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SUTTARY.

Haemopoiesis ("blood cell production) is a process subject to 
active physiological regulation. It constitutes one example 
of a biological process controlled through a hierarchy of 
feedback loops acting at a range of levels from the 
molecular to the macroscopic.
The thesis describes mathematical studies of the more 
macroscopic (physiological) levels of the control of 
haemopoiesisi with special emphasis on granulopoiesis.

Following review of pertinent•background material 
in cybernetics, physiology and pathology, attention is 
focussed on the mathematical representation of cellular 
proliferation and maturation, and a representation formulated 
in terms of experimental observables is proposed. This leads 
to the study of a non-linear transcendental equation of the 
form ~t

N t t , =
■t - X

with X  the unknown quantity. An iterative method of 
solution is proposed for this equation, which permits 
kinetic analysis of a certain class of non-steady-state 
processes. The method is used for the analysis of maturation 
kinetics of embryonic erythroid cells.
Attention is then turned to the causal basis of the control 
of haemopoiesis. It is pointed out that certain features of 
haemopoietic regulation lead to the expectation of 
oscillatory phenomena, and that observation of such 
phenomena can be revealing.
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With this in mind, a simple model is advanced for 
the control of granulocyte production. The model comprises 
two feedback loops, one regulating *de novo’ granulopoiesis 
in accordance with marrow granulocyte numbers and one 
regu.lating release from the marrow in accordance with blood 
granu1o c yt e numb e rs.
The model is described by the system of delay-differential
equations ^

cLGm _  ____ x _
cL'fc l + (3 £g e g  14 ^G g
I Cl YV\

j£zS?-3 ~ 7 — - — ■ to G  n,
cL*t I +  ( G  6 ̂

where , C73 are (respectively) the marrow granulocyte
number and blood granulocyte number, both at time tr> , and

5 p , os- j %  , 7\ , y and co are parameters,
chosen to give maximum physiological realism.
Since 'de novo’ granulopoiesis is believed to constitute a 
drain on primitive ‘stem cells’, regulation of stem cell 
number appears necessary. A model for stem cell mitotic 
autoregulation based on a diffusible inhibitor concept is 
proposed. This theory leads to the study of a pair of 
differential equations which, utilizing probable order-of- 
magnitude differences in relaxation tines, may be reduced to 
the single equation

1 dK   H* ^  N
d *fc -b T\i

which admits of a closed analytic solution. This equation 
exhibits both self-limiting and non-self-limiting modes of 
behaviour, the biological implications of which are discussed.
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77ith parameters selected for stability, the stem 
cell mitotic autoregu ticn loop may be adjoined to the 
granulopoiesis control system, previously considered, to 
obtain a composite model. However, the unstable and capricious 
behaviour of this multi-loop combination renders it 
physiologically unacceptable, Modifications which restore 
stability seem to imply heterogeneity of the stem cell 
population, representation of which lies outside the scope 
of the study described.
In the following chapter, consideration is given to the 
physical basis of regulation of 1de novo’ granulopoiesis 
with emphasis on 'in vitro' evidence relating to 'colony 
stimulating factor' and the possible role of positive 
feedback in regulating granulocyte numbers in infection. By 
mathematical formulation of a recently proposed pcsitive- 
feedback model it is shown that positive feedback systems can 
be stable in the absence of overt negative feedback loops 
provided passive damping elements (e.g. cell death) exist and 
satisfy certain criteria. It is shown, however, that the 
criteria concerned are incompatible with known features of 
the regulation of granulopoiesis in infection and the 
existence of additional, negatively-acting, loops is 
deduced. Some possibilities in this direction are proposed.

The model studies may illuminate the 
pathogenesis of some disorders of the control of 
granulopoiesis, notably cyclical neutropenia and myeloid, 
leukaemia, In the former case, reduced stem cell input, or 
intramiedu 11ary or vascular granulocyte destruction appear the 
factors most likely to be responsible for cyclical
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neutropenia* An additional factor - delayed maturation - a 
theoretically possible cause of granulocyte oscillations, 
does not appear to contribute to the pathogenesis of 
cyclical neutropenia in practice*
The pathogenesis of myeloid leukaemia remains a major 
problem* Model studies, however, suggest that two features 
may be of critical importance ; i.e.
(a) slowed maturation of granulocytic precursors
(b) increased input to the granulocytic pathway.
If the indicated association of these two factors is causal, 
rather than fortuitous, the simplest interpretation implies 
that cellular differentiation includes an early,, labile 
phase, stability being a property acquired in the course of 
maturation.
Now that there exist techniques for growing human 
granulocytes in culture,, the computational method described 
in chapter 4 should permit analysis of development of both 
normal and leukaemic cells. The proposed theory of cellular 
maturation in leukaemia might then be open to experimental 
test.
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1. MATEEHATI PAL MODELS IN 3IQLCC-Y AND MBDI CINE.

Introduction.
Historically, mathematics has played a less important role 
in the study of biology than of almost any other natural 
science. In recent times, it has become standard to 
describe the results of experimental investigations in. 
terms of their statistical properties and, to some extent, 
this represents a departure from tradition.

Nevertheless,, mathematical theory - and in 
particular deterministic theory - is utilised in biology to 
a slight extent only. The work described in this thesis is 
untypical in that it consists of the application of 
deterministic mathematical modelling to a specialist area of 
biology and medicine. Moreover, the mathematical models 
considered are of a deterministic rather than a stochastic 
nature.
Purely deterministic models represent, of course, a very 
idealized conception of what is occurring, in that' it is 
never possible to describe in finite terms the totality of 
causal influences responsible for a given process or 
phenomenon. Those influences excluded in any deterministic 
representation are allowed for in a stochastic model by 
replacing deterministic certainty by statistical 
probability.
Nevertheless, deterministic models can be useful in 
identifying particularly strong causal influences, such as 
would be exerted by mechanisms responsible for the active 

regulation of biological processes or system behaviour.



In the present instance, mathematical models are employed 
the analysis of the modes of interaction of various 
elements of particular systems. It is not widely 
appreciated that mathematical models can he helpful in 
providing qualitative insights into system behaviour or 
organisation. Not every theoretical precept is capable of 
mathematical formulation nor is this necessarily useful 
where it is possible. For a large (and growing) class of 
systems, however, it is recognised that mathematical 
modelling is not only useful, but may be indispensible for 
the conceptual understanding of how the elements interact 
to generate the properties of the composite system.



Cybernetics and the Theory of Control*

Confronted with a large set of elementary components, the 
exploration of all possible modes of organization arising 
from random coupling of the elements would hardly be a 
feasible undertaking. However, the majority of possible 
modes of coupling may be eliminated in advance by the 
application of some relatively simple precepts.

The outstanding characteristic of living 
creatures, recognized from ancient times, is the 
'goal-directedness' of their bodily and mental processes. 
This observation gave rise to the Aristotlean doctrine of 
•teleology', an animistic concept based on the temporal 
inversion of cause and effect.

Nowadays, it is universally recognized that 
goal-directedness can arise in two main ways,, neither of. 
which violates the principle of causality. In the first 
place, a selection mechanism rejecting all systems not 
conforming to the prescribed standard would result in the 
numerical domination of the appropriate type - provided 
this type alread}?- existed in. the initial population* 
Random mutation, combined-with Darwinian selection, is the 
mechanism which confers goal-directedness on. 
biological evolution..
The second type of mechanism is more elegant conceptually, 
and avoids the wastefulness of Darwinian selection, and can 
operate over extremely short time scales- This requires a 
system (which may be a product of the slower evolutionary 
process) which establishes a causal coupling between the



measured 'distance' (in a generalized sense) and a mechanism 
capable of increasing or decreasing this 'distance'. Such 
systems are referred to as 'feedback control systems' both 
in engineering and biology.

If the system acts to minimize the 'distance', it is a 
'negative feedback system' while if it maximizes the 
'distance' it is a 'positive feedback system'. The utility 
of feedback control systems has been appreciated in 
engineering only within the last century, but feedback 
control is ubiquitious in biology. The kinship of 
biological and engineering control systems was emphasized by 
Norbert Wiener who proposed the name 'cybernetics.' for 
'the study of control and communication in the animal and 
the machine' (1).
Certain very general cybernetic principles are useful in. 
devising plausible models of biological control systems. 
Goal-seeking responses usually involve negative feedback. 
Goal-avoiding responses, or processes involving 
'amplification' may depend on positive feedback. Models of 
biological control systems are usually built up as a 
hierarchy of negative and positive feedback loops rather than 
by randomly coupling the elements together.Mathematical 
formulation of the causal relationships represented by the 
system of. loops then provides a deterministic mathematical 
model.
In the past two. decades, considerable progress has been 
made in the analysis of. mathematical models of. various 
kinds of control system.. This analysis has given rise to a 
body of knowledge known as 'control theory'.



Unfortunately, the mathematical models which result from 
consideration of biological control systems are usually 
very complicated and can seldom be treated by the existing 
methods of control theory..
Most biological control systems are not 'analyzed* (by 
application of analytic theorems) but 'simulated' (by 
numerical solution of the control equations using computers). 
Pending further developments in the mathematical theory of 
control, simulation is the best available method for the 
examination of the properties of mathematical models in 
biology.



The Control, of Haemopoiesis.

Blood cell production - haemopoiesis - is only one of many 
biological processes of interest from the viewpoint of 
cybernetics. However, it possesses certain advantages over 
most other such processes.
Firstly, the spatial distribution of (mature) blood cell 
populations renders haemopoiesis a more tractable subject 
of study than other cellular production processes whose 
end-products are distributed in highly complex patterns and 
arrangements.
Secondly, haemopoiesis is a relatively accessible example of 
the process of cytodifferentiation, one of the most 
fundamental biological problems under current consideration. 
Moreover, haemopoiesis has for some time attracted the 
attention of experimental and clinical investigators and a 
considerable body of information has been accumulated.

Finally, the control of haemopoiesis is not a 
subject of only academic interest. Under normal 
circumstances, the haemopoietic control system exhibits the 
familiar, biological properties of homeostasis or adaptive 
regulatory response to changed conditions. In pathological 
situations, these features may be absent or deranged with 
consequences of varying severity. Hopefully, improved 
understanding of haemopoietic regulation may assist in the 
alleviation of a group of diseases whose present therapy is 
necessarily empirical and often inadequate.
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2. PHYSIOLOGICAL ASPECTS OF THE REGULATION OF HAEMCFOIESIS.

IntroductiomBlood and Blood Cells.
Blood is not a true liquid but a dispersed cellular tissue 
borne by a liquid - the plasma. The coexistence of these 
different physical phases imparts to blood a rather 
complicated set of. properties in relation to fluid flow and 
viscosity..
The cellular components of blood are extremely varied.. Among 
the more important cells are the erythrocytes (red blood 
cells), platelets and leukocytes (white blood cells) — the 
last named being a very heterogeneous grouping of different 
types.
Erythrocytes are distinctive cells in more than one respect. 
Topologically, they are biconcave discs, a shape which may 
reflect an evolutionary comprise between that optimal for 
stream-lined flow and that for efficient chemical exchange 
with the plasma and tissues.

The distinctively red colour of blood (in higher 
animals) is due to the haemoglobin content of the 
erythrocytes. Haemoglobin is a chromo-protein molecule with 
a molecular weight of about 4 j000 which can exist in both an 
oxygenated and a reduced form... Erythrocytes containing 
oxygenated haemoglobin convey oxygen from the lungs to the 
tissues while erythrocytes containing reduced haemoglobin 
convey carbon dioxide in the opposite direction..

An important feature of haemoglobin is 
that iron is one of its molecular constituents.. Red cell 
precursors which synthesize haemoglobin may therefore be



labelled using radioactive isotopes of iron ( or Ve. ) 0.
The availability of a selective label has facilitated the 
investigation of red cell production (erythropoiesis) and 
more is known, about this production process than any other.

Platelets are small disc-like pieces of 
actively-metabolizing cytoplasm.. They result from the 
disruption of. the cytoplasm of giant multi-nucleated, 
precursor cells (megakaryocytes) in the bone marrow.. The 
main physiological function of platelets consists in their 
aggregation at the site of any bleeding wound and 
participation in the complex sequence of biochemical events 
leading to blood clot formation. However, it may be that other 
functions exist also (l).
As already mentioned, 'leukocyte' is the name applied to any 
white blood cell. There are three major classes of leukocyte:: 
granulocytes, lymphocytes and monocytes. They differ in. 
morphology and function. The lymphocytes, which are 
important components of the immunological system and the 
monocytes, which are large phagocytic cells of the 
reticulo-endothelial system, will not be further considered 
(However, see chapter 9).
Granulocytes form a main topic of interest in the chapters 
which follow. As the name implies, they are leukocytes 
exhibiting granulation of the cytoplasm. They may be 
sub-divided into neutrophils, basophils and eosinophils 
according to their avidity for biological staining reagents 
and other criteria.
The physiological functions of the granulocytes are net 
firmly established. However, the neutrophils and (to a



lesser degree) the eosinophils, display phagocytosis — 
engulfment of foreign bodies - and it is apparent that they 
participate in defence against bacterial infection*

The relative numbers and cell sizes of the 
more important blood cells are specified in table 1 ..
As may be seen, neutrophils comprise the great majority of 
granulocytes and therefore tend, to dominate the kinetics of 
granulopoiesis unless granulocytes are classified 
differentially.



Cytodifferentiation of Prokaryotic Cells : The Jacob-Honod 
Model.

In bacterial cells, the process of cellular specialization 
and adaptive regulation of protein synthesis has been very 
intensively studied. In 1961, Jacob and Monod (2) proposed-, 
a specific theory of the control of protein synthesis in 
prokaryotic cells. This theory has since been favoured by a 
considerable body of experimental evidence - notably that 
accumulating from studies of the metabolism of the sugar 
lactose by the bacterium Escherichia Coli.

Essentially, Jacob and Konod suggested that 
bacterial genes are linked together in functionally related 
and spatially compact groups called 'operons'* A particular 
gene - the 'operator' - was supposed receptive to a 
'repressor' molecule synthesized elsewhere in the genome.- 
On this model, transcription, of the operon proceeded 
spontaneously but was inhibited by the binding of the 
repressor to the operator. The repressor could however be 
inactivated by another molecular species - the 'inducer' - 
so enabling transcription of the entire operon to proceed.

Jacob and Ilonod argued that if the inducer were a 
molecule which couidLd be usefully metabolized by the cell, 
and the proteins coded by the operon were those 
implicated in the metabolic process, then a teleologically 
appropiate loop was established, the cell synthesizing 
enzymes only as they were required (fig. l).

In a subsequent paper, Monod and Jacob 
(3) described hypothetical control loops of the above type



which might underlie cellular specialization in non— 
bacterial cella. However, specialization in eukaryotic 
cells is evidently a good deal more complicated than in 
prokaryotic cells and, despite intensive study, it remains 
very poorly understood.



2. . &

Cytodifferentiation in Eukaryotic Cells.

The most characteristic difference between cellular 
specialization in prokaryocytes and eukaryocytes is the high 
degree of stability of specialized type in the case of the 
latter.
In Jacob and Konod's scheme,, the induced enzyme synthesis 
is terminated by the departure of the inducing molecule.* 
Even. if. the inducer is internally synthesized (3)j. a 
transient blocking action should be enough to destabilize 
the induced pattern of protein synthesis.

This lability is not typical of terminally 
differentiated eukaryocytes. To take the example of higher 
animals, all somatic cells in the adult derive from a 
single fertilized ovum, yet they comprise a large variety of 
distinctive specialized types none of which exhibit any 
propensity for 'de-differentiation' back into a fertilized 
ovum.
Where 'de-differentiation' is referred to (e.g. by tumour 
pathologists) it usually means a loss, transient or 
otherwise, of the distinctive phenotype characteristic of 
the cell type concerned. This phenomenon, is logically 
distinct from true 'de-differentiation' involving the 
reacquisition of the properties of an ancestral cell type..

Apparently, cytodifferentiation in eukaryocytes 
involves one or more irreversible steps before its 
completion - which is not to say that such steps are not 
preceded by a reversible phase (see chapter 10). One kind of 
irreversible process would be the loss from the cell of all
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genes not required for the maintenance of the specialized 
phenotype. An extreme example of this is the extrusion of. the 
entire nucleus, as happens in the development of the 
mammalian erythrocyte. However, such mechanisms appear very 
exceptional. Moreover, the well-known 1totipotency' o£ plant 
cells, as well as recent studies on reactivation of 
quiescent genes by cell fusion (4) provides evidence that the 
genome of terminally differentiated eukaryocytic cells is 
usually intact.
The alternative to gene loss in differentiation is the 
imposition of some restriction, on the expression of the 
genome. In theory this restriction could be upon either the 
1 transcription1 of the genetic DNA to messenger RITA or the 
'translation.' of this RITA to protein. Although Harris (5) has 
strongly argued for translational control, most workers 
consider that some regulation of transcription.must occur,, 
with or without translational blocks.

A scheme favoured by some molecular biologists 
involves a relatively non-specific blocking of transcription 
by histone molecules, with a specific de-blocking mechanism 
mediated by acidic proteins (6 ,7) or special kinds of 
RITA (8,9). Tsanev and Sendov (10) have further proposed that 
the small number of histone types could be the 'building 
blocks' of an epigenetic code, just as the four bases in 
various nucleotide sequences constitute the genetic code.

At any rate, the positive regulation of gene 
switching in the course of. cytodifferentiation seems highly 
probable. The study of the control of presumed switching by 
physiological signals is a very active research field, and



developing blood cells are favourite subjects for these
studies•

.



The Development of I.Iammalian Blood Cells.

Phenotypically at least, cytodifferentiation in the cells' of 
higher organisms is a temporally protracted process. This may 
be interpreted on the following hypothesis;. The onset of 
cytodifferentiation results from the arrival of an inductive 
stimulus at one or more receptor loci of an ancestral cell 
fype*. This stimulus removes blocks at either or both of the 
transcription and translation level and permits protein 
synthesis to proceed. The newly-synthesized RNA and protein 
molecules can, in their turn, remove or impose further 
blocks on synthesis, so promoting a cascade process whose 
outcome is the establishment of stable pattern of protein 
synthesis appropriate to the mode of differentiation 
induced'.
This process is time-extended, and the phenotype of the 
cell gradually alters as different proteins and nucleic 
acids make their appearance. Usually, development is 
accompanied by cell divisions and it is possible that 
division is obligatory for certain developmental steps to 
take place (11).
In the case of many cell types - amongst them the main 
types of mammalian blood cell - experimental techniques 
have been developed which permit the classification of a 
particular developing cell as being at one of several 
defined stages.of the differentiation process. The progress 
of the cell, or its daughters, from one recognizable stage 
to another provides a means of ’tracking* the process. As 
might be expected, classification is least difficult for



late, well-characterized cells and is most difficult for 
cells in which the process of specialization has only 
recently begun.
When the developmental ancestry of erythrocytes, 
granulocytes and platelets is traced backwards in time, the 
ancestral lines are seen, to be convergent, but classification, 
tehcniques cease to be reliable just before the lines 
coalesce. The straightforward interpretation is that these 
three cell types derive from a common precursor cell of 
uncertain morphology. Direct evidence, based on chromosome 
examination of developing blood, cells in vitro, supports 
this interpretation (12,13).
The common ancestral cell, generally called a ’stem cell'
(14) is not of course ’undifferentiated' being, like all 
somatic cells a specialized derivative of the fertilized 
ovum, but its differentiation is evidently non-terminal 
inasmuch as stem cells can develop into (at least) three 
different kinds of terminally differentiated cell types 
according to the inductive stimuli which impinge upon them.

The development of erythrocytes, granulocytes and 
platelets from a common stem cell is schematically depicted 
in fig. 2.1. The terminology is that employed in the recent 
comprehensive review by Metcalf and Moore (15).
Evidently, blood cell development provides a rare 
opportunity to study, in adult organisms, differentiation 
processes which, in most tissues, occur only in the 
embryonic phase.
In adult mammals, haemopoiesis is largely confined to the 
active (red) bone marrow of. the skeleton and - to a lesser



extent - the spleen. In the embryo however, the anatomy of 
haemopoiesis is rather more complicated and embryonic 
'extra-medullary' sites of haemopoiesis,, normally inactive 
in the adult, may be reactivated in adult life in disease 
states or other abnormal conditions.



Haemopoiesis in the Idammalian Embryo.

Embryonic haemopoiesis is a multi-phasic process in which the 
anatomical site of blood cell production changes with 
gestational age.. Haemopoiesis is initiated in the so-called 
'blood islands' of yolk-sac mesoderm proximate to endoderm.

The region of mesoderm which is close to 
endoderm apparently provides a 'permissive' environment for 
haemopoiesisi as a diminished haemopoiesis can occur in. 
mesoderm even if endoderm be totally removed (16,17).

