evaluated,

Fig, 10 shows the region near O in more detail, to clarify
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the definition of n, and is largely self-explanatory, The points R,
N and L are the points of intersection of a unit sphere centred on O
with the directions r, n, dl respectively, The resulting spherical
triangle, which is used to find relations between A, n,A,H and & y 18

shown in more detail in Tig, 11,

L
Fip;_. 11, See text,
It is now possible to calculate % .
Staze (i)
It is clear from Fig,l 9 that
dr = dl (4.'14)
or, in components,
ar = al cos /\ l
r do = d1 sin A cos H (4,15)

r sin 6 dP = a1 sinf\sin H

il

Since dA is negesive, it follows from inspection of triangle CCP and

from the definition of /\ thst
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ocP = - aA

Thus, since OD is a great circle
-rdaAN =0D = dl sin/A . (4,16)

Triangle ODE is a spherical triangle on the sphere r = const, in which,
taking r as the unit of measurement, OE = 6, OD = 6 + do, EOD = 180°~ H
and ODE = H + dH.. Since dH, d6 are infinitesimal, the application of
the sine formula of spherical trigonometry (Smart 1944) to these four

elements gives:
dHcosH sin 6 = - d6 cos 0 sin K (4,.17)
This result may also be put in the more easily visualizable form
aH = - d¢' cos 6 (4;18)
by making use of equation (4,.15),. Ceometrically, this means that
DT = - aM

This is a plausible, but not immediately obvious, result , although it
is clear that aH must ve negative, An alternative derivation of
equations (4,16) ang (4,18) is given in Appendix IX,

In swmary, the results of stage (1) are:

ar /a1 = cos M\

d6 /a1 = sin/NcosH /r '
(4.19)

aN/a1 = - sin/V/r

dH/a1 = - sin/\sinHeot o/r
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Stage (ii)

This stage divides naturally into two parts - the
transformation of the coordinates (/\,%4), and the transformation of
‘the coordinates (r, ). It will be seen that the second part cannot
be completed in practice,

For the first purt, the formulae of spherical trigonometry
(sec e,g. Smert 1944) can be applied to triangle NRL (Fig, 11) to
give relations between A, n, A ,H and A, In principlel only two
formulee are needed to give (A,pl) in tems of (A, n,D), In

nractice, The cosine, sine and 4-parts formulae are &ll useful,

Some tedious algebra then leads to the expressions:

% = cosh cos{) + sinA smAcosn B
ae 1 . .
FEla [-» cosh #ind) + sinA cosAcos-lﬂ
%’f = -%l-'— sinh cos A + cosA sinf\ cosn (4,20)
+ sinA sinAsi_nE-n cotd + r cosn -g'—f} (
%—T% = %[(—sin?\. cos L\ + cosh sin/\cosn) sinn cotd
_osimn sind o o .3119]

ginA

These exwreszions are unsatisfactory for several reasons,
Firstly, they still contain r end 6, and indeed tie first two
expressions are not yet the ones required, Turther, the angle A
aprears explicitly, This would not be expected in a generel

expression in the ccordinates (s, X, A, n) since, if the expression
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were obtainable directly, the angle A necd never appear, It only

appears here because equations (4.20) have becn obvained via spherical

polar coordinates,

The first two expressions may be renlaced by ds/dl and
1Y o i J

aX/al1 by writing

ds Ds dr ‘s 46

95 Vs dr a5 49 |
g

al  OYr dl e 4l

aX _dxar  aXae
al  wral e dl

(4;21)

The relation between the (r, 8, C,/:/) and (S,X,gé) components of s gives

It

or

95 _ ool Vsl 1

%% =~ T sin&l?s] J
Similerly %: sin AT
-%%': T cosAlYX, J

These equations, together with cquations (4,20) , combine to give:

%’} = cosk‘?s' l
X |
%—%l = sinA cosn ‘V%‘ j

(4;22)

(4;23)

(4:24)

These expressions are entirely sctisfactory, in that neither A nor

the coordinates (r, 6) anpear explicitly, Also, the second expression

is entirely independent of which solution of equation (2,21) is taken

for ></.



Unfortunately, the methods used to obtain these expressions

are not avnplicable to % or -glll, Since r, 6 (and therefore D) are

known only as implicit functions of s and 7 g 1t seems to be impossible
in practice to find '&')f and E—;} s functions of A, n, S,X,‘Sf’ s} and \VXI
only, Of course it must be possible in »rinciple, but the complexity
of the functional relations between s,X, r, 0 andA is such that the
a.utno:?@ad to admit defeat, albeit reluctantly, It is, therefore, not
yet possgible to give the general form of the transfer equation in the
coordinates (s, , A, -n),

The difficulty is, of course, purely formal, If all
functions are expanded in powers of € J it is easy to find % and %
in terms of s,X; M and n to any order, As the transfer equation is
only susceptible to solution by perturbation methods, the failure to
find a general form for it is not a serious defect of the theoxry,

To summarize, the main results of this section are that the

equation of transfer in a rotating star may be written in genersal ag

N R sinAsinMcote DI

" re——
-

i 2
cos A\ %'If . 8inAcosH 2I

r 36 r O\ r AH '
(4.25)
= - up(r, 6)(I(z, &5 A, #) - Bz, e))
in spherical polar coordinates, or as
Lo ‘\T_a : : - A 5\1‘ IA T’aI
co ol 1 g e dn o1
‘cosA ‘Vsl + sink cosm\.x Sta™Ta 3 ,
. (4,26)
= ~ %p(s)(I(s,X5 A, m) = B(s))
in the more appropriate coordinate system (s,')(,,QS), % and -%l are
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not obtainable in practice in terms of s, ), Pgs‘,liﬁ‘L A znd n only,
but expressions for them in terms of r, €, A and n are given by

equation (4,20),

2,A formal expression for v
B

Although it is not feasible to solve equation (4,25) or
equation (4,26) exactly for I, it is possible to use these equations
to obtain a fomal expression for Vo the component of v in the
direction of {s.

It is known (R,T,p, 11) that, if the transfer equation is
integrated over all directions dl, an expression for diV':} is
obtained, This result is only obvious in Cartesian coordinates, but
it may be verified by integrating equation (4.25) over all solid angles
about tlic normal to the sphere r = const, The use of this equation
rather than equation (4,26) is justified by the fact that the result
is independent of any wparticular coordinate system,

Since the element of solid angle is

46y = sinNaAaW (4.27)
the integral is
-
AT s
N\ (4.2%) sinftaNaH
:é A

which gives, after some manipulation,

aiv ?} = ~ 4mp(J - B) (4,28)
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where

. | .
T = \ I dew, (4.29)

This result could also be obtained directly from energy considerations,
P

If this expression for div <j is substituted in cquation (2,93, which

may be written in the fomm

v, Vel w25 & 108 (7/p7) = - aiv '}, (4.30)

it is eesy to show (cf, Chapter 3) that

- 4ou{J - B) | ’
VS - Ws\ Y ,0_2&_@.2 _ -@ . (4.31)
Y - 1nmds ds
It is imnediately clear that vy (= - viE) docs not have a l/density

dependence, Since the only difference betwecn this formal theory and

A

that of the previous chapter lies in the choice of expression for 7,
this result substantiates the claim that the surface singularity in the
local theory is due simply to the inadequacy of a local transfer
equation near the surface;

Of course, from the form of the continuity equation.vac has
a term proportional to (ﬁyp)vs, However, it wil' be seen in Chapter
6 that p goes to zero exponentially as the surface is approached, so
that ﬁ/p is finite in the non-local theory; The only other question
is whether any factor still present in equation (4,31) could give rise
to a singularity; However, n, J and B must be finite everywhere on
physical grounds and it may;be shown that the denominator vanishes

only for (é,rB/RJ =1, 6= n/2), the set of conditions which corresponds
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to the balence of centrifugel force and gravity at the equator of a
star rotating on the verge of break-up, The bracket containing the
temperature grediers is clways positive by vivtue of assumption (viii)
of Chapter 2 that the atmosphere is stable against convection,

These consideraticns show conclusively that the velocity in
& non-locel theory is finite at the surface, However, it is not zero,
and preliminary estimaces of the size of vy and Vo, ot the surface are
clorming,  There is no reason, a priori, for assuming that the
difference J=B is significantly smaller than either J or B, although
J and B may be expected to be comvarcble in size, In any case, an
upper 1imit for v, may be obtained by assuaing in the first instance

that
J-Bx B = d’Ti . (4..32)
It follows at once from Appendix V that
lSZs‘ =1 (4;33)

Since the expression involving the temperature gradient never vanishes,

it is reasonable in the first instance to assume

Y War ook a¥ , o |
Y-lm ds ~ ds  ds 2 (4.34)

R

It then follows, using the values wuoted in Chapter 3, that

v, lO9cm/sec ‘15 .
. (4,35)

H

~ R 12
v, T RV, 10" “cm/sec J
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These results zgree with Oseki (1966) in predicting speeds greater
than those on the local theoxry by a factor of oxrder % (AflOOO) or more,
If these estimates are borne out by more carzful analysis, then the
theory is clearly invzlid snd some further mechonism for damping the
ges notions muss be invoked, Such a mecheanism will bHe digcussed in
Chaptexr 7,

Yowever, it is not possible to say at this stage whether
further anulysis will confirm i':ese figures or not, The difference
J-B could be much less thsn B, It is at least a first order quantity
(in €), and could even be second order by analogy with the local theory
(Chapter 3), The following analysis is therefore necessary, ceven
Chough it does confirm the above esvimases, Besides, there is no
doubt that a non-local itreatment is necessary, if not sufficient, for
a proper cescription of the atmosphere and itv ig usceful to consider
the simplest non-local treatment first before becomin,; involved in the

complications due to viscous and/or inertial effects,

3 HMethods of solution of the trunsfer equation

In the expression (4,31) for Vs J, B and T are unlown
functions, In order to find these functions, and so to eva}uate vy
more exactly, it is necessary to solve the transfer equation,

It is well known to be difficult to solve the trunsfer
equation, even in the simple formm of eguation (4,7}. In that case,
the only one studied exhaustively, an exact solution is known for B(’Eﬁ

and for I(O,p) (OKp&KL - p = cosA\), tie emergent intensity at~y = O,
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but no exact solution for I(?:,u) is lmown for general’E'; This
¢iscoureges any attemnt at finding an exact solution for I in the
present case; particularly cs even the solution for I(O,u) in the
simple case invelves sophisticated comnlex varisble theory, What is
required is a orocedure wiich is known to give a satisfactory
approximate solution for eguation (4,7) and vwhich ccin be extended to
he solution of equation (4,25) or eguation (4,26).

A great variety of methods has been developed to give
aproximate solutionz for equation (4,73, Of the methods described
by Kourganoff(l952>, the most extensively used secm to be those
based directly on the transfer equation, They are the moment method
(a generalization of the Eddington approximations), the spherical
nharmenic method cad the niethod of discretve ordinates, The mexrits
and defects of these three methods, which Krook (1955) has shown to
be formally equivalent, have been thoroug ly discussed in the livertture,
This seemed a joo0d reason for choosing one of them for use in the
nresent problen,

In the spherical hamonic method, which is due to Iddington
(1930, p,105), the intensity I(“ﬁ,u) is represented by a finite series
of Legendre polynomials Pj(u) wnosc coefficients Ajeto are detemined
by the transfer equation, In this simple form of the method,
difficulties arise due to the impossibility of representing by a finite
sum of continuous functions the function I(O, u), wnich is discontinuous

at p =20 fourganoff (1952 P. 101) mentions an elaboration of the

method, due to Yvon, which partially removes this difficulty, The
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difficulty may be entirely removed by a modification of Yvon's method,
due to Wilson and Sen (1963) whe also give a useful discussion of
the nethod,

e method of discreibe oxdinates was fivst suggested by
Schuster (1905) and Schwvarzsciiild (1906) and was generalized by
Wick (1943) and by Chandrasekhar (R,T,), who has used the method

xtensivly, he radiation field is rspresented by 2n discrete
gtreams of rcdiation, each associated with a particular value of W,
Bo= (i = I 1y, vee I ny B_;= - ui). Integrals can then be
approximated by finite sums, using weights in the same way as in
formulae for numerical quadrature, in excellent critical account of
the method has been given by Kourganoff (1952), who discusses the
relative merits of various quadrature foxmulae, Kourganoff prefers
the Newton-Cotes formulae to the Gaussian formulae used by
Chandrasekhar, but Sykes (1951) has shown that the Gauss method can be
modified to give better results than either the standard Gauss or the
liewton-Cotes fommulae, Carlson (1955) has further refined the method
of discrete ordinates in an application to the numerical solution of
neutron diffusion problems and CGrant (1963) has applied Carlson's
"Sn—approximaiion" to the radiative transfer case,

However, the various modifications in tliese two methods of
solution are &ll cdesigned for more accurate solution of the problem,
In the present case, accuracy was not, in the first instance, the
primary concexn, It éeemed more important to find an approximate

analytical expression for the velocity field which would show
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gualitatively how the velocity varied near tie surface and which would
also confimm or reject the numerical estimates nmade in the last
section, Only if these numerical estimates turned out to be a grossg
overestimation would there be any noint in improving the accuracy of
the solution, 'he main concern, thercfore, was to find the method
which was most satisfactory in its lowest approximation,

Of the two methods discussed so far, the method of dlsﬂrete
ordinates has the advantage that Chandrasclhar has shown (R, p,364
et seq‘) how it may be extended from plane-parallel geometry to
spherical geomctry; he has also cstimated the error of the first
approximation, However, in neither ol the above methods is there any
obvious way of extension to tiie non-spherical case, vhere I depends
also onf)ﬂ and n,

In a first attempt to solve the non-spherical case, the
QXL,n) dependence of I was represented by a Fourier series for the
n-dependence and & series of Legendre polynomials for the

7(J-dependence, Application of the symmetry conditions

(e, Xshy n) = I(sy X5 Ay = m) 1 (4.36)
(s, 2032 n) = I(sy = Y5 2, 7 - n) J |

enabled I to be writien a
J,_) =0

He s M) = 2 T (e A 2, (cosX) oo an (4.37)

U T\’y.u
where m + n is even,

This ap ,roach has several difficulties, Tirst of all, cos?{ and ‘the
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second symmetry condition are meaningful only if 1({= 0 to lowest
order (cf; equation (2;23)), This immediately necessitates the use
of a perturbation theory, which is also required to enable the trangfer
equation to be writien in the cooriinates (s,}i; A, n), This is
unfortunate acsthetically, but the equation is so complicated that
perturbation methods arc inevitably necessary in any case, More
seriously, it is not at all clear where to truncate the expression
(4.37), and problems of consistency arisc unless the equations for the
Inm are derived in general before truncation, This naturally
involves much heavy algcbra, and makes the method a cumbersome one,
Nonetheless, tie resulting equations for the Inm(s; A) can be solved
by the metiiod of discrecte ordinates, in principle to any degree of
approximation, and this method would be the obvious cheice if no more
elegant onec existed;

However, no account has yet been given of the moment method
(Krook 1955) which is, in a certain sense, a gencralization of the
Eddington approximations; Consider the sequence of moment functions
(k = 0,1,2,...)

(41 ) : .
n(t) = %\ WI(p ) a . (4,38)
-1

A corresponding sequence of moment equations can be obtained by
integrating equation {(4,7) over angle; The first 2n of these
equations involve the 2n+l moments of orders 0,1,,.,.,,2n, To obtain

a closed set of equations, it is necessary to express the 2nth moment

in terms of the lower moments, Xrook (1955) showsa that the appropriate
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relation is equivalent to the relation
rn+1 '
X 1'P2n(u) I(Y,u) du = O (4.39)

In the first approximation (n=1), tlis necduces to
K(v) = $300) (4.40)

in the more familiar notation in which J = Mo’ H = Ml and X = Mz,
The Dddington approximations are just equation (4.40) and the

boundary condition
s} = 2m(0) |, (4.41)

Krook's morc general mathod renlaces the factor 2 in equation (4.41)
by /3, but Eddington's boundary condition will be retained in what
follows since it makes the detailed working simpler and that is a more
important cansideration in the first instance then accuracy, which is
not in any case particularly good in the first aphroximation,

This method has the great advantage that there is an obvious
generalization of the first approxi:ation to the case of a noan-
spherical atmosphere, This gencralization, which will be derived
in the next section, is of a form which removes the difficultics
associated with the expression of cguation (4,26) in the appropriate
coordinates, whe goeneral form of the resulting equations is elegant,
and contains no reference to a particular coordinate system, Because
of the integralion over angle required to obtain the equations, there

is no need to specify the n-dependence of I, Also, thc general
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equations may be obtained without choosing a particulaszi-dependence
for I; Further, the gencral eguations are obtainable without using a
perturbation thcory, and so are valid for rapidly rotating stars,

That would be reason enough for choosing this method, The fact that
the method is also simpler in its detailed working than the method of

discrcte ordinates makes it the obvious choice,

4,The gcneralized Eddington apnroximations

In the plane-parallel case considered by Krook (1955) and

Eddington (1930), the moment equations in the first approximation are

H-7-3 i |

( (4,42)
XK _x |
i B

The first of these is obtained simply by integrating equation (4.7)
over solid angle, The obvious generalization of this is to integrate
equation (4,25) over solid angle, T™is was done in section 2 of this

chapter, with the result
div = - 4mup(J - B) (4.43)

It is obvious that this reduces to the first of equations (4,42) in
the simple plane-parallel case, where’:} has only a radial component,
vhich is a function of r only;

The sccond uoment equation is obtained by multiplying

equation (4,7) by v (= cosA) and integrating over solid angle, If

the same procedure is followod with equation (4,25), the integral of
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the right-hand side is - wp '}_lr, since Scos/’\ dw = O and the components

of r}m spherical polars arc given by

o~ jr
FJB
"I

-3
l\I cos /'\ ded

SI sin\ cos H aw (4,44)

il

CI sinA sinH deo J

(cf. equations (4.3)).

oince the other components of A} are not in general zero, it
is clear that the proper generalization of the second moment equation
is to a vector equation whose right~hand side is —npz‘. This vector

equation will have the three components

5(4,25) cos A dc)
§(4.25) sinA cosH dcs (4.45)
and “:(4_25) sin A sin { do J

in spherical polar coordinates, As in section 2, thc use of eguation
(4,25) rather than equation (4;26) is justified by the resultts
independence of any particular coordinate system,

If these integrations are performed, the left-hand side of
the vector equation is not at first easy to interpret, e simplest
way of prgceeding is to guess at an interpretation, and then verify
the guess,

In order to make an intelligent guess, it is necessary to

consider the physical significance of the function K which aspears in



]

the second moment equation, This is less obvious than the
significance of J and H, but it may be showm fairly easily (e,'g,
Chandrasekhar 1539 p.' 192 or Kourganoff 1952 p, 14) that K roproscnts
c/4n times the normal pressure of (integrated) radiation on each cm2
of a given layer,

Now it is well knowm that in general the radiation pressure

is a second order tensor with components given by

1 2 { (.
PR =% gIl dco AIlm dro ,5Iln dw
{1n1 aes (m® aco (1m aco (4,46)
'
(1 aw \Inm e (m? aw
e —d

whers (1,m,n) are the direction cosines of I in the orthogonal
coordinate system considercd (Chandrasekhar 1939 p. 195), In the

spherical polar system uscd above

1 = cos A —\‘\
n = sin/\ cos M .P (4,47)
n = sin,\ sin H J

Comparison cf cquations (4,25) and equations (4,45) to (4.47) suggests

that, if K is gencralized to be the tensor

=

R ! (4.48)

o

- S
= o
then some derivative of 4nK foms the left-hand side of (4.45), By

analogy with (4.43), the most likely gucss for equation (4.45) is
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therefore

4n div K = - np‘} . (4.49)

~

This may be verified by using the gencral expression for the components
of div K (sec c,g, Synge and Schild (1949)):

N S I S (x| ..
AUv'EK = 5+ K9+ ¢ > K (4.50)
X

$
" ERE N

(i =1, 2, 3 and j, k summed from 1 to 3 (Einstein summation convention)),

remembering that the K9 are contravariant components of K, related to

the physical components (here written as Kij’ since covariant

components will never appear) by the relation

i = n K9 ; sunnati ) |
%5 hinjk (no sumnation) (4,51)

vhere the line element of the metric is

a° = gjjdxirlxj (4.52)
i, ’ '
: noo=  f
and by = /84 . (4.53)

{
In svherical polar coordinates xl= r, x2= 0, x3= g’)a.nd

] , .
al- = dr2 + r2d62 + rzsinze d¢2 . (4.54)

Since equation (4;50) gives the contravariont components of div 5} the
right-hand side of eguation (4.49) must also be expressed in
contravariant components before agreccment can be expected, For a
veetor with contravariant components X;, the physical components X i

are given by
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X, = hX . (4.55)

Assuming that equetions (4,44), (4;46) and (4.43) give the physical
conponents of :f'and 5 in spherical polar coordinates, some lengthy
manipulation shows that the cxpressions (4,45) do indced lcad to
equation (4,49), which is therefore the required gencralization of
the second moment equation, to which it rcduces in the simple
plane-parallcl case,

To close the set of equations, it is now necessary to look
for a generalization of the Eddington approximation, which may be
written as

~t

k=i \1cos?Nao =27 | (4.56)
41[ J 3 . I
(cf, equation (4,38), where the integral over.\"n’would be just 2m,

since I is indenendent of F{), This cquation may be derived by

assuming that cos%/\ can be replaccd by its averaggkvalue, i,e, that

L - .- - ‘
L1 COSZ/N\dL) = coszﬁy£; L1 dc) = coszf\-J . (4,57)

2 J
If K is defined by equation (4,48), the components of K in spherical

polar coordinates are given by

.. - -
I_f = -4%{ {IcosZ/\ deo &oosf\sin/\costco ﬁoosf\sinf\sianu

o heinl @ "2A 2 ‘ ) %\ i Ly RP
5003-81n~costc3 \Isin“Acos “Hdes sin“f sinHcosHdes {(4,.58)

rﬁcosﬁsinAsianga (Fsin% sianostpaiﬁsingﬂsinzqdox

> -

¥

sec equation (4,60) for a definition of the average,
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Thus cach component of K is of the form

1 .
ZESI £(F,H) auy,

The most obvious generalization of cquation (4,57) is to write

4n 1£(A ,H4)de = £(A, H) QI d.w_f/\ H)J (4;59)
where (A, H) = f(A H) deo (4;60)

When the various averages are evaluated, it is found, as might have

been cxpected, that K reduces to

J

:

proposed generalization of the uddlngton approximation for K, and is

(4.61)

1>
Il
W=
e

s}

This is the

where j_-_ is the unit tensor, 1 .

o+ O
H oo

valid in any coordinate system,
To complete the genceralization, it is necessary to consider
what the genercl boundary condition will be which corresponds o

equation (4,41), In the notation of this thesis, that equation is

M = 2nJ at the surface (4,62)

P )
since \j} is the component of t% in the direction of the outward

normal and‘/zfis defined in such a way that f]; = 4nH, (The
Cartesian cocrdinate systen in which H is dcefined is tangential to the
sphere r = constant,) The obvious analogue of this equation in the

(Syx :¢) system is
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/\u}s = 2nJ  at the surface (4,63)

and boundary conditions are required also for . ) andf}

At the surface

(4.64)
and J = -Zr“

0
using the boundary condition I =0 at the surface(n/2<A<n (4,65)
g ry b

and equation (4, 63) follows if it is assumed that/;'?\s may be written
T T4 L ‘
g I sink dA dn = cosA.4nJ (4,66)

where the average is now dcfined by

L T T ,
g(A,m) = *2%;& Q g{A,m) sink dx an (4,67)
o C

Thus the required gencralization of 3jquation (4,63) would secm to be

that, at the surface,

“F = Sinh cosn 4nJ 1

(4;68)

e -
—_——— e ——

ginA sinn 4nJ J

3
54
AN
It

Evaluation of the averages shows that the required boundary conditions

are

/3‘7(-—-.”3;5: 0 at the surface . (4.69)

