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Abstract

The investigation of pathogen persistence in vector-borne diseases is important in

different ecological and epidemiological contexts. In this thesis, I have developed

deterministic and stochastic models to help investigating the pathogen persis-

tence in host-vector systems by using efficient modelling paradigms. A general

introduction with aims and objectives of the studies conducted in the thesis are

provided in Chapter 1. The mathematical treatment of models used in the the-

sis is provided in Chapter 2 where the models are found locally asymptotically

stable. The models used in the rest of the thesis are based on either the same or

similar mathematical structure studied in this chapter. After that, there are three

different experiments that are conducted in this thesis to study the pathogen per-

sistence. In Chapter 3, I characterize pathogen persistence in terms of the Critical

Community Size (CCS) and find its relationship with the model parameters. In

this study, the stochastic versions of two epidemiologically different host-vector

models are used for estimating CCS. I note that the model parameters and their

algebraic combination, in addition to the seroprevalence level of the host popula-

tion, can be used to quantify CCS. The study undertaken in Chapter 4 is used to

estimate pathogen persistence using both deterministic and stochastic versions of

a model with seasonal birth rate of the vectors. Through stochastic simulations

we investigate the pattern of epidemics after the introduction of an infectious in-

dividual at different times of the year. The results show that the disease dynamics

are altered by the seasonal variation. The higher levels of pre-existing seropreva-

lence reduces the probability of invasion of dengue. In Chapter 5, I considered

two alternate ways to represent the dynamics of a host-vector model. Both of the

approximate models are investigated for the parameter regions where the approx-

imation fails to hold. Moreover, three metrics are used to compare them with

the Full model. In addition to the computational benefits, these approximations

are used to investigate to what degree the inclusion of the vector population in

the dynamics of the system is important. Finally, in Chapter 6, I present the

summary of studies undertaken and possible extensions for the future work.
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Introduction

1.1 Vector-borne diseases

Disease ecology focuses typically on the study of infectious disease within a population. It

focuses on the interaction, behaviour and ecology of hosts with the biology of pathogens and

draws on ideas from ecology, medicine, genetics, immunology and epidemiology. Pathogens or

parasites are the agents that act as a medium for transmitting disease. They are transferred

either directly by hosts or by contact between hosts, through different mediums including

air, water or soil; or via biting arthropods (mostly mosquitoes and ticks, often referred to as

vectors) (Kilpatrick and Altizer, 2012). Pathogens can infect single or multiple host species

and can alter the within-host dynamics as well as the dynamics of the host population.

Understanding the transmission and spread of the pathogen over space and time and its

influence upon the host population forms the core of disease ecology.

Among the many different types of diseases, Vector-Borne Disease (VBD) are diseases spread

in the host population by vectors. Vector-borne infections are defined in “Stedman’s medical

dictionary for the health professions and nursing” (Stedman, 2005) as:

“Class of infections transmitted by an insect or animal vector. The vector may

merely be a passive carrier of the infectious agent, but many kinds of infectious

agents undergo a stage in biological development in the vector. The vector, as well

as the human host, is essential to the survival of the infectious agent.”

As defined by Magori and Drake (2013), the dynamics of VBD have three distinctive fea-

tures: (i) marked seasonality, as the life cycle and vectorial capacity of most of the vectors

is influenced by environmental factors; (ii) explosive outbreaks, especially if the pathogen is

introduced into a naive environment; and (iii) sporadic annual outbreaks as vectors require a

specialized habitat and successful amplification of disease, which depends upon different abi-
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1.2 POPULATION AND DISEASE PERSISTENCE

otic factors. In unfavourable situation, the occurrence of the disease in this case is infrequent

or at irregular intervals.

Vector-borne diseases infect more than a billion people a year and kill more than one million

per annum (Butler, 2013). Half of the world’s population is currently at risk of these diseases

and their prevalence is influenced by the geographical location, socio-economic status and

living standards of the communities they circulate in (WHO, 2004). According to WHO, they

account for 17% of the estimated global burden of all diseases. Malaria is the most lethal,

causing 627,000 deaths in 2012 alone (Butler, 2013) whereas Dengue is the fastest growing,

with a 30-fold increase in disease incidence over the last 50 years (WHO, 2014). In addition

to affecting humans and animals, vector-borne diseases cause great loss to plants (McKirdy

et al., 2002). They have the potential to cause enormous economic harm when livestock and

crops become diseased and in the most extreme cases, limit local and global trade (Institute

of Medicine, 2008). For example the Bluetongue virus, spread by midges, can severely harm

livestock, particularly sheep, resulting trade and economic loss. Rift valley fever which can

also affect humans, also exerts a heavy economic toll, with economic losses stemming from

death and aborting among infected livestocks and treatment of infected humans.

1.2 Population and disease persistence

In population ecology, scientists are often interested in whether a community or species

persists in the long or the short term and how changing ecological conditions alter persistence

dynamics. The dynamics affecting the density or size of a population are important in

studying the population ecology. This section provides an overview of persistence in the

context of infectious disease ecology and its relation to host-vector models.

In epidemiological theory, greater attention has been paid to disease invasion thresholds

as compared to persistence thresholds, due in large part to complications arising from the

stochastic nature of persistence. Work on disease invasion is, therefore, well developed. In

contrast, there are a range of definitions and theories for pathogen persistence and endemicity

in a population [for example, see Castle and Gilligan (2012) and N̊asell (2005)]. As catego-

rized by Mancy, the operational definitions of persistence can be grouped into three main

categories, associated with studies using deterministic models, stochastic models, or a data

driven approach (Mancy, 2015).

In the current work, persistence is characterized as continued existence of either infected or

infectious individuals in either the host or vector population until a pre-defined target time
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[see Mancy et al. (2013) for a similar approach]. The population dynamics of both host

and vectors may be altered by the transmission and maintenance of the pathogen. On the

other hand, the dynamics of the pathogen depend on those of the host and vector due to

the interaction among the infected and infectious classes in both populations. Therefore,

the nature of vector-borne disease requires a deep understanding of the ecology of hosts

and vectors, in addition to considering the pathogens’ ability to survive in the environment.

Finally, the structure of the host population plays an important role in the spread of the

disease. Many recent diseases have emerged from interactions between complex ecological

communities that involve multiple hosts and parasites. It is suggested that disease prevalence

may be altered by changing the structure of the host population (Collinge and Ray, 2006).

1.3 Mathematical modelling in infectious diseases

Mathematical techniques involved in understanding and forecasting the spread of infectious

diseases draw on techniques developed from numerous areas like dynamical systems, stochas-

tic processes, numerical computing and optimization theory. Typically, building an infec-

tious disease model requires information about demographic or biological characteristics of

the host and the pathogen and whether pathogen transmission is dependent upon the phys-

ical surroundings. The distribution, heterogeneity and structure of the host population are

sometimes important to take account of realistic behaviour in the modelling structure. These

models can be linked to observational studies or can be used to test different hypotheses or

to forecast patterns of disease prevalence (Magori and Drake, 2013).

Early models of infectious disease were disease-specific, often deterministic in nature, and

focused on addressing problems like finding the peak and final size of the epidemic and

explaining the effect of vaccination on disease spread considering a large and homogeneously

mixed population. They were then generalized to account for more realistic disease patterns

by including contact heterogeneity, setting up multiple populations in a community and

allowing seasonal variations [see (Reiner et al., 2013) for an overview of the mathematical

models developed so far for mosquito-borne pathogen transmission]. Other generalizations of

simple models were stochastic epidemic models used to answer additional questions like the

probability of a major outbreak and the persistence time of the disease [ see (Ditlevsen and

Samson, 2013) for an overview of stochastic models]. A detailed summary of mathematical

models used for modelling different types of host-vector systems is provided in the beginning

of Chapters 2-5.
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1.4 Introduction to dengue disease

This section provides an overview of dengue disease and dengue fever, a symptom caused by

dengue virus. The maps highlighting the global distribution of dengue are shown in Figures

1.1, 1.2 and 1.3 to portray the distribution of the disease. Then the geographical location,

habitat, and entomology of the dengue vectors is presented. The main factors that may

impact on the transmission and persistence dengue are discussed at the end.

¹ Risk areas are shown on a national level except for where evidence exists of different risk levels at sub-national regions. Areas that are too small to be seen on the regional maps are 
labeled in white or gray depending on their risk categorization.

² Based on surveillance data, official reports, published research, and expert opinion, including data from Brady et al. Refining the Global Spatial Limits of Dengue Virus Transmission 
by Evidence-Based Consensus. PLoS Negl Trop Dis 6(8): e1760 doi: 10.1371/journal.pntd.0001760 (2012). It was compiled by the CDC Dengue Branch in collaboration with the Univer-
sity of Oxford.

M AP 3 1ː . DISTR IBU TION  OF DEN GU E IN  TH E AM ER ICAS AN D TH E CAR IBBEAN ¹ ²

Figure 1.1: Distribution of dengue in the Americas and the Caribbean. (http://wwwnc.cdc.gov)

Dengue virus is a member of the Flaviviridae family of viruses having four distinct serotypes

commonly knowns as (DENV1-4), where DENV stands for the dengue virus. The global

incidence of dengue has grown dramatically in the recent decades. It is estimated that about

2.5 billion of the worlds population is at risk of dengue disease and it is endemic in more than

100 countries (De Benedictis et al., 2003; Erlanger et al., 2008; Simmons et al., 2012; WHO,

2009). Figure 1.1, 1.2 and 1.3 (taken from http://wwwnc.cdc.gov at the end of 2015) shows
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dengue risk maps developed in 2012 which portray the possible global spread of the disease

in coming years. Dengue is an infectious tropical disease whose transmission mechanism falls

in three distinct and intersecting spheres (human, mosquito and virus sphere) and is spread

by the bite of a mosquito from the Aedes family, chiefly by Aedes aegypti and Aedes albopictus

(Kyle and Harris, 2008). The latter mosquito is considered a dengue maintenance vector in

many parts of Asia and Europe.

¹ Risk areas are shown on a national level except for where evidence exists of different risk levels at sub-national regions. Areas 
that are too small to be seen on the regional maps are labeled in white or gray depending on their risk categorization.

² Based on surveillance data, official reports, published research, and expert opinion, including data from Brady et al. Refining 
the Global Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus. PLoS Negl Trop Dis 6(8): e1760 doi: 
10.1371/journal.pntd.0001760 (2012). It was compiled by the CDC Dengue Branch in collaboration with the University of Oxford.

M AP  3ː2 . DISTR IBUTION  OF DEN GUE IN  AFR ICA AN D TH E M IDDLE EAST¹ ²

Figure 1.2: Distribution of dengue in Africa and the Middle East. (http://wwwnc.cdc.gov)

The global expansion of dengue in the twentieth century is believed to have occurred during

World War II when infected people took the virus to Pacific areas. Transport of goods (tires,

vehicles, etc.) used in the course of war helped establish vector populations in many parts of

the world (Esteva and Vargas, 1999). The dissemination of the disease was enhanced after the
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war as human population growth lead to poor sanitization, domestic water storage issues, and

over crowding. These problems arise due to population growth provided favourable conditions

for the breeding of Aedes aegypti and dengue virus, especially in parts of Asia where there

are more places for water to stand. Since then, ever increasing use of food containers (e.g.

tinned food and plastic utensils), used or discarded plastic products and discarded tyres have

served as potential breeding sites for the mosquitoes. The world reporting map for dengue,

(http://www.healthmap.org/dengue/) shows the dengue incidence in the world until the end

of November 2015 (Figure 1.4).

¹ Risk areas are shown on a national level except for where evidence exists of different risk levels at sub-national regions. Areas that are too small to be seen on the regional maps are 
labeled in white or gray depending on their risk categorization.

² Based on surveillance data, official reports, published research, and expert opinion, including data from Brady et al. Refining the Global Spatial Limits of Dengue Virus Transmission 
by Evidence-Based Consensus. PLoS Negl Trop Dis 6(8): e1760 doi: 10.1371/journal.pntd.0001760 (2012). It was compiled by the CDC Dengue Branch in collaboration with the Univer-
sity of Oxford.

M AP 3 ː3 . DISTR IBUTIO N  O F DEN GUE IN  ASIA AN D O CEAN IA¹ ²

Figure 1.3: Distribution of dengue in Asia and Oceania. (http://wwwnc.cdc.gov)

Dengue fever (DF), a symptom caused by DENV induces a severe pain and flu-like illness

in humans with a small proportion of patients developing Dengue Hemorrhagic Fever (DHF)

and Dengue Shock Syndrome (DSS) which can be fatal in some cases, especially for children.

In 1999, the WHO divided the illnesses caused by DENV in two categories: dengue and

severe dengue (WHO, 2009). Dengue includes three phases: a febrile phase, a critical phase

and a recovery phase. The febrile phase includes high fever, dehydration, body aches and
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Figure 1.4: Dengue reporting map of the World for 2015. (http://www.healthmap.org/dengue/)

neurological problems. The critical phase involves haemorrhage and organ impairment, in

addition to low blood platelet count. The last phase, recovery, includes re-absorption of

fluids. Severe dengue occurs as a result of shock due to plasma leakage, severe bleeding or

when severe organ impairment takes place. The old terms DHF and DSS are still commonly

used to describe dengue fever.

The mosquito vector becomes infected by taking a blood meal from an ill person suffering

from dengue disease. In diseased mosquitoes, the viral infection establishes in their organs,

especially in the salivary glands and central nervous system. The virus alters the feeding

behaviour of the mosquitoes and it is reported that both probing and blood meal timings

are increased in the infected mosquitoes as compared to uninfected ones (Platt et al., 1997).

This results in multiple attempts to feed during the gonothropic cycle–which comprises of

blood feeding, egg maturation and ovipoisiton.

Infection by DENV requires an incubation period in both mosquitoes and humans. The

infected mosquito is able to transmit the dengue virus after the process of virus maturation

commonly known as the extrinsic incubation period (EIP). The estimated extrinsic incubation

period has been shown to vary with respect to serotype and temperature (Chen and Hsieh,

2012). Intrinsic incubation period (IIP) is the time required for virus maturation in host. The

average intrinsic incubation period is estimated to be 5.9 days. After that humans become

viremic (virus in the blood stream) and are infectious to the vector (Chan and Johansson,

2012), which will spread the infection to another host. Recovery from infection caused by

one serotype provides life-long immunity to that serotype but due to antigenic diversity of

dengue, patients have limited cross-immunity against remaining serotypes. To date, there is
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1.5 VECTORS OF DENGUE VIRUS

no vaccine for dengue fever so vector control is the most efficient way to control and minimize

dengue disease.

1.5 Vectors of dengue virus

There are two main vectors of dengue virus, (i) Aedes aegypti and, (ii) Aedes albopictus. Al-

though the WHO reports describe two more vectors from the Aedes genus for dengue trans-

mission, Aedes polynesiensis and Aedes scutellaris (WHO, 2009), their role is very limited in

the spread of dengue. Both Aedes aegypti and Aedes albopictus have similar life cycles, begin-

ning with eggs laid in standing water that hatch to become larvae then grow to pupal stage.

Finally the mosquito emerge as adults (winged form) from the water. All development stages

are sensitive to climate and influenced by the suitability of the habitat. Both mosquitoes

are weak-fliers, live below an altitude of 1000 metres, bite during early morning and evening

(WHO, 2009) and able to live in natural as well as man-made environments. Adults can

reproduce immediately after hatching. The blood feeding patterns of both species show that

they both almost exclusively feed on humans, with very few cases of multiple feedings on

cats, dogs and swine.This feeding behaviour is reported in different studies (Kamgang et al.,

2010; Ponlawat and Harrington, 2005; Valerio and Marini, 2010). Females take a blood meal

within the first 2-3 days following emergence, which is vital for the development of eggs. Both

species usually take more than one blood meal on multiple persons during their gonothropic

cycle (Paupy et al., 2010). Size and survival of adults, length of gonothropic cycle, and the

speed of virus replication depends heavily on the temperature (Barbazan et al., 2010; Focks

et al., 2000; Yang et al., 2009). The next section briefly discusses the geographical location,

habitat, and entomology of both vectors.

1.5.1 The vector Aedes aegypti

Aedes aegypti is the primary vector for DENV transmission and is found through tropical and

subtropical region of the Americas, Africa, Asia, as well as the south Eastern U.S., the Indian

Ocean Islands, Northern Australia (Kraemer et al., 2015) and Europe (Medlock et al., 2012).

It is transported via increasing trade around the world. There is a great deal of literature

related to the behaviour and the habitat of Aedes aegypti since it is a well studied vector

of several infectious diseases such as Chikungunya, Yellow fever as well as Dengue (Paupy

et al., 2010) and (Christophers, 1960). The species is highly adaptable to new environments

and tends to live near human hosts. Aedes aegypti feed almost exclusively on humans and

many major disease epidemics in the world are caused and maintained by this species. It
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can’t survive in low temperatures, except in sheltered sites. With the recent invasion of

Aedes albopictus, Aedes aegypti have been pushed into different parts of the world in search of

suitable habitat. This migration, may play a role in the dramatic increase in the incidence of

dengue disease in many parts of the world where dengue was not previously present. Figure

1.5 shows a female Aedes aegypti.

Figure 1.5: Aedes aegypti (Taken from http://rdontheroad.wordpress.com)

Aedes aegypti has a very limited flight range so the eggs are likely to be found in the vicinity

of the hosts. Their flight range was determined in mark-release-recapture experiments where

they showed maximum dispersal distance of 500 metres and dispersal distance was indepen-

dent of sex of the mosquitoes. Almost 75% of mosquitoes are found at the place where they

emerge as an adult. Therefore, it was suggested that people are responsible for dengue virus

transmission between communities (Harrington et al., 2005). Moreover Adams and Kapan

(2009) considered frequency dependent biting in a metapopulation and concluded that the

pathogen is maintained at reservoirs of infection due to distribution of mosquito population

and variability in human travelling patterns. Both studies highlighted the inability of this

species to carry virus at long distances.
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Figure 1.6: Aedes albopictus (Taken from http://glacvcd.org)

1.5.2 The vector Aedes albopictus

Aedes albopictus (Figure 1.6), known as the Asian tiger mosquito is found in eastern Asia,

India, Japan, and several islands in the Pacific (Australasia). It has also spread in Italy and

other regions in the Mediterranean basin, as well as parts of Africa, Brazil, Central America,

the Caribbean, and most of the United States (East coast and the Midwest). Due to its

global spread it is included among the 100 world’s most invasive species. It is assumed that

this vector is transmitted around the world via trade (especially tires and lucky bamboo

plant). Due to its superior interspecies competition, resistance of eggs for cold weather,

higher survival rate, flexible breeding biology, adaptation in natural and artificial habitats /

environments, and broad host range, it is displacing Aedes aegypti.

It was initially considered to have less dengue competence than Aedes aegypti, but recent

studies documented its role as a maintenance vector (that maintains pathogen transmission)

for dengue outbreaks, especially in the absence of Aedes aegypti in different parts of the

world including Europe [see (Enserink, 2008; European Centre for Disease Prevention and

Control, 2011; Gratz, 2004; Medlock et al., 2012; Paupy et al., 2010)]. Richards et al. (2006)

reported that it can be a principal vector for dengue under right circumstances, especially

in the absence of Aedes aegypti . According to laboratory studies,Aedes albopictus can act

as a transmission vector for at least 22 different arboviruses including all four serotypes of
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dengue (Gratz, 2004). Its potential role as a dengue vector is receiving much attention in

dengue free temperate regions of the world where it has established its colonies. It is an

opportunistic feeder having strong anthrophilic nature. Multiple feeding in one gonothropic

cycle and biting at a rate of 30-48 bites per hour (Cancrini et al., 2003) greatly enhances its

ability to transmit virus in humans. Although being exophilic (tends to inhabit outdoors),

Aedes albopictus rarely disperses above 300 metres. In mark-release-recapture experiments

(Marini et al., 2010), most adults are found within 50-100 metres range of their emergence

site and in general the entomology literature, their flight range broadly falls within 200-400

metres.

1.6 Possible factors affecting dengue transmission

In the current times, dengue is endemic in more than 100 countries. Its spread is mainly

due to poor vector control, climate change and overpopulation which leads to many health

and environmental issues. Sometimes the economic and political condition of a region leads

to the disease spread (for example, the wars and related instability of the government leave

little or no interest for the fund allocation for combating the disease). In countries where

dengue is endemic, employing biological and chemical control independently is not a very

successful approach in stopping disease transmission (Simmons et al., 2012). The main rea-

sons include the limitations and the resulting environmental impact of these approaches. For

example, the release of infectious genetically modified male mosquitoes in the wild female

population was found more effective than vector control based on insecticide use, (Alphey

N, Alphey L, Bonsall MB (2011) A model framework to estimate impact and cost

of genetics-based sterile insect methods for dengue vector control. PLoS One 6:

e25384), but the authors ignore the effect of seasonality, which is essential for the varia-

tion in the dengue incidence during a year. Similarly, the introduction of larvivorous fish

(Poecilia reticulata) into water storage containers is proven successful in Cambodia, but as

a community-based vector control tool. (Seng CM et al. Community-based use of the

larvivorous fish Poecilia reticulata to control the dengue vector Aedes aegypti

in domestic water storage containers in rural Cambodia. Journal of Vector Ecology,

2008, 33:139144. doi:10.3376/1081- 1710(2008)33[139:CUOTLF]2.0.CO;2 pmid:18697316 ,

Seng CM et al. The effect of long-lasting insecticidal water container covers on

field populations of Aedes aegypti (L.) mosquitoes in Cambodia. Journal of Vector

Ecology, 2008, 33:333341. doi:10.3376/1081-1710-33.2.333 pmid:19263854). Erlanger et al.

(2008) argue that dengue vector control is effective in reducing vector populations when inter-

ventions use a community-based, integrated approach tailored to the local eco-epidemiological
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and socio-cultural settings.

Due to the continuous increase in the global health burden of dengue, scientists are keen to

better understand the persistence of dengue virus and vector. Vectors are either establish-

ing new territories or re-establishing previously infected geographic regions causing frequent

epidemics despite control efforts. One of the main challenges of modelling dengue dynamics

is related to the persistence of virus and vectors in the inter-epidemic time and in extreme

weather. Since both Aedes aegypti and Aedes albopictus live in close proximity to human

hosts, they are able to use dark and shaded areas in man-made environments to mitigate

the effects of extreme weather. The eggs of Aedes albopictus are capable of over-wintering by

dipause, and can resist freezing temperatures (Medlock et al., 2012) and (European Centre

for Disease Prevention and Control, 2012). These adaptations and the continued spread and

recolonization of geographic regions by vectors aid the maintenance of mosquitoe population

during adverse climate but are not enough to characterize disease persistence in a region.

Dengue virus is maintained in a population in an endemic state or by continual reintro-

ductions/epidemics. There can be many factors affecting the transmission of dengue virus;

broadly, transmission by vectors is favoured by the tropical temperature (Chen and Hsieh,

2012), type of virus strain (Anderson and Rico-Hesse, 2006) and suitability of habitat (Jansen

and Beebe, 2010). Transmission in humans is dependent upon the host demography, spatial

distribution in a region and frequency of commuting (Adams and Kapan, 2009; Andraud

et al., 2012; Liebman et al., 2012; Stoddard et al., 2009). The factors discussed in this section

are those which are commonly found in the literature for modelling dengue. Some of these

are included in Chapter 4, which is dedicated for the mathematical modelling of dengue

transmission. Based upon the complexity arise in modelling and research questions of in-

terest, the impact of factors like seasonality, migration of an infectious human to the naive

population and the effect of seroprevalence on the re-introduction of dengue are explored in

that Chapter. In the next sections, a brief introduction of some of the factors affecting the

transmission of dengue in both host or vector populations is given.

1.6.1 Vectorial capacity of Aedes mosquitoes

Vectorial capacity (C) is defined as the number of new infections disseminated per case per

day by a vector. It is a broad term encompassing vector competence; which can be thought

of as the ability of a vector to transmit disease. Vectorial capacity depends on the vector

density (relative to its vertebrate host), frequency of blood meals, daily survival probability

and extrinsic incubation period of virus. Mathematically it can be defined as a function of
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the above variables and can be regarded as an efficiency measure for vector-borne disease

transmission. Its formula is (Smith and McKenzie, 2004):

C =
ma2bHbV p

n

−ln(p)
.

Where m = V/H is the relative density of vectors (V) with respect to hosts (H), a is the

proportion of vectors feeding on a host divided by the length of gonotrophic cycle in days,

bH(bV ) is the per bite probability of transmission from the vector (human) to human (vector),

p is the daily survival rate of vectors, and n is the extrinsic incubation period. In the above

formula, vector competence is the product of bH and bV . Vectorial capacity is favoured by high

bite rate and vector density with respect to hosts and decreased by higher vector mortality

rate and longer incubation period in vectors. Since infection requires dual contact between

host and vector, bite rate appears squared to reflect the dual transmission of infection.

Aedes aegypti is considered a highly effective species in acquiring, maintaining and transmit-

ting the virus. Historically it is associated with many dengue outbreaks throughout the world.

The vectorial capacity of Aedes aegypti for different dengue strains is estimated by Anderson

and Rico-Hesse (2006) which indicates a more virulent Southeast Asian (SEA) genotype of

dengue which displaces the America (AM) genotype of dengue serotype 2 in several countries.

Viral replication in the midgut of Aedes aegypti of the former serotype was significantly higher

resulting in a 2- to 65-fold increase in the vectorial capacity and is more likely to cause the

severe form of dengue. On the other hand, evidence mounts for the role of Aedes albopictus as

a principal vector for dengue virus. In Central Africa, Paupy et al. (2010) conducted a study

which portrays Aedes albopictus as the major vector for dengue virus as it was repeatedly

found to be infected with DENV in Libreville, Gabon, Africa where no infected Aedes aegypti

were detected. In an outbreak of dengue in Hawaii, Effler et al. (2005) observed the presence

of Aedes albopictus in all the affected communities whereas Aedes aegypti were not detected

whereas Vega-Rua et al. (2013) found Aedes albopictus with unexpectedly high susceptibility

and high efficiency of transmission for some dengue strains in the Southeast of France. Evi-

dence as to whether it is a main vector or not remains equivocal, it is however evident that

Aedes albopictus possess almost a similar threat level for dengue outbreak as Aedes aegypti

in many parts of the world.

Virus ingestion amount and type of virus strain are important factors which influence the

vectorial capacity. A study hypothesizing that endemic DENV strains are more efficient

at infecting urban populations of both Aedes aegypti and Aedes albopictus as compared to

ancestral sylvatic (wild type) DENV strains (Moncayo et al., 2004). Different but high sus-

ceptibility levels (94% and 69%) are reported in both species in case of epidemic/endemic

DENV 2 strain that significantly reduced infection levels compared to the sylvatic strain.
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Virus dissemination of dengue strains are similar for both vectors. Richards et al. (2012)

conducted experiments in the Florida Keys measuring the rates of infection, virus dissem-

ination and transmission of virus in Aedes aegypti and Aedes albopictus. Similar levels of

infection, dissemination and competence levels are found in both vectors.

1.6.2 Seasonality

Seasonality has major effects for the spread and persistence of dengue. Mosquito populations

are bounded inside favourable seasonal conditions like humidity, rainfall amount, wind speed

and temperature ranges. In particular, temperature and rainfall are the main variables that

account for the change in Extrinsic Incubation period (EIP) of the mosquitoes. In most

regions in the world temperature greater than 35 ◦C reduces the survival probability of the

adult mosquitoes (Focks et al., 2000). In Saifur et al. (2012), it was reported that heavy

rainfall decreases dengue transmission due to population losses of Aedes aquatic population.

Most epidemics breaks are observed in the middle or at the end of the rainfall season as the

ratio of mosquito-to-human is usually high in most of the tropical countries during that season.

However, seasonality alone cannot determine the mosquito abundance and dengue occurrence

as Aedes mosquitoes can create their own micro-environments due to close association to

humans. Climate factors use average values which can differ for swarms of mosquitoes living

in diverse local environments. In Puerto Rico, Johansson et al. (2009) found a positive

and statistically significant relationship between monthly changes in (i) temperature and

(ii) precipitation, with monthly changes in dengue transmission and further concluded that

spatial heterogeneity can vary this relationship.

Temperature has a major effect on the mosquito life cycle. Under normal conditions, they

cannot survive in extremely low and high temperatures. Temperature can also effect the

gonothropic cycle and size of female mosquitoes as well as hatching of the mosquito eggs in

to adults (Focks et al., 2000). In the same study Focks et al. (2000) have shown that the

ideal temperature for the transmission of dengue virus falls between 20 ◦C to 35 ◦C, with

temperature greater than 35 ◦C eliminating the possibility of adult population existence as

aggregate survival of eggs and larval and pupal stages of mosquitoes are insufficient. Richards

et al. (2012) measure vector competence for both Aedes species at two different laboratory

temperatures (28 ◦C and 30 ◦C) and observe optimal transmission at 28 ◦C.

The vector population is affected by changing seasons in many ways. In the wet season, more

dengue cases are reported compared to in the dry / winter seasons and Harrington et al.

(2005) reported Aedes aegypti covering greater dispersal distance in rainy season. Rainfall
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and wet season also affects the life cycle and transmission efficiency of the Aedes mosquitoes

but their relation is unclear in these studies. As remarked in a review paper, the relation

between rainfall and the mosquito abundance is dependent on the lifestyle of the localities

and their primary sites of water storage (Jansen and Beebe, 2010). The amount of rainfall

after a certain level can cause rain water to stand at places within the human habitats. This

provides an excellent breeding ground for the mosquitoes and hence an increased number of

dengue cases. So in localities with poor sanitary conditions and lack of good administration,

there are more chances of dengue outbreaks. Hii et al. (2012) reported that heavy rainfall

creates abundant outdoor breeding sources for Aedes in the long run, but dry spells in some

settings trigger an increase in water storage containers which can serve as breeding habitats.

The effects of seasonality are implicitly modelled in the seasonal model of dengue in later

Chapter.

1.6.3 Human movement and demography

As mentioned is section 1.3, the short flight range of both Aedes aegypti and Aedes albopictus

is clearly documented (Harrington et al., 2005). An obvious question is how dengue can

spread and persist in many parts of the world with vectors that are weak fliers. It has been

established and argued by several scientists that humans are the central source of resur-

gence and maintenance of vector-borne pathogens, particularly for dengue virus (Harrington

et al., 2005; Stoddard et al., 2009) and Adams and Kapan (2009). Rapid and unplanned

urbanization, distribution of community birth / death rate and age , extensive commuting

nationally and internationally, and dramatic redistribution of populations in cities are some of

the factors emerging as major sources of short and long term dengue spread and persistence.

The effects of human movement are clearly reported in an extensive study by Harrington

et al. (2005). Mark-release recapture experiments were performed on Aedes aegypti dispersal

in two countries Puerto Rico and Thailand for eleven years. Results showed that people

rather than mosquitoes are the major cause of dengue virus dissemination within and in

between communities. The importance of human movement and demography on the spread

of dengue is also highlighted in (Kyle and Harris, 2008). The movement of an infectious

human in naive human or naive vector populations is investigated in Chapter 4 for exploring

dengue outbreak dynamics.
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1.6.4 Immunity and cross immunity of hosts

Immunity in the context of dengue refers to the ability of the body to resist a re-infection

due to the development of an antigen-specific antibodies. When a human becomes infected,

its body launches the immune response which in turn neutralizes the pathogen by producing

antigen specific antibodies. Most diseases are generated by one strain of a spectrum of

closely related pathogens. When one serotype invades the population it provides temporary

immunity to the other strains. This immunity eventually wanes after some time, making the

host susceptible to reinfection with another strain (Feng and Velasco-Hernández, 1997).

In the course of a dengue infection the human body produces antibodies against the disease

which usually last lifelong. The homologous Immunoglobin G (IgG) antibodies, produced by

memory B cells serve this purpose. In addition, the human body also provides temporary

or short lived partial cross immunity against the remaining serotypes. This period can last

from some months to a couple of years depending upon the serotype. After that, a secondary

infection can lead to what is called Antibody Dependent Enhancement (ADE). ADE occurs

when cross-reactive heterotypic IgG antibodies generated by a prior infection wane to lev-

els that no longer neutralize the heterotypic virus and instead of preventing infection, the

binding of antibodies to virus at subneutralizing concentrations can lead to enhanced viral

replication resulting in more severe dengue (Wearing and Rohani, 2006). In the same study,

the authors include all serotypes of dengue in their model and introduced seasonal variation

in the recruitment of vectors. They explore the effects of temporary cross-immunity, ADE,

and variation in serotype virulence on persistence and eradication on certain serotypes while

establishing their effects on transmission and mortality of vectors. Results are compared

with a long term dengue clinical study on Thai children and they suggest that to generate

infection time series that corresponds with the data, a combination of seasonal variation in

the vector demography and a short lived period of cross immunity is sufficient. Serotype

extinction due to vector competence is explained in Anderson and Rico-Hesse (2006). They

prove that more viremic SEA dengue strains replace less virulent AM dengue strains causing

different immune responses in humans.

1.6.5 Transovarial route of transmission

Initially it was considered that DENV only transmits between humans and mosquitoes (hor-

izontal transmission) but now there is a growing evidence of vertical transmission of dengue

virus in vectors from different parts of the world. In India, Joshi et al. (2002) documented

transovarial transmission until the seventh generation of Aedes aegypti where first generation
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emerges from hundred percent DENV 3 positive parents. Reporting more infected females in

numbers than males, they found high larval mortality and low fertility in infected mosquitoes

when compared to controls. They suggested that mosquitoes may act as a potential reservoir

for dengue virus, but that rate of vertical transmission found in the field seems low for a

heterogeneous population. The decrease in number of eggs hatching into adults as transo-

varial transmission increases is reported by Joshi and Sharma (2001) where they indicate

that via this route, virus persists in optimal numbers of best-selected individuals by virtue

of their genetic superiority. Conversely, vertically acquired infection in mosquitoes also acts

as a biological control for their population. In Oaxaca, Mexico, Günther et al. (2007) found

strong support for vertical transmission in mosquitoes for DENV 2-4 viruses. In Brazil, at

Pampulha region of Belo Horizonte, authors used minimum infection rate (MIR) to confirm

vertical infection in Aedes albopictus for DENV 2 (Cećılio et al., 2009), and in Fortaleza,

Ceara region, the natural evidence of the vertical transmission of DENV 2 and DENV 3 is

reported in both species (Martins et al., 2012) using MIR. In Surabaya, Malaysia, (Mulyatno

et al., 2012) found transovarially infected Aedes aegypti during wet and dry seasons for DENV

1 and DENV 2 viruses and concluded that this route plays an important role in the virus

maintenance in nature and in humans, especially in the rainy seasons. The efficacy of the ver-

tical transmission is discussed in (Adams and Boots, 2010) by using a mathematical model.