Thereafter, haemopoiesis becomes established in the 
liver before moving, finally, to. marrow and spleen - the 
sites usually active in the adult. The mechanism of 
transition of haemopoiesis from one anatomical region to 
another has attracted a good deal of attention. Current 
views are that a blood-borne migration of stem cells,, 
originally derived from yolk-sac,, is responsible (18,19).

A simple mechanism might be that haemopoietic stem 
cells are rather unadhesive to most tissues and accumulate 
pr.eferrentially in tissues and organs whose adhesiveness,, or 
suitability as a site of stem cell proliferation,, alters 
with embryonic development.. However, in the context of 
immunology, de Sousa (20) has proposed an active cellular 
homing process ( 'ecotaxis' )' guided by appropriate signals,, 
and this could be important in the present context also..
Each of these suggestions is speculative and direct 
evidence is lacking.
In most species, the shift of haemopoiesis from one site to 
another is accompanied by a change in the composition of the



haemoglobin synthesized by erythroid precursor cells.. As a 
rule, the haemoglobin type is not organ-specific, but an. 
important exception is the mouse embryo, in which 'embryonic 
haemoglobin' is synthesized by cells resident in yolk-sac 

only (15)-
Baglioni (21) has proposed! that the number of cell divisions 
in erythroid cell development is a determinant of the type of 
haemoglobin synthesized.. This opinion,, however, is not shared 
by other workers (22).,



Homeostasis and Adaptive Regulation of Blood Cell Number.

In adult animals, the control of blood cell number 
well-illustrates the 1 goal-seeking' behaviour of biological 
systems. In brief, blood cell number appears to be regulated 
in accordance with functional demand.
This form of control may be usefully separated into two 
components; that involving the restoration of 'normal1 blood 
cell number following a transient perturbation, and that 
involving the adjustment of blood cell number in response to 
alterations of the level of functional demand*
The restoration of blood cell numbers following depletion has 
been thoroughly investigated.. It is known that haemopoiesis 
is increased following blood loss and that differential 
regulation of erythropoiesis,.- granulopoiesis and 
thrombopoiesis occurs in response to selective perturbation 
of numbers of specific blood cell types. Conversely, in­
animals rendered polycythaemic by injections of packed red 
cells, erythropoiesis quickly drops to low or even, zero 
levels. The corresponding experiments on granulopoiesis and 
thrombopoiesis are more difficult, technically.

Adaptive regulation of erythropoiesis is exemplified 
by the enhanced erythropoiesis which occurs at high 
altitudes in normal individuals* Teleologically, the 
increased red cell number partially compensates for the 
reduced oxygen level by improving the efficiency of the 
oxygen transport system.. Conversely, erythropoiesis is 
reduced under hyperbaric conditions.
It is not quite 30 easy to study adaptive granulopoiesis as
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adaptive erythropoiesis. However, granulocytes are certainly 
implicated in the defence against infections and it is 
undoubtedly significant that bacterial invasion, or infusion 
of bacterial endotoxin can stimulate granulopoiesis to a 
marked degree. This phenomenon is further considered in 
chapter c\ .



The Regulation of Erythropoiesis.

That erythropoiesis is actively controlled has been known for 
many years. As far back as 1906, Carnot and Deflandre (23)> 
noting the capacity of serum obtained from anaemic animals to 
stimulate erythropoiesis in normal animals, suggested that 
production of a humoral erythropoietic factor v/as invoked by 
anaemia..
This suggestion is now known to be in essence correct, but it 
v/as not until the second half of the twentieth century that 
experimental evidence in favour of a circulating stimulator 
of erythropoiesis became compelling (24- - 27)r A reliable 
'in vivo' assay of the stimulator - now generally known as 
'erythropoietin' - became available with the use of 
polycythaemic mice in which endogenous erythropoiesis had 
been suppressed (28 - 30) but an equally reliable 'in vitro1 
assay system is still awaited..
Good evidence now exists that erythropoietin functions as an 
inducer of terminal cytodifferentiation, acting at an 
epigenetic level on erythroid precursor cells of uncertain 
morphology. Erythropoietin has been shown to stimulate iron 
incorporation (31) and haemoglobin synthesis in cells 
hitherto inactive in this respect (32 - 34). The molecular 
biology of erythropoietin action remains controversial. Paul 
and Hunter (35) observed that erythropoietin stimulated a 
transient burst of RITA synthesis, followed by ENA synthesis, 
in embryonic cells, while Ortega and Hakes (36), v/ith adult 
narrow cells, found a ENA-dependant synthesis of RNA but not 
synthesis of ENA itself. In either case, removal of a
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transcriptional block appeared to have taken place.
It has been suggested that, in high concentrations,, 

erythropoietin may accelerate the maturation of erythroid 
precursor cells allowing insufficient time for the usual 
number of cell divisions. If, for example, erythropoietin 
were to control the rate of haemoglobin synthesis, and if a 
critical haemoglobin concentration signalled the cessation of 
cell division (37), copious amounts of erythropoietin might 
lead to large, we 11-haemoglobinized erythrocytes 
( 'macrocytes1 ) whose size exceeded normal due to the 
smaller than usual number of cell divisions in erythroid 
development (38), The observation, that anaemia (which 
increases erythropoietin production) shortens the mean 
maturation time of erythroid precursors (39)> is therefore of 
appreciable interest.
The site of erythropoietin production v/as initially thought 
to be the kidney, and this presumption is supported by the 
erythropoiesis-depressing effect of nephrectoms7- (40,41)

It now seems however that the kidney 
manufactures an enzyme which activates - possibly by 
cleavage - an erythropoietin precursor produced elsewhere 
(42 — 44) > possibly in the liver (45)*
By and large, erythropoietin production is inversely related 
to functional demand for oxygen transport between the lungs 
and the tissues. It has for some time been supposed that 
renal hypoxia accelerates erythropoietin production directly, 
but it is becoming apparent that the viscosity of the blood 
(46,47) and the total red cell mass (48) may also be 
important,
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The identity of the ’target cell1 for erythropoietin is a 
very controversial subject which will be discussed 
subseoAuently.
Apart from erythropoietin itself, a number of factors are 
known to influence erythropoiesis. Iron, for example, can be 
a limiting factor if body stores are depleted, Oobalt ions, 
androgens and oestrogens all alter erythropoiesis..
Vitamin &»2. is essential for erythroid cell development and 
lack of ,2 underlies ‘pernicious anaemia1. Whether any of 
these factors act through the intermediacy of 
erythropoietin remains to be established,.
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The Regulation of Granulopoiesis.

Granulopoiesis is less easily studied than erythropoiesis.
The reasons for this include the lack of a specific label for 
granulocyte precursors, continuing uncertainty about the 
physiological function of the granulocytes and the existence 
of large numbers of mature granulocytes in the marrow and the 
tissues as well as in the vascular system.
Two points of control of granulopoiesis have been 
established with a fairly high degree of probability*.
Firstly, it appears that the release of mature granulocytes 
from the marrow (where there are a large number) is not a 
passive process but one which involves active physiological 
regulation. The mode of release is said to be first-in-first-* 
out (49.) and the release rate to be controlled by functional 
demand for granulocytes in the blood or tissues, apparently 
irrespective of the size of the marrow granulocyte reserve 
itself (50 - 5 3). Recent evidence suggests that this control 
is mediated by a humoral factor, which has been called the 
'leukocytosis inducing factor' (1.I-F..)..
On the other hand, it would be surprising if the control of 
granulopoiesis were not to involve an inducer of 
cytodifferentiation, a 'granulopoietin', analogous to 
erythropoietin in the control of red cell production.
Evidence in favour of such an inducer is accumulating 
(54 - 56) and it appears most probable that the marrow 
granulocyte population, directly or indirectly, exerts an 
inhibitory effect on its production (56).
The studies mentioned above are all 'in vivo' investigations.
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However, ’in vitro' experiments on the growth of 
granulocytic colonies have revealed the existence of a 
'colony stimulating factor' (C.-S.F.) (57 - 61) capable of 
inducing granulocytic differentiation 'in vitro' and also 
detectable in normal human and animal plasma and urine in. 
physiologically significant amounts (see 15)*
It seems a plausible hypothesis that 'granulopoietin' and 
'C.S.F.' are related, if not identical, substances. However, 
the induction of granulopoiesis is less well understood1 than 
the induction of erythropoiesis and further studies on the 
inducing factor ^5 ), including the molecular biology of 
its action, are required..
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The Regulation of Thrombopoiesis,

On current theory, platelet production is regulated in a 
qualitatively similar fashion to the production of 
erythrocytes and granulocytes. A humoral inducer - 
'thrombopoietin' - has been postulated and evidence for its 
existence reported (62 - 65). As with 'granulopoietin1, the 
characterization of the factor is at a rudimentary stage and 
virtually nothing is known of its production or mode of 
action.
An interesting feature of platelet production is the cellular 
nature of platelet precursors.. These precursor cells are 
multi-nucleated giant cells termed 'megakaryocytes’, and' 
having many times the usual cellular complement of DNA.. They 
evidently arise from the same 'stem cell' species as 
erythrocytes and granulocytes but their differentiation 
involves division only of the nucleus, not of the cytoplasm,. 
The causes of this unusual behaviour remain unknown.



The Nature of the Haemopoietic Stem Sell.

The nature of the haemopoietic stem cell is the outstanding 
enigma of contemporary haematology. Stem cells, defined by 
Lajtha, Oliver and Gurney (66) as those cells which '...can 
maintain their own number and give rise to differentiated 
cells' have yet to be positively identified in terms of 
morphological criteria. Failing such identification, stem 
cells must be numerically assayed in terms of their capacity 
to fulfill the requirements of the definition given above.

A crucial question pertaining to the nature of the 
haemopoietic stem cell is that of 'pluripotentiality' i.e. 
the ability of a stem cell to give rise to different kinds of 
terminally differentiated cells. Taking into account the 
apparent ancestral convergence of at least three lines of 
blood cell, evidence of competition between differentiated 
blood cell lines for a common precursor species (6 7)68) and 
cytogenetic evidence from studies of 'in vitro' blood cell 
cultures (69,70) it appears highly likely that a 
multipotential stem cell species must exist..
However, the existence of a multipotential stem cell is no 
guarantee that other cell species fulfilling the 
requirements of a unipotential stem cell do not exist also* 
Starting with the report of Bruce and McOulloch in 1964 (71), 
considerable evidence has been presented that the target ceil 
for erythropoietin is not identical with, though derived 
from, the multipotential stem cell (e.g. 72 - 74. See also 
1,15). Many workers now consider That ‘unipotential’ or 
'committed' stem cells exist for each line of differentiated
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cells, in addition to the multipotential stem cell, which is 
presumed ancestral to them (For a review, see 75)- 
On the other hand, some workers (e.g. Fogh 76) consider that 
the 'unipotential stem cell' is merely the multipotential 
stem cell in a particular, temporary, physiological state.. A 
particularly ingenious theory, designed to reconcile “bodies 
of apparently conflicting evidence has been advanced by 
Okunewick (77). In essence,, Okunewick suggests that 
cytodifferentiation could be a 'multi-hit' process involving 
more than one of an inducer species molecule..
'Unipotential stem cells' might then be those stem cells for 
which the number of 'hits' is less than that required to 
initiate irreversible cytodifferentiation. Discussion of 
this theory, which may have very important implications if 
true, will be resumed in the final chapter of the present 
study.



The Regulation of Stein Cell Number.

Whether the stem cell population consists of one or several 
distinct types it is well-established that the stem cell 
population number, as assayed, for example by the spleen 
colony technique of Till and McCulloch (78) , is subject to 
homeostatic regulation. This regulation is illustrated by 
the restoration of stem cell number following depletion 
caused by drugs (79) or radiation (80)'..
Moreover, unless a stem cell gives rise to two dissimilar 
daughter cells at mitosis (8l), a concept which involves 
some difficulties (82) - it is evident that the demand for 
differentiated cells must be a continual draw on the stem 
cell population. The existence of such depletion has been 
advanced as the reason for the sensitivity of the stem cell 
population to prolonged irradiation at low dose rates, which 
otherwise seems to be anomalous (83).
In chapter 7» a model will be proposed of the control of 
stem cell number. It is only fair to note now however, that 
experimental evidence which directly bears on the subject is 
extremely sparse and the control mechanisms involved are 
largely a matter of conjecture..
* i.e. a stem cell and a cell destined for differentiation-



Microenvironmental Regulation of Haenopoiesi s >.

Humoral regulation of haemopoiesis is probably studied more 
easily than regulation processes which, involve interactions 
on a purely microscopic scale. There is strong evidence 
however that the local (micro-) environment of a stem cell 
or early developing cell critically influences its behaviour 
or fate.
The erythroid:granuloid (Erff) ratio differs significantly 
between spleen and marrow. Moreover, it has been shown that 
this ratio remains the same whether endogenous or exogenous 
stem cells are responsible for haemopoiesis in a given 
experimental situation (84*85)'. This suggests that local 
environment has an. important role in determining the pattern 
of differentiation induced, in resident stem cells. The 
mechanism of the presumed influence remains a matter- for 
speculation.
On the basis of these and other results, it has been 
suggested that in spleen (and presumably marrow also) there 
exist small localities which induce a single type of blood 
cell differentiation (84 - 86)». By implanting marrow into 
spleen it has been demonstrated that the E:G- pattern of the 
implant remained of marrow type and that where colonies 
bridged the marrow-spleen function, part of the colony in 
spleen was of spleen type and the part in marrow was of marrow 
type (84,85,87,88).
If each organ were composed of a mosaic of microenvironments 
the recognized tendency of colonies to convert from 'pure’ to 
‘mixed* type with increasing size (84,88 - 90) would be
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explicable - assuming stem cell replication took place as well.



TABLE 2,1 : MEAN SIZES AND MEAN CONCENTRATIONS OF PRINCIPAL BLOOD
CELLS IN PERIPHERAL BLOOD

CELL SIZE CONCENTRATI ON

Erythrocyte 7.2 p 6 3 7.1 x 10 /(m. m. )

Granulocyte 13 p
i

3 3 6. 0 x 10°/ mm

Platelet 3 p 2.5 x 10V  mm°

Monocyte 3.00 1—) 2 , 3 5. 0 x 10 / mm

. Small Lymphocyte 10 p 1 3 3 L* 2. 5 x 10 / mm r

Large Lymphocyte 16 p J '
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END
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PROGENITOR CELL D IF F E R E N T IA T IN G  C ELLSS T E M  CELL

PROERYTHROBLAST EARLY ERYTHROBLAST LATE ERYTHROBLAST RETICULOCYTE

NEUTROPHIL
(POLYMORPH
GRANULOCYTE)

M YELO BLA ST M Y E LO CY TE METAM YELOCYTE BAND NEUTROPHIL

PLA TELETS
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Fig. 1.1. Schematic diagram indicating the nomenclature, morphology and some proper­
ties of the various blood cells.
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3. DISORDERS OP THE CONTROL 0? 3LCCD CELL PRODUCTION.

Introduction.
The pathology of haemopoiesis is a wide and active field and 
a comprehensive review will not be attempted here. In this 
chapter, attention will be focussed on those disorders 
involving overproduction or underproduction of red cells or 
granulocytes and on disorders which cast some light on these 
production processes. This implies a concentration of 
attention ondisturbances of homoestasis of red cell and 
granulocyte numbers to the exclusion of disorders involving 
other cell types, immunological disease and metabolic 
abberations.
disturbances of cell number and anomalies of cell structure 
and function are rarely separable. However, structural and 
functional defects will be considered primarily in the light 
of their relation to cellular production.



The Leukaemias.

The identification of leukaemia as a cause of death is of 
surprisingly recent origin. Damesheck and Gunz (l) suggest 
that the first documented case was that reported by Vepleau 
(2) in 1825. The malady concerned had rendered the blood 
'like gruel, resembling in consistency and colour the yeast 
of red wine'.
However, leukaemia seems not to have been recognized as a 
distinctive entity until about 184-5 when Sennet (3) and 
Virchow (4) each reported cases. Thereafter, the existence 
of a disorder in which the blood altered remarkably (it was 
said to resemble pus rather than blood) was widely confirmed. 
The name 'leukaemia', meaning 'white blood' came to be 
applied.
A variety of clinical symptoms were found in association 
with leukaemia, but a high ratio of white to red cells in 
the peripheral blood was considered to be the distinguishing 
feature. As is not uncommon in medicine, closer study soon 
revealed that leukaemia was not a unitary entity but a group 
of diseases characterized by a relative or absolute 
overproduction of leukocytes. Classification and investigation 
of the individual disorders comprising the group was 
obviously an important task.



Classification of the leukaemias•

B r o a d l y  speaking, there are two main ways of classifying the 
leukaemias. These ways correspond to the different viewpoints 
of the physician and the cytologist.
Clinically, some types of leukaemia follow a rapid course 
leading to the death of the patient in a matter of weeks or 
months. These types are called ’acute leukaemias’. On the 
other hand, some types follow a relatively protracted course, 
the patient commonly surviving for several years. The latter 
types are called ’chronic leukaemias’. The two categories of 
leukaemia can usually he distinguished by examination of the 
blood and marrow, A high proportion of primitive, poorly 
differentiated 'blast' cells is a common feature of acute 
leiikaemia.
The other classification is based on the type of leukocyte 
which predominates. Hence in addition to being classified as 
’acute’ or 'chronic', leukaemias may be clasvsed as 
'granulocytic', 'lynphocytic' and 'monocytic'. In the case of 
the poorly differentiated acute leukaemias where blast cells 
predominate, it may not be easy to determine unequivocally 
the cellular type involved. However, it has been claimed that 
such classification is possible in the great majority of 
cases, provided sufficiently detailed investigations are 
carried out (5).
The relation of the leukaemias to various solid tumours such 
as chloroma, lymphosarcoma and Hodgkins' disease has proved 
to be a controversial issue. The view expressed by Damesheck 
and Guns (l), that these latter disorders represent local
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manifestations of a process which in the leukaemias proper 
has become spatially distributed, appears to have gained 
favour* Such tumours may therefore be classed with the 
leukaemias as 1lynphoproliferative1 or- 'myeloproliferative' 
disorders - the latter being of interest here. Despite its 
merits,, this nomenclature has the possible disadvantage of 
obscuring what may be crucial differences in cell motility 
and adhesion, and the interpretation of 'positional 
information' (6).
In part because of this, attention is here fixed on the 
spatially distributed varieties of myeloproliferative disease, 
while admitting that these may be only the late stages of 
initially localized tumours of the marrow.

\



The Nature of Leukaemia.

Nowadays, most workers are in agreement that all forms of 
leukaemia are 'neoplastic' i.e. they are forms of cancer, 
albeit of varying degrees of 'malignancy'. However, the 
implications of this consensus are obscured by the difficulty 
of providing a precise definition of cancer.
Some workers, accepting that malignant cells typically 
exhibit inheritance of the malignant property (i.e*. 
daughters of a malignant cell are usually malignant) have 
supposed that an alteration in the nucleotide sequences of 
the genetic LNA must be involved in oncogenesis . This, 
however, seems a premature conclusion. As highlighted by the 
work of Braun. (7) and Pierce (8,9)» amongst others, 
oncogenesis may involve modification in the pattern of gene 
activity or protein synthesis, rather than a change in. the 
integrity of the genome itself..
In addition, adaptive regulatory mechanisms which display or 
mimic characteristics of heritability have been proposed by 
Lean and Hinshelwood (10) in connection with adaptation in 
bacteria, and may have implications for higher cells also.

Finally, it seems difficult to express in exact 
terms what is implied by the widespread agreement that 
leukaemias are 'cancers of the blood'. Perhaps the main 
implication is that the understanding of leukaemia is on the 
same conceptual level as understanding 'fundamental5 
biological problems, like embryogenesis or ageing.
* Or the integration of a viral genome into the genome of 
the cell.



Research on such problems, and on o: 
are to a considerable extent complementary
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Acute Granulocytic (Myeloid) Leukaemia,

As previously mentioned, the unambiguous cytological 
classification of acute leukaemias maybe difficult- 
However, a number of features of the principal types are 
generally agreed.
In. acute granulocytic leukaemia (A.G.L.), examination.of 
blood and marrow commonly reveals a high proportion of 
morphologically abberrant, immature granulocyte precursors,, 
often at the myeloblast level- The disorder is usually 
accompanied by anaemia and sometimes thrombocytopenia- 

Cytogenetic studies have revealed a host of 
chromosomal malformations in A.G-.L. (11). Unfortunately,, no 
single type predominates and it is difficult to draw 
conclusions. In some cases, there is evidence for a number 
of different leukaemic 'stem lines' in a single patient.(12).