Thus the complete generalization of equations (4,40) to (4.42) is,

to summarize:
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div'gz - 41mp(J - ZB) ‘\\ N
(4.70)

div./-l-J_i)-; _dp 7
\3 :’, 41‘[ \;\n
and -
/\}s = onJ L .
S > at the surface (4,71)
Z.—_ 0 = J

Of course, equation (4,71) rofers only to the coordinate system
(S,X ,¢), but it is ecasy to sce how it would be extended to another

coordinate system,

5,Thc non-local equations in the (s X ,é) system

Thig chapter will be completed by cxpressing equations
(4.70), (4.71) in the coordinates s, X/, ¢ and then writing down the
full set of non-local equations in that system, Equation (4,61) shorrs

that the physical components of K are given by

-
-~

1¢Ci |
=0T d
Kiy =303 (4.72)
Before the expression (4,50) for div § can be used, the contravariant

components of K are neuded, In the (s,X ,0 ) system, xt = s, 2 =N

and x3 = ?5, Since the coordinate system is orthogonal, the metric

i

is therefore:

2 2 2 2 '
, 2
vhere g.. = h, and
ii i
1 1 1 '
hl “\7s h2 =iex h3 =i‘.7¢f = r sin 6 (4,74)



Hence, from equation (4,51),

o (i#3) ‘

g |
g {no summa.‘tion) (4.75)

ii ii J
K ?
i -

1 i 1
and, using the usual expressions for the Christoffel symbols 4[. k J

and for the contravariant components glJ of the fundamental tensor, it

may be shown that

(iﬁ" ik k ‘% 13 |
'3 k)g e R PR = o0 (4.76)
| W —_

-

so that

o Y d (1 3 '
v Kk o= = o= Sl . (4.77)
- Ox* oxt \J 81

Since these are the contravariant components of div K , they are

~
equal to the contravariant components of -(up/ 4n) 2. Using equations

(4,55) and (4,74), equation (4,49) therefore reduces to

L <\\f’s\2J>' _ % pixzsj’:/}; ~ (4.718)

s

()

The third component simply gives /\3;\3 =0, since axial symmetry is

-3 olox| (4.79)

i

assumed (Chapter 2),
The general expression for div ,B\is well knowvmn, and in the

(s,%,¢) system equation (4,43) takes the form:
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Al VxHYp)LBS( "“W) QQSM DJ = - 4mup (J-B) (4.80)

The three equations (4.,8) to (4 80) for J%,Pthagd J replace the
transfer equation (4,4) and equation (4,3) for-fZ?, Bquation (4,5)
defining B (= O’T4/n) is still required, The structure equations (ef,

Chapter 2) should now be written in the fomm

&® v

= = P (4.81)

and

P = ?;?’p T (4.82)

vy is given by equation (4,31), and vx)by the continuity equation in
the form .
// PV \ 75 PV, \\

: \m'lw/ YOS \@sivdl) - (4.83)

This gives 8 equations for 9 functlons, The set of equations is

closed formally by the condition

L = Q‘_' , (4,84)

s const

but in the non-local theory this can be put in a more convenient form,

Consider two adjacent surfaces s = constant, s+ds = constant

Fig, 12, See text,




(Fig, 12), sufficiently far from the centre that, if equation (4,84)

is applied to both surfaces, the value of L is the same for each, Then

O Con
\Ras, = L= )\ Fas
“ el —1 ——
s g+ds

> (4.85)

or, taking normals directed outward from the volume between the surfaces,

5‘3,@5 v §%ese - o (4.86)

Hence, by Gauss's theoren,
& '
gdvFav = 0 (4,87)
A
where the integration is over the volume V (shaded in Fig, 12)

between the two level surfaces, DBut

ds_dx 4 |
A T ISZAT (4.88)

and so, using equation (4,43),

ds aX e |
§ p (3-B) wsheipivgl © (4.89)

Since the integrand is independent of gé, the integral over gﬁ is just
2m, Also, the range of s is from s to s+ds, where ds is infinitesimal,
Thus s is essentially constant throughout the integration, and the
integral over s gives dsxintegrand, Hence, remembering that p is a

function of s only, the integral reduces to

v (J - B . -
vang X - . (4,90)

The range of X in thig integral depends on the choice for £{X) in

equation (2,21), 1r £(X) ='X£, 7(,Iang£s from - 20 (at the pole 6=0)
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through O (at the equator) to +00(at the pole g=n) and the range of
the integral is from - ) to + X0 .. If £f('X) is chosen to make
X, = 06 to lowest order in € , the range of the integral is O to m, by
the note after equation (2,23);

Note that, if equation (4;90) is used in place of equation
(4;84), the equations of the non-local theory are independent of the
value of I, which now appears only in the boundary conditions, This

noint will be discussed further in the next chapter,
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CHAPTER 5

Boundary conditions and the formal solution of the non-local theory

"I could be bounded in a nut-shell, and count myself a king
of infinite space,"

% ,Shakespeare, Hamlet, Act IT Sec, ii,

1 .General considerations

In the previous chapter virtually no mention was made of
boundary conditions; in particular, there was (deliberately) no
definition given of what was meant by the "surface' at which the boundary
conditions of the generalized Lddington approximations were to be
applied, This omission must be dealt with before any solution of
the general equations of Chapter 4 is possible,

In the local theory, the simple conditions
P=T=0 at s=R (5.1)

were used for the structure variables, TWhen the solution is completed,
it is found that the density also vanishes at s = R , so that the star
comes to an abrupt halt at a definite level surface, It is well-known,
of course, that tlhis is not & realistic picture, but it serves as an
adequate approximation when only the overall structure of the star is
required, In particular, the interior structure of a star is
virtually indenendent of the exact boundary conditions applied at the

surface, alweys assuning that proper account is taken of the major
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distinction between radiative and convective surface zones, The
theory in this thesis refers only to stars with radiative atmospheres,
for which it is known (see, e,g., Schwarzschild 1958) that the
conditions (5,1) are entirely adequate for the determination of the
Juminosity and radius of a star of a given mass and chemical
composition, It is for this reason that the results of RGS and
Poxburgh and Strittmatier (1965) on the variation of luminosity and
radius with rotation speed can be confidently used in the present
model (cf, Appendix VI), although these results were obtained using
the local theory,

At the same time, the conditions (5,1) are certainly not
adequate for a description of the atmosphere of a star and they cannot
be taken over to the non-local theory without modification, Before
discussing the necessary modifications, however, it is useful to make
a careful distinction between the boundary of a star, at which various
mathematical conditions are imposed, and the surface of a star, which
may be defined in several ways, each of which is an attempt to
represent mathematically the wvigiblc surface of a star, Since this
"surface" is really a transition zone of finite thickness between the
photosphere and the chromosphere, no attempt to represent it as a
mathematical surface of zero thickness can be completely satisfactory,
and different representations arc bound to give slightly different
results, ‘These differences are not usually important, but they can
on occasion lead to controversy, as in recent exchanges over the

determination of the exact shape of the Sun (Dicke and Goldenberg
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19672,b; Roxburgh 1967&), which will serve as a useful illustration of
the different definitions,

Dicke and Goldenberg use a representation which depends for
its success on the very rapid decreasc of density with height in the

-

outer abtmosyhere of a star Tie surface is taken to be that layer
i .

of the star which is at optical depth unity in the line of sight,

Because the line of sight is tangential to the atmosphere near the
limb, a very small change in the radial optical depth corresponds to
a large changc in the tangential optical depth and it is possible to
locate the limb vory precisely, This definition of tho surface is
undoubtedly the nost useful for the accuratc determination of the shape
of the BSun, Since the disk of the Sun in fact appears very sharn to
the eye, it may be said that this definition is also the most realistic,
Nonetheless, Roxburgh's definition is also much used (see,
¢,8., Schwarzscnild 1958) and it is perfectly adequate if the shape of
a star is not the noint at issue, In this representation, the surface
is taken to be that on which the temperature is equal tc the effective
temperature, For convenience, this will be referrzd to as the
"T-surface”, In a spherical star, as will be shown shortly, this
surface is one of constant radial optical deyth, which is, therefore,
parallel, at the limb, to the surface defined in terms of constant
tangontial optical depth, and the shape detemmined by either method
will be the same, in principle, In a rotating star, as Roxburgh
(1967a) rightly points out, this is no longer truc.

The effective temperature T (not to be confused with the

eff
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mean effective temperature defined in Chapter 2) is defined by

2 = dTgff!.d—g‘ (5.2)

where 45 is the normal to the T-surface (as yet undefined), For a
spherical, non-rotating star,’;} has only a radial component, which is
a function of r alone, Teff is therefore a function of r alone and
so, since T is also a function only of r, the surface T = Teff must be
a sphere, which, in a spherical star, is a surface of constant optical
depth,

Hovever, in a rotating star,,;?, and so Teff' is a function
of both s and X, while (assuming there is no turbulence) T is a

function of s only (ecf, Chapter 2), In that case the eguation

T(s) = T pp(sX) (5.3)

defines the T-surface to be a surface s = s(?C), which is not in
general a level surface, Since the surface, as defined by Dicke

and Goldenberg, has a meridian-~)plane section at the limb which is
essentially a contour of constant density, the visible profile of the
Sun is that of a level surface (since p = p(s)), The two definitions
will therefore be expected to give different results for the shape of
the Sun if in each case the mathematical definition is supposad to
represent the visible limb; There is 1ittle doubt that Dicke and
Goldenberg have taken the correct definition for their purpose; The
T-surface reprsesentation of the surface of a star is perhaps the more

fundamental from a nhysical viewpoint, since the T-surface, or
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"photosphere", of the star is defined in such a way that it is the
level in the atmospherc from which radiation just escapes from the
star,

However, these definitions arc made with the observer in mind
rather than the builder of theorctical model atmospheres, and neither
of the surfaces defined above is a suitable boundary for the star,

The more recalistic is not even axially symmetric, and Both are defined
in terms of functions which arc themselves not uniguely detecrmined
until boundary conditions have becn applied, If either of the above
surfaces werc to be taken as the boundary of the star, the boundary
would itsclf be an unknown in the problen, That would clearly be
unsatisfactory, and the theoretician must rather choose a boundary
which is detemined only by the rotation specd and, if neccssary, by
the overall structure of the star as found from the local theory.

Before defining such a boundary, it is worth considering
in a little morec detail how the boundary is defined in the local
theory, Since P =T = 0 on the boundary, the star stops short there
and the boundary is that surface which contains the total mass of the
star, For a non-rotating star, this surfacc is a spherc and the
condition that this spherc contains the total mass determines its
radius, vhich is the radius of the star, For a rotating star, the
boundary must be a level surface (since P and T are constant on o
level surfaco), vhose polar and cquatorial radii are determined by
the rotation spced and by the condition that tiue level surface contains

the total mass, It is convenicent in practice to relate the boundary
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of a rotating star to that of a non-rotating star of the samc mass (cf,

Appendix IV, section 6),

2. don-rotating atmosphercs - the plane-parallel apnroximation

In most stars, the atmosphere is a very thin outer skin whose
thickness is a tiny fraction of the stellar radius; Since the mecan
free path of a photon in the atmosphere can hardly be greater than the
height of the atmosnherc, no photon will travel far enough between
collisions to detect the curvature of the atmosphere, and it is a very
good eopproximation to consider the atmospherc as stratified in plane
parallel layers, The error in this approximation is of the order of

the ratio of photon mean frec path to stellar radius, The photon

nean frec path A may be defined crudely by
npAh ~ 1 ., (5.3)

On the other hand, the pressure scalc height H is defined by

5 T (5.4)

B o= d:r, - Hp

=

where the second cquality follows from the hydrostatic cquation

%’E = pg (g = constant in a‘tmosPhere) and the definition of “T (equation
(4,7)), Thus, at T ~ 1, A~ 1 and it may equally vwell be said that
the error in the plane parallel approximation is of order H/R,

Another way of writing equation ( 5,4), again using the hydrostatic
equation, is

H = — (5.'5)



Making the further approximations T~Te (valid at q¢ ~ % (see, Culay

Schwarzschild 1958)) and g""%l , the ratio % bocomes identical with
R .

the ratio &, of Chapter 2 (cquation (2.18.)), This ratio appears
naturally in the theory, and it is therefore a morc convenient measure
of the error in the plane-parallel approximation than is the more
physically significant rotio % . Since €,~107> for the stars
considered, it is clear that the plane-narallel approximation is very
gecod, It is much better then the Eddington anproximations discussed
in the previous chapter, which are known to be in error by as much as
15% near the surface (Kourganoff 1952),

I'ormally, the equations in the plane-parallel apnroximation
may bc obtained from the more general non-local equations by allowing
ﬁ' to tend to zero (corresponding to the infinite radius of curvature

\

of 2 planc surface}, To see how this formal procedure affects the

boundary conditions, define a new coordinate & by
r = R(1+ &) (5.6)

and consider the range of & in the atmosvherc, supposing for the momont
that r=R represents some arbitrory level in the middle of the atmos-
phere and that r varies between Rmi_n and. Rma.x in the atmosyhere, The

corresponding renge of € is

Rm.m“R Rex ~ &
L = e n to L = TEeR .

Mow let €, — 0, The range of ¢ thon becomes the open interval -no‘oo‘;,
. g
Of course, €, is really a constant, and the equations in the

plane~parallel approximation are, morc sirictly, obtained by ncglecting
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terms of oxrder Ea in the more gencral equations, For finite <,, the
renge of ¢ in the atmosphere is more like }—5,5[ y so that to extend
this range to the interval:]-QQ,aO{ seews a gross exaggeration,
However, if one accepts the formal extension of the range, so that
surface boundary concitions are to be applied as {—» +0, it is
found that the resulting prussure and temperature have virtually
reached their surface values by the time ¢ is as great as 5,
Similarly, if the atmosphere is fommally tied to the interior as
L— -0, conditions at & = -5 are found to be such that the local
theory is valid (sce ippendix VIII), This justifies the use of an
infinite range of € to reprcsent a physically finite atmosphere,
Hotice that the formal procedurc outlined above is not the

same as a perturbation theory in &€ In a perturbotion theory, €

(i ¢

is essentially finite, though small, and an infinite renge for &

would not be allowable, Any attempt to use an infinite range for &

in the first order equations of a perturbation theory in GE.leads to

singularities, If an attempt is to be made to represent the effects

of curvature, a different approach is requircd, ILither the boundary

must be teken at a finite radius or more stringent boundary conditions

must be applied, This problem is discussed further in the next section,
In the planc-marallel approximation it is often convenient to

use the optical depth T as a coordinate, It arises naturally as a

coordinate, and its physical significance provides some justification

for the boundary conditions agplied, If T is defined by
O

§ w&Rp Al! (5.7)
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then T—> 0 as {— +0 and T —>Q a5 §{ - -¢d, Consider
the upper boundary first, Zcro optical depth means no absorption,

Thus there can be no absorbing matter beyond ‘U = 0, and it is rcascnable
to take P=0 at T =0, Also, if therc is no absorbing matter beyond

U = 0, therc can be no emitting matiter cither and, assuming the star

to be isolated, the second boundary condition must be that of no incident
radiation, It will be seen that this condition rcequires the temperature
to be finite at U = 0, The boundary condition of the Eddington
approximation is based on no incident radiation at the "surface",

This discussion shows that the "surface" must be taken as T = 0,

Thus the surfacc boundary conditions are:

P

&

For a complete solution of a model star, it is necossary

i

0 .
B L at T =0 (5.8)
ong ,}

it

also to epply two boundary conditions at the centre, These conditions
are reprcsented in the local theory of the atmosphere by treating the
luminosity I and radius R of the star as known - L appears in the
encrgy balance equation and R apoears in the boundary conditions, In
the non-local theory, L and R no longer appcar and the theory rcquires
two more boundary conditions,

Now it is well kmowm (sec, for example, Chandrasekhar 1939,
p.208) that tic equations of the non-local theory rcduce to those of
the locel theory at large optical depth (where the photon mean free

path is small). For consistoncy, the solutions of the two sots of
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cquations must alsc match as "C _— XD, This requirement provides
the two axtra boundary conditions needed for a unigue solution of the

atmosphere, They are most conveniently taken to be

V —\\
T, - Do) -3 0 \

as T — o0 (5.9)
LA -2 v
| “Hg, - B! > 0 j

where the subscripts L and NL denote local and non-~local respectively,
The reasons for choosing to match T and’tai rather than eny other

functions will become anparent in section 4, and in Chapter 6,

3 Bffects of curvature

The case in which the mcan free path of a photon is a non-
vanishing froction of the stellar radius has recently been considercd
by Chapman (1965), who briefly reviews carlicr work, Since he
considers a spherical atmosphere with ro mass motions, the atmosphere
is in rediative cquilibrium and J = B, Nomally, this allows the
transfer equation to be solved, in temms of 7y , without reference to
the structurc equations, Nowr, however, r appears explicitly in the
tronsfer equation (equation (4,9)) and the solution depcnds on the form
of the relation p = p(r) ., As is done in this thesis, Chepman

assunes a gray atmosphere and, to simplify the analysis, hc considers

R}
the casc #p =1 ° for which the Eddingion approximations yield an
p H o

analytic solution, The boundary is teken to be at infinity, In
accordance with rcmarks in the previous scction, it is necessary in

that case to repluce the condition of zero incident intensity by the
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more stringent condition

r? I(r,u) — 0 &8 T —3 0O (5.10)

Chapman produccs the interesting result that, in an infinitc spherical
atmosphexre, J can be written as the geomuirical factor r 2 times what
is essentially the result of the planc-parallel Eddingbton approximation,
However, it is not cesy to see how his methods could be
translated to £it the case of a rovating star, TFor onc thing, it is
no longer pecssible to solve the transfer equation on its owm, Hot
only is B % J, so that the temperaturc must be considerced, but also
it is not permissible to prescribe the form of #p when one is looking
for the velocity field, which depends on the ctniespheric structure,
These are practical difficulties, A difficulty of principle
arises in comnection with thce boundary conditions, The definition of
'g;'is such th@t'igbat%ains a minimum for a certain value of s,
depending on & , Only for volucs of s less than that are the level
surfaces closed (ef, Mg, 5), For greatcr values of s the level
surfaces arc open, cssentially becouse the limiting lovel suxrfoce is
the onc on which the centrifugal force balences grovity at the cquator,
If the star completcly fills this level surface, in some scnsc, it
starts to losc mass from the equator, There is therefore no closed

level surface corresponding to the 'svherc at infinity" on which

T
Chapmen applics his boundary conditions, It is nccessary cither to
choosc the boundary on some finite, closed level surfiace or to define

& new family of surfacces which remein closed ot infinity and have some
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physical significancce, Neither clternative is attractive when
examined in more detail,

These considorations strongly susgest that no attempt should
be made in the first instance to include the effects of curvature on
the atmosvhere of a rotating ster, Of course, variation With,jK:
must be included, but that may be done within the frasework of a planc-

parcllel aporoximation, as is shown in the noxt section,

41Rotating étmospheres ~ formal solution in the plane-parallel case

The justification for using o plone-parallel approximation
is the same for rotating stars as for non-rotating stars, and the
crror in the anproximation will be of order Q&.by the crguments of
scetion 2, The diffcrence botween the two cases lics principally
in the fact that in rototing stars some functions denend on the two
voriables & and X and the Y-variction must be tcken into account,

It is therofore more correct to say that the atmosphere is trecated as
locally plane-parallel, The coordincte z which will be introducced to
correspond toc tho & of the spherical star is constont on a level surface,
so taat surfaces of constant z are not parallel, being mcre closcly
spaced ot the poles than at the equator, Honetheless, the z-surfoces
are «ll orthogonzl to a particular surface of constant'><'and may in

that scnsc be rezarded es locally »narclicel,

The coordincate z is dofined in tesms of s by

s = R(1+¢32) (5.11)
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and so corrcsponds to & in being zoro on the boundary used in the local
theory, This enables the local theory to be conveniertly developed
in the plane-parallel approximation for fitting purposes, Similar
argunents to those in scction 2 show that the appropricte range for z
is -]-oo,cxj( . Again, “surface! boundary conditions arc to be
applicd cs 2z =5 +<0 and conditions are to be appliecd as z — -OC
vhich will ensurc that the various functions fit smoothly to those of
the local theory, By analogy with section 2, but omitting for the

moment any reference to optical denth, the boundary conditions are:

Pmeol .
a : 28 2 >+ D (5.12)

T - T 0
) ‘ I ;NL.!_} 1) a8 z = - OO (5.13)
| Fer, = P O J

/\
It will be seen shortly why no boundary condition for \%{ is included,

In the remainder of this chapter, the general equations of
Chapter 4 will be simplified to tue fomn velid in & locally plane-
parzllel atnospherc and thie general method of solution will be outlined,
This will indicote, anong other things, the reason for choosing the
functiong T and t?% in cquation (5.13).

It is convenient to work with P, p and T in dimensionless
form, since this immediately brings out orders of magnitude (assuming
the dinensionless functvions to be of order unity through most of the
atmospherc, on assumption justificd by the resulis), On the other

hand,/E}, J and B are 211 of the same order of mognitude and therc is
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no great benefit in introducing dimensionless variables for them at

this stage, The dimensionless variables p, p* and t are defined by:

1 1 * '
P="p P=lER P T=T 0t (5.14)

(9]
f
R

It can be shown that, to lowest order in &, ,

Tl - aX,e) |
texl = ze,e) (5.15)
lYCH = %D(%re)

wherc A, C and D erc knovm functions (sce Appendix V)., TUsing these
rclations, and the definitions (5, 14), it is eosy to simplify the
general equations by leaving out terms of order E; .