They concluded that the role of vertical transmission requires more evidence to understand

its impact on dengue persistence.

As for vertical transmission of dengue virus in humans, there are some clinical studies re-

porting dengue transmission in infants from infected pregnant mothers but its occurrence is

very rare (Chye et al., 1997; Fatimil et al., 2003) and (Tan and Rajasingam, 2008). Non-

vector methods of dengue transmission in humans are discussed in Chen and Wilson (2004)

in which authors review different publications highlighting needlestick injuries, bone marrow

transplantation, and intrapartum and vertically acquired infection as a source of dengue virus

transmission.

1.6.6 Host preference of vectors

In general mosquitoes take blood meals from different hosts ranging from primates and bovids

to rabbits and mice. The understanding of the frequency of contact between mosquitoes

and hosts is critical for the transmission dynamics of any arthropod borne disease, such as

dengue. For humans, it is a common experience that mosquitoes bite some people more than

others. This heterogeneous biting mechanism is a result of factors including body size, time

spend indoors and the residential status of the individual (Harrington et al., 2014; Liebman
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et al., 2014). Understanding the feeding behaviour of the mosquito can help develop targeted

mosquito repellents and that could potentially save many lives.

Out of all available hosts, Aedes aegypti and Aedes albopictus prefer to feed on humans (Kam-

gang et al., 2010; Richards et al., 2006). These mosquitoes show a considerable variability

in the biting behaviour and selection of human hosts. For example Aedes aegypti tends to

feed on young adults and males. Sometimes the hosts can be selective. De Benedictis et al.

(2003) have shown that three people accounted for 56% of meals in 22 houses in Florida,

Puerto Rico. Like Aedes aegypti, Aedes albopictus exhibits a strong host preference; Richards

et al. (2006) show that out of 40 human blood meal samples collected from Aedes albopictus

mosquitoes in North Carolina, 80% of meals are from a single human. They remark that since

Aedes albopictus fed predominantly on mammalian hosts (83% of the samples), this species

can be a potential vector for disease transmission among mammals.

1.7 Research aims

The broader aims for this study are to investigate pathogen persistence in host-vector systems

by using efficient modelling framework. This aim is achieved by conducting three different

studies in Chapters 3, 4 and 5. In each piece of work, different nested compartmental models

for host and vector populations are considered for a smooth methodological transition and

better result comparison. These frameworks are used for answering several questions based

on the processes and structure of the system under consideration in that specific study: (i)

examining pathogen persistence using stochastic systems in host population, termed as the

Critical Community Size (CCS), and make a conjecture for the existence of such persistence

in the vector population; (ii) finding the determinants of CCS; (iii) investigating the impact

of seasonality on the persistence of dengue; (iv) construction of efficient stochastic models

that approximate the dynamics of the full host-vector model; (v) finding the Quasi-Stationary

Distribution (QSD) for a host-vector system using the stochastic framework, as a counterpart

of deterministic endemic equilibrium. In all of the studies conducted in this work, the main

theme is to quantify pathogen persistence in terms of host-population size in host-vector

systems and using a minimalist modelling framework to achieve this goal. As a result, the

concepts related to modelling the host-vector system and pathogen persistence reappear in

different parts of the thesis. Moreover, the term persistence used in this work refers to

the pathogen’s persistence in both host and vector populations. The particular research

questions addressed in each chapter are described at the beginning of that study and the

overall contribution of studies conducted in each chapter is presented in the final chapter of

the thesis.
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1.8 Thesis overview and contribution

The central theme of this thesis is to develop deterministic and stochastic models to in-

vestigate pathogen persistence in host-vector systems. Therefore, this study requires me to

quantify the pathogen persistence and develop, apply and extend the existing modelling meth-

ods for this population structure. Models are constructed by using a minimalist approach

and efficient algorithms are written to explore the relationship between the community size

and the extinction of disease. As a motivational application, a stochastic dynamic seasonal

host-vector model for dengue is constructed by using the analysis developed. A chapter is

devoted to developing methods to approximate the population dynamics of vectors as this

work strongly focuses on the construction of simple and powerful models. The overall work

undertaken in this study broadly falls in the areas of infectious disease ecology and math-

ematical biology. The research areas in which the current study has potential contribution

are shown in Figure 1.7. The thesis comprises of a series of semi-independent chapters which

are written in ‘extended paper form’. Background and important core concepts are discussed

at the beginning of the present chapter, followed by the introduction of dengue disease and

possible factors which have an effect of the transmission cycle. Chapter 1 acts as an pream-

ble to the rest of the work and provides the necessary background information to the reader.

Chapter 2 can be thought as an introductory chapter to mathematical models with standard

techniques used to explore the dynamics of host-vector systems in general. As mentioned in

the research aims, the next three chapters are the main studies of this thesis. Each main

chapter addresses a specific scientific problem and starts with the literature review, followed

by a section describing the models and methodology employed. Findings and main results are

documented and commented in each chapter in the results and discussion section. Although,

writing a thesis in this way results in repetition of theoretical concepts, which are mostly

present in the sections describing the models, the reader can progress rapidly through these

sections of the thesis. Table 1.1 provides a quick overview of the work undertaken in each

chapter and a brief summary of chapters is provided in the following sections.

Chapter 2: Persistence thresholds and stability in deterministic models for

host-vector systems

Chapter 2 deals with the mathematical modelling of host-vector systems. The chapter starts

with an overview of work performed using compartmental models in the deterministic set-

tings. A brief overview of the Ross Macdonald model and its assumptions is presented.

Shortcomings of this model are addressed in the development of subsequent models. In order

to assess the dynamic behaviour of host-vector system in the context of the Ross Macdonald

framework, two models are constructed. The First model has host immunity (SIR for hosts
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Figure 1.7: Venn diagram showing the main areas of my thesis.

and SI for vectors), and is termed RMSIR and the second model, termed RMSEIR has an

exposed class in both host and vector populations. Values of the parameters are selected

from literature corresponding to those of dengue with very low host-to-vector and vector-to-

host transmission rates. The basic reproductive number R0, along with RHV0 for hosts and

RV H0 for vectors is derived for both models. Models are analysed for linear stability and the

Disease Free Equilibrium (DFE) and Endemic Equilibrium (EE) for models with host and

vector demography are found locally asymptotically stable. R0 is shown to be the threshold

value and the model shows bifurcation in behaviour at R0 = 1, i.e, infection will invade

if R0 > 1 and vice versa. This chapter lays the theoretical mathematical foundation for

the work developed later in the thesis and discusses the stability analysis for both Ordinary

Differential Equations (ODEs) based models. Moreover, this work concentrates only on the

deterministic behaviour of the models and can be seen as the first step in using the classical

way of analysing the problem of pathogen persistence using ODEs.

Chapter 3: Determinants of long-term pathogen persistence in host-vector

systems

This chapter gives an in-depth analysis of the stochastic version of the models developed
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in the previous chapter. The aim is to look at the stochastic dynamics of both RMSIR and

RMSEIR and hence investigate the determinants of the pathogen persistence in host and

vector populations. The persistence is measured in relation to the CCS, which associates the

pathogen persistence in stochastic models with the population size. Stochastic simulations

using the parameter space from the previous chapter are carried out to find the probability

of extinction P (E) of the disease. Then P (E) which is obtained by running simulations until

a targeted time of 25 years is used to estimate the CCS within the host population. To find

the stochastic fade-out of disease, variants of the Gillespie algorithm are used for carrying

out the stochastic realizations. The CCS is found to be 1.3 million hosts for the baseline

model RMSIR and was reduced to less than half (0.6 million hosts) in RMSEIR, i.e., the

inclusion of latent periods have dramatic impact on the persistence of dengue virus in hosts.

To further investigate the association between parameters of the models and CCS, sensitiv-

ity analysis was performed and general linear models were used to quantify the relationship

between CCS and the model parameters. The work undertaken in this chapter provides a

computational framework for relating persistence with the host population and estimating

the formulation of the CCS using the core parameter values or their simple algebraic combi-

nations. From an population ecology and mathematical biology perspective, the work done

provides a novel approach of finding an algebraic formula for CCS in host-vector systems.

From a computational biology perspective, this study involves developing fast and efficient

variants of Gillespie algorithms to aid the estimation of CCS.

Chapter 4: Modelling persistence using Ross Macdonald dengue model

with seasonality

Chapter 4 further develops the host-vector model, RMSEIR developed in Chapter 2, for

modelling transmission dynamics of dengue and investigating the persistence of the virus in

the host and vector population. The model in this chapter has a seasonally dependent birth

rate δb(t) for vectors, considered to be mediated by temperature, rainfall and humidity. The

new model is termed as RM s
SEIR, the superscript s denoting seasonality. The birth rate of

the vectors varies throughout the year during the wet (favourable) and dry (unfavourable)

seasons. Both the deterministic and stochastic versions of the model are presented in this

chapter. The parameter space used in this work corresponds to that of dengue as measured

in empirical studies. Twelve different seasonal points during a year were chosen as starting

points for the deterministic and stochastic versions of the model. The derivation of different

analytic measures including seasonal reproductive numbers R0|t0 , Rt|t0 , and Rt|t0,Sh
along

with the probabilities of invasion PInv|Iv=1,t0 , and PInv|Ih=1,t0 were presented. The date of

arrival of an infectious individual effects the timing and the distribution of the infectious

humans. If introduced in an unfavourable season, the outbreak takes longer to attain the
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peak value of Ih because they have a longer time to evolve before the next unfavourable

season (Otero and Solari, 2010). In other experiment, it was shown that the increase in the

seroprevalence levels of hosts reduced the probability of invasion. The probability of persis-

tence of dengue infection during one year was greater in unfavourable seasons, as the change

in mosquito population alters the transmission mechanism. The distribution of time to ex-

tinction te was effected by the seasons. In favourable season, te was less after higher peaks

of infectious individuals. The peak of infectious humans Ih and the time to attain the peak

value was dominated by the seasonal fluctuation in the vector population. From a mathe-

matical biology perspective, the work undertaken in this chapter includes the derivation of

the analytical forms of different basic reproductive numbers and probabilities of invasion.

From an epidemiological perspective, the time evolution of the basic reproductive ratios in

the seasonal model was investigated and the relationship between the probability of invasion

and seroprevalence levels in humans was explored. At higher seroprevalence levels, decreasing

RV Ht|t0 can be helpful in bringing Rt|t0 < 1, which can be achieved by decreasing the rate of

transmission from an infectious mosquito.

Chapter 5: Direct transmission models to represent host-vector systems

One of the main focuses of the studies conducted in this thesis is the development of mathe-

matical models using a ‘minimalist’ approach. In this chapter, an argument about explicitly

incorporating the vector population in modelling dengue transmission is developed by con-

structing two alternatives to the host-vector modelling structure. The baseline host-vector

model RMSIR is modified as (i) An SIR model with a latent class L that acts as a proxy for

the effect of vectors in the host population that allows for a delay in transmission. (ii) An

SIR model that contains a ‘Pool’ or reservoir of infection P which infects the host population.

In this case the reservoir represents the population of the infectious vectors. Parameter space

where the models performed well were identified. Models were thoroughly tested in biological

scenarios that leads to the breakdown of the approximation. The approximated models are

validated by comparing the stochastic trajectories, CCS measures and the Quasi-stationary

distributions (QSD) to the corresponding compartments in RMSIR. From a mathematical

biology perspective, this work includes the construction, validation and identification of the

areas of parameter space where the models serve as acceptable approximations to RMSIR.

It also includes analytical derivation of unknown rates in both models with their biological

explanation. From a computational biology perspective, the main novel contribution of this

chapter is the presentation of robust and alternative schemes for estimating pathogen persis-

tence in host-vector systems. These findings have the potential for significant contributions

to the real-world applications; the models are easier to use analytically and can be used to

answer a wide range of questions compared to the full host-vector model.
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Chapter 6: Conclusion and Future directions

This Chapter concludes the thesis. This chapter starts with an overview of the findings from

the main studies of the thesis. Then a section is devoted to highlight important conclusions

and discusses the potential future research arising from this project.
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Persistence thresholds and stability in

deterministic models for host-vector

systems



Persistence thresholds and stability in de-
terministic models for host-vector systems

2.1 Introduction

Vector-Borne Diseases (VBDs) are diseases spread in the host population by insects or vectors.

They include malaria, dengue fever, yellow fever, Chagas disease, Rift Valley fever, and

Chikungunya. VBDs are transmitted to humans, plants and animals by vectors. It is worth

studying the transmission mechanism of VBDs because of their rapid spread and persistence

across the globe (WHO, 2014). Over the last five decades, many mosquito-borne human

illnesses have emerged in different parts of the world whereas malaria and dengue have re-

emerged in Asia and Americas (Gubler, 1998). As a result, their impact over the economy,

ecology and public health are increasing with time. In many parts of the world diseases

like malaria and dengue show endemic behaviour, causing recurrent outbreaks (Simmons

et al., 2012; World Health Organization, 2014). Understanding the biology and ecology of

pathogens, hosts, vectors, and their environment is crucial for the development of novel and

effective intervention and mitigation measures (Institute of Medicine, 2008).

Modelling provides a cost-effective approach to address problems of invasion and persistence

in epidemiology. The foundations of using compartmental models in epidemiology were laid

more than a century ago. In early 1900 Ross formulated the seminal model for malaria trans-

mission between humans and mosquitoes (Ross, 1911) using a set of Ordinary Differential

Equations (ODEs) to represent the rate of change of individuals in host and vector popu-

lations. This model was revisited by Lotka (1912). In 1927 and 1932, basic compartment

mathematical models were proposed by Kermack and McKendrick (1927) and Kermack and

McKendrick (1932) which divide the total population of individuals into healthy (Suscepti-

ble; S), sick (Infected; I) and immune (Recovered; R) individuals. The rate of change of the

number of individuals in each class is represented in the form of ODEs having defined trans-

mission and recovery rates. This form of modelling is still widely used today and provides
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valuable information about the mechanisms of disease transmission.

Recently, Reiner et al. (2013) presented a review of mathematical models used for mosquito-

borne pathogen transmission from 1970 to 2010. They found that most of the disease trans-

mission models closely resemble to the Ross Macdonald model. A review of deterministic

and stochastic compartmental models was provided by Nishiura (2006), which was centred

on dengue control. The author estimated R0 using different techniques and discussed the

impact of different factors upon dengue transmission. He further suggested that the in-

teraction between field professionals and theoretical modellers provides meaningful insights

from dengue data. Koella (1991) used simple mathematical models for the understanding of

malaria transmission to help to plan control strategies. Johansson et al. (2011) conducted a

detailed study of the models having compartmental structure. These authors reviewed the

mathematical approaches from 1972 to 2010 and used them for the estimation of the ba-

sic reproductive number R0 for assessing the critical vaccination fraction of the population.

Non-spatial and deterministic approaches for modelling dengue are reviewed by Andraud

et al. (2012). They suggested a multi-serotype host-vector model with the combination of

vector-control and vaccination strategies for areas where the pathogen is persistent.

There are different approaches taken to model VBD transmission using the Ross-Macdonald

compartmental framework. For dengue disease, these approaches include the work of Esteva

and Vargas (1999) that assessed the effects of human demography. They identified three

threshold parameters: R0, R1 R. The first threshold parameter, R0 was conditioned on

the existence and stability of an endemic equilibrium, R1 is related to the behaviour of the

number of infectious humans and R controls the growth of the host population density. The

same authors Esteva and Vargas (2000) studied the impact of vertical and mechanical trans-

mission (after an interrupted meal by a mosquito on an infectious person) routes. Vertical

transmission was found to favour the persistence by dramatically increasing the endemic pro-

portion of infectious vectors, especially in endemic areas with low host population. However,

the proportion of vertically infected mosquitoes in the vector population is critical for the

efficacy of this transmission route. In contrast to the above study, Adams and Boots (2010)

questioned the efficacy of vertically acquired infection in vectors. They argued that the rates

of vertically acquired infection reported in most of the empirical studies are very low to have

a profound impact on the persistence of dengue virus in the vector population. The long

term persistence of the dengue virus is not possible with these rates as the virus is rapidly

lost with every generation of mosquitoes.

In this chapter, a simple non-seasonal deterministic model RMSIR is constructed on the basis

of Ross-Macdonald’s modelling framework. Here the subscript SIR refers to the compart-
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ments of the host population. The model has immunity incorporated into the host population

whereas the vector population has only two classes (i) susceptible, S and (ii) infectious I.

This model is later extended by adding incubation compartments E in the host and vec-

tor populations. The second model is termed as RMSEIR. These models are not entirely

new, rather they are a variant of models studied by different authors (Andraud et al., 2012;

Nishiura, 2006). The intention here is to use simple model structures to generate persistence

patterns for endemic disease and identify the primary determinants of pathogen persistence

via deterministic modelling. Both of these models are epidemiologically different, so com-

paring the dynamics of a disease in these models is an interesting problem in its own right.

In the rest of the chapter, both models are parametrized using same or similar quantities.

This is done to help comparing the output generated by these models. In most of the work

reported above, comparing the results from epidemiologically different models for a single

disease is not done and this chapter is dedicated for the comparison of deterministic results

obtained from RMSIR and RMSEIR.

The rest of the chapter is arranged as follows: the parameters and assumptions of both models

are explained in detail in subsequent sections. Next, both models are investigated sequentially

for local asymptotic stability. The invasion threshold R0 is discussed and population-level

reproductive numbers are identified by separating R0 into RV H0 and RHV0 . This chapter

surveys the behaviour of both models in deterministic settings and compare the variation

in results in relation to modification in modelling structure. The main contribution of this

chapter is being a mathematical preamble for the rest of the thesis. Therefore, this chapter

serves as a mathematical foundation for next three chapters where these models are extended

to include stochastic effects.

2.2 Ross Macdonald model with immunity (RMSIR)

The model and description used in this section i.e., RMSIR is closely related to the model

proposed by Lloyd et al. (2007) and the generic ‘single-serotype’ dengue model presented in

the review articles of Nishiura (2006) and Andraud et al. (2012). Over the course of this

section, the deterministic models for host and vector populations are represented. After that

the ‘ingredients’ of the model are explained in detail. The basic features and assumptions

of the model are then presented. At the end of this section, the model is examined for local

stability analysis at the disease-free equilibrium and at endemic equilibrium.

Following conventions from the start of previous section 2.1, the Ross Macdonald compart-

mental framework with immunity is made up of a Susceptible-Infected-Recovered (S I R)
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system of equations for host population dynamics and a Susceptible-Infected (S I) system

for the mosquito population. There is no recovered / immune class for mosquitoes as once

they are infected, they remain infected for the rest of their life. This model was originally

developed for malaria but can be adapted to represent many host-vector infection dynamics.

It consists of the host population, the size of which is denoted by H. Susceptible hosts are

denoted by Sh and Ih denotes infected hosts. The recovered class is denoted by Rh. The

closure assumption of the host population leads to H = Sh + Ih +Rh. The rate of change of

the number of susceptible, infective and recovered hosts is expressed using the following set

of equations

dSh
dt

= ΛH − kpIv
(
Sh
H

)
− γSh

dIh
dt

= kpIv

(
Sh
H

)
− (ξ + γ)Ih

dRh
dt

= ξIh − γRh.

(2.1)

Vectors in the model are either susceptible Sv or infected Iv. Since the vector population V

is closed, V = Sv + Iv. Only female mosquitoes require blood meals during their gonothropic

cycle for egg production so the model excludes male mosquitoes and V accounts for roughly

half of the total vector population. Table 2.1 provides an overview of the parameters used in

the model.
dSv
dt

= δV − kqSv
(
Ih
H

)
− δSv

dIv
dt

= kqSv

(
Ih
H

)
− δIv.

(2.2)

Symbol Explanation Value used Reference

k Bite per mosquito per day, in days−1 0.5 Lloyd et al. (2007)

p Transmission probability from an Iv to a Sh 0.2 Lloyd et al. (2007)

q Transmission probability from an Ih to a Sv 0.15 Lloyd et al. (2007)

α Vector-to-host transmission rate, in days−1 kp -

β Host-to-vector transmission rate, in days−1 kq -

ξ Average recovery rate of hosts, in days−1 0.1428 Adams and Boots (2010)

Λ = γ Birth / death rate of hosts, in days−1 4.215× 10−5 estimated

δ Birth / death rate of vectors, in days−1 0.125 Adams and Boots (2010)

Table 2.1: Parameters used in RMSIR. Here the average birth rate Λ of hosts is equal to average

death rate γ. The average host life expectancy is set to
1

65
years, which is used in days−1 in the

model.

Equation sets 2.1 and 2.2 present the host-vector system for RMSIR. Here Sh
H and Ih

H

represents the susceptible and infected proportion of the host population. Assumption of
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non-varying host and mosquito population yields the rate of change of the population sizes
dH

dt
=

dV

dt
= 0. The schematic diagram of the model is presented in Figure 2.1 whereas

the parameters included in above equations are explained in Table 2.1. All parameters are

positive constants i.e., α, β, ξ, δ, Λ, and γ and ∈ R+. Here α = k × p, where k is the bite

rate per mosquito per day and p is the probability of transmission from an infectious vector

to a susceptible host. Similarly, β = k × q, where q is the probability of transmission from

an infectious host to a susceptible vector.

Figure 2.1: Schematic Diagram of the Ross Macdonald model with Host Immunity. Here green

arrow represents the birth and red arrows represents death in all compartments. Blue arrows show

the flow of individuals from one compartment to other. Light orange lines between population

show transmission.

The contact rate α can be interpreted as the expected number of bites a vector makes per

unit time which leads to
(
αIv

Sh
H

)
. This expression shows the population rate of bites that

create new infections, conditioned upon an infectious vector biting a susceptible individual of

the host population. It is assumed that the average infective individual will make sufficient

contacts (i.e., there are sufficient hosts to bite) to transmit the disease and the transmission

rate is independent of the population size (i.e, frequency dependent transmission, which

is commonly used for host-vector systems). A similar analogy is applied for defining β

by swapping the roles of susceptible proportion of hosts to infected proportion
(
Ih
H

)
and

infectious vector Iv to susceptible Sv. The inverse of the average birth and death rate of
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vector,
(

1
δ

)
also gives the average infectious period of the vector, as it is assumed that once

infected, a vector remains infected till death. The average host clearance rate ξ is taken as
1
7 days−1. This is due to the fact that most of the host remains infected roughly around

a week and a very small proportion of individuals, who develop severe complications of the

disease, remain ill beyond this time period. To study the long-term dynamics of an endemic

disease requires that host demography be included in the model, as this is a pre-requisite for

any possibility of disease persistence. The birth and death rates in both populations scale

with the population size and are constant to keep H and V the same over the passage of

time. It was assumed that there is no external re-introduction of disease in any population.

The time scale for demographic turnover in hosts is very long as compared to the infectious

period of the disease, but is equal in the case of vectors as they do not recover.

The above model can be thought as a simplified non-seasonal form of a dengue model, since

two parameters δ and ξ are taken from Adams and Boots (2010). It is anticipated that

the parametrization of the model represents an endemic disease. The description of the

basic reproductive number of RMSIR and assumptions of the model are presented in later

sub-sections.

2.2.1 The basic reproductive numbers

The basic reproductive number R0 is regarded as one the of most important concepts devel-

oped in a mathematical treatment of disease spread. In epidemiology, R0 is the number of

individuals infected by a single infected individual during his or her entire infectious period,

in an entirely susceptible population (Heffernan et al., 2005).

The basic reproductive number R0 for RMSIR is obtained from the introduction of one

infective host in an entirely susceptible vector population or from the introduction of one

viremic vector. There are different techniques to derive R0 and this work employs the next-

generation matrix method, where the spectral radius of the next generation matrix gives the

basic reproductive number (Diekmann and Heesterbeek, 2000). This method is particularly

useful for estimating R0 in multiple populations as different categories of individuals take part

in disease transmission. The basic reproductive number R0 of the model under consideration

is derived in appendix A section A.1.1.

R0 =
√
RV H0 ×RHV0 =

α

δ
× βV

(ξ + γ)H
=

√
αβV

(ξ + γ)δH
. (2.3)
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In the above expression, RV H0 denotes the average number of hosts directly infected by the

introduction of a single infective vector into an entirely susceptible host population. Since

the transmission rate from an infected vector to a susceptible host is α and the average life

time of a mosquito is 1
δ , RV H0 is the product of these parameters. Similarly, RHV0 denotes the

average number of vectors that become directly infected upon the introduction of a single

infectious host into an entirely susceptible vector population. Following the same argument

as above, RHV0 is β VH ×
1

(ξ+γ) .

The number R0 = 1 represents the threshold condition for both invasion and persistence

in the deterministic model. It is important to note that the product α × β present in the

expression 2.3 results the square of the bite rate; a specific feature of the Ross Macdonald

model which indicates a two-step life-cycle of infection. In general, transmission of the virus

is favoured by high densities of mosquitoes that bite frequently and hindered by the death

and quick recovery of hosts, along with the high mortality rate of vectors.
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Figure 2.2: The change in equilibrium values of infected hosts and vectors for different values

of R0. Horizontal lines are equilibrium points of infected compartments at the corresponding

values of R0 from 1 (bottom) to 1.225 (top). The Infectious populations drops to zero at R0 = 1

and persists at other values. Host population size (H) is 1 × 105 individuals and the ratio V
H

is altered to obtain the desired value of R0. RV H0 has a constant value of 0.8 in all the plots

as it only depends upon the fixed parameters α and δ, whereas RV H0 is varied according to the

ratio V
H . The formula for basic reproductive number is R0 =

√
RV H0 ×RHV0 , where RV H0 = α

δ

and RHV0 = βV
(ξ+γ)H . Constant parameters are k = 0.5, p = 0.2, q = 0.15, ξ = 1

7 , δ = 1
8 and

Λ = γ = 4.5× 10−5.

It is straightforward to infer that if R0 < 1, every infected individual, on average, produces
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less than one infected individual and disease will ultimately die out in both populations, so

that the system will reach the disease free state. If R0 > 1, then, on average, more than one

secondary infection will be produced and the pathogen will invade the population. In other

words, R0 reflects the stability of the Disease Free Equilibrium (DFE) as when this number

is less than one, we can predict that the pathogen will be cleared from the population.

R0 is the product of RHV0 and RV H0 which are the reproductive numbers for vector and host

populations respectively. RHV0 is a positive linear function of vector-to-human population

ratio V
H , so it effects the persistence of dengue by changing the basic reproductive number,

though RV H0 remains fixed. Either RHV0 or RV H0 can take a value less than one, the condition

being that their product should be greater than 1. This is the threshold condition of the

existence of the endemic state. As pointed out by Lloyd et al. (2007), the term V
H in RHV0

creates an asymmetry in invasion thresholds for hosts, if V is much larger than H. The relation

between these reproductive numbers and disease persistence in shown in Figure 2.2. This

plot is drawn by adjusting V
H ratios in such a way that give R0 = 1, 1.12 and 1.225. The left

hand side shows the time evolution of infectious humans Ih and right hand side presents the

time evolution of Iv at different values of R0. The model RMSIR is numerically integrated by

adding some individuals to the endemic equilibrium values of the infectious compartments of

both populations. The same number of individuals is subtracted from the number of suscepti-

ble individuals at endemic equilibrium to keep the population sizes, H and V constant. Black

horizontal lines are the equilibrium points of the infected compartments. At R0 = 1 (bottom),

the Infectious populations drops to zero and persists at R0 = 1.12 (middle) and 1.225 (top).

The host population size (H) is 1 × 105 individuals and RV H0 has a fixed value 0.8. It is

important to note that unless specified, the vector-to-host population ratio V
H is kept fixed

at six vectors per host for the analysis performed on RMSIR in the rest of the Chapter.

The deterministic solution showing the time evolution of host and vector populations is given

in Figure 2.3. The numerical integration is performed while initializing the solver by taking

14 individuals from S∗v , where ∗ denotes the number of individuals at the endemic equilibrium.

These individuals are added to I∗v to keep the size of the vector population constant. The

same is done for the host population, but for five humans, so that I∗h(0) = I∗h + 5 and

S∗h(0) = S∗h − 5. The oscillations in the number of individuals decay to reach the stable

endemic equilibrium. These patterns are explained in terms of R0 by (Esteva and Vargas,

1998). If R0 > 1 and initial fraction of susceptible individuals S = Sh
H + Sv

V satisfies R0S > 1,

then the susceptible proportion will decrease and the infected proportion I = Ih
H + Iv

V increases

to a peak and then decreases. Transmission halts when there are no sufficient susceptible

present in the populations and starts again when R0S > 1, due to the birth of new susceptible

individuals. This process is repeated until there are secondary smaller epidemics and thus
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Figure 2.3: The convergence of host and vector compartments to the equilibrium points. Com-

partments in both populations reached the stable endemic equilibrium via damped oscillations.

From top row: Temporal evolution of (i) Left: Human infectious compartment (Ih) and (ii)

Right: vector Infectious compartment (Iv) . In bottom row, the susceptible (Sh) and recovered

(Rh) compartments of hosts are at left side and Susceptible vectors (Sv)are on the right panel.

Horizontal lines represent the deterministic equilibrium points. Initial conditions of the solver at

detailed in the section 2.2.1. Host population size (H) is 1× 106 individuals and vector popula-

tion size is six times the host population. R0 =
√
c× V

H = 1.56 where c = αβ
(ξ+γ)δ and V

H = 6.

Constant parameters are same as in Figure 2.2.

the solution relaxes to the endemic equilibrium. If R0 < 1, the system approaches the DFE

asymptotically. As the susceptible proportion is increased by constant birth rate, in the long

run all recovered individual will die out leaving the population consisting of only susceptible

individuals.

2.2.2 Assumptions of the model

The assumptions of this model are as follows:

• The human population size, H is constant as the birth rate is equal to the death rate.

Humans are divided into susceptible Sh, infectious Ih, and recovered / immune Rh

classes. Humans gain life-long immunity after recovering form the dengue infection.

• The population size of mosquitoes, V, is constant and mosquitoes are divided into

susceptible Sv = V − Iv, and infectious, Iv classes. Birth and death rate are same

35



2.2 ROSS MACDONALD MODEL WITH IMMUNITY (RMSIR)

and new-born mosquitoes are considered susceptible. Once infected, vectors remain

infectious for life.

• There is no seasonal fluctuation in the recruitment and death of vector population.

• The rate at which mosquitoes bite humans is proportional to the number of mosquitoes

but independent of the number of people. Transmission of infection in humans involve

two biting events from the vector.

• Humans are assumed to be the only competent hosts and no bites are assumed on

bovine, cattle and wild and domestic animals.

• The infectious period of hosts and vectors is exponentially distributed with expectation
1
ξ and 1

δ , respectively.

• Both hosts and vectors are assumed to become infectious immediately following infec-

tion, without an incubation period.

• Populations of host and vector are large and well-mixed or homogeneous (with frequency-

dependent transmission).

2.2.3 Equilibrium points and local stability analysis

By taking into account the population closure assumption for hosts and vectors, recovered

human and susceptible vector classes are written as: R∗ = H − S∗h − I∗h and S∗v = V − I∗v ,

providing three equations from the equation set 2.1 and 2.2 for further analysis. This system

of three equations admits two distinct equilibrium points: (i) A Disease Free Equilibrium

point (DFE) denoted by E0 (H, 0, 0), and (ii) an Endemic Equilibrium point (EE), denoted

by E∗ (S∗h, I
∗
h, I
∗
v ).

The DFE can be interpreted as if there are no infected individuals in both host and vector

populations. At the DFE, both populations will consist of only susceptible individuals as

there will be no recovered human as a result of the demographic of turn-over of the host

population. In models with lifelong immunity, the EE can be thought as the state where

disease is present in some groups of the population. The endemic equilibrium of a system

is sustained by continuous recruitment of susceptible individuals that become infectious. In

deterministic dynamics, the EE is referred as the endemic stationary state of the system.

The endemic equilibrium points of equations 2.1 and 2.2 are derived using basic algebra. The

calculations are verified by using MATLAB R© Symbolic Math Toolbox (MATLAB, 2014).
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S∗h =
H(γHR0 + αV )

R0(αV + γH)

I∗h =
δγH2(R0 − 1)

β(αV + γH)

R∗h =
ξδH2(R0 − 1)

β(αV + γH)

(2.4)

S∗v =
V (αV + γH)

(αV + γHR0)

I∗v =
δγH(ξ + γ)(R0 − 1)

α
(
δ(ξ + γ) + βγ

) (2.5)

By substituting values from Table 2.1 and taking the values of H and V same as described

in Figure 2.3, R0 = 1.6, S∗h = 396985, I∗h = 178, R∗h = 602836, S∗v = 5999360, and I∗v = 640.

At equilibrium, seroprevalence level in hosts is 60% and 0.02% of the human population is

infectious. In vectors. 0.011% of the population is infectious at endemic equilibrium. These

endemic equilibrium points are biologically feasible if R0 ≥ 1 as the number of individuals

in each compartment are bound to be positive. If R0 < 1, then compartments have negative

number of individuals.

In the following subsections and in section 2.3.1, the following result is used to establish the

stability of the models: If all eigenvalues are real, negative, and distinct, the system is stable

(Boyce and DiPrima, 1986). Where possible, the coefficients of the characteristic equations

are shown in terms of R0, and eigenvalues are obtained by solving the characteristic equation.

2.2.3.1 Local Stability of disease free equilibrium

As discussed above, the dynamical system RMSIR admitted two distinct equilibrium points.

In many studies related to compartmental systems, the basic reproductive number was found

as a threshold which exhibited a bifurcating behaviour between both disease equilibrium

states [for example, see Rodriguesa et al. (2012); Yang et al. (2010) and Esteva and Var-

gas (1998) for vector-borne diseases]. In the following two subsections, the local asymptotic

stability analysis of both equilibria has been presented where the model behaviour in the

disease-free and endemic state was investigated with respect to R0. The goal was to inves-

tigate whether the disease free equilibrium point E0 was locally asymptotically stable when

R0 < 1. Moreover at R0 > 1, E0 became unstable and the endemic equilibrium point E∗ was

locally asymptotically stable. For host and vector systems in equations 2.1 and 2.2, the next

paragraph addresses the local stability of the DFE, i.e, E0 (H, 0, 0).
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The Jacobian matrix J (Sh, Ih, Iv) of above mentioned system is:

J
(
Sh, Ih, Iv

)
=


−(α IvH + γ) 0 −αSh

H

α IhH −(ξ + γ) αSh
H

0 β Sv
H −δ

 (2.6)

As explained in section 2.2.3, the number of infective hosts and vectors is zero at the DFE.