Somewhat surprisingly, the mitotic rate of the 
blast cells in A.G-.L. is substantially less than that of 
normal myeloblasts (13 - 16). It has been suggested that the
basic disturbance consists in an impaired maturation of 
granulocyte precursors (15 - 17) which retain proliferative 
potential beyond the chronological age at which it is 
normally lost.
An important recent observation is that 'post-mitotic' 
leukaemic cells retain the capacity for division. Such 
'resting cells' can be triggered into cycle by administration 
of cytocidal agents (18 - 21) or irradiation (22). This 
suggests that such leukaemic cells are not totally 
unresponsive to physiological mechanisms responsible for
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mitotic homeostasis.
Killman (23) has further suggested that virtually all blood 
cells in A.G-.L. are derived from a leukaemic stem line with 
retained capacity for pluripotential differentiation. The 
observation that the low mitotic rate of leukaemia myeloblast 
in A.G.L., is shared by the erythroblasts (in the same 
patient) lends support to this hypothesis- 
The capacity of certain acute leukaemic cells to generate 
differentiated progeny has been borne out by observations 
both 'in vivo' (24 - 26) and 'in vitro' (27,28). Taken 
together, these reports suggest that the primary defect in 
A.G.L. is more subtle than the emergence of a wholly 
autonomous mutant clone.



Chronic Granulocytic Leukaemia.

Chronic granulocytic leukaemia (C.G.L.) has attracted great 
cytogenetic attention since the I960 discovery' of a 
distinctive chromosome anomaly in the great majority of 
cases (29 - 31). This defect — the ‘Philadelphia Chrmosome 
( Ph) )‘ — is an acquired defect of somatic cells (not 
inheritable in the Mendelian sense) which is found in 
untreated as well as treated patients (11)#
Interestingly, it has been claimed that the minority of 
cases of Pk‘ -negative C.G.L., have a particularly bad 
clinical prognosis (32)'..
It is generally accepted that the Ch.1 chromosome is found 
in erythroid as well as granulocytic precursors in C.G-.L.,
(33?34). The implication is that the leukaemic defect arises 
in a pluripotential stem cell capable of differentiating 
into (at least) erythroid as well as granulocytic cells- 

Granulocytes in C.G.L. have also attracted 
attention from, biochemical investigators. Although various 
abnormalities can be found, the consistently low levels of 
leukocyte alkaline phosphatase (L.A.P.) are of particular 
interest, (see 35). As is the case with the chromosome,,
the significance of the low L.A.P.. levels in C.G.L. remains 
in doubt*.
It appears, however, that the enzyme itself is qualitatively 
normal in C.G.L. but its rate of synthesis by individual 
cells is reduced. Moreover,, under certain circumstances,, 
synthesis of L.A.P. can be either initiated or accelerated in 
leukaemic granulocytes (36 -38). These observations are in



agreement with a hypothesis advanced by Teplitz (37); that 
the low L.A.P.. levels result, not from deletion of structural 
genes coding for the enzyme itself, but from the deletion of 
'modifier' genes, leading to the reversible blocking of 
structural gene expression.
The physiological function of L.A.P.. remains unknown. It has 
been suggested that L.A.P. (39) or a related enzyme (40) is 
involved in mitotic regulation, but evidence is lacking..

Typically, C.G.L.. terminates in 'blastic 
crisis' with increasing numbers of poorly differentiated 
cells and new 5 stem lines' often having bizzare chromosome 
derangements, with the chromosome no longer the unique
observable defect of karyotype. Some theories of the nature 
of 'blastic transformation' in C.G.L. will be discussed in 
chapter 10.
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Polycythaemia Vera.

The clinical symptoms associated with polycythaemia vera 
(P.V.) result largely from the elevated erythrocyte count 
which is the characteristic feature of the disease. However, 
increased numbers of granulocytes and platelets are also 
common and Wintrobe has commented that (typically) 'the 
whole bone marrow is hyperactive rather than the 
erythropoietic tissue alone' (41)..
True P.Y., is not a consequence of oxygen starvation although 
hypoxia does in fact give rise to erythroid hyperplasia, 
with raised erythropoietin levels. In P.V.. however, plasma 
erythropoietin levels are normal or reduced (42,43). 
Moreover, the defect responsible for P.V.. appears to benet
intrinsic to marrow (44) and doesAconsist of an increased 
stem cell sensitivity to erythropoietin (45)..
The simplest hypothesis compatible with these observations 
is that due to Morley (46): that P.V.. involves an absolute 
increase in the number of stem cells in the bone marrow. The 
stem cells are presumed normal in all respects other than 
the number present,', On such a view, P.V*. bears the same 
relation to leukaemia as do the ‘benign1 tumours of various 
tissues to the corresponding 'malignant' neoplasms. 
Interestingly, it has been reported that leukaemia incidence 
in P.V.. patients may be increased.. This, however,, may be 
due - at least in part - to the practice of using 
radio-phosphorus in the treatment of P.V.. (see Kelemen 35).



survey is required to firmly establish its absence.
If modulation can be shown convincingly to be absent, it 

would suggest that the granulocyte population in C.G.L. is 
almost entirely leukaemic, as supported by the ubiquity of 
the PH.1 chromosome in the marrow.
(d) The published evidence is insufficient to firmly 
establish the association between oscillatory granulopoiesis 
and oscillatory thrombopoiesis in C.G.L. Some of the reports, 
however, suggest an increased cycle length for the platelet 
oscillation also (19,22). If genuine, this phenomenon may 
provide additional clues to the nature-of the stem cell 
defect in C.G.L. However, as Morley has pointed out, 

granulocyte oscillations could perturb the available blood 
platelets in cyclic fashion through cyclic modulation of 
spleen size. In that event, the apparent platelet cycle in 
some cases of C.G.L.. would be of no intrinsic interest.



Pi Gugliemo's Syndrome and the Nixed Leukaemias.

A relatively ■uncommon disorder, but one of considerable 
theoretical interest is the so-called Pi Gugliemo syndrome 
or 'erythroleukaemia'. As the latter name suggests (though 
entymologically it is a contradiction in terms), this 
disorder consists of the neoplastic proliferation of red 
blood cell precursors.-
In fact 'pure* erythroleukaemia seems very rare indeed and 
little of certainty can be said of it. (see Damesheck and 
Gunz 1).. However, an 'impure' form, though still rare, 
occurs sufficiently frequently to be assessable. This form is 
a 'mixed' erythroleukaemia in which erythroid, granulocytic 
and (sometimes) thrombocytic precursor cells proliferate 
together in a disordered fashion characteristic of malignant 
neoplasia. Atamer (47) reports that 71/' of all cases 
terminate as granulocytic leukaemia, usually of the acute 
variety.
In general, it would appear that whereas red cells and 
platelets are usually diminished in number in the 
granulocytic leukaemias, there exist variants of 
'granulocytic leukaemia' in which these other cell types are 
increased in number and may (temporarily) dominate the blood 
or marrow. This appears most plausible on Killman's 
hypothesis (23) that most blood cells in acute leukaemia are 
clonally derived from a defective pluripotential stem cell.

Two questions which arise are: why does 
anaemia rather than erythrocytosis accompany granulocytic 

leukaemia in the majority of cases and why do granulocytic
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precursors usually come to dominate in myeloproliferative 
disorders initially characterized by erythrocytosis or 
thrombocytosis?
The special position occupied by the granulocyte in the 
myeloproliferative disorders evidently warrants further 
study.
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Cyclical Disorders of Haemopoiesis,

This class of blood diseases is particularly instructive 
from the viewpoint of control theory and cybernetics.. Because 
of this, cyclical haemopoiesis is discussed in detail in 
chapter jj* and in subsequent chapters as appropriate.

Consideration of cyclical haemopoiesis is 
therefore omitted from the present chapter.
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MATHEMATICAL REPRESENTATION OF CELLULAR MATURATION AND 
PROLIFERATION..



4-. THE MATHEMATICAL REPRESENTATION OF CELLULAR MATURATION
AND PROLIFERATION.

Introduction.
Hitherto, all discussion lias been qualitative in form. In 
this chapter, a mathematical representation of cellular 
maturation and proliferation, framed in terms of observable 
quantities, is proposed.. Although crude in many respects, the 
representation leads to a set of equations which do not 
appear to have been previously derived.
Originally, the motivation for the derivation of these 
equations was the necessity for the analytic formulation of 
cellular maturation in kinetic (non—causal) terms, to serve 
as a framework for the causally-based models and theories 
which form the subject of later chapters..
However, the representation lends itself to an iterative 
method of calculation of cellular maturation times in 
non-steady-state situations, previously considered 
intractable. To illustrate such applications, an extract is 
presented from a kinetic analysis of erythroid cell 
maturation in the mouse embryo. The full analysis, however, 
has been witheId as inappropriate in a dissertation whose 
primary subject is biocybernetics.



The Continuous Representation of Cell Population Kinetics,

Consider a population comprising N(t) cells at time t . We 
suppose the cells to be undergoing some kind of maturation 
process, with or without cell division*. If ro (.i-, O  Sec 
represents the number of cells whose chronological age (i*e. 
since onset of maturation) lies between; and co + Sc-,

jsl (t) - \ n, ) dcr {

is the rate of gain of cells to the population and 
EtE) the rate of loss of cells from it, the conservation 

equation is

i n  = 1 .  ( u  (t J <x) -  f (t) -  ECOat <*t J0

Now., if ^(t) is dissociated into an age-specific cellular 
immigration term £ (t,al) and a proliferation rate term 

>-
” 1 | ^ ■+" (0 CtjO.)- ru j cc') | oL<X

Similarly, ElO may be expressed in terms of 'X (t,<Or the
loss rate function for cells aged <x *
Thus, _oo

f ^ (t,o.) . 'iLlt, «.') do. -  Eat)
o

and
oo

X
j A  . ->t it,a.) p  ( V O  -  *  ( t , c O h u q o . )  +  e ( t , < 0  ]
i. dt

Eow since equation (4.5) must hold for all times and all ages

IX

( U - 2.̂

(4.3)

( 4 - 4) 

do. - O

X H . S' )



J—  + ((0 - " r t  ) -t- e
ctt '

( M - 6 )

Also, since
cltb „  A a
cAjE ~  ~&cc ht

and, with age and tine measured on. the sane scale,,

ŷcK. — j 
■̂ x ~

we have

' * 2 } r + ^ I ! r + ( p - 7 k ' ) ^ + < £ = o  (<+.«)
“hx hex

Equation (4.8) is the fundamental equation of cell 
population kinetics on the continuous representation* Similar 
equations have heen introduced hy Von Eoerster (l), Trucco 
(2,3) and Ruhinow (4).
Although conceptually elegant, this formulation encounters 
the difficulty that neither chronological age nor' 'maturity'
(as in Ruhinow*s equation 4) can he assessed continuously, 
nor even at evenly spaced intervals* Representations closer 
to those employed hy experimentalists are necessary for the 
analysis of experimental data*

( 4- 1 )
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A Coropartmental Representation of Cell Population Kinetics.

As discussed in chapter 2, developing cells are usually 
classified as belonging to one or another of a sequentially 
related set of stages of maturity. The definition of the 
stages and criteria for assignment of a particular cell to a 
particular stage are not free from subjective components..

Consider a series of identifiable stages of cellular 
maturation, the linear order of which reflects the supposed! 
temporal order of maturation ('fig.. 4*1). This representation 
incorporates the abstraction that all cells considered to be 
at a particular stage of maturation are homogeneous in. terms 
of maturity. The transition from one stage to another is 
conceived as being sharp, irreversible and temporally uneven. 
These improbable idealizations are the necessary penalty for 
a representation geared to observables, rather than one 
based on 'a priori' considerations.
It is convenient to regard maturational stages as being akin, 
to 'compartments' as used in the theory of. tracer kinetics.. 
It should be noted however that maturational compartments are 
not defined in either space or time, and that no assumptions 
as to 'mixing' are of relevance in such a context*

Consider some defined maturational compartment, let N(t) 
denote the cellular content of the compartment, S t h e  
rate of entry of cells maturing from a previous compartment, 
and the rate of exit of cells entering a s\ibsequent
compartment, all at time t-
Suppose that all cells undertake division whilst in the 
compartment (Homogeneity of proliferation is an important
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assumption - see later sections)* If ^tis the mean, cellc
cycle time — assumed constant over any time-interval of 
interest, then it may he shown (appendix 4*1) that the 
cellular proliferation rate is

«x N Li) =  ■ N ^c

Then, provided cellular death within the compartment is 
negligibly small,

4- NCrt = 1(0 ■+ « N ( 0  —  E (t)

The value of this representation depends on obtaining an 
expression for the exit rate E’lt) . As a first approximation, 
to reality, suppose that maturation is a first-in~firsh~out 
process in which all cells reside within the compartment for 
a fixed ’maturation time1, ^  , here assumed time-independent.

Then, the exit rate ElO will he the entry rate 
time-delayed;, by and amplified by a factor representing the 
number of descendants of a single cell,, produced in time rV .
Thus,

ECO = £ ? Lt - l. )

so that
d N __ + c x N U . ' l - C  I l t - X )  (4.lo)
It

As is proved in appendix 4.'li, equation. (4.10) may be
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alternatively written in integral formulation::
v i z

i m = \ £ f Ct-o ; d o ( ^ . ii >

a

t:

or N(t  ̂ -  e'v t J (k.12)

The alternative forms (4.10)„ (4.11) and (4.12), though 
mathematically equivalent, are useful for dealing with 
different kinds of problem.
Two ether kinds of situation require attention. In; the first 
place, post-mitotic cells mature without division e.g. 
reticulocytes maturing to become erythrocytes. This means that 
the proliferation constant, , is zero. Then equations 
(4.10), (4.11) and (4.12) become

respectively.
A more difficult problem is presented by a maturational 
stage which contains both dividing and non-dividing cells.. 
This problem is deferred until some applications of the 
above equations have been described, and is considered in. a 
later section.

c—  = n o  - 1 ct - ̂ )cl-t
( M . li )

(U. IS)
t ' Vt - o
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An Iterative Method for the Calculation of Maturation Times.

Writing the basic maturation equation in the form of (4.12),.

available, so that T? is the only unknown quantity in 
equation (4.16). Such an equation, with the unknown appearing 
as one of the limits of an integral, has been little studied 
in the field of pure mathematics. Consequently, no analytical 
methods of solution are known, nor have any computational 
algorithms been devised.
Here, an iterative method of solution is described, which, 
subject to some restrictions, permits the evaluation of 
to within any desired margin of accuracy. This method of 
solution was proposed by the author, and the necessary, 
algorithm and computer program was written by Dr. James 
Kirk.
The method is as follows; let A't be a small quantity at 
least one order of magnitude less than the time-scale 
appropriate to the cellular maturation process under 
consideration.
Then, since, ^ ^

viz.
( v-t. 16 )

x- Z-

it is sometimes possible to compute the value of o- „ 
Suppose that estimates of N tt) , §(0 and <* are

» I
because €. SCf') ^  O for aqq values of . 

Then, from (4.16) it follows that
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e <xt' j  e  * ct'}'
i — A*o

so that

Nt0 - e " !  e. Iij «  o
t - At

However

n u ') -- e
These relationships allow the possibility of evaluating X  
by an iterative procedure, let us define the function. JL (

t.
(k,t)= ewt { e*V SW) ̂  (*..-/)

as
I

-c - k A t

Then if

JlkjlA ^  Nit')

but
j[ ^ N  It 1

it follows that

k A t  ^  'o 4  C k + O  A t

Thus, by starting with a small step At which is built up 
sequentially until I reverses sign, a first approximation 
to X can be obtained. Closer approximations may be obtained 
by using a smaller step, say AC , to repeat the procedure 
over the narrow range [ k A o , Ik +-0 k'Cjj within which 

is known to lie0 
A useful refinement may be introduced to avoid local
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irregularities associated with turning points and inflections 
in Nit) or .fit) .
Let *3" "be defined as ^

f ^  f  ' “ f  f,Jl . (<4.1 S)o = J dt e J e i w  ̂  v
C — k A L

and N lt‘;t2)as

N

tl 
i\ It') dLt

Then if
0 5? N  * ttcj t i )

and
X J  ( k - v i ,  ^  i M  *

the inequalities

^  't ^  (K+i') At-

yield an approximation to the value of ,'L over the interval

The algorithmic representation of this method of solution 
is depicted in fig. (4.2)..
It should be noted that the assumed time-invariance of 
is a necessary assumption in the derivation of the basic 
maturation equations.. The results of applying the method 
described above may be accepted only if the value of "a over
adjacent intervals of the form  ̂ j ̂ 3) j changes
sufficiently slowly that a constant "u is a good approximation
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within either interval.
A deficiency of the method is the absence of any analytical 
means of guaranteeing the convergence of the iteration, or, 
if convergent the uniqueness of the solution.
These problems have not given rise to practical difficulty 
in applications so far completed but the investigation of. 
this topic and derivation of analytical criteria for 
convergence and uniqueness remains an important task.

The extension of this method to evaluate the 
maturation times of cells in post-mitotic compartments 
involves merely setting the proliferation constant, c* , to 
zero..



The Status of Heterogeneous Transitional Compartments.

Throughout, homogeneity of proliferative activity lias heen 
assumed i.e. all cells in a compartment are in cycle with 
cycle time , or are not in cycle at all. Of course, not 
all cycling cells will really have the same cycle time;, 
however, tt may he considered the mean, of a statistical 
distribution of cycle times, without too great a loss of 
realism, for most types of compartment encountered.

However, a more basic difficulty arises when a 
particular compartment type — a transitional compartment - 
is encountered. As blood cells mature,; they eventually- 
become post-mitotic (with the exception of certain lymphoid' 
cells, of no interest here).. It v/ould be convenient if this 
transition, from proliferative to post-mitotic cell, were a 
morphologically distinct change permitting a proliferative 
compartment to be clearly distinguished from the succeeding 
post-mitotic compartment.. Unfortunately, present techniques 
do not allow such a distinction.
Consequently, some defined compartments such as 
polychromatic erythroblast (in erythroid development) or 
myelocyte (in granulocytic development) are heterogeneous- 
in terms of proliferation i.e.. they contain both 
proliferating and post-mitotic cells. The analysis of 
maturation within a heterogeneous transitional compartment 
constitutes a difficult problem..
Under steady-state conditions,; it is possible to formulate 
and experimentally evaluate simple models of the mechanism of 
transition ( 5 - 7 )  but the non-steady-state situation



presents additional difficulties. Probably, it will be 
necessary to return to a continuous ‘a priori1 
representation and to formulate models of the transition: 
mechanism in terms of this. The relation of the continuous 
representation to the experimental data then poses a problem 
v/hich will require to be solved by imposing a piecewise 
continuous transformation to represent the assignment of 
members of the continuously—varying population to discrete 
categories. This is evidently a task for the future*

For the present, very approximate estimates may be 
obtained by noting that the true proliferative status of a 
heterogeneous transitional compartment is intermediate 
between that of a homogeneously proliferative and a 
homogeneously post-mitotic compartment.
To obtain bounds on X  , the 'true1 maturation time,, let u

be the solution to
. Oct. I

IN CO = wt § it)
■t-t

* *and X  the solution to t
IN (.0 =■

"t,-  C

Provided equations (4.20) and (4.21) may be numerically- 
solved by the iteration method described above, the 
inequation

provides bounds on X  ,, and hence gives a rough idea of its 
magnitude.

ss
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The Analysis of Hepatic Erythropoiesis in the Mouse Embryo,

Despite its limitations, the proposed representation and the 
associated iteration method permit an approach to "be made to 
the analysis of cellular maturation in certain classes of 
non-steady-state system* To compute maturation times, it is 
necessary to assume that neither the cell cycle time, nor' 
maturation time, of the cells concerned vary too rapidly* 
However, the input rate and cell number of. a defined 
compartment can vary in any way at all.
Hence, although some restrictions- have been imposed, the 
formal steady-state requirements of most other analytical 
procedures have been relaxed*
A situation where relaxed steady-state requirements are 
highly advantageous is presented by erythropoiesis in the 
embryo*. As discussed in chapter 2,. embryonic erythropoiesis 
in higher species exhibits a dynamic pattern, including a 
shifting of erythropoiesis from one organ to. another.. It 
follows that the early phases of embryonic erythropoiesis are 
intrinsically non-steady-state and hence resistant to 
analytical methods of interpretation for which rigidly 
steady-state conditions are required.
Recently, the hepatic phase of erythropoiesis in the mouse 
embryo has been a focus of attention. Experimental data 
furnished by two groups of workers; Paul, Conkie and Ereshney 
(8) and Tarbutt and Cole (9) provide information as to the 
numbers of different kinds of erythroid cells, their cell 
cycles (where appropriate) and (indirectly) the input rates 
to certain compartments - all at different gestational ages.



The analysis of a section in this data - that 
pertaining to the basophilic erythroblast compartment - is 
presented here, in illustration of the possible utility of 
the representation described*. A detailed analysis of hepatic 
erythropoiesis in the mouse embryo is presented elsewhere 

(10).



Analysis of. Maturation of Embryonic Basophilic Erythro~blasts.