{irst consider cquation (4,79), This immediately

simplifics to

1 9 .2 '
,3 = “A‘-t—ga—i(c J) . (5,16)

M

Thus, since J ~ ||, /?;n:é1'T}é ond can be ignored, That is, in a
- x

locally plenc-parallel ctmosphere

A}X =0 (5.17)

It is because of this ro sult that no boundary condition for ’t} is
included in cquations (5, 12) and (5, 13)

The one disquicting fosture of cquation (5, 16) is the l/p
dependence, rcminiscent of the trouble with vy in the local theory,

Examination of the general equations suggests that this feature is
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intrinsic end not an artifact of the planc-parallel approximction,

con only be hoped that a proper treatme

would so elter the boundory conditions

boundary despite the density being zero
l/p aepcendence could conceivably be an artifact

approximations, which are least accura®ncor the

cxact theory rcquired thoe

> . .
fost as o, ,3‘ would remain finite at the surface,

I

3

parcllel cuse) thot explanation gcems
r that the singularity can herdly be
the foctor 6' ensures that the trouble
surface, For tiic rest of this theeis

to be velid throughout the atmosphere
The remaining cquations give

reduces immediately to

n)lc)

and the use of cquation (5,17) reduces

S
ATEIN.
Since
ar |
ds
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It

nt of the effects of curvature

A

that 4 remained finite at the
X

therc, Altcernatively, the
of the Eddington

surface, If the
to tend to zero as

However, since

p = tends to zcro exponentially as z tends to infinity (in the plone-

less convincing, suffice it to

real, and that the presencc of
occurs only very near the
cquation (5,17) will be taken

no trouble, Equation (4,78)

=3 (5.18)
s equation (4.80) to

4n o®¥(J-B) (5;19)
Bpey + Og) (5.20)

R

knovm function of &€ ) the two structure equations rcduce to



(5.'21)

& »*
p = ot (5.22)

and

The equations for v will net be considered here, since they arc not
The

ncecded for the solution for the structure of the atmosphere,
final equation, then, is cquation (4,90), which reduces to

Tl
J - 3B
J; ACD ax =0

The limits are chosen to be O and n because these equations will be

(5.’23)

solved in detail in the next chapter using perturbation methods,

It is now clear that optical depth in this cuse should be

defined by
oo
>
T = 59 dz' (5.24)
%

If the change of variables

Il

y :W‘?S'l (5.'25)
X=X

is now made in equations (5,18), (5.19), J may be e¢liminated to give

a sccond order linear differcntial equetion for f}é:

5 46) ~ 2 "
] 3B
_5_:2.___ - 3\7;(;(,%) = - 4n ,a-;(:c,X) (5.26)
whose general solution (in terms of T) is
i A
A =, (X)e +h (X)e WSL _
TG R T
5 B(y)e (5.27)



Since B =<7T{/n, two boundary conditions will detemrmine ﬁjé uniquely
in terms of the temperature, One of these is the condition (5.13)
thot the flux should match the local flux as U —> +od. This
particlly explains the choice of’t}s ag onc of the functions to be
matched to the local theory, A combination of equations (5, 12) and

(5,19) gives o second coandition, at [ =
F0x) - o) + 2w o). ()

The condition is put in this form to climinate any reference to J,
which may then be detemmined from cquation (5,19), in temms of B (and
so as a function of temperature)

From cequations (b 21) ond (5 22) p and p may also be
obtained as functions of temperaturc, using the boundory condition
(5;12) for P, The temperaturc mey thereforc be recgarded as a funda-
mental function, in terms of which all the other functions can be
obﬁained, The solution for the temperature is obtained from equation
(5,23) which gives B as a function of J, which is itself known in terms
of B and.f:}s, Lgquation (5;28) shows thot this solution for the
temperature involves the unknown constant B(O), which is determined
by the condition (5;133 for T, Onc of the reasons why this was
chosen ag the other matching condition is now clear,

That completes the formal solution of the non~local equations
for a rotating atmosphere; fowever, the method outlined above is
difficult teo apply in piactice, sincc the final stage leads to the

following integral equation for B:
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(‘” FTJ i<

Bv) = | G 1 E G0 T e

ax \-/O

olvsIC D ,
ey G (Y LBy ) (5.29)

- % 2 WS’ j ( ) !951 ‘VS! JB y) Va.dy
= 7/

Therc is no hope of obtaining an analytical solution for this equation,
porticularly as {(?si, C and D are known only as cxponsions in powers
of &€ , It is thorcefore necessary to impose the further restriction

of slow rotation and to solve the non~local cquations using perturbation
methods, In the next chapter, the solution will be obtained to first

order in & ,
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CHAPTER 6

Solution of the non-local theory

in the plane-parallel approximsation and for slow rotation

" ..the last state ... is worse than the first.,"

Gospel according to St, Matthew, Ch, 12, v,45,

1, Perturbation equations and boundary conditions

In this chapter, the non-local equations in the plane-
parallel approximetion will be solved to firét order in & by the use
of perturbation methods, The equations have in fact been solved to
second order in € ; but the second order theory is not essentially
different from the first order theory, except that it is more cumber-
some to handle and that the distinction between'}{fand 6 nust be clearly
made, It did not, therefore, seem to be useful to present the second
order theory here, particularly as the velocity in the non-local theory
has a non-vanishing first order term, Some of the second order
results will, however, be quoted in section 4,

In this section the basic equations and boundary conditions
needed to define the structure uniquely.are gathered together, The
equations for the velocity will be given after a solution for the
structure has been obtained, The dimensionless variables used are

defined by equations (5,11) and (5,14) and by

O’Ti * cTe # ; P -
J = TJ s B = —'-n—’B s \3‘= G‘Te } (6.1)
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In these variables, the complete set cf non-local structure

equations is:

L. ne) (6.2)

p = o't (6.3)

3% - (6.4)

i‘?é¥%é§: = - 45 B (6.5)

v 2 - 3 (6.6)

and E;z (J*-ﬁ*)jgg%ﬁ = 0 (6;7)
where (see Appendix V and Chapter §5)

Be) - 1-2g (e, (6.9)

Vel - 1-der) +OED (6.9)

c = 1-3e@r(0)-) + ()€ (6.20)

D - E—}l—%[l +%e(1-31>2(o)+5132) +O(62ﬂ (6..11)

As in Appendices V and VII, P2(O) is used as a shorthand for Pz(coseo),
6, being defined in Appendix IV; P, = Pz(cos'X)_

These equations must be solved subject to the boundary
conditions:

p-——-)*Oj
» as z —> + 0O (6,12)

H-2 — o
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}t - tyr

! _'1*
;{3:L JsHL

l—> 0 1

—>0 J

as z —> - oD

(6.13)

v .
P xa¥
where tL’/:st are given by equations (A?,Zl) and (A7,32) of Appendix

VI1I,

The first stage in the solution of these equations by

perturbation methods is to develop the equations to the first order in

& by writing

%?

g

J's
»*

J

It is immediately

and

= p(z) + &p(2) +

= pi(Z) + Ep’{(Z) +

=t (z) + € t,(z) +
- B(z) + EB(z) +
T (2) + \,31<z4>
J’;'(z> + € Jl<z,7<,)

obvious that the zero order

aJ - 3
az’ = T4 P Cgo
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(6;14)

(6.15)
(6.16)
(6.17)
(6.18)
(6.19)

(6,20)



with the boundary conditions (using Appendix VII)
: , - 2J —3 + 00
p,~—> 0 and " -2 —>0 a5 z -+ (6.21)
1 (% . '
t,+72—>0 and Feo =1 —0 a8 z —>-00 | (6.22)

After some manipulation, the corresponding first order equations are

found to be
dp 2 ¥
IR A G A C)) (6.23)
e R (6.24)
2 - p* t .
0 0 o}
*® 3
By o= 4t (6.25)
BES
1 .

R _ ¥, %

D z M CHER (6.26)
BJ* S .(\,.’X’ A~ % ,
—& . .3 X 3 ¥ x O
dz = -2 A maer Lo - (B0)-P)el T, (6.27)

¥ O % - \
B = %L)o J, siny'd [, (6.28)

The zero order equations have been used in obtaining these equations,

The boundary conditions are (using A»pendix VII)

~a ¥ '
p, —> 0 end ’ng - Zifl——érO as z — + & (6.29)
t - % z (1-P,(0)) —> 0 W |
> as z —3 =) (6,30)
=7 2 4 [
o1 = Wy -5 2(0) +52,)— 0}
J
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2.The zero order solution

It follows immediately from equatioms (6.18), (6,20) and

(6,22) that

X . .
/:% = 1 for all z, (6,31)

S0

Using this result, and equations (6,17) and (6,20), equation (6,19)

reduces to
(6.32)

Comparison with Appendix VII now shows that the equations for Pys P,

and to are exactly the same as in the local theory, However, the

boundary conditions are different, and the solutions in the present

case are not nearly so simple as the solutions of the local equations,
Using equations (6;17), (6,20) anad {6,31), the second

boundary condition may be written as

t4-—>% as z —> + OO . (6.33)

(o)

That is, the temperature is finite at the boundary, with boundary value

2_1/4° It will be seen that this melkes a crucial difference to the

solution,
LBquations (6;15) and (6;32) may be used, as in the local

theory, to obtain a relation between P, and to' With the boundary

conditions of the non-local theory the relation is

. 24 |
b, = F(2t5-1) . (6.34)
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If this expression for p, is substituted into equation (6,16) and then
pzfis eliminated between the resulting equation and equation (6,32), a
first order differential equation for to is obtained, The variables

are separable and, with the change of variable
1 ey
My - u, (6.35)

the differential equation can be writtcn as

4 '
S - g Mg (6.36)
u' -1
This can be integrated to give
1/, ul AN . _1./4 |
u o+ 4_(}00 o1 - 2 tan u;/ = -7 2 z + A (6.37)

where Al is an arbitrary constant to be determined by the condition

(6,22) for to' A very similar result is given in Eddington's book
(1930, p. 337).
Since the R,H,S, of cquation (6,37) —> +00 as z —> - ,

u—>0 as z -3 -0 ; for large u

/ u-1

1( e al 1L _no_ Ll (6.
) log 57 - 2 tam %) ~ -5 . (6,38)

1A

Application of the condition (6,22) for b (using equation (6,35))

therefore leads to the relation
= A (6.39)

so that the solution for to is finally
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1/4, | |
b+ 32 27 H 10g -Z—l-/—;zi-i’i- - Ztan'l(zl/4to) - - %z - 2"1/4-} . (6.40)
o

In principle, P, can now be determined from equation (6.34) and then
P from equation (6,16), In practice, it is clearly impossible to
obtain 18 and ;ﬁ'explicitly in temms of z for general z, Numerical
tables, and graphs, of P, and to as functions of z will be found in
Appendix VIIT,

However, asymptotic expressions can be found for Pos p; and
to as z ~—2 t‘xs’. The derivation of these is straightforward, and

the method is outlined in Appendix VIII, The results are:

(i) 2 —> + 00

16 "'2}/4Z 2 -21/42 . '
P = 3Spe 1 - Fe + e (6.41)

o]
/4 _1/4 _L1/4 :
X = —"‘—"163};% e”? Z<l - &7 Z+..) (6.42)
r 4 1/4 N
-2 g / 2 Z '
b, = 21/4L1+%e 1—%e +...\ (6.43)
where | B
m/2 + 4 '
E = e = 263 (6.44)

b, = -%(%4[“%-(2)4 +O(Z\)8} (6.45)
- 4o €

(6;47)

<t
(@]
1l
!
BN
f [}
+
[
N
Tk
KN
+
O
~
vk
@
| I

*
Equations (6,45) and (6,46) show that, as expected, p, and p  also
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match on to the local results as z —> =00,

3,The first order solution

Since Jf and (3:1 are functions of two variables, the first
order equations inevitably lead, in general, to an integral equation
for Br, as indicated in Chapter 5, This difficulty can only be
surmounted by assuming a form for the ;(;dependence of Jieand i}él, a
procedure which would seem to be entirely arbitrary,

However, it is well-known that, under reasonably general
conditions, any function of ;{:can be expressed as an expansion in an
infinite series of Legendre polynomials, That is, it is true in

genéral that

<X |
Jie(z,}C) = J (z) P (coéjﬁ) (6.48)

n=O

* .
Ao - Z b ) 2 (o) (6.19)

If these expressions are substituted into equations (6,26) and (6,27),

and

A S
an infinite set of ordinary differential equations for the J1n and
¥
ﬁéln is obtained by cquating coefficients of the Pn’ At first sight,
this might not appear to be much of a simplification over solving an
. . . * ~*
integral equation, However, since, apart from J1 and Jg1 0 the only

X-—dependence in the equations is either Po (El) or P,, there are only

2’

three basic types of equation to be solved, These are:
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H1o B s N
dz AP P S ( : )
6,50
* [}
a1, _ ___3__'\"(3\* ;*—P(O) * |
az - 1 PoVslo "4 P1 2 poJ
s~
dj .
sl2 ¥ ¥
dz = -4 pole :
12 3% :% L X
dz = T4 Pos12 o
¥
d
and sln ¥ X
dz = =4edy '
% for n=1 and n23 (6,52)
Y 3 *?EZ*
dz T T4 PosIn
-

It is useful at this point to introduce the optical depth as a variable,
In a perturbation theory, it is convenient to use a zero order optical

depth, defined by oo
T - gpifdz' - (6.53)

(ef, equation (5,24)). 1In tems of this variable, equations (6,52)
are easily solved, Application of the boundary conditions (6,29) and

(6,30) as T —>0 and as T —>m0 respectively then shows that

* X '
(}sln = Jip = O forall z, for n=1 and n>3 . (6.54)

¥ %
This proves that the X-dependence of 1 and J coneists of Po and P2

terms only, a result that would be expected intuitively from the form

of the equations, It is now obvious that the use of the expansions
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(6.48) and (6,49) considerably simplifies the first order theory,
without any loss of generality, It can be shown that in the pth
order theory Legendre polynomials of even oxrder up to 2p are required
* ~ ¥

to represent J and ;fs . An expansion in Legendre polynomials is
therefore not a simplification in the gencral theory, which is
essentially an infinite order perturbation theory, and in which,
therefore, all the even Legendre polynomials would be required,

iy * %

\j;12 and J12 are the only first order functions in equations
(6.51), which can therefore bec solved independently of the other first

order equations, In temms of the variable U, the equations are

o~ .

4, . 1% (6.55)
a7t 12

S PR (6.56)
it 4 \7;12 B

It is easy to obtain from these equations the second order differential

- . *
equation for 512
2"':}‘* X
d .
N/
dv

whose general solution is

% & +\/34“c "\/3—! I'U )
f:}SIQ = 3t hye + Aye . (6.58)

The boundary conditions are (equations (6,29) and (6,30))

\'f¥’ % [ ¥ 4. A
\_7“\512 = 2 le at /"TJ: 0 H /:7‘812._% "3' as ft —‘> o0 (6059)

3

requires A_ = 0, Equation (6,55) then

The condition as [ ——> 5
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gives

¥ \/§‘A3 G'JSTFC

J = - (6,60)
12 7
and it is eagily shown that the condition at T = O requires
Ay = - -g- (2-43), so that
/—1% A: - "E‘t) '
a1z = 3(3-22-vde (6.61)
> 'J?’U '
I, = R (6,62)

¥ ¥% K
The equations for /L;slo and J:?_éo involve pl( and B1 and so

nust be solved in conjunction with the other four first order equations,

It follows at once from equations (6,28) and (6,48) that
(6.63)

This simplifies the first of equations (6, 50) which, together with the

boundary condition (6,30), now gives

4

~ slo

o *
- L, - 2p0 . (6.64)

¥
This result may be combined w:Lth the boundary condition (6, 29) for Jl

and equations (&, 63) and (6, 25} to give

t

1 « 1 1 |
.%.;....; Z’Q’l - -6-132(0) ag z — + 02, (6,65)

A
The functions J, , B, may be eliminated from equations (6, 63),

1
(6, 50) and (6, 25\ to give (using also equation (6, 64))

¥
L(4t26) = -%pl - (%1),1 + %PZ(O)) ;?: (6.66)
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This equation must now be solved in conjunction with equations (6,23)
and (6.24),
s x . | '
Elimination of Py between equations (6,23) and (6,66), and
the use of equation (6,15) and the boundary conditions for Pys Pyo tl

and ‘bo as z—> +0)) leads to the relation
16 t4'fl = 3 + (2438..) + 212 - 4 (0) (6.67)
ot, - °h 1/ % 1 ERR AR

If pT is now eliminated between equations (6,23) and (6,24), the
relation (6,67) may be used in the resulting equation to obtain the

following differential equation involving only Py and zero order

functions:
"
i _4
EE.:.L. + P p* | - 5%' (2+3Q1)p°+221 3P2(O)
az 7o\ P, 1644 ° 164
o o

(6.68)
2
+3(1 - P2(O)£]

The use of equations (6“15) and (6,‘32) shows that %,(, is an
integrating factor for this equation, When the equZ’cion has been
divided through by pi: , the RJH,S, can be expressed as a function of
t_ only by using equation (6,34) for p,. The R,HS may then be
integrated by using to as variable of integration, the change from

z to 'bo being effected through equation (6,.32) (using also equations
(6,16) and (6.34)). The integral which occurred in section 2 appears
again, and cquation (6,40) may be used to simplify the final result

for Py to
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p, = pf(AAr + (£1-§-P2(0))2-1/4-3- - Z(1+2,(0))t, |
L - (6,69)
+ -§-(1 + %ﬁl - % P2(0)) z

where A4 is an arvitrary constant, This constant must be determined

by a condition as z-—> =00, since the conditions as z —> +00 have

already been invoked and are satlsfled for any value of A4 The only

condltlon available is condition (6, 30) for t If equations (6,69)

1°

and (6i67) are combined to give an expression for tl, the application

-, - 57,000 VAL g

of condition (6,30) shows that A -

4 =

may then be showm that

1l

DTS EXO P XN D

Py

It

"%1f %(1’“ %’@1 - % P2(0)> <l+ t4> - (" 1@1 2 2(0))90
(6,71)
n P '
t, = %(1-» %Zl- % P2(O)> Z j + (%Q,l- -é- P,(0)) t, (6.72)
(o]
It then follows at once that

sig = 3 = s 34, iﬂo))zj* y-2r00 L (613)

That completes thc solution of the first order equations,
However, before using these results to find the first order velocity,
one feature of the solution should be noted, Although a1l the first
order functions are finite as z —> +0D, the same is not true for the

ratios pl/bo and di/pﬁ , which tend to infinity with z, This result
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1/4

follows at once from equations (6,70) and (6;71), since t_-—— 2™
as z —» 00, The ratio tl/to causes no trouble, because P, tends
exponentially to zero as z—> o2 (see equation (6,41)).

The singularities in these ratios mean that it is not valid
to use perturbation methods throughout the atmosphere, and it is

important to have an estimate of wherce the analysis breaks down, It

can be shown that i%/ig —>» 1 as z —_}-+ao, so that consideration of
either ratio will give zhe same result, For simplicity, consider'gi,
If the values for PE(O) and j&i given in Appendix VI are put into
equation (6;70), it gives

% = 0.35%o - 0.8 . (6.74)

Since to is a monotonically decreasing function of z (see Appendix VIII),
it is clear that pl/po increases monotonically with z, Also, it has

a lower bound (= -2.2), to which it tends asymptotically as z —> -0,
since t_ ~ --% Z as z —y -0, pl/ﬁo therefore has the form shown

in Fig, 13, If perturbation theory is to be assumed valid for all

pl/:
P ’ {
S °l 42,2 /
e 23 T AT
N /
slope .. 0,42 N o ‘
3 Y/ |
Graph of Pl/Po against z, ! _Z { >
/ ZC z
-0.,8
/// )
//’

—
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M

nocgative z, then it must, for consistency, be assumed valid also at
least up to z = Zy, whare pl/p0 = +2,2, | That value of z will give
o lover bound to the values of z for wiich the perturbation theory
breaks down; Since t_ = 2.1/4 = 0,84 for all z 21 (see Appendix
VIII), it follows that

% = +2,2 at z=3z %7.2 (6.75)
and so the perturbation theory is only invalid outside the range of

z in which significant changes occur (cf, Chapter 5), It can be
shown that z = 7;2 corresponds to an optical depth of 3;6x10'6, g0

that the perturbation method breaks dowm only in a physically
insignificant fraction of the atmosphere, The above theory may

therefore be used to find the circulation currents in the bulk of

the atmosphere,

4 .The circulation currents

The exact equatlons for the circulation currents are
equations (4, 31) and (4,83). In the plane-parallel approximation

these equations reduce to

v, = 4 gﬁo@i ( = Bz) (6.76)
) \Vs ILY - & +1-£€0-r (o)):l
an
~Y )
B TR W 9 v ) ax/ (6.77)
x €. o* c D 3zP .

¥ For & ~ 0,1, ié pl/po\ X 0,22 for all negative z, a result consistent
with the assumptions of perturbation theory,
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where Ws‘; y C and D are given by equations (6,9) to (6,11), Since
Y

. Bze (equation (6,20)), vy and Vs can be obtained correct to

J

first order in € without using the first order structure, That is,

R4 (Jf“ﬁi) |
Ve o= 4@T6Te = ; dto (6.78)
-1 az T 1]

and

:( e
1 PV R IR '
St e g KR g X (6w
->e( *

Equations (6,63) and (6,62) can be used to obtain J*-B = J P 2) as

a function of/L\J; also, although it is not possible to write dto/dz
dt

explicitly in terms of 2z, it can be shown that E- = =3¢ po/'b .

It is therefore possible to write v, as a function of T and 76, since

it follows at once from equations (6.15) and (6,53) that
p. =T (6,80)
and then from equation (6,34) that
4 _ 14,3 |
tO = 2(1 + 2%) . (6081)

If Y is taken to be 5/3, it follows that

—y"q"‘c‘ .
vy - Gle- et QAL T (cot) | (6.02)
It may then be shown that
a3
+ 2T(1+ &)

4 -J"'c‘ 8

> 2
_ 4(2- nR clTe .,
Vyp = ﬂ—!}%-ﬁ sy/ Ny sin’) cos¥ ©
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These expressions are, as expected, non-singular at‘{; = O,
They are not zero there, but before calculating the surface values of
v it is worth considering some properties of the flow pattem,
and v,

1 X1
currents rise at the poles and sink at the equator, Since i

The signs of vy are such that the circulation
changes sign (atf = 0,637, z = = 3), the mass flow to the equator near
the surface returns at greater depths, Although there is no net mass
flow across the surface'17= 0, this surface is not a stream line of the
flow, since Va1 is finite there; However, since vélh'ézlﬁil’ the
ratio of the normal mass flow to the horizontal mass flow is small at
any point on the surface T = 0, The flow pattern therefore
approximates to a single closed cell in each hemisphere,

This result must be compared with that of the local theory,
since it would be expected that the itwo results would agree at great
depths, There is no doubt that the formal, exact non-local
expression for Vgr given by equation (4;31), re&uces'to the
corresponding local expression, given by equation (3,25), as z-» -X),
This has been verified by applying the method used by Chandrasekhar
(1939 p_l 208) to prove the well-known fact that the non-local transfer
equétion reduces to the local one at great depths; It is further
guaranteed by the boundary conditions for the non-local theoxry, which
ensure that the non-local structure variables fit asymptotically to
their local counterparts for large negative z,

Honetheless, the flow patterm predicted by the local theory

is qualitatively different from that described above, It is easily
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seen from equations (A7,.41), (A7,.42) that, on the local theory, the
circulation currents sink at the poles and rise at the equator
(Fig; 6), Also, since v?:does not change sign, the local theory
contains no mechanism for returming mnaterial to the poles, (This
defect of the local theory has not previously been mentioned, as it is
of lesser importance than the singularity at z = 0; It is, however,
another reason for secking a better description of the circulation,)
At first sight, the explanation of the disagreement would
seem to be that the non-local expressions are first order in €, while
the local expressions are second order in €, the first order temms
being identically zero; Since Va1 and Yy OB the non-local theory
die out exponentially for large 7V, , there is agreement between the
theories to first order in €, One would imagine, then, that, if the
non-local velocity were obtained to second order in Gﬁ, the second order
torns would tend asynptotically to the lowest order local expressions,
This would require that the second order non-local expressions had

3

terms which behaved like 1/\z| for large negative z, With this in -
mind, the second order theory was calculated, However, it tumrns out
that, when the plane-parallel approximation is used, the second order
expressions for the non-local velocity also die out exponentially
for large T (N,'B,. T:O(z“) as z —> -00), This immediately rules out
the obvious explanation of the disagreement,

The real reason for the disagresment is that the non-local

expression for the velocity is singular in the sense used in Osaki's

paper (1966), That is, order of magnitude estimates of the non~local
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and local velocities show that the non-local velocities are greater
than the local ones by a factor of the order of 1Ag‘ . Thus, if
expressions for the velocities are derived which neglect temms of
order €; times the temis retained, the lowest order non-local
expressions cannot be expected to fit the lowest order local expressions
for large‘qf, The terms neglected in the non-local expressions are
precisely those which will tend asymptotically to the local expressions
at great depths, where the lowest order terms will be negligible
because of their exponential decrease;

The plane-parallel approximation is therefore inadequate
for a full description of the non-local velocity field, since it fails
to take account of terms which, though negiigible near the surface,
become important at large optical depths, Unfortunately, it is not
a simple matter to include such temms, which represent the effect of
curvature, in the non-local theory, as was pointed out in Chapter 5,
If terms of relative order 6, are to be found by using perturbation
methods, it is no longer possible to apply boundary conditions as
z—>*02, No obvious altermative nresents itself immediately;
besides, any attempt to extend the theory to higher order in éE,
rapidly produces equations which are soluble only by numerical methods,
Such an attempt was therefore abandoned, since this thesis is
concerned only with obtaining a gualitative picture of the surface
layers, and a qualitative picture can be obtained without including

higher order texms in the non-local theory, Notice, incidentally,

that to obtain a complete picture the non-local theory would have to be
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solved to second order in EQ, since Vo ~ & vy and so v,, is of order
: e' x rder

a\2
(!'-) times the local v,, , Temms of order e times the lowest order
& vaivn  veaw wwuwn s JrdET

\&) 0 T YT O e TR TR TEETT
expression would be needed before Yoy, would be seen to fit to the local
‘{x at large depths,

However, a judicious combination of the local and
plane-parallel non-~local theories suffices to show qualitatively what
is the flow pattern of the circulation near the surface, Thg
plane-parallel non-local theory predicts a single closed cell,
However, since the sign of v, on the local theory is opposite to that
on the non-local theory, it is clear that there must in fact be a
circulation reversal near the surface, In a more accurate treatment
of the non~local theory, the terms of order &, must be of the opposite
sign to the lowest order tenns,' Since they decrease more slowly
with depth than the lowest order ‘terms (as they must to fit the local
theory), there must be a depth at which the first order and lowest
order terms balance and the circulation reverses.. This depth cannot
be found exactly without solving the non-local theory to higher order
in &, but, since the first order terms tend asymptotically to the
lowest order local expression, the depth of the reversal may be
roughly estimated by equating the lowest order express1ons for vS on
the local and non-local theories (equations (6, 82) and (A7, 41)) The
first order expression (in e) can be used for the non-local theoxy,
since it will always be greater, to lowest order in é.., than the

lowest order Ez term,

It is found that the two expressions for v, are roughly equal
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at U=5,20 {z = -5,55). This means that the circulation reversal
occurs much nearer the surface than that predicted by the work of
Spik (1951) and Mestel (1_966), That rever;al, which occurs at a
depth given by p = (¥P/2ng |, is not predicted by the present theory,
since the Roche approximation is not wvalid at such a depth,

The present reversal is therefore a qualitatively new result,
stated here for the first time, although the contradiction between the
local and non-local theories has been noticed by Osaki (1966, and
privete communication), Taken in conjunction with the 'C;pik-Mestel

reversal, the new result suggests that the final flow pattern should

be as shown in Fig, 14, which is not drawn to scale,
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Fig, 14, Circulation pattern in the absence of turbulence,
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Now that the pattern of the flow has been determined, it is
necessary to find the speed of the flow, Since this is obviously
largest at the surface, it is convenlent first to evaluate vy and A

at T =0, From equations (6, 82) (6.83) ana (2. 19)

7,(0) = Bo-B) 2 PyloosX) (6.84)
and /
1/4 L :
v,x(O) = -2\73-\—(2-\/?) ;:—G]‘-%% szcos% (6.85)

to lowest order in € and €,. [Using the values quoted in Chapter 3

for the other quantities, one finds that

vS(O) = 8.111086 Pz(cos}(;)cm/sec (6,86)
and
V?C(O) = 2,8,(1011& sin 2 X ca/sec (6,87)

While the result for vs(O) is almost plausible for € as large as O,.l,
the result for vx'(O) is clearly unacceptable unless € is 10"4 or less,
Such values are uninterestingly small, and it is now necessary to ask
what additional mechanism can be invoked near the surface to damp the
circulation,

Since the predicted speeds are considerably larger than the
speeds estimated in Chapter 3, using the local theory, it is no longer
necessarily true that viscous and inertial forces are negligible, and
that assumption should be re-examined, Further, the discussion at
the end of Chapter 3 showed that the flow might be turbulent even when

its speed was low enough that viscous and inertial forces could be
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ignored, In that case, turbulent viscosity could be an importaﬁt
damping agent, It seems even more likely now that turbulence will
appear, and that possibility will be tested first by considering the

stability of the flow,

5.The Richardson number

The exponential decrease of vxfwith depth shows that large
gradients are present in the horizontal flow, The strong shear forces
implied by such a flow might be ezpected to give rise to instability,
in particular to the Kelvin-Helmholtz instability, whose source lies
in the energy stored in the kinetic energy of relative motion of
different 1ayers; Inertia will prevent this energy from meking the
flow unstable so long as the Richardson number JR is greater than 1/4

(see, e.g., Chandrasekhar 1961), the Richardson number being defined
Y by
(cf, Chapter 3) by ( & o/dS\‘

o= ,
7, e —=. 0 ) . (6,.88)

o (ag/es)?