Evaluating the above Jacobian matrix at DFE, by setting Ih = Iv = 0, Sh = H and Sv = V

in above matrix yields

J
(
H, 0, 0

)
=


−γ 0 −α
0 −(ξ + γ) α

0 β Sv
H −δ

 (2.7)

The local stability is governed by the eigenvalues of the matrix J (H, 0, 0). By using the

relation |λIn − J (H, 0, 0)| = 0, where In is the identity matrix having same order as J (H, 0, 0)

the following matrix is obtained.

∣∣∣λI3 − J
(
H, 0, 0

)∣∣∣ =


λ+ γ 0 α

0 λ+ (ξ + γ) −α
0 −β VH λ+ δ


Expanding the determinant and equation the expression to zero will give the characteristic

equation whose roots are the eigenvalues of J (H, 0, 0)

(λ+ γ)
(
(λ+ δ)(λ+ ξ + γ)− αβ( VH )

)
= 0. (2.8)

One root is λ1 = −γ and for the other two roots, the quadratic part of equation 2.8 can be

simplified as:

λ2 +Kλ+ L = 0 (2.9)

where K = ξ + δ + γ, and L = δ(ξ + γ)(1−R0).

The eigenvalues from equation 2.9 have negative real parts if and only if all the coefficients

are positive (Routh-Hurwitz criterion for second-order polynomial). Here K is positive, and

L is positive only when R0 < 1. The negative real parts of the eigenvalues guarantees the

local asymptomatic stability. Therefore, E0 (H, 0, 0) is locally asymptotically stable. The

other two roots are complex conjugates:
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λ2,3 = −ξ + δ + γ

2
±
√

(ξ + δ + γ)2 − 4δ(ξ + γ)(1−R0)

2
(2.10)

It can be concluded immediately that at R0 > 1, the disease-free equilibrium E0 (H, 0, 0)

becomes unstable as the sign of L becomes negative. In deterministic settings this means

that the pathogen will persist after invasion. The plot of λ2 and λ3 in Figure 2.4 shows the

stability of the eigenvalues. In this plot, R0 is changed by altering the V
H ratio, by increasing

H and keeping V fixed. It is interesting to note that as the population size H goes up, the

value of R0 decreases. As R0 approaches 1, λ2 approaches to zero and λ3 becomes more

and more negative. For lower values of R0, both eigenvalues converges to λ2 = −0.1 and

λ3 = −0.2 at bigger population sizes.
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Figure 2.4: Change in the eigenvalues λ2 and λ3 as the host population (H) is altered. The

vector population (V ) is kept fixed. Since R0 = c× V
H , the value of the basic reproductive number

R0 drops from 1 to 0.1 with the gradual increase in H. It is important to note that when R0

starts to increase past one, the eigenvalue λ2 becomes positive. This results in the negative value

of the constant term L which appears in equation 2.9.

2.2.3.2 Local Stability of endemic equilibrium

For the endemic equilibrium E∗ (S∗h, I
∗
h, I
∗
v ), the Jacobian matrix is:

J
(
S∗h, I

∗
h, I
∗
v

)
=


−(α I

∗
v
H + γ) 0 −αS

∗
h
H

α I
∗
v
H −(ξ + γ) α

S∗
h
H

0 β S
∗
v
H −δ

 (2.11)

As previously, the characterstic equation is used to find the eigenvalues; this is obtained by

using the relation |λI3 − J (S∗h, I
∗
h, I
∗
v )| = 0 . The resulting matrix is:
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∣∣∣λI3 − J
(
S∗h, I

∗
h, I
∗
v

)∣∣∣ =


λ+ (α

I∗h
H + γ) 0 α

S∗
h
H

−α I
∗
v
H λ+ (ξ + γ) −αS

∗
h
H

0 −β S
∗
v
H λ+ δ


By solving |λI3 − J (S∗h, I

∗
h, I
∗
v )| = 0, following equation is formed.

(2.12)
λ3 + λ2

(
ξ + 2γ + (α

I∗v
H

)

)
+ λ

(
δ(ξ + γ) + (ξ + δ + γ)(γ + α

I∗v
H

)− αβ
S∗h
H

S∗v
H

)
+

(
(δ(ξ + γ)(γ + α

I∗v
H

)− αβγ
S∗h
H

S∗v
H

)
= 0

As the rate of change is zero at the equilibrium points, the following substitutions from

equation set 2.1 and 2.2 are used in equation 2.12

α

(
S∗h
H

)
= (ξ + γ)

I∗h
I∗v

β

(
S∗v
H

)
= δ

I∗v
I∗h

The final equation is of the form:

λ3 +Kλ2 + Lλ+M = 0 (2.13)

where K = ξ + δ + 2γ + α
(
I∗v
H

)
, L = (ξ + δ + γ)

(
γ + α

(
I∗v
H

))
and M = αδ (ξ + γ)

(
I∗v
H

)
The eigenvalues of equation 2.13 have negative real parts if and only if: (i) all the coeffi-

cients (K,L and M) are positive, and (ii) KL > M (Routh-Hurwitz criterion for third-order

polynomials). The first condition is quite straightforward as the coefficients consist of either

positive parameter values or values from the host and vector population which cannot be

negative by definition. For the second condition, after putting the values of parameters from

Table 2.1 satisfies KL > M , i.e, KL−M = 6.4796×10−6. Therefore the endemic equilibrium

state E∗ (S∗h, I
∗
h, I
∗
v ) is locally asymptotically stable.

The coefficients K, L, M can also be represented in terms of R0 by replacing the value of

I∗v from equation 2.5 into equation 2.13. After some algebraic manipulation and assuming

40



2.3 ROSS MACDONALD MODEL WITH INCUBATION (RMSEIR)

(Λ = γ), K,L and M can be written as a function of R0. In general, the product of KL leads

to more terms with squared values as compared to M .

K = (ξ + δ + γ) +

(
δγ(ξ + γ)(R0 − 1)

δ(ξ + γ) + βγ

)
L = (ξ + δ + γ)

(
γ + γ

δ(ξ + γ)(R0 − 1)

δ(ξ + γ) + βγ

)
M = δγ (ξ + γ)

(
δ(ξ + γ)(R0 − 1)

δ(ξ + γ) + βγ

)
.

2.3 Ross Macdonald model with incubation (RMSEIR)

In many vector borne diseases, there is a certain amount of time required for the virus to

replicate itself inside the vector or the host. Therefore, when the virus levels reach a certain

threshold in a vector, the virus reaches the salivary glands and is transmitted via infected bite.

The incubation periods for DENV is estimated by Chan and Johansson (2012). Similarly

after taking an infectious bite, it takes time for the virus to replicate inside the host before

making its way into the blood stream in order to make a vector sick. In host-vector models,

the incubation period of pathogen inside a host or a vector plays a vital role in different

aspects of disease propagation and spread (Keeling and Grenfell, 1998). The model discussed

previously assumed that when virus is injected into the blood stream of a susceptible, that

individual is able to transmit the disease immediately.

In dengue disease, the time required for virus to replicate in the host, before reaching the

blood stream to be release while getting an infectious bite, is termed the Intrinsic Incubation

Period (IIP). Similarly, the time required for virus to replicate inside a vector, to be able

to reach in the salivary glands for transmission during the infectious bite, is termed the

Extrinsic Incubation Period (EIP). How the addition of these two compartments in host

vector system affect the dynamics of dengue, as compared to the previous model RMSIR will

be an interesting area to explore. The description of the model is presented below.

The dynamics of the Ross Macdonald model developed in section 2.2 with the addition of

exposed / latent parameters are incorporated by using two parameters (σ) and (ρ). The Ross

Macdonald model with incubation (RMSEIR) has four compartments in the host population

and three in the vector population; one additional in each population (Eh and Ev respectively)

denoting the incubation / latent period. The host population (H) is now represented by a

Susceptible-Exposed-Infected-Recovered (S E I R) model where H = Sh+Eh+ Ih+Rh. The
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Figure 2.5: Schematic Diagram of the Ross Macdonald model with immunity in hosts and an

incubation period in both populations. Line are coloured in the same way as Fig. 2.1

host birth and death rate are set equal so the population is closed.

The host model is represented by the following non linear, time-varying equations:

dSh
dt

= ΛH − αIv
(
Sh
H

)
− γSh

dEh
dt

= αIv

(
Sh
H

)
− (σ + γ)Eh

dIh
dt

= σEh − (ξ + γ)Ih

dRh
dt

= ξIh − γRh.

(2.14)

The vector population (V ) is represented by a Susceptible-Exposed-Infected (S E I) model,

where V = Sv + Ev + Iv. As mentioned previously in section 2.2, this model contains only

female mosquitoes. Figure 4.1 shows the schematic diagram of the model and the equations

for vectors are given as follows:
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Figure 2.6: The deterministic solution of RMSEIR. In the top row, from left to right, the figures

shows latent and infectious individuals in host (Eh; bottom line and Ih; top line) and vector (Ev

and Iv) compartments. In the bottom row, the first figure from the left shows susceptible (Sh)

and recovered (Rh) individuals. The second figure shows the number of susceptible vectors (Sv).

In all the plots, horizontal lines denotes the stable deterministic endemic equilibrium state. Host

population size (H) is 1 × 106 individuals and vector to host ratio V
H was set to twelve to have

same value of R0 as in RMSIR. Model compartments show a cyclical behaviour to approach the

endemic equilibrium state. Here all the parameters are the same as in Figure 2.3 and the average

latent period in hosts and vectors are σ = 1
5 and ρ = 1

8 respectively.

dSv
dt

= δV − βSv
(
Ih
H

)
− δSv

dEv
dt

= βSv

(
Ih
H

)
− (ρ+ δ)Ev

dIv
dt

= ρEv − δIv.

(2.15)

The value of R0 is (see Appendix A.1.2 for derivation):

R0 =
√
RV H0 ×RHV0 =

αρ

δ(ρ+ δ)
× βσV

(ξ + γ)(σ + γ)H
=

√
αβσρV

δ(ξ + γ)(ρ+ δ)(σ + γ)H
(2.16)

Here the basic reproductive number of the host population RV H0 and vector population RHV0

are explained in the same fashion as in section 2.2.1. The additional term ρ
ρ+δ in RV H0 is

the probability that a vector will survive the exposed state (Ev) and move to infectious

compartment (Iv). In RV H0 , σ
σ+γ is the probability that a host will survive the exposed state

(Eh) to enter the infectious state (Ih). R0 acts as a general threshold for both populations and

there is disease extinction when this number is less than 1 and either invasion and persistence
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of disease, if this number is greater than 1. RHV0 is enhanced by the factor V
H if the number

of vectors are greater than number of hosts. As the birth / death rate of humans, γ is very

low, the basic reproductive number RHV0 in RMSEIR is not much different than in RMSIR.

The numerical solution of RMSEIR is given in Figure 2.6. The parameter values are the same

as in Table 2.1 and the average incubation rate in hosts and vectors are σ = 1
5 and ρ = 1

8

respectively. The system of ODEs was integrated by initialization with 10% more latent and

infected individuals compared with the equilibrium populations of hosts and vectors. These

additional individuals are discounted from the susceptible host population. The solution for

this model exhibits damped oscillations towards the endemic equilibrium state, similar to that

was observed in Figure 2.3. R0 is kept the same as previously by setting the vector to host

ratio V
H to twelve. These is a huge disparity between the number of Eh and infectious Ih in

the host population whereas these two classes have the same count in the vector population.

This is because the incubation and recovery rates are equal for the vector population but not

for the humans.

2.3.1 Equilibrium points and local stability analysis

The system 2.14 and 2.15 admits two distinct equilibrium points, as observed in the previous

model, (i) a DFE denoted by E0 (H, 0, 0, 0, V, 0, 0), and (ii) an Endemic Equilibrium point

(EE), denoted by E∗ (S∗h, E
∗
h, I
∗
h, R

∗
h, S

∗
v , E

∗
v , I
∗
V ). The endemic equilibrium points are:

S∗h = H − I∗h − E∗h −R∗h

E∗h =
(ξ + γ)

σ
I∗h

I∗h =
γ

ξ
R∗h

R∗h =
ξH (αβσρV − δ(ξ + γ)(ρ+ δ)(σ + γ)H)

β (ξ + γ) (σ + γ) (αρV − γH (ρ+ δ))

S∗v = V − E∗v − I∗v

E∗v =
δ

ρ
I∗v

I∗v =
βρV I∗h(

δH + βI∗h
)

(ρ+ δ)

(2.17)

The solution is obtained by hand and verified in similar fashion as done in section 2.2.3.

Here the analytical value of R∗h is obtained first. The rest of the values are dependent upon
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R∗h. As stated before in section 2.2.3, these equilibrium points are biologically feasible when

R0 > 1.

These deterministic equilibrium points define the steady stationary state of the system. The

DFE for RMSEIR denotes the state of the system reached over passage of time when there

are only susceptible individuals in the population. Similarly EE denotes the steady state of

RMSEIR. In the following two subsections, the local stability analysis of equilibrium points,

presented in equation set 2.17 is performed. The local stability analysis is done on time-

invariant baseline parameters, as discussed in section (2.2), with the addition of σ = 1
5 days−1

and ρ = 1
8 days−1. By putting the values used in plotting Figure 2.6, R0 = 1.6, S∗h = 397068,

I∗h = 178, E∗h = 127 and R∗h = 602627, S∗v = 11998720, E∗v = 640 and I∗v = 640.

By comparing above values to the numerical estimate of the equilibrium points for RMSIR

in section 2.2.3, the susceptible proportion of hosts in RMSEIR is slightly greater. This may

leads to a major difference in the peak and timings of the epidemics in the long run for

both models. This difference can be better studied using the stochastic settings. Moreover,

the same number of infectious hosts are present at endemic equilibrium in both models, in

addition to having the infected population E∗h in RMSEIR. Both of these factors shows that

the infection in the host population of RMSEIR is more stable. In the vector population,

the number of individuals in I∗v and E∗v are equal as ρ
ρ+δ = 0.5 at the steady state. This

corresponds from the fact that the vector-to-host ration is set twice in RMSEIR to keep R0

same in both models. As in the host population, the infection in the vector population at

the deterministic endemic equilibrium is supported from the E∗v class.

2.3.1.1 Local stability of the disease free equilibrium

The system consisting of Eq. 2.14 and Eq. 2.15 has seven equations. Using the conditions

mentioned in the previous paragraph, one compartment from both population can be dropped

as Rh = H − Sh − Ih − Eh and Ev = V − Sv − Iv. The Jacobian can be written as:

J
(
Sh, Eh, Ih, Sv, Iv

)
=



−(α IvH + γ) 0 0 0 −αSh
H

α IvH −(σ + γ) 0 0 αSh
H

0 σ −(ξ + γ) 0 0

0 0 −β Sv
H −(β IhH + δ) 0

0 0 0 0 −δ


.

(2.18)

At the DFE, the number of infectious and infective individuals is zero and the number of
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susceptible individuals is equal to the total population and there are no recovered individuals.

Putting Eh = Ih = Ev = Iv = 0, Sh = H and Sv = V in the above matrix yields,

J
(
H, 0, 0, V, 0

)
=



−γ 0 0 0 −α
0 −(σ + γ) 0 0 α

0 σ −(ξ + γ) 0 0

0 0 −β VH −δ 0

0 0 0 0 −δ


The characteristic polynomial λI5 − J (H, 0, 0, V, 0) is used to find the eigenvalues of the

disease-free state. By taking the determinant of the polynomial and equating it to zero, the

eigenvalues of the system are acquired. Since this matrix is of order 5 × 5, the method of

Laplacian expansion is used to reduce its order by one row and column at a time.

λI5 − J
(
H, 0, 0, V, 0

)
=



λ+ γ 0 0 0 α

0 λ+ (σ + γ) 0 0 −α
0 −σ λ+ (ξ + γ) 0 0

0 0 β VH λ+ δ 0

0 0 0 0 λ+ δ


Expanding by the first column yields a fourth order determinant

λI5 − J
(
H, 0, 0, V, 0

)
= (λ+ γ)


λ+ (σ + γ) 0 0 −α
−σ λ+ (ξ + γ) 0 0

0 β VH λ+ δ 0

0 0 0 λ+ δ

 (2.19)

Expanding the determinant in Eq. 2.19 by first column yields two determinants of order

3× 3.

(
λ+ (σ + γ)

)
λ+ (ξ + γ) 0 0

β VH λ+ δ 0

0 0 λ+ δ

+ σ


0 0 −α
β VH λ+ δ 0

0 0 λ+ δ


The determinant of the matrix at the right hand side is zero, so the final characteristic equa-

tion obtained from the Laplacian expansion of left hand matrix can be written as:

(λ+ γ) (λ+ (σ + γ)) (λ+ (ξ + γ)) (λ+ δ)2 = 0 (2.20)

The eigenvalues obtained from Eq. 2.20 are all negative which guarantees the asymptotic

stability of the system (Boyce and DiPrima, 1986).
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Equation 2.20 is obtained by taking expressions from five out of seven compartments of

RMSEIR, mentioned in equation 2.14 and equation 2.15. The compartments which were

excluded are Rh and Ev. The above system of equations can also be solved by dropping Rh

and Sv. This new reduced system of equation leads to the following characteristic equation.

(λ+ γ) (λ+ δ)

(
(λ+ (σ + γ)) (λ+ (ξ + γ)) (λ+ (ρ+ δ)) (λ+ δ)− αβσρV

H

)
= 0 (2.21)

Equation 2.21 can be simplified to

λ4 +Kλ3 + Lλ2 +Mλ+N = 0 (2.22)

where K,L,M and N can be written as:

K = ξ + σ + ρ+ 2(γ + δ)

L = (ξ + γ)(σ + γ) + δ (ρ+ δ) + (ξ + σ + 2γ)δ (ρ+ δ)

M = δ (ρ+ δ) (ξ + σ + 2γ) + (ξ + γ)(σ + γ)(δ + (ρ+ δ))

N = δ(ξ + γ)(σ + γ)(ρ+ δ)(1−R0).

For a fourth-order polynomial, the Routh-Hurwitz stability criteria imposes three conditions:

(i) all the coefficients must be positive (K,L,M > 0), (ii) KL > M , and (iii) KLM >

M2 +K2N . Here all the coefficients of equation 2.22 are positive, and N can remain positive

only if the value of R0 is less than 1. When R0 = 1, one of the eigenvalues becomes zero as

N = 0 and the DFE becomes unstable (Boyce and DiPrima, 1986). Therefore for R0 > 1, this

condition fails and R0 > 1 acts as threshold condition required for the existence of disease

free equilibrium state of RMSEIR.

2.3.1.2 Local stability of the endemic equilibrium

Proceeding the same way as in the previous section, the Jacobian matrix at equilibrium points

of the compartments can be written as:

J
(
S∗h, E

∗
h, I
∗
h, S

∗
v , I
∗
v

)
=



−(α I
∗
v
H + γ) 0 0 0 −αS

∗
hI

∗
v

H

α I
∗
v
H −(σ + γ) 0 0 α

S∗
hI

∗
v

H

0 σ −(ξ + γ) 0 0

0 0 −β S
∗
v
H −(β

I∗h
H + δ) 0

0 0 0 0 −δ


(2.23)
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The characteristic equation for finding the eigenvalues at deterministic equilibrium point can

be obtained by solving the following matrix equation.

λI5 − J
(
S∗h, E

∗
h, I
∗
h, S

∗
v , I
∗
v

)
=

λ+ (α I
∗
v
H + γ) 0 0 0 α

S∗
hI

∗
v

H

−α I
∗
v
H λ+ (σ + γ) 0 0 −αS

∗
hI

∗
v

H

0 −σ λ+ (ξ + γ) 0 0

0 0 β
S∗
h
H λ+ (β

I∗h
H + δ) 0

0 0 0 0 λ+ δ


(2.24)

Solution of this system yields a fifth order equation, here represented in factor form.

(
λ+ α I

∗
v
H + γ

)(
λ+ β

I∗h
H + δ

)
(λ+ (σ + γ)) (λ+ (ξ + γ)) (λ+ δ) = 0 (2.25)

All the eigenvalues from characteristic equation, i.e, the values of λ are negative. Moreover,

if R0 < 1, then the fractions
I∗h
H and I∗v

H becomes negative, which is invalid by the definition

of the size of the populations. At R0 = 1,
I∗h
H = I∗v

H = 0 and this equation transforms into

equation 2.20 which is not defined for the endemic region (see the argument for the value

of R0 to be substituted for N in the previous section). Thus the endemic equilibrium will

always be stable for R0 > 1. The explicit dependency on the value of R0 can be shown by

substituting the values of α I
∗
v
H and β

I∗h
H as undertaken previously in section 2.2.3.2.

2.4 Conclusion and discussion

This chapter is devoted to examining the deterministic models for host-vector systems. The

aim here is to look at the mathematical behaviour of simple models and use the analysis

undertaken in this chapter as a foundation for the next chapters. Two models, one baseline

RMSIR (SIR for hosts and SI for vectors) and a second having incubation periods RMSEIR

(SEIR for hosts and SEI for vectors) are developed and analysed. In order to avoid over-

parametrization and to include the minimum number of equations, these models include one

viral serotype with one species of vector and do not include aquatic / premature stages of

the vector. Host and vector population sizes in both models are held constant over time, by
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having the same birth and death rate. The equilibrium points of both models are checked

for stability and found to be locally asymptotically stable.

The basic reproductive number R0 is found to be a threshold parameter between the disease

free state and endemic state for both models. The basic reproductive ratio is split in to two

different population level reproductive numbers, RV H0 = α
δ for hosts and RHV0 = β V

(ξ+γ) H for

the vector population in RMSIR. The population level reproductive numbers in the latter

model are derived by using the same analogy as for the baseline model. In RMSEIR, RV H0

is multiplied by the factor σ
σ+γ which denotes the probability that a host will survive from

the exposed state to become infectious. In similar fashion, the basic reproductive number for

the vector population RHV0 is multiplied by the factor ρ
ρ+δ . By substituting the values from

Table 2.1, σ
σ+γ ≈ 1 and ρ

ρ+δ = 0.5. This implies that the probability that an infected host

becomes infectious is almost 100% whereas 50% of the infected vectors die before becoming

infectious. So RHV0 of both models is nearly the same and RV H0 in RRMSEIR
0 is multiplied by

a factor of 0.5. In order to compare the results of both models on the basis of having equal

basic reproductive numbers, the vector-to-host ratio is set to be twelve in RMSEIR. At the

endemic equilibrium, the infectious components in both models, i.e, Ih and Iv have the same

number of individuals. In RMSEIR at equilibrium, the host population has 0.0127% of the

individuals in the latent compartment whereas the number of incubating vectors is same as

the number of infectious vectors (see Figure 2.6). As R0 is the threshold that bifurcates the

DFE and EE at R0 = 1, this denotes that the DFE of RMSEIR is more stable and RMSIR

is more stable at the endemic equilibrium.

The number R0 = 1 is both invasion and persistence threshold in the deterministic model but

it is worthwhile to mention that although its definition is broad, there are different methods

used for the estimation of R0 (see Heffernan et al. (2005) for an overview), therefore different

diseases cannot be compared unless the method employed to estimate R0 is the same. If

R0 is to be a set as a threshold and it measures the average secondary cases caused by

a single infectious individual in an otherwise susceptible population, then the existence of

endemic equilibrium should be conditioned upon R0 > 1 (Li et al., 2011). These authors

further pointed out that the issues such as backward bifurcations and spatial structure of

the population limit the use of R0 as a persistence threshold. A clear indication of which

method is used to estimate R0 along with the underlying assumptions is important to compare

results from different studies. In addition to these issues, it does not provide a time dependent

measurement of the spread of the disease. Moreover, the depletion of susceptible individuals

is not included in the formulation of R0.

In this chapter, I have compared the results from two epidemiologically different host-vector
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models. For this purpose, models are parametrised in such a way that most of the quantities

remain same or similar. The basic reproductive number R0 is kept same in both models by

varying the vector-to-host ratio from 6 (RMSIR) to 12 (RMSEIR). The results related to R0

and stability at DFE and EE are comparable to the models considered in (Esteva and Vargas,

1998, 2000; Pinho et al., 2010). The second model RMSEIR is not much found in dengue

literature but is important for other non-seasonal diseases that have incubation period in

both host and vectors. In this case, including RMSEIR can be important for generating the

realistic patterns of the disease.

Although deterministic models provide an overview of the dynamical evolution of system,

these models are unable to answer the questions related to the persistence and extinction

of the disease. Therefore, the models considered here lack the ‘real-world’ behaviour of any

host-vector disease due their deterministic nature. The solution trajectories always followed

the same path if the model is solved using the same initial conditions and parameter values.

In the real world, completely different results can be seen over time, even if all the initial

conditions are same. The parameter values taken here are suitable for a scenario with endemic

circulation of the pathogen with no sudden depletion of susceptible individuals which halts

transmission. So the parameter values chosen in both models are not intended for examining

detailed epidemiological patterns of dengue, but for looking at endemic persistence of dengue

virus in host-vector settings over longer periods.

The basic question addressed in this thesis surrounds the persistence of a pathogen in a host-

vector system which cannot be fully addressed by using a deterministic framework. Proper

study of disease extinction from a population requires a stochastic framework of modelling.

The current chapter has laid the theoretical foundations by proving that the model developed

are mathematically sound for additional analyses. For further investigation, the next chapter

deals with the stochastic counterpart of these models.
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CHAPTER 3

Determinants of long-term pathogen

persistence in host-vector systems



Determinants of long-term pathogen persis-
tence in host-vector systems

3.1 Introduction

Vector-borne diseases (VBDs) are an important subset of multi-host pathogens. These dis-

eases infect more than a billion people a year and kill more than one million per annum

(Butler, 2013). The work of Bartlett (1957, 1960) relates the size of the human population

with the fade-out of measles dynamics in USA and UK. The persistence of measles was ob-

served as an increasing function of the population size. For vector-borne disease, the need

to understand the mechanisms that relate the pathogen persistence and host population size

for the VBDs is important for population ecologists and epidemiologists. As vector control is

sometimes the most applicable strategy for the elimination of the VBDs (Jansen and Beebe,

2010), the work done in the current study focuses on the investigation of the factors which

affect pathogen persistence and functional form of these relations. The objective is to estab-

lish the relationship between the size of the population and the persistence of the pathogen

in host-vector systems.

The models used to investigate the relationship are the Ross Macdonald model with host im-

munity (RMSIR) and Ross Macdonald model with latent periods and immunity (RMSEIR).

The key aim is to establish to what extent persistence of a pathogen in the host population,

formally measured here as the threshold Critical Community Size (CCS), depends on the pa-

rameters of the host-vector system. For measuring probability of disease extinction in human

and vector populations, individual-based models were simulated using tau-leap approxima-

tions of the Gillespie Algorithm. These were used to find the CCS for both models. To further

investigate the association between parameters of the models and CCS, sensitivity analysis

was performed and linear regression was used to quantify the relationship between CCS and

its determinants. A detailed introduction to persistence thresholds and CCS follows.
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3.2 Persistence thresholds in host-vector system

This section begins with an overview of persistence thresholds and their relationship to

pathogen persistence. Then, the development of the CCS concept in the population biol-

ogy and epidemiological literature is presented, followed by a description of the ecological

factors affecting it. Towards the end, the concept of CCS is extended to the study of per-

sistence in vector-borne diseases. The ideas related to pathogen persistence and thresholds

presented in the following subsections are mainly in the context of vector-borne diseases. The

focus of the discussion here is to construct a foundation for estimating persistence thresholds

in interacting vector and host populations, with an emphasis on mosquito borne diseases.

3.2.1 Persistence thresholds

In mathematical modelling, a threshold is viewed as the point in a dynamical system where

a quantitative change in parametrization leads to qualitative change in the system behaviour

(Deredec and Courchamp, 2003). In theoretical epidemiology, the main threshold used in

deterministic models is denoted by the basic reproductive ration, R0 which enforces a bound-

ary in parameter space at 1. R0 is the average number number of individuals infected by a

single infected individual in an entirely susceptible population (Heffernan et al., 2005). For a

fully mixed population and simple disease dynamics, when R0 ≤ 1, any existing infection in

the population will vanish whereas if R0 > 1, the population can support a positive endemic

infection level in the deterministic system. Thus R0 decides the fate of the infection in the

communities if the procedure of modelling is deterministic.

In the stochastic setting, time to extinction is used as a threshold that separates popula-

tions that can retain infection longer from the populations in which disease extinction occurs

quickly. As described by N̊asell (2011), time to extinction depends upon the initial number of

infected individuals. If the initial conditions are sampled from the Quasi-Stationary Distribu-

tion (QSD) then the extinction times follow an exponential distribution whose expected value

can be used to provide a measure of persistence. The quasi-stationary state can be thought

of as a stochastic counterpart of the deterministic equilibrium state. From the perspective of

endemic infections, the remaining time to extinction of infection can be found if the system

is in quasi-stationary state (e.g., see N̊asell (2002) for details).

Mancy (2015) described a way of estimating the persistence threshold until a particular time

horizon and estimating the critical size of a community required to support a population

that persists with a given probability, to at least this time (usually 50%). In the context
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of infectious diseases, assessing persistence thresholds offers a possible way to seek measures

that includes running public health campaigns and vaccination strategies. For example,

consider an outbreak of a disease in a certain locality. The government departments and

policy planners would need to allocate funds for public awareness and vaccination. In this

case, it would be important to consider whether vaccinating a small community is really

justified or not (see Beyer et al. (2012) for example). Due to their applications in above

mentioned areas, persistence thresholds are estimated for a range of different classical and

meta-population models [for example (N̊asell, 2005), (Lloyd-Smith et al., 2005) and (Hanski

and Ovaskainen, 2000)].

3.2.2 Critical community size (CCS)

In the seminal work of Bartlett (Bartlett (1957) and Bartlett (1960)), the persistence of

measles in England and US was observed as an increasing function of population size. In

densely populated areas, fewer disease fade-outs were observed, providing a measure of the

threshold for persistence of the pathogen in a population, which Bartlett called Critical

Community Size (CCS). This concept has become one of the central measures of pathogen

persistence and is considered an intrinsic property of epidemiological dynamics in transmission

mechanisms for homogeneous or heterogeneous populations.

In the literature, CSS has been defined in various ways, but is intended to reflect the smallest

number of individuals in a population where disease persists without reintroductions from

an external source [Haydon et al. (2002) and Viana et al. (2014)]. Many diseases display

cyclic dynamics. Populations in which a pathogen predominantly persists can be separated

from smaller communities where frequent extinctions are observed between major epidemics.

Stated another way, the concept of CCS characterises the relationship between population size

and probability of extinction during inter-epidemic periods. It was found that the incidence

of measles scales linearly with host population size (Grenfell et al., 2002) as the chain of

transmission remains uninterrupted between the troughs of epidemic oscillations.

The long-term persistence of disease is not guaranteed after successful invasion to the pop-

ulation. In the absence of external forcing, pathogens go extinct due to two processes: (a)

epidemic fadeout after a major epidemic that creates susceptible bottlenecks, caused by a

too high basic reproductive number leading to depletion of the susceptible pool before demo-

graphic turnover and (b) endemic fade-out caused by too low basic reproductive number that

creates transmission bottlenecks causing interruption in the chain of transmission leading to

the stochastic extinction of the infection. CCS can be modified by many factors such as the
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distribution of waiting times for infection and latency, heterogeneity in transmission and the

spatial distribution of the population, existence of a reservoir, demographic turn-over, age-

structured transmission levels and seasonal fluctuation (Keeling and Grenfell, 1997), (Keeling

and Grenfell, 1998), (Lloyd, 2001), (Lloyd et al., 2007), (Conlan et al., 2010) and (Peel et al.,

2014).

All of the aforementioned factors can alter the threshold required by a pathogen to persist in

a population and hence, CCS. However, the notion of CCS lacks ‘completeness’ and requires

further theoretical definition. According to Conlan et al. (2010), comparing CCS between

studies is difficult, mainly because of the chosen measure of persistence and assumptions of

the stochastic models employed to estimate it. There are multiple issues in the current defi-

nition of CCS, including those that are conceptual, operational, inferential and measurement

related. Although a pervasive concept in human and wildlife epidemiology (Peel et al., 2014)

and now being broadly used as a general term for any population threshold for disease per-

sistence (Lloyd-Smith et al., 2005), it is difficult of operationalize (Viana et al., 2014). The

concept of CCS is unable to capture some epidemiological characteristics, like connectedness

of subpopulations and the terms ‘fade-out’ and ‘major’ are vague in the classical definition

(Mancy, 2015). CCS also provides no information about the distribution around persistence

probabilities, since typically a 50% probability of pathogen persistence is used to estimate the

population size (Mancy, 2015). Finally, it is problematic to estimate CCS by definition, as

it requires several instances of fade-out in communities of different sizes, which are unlikely

to occur within the time frame of a study.

Nasell published a series of papers estimating the mean time to extinction using different

compartment models (N̊asell, 1999, 2002) and derived analytic expressions for the quasi-

stationary distribution. In more recent work (N̊asell, 2005), CCS was defined as “that value

of N for which the probability of extinction after waiting for one quasi-period T0 equals 0.5”,

where quasi-period refers to the length of time between two local maxima. The waiting time

in Bartlett’s work starts after a major epidemic Bartlett (1957). In contrast to Bartlett,

the waiting time in N̊asell (2005) starts from an initial distribution which is approximately

quasi-stationary. This indicates that the Nasell’s approach is suitable for studying persis-

tence thresholds when the disease is endemic in the population. By using the definition of

persistence threshold presented in N̊asell (2005) and making some additional assumptions,

the CCS can be derived as a function of R0 (N̊asell, 2005).

For vector-borne diseases, the concepts of persistence thresholds and CCS remain relatively

unexplored (Swinton et al., 2002) and only a few studies address persistence and extinction

in host-vector systems [e.g. (Deredec and Courchamp, 2003),(Lloyd et al., 2007) and (De

55



3.3 INTRODUCTION TO STOCHASTIC MODELS

Castro and Bolker, 2004)]. The effect of spatial heterogeneity for dengue is considered in (de

Castro Medeiros et al., 2011) with a stochastic cellular automata model in a meta-population.

Results suggest that the low transmission rates of the virus with connected localized human

population structure can help sustain the virus for extended periods, even with a moderate

vector-to-host ratio. de Castro Medeiros et al. (2011) modified the previous findings which

states that dengue virus can be maintained by low house-indices (number of larvae or pupae

per house) (Newton and Reiter, 1992). Adams and Boots (2010) used mathematical models

for observing the effect of transovarial transmission on the persistence of dengue. Their model

shows that the rates of vertical transmission required for the maintenance of dengue virus in

inter-epidemic periods need to be higher than reported by the laboratory and field studies.