The basophilic erythroblasts belong to the last homogeneous 
proliferative compartment of the erythroid series-(see fig..
2.1).. It directly follows the proerythroblast compartment,, 
which is also homogeneously proliferative. How,, provided a 
reasonable amount of amplification through cell division 
occurs in the proerythroblast compartment, the input rate to 
it will be small in comparison with the exit rate from it.. 
Therefore,

EXIT R U T  E ^  «C/N / —  (4.22.)

where N 7 denotes the number of proerythroblasts and ^the 
rate constant of proliferation. This exit rate, which is 
identical with § It) , the entry rate to the basophilic 
erythroblast compartment, can be calculated from the 
published data, for different stages of gestation.
Then, using the usual notation,,

which,, provided N and ** are also available from the data, 
allows calculation of r& for the basophilic erythroblast 
compartment. Values °(-/ y H 1 , and N are available from, 
the data of Tarbutt and Cole (9) and, independently,, values 
of and N are also available from the data of Paul,.
Conkie and Freshney (8).
The iteration method described was applied to these two sets 
of data, to obtain estimates of HS at different stages of 
gestation (the murine gestation time is 18 - 19 days
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hepatic erythropoiesis is evident from 12 - 13 days). The 
results of the computation are presented in table 4*1,

Gr e.s + ftVioKv
Time ( ̂  s ̂

OA cTufa-t1 frt. A i »v\ e.

Paul e.t. <x\. T a r b u1t +■ Col̂ .
I 2 - 11 1. 22 O.

I ̂ 2 - I 3 z O. Mf O. 23
\2> ~ \'+ _  * I. T. 0.28
13 l - ? . 0.26. O. 33
m  - IS 0 . 3 M- o. q-o
\LV ̂  - \S 1 0.31 O.

- \G C>.33 O.ifl
tsi -Ifi i o. Z'j 0.38

\c> - n O. ^ c\ O  - 3 S*

O. 2? O. 3G
\n - 1 2 O. 2tf O. 3 2.

* I.T.t Iteration terminated because of failure to converge,
TABLE 4.1 :■ MATURATION TITS 0? SKBRYONIC BASOPHILIC 
ERYTHROBLASTS,

Two points are worthy of note; firstly, in the results 
obtained from the data of Paul et al,, there is a rapid 
change from 1,22 days maturation time (12 - 13 days 
gestation) to 0,44 days (12-J- — 13i days gestation). So rapid

8=1



a change violates the assumption that *"£ is steady, or 
changing only slowly, so the first two results are probably 
unacceptable. Secondly, at 13 - 14 days gestation time, the 
iteration inexplicably failed to converge. These two points 
emphasize the desirability of a more rigorously analytic 
treatment of the iteration procedure, than has been given 
here..
However, from about 13i days gestation onwards, the maturation 
time, as calculated from both sets of data, changes only 
slowly, and appears to be of the order of about 8 hours 
(one third of a day) which is appreciably shorter than, the 
steady-state result obtained for adult rats ( :̂ 13 hours).

Two sources of error should be mentioned. Firstly, 
the neglect of input of precursors to the proerythroblast 
compartment underestimates the input to the basophilic 
erythroblast compartment and leads to an overestimate of the 
maturation time. Secondly, death of developing cells has 
been neglected. Should this occur to the same degree in all 
compartments, little error would result from neglecting it,, 
but a differential death rate in different compartments 
complicates the problem. However, death rate is also 
(usually) neglected in steady-state analysis.
In summary, the analysis given provides sufficiently good 
estimates of the basophilic maturation time to establish two 
main conclusions.
From about 13i days gestation time,, both sets of data yield 
results showing a slight initial rise in maturation time, 
peaking around 14 - 15 days and followed by a slow 
progressive drop. The mean value of the maturation time is

HO



evidently around a third of a day* ( 3 /
As more data becomes available, the method given should 
allow a progressive refinement of the kinetics of embryonic 
erythropoiesis, a situation not otherwise amenable to 
analysis*. Other non-steady-state situations involving 
cellular maturation should be open to analysis in a similar 
manner*,



APPENDIX 4 I

For any cell, mitosis is a discrete, quantized, event. Nevertheless, 

a population of dividing cells can be treated by continuous analysis, 

provided the population is sufficiently large, all cells have (at least 

roughly) the same cycle time, ^c, and the members of the population are
irandomly distributed over the phases of the cell cycle.

Let there w(t) cells in such a population at time t. There will 

then be N(t) 2[“— ) cells at time t + St, neglecting losses. Denoting the1 X C

lossless increment due to mitosis during the interval Z"t, -t + £t7 as 
SN we obtainm

St
SN = N(t) 2 tc (4'«I.1)m

= N(t) e a (4-1*2)

In 2
where a = t (4-1-3)

Expanding e ^  in a Taylor series, we have

co

£Sn = N(t) Z—  (a St) (4-1.4)
3 = 1 j !

^ ̂ m = N(t) a + ^  a (St) (4-1-5)
St

J = 2-

■ ^  q^(St)
* J %

OS .
As t ^ Nm v dN and a. ̂  (St)  v

s>t d T  /_ j  !

Thus,

dN , . , r\ m = a N(t) (4-1-6)
dt

<=IZ



APPENDIX 4 II

We wish to establish the equivalence of equations (4*11), (4*12), (4*13) 

Equation (4*12) states

X
r ae

N(t) = ] e |(t - o) ae (4-ii-1)
o

Put 'j' d: t - 0 so that 0 = t - and d0 = -df' . Then,
f t -x

N ( P  = “ J ea ^  f  (f) dyt (4-II.2)

J e d /• (4-II-3)
t - X

which establishes the equivalence of equations (4»12) and (4 •13)

Diff erentiat ing,
t

- a ̂

= e
t

at

dN d
dt dt

ate
- af f e  t s

ate
r - a  fJ e (4. II.4)

') d \l + e^ d C j
±-X. " dt • J e (4. II.5)

= a N(t) + e^ + ^ ' (t) 
t- X  f = t

+ r̂mĵ  • (t-x) J  ( 4 . n . 6 )

f = t - x J
= aN(t) - e^^t -X) 4- £ lO (4-II-7)

Since equation (4 .11*7) is identical with equation (4 .11), we have 

shown that (4*12) and (4 .13) are equivalent forms which each satisfy (4 .11) 

Now (4 .11) is an ordinary linear differential equation of the first 

order. The general solution of such an equation can be written (See (11) )

°I3



x(t) = Ay (t) + z( t) (4 . IT.8 )

where y(t) is the ’complementary function’, z(t) the ’particular integral' 

and A a constant of integration.

We have shown that, for equation (4..11),

_f - © )  d© = f* £  (4 .II.9)z(t) =
o

The ’complementary function' for (4*11) is the solution to the homogeneous 

equation

= “ x (t) (4 .11-10)viz dt

x(t) = A eat (4 .II.11)

where A is a constant.

Hence, the general solution of equation (4 .11) is

c ̂
N(t) = A eat + eat j ea^f(^) d f  (4 . II. 12)

-t-X
To evaluate A, we must impose conditions appropriate to the problem. Here, 

the appropriate condition is that N(t) he a continuous function of X  and that 

N(t) -* 0 as X  ->0 ie_ Instantaneous maturation gives zero maturing cells, 

t
Now e j* ea^f(^) » 0 as X  0

t-X

.*. N(t) Ae°^ as X  — > 0 

But we require

N(t) 0 as X  " >  0

Hence A = 0

It follows that
t

at r  -aN(t) se e“ b f  e*'*'£(<{,) (4 .II.13)
t- r.

and its equivalent forms, comprises the solution of (4 .11).
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APPENDIX 4 HI

Evaluation of Maturation Times of Post-Mitotic Ce11s 
By a Graphical Method

This method is restricted in applicability to a rather special 

class of cellular maturation processes. However, it provides, for such 

processes, certainly the quickest and the easiest method available for 

estimating maturation times.

Consider two post-mitotic maturation compartments. The cell content 

of the earlier compartment is denoted by Nq (t), that of the later 

compartment by N^ (t) and that of the composite compartment, obtained by 

joining both, by N^ (t). Let g  (t) be the entry rate into the earlier 

compartment. Then, if'fcfbe the maturation time of the earlier compartment, 

g  (t-t) will be the exit rate from this compartment, which is identical 

to the entry rate to the next.

The following restrictive assumptions are introduced •

a) The pathway of maturation is irreversible and unbranched.

b) The maturation time of the earlier compartment is effectively

constant over times of interest.

c) No cells leave the second compartment once they have entered.

(ie its maturation time, or the cellular lifetime is infinite).

d) No cell death occurs in either compartment.

e) No cell division occurs in either compartment.
laitr

Granting these assumptions, the Kinetic equations for the and

the composite compartment are

= j (t -t) (4. hi. i)
dt

dN2 = f(t) (4.111,2)
dt

rtn (t) - n (0) = j J'(e-'c) de (4.111.3)
O



N2 (t) - n2 (0) = > e) dG (4 .III.4 )

Setting 8 - X  , the integral in eqn (4«IH«3) "becomes

t t - X
J sle - x ) ae = j g ( f )  af (4 .h i . 5)

t - X  o
= j\(f) d f  + j£(f) d f  (4 .IH.6 )

O — X
t - x  o

Hence (t) = (0 ) + ^  + jj<t> d f  (4 . h i . 7 )

Suppose now that t and t^ are times such that

N1 ( t 1> = N2 (V

t1 - I
ie N 1 (0) + f  1(f) df + ^ K f )  d = Ng (0) + J~_f (e) dG

-  X o
(4 .III.8 )

Now,

N2 (t) - N 1 (t) = Nq (t) (4-H I - 9)

but, in particular,

N2 (0 ) - N 1 (0) = No (0) • (4 .III.10)
t

Also No(t) = f l  (f) df  (4 .III. 11)
t - X  
o

and Nq (0) = fl(f) d f  (4 .III.12)
- X

Hence, equation (4*III.8) becomes

1 x2
df = f 1 (e) de (4.III.13)

< 5 6



from which it follows that

t1 -r, = t2 (4.h i . 14)

or t, = t1 - t2 . (4.III.-15)

Equation 4 -iii'l5"permits a simple graphical estimate of X  for maturation 

processes which fulfill the necessary conditions (see fig. 4-. 4*)
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CYCLICAL HAEMOPOIESIS



5. CYCLICAL HAST'OFPTBSIS.

Steady-States and Stability.
Until recently, it has been generally assumed that a 
biological system (e.g. the haemopoj.etic system of an 
experimental animal) known to be stable over long periods of 
time would, if undisturbed, be in a 'steady-state* — its 
kinetic behaviour being independent of time. This assumption 
has been almost ubiquitous throughout biological science 
and provides the conceptual basis for methods of 
interpretation of a vast quantity of experimental data.

Theoretically, stability and steady—state are not 
synonymous concepts. Stability, in the present context, 
means the property of a system free from external 
disturbances, greater than some non-zero threshold, to 
maintain its integrity over 'long' periods of time. Of 
course, 'long' is ill-defined; if the time concerned were 
taken to be several centuries, few systems of any biological 
organism could be considered stable. In practice,, however, 
confusion is seldom likely to arise.
A 'steady-state' is a theoretically tighter concept,, 
requiring temporal invariance of the system behaviour, again 
over 'long' intervals of time. Now, a system in a steady- 
state condition is obviously in a state of stability.
However, a stable system is nor necessarily in a steady- 
state condition. For stability, it is only necessary that the 
system, if it alters with time, never does so in such a way 
as to impair its integrity.
Conceptually, there is no reason why particular states of the

(Otf.



system should recur at regular intervals, or*indeed recur at 
all, but, as v/ill be discussed below,, repeating states are a 
very commonly encountered natural phenomenon. The essential 
first point is that freedom from external disturbance does 
not suffice to establish that a stable system is in,, on 
approaching, a steady-state condition, no^ even that the 
temporal evolution of the system is occuring slowly.



5

Feedback, Time-Delays and Limit Cyc3.es.i - 4 - . - _-— — . —.— — — ..

Systems of particular interest here are those biological 
control systems involving feedback. If the system is a 
stable one, at least one section of the system must involve 
negative rather than positive feedback, otherwise the 
'amplification1 effect produced by positive feedback would 
proceed without limitX tut sec. cko.|pt<̂ r 1 .
In chapter 1, a negative feedback system was described in 
terms of a mechanism which coupled a measure of some 
generalized 'distance' to another mechanism capable of 
increasing or decreasing this 'distance1. Omitted from 
consideration was the time between the measurement of the 
'distance' and the change of 'distance' induced in response 
to the measurement. Since, the velocity of signal 
transmission is always finite, this time cannot be zero.

The possible effect of such a time-delay on a 
negative feedback control system is intuitively obvious. If 
a delay ensues before the system reacts to an increasing 
'distance', the 'distance' will increase further before its 
direction of change is reversed. Conversely, the measurement 
of this reversal will not induce an immediate response and 
the control mechanism is liable to 'overcorrect' by causing 
a greater decrease of the 'distance' than would suffice to 
restore the system to its former state. In other words, an 
oscillation can occur.
Throitypes of oscillation are of interest here. Divergent 
oscillations exhibit increasingly large swings with time and 
cannot occur in truly stable systems.. Damped, or convergent,

1 0 6



oscillations die away with time and are a common mode of a 
systems' return to a steady-state condition following a 
transient perturbation.
The third type of oscillation, a sustained oscillation whoso 
amplitude remains the sane with time, is a form of stable 
behaviour whose likelihood of occurrence has not been widely- 
appreciated. In fact, G-ontcharoff (l) and Rubin and 
Sitgreaves (2) have shown that as the number of couplings 
between the elements of a system becomes larger, (strictly,., 
the number of degrees of freedom increases) the likelihood of 
a stable sustained oscillation being established becomes 
larger too. This argument has been developed by G-oodwin(3) 
in his theory of temporal organization in cells.
Historically, sustained oscillations were first studied in 
the context of the 'physics of vibrations', the harmonic 
oscillator being the prototype of the class of oscillators 
under consideration. Mathematically, however, the harmonic 
oscillator is an implausible kind of device because it 
exemplifies 'neutral stability' i.e. its amplitude of 
vibration is determined for all time by its starting 
condition. Physically realistic systems do not exhibit 
neutral stability (Quantum-mechanical systems are not under 
consideration here).. Those which at all resemble the 
harmonic oscillator are either unstable (divergent 
oscillation) or react to perturbations with an oscillatory 
response whose'amplitude decays with time. In general, 
models based on the harmonic oscillator are of little value 
in studying sustained oscillations in biological systems.

A class of non-linear oscillations more appropriate
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to the present context is the class of ‘limit cycles' 
originally discussed by H. Poincare' as the; asymptotic 
solutions to certain non-linear differential equations (4) 
and later by B. Van der Pol (5,6) in the field of 
electronics. Limit cycle oscillators exhibit dissipative 
rather than neutral stability, which means that they return 
to a stable mode of oscillation after transient perturbations 
A limit cycle oscillator resembles a damped harmonic 
oscillator except that the equilibrium state is a periodic 
oscillation of constant amplitude rather than a steady-state. 
Time-delayed control systems are especially prone to 
oscillate in the limit cycle mode. Limit cycles are 
therefore to be anticipated in biological systems.



Oscillatory Phenomena in the Control of Haemopoiesis.

Physiological control systems,, like those regulating 
haemopoiesis, may he described mathematically in terms of 
sets of differential-difference or integral equations. 
Associated with such equations will usually be various 
coefficients and constants which together form a set of 
parameters uniquely defining, the system in the context of the 
specified equations.
The work of G-ontcharoff (1) and Rubin and Sitgreaves(2) 
establishes that, as a set of equations becomes (loosely 
speaking) more complicated, the probability that a random 
choice of the parameters leads to a state of limit cycling 
approaches unity. However, in physiological systems, the 
choice of parameters cannot be considered at random. In 
general, evolution will select against features (as 
represented here by the parameters) which are biologically 
detrimental. How, it is generally true that the sensitivity 
of a control system is linked to its liability to oscillate 
and an evolutionary compromise between sensitivity and 
steady behaviour would probably result in a selection of' a 
set of parameters corresponding to a 'border-line1 situation 
between steady-state and limit cycling (see 7).
Recent evidence in the field of haematology - much of it due 
to Morley and hijb colleagues - suggests that the control 
systems regulating blood cell production are operating close 
to this border-line. For the main pathways of blood cell 
development, production is controlled by a negative feedback 
loop linking the si sc of the appropri* >ell |r-



population to the induction of cvtodifferentiation in 
receptive stem cells. Typically, the maturation of the 
developing cells is a process taking several days and which 
introduces a substantial time-delay into the control system 
Oscillatory behaviour is therefore very liable to occur,, bu 
may be offset by the evolutionary selection of sets of 
parameters conferring stability or the evolution of 
compensatory mechanisms, should the occurrence of violent 
oscillation be physiologically detrimental.
However, not every individual of a population or species 
need have identical sets of parameter values and, if such 
values are very critical, a statistical spread could result 
in the occurrence of steady-state behaviour in some 
individuals of the population and limit cycling in others.

Again,, the effective parameter values nay be altered 
from one characteristic state to another by experimental 
manipulation.. The evocation of limit cycle behaviour in, 
previously steady-state control systems is a possible 
intervention to which the name 'stress cycle analysis' has 
been applied (8).
Apart from experimental interference, disease processes may 
have the effect of shifting one or other of the system 
parameters in such a way as to alter its behaviour in this 
regard. Such diseases may be quite difficult to understand 
in classical physiological terms, and may require the 
application of control theory for their comprehension and 
rational therapy.



Cyclical Granulopoiesis in Normal Subjects.
9

The first definite report of cyclical granulopoiesis in 
normal human subjects was that of Morley (9) in 1966. Since 
then, the qualitative features of this report have been 
confirmed by the unpublished observations of the present

In eight of eleven healthy adult males, Morley found an 
oscillation of the peripheral blood neutrophil count having 
a period between 14 and 23 days (averaging 20 days) and a 
somewhat variable amplitude. The assessment of cyclical 
phenomena in female subjects is obviously complicated by the 
existence of the female menstrual cycle but there is no 
reason to suppose that the control of granulopoiesis differs 
between the sexes. Observations on pre-pubertal and

such observations have not yet been reported.
Morley and his colleagues have interpreted cyclical 
granulopoiesis in normal subjects as a manifestation of a

The mean period of the oscillation, 20 days, would be that 
resultant from a time-delay of the order of 10 days, which 
is consistent with experimental estimates of the

a.v*4Uor' cxv\cL oike.ci’ ,

would

time-delayed control system regulating granulopoiesis(10,11).

granulocytic maturation time in man (12).
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Cyclical Neutropenia.

The observation of cyclical granulopoiesis in normal 
subjects casts new light on cyclical neutropenia, a 
pathological disorder of granulopoiesis in children, which 
has been recognised for many ĵ ears.
The clinical features of cyclical neutropenia, though varied 
may usually be referred to an absolute neutrophil shortage 
which recurs at intervals of about 20 days.
Typically, the blood neutrophil count is almost sero at the 
nadir of the oscillation, rising to between 20$ and 50$ of 
the normal count at its zenith. The oscillation is not due t 
a cyclic variation in granulocyte margination or marrow 
release but is apparent at the level of myeloblastic 
precursors.
A review of publications relating to this disorder has been 
given by Page and Good (13)> who also report the case of a 
14 year old girl, studied since early childhood. The 
disorder exhibits no obvious relationship to the menstrual 
cycle in girls or to recognized hormonal function in either 
sex.
Riemann (14) advanced the view that cyclical neutropenia 
evidenced a class of metabolic oscillation not specific to 
haemopoiesis. However, since the realization that the 
haemopoietic control systems may be rather prone to 
oscillate, cyclical neutropenia has been more plausibly 
interpreted as a limit cycle mode of granulopoiesis 
resulting from alterations in the parameters of the 
granulopoietic control system.



Two features are of particular interest; the period is 
normal hut the mean level is abnormally low. Prom the latte 
observation, an increased destru.ct.ion rate of granulocytes 
may be suspected, and is consistent with the observation 
that autoimmune phenomena are sometimes in evidence (15*16) 
and that cyclical neutropenia can be induced in dogs by the 
administration of cyclophosphomide (17). However, as 
cyclical neutropenia has been reported in a patient who was 
unable to manufacture antibodies (aggamaglobuniema) (18), 
this is probably not the universal cause of this disorder.

The variation in periphal neutrophil count in a 
3 year old boy suffering from cyclical neutropenia is shown 
in fig. 5.1. As may be seen,, the period is close to 2G days 
and the mean neutrophil count well below normal (Dr. Michae 
Y/illoughby, personal communication 1971).