If, however, JR is less than 1/4 the inertia may not be able to prevent

different layers of the flow from intemingling, In that case, the
flow will very rapidly become turbulent,

It is possible to evaluate JR , using the results of this
chapter, Equations (6,16), (5,80), (6.81) and (6.83) may be combined

with the result that €y = GM/R2 to give
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23 %
(1+ 291+ 200 21)/4

_ e, 6 89
E (024 T (AT + B(7) ) (6.7
whexre
AT) = (D 2 F - 28 + (B2 - %ﬁ)v *

+ @ -GV and
Bv) - -2 B & BT+ @& - up)v? - 23,

It is not immediately obvious what value this quantity has, However,

near “ = 0 the expression reduces to

-9 .
I o~ R2d8 frlg (6.90)
where the usual numerical values have been used (including € =0,1,
. . 2 2 1 .
and taking sin™) ~cos ™ ~v 3-), JR is therefore amply greater than
1/4 for small enough ‘T, but
3. X : i v > o807 (6,91)
R ~ 4 1 7’ X . .

Numerical investigation shows that JR first becomes very
much less than 1/4 for larger T , but increases again as 7, increases

beyond about 1 and that J, —» 00 as ‘T ——> CO, It is found that
g = %—r when T 27,9 (z = -6,2), (6,92)

Thus between T = 8)1;10"5 and T =8, Jp is less than 1/4, becoming

at least as small as 4,10-7 (at z = -4, T = 4/3).
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As pointed out by Chandrasekhar (1961, Chepter XI), instability
need not occur when JR is less than 1/4, However, JR is so much smaller
than 1/4 throughout a large part of the outer layers of the star that
the restraining influence of inertia on the flow must be almost
negligible, It therefore seems very likely that the flow becomes
turbulent and that turbulent viscosity serves to damp the otherwise
excessive speeds,

It is clear, at any rate, that viscous and/or inertial temms
can no longer be omitted from the equation of motion, In the next
chapter, the relative sizes of the possible additional terms are
discussed, and a more detailed development of the most likely model
is given, It is found that incrtial temms can be important, but
that the main damping agent is turbulent wviscosity,

As a postscript to this discussion, it should be noted that,
strictly speaking, the definition of the Richardson number given in
equation (6,88) is valid only in an incompressible medium, However,

a similar argument to that of Chandrasekhar (1961, p.491) may be
apnlied to the case of a compressible medium, It is then found'
(Prandtl 1952, p,382) that the Richardson nurber should be written

{2 -@,]

I, = (6;93)

where (E>p/as),,d is the density gradient for an adiabatic fluid,
For a polytropically stratified fluid, the change in the definition

is equivalent to replacing i%%s by %i-(% - %‘) where H is the
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pressure scale height and n is the polytropic index (p<p~). Near

the surface of a star, n =3 , so that l;<;-- l) = -0,27'1 .
dp E\n Y/ - H

This should be compared with -%-agg = - %- . Thus the Richardson
0

number for a compressible medium is smaller than that for an
incompressible medium, but it is of the same order of magnitude and
the correction for compressibility makes little difference fo the
results found above, No correction for compressibility will be

made in the following qualitative model,

-141-



CHAPTER T

Discussion of the turbulent surface layer

Second Witch: ",,. Like a hell-broth boil and bubble,
All: Double, double toil and troublé,
Fire, bum; and, caldron, bubble,”

W.Shakespeare, kacbeth, Act IV Sc,i,

1 General consequences of the failure of the hydrostatic approximation

In the previous chapter it was seen that, if viscous and
inertial terms are omitted from the equation of motion, the flow speeds
predicted by the non-local theory are unrealistically large, except for
rotation speeds which are too slow to be of interest, This strongly
suggests that inertial and/or viscous forces cannot be neglected, since
these forces might be expected to damp the flow, Since the flow is
probably turbulent, according to the Richardson criterion, the dominant
damping agent is presumably turbulent viscosity, IHowever, it is worth
also considering the influence of radiative viscosity and of inertial
effects,

If the assumption is retained that the magnetic field exerts
negligibhle forces in meridian plenes, the meridian-plane component of
the full steady-state equation of motion is (see, for example, Landau

and Lifshitz 1959)

eV +tV2 =V + Fo + 20% + X DPlawvy) (1.0)
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where & and n are coefficients of viscosity, It is usually assumed
that £ <K m, and that assumption will be adopted throughout this
chapter, The radiative viscosity is then represented by the single

coefficient m, defined (as in Chapter 3) by

4 .
n = pyY = 60T . (7.2)

1514902
It will bc assumed that, in the turbulent case, the effect of the
turbulence on the mean flow can be represented also by equation (7,1),
where v is the mean flow and n is now a coefficient representing
turbulent viscosity (& is again assumed negligible), This
assumption will be further discussed later,

The relative sizes of the various terms in equation (7;1)

may be estimated, as in Chapter 3, However, in the present case v,y

and ?ﬁ have quite different sizes, since

v ~ {\".:‘vx‘ . (7.3)

¥

It is therefcre necessary to be more careful in estimating the sizes
of the inertial and viscous temms, Careful investigation shows that
the relative sizes of these terms depend on whother the'gf-component or
the X -component of equation (7,1) is considered, In both cases, it is
found that
2
v

I = inertial terms ~v ‘%%‘ . (7.4)

However, the other terms differ, it being found (see Note (a) in

Appendix X) that
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;

GM

C@, = centrifugal terms in ":_E'-component ~ 6—5

-~ GM
C,{ = 1 " " X»component ~ € <7z .
‘ ‘ R .

Y (7.5)

_ , . T n_¥
V. = viscous oo Hf-component ~ i
v s

L

= B " v X ~component ~ 1%

P H2 J
It is tilerefore necessary to treat the two components separately.
This is one reason for the difference, which will be found later,
between the present model and that of Kippenhaln (1959), who considered
only the r-component of the equation of motion,

First of all, a value for n is required, 1In the case of
radiative viscosity, r may be estimated from equation (7,2), Taking
T~ T and p~ }T%.‘ﬁ ,

n o~ -—A'-L% ~ 7.4 gn/cn/sec .
tomtte (7.6)

and ~ 1.3,10° cm®/sec

o |3

In the case of turbulent viscosity, the order of magnitude estimate
n o~ pv,h (7.7)

will be used (see, e,g., Landau and Lifshitz 1959), where h 1is a
length whose size is of the order of the dimensions of the largest

eddies in the flow and vy is of the order of the fluctuation in the

mean velocity over the distance h, The choice of values for vy and

h will be discussed later, The usual values-will be taken for the

Ksee Tote (b) in Appendix X
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other parameters of the problem; in particular, the value 0,1 will be
taken for éE and o will throughout be taken as l/né;R .
If the sizes of the various terms are estimated using

-,

3

N a qall

L, 0% v?t(o)max ~ 2,810 ¢ ,

. (7.8)
8 =
vw:[{:vs(o)max ~ 8,1,10" € |
it is found that, for example,

p .

=~ 1,8,10° (7.9)

Q

v

This merely emphasises the extent of the contradiction which has been
nroduced by assuming that inertial and viscous forces can be neglected
near the surface, A more useful procedure is to estimate at what
speeds the inertial and viscous terms become comparable with the

centrifugal terms,

It is reasonable to suppose that, whatever the details of
the model, the flow speeds increase as the surface is approached until
either the inertial or the viscous terms become comparable with the
centrifugal terms, and that from this point to the surface there is no
further increase in the order of magnitude of the flow speeds, With
this in mind, note that the inertial or viscous terms always become

important first in the jszcomponent of the equation of motion, since

I i1 L

Co ~ € C@g > Cor ‘
and (7.10)

.Y..X ~~ .:.l_ Y.QF >-\>> E?
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the latter result holding both for radiative and for turbulent viscosity
since it is independent of n, It is therefore sufficient to restrict
one's attention to the X -component, since, if the flow speeds do not
increase significantly after I/Cx or V;(/C-x have become of order
unity, inertial and viscous temms will never be important in the

'ﬂé’—component .

Calculation shows that, for radiative viscosity,

vx ~ e ~ 1 if vx2,3.5x10 cm/sec (7.11)(a)
Also %’_x A~ é‘:’—:‘R—G'ﬁ vxz ~1 if u’tw6,1x105 cm/sec (7.11)(b)

Thus, if only the case of radiative viscosity is considered, the
inertial temms in the equation of motion appear to determine the flow,
damping it to a quite reasonable speed,.

However, although the viscous terms are negligible in the
equation of motion, it must presumably be wviscosity which dissipates
the energy of the flow and it is necessary to consider the effect of
viscous dissipation on the thermal balance in the surface layers,

The thermal balance equation must now be written:

P Yy . ?\ |
7.7 Y.arad log (p/p') = - div JTraa + Paissip (7.12)
where
2 .
1 (Bv, dy, 2. ov
€. . = = =] + Tk -=20d. =m 1
P dissip 2 nLaIf{ ‘C\’Xj{ 3 Tk ox (7.13)

is the viscous dissipation in Cartesian coordinates, It is not easy
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to transform this expression into the (s,’x,,¢) coordinate system, but
there is 1little doubt that the largest tem will be %n (2w /as)°,
It is easy to show that
Pvx &

LHS, of (7,12) ~ == ~ I 2

=

Y |
X
T (7.14)

using the approximation grad P = p grad@ to obtain the second

expression, If Vol is given by equation (7,11)(b), and it is assumed

that p ~ 1/M&ER, it is found that

LH,S, of (7,12) ~ 2,5,107 (7.15)
whereas ¥
ch4 . ) .
div?{"f”e He ~ 3,1,(10j for £ = 0,1, (7.16)

This means that equation (7,12) can now be written approximately as
~~ '
div *j = PC4ipgip - (7.17)

However, if the viscosity is assumed to be radiative, so that n = 7.4,

it is found that with vy = 6.1,10° cn/sec

v, \2 ‘ '
%_.,,(E") ~ 6,910 (7.18)

PCaissip ~
This result shows that the equation of themal balance cannot be
satisfied on this model,

Presumably, then, the speeds continue to increase (but see

Note (¢) in Appendix X), even though the inertial and centrifugal

¢ This estimate holds only in the non-local theory, In the local theory,

di\(::,:f ~E Tg'/R . However, even in that case the L,H,5, of equation

~

(7.12) is less than div Q-
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terms are comparable, until the Richardson number becomes less than 1/4,
The flow will then become turbulent, and turbulent viscosity will damp
the flow, It will be found that turbulent viscosity is a much more

efficient dissipative agent and that equation (7,17) can be satisfied

at quite reasonable spe«ds,

The Richardson number may be taken to be (see Chapter 6)

/ o\ 2
\BS

Jd =

or, assuming g ~GM/R2, p'/o ~1/H and 3w /38 ~ vz/H,

J ~ e.c;rg i (7.19)

h-

It is well known that in a region in themmal convection the temperature
gradient_ stays very close to the value at which the region becomes
unstable, It seems reasonable to assume, by analogy, that the flow
in the present case is damped by turbulence to such an extent that the
Richardson number never becomes much less than 1/4,I In that case, ‘56

may be estimated roughly by putting J = 1/4, so that

GM

~ deE (7.‘20)
and

vx ~ 3,8,(106 cm/sec . (7,21)

The flow is therefore supersonic, since the speed of sound, ¢, is

given by

-2 P a a1 '
ONY;,«J%_EAJ%-&-, (7.22)
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and so

c 2,5x106 cm/éec and Vg 1,5¢ . (7.23)

However, the factor 1;5 is probably not sigmificantly different from 1,
since no correction has been made for compressibility and also the
critical Richardson number is slightly:uncertain,

This result differs appreciably from that of Osaki (1966),

04‘5cm/sec, However, it is clear from the present

who found Vo ™~ 1
discussion that such a flow would not violate the Richardson criterion,
and so could not be unstable, Osaki's model is therefore internally
inconsistent; in that he finds that turbulent viscosity damps the flow
to such an extent that it is no longer turbulent, This inconsistency
would have showm itself if Osaki had considered in more detail the
equation of thermal balance, The differences between his model and
the present one will be further discussed in the next section,

A point on which the two models are basically in agreement
is the treatment of the turbulence, This is a vexed question,; to
which there is, as yet, no satisfactory answer, even in the usual
problem of a convectively unstable region, In the present problem,
that of turbulence in a region with a radiatively stable temperature
gradient; it is even less clear how to proceed, In the absence of
any recognised procedure, it seems best to represent the turbulence by
the simplest possible model, At the very least the solution may give

some informmation about the wvalidity of the model, It is to be hoped

that it also gives a qualitative description of the turbulent region,
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When the time-dependent equation of motion which describes
the instantaneous state of the turbulent flow is averaged over time,
one obtains a time-independent equation for the averaged quantities
which is of the form of equation (7.1) except that the viscous temms
are replaced by a number of temms involving the fluctuations due to
the turbulence, The simplest way of dealing with these temms is to

define a turbulent viscosity n by the condition that the

effective

extra terms can be written in eractly the same way as the viscous terms
involving » in equation (7,1) except that the coefficient of radiative

viscosity is replaced by n In principle, this definition

effective*

determines n o? although the exact expression would be

effectiv

complicated and not very useful, In practice, n

'‘effective %S simply

assumed to be a constant, Dimensional argunments (see, e,g,, Landau

end Lifshitz 1959, p,119) show that m can be represented by

effective
an expression of the form of equation (7,7); vy and h can then be
determined by order of magnitude considerations, This will be done in
ne next section,

A similar treatment of turbulence was given by Kippenhahn
(1959), who considered meridional circulation in zones of weak
convection, However, his resulls agree neither with Osaki's nor
with those discussed here, although his estimate of v, is nearer to
the result of this chapter than to Osaki's result, The difference
between his result and the present one arises for three main reasons,
Firstly, Kippenhaln considered only the r-component of the equation of

v

motion, whereas it is clear from the present work that the;{:—component
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is more important, He also assumed that v, was of the order of Vo
rather than Vo Since he usced a local theory of radiative transfer,
he could assume Voo~ Vs but this in itself is a difference between the
models used by Kippenhahn and the writer, Finally, Kippenhahn, like
Osaki, did not consider what was the origin of the turbulence which he
postulated, Thus, although the turbulence was introduced as a braking
mechanism near the boundaries of the convective zone, the instability
which could cause the turbulence was not considered, Assuming that

Vyg e Voo Kippenhahn's flow does not violate the Richardson criterion

and so his model, like Osaki's, is intemally inconsistent, Nonetheless,
it is not clear what effect the presence of thermal convection would have
on the flow, and the writer does not wisih to claim that the present

model necessarily applies to Kippenhaln's case without modification,

One other point must be considered here, In the presence of
turbulence, it is unlikely that a magnetic field can remain undistorted,
No theory of turbulence is sufficiently detailed to enable one to say
exactly what happens to the field, but the numerical experiments
conducted by Weiss (19566) strongly suggest that magnetic field lines
are expelled from turbulent regions, If that is true, as will be
assumed here, there is no need to consider magnetic forces in the
equation of motion, This is a simplification in one respect, since
with such large flow speeds the magnetic field required to balance the
Coriolis force in the toroidal component of the equation of motion
would be so large as to have significant effects in the poloidal

comhonent as well (cf, Mestel 1965), On the other hand, if a magnetic
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field is no longer present the Coriolis force is free to destroy the
uniformity of the rotation, and it is necessary to complicate the model
by allowing for non-uniform rotation, This is equivalent to allowing
the flow to have a non-constuant ¢;—component,“%¢ ; Presumably the
gradient Of'ﬂé will be limited by the Richardson criterion in the

same way as the gradient of Vg o This will prevent the non-uniformity
of the rotation from becoming too large,

It might also be argued that, since, in the absence of any
external forces, the rotation law would be determined by the conservation
of angular momentum, the rotation law is likely to adjust itself to be
as close to angular momentum conservation as possible, However, the
turbulence is driven by a powerful force, capable of producing motions
in a non-viscous medium of the order of the speed of light, and it is
therefore likely that the effect of turbulence will be to prevent the
rotation law from adjusting to angular momentum conservation; Besides,
it is easy to sec that, if streamlines of the flow enter and leave vhe
underlying uniformly rotating region, the angular-momentum.11.632
cannot be a constent on a streamline since, on the boundary of the

uniformly rotating region, {. is constant but & is not,

2,A self-congistent order-of-mammitude model

The order-of-magnitude estimates for the terms in the equation
of motion (equations (7.4),(7.5)) wers based on the assumption that the

rotation was uniform, Suppose now that

O -0, « L1 (7.24)

o
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where .(1.0 is a constant and 'O—l is a function of s and'X, Then

there are various extra tems, containing Q in the equation of

1’
motion, So long as ’Ql < () o + it can be shown that these terms
can be ignored in the W-component, In the “X/-component, an extra

term apnears, whose relative size cannot be determined without

further information, It is therefore necessary to write
Cnr 7™ 69-1‘52(6 +-“SE—J-‘— (7.25)
A AN '

In the é—componont, which has not previously been considered, the non-
uniform rotation contributes a viscous force which, in the absence of
magnetic forces, just balances the Coriolis force due to the circulation,

he ¢—cozz;son3n't cen ve writion oxcetly as

v.grad({) rzsinze) = %V"‘Z(_Q_lrzsinzﬁ)
where (7.26)
2 o 1 [ 9?2 e >
v = ) + = —— .~ cot 6 5"6‘) !
ar T ae ! o J

‘O”l nay be written instead of,-(z on the RIS, of this equation

2
because \7' 2(Qor2sin“6) = 0, This equation may thercfore be used

to estimate .O_.l by writing it as

L2
P= (7.27)
H

n
VX ﬂo R 0 R

To obtain this approximate form of equation (7.26) it has been assumed
that the scale height H is the scale for the vertical variation of ‘O_l’

that v

¥

~ €,V, and that 'Ql < 'O"o .

It is now necessary to decide what value to take for n, which
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has been defined by
naspv b, (7.7)

The turbulence breaks the flow up into eddies, and o and h are typical
values for the variation in sneed across an eddy and the size of an
eddy respectively, It is not necessarily reasonable to suppose, as
Osaki does, that h ~~ H; with a driving force capable of producing
speeds up to the speed of light, the flow must be expected to break

up into many eddies, with a typical size considerably less than the
extent of the turbulent region, which is a few scale heights deep,

It is more reasonable to suppose that the typical eddy size is
determined by the need to maintain thermal balance, The typical

eddy size is presumably the suitable scale for the estimation of the

viscous dissipation, so that one may write

1 (2"%\2 ~ 1 (’t\\z |

PPaisstp ~ 2\ B . 2"\&) (7.28)
This is a different expression from the one used in the case of
radiative viscosity; Whea turbulence is present, the bulk of the
dissination is due to the random motion in the eddies, so that padissip
must depend on the velocity gradient across an eddy, typically vt/h ’
not on the mean velocity gradient, typically ij/H . Dimensional
arguments (sce, for example, Landau and Lifshitz 1959, pp 119-120)
lead to the same result, except for the factor 1/2 ,

A
Since div :j‘ ~ €& Tﬁ'/H (assuming the non-local theory -

see the footnote on p,147), h will then be approximately determined
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s v \2 .
€2 o~ % p v, B <-@ . (7.29)

Equations (7.27) and (7,29) are two equations to detemmine

-
the quantities _iLl, v, and h, Assuming that inertial terms can be

]
ignored, an assumption justified by later checking for consistency, a
third equation is obtained by writing the 7Q-component of the equation

of motion as

( v,
é’g-l- /él + Tfjﬁl—) ~o vy h """;"é R (7.30)
R L Q, H
Equation (7.27) is more conveniently written
) V. R. :
A L] 2 X
_—= o~ s (7.31)
ﬂo 60 vy h

It. is not immediately obvious which term on the L,H.S‘,' of
equation (7;30) is the larger, However, if the temrm €€, GI-:i/R2 is
assumed to be the larger it is easy to show from equations (7,30),
(7.31) and (7,20) that 0 /() ~ 4/ > 1. This contzadicts
the assumption that the first term is larger, which requires
D /N, <e .