In contrast to most of the systems studied for CCS, infection in host-vector settings is mainly

transmitted between host and vector populations and usually there is no direct host-to-

host transmission. This induces a paired distribution of disease, where number of infected

individuals in the two populations are correlated to each other. Moreover, as demographic

turnover of the host and vector vary with the infectious and recovery rates, dynamics of such

systems can be quite sensitive to the parameter values and their combinations. Identifying

the determinants of pathogen persistence in host-vector systems is a difficult but important

problem. Proper understanding of persistence can lead to better understanding of extinction

dynamics for many host-vector disease and, as a result, to interventions and control.

3.3 Introduction to stochastic models

In contrast to deterministic solutions, stochastic models produce a range of outcomes as

the infection and recovery of individuals varies randomly. As a result, model realizations

follow different trajectories with different repetitions even with the same parameter values

and initial conditions. Since the population size can only take integer values, stochastic

disease extinction may occur even if the basic reproductive number R0 is greater than 1, as a

sequence of random events can drive the infection to zero; for example, too many individuals

can recover before transmitting the disease to any susceptible.

This class of models is used to investigate stochastic fade-out and extinction of disease in

a population, which is not possible in deterministic settings as infective numbers can drop

to extremely low values (<< 1) in the inter-epidemic trough, only to bounce back showing

artificial persistence of the disease. As mentioned by Lloyd, pathogen persistence is most

naturally studied in an event-driven stochastic systems (Lloyd, 2001). These features of

stochastic models are useful; in particular for ecologists and epidemiologists for policy making
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where elimination and eradication of a pathogen is of interest.

3.4 Introduction to sensitivity analysis

The results obtained from mechanistic models face a main source of uncertainty which is re-

lated to the assumed parameter values in the model. The parameter values may not represent

the exact phenomena or process which gives the observed output, introducing variability in

the model’s prediction of resulting dynamics. The statistical inference from mechanistic mod-

els in disease dynamics is sometimes very complicated as the model fits lack the information

necessary to quantify the influence of individual parameters. In dynamical systems, learning

about the influence of the parameters on a model’s behaviour is of much interest. This re-

quires measuring a quantitative relationship between the dependence of model’s output and

changing parameter values.

The sensitivity S of outcome φ to the value of parameter θ is the partial rate of change in φ

with respect to θ, while holding all other parameters constant:

S =
∂φ

∂θ
.

Parameters have different units, so it is preferable to employ the proportional response to a

proportional perturbation, formally known as elasticity. The elasticity E of outcome φ to the

value of parameter θ is

E =
θ

φ

∂φ

∂θ
=
∂ log φ

∂ log θ
.

In modelling infectious diseases, sensitivity and elasticity analyses can be used for under-

standing the relative importance of different mechanisms in generating observed patterns

and identifying the core parameters. Results from this type of analysis help planning the

measurement of parameters that are most influential and targeted for intervention and pol-

icy making. In addition, sensitivity analysis can help reduce the parameter space of complex

models (Marino et al., 2008). As a result, only the most important parameters are considered

that also helps reducing the cost of surveys and field studies.

3.5 Models and methods

This section provides an overview of the models used and the methodology employed during

the rest of the study. Structured in three sub-sections, it opens with an introduction to the

57



3.5 MODELS AND METHODS

stochastic versions of RMSIR and RMSEIR. A brief description of the tau-leap algorithm

and detail of the initial conditions of the simulations constitutes the second part. Finally, the

last section is dedicated to a concise outline of the techniques used for the sensitivity analysis

of the parameters and the Partial Rank Correlation Coefficients (PRCC) technique. Details

related to the tau-leap algorithm, sensitivity analysis and PRCC are discussed in detail in

the appendices (B.1, B.3 and B.4) respectively.

3.5.1 Stochastic version of Ross-Macdonald models

In the following, a simple host-vector model RMSIR, (SIR in hosts and SI in vectors) is used

as a framework for investigating the persistence of a pathogen. The model is parametrized

for dengue, although it is acknowledged that it is a very simple approximation of the com-

plicated process which governs dengue dynamics. It is anticipated that a simple model helps

uncovering the determinants of CCS in host-vector system. The work is further extended to

a model with the inclusion of the latent class in both populations, here termed as RMSEIR.

This is done for two different reasons, the first being that dengue disease has a period of

incubation in hosts and vectors and the second being that the SIR and SEIR models are

the most commonly investigated models in epidemiology for directly transmitted diseases and

their treatment in host-vector systems is an interesting problem in its own right. Table 3.1

shows the parameters and their interpretation used in both models.

Symbol Explanation Value used

α Vector-to-host transmission rate, days−1 0.1

β Host-to-vector transmission rate, days−1 0.075
1
ξ Average infectious period in hosts, days 7

Λ, γ Birth / death rate of hosts, days−1 4.215× 10−5

1
σ Average latent period in hosts, days 5

δ Birth / mortality rate of vectors, days−1 0.125
1
ρ Average latent period in vectors, days 8

Table 3.1: Parameters used in the models. Here the average birth rate Λ of hosts is equal to

the average death rate γ. The average host life expectancy is set to 1
65 years, which is expressed

in days−1 in the model. The parameters representing the latent periods in host and vectors are

used only in RMSEIR.

The deterministic rates are replaced by transition rates in the stochastic version of RMSIR

and RMSEIR. Transition rates affect the number of individuals entering or leaving the com-

partments. The durations of latency and infection follow an exponential distribution which

means that there is no ‘typical’ duration of these events. In other words, a few individuals
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Event Effect Transition Rate

Host :

(i) Birth of susceptible host Sh ↑ ΛH

(ii) Infection of susceptible host Sh ↓ & Ih ↑ αIvSh/H

(iii) Recovery of infected host Ih ↓ & Rh ↑ ξIh

(iv) Natural death of a host Sh ↓, Ih ↓, Rh ↓ γSh, γIh, γRh

Vector :

(i) Birth of susceptible vector Sv ↑ δV

(ii) Infection of susceptible vector Sv ↓ & Iv ↑ βSvIh/H

(iii) Death of a vector Sv ↓ & Iv ↓ δSv, δIv

Table 3.2: The events in the stochastic RMSIR model are shown as stochastic transition rates.

Here the subscript h denotes host population and v denotes vector population. The direction of

the arrow in second column ‘Effect’ denotes either addition or subtraction of an individual to and

from a compartment.

can remain in these states for a very long time, whereas most of them remains in these states

for a shorter time. The exponential distribution is chosen for mathematical convenience be-

cause of its ‘memory-less’ property. The current state of the stochastic system is system

is fully defined by the number of individuals present in each state and information of past

events in not considered. Stochastic events are summarized in Tables 3.2 and 3.3. Births

and deaths in both populations are considered as distinct events which results in the random

walk fluctuation in the total population sizes H and V.

3.5.2 Tau-leap method

There are different methods for finding the solution of the models described in section 3.5.1,

ranging from symbolic procedures, numerical techniques or estimation of the symbolic solu-

tion using mathematical approximations. Mostly, the choice of method is influenced by the

complexity of the reactions and size of the state-space (Érdi and Lente, 2014). Generally

host-vector systems are inherently complex in structure and CCS estimation requires dealing

with large population sizes. Analytic solutions to problems of these types are hard to find,

and event-driven stochastic simulation is probably the most natural way to study persistence

in these system. The solution of the stochastic systems shown above therefore is sought using

Monte-Carlo simulations. The Gillespie Algorithm (Gillespie, 1977) is one of the widely used

Stochastic Simulation Algorithms (SSA) and is used in finding accurate solutions to many

ecological problems, especially related to population dynamics. The only drawback of the

Gillespie Algorithm is that as population size and number of events increases, the time to

next event gets smaller and event selection becomes slower; hence the algorithm requires
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Event Effect Transition Rate

Host :

(i) Birth of susceptible host Sh ↑ ΛH

(ii) Exposure of susceptible host Sh ↓ & Eh ↑ αIvSh/H

(iii) Infection of exposed host Eh ↓ & Ih ↑ σEh

(iv) Recovery of infected host Ih ↓ & Rh ↑ ξIh

(v) Natural death of a host Sh ↓, Eh ↓, Ih ↓, Rh ↓ γSh, γEh, γIh, γRh

Vector :

(i) Birth of a susceptible vector Sv ↑ δV

(ii) Exposure of susceptible vector Sv ↓ & Ev ↑ βSvIh/H

(iii) Infection of exposed vector Ev ↓ & Iv ↑ ρEv

(iv) Death of a vector Sv ↓, Ev ↓, Iv ↓ δSv, δEv, δIv

Table 3.3: The events in stochastic RMSEIR are shown as stochastic transition rates. All the

parameters are same as in Table 3.2 except for σ and ρ which define the duration an individual

spends in the exposed class for host and vectors respectively.

extensive computational resources.

A computationally attractive but approximate method is proposed by (Cao et al., 2006),

which is known as the tau-leap approximation method. Tau-leap approximations make use

of the cumulative rate of change in the population: if the rate of change is low, the algo-

rithm ‘leaps’ through many states, hence speeding up the simulations. Two types of leap

approximations, fixed tau-leap (Cao et al., 2006) and adaptive tau-leap (Cao et al., 2007)

are available and most of the results were obtained by using the adaptive tau-leap due to its

faster simulation times. In adaptive tau-leap, the error control parameter ε is used to bound

the relative change in each compartment. This parameter should be set by taking into ac-

count the highest order of the reaction (loosely speaking, the order of a reaction is determined

by counting the number of variables involved in all products in the differential equation for

the system, and selecting the maximum of those). In both models, highest order rates were

αIvSh/H and βSvIh/H having order 2 therefore ε should be less than 1
2 (see derivation in

B.2). In the simulations, ε was set to 0.01 to avoid any computational discrepancies. All

simulation experiments in the coming sections were carried out by using one of the tau-leap

approximations. The computational scheme for the tau-leap method is given in Appendix

B.1.
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3.5.3 Estimation of CCS

The stochastic simulations were started from deterministic steady state values in each com-

partment, representing the deterministic analogue of the quasi-stationary distribution, and

were allowed to run for twenty-five years. Two hundred repeated simulations were performed

for estimating CCS. The host population was started form one hundred thousand individuals

and then from 0.25 to 1.5 million individuals with intervals of 0.25 million as shown in Figures

3.1 and 3.2. The vector population V varied from one million to fifteen million individuals in

the intervals of one million. The R0 = c× V
H varied with respect to the vector-to-host ratio

for both models. The proportion of runs which retained infection after twenty-five years,

out of 200 stochastic repetitions, was used to estimate the probability of extinction P (E) for

the population size. CCS was selected as the population size (H) for which the H − V pair

yielded P (E) = 0.5.

3.5.4 Sensitivity analysis

Two methods were used to investigate the relationship between CCS and parameter values.

These were Latin Hypercube Sampling (LHS) and estimating the Partial Rank Correlation

Coefficients (PRCC) for each parameter and CCS. The next sub-sections provide an overview

of both techniques.

The parameters of the model were sampled using LHS [see B.3 for details of the process].

The relationship between each parameter and CCS was plotted in monotonicity plots which

were made as follows: (i) setting all the parameter values at the centre of the hypercube at

their baseline values, (ii) then a parameter is chosen and the relationship between CCS and

that parameter is explored by varying it from its minimum value to its maximum value while

the remaining parameters remain constant (local sensitivity analysis).

Although the monotonicity plots provide information about the parameters having a strong

effect on the response variable, they do not provide precise details of the strength of the

relationship between the response and individual explanatory variable. Partial Rank Cor-

relation Coefficients (PRCC) methodology is a non-parametric method used with LHS for

this purpose [Blower and Dowlatabadi (1994), Blower et al. (1991) and Sanchez, M. A., &

Blower (1997)] where statistics are applied on the ranks of the data rather than on data

values. In the PRCC method, first we choose a parameter of the model. Then two regression

models are constructed, one having that parameter as a response and other having CCS as a

response variable. Remaining parameters as explanatory variables in both regression models.
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Pearson’s correlation coefficient is calculated on residuals from both models to obtain PRCC.

Further details of this method are given in appendix B.4.

In addition to estimating the affect of individual parameters on CCS, a functional form of

CCS in terms of the parameters of the models was undertaken. To identify the determinants

of CCS, the data from the LHS design was used for the construction of general linear models.

Two different parameter types are considered as potential explanatory variables, viz., (i)

primary parameters comprises α, β, ξ, δ,Λ & γ, (σ & ρ in addition for RMSEIR) and (ii)

secondary parameters, R0, R
V H
0 , RHV0 , S∗h, I

∗
h, R

∗
h, S

∗
v , I
∗
v , N and λ. All secondary parameters

were simple algebraic combinations of primary parameters.

3.6 Results

This section reports the important findings in this chapter. First, the results of CCS for

baseline values of the parameters are reported followed by sensitivity analysis where the

impact of parameter variability on the CCS is explored. Through the following sub-sections,

the results for RMSIR and RMSEIR are reported simultaneously for a better comparison

between these models.

3.6.1 CCS for Ross-Macdonald models

The baseline parameters for both models described in Sections 2.2 and 2.3 are used to find

CCS. CCS is defined as the minimum host population size for which half of the stochastic

simulations still retain either infected hosts or vectors after twenty-five years. Figure 3.1 and

3.2 shows the variation of R0 and CCS for the baseline parameters in RMSIR and RMSEIR

respectively. Comparing the top heat maps in both figures shows that the range of values

of R0 are lesser in RMSEIR. This is due to the fact that the formula of R0 for RMSEIR

has two additional terms, σ
σ+γ and ρ

ρ+δ as shown in equation 4.2. The first term is almost

unity as the value of γ is very small, whereas ρ
ρ+δ = 1

2 . This leads to smaller values of R0

for RMSEIR as compared to RMSIR for same H − V pairs and twice as many vectors are

required in RMSEIR to have the same value of R0.

The bottom heat maps in both Figures 3.1 and 3.2 denotes the change in CCS with respect

to the H − V pair. The H − V pair that result the value of R0 ≤ 1 leads to 100% proba-

bility of extinction as the stochastic simulations are started from the deterministic endemic

equilibrium. In Figure 3.1, CCS was not found when the host population H was one hundred
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Figure 3.1: Heat maps showing the basic reproductive number R0 (top) and probability of

extinction P (E) (bottom) of dengue for different host and vector population sizes in RMSIR

over twenty-five years. Simulations were started at deterministic endemic equilibrium and were

repeated two hundred times. Host population size (H) was initially 1 × 105, then 2.5 × 105

and then it was increased in intervals of 2.5 × 105 till it reached 1.5 million individuals. The

vector population V was initially one million and was increased in intervals of one million till

fifteen million individuals. As R0 = c × V
H , the vector-to-host ratio V

H was altered according to

the H − V pair. CCS was defined as the population at which half of the stochastic simulations

still retained either infected hosts or vectors after twenty-five years. Constant parameters were

α = 0.1, β = 0.075, ξ = 1
7 , δ = 1

8 , and Λ = γ = 4.5× 10−5.

thousand individuals. At 250,000 hosts, fifteen million vectors are required to attain CCS. At

small host populations, the number of individuals in the infected compartment Ih are very

low that leads to extinction of disease in the hosts. For five hundred thousand to one million

hosts, the number of vectors require to attain CCS become smaller. Finally, they remain
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Figure 3.2: Heat maps showing the R0 and P (E) of dengue for different host population sizes

in RMSEIR. The detail and description are same as in Figure 3.1. The additional parameters

are σ = 1
5 and ρ = 1

8 .

fixed at nearly eight million vectors for one million to one and half million hosts.

A different pattern of attaining CCS is observed in Figure 3.2. The vector population required

to attain CCS is initially fifteen million vectors for one hundred thousand hosts, then decreases

to twelve and nine million for 250,000 and half million hosts respectively. The reason for initial

decrease in number of vectors is explained in the previous paragraph. After half million hosts

there are enough infectious and infected agents to sustain the disease in the population and

attaining CCS needs more vectors as the host population increases. It is clear that the higher

value of H decreases persistence since H is inversely related to the R0. In comparison to

RMSIR, the inclusion of infectious class Ev supported the dengue persistence in RMSEIR.

The inclusion of latent classes markedly changes the persistence pattern of the disease as the
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disease stayed for longer in both populations.

3.6.2 Results of sensitivity analysis
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Figure 3.3: Monotonicity plots showing the relation of all parameters with CCS in RMSIR.

The values of CCS shown at y − axes of all plots are in millions of hosts. These plots were

made by setting all the parameter values at the centre of the hypercube. Each figure is made

by varying a parameter from its minimum to maximum value in nine intervals, a change of 25%

in the parameter value for one interval. The centre of the hypercube is near to the base-values

shown in Table 3.4. The value R0 at the right-hand y-axis is the squared value for the basic

reproductive number.

The minimum, base line and the maximum values of all parameters are given in Table 3.4 and

the monotonicity plots for parameters in both models are shown in Figures 3.3 and 3.4. These

plots unveiled the relation between CCS and individual parameters. The average transmission

rates (α and β) are inversely related to CCS, showing that increased transmission lowers the

persistence threshold, provided that there is no susceptible bottleneck.
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Figure 3.4: Monotonicity plots showing the relation of all parameters with CCS in RMSEIR.

The values of CCS shown at y − axes of all plots are in hundred thousands hosts. The rate of

exposure in host population IIP, σ have very little effect over CCS whereas the effect of EIP, ρ is

obvious. The rest of the description is same as in Figure 3.3.

On the other hand, the average clearance rate of hosts (ξ) and average birth / death rate of

vectors (δ) increased the CCS so if hosts are recovering quickly this will decrease persistence.

The change in basic reproductive number (R0) with respect to the parameters is also shown

in the monotonicity plots. In both figures, the birth death rate of humans has least effect on

CCS and R0 and in Figure 3.4, the incubation rate of hosts (σ) has very little effect over the

CCS and R0. In the same figure, the incubation rate of vectors (ρ) has a significant effect

on CCS. The first and last plot which shows the variation of CCS with respect to α and ρ

do not have CCS at the minimum value as R0 was less than 1 at αmin and ρmin. The CCS

either increases into unrealistically large values or R0 falls below 1 in monotonicity plots at

the lowest values of transmission rates. The same is also observed for very large duration of

incubation period in vectors.

The relationship between CCS and R0 with change in parameter values is further explored in

Figure 3.5. This figure is divided into two columns. The first column shows the relationship of
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CCS and R0 with the parameters of RMSIR whereas the second column is for the parameters

of RMSEIR. Similar to Figures 3.3 and 3.4, the values R0 at the x-axis are the squared

values for the basic reproductive number. The effect of γ and σ over R0 is very low in both

models, therefore they are plotted separately at the bottom. Therefore, the plots in the

first row denotes the parameters having the most effect. It is interesting to note that CCS

behaves almost asymptotically at the extreme values of R0 in all cases. The explanation of

this behaviour can be easily understood at both cases. If the variability in any parameter

results value of R0 near one, then larger population size is needed for the persistence of the

disease in both models. In other words, the ratio V
H needs to be bigger. On the other hand,

values of CCS obtained by using the parameter combination that resulted large enough R0

are relatively less changed. Therefore, except for ξ and δ in RMSIR, the values of R0 greater

than
√

3 produces a small change in CCS value that is constant at nearly 20 × 106 hosts.

Even for ξ and δ, the higher values of R0 reveals the same pattern at lower value of CCS.

This pattern is more pronounced in parameters of RMSEIR where CCS is less than 1 × 106

individuals for all parameters at values of R0 greater than
√

3.5.

3.6.3 Linear models of CCS using primary and secondary parameters

In the next section the results of the models based on primary and secondary parameter sets

is presented. The model selection criteria in the primary model is based upon the following

factors (i) the Akaike information criterion with correction for finite sample size (AICc) and

(ii) the proportion of variation explained by the model, determined by the R2 value. In

the models developed using the secondary and combination of both parameters, the second

criteria along with F − ratio is used. Where possible, the linear models using the secondary

predictors are chosen on the basis of the availability of the data related to the parameters.

The main idea behind this approach is to identify models containing explanatory variables

that can be easily measured or estimated in the real-world. Therefore, the best model also

has the advantage that the data of its explanatory variables is easier to gather from the field.

3.6.3.1 Predicting CCS on the basis of primary parameters

Among the primary variables, it was found that birth and death rate of hosts have least

effect on the dynamics of CCS, so they are not included in any of the selected models as

a main effect. As the primary variables were all independently sampled from a uniform

distribution, they have very low correlation values among them. In all of the models, the

average clearance rate of host ξ and birth / death and infectious rate of vector, δ explain
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Figure 3.5: The relationship between CCS and R0 explored using the parameters of the models.

The left columns shows this relation for the parameters of RMSIR whereas the right column is

for RMSEIR. The parameters having the most effect on the CCS and R0 are mentioned in the

top row of the figure. The bottom row is dedicated for the parameters having the least effect on

CCS and R0. The rest of the description is same as in Figures 3.3 and 3.4.

most of the variation in CCS (see Figure 3.6). The values which correspond to lower disease

transmission rates α and β, faster clearance ξ and death rate of vectors δ, required larger

populations to maintain the disease. The percentage variance explained was 60% with AICc

value of 3304 and 57 % with AICc value of 3049 for RMSIR and RMSEIR respectively. As

expected, both models performed badly at predicting extreme values of CCS, especially at the

low values where model predicted negative values of CCS. The residuals from both models
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RMSIR RMSEIR

Parameter Minimum Baseline Maximum PRCC (r) p-value PRCC (r) p-value

α 0.05 0.1 0.16 -0.725 < 10−10 -0.773 < 10−10

β 0.05 0.075 0.12 -0.704 < 10−10 -0.724 < 10−10

ξ 0.11 0.1428 0.25 0.862 < 10−10 0.841 < 10−10

δ 0.09 0.125 0.20 0.845 < 10−10 0.897 < 10−10

γ 3.91× 10−5 4.215× 10−5 5.47× 10−5 -0.159 0.1241 -0.3865 0.00013

σ 0.10 0.2 0.33 ˙ ˙ 0.314 0.0022

ρ 0.03 0.125 0.20 ˙ ˙ -0.699 < 10−10

Table 3.4: Values of the parameters used in Latin Hypercube Sampling for RMSIR and RMSEIR

models. Baseline parameter values are presented in third column. A total of a hundred parameter

samples were generated. PRCC results of each parameter along with its p-value are shown. The

last two parameters, σ and ρ were used only in RMSEIR.

showed fairly normal behaviour by applying standard diagnostic tests. The details of the

models for CCS using least squares estimation are given in Table 3.5:

RMSIR RMSEIR

Variable Value Value

Intercept −9.528× 106 8.774× 105

α −3.826× 107 −1.488× 107

β −6.322× 107 −2.491× 107

ξ 6.816× 107 1.696× 107

δ 7.782× 107 2.312× 107

σ - 4.118× 106

ρ - −7.755× 106

γ - -3.898× 1010

Table 3.5: The values of the coefficients of the linear models for RMSIR and RMSEIR using

primary parameters.

3.6.3.2 Predicting CCS on the basis of Secondary parameters

This section provides an overview of the determinants of CCS by using secondary predictors.

As discussed previously, those parameters arose as a result of algebraic manipulation of

primary predictors. The main secondary predictors which were tested as the determinants of

CCS were R0, N = R0
R0−1 and R∗h. The next subsections presents the linear models constructed

on the basis of the above secondary parameters.
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Figure 3.6: Determinants of CCS over twenty-five years using primary variables. Top: baseline

model RMSIR and bottom: Model with latent periods. The key determinants were found to be

the birth / death rate (δ) of vectors and the recovery rate of hosts (ξ). As the vector remains

sick for the rest of its life, (δ) accounts for the average infectious period of the insect as well.

Transmission rates (α & β) and the average incubation rates (σ & ρ) have relatively lower impact

on persistence. In the top figure, the model explains 60% of the variance in CCS and 57 %

variance is explained in the bottom plot.
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3.6.3.3 Relation between CCS and R0

As defined in Chapter 2 Sections 2.2.1 and 2.3, the basic reproductive ratio R0 is an important

epidemiological parameter, which represents the numbers of susceptible cases that arise in

a completely susceptible population caused by a single infected individual over the duration

of its infectiousness. In this manner, R0 gives insight about the next generation of infection

propagation during the early stages of an epidemic. In the deterministic setting, intervention

and control of a disease typically aims to reduce R0 (or strictly speaking, effective R0 that

is called Reff and Reff = R0 × Sh ) less than one causing the endemic equilibrium to

become unstable and resulting in the eradication of the pathogen from the population. In

heterogeneous populations, multiple reproductive ratios exist, one for the host and one for

the vector. In Figure 3.7, the association between CCS and R0 is shown. The sampling data

is arranged from high R0 values to low values. The plot shows an important finding that

CCS behaves asymptotically with R0 which is in agreement to the pattern seen in Figure

3.5. Provided there are enough susceptible individuals for disease to flourish, high values of

R0, above R0 = 5 did not cause a considerable change in CCS. Similarly, the values slightly

above R0 = 1 required unrealistically large population sizes for disease to persist. The inset

figures shows plots of RHV0 and RV H0 , where the former included the term V
H in the numerator

which scales it up as compared to the latter reproductive ratio. The inset also compares the

reproductive ratios in both models used in the simulation experiments. The inset plots are

made by arranging the sampling data of R0, RHV0 and RV H0 from high to low values. These

plots make sure that the parameter spaces generated from the LHS experiment, have a similar

range of basic reproductive ratios for better comparison in both models.

3.6.3.4 Predicting CCS on the basis of N = R0
R0−1

N̊asell (2005) provides a foundation for deriving critical community size for childhood in-

fections. One of the measures of CCS derived was the population size for which the mean

time to extinction from quasi-stationarity is equal to K
γ years, where K is a dimension-

less scaling parameter and γ is the birth and death rate of hosts. Then he used the rela-

tion between expected time to extinction, starting from the quasi-stationary distribution,

and population size at which the pathogen become extinct to derive the following equation:

Ncrit = η2K R0
R0−1 ;R0 > 1 where Ncrit is the CCS as defined above and η is the ratio between

average lifespan and the average duration of infection.

This relation suggests that CCS is a function of R0 for childhood diseases. It is worth

investigating whether this formula holds for CCS in host vector systems. In the current
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Figure 3.7: Relation between the basic reproductive ratio R0 and CCS in both models. The

top figure represents the relationship for RMSIR and bottom figure denotes the relationship for

RMSEIR. In both models, the basic reproductive number has an asymptotic relation with CCS,

showing very little change in CCS population size at high values of R0. Insets in both figures

show the relation between R0, RHV0 and RV H0 , ranked from highest value of R0 to the lowest.

work, the ratio R0
R0−1 is denoted by the variable N . The difference between Nasell’s work and

the current work is that Nasell started the simulations from the quasi-stationary distribution

whereas deterministic equilibrium points are used as the starting condition in the current

work. It is assumed that the quasi-stationary state is quickly achieved during the simulations.

For both RMSIR and RMSEIR, the variable N predicts CCS well. For RMSIR, the linear

model is found as CCS = 2×106N−2.25×106, and 90 % variance is explained by N whereas

CCS = 5.6×105N−3.8×105 and 87% variance is explained by N for RMSEIR. The intercept

in both models were negative, which were not of interest as the basic reproductive number

was greater than 1 in all the simulations and the limiting behaviour of N resulted in N → 1.
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Figure 3.8: The relation between N and CCS in RMSIR (top) and RMSEIR (bottom). N

explained 90 % and 87.6 % variation for CCS respectively. Both plots show evidence that CCS

can be approximated by using the basic reproductive ratio.

The plots of N and CCS for both models are shown in Figure 3.8.

3.6.3.5 Predicting CCS as a combination of primary and secondary parameters

In this section, the prediction of CCS is attempted by using a combination of both primary

and secondary predictors. In order to make prediction better, several parameter combinations

were attempted on the basis of criteria defined in section 3.6.3. The goal was to obtain a set

of predictors measurable in the field and which explains the maximum variance in modelling

CCS. The main models considered are shown in Table 3.6.

In Table 3.6, the initial seroprevalence proportion of hosts R∗h, at the deterministic endemic

equilibrium is an important predictor for both models. For RMSIR, including transmission
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Model Parameters R2 Pr(>F)

RMSIR

(i) λ, α, β 60.00 < 10−16, 9× 10−5, 4.7× 10−4

(ii) R∗ 63.10 < 10−16

(iii) R∗, RV H0 , β 70.14 < 10−16, < 10−16, 2.6× 10−5

(iv) R∗, RHV0 , α 73.00 < 10−16, < 10−16, 1.3× 10−5

RMSEIR

(i) R∗ 62.78 < 10−16

(ii) R∗, α, σ, ρ 72.14 < 10−16, 2.8× 10−3, 6.3× 10−4, 2.0× 10−3

(iii) N, σ, ξ 91.70 < 10−16, 4.4× 10−6, 5.8× 10−6

Table 3.6: Models to predict CCS on the basis of secondary predictors. Models are presented in

ascending order in the context of better fit to the data. The last column shows the significance

of each predictor.

parameters also improved the fit of the model. The average incubation period and average

infectious duration of host were important predictors for persistence.

3.7 Conclusion and discussion

The current study uses a new combination of techniques to construct modelling frameworks

for (i) estimating persistence thresholds and (ii) identifying the determinants of this per-

sistence threshold in the host-vector framework. These two goals were met by using two

epidemiological models that were parametrized for dengue and investigated for long term

persistence using a stochastic framework. The concept of CCS is used to relate the host

population size with the extinction probability of pathogen. For achieving (i), stochastic

simulations were started at deterministic endemic state of the modelling systems, hereby re-

placing the quasi-stationary distribution that is an analogue of the steady state in stochastic

settings. It was assumed that the simulations fall quickly into the quasi-stationary state.

Host population size, and corresponding vector population sizes were increased until 50% of

the simulations retained infection after twenty-five years. CCS for RMSIR and RMSEIR was

investigated for different H − V pairs. To identify the determinants of CCS, i.e., goal (ii),

parameter sensitivity and determinants of CCS were explored by constructing a LHS design

and fitting linear models with primary and secondary parameters a independent variables.

The main determinants of CCS were R0, N , δ, ξ, α, β and σ (description of parameters is in

Table 3.1).

This study focuses on long term persistence dynamics, which requires a sufficient number

of susceptible hosts at the start of the simulations. Under the current parameter settings,
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this is achieved by setting low values of bite rate and probability of transmission. The time

scale of demographic turn-over of hosts is very slow as compared to vectors and increased

transmission probability leads to a very high seroprevalence (∼90% recovered hosts). This

resulted in rapid extinction of disease in the host population and consequent extinction in

the vector population. Linear modelling using primary predictors shows that the low values

of average transmission rates α and β have a smaller effect on long term persistence then

average clearance rate of hosts, ξ and average birth / death rate in vectors, δ (see Figure

3.6). Transovarial routes of transmission in vectors are not considered here, mainly because

of low evidence for the efficacy of pathogen transmission by these routes or contrast between

the parameter values obtained between the field studies and laboratory measures (Adams

and Boots, 2010). Moreover, the significance of vertical transmission in vectors for disease

maintenance during inter-epidemic periods is not well understood (WHO, 2009).

In this study, the CCS is defined as the minimum host population size for which half of

the stochastic simulations still retain either infected hosts or vectors after twenty-five years.

In the literature, there is no exact value of the time required for the population to attain

CCS. In our case, it is taken to be twenty-five years as the dynamics and ecology of both

populations may change a lot at longer time periods. For example, the assumption of constant

host population fails to hold. As it is mentioned that the simulations fall quickly into the

quasi-stationary state (results not reported in this study), the time-limit of twenty-five year

seems a sensible trade-off between the time required to attain the quasi-stationary state of

the system and the computational time required for the experiment to finish.

The results of PRCC are shown in Table 3.4. The correlation values agrees with the behaviour

seen in the monotonicity plots and gave numerical values of the relationship between CCS

and parameters of the models. In both models, the birth and death rate of hosts (γ) has a

very little affect on CCS as the length of the simulations time was ∼ 40% of 1
γ . In Figure 3.4,

the human incubation rate σ has very low effect. The low correlation value between CCS and

σ in Table 3.4 suggests that it is not efficient to include exposed class in hosts. This helps

decreasing the complexity of the model representing the host-vector system. The influence of

the latent period in the vector population ρ, is shown in 3.4, making it a significant addition

in RMSEIR. Based on the above discussion, a model having a exposed class in vectors is

preferable in modelling long-term pathogen persistence than RMSIR model.

The equations of infectious individuals in equation sets 2.1 and 2.2 for RMSIR represent the

number of new infections created per unit time. If, at any time, these rates of change become

negative, then the infection will begin to decrease in both populations. In the simulations,

the infectious populations shows strong positive correlation in hosts and vectors: decline in
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one leads to reduced numbers in other. In order to make the rate of change of infectious

hosts and vectors negative, the following inequalities must hold:

Ih <
αIv
ξ + γ

[
Sh
H

]
Iv <

βSv
δ

[
Ih
H

] (3.1)

Investigating dIh
dt in 2.1 and dIv

dt in 2.2 reveals that this can be obtained as follows:

– By reducing α and β to create a transmission bottleneck.

– By reducing Sh and Sv in the populations.

– By increasing the death rate δ of infectious vectors.

– By increasing the infectious clearance rate ξ in hosts.

Reducing the rates σ and ρ in RMSEIR increases the time it take for a susceptible individual

to become infectious. Including the incubation period resulted major decrease in the number

of hosts required for the persistence of pathogens, but has relatively low effect on CCS from

the perspective of the vector population. So far there is either no vaccine developed for

dengue or the vaccine efficiency is not confirmed (Mahalingam et al., 2013). In this context,

minimizing the likelihood of contact between susceptible and infectious populations is one of

the plausible control strategies. In infectious diseases, shortening the infection clearance rate

of hosts ξ corresponds to administrating anti-viral drugs and reducing the virus load in the

blood. The next three sections consider each of these options in a realistic manner in the

context of vector control efforts.

As described earlier, the terms α and β consist of the bite rate of the vector times the

probability of transmission. Due to the assumption of non-seasonality, the bite rate is con-

stant through time. The easiest way to reduce α and β is to reduce the the probability of

transmission from the bite of the vector. This includes vaccinating the susceptible propor-

tion of hosts, rapid treatment and quarantining of infected hosts around 5-7 days (e.g. by

encouraging them to work from home thus restricting their movement, so they cannot get

bitten). As both α and β appear in the numerator of the population level basic reproductive

ratios, RV H0 and RHV0 respectively, they can be used to reduce the values of these reproduc-

tive numbers below unity. Nonetheless, RHV0 is easier to minimize by quarantining infectious

hosts.