Cyclical Granulopoiesis in Chronic G-ranulocyte Leukaemia»

In 1967? Morley, Carew and Baikie (19) discovered the
existence of cyclical granulopoiesis in patients suffering
from chronic granulocytic leukaemia (C.G.l.).* Since then, the
phenomenon has "been confirmed by three additional different
groups (20 - 22) and it seems likely that it exists in at
least a proportion of all cases of C.G-.L..
The observations contained in the four reports so far 

*
published are summarized in table 5.1.

Report No. Casts ObserMtci Of Gsc.4Uq.Loa lle.ve/c.Aca.

Mori*.-} vV.
al. 4- 1 0* 1 \

■ ...

s ^  6.0 1 20

SKodauck 
e i .  a,l.

1 G O  d s z\

\ l o d 6 ^ * v c k
C+. oh z

r1
^  6 0

j
22.

TABLE 5.1. CYCLICAL GRANULOPOIESIS IN C.S.-L-

From table 5.1. it may be seen that the period of the 
granulocyte oscillation in C.G-.L., though variable from one 
patient to another, is generally at least double that which 
would be expected for a normal maturation time and observed 
in normal individuals (9»11). Also,, the mean granulocyte
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level is not stationary (as it is in normal granulopoiesis 
and in cyclical neutropenia) tut progressively rises with 
time.
These observations provide valuable information on the 
kinetics of granulopoiesis in C.G-.L.. which may assist in the 
understanding of this disease. In chapterl£, the significance 
of cyclical granulopoiesis in (at least some) C.G-.L.. patients 
will be further considered in the light of the mathematical 
models of the control of stem cell proliferation and 
granulocyte production which are described in chapters 6 ,.7 
and 8.
However, some comments can be made without the assistance of 
particular mathematical modelst-
(a) In C.G-.L., control of granulopoiesis is not abolished.
The growth of the granulocyte population is neither 
exponential nor Gompertzian, but at least partly responsive 
to mechanisms regulating the production of granulocytes.
(b) The most straightforward interpretation of the increased 
cycle length in C.G.L. is to suppose that leukaemic 
granulocytic precursors mature abnormally slowly (10,23). It 
is noteworthy that the increased cycle length is not 
consistent with the co-existence of a normally maturing 
granulocyte population and a leukaemic population absolutely 
incapable of maturation.
(c) Should a normally maturing population co-exist with a
slowly maturing leukaemic population, a modulated
oscillation resulting from the combination of the two
frequencies would be expected. Hone of the published
"* :T)orts exemplify such modulation, although a mere detailed is

115“ fegtmreol ,



Cyclical Erythropoiesis,

Despite occasional reports in the literature (24,25), 
cyclical erythropoiesis does not appear to have "been 
recognized as a distinct phenomenon until Quite recently.

In 1968, Orr, Kirk, Gray and Anderson (26) 
reported distinctive cyclical erythropoiesis in rabbits 
subjected to constant dose injections of red cell iso­
antibody, two or three tim.es weekly, to simulate autoimmune 
haemolytic anaemia. The period of the oscillation was 
typically about 18 days and thus unlikely to be directly 
related to the much shorter time-intervals between 
consecutive injections of iso-antibody.
The oscillation was clearly present in both the haemoglobin 
and reticulocyte levels.
Discontinuation of the injections depressed reticulocyte 
levels, increased haemoglobin and seemingly abolished the 
oscillation (fig. 5*2)•
Should similar phenomena accompany true haemolytic anaemia in 
man, the assessment of randomly-timed blood sampling may be 
a hazardous procedure.
Subsequently, Morley and Stohlman (27) have examined the 
kinetics of the reticulocyte population in normal dogs, 
undisturbed except for blood sampling, and reported the 
existence of cyclical erythropoiesis in six of eleven 
animals studied.
Interestingly, the phase of the oscillation could be altered 
by bleeding followed by retransfusion. This provides 
evidence that the observed oscillation is intrinsic to the



erythropoietic system rather than being a 'cons^y " ? of 
some other cycle arising from elements external to the 

marrow.
Cyclical haemopoiesis has also been reported by Morley (28) 
in two polycythaemia patients. In one,, a 15 day neutrophil 
cycle was found, co-existing with a 27 day platelet cycle. 
(The dissociation of cyclical granulopoiesis and cyclical 
thrombopoiesis is of interest). The second patient displayed 
a marked reticulocyte cycle with a period of approximately 
17 days. In the first patient, however, no reticulocyte 
cycle could be found and in the second no neutrophil or 
platelet cycle could be found.
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Cyclical Thrombopoiesis.

As previously mentioned, cyclical thrombopoiesis has been 
observed together with cyclical granulopoiesis * In addition, 
Morley (29) has reported a platelet cycle with a period of 
21 - 35 days in four of eleven normal individuals. A 
platelet disorder analogous to cyclical neutropenia - 
cyclical thrombocytopenia - exists and exhibits an 
oscillation with a similar period.
The similarity of the periods- of cyclical granulopoiesis and 
cyclical thrombopoiesis, both in normal individuals and in 
C.G-.L. patients, suggests that the oscillation is occurring 
at the level of a multipotent stem cell population. If this 
is so, it might be expected that a cyclicity in any 
haemopoietic pathway of development would, be transmitted to 
any other pathway for which the stem ceil pool is common.

However, it is of interest that platelet oscillations are 
not in fact a universal accompaniment of cyclical neutropenia. 
This means either that the level of the stem cell pool is 
not greatly affected in this condition or that compensatory 
mechanisms have damped out the oscillation before it appeared 
as a fluctuation in the platelet level.
Such mechanisms could be, for example, active control over 
megakaryocyte production rate by regulation of mitotic rate, 
or a 'death control' mechanism regulating the degree of 
'ineffective thrombopoiesis'. By using Se-methianonine to 
measure the production rate of megakaryocytes at different
times, it may be possible to test these possibilities.

/
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A Mathematical Model of the Control of Erythropoiesis.

Improving information on the kinetics of haemopoiesis, 
especially that regarding cyclical haemopoiesis, has 
stimulated interest in mathematical models of the control of 
haemopoiesis. The first such model, motivated by the 
observation of cyclical erythropoiesis in rabbits, was 
described by Kirk, Orr and Hope in 1968 (25) and in a number 
of subsequent publications (7,8,30,31).
Models of the control of haemopoiesis differ from the models 
of the kinetics of haemopoiesis described in chapter 4 in 
that the former models incorporate assumptions as to the 
exchange of messages between groups of cells resulting in 
increased, decreased or maintained levels of cellular 
production according to the physiological conditions which 
prevail. Models of control need not specify the physical 
nature of the presumed intercellular signals, although they 
may do so.
In the model described by Kirk and his colleagues, 
assumptions as to the nature of the signals are made 
explicit. The structure of the model is that depicted in 
fig. 5*4* Two cybernetic loops are postulated, one 
controlling the rate of production of erythropoietin and one 
regulating the size of the stem cell population.
Erythropoietin production is taken to be inversely 
proportional to the instantaneous haematocrit, while 
erythropoietin itself is presumed to act at the stem cell 
level, producing mature erythrocytes after a tirr.e-delay 
:"nosed by the erythroid maturation time._________________________



Por the regulation of the stem cell numbers, a stem cell 
mitotic inhibitor or 1chalone5 is proposed.
The model is explicitly formulated in terms of time-lagged 
differential equations. It has the property of exhibiting 
oscillatory erythropoiesis when the life-span of the 
erythrocytes is reduced below normal, as it would be, for 
example, by the iso-antibody infused into rabbits in the 
experiments of Gray and Anderson.
A characteristic feature of the model is the absence of 
sustained oscillations for either the stem cell loop or the 
erythropoietin loop acting in isolation. Limit cycling can 
occur only when both loops operate together. An interesting 
conclusion derived from the model is that an extremely 
non—linear relationship between a change in haenatocrit and 
adjustment of erythropoietin must be postulated (see 8). 
Subsequently, experiments by Adamson have provided' a degree 
of confirmation that the magnitude of the non-linearity is 
in the range suggested (32).



The King-Smith - Morley Model of the Control of 
Granulopoiesis, •

following the observations of Morley and his colleagues on 
cyclical granulopoiesis under normal conditions and in 
C.G.L., King-Smith and Morley (10) proposed a computer model 
of the regulation of granulopoiesis.
The essence of the model is depicted in. fig. 5.S’* ^-e rate 
of production of mature granulocytes is taken inversely 
proportional to the blood granulocyte level, although the 
physical intermediaries (e.g. 1 granulopoietin1 ) are not 
explicitly postulated.
An active control over the rate of release of granulocytes 
from the mature cell store in the marrow is postulated and 
this rate is also taken inversely proportional to the blood 
granulocyte level, although no time-delay is here involved. 
No stem cell loop is introduced and the stem cell 
population ("which is not a component of the model) is, in 
effect, taken, to be constant.-
This model was not formulated by King-Smith and Morley in 
analytic mathematical terms. Instead, the model was 
physically simulated using the electronic circuits of an 
analogue computer to represent the biological components of 
the model. Explicit mathematical equations are nowhere 
introduced in this form of study which is appreciably 
different from the approach to modelling employed by Kirk 
and his colleagues with the model of control of 
erythropoiesis described above and by the present author 
with the several models of the control of granulopoiesis to



be described in subsequent chapters. The present approach has 
the advantage of unambiguously displaying aj.1 built-in 
assumptions in complete detail as well as permitting the use 
of analytic theorems in some situations.
However, the studies of King-Smith and Ivlorley led to some 
interesting conclusions : that the loop controlling de novo 
granulopoiesis was inherently oscillatory but was stabilized 
by the action of the loop controlling the release rate of 
mature granulocytes from the marrow store. Depletion of the 
marrow store, e.g. due to decreased production rate, might 
underlie disorders such as cyclical neutropenia. This is in 
agreement with the observation that cyclical neutropenia, 
could be induced in dogs by the administration of the 
anti—mitotic drug cyclophosphomide* King-Smith and Morley did 
not advance a detailed interpret ation of cyclical 
granulopoiesis in C.G.L., though they noted that the 
increased cycle length was consistent with an extended 
maturation time of leukaemic granulocytic precursors.

This model is open to criticism more on the grounds of 
its omissions than of its content. King-Smith and Morley did 
not (a) express their assumptions in analytic form, which 
would have allowed them to systematically investigate the 
effects of varying' each parameter entering into the 
equations; (b) investigate the consequences of postulating 
control loops different from those incorporated in the model;
(c) incorporate a stem cell loop (which surely must exist in

I
reality); (d) investigate all the ways in which control of 
granulopoiesis could, theoretically, break down.
Of course,, any pioneering study may be criticised for its

ill



incompleteness; it is likely to be the prototype in the 
field rather than the last word. The above considerations, 
however, do suggest that a more comprehensive study of 
mathematical models of the control of granulopoiesis is 
warranted. Such a study is described in the chapters which 
follow. Cf course, this investigation too has its omissions - 
some glaring - and should be regarded as merely the next 
logical step in What may be a very protracted undertaking.
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6. A TWO-LOOP NODNL FOR THE CONTROL OF dPJudJLOlOTEST?«. 

Introduction.
As discussed in chapters 2 and 5, current evidence favours 
the existence of at least two distinct points of control for 
the system regulating granulopoiesis i.e. control of 
production of granulocytes from primitive precursors (stem 
cells?) and control of marrow release.
These control points are unlikely to he the only ones which 
exist. An obvious omission is that of control of stem cell 
number. The question, which is fairly involved, is considered 
in chapters 7 and 8. In the present chapter it is assumed 
that stem cell number remains effectively constant, which 
implies that any simulated perturbations should not be 
excessively severe.
Some other possibilities, however, have been excluded from 
consideration altogether. These include the mitotic 
inhibition (chalone) control of proliferation rate of 
granulocytic precursors by mature granulocytes (l) and the 
active regulation of intramedullary cell death (2).

Neither of these suggestions is unreasonable and 
their exclusion from consideration reflects only the limited 
objectives of the present study. As will be seen, analysis of 
the responses of two and three-loop models is complicated 
enough.
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The model to be considered is logically similar to that 
examined by King-Smith and Morley (3) : (see chapter 5» 
pn [2.1 —  IZ3 ). However, the- following differences merit 
attention:
(a) King-Smith and Morley assumed that the ‘sensed variable' 
of the loop regulating 'de novo1 granulopoiesis was the 
blood granulocyte number - as it v/as for the loop regulating 
marrow release. However, there exists evidence that marrow 
regeneration following injury can precede changes in the 
blood granulocyte number (4).
Accordingly, the marrow granulocyte number is here taken to 
be the sensed variable of the primary production loop giving 
a model whose logical structure is that depicted in fig. 6.1.
(b) Although granulocyte passage through marrow is allegedly 
first-in-first-out (5), there is a difficulty about the 
analytic representation of this which is related to the 
problem of time-varying maturation (Appendix 6.1). As a 
first approximation to reality, marrow transit has been 
taken at random rather than first-in-first-out.
(c) Where a choice exists, explicit analytical representation 
is greatly preferable to a 'black box' description using 
function generators on an analogue computer (3). In this 
case, an explicit representation using delay-differential 
equations is adopted. This permits simulation using both 
analogue and digital computational techniques and enables the 
effect on system behaviour of changes in parameter values to 
be more closely studied.

1 3 3



Horrnulati on. of the Model in Mathematical Terms.

let G m (f) be the number of nature granulocytes resident in 
the narrow at tine ’t . Then, assuming random egress

a,
it rAOO

where § CO is the precursor input rate and the loss rate 
parameter.
Now, if granulocyte production is regulated by stimulation of 
development of early precursors, the strength of this 
stimulus must be inversely related to the number of marrow 
granulocytes present at time . However,, a signal of 
infinite intensity should not give an infinite response ( i.e.
§ lb") must be bounded above). Also, allowing for maturation 

of duration ^  , a pulse of signal should give a pulse of
response time-delayed by the factor '"C .
A plausible expression for £ It') is therefore

~i -jz.^  =" i + p [ g M]'
■t.-'C

where , p and ^  are positive constants and is a
•t-'n

symbolism for G (£ — Z) , which will be found convenient in
later applications. Hence equation (6.1) becomes:

=  “A  ^  (0 2)
1 + P [&«1

-t-z

i.e. a rcn-linear delay-differential equation in G m ,
However, in order to take account of the action of the 
second postulated loop, that controlling marrow release, the

‘ 3 4 -



release rate parameter A should be related inversely to 
Gft tO , the blood granulocyte number at time . Again, the 

release rate should be bounded above but (since random 
kinetics is postulated), no further time-delay is involved. 

Thus

I +• £6 ft]

where and y are positive constants. Equation (6.2) then 
becomes

OL "X G m  / r *?
4 5 ^  =   F n** —    F--- =1 y [ 6
dt \ + p 1 +/A* LGsJ

t -'t

The rate of change of Ga It) must then be the difference of 
^ ^ m y (i.e. rate of input of marrow granulocytes)

t A■/*• [& <d

and a term expressing loss of blood granulocytes from the
vascular system. As vascular loss is mainly random (6), and
there is little evidence for its active regulation, a
suitable equation is

ciG e    G-hrt —  CO G |£ ( G . 4-
iltr i + jk G a 3 ^

Qs ?where oo =, -Jlih. and T  is the half-lifespan of vascular
T

granulocytes.
Equations (6.3) and (6.4) together, define the model in 
analyti c terms.



E e la ti of Ho del Pa ram ete rs to Kinetics of Granulopoiesis .

A reasonable choice of parameter values for the model - at 
least in the first instance - would he a set giving model 
properties close to the kinetic properties of granulopoiesis 
in normal man.
Some estimates of the latter properties are given in table 
6el. However, it is neither necessary nor desirable that 
such estimates should be accepted unquestioningly in 
choosing the model parameters for normal granulopoiesis. 
Firstly, the parameters can be chosen in more than one way 
i.e. the chosen set is not unique. Secondly, the estimates 
given in table 6,1 are very approximate, they represent 
means of distributions showing very iarge dispersions and 
depend on various assumptions in the interpretation of the 
raw experimental data. In such a situation, any attempt to 
derive quantitative insights from the model simulations 
would be rightly considered naive.
The criteria for choosing the parameters may best be viewed 
in light of the objectives of the study. Since few of the 
data can be considered precise, a more reasonable stratagem 
would be to accept any parameters which are within a range 
of normal kinetics and to pursue qualitative rather than 
quantitative insights.
It will be appreciated therefore that no great significance 
need be attached to particular parameter values, provided the 
kinetic quantities which they determine are net so far from 
the estimates given in table 6.1 as to be deemed unrealistic. 
Cf greater importance (in the present study) will be effect

136



of chan/res (in each direction) of parameter values on the 
form of the model response to a given class of perturbations.

This objective corresponds to that mentioned in 
chapter 1; the use of a mathematical model to obtain 
qualitative insights into system organization and behaviour.



0omputati oniil Procedunes «

Simulation studies of the model were carried out using both 
analogue and digital techniques to integrate equations (6.3) 
and (6.4)* Each of these techniques has particular advantages 
and corresponding drawbacks*
Analogue computation is particularly convenient when 
continuous variation of parameters over comparatively small 
ranges is required, but is less suitable when marked changes 
in parameter values are being made, because of problems of 
scaling the analogue computer for a limited range. On the 
other hand, no scaling problems arise with digital methods, 
but continuous parametric variation is impossible. 
Accordingly, each mode of computation was used as appropriate 
in a given situation.
In the case of analogue simulation, the EAI-680 analogue 
computer at Y—ARD (Glasgow) was used. The procedure was
fairly straightforward for an analogue computation but, when

/ *time-delays were involved, a fourth order lade approximation

j. , ec A Taylor expansion truncated at the fourth term. The

was employed. This approximates a delayed function 
in the form

(s.s-)

truncation 'rounds' the delev and probably rather
than depreciates the nhvsical realism of the representation
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maturation times of individual cells or clones).
The simulations were carried out by Mrs, Helen M. Finlay, 
Control Section (Y-ARD), in conjunction with the author and 
could he displayed visually on a C..R.O,. as well as being 
recorded using a graph plotter.
The digital, integrations were carried out on two different 
computers; the ICT-1905 digital computer owned by the 
Western Regional Hospital Board and the PDP-15 digital 
computer at Y-ARD (Glasgow),
In the former case, the integration procedure utilized a 
programme written in FORTRAN by Dr, James Kirk, using a 
modified Runge-Kutta integration procedure for time-delayed 
differential equations. In the latter case, the programme 
utilized a modified DPS-50 integration procedure written in 
FORTRAN by Mr. Tony Griffin (Control Section, Y-ARD) and 
executed ’on line' by the author, with the technical 
assistance of members of the staff of Y-ARD, In both ca.ses, 
a 0,1 day integration step was used.
In a substantial number of cases (about one third) analogue 
and digital simulations of the same problem were directly 
compared and in all cases excellent agreement was observed.

The results of these studies are presented in 
the remainder of the chapter. The presentation does not 
follow the chronological order of the simulations carried 
out which have been re-arranged with a view to clarity of 
description. Each of the diagrams shown is of a digital 
simulation. In rather more than half of the cases, the 
digital computation merely confirmed a preceding analogue 
simulation. The digital results were, however, the easier 
to present in diagrar.atic form

\Z ° l



The Basic Parameters for the Model.

To facilitate presentation, consider a set of 'basic 
parameters' with which all other sets of parameters may be 
compared. The basic parameters are given in table 6.2. The 
kinetic features of the model which they generate are set out 
in table 6.3. Comparing tables 6.1 and 6.3 it will be seen 
that the basic parameters generate kinetic properties close 
to, but not identical with, the presumed kinetic properties 
of granulopoiesis in normal man.
The basic parameters were not derived from 'a priori' 
consideration but by a process of trial and error using many 
different combinations of parameter values. In the process, 
many interesting results were encountered prior to the 
choice of the basic parameters; these are presented later, 
reversing the actual order of events.
The criteria used to evaluate the basic parameters for 
normal granulopoiesis were
(a) They should generate kinetic properties not drastically 
different from those specified in table 6.1;
(b) Simulated recovery from transient perturbations should 
resemble that found experimentally (in animals) i.e. a series 
of damped oscillations exhibiting 'moderate' overshoot for 
•moderate' perturbations (10 - 12). However,, curve-fitting 
was not attempted as reliable human data is not available.
(c) The parameters should be a stable set in the sense that 
small changes (e.g. ~  2Op-) in their assigned values should 
generate only snail changes in the kinetic properties of the 
model. Thus, values close to instabilities in either direction 
were rejected.
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Kesmorse of the lvodel with Besic Parameters to Impulsive
Perturbati ons .

The model with basic parameters is taken to be representative 
of normal granulopoiesis* It is therefore necessary that the 
model responds adequately to impulsive perturbations, as 
does the real system to transient insults e.g. perturbing 
blood and marrow granulocyte numbers by brief exposure to 
ionizing radiation or short-term infusions of cytotoxic 

drugs (10 - 12).
On the model, this was simulated by choosing different 
initial conditions for integration of equations (6.3) and 
(6.4). As figures 6.2 and 6.3 illustrate, the model returns 
to its steady-state value when perturbed either above (fig.
6.2) or below (fig. 6.3) this value.
lacking adequate human data, rigorous comparisons are 
impossible, but the model does seem to give a fair 
representation of the recovery from impulsive perturbations 
of the granulopoietic system in experimental animals (10 - 12).