This result should be compared with Osaki's model (1966),
in which the first tem is tacitly assumed to be the larger, That
is, only the contribution from the horizontal pressure gradient is
considered by Osaki, This is incorrect if v, is determined by the
condition J ~~ 1/4, whatever assumptions are made about vt and h,

Osaki also assumes that Ve~ %y and h ~ H, The first of these
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assumptions turns out to be fairly good, but the second is completely
inconsgistent with the present model, It is this which accounts for
the great difference between Osaki's results and the present ones,

The neglect of the .S L. tem in the ?{J—-component of the equation of

1
motion is consistent with Osaki's wvaluc for Ql , which gives
L /-Q, ~ \,‘ . The inconsistency in Osaki's model arises only
in the themmal balance cgquation, which he does not consider in detail,
but which cannot be satisfied with his assumptions,

It has been establlshed that the .\/1 term is the important
one on the L, H,S, of equation (7, 30) Equations (7,30) and (7,-31)

can therefore be combined to give

2 Qu '
(v,h)? A B gPe 2 (7.32)
Using equation (7,20), this may bhe written
) - ) ‘
vih o~ Sy é v%h (7.33)
and so, from equation (7,31)
L 1 ? ! 1 '
g ™ 2\/? 180T (7.34)
~0

This is large, but consistent with the assumption a 1< _(\.Z..O on
which the order of magnitude estimatcs are based, Also, since
ﬂo = (€ GI’/I/R3) 1/2 ~ _3.‘9),,10-D , the variation in rotation speed

over the stellar surface is approximately

@)

AL R~ 01880 R ~ 3,7410° on/sec ; (7.35)
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that is, of the same order of magnitude as vy, This suggests that the
Richardson number for %5 will about 1/4, as suggested at the cnd of the

last section, This is easily verified, since the Richardson number

42)

p! |
P (7.36)
[ 4
(as/

for %5 is

J, =
p

where, as before, g s GW/R° and - p'/p~ 1/I, The % gradient is

Avs D0 Q .
a—j = a—s'(.u@) ~FR . (7.37)

The result J -~ 1/4 then follows from equation (7,34) and the

2

definition of €,

To find v

+ and h separately, it is necessary to use equation

(7.29), vhich gives

3
n PY%% '
e 4 (7.38)
€0 T
e
If this expression is substituted into equation (7.32), and it is
assumed that p ~ 1/u&R, it is found that
8 . '
i~ setedBerh? om (7.39)
. § . .
so that v 1,7y 10 cm/sec ~ 0,45v, (7.40)

This shows that the mean flow, Vs is subject to variations of the
ordcr of 49%, The typical distance over vhich these variations occur
is found from equations (7,38) and (7.40) to be given by

B 1041072 (7.41)

H
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(cf, Osaki's essumption: h~ H),

This result is perhaps rather surprising, While one would
expect h/H <1, a factor of 100 between the scale height and the eddy
size seems rather large; Since there is no doubt that such a factor
is required to make the present model self-consistent, one is led to
ask if the model is entirely realistic, There is little doubt that
turbulence occurs, in which case v, is unambiguously determined by the
criterion J~« 1/4 and Osaki's model is certainly wrong somewhere,
However, it is possible that in fact h ~ H and that themrmal balance
is achieved by some other, more efficient, process; A possible
candidate is radiative dissipation, that is, the direct conversiaon of
mechanical cnergy into radiation, This altemative model has not
been investigated in any detail, but rough cstimates suggest tha#
radiative dissipation is less efficient than viscous dissipation,

It therefore appears that the turbulent eddies are indeed very small
in comparison with the scale height, This presumably means sinply
that the turbulence is very strong, which is consistent with the known
strength of the driving force,

The final stage in this order of magnitude model is to
check the validity of the assumptions (i) that inertial terms are
negligible in the X—component of the equation of motion and (ii)

that both inertial and viscous temms arc negligible in the ?‘-component,

It is found that

~ ~  1,8y107 (7.42)

ni)

I
%
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I & o~ 85,1073 | 2
oy~ ¢ .5 X (7.43)

Assumption (i) is therefore a reasonably good approximation and

'

assumption (ii) is an extremely good approximation,

3,The model in more detail

So far the turbulent surface layer has been considered in
isolation, In this section the relation of the turbulent layer to the
overall stellar model will be considercd and the detailed equations of
the model will be written down, taking into consideration the order-of-
magnitude discussion of section 2,

In the previous chapters it has been shovm that a non-local
theory of cnergy transport must be used in a stellar atmosphere if a
proper description of the fluid motions in the outermost layers is
required, The full non-local theory developed in Chapter 4 is valid
to any depth, although it becomes indistinguishable from the loeal
theory at large optical depth, However, the approximate solution
found in Chapter 6 only holds down to about T = 5, where the neglected
terms in vy become comparable with those retained,

Since turbulence has already set in below this point, at about
T = 8 (sce Chepter 6), it may not apnear necessary to usec the nm-local
theory at all outside the turbulent rcgion, It is certainly wrong to
use only the app?axﬁnate non-local theory to calculate vy outside the

turbulent region, IHowever, a mixture of the local and non-local
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theories, or the full non-local theory when this has been worked out,
must be used to calculate v, outside the turbulent layer, since at ®~8
the non-local v, is still more than ten times the local value

(meﬁ 4,.8*- 10° cn/sec; oy, 2,.85( 104 cm/sec), This makes it
difficult to decide what boundary conditions should be applied at the
lower edge of the turbulent layer, since the boundary occurs in the
transition region between the domains of validity of the local and
approximate non-~local theorics, a region which cannot be adequately
described by the methods of this thesis,

The problem is further complicated by the fact that the
order-of-magnitude estimates sugrest that inertial terms become
important before turbulence sets in; If that is so, it may also be
necessary to take account of magnctic forces, which must somehow be
increcased in order to balance the growing Coriolis force as the
turbulent region is approached; One may imagine, perhaps, that the
required increase in field strength is provided by concentration of the
field lines expelled from the turbulent layer, If this process does
not sufficiently increase the magnetic forces, it may be necessary to
consider the pogsibility of slight non-uniform rotation outside the
turbulent layer,

It is also possible that the magnetic field will be expelled
from the ragion where inertial terms arc important, since Weiss's
(1966) model applies to any cellular convection, without specific

reference to turbulence, The question of time-scales then arises,

and it is possible that turbulence is a more efficient expulsion
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mechanism than laminar circulation, so that although the field has been
expelled from the turbulent region it may still be present immediately
below, Nonetheless, it secms likely that the circulation speeds in
this region are greater than the diffusion specd of the field through
the medium; It is therefore unlikely tuat a steady state exists in
which the rotation is kept uniform by the magnetic field,

In any case, the mathematical problems involved in the
treatment of the transition zone betwecen the outer turbulent region and
the part of the inner non-turbulent region where local theory can
safely be applied are fonmidable; No attempt at solving these problems
will be made in this thesis and for simplicity the transition zone will
be assumed to rotate unifonnly; Since uniform rotation does not seem
to be a singular case, the results obtained with that assumption
should be qualitatively correct,

In the turbulent region also, various problems arise which
must be passed over in this thesis,  According to Chapter 6, there
would appear to be an optically thin layer very near the surface which
is not turbulent and it is not obvious how this should be included in
the model, particularly as the non-loccl theory of Chapter 6 breaks
dovm within this laycr, It will be assumed for simplicity that some
form of convective overshoot ensurcs that the star is turbulent right
to the surface; The details of the overshouting will not be
considered,

Near the lower boundary, the approximate non-local theory

of radiative transport, described in Chaptcr 6, probably begins to fail,
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However, this problem is intimately bound up with the trcatment of the
transition region and for the rest of this chapter the plane-parallel
approximation will be used for any detailed calculation, This is
certainly valid near the surface (17 = 0) which is the only region
treated in any detail,

Vith all these approximations and assumptions the model con~
sidered Dbelow 1is inevitably a crude one, but it is an improvement on
the order-of-~magnitude model, In particular, it is possible to say
something about the variation of angular velocity over the surface of
the star,

The equations which will now be written dovm do not appear
to assume the plane-parallel approximation, since they are written in
terms of s, not of z, However, when the order-of-ucgnitude cgtviinntos
were made, terms of order éi,were dropped, The present equations
contain only those terms which were retained and therefore the
plane~parcllel approximation has already been applied, As usual,
therefore, the cquations will be solved in temms of z,

The s-component of the equation of motion is virtually

unchanged, being

(7;45)

cqed
@ {*g

]
P 3s

The only difference is that P, p, aad so T arc no longer functions of

s only, Also’vy is now defined in terms of-fzb, that is,

Ar.o@,102 2 .2 |
Y o=+ 2,0.0 r~ sin“e (7.46)
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Since (L is not a constont,’g[f' can no longer be interprcted as a joint

L

potential, Nonetheless, ’"@_’, or s, is still useful as a coordinate,
For simplicity, € will be redefined by

S0 that'q_f_' (r,e, £€) is the same as before, However, the equations are
no longer obtained by a simple expansion of the full equations to first
order in € .

The %— and ¢-components of the equation of motion are

respectively:

- 20 D.ls sin)(cosy = 11 . ds 'g: (7.48)

and zf)bvxs cos Y = -13' sin%g"z(ﬂlsz) . (7.49)
S

The other two unfamiliar equations are the themmal balance equation

(7.50)

div J' = p dissip

C,tot . & , (7.51)

The latter must now bc written in tcrms of the total flux, since P, p

and the flux integral

and T are no longer constant on level surfaces (ef, Appendix III),
The remaining equations are the same as before, The

equation of state is

p T (7;52)



The equation of continuity is still
aiv (pv) = 0 (7.53)

although now 1t is used to find Vs not v s since V)ClS found from
equations (7, 48) and (7. 49) 'md v, can no longer be found from the
equation of thermal ba.lance,

Finally, assuming the Eddington approximations are still

adequate, the radiative transfer is described by the equations

divg‘ = = 4rmp (J - B) (7.;54)
and d.l‘V'(Jj.) 44n p/j\ (7.'55)
where B = _n- (7.56)

and L is the unit tensor,

—
—

The equations for 3 are much more complicated than before,

because of the need to use (::éot

will be made to solve them, Some suggestions on the effect of the

in the flux integral, and no attempt

turbulent region on Cj‘will be found at the end of this chapter,

The structure equations can only be solved in conjunction
with the radiative equations, bécause of equation (7;56); it is therefore
not possuble to find P, p and T without flndlng{:}‘. However, equations
(7. 48) (7,49) and (7.53) can be decoupled from the remaining equations
if p is approximated by Py? since Po is una.ffec‘ted by the turbulence
and may be taken from the results of Chapter 6, It is thereforc
possible to solve for “Ql y Uy and A simply by assuming a wvalue for n,

The equations will first be put in dimensionless form, using
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the results of the order-of-magnitude model as o guide, Write

s =R (1+&32) (7.57)
as usual, and also —
* \
= =
p =3 .
-.—4”“
;ﬁk@i
T R

\ N
v, = JEg Ux > (7.58)

GM
N i

—*O—l = \/? Lgex

It may then be shown that, to lowest significant order, the equations

(7.48) and (7,49) become:

~2 i
26) sinxcog { = U;( (7.59)
po 022
32 |
2 Uy cosX * sink (7,60)

az

The continuity equation will be considered later,

“

If these equations are to be solved, some assumptions must
be made about tleX -dependence of U, and (J;. Suppose that one

starts with the gencral assumption that

G _
GO = };len(z) P (cosX) L .
IGQ i (7.61)
Ux = 2 u)Cn(Z) Pn(COS'X)Si‘nXCOSxJ
N30

Then it is easy to show that equation (7, 59) yields the equations
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2

1 dw, | |
20 = - ot 2 T 0, 1, 2, .., (7.62)

whereas equation (7,60) becomes

‘az C ' .
25 (coyp +0OppP + WPy + oa) = 31+ By 4wy + (7.63)

0 27
+ Yy Py + vl .

i t

If the R, H,S, of this equation is written as a serics of the fom
]
SZS aum, it may be shown that each & involves all the U with

nmn - 2, since the product P Pn is of the fom

2

n+2 '
PP == bP (7.64)

r=0

It is therefore not possible in general to decouple the equations
obtained by equating coefficients of P_ in equation (7.63), The only

case in which the equations decouple is when

u, = O for nzl . (7.65)

There is no reason to believe that this is a particularly good
approximation for q%; However, the series for Ux;has to be truncated
at some point if a solution is to be obtained in practice, and it seems
reasonable as a first approximation to truncate the series in the
simplest way, The model is not sufficiently reliable to justify the
use of a more elaborate representation for U,

The secries for'CJl may be similarly truncated, except tﬁaty

must be non-zero if a non-trivial solution is to be obtained,

6;312

Then, dropping the subscript from Uy
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2 n
S OB) 2 X
—=]l0 = = p_ Uy (7.66)
dz2 3 7o
2 B
a—Go 4 X
d22 3 Vo
and C’Jln = 0 forn=1, n>3 (7.68)

Equation (7;62) is then an identity forn =1, n 23, Forn = 2, this
ﬁquatlon and cquation (7, 65) g1ve(3312 = 0, which contradlcts equation
(7.67) (rejecting the uninteresting solution Uy = 0), This
contradiction simply arises from the truncation of the series for'CDl
and Uy, One of the equations (7.62) (n = 2) and (7.67) is redundant,
and the uninteresting one,C)12 = 0, will be dropped, Equation (7;62)

therefore gives only one useful equation, viz:

fof

l

Zu '
X (7.69)

[

1
0

I\)

Because of the presence of po’ which is known only
numerlcally as a functlon of z, it is not possible to solve equations
(7. 66) (7.67) ana (7, 69) without the 2id of a computer, In view of
the many approximations in the model, and the uncertainties in the
boundary conditions (which will be discussed shortly), it did not
secm justifiable to spoend computer time finding'a complete solution
before a more accurate model had been developed, The present theéis
does not attempt to improve the model outlined above, and the rest of
this chapter is therefore confined to such digcussion of the oquations
as is possible without the help of a computer, In particular, the form
of the solution near the surface is obtained

First of all, equations (7. 66) and (7, 67) may be combined and
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integrated to give
@12 = 2(,)10 +Cz+0D (7.70)

C and D are arbritrary constants, to beldetermined by the boundary
conditions, which must now be discussed, Six conditions are required,
two for each of @10’ 6312 and Uy,

In rcality, the boundary between the turbulent and
non-turbulent regions is not well-dcfined, and it is not at all clear
what conditions arc valid there, For simplicity, it will be supposed
that the turbulent region starts abruptly at a definite value of z,

z =z The results of Chapter 6 suggest that z A~ 6, but this

o.
necd not be assumed for present purposes, Below z = Z 9 it will be
assumed that the rotation is strictly unifomm, so that two of the

boundary conditions must be

=(A>12 =0 at z = ZO (7.71)

Ly

o]

The value of vi:at z =z may be calculated from the theory of Chapter
6, once the value of z has bcen decided, The solution in this
chapter will not go far enough to requirc this value, so this boundary

condition will simply be written

uy =y, ot z=z (7.72)

where Urs is knowvn in principle,
The values of €) 109 c")lo and uxia‘c the surface cannot be

imposed in advance, as will be seen later, TFor the moment, it is
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sufficient to demand that

CJ ()_)12 and Uy are finite as z —+ o0 (7.73)

lo?

If possible, one would like to reqvfire Uy to vanish at the surface,
This point will be discussed later,

It is now possible to find the constants C and D, The
conditions at the surface clearly require C = O and then, if the

condition (7,72) is applied, D is also zero, Thus

oy, = 20, (7.74)

This already gives some information about surface conditions, Using

this result, the rotation law can be written as

—

) .
*‘rﬁg- = 3\/2'?@10 cos“ K (7.75)

Where_().o can now be identified with the equatorial angular velocity,
Unfortunately, the sign of wlo at the surface is not yet known, If
it turns out to be negative, then equation (7,75) would predict an
equatorial acceleration and the angular velocity would decrease

towards the poles according to a law not unlike the observed solgr
rotation law (see, for example, Brandt and Hodge 1964). If mlo were
to be - 0,74 at the surface, equation (7,75) would give a curve which
fell betweon the two solar curves for (-Q -—(10)/_@_0 found by observing
swaspots cad by odgerving the Doppler cffcet ot the limb, orever, this
caurnot Do vendiiod writhout o comnlote golution of vhwe oquations; it is

moxe lilely in oy cose oot the agreonasit 1g coineidcatal gince oo

~169~



1,

oresens model is of on cariy type stor ond the Sun is a late type star,
With the help of the asymptotic expression for sz as z—+od

(equation (6,.42)), it is possible to solve equations (7,66) and (7.69)

for u, near the surfaoce, general, these equations combine to give
1 d u. '
3 * +uy, = (7.76)
40 dz

However, near the surface, p is given by an expression of the fom

-nh :
M :Ej e
= a (7.77)
Po n=) oot ’
where h = 21/4z, a = -136- 21/4 and o, = - 4o, . FBquation (7,76) may

then be written in the fom
t‘—"‘] - - -
2 d4u.,A e i + d3u,¢A & mh dzuxA e mh
4 “4m 7 3 3m  om dh2 2m o

_on . oh | (7.78)

omEm

m=0 th

which can be solved by wri‘bj_ng

~ - :
= 27, 2 bnmhr'm-‘?-— (7.79)
n=0 nm= En

The index r can be detemmiried from an indicial equation obtained by
first equating coefficients of e £or each N and then, in these
coefficients, equating coefficients of powers of h,

The gencral solution of equation (7 ;78) is complicated,
However, for large h the series for pf and Uy converge guickly and only
the first few torms need be con31dered If only the first two terms

arc taken in equation (7, 77) (cf, equation (6,42)), equation (7, 78)
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reduces to

(1 +-%-e-h) u;? + 2 uigi + u;} = 0 (7,80)

which has the general solution

AT i
U = b, h+b+ (bloh + bll)—E—- +() > (7.81)
where boo’ bol’ blo and b11 are arbitrary cons#ants to be determined

by the boundary conditions, The condition (7.73) requires that

b00 = 0, Dquation (7,69) may be used to find(;)lo to lowest order in

e™P/E, It is found that

__ 3 ,1/4 |
Wi =~ 35 2 (by b+ by =20y )+ ... (7.82)

Condition (7,73) then requires that b o = 0; so that

1
-h -
Cho=- 3% 21/41711 ¥ Q(—‘?E—) s h—y O (7,83)

There is therefore equatorial acceleration if bll

the rotation law will agree with that of the Sun if b

is positive and

11 = 6.6.

Since blo = 0, u-.is given by

b 1/4 :
11 -2
u,/( =b01+-ﬁ-e L vee a8 z—~—}+00 (7.84)

The constants bo and b,., can only be detemmined by the boundary

1 11
conditions at the lower boundary, z = Zy and so they cannot be found
without the numerical integration of equation (7,76), using equation

(7,84) as a starting serics, In practice, the integration would be

performed for various trial wvalues of bol and bll until values were
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found which enabled the solution to satisfy the boundary conditions at
z =2, Since there are two conditions to be satisfied there, it is

not possible to demand u.,= O at the surface, since that would require

(V]

b . =0 and would leave only one constant to be determined by two

ol
conditions, In general, therefore, one would expect that u7(does

not vanish at the surface,

This affects the behaviour of Ué near the surface, which can

now be found from the continuity cquation , To lowest order, the

continuity equation can be written

’g‘)z‘ (pg0,) = - 2:(:“1(2)1’2(008%) (7.85)

which has the gencral solution

pUs = - 21323‘z ;guxdz' + A(XC) (7.86)
where A is an arbitrary function of;X:; Assuming the boundary
condition

U_ is finite as z—>+0d, (7.-87)
and writing Us = us(z)D (cos?ﬁ) it can be shown that

1 g ; |
By X 20 Uy (7.88)

if the integral converges and tends to zero faster than §¥-as z—»+CC0
That thcse conditions arce satisfied can be secn by substituting the
asymptotic expressions for ;i‘and uj:into equation (7,88) and
integrating, It is found that

b, _,1/4 .
23/4(‘00l + E%l e 2' 'z + ,,) as z—++oo,(7,89)
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a result which satisfies the condition (7;87), Like Uyy U does not,
in general, vanish at the surface, although thc case bol = 0 is not
excluded, It is a feature of all theories of meridian circulation, up
to and including the present one, that one is not able to demand that v
should be zero at the surface; Nonetheless, there is no mass outflow
at the surface, since the density tends to zero there, so this feature

is not too serious o defect,

_4LQualitative discussion of the emergent flux

One of the objects of this thesis was to discover whether or
not von Zeipel's result, that the radiative flux at the surface is
proportional to the surface gravity,; is a good approximation,
Although this question could have been answered in the negative if the
theory of Chapter 6 hod been velid ot the surfoce, the prescnce of a
turbulent layer throws doubt on this conclusion, a.nd the theory
presented above is not adequate to remove the dcubt,

This is a scrious shortcoming of the theory, since the only
way at present of obtaining the actual rotation speeds of individual
single stars, cven in principle, is by the effect of rotation on the
starts position in the H-R diagram (see Appendix I), This is
crucially affected by the distribution of brightness over the surface
of the star, which is usually assumed to be given by thc von Zcipel
gravity-darkening, If that assumption is sceriously wrong, many
current modelg of rotating stellar atmospheres v/ill huve to be

re-calculated,
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Von Zeipel's result is trivially true for o uniformly
rotating star if the local theory of transfer is assumed to hold, since
in that caser;}d:g?$~and the flux is automatically proportional to the
surface gravity, It is thereforce useful to usce the local theory as a
comparison, to seec how far the flux in other theories departs from
proportionality to gravity,

In the local theory it was found that the flux only had an

s-component, given (to lowest order in &,) by
Jy = o1 ‘1 + E(é’l - £p,(0) + §P2<cosx D+ ] (7.90)

(see equations (A7.6) and (A7.22)), where 21 and Pz(o) have the values
given in Appendix VI, In the non-local theory, on the other hand, the
flux still only had an s-component, to lowest order ixlézl, but its

value at the surface (T'= 0) would be

4

(}S = G'Tg it +E€ (21 - -§—P2(o) + %(1 - 2(2 -~B))P2(008X>+ oo | (7.91)

if the theory were valid there (sce cquations (6;1), (6;31), (6,61) ana
(6,64)), The coffect of the non-local theory is therefore to make the
flux more spherically symmetric than predicted by the local theory,

The differences are summarised in the following table, in which the

ontries are (ra\s - O’Tg)/Q/Tiré .

| Pole Equator
Local +0,60 -1,40
Non-local ~0,12 -1,04
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It is immediately obvious that the difference between the pole and the
equator is appreciably less on the non-local theory, (The fact that
't3¥;<<Cng at both pole and equator is simply & result of the decrease
of luminosity produced by rotation = Te is defined in terms of Lo’ the
luminosity of the corresponding non-rotating star,)

The question to which one would like an answer now is ¢
How much effect does turbulence have on this result? No definitive
answer is yet possible, but the following considerations suggest that
the effect of turbulence is to reverse the effect produced by the
non-local theory, that is, the flux from the surface may be expected
to be less spherically symmetric than would be predicted by the local
theony;

It is a curious feature of flow in a region with a
radiatively stable tempcrature gradient that the encrgy carried by the
flow is propagatcd in the opposite direction to the velocity wvector,
On the local theory, the velocity at the poles is mainly directed away
from the surface, The circulation therefore carries cenergy towards
the surface at the poles, 1In the absence of dissipation, this energy
is not available to be radiated away and it contributes nothing to the
observed radiation; However, if the cnergy in the circulation were
available, the total flux radiated awcy would presumably be even less
spherically symmctric than the local radiative flux alone,

In the turbulent layer, much of the circulation energy will
be dissipated; Of course, the simple local theory is not valid in

the turbulent layer, However, the turbulent layer is fairly thin and
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it might be a reasonable approximation to suppose that the effect of the
turbulence is to convert the circglation energy into radiation in situ,
without redistributing it overf)c. This would mean that the total
flux, radiative plus convective, would be essentially constant, for a
givenfki, throughout the turbulent region, If that were so, the value
of the constant would bec given by the total flux ontering the turbulent
region from below, At the base of the turbulent layer, all quantities,

except possibly v, can be adequately rcpresented by the local theory,

i
and so the total flux would be less spherically symmetric than

required by gravity-darkening, for the reasons given in the last

]

paragraph,

It is easy to see how large the effect would be; The
expression for the convective flux is given in Appendix IIT (equation
(A3,4)) and it may be evaluated using the results of Appendix VII,
Since ¥ has a X ~component, the total flux also has a':t}component, s0
that now the flux is not c¢ven nommal to the surface, except ot pgles

and equator vhere v, = 0O Assuning the local theory throughout,; and

x L
taking €& = 0.1, it can bc shown that

CE}S -G’Tg : - (5,02 (poles) ‘
— =- 0,73 + 2.75 PZ(GOSX) = ‘ (7.92)
€T -2,11 (equator)
/E%?( ' . '
and = =~ 2,49 sin 2% (7.93)