So far, eradication and control efforts of many mosquito-borne infectious diseases are centred

upon the reduction in the mosquito population. Vector control programs aim to reduce the

76



3.7 CONCLUSION AND DISCUSSION

number of older mosquitoes, as modelling results in Brownstein et al. (2003) showed that

more than half of the population of thirty days older Ae. aegypti are capable of transmitting

dengue, although the population proportion in this age class is very small. In McMeniman

et al. (2009), experiments suggested the introduction of Wolbachia reduces the life span of Ae.

aegypti by 50%, making it a viable vector control strategy. Targeting the older population

does not only target the infectious proportion of mosquitoes, but also puts a lower selection

pressure on the population. In equations for the basic reproductive ratios of RMSIR and

RMSEIR , i.e., equations 2.3 and 4.2, killing older mosquitoes will result in the reduction of

RV H0 , as the vector birth / death rate appears in the denominator of the expression. This

means that the vector population has more young mosquitoes but they die early, interrupting

the transmission cycle.

The effect of varying δ is obvious in monotonicity plots shown in Figures 3.3 and 3.4 and it

has one of the highest correlations with CCS for both models in Table 3.4. In the context

of dengue, controlling Ae. aegypti and Ae. albopictus populations also reduces the outbreak

risks of urban yellow fever and chikungunya disease (WHO, 2014). In RMSEIR the chances

for an exposed mosquito to become infectious are ρ

(ρ+δ)
= 50%, therefore the numerical value

of RV H0 in RMSEIR is 0.5 of its value in RMSIR. In comparison, the chances of an exposed

host to become infectious are σ

(σ+γ)
≈ 100%, meaning that the value of RHV0 is roughly the

same in both models. Since both of these incubation periods are exponentially distributed

and the median of this distribution is less than the mean, most of the hosts and vectors

have incubation periods less than five and eight days respectively. The role played by these

parameters in varying CCS is evident in the monotonicity plots shown in Figure 3.4 and in

Table 3.4. The potential effect and contribution of vector control is discussed in Townson

et al. (2005). Lambrechts et al. (2009) highlighted the importance of diversification of research

priorities in multiple disciplines for vector control strategies. The authors suggested that the

focus of vector biology research to be shifted for the identification and characterization of

heterogeneities related to the real-world pathogen-transmission system.

Although the current chapter has highlighted both qualitative and quantitative relationships

among the drivers of persistence and critical population size, these results are valid for dis-

eases which are not affected by seasonal variations. It would be interesting to see the changing

patterns of persistence dynamics in conjunction with seasonal forcing applied to the param-

eters. The next chapter will investigate the determinants of CCS with seasonal time varying

parameters. The aim will be to explore how current predictors, taken in a seasonal context

alter the persistence of pathogen in both populations.
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Modelling persistence using Ross

Macdonald dengue model with seasonality



Modelling persistence using Ross Macdon-
ald dengue model with seasonality

4.1 Introduction

Seasonality has major effects on the spread and persistence of dengue. The number of reported

cases of the dengue virus disease are clearly seasonality driven Bartley et al. (2002), mainly

because of the abundance of female mosquitoes in the rainy season. In the wet season,

when there is optimum temperature and rainfall, the mosquito population grows while the

adult population is often negligibly small in unfavourable season (dry). Therefore, more

dengue cases are reported in wet seasons as compared to dry seasons. Focks et al. (2000)

have presented the effect of temperature on dengue transmission and shown that the ideal

temperature for the transmission of dengue virus falls between 20 ◦C and 35 ◦C. Temperatures

>35 ◦C for longer periods eliminate the possibility of adult population existence as aggregate

survival of eggs, larval and pupal stages of mosquito is insufficient. In particular, temperature

and rainfall are the main drivers of mosquito population size in cities with a temperate climate

as they usually have the optimum climatic conditions required for population maintenance.

Nowadays, dengue has spread to different parts of the world. In countries with a temperate

climate and localities which are situated in the monsoon region, there is a potential risk of

dengue virus transmission during the rainy season. Human mobility has been shown to be

a major driver of dengue spread and re-introduction (Adams and Kapan, 2009). In areas

where dengue is endemic causing periodic outbreaks, estimating the probability of disease

transmission to a neighbouring naive population is an immediate need to stop the spread of the

disease. Therefore, development of a mathematical framework that predicts the probability

of an outbreak after the introduction of an infectious individual is important. Once dengue

has been introduced to a population and has gone extinct, immediate re-introduction should

be less likely because of existing seroprevalence reducing the density of susceptible humans.

An estimation of the critical susceptible density required for recurrent epidemics can lead to

better policy planning and disease control.
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A range of models studying the dynamics of dengue in humans and vectors exist in the

literature. In the early 1990s, Focks and colleagues developed detailed seasonal models to

investigate the vector population dynamics and epidemiology of dengue viruses (Focks et al.,

1993a,b). Their entomological model (CIMSiM) provided the necessary input parameters for

their corresponding dengue simulation model (DENSiM) (Focks et al., 1995), which modelled

the demographic, entomologic, serologic, and infection data for the human population in an

urban environment. Both stochastic models were used to estimate transmission thresholds

in terms of pupae per person (Focks et al., 2000), intended to assist in efforts to reduce

sources for mosquito breeding. Both CIMSiM and DENSiM models are site-specific and very

expensive because they require localized surveys for gathering human, vector and weather

data. In resource poor countries, these long-term studies are even harder as localized data

are usually not available.

Bartley et al. (2002) constructed a two-serotype model of dengue that included antibody

dependent enhancement (ADE) following multiple infection. They introduced seasonally-

varying parameters in a step-wise fashion to their two-serotype models and found a strong

impact of seasonal forcing on the prevalence of dengue disease. The results were then com-

pared to the seasonal pattern of dengue infection in Thailand. The duration of infectiousness

of the host, vector mortality, and biting rate were found to be the most influential param-

eters. Extending their work, Wearing and Rohani (2006) developed a model considering all

four serotypes of dengue. Periodic recruitment of vectors and different virulence for different

serotypes were also incorporated in their model. The authors suggest that seasonal variation

in vector demography combined with a short-lived period of cross-immunity is sufficient to

generate infection time series that correspond with the dengue infection data in Thailand. A

four-serotype model of dengue was considered by Chikaki and Ishikawa (2009) where seasonal

variation is included in (i) population dynamics of Aedes aegypti, (ii) inapparent cases that in-

fluence disease prevalence, and (iii) the influence of antibody dependent enhancement (ADE)

to model the realistic behaviour of annual cycles of dengue disease. They found that the

immunity acquired by infection during a cross-immunity period, termed ‘unnatural routes’

of infection, changes the intensity and timing of dengue epidemics.

All of these multi-serotype models are constructed using complicated compartmental struc-

tures and require detailed information for parametrisation. The work done by Focks et al.

(1995, 1993a,b) was mainly directed towards a detailed study of vector population dynamics

and dengue spread in human population. They extend their work towards vector control in

Focks et al. (2000) and estimate transmission thresholds in terms of pupae per person. In

Bartley et al. (2002), the two-serotype model was found insensitive to the degree of cross pro-

tection with second serotype. In contrast, Chikaki and Ishikawa (2009); Wearing and Rohani
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(2006) using a four serotype model found that the cross-immunity played an important role

in determining the intensity and timing of the epidemics. Although dengue modelling with

more than one serotype provide valuable information about the current and future trend of

disease, they are difficult to use for the development of a continuous surveillance system and

early detection of dengue, particularly in developing countries.

Using a fully stochastic dynamical model, Otero et al. (2006) considered the seasonal change

in all life stages of an Aedes aegypti population in a homogeneous environment. In Otero et al.

(2008), they considered the spatial population dynamics for Buenos Aires. The population

dynamics of vectors is influenced by the interaction between the patches and the availability

of breeding sites. Their models were updated in Otero and Solari (2010), where they showed

the dependence of the epidemic size on the arrival of viremic people in Buenos Aires at

different times of the year. In all of these models, seasonal variation in the vector population

is controlled by introducing two non-linear regulatory processes that prevent an explosion of

the vector population: (i) density dependent mortality of larvae; (ii) egg-hatching inhibition

by larvae. They further improved their work by including networks to represent human

mobility which is found to be the main driving force for the spread of dengue (Barmak et al.,

2011). Their work can be summarized as follows: after developing a detailed map of the

areas of potential distribution of Aedes aegypti in Buenos Aires (Otero et al., 2008, 2006),

they estimated the risk of dengue outbreaks in Buenos Aires (Barmak et al., 2011; Otero and

Solari, 2010).

In this chapter, the main goal is the development of a minimalist mathematical model that

can be used to investigate the time evolution of a single serotype of dengue dynamics in a

seasonal environment. In essence, the focus is to construct a mathematical tool for a wider

range of communities that is powerful enough to answer questions like those asked in Otero

and Solari (2010) but using a simpler structure. The model formation uses the classical

homogeneous approach in contrast to adding individual heterogeneity in the system. The

model has a seasonally dependent birth rate δb(t) for vectors, considered to be mediated by

temperature, rainfall and humidity. In the absence of primary data, the model is parametrized

using values from the available literature. The overarching research aim is to investigate the

impact of seasonality on the time evolution of dengue and whether the time evolution depends

on the introduction of infection at different times of the year. I also use the model to ask

the following questions: how the risk of an outbreak changes if the disease is introduced

in a population having pre-existing seroprevalence in humans; what are the differences in

patterns of outbreak if triggered by a viremic human or by a viremic vector; how does dengue

persistence relate to the month of introduction; and how does the time to extinction of dengue

disease relate to the peak and timings of the epidemics. Questions like these are crucial for
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the elimination and control of the disease.

The following section provides a detailed introduction to the model. The material and meth-

ods are presented in sections 4.3 and 4.4. Section 4.5 discusses the results from the determin-

istic version of the model while results from the stochastic version are shown in section4.6.

The last section is dedicated to the discussion of the results and the limitations and caveats

of the current study.

4.2 Ross-Macdonald model with seasonality, RM s
SEIR

In this section the overview of the mathematical model RM s
SEIR is given. Both deterministic

and stochastic versions of the model are used in this chapter. The introduction and the

description of symbols of the model are presented here.

Over the past seventy years, a family of different Ross-Macdonald style models have been used

to simulate and predict vector-borne diseases (Smith et al., 2012). The model presented here

RM s
SEIR is another modified version of the Ross-Macdonald framework. It is constructed

using a standard compartmental scheme whose description is as follows: the total number of

individuals is divided into hosts (humans) and vectors (mosquitoes). The host population (H)

is represented by a Susceptible-Exposed-Infected-Recovered (S E I R) compartmental model

where H = Sh+Eh+Ih+Rh. The vector population V is represented by three compartments,

a Susceptible-Exposed-Infected (S E I) model (vectors never recover from the infection) and

V = Sv+Ev+Iv. The host-vector system is described by seven ordinary differential equations

in equation set 4.1 whereas the schematic diagram is presented in Figure 4.1.

The transmission rates are defined as α and β, where α denotes the transmission rate (per day

and per vector) from an infected vector to a susceptible host and β denotes the transmission

rate (per day and per vector) from an infected host to a susceptible vector. The population-

level rate of bites that generate new dengue infection (i.e, when the infected vector bites a

susceptible member of the host population) is given by αIv

(
Sh
H

)
. The parameter ξ represents

the host recovery rate (per day). The virus incubation rate in hosts (per day) is denoted by

σ. The death rate in all host classes is γ and the birth rate Λ is equal to the death rate.

There is no effect of seasonality on the parameters related to hosts. The population of female

adult vectors ingest the dengue virus during a blood meal from the infected proportion of

hosts at rate βSv

(
Ih
H

)
. The per-capita birth rate of mosquitoes (per day), δb(t) is treated

as time-dependent and varies following the wet and the dry season. The death rate of vectors

δd and the rate of incubation ρ are kept fixed, independent of the variations in the season.
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The numerical values of the above parameters chosen, with a brief explanation about the

parameters related to the vector population, are provided in section 4.4.3.

Figure 4.1: Schematic Diagram of RMs
SEIR.

The modelling process is defined by the following seven non-linear time-varying state equa-

tions:
dSh
dt

= ΛH − αIv
(
Sh
H

)
− γSh

dEh
dt

= αIv

(
Sh
H

)
− (σ + γ)Eh

dIh
dt

= σEh − (ξ + γ)Ih

dRh
dt

= ξIh − γRh
dSv
dt

= δb(t) V − βSv
(
Ih
H

)
− δd Sv

dEv
dt

= βSv

(
Ih
H

)
− (ρ+ δd) Ev

dIv
dt

= ρEv − δd Iv

(4.1)

Note that the rate of change of the vector population size, which is implicit in above equations,

is:
dV

dt
= (δb(t)− δd)V
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If δb(t) > δd, then the vector population will grow at an exponential rate and if δb(t) < δd,

the population will decrease. If δb(t) = δd, then the population remains constant. The non-

seasonal version of the model, RMSEIR is proven locally asymptotically stable in Chapter 2,

section 2.3.1 at disease-free (when R0 ≤ 1) and endemic (when R0 > 1) equilibrium. The

stability of the seasonal model RM s
SEIR at endemic equilibrium is discussed in section 4.5.1.

4.3 Methods for analytic derivations

For investigating the effect of introducing disease at different times of the year in RM s
SEIR,

the analytic expression of several measures, including the basic reproductive numbers and

probabilities of invasion is presented in the next section.

4.3.1 Seasonal reproductive numbers and invasion probabilities

For simple models, the basic reproduction number R0 is the average number of secondary

infections generated from a single infected individual introduced into a susceptible popula-

tion during its lifetime of infection. In host-vector systems there is more than one basic

reproductive number. The non-seasonal model that was discussed in last chapters, RMSEIR

comprises of two reproductive numbers denoted by RV H0 and RHV0 . RV H0 is the average num-

ber of secondary cases in the susceptible host population, resulting from the introduction

of one infected vector. RHV0 is defined by reversing the roles of hosts and vectors in this

definition. The value of the basic reproductive ratio R0 used in previous chapters (Appendix

A.1.2) for the non-seasonal model RMSEIR using the next generation method described in

Diekmann et al. (2010) is:

R0 =
√
RV H0 ×RHV0 =

αρ

δd(ρ+ δd)
× βσV

(ξ + γ)(σ + γ)H
=

√
αβσρV

δd(ξ + γ)(σ + γ)(ρ+ δd)
(4.2)

Note that the per capita birth rate of vectors, δb is not included in the expression for R0.

RV H0 has an inverse relationship with the death rate δd of the vectors. The term ρ
ρ+δd

is

the probability that a vector will survive the exposed state (Ev) and move to the infectious

compartment (Iv). In RV H0 , the rate of transmission from an infectious human is β, the

quantity 1
ξ+γ denotes the average amount of time an individual who enters state Ih spends

in state Ih and σ
σ+γ is the probability that a host will survive the exposed state (Eh) to enter

the infectious state (Ih). Mathematically, the term R0 is the geometric mean of the number

of infected vectors per infected host and the number of infected hosts per infected vector.
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The product R0 acts as a general threshold and there is disease extinction when this number

is less than 1 and either invasion or persistence (in deterministic settings) of disease, if this

number is greater than 1.

The expression for R0 in equation 4.2 is suitable for a non-seasonal model. However, for

the seasonal models R0 does not provide much valuable information because the number of

vectors, and thus other values, vary over time. Intuitively, the reproductive number of the

seasonal model differs as a function of the time of year of introduction; we therefore write

R0|t0 , where |t0 is read “given t-zero”, and t0 denotes the time of year of introduction (i.e.

the season, measured in months from April).

Following (Diekmann et al., 1990) and (Heffernan et al., 2005) in Appendix A.1.2, the matrix

F reflecting the rate at which new infections arise in the seasonal model is written as

F =


0 0 0 α

0 0 0 0

0 β VH 0 0

0 0 0 0

 (4.3)

The derivation of R0|t0 assumes the disease-free condition, therefore all individuals are initially

susceptible as shown in matrix 4.3.

In the transmission matrix F in 4.4, the terms αHH and β VH are replaced by αSh
H and β Sv

H

respectively since the total population is not all susceptible at the beginning.

F =


0 0 0 αSh

H

0 0 0 0

0 β Sv
H 0 0

0 0 0 0

 (4.4)

Since the size of the vector population V is changing with respect to the seasons, the fraction
V
H is replaced by V (t0)

H . The expression for R0|t0 can be written as follows:

(4.5)R0|t0 =
√
RV H0|t0 ×R

HV
0|t0 =

αρ

δd(ρ+ δd)
× βσV (t0)

(ξ + γ)(σ + γ)H
.

=

√
αβσρV (t0)

δd(ξ + γ)(σ + γ)(ρ+ δd)H
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The term R0|t0 assumes a fully susceptible population, at the initial introduction, given a

specified month. In the non-seasonal model, we recall that the effective reproductive num-

ber, Reff depends on susceptible depletion. In the seasonal model, the effective reproductive

number depends both on susceptible depletion and current transmission which depends on

the time of year (i.e. season). Susceptible depletion, in turn, depends on the season of intro-

duction and time elapsed since. The term Rt|t0 underscores that the effective reproductive

number is time-varying, and also depends on the month of introduction. This reproductive

number can be written by substituting Sh by Sh(t, t0) and Sv by Sv(t, t0) in the transmission

matrix given in equation 4.4. The expression of Rt|t0 becomes:

(4.6)Rt|t0 =
√
RV Ht|t0 ×R

HV
t|t0 =

αρSh(t, t0)

δd(ρ+ δd)H
× βσSv(t, t0)

(ξ + γ)(σ + γ)H
.

=

√
αβσρSh(t, t0)Sv(t, t0)

δd(ξ + γ)(σ + γ)(ρ+ δd)H2

In Rt|t0 , the number of susceptible individuals in both populations is dependent upon the

variation over time and the month of introduction. In a further development, we are inter-

ested in the characteristics of the system after re-introduction (i.e. when there is existing

seroprevalence in the human population). In the case of a re-introduction of the disease, the

number of susceptible hosts Sh are further influenced by the existing seroprevalence level of

the host population. The effective reproductive number Rt|t0,Sh
is defined as the effective

reproductive number that is time-varying and depends on the month of introduction, but

given an initial seroprevalence level in the host population. The expression for this reproduc-

tive number is derived in the same manner as previously, but taking into account that the

initial population of the susceptible humans at a particular month is not only dependent on

t0, but on the seroprevalence level of the host population as well. The resulting expression

for Rt|t0,Sh
becomes:

(4.7)Rt|t0,Sh
=
√
RV Ht|t0,Sh

×RHVt|t0,Sh
=
αρSh(t, t0, Rh)

δd(ρ+ δd)H
× βσSv(t, t0)

(ξ + γ)(σ + γ)H
.

=

√
αβσρSh(t, t0, Rh)Sv(t, t0)

δd(ξ + γ)(σ + γ)(ρ+ δd)H2

The term Rh account for the number of recovered hosts present in the population. The above

expression is used to investigate the effect of seroprevalence levels on dengue outbreaks in

section 4.5.3. It is important to note that only the initial number of the susceptible humans
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are of interest in the analysis performed in that section and the time-varying behaviour is not

required. Therefore Rt|t0,Sh
is simplified to R0|t0,Sh

, that is just a single number dependent

on a given value of t0 and the number of recovered individuals present in the host population

by setting t = t0 from the above expression in the terms.

For the non-seasonal model RMSEIR discussed in chapter 2, the derivation for the probabil-

ities of a major outbreak after the introduction of one infectious vector and one infectious

human, conditioned upon R0 > 1 are (derivation in Appendix C.2):

PInv|Iv=1 = 1− RHV0 + 1

RHV0 (1 +RV H0 )
(4.8)

PInv|Ih=1 = 1− RV H0 + 1

RV H0 (1 +RHV0 )
. (4.9)

For the seasonal model, the roles of R0, RHV0 , and RV H0 that previously gave an existing

seroprevalence level, are replaced by R0|t0,Sh
, RHV0|t0,Sh

, and RV H0|t0,Sh
in measuring the invasion

probabilities. The probabilities of a outbreak after the introduction of one infectious vector

and one infectious host potentially with pre-existing seroprevelence level are:

PInv|Iv=1,t0 = 1−
RHV0|t0,Sh

+ 1

RHV0|t0,Sh
(1 +RV H0|t0,Sh

)
(4.10)

PInv|Ih=1,t0 = 1−
RV H0|t0,Sh

+ 1

RV H0|t0,Sh
(1 +RHV0|t0,Sh

)
. (4.11)

In Appendix C.2, it is mentioned that the infection in the system goes extinct if the basic

reproductive number R0 is below one. This condition is used to derive the expression for the

probabilities of invasion; PInv|Ih=1 and PInv|Iv=1 respectively. For the non-seasonal system

this is true as R0 remains fixed so the estimation of the probability of major outbreak as

PInv|I=1 = 1 − P (ext), where P (ext) is the probability of extinction. Here, it is important

to note that this invasion probability is obtained by estimating the probability of extinction

of the disease. In the case of the seasonal model RM s
SEIR, there are two major differences

compared to the non-seasonal set-up for PInv: (i) R0 is replaced by R0|t0,Sh
which is influenced

by the point of introduction of the disease; (ii) The pre-existing seroprevalence level in the

host population alters the probability of an outbreak. At higher seroprevalence levels, an

invasion is less likely, even if a viremic individual is introduced in the favourable season.
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4.4 Methods of quantitative analysis

The behaviour of the RM s
SEIR was investigated using deterministic and stochastic models. As

the system is non-autonomous (the birth rate of vectors δb(t) varies with time), it is converted

into autonomous system by using the technique described in Appendix C.1. Converting into

an autonomous system of ODEs ensures that both numerical and stochastic solutions remain

‘well-behaved‘.

The birth rate of the vector population varied over the course of the year whereas other rates

affecting the vector and host population were set constant. The formula for the birth rate

was

δb(t) = δb

(
1 + a sin

(
360t

365
+ shift

)
◦
)

(4.12)

Here, δb is the baseline value for the average birth rate, a is the amplitude of the fluctuations,

shift is the phase change according to the season. The baseline value of δb = 1
11 , a = 0.15

and seasonal shift started from 0 ◦ in April and increased by equal intervals of 30 ◦ up to

330 ◦ for the month of March. The vector-to-host ratio V
H is kept fixed at one at 1st April.

This month is at the peak of the dry season and it has the lowest number of vectors. For all

other months this ratio is calculated from the endemic equilibrium by integrating the system

of ODEs under the the disease-free condition. In general, the presence or absence of disease

has no impact on the amplitude and frequency of the vector population cycle. During the

sinusoidal fluctuation of the vector population, the term V
H increases to a maximum value of

4.875 on 1st October. October is the peak of the wet season and as a result, demonstrates the

highest number of mosquitoes. An initial condition matrix ICM was constructed for both

deterministic and stochastic models. It consisted of three columns containing the information

about the (i) month of the year (1-12), (ii) seasonal shift in the sine curve relative to that

month (0 ◦ - 330 ◦) and (iii) the vector-to-host ratio for that month.

One important decision in the seasonal model, where seasonal forcing is implemented using

a sinusoidal function, is to choose the number of days in one calendar year. In most of the

studies, one year consists of 360 days. This is usually done to synchronize the number of

years and the period of the sine wave. In this study, instead of considering three hundred

and sixty days, three hundred and sixty five days are considered in one year and while the

shift is 30 ◦ for each month, the vector-to host ratio is estimated by assuming 365 days in

one calendar year. This is done to prevent the timing of ‘simulation’ month varying from the

‘actual’ month of the year.
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4.4.1 Deterministic model

The deterministic version of RM s
SEIR is introduced in Section 4.2. The system of ODEs

described in equation set 4.1 was solved numerically from twelve different starting points,

one for each month, and disease invasion was investigated by either introducing one viremic

host or one viremic vector. The first twelve initial conditions were dedicated to looking at

the dynamics of invasion after the introduction of one infectious host at different months;

the second twelve studying invasion dynamics after the introduction of one infectious vector.

At t = 0, the host population was either totally susceptible or has different seroprevalence

levels. The vector population was V − 1 when the disease is introduced by a viremic vector.

In other cases, all vectors were susceptible at t = 0. The time period of numerical integration

varied for different initial conditions and is referred to in the plots.

4.4.2 Stochastic model

The event-based, stochastic version of RM s
SEIR has seven state variables, four (Sh, Eh, Ih, Rh)

for host populations and three (Sv, Ev, Iv) for vector populations that can take only positive

integer values. The time evolution of these state variables is affected by nine different pos-

sible events shown in Table 4.1. The seasonal fluctuation in the birth rate δb introduces an

additional time dependence in the event rates. These events occur in continuous time with

rates that depend on the population values, mediated by seasonality. The evolution of the

populations is modelled by using adaptive tau-leaping algorithm (Cao et al., 2007). The

tau-leaping algorithm is an approximation of the Gillespie algorithm (an exact algorithm for

simulating individuals in a population) and assumes that the change in reaction rates during

one time step are negligible.

This method chooses the simulation time increment in an adaptive manner depending on

the current state of the populations. At each time increment, each reaction is considered as

an independent event, so the number of events of each type (one of nine types in this case)

are drawn from a Poisson distribution with mean ajdt, where aj is the rate of event type j

and dt is the time step. The error control parameter ε is set to 0.01, to avoid occurrence of

more than one reaction during leaping in time. Further details of the method are provided in

Chapter 3, section 3.5.2 whereas the algorithm is presented in Appendix B.1, and the choice

of the highest order rate required to select ε is shown in Appendix B.2 of the same chapter.
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Event Effect Transition Rate

Host :

(i) Birth of susceptible host Sh ↑ ΛH

(ii) Exposure of susceptible host Sh ↓ & Eh ↑ αIvSh/H

(iii) Infection of exposed host Eh ↓ & Ih ↑ σEh

(iv) Recovery of infected host Ih ↓ & Rh ↑ ξIh

(v) Natural death of a host Sh ↓, Eh ↓, Ih ↓, Rh ↓ γSh, γEh, γIh, γRh

Vector :

(i) Birth of a susceptible vector Sv ↑ δbV

(ii) Exposure of susceptible vector Sv ↓ & Ev ↑ βSvIh/H

(iii) Infection of exposed vector Ev ↓ & Iv ↑ ρEv

(iv) Death of a vector Sv ↓, Ev ↓, Iv ↓ δdSv, δdEv, δdIv

Table 4.1: The events in the stochastic RMs
SEIR model are shown as stochastic transition rates.

Here the subscript h denotes the host population and v denotes vector population. The direction

of the arrow in second column ‘Effect’ denotes either addition or subtraction of an individual to

and from a compartment. Here the birth rate of susceptible vectors δb is time dependent, varying

with seasons.

4.4.3 Value of the entomological parameters

In order to obtain quantitative predictions, the model was parametrised as described below.

Most of the Ross-Macdonald style host-vector models contain either the same or very similar

quantities which are represented by different parameters (Smith et al., 2012). The way these

parameters are defined and their quantitative values have a significant effect on the behaviour

of the model. This suggests the importance of finding a suitable parameter space for modelling

the dynamics of dengue. Many studies for modelling dengue were performed in different field

and laboratory conditions. As a result, parameter values in the literature are based upon the

data obtained from a specific locality and reflect the meteorological conditions, vector-to-host

ratio, spatial distribution of hosts, lifestyle of people, daily commuting patterns and water

storage practices of humans living in that area (Adams and Kapan, 2009; Harrington et al.,

2005; Jansen and Beebe, 2010; Otero et al., 2011; Otero and Solari, 2010; Reiter et al., 2003).

After emerging as adults A. aegypti live in close proximity to humans, mainly in houses,

containers and sheds. As noted in a longitudinal study performed by Harrington et al. (2005),

most adult Aedes aegypti travel relatively short distances. Their strong anthropophilic nature

and weak flying ability is documented in different studies (Harrington et al., 2005; Maciel-De-

Freitas et al., 2007; Muir and Kay, 1998). In this study, it is assumed that a large proportion

of the vector population moves near to the human habitat shortly after emerging as adults.
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As they spend most of their lives in the artificial habitat, there is a very low impact of

seasonality on their rates of incubation and mortality. The average death rate of adult vectors

δd is thus taken to be independent of temperature and δd = 1
11 days−1 in the temperature

range of 5 ◦C to 30 ◦C (Christophers, 1960). Similarly the average rate of extrinsic incubation

in vectors ρ = 1
10 days−1 is modelled to be independent of seasonal conditions (Otero and

Solari, 2010). The transmission rates are α and β are taken as 0.55 days−1. These rates

ranged from 0.2−0.67 days−1 in Adams and Boots (2010) and were 0.5025 days−1 in Bartley

et al. (2002). For dengue modelling, usually α = β and they are represented as a product of

constant bite rate (per vector) and the transmission probability from an infectious individual

of one population to other. In this study, higher transmission probabilities are chosen to

lead to five yearly cycles of dengue after invasion. The dengue outbreak data from different

studies reveal fluctuations with a period of between 3 and 4 years (Nishiura, 2006; Wearing

and Rohani, 2006), whereas individual serotypes have longer periods and cycle in and out of

phase (Wearing and Rohani, 2006). The impact of high transmission probabilities is shown

implicitly through high transmission rates. The list of parameters for dengue used in the

modelling process are given in Table 4.2.

Symbol Explanation Value used Reference

α Vector-to-host transmission rate, in days−1 0.55 Adams and Boots (2010)

β Host-to-vector transmission rate, in days−1 0.55 Adams and Boots (2010)
1

ξ
Average infectious period of hosts, in days 7 Adams and Boots (2010)

γ Birth / death rate of hosts, in days−1 4.215× 10−5 -
1

σ
Average latent period in hosts, in days 5 Adams and Boots (2010)

Newton and Reiter (1992)

δd Mortality rate of vectors, in days−1 0.0909 Otero and Solari (2010)

Otero et al. (2008)
1

ρ
Average latent period in vectors, in days 10 Otero and Solari (2010)

Otero et al. (2008)

Table 4.2: List of parameters used in RMs
SEIR. Here the average birth rate of hosts is equal to

the death rate, i.e, Λ = γ. The life expectancy of a single host is set to 65 years, so birth / death

rate of hosts becomes 1
65×365 days−1 = 4.215× 10−5 days−1.

4.5 Results from deterministic model of RM s
SEIR

This section reports the main findings of the chapter obtained by using the deterministic

framework. The deterministic compartmental model which was presented in Figure 4.1 is used

to explore the research questions of interest described at the end of section 4.1. In particular,
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the research questions addressed are: (i) how does the time evolution of Rt|t0 depend upon

the month of dengue introduction?, (ii) how do these patterns relate to underlying RHVt|t0 and

RV Ht|t0 ? and (iii) how does the probability of (re-) invasion with a different serotype change

with the pre-existing seroprevalence? All of the investigations are conducted by separately

considering the case of (re-) introduction by a viremic human or a viremic mosquito. The

results in this section are reported after a formal analysis of the model. The model is first

examined for the time evolution of the following quantities: (i) per-capita birth rate δb(t), (ii)

population growth rate M(t) and (iii) the total vector population V (t). Then the dynamics

of infectious individuals in both populations, after disease introduction by a single viremic

individual is presented. The behaviour of the model at the endemic equilibrium concludes

the preliminary analysis of RM s
SEIR. After the analysis of the model, the presentation of the

text follows the order of the questions.
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Figure 4.2: Time series plots of variation in per capita birth rate δb(t), population growth rate

M(t) and the vector population size V . All quantities are shown by integrating the ODE system

defined in equation set 4.1 from April. In this study, it is assumed that there are two seasons

per year: a favourable (wet) season that peaks at the start of October and an unfavourable (dry)

season that peaks in April. These terminologies of season are defined on the basis of change

in M(t), which affects the total number of vectors V . Both seasonal extremes are pointed out

by arrows in the last panel. The ratio between hosts and vectors V
H is one on 1st April. Host

population H at the start is five hundred thousand individuals.

Population parameters related to the demography of the vectors are presented in the three

panels of Figure 4.2. Here δb(t) is the per capita birth rate, M(t) = (δb(t)− δd)V (t) is the

population growth rate and V (t) is the population fluctuation of the vectors. The relationship

between these panels is explained as: the change in M(t) (middle panel) is a result of change

in δb(t) (top) and the change in V (bottom) is a result of change in M(t). The figure was
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plotted by integrating from 1st April, where shift = 0 ◦. It was solved numerically for ten

years under disease-free initial conditions where the host-to-vector ratio was set to one, so

both populations had 500,000 individuals at the start. The month of April corresponded to

the peak of the dry season in the modelling settings and the trough of the vector population

occurred in mid-April (indicated by an arrow in the last panel). The per-capita birth rate

of vectors follows a sinusoidal cycle as described in Equation 4.12. The cycle starts from

the base-line value, which is is 1
11 . In the middle panel, the population growth M(t) at any

instant t is found as the product of vectors present at that time and the difference between

birth and death rates. The impact of growth rate M(t) on the change in vector population

is explained as follows: As mentioned in Equation 4.2, the vector population grows if the

quantity M(t) is positive. When the population growth rate remains positive (i.e, birth rate

is higher than the death rate) the plot shows the growth of the vector population up to

nearly two and a half million individuals in the month of October (indicated by an arrow).

For the negative values of M(t), the population starts falling until it reached to five hundred

thousand vectors, thus completing the cycle.

The time evolution of both infectious populations is shown in Figure 4.3 after the introduction

of a single viremic host (first and third row) or a single viremic mosquito (second and last row).

The description of the first two rows is as follows: They clearly showed the similar temporal

behaviour for the first nine months after the disease is introduced. A susceptible bottleneck

occurred in Sh after the epidemics and the numerical solver is run for only one year since the

infectious populations reached fractional values (< 10−5) after six to eight months, except

then these fractional values are allowed to persist for fifteen years in the lower two panels of

Figure 4.3. The initial host population consisted of five hundred thousand individuals and

the vector population is adjusted according to the V
H ratio for that month. It is interesting

to note that irrespective of the starting month, the epidemic peak occurs in between two

and four months after the introduction of an infectious human (top) or mosquito (bottom).

The explanation of this phenomenon lies in Figure 4.4, in which a very small proportion

of Sh is present at the endemic equilibrium. After an introduction, initially the impact of

seasonal dynamics on the system is overtaken by the number of susceptible humans present

in the population. This leads to an outbreak shortly after the disease is introduced into the

community. The last two rows showed the medium-term transient dynamics of the infectious

populations with the peak of the first year not shown. In these figures, the dengue epidemic

showed a cyclic behaviour of roughly five years.