Effect of ¥. o dii la t i on of Pa ram e terr-’.

As previously stated, the values assigned to the basic 
parameters are not accurate or unique. It is reasonable 
therefore to examine the qualitative effect of modulating the 
basic parameters in both directions.
This was done using a facility available on the EAI-6S0 
analogue computer viz The resistance of a potentiometer may 
he set proportional to a parameter value and the resistance 
varied continuously over a defined range. The effect of such 
modulation was assessed by choosing a fixed initial condition 
(relative to the steady-state defined by the parameters) and 
noting the effect of modulation of each parameter on the 
damped oscillation (of the form of fig. 6.3) displayed on a 
cathode ray oscilloscope*
The observations were noted at the time of the simulations 
and are presented in qualitative form in table 6.4, As may be 
seen from this table, increasing the parameters °< , p ,J*- 
enhances stability while increasing parameters , co 'u 
X and y reduces it.

The biological interpretation of the results presented in 
table 6.4 can also be presented in tabular form yj z- table 
6.5,} which indicates how the presence or absence of 
particular elements would be likely to affect the stability 
of the control system. This question will be further 
considered in chapter 1.0 in relation to the pathological 
regulation of granulopoiesis.
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Horsitivj. ty of the i1 oriel Behavl our to Changes 1 n the
Indi eta], Parameters sc and y .

Since and y occur as indices in equations (6*3) atid (6.4) 
it is reasonable to expect them to be very influential in 
determining the for^ of system behaviour* The effects of 
changing 3C and V through a range of values can be seen 
from figs. 6.2. - 6. 8 *
The model is particularly sensitive to changes in & , biit as 
figs. 6.2. illustrate tc. and y act synergistically in
promoting first limit cycling and then overt instability.

However, with the structure of the present model, and 
parameter values close to those given in table 6*2 it seems 
unlikely that stability is possible with a primary loop gain 
much greater than that represented by = 2.
Should higher loop gains be indicated by future 'in vivo' 
studies in man, the above investigations should be 
considered evidence for the existence of one or more control 
loops additional to those postulated in the model described 
above *
It is of interest that the gain of the marrow-release loop* 
besides that of the primary loop, is likely to lead to 
unstable behaviour. On the other hand, increasing the 
coupling co-efficients ( p and^  ) of each of the two 
loops promotes stability.
Hence, the marrow-release loop may contribute to stabilizing 
the system, as King-Smith and I'orley have suggested (3) but 
only if the gain of this loop is rather low.
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Uodel Response to Ti nc-Peri odi. c Perturbations of Granulocyte 
Productj.cn. Rate and Death Rate.

One virtue of mathematical modelling is that it may permit 
the examination of response patterns to more complex types of 
experimental interference than would normally be considered 
amenable to analysis. The type of complex interference being 
ref. ered to consists of a temporally-varying perturbation 
of the system, the duration of the perturbation being finite 
but appreciable (i.e. not an impulse).
The type of perturbation employed depends on the objectives 
of the investigation. Conceptually, the simplest type of 
time-varying perturbation is a periodic one, preferably of 
sinusoidal form. On the other hand,. Wiener and his 
associates (13) developed a method, of synthesis of non-linear 
models which requires knowledge of the real-system response 
to perturbations having the form of Gaussian (white) noise. 
Unfortunately, this method is not designed to provide 
conceptual understanding regarding the integration of system 
elements, but only a ’black box’ model whose purely 
phenomenological behaviour mirrors that of the system. 
Wiener's theory is therefore inappropriate in the present 
context. The same is true of some simpler methods of 
non-linear synthesis, for example that recently proposed by 
Eisner and hilne (14). finally, methods based on Eourier 
analysis of response patterns to periodic inputs can be of 
great value in dealing with linear systems (15) but problems 
of interpretation become severe when (as here) the system is 
highly non-linear.



In spite of the difficulties mentioned, the
model response to sinusoidal variations in granulocyte
production rate and death rate was thought to he of some
interest, particularly as the corresponding experiments

0should he practically feasible, for example, a sinusoidal 
modulation of a daily dose of radiation should readily 
provide a sinusoidal driving of cellular production# On the 
other hand, removal of granulocytes on a periodic basis, 
using leukapheresis techniques (16,17) could similarity 
modulate the loss rate of mature granulocytes.
Each of these situations was simulated for sinusoids having 
diffe-rent periods. The modulation of production rate was 
represented by modifying equation (6,3) to read

rlGr* _  -£<*1 l+i.rv6t.\ __ _>^   (fc.C,')
d.t i + p [ G U S > [Gel

•t-X.

and the modulation of loss rate by modifying equation (6,4) 
to read

& _ ________"7 \G tw___ _ —  i?  ( \ +. s'\ ̂  6  iz (G.l )
cki i + /  [6 s'] y a

The two modifications were made independently so that the 
model with modulated production rate was described by 
equations (6,6) and (6,4) and that with modulated loss rate 
by equations (6.3) and (6.7). In all cases the basic 
parameters of table 6,3 were used, 0 being the only one to 

vary.
The results are depicted in figs. S.S - 6,IV with the 
corresponding situations to which they refer specified in 
table 6,6.



As these diagrams show* the perturbations to the 
granulocytic death rate, c o * ^  ( I + s’la St.  ̂ generate 
broadly similar damped-oscillation responses for different 
periods of the perturbation.
On the other hand, the perturbation of granulocytic 
production rate -> ^  [ i + s^Gi. generates
a more complex oscillation with indications of reasonance 
phenomena as the natural period of the system (» 20 days) is 
approached..
In principle, the death (loss) rate perturbation could be 
carried out experimentally using cyclically modulated 
leukapheresis, and of the production rate by using cyclically 
modulated irradiation or drug infusion. It would be of 
interest to see whether the two perturbations generate 
qualitatively different oscillations, as suggested by the 
simulation studies presented here.
It seems probable that simulation of biological system 
responses to time-varying perturbations may permit differences 
to be discerned in the predictions which result from 
different sets of assumptions. The present work merely 
indicates this possibility and suggests that further 
investigations of this topic would, be warranted.



Appendix 6.1.

Representation of Ordered Transit with Variable Transit Time. 
The representation of first-in-first-out cellular maturation, 
where the maturation time is itself variable, poses a more 
complex problem than any of those considered so far,,

Suppose that a scalar quantity,^-. , can be defined as 
an ‘index of maturation’ and that -n. (y*,’t iLurepresents the 
number of cells, at time , having maturity between/** and

- r  i / M .  c

Then, if no cells are gained or lost in the course of 
maturation (no division, no death), we have

j O  =■ ^  I/* J ) (S. 1.1. )

Expanding (6,1.1) as a Taylor series
(S/A Vn./  v  r |on. (/Ajt ) -V b/A. — ^ -t

oo vj|
J=2 ji. 1

o° : •
,̂  C4. ^  u. r  d  a t v  v*,-  st —  + 2_(-o —  ^

>>-2
Then,

j-i oo
$/*. V*. + £q  y  (V) l l  - 4  V n
it v- i-t A o; V*‘  ̂ j't jj "btJ

Therefore, 

*c>r\.
J-'

pp -- -b 15* > U.' e-\.
V*- < v  O j = 2 J •

it -> o
C O

-l- l__ i rv\, /
b-t ' u-vo itr

(StT V n
TT btV

(tXl)
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where V  =; V* {j*j t ) , the maturatlon veloci ty, is defined
as

=  [-,m* ( I t  i (6.i.r)
St -V o

In the limit, therefore

+ V  ^  r, O  (G.I.S )

Equation (6*1.6) provides a more general continuity 
principle for cellular maturation (withour gains or losses) 
than any equation derived previously*
The number of cells, N (,V\ , in a recognizable 1 compartment1 , 
of the type discussed, previous ly, will be

N CO =• j ê v. (6.117)

where m  is the maturity value at which compartment 
transit is deemed to occur*
There are two interpretations of variable transit time, vig:
(a) The maturity velocity is a function of time,
(b) The maximum maturity, , is a function of time.
In either case, there exist different classes of mechanism, 
which may be postulated to mive different functions IT orO u. w

yM . The investigation of the properties of different 
models is certainly worthwhile but lies beyond the scope of 
the present studv.J- c»

The author cannot accept as vali d the treatment given by 
Tfing—Smith and T'orley (£& 3 ) and some others in attempting 
to avoid postulating specific mechanisms in their (alleged.) 
computer siru.la.ti on of firs t—in—f i rs t—out. maturation with 
vsriablo moturation time *

iiv8



In the present instance, the equation 
representing randon transit, has been accepted as 
approx? nation to the first-in-first-out kinetics 
probably exist in reality.

1 4 - ® l
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TABLE; 6.1 : SOME ESTIMATES OF THE KINETIC PROPERTIES
OF GRANU L OPOIESIS IN NORMAL MAN

Quantity Est imat e. Ref erence

Total Blood Granulocyte 
Number

O
6.2 x 10 cells/kg (7)

Vascular Granulocyte 
Half-Lifespan

6*7 hours (6)

Marrow Granulocyte 
Number

2.6 x 10^ cells/kg (7)

Normal Steady-State 
Rate of Granulopoiesis

1.63 x 10^ cells/kg/day (8)

Maximum Rate of 
Granulopoiesis in 
Normal Man

9 .78 x 10* cells/kg/day (9)

C-ranu 1 ocytic Maturation 
Time (Total)*

10 days (7)

Mean Transit Time for 
Mature Marrow 
Granulocytes 

1..... . ...........  1

2.5 days (5)



TABLE 6.2 : BASIC PARAMETER VALUES FOR GRANULOPOIESIS TO NORMAL MAN

!
PARAMETER VALUE

a
i o1.0 x 10 cells/kg/day

B
<1 O . ~̂ 7~

1.0 x 10  ̂ (cells/kg)

3 10.0/day

[i 4.0 x 10"8 (cells/kg) Y

CO 2.43/day

7 days

X 1.25

Y 1.00



TABLE 6.3 : KINETIC PROPERTIES OF THE MODEL GENERATED BY TILE BASIC
PARAMETERS FOR NOR ML GRANULOPOIESIS

Kinetic Property Mathematical Representation Value

■X’Steady-State Value of c (0)
g b 1.1 x 109 cells/kg.

Steady-State Value of G 
0 m G ^  m 1.1 x 10^G cells/kg.

Steady-State Rate of
.

a 2.1 x 10^ cells/kg. day
Granulopoiesis

1 + B As (0)J  x1—  m  ~J I

Maximum Rate of 
Granulopoiesis

a 1 .0 x 10^  cell s/kg.day!

Mean Transit Time of 
Mature Granu10 cyt e s 
in Marrow

In 2 j 1 + n y a B(0)_7] 
A

3*1 days

Mean Transit Time In 2 6.7 hours
through Vascular System CO

* With = 1.1 x 10^ cells/kg. a 70 kg man with a blood volume

of 51 anh a margination fraction of 0 .5 0 would have a blood granulocyte
3 3concentration of 7*7 x 10' cells/mm".

iSZ



TABLE 6.4 : MODULATION OF BASIC PARAMETERS

Effect on Maximum 
Overshoot of pamped Oscillation

Direction of 
ModulationParameter

v

1 S3



TABLE 6. L : BIOLOGICAL INTERPRETATION OF EFFECTS OF PARAMETRIC MODULATION

Biological Quantity
Effect of Increasing Biological 

Quantity

Maximum Rato of Granulopoiesis (a) Stabilizing

Coupling of Primary Loop to changes
in G (3 ) m Stabilizing

Coupling of Marrow-Release Loop 
to changes in G^ (p.) Stabilizing

Loss of Marrow Granulocytes to 
Blood (,̂ ) Destabilizing

Loss of Blood Granulocytes to 
Marrow (u>) Destabilizing

Maturation Time Destabilizing

•Gain’ of Primary Loop (x) Destabilizing

'Gain* of Secondary Loop (y)
(_

Destabilizing

\S I f



TABLE 6.6 : SIMULATION'S OP MODEL RESPONSES TO SINUSOIDAL PERTURBATIONS

Perturbed Quantity Period of Perturbation 
2TTm _1 G

Model Response

Granulocyte Production ur,, C Q
Rat e

(c.f. equation (6 .6 ) )
10 days

15 days -f~i ̂  . G> . l O

30 days -fi ■ & • I*

Granulocyte Loss 10 days -F,v  6. 1Z
Rate 1 a . ^

(c.f. equation (6 .7 ) ) 15 days 

30 days

1 j
f »̂ . 6 * 1 4-
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7. THE CONTROL OE STEM CELL NUMBER.

Introduction.
Until now, attention has been focussed on the teleonomic 
mechanisms which ensure a balance between the physiological 
requirements of the organism and the rate of supply of 
terminally differentiated cells capable of meeting these 
requirements. In the preceding considerations, it has been 
tacitly assumed that the noh-terminally differentiated stem 
cells which respond to the mechanisms regulating 
cy'tcdifferentiation were themselves available in at least 
roughly constant numbers *
Evidently, this assumption is unwarranted. Stem ceil
populations may suffer depletion as a result of the demand
for differentiated cells (1,2) or as a consequence of cell
death caused by drugs (3,4) or radiation (5,6). Provided s
damage remains within certain limits, it is well establis' v:
that stem cells are capable of replenishing their numbers,
given time to do so. Taken at face value, this property
implies the existence of mechanisms controlling the size of
the stem cell population, in addition to those which regulate
the numbers of terminally differentiated cells.
The mechanisms controlling cytodifferentiation and cellular
proliferation are evidently complementary, not least because
the phenotypic expression of an epigenetic switch might
involve obligatory mitosis (7). Needless to say. the
problems here encountered are of a very general nature and
arise in considerations of cellular regulation in a large
va riety of tissues. However, as will be subsec.u•.-•nth.'■ r tv - 

_________________________L22___________________________________



the stem cell population is an especially appropriate one on 
which to focus. The presumed advantages of this population, 
as well as several drawbacks, should become apparent in the 
course of the following discussion.



/

Theories of Growth Control.

Within the past few years, several theories of growth 
control have been proposed. Such theories, often motivated by 
the desire to understand neoplastic abberationssuffer from 
the disadvantages of attempting to deal with growth control 
in general, whereas it may differ in individual tissues, and 
in considering the problem in isolation from morphogenesls; 
histogenesis and pattern formation.
As will be demonstrated in the following sections, grew*:', 

control cannot in general be separated from mechanisms which 
regulate the spatial conformation of the tissues and organs 
under consideration. The possibility of effecting this 
separation in specific individual cases - of which the 
control of stem cell number will be advanced as one - 
depends upon" the possibility of accepting certain 
simplifications in relation to the spatial arrangements of 
the cells concerned.
Insofar as the problem of growth control is amenable to 
considerations of a general character, the simplest types of 
•hypothesis are of a 'contact inhibition1 between cells of 
identical or related type (8 - 10) or of synthesis by each 
category of cell of a tissue-specific diffusible mitotic 
inhibiter. The latter hypothesis has been championed in 
recent years by the 1chalone school' of Bullough and M s  
associates who have reported experimental evidence



i ^ k x k P o r  c id l t r rw is  ( 11 — 13  + i s s u « .  ( m  > \ S ) c m d

£,*■>! 4 V\r o i cL "Kssue. ( I G ") t
-prom a. 1 ke.orelt c e*.l s p <=\ a cA- k °1 P t i P IS j3 o s s'i k l-€_ P^ foise-

objections to each, of these classes of theory, notably that 
they neglect the problems of organ topology and the 
occurrence of heterogeneous cell types in normal organs (see 

Wolpert 17)*
Nevertheless, informative conclusions may be derived from 
even, these straight!orward theories and it would seem 
reasonable to explore some such possibilities oefore 
considering theories of a more sophisticated kind.

n S



7

flit otic Autoregula.tion and Organ Topology*

Consider the problem of growth control in a eel! population 
whose members synthesize a diffusible mitotic inhibitor.
Let C ) denote the inhibitor concentration and
tl i/t) the corresponding cell density, both at the 

point {Xj'ji-z.') at time t- . The diffusion equation for 
inhibitor is

D y i . +  P 1 1 . 0
—  ?? —  t — 1where S7 — %>x L b'2.2-

ana P represents the net production rate of inhibitor and 
~D is the diffusion constant. If inhibitor is uniformly 
synthesized by all cells, the positive component of I will 
be of the form y  ̂  where y  is the rate constant for 
inhibitor synthesis. Inhibitor may be lost either by
catabolization or by loss from the cellular aggregate. If
both loss mechanisms exist

p  —  y  r u  —  y x  C  —  C 0 '}\ Jri ( l  - Z. y

where y*- and are positive constants, is the inhibitor
concentration at the surface of the aggregate and n is the
area of the cellular aggregate.. This formulation immediately
reveals a serious difficulty. If the inhibitor loss rate 
-------------------------------------------------------------------------------
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number of cells in the population is considered. As a first 
approximation, it seems not unreasonable to write an 
equation such as

^  3 lL u —    c o
dt J -+ |iC

illustrating the inverse relationship between cellular 
production and inhibitor concentration. The total cell 
number ;N (t) , will then be

Httl —  j j j  >L cU a-j a^.
v

i.e. the integral of the cell density function over the 
volume M of the cellular aggregate. Cnee again, if is seen 
that a property of the shape of the aggregate (in this case 

) enters into the problem.
In fact, the theory outlined so far is fundamentally 
inadequate. What is required is an additional law specifying 
the shape of the aggregate and its mode of change when the 
population increases or decreases. This law cannot be 
deduced from the laws governing cellular proliferation 
because the latter omit consideration of cell movement.
These considerations.serve to reinforce the probable 
necessity of dealing with growth control in conjunction with 
morphogenesis and pattern formation, as has been asserted by 
Y/olpert (17).
This difficulty is exemplified in R»lc>| 08)
__________________________________inn________________________________________________
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Riley's original model is open to criticism on mathematical 
grounds (19); its reformulation to meet such criticisms 
extends the model to cover non-spherical populations hut 
once again exhibits the intrinsic dependence of growth 
control on organ topology - the latter requiring independent 
specification in advance (20).
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The Spatial Pattern of Stem Cell Distribution.

/
Having established the probable interdependence of organi v
topology and growth control, we may consider the particular 
problem of control of stem cell number. Focussing attention 
on representative marrow segments, such as that of the femur, 
it is apparent that the stem cell population is spatially 
dispersed rather than localized in some small region of the 
marrow. Admittedly, the dispersion is not wholly random (21), 
but the departure from randomness is not sufficiently 
important to complicate the argument.
Thus, individual stem cells will typically be separated from 
one another by varying numbers of cells of different types. 
Moreover, the numbers and proportions of the intervening 
cells will vary in accordance with functional demand for 
erythrocytes, granulocytes and other cells whose progenitor 
cells are marrow residents.
The simplest control mechanism appropriate to such a 
situation would seem to be one depending on a diffusible 
mitotic inhibitor. This has the advantage of not requiring 
absolute contiguity between individual stem cells or on a 
uniformity of cellular type and number between separated 
stem cells. The hypothesis has been advanced by several 
authors (22 - 25) and has received some support from the 
experimental work of Gridali and Lajtha (26).
Moreover, by assuming a ’ plum—pudding model' of stem, cell 
distribution throughout the marrow the difficult problem of 
organ topology may be circumvented. Quite clearly, such a 
model is a grossly simplified abstraction. The necessary

l-H



simplifications may however he rather more acceptable in the 
case of stem cells than in the case of cells of other kinds.

I S O



*7.1 O

Homogeneity of the Stem Cell Population.

In the model to he presented, all stem cells ̂ are assumed to 
he identical, at least in regard to synthesis of and response 
to the supposed mitotic inhibitor. If, as discussed in 
chapter 2, there exist distinct populations of pluripotential 
and unipotential stem cells, •1 stem cells' must he interpreted

I
as the pluripotential variety, unless unipotential stem 
cells are presumed to he self-regulating.
The possible relations between different categories of stem 
cell (if such exist) have not been considered in the 
present study.



A Model of the Reflation of Stem Cell Number.