I 4
co ]
This is not cven approximately the same as the von Zeipel gravity-
darkcning,

However, thce present result is bascd on the assumption that
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the flux which cnters the turbulent region ot a particular valuc of:K:
lecves it ot cpproximately the same value of;{i; It is not certain
wvhether that assumption can be reconciled with the fact that the flux
entering the region has an appreciablerkf-component - about 25% of the
s-componcnt ot ;(==n/4, If the non-loczal thecory were to be used for
E{, as might be more appropriate, tée 7{}component of the flux could
even be larger than the s-component, It is difficult to believe that
this will be dissipated in such a way that the total flux emerges
unaltered at the surface; Nonctheless, it is just os unlikely that the
emergent flux will adjust itself to be proportional to the surface
graovity, The above model may not be valid, but the discussion shows
that the von Zeipel gravity-darkening is by no mecns the only
possibility and that it should not be uscd without more justification
thon is usually given;

No furthcr results can be obtained for the turbulent region
without prolonged computation which, as mentiocned carlier, does not
secm justified for such a crude model, It is clear that much work is
still necessory before a detailed model of the extreme outer layers of
an carly type star can be constructed; in particular, beforc the
emergent flux cen be predicted with any confidence, The present
chapter is intended to indicate tentatively the kind of approach which

will Be needed to produce such a model,
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CHAPTER 8

Summary and conclusions

"Begin at the begimming'", the King said, very gravely, "and
go on till you come to the end: then stop,"

Lewis Carroll, Alice in Wonderland, Ch, 12,

Other authors (see Chapter 1) had found that the méridian-
plane velocity field in rotating stars possesscd a 1/density
gsingularity at the surface, This result follows from the use of a
local theoxry for the transfer of radiation, as is shown in Chapter 3,
It has now been found that it is necessary to take into account the
non-local nature of radiative transfer; When that is done, the
singularity is no 1ong9r prescent, as is shown in Chapter 4,
Nonetheless, that model still does not represent reality since,
although there is no longer o fermal singulerity in the welocity fielid,

the non-local theory is also singular in the sense that it predicts

unrealistically large circulation speeds at the surface (see Chapter 6),
This result was obtained independently by Osaki (1966),

It has becn found (see Chapters 6 and 7) that the flow
becomes unstable, and that turbulence develops, when the horizontal
speed is of the order of the speed of sound; The flow breaks up into
eddies, in which its cnergy is dissipated, and the mean specd of the
flow increases no further; This model appears to be physically

realistic when examined qualitatively and it is hoped that it will be
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possible later to develop the model quantitatively,

In the meantime, two conclusions of a qualitative nature can
be drawn; The main conclusion is that one should expecet to observe
turbulence in rotating carly-type stars, with turbulent velocities of
the order of the speed of sound, It was therefore encouraging to
learmn that Miss Underhill (1967, personal communication) has observed
turbulence in B stars; The turbulent velocities she has observed are,
at about 10 km/sec, o little smaller than those predicted by the present
theory, but the discrepancy is not significant in view both of the
uncertainties involved in this kind of observation and of the
qualitative nature of the theory;

The second conclusion is that the distribution of radiative
flux over thc surface of a rotating equy—type star departs grossly
from the von Zeipel gravity-darkening, It was originally hoped that
it would be possible to find a quantitative expression for the flux
distribution which could be compared with the von Zeipel distribution,
It would then have beun possible to re-assess the work of Roxburgh and
Strittmattei (1965, 1966 a and b) and others (see Chepter 1) on the
effect of rotation on a star's position in the HR diagram,
Unfortunately, the presence of a turbulent region near the surface puts
a quantitative comparison beyond the scope of this thesis; It is not
even possible to say definitely whether the flux distribution is more
or less spherically symmetric than the von Zeipel gravity-darkening,
although some tentative suggestions arc made in Chapter 7;

Nonctheless, there is no doubt that it is not a good approximation to
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assume that the emergunt flux is proportional to gravity, It is
interesting to note that Roxburgh (1967b) comes to a similar conclusion
for highly distorted stars whose outer layers arc in convective
equilibrium; He finds thot von Zeipel's result must be replaced by

the opproximate relation

flux O, (gravity)o‘6 (8.1)

However, he claims that von Zeipel's result is reasonably accurate for
stars with rodiative outer layers; This is presumcbly because he does
not consider circulation and so his models contain no turbulent loyer
at the surface,

It is appropriate to conclude by considering briefly what
can be said qualitatively about the overall structure of the outer
layers of a rotating early-type star; It is convenient to distinguish
five zones, although in practice the dividing lines are probably not
well-defined; In the lowest zone, which fits directly on to the
interior solution, the photon mean free path is short compared with the
scale height and the local theory may safely be used, The zone is
assumed to be maintained in uniform rotation by a weak magnetic field,
which is not significantly disturbed by the comparatively slow laminar
circulation in meridian planes; The zone is above the circulation
reversal discussed by Spik (1951) and Mestel (1966) and 80 the mass
flow is downward at the poles!

Consider what happens to the flow as it rises again at the

equator, As the density decreases, so the speed of the flow
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increases, until it is greater than the speed at which the magnetic field
lines can diffuse through the gas; This marks the beginning of the
second zone, It is not clear what happens to the magnetic field in

this zone, but it is certain that it can no 1ong¢r simply be taken for
granted as an agent to keep the rotation uniform, It may well have

been expelled altogether from the zone if the time-scale for expulsion

is short enough, If not, it will need to be considered explicitly,
In either case, non-uniform rotation must appear,

Further up in the atmosphere, the spezd of the flow, though
still subsonic, becomes large enough that the inertia of the flow
begins to exert forces which are an appreciable fraction of the
centrifugal forces due to the rotation of the star, There is therefore
a third zone, in which inertial effects are important but the flow is
still laminar, It seems likely that there will be no magnetic field
in this zone, which is again in non-unifomm rotation;

As the flow ig followed still higher in the atmosphere, it
enters a zone in which the photon mean free path has become so long
that non-local effects must be oonsidered; This fourth zone is
otherwise similar to the third zone,

The flow which passed from pole to equator in the first three
zones returms to the pole near the top of the fourth zone at speeds
which are now approaching the speed of sound; The horizonta; shear
becomes turbulent because of the Kelvin-Helmholtz instability, This

mexks the boundary of the fifth zone, which extends from here to the

surface of the star, Since the instability occurs at about the speed
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of sound, complicated shock phenomena may occur near the boundary, The
possibility of shock waves arising in the outér layers of rotating stars
with circulation currents has previouSly been suggested by Sweot (1965,
personal commnication) and Kippenhahn (1959),.

Within the turbulent zone, the flow is rapidly broken up into
eddies which are small compared to the scale-height, No coherent
magnetic field can exist in such conditions, The rotation is
non-uniform, and the differential flow round the rotation axis is also
unstable, It therefore contributes further to the turbulence which
can be regarded as being isotropic in the )(} and 9£—directions, The
large divergence in the radiative flux is now balanced, not by the
divergence of the convective flux, as in the other zones, but by the
dissipation of the energy of the flow in turbulent eddies, This
energy eventually reaches the surface and contributes to the emergent
flux of radiation, whose distribution over the surface is certainly
not given by the von Zeipel gravity-darkening; The actual

distribution must, however, remain a subject for future investigation,
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APPENDIX I

Zero-~rotation main sequence

1, Theory

The position of a star in a colour-magnitude diagram is not
determined uniquely by its mass and chemical composition, but depends
also on its rotation speed, The locus of the positions in the diagram
of non-rotating stars of various masses and compositions may be termed
the zero.rotation main sequence, For a star of a given mass and
chemical composition, the displacement, due to rotation, from the zero-~
rotation main sequence depends on v, the equatorial rotation speed, and
i, the angle of inclination of the rotation axis to the line of sight,
This is illustrated in Fig;15, which shows, among other things, the
displacement of a star of given mass and composition in the two extreme

cases when the star is rotating pole-on and equator-on to the observer,

equator-on

(1=0°)
\\\\\:::::::\\\

tation

Fig, 15, Effect of rotation on a star's position in the HR diagram,
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The locus of stars with a given v and i, but varying masses,
is a line roughly parallel to thg zero-rotation main sequence, but
somewhat above it at a given B-V, Although the value of i makes a
large difference to the position of a given star on the HR diagram,
the difference in magnitude, at a given colour, between the loci
defined by (v,i = 0) and (v,i = 90°) is in general small compared with
the mean displacement of the loci above the zerq-rotatiqn main sequence
at the same colour, That is, in Fig,Jl5, a<€b, It is therefore
possible, for each value of v, to define a "rotating main sequence",
whose displacement from the zero rotation main sequence, at a given
colour, depends essentially only on v; The equation of this rotating

main sequence is

™M, (38-v) - M‘;“tB-V) = v (A1,1)

where PJL(B-V) absolute magnitude of a star of given B~V and v

1l

P4SkB-V) = absolute magnitude of a star of same B-V and zero
rotation
v = equatorial speed of rotation,

and # is a quantity which is essentially a constant, It varies
glightly with i and is a slowly varying function of mass and radius
along the main sequence, These variations are small enough to be
ignored in the first instance (Strittmatter 1966);

The value of x can be calculated theoretically, and this has

been done (Sweet and Roy 1953, Roxburgh and Strittmatter 1966b,
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Strittmatter 1966), It is of some interest to see if the value of u
can also be obtained from observational data with sufficient accuracy
to be used as a check on the theoretical values so far obtained,
Strittmatter (1966) has recently examined the data available for
Praegepe and he claims to be able to estimate a value for n from this

data, In section 4 of this appendix his method is examined in some

detail and it is shown that his claim rests on a very shaky foundation,

Sections 2 and 3 contain necessary preliminary discussicn,

2, Application of theory,

)

For a given set of observations, M(:’is not known a priori,
In equation (Al,l), only Mv is directly obsarvable, and so this
equation cannot be used immediately to find u,',‘ For a particular-star,
the observable quantities are I\/L-,, B~V and v sin i, |

Suppose that the stars are randomly oriented, so that the

distribution of i among the observed stars is random and
p(i) di = probability of i being in range i,i+di = sin i di (Al.2)
Then (Chandrasekhar and Minch 1950)

Lvsin 17 D = 3% (41.3)
ﬂ;'(v) v* av

where <v=‘> = S" ’ (A1;4)(a)

S“i)‘(v) av
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. Su¢ (v sin i)(v gin i)xd(v gin i) ,
{vsini) ) = ’ (A1,4)(b)

S B e

f(v) av is the number of stars with v in the range v,v + dv and

¢(v sin i)d(v sin i) is the pumber of sté,rs with v sin i1 in the range
v sin i, v sin i + d(v sin 1), The distribution ﬁ cen be observed,
The distribution f carmot, but equation (Al,3) enables Lv*y to be
found from the observations, In general, ¢ and £ will depend on
B-V, so that the averages are only meaningful if taken in a
sufficiently restricted range of colour, Denote the average at a

particular B-V by >c, Then for a given B-V the average of

equation (Al.l) over v is

MY, - M8 = 1< (1.5

©
since v is independent of v, In this equation,
x

gfc (v) M () av
\ .. %
<MV/C S‘;“ (v) av

(-]

(Al:é)

) ( ‘ '
Eliminating M, between equations (A1,1) end (A1,5), and using

equation (A1,3), gives

MY - <MV% = 3 (Vv - (v sin i)">c) (A1.7)

Since Mvis observable and the averages are averages of observable
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quantities, the value of v for a star with an observed Mca.n be found
from this equation if % is assumed known from theory, The only
problem is to evaluate the averages in practice,

It is obviously legitimate to approximate <{v sin iJ* > .

by an arithmetic mean:

) 1 N, . ,
<(v sin i) >° = I-;- Z(v sin i)j (41,8)
° J=1
where Nc is the total number of observations at a given colour,
< MV)’c can be similarly approximated for the following reason,
Suppose
fc(v) dv = no, of stars of given B~V in range v, v + av
and gC(MV)d Mv = no.‘ of stars of same B~V in corresponding range
M., M aM,
where the corresponding range is defined by equation (41,1), which
shows that Mis a function of v only, for a given colour.'
Then
fc(v) dv = gc(Mv) aMyv (41,9)

0
S SO(MV) My d'nv

end <Moo = o) oM, (g.lo)

which may, now obviously, be approximated by

1 N ,
{MvDe = ;ZMV;} - (1.11)

C 321
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Once v has been found for a particular star, Tv1vcan be

found from equation (A1,1), In principle, each star of the same
colour will give the same value of’?“?ﬁs. In practice, there will be

a slight'scatter, due mainly to observational error, The true value
(9) '
of rv1q for each colour may be estimated by taking an arithmetic mean,
C
The zero-rotation main sequence is then defined by finding t“lv for

several colour intervals,

3, A method of finding u

The discussion of section 2 is only useful if the theoretical
results are known to be reliable, That is not the case and it is
desirable to have a method of determining % from the observations,

The following method has a sounder theoretical basis than that used by
Strittmatter (1966), but it will be seen to require more date then is

at present available,

i=0° P
™ \,,,_,,/7
N A / o

B

zero~rotation

main sequence

o BV —> .,
Fig,16 , Possible values of i for a star with a givent‘1v, B-V,
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Consiéer the point P in fig, 16, A star in this position
has a definite absolute magnitude and colour and so, from equation
(A1,1), it has a definite value of v, However, it may have any value
of i, depending on its mass, Any star in the mass range corresponding
to the portion AB of the zero-rotation main sequence could be displaced
to P if it had the correct value of i,

Suppose a number of stars with the same (M, B-V) but
differing v sin i are observed, Then an average may be taken, using

the formula for fixed v

<(v gin i)l >c = 7—':; v (Al.'12)

which corresponds to (A1,3); this will immediately give the value of
v* for the observed.fv1v, According to equation (Al,l), a plot of F*1v
against v; should give a straight line with slope # and intexrcept c?
on the vv‘vaxis, Such a line can be obtained in principle for each
colour, so that f/ﬁ?can be found as a function of colour and the
zero-rotation main sequence can be determined, Also, since n should
be the same'for each colour, the lines will be roughly parallel and %
can bs accurately found by supcerimposing the lines and taking the mean
slope, Altematively, if the data were good enough, the slight
variotion of # with B~V could be detected;

There are two difficulties in this method, one of principle
and one of practice; Equation (Al,12) assumes that the axes of the

stars at P are randomly oriented, That is reasonable only if the
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corresponding stars on the main sequence are supposed unifommly
distributed with spectral type over the renge AB (Fig,6), If, for
example, the main sequence contained no stars earlier than X, for
evolutionary or other reasons, stars appearing at P could only have i
in the range i, & i £ 90°, In that case, p(i) £ sin i as assumed,
since p(i) = 0 for 0 £ i £ iy, However, so long as an actual
cut-off like that is not present, the variation of number of stars is
probably slow enough, at least for early-type stars, that equation
(a1 .‘12) is a good approximation,

The second difficulty is that, for the method to be used,
several stars in each interval of B-V must have the same MV, In
practice, not enough stars are available for this method to be useful,
Certainly the data available for Praesepe, the cluster studj.ed by

Strittmatter, is insufficient for this method to be applied,

4, Strittmatter's method for finding x

One way of making up for the lack of data available is to
plot M\;- M(\o,) against vl, since this difference is independent of
colour and the results from all the colour intervals can be |
superimposed, Of course, M\(j)is not known Ias a function of colour,
However, it is ueually possible to estimate at least the slope of the
zero~-rotation main sequence by drawing a line through those stars in
the HR diagram which have the smallest brightness for a given colour,
This should give a reference line, r(B-V), which differs from

(o)
M\, (B—V) only by a constant magnitude difference, so that a plot of
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MV" r against v" will have a slope # and the same intercept

( = M?-— r) for all colours,. It may also be assumed that a line
parallel to the line r(B—V) will be made up of stars of the same v,
though varying v sin i, It is then possible to find this value of v
by averaging over the stars on this line, Since stars of all colours
can now be considered, more stars are available for the average and a
meaningful value for v can be obtained, although even with this
method ba,re;Ly enough stars are available in practice for the larger
values of v,

Strittmatter uses essentially this method, but combines the
data in a slightly different manner, which obviates any averaging
problem for large v but which introduces fresh difficulties .. Instead
of plotting M\, - r against vl, Strittmatter plots Mv- <MV>°
against Q = (v sin i)z - <(v sin i)" >o' —He expects a mean relation
between these quantities, and therefore fits a best straight line to
the plotted points, using a least squares analysis, whose slope is
claimed to be proportional to u, It is not clear that this procedure

i

is justified, From equation (41,1),

M- M = 3+ I’ (- sin’ 1) (A1,13)

s0 that the relation between M\,- <Mv o and Q is certainly not
linear; the scatter in Strittmatterts diagram is intrinsic rather
than due to random error and a least squares analysis is not strictly

applicable, It is, therefore, not surprising that Strittmatter finds
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a root mean square erroxr of about 18% in the determination of the slope,

However, when the theoretically correct method of analysing
the plot of [\qv- {:}Vﬂéz‘against Q is considered, it is found not to
be practicable, From equation (Al.?), stars with a given
AN Mvu My- <MV>0 have a fixed X = %vz - <(v sin i)z>c.
From the plot of Z&r’%;against Q, it can be found what values of Q
correspond to a particular value of X,

The points which give these values of Q will lie in a
horizontal strip of the plot, defined by a small range in Z&b4v.
The value of X corresponding to this range can be estimated by taking
the arithmetic mean of the Q-values of the points in the horizontal
strip, although it is not clear that this is the correct average to
take, It is then possible to plot AMy agrinst X, which should
give a straight line of slope %;n, However, for a given small range
of Zﬁjy1vthere are not really sufficient points to give a meaningful
average value for X, It is therefore probably just as accuiate, in
ractice, to take an average over all the points in the plot by doing
a least squares analysis, as Strittmatter does, The main snag of such
a procedure is that it is not at all clear what is the theoretical
relation between the line given by a plot of l&f«vagainst X and the
line obtained by a least squares analysis, There is therefore no way
of knowipg how good an approximation for u is given by the least squares
analysis,

It seems, then, that the only practicable method of finding

% from obscrvations rests on a rather insecure theoretical foundation
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while the methods which are theoretically sound, and simple in
principle, are unworkable in practice through lack of data, The only
definite conclusion one can reach from this study is that, while the
zero-rotation main sequence can be found if the theoretical values of
% are accepted, not enough information is at present available to
enable % to be found sufficiently accurately from observations to

provide a meaningful check on the theory,
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APPENDIX II

Properties of h(y)

In the local theory there appears a function h defined by

l ' .
h(yr) = - — S grad{ .8y (42,1)
4w

Y+ = const, R
where the integral is taken over a surface of constant s, In terms

of the Mensiopless radius, 3, and the colatitude 6, '\P’ is defined
by (equation (3,9))
1 2 9 '
'\{r -+ O sin” o (a2,2)
' Beocause of the lack of sphericity of the "lv surfaces

(see Fig, 5 ) the function h( ) is extremely complicated,
particularly near the Surface of the star and for stars rotating at
the limit of stability, The theory of Chapter 3 has been applied,
by Roxburgh, Griffith and Sweet (1965), to find the structure of a
star rotating at break-up speed, In that treatment an expansion for
h(’zp‘) near the surface was required to start the numerical integration
and, for convenience, this expansion was simply obtained from the
numerical determmination of h by fitting a curve to the numerical values
(Roxburgh, 1966, private cammmicetion), The expression found was

(RGS, equation (4,23))

h(y )= 0.'639275 + 0.'849(¢V - Ve )%4- .' (A2..3)

-
-

% .
where Y, = 3,2 is the surface value of ¥ at break-up, This result
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is quoted for later comparison with a series for h(\‘f) obtained by
expangsion of the integral,

Before attempting the expansion, it is necessary to put the
integral in scalar form, The first requirement for this is to know
the expression for an element of area on a ’\lf-surface. Let /N be the
angle between a normal n to the’ﬂf-surface and the radius vector

through the same point (Fig, 17), Then

dr do
tan [\ = —— = —— (a2,4)
rde O ds
and the dimensionless element of area is
{
ede > 1 {3t 2
|s8y| === .o sin0ag = osinpao aghl + =|—
cosA T de /=cons '
42,5)

Pig, 17, See text,

From the definition of ’\l,r it is now possible to express the integrand
as & function of ¢ and g4 = cos 6, On a surface of constant '\b,

M= u(cr') and tixe¢ integrand must be expressed as a function of & only
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by writing throughout

y
0"3-"\1/0/*' 1 /2 y .
b= p— . (42,6)

From the form of equation (A2.2), this is more convenient than
eliminating ¢ from the integrand, Also for convenience, the variable

of integration should now be changed to x, where

(a2 .'7)

1
X = =
pe

¥,
go that g = (x'!5 -’qf x> + l) o« The limits of integration for p are O
and 1 (this gives the integral over half the surface, which must be

multiplied by 2 to give h(¥)); the corresponding limits for x ave:

=1 x=\{; ‘L

p=20 X = X, (A2,8)
%
where x; is the largest root of x -’\.]fx" +1=0 J

It should be noted that x,< ’\l/ for all ’\‘f . Some manipulation now
gives

1 (((\gx"' - 4y - 4x o+ 4Y) ax
W) =+~ j I (a2,9)

'
Alternatively, h(«jr) may be written as

h(¥) = -3 + 2YI, - 2L,

Voo™ ax (a2,10)

h(’\\f) is an elliptic integral, and it may be expressed in

where I‘m =
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tems of elementary functions and the standard Jacobi elliptic
integrals (see, for example, Whittaker and Watson, 1927, p,512 et seq,).
However, the resulting formula, which is given below, is not

particularly useful, because of its complexity, It is

o
ny) = -3 + —(«grpa_ - 3) | k() + F(k‘,qﬁﬂ

_ 24y (p-a) [ 2A<p-q)! 1 [AAY
E(k*) + E(k?, 3 —k
3(1-k ) <) ¢J rq ﬂ(ﬁ ¢>J

A(P-q)[ 2y /1‘1{1Y log G_T'ﬁ) 4.)7']

31N\ X :/(p"- )P~

2x,

- 1 - XV
3:.3
where: A = . 3 X=/x‘(x‘-2) ; Y = :
,/2:c‘§-1+2X 1 + X
X} -2 X?—Z
p=x‘+ $ qax‘_
X, x,

“we

. T -1 . 2X (- )1 - ¥Y) (12.1)
= —— 3 R = H A2.,11
Saxt+ 1 (¥r-qg)12-1)
¢ da "
F(k ,8 ) = g - ; K(k*) = P(x*,n/2);
(1-k*sin” a)
° E(k®) = B(k%,n/2);

E(x*,g) = S?(l—kisin’a) da ﬂ( < ") T2 i n/2)s
o p* ‘

da l1-X

Aa 2
= K7, = ; and sin¢ = !
ﬂ P2 ? s:Ln *a) M 1-k*sin? 1+X,

The functions F, E and Trare the Jacobi elliptic integrals of the

first, second and third kind respectively, Note that these integrals
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are not defined when k2 = 1, which is the case at the surface of a star
rotating at break-up speed, where xi = 2 (this result follows from
VW= Q0 at 6 = n/2), However, the value of h when xi = 2 can be

calculated directly from equation (A2,10), since in that case the Im can

be integrated directly in temms of elementary functions, The result is

hy =% -2/ + 2 In -2-13'-ﬁ - 0,639256 (42,12)

s

This result was first derived by Griffith(1962), Comparison with
equation (A2,3) shows that the value given in RGS is correct %o 4
significant figures,