The effect of seasonal variation in Figure 4.3 for the first nine months can be described as

follows: The impact is stronger on the vector population as it has the maximum number of

infectious individuals. Iv > 500, 000, if the numerical solver is initiated at favourable seasons

93



4.5 RESULTS FROM DETERMINISTIC MODEL OF RMS
SEIR

0 3 6 9
0

100,000

200,000

Time (in years)

I h : 
H

 a
t s

ta
rt

 is
 5

00
00

0

 

 

0 3 6 9
0

500,000

1,000,000

Time (in years)

I v : 
V

 to
 H

 r
at

io
 a

t t
he

 tr
ou

gh
 is

 1

 

 

Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Jan
Feb
Mar

0 3 6 9
0

100,000

200,000

 

 

0 3 6 9
0

500,000

1,000,000

 

 

0 5 10 15
0

5000

Time (in years)

I h : 
H

 a
t s

ta
rt

 is
 5

00
00

0

 

 

0 5 10 15
0

25,000

50,000

75,000

Time (in years)

I v : 
V

 to
 H

 r
at

io
 a

t t
he

 tr
ou

gh
 is

 1

 

 

Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
Jan
Feb
Mar

0 5 10 15
0

5000

 

 

0 5 10 15
0

50,000

50,000

75,000

 

 

Figure 4.3: Seasonal time series plot for the infectious compartment of both populations. In

the first and the third row, the epidemics are caused by introducing a single infectious human

in a totally susceptible vector population. In the second and the last row, a viremic vector is

introduced in a totally susceptible human population. The last two rows shows the long term

behaviour of the infectious population with the peak of the first year not shown. Epidemics occur

shortly after the introduction.

and Iv < 250, 000 if it is started from the dry seasons (right column). If the invasion occurs in

January, the peak of the epidemic is in April which is the driest month of the year. That why

the peak has the lowest number of both infectious vectors ≈ 150, 000 and infectious humans,

≈ 100, 000. The peaks in both infectious populations occur later following introductions

in February as compared to April; however fewer infectious mosquitoes are present at the

peak. This shows that the total number of Ih at the peak is less affected by the change in

seasons than the total number of Iv. In the human population, the peaks of the infectious

population showed less variation, the maximum number of infectious humans are ≈ 165, 000

and minimum number is ≈ 100, 000. If the invasion starts from either in January or February,

the smallest peaks are observed just before or after the month of April. The relationship
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between the highest peaks with faster invasion and the lowest peaks with delayed invasions

can be explained in terms of population growth rate of vectors M(t). Higher peaks and faster

invasion is observed when the M(t) is at the highest values (August-October) at the tome

of introduction. For introductions in the month of November to January, the peaks of Ih

starts shifting later and a considerable decline is observed in the peak of Ih since M(t) has

the lowest value in January.

4.5.1 Behaviour of the model at equilibrium
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Figure 4.4: Compartments of RMs
SEIR at endemic equilibrium when started from 1st April.

The initial value of H and V is set to five hundred thousand individuals. The plots show the

endemic equilibrium for six out of seven compartments of RMs
SEIR. The instantaneous number

of recovered humans can be obtained from the relation H = Sh +Eh + Ih +Rh. The results were

obtained by running the numerical solver from April and the years in x-axis are the number of

years after the oscillating endemic equilibrium was attained.

This section presents the model’s behaviour at the deterministic equilibrium. The oscillat-

ing behaviour of the compartments of the model at the endemic equilibrium is presented in

Figure 4.4. The differential equation model for RM s
SEIR given in 4.1 is integrated numer-

ically starting from the month of April with 500,000 hosts and vectors and allowed to run

until the transient period has passed and an oscillatory endemic equilibrium is attained. At

equilibrium, the population of hosts consists of almost all immune individuals. At this state,

small annual outbreaks in the human and mosquito population are observed and the number

of infected individuals Eh and Ev are closely tracked by the infectious population Ih and Iv

respectively. Here the number of years on the x-axis represents the output from the last five

years of the solution.

95



4.5 RESULTS FROM DETERMINISTIC MODEL OF RMS
SEIR

1
1

1

2

2
2

3

3

3

3

4

4

4

4

5

5

5

6

6 7

S
h

S v

 

 

 0 50,000 150,000 250,000 350,000 450,000
500,000

1,000,000

1,500,000

2,000,000

2,500,000

0

1

2

3

4

5

6

7

S
h

S v

 

 

16,000 17,000 18,000 19,000
500,000

1,000,000

1,500,000

2,000,000

2,500,000

0.8

1

1.2

1.4

Figure 4.5: Phase diagram showing Rt=0|t0 values at equilibrium for different months. In both

figures, the solid curves are contours of Rt=0|t0 in the Sh-Sv plane. Top: Plot showing the critical

susceptible numbers Scrith and Scritv that are required for disease endemicity. Here Sh denotes the

susceptible humans and Sv represents the susceptible vectors. The plot is obtained by solving the

equations with one infectious host and allowing the model to run until the oscillating endemic

equilibrium state is attained. At equilibrium, the blue vertical line indicates the equilibrium tra-

jectory. Bottom: Zoomed view of the region of interest. The white bow-tie structure corresponds

to the white line of the left figure. The contour lines of Rt=0|t0 are varied from 0.7 to 1.5 so when

Rt=0|t0 > 1, susceptible depletion occurs reducing it below 1 and halting the dengue transmission.

The model is used to estimate the critical number of susceptible individuals required for

recurrent dengue epidemics in both host and vector populations. In Figure 4.5, a phase-

space plot between Sh and Sv at endemic equilibrium is drawn by numerically integrating

over twelve starting points, one for each month. The solid curves are contours of R0|t0 in the

Sh-Sv plane. Irrespective of the month of the year chosen to start the numerical solver, the

same bow-tie structure is obtained ensuring that the oscillating equilibrium state is locally

stable. The plot on the top of Figure 4.5 is the zoomed view of the structure (blue line) on the

left plot. At the start, both host and vector populations consist of 500,000 individuals. The
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critical susceptible density of hosts Scrith at equilibrium was found to be between 16,000 and

19,500 individuals. The critical susceptible vector density Scritv ranges from 50,000 to 250,000

individuals. The bow-tie structure on the bottom of Figure 4.5 is explained as follows: As the

susceptible host population reach levels that yields R0|t0 > 1 (values along the contour lines),

dengue transmission starts and the number of susceptible hosts is reduced. The number

of Sh starts falling causing R0|t0 to fall below one, thus halting the transmission. These

results shows that re-invasion by the same serotype of dengue requires a very small fraction

of susceptible humans.

The endemic behaviour of the model highlighted in Figures 4.4 and 4.5 also gives information

about the disease-free condition. For dengue disease, it is known that infection caused by one

serotype provides life-long immunity to that serotype whereas infected patients have limited

cross-immunity against remaining serotypes (WHO, 2014). In the case of dengue re-invasion

from a different serotype, a very large pool of susceptible hosts is present, i.e, Sh ≈ H. This

causes bigger and quicker epidemics. The worst case scenario can be seen from Figure 4.3

which shows huge peaks of epidemics, irrespective of the month of introduction.

4.5.2 Time evolution of reproductive numbers: Rt|t0, R
HV
t|t0 and RV H
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Figure 4.6: Time evolution of the reproductive number. Seasonal variation in R0|t0 with respect

to different starting conditions during one year post introduction with one infectious human (left)

and one infectious vector (right). Each line corresponds to the time evolution for a given month

of introduction. Irrespective of the initial conditions, R0|t0 quickly falls below one. The host

population H comprises five hundred thousand individuals.

The question addressed in this section highlights the importance of the month of disease

introduction upon the time-varying basic reproductive number Rt|t0 . We further want to

compare the dynamics when dengue disease is introduced by an infectious vector or an in-

fectious human. The first situation can be thought as a community having a lot of infectious

mosquitoes at the boundary. Disease can then be transmitted to the neighbouring commu-

nity having no history of dengue. The second case corresponds to humans travelling from one
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place to another. In both cases, the effect of the month of dengue introduction are discussed

in the next paragraphs.

Figure 4.6 presents the time-evolution in Rt|t0 during a year. Temporal patterns in Rt|t0 on

the left hand side is when the disease is introduced by one infectious vector (situation one).

The right hand side denotes the second case of dengue, i.e., introduced by one viremic host.

The point where Rt|t0 = 1 on the y-axis is indicated by a black horizontal line. Three points

are worth mentioning in these plots. (i) The time evolution of the reproductive ratios are

almost identical, irrespective of whether disease is introduced by host or vector. (ii) The

time of disease introduction into a naive population has a strong impact on the reproductive

number. Higher values of Rt|t0 are obtained when the viremic individual is introduced in the

wet season. (iii) Starting at a range of values that are roughly between 3.5 to 8, Rt|t0 quickly

falls below one. From May to September the quantity initially grows with increasing slope for

each month before sharply falling to lower values. The maximum time delay before the fall

occurs in the month of May whereas an immediate decline is observed during November to

February. By comparing these observations to Figure 4.2, the vector population V increases

as it moves away from April (peak of dry season) with maximum number of individuals in

October (peak of wet season), therefore the time delay required for Rt|t0 to peak gets smaller

as an infected individual is introduced in later months till September. From the months of

October to February, the rate of fall in Rt|t0 gets less as we move away from the peak of the

wet season. All these points are in agreement with the temporal patterns that reflects the

changes in the number of the infectious individuals in Figure 4.3.

The decomposition of the temporal patterns in terms of population based reproductive ratios

are presented in Figures 4.6 and 4.7. RHVt|t0 denotes the instantaneous number of secondary

cases in the vector population and RV Ht|t0 for the human population. Similar patterns for RHVt|t0
and RHVt|t0 are found for both cases. RHVt|t0 quickly goes up after an epidemic as it depends

upon the ratio of the number of susceptible vectors Sv to the host population H. The dip

that occurs at around three months on the left column gets deeper if the disease is introduced

in the favourable season. RHVt|t0 never goes below one during the first year. In contrast, RV Ht|t0
which depends upon Sh quickly falls to very low values (< 1) as all the hosts become infected

soon after the introduction of an infectious individual causing a susceptible bottleneck in

hosts halting the transmission. The left column of the above figure indicates that the vector

population has a lot of susceptible individuals present to invade the system during the first

year. The right column shows that the secondary cases in the host population caused by a

single infectious vector, RV Ht|t0 are, on average, fewer than one shortly after the introduction.

In summary, the introduction of an infectious individual under current parameter settings

creates a huge epidemic at varying time conditioned upon the month of the introduction. This
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Figure 4.7: Population based reproductive ratios; RHVt|t0 and RV Ht|t0 . The plot shows the popula-

tion based reproductive numbers for all months, for the case of: (i) introduction of dengue virus

by an infectious vector (top row) and (ii) introduction by an infectious host (bottom row). Initial

conditions are same as in Figure 4.6. Black horizontal lines mark the value of Rt|t0 = 1 in all

sub-figures.

leads to an epidemic burnout of susceptible hosts during the first year (see Figure 4.3). In

addition, the vector versus human introduction does not create a difference in the dynamics

of an epidemic.

4.5.3 Effect of seroprevalence on outbreaks

The final investigation using the deterministic model was to examine whether the probabili-

ties of (re-)invasion changes with pre-existing seroprevalence in humans and if this depend on

whether re-introduction of dengue is caused by a vector or a human. This situation is impor-

tant for two reasons: (i) the design of health policy in communities where a different serotype

of dengue invades after an initial outbreak from one serotype in the past, and (ii) re-invasion

from the same serotype but after a long time so that the susceptible pool has grown large

enough during that period. The Figure 4.8 highlights this situation. This figure is obtained

by integrating the deterministic model for one year and considering different seroprevalence

levels (0% to 100%) in hosts. For every one percent increase in the seroprevalence level, the

values at t = 0 for the invasion probabilities PInv|Ih=1,t0 , PInv|Iv=1,t0 (which are defined in

section 4.3.1) and R0|t0,Sh
were plotted. This procedure is repeated for all months and for

both (re-)introduction conditions.
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The probability of invasion in the first column shows a gradual reduction until the sero-

prevalence level of 65%. The decrease in the invasion probabilities becomes rapid when the

seroprevalence levels are greater than 65%. This change of behaviour is more obvious if one

infectious host is re-introduced at high seroprevalence levels. In the case of introduction of

one infectious vector, the transition is smoother. The change in PInv|Ih=1,t0 with respect

to seroprevalence is more spread-out and has a larger effect than PInv|Iv=1,t0 . At the start

when t = 0, PInv|Ih=1,t0 is always higher than PInv|Iv=1,t0 . At t = 0, the difference between

the life span of a host and the vector is the reason for this disparity. Moreover, the highest

probabilities of invasion are found if the introduction / re-introduction is from September to

November as the peak of vector population occurs in October as shown in Figure 4.2. More-

over, this difference decreases when the season of (re-)introduction approaches the trough of

the vector population. During March, April and May the population of vectors V is very

close to the number of humans available and hence difference in the invasion probabilities is

the lowest.

Comparison of the plots in the left column of Figure 4.8 also shows the asymmetric behaviour

of both invasion probabilities, whereas the product of the individual reproductive numbers,

Rt|t0,Sh
remains the same in both cases. This is due to the fact that they were obtained

by taking the composition of two functions, which does not follow the commutative law

(Lloyd et al., 2007). The right-hand side column shows the change in Rt|t0,Sh
with increasing

seroprevalence. Rt|t0,Sh
remains the same for the two (re-) introduction conditions. The

horizontal line at Rt|t0,Sh
= 1 corresponds to the deterministic threshold condition for the

invasion probability as it become zero below this line. This is the reason why during some

months, the invasion probabilities fall to zero even before 100% seroprevalance level.

4.6 Results from Stochastic model of RM s
SEIR

This section is devoted to the results obtained from the stochastic version of RM s
SEIR de-

scribed in section 4.4.2. The stochastic version of the model is used to ask the following

research questions: (i) how does the probability of persistence of dengue infection depend

upon the month of introduction? (ii) How is the time to extinction of dengue te and the

starting conditions in the seasonal model related and how they are related to the type of

individual that introduced the disease? (iii) how the patterns related to the peak of the

infectious humans Ih and time taken to attain peak change with the month of dengue intro-

duction. These investigations are conducted in similar fashion to section 4.5 by separately

considering the case of introduction by an infectious human or an infectious mosquito. In the

next sections these questions are addressed in a sequential order.
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Figure 4.8: Probability of (re-) invasion as a function of pre-existing seroprevalence PInv|Ih=1,t0

and PInv|Ih=1,t0 . Initial values of both probabilities and R0|t0,Sh
is displayed at different sero-

prevalence levels for all months.

4.6.1 Dependence of the probability of persistent runs on seasons

The baseline parameters for RM s
SEIR described in Table 4.2 are used to investigate whether

the infection is present in both human and mosquito populations if the disease is introduced

at different times of the year. For this purpose, the probability of persistent runs is estimated.

The time period of stochastic simulations is set to one year and dengue virus is introduced

in naive host and vector populations by an infectious individual. This procedure is repeated

one thousand times for 12 different dates of arrival of one infectious human and one infectious

mosquito in the susceptible human and vector populations. The host population size (H) is

initially 5× 105 and the size of the vector population is estimated as defined in section 4.4.

Figure 4.9 shows the proportion of runs persisting to one year out of one thousand stochastic
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repetitions, after introduction by either a viremic host (blue star) or a viremic vector (red

circle). In general, the proportion of persistent runs in both cases shows similar behaviour

except for the months of January to March where the Probability of persistence is nearly 4%

greater if the disease in introduced by a viremic vector. The impact of seasonal changes can

be explained as follows: if the disease is introduced in the favourable season, very few of the

stochastic runs retain infection after one year whereas the chances of retaining infection if

the disease is introduced in unfavourable season are higher. If an infectious host or a vector

arrives in the population three months before the peak of the unfavourable season, it is more

likely to spread infection in the long term as compared to arrival before or immediately after

the peak of the favourable season. The relationship between dengue persistence and peak

number of Ih with change in seasons is further explored in the next section.
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Figure 4.9: Probability of runs in which dengue infection is persistent in the population. One

thousand stochastic repetitions are performed for each month. The blue stars shown the propor-

tion of persistent runs when disease is introduced by an infectious human whereas the introduction

by a single viremic vector is shown by red circles. The parameters for the stochastic model are

taken from Table 4.2. The host population size (H) is initially 5× 105 and the size of the vector

population is estimated as defined in section 4.4.

4.6.2 Distribution of time to extinction of the disease

Figure 4.9 can be used to find the proportion of stochastic runs in which the infection is

extinct after one year but it does not provide information about the distribution of the

stochastic repetitions around extinction of the disease. To further look at the patterns of

dengue extinction, Figure 4.10 is plotted. Here te is defined as the time to extinction of

disease in both of the populations in one year. There are two cases in this figure: (i) the

distribution of te after disease invasion caused by an infectious vector and (ii) the distribution
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of te after disease invasion caused by an infectious host. Red circles denote situation one

whereas situation two is denoted by blue stars. The size of host and vector population is the

same as in previous figure. The numbers written at the top of every month show the number

of stochastic repetitions that went extinct during one year. The first row denotes the number

of runs for situation one and the second row for situation two.

The impact of seasonal differences is evident from Figure 4.10. The Figure shows a clear

bimodal pattern of te. There is either an earlier extinction of the disease after the introduction

(less than three weeks with most of the extinction during the first week) or persistence until

seven months to a year. There are less early extinctions of disease in the favourable months

and the distribution of persistent runs (i.e., infection is more than seven months) shows early

extinction of dengue in these months as compared to the simulations from the unfavourable

season. The unusually low frequency of disease extinction during January to March can be

matched to the pattern shown in Figure 4.9.
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Figure 4.10: Distribution of te. Here red circles shows the probability of time to extinction

in less than one year after the introduction of dengue with one infectious vector and blue stars

shows the same quantity after the introduction with one infectious host.

4.6.3 Seasonal variation in timing and peak of infectious humans

Estimating the number of infectious people during an epidemic is crucial for public health

planning and infrastructure. The time evolution of seasons during an epidemic can affect the

patterns of Ih. As mentioned as the last question in Section 4.6, Figure 4.11 is constructed to

investigate the maximum number of Ih during an epidemic at different starting points. In this

figure, only invasive runs are plotted. Here dengue invasion is defined if there is more than
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one secondary case in the human population. The patterns related to the peak of infectious

humans Ih are shown at the top of Figure 4.11. The numbers written at the top of every

month shows the number of invasive runs after the introduction of an infectious vector (top

row) or an infectious host (bottom row). The population of hosts and vectors are the same

as in previous sections. The bottom half of the figure denotes the time taken to attain peak.

In Figure 4.11, an important point in the top panel is the difference in the number of invasive

simulations. If disease is introduced by an infectious vector in April, there is an 80% chance

that the disease persists. Ih is going a peak around 130,000-145,000 individuals whereas in

the case of disease introduction by an infectious human, this probability reduces to 64%.

Although the peak number of Ih is nearly the same in the case of both introductions, the

probability of attaining these peak values is different. In general, the chances of invasion are

greater if one infectious vector is introduced in the population.

The top panel of Figure 4.11 shows the distribution of the patterns of peak Ih to the seasons.

Higher number of infectious humans are present at the peak if the simulations are run from

July to September. Similarly, the lowest number is when the introduction of dengue is in

January. The pattern shown here closely matches with the cyclic pattern of the time evolution

of the vector population V in Figure 4.2 with a time-lag of nearly three to four months. This

is exactly what is present in the bottom panel of Figure 4.11 that shows the time in months

for the Ih population to attain its maximum value.

4.7 Conclusion and discussion

This chapter further extends the host-vector model, RMSEIR developed in Chapter 2 for

modelling transmission dynamics of dengue and investigating the persistence of the virus

in the host and vector population. The model constructed here is for a single serotype of

dengue with no vertical transmission. The mosquito birth rate δb(t) is seasonally depen-

dent, considered to be mediated by temperature, rainfall and humidity. The new model is

termed RM s
SEIR, the superscript s denoting seasonality. The birth rate of the vectors varies

throughout the year during the wet (favourable) and dry (unfavourable) seasons. The deter-

ministic version of RM s
SEIR was presented first and and the terms of the model are explained.

Methods were divided into qualitative and quantitative sections, where analytic derivations

of different measures are presented in the first part followed by the numerical methods used

for the deterministic and stochastic versions of the models. The time evolution of the vector

population, V and the behaviour of the model at equilibria is presented. Different scenar-

ios are presented for the investigation of (i) the influence of varying seasonal conditions on
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Figure 4.11: Beehive plot shows the time taken by Ih to reach the peak value, after the

introduction of dengue disease from a viremic human (blue stars) and viremic mosquito (red

circles) at different times of the year. The month at the y-axis of the bottom plot is the month in

which median peak time occurs. In both figures, the black squares connected by green coloured

lines are the peak Ih (top) and time to peak (bottom) values from the deterministic model for

every month, as a result of introducing a single viremic human. Similarly, the yellow diamonds

connected by magenta coloured lines are peak Ih (top) and time to peak (bottom) values from

the deterministic model for every month, as a result of introducing a single viremic vector. These

peak values are mentioned in the time series plots in Figure 4.3. The numbers written at the top

of every month shows the number of invasive runs after the introduction of an infectious vector

(top row) or an infectious host (bottom row), for both figures. The host population is taken as

5 × 105 individuals. Inset of the top figure: The zoomed view of the peak Ih for the month of

April and May.
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dengue persistence, and (ii) the effect on the persistence of disease if introduced by a viremic

host or a viremic mosquito.

From the literature cited in Section 4.1, it can be concluded that the temperature, rainfall and

relative humidity are the most influential parameters, both for modelling the dynamics of the

vector population and the incidence of dengue disease. The effect of the above seasonal factors

is simulated implicitly in the current study through the change in total vector population size.

The birth rate of vectors, δb(t) fluctuates with seasonal changes. Thus vector recruitment

over time is driven by season, and its value alters as a function of temperature, rainfall

and humidity. For simplicity, death δd and incubation rates ρ of mosquitoes (per day) are

assumed constant throughout the time period of simulations (Otero et al., 2008; Otero and

Solari, 2010). The only rate which varies with the change in season is the birth rate of

vectors δb. The population of male mosquitoes is not considered. Estimates of sex ratios

are dependent upon the method of collection (traps, aspirators etc), time of the year when

sampling takes place and geographical location of the study. Chen and Hsieh (2012); de

Castro Medeiros et al. (2011) considered this ratio to be 2-fold the number of humans. For

simplicity, I considered this ratio to be 1:1 in the dry season.

The time evolution of both infectious populations showed the same temporal behaviour for

after the disease is introduced. Smaller peaks of infectious individuals are observed if the

disease is introduced prior to the peak of the dry season (April) and higher peaks of infectious

individuals are seen if the infection is introduced prior to the peak of the wet season (October).

The high seroprevalence level in the human population leads to the extinction of the disease

(Ih and Iv < 10−6) within a year post introduction. The high seroprevalence level is also

found by Bartley et al. (2002) from the dengue data of Bangkok. There is a time-delay of

two to four months between the introduction of the disease and the peak of the infectious

population which is caused by the number of susceptible vectors present at that time of the

year. The results from RM s
SEIR suggests a delay of one and half to three months depending

upon the number of susceptible individuals present in that season. Andraud et al. (2013)

fitted a seasonal model to the dengue incidence data of Singapore. The found a strong effect

of climate on the vector density and mentions a delay of 16.8 weeks between the peaks of

vector density and dengue incidence. The effect of season on the peak by the infectious vector

population is more than that of the infectious human population.

The number of secondary cases during an epidemic is estimated using the seasonal repro-

ductive numbers in Section 4.3.1. Polwiang (2015) derived the seasonal reproductive number

for dengue and concluded that the variation in the amount of rainfall and temperature plays

an important role in the dengue incidence. In this chapter, many variants of basic repro-
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ductive number are derived that are not cited anywhere else. These reproductive numbers

are useful for the estimation of disease spread in different seasonal conditions. The time

evolution of the reproductive ratios is presented in Figures 4.6 and 4.7. As noticed in Figure

4.3, the temporal patterns of Rt|t0 , RHVt|t0 , and RV Ht|t0 are not affected by whether the disease

is introduced by an infectious human or an infectious mosquito. The fraction of susceptible

human population becomes very small soon after the outbreak, resulting in the values of Rt|t0

and RV Ht|t0 becoming less than one. In equation 4.7, the proportions Sh
H and Sv

H are the only

varying quantities with time. In the absence of vaccination, one possible measure is to apply

insecticides after two to three months of an outbreak, as shown in Figure 4.7, to bring the

value of the basic reproductive number of the vector population RHVt|t0 below one. The results

obtained form these sections are in line with the conclusions drawn by (Bartley et al., 2002;

Otero and Solari, 2010; Polwiang, 2015).

The studies conducted using dengue models show that the seroprevalence level of the human

population is inversely proportional to the size of the vector population to prevent or interrupt

the dengue transmission (Focks et al., 2000, 1995; Newton and Reiter, 1992). Figure 4.8 shows

the probability of invasion for one infectious human and mosquito for different seroprevalence

levels. As seroprevalence level increases the probability of invasion becomes less which is in

agreement to the work of Otero and Solari (2010). It is mentioned in Institute of Medicine

(2008) that the saturation in the host population due to immune individuals makes it difficult

to sustain dengue transmission. The results in Figure 4.8 also highlights this fact as there

are cases where the change in seroprevalence after a certain level (∼ 65%) resulted a quick

decline in the probability of invasion. This level can be thought as the saturation point of the

recovered individuals after which the transmission in the susceptible population gets harder.

However, re-invasion in the case of dengue gives rise to complications arising in the immune

system if re-infected with a different serotype (WHO, 2014).

Although the deterministic version of the model is used in this Chapter to answer different

research question, some research questions are answered using the stochastic version of the

model. The stochastic version of the model first is used to investigate the questions related

to the probability of dengue persistence, distribution of the time to extinction of the disease

and estimation of the peak of the infectious humans Ih and time taken to attain the peak.

The date of arrival of an infectious individual effects the distribution of the infectious humans

(Otero and Solari, 2010). Outbreaks are likely to produce larger epidemics that occur quickly

if dengue introduction occurs in favourable season. If introduced in the unfavourable season,

the outbreak takes longer to attain the peak value of Ih. This is because the infectious

population gets a longer time to evolve before the next unfavourable season (Otero and

Solari, 2010). This is the reason why there are more persistent runs for January to March,
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with lower number of infectious humans that takes longer to attain the peak. If an epidemic

occurs during or after October, the peak of Ih starts to decrease as the epidemic is modulated

by the decrease in the vector population.

The model used in this chapter is a simplified version of seasonal dengue transmission models.

This model can be adapted to other regions and parametrised for different epidemic and

endemic scenario in urban environment. The model can be used to represent the host-vector

system of different vector-borne diseases where seasonal conditions affect the transmission.

By using the modelling framework presented, the immigration of an infectious individual and

its impact of the epidemic can be discussed in a well-mixed population. The concept of disease

introduction by an infectious vector is particularly important for the diseases where vectors

are dispersed to or transmitted long distances. Results presented here can be used for cost-

effectiveness analysis, including costs of hospitalization and planning for dengue outbreaks.

4.7.1 Caveats in the current dengue modelling setting

The parameters used in RM s
SEIR are chosen from the literature, so that they provide sim-

ilar patterns of dengue incidence as observed in nature. There are different biological and

meteorological quantities related to the vector population and several factors related to the

human population which are not included in this study. There are a number of reasons for

this, including their level of impact on the population and difficulties in obtaining informa-

tion on these factors from the field or the laboratory. Some of the parameters are either

difficult to incorporate or not the main focus of the current study. In addition, there is a

trade-off between decreasing the complexity of the model and the amount of data required

to parametrize the model. Some of the factors which are not included in the current study

are listed below:

• The population of vectors is affected by a change in three meteorological parameters

namely temperature, rainfall and relative humidity. It is assumed that the annual

change in these is synchronous. In addition, the effects of extreme values of temperature,

humidity and rainfall are not taken into account.

• Temperature variation during the day is ignored. At huge population levels and the

rates that have a time span of days, this simplification is not expected to introduce

important distortions into the results (Focks et al., 1993b).

• Optimum humidity levels are assumed in the model. Higher humidity levels increase

the chances of survival of the eggs and the adult population of mosquitoes. This can
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lead to variable total population size of vectors across different years.

• Certain biological factors are ignored including: larval predation, effect of wind speed

on bite rate, host preference, multiple feeding behaviour of Aedes aegypti, competition

between Aedes aegypti and Aedes albopictus for resources, and availability of breeding

sites and spatial distribution of vectors. While other factors such as photo-period and

wind speed may affect the survival and developmental rates of dengue vectors, their

effects are irrelevant in the current settings (Otero et al., 2008; Service, 1980). Since

Aedes aegypti and Aedes albopictus have adapted to live in the close proximity of humans,

they mostly use sheltered artificial and natural sites for their activities. As the effect

of air turbulence and flow direction are usually more important in the day time they

can effect Aedes mosquitoes. In general, the effect of wind is highlighted by Service

(1980) where it is concluded that the day time biting mosquitoes are carried away long

distances due to wind currents. This can have a potential impact on the transmission

of the disease.

• In the host population the effect of urbanization, socio-economic factors, spatial distri-

bution of hosts, migration and commuting patterns of humans and time spent outdoors

are not considered.

• A single serotype model for dengue transmission is used, therefore factors related to

the immunity of hosts like waning cross-immunity after infection from one serotype and

antibody dependent enhancement (ADE) are irrelevant in the current study.
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Direct transmission models to represent host-
vector systems

5.1 Introduction

Understanding the mechanisms of pathogen spread and persistence in a population requires

good quality data and sophisticated mathematical models. These mechanisms are even harder

to uncover in vector-borne diseases mainly due to the different levels of complexity involved

in disease transmission. For instance, the differences between the life span and pathogen in-

cubation period in the host(s) and the vector(s), pathogen clearance rate in both populations

and seasonal fluctuation in the size of the vector and the host population(s) varies the trans-

mission dynamics. The magnitude of this variation is sometimes so large that the disease

transmission follows inter- and intra-annual cycles in both populations. In addition, data

required for parameters related to vector populations is typically scarce, influenced by the

micro-environment and require a long-term investment for conducting longitudinal studies.

Vector-borne diseases create a significant annual health burden and contribute significantly to

emerging diseases (Institute of Medicine, 2008). In particular, mosquito-borne diseases infect

a substantial proportion of the human population, especially in tropical and sub-tropical re-

gions of the world (WHO, 2014). A review of the mechanistic models used for mosquito-borne

pathogen transmission is provided by Reiner et al. (2013) whereas the theory of mosquito-

borne pathogens is recently reviewed by Smith et al. (2014). In both of these articles the

evolution of mathematical modelling and theory related to mosquito-borne pathogens over

four decades i.e., from 1970 to 2010 is presented. Different aspects of the mosquito life cycle

and transmission are considered; however, it is interesting to note that most of the models

are extensions of the Ross Macdonald mathematical framework.

The time evolution of all biological processes is influenced by stochastic events. These stochas-

tic events are the parts of the dynamics that are not included or predicted by using the

deterministic models (Ditlevsen and Samson, 2013). In contrast to a deterministic model, a
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stochastic model can generate more realistic output trajectories and encompasses a broader

spectrum of possible scenarios of disease spread. This is why mathematical models that

are able to investigate persistence are mainly stochastic in nature since the real patterns of

endemic fade-out and extinction of the pathogen are not uncovered using the deterministic

modelling framework. However, one of the drawbacks of using stochastic models is that they

are computationally expensive, although different approximations have been developed to

increase their computational efficiency (e.g. see Cao et al., 2006, 2007, for details).

In this chapter, a simple SIR model RMSIR, here termed the ‘Full model’ is considered with

two different approximations to represent the vector disease dynamics. These models are (i)

the Vector Proxy model (VP), and (ii) the Reservoir model. These models capture the effect

of the vector population using two different approaches. In the first model, the latent class

Lh acts as a proxy for the effect of infectious vectors in the host population: the number of

humans in Lh class can be regarded as “pre-bitten” hosts. The Reservoir model contains a

pool P of infection from which the infection is transmitted to the host population. The pool

P can be thought of as a place for the survival of the infectious agents and a source for the

transmission of the infectious particles. Because, in earlier chapters, infection in hosts and

vectors followed a paired distribution with a strong and positive relationship, the number

of infectious individuals in P is proportional to the number of infectious individuals in the

host population. Also for simplicity, the birth and death rates of the host population are

kept the same in both models so that the host population size stays the same over time.

The introduction of a latent class and Reservoir to represent the dynamics of the vectors,

make these models computationally efficient and analytically more tractable. In this chapter,

the emphasis is put upon the validation of the approximations used in constructing simple

models and the comparison of the stochastic versions of these systems with the Full model.

Modelling using these approximations is not an entirely new idea. The concept of having a

population class in hosts that represent the dynamics of infectious vectors is first attempted

by Dye and Williams (1995). In addition to tracking infection in the mosquito population,

they investigated whether there is a need to include the population dynamics of the vector in

modelling indirectly transmitted diseases. As a very small proportion of the mosquito pop-

ulation takes part in the process of infection transmission, they suggested that the depletion

of susceptible vectors can be ignored and the vector population can be considered at steady

state throughout the time-scale of simulations. Pandey et al. (2013) implicitly modelled the

effect of infectious vectors in the transmission term by comparing a simple SIR model for

hosts to a vector-host model. They found that the SIR model was substantially better than

the vectorhost model for the DHF data from Thailand. In both of these studies, simpler

models are proven to be either better or similar to the models representing the full dynamics

112



5.1 INTRODUCTION

of the system.

The population dynamics of hosts can be highly influenced by the pathogens and mathe-

matical models are developed to investigate their effects. Similar to the Reservoir model,

Anderson and May (1981) alter a basic SIR model to incorporate the ‘free-living’ state for

directly transmitted parasites. This is achieved by adding an equation for the population of

free- living infective stages, W , assuming that an infected individual produces these stages at

some rate λ , and a susceptible individual becomes infected at rate vW . As an application,

they modelled the dynamics of larch budmoth, Zeiraphera diniana, and its infection with

a granulosis virus. The model, although simple, was sufficient to account at least for most

long-term population cycles in forest insects. Boots (1999) extended the above model by

reducing the uptake of pathogen free-living infective particles by infected individuals after

the pathogen infection. They found that the reduced equilibrium population density and

the cyclic dynamics in the host population are as a result of regulation by the pathogen. In

most of these studies, the main concern was the effect of pathogens on the host population

dynamics therefore the assertion was put on the main sub-classes of the host-vector system.

These approximations worked well in above studies.

Although more complex models allow us to see the structure more clearly, adding complexity

in the model has some trade-offs. For instance, the complexity of model dynamics increases

with multiple populations and hence it becomes difficult to understand the mechanism of

persistence in these systems. This suggests that simplified models could be useful. In addition

to this benefit, the approximations taken in this chapter are interesting in many aspects. First,

model structures like that of the VP model are only developed for SI and SIR systems (Dye

and Williams, 1995; Pandey et al., 2013). It would be interesting to develop an approximate

model by incorporating the effect of infectious vectors implicitly in the latent class Lh of

hosts than in infectious hosts class Ih. In the reservoir model, the free-living modelling

structure is altered to account for the indirectly transmitted diseases, where rate of change

in the individuals of the infectious host population Ih is connected to the free-living agents in

the pool P . In the context of epidemiology and population ecology, these two approximate

models are entirely different and comparing these models on the basis of a host-vector model

is interesting in its own right.