Consider a number, N(.t) ? 0f stem cells to b;e randomly
dispersed at tine t, throughout some volume of constant 
magnitude V 
Let i Ct) denote the total amount of inhibitor within the 
volume; this is made up of (t) , the inhibitor within the 
cells and the inhibitor external to the cells (but
within the volume).
If inhibitor is synthesized at a constant rate by the ceils 
and. both catabolized at a rate proportional to the amount 
present and lost from the enclosure at a rate proportional ^o 
its area,

a l n —  ^ z . —  y m ̂  ( i. s’)
dt

where and rt (area) are
writing

—  - y -  f\j - - - - - - - -

at ~  ^

Let us now suppose that the mitotic rate of a 'typical' cell 
is inversely proportional to the intracellular concentration 
of mitotic inhibitor but is restrained to some maximum by the 
time necessary for replication of completely uninhibited 
cells. The intracellular concentration of inhibitor will vary 
from cell to cell but in no systematic way for a random 
dispersion of cells. This variation may therefore be ignored 
and the average behaviour only considered. Stem ceil loss may

I

I *1

all positive constants. Then

C g )



be due to intrinsic death or differentiation into one or 
other of the haemopoietic developmental pathways.
Conveniently lumping these together to give an (average) 
constant loss probability (assumed independent of stem cell 

age) we have
\ d N  __  —  co (, 7- ̂  )
H <** , + j3 [ Lcj

where rX , and are positive constants and the symbol 
C  j  IB employed to denote a concentration.
It is now necessary to postulate some relationship between 

lc and lQ . Suppose that a rapidly-acting uptake process 
preserves a constant ratio between the average intracellular 
and extracellular concentrations of inhibitor,

T hus , T ° 'IL __

where k is a positive constant. Then if is the average
volume of a cell (assumed constant),.

L —  ( 7 —  N v )  + L  ̂  1 ( -i-1 0 )

£ I k ( V - N v )  + n  y  I ( 1. it )

Finally, we introduce an assumption regarding the relaxation 
time of the systems described by equations (7«7) and (7.c). 

By 'relaxation time' is meant the (exponential) time 
constant of recovery of a linear system, or of a non-linear 
system subjected to a perturbation which is 'small' in the 
sense that an approximate linear description is appropriate. 
In practice, the relaxation time of a 337-stem serves to
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identify the tine scale on which events ox interest are 

taking place.
t

Now it is reasonable to assume that the relaxation time 
associated with equation (7.7) be considerably shorter than 
that associated with equation (7.-8) since the former refers 
to production and degradation of a molecular species and the 
latter to reproduction and disappearance of cells. Under such 
circumstances, it is a fair approximation to adopt only the 
steady-state solution of equation (7.7) (i.e* ^be particular 
integral) the transient being neglected as it vanishes in a 
time shorter than other times of interest (see Goodwin 27).

Then,

N  (7-12)

at all times.
Substituting for £ UcJin (7*8) using (7.11)? and for G m  
this resultant equation using (7.12), we obtain

_i_ aN _  o ------- - co
N d t

kV + ( i - k l  v N

Rearranging and lumping constants,

I ci(M N
N dt kNf + 7\N

where

4  =  (cX-ug k . ( 1. I S' )

4 = -  un r  (t. i s )

"» -  - 5 ?  *  V O - 1 0  ( 1 - n )
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In appendix 7.1, it is shown that equation (7.14) has the 

analytically closed solution.

* d-2!')

where A is a constant of integration, to be evaluated from 

the initial conditions.

Thus,

N

/ > _ k N
*  ]

$> 1 i o t  ( 1.22 ,[ <f>v + +  N 1 =  S e   ̂ ;

where
A8 =  e. and is evidently a positive cons tan.



Analytic Properties of the Solution.

The modes of. "behaviour of (7.22) are obviously of interest. 
The most important Question to be raised is whether the 
population described by (7.22) is self-limi.tiny for all 
physically meaningful values of the parameters. Evidently, 
this is not the case.
Obviously, the of (7.22) is monotonic increasing with
time so that, if (7.22) is to hold,

/ 7̂ k

N
( j )  , t ( t  )

j </> V -h ^  N  | — ^  C O  a s  t  C O

Suppose that the population is self-limiting and that N  — => N 
as -t o© .
Then we must have that

/ 'a  _  . M
{ & )  i  ̂T  «#> 1

|S\ 1 j <p\ -i- f N j — ^ co a s IM — > N o

ty

o

For physically meaningful values of N0 this is only 
possible if the index (-^ — ) is negative - so that

[45V +• + N 1 aFPears in a denominator and if the quanti
^  ) is identified with No . Then (7.22) may be written 

in the form
W

^  f h. - 2l ) o t :  (n 2  3 ^

from which it may be seen that N (~~ {̂T ) as ±  ̂  C O  is
an asymptotic solution. Three conditions are involved here.
Firstly, ^ ^

T  +

iSC
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/ 4 V \In addition, if j is the population limit it must m
the first place he a positive quantity and in the second he 
no greater than the number of cells which would completely 
fill the available volume (otherwise the equations cease to 
hold)*
Thus it is necessary that

( ~ ^ r  ) ^  °

hut

When these inequality constraints are evaluated in terms of 
the original parameters, it is possible to show that the 
three conditions (7.24-)? (7.25) and (7.26) may be reduced to 
the single condition

i L X  >  V  (o< —  w  ̂  ( T 2 . 7 )

(See appendix 7.II).
If this condition is satisfied, cells whose behaviour is 
described by (7.22) will attain a population limit when 
placed in an enclosure of any size. Conversely, if (7.27) is 
violated,, cells obeying (7.22) will increase in number to 
completely fill an enclosure of any size (their subsequent 
behaviour is not predictable from the present model). It is 
of interest that the necessary condition (7.27) for 
population self-limitation is independent of the magnitude 
of the available volume but that any population limit which 
exists will be proportional to this magnitude*

\%1
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Ana 1.ofrue SiriUlati on Studies of the Model
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The possible modes of system behaviour appeared to be of 
sufficient interest to justify further study. Accordingly, 
the behaviour of the system was simulated using the FAI-680 
analogue computer of Y-ARD (Glasgow), as described in- 
chapter 6. As before, the analogue programming and execution 
of the simulation was carried out by Mrs. Helen M. Finlay.

To facilitate the simulation,, equation. (7.13) was 
rewritten in the form

<* cj ( T  2 s )Jh c* N —     ; g
N cLt * + \ J L Li+tCM t

2______________ _ —  k 'l
where © =  K v a"c<" ^  —  k V
With this symbolism, condition (7.27) assumes the form

co © X  (. I- 2 <0

little basis exists for the selection of numerical values of 
the model parameters. As a result of discussion with Dr.. J. 
Kirk, values were selected which were comparable to those 
used in previous analogue simulation studies of the

i
haemopoietic stem cell control system (28,29), insofar as 
direct comparisons were legitimate. For convenience, the 
parameters ^  and A  were held fixed while
K was allowed to vary from one simulation to another. The 

values of the fixed parameters are shown in table 7.1. 1
IS iknccA. "fKc ĵ Qir o£ iov\5 "7. 2̂- *7. 2. Q ^

itva. C<-{<xX Lw\ — [*J»ro X. Iivvw-T USc.cC- T U.C.
k . l€3
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For these values, a choice of K - yl° satisfies condition
(7.29). The system therefore responds stably and
homeostatically to a perturbation,, as shown in fig. 7»1.
From (7.29), it can be calculated that the value 

— [\
K =2 S'. 20 >C 10 j_s the critical value above which the

population fails to limit. In the course of analogue
simulation, with K able to be changed continuously,, a value 

. -11of Si tSr x' I o appeared to be the upper limit of
stability which, allowing for the inevitable inaccuracies of 
the simulation process, is in excellent agreement with the 
value derived theoretically.

-  < 1
In a further study, a value of !< ~ G.oo x to _ well above 
the upper limit of stability - was selected. As fig. 7.2 
shows, the model behaves in an unstable fashion, as 
anticipated. However,, the detailed kinetics of the

lg9



non-limiting growth process is revealing. The kinetic 
behaviour was tested to ascertain whether it exemplified 
exponential growth by plotting the growth-curve on log-linear 
graph paper. As is well-known,, an exponential growth mode 
corresponds to a straight-line graph on log-linear paper. 
However, this is not found when the non-limiting growth 
curve is plotted in this way. As fig. 7*3 shows, the graph 
is curvilinear in form which indicates the rate of growth 
becomes less as the population becomes larger, although (as 
follows from violation of the self-limitation condition) the 
growth rate is always positive definite for a finite 
popul .CL ti on,
A corollary to the form of growth carve exhibited by the 
model population is that, on this model, a reduction in 
population size results in an increased proliferation rate,, 
giving a ‘homeostatic1 response to perturbations. Unlimited 
growth need not therefore be equated with the total absence 
of homeostatic responsiveness.



Despite its limitations,, the model suggests a general 
principle concerning the relation between local and global 
properties of cellular assemblies. As described above, the 
model population exhibits self-limiting and non—self—limiting 
modes of behaviour, the mode realized being dependent on the 
numerical relationships between the parameters of the model.

Now, these parameters refer to properties of the 
population as a whole. Clearly, such global properties must 
result from the integration over the population of relevant 
properties of single cells, taking due note of intercellular 
interactions and interactions with the non-cellular 
environment. A change in a global parameter must be 
interpreted as resulting from a change in the properties of 
one or more cells, the non-cellular environment,, or both.

Some such changes could result from a primary 
change in a single cell whose daughter cells both perpetuated 
this change and possessed a proliferative advantage (i..e*. a 
mutant clone). Strictly speaking,, the present model is 
inadequate to represent such possibilities. However,, it is 
not difficult to see that a shifting clonal composition of a 
cell population could give rise to an apparent temporal 
evolution of the average parameters referring to the 
population as a whole. This allows a more complicated 
behaviour than dealt with here, although it is likely that
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biological organization (30>31) afrd disorganisation (3 -) is 

to be achieved.
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Possible Implications for the Understanding and Control of
Cancer,

A fairly straight!orward biological interpretation of the 
different growth modes of the model populate on is to 
identify the limiting growth mode with the homeostatic 
behaviour of many normal tissues and the non-limiting growth 
mode with the proliferation of malignant ceils. The 
non-exponential form of the non-limiting mode is then of 
interest in the light of reported evidence for 'teleonomic' 
control of cellular proliferation in human acute myeloid 
leukaemia ( 33 - 36),, murine plasmacytoma (37) and some 3.ung 
tumours of animals and man (38).
It has also been claimed that tumours of epidermal,
melanocytic and granuloid tissue retain - at least in part -
the capacity to synthesize and respond to the appropriate
tissue chalone (39 - 41) although either the cellular export
(39) or uptake (19) of the chalone appeared to be deranged.
Additionally, it has been known for some time that a variety
of animal and human tumours follow a G-ompertzian rather than
exponential growth curve, which implies that the growth rate
declines as tumour size increases (42,43). v7hilst a variety
of explanations of this phenomenon have been proposed,1 it is

#

at least compatible v/ith the partial retention of growth 
control, as illustrated by the model population in the 
present study.
More broadly, thfc 'hormone dependence' and 'conditional
persistence* of some human tumours has been cited as
evidence against their being 'autonomous' (i.e. unresponsive 
 l3J>_________________________________
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to normal control mechanisms) (32,44). The property here — 
partial retention of mitotic autoregulation in non-self- 
limiting populations - could he considered as a specific 
case of the more general class of phenomena of iron—autonomous 
proliferation of tumour cells,
Should these arguments prove to have any validity, quite 
important consequences may follow. All else apart, if mitotic 
rate is a function of cell population size, assessment of 
this rate at some point in time provides little guide either 
to the past or future development of the tumour, unless this 
information is supplemented hy knowledge of a matheamtical 
law of growth. Moreover, continued (if modified) 
responsiveness to growth control in tumours raises the 
possibility of the manipulation of the kinetic state of 
tumour cells, through normal physiological, control 
mechanisms, to establish optimal therapeutic- conditions 

(33,45).
Additional therapeutic possibilities arise from more general 
considerations. Self-limitation of the model population is 
dependent on the existence of certain quantitative 
relationships between the parameters of the model. Suppose 
a cellular event occurs (e.g. a somatic mutation or an 
epigenetic switch) whose macroscopic effect is the alteration 
of one or other parameter to such an extent that a transition 
occurs from self-limiting to non-self-limiting population 
growth.
Nov/, even if the cellular event which underlies this change
v/ere to prove irreversible in practice, should any cf the
processes which determine the values of other relevant

 ________________________________________



parameters be physiologically manipulable, it is possible 
that the self-limiting growth mode could be restored by 
altering parameters other than those affected by the 
malignant change, (e.g. if, in 7.21/U were irreversibly 
increased, reduction of, s a y o r  ^  could restore 
satisfaction of the condition).
This provides a concrete, although hypothetical, illustration 
of the practical importance of studying the global properties 
of populations and tissues as well as the molecular 
organization of the constituent cells. The excessive 
concentration on individual cellular properties is, at least 
potentially, a methodological vice which has been termed 
'cytologism* by Smithers (3?,45). The point is that if one 
does not know how the parameters are connected together by 
the self-limitation conditions, only intuition is available 
as a guide to research or experimental therapy.

That the present model is simplistic to the point of
K /naivete has been emphasized several times. Even here, 

however, the self-limitation condition was not intuitively 
obvious nor susceptible to derivation by purely verbal 
reasoning. For realistic models, the task will be 
correspondingly greater.
Finally, it may be worth noting that the acceptance of a 
1cytologistic* paradigm can lead to pessimistic conclusions 
as to the therapeutic utility of fundamental research. Thus 
hcFarlane Burnet, accepting the malignant event as an 
irreversible somatic mutation has declared the total 
impotence of all laboratory research in the field of human 
cancer (46) (and many ocher fields, besides).

ISS



Such pessimism is unwarranted. Even in the 
(unlikely) event of the reversal of mutation proving 
eternally impossible, radically new methods of cancer 
therapy should be made available by the elucidation of the 
control mechanisms at the physiological level.



1.21
7.1.1

Appendix 7 1
;

The differential equation for the behaviour of the model (equation 

7.14) is

J  N "  = J  dt (7-7-2)

Now, the integrand on the L.H.S. can be expressed as a sum of directly 

integrable partial fractions:

kV + /SN k *>> - ( $ )/* (7-I-3)
N_"(̂>V”'+̂ N)' fN fv +^N

Hence, 

k
4>

r m dW  = \ dt (7.1.4)J N ^  J97 +v>iT J

|  In N + ( -p |) In j <±>V H-'j/N J = t + A  (7-1.5)

where A is a constant of integration. The constant A may be evaluated

from initial conditions, since when t = 0,

A = |  In  ̂N (0)] + ( $  ~ |  ) In j<|> V + ̂  N (O)J (7-1-6)

from which A is evidently a real number for real N (0)
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Appendix 7 II

The three inequality conditions for the existence of a finite 

population limit (conditions (7 .24)1 (7*25) and (7*26) ) are

(7.XI-1)

and

_ k > 0 
f

_ i  <  1 (7.11.2)V

A  n (7 .11.3)
t  i

The first of these, (7*11.1)f expressed in terms of the original 

parameters becomes

 (a. t&Lh—  < 0  (7-11.4)
(a-PA(l-k) -

Since for the case under consideration a>wj, this requires

^  >  V  ( « - w )  (1 - 0  (7.II.5 )|X

Condition (7 .II.2) is, in terms of the original parameters.

, N , 1 (7 -11.6 )
(« -<*> k______  4:. y
_ (cc-tj)^(l-k)M-

Now, if condition (7 * 11*5) is satisfied, the denominator oi the L.ILo. 

of (7 .II.6 ) is positive and the inequality can be rearranged to give

Sill >  .7 (« - cj) (7-II-7)M-
Now, since k )>0, 1 - k<CO, hence,

Y(« - <4 (1 - k) <  V(a - w) (7.11.8)

Satisfaction of condition (7 .II.7 ) therefore automatically ensures 

satisfaction of condition (7.11.5) also.

i ° l S



7-II.2

Condition (7 .II.3) may be similarity elaborated as 

■§_! + (1 — k')
n ^  _1_ (7-II.9)
(oc— co)V (1-k)P.

If condition (7.11*7) and therefore (7 • 11 • 5 )__7 -*-s satisfied, 

the denominator on the L.H.S. of (7 .II.9) is negative and the 

inequality can be rearranged to give

^  >  0 (7 .11.10)[i '

Since all the parameters involved are positive, this condition is 

always satisfied.

Hence, the three inequalities (7 .II.I, 7*11.2, 7*11*3) are 

satisfied if and only if condition (7 .II.7) holds.
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8. A THREE-LOOP MODEL FOR THE CONTROL OP GRANULOPOIESIS.



8 . A TFREE-TjQQ? UCDUL 0? (tRANULOPCIDSTS.

Introducti on .
Accepting the model of stem cell mitotic autoregulation 
proposed in chapter 7, and the tentative conclusions as to 
control loops and parameter values reached' in chapter 6, a 
three-loop model of the control of granulopoiesis was 
constructed and examined.
Unlike the isolated stem cell loop of chapter 7* the 
composite model here considered is described by a third-orde 
system of non-linear delay-differential equations, which are 
analytically intractable. Model behaviour was therefore 
assessed entirely using analogue simulation techniques,

However, the analytical theorems derived in chapter 7 
though inapplicable to the more complicated equations of 
this chapter, provide a rough guide to the selection of stem 
cell loop parameters and an indication of the possible modes 
of behaviour of the stem cell loop-, despite the 
complications caused by the presence of additional loops.

i
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The equations describing the three-loop model may be derived 
by, essentially,, combining the equation describing the stem 
loop of chapter 7 (equation 7.14) with the equations 
describing the "too ioo^s of chapter 6 (equations 6.5 
and 6.6)
In so doing, account must be taken of the stem cell loss due 
to induction of differentiation, and of the amplification 
effect produced by mitosis of granulocytic precursors during 
the proliferative phase of maturation.
These considerations lead to equations of the form,

JiS
dt

ckO rv\ 
cl-t

$
d t

-b d  S
X U  4- G  S

wx')s( oi e
i + p F G »v, ”1

-t -

4 * |3 ( G* rv̂ 1

G  V V L

I 4*^M (G s')

i +  y A  ( G g ) 7 — .6

(s. 0

(S. z ) 

(f. 3*)

where "C, is the time spent in proliferative phase <-j? T2 4c. rest 0r
maturation (excluding residence in marrow as a mature 
granulocyte), k — the mean proliferation rate of

otgranulocytic dividing precursors and oc S the maximum rare 
induction of stem cells to differentiate along the 
granulocytic pathway. The parameters <$>,'£ , -TL and 0  are
defined on page of chapter 7. The remaining quantities
have the meanings of chapter 6. The model structure is/
shown in fig. 8.1. TKe. barcu*vd'ew'« wirt \ieiUe.s of
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8.1. By setting the derivatives of the left-hand sides of 
equations (8.1), (8.2) and (8.-3) to zero, it was calculated 
that the steady-state (or mean) values of the variable 
quantities of the model were as given in table 8.2. 
Additional features of kinetic interest are given in fable 

8.3.
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Simulation Studies of Model Behaviour.

As with the studies described in chapter 6, the behaviour of 
the model was assessed by subjecting each of the model 
variables (in this case S, and G g, ) to a 'mild' 
perturbation reducing it to about 50$ - 75$ of the 
calculated steady-state (mean) value.
Examination of the response of the present model to 
perturbations of this magnitude quickly showed that,, in its 
present form, the model was unacceptable as an approximation, 
to a physiologically realistic control system.
Highly unstable behaviour was observed, with all variableso  ' u

either increasing indefinitely (until analogue overload) or 
decreasing rapidly to zero with extinction of all populations 
Moreover, the model was ’capricious' in that very small 
alterations of the value of critical parameters induced a 
seemingly sharp transition between unlimited growth and 
extinction or vice-versa. In' some cases of unlimited growth, 
oscillatory behaviour was seen on the cathode ray 
oscilloscope, but this was uncommon and may be attributed to 
artefacts produced by the overloading of the electronic 
amplifiers of the analogue computer, as can occur when 
unlimited growth is being simulated?
Additionally, with a given set of parameters, small changes 
in the value of initial conditions induced ’flip-flop' 
between extinction and unstable growth# This behaviour is 
illustrated in figs. 8. ?,8.3 and. 8.4. Tb* parameter values 
were those of table 8.2 and the initial conditions those 
indicated in the figures.

1\D



Further study of this system revealed that the erratic 
behaviour of the model was a direct consequence of its 
composite nature and could not be attributed to any one of 
its constituent loops* This was demonstrated as follows :
(a ) The equation

> i S  _ $  +  04 OC (g u \
T  cLt - -xl -v es ‘ +(3[ g J;0' ]

was simulated and found to be stable for a wide range of 
initial conditions. Instabilities were generated only when 

was allowed to vary.
(b ) T he e quati on s ^^

cLCy r*\   0 ______^  '/i G - '-VV C ^  5* 'j^  ” ,+ f3CG-'l̂  1 + r  (Ga );y
- t  - X

-  *> 6>*>. _ Co G S  ( S • 6 )
^  1 -*v* (g 8 ")

were also simulated and also shown to be stable within all 
ranges of interest. Instabilities immediately resulted when 
v5 was allowed to vary.