In order to test the accuracy of the numerical expansion used
in RGS it is desirable to expand h(ﬂ"f‘) about \i/‘-:% . This is a very
complicated procedure, since dn has a logarithmic singularity at

av

W = w»-s, However, by writing

qu ”ngs's + £ (A2.~13)

and using the expression (A2,10) for h(’\Jf), it can be shown, by
reducing the problem to one of solving a second order differential

equation, that
h(-\[f) =h + 2‘*3‘%5 1n(1/%)
P e A
+ 2 fB[.g-+'3 h(-S --1551n2+%1n3 -%111(2 +ﬁ))] 2 |
+ S m(/A)  (a2,14)
= 0,639256 + 0,45825 & 1n(1/€) + 0,1084 & + ..
Comparison of this result with that of RGS (equation (A2,3)) shows

that the results agree to within one part in six hundred for & S 0,02,
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Even at & = 0;1, the results differ by less than 3%,

Except in Chapter 3, it has been possible in this thesis only
to study slowly rotating stars; In that case \V’is large compared
with 1, even near the surface of the star, and it is more useful to
expand hCﬂf) in powers of 1/4f. It is convenient to do this by

writing

>

'\}r =x,(1 + ¢) :
1 (42,15)
vhere €=__ —>0 as \y — o0

X,

and expanding h(ﬂf) (given by equation (A2,10)) in powers of € first,
It is then easy to show that

41 81 1881 1 (A2l16)
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APPENDIX TII

The general energy balance equation

In Chapter 2, the energy balance equation was quoted in the

form(equation (2,10))

g(} as (A3;1)
Y*const

~

where the integration is over a surface of constant @‘and }is the

radiative flux, given by
e

=rad

Loy, |
T oS Vr (3,2)

- ]

More generally, if tot is the total flux of energy through the surface

layers, the equation

L = got. as (As.ﬁ)

is valid for any. closed surface | containing the energy-generating
core of the star, (It is assumed that there are no energy sources in
the atmosphere ,‘) In a radiative atmosphere with circulation currents,
the total flux is the sum of the radiative flux, ?ra q° and the

convective flux, given by

?\conv = ( ’r_"}—f P - P@) h's (A3,'4)

(cf, for example, RGS, equation (2,8)),
If the surface = is a surface of constant ', then, since P,

p and T are functions of \If only, it may be shown (using the equation
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of state) that

g?;mv, = (7= T -wi) \gv as = (83.5)
=

—const
The second equality follows from the assumption that there is no net flow
of mass over any closed surface containing the centre of the star (cf,

equation (2.8)(b)). In that case, equation (A3,3) reduces to

L = S P}md. @& (43,6)

 gr=const
which is just equation (A43,1),
For a general surface, whlch is not a level surface, this
result is not true and equations (A3, 2) to (A3, 4) must be used, If, on
the other hand, the surface :E;is such that its distance from a given

level surface is everywhere of order &, an approximate result may be

obtained, In that case, equation (A3 3) may be written as

e (G Ve

by making use of equation (A3,5)o The second integral is the integral
o~ '

of div $jhonv over the volume between the two surfaces, Since the
distance between the surfaces is, by hypothesis, of order é&, the volume
element must also be of order(E . At the same time, the integrand
involves v, which is known to be at least of first order in & (second
order in the local theory), The integral is therefore a product of two

quantities of order € and must be itself of orderéiz(e53 in the local

theory), Hence eguation (A3,3) may be written approximately as
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< rad

(Aa.é)
en

5 j\ L/”\

where the error is of order &

The subscript &€ is intended to be a

A S
reminder that this result holds only for surfaces Z—C which are nearly
level surfaces
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APPENDIX IV

Singular Perturbation Theory,

1, The problem stated,

Once it has been proved that the 1/density dependence of the
velocity field in the local theory is a general result (cf Chapter 3
and Mestel 1966), there is no reason why perturbation methods should
not be used even in the.surface layers of a star, provided the

rotation is slow enough, Indeed, that was implicitly assumed in

expanding‘uxp_and 1.1;‘C in powers of 1/4{ in Chapter 3,

However, care is required in using a perturbation theory, '
because of the distortion of the rotating star from a spherical shape,
A naive use of spherical polar coordinates leads to first order temrms
which are comparable with, or greater than, the zero order temms near
the surface, and it is necessary to introduce a new coordinate system
to surmount this difficulty,

The problem is most easily illustrated by using the local
theory, for which an exact solution is known to exist, but it also
occurs in the non-local theory, and the new coordinates must be used

in that casc also,

"

2, General results,

In any problem in which perturbation methods are applicable,
there exists a small parameter, In this case it is £ , defined in

Chapter 2, Then a general function Q may be written
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Q = QO + eQ‘ * aeee (-A-4ol)

If one supposes that spherical polar coordinates are appropriate, then

Q = Q(r, 0, é) Also, since &£ =0 corresponds to a spherical star,

o = Q,o(r), In general, Q = Q (r, 0),
In a rotating star, in which equ.atlon (2 6) is velid, P, p
and T are functions of 'q;" (and € ) only, Now it is possible to write,

for a general function Q of'w and € ,

Q(’If,é) = Q(r@(rv 6,6 )3 €) r' N '
C (T (e, 0 0% 0) + €| BT, X e
o ’@- y Yy ; L.Y@ e be =0 °°

NT IR d@
Wtz 6, 0) = (), 33 ‘T

@2) ={§and ( O) = Q/('}itf (z, 6 0); 0) = a'(x).
€= 0 | aéﬁ_

It then.follows from the definition of }g (equation (2. 16)) that

o, €) = ) + € [0, (e) sine + Q”(r)] (44.3)

1 rl’" daqQ '

where Qmo(r) = - - __2_2-;____0 (24,4)
2 R™dr

Thus, once the zero order thepry is complete, the 6~dependence of

Q'(r, 6) is known immediately, This is a considersble simplification,

since it means that the differential equations in the first order

theory are ordinary rather than partial,

It is more convenlent to express Q, (r, 6) in temms of

)

Legendre polynomials, Pn(cose) (n =0,1, 2,,,,), Equations(A4,3),
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(A4,4) show that only Po and B, appear and that the coefficient of Po. is

2
{4 .
1l r"aqQ ‘
Q, =- 39, =——m— (44,5)
- %0 3 R%4r
This expression may be verified by writing
. QO "
<1
Q‘(r, 0) = <, Q,I-(r) Pi(cose) (A4.6)
1-1 *

for the functions P, p and T and detemmining the Q,(r) from the
hydrostatic equation and the equation of state (equations (2, 6) (2.7)).
Only the Q and t%qe Q,, are non-zero, and the Q,, are indeed given

by equation (1.5.4.5), The Q,, must be determined by using the equations
(2.10),(2,11), However, to demonstrate the problem raised by using
spherical polar coordinates, it is not necessary to find the Q .,

since the Q);, which can be found immediately from the zero order
theory, sufficiently show the nature of the problenm,

3, The problem illugtrated,

The complete equations for the local theory are equations

T

(3.1) to (3.7). Equations (3,4),(3.5) are not required here, and it

is easily secn that, when & = 0, the other equations reduce to

) - — (44.7)
- r
d.Po GM '
Pl (44,8)
R’ ‘
Py = ; Polo (44.9)



/3( g (44,10)

o (g

o Jue @8 (44,11)
r=const,

Equations (A4,10) and (44,11) may be combined to give a differential

equation for Tos

4
ar, 2 24 Po '
-(;I— = -.i UR Te -'2 <A4.12)

r

where the definition (2,19) has been used to give Lo in tems of R

end T, Equations (A4,9) and (A4,12), together with the boundary

conditions

P,=T =0 onr=R (a4,13)

then uniquely determine Po’ Po and To as functions of r, It is easy

to show that the solutions of these equations are

&M 4 R 4 "

P = vy <—r- - ) (44,14)
1 4 R 3 '

Py = oh 30 3<-:- -> (44,15)
1 R -

=T, Z (-r- - ) (44,16)

if the definition (2,18) is used for &,, Similar results have
previously been obtained for a more general opacity law by Eddington
(1930a) and Chandrasekhar (1939,p300), It is now possible to find

P,» P, end T, imnmediately from equation (A4,6), The results aret
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2

T, 3P e, r 1 -
322 R Sal Lo —> -00as r—>R  (44,17)
T, 4P, e R(_-)
r

Since P, , P and th are all finite or zero at r = R,.‘the singularity
may not appear disastrous from a physical point of view, However, it
is quite clearly inadmissible mathematically since it violates the
basic principle of a perturbaj:ion analysis, that the zero order temms
should be dominant everywhere,

As was mentioned in section 1, essentially the same problem,
though in a less severe form, occurs in the non-local theory, so that
the difficulty is not caused by using the local theory, To see the

nature of the trouble, consider the following rough physical argument,
e ]

based on fig, 18.
spherical, non-rotating star of radius R,

b I T

\i' g ~

~— \ surface of same star

when rotating

‘e e

Fig, 18, See text, (s and § are defined in later sections,)

In that case, using the plane parallel approximation (see Chapter 5) ’
Pio Vi
'.'[“2 F 2 =2
- 0 asz300,but o [ ~> ~=— v-10 as z2—HCO
To Pz 3¢,
Po
Thig follows from equation (A4,5) and the zero order results of o

Chapter 6,



Teke a spherical, non-rotating star of radius R, and let the pressure

be given by Po(r)?. where P = O at r = R (and, implicitly,l.PoE 0

cutgide the star), Now suppose the star is set rotating, It will

be distorted in such a way that the equatorial radius becomes greater

than the polar radius, Suppose that the polar radius is now less than

the radius of the non-rotating star by an amount b (Fig, 18 ), For

the models of RGS, b is positive, (More generally, this may not be

true and the following argument would then nee@. to be modified,)
Consider the sphere r = R - a, a<b, At the point X on

this sphere, chosen so as to be outside the rotating star, the value

of the pressure P has changed from PO(R - a) to zero and equation

(A4,1) gives (to first order in &)
0 = PO(R - a) +EP2 (R - s, ) (a4,18)

vhich immediately implies that €F -~ P_, Of course, if a>> b this
argument no longer holds and so trouble is to be expected only near
the surface,

The above argument shows that the trouble arises essentially
because the perturbation is about a fixed point in space, That is,
the change, due to rotation, in the pressure, density or temperature
at a fixed point in space is supposed small, The a’pove argument
shows why this is a poor assumption near the surface, It would be

more correct to suppose that P, p and T remain approximately constant

for any fluid element of the étar, which may of course be displaced by

rotation, Thus the coordinates of a fluid elememnt, as well as its
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pressure, density and temperature, mey be expected to be affected by
rotation, This crude physical discussion is mcde precise in the
next section,

4, Lighthill's method

Mothematically, the above problem requires the methods of
singular perturbation theory for its solution; The author is indebted
to Professor Milton Van Dyke for drawing his attention to Lighthill's
method of strained coordinates, which is admirably suited to the
present situation (see, for example, Van Dyke 1964, Chapter ),

The principle of Lighthill's method is to introduce new
coordinates diffcring only slightly from the old ones and cobtained by.
expanding the old coordinates in powers of the perturbation paramater,
In the present case, the new coordinates, (sé}?) say, will be defined

in terms of (r,6) by

H
il

s + &r (s, ;,: ) K
* e [j (44,19)

Only the coordinate r need be choanged, since there is no cvidence that

o]
It

the 6-dependence is causing any trouble, Later it will be seon to
be more appropriatc to replace é by the :decfined in Chapter 2, For
the moment,'inEill be writtcn as 6 throughout;
If all other functions, § say, are written
Q=0a,(e) + €q,(s,0) + ... (44,20)

the function rl(s,e) nay be determined by the condition that
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Q

o]

~> 1 everywhere, (a4,21)

in particular near the surface, This srocedure hos been carried out,

using the local theory, and a function rl(s,e) has been found which
P. p T
1

makes Fi,-~ and'fl finite at the surfacc of the star, It was found
o Vo o

that there is a simple physical interpretation for s which makes s

congtant on a level surface, In view of the exact theory of

Chapter 3, the use of such a coordinate appears entirely natural, _

and it is not surprising that this choice for s removes the trouble,
For this rcason, and because the details of the process are

tedious, the method of obtaining Ty will only be outlined very

briefly, The rcsults of & loéal perturbation thecory are required

to provide boundary conditions for the non-local theory, However, the

results are only rcquired in the plane-parallel approximation and are

more appropriately derived scparately (Appendix VII).

5. A solution for Iy
To apply Lighthill's method, the coordinates (r,8) are
written as in equation (A4,19) and all other functions are expanded

as in equation (44,20), Working to first order in.é?, one can write

the gradient opcrator as

gxe k?l‘ reog? !
- - N\~ e
e dr e L
where 5; = (l - € %—5)55 P (44,22)
= -, s - !
9 _ o r, 2 !
and R -6 T =
a6 Ix* % o8 J



and then the equations (3;1) to (3;3), (3;6) and (3.7) may be written
in the nev coordinates, to firs{ order in QZ.

It is intuitively obvious that, since r = s to lowest order,
the zero order equations will be the same o8 in section 3, except
that r will be replaced by s throughout, The zero order prgssure,
density and temperature are therefore given by equations (A4,14) to
(44,16) with r replaced by s,

To write dovm the first order equations in general is a
lengthicr procedure; However, if it is assumed, as seems rcasonable,

that T, can be expressed as

rl(s,e) = rlo(s) + rlz(s)Pz(cos 6) (A4;23)

the methods of section 2 show that, as before, Pl’ Py and Tl only
have PO and P2 terms and that in this casc the coefficients of P2

are given by oexpressions of the fomm
() = (=, () + 125 )28 (a4.24)
Gots) = 75 IR Jds .

The difference betwecn this cequation and cquation (A4,5) arises from
the differont cxpression for Eﬁ; in the new coordinates,

It then follows at onec that

. 3
1. B .
3T, 3P ey 2 (14 3me) (14.25)
= = = - 2 R ’ _4.25
T 4P p R (= -1)
6] O (o] g

a result which should be comparcd with equation (44,17), In this case
it is pbssible to prevent a singularity at s = R by choosing Ty o

suitably, An obvious choice is
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4 .
. 3R

12 = Po = le = 0, This appears to be a very drastic

solution to the problem, but it is justified by the very natural

which makes P

interpretation of s to which it leads,

Of course, rlis not fully detemmined until a suitable
function has been chosen for Tige
found by solving the first.ordgr equations for PlO’ P10 and T10 and

Such a function was originally

applying the condition (A4,21). It is unnecessary to go into the
details of this process, and it is simply noted that one of the
possible solufions for 10 is consistent with the interpretation of s

given below, which is introduced on a more intuitive basis,

6.The interpretation of s

The result of the choice (44,26) for Ty, is to make P,
Py and Tl functions of s only, It is already known that P, p and T
are functions ofﬁqy—only, This immediately suggests that s should be
chosen in such a way as to be constant on a surface of constantri1?
(for a givmnég); One way of doing this is as fcllows; Suppose
that the polar radius of a rotéting star is less than R, the radius
of the non-rotating star of the same mass; This is certainly true
of the models considered here, which are based on RGs; Then it is
clear that, whatever the rotation.speed, there will always be a
small circle on the surface (centred on the axis of rotation) whose

distance from the centre of the star is R (Fig, 18), Let 60 be the

angular radius of this circle, The circle then detexmines a cone of
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semi-angle Oo whose axis is the rotation axis, This cone will cut any
surface of constant'i§‘in a small circle of angular radius 60. s will

be defined to be the distance of this small circle from the centre of

the star, It is then immediately clear from Fig, 18 that the surface

of the star is ziven by s = R, and also that

-—

[ 3 . 2 ‘ )
- Sl 1+ 255006, ) (44,27)

From equation (2.16) for in termms of r, and using the fact that
?

8in’p = %%(1 - P2(cose)), it may then be shown that

Wt

. 4!’ o
rl(s,e) = '% { P (cose ) - PZ(COS%E‘ (44,28)

in agreement with equation (A4,26),

With this choice for s, the perturbation is about a point
essentially fixed on a level surface and the effect of distortion,
introduced by the rotation, is included in the zero order functions,
which can no longer strictly be thought of zs the functions
appropriate to a non-rotating star, although they reduce to these as
€50, Since the boundary conditions are now to be applied on a
surface of consteant s, s = R, it is clear that no point with a
constant value of s can ever cross the boundary and the argument of
section 3 no longer applies, TFor this reason, it is virtually
certain, not only that there will be no trouble in the non-local
theory when it is expressed in temms of s, but also that no trouble
will arise in higher order terms;

Since s is constant on o level surface, the coordinates
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(s,e,gb) do not form an orthogonal set, It is therefore more
appropriate to express the results in temms of the orthogonal
coordinates (s;):,gﬁ) where:zf is defined as in Chapter 2; For use in
o perturbation theory, the choice of thich makes A_= 6 to lowest
order (equation (2,23)) is most convenient; Then, since 6 only
appearg in the first order theo;y, the difference between 6 andf)(:only
affects the second order theory,

Finally, the value of the angle eo must be considered, 'It
is not immediately clear how this ongle varies with rotation speed,
In principle, 60 is detemmined by the condition that the mass within
the surface s = R is the same as the mass of the non-rotating star of
radius R; This condition can only be applied if the complete
structure of the star is known; In practice, it is convenient to
make use of previously constructed models and to determine eo from
the polar radius of the rotating star, which has been found in tems
of R by Roxburgh, Griffith and Sweet (Rexburgh end Strittmatter 1965).
The variation of 60 with rotation speed is discussed in Appendix VI,

Of course, if the polar radius, R , of the rotating stor is
greater than R, 6, cennot be defined at all, In that case the best
definition for s is probably to take s to be the polar radius of the

;gﬁﬁsurface on wvhich s is to be constant, It is easily shown that

with that definition

N

1l s’ o '
L T (1 -2)+ ... (44,29)

which is still in cgreement with equation (A4,26), However, in that
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case the boundery of the star (on the local theory) would be s = Rp
and so would depend on the rotation speed, Since s appears in the
zero order theory, that meons introducing an unknown variation with &
into the zero order theory, That secms less satisfactory than the
presence of éo in the above definition of s, which only introduces an
unknown voriation with EE into the first order theory, It therefore
seems preferablelto use the definition of s in temms of R and 60 where

this is possible,
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APPENDIX V

Some relations involving “Y and X, .

1 Algebraic relations

In this section, only '@F is considered, The definition of

Kf in spherical polar coordinates is
T B h
fy - %“— + %_Q? £ sine | (15,1)
By definition of s and 6, (see Appendix IV), this may also be written

"\y = %M# + -12—_ 2 62 5in%0 . (45,2)

0
Since the boundary of a star, on the local theory, is given by s = R,
where R is the radius of the non-rotating star of the same mass, the

boundary value of@r is

W G 1e2 .2 .2 ;
b = -ﬁ" -+ 'é"_,’;z,_ R™ sin 60 (A5.3)

Suppose that the equatorial and polar radii of this level surface are
Req and Rp respectively, Then, from equation (AS,l), other
expressions for ﬁl}"b are:

M - au 1 2 '

i ipb - + 28R 2 (45,4)
D Cl — .

For a star of a given mass, L4 can only take values up to a

certain maxinmm value at which the centrifugal force balances gravity
at the equator, T.‘-.hetha.s this maximum value, the equatorial radius
is also a maxinum and the star is on the verge of rotational break-up,
If the maximum equatorial radius is denoted by Re , the maximum

Y.L . ax

value of L Llis given by the condition
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)23 -
—nex = 1 (45.5)
If the parameter « is defined in general by

23 :
@ = ‘Q'Req (85,6)
@t

it is clear that « measures the ratio of centrifugal force to gravity at

the equator of the star when it is rotating with angular speed Qa.nd
that a< 1, taking the value 1 when thc star is on the verge of break-up,

In terms of «, equation (A5,4) reads

« (As;v)

I
1
(-]
+
ro

s0 ﬁhat 17&_3(1/}{1J = 3/2 -for & star rotating on the verge of break-up
(ef. RGS, section 3),

However, the parameter « is not really suitable for use in a
perturbation theory, since ,Req depends on _0..2, There are two ways of
overcoming this difficulty, The way adopted in this thesis, which is
suitable if Rp<R-<Req (so that 6, and s may be defined), is to use the

parameter & , defined by

£22 g3 |
é = GM (A5.5)

This has the disadvantage of not being equal to one when Q= Lvmax’

although of course& <1 for allQ, The advantage of this parameter
is that it is expressed entirely in terms of quantities known a priori,
The altcrative parameter LQZ, used by Roxburgh and Strittmatter (1965)

and defined by

2 Pr’? .
Wt 5T, (45,9)
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dees not have this advantage, since Re is not known until the

ax
solution for the star is complete, On the other hand, when_i)~ Q

2 . . .
(W =1, However, & is a more suitable parameter for use in a

max?

perturbation theory, there -Q_ never gets as large as Qmax and Reqmax
can not be detemined, Also, since Req tends to R as the rotation
speed tends to zero, & is more nearly o measure of the ratio of

centrifugal force to gravity than is (,._32 for slow rotation,

In tems of € ,(\q;may be written as

\ 3 '

%4(1 +%€%3 sin0) =’@.= %M(l + €R3 8in°o ) (45,10)
and also

%q(l 15_.9) -, - Fa s Lesinlo) (45.11)

From equation (A5.11) it follows that
E_e_g =1+ %écoszeo +O(€2) (45.12)
R

but this relation is slightly unsatisfactory as 90 also depends on &

It is better to use equation (A5,4) to obtain the exact relation

1+ %é sin260 (45,13)

.ﬁ."-dl';d

This relation can be used to finc“L 6, 85 & function of & if R/Rp is
known from the interior solution, Values for 60 are given in Appendix
VI, where it will be found necessary to have a relation between & and
(.\)2, Let tho value of RP when 2 = SL be Rp ,. Then, using

— max .
min
equation (A5 . 7) ’
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3 f
& = -%(—%p > Qz ’ (44,14)

This is thce required relation,

2 _Differential relations

In this section, the formulae for the various scalar and

vector derivatives of ﬂr, s and 7X:are summarized, Since'ilgis defined

by equation (A5.l), its gradient in spherical polar coordinates is

Y{E = - %’{1 - e-g? s5in0; ~é—§-§ 5in6 cos6; O (AS,.15)
r
It follows easily that
l?@l - .‘222[1 - 26%3 sin’p + ézﬁg 5in20 5 (A5:16)
r
Fram the definition for X
:k/='% (cose + log tan% ) +-%E;§§ cos36 (A5:17)
it follows that
VX =%-§—‘i’fl—2-g-% é-ﬁg 8in6 cose; 1 - é-ﬁ% sine; O (As,is)

and so

l .
2 3 6 '
[vx| -24&2282 [1 - 265 sin®0 + €% & sinzﬂ > (#5.19)

[e>]

2 sin

Notice that each of the expressions for IE?{EL lSZ%rhas the same
square root appearing in it, Also, the expressions for the gradients

in the coordinate system Cﬁf,ﬂf,ﬁg) are
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VP = (ells 0500 5 VA = (05175 0) (45.20)

The above expressions are exact, In a perturbation theory,
it is more useful to work in temms of (S,X,¢) (see Appendix IV) where

| -
s is defined in terms ofy by equation (A5,2), Then

3 i
W@l = S%E(l - *;‘-6%3 (1 +2,(0) - 2P (cos X)) + (J(€& 29 (85,21)

where P (O) is a shorthand for P (cose ). Since Vs = §§_V¥
2 2 o = d”'ir ~

d a G P |
an = --% (1 - £€83(1 - 2,(0))) (85,22)

it follows that
3 .
| Ve| = 1-4€5 (2)00) - pyleosX)) + O(€?D)  (85.23)

In the equations (A5.21), (A5,23) thex which appears is that defined

by (cf, equation (2,23))
X - o+ %é—ﬁ-g sing coso + () (€?) (A5;24)
For this definition of J, it follows that
VX | =20 - %6-1%3(1 + 32,(0) = 72,(c0s7)) +() (€ 2))(15.25)

If second order terms are required, it must be remembered that X# 0

and so the expressions
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3 .
cos@ = cos{X(l + %E%B (1 - PQ(GOS(/‘()))
3 2 '
Pz(cose) = Pg(cos;() + %{?%ﬁ (1 + P2(coé]{) - 2(P2(cos}()) ) p(45,26)
(Pz(cos;())2= %—g P4(qo§7() + %— P2(cos7<) + %—

must be ugsed, These expressions are also needed to work out r sine,

N 4
which appears because \Ytﬂ does (Chapters 5 and 6) and

[7¢| .- , (45.27)

rsine ¢

It is found that

, | —
rsing = s sm?([l --91- 23(1 = 32,(0) + 5P, (cosX)) +O(éi)! )
(85

.28)
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APPENDIX VI

Al
Numcricel values for 6. and J(,i
e

i

1l,.The value of 6
0

It was shown in Appendix V that 6 could be found if R/Rp
were known as a function of rotation speed, An expression for RP/R
can be found from the results of RGS, and is quoted by Roxburgh and

Strittmatter (1965) cs

R = R(L- 0.1087¢3%) (46.1)

where CQ)Z is defined in Appendix V.,

The constant in this formula was calculated forc,,.:2 =1, so
that equation (A6;1) strictly» only holds for (,;)2 = 1 (Strittmatter
1967, personal communication), However, work done since this formula
was published has indicated that the constant does not vary much with
L) 2, Since no details of the variation were ave aileble, the author has
ossumed in whet follows that equation (A6,1) holds for all volues of

wz. The following results are therefore subject to variation when
more detzciled information becomes available,

It is worth noting here that there is a mistcke in section 2
of the paper from which equation (116,'1) is taken (Roxburgh and
Strittmatter 1965), Equation (2;7) in that section should read

O,.89l3

—4- x%(1 - p°) = —Emm = 5 | (A6.'2)
1 - 0,1087¢s

M1

where x = :r:‘/R_O . In the derivation of their equation (2.7),
*min
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Roxburgh and Strittmetter took x = r/R_ and confused R_ and R s SO
[} . p . p pmin
that the R,H,S, of the equation was just 1, This was probably due to

the fact that in RGS, whosc results they were using, only the case
Q)z = 1 was considered, so that R and R were the same, The
. P Pmln )
author is grateful to Dr, Strittmatter for pointing out this mistake,
Iiquation (A6,1) will now be used to derive numerical values

for o ., First of all, the relation (45,14) between & anng must

be introduced into equation (A5,13). This gives:

3 .
_,,18/ BN 2. 2
= 1+227G (Y'sin 60 (46.3)
. Puin) | . .