The chapter is divided into two parts: (i) the first part deals with the deterministic anal-

ysis and the analytical derivation of key terms for the models. It starts with the ordinary

differential equation (ODE) representation of the models including analytical derivation for

the unknown quantities of the approximate models. The derivation of these terms is done

to compare both models to the Full model. The basic reproductive ratios and the stability
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analysis of the models at the disease free and endemic equilibrium are also presented in this

section. Important mathematical derivations are provided in the appendix of the chapter.

(ii) The analysis undertaken in the second part is concentrated upon the stochastic treatment

of the models. A section is devoted to the identification of the regions where the model ap-

proximation fails to hold. The results obtained from the approximate models are compared

with the Full model. In particular, both VP and Reservoir models are compared with the

Full model by using three different criteria: (a) By comparing the stochastic trajectories; (b)

by comparing the persistence threshold (CCS); and (c) by comparing the Quasi-Stationary

Distribution (QSD).

5.2 Description and deterministic analysis of the models

This section comprises of the first part of the analysis performed in this chapter. A brief

description of the Full model followed by the stability analysis of both the VP and Reservoir

model is presented to complete the formal deterministic analysis. The derivation of main

terms that arise by the approximation of parameters is also provided with the description

of the models. In the end, the endemic equilibrium state of all models is compared and

expressions are presented for the host compartments in all models.

5.2.1 Full model

The Ross Macdonald compartmental framework with immunity, RMSIR is referred in this

study as the ‘Full model’. This model is made up of a Susceptible-Infected-Recovered (S I R)

system of equations for host population dynamics and a Susceptible-Infected (S I) system for

the mosquito population. This model has been extensively studied in this thesis and further

details of the model can be found in section 2.2. Here, the equations of the deterministic

version of the model are provided.
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dSh
dt

= ΛH − αIv
(
Sh
H

)
− γSh

dIh
dt

= αIv

(
Sh
H

)
− (ξ + γ)Ih

dRh
dt

= ξIh − γRh
dSv
dt

= δV − βSv
(
Ih
H

)
− δSv

dIv
dt

= βSv

(
Ih
H

)
− δIv

(5.1)

5.2.2 Vector proxy (VP) model

The first of the two approximate models, the Vector proxy (VP) model uses the idea that

a sub-population of hosts can be identified that represents the impact of the vectors on

the host population. This sub-population acts as a proxy or an indirect representation of

the vector population and transforms the indirectly transmitted host-vector system into a

directly transmitted system. This is achieved by setting up a class of individuals Lh in

the host population which consists of the hosts that are infected as a result of incurring an

infectious bite from a vector. The hosts in this compartment are regarded as “pre-bitten”

individuals. Assuming a latent class Lh introduces a delay for susceptible hosts to become

infectious. This delay can be thought of as the time required for the infection to transmit to

the hosts as every bite from an infectious mosquito is not assumed to be an infectious bite.

Mathematically, in addition to the SIR compartments for the host population, the VP model

involves a latent class. The differential equations for this model are written as follows:

dSh
dt

= ΛH − bvpIh
(
Sh
H

)
− γSh

dLh
dt

= bvpIh

(
Sh
H

)
− (σ + γ)Lh

dIh
dt

= σLh − (ξ + γ)Ih

dRh
dt

= ξIh − γRh.

(5.2)

Here Λ = γ denotes the birth and death rate of hosts, σ denotes the duration which hosts

spend in the latent class and ξ denotes the recovery rates of hosts. The rate bvp is the

transition coefficient from susceptible compartment Sh to the latent compartment Lh. The

latent class, when compared with the Full model, can be thought of a compartment that

consists of ‘pre-bitten’ humans. The flow of infected individuals to the infectious compartment
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takes place after on average σ−1 days. Due to the low mortality rate of hosts, most of the

individuals in the Lh class will become infectious. The term bvp is multiplied by the term Sh
H

showing frequency dependent transmission.

In order to parametrise the model for the stochastic simulations, values of the unknown

parameters bp and σ are required. The Full model has no latent class in hosts, therefore

it cannot be used for finding the analytical form of σ. For this purpose a model called

RMSEIR−SI is constructed that includes a latent class in the host population. The term σ is

derived by setting the endemic equilibrium of the VP model to that of the RMSEIR−SI . In a

similar fashion, the value of bvp is obtained when comparing the equilibrium point of the VP

model with RMSEIR−SI . The same value of bvp is obtained by comparing the equilibrium

point of the VP model with the Full model.

The value of the unknown parameters bvp and σ in terms of the parameters of the host-vector

models are (see Appenidx D.3.1).

bvp ≈
αβ

δ

(
V

H

)
σ ≈ σ. (5.3)

In comparison with RMSIR, the terms bvp and σ are the composite host-to-host transmission

and latency rate. The term bvp is enhanced by the product of transmission rates in the

RMSEIR−SI model (αβ) times the number of vectors per host ( VH ) present in the system

and transmission in the VP model is affected by the longevity of the vector (δ). It implicitly

represents the effect of the vector population rather than adding a separate set of equations

for vector population. The second unknown parameter σ contains one additional term σ
bvp

,

as the delay in VP model is proportional to the average latent period in hosts in RMSEIR−SI

and is hindered by the composite host-to-host transmission. By replacing the value of bvp in

the approximation of σ in equation 5.3, the average latent period remains unaffected in VP

model and σ = σ.

The basic reproductive number R0 is found in Appendix D.1.1:

R0 =
bvpσ

(ξ + γ)(σ + γ)
. (5.4)

There are two equilibrium points: the Disease Free Equilibrium (DFE) and the Endemic

Equilibrium (EE). The details of stability analysis of this model are provided in Appendix
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D.2.1. Standard mathematical analysis yields the following endemic equilibrium points.

S∗h =
H(ξ + γ)(σ + γ)

bvpσ
=

H

R0

I∗h =
Hγσ

(ξ + γ)(σ + γ)
− Hγ

bvp
=
γH

bvp
(R0 − 1)

R∗h =
Hξγσ

γ(ξ + γ)(σ + γ)
− Hξ

bvp
=
Hξ

bvp
(R0 − 1)

L∗h =
−Hγ(ξ + γ)

bvpσ(σ + γ)
(γ +H (σ −R0 (σ + γ))) .

(5.5)

These equilibrium points are comparable with the equilibrium points of the Full model. In

chapter 2, the equilibrium points of hosts in RMSIR are derived as:

S∗h =
H(γHR0 + αV )

R0(αV + γH)

I∗h =
δγH2(R0 − 1)

β(αV + γH)

R∗h =
ξδH2(R0 − 1)

β(αV + γH)
.

(5.6)

The equilibrium points for the vector population are:

S∗v =
V (αV + γH)

(αV + γHR0)

I∗v =
δγH(ξ + γ)(R0 − 1)

α (δ(ξ + γ) + βγ)
.

(5.7)

The term γH has very little contribution (0.007%) in the expression αV +γH for the param-

eter values employed. As a result, this term can be dropped in the expression (γHR0 + αV )

and (γH + αV ) in the above equation set 5.6 to obtain the equilibrium points of the VP

model.

5.2.3 Reservoir model

The second alternative model uses the concept of a Reservoir by considering a pool P of

infection. The ‘individuals’ in the pool give birth with a rate c = kq (V/H) = βV/H

multiplied by the number of infectious hosts. Here c is the per human rate of generating

infectious vectors. The bite rate per vector is denoted by k and q denotes the probability of

transmission of infection from a bite. The vector to host ratio is V/H. The term cIh is defined

as the mean number of bites that lead to an infectious vector for the entire human population

and δ denotes the vector mortality rate. The vector population is assumed constant and the

depletion of susceptible individuals is ignored and so Sv ≈ V .
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The equations of the Reservoir model are as follows:

dSh
dt

= ΛH − brP
(
Sh
H

)
− γSh

dIh
dt

= brP

(
Sh
H

)
− (ξ + γ)Ih

dRh
dt

= ξIh − γRh
dP

dt
= cIh − δP

(5.8)

By comparing the endemic equilibrium of RMSIR and Reservoir model (derivation is in

Appendix D.3.2), we obtain:

br ≈ α, δ ≈ δ. (5.9)

The basic reproductive ratio is found as

R0 =
br c

δ(ξ + γ)
. (5.10)

The endemic equilibrium points are:

S∗h =
δH(ξ + γ)

brc
=

H

R0

I∗h =
Hγ

ξ + γ
− δγH

c br
=
δγH(R0 − 1)

c br

R∗h =
ξH

ξ + γ
− ξδH

c br
=
ξδH(R0 − 1)

c br

P ∗ =
Hγc

δ(ξ + γ)
− γH

br
=
γH(R0 − 1)

br
.

(5.11)

The mathematical analysis of the models is given in Appendices D.1.2 and D.2.2. By putting

the values of c, δ and br, and since γH � 1 when it is added to a large quantity, the

equilibrium points of the Reservoir model are deductible from the equilibrium points of the

Full model. The comparison of the equilibrium points of all models for the susceptible,

infectious and recovered hosts is shown in equation 5.12, whereas the baseline parameters are

shown in Table 5.1.

S∗h =
H

R0

I∗h =
δγH2(R0 − 1)

αβV

R∗h =
ξδH2(R0 − 1)

αβV
.

(5.12)
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Symbol Explanation Value used

α Per-bite vector-to-host transmission rate, in days−1 0.1

β Per-bite host-to-vector transmission rate, in days−1 0.075

ξ Average infectious period of hosts, in days−1 0.1428

δ Average birth / death rate of vectors, in days−1 0.125

γ Average mortality rate of hosts, in days−1 4.215× 10−5

bvp Composite host-to-host transmission rate, in days−1
αβ

δ

(
V
H

)
σ Average incubation rate of hosts, in days−1 σ = 0.2

c Per human rate of generating infectious vectors, in days−1 β
V

H
δ Average birth / death rate of individuals in the Reservoir, in days−1 δ = 0.125

Table 5.1: List of parameters used in all the models. Here, the average birth rate of hosts is

equal to the death rate, i.e., Λ = γ. The life expectancy of a single host is set to 65 years. The

first five parameters are same as used in Chapter 2 and 3. The last four entries of the table denote

the derived parameters obtained by comparing the approximate models to the Full model at the

endemic equilibrium.

5.3 Methods for the evaluation of the stochastic version of the

models

The second part is related to the study of the stochastic version of the models. In the part,

the VP and Reservoir models are compared with the Full model. The approximate models are

initially compared with the Full model to identify the possible parameter values corresponding

to epidemiological scenarios where the model approximation fails to hold. After that, the

models are compared by plotting the stochastic trajectories of different compartments. Next,

the CCS is obtained from the models. At the end, the QSD of different compartments is

compared. The models are parametrized by using the baseline parameter values mentioned

in Table 5.1.

5.3.1 Breakdown of approximation in both models

The models presented in Sections 5.2.2 and 5.2.3 are two distinct approximations of the Full

model, RMSIR. The introduction of a latent class and Reservoir to represent the dynamics

of the vectors, make these models computationally efficient and analytically more tractable.

However, there are cases where these approximations lead to incorrect results. This section

highlights the parameter space under which the model assumptions fail to hold. After putting

the values of bvp, σ, br and δ, the expression for R0 derived through the equivalence of the
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models at equilibrium is similar.

In the VP model, it is assumed that the vectors in the Full model can be approximated as

a proxy class of latent hosts, where the effect of the vector is implicit in the transmission

term bvp. In other words, the class Lh contains the hosts which are almost certain of getting

infection after the average period of
1

σ
days (death rate is very low in hosts). Comparing the

equations of infectious humans in VP model and RMSIR at equilibrium yields the following

value of L∗h, in terms of the entities of RMSIR:

L∗h =
αI∗v
σ

(
S∗h
H

)
. (5.13)

By substituting in the baseline values of α = 0.1, σ = 0.2 from Table 5.1 results
S∗h
H
≈ 0.4.

That leads to L∗h ≈ 0.2 I∗v . Equivalently the number of hosts in the latent class of the VP

model is one fifth of the number of infectious vectors in the Full model. In general, the

approximation at equilibrium follows L∗h ≈ σ I∗v . This assumption is valid when both models

are at the deterministic endemic equilibria. As mentioned in the above paragraph, hosts

in Lh are almost guaranteed to become infected. The low number of hosts in this class as

compared to I∗v makes sense as not all vectors in I∗v are successful in passing infection on to

hosts, mainly because of their high death rate.

In order to gain a better understanding of the conditions under which the simplified models

provide an acceptable approximation of the Full model, the parameter values for which the

assumptions may fail are considered. The models are then solved for these parameter values

showing the effects of this breakdown. For the VP model, let there be five infectious hosts

and vectors present at the start of simulations in RMSIR. The simulations are now started to

represent an epidemic in a totally susceptible population, so in this case Sh = H. Inserting the

values of the parameters into equation 5.13 produces Lh ≈ 0.5Iv meaning that the number of

hosts in the latent class in the VP model is half the number of vectors in the infectious class

of RMSIR when simulations are started away from the steady state. Although, this relation

converges to L∗h ≈ 0.2I∗v when the endemic equilibrium state is attained, this difference leads

to different stochastic trajectories in Ih and Lh : Iv classes of both models, implying that

these assumptions are valid near the deterministic steady state (see top row of Figure 5.1).

Similarly, in the model with infectious Reservoir, it was assumed that Sv ≈ V rather than

V = Sv + Iv. The infectious proportion of vectors is neglected as a very small proportion

takes part in the transmission of the infection (results from previous chapters), as is shown in

the Aedes aegypti survival curve in Brownstein et al. (2003). It is straightforward to note that
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Figure 5.1: Graph showing the comparison of VP (in red) and Reservoir (in blue) models with

RMSIR (in black) for an epidemic scenario. The top row represents the comparison of VP model

and RMSIR and bottom row shows the comparison of Reservoir model and RMSIR. The inset

in the bottom row highlights the peak of the populations. One hundred stochastic trajectories of

both models are shown. Population of hosts is 100000 individuals and vector-to-host ratio is six.

The initial conditions are five infectious hosts (Ih) for all three models, whereas five infectious

vectors Iv are introduced in RMSIR and in Reservoir model P respectively. The value of pre-

bitten hosts at equilibrium is taken from L∗h ≈ 0.5 I∗v . The value of parameters is listed in Table

5.1.

the above assumption becomes invalid if there are many infectious vectors in the population.

One way to violate this assumption is to increase the rates α and β, which accelerates the

transmission process and introduces a lot of infectious mosquitoes. The second way is to

introduce only a few infective hosts and vectors so that an epidemic outbreak is observed.

The difference between the models becomes evident by observing the number of individuals

at the peaks of the infectious compartments, as shown in the bottom row of Figure 5.1.

The equation for Iv in the Full model is

dIv
dt

= βSv

(
Ih
H

)
− δIv. (5.14)

By comparing this equation with the equation of pool P in section 5.8, the rate at which a new

infectious vector is generated in equation 5.14 is a product of the proportion of infectious

humans Ih
H and the susceptible vectors Sv. The rate at which the population of vectors

changes in P is obtained by multiplying Ih
H by the total vector population V . As the vector

population is set constant in both models, V = Sv + Iv. In the situation where plenty of

infectious vectors are present; i.e, disease invasion, the difference in the ‘generation of new

121



5.3 METHODS FOR THE EVALUATION OF THE STOCHASTIC VERSION OF

THE MODELS

infections’ becomes evident between the two models since V 6≈ Sv. The bottom row of Figure

5.1 presents this scenario where the number of infectious hosts and vectors at the peak of the

epidemics are different. The difference is more prominent at the peak of infectious vector and

population of the pool (Bottom right of Figure 5.1) which, in turn, create more infections in

host population of the Reservoir model.

5.3.2 Estimation of the CCS

The estimation of the CCS is performed in similar fashion as undertaken in Section 3.5.3.

A summary of the method is as follows: the stochastic simulations are started from the

deterministic equilibrium point and allowed to run for twenty-five years. Adaptive tau-leap

simulations for every population size are repeated one thousand times and population size

is increased until half of the stochastic simulations retain infection at the end of twenty-

five years. This population size is termed as CCS and it is computed for the Full, VP and

Reservoir models by initializing them using the baseline parameter values.

5.3.3 Estimation of the Quasi-Sationary Distribution (QSD)

The QSD distribution is defined by N̊asell (2005) as:

The so-called quasi-stationary distribution, which is a stationary distribution, con-

ditional on non-extinction, is supported on the transient, non-absorbing states. It

is a useful approximation of the state of the process when it has been going on for

a long time without extinction. It is a counterpart to the endemic infection level

in the deterministic model.

Here transient states are states where the number of infected and infectious individuals is

non-zero.

The quasi-stationary distribution is the distribution of states of the system modelled as

Markov chains and it is conditioned on non-extinction of the disease. The Markov chain

should have at least one absorbing state, for example, the extinction state of the organisms.

In the context of population dynamics, a disease is considered endemic in the stochastic

setting where the QSD is reached. Intuitively, QSD describes the long-run distribution of the

states of the system.
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For estimating the QSD, the simulations were allowed to run for 100 years. A host population

of 1.5 million individuals was selected and a vector-to-host ratio of six was assumed for all

models. After parametrization and finding the unknown parameters, the stochastic simula-

tions were initialized with same initial conditions in all of the three models. The result of the

simulations using the simulations incorporating Gillespie and adaptive tau-leap algorithms

were then compared for estimating the accuracy of the tau-leap algorithm. The estimation of

the QSD can be described as follows: assume that I is the Markov chain for a compartment

of the model, and i is a particular count of the number of individuals of that state. The

formula for estimating the probability of each state i is then:

P (I = i) =

∑
length of time(I = i)∑

ttot
(5.15)

Here, numerator sums the time spent in the state i in the simulation. ttot denotes the running

time of a simulation until the infectious populations falls to zero or the maximum time limit is

reached. The summation runs to hundred years for hundred stochastic repetitions using tau-

leap algorithm and thirty using the Gillespie algorithm. It was assumed that the simulations

fell quickly into the QSD after starting from the deterministic endemic steady state. Each

simulation was stopped if there was no infected individual in the populations.

5.4 Results from the stochastic version of the models

The second part of this Chapter deals with the analysis undertaken with the stochastic ver-

sion of the models. The main idea behind this analysis is to investigate the similarity between

all the models in the stochastic settings. The populations in a stochastic model follow dif-

ferent trajectories even if started using the same initial conditions. Therefore, comparing

the dynamics of individuals in different classes in all three models is a valid starting point.

The time-varying trajectories provides an initial idea of the distribution of the profiles of

individuals in different compartments. Another interesting area is to estimate the Critical

Community Size (CCS) for these models. This measure highlights the similarity of the mod-

els in relation to the host population sizes and disease persistence. Moreover, in the first

part of the chapter the models have almost similar values of individuals at the deterministic

endemic equilibrium, therefore the quasi-stationary distribution (QSD) of the different com-

partments of the models is compared. As this distribution is the stochastic counterpart of the

endemic equilibrium points in the deterministic setting, this distribution helps investigating

the behaviour of the model at endemicity in the stochastic setting. The results of these three

analyses are presented in a sequential manner. At the end, a discussion about important

outcomes that can be established by using these model approximations are presented.
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5.4.1 Stochastic trajectory comparison

Figure 5.2: Time evolution of different population compartments in the approximated models.

The VP model is plotted in red and the Reservoir model is plotted in blue colour. The number of

susceptible (Sh), infectious (Ih) and Recovered (Rh) hosts are directly comparable whereas the

number of individuals in P are nearly five times as in Lh. The graph showing infectious vectors

Iv in the Full model has nearly the same number of individuals as the pool P in the Reservoir

model. In the VP model, L∗h ≈ 0.2 I∗v , as shown in section 5.3.1. All stochastic simulations are

started form the deterministic endemic equilibrium. Parameter values used in these models are

listed in Table 5.1.

The first measure for comparing the models is by comparing the stochastic trajectories of the

same or similar compartments. For this purpose, the stochastic simulations in all three models

are run for twenty-five years starting form the deterministic steady state in each compartment.

One hundred stochastic repetitions are performed for all models. Incorporating the parameter

values of bvp and σ in the VP model leads to roughly the same number of individuals in S∗h, I∗h

and R∗h and the value of R0 as in RMSIR at the start of the simulations. This is also true for

the Reservoir model when the values for br and δ are incorporated. The host population size at

the start is 3 million individuals and the vector-to-host ratio is set to six. Simulations are run

for twenty five years and their trajectories are plotted in Figure 5.2. The compartments of the

Full model are plotted in black, whereas the compartments of VP and Reservoir models are
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shown in red and blue respectively. The population of susceptible and recovered individuals

in the VP model showed less dispersion around the deterministic endemic equilibrium as

compared to the same classes in RMSIR.

5.4.2 CCS comparison

The CCS is regarded as the population size above which a pathogen can persist in the popula-

tion without introduction from external source. It is a measure that is similar to a persistence

threshold of a stochastic population model. As the Full model is being approximated by VP

and Reservoir models, it is worthwhile to examine the similarity of their CCS with the Full

model. In this section the CCS of both approximation models is found and compared with

RMSIR.
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Figure 5.3: Comparison of CCS for RMSIR (black), VP (red) and Reservoir model (blue).

The x-axis represent the host population size in 10,000 and y-axis represents the probability of

extinction. CCS is attained when half of stochastic repetitions contained infection at the end of

twenty five years.

The CCS for RMSIR was found to be ∼ 1.3 million hosts in Chapter 3. Model parametrization

resulted in approximately the same initial conditions for these models as the Full model. The

comparison of the CCS for these models is shown in Figure 5.3. The Reservoir model followed

the same path as the Full model (CCS ∼ 1.3 million hosts) but a marked difference is observed
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in probability values in the VP model especially when H > 0.3 million, where CCS for the VP

model is found to be ∼ 1.5 million hosts. This difference mainly arises due to the low number

of individuals in the Lh compartment, as shown in Figure 5.2. At the endemic equilibrium

L∗h ≈ 0.2 I∗v ; the infection in the VP model is more prone to the demographic stochasticity

at low numbers of individuals in Ih and Lh classes.

5.4.3 Comparison on the basis of QSD of the models

This section provides a final equivalence measure by comparing the Quasi-stationary dis-

tribution (QSD) of the models. The QSD is compared for the number of individuals in

susceptible, infectious and recovered compartments of hosts in all models. The QSD of the

infectious hosts Ih is estimated by using both the tau-leap and Gillespie algorithms, whereas

the QSD for susceptible and recovered hosts is found by using the tau-leap algorithm. When

Gillespie algorithm is employed for the Full model, the birth and death of a vector is repre-

sented as a single event, i.e, the death of an infectious vector results in an immediate birth

of a susceptible individual. With the exception of a few runs (<3 in all models), infection in

all of the simulations went extinct within the time frame of one hundred years.

The comparison of adaptive tau-leap (top) and Gillespie algorithms (bottom) for infectious

humans (Ih) is shown in Figure 5.4. The x-axis represents the states and y-axis represent the

probability in each state. The QSD for infectious humans (Ih) was obtained by using equation

5.15. The QSD shows high probability for states corresponding to low numbers of infectious

humans. This high probability of having a small number of infectious individuals is an artefact

of using the tau-leap method for the VP model. In the bottom figure, the comparison of the

QSD for Ih in the VP model obtained by employing the Gillespie algorithm does not show

this behaviour. This suggests that the tau-leap method is not a right choice for investigating

the behaviour of the system near the absorbing state, for models that are similar to the VP

model.

In the bottom figure where the Gillespie algorithm was used, the shape of the QSD of infec-

tious individuals in the VP model is better. There is a bit of variation at the mode of the

distribution in the bottom figure because of fewer stochastic repetitions; thirty as compared

to a hundred for the tau-leap method. An important finding is that the tau-leap method

shows roughly the same level of accuracy as the Gillespie algorithm for the Full and the

Reservoir model, in addition to being much faster in implementation to the models. The

QSD for the susceptible and recovered individuals is plotted in Figure 5.5. The distributions

of both compartments for the RMSIR model has slightly lower values near the peak of the
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Figure 5.4: Comparison of the QSD for infectious humans (Ih) in all three models. Top:

Comparison of the QSD estimated using adaptive tau-leap. RMSIR in black, V P model in

red and Reservoir model in blue. Bottom: Estimation of QSD using Gillespie algorithm. The

approximations show more variability in the bottom figure due to fewer stochastic repetitions of

the models.

distribution. There is a cyclic pattern at the tail of the distribution of both classes. This

pattern is may be due to the way the critical events are handled using the tau-leap algorithm

as in this study they are not done as described in Cao et al. (2007). This also explain why

CCS is higher for the VP model as shown in Figure 5.3– it is not that VP predicts CCS

incorrectly, but that the tau-leaping approximation with the VP model does not work.
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Figure 5.5: Comparison of the QSD for the susceptible and recovered hosts in all three models

using the tau-leap method. The Host population comprises of one million individuals. All three

plots in susceptible and recovered compartments followed a similar profile, except for some small

deviations between the Full and approximate models. Here the colour scheme is same as in Figure

5.4.
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5.5 Conclusion and discussion

The mathematical formulation of any biological process can rapidly become complicated with

the inclusion of factors like the number of species and reactions involved in the modelling

framework. This additional structural information can impair the benefits and advantages

of using the mathematical tools to explore the behaviour of the system. The attractiveness

of simplifying the host-vector system comes from the potential gains in computation time

required for the understanding of the biological process. It allows for the fact that the data

for the complex vector dynamics are also limited. A simple but powerful approximation may

provide insights into the persistence dynamics of more complex systems (e.g., multi-host and

multi-pathogen) which are currently not easy to investigate using mathematical models that

represents the complete detail of the process. Moreover, the lesser the uncertainty related to

the data and the number of parameters, the better the results from the mathematical model.

The model with fewer parameters is strongly selected by the AIC and other model selection

criteria (Pandey et al., 2013). The authors further found that the simple SIR model fits the

dengue incidence data of Thailand as well as the host-vector model and conclude that the

inclusion of vector population may not be necessary to model prevalence and incidence in

human or other primary host. Furthermore, at the very least, a thoughtful simple mathemat-

ical framework can provide an idea of the behaviour of the system without going into every

detail of the process.

It is anticipated that the analysis done in this chapter is not a well-studied area in host-vector

systems and very few studies (e.g. Dye and Williams (1995); Pandey et al. (2013)) address the

problems of this type. The current chapter is an attempt to represent the dynamics of a non-

seasonal host-vector model in two ways. First a simple host population based model, termed

as the VP model, where the effect of the vector population is represented as a latent class of

humans. The hosts enter this compartment at a composite host-to-host transmission rate bvp

and leave at the rate σ. These terms are found by comparing the models at the deterministic

equilibrium. Second way is by reducing the dimension of the host-vector system, i.e, the

Reservoir model. The dimensional reduction is undertaken by assuming that the susceptible

population of vectors is fixed at the deterministic endemic equilibrium. The composite terms

br and δ are found by using the same procedure as undertaken for the VP model. These

assumptions create a considerable change in the time required for the processing of the

stochastic version of the models (≈ five to ten times) although the model contains a large

number of individuals. In this study, both of the approximate models are investigated for the

parameter regions where the approximation fails to hold and then compared with the Full

model by using three metrics.
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By comparing the results from the models, it can be seen that the approximations considered

here work well if the behaviour of the system is studied around or near the endemic state

(see Figure 5.3.1). The VP model is sensitive to the low population numbers, as there are

few infected individuals in Lh at the start of the simulations when the system is at the

deterministic endemic equilibrium (see Figure 5.2 for the number of individuals in Lh) that

resulted in a bigger host population to attain the CCS. The Reservoir model seems better

in handling this issue as seen from Figure 5.3. With large enough and well-mixed host

and vector populations that overcome the effects of demographic stochasticity these model

approximations are good enough to be incorporated in a range of host-vector systems. The

exclusion of seasonal effects in these approximate models means that they are suitable for

short-term analysis of the system so that the population size of vectors is not considerably

changed due to seasonal fluctuations. However, both models are well-suited to investigate

the temporal trends and basic epidemiological features of diseases like dengue, yellow fever

and malaria.

In Section 5.4.3, the QSD is approximated by using two different algorithms and results are

compared for the infectious hosts in each model. In Figures 5.4 and 5.5, the comparison is

shown. The tau-leap method resulted a close approximation of the QSD of the Full model

and Reservoir model. For the VP model, it does not provide a good approximation at

lower states of Ih. However, it does better at the peak and the later states and at the tail

of the distribution. The similarity of the mode and tail of the distributions in all three

models indicate that the “stationary state” of the models is comparable in the stochastic

setting. Although the mean time to extinction can be estimated when the system is at

Quasi-stationary state, the emphasis here is to compare the models at the “stochastic endemic

equilibrium state” since the number of individuals in every compartment is roughly the same

for all three models at the deterministic endemic state.

In addition to the computational benefits, these approximations are used to investigate to

what degree the inclusion of the vector population in the dynamics of the system is important.

This question can be of a huge importance as the data related to vectors is usually not very

easily available. It requires time and costs to conduct longitudinal field studies for obtaining

data. In contrast, the human cases are very well monitored. As quoted in Dye and Williams

(1995) for flea-borne diseases:

Interestingly, all species in general exhibited stronger correlations with host dy-

namics than those of their vectors, supporting the assertion that flea-borne mi-

croparasites can often be incorporated effectively into epidemiological models as

directly-transmitted pathogens.
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In general, the inclusion of the vector population having a very high birth and death rate

as compared to hosts results two very different time scales of demographic turn-over. As a

very small fraction of the vector population takes part in the process of disease transmission,

it can be assumed without the loss of generality that there is no depletion in the number

of susceptible vectors present in the population. The structure of both VP and Reservoir

model excludes the population dynamics of susceptible vectors and assumes that they are at

a stable equilibrium value. This has two major benefits: (i) as the dimension of the system

is reduced so that the analytical treatment of the approximate models is easier (Dye and

Williams, 1995), (ii) the models are compared using stochastic individual-based algorithms,

which can be extremely slow if the birth and death of the vectors are included as individual

events. As a result, the estimation of QSD and CCS becomes very time consuming in that

case.

While all the models of mosquito-borne pathogens address some biological question of inter-

est, there is no clear justification of which is the most appropriate model. In epidemiology,

approximate models are intended to obtain expressions for epidemiological parameters that

can be used to determine the observed patterns of susceptibility and infection of diseases

in different countries. The analysis done in this chapter surround both deterministic and

stochastic modelling frameworks and the conditions of epidemics and endemicity of the dis-

ease. The main advantage of these approximations is computational ease, as the VP and

Reservoir model were faster to simulate, even using the Gillespie algorithm. As a result,

those stochastic simulation experiments can be used to gain insight to the mechanisms at

work which are complex or time and memory intensive by using the Full model. Another

main contribution of chapter is the rigorous treatment of the approximate models since they

are compared by using very important metrics, the estimation of CCS and QSD. Depending

on the nature of the research question, many interesting questions related to the mechanism

of disease transmission can still be answered by using the approximations used, mainly be-

cause they are proven mathematically sound for further analysis. Possible extensions of the

approach taken in this chapter can be incorporating the meta-population structure, extension

to a spatial model or including age structure and using method of stages for the infectious

period distribution for the host-vector systems.

It is important to note that the model approximations here are valid for modelling the

dynamics of a vector-borne disease without seasonal fluctuations. Further, critical events

are not handled as defined by Cao et al. (2007), that suggests switching to the Gillespie

algorithm at low number of individuals in any compartment. By definition, an event is

critical if happening fewer than ‘n’ times would make a population negative. Depending on

the model, the value of n is usually set to 5 or 10. It is interesting to note that this does not
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produce a huge difference in the results from Reservoir and Full models as shown in Figure

5.4. Another important point from this figure is that the tau-leap method without handling

the critical events is not suitable for the VP model. So if the mathematical structure of

the model is similar to that of the VP model, care should be taken if the stochastic system

is modelled using an approximate method to investigate the behaviour of the population

compartments that are far from the equilibrium. With small enough population sizes, it may

will be that tau-leap method would fail for all three models without properly handling the

critical events.
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Thesis overview and conclusion

The main aim of this thesis was to develop our understanding of pathogen persistence in

host-vector systems by using efficient modelling paradigms. This was achieved by conducting

three studies that were used to investigate the following: (i) The relationship between the

long-term pathogen persistence in host-vector models and the parameter values if the model;

(ii) the effects of seasonal variation on the introduction and persistence of disease in a host-

vector system; (iii) the use of approximate models to investigate the dynamics of the full

host-vector system. An overview is now provided of each of the chapters.

6.1 Overview

The objective of Chapter 3 was to establish to what extent persistence of a pathogen in a host

population, measured by the Critical Community Size (CCS), depends on the parameters of

host-vector system. For this purpose, two different models, Ross Macdonald model with host

immunity (RMSIR) and Ross Macdonald model with latent periods and immunity (RMSEIR)

are used. The deterministic behaviour and the stability of these models was investigated in

Chapter 2 and the stochastic version of these models is used to understand the mechanism

of pathogen persistence in this chapter.

To measure the probability of disease extinction in human and vector populations, individual-

based models were simulated using tau-leaping approximations of the Gillespie Algorithm.

These were used to find the CCS for both models, parametrised for dengue by keeping same

basic reproductive ration R0 in both models. CCS for the host population was found to be

1.3 million hosts for the baseline model RMSIR and was reduced to less than half (0.6 million

hosts) in RMSEIR which shows that the inclusion of latent periods have a dramatic impact

on the persistence of dengue virus in hosts. For the vector population, the CCS was found

to be 7.8 and 6.6 million for the two models respectively.

To further investigate the association between parameters of the models and CCS, sensitivity

analysis was performed and general linear models were used to quantify the relationship
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between CCS and its determinants. The parameters of the models were divided into primary

and secondary (the algebraic combination of primary parameters). The average infection

clearance rate of hosts (denoted by ξ) and the average birth / death rate of vectors (this rate

is denoted by same parameter δ; once infectious vectors are assumed to remain infectious for

the rest of their lives) are found to be the most significant primary predictors for CCS in

both models, followed by infection transmission rate in hosts (α) and vectors (β). Moreover,

in modelling CCS using RMSEIR, the average rate of latency in vectors (ρ) is found to be

an important predictor for CCS whereas host latent period (σ) has very low effect. In both

models, the average birth and death rate of hosts (γ) has least effect on CCS, as the length

of the simulations time was ∼ 40% of 1
γ . Modelling using the secondary parameters yielded

three main determinants for CCS in dengue, viz., (i) the basic reproductive number R0, (ii)

N = R0
R0−1 , and (iii) the number of recovered individuals R∗ at the deterministic endemic

equilibrium, which is taken as initial value at the start of the stochastic simulations.

The temporal dynamics of dengue show remarkable variation due to change in seasonal pat-

terns and real-world dengue data shows a strong seasonal impact. Chapter 4 is devoted to

exploring the effect of seasons on the persistence of a single serotype of dengue, taken as

a motivational example of a host-vector system. The seasonal dynamics are viewed using

RM s
SEIR model, which is identical to RMSEIR used in the previous chapters, except for the

fact that vector birth is affected by the change of seasons. The parameter space used in this

work corresponds to that of dengue as measured in empirical studies. The seasonal impact

affects the vector birth rate as a sinusoidal function whereas the parameters related to human

population remain invariant to seasonal fluctuations. The sinusoidal function introduces two

seasonal extremes for the vector population, termed as favourable and unfavourable. Twelve

different seasonal points (months) during a year were chosen as starting points for the deter-

ministic and stochastic versions of the model. The derivation of different analytic measures

including seasonal basic reproductive ratio Rt=0|t0 and probabilities of invasion PInv|Iv=1,t0 ,

and PInv|Ih=1,t0 were presented. The model was initially investigated at the disease free and

endemic equilibrium. The time evolution of the system follows five yearly epidemic cycles at

the beginning that were reduced to small annual outbreaks at the endemic equilibrium. The

introduction of disease in the naive population at different times of the year resulted in out-

breaks of varying intensity within two-and-a-half to four months. The effective reproductive

ratio for hosts after the introduction of one viremic mosquito, denoted by RV Ht|t0 drops quickly

below one during this time period due to the depletion of susceptible host population whereas

RHVt|t0 stays above one. It was also shown that the increase in the seroprevalence levels of hosts

reduced the probability of invasion. The probability of persistence of dengue infection during

one year was greater when introduced during unfavourable seasons, as the change in mosquito

population alters the transmission mechanism. This is the reason why there are more persis-
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tent runs for January to March (Figure 4.9), with lower number of infectious humans that

takes longer to attain the peak (Figure 4.11). From Figure 4.11 it can be seen that if an

epidemic occurs during or after October, the peak of Ih starts to decrease as the epidemics is

modulated by the decrease in the vector population. The distribution of time to extinction

te was affected by the seasons. Following introduction during the favourable season, te was

less after higher peaks of infectious individuals. The peak of infectious humans and the time

to attain the peak value was dominated by the seasonal fluctuation in the vector population.

In Chapter 5, two alternative models of indirect transmission for RMSIR are presented. (i) An

SIR model with a latent class Lh that acts as a proxy effect of vectors in the host population

by delaying transmission compared with direct transmission. (ii) An SIR model that contains

a ‘Pool’ or reservoir of infection P which infects the host population. The concept of reservoir

is used to mimic the population of the infectious vectors and the infection is transferred to the

hosts by the reservoir. The models are termed as Vector Proxy (V P ) model and Reservoir

model respectively.

In the V P model, the compartment Lh comprises pre-bitten infected hosts, and the number

of individuals entering are dependent upon the rate bp, the number of infectious hosts and the

proportion of susceptible hosts. They leave this compartment to become infectious with rate

σ. In the Reservoir model, the number of infectious humans depends upon the rate br, the

population of individuals in the pool P , and the proportion of susceptible individuals. The

individuals in the pool die at a rate δ. Mathematically, the V P model can be thought as a

SEIR type host model and the Reservoir model as a SIR model in hosts and the dynamics of

the infectious compartment of the pool P is represented by a separate equation. The unknown

rates in both models are derived analytically and their biological explanation is provided. In

the process of approximating a biological process, the first and foremost step is to check the

validity of the approximation, i.e., to identify the appropriate parameter regimes where the

approximation is valid and where it is not. The regions where these model approximations

fail to hold are identified and discussed.

As the main theme of the thesis surrounds the estimation of the pathogen persistence, the

CCS calculated by using the V P and reservoir models is compared to the full model. In

addition, the deterministic and endemic equilibrium state and the quasi-stationary state of all

the models is compared. Computationally, these model approximations are quicker to obtain

important results. The approximations of the host-vector model RMSIR presented in the

current chapter can help understanding the biology and mechanisms behind the persistence

of dengue disease. The results of the above mentioned models can be compared and cross-

validated with the full model to visualize the impact of parameters in different endemic
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systems. Moreover, these models are easier to treat analytically, and they can be used to

answer a wider range of questions as compared to RMSIR.

6.2 Concluding remarks

In summary, in this thesis, a range of theoretical and practical issues pertaining to pathogen

persistence are explored. All of the studies conducted in this thesis use different modelling

structures with efficient computational approaches to investigate different questions related

to the persistence of the pathogen in the host and the vector populations. Therefore, the main

areas in which the work undertaken in this thesis fall are investigating pathogen persistence in

host-vector systems using minimalist models and efficient algorithms. From the perspective

of understanding pathogen persistence, CCS as a measure of long-term pathogen persistence

is investigated in two non-seasonal models, RMSIR and RMSEIR. Persistence in the seasonal

model is investigated in RM s
SEIR where the relationship between pathogen persistence and

(i) the month of disease introduction and (ii) whether the introduction is caused by a viremic

host or a viremic vector is investigated. In relation to investigating the efficient modelling

structure, two simple models are used to approximate the dynamics of a host-vector system.

Under appropriate parameter values both models are able to represent the dynamics of the

full model, but their ability to do so depends on the simulation algorithm.

The study conducted in this thesis can be expanded in different directions. One such direction

includes incorporating the spatial dimension into the host-vector system. A meta-population

structure can be used to investigate the persistence dynamics in the patches and helps under-

standing the persistence of vector-borne diseases (Adams and Kapan, 2009; Stoddard et al.,

2009). The adaptive tau-leap algorithm used in this thesis can help investigate the persistence

dynamics in the patches where in case of multiple patches, the approximate models developed

in Chapter 5 can be considered to accelerate the simulation process. A very important point

of using the tau-leap method is that it can give a good approximation of the full Gillespie

algorithm as shown in Figure 5.4. It can even be better if the critical events are handled as

described in Cao et al. (2007), as low number of individuals in any compartment are are dealt

by using the Gillespie algorithm. In disease ecology, this technique is particularly useful for

investigating the extinction process in the patches. The expansion of the models studied in

this thesis into the meta-population structure is an interesting area to explore. The extension

of the stochastic model to include seasonal dynamics can also be used in the context of the

meta-population, if the disease has seasonal dynamics.

The estimation of CCS for the non-seasonal host-vector system is an attempt to quantify
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pathogen persistence for the host and the vector population. As the determinants of CCS are

the parameters of the model, the diseases which are less affected with the seasonal changes

can be incorporated into the models. It is interesting to note that in the current study, the

number of infectious hosts and infectious vectors are strongly correlated. A similar parameter

regime for mosquito-borne diseases may lead to similar estimates of the CCS as undertaken

in Chapter 3. It is anticipated that the inclusion of the latent class especially for the vector

population is very important for the realistic measure of CCS. The population size should

not be too large to have sub-population structures having different dynamics that affect

the persistence of the disease. By using the linear equations constructed in Chapter 3, the

seroprevalence level of hosts can be used to estimate the CCS for the host population. The

dependency of the CCS can be further explored by using different modelling structures and

the linear models can be used to have an idea of the CCS, depending on the availability of

the parameters.

Another interesting direction is to investigate the spread of the disease using graphs or net-

work theory. A network is a collection of a set of nodes denoting the individuals and edges

that denotes the connection between the nodes. One of the advantages of using networks is

that they give a realistic representation of the distribution of the population. The dynamics

of interacting epidemics using networks is discussed in Funk et al. (2010) and an overview

of networks used in epidemiology are described in Danon et al. (2011). The strength of the

relationship between the nodes can affect the disease extinction risk in a population, the

degree of spread of the disease and the lifetime of an epidemic. The network structure can

be easily incorporated to the models studied in this thesis. The contact heterogeneity can be

studied for finding the optimal route required to maintain disease transmission.

In summary, a foundation for estimating the disease persistence and the affect of seasonal

forcing on the disease introduction using simple models has been laid by using efficient algo-

rithms in the current thesis. The extensions proposed in this section will allow the researchers

to have a deeper understanding of the processes that govern the mechanisms of pathogen per-

sistence. It will be an interesting research problem if the models proposed in this thesis are

validated by data acquired from a particular region and examined for the patterns of the

‘real’ disease. In this regard, the concepts of the meta-population or the network theory will

be a valuable addition to the current modelling framework.
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A.1 Derivation of the basic reproductive number, R0

In this section, the derivation of basic reproductive number R0 for both models is presented.

The Next Generation Matrix (NGM) method as given in (Diekmann et al., 2010) is employed

to obtain R0 from the ODE system. The equations representing the transmission and tran-

sition of infection are referred as the infected subsystem. This system will be decomposed

into transmission and transition matrices and these two matrices will be linearised at the

stable infection-free or disease free state (DFE). Epidemiologically, as R0 defines the number

of secondary cases that arise with the introduction of an infected individual in an entirely

susceptible population, change in number of susceptible individuals is negligible during the

initial spread so at DFE, Sh ≈ H and Sv ≈ V .

A.1.1 R0 for RMSIR

The equation for infected hosts and infected vectors from 2.1 and 2.2 are given as:

dIh
dt

= αIv

(
Sh
H

)
− (ξ + γ)Ih

dIv
dt

= βSv

(
Ih
H

)
− δIv

(A.1)

The matrix form of transmission and transition for above system can be written as:

A =

(
−(ξ + γ) αSh

H

β Sv
H −δ

)

the above matrix is decomposed in to two matrices, one denoting the transmission of infection

F and other representing the transition or change of state, V . At DFE, the matrix F,

containing the entry points of infection and the matrix V, containing the transition / exit

points of infection (including death) are:

F =

(
0 α

β VH 0

)

V =

(
−(ξ + γ) 0

0 −δ

)
.
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The matrix K is obtained by taking the negative of the inverse of V and multiplying by the

matrix F.

K = F ×−V −1 =

 0
α

δ
βV

(ξ + γ)H
0


In terms of the population based basic reproductive numbers RHV0 and RV H0 ,

K =

(
0 RV H0

RHV0 0

)

The dominant eigenvalue or the spectral radius of the matrix K gives the basic reproductive

number R0, which is explained below:

|λI2 −K|= 0

λ2 −
(
RV H0 ×RV H0

)
= λ2 −R0 = 0

Here R0 is a general threshold of the host-vector system. It is a smultiple of RHV0 and RV H0

which are the threshold conditions on vector and host populations respectively.

R0 =

√
αβV

(ξ + γ)δH
.

�

A.1.2 R0 for RMSEIR

Using the same analogy as in A.1.1, the matrices A, F and V were formed by taking the

infected subsystem from equation sets 2.14 and 2.15.

A =


−(σ + γ) 0 0 α

σ −(ξ + γ) 0 0

0 β VH −(ρ+ δ) 0

0 0 ρ −δ



F =


0 0 0 α

0 0 0 0

0 β VH 0 0

0 0 0 0

 ; V =


−(σ + γ) 0 0 0

σ −(ξ + γ) 0 0

0 0 −(ρ+ δ) 0

0 0 ρ −δ
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The inverse of the matrix V is following;

V −1 =



1

σ + γ
0 0 0

σ

(σ + γ) (ξ + γ)

1

ξ + γ
0 0

0 0
1

ρ+ δ
0

0 0
ρ

δ (ρ+ δ)

1

δ


The matrix K has the following 4× 4 form:

K =


0 0

αρ

δ (ρ+ δ)

α

δ

0 0 0 0
β σ V

H (σ + γ) (ξ + γ)

β V

H (ξ + γ)
0 0

0 0 0 0



In terms of the population based basic reproductive numbers for RMSEIR,

K =


0 0 RV H0

α

δ
0 0 0 0

RHV0

β V

H (ξ + γ)
0 0

0 0 0 0



By evaluating the determinant |λI4−K|= 0, the following characteristic equation is obtained:

λ2
(
λ2 −

(
RV H0 ×RV H0

))
= λ2

(
λ2 −R0

)
= 0

Two of the four eigenvalues are zero. The dominant eigenvalue obtained is the basic repro-

ductive number of RMSEIR.

R0 =

√
αβσρV

Hδ(ξ + γ)(σ + γ)(ρ+ δ)

�
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B.1 TAU-LEAPING ALGORITHM

B.1 Tau-Leaping algorithm

• Calculate the event rates Rj for all eventsEj .

• Calculate the auxiliary quantities µi and σ2
i for every population Pi.

µi =
∑
j

vijRj σ2
i =

∑
j

v2
ijRj

Here vij is the effect of an event Ej over a compartment Pi. In an individual based

model with different compartments this quantity is usually expressed as a matrix having

values {-1, 0, +1}.

• Find εi by identifying the highest order event rate that each population Pi takes part

in

• Find the value of τ by using the following relation:

τ = min
i

(
max{εixi, 1}
|µi|

,
max{εixi, 1}2

σ2
i

)

where εi is derived in the next section.

• Find the number of times Kj each event Ej occur.

Kj ∼ Poisson(Rjτ)

• Update the model with the state change vector for every compartment.

x(t+ τ) = x(t) +
∑
j

Kjvj

• Check that no populations Pi became negative.

• Repeat until finished.
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B.2 Finding highest order rate

The tau leaping algorithm aims to leap as large as possible, provided that the change in rates

Rj is within acceptable range. For a given change in population Xi, the relative change rate

Rj should be smaller than the tolerance value ε. In all the experiments carried out in chapter

3, the value of ε was significantly lower than the tolerance value derived in this section to

avoid error in estimating the Gillespie process.

The order of a rate is usually the highest product of populations Xi; i = 1, 2, 3, ... involved.

It means that the reactions λH, γRh and δSv etc, are all first order. The transmission rates

in both models are the ones which includes the product of two population compartments.

These are αIv

(Sh
H

)
and βSv

(Ih
H

)
. The order of these reactions is the highest order in both

models so the tolerance ε is based on their reaction order.

Now, Consider R1 = αIv

(Sh
H

)
. The change in R1, i.e., ∆R1 is written as:

∆R1 = α(Iv + ∆Iv)
(Sh + ∆Sh
H + ∆H

)
− αIv

(Sh
H

)
. (B.1)

By taking LCM, cancelling like terms and using the fact that H = Sh + Ih +Rh and ∆H =

∆Sh + ∆Ih + ∆Rh.

∆R1 = α
S2
h∆Iv + ShIh∆Iv + ∆ShIhIv + ∆ShRhIv + ShRh∆Iv − ShIv

(
∆Ih + ∆Rh

)
H
(
H + ∆H

) .

(B.2)

Here the product of terms like ∆x∆y are ignored. Dividing above equation by R1 for finding

the relative change,

∆R1

R1
=
Sh

(
Sh + Ih

)
∆Iv + ∆Sh

(
Ih +Rh

)
Iv − ShIv

(
Ih +Rh

)
+ ShRh∆Iv

ShIv

(
H + ∆H

) . (B.3)

Equation B.3 can be arranged in the following manner.

∆R1

R1
=

H

H + ∆H

(
∆Iv
Iv

)
+

H

H + ∆H

(
∆Sh
Sh

)
−
(

∆Sh + ∆Ih + ∆Rh
H + ∆H

)
. (B.4)

This equation can be simplified by using the fact that the change in the host population
H

H+∆H is negligible.
∆R1

R1
≤ H

H + ∆H
(ε+ ε) . (B.5)

Here ε is the error control parameter.

∆R1

R1
≤ 2ε. (B.6)
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The reaction is of second order. The value of ε should be less than 0.5. In all the analysis

undertaken in Chapter 3 and Chapter 5, its value is set to 0.01 and the value is set to 0.001

for the analysis undertaken in Chapter 4.

B.3 Sensitivity analysis

To assess and quantify the influence of each parameter for variability in the persistence thresh-

old, and to target the important areas within the observed patterns, this section discusses

the elasticity analysis of both models.

To perform the formal elasticity analysis, the parameters of the model on CCS were sam-

pled by using Latin Hypercube Sampling (LHS) which is a very efficient method for sampling

Blower and Dowlatabadi (1994) and Sanchez, M. A., & Blower (1997). LHS is a type of strat-

ified Monte Carlo sampling where sampling of parameter values is done without replacement.

LHS table consists of n rows and k columns, where n is the number of samples and k is the

number of parameters. This table is generated by sampling the parameters independently of

each other from a pre-defined distribution, while every other sample takes into account the

rows and columns of previously generated sample points (Mckay et al., 2000). In this way,

the LHS scheme achieves the same level of accuracy as random sampling by using fewer sam-

ples. This method was used to construct a multi-dimensional space of plausible parameter

values from a multivariate distribution, whose minimum and maximum values are given in

Table 3.4 on page 69. Uniform probability distribution functions (pdfs) were defined for each

parameter, which is preferable when data are not available Marino et al. (2008). Since the

starting point of the stochastic simulations was taken as the deterministic equilibrium points

in every compartment, parameter combinations which yielded R0 ≤ 1 were discarded.

A parameter space containing 100 parameter sets was generated from 100 equiprobable in-

tervals for each parameter in the parameter space and randomly sampled 100 times without

replacement. These 100 samples were randomly permuted to yield 100 non-overlapping pa-

rameter sets having R0 lying in the interval {1.1, 7.6}. The resulting LHS design was again

iterated 100 times to reduce the correlation among the variables. Parameter sets were simu-

lated for twenty-five years, starting at the deterministic equilibrium for all sub-populations.

Stochastic simulation for every parameter combination was repeated a hundred times, so the

whole sensitivity analysis was based on 7 × 100 × 100 = 70000 simulations. A smoothing

function was applied on the simulation results to estimate the probability of extinction at

different population sizes. Smoothing also helps clear the monotonicity of the patterns of

probability of extinction with increasing population sizes. CCS was attained if the infec-

148



B.4 PARTIAL RANK CORRELATION COEFFICIENTS (PRCCS)

tion in both populations is still retained in half of stochastic simulations at the end of the

simulation time.

B.4 Partial rank correlation coefficients (PRCCs)

The order of input matrix obtained from sampling is n × k, where n is number of samples

created and k is the number of parameters. In this experiment, the order of output matrix is

n×1 as CCS is the only output variable of interest generated form the stochastic simulations.

Ranks are assigned to the data values of input variables xi and output measures yj , where i

runs from 1 to k, and j runs from 1 to the number of outputs obtained from the experiment

(in this case n=100, k = 7 and only one output measure is of interest i.e., CCS, so j=1).

After ranking the input and output variables, two regression models Īk : xk = f(xi) k 6= i

and Ȳk : y = f(xi) i 6= k, were then made for exploring the relation between a parameter

xk, and CCS. So, Īk have xk as response variable and Ȳk have CCS as response variable.

The remaining parameters were the explanatory variables in both regression equations. The

residuals from both models were computed, and then as suggested in (Bishara and Hittner,

2012), Pearson’s correlation coefficient was calculated on residuals from both models to obtain

PRCC which is shown in Table 3.4.
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C.1 SOLVING A NON-AUTONOMOUS SYSTEM OF ORDINARY DIFFERENTIAL

EQUATIONS

C.1 Solving a non-autonomous system of ordinary differential

equations

In RM s
SIER, the system of differential equations is non-autonomous as the birth rate of vectors

δb(t) is changing with time (equation set 4.1). Loosely speaking, an autonomous dynamical

system does not contains time as an explicit variable.

It is generally possible to convert a non-autonomous system of ordinary differential equations

to an autonomous one by expanding the state space of the variables. A new variable z can be

assumed as z(t) = t, so that the rate of change of z with respect to time, t is constant. This is

done to hide the time-dependence of the system. Theoretically the correlation between z and

t is always 1. However, there are two trade-offs of using this new variable: (i) the dimension

of the system d goes up by d+ 1, and (ii), the new system has no equilibria (the equilibrium

points varies with time). The transformed ordinary differential equations has eight equations.

dSh
dt

= ΛH − αIv
(
Sh
H

)
− γSh

dEh
dt

= αIv

(
Sh
H

)
− (σ + γ)Eh

dIh
dt

= σEh − (ξ + γ)Ih

dRh
dt

= ξIh − γRh
dSv
dt

= δb(t) V − βSv
(
Ih
H

)
− δd Sv

dEv
dt

= βSv

(
Ih
H

)
− (ρ+ δd) Ev

dIv
dt

= ρEv − δd Iv
dz

dt
= 1

(C.1)

To solve above system numerically, ode45 solver ?? is used. The maximum step was set to

one-tenth of a day. The relative tolerance and absolute tolerance of the solver were in the

magnitudes of 10−6 and 10−7 respectively. The initial conditions are provided by considering

two different scenarios. If the invasion is because of an infectious human, then the solver is

started with all susceptible population of the mosquitoes. In human population, there are

H − 1 susceptible, one infectious and no infected and recovered individuals. The human and

vector populations change their roles in case of invasion due to one infectious vector. In the

stochastic solver, the error control parameter ε is kept 0.001, this parameter should be less
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than 0.5 (appendix B.2). The lower value is chosen to avoid the chances of error in estimating

the fluctuating total vector population.

C.2 Invasion and extinction probabilities

In RMSIR and RMSEIR, the duration of latent and infectious period is exponentially dis-

tributed, as the rates of exposure, infection and recovery are constant. Summation of the

distribution of secondary infections provides off spring distributions which are geometric with

means RHV0 and RV H0 for hosts and vectors respectively (Grassly and Fraser, 2006; Lloyd

et al., 2007). This distribution is highly skewed and over-dispersed (variance is more than

mean) as compared to Poisson distribution.

After the introduction of infection in naive population, invasion probability, P (Inv) can be

estimated by using the results from branching theory; which tell us that the likelihood of dis-

ease invasion depends upon the (i) average (R0) and (ii) distribution of secondary infections

around this average. The extinction probability is simply P (ext) = 1 − P (Inv). Here ex-

tinction means that there is no secondary case from an infectious individual. The extinction

probability is found by calculating the smallest non-negative root of the equation:

G(P (ext)) = a

Here G(Pext) is the probability generating function of the distribution of secondary infections.

The generating function for geometric distribution is given by:

G(P (ext)) =
1

1 + µ(1− a)

In the case of directly transmitted infections, the average number of secondary infections is

denoted as R0. After putting the value, following equation came from simplification:

a2 − (
R0 + 1

R0
) a+

1

R0
= 0

solving above equation leads two values for P (ext); 1 and
1

R0
which gives a well known result

for invasion probability P (Inv) = 1− 1

R0
for directly transmitted infections, when R0 > 1.

For a host-vector system there are two generating functions for each population.

GH(P (extH)) =
1

1 +RHV0 (1− aH)
; GV (P (extV )) =

1

1 +RV H0 (1− aV )
(C.2)
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In order to get extinction probabilities, following composite functions need to be solved for

aH and aV .

GH(GV (P (extH))) = aH ; GV (GH(P (extV ))) = aV (C.3)

Putting the values from equation C.2 yields the following equation for aH :

aH +RV H0 aH +
RV H0 aH

RHV0 (aH − 1)− 1
− 1 = 0

The solution is smaller than 1 and

RHV0 + 1

RHV0 (1 +RV H0 )

Above term will be less than 1, if and only if, RV H0 × RHV0 > 1 which equals R0 > 1. For

R0 > 1, the probability of major outbreak, after the introduction of one infectious vector is

P (Inv) = 1− RHV0 + 1

RHV0 (1 +RV H0 )

Similar expression with switching the roles of RHV0 and RV H0 is obtained, if C.3 is solved for

aV .

�
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D.1 Basic reproductive number R0 for both models

D.1.1 VP model

By using the next generation matrix technique (Diekmann et al., 2010), the matrices F and

V containing ‘gains’ and ‘losses’ respectively to the individuals in the pair of differential

equations
dL

dt
and

dIh
dt

are:

F =

(
0 bvp

0 0

)
(D.1)

V =

(
σ + γ 0

−σ (ξ + γ)

)
(D.2)

R0 is given by the spectral radius of the matrix FV −1. The entries of FV −1 provide the rate

at which at which infected individuals in Lh produce new infections in Ih , times the average

length of time an individual spends in a single visit to compartment Lh. The expression for

R0 is:

R0 =
bvpσ

(ξ + γ)(σ + γ)

�

D.1.2 Reservoir model

Using the next generation matrix technique (Diekmann et al., 2010), the matrices F and V

containing ‘gains’ and ‘losses’ to the individuals in the pair of differential equations
dP

dt
and

dIh
dt

are:

F =

(
0 0

c 0

)
(D.3)

V =

(
δ −br
c (ξ + γ)

)
(D.4)

Here, the entries of FV −1 provide the rate at which an infected individuals in P produce

new infections in Ih , times the average length of time an individual spends in a single visit

to compartment Ih. The expression for R0 is:

R0 =
brc

δ(ξ + γ)

�
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D.2 Stability analysis of VP and Reservoir model

In the following subsections, the local asymptotic stability analysis of both equilibria, DFE

and EE is presented. The goal is to investigate whether the disease free equilibrium point

E0 is locally asymptotically stable when R0 < 1. Moreover at R0 > 1, E0 becomes unstable

and endemic equilibrium point E∗ is locally asymptotically stable.

D.2.1 VP model

The host population is closed, so Rh = H − Sh − Ih. The differential equation system 5.2

exhibit two distinct equilibrium points, (i) E0
(
H, 0, 0

)
is the disease free equilibrium (DFE)

and (ii) E∗
(
S∗h, I

∗
h, L

∗
h

)
is the endemic equilibrium (EE). DFE is stable at R0 < 1 and becomes

unstable at R0 ≥ 1. The endemic equilibrium is stable at R0 ≥ 1. The basic reproductive

ratio R0 acts as a threshold value for the existence of these equilibria.

The local stability of the equilibrium points is governed by the Jacobian matrix

J
(
Sh, Ih, Lh

)
=


−(bvp

Ih
H

+ γ) −bvp
Sh
H

0

0 −(ξ + γ) σ

bvp
Ih
H

bvp
Sh
H

(σ + γ)

 (D.5)

D.2.1.1 Stability of DFE

At DFE, there is no infection in the population. The number of recovered individuals falls

to zero and as a result, the population consists of only susceptible individuals. The Jacobian

matrix D.5 at E0
(
H, 0, 0

)
is:

J
(
H, 0, 0

)
=


−γ −bvp 0

0 −(ξ + γ) σ

0 bvp (σ + γ)

 (D.6)

The characteristic equation is (λ+γ)
(
λ2 +(ξ+σ+2γ)λ+(ξ+γ)(σ+γ)(1−R0)

)
= 0 and the

eigenvalues are λ1 = −γ and λ2,3 = −ξ + σ + 2γ

2
±
√

(ξ + σ + 2γ)2 − 4σ(ξ + γ)(1−R0)

2
.

All of the eigenvalues have negative real part for R0 < 1 and so the E0
(
H, 0, 0

)
is locally

asymptotically stable for R0 < 1, according to RouthHurwitz criterion. For R0 > 1, the

eigenvalue λ2,3 > 0, hence E0
(
H, 0, 0

)
becomes unstable. �
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D.2.1.2 Stability of EE

The Jacobian matrix D.5 at E∗
(
S∗h, I

∗
h, L

∗
h

)
is:

J
(
S∗h, I

∗
h, L

∗
h

)
=


−(bvp

I∗h
H

+ γ) −bvp
S∗h
H

0

0 −(ξ + γ) σ

bvp
I∗h
H

bvp
S∗h
H

(σ + γ)

 (D.7)

The characteristic polynomial is:(
λ+

bvpI
∗
h

H
+ γ

)(
(λ+ ξ + γ)(λ+ σ + γ)− σbvp

S∗h
H

)
+ b2vpσ

S∗h
H

I∗h
H

(D.8)

By replacing the values of S∗h, I∗h and R0 from equations (5.2) and (5.4), the characteristic

polynomial becomes:

λ3 +Kλ2 + Lλ+M

where K = ξ+σ+ 3γ+γ(R0−1), L = γ(R0−1)
(
ξ+σ+ 2γ

)
, and M = γ(ξ+γ)(σ+

γ)(R0 − 1)

For R0 > 1, the coefficients K, L, and M are positive and according to the RouthHurwithz

condition, the characteristic polynomial satisfies the following relation:

KL > M (D.9)

Therefore, E∗
(
S∗h, I

∗
h, L

∗
h

)
is locally asymptotically stable. �

D.2.2 Reservoir model

The local stability of the equilibrium points is governed by the Jacobian matrix

J
(
Sh, P, Ih, Rh

)
=


−(br

P

H
+ γ) −br

Sh
H

0 0

0 −δ c 0

br
P

H
br
Sh
H

−(ξ + γ) 0

0 0 ξ −γ

 (D.10)
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D.2.2.1 Stability of DFE

At E0
(
H, 0, 0, 0

)
the matrix D.10 becomes:

J
(
Sh, P, Ih, Rh

)
=


−γ −br 0 0

0 −δ c 0

0 br −(ξ + γ) 0

0 0 ξ −γ

 (D.11)

The characteristic equation is (λ+ γ)2
(
λ2 + (ξ+ δ+ γ)λ+ δ(ξ+ γ)(1−R0)

)
= 0. λ1,2 = −γ

is the eigenvalue of multiplicity two and the other two eigenvalues are found by using the

quadratic formula, λ3,4 = −ξ + δ + γ

2
±

√
(ξ + δ + γ)2 − 4δ(ξ + γ)(1−R0)

2
. E0

(
H, 0, 0

)
is

locally asymptotically stable for R0 < 1,in lieu of the argument mentioned in section D.2.1.1.

�

D.2.2.2 Stability of EE

The Jacobian matrix D.10 at E∗
(
S∗h, P

∗, I∗h, R
∗
h

)
is:

J
(
S∗h, P

∗, I∗h, R
∗
h

)
=


−(br

P ∗

H
+ γ) −br

S∗h
H

0 0

0 −δ c 0

br
P ∗

H
br
S∗h
H

−(ξ + γ) 0

0 0 ξ −γ

 (D.12)

The characteristic equation for D.12 is:(
λ+ γ

)(
λ+ δ

)(
λ+ ξ + γ

)(
λ+ br

P ∗

H
+ γ

)
= 0 (D.13)

All eigenvalues are negative as parameters of the models are always positive and the number

of individuals in compartment P are always greater than or equal to zero. The expanded

polynomial, by replacing br
P ∗

H
= γ(R0 − 1) is:

λ4 +Kλ3 + Lλ2 +Mλ+N (D.14)
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where

K = ξ + δ + 3γ + γ(R0 − 1),

L =

((
γ(R0 − 1) + γ

)(
ξ + δ + γ

)
+ δ(ξ + γ)

)
+ γ
(
γ(R0 − 1) + ξ + δ + 2γ

)
,

M = δ(ξ + γ)

((
γ(R0 − 1) + γ

)
+ γ
(

(γ(R0 − 1) + γ)(ξ + δ + γ) + δ(ξ + γ)
)
,&

N = δγ(ξ + γ)

((
γ(R0 − 1) + γ

)
.

The RouthHurwithz conditions for above 4th order polynomial are as follows:

• All the coefficients should be greater than zero.

• KL > M

• KLM > M2 +K2N

All these conditions are met i.e., the endemic equilibrium point E∗
(
S∗h, P

∗, I∗h, R
∗
h

)
is locally

asymptotically stable for R0 > 1. �

D.3 Derivation of unknown terms in both models

During the approximations of the full model, some unknown terms arise in VP and Reservoir

model. The objective of this section is to derive the unknown parameters in terms of the

parameters of the full model. In all derivations it was assumed that: (i) γR0 ≪ 1, (ii)

βγ≪ 1, and (iii) x+ γ ≈ x, where x is any parameter (e.g. If x = α then α+ γ ≈ α).

D.3.1 bvp and σ in VP model

In VP model, there are two unknown quantities, bvp and σ. In order to compare this model

to RMSIR, a comprehensive description of these terms is required. A RMSEIRSI
model

(without exposed class in vector population) is constructed and the expressions for exposed

and infectious individuals at endemic equilibrium are compared to represent bvp and σ in

terms of the parameters of RMSEIRSI
model.

The expression for infectious individuals (I∗h) at endemic equilibrium for the RMSEIRSI
model

is:

I∗h =
H2γδ(R0 − 1)

β(γH + αV )
(D.15)
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where R0 for RMSEIRSI
model is

R0 =
αβσV

(ξ + γ)(σ + γ)δH
(D.16)

Setting this expression equal to I∗h in equation set (5.5)

I∗h =
H2γδ(R0 − 1)

β(γH + αV )
=
γH

bvp
(R0 − 1) (D.17)

By using (ii), cancelling like terms and making bvp as the subject of the formula

bvp ≈
β(γH + αV )

δH
(D.18)

The same value of bvp is obtained when comparing the equilibrium point of VP model with

RMSIR.

In similar fashion, comparing the expression for exposed individuals (E∗h) in RMSEIRSI model

and L∗h in VP model yields:

−H2γδ(ξ + γ)

βσ(σ + γ)(γH + αV )

(
γ+σH−HR0(σ+γ)

)
=
−Hγ(ξ + γ)

bvpσ(σ + γ)

(
γ+σH−HR0(σ+γ)

)
(D.19)

Using (i) and (iii), the equation becomes,

H2δσ(1−R0)

βσ2(γH + αV )
=
Hσ(1−R0)

bvpσ2 (D.20)

Simple algebra yield the equation for σ:

σ ≈ βσ(γH + αV )

bvpδH
(D.21)

In both approximations, D.18 and D.21 the term γH can be dropped as this value has very

little contribution (< 0.007%) in the expression αV + γH. This disparity arises due the

difference in the values of rate of transmission of infection α = 0.1, in days versus the average

birth / death rate of hosts γ = 4.125 × 10−5, in days. So in this expression αV + γH, the

term γH can be dropped. The new expressions for bvp and σ are:

bvp ≈
αβ

δ

(
V

H

)
(D.22)

σ ≈ αβ

δ

(
σ

bvp

)(
V

H

)
(D.23)

�
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D.3.2 br and δ in Reservoir model

The unknown terms in th Reservoir model can be found by comparing the equilibrium points

of RMSIR and Reservoir model. The expression for equilibrium points for susceptible indi-

viduals in RMSIR, equation set (2.4) is compared with the expression for equilibrium points

for susceptible individuals in the Reservoir model equation set (5.11):

Sh =
H2
(
δ(ξ + γ) + βγ

)
β(γH + αV )

=
δH(ξ + γ)

br c
(D.24)

Using (ii) and dropping the value of γH in αV + γH by using the argument stated above

Sh =
H2δ(ξ + γ)

αβV
=
δH(ξ + γ)

br c
(D.25)

Replacing the value of c = β
V

H
leads to:

br = α (D.26)

Hence by substituting the value of br in D.25

δ = δ (D.27)

�
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