From equation (A6,1), Rp = 0,8913 R, This is on exact result,

rcstiﬂl’.ﬂ

min
Hence & = 0,4184C¥ (46.4)
exactly and also 1
5= 1 ' '
sinze _ 1 =0,1087¢) - ) (A6,5)
° 0,2092 D

It then follows at once that

0;5831 j

49° 47! L for ()2 = 1 (46,6)
Pz(coseo) = 0.1254J

0]
[N
8]
D
il

D
i

These results are exact, If it is assumed that equoation (A46,1) holds

also for small L2 then it con be shown that

sin“e_ = 0,5196 + 0,0565 W2+ O(w¥ (46,7)

=223~



so that o, —> 46° 7vj

2
P2(cos60) —> 0,2206_/}

as (D°—> 0 (46,8)

These results are likely to be at least qualitatively correct, and of
the right order of magnitude, In particular, it is clear that eo does
not vary much with rotation speed and that the limiting value of eo as
0¥ =>0 is foirly large (~45°), Unfortunately, since P, hos a zero
at about 55° (cose = L(j§) P (cose ) does vary appreciably with

rotation speed, For purposes of calculation, the values

€ -0 I (86.9)

P,(cos6,) 2 j

w111 be taken, These are approx1mate1y self-con31stent (P2(coseo)

!

=02=£=0 101 if equation (A6,7) is used,) For this value of é;,
Q= 0,107, so that éE is a good mecasure of the ratio of centrifugal

force to gravity,

2,The value of Z 1
Roxburgh and Strittmatter (1965) also give o formula for the

variation of luminosity with rotation speed, In their notation it is
L = L(1- 0.247(,02) (46,10)

Like equation (A6,1), this formmula is strictly correct only for
Q;F = 1 (Strittmotter 1967, personal communication), However, it will

be assumed to hold approximately for small(;)z, as equation (A6.1) does,
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Lu is the luminosity of the non-rotating star of the same mass as the
rotating star, and corresponds to LO in the notation of Chapter 2,

Using equation (A6,4), the fomulea may therefore be written as

L = Lo(l - 0,605€) (46,11)

/)

] is defined by L = Lo(l + éféll) (see Appendix VII),

Honce, since

ﬁl = -0,60 (46,12)

This result is given only to two significant figures because of

uncertainty as to the accuracy of equation (A6,10) for slow rotation,
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APPENDIX VII

Solution of the local cquationsg by perturbation methods

1,The loccl equations in the plene-narallel approximation

The only justification for solving the local equations‘by the
approximate methods of a perturbation theory is that the results are
required to provide boundary conditions for the non-local cquations,
Since the boundary conditions will be applied in the plane-parallel
approximation (see Chapter 5), the local equations will onl& be solved
in that approximation; A more exact solution has been derived, angd,
for completencss, the results found will be quoted at the end of this
appendix,

The hydrostetic equation and the equation of state are the
same in the local theory as in the non-local theory; It therefore

follows immediately from Chapter 5 that

L - - fue) (47.1)
and p = 8% (A7.2)
where z is defined by

s = R(1+&,2) | (47,3)

and, using equations (5,20) and (A5.22),
BE) = 1-£€(1 - 2,(0)). (47.4)

As in Appendix V, P2(O) is used as a shorthond for Pz(coseo), where 6

is defined as in Appendix IV,

~226-



Since boundary conditions for v are not required from the
local theory, the only other equations of interest are equations (3,6)

and (3.7). In terms of s, equation (3,7) is

"4 -;—“’-‘-’-——-‘EV (47.5)

3 wp ds

Before cxpressing this in texms of z, it is convenient to write it in
N . ¥ .

terms of the dimensionless variables p, p , ¥ and J defined by

equations (5,14) and (6,1), Since'§7s = (\§?s’; 0 ; 0), it follows that

3

(\}S e (47.6)
3 p dz

end that (Hxsr}gﬁ s 0,
In temms of s, equatibn (3,6) is

&”ERQ " el (A7.‘7)
\wxily gf(

=
[

Defining éz by

L

il

4ree 2, (a7.8)
using the definitions (5,15) for C and D, and remembering that all

functions axe(éﬁ—indopondcnt, this equation reduccs to
o
/R A 9)
¢ T2\ T (47,9
<o

in the plane-parallel cpproximation, From Appendix V it follows that

C = 1~ %é(l + 3p,(0) - 7P,) +O€?)

and D = (1 +3E0 - 38,(0) + 57,) +0(€7))

sinj

(A7.'10)

That Appendix also gives'&?si, to lowest order in é;g

-227-



Ns( = 1- §€(P2(0) - P,) + 0= (A7,11)
Equations (A7;6) and (A7:9) combine to..give

AGEEA| |
g= 2L S\ R ax (47.12)

The cquations must now be developed to the first order in &

3] o )
,(f.__ 1+5_Q1+ (A7.13)

and p, p*, t cﬂd% similarly, as in equation (6,14), The zero order

by writing

value forﬁ? follows immediately from definition (2, 19) for T The

value of the first order quantltng is approximately -0,6 (see

1
Appendix VI).
It is easy to show that equations (A7,1), (A7.2) and (AT7.12)

yield the zero order equations

; |
G0 = = py (27.14)
>
Py = Poby (47.15)
4 .
%’E° = - 4~)g (47,16)

After some manipulation, the corresponding first order cquations are

found to be

&4 7 - BX0 - 00 (47,17)
D bX’ & ‘
1 4 _1
o fs % (47.20)
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at./az 3. pl% E ‘
1 1 1 2
it Jaz +‘E; - E;¥-= 1 +'§ P2(O) (A7.19)

These equations may now be solved, using the boundary conditions

P, = P; = to = tl = 0 atz=0, (A7,20)

to give p, g*énd t to first order in é?, (These boundary conditions
are just the usual conditions P = T = 0 at s = R expressed in the
present approximations,) The radiative flux, however, follows

immediately from equation (A7.6) by using equations (A7, 16) and (A7, 19)

* .
It is [\;L = 1+€& (21 - -%— P2(O) + -gﬁ Pz(cos%)) . (A7.21)

Nog

2,The zero order solutions

It follows easily from equations (A7,14), (A7,16) and the

boundary conditions that
_4 .4 "
Po =3 o (47,22)
With this result, equations (A7.15),(A7,16) give

. .
= - = (
t 3 A | \A7.23)

It then follows at once from equations (A7.22), (A7.15) that

p, = %( %)4 (47.24)
ol = - %(-})3 (47.25)
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3,The first order solutions

Using equation (A7,23) for t,s equations (a7.18), (A7.19)

give an expression for Py

4t at i, '
. 1 2 2
= B, ( T @ ")gl - 3 F,(0)) (47,26)

If this result is substituted into both of equations (A?,l?),(A?,lS)
and if é?iis eliminated between the two resulting equations, a second

order differential equation for t, is obtained (using equations

1
(A7.23) to (47,25)):
2
dt 4 dat .
1 1 2 1
" m~—" = £=(1-7P0(0)) (a7.27)
d22 z dz 3z 2

This can be integrated once using the integrating factor 24 and the
resulting first order differential equation can be integrated

immediately to give

B [
1 1
b, = 7z (1 - P2(O)) - =, + 3, (47,28)
3z
where B1 and B2 are arbitrary constants, The boundary conditions
Py = tl = 0 at 2z = 0 require Bl = B2 =0 so that finally
. :
t, = 7z (1~P,(0)) (47.29)

It then follows from equation (A7,26) that

4 .
SRR 1 CANV/NE SN0 (47.30)
and from equation (A7,18) that
3 '
X _ 4/z\¢ 8 _ o5
Py = 3(f4) QQ]_+-3 2 2,(0)) (47.31)
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That completes the local perturbation theory in the fomm
required for the non-local boundary conditions, For that purpose, the
. 7\% ‘ '
only important equations are (A7,21) for?}s and (A7,23) and (A7.29)

for t, The last two may be more concisely written as

t = - % z (1 - %6(1 - 7,(0))) (A7.‘32)

4 The "exact! solution

It is shown in Anpendix IV that an analytic solution can be
cbtained for the zero order local equations even when the effects of
curvature are considered; The simplicity of the plane-parallel results,
even in the first order theory, strongly suggests that it should also be
possible'to solve the first order equations with curvature effects
included, Such a solution would be "exact' in the sense that the
plane-parallel approximation had not been used,

A solution of this kind has becn obtained and will be
recorded here for interest and completeness, although no use is made of
it, It would find a use for itself if a method were developed for the
solution of the non-local equations which did not invoke the
plane-parallel approximation,

The results for the structure variebles P, p and T are rather

cumbersome, They are:
_ 41 o &) 5) _ pfS |
P = 3(46)4 2(3 > [1+€(4A(E) B(H)ﬂ (47.33)
_ 4 ( - > l/l +é(3A(R) -B(B)] (a7, 34)

3 (4C )3 wER
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T~ e (-Ii - 5 )’1 + @(—M (47.35)
where

e Y 2y , 32 8 3
A(y) ”31_y‘P2(0)(1‘Y)+ 3 +(1_y)3< ylog ¥y

b

o (a7.36)
+33 -0 -9 -301-9%+3y Q- y)i\J

3 ' /
.532_1___21.[1.;.% -3y2+%y3+3ylogir} +/81 (A7.37)
(1 -y)

Although it is not immediately obvious, these results reduce to the

B(y)

il

plane-parallel results when s/R is written as 1 4-6512 and the functions
are expanded to lowest order in €,

The result for the radiative flux is much simpler, It is

-t

3 _ |
(} dl‘g 32) 1+ é(@l 3 -2(0) +§“§3 Py(cosX )| (a7.38)

and it is immediately obvious that this reduces to the plane~-parallel
result when s = R;

Finally, the velocity on the local theory has been derived
to lowest order in € in terms of s and X, with the help of Mestel's
formula (Mestel 1966), and used as a check on the results of section 3

of Chapter 3, It was found that

2048 4 wE o R 2 .
"g (= -v,) =52 gy Lot é—‘“"_—L/%- P (cosX )€ (47.39)
and
w - b “44& in 2x €2 (£7.40)

| GI\I. ( "S/R)
With a suifable change of variables, and using equation (A7.34), these

results can be shown to agree with equations (3,37), derived from the
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exact solution,

Writing s = R(1 + €2), the results become

l (cos() N
Vs T Ett Gl 0’ T4 EEEER ° (a7,41)
z
and :
V'X. = —5—4" éf GM 4 Siiix é 2 (A7.42)

to lowest order in E,_, From the results in this form, it can be seen
that the order of magnitude estimates for ¥ in Chapter 3 hold at
about z = - 3,5, that is, T = 1 (see Appendix VIII), This is a
useful check on the correctness of the estimates in Chapter 3,

It is worth noting, in conclusior, that the local velocity

is not only second order in & 2 but is also first order in é,, This

point is discussed in Chapter 6,
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APPENDIX VIIT

Behaviour of the zero order functions

Since the zero order structure of the star is prescribed, and
ig unaffected by the details of the perturbations induced by rotation,
the solutions of the zero order equations can be tabulated once and for
all, In the non-local theory, solutions have only been obtained in
the plane-parallel approximation, and it is these results which will

be tabulated here,

_)f.

The dimensionless zero order functions are Py 6:% to’ Bo’
Jéé d(\{x( Chapt 6)‘ H {}* =1 J¥—g(_ t4 ana
o an <j§o see Chapter 6), owever, J° =1, 1o =8, = % an

= p"gto so that only p_ and t_need be tsbulated, p_ is chosen

’

Po

rather than 5§'because the optical depth is given by ‘U = Po. The
functions 128 and to arc given, in terms of the height in the atmosphere,

z, by the equations (cf, Chapter 6)

) P, = -§- (2'*:2' - 1) (48,1)
and 1/4 o

il T | |
1 .-1/4 _ ~1,.1/4 _ 1 -l/4=m

by + g 2 (1%21’/4% - 2 tan (2 to)) =-q2 -2 1 (48,2)

for the non-local theory, and by the equations (cf, Appendix VII)
W4
4rz -
POL = 3(4) (ZQO) (A8.3)
. o= -2

oL 72 (z < 0) (48,4)

for the local theory, The local solutions are not defined for z >0,
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The graph of to against z is a straight line, and so toL

L
need not be tabulated, The other three solutions are tabulated in

tables I and II, tﬁ is also tabulated for convenience,

Table I Local p_ against z
J

i PoL,

0,0000 0,0000
- 140000 0;0052
- 2,0000 0;0832
- 3,0000 0;4212
- 4;0000 1,3312
- 540000 3;2500
- 6;0000 6;7392

The four solutions are graphed in Graphs I and II, together with the
asymptotic expressions for P, a.nd to as z-» +9Q, vhich are derived
below and tabulated in Table IIT, It is also useful to have
asymptotic expressions for P, and to as z S -00, The boundary
conditions ensure that, for example, to ~ toL-—>O as z » =00, bu.t_'it
may sometimes be necessary to know how fast to - toL tends to zexro,
orpressions for P, and to which give this information are derived
below, and the quantities (pol— pOL)/pOL, (to - toL)/tOL are tabulated
in Table III, but not graphed,

Consider first the expressions as z~4>+00; It is clear
from_bTable IT that to is very close to 2-1/4 for all z greater than
zero, Thus, as z2-300, to may be written

~235-



Table II Non-local P and. tu_against Z

[ ne] v |
+ OO 0 0,8408964 1/2
3.6420 0,000328 0,8410 0,500246
1,5496 0,0035 0,8420 0.5026
0,9640 0,0067 0.8430 0,5050
0,6200 0,0099 0.8440 0,5074
0,3752 0.0131 0,8450 0,5098
0,1884 0,0164 0.8460 0,5123
+ 0,0284 0.0196 0,8470 0,5147
- 0,1044 0,0228 0,8480 0.5171
- 0,2196 0,0261 0,8490 0.5196
- 0,3216 0,0293 0.6500 0,5220
- 0,9652 0.0627 0,8600 0,5470
- 1,3464 0,0972 0,8700 0.5729
- 1,6200 0.1329 0,8800 0.5997
- 1.8388 0.1699 0.8900 0.6274
- 2,0208 0.2081 0,9000 0,6561
- 3,1168 0,6667 1,0000 1.0000
- 3.5344 1,00000 1,05737 1,2500
- 3.8048 1,2855 1,1000 1,4641
- 4,3668 2,0981 1,2000 2,0736
- 4,8712 3.1415 1,3000 2.8561
- 5.3424 4,4555 1,4000 3.8416
- 5.7940 6,7500 1,5000 5.0625
- 7.9156 20,667 2,0000 | 16,0000
- 11,975 107,33 3,0000 | 81,0000
- 15,990 340,67 4,0000 |256,0000
- 0O + D + DD + O
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t = 2"1/4(1 + 5) where 3<KX1 (A8;5)

o
It may be shown that

a1 +8) = Fg0+(00%) (48.6)

It then follows from equation (A8,2), in which z has been replaced for

convenience by h = 21/43, that

log-% = -h-Z. 4 - g'ﬁ (48,7)

N

11
o-he-(E + 4)e- %6

§h>j> (Aaie)

Hence

oo

_ 5

. 27, . .
or, expanding e in a power series in 9,

<h -
. h@-ﬁ%—w@(z

AN
B
where E = = 262,65 = 263 (48.9)
‘ ,-2h
Thus t = ‘1/4 Ll +£—\1 - 2—— +O ﬂ‘l
o -
~ (48,10)
= 0 840896 Ll + 0,00762 e“l~189z(1 -
0,019¢™1+1892 )J }
end then, from equation (48,1),
-h -h i -2h )\
16 o 2e e |
Po T T E <;.' E 4'6). :l‘) :
. : (48,11)
- 0,0203071-1892(1 _ 0 0070711892 4 )

It is clear from Table II and the graphs that these expressions give
very good values for Py and to for all positive z,

For large negative z, the expressions are simpler, Table II
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shows that to-—)d) and so the expression for 'bo, given by equation

(A8,2), can be cxpanded as a power sceries in l/to, It can be shown that

It '
as A—>00  (48,12)

1 -1/ 2 21
loeT3x ™ ~%i- 3J

It then follows that

1l
1

so that 'bo %z[l +%~ O(4j

as z-—> - 00 (48, 13)
ﬁ)j

o
o]

"
W
~~

Bl
S

The tabulated quantity is

P -P t -t 4 ' :
oot . oo . -é—(—i) ¥ (28,14)
poL oL

and is tabulated only for \zl >3, It can be seen from Teble IIT that
the non-local solution agrees with the local solutior. to within about
1% for z < - 8,

The tabular values for z in Tables II and IIZ were chosen
for convenience in the calculations, which were carried out on a

desk calculator,
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Table IIT  Asympt

otic expressions

n=ol/4, z %§9—21/4z 2’1/4(1+§e'21/4z) %‘(§>4
6 5;0454 0;000051 0;8409
4 3;3636 0:000372 0:8410
2 1;6818 0;00275 0;8418
0 o;oooo 0;0203 0;8473
-1 - 0;8409 0;0552 0;8583
-2 ~ 1;6818 0;1501 0;8882
-3 - 2:5227 0;4078 0;9695
-4 - 3:3636 151098 1:1908 0;3333
-5 - 4,2045 3,0313 1.7968 0,1365
-6 - 5.,0454 8;1239 3;4027 0;0658
- 6;0000 0;0329
- 8;0000 040104
- 10:0000 0:0043
- 12;0000 0;0021
- 1440000 0;0011
- 16;0000 0:0007
- 20:0000 0;0003
- 24;0000 0;0001
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APPENDIY. IX

Altomative dorivotion of cquations (4,16) and (4,18)

In Chapter 4 (pp 72-3) a derivation was given for equations
(4,’16) and (4..18), These equations may also be derived as follows,
Choosc local right-handed Cartesian axes (Oxyz), (Px'y'z') such that
Oz and Pz' are parcllel to the rotation axis of the star and Ox and Px!
are in the meridian planes through O and P respectively, Then, as
regards oricntation, the axes (Px'y'z') are cquivalent to the axes
(Oxyz) rotated in the positive direction about the z-axis through an
angle dﬁ . Suppose that (1,m,n) and (1',m',n') are the direction
cosines of dl in the two coordin.te frames, The condition that 4l

is constant in direction in a fixced coordinate frame then leads to:

allle —— — T

1 cos(dd) - sin(ag) ol |a

m = sin(d¢ ) cos(d¢') 0 m! (A9,1)
n | _ 0 0 3_4 L_n'd

where, of course, (1,m,n) and (1',m',n!) are known in temms of

(AL H ,6) and (N\+dA ,H +au ,O+d6) respectively, Only two of the three
equations arising from cquation (A9 ,1) are linearly independent,

These two equations reduce to cquations (4,16) and (4,18) after sonme

manipulation,
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APPINDIX X

Notes to Chapter 7

Note (a) (sse p, 143)

In making the order of magnitude estimates which give rise to
equations (7,5), it has becn assumed that the vertical scale for the
variation of ¥ is the scale height H and that the horizontal scale of
variation is the stellar radius R, This is certainly truc in the cbsonce
of turbulence, When turbulence is present, the typical size of an
eddy is another parameter affecting the flow, However, it secms
rcasonable to suppose that the eddy size is the scale of variation of

the fluctuations in the flow and that the mean flow still varies on a

scale of H vertically and R horizontally,

Note Qb) (see p, 144)

It should be ncted that, in equation (7,‘5), the phrase
"ecentrifugal tems" is used, rather loosely, to cover the three terms
%Y P, _V_Zé and &28 . Tror the moment,ﬂ is assumed constant, so that
the last two terms are simply Y@, The %—component therefore arises
solely from %—YP. This has a non-zero  f’-component because P, p and T
are no longer functions only of-’@ when incrtial and/or viscous terms

are included in thc equation of motion,

Note (¢) (see p. 147)

It has been suggested by Mestel (1966, personal communication)
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that, in stars with strong magnetic fields, a mechanism other than
turbulent viscosity may operate to damp the circulation, It is possible
that, at a depth below that at which inertial terms becomc important, the
magnetic forces have become comparable with the centrifugal forces, which
decrease with the density, Then the magnetic field would become the
aominant perturbation and it is possiblc that this would causc the
meridional circulation (which is rotationally driven) to die out, the
structure of the ficld being determined in such a way that div(:} =0,
Once set up, this structure would probebly be stable to changes in the

ficld, which does not transport angular momentum, For this model to be

valid, one would require ficlds given by

B 1 a2 o2 ’
N 3 oD rE (410,1)

that is, more than 1000 gauss, Such fields appear to exist in some
strongly magncetic stars, in which, therefore, there is possibly no
atmospheric circulation,

In stars with weaker fields the turbulent model described in
Chapter 7 is more likely to be valid, with the field mostly cxpelled
from the turbulent zone, Any ficld lines expelled to the stellor
surface would be unattached to the intemmal field and would probably
be blown away by the stellar wind, The field in such stars would
then be mostly trapned bencath the surface;

Orc would therefore expect turbulence and strong magnetic
fields to be anti-corrclated in the observations; It is intcresting,

therefore, that Babcock (1958a, and Fig, 3) finds little evidence for
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magnetic fields in ecarly B stars, It might also be expected that
no magnetic fields would be deteccted of a sizec less than some limiting
value at which turbulence becomes dominant -~ but this value might be

below the limits of observation,
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Errata

- p. 94 : Equation (4.786). - (4.79) shouid read -

i k
jk ij _ 1,3 (1
j k j k
S ii |
div11_§=-a—KT —;I,T.Ja—. L>=1— _3___(_13_ ) (4.7
= 9% 9x B/ §idx
}V} é—"—-— - 3% 3 - 4T
+s s AT Q S _ - (4.
2J X
lel 3K " -7 € }’7( (4.7

p. 111 : Equation (5.16) should read

AT ‘
Ix=-5t 61 E}' % (5.1

<)