This provides a concrete illustration of a. salient principle 
of cybernetics : the dependence of a particular feature 
(here instability or extinction) on the interaction of 
system components, being absent from the components taken in 
isolation.

0.1



Befcumulation of the Fodel.

Cnee the source of the instability had been recognized, 
modifications of the model, to ensure stable behaviour, 
could be envisaged. Of course, the solution of the problem, of 
restoration of stability need not be unique. In the present 
case, a particular modification, which seemed physiologically 
reasonable, was invoked, but the existence of alternative 
modifications is quite possible.
Since the difficulty results from the dynamic coupling 
between S on the one hand, and the pair on the
other, a reduction of the 1 draw1 on the stem cell pool due 
to granulocytic differentiation should reduce the likelihood 
of unstable behaviour being provoked.
This produced a difficulty : a stem cell population of

o
^  1.0 x 10 cells / kg is already large and a substantial 
increase in stem cell number seemed, unreasonable. An 
alternative is to suppose that additional mitoses occur 
between the stem cell and the granulocyte, giving increased 
amplification and reduced 'draw' on the stem cell population 
itself. In the present case this was done by rewriting 
equation (7.1) as

Ilodifying A and cl' over a suitable range, while ensuring ohe

v/here A and ol are each constants chosen

B  +  ,+ h e i g h

satisfaction of equation (8.8), it



c* ' =  O. 13
A  = o.ra

conferred stability on the model. Of course, to maintain 
G^° and G g h t  their previous values, it was necessary

Ithat the 1amplification factor1 e he increased. Keeping 
'E/ at 6 days as before, the proliferation constant k was 

increased from 0.59 to 0,95 7 to just baD.ance the reduced 
stem cell input. Tills corresponds to a mean cell cycle tine 
of 17 hours and a total 'amplification factor' of about 300.

This 'amplification factor' is considerably larger 
than that estimated by various authors for the granulocytic 
pathway of development.
It is tempting to speculate on the existence of a category
of dividing cells - 'committed stem cel.Is' ? - between the
true stem cells and myeloblastic cells, capable of making up 
the necessary amplification. In such a case, the model 
structure of figure 8.1 should properly be replaced by 
something like that of fig. 8.5. Although the ' secondary 
stem cells', , could be physically the target cells for a 
supposed 'granulopoietin', a total time constant 
for the system would ensue if there existed a feedback 
between and S, , as depicted.
The model here described could be considered a firsu
approximation to such a system, with all stem cells lumped 
together as S .

0.13



Simulation Studies of the Reformulated Uoflel.

With the equations now written as

S dl-t ..O. +  ©  S

<AG

I (3 ( G ita) 

(*' & iA> ) s &
C*"t » -t* ( G g ^

± - T.

ci G  s  _ _  /\ G    c a 3  G -  s
c L t  * ( G  £  ^ 7

the behaviour of the model was reconsidered. In this case 
stable behaviour was observed and is illustrated in fig. 6.6.

A point of interest was that, in this case, the 
model, appeared rather less sensitive to the value of 2C. than 
had been the prototype model of chapter 6.
Although quantitative comparisons were deemed inappropriate, 
the model now behaved stably in response to perturbations, 
and in something the seme way as the granulopoietic control
system in man and experimental animals (see for example Host

L C e. .1,2; also !to»ggs and co-workers 3).
Unfortunately the modified equations (8.9 - 8.11) cannot
really be considered a satisfactory mathematical model of the
granulopoietic control system. The arbitrary introduction of
the parameter A  , which proved necessary for the restoration
of system stability, is not consistent with the previously
assumed homogeneity of the stem cell pool. Similarly, the

k# Ziamplifi cation factor ^ of 300 is now around ten ti mes
that estimated experimentally,

e brinci-pa} result of the studies d ascribed in *

(2.1

( 2 .  I! )



chapter is to cast douht on the adequacy of a homogeneously 
- responsive stem cell population. Some kind, of 

heterogeneity would seem essentia,!, either of the population 
itself, as in the 'unipotential stem cell models', or in the 
responsiveness of a stem cell to an inductive signal, 
depending, perhaps on the phase of the cell cycle. 
Representation of such heterogeneities lies beyond the scope 
of the formulations considered, here. Tn conclusion, models 01 
the chapter 6 type appear reasonable for the control of 
granulopoiesis beyond the myeloblast stage; likewise, the 
chapter 7 model adequately represents control of 
pluripotential stem cell number. Between these, the exisi'ence 
is indicated of a further, regulated, cell population about 
which little is known.



TABLE 8, 1 : PARAMETERS INITIALLY CHOSEN FOR THREE LOOP MODEL

PARAMETER VALUE

1. 50

1. 00 x 10

1. 40

3, 00 x 10

1. 32

-121. 00 x 10

0. 59

10. 00

4. 00 x 10

1. 00

2. 43



/

TABLE 8. 2 STEADY-STATE VALUES FOR THREE-LOOP MODEL WITH 
i m i l A L  PAEAJiLETERS

QUANTITY VALUE

s (0) 81.00 x 10 cells/kg

G <0)m
95. 00 x 10 cells/kg

=B (0>
g

7. 00 x 10 cells/kg

a n



TABLE 8.3 : KINETIC PROPERTIES OF THREE-LOOP MODEL WITH
INITIAL PARAMETERS

QUANTITY j REPRESENTATION
\

VALUE
1

Minimum Stem 
Cell Cycle Time

r
in 2 (^) 0- 65 days

Steady-State 
Stem Cell 
Cycle Time

S I  + © s <0>
ln 4> + v|/S(0)

1. 22 days

Maximum Rate j k^ -.(O) 
r. _ , . . i e 1 a o of Granulopoiesis

9.4.4 x 10 cells/kg-

0 j i , _ , 1 e^  ̂1 a 2, 8 x 10^ cells/k Steady-State Rate 1 --------- -— ----  '
of Granulopoiesis 1 + 8 (G )Aj m

1 .......  !
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AUTOSTIMULATORY MECHANISMS IN ADAPTIVE REGULATION..



9 . AUTOSTIIUJT'ATOP.Y UEGUANISUS IN ADAPTIVE REGULATION..

Introduction.
In all preceding analysis, the existence of a control loop 
regulating 'de novo1 granulopoiesis at the stem cell level 
was assumed. Evidence for such a loop is discussed in 
chapter 2.
In this chapter, the physical nature of the presumed loop is 
considered, with particular reference to the nature of the 
cells involved in the production of stimulatory or inhibitory 
signals. At first sight, this problem may appear 
inappropriate for theoretical analysis and, indeed, theory 

alone cannot solve it.
Nevertheless, some progress is possible. In particular, 
cybernetic theory may be used to eliminate certain models 
which, on experimental grounds, appear reasonably plausible. 
More significantly perhaps, it may be possible to suggest the 
minimal changes necessary to render an eliminated model 
acceptable and to propose experiments discriminating between 
different types of possibility.



Evidonee on the Physical Nature of Control,

Two lines of evidence are especially relevant to the question 
of the physical basis of granulopoietic stimulation or 
inhibition. Eirstly, a very significant feature of the 
regulation of granulopoiesis (neglected so far) is the 
granulocytosis which normally results from infection with 
bacteria or bacterial endotoxin (3,2). Such an effect is 
more than a homeostatic recovery from a transient 
perturbation ; it is an adaptive response to changed 
conditions, like the erythropoietic response to lowered 
atmospheric pressure.
Secondly, mention has been made in chapter 2 of 'in vitro' 
studies on 'colony stimulating factor' ( C.S.E. ); a 
significant point in connection with 'in vitro' studies on 
human cells is the necessity of providing 'feeder layers' of 
other cells, in order to encourage granulocytic colony 
growth (3i4). These feeder layers, which evidently produce 
C.S.F. (5), are usually composed of mixtures of cells, whose 
nature may provide clues as to the source of C.S.E. under 
physiological conditions.
At the time of writing, experimental opinion is divided over 
this question, although the search, has evidently been 
narrowed down to three principal candidates : the blood 
monocyte (6), the tissue macrophage (7,8) and the 
granulocyte itself (8,9).
Despite the residual uncertainties, the present evidence is 
sufficient to raise the possibility that a seeming logical 
paradox is about to be encountered. The nature of this



apparent paradox may “be explained as follows,. Although 
attention has "been focussed in the preceding discussion on 
the granulopoietic properties of C.S.F., it was noted by 
early workers on the substance that not only granulocyte, but 
macrophage production, v/as promoted by this factor (5). 
Moreover, it now seems likely that the macrophage is 
actually derived from the granulocyte, with the blood 
monocyte a probable intermediate class of cell (5).
Hence, if C.S.F. production is a property of any one or 
combination of the monocyte, the macrophage or the 
granulocyte, an autostimulatory, positive feedback loop 
would appear to exist.
The stability of such a system, and its utility in bringing 
about a granulocytosis in response to infection, has 
recently been asserted by Robinson and Mangalik (9).
In fact, of course, a pure autostimulatory system, without 
any damping components whatsoever, is an untenable

.  Aproposition (10^11). lure positive feedback is the 'bete 
noir' of cybernetics.
However, the experimental evidence noted above is sufficient 
to generate interest in systems in which an
autostimulatory loop exists as one component. Of course, the 
present evidence is inconclusive ; either C.S.F. or its 
apparent target cell may jjrove heterogeneous. Nevertheless, 
proceeding from 'Occam's Razor' once more, it may be of 
interest to investigate the minimum additions necessary to a 
pure autostimulatory loop, in order to render the composite 
system stable. In addition, the possible implication of an 
autostimulatory mechanism in infection-induced granulocytosis 
seems worthy of serious consideration.

22.̂



Passive Stabilization of an Autostimulatorv System by
Cellular Death Rate.

An immediate possibility is the stabilization of an 
autostimulatory system by the damping effect of cellular 
death or loss. This corresponds to passive rather than 
active stabilization (e.g. by an inhibitory loop) since no 
information transfer is involved in the damning side of the 
process.
Consider a simple model of such a system. Let N(t) be the 
size of the mature cell population at time "fc . If the 
mature cells stimulate further cell productions cell death 
or loss from the system occurs randomly, and a maturation 
time-delay is implicated in production, a descriptive 
equation is

_  "> f n )* -  co m  c ̂
<At -fc -X

In this chapter - unlike those preceding - we are not 
interested in the presence or absence of oscillatory 
behaviour. Hence the effect of the time-delay is of lesser 
importance than previously, and we may gain insight into the 
mechanisms of primary interest by focussing attention on 
the simplified equation

c a. 2.
which is obtained by neglecting the time-delay in equation 
(9*1). This is an example of a Bernoulli equation with 
constant co-efficients. In appendix 9»Ij equation (9.2) is 
shown to possess the analytic solution



—  uo ( 1-x) t ( i ^ c )
(1.3)

where N(o)is the initial value of the cell population* The 
behaviour of such a system is critically dependent on the 
indicial parameter X  and, in certain circumstances, on the 
initial value N(o) . The following properties of the 
differential equation (9.2) and its solution (9.3) are 
established in appendix 9.1 :
(a) For o < -< < I , the system is stable and recovers from
perturbations of either sign. This property may be

\ *summarized by the limit condition N(.t) ( 13 ) 1 X as
^  \ — --> co . The steady-state value (~  j is

approached regardless of the initial value N(o) .
(b) For > I the system is inherently unstable. Granting' 
this, it is not difficult to predict from the differential 
equation (9.2) that the direction of the instability ( °<3

or O ) wi11 depend on the value of N ; for large
values of N(o) , since N(ol ** will be larger than N(o),

I ^ Q and the positive feedback will keep N  growing 
ctt I o

indefinitely. Conversely, for small N(o) , j £ Q and
G’

will remain so for subsequent *fc .
This argument is borne out, and may be quantitated by 
examination of the solution (9.3). In summary - for X > I 
we have :



I il* I
0 0  N(o) <  (5. ) * : N(t) -J. O  <*s t ->co

, ^ r- , * /  ?> \  I i ^ x  I d N  I n
( m )  _P (7T" N  (o) —  ( ca> j j cjĵ  I — • O  .

©
In view of (i) and (ii) however, this constitutes 'neutral 
stability', which remains vulnerable to the destabilizing 
effect of any perturbation at any time*
In illustration of this behaviour, solutions of equation
(9.2) were computed for X - 0.5* and X  — l» 5" (with )
for initial conditions both above and below the critical 

I -I- Ivalue (zL') which, granted stability, corresponds to
the steady-state value of N  . As fig.‘9.1 shows, the system 
conforms to theoretical expectation.



Qualitative Criteria for Stability in a Passively-Damped
Autostimulatory System.

Intuitively, it is reasonable to expect that cell death or 
loss can stabilize an autostimulatory system only if the 
cellular production rate initially rises faster with nature 
cell number than does the death rate, but this relationship 
reverses for sufficiently large values of cell number. In 
the present instance, the assumption of random cell death 
means that the production rate must initially rise faster 
than, but subsequently slower than, a linear dependence on 
cell number (fig. 9 •%.).
This criteria may assist in determining whether cell death 
is alone sufficient to stabilize an autostimulatory system 
or whether additional damping mechanisms (e.g. active, 
inhibitory, loops) are logically necessary. In the case of 
granulopoiesis and macrophage production, present techniques 
may not be too far from permitting an experimental approach 
to this question.
Of course, time-delays (neglected here) are likely to 
augment any tendency to instability which, in a non—delayed 
system, may be contained. The above conjecture therefore 
provides a criterion for rejecting a suggested mechanism, but 
satisfaction of the criterion does not guarantee that the 
mechanism will actually work.

3̂3



Capacity of a Passively-Damped Autostimulatory System for
Adaptive Regulation.

Robinson and Mangalik (9) bave recently proposed that a form 
of autostimulation of granulopoiesis could provide for 
granulocytosis in infection. Roughly speaking, it is 
suggested that C.S.F. is released on lysis of dying 
granulocytes, so that the increased death rate which occurs 
in in bacterial infection could, paradoxically, cause a 
granulocytosis rather than a granulocytopenia.
This means that the autostimulatory effect should be taken as 
a function of cell death rate uiN instead of cell number. 
Similar considerations apply if the macrophage or monocyte 
is the major source of C.S.F. since aut©stimulation still 
occurs•
These considerations suggest a modification of equation (9.2)- 
vi z.

( H. if)
Equation (9.4) is identical to equation (9.2) with ^

-V ^   ̂1replaced by A uj * The criterion for stability remains rt<i, 

but the steady-state value (granted stability), becomes

( *»■ S')

( * . 6 )

I - X
X — 1

I — Xa



X-lT—xFor X<\ (stability), 03 is a monotonic decreasing 
function of oo . Hence must decrease as CO increases —
increased cell death leads to reduced cell number. The 
converse is possible only if ** > I - which leads to an 
unstable system.
It follows that an autostimulatory system whose only damping 
component is passive and linear cannot both be stable and 
regulate in the required fashion. The suggestion of 
Robinson and Mangalik (9) must therefore be rejected. 
Autostimulation coupled with adaptive autoregulation 
evidently requires the existence of one or more non-passive 
damping loops.



Alternative Kechunisms for Stabilization of an
Autostimulatory Control System Regulating Cell Production.

Other than passive damping through cell loss or death, 
active control loops (involving information transfer) must he 
invoked to stabilize an autostimulatory system. It is 
simplest in the first instance to consider only one such 
damping loop and to assume that only one maturational series 
is involved in it.
The requirements of such a loop are basically that it 
prevent the action of the autostimulatory loop becoming 
excessively violent which requires that it be capable of 
inducing and suppressing production of the autostimulating 
cell series. If only the one maturational series is assumed 
to be involved in both loops, it is necessary to suppose 
that the autostimulating and the damping loop sense or act 
on cells at different stages of maturation in a given series*

This kind of mechanism - differential control 
action with maturity - is a natural supplement to mechanisms 
regulating very primitive populations (stem cell mitotic 
autoregulation), mature populations (marrow release of 
granulocytes) and those operating to connect the very 
primitive and the fully matured (control of granulocytic 
differentiation at the stem cell level).
Two simple types of mechanism which involve different points 
of control with different levels of maturity are d«.scrt(5^
b e 1 ow.



Hechanisns Involving Differential Signalling with, raturity.

One intuitively attractive scheme results from supposing that 
the cells of a given series can synthesize both stimulators 
and inhibitors of cell production, the ratio between the two 
being a function of cellular age or maturity.
Simple-mindedly, one may suppose that the inhibitor and the 
stimulator are capable of intracellular neutralization of 
each other so that a given cell has a net export of either 
inhibitor or stimulator.
On such a scheme, inhibitory cells could, be either more 
mature (fig. 9 . ) or less mature (fig. 9 . ) than the
inhibitory cells. Preliminary studies of models of the two 
possibilities (V/heldon, unpublished) indicate that the latter 
possibility seems the more likely, on stability grounds. 
However, at the time of writing, these studies are incomplete 
and further work is required,
Experimentally, an approach seems possible if the stimulator 
is identified with C.S.F.. and the inhibitor with a molecular

v

species capable of 'masking1 C.S.F. (See betcalf and Koore ), 
In a sudden leukapheresis, C.S.F. should promptly increase, 
while in an acut e radiati on experiment C.S.F.~mask sh ou1d 
increase, ^  the presently favoured model (fig. )• ^  •̂̂Le
alternative model (fig. 9 . ) is correct, exactly the
opposite would be expected.
Improving assays of C.S.F. may soon allow experimental 
discrimination between the two types of model.

W " 7



CONCLUSIONS•

po?itivp feedback control deserves more attention than it has 
received. In some cases, a given equation admits either a 
negative or a positive feedback interpretation, Riley, for 
example, has argued that the kinetics of the autostimulatory 
model presented in this chapter are consistent with negative 
rather than positive feedback (13). In appendix 9.II 
therefore, the way in which the model could exemplify purely 
positive feedback is made explicit.
In order that the trees do not conceal the wood, however, 
the argument that purely positive feedback systems may be 
stable is presented in appendix 9.Ill, in a way which is 
less dependent on particulars.
So far as the granulopoietic system is concerned, the issue 
remains unresolved. In attempting to resolve it, it is 
worth keeping in mind the fact that positive autostimulation 
is not logically eliminated by stability arguments, although 
other considerations do suggest the existence of inhibitory 
loops as well,



Appendix 9.1: Solution of Bernoulli’s Equation with Constant Coefficients

site

Equation (9*2) states

~  =  / V N X  -  ( 9 - A . 1 )dt

It may be linearized by the following device:
1__

Set N = Z (1-x)

®  = (J_) (j^)
Hence dt vl-x;Z dZ

dt

and equation (lO.A.l) becomes

~  + co(l-x)Z = ^  (l-x) (9-A.2)dt
This is a linear equation with constant coefficients. Multiply both 

sides by the integrating factor

jxj(l-x) dt w(l-x)t

p = e

to give

w(l"x)t Uj(l-x)t
It c  e • z _7 = e (l-x) (9-A.3)

UJ (l-x)t f 1 6j(l-x)t
e z(t) - z(0) = 7^ (l-x) J  e dt (9 .A.4 )

u»(l-x)t
e

co
z(t) - z(0) = £  /” 0€w(l X)-i-7 (9-A.5)

z(t) = z(0)e"“ (l"1C)+t J, (9.A.6)

Hence,
1_X - w(l-x)t _ CO(l-x) t v ^

N(t) = | N(0) e + -

(9-A.7)

*3<=l



( -V l-x \ - w(l-x)t ?
N t O  = + Z"N(0) - £ J  e \

1
1-X

(9-A.8)

The behaviour of this equation is rather complicated; it is critically 

dependent on the values of index parameter x and the starting 

condition N(o).

Case I : x 4 1

We here assume 0 <  x 1 (for x ^  0, feedback is negative).

Then, if x^l, the exponent -C<>(l-x)t is negative and the exponential 

dies away.
1

Hence N(t ) (IX“x with t - ^ o o  , which is independent of 

the initial value N(o) .

Case II : x > I

Unstable behaviour occurs in this case, but its direction does depend

on the initial value.
l-xCase Il(a) : N(0) ^  ^

When NfO)1-^ > £  r W n / " *  ̂  7 + w<*•' , ]_ N(0j - — J  ̂ 0, then, since x /l, N 4  0 as
1 1 i i_xl

t C«s> • Since l-x <^0, N(o) may be written in the form N(0)*' j
so that N(o)'*" 1 is a monotonic decreasing function of N(0). The

1 Xcondition N(o) *> may therefore be written in the alternative form
1

N (o)< (£>. 1— 1

Case lift) . N(O)1 X <. ̂
--------     l_x ^  -Ci(l-i)tO
In this case , ^”n(o)^ X - ̂  ~J <^0 hence j + /"~N(0) o>-7 e )

begins positive and gradually decreases towards zero. Since l-x <j0,
<  1_ -Cj(l-x)t> 1

This means that S ^  + A ( ° )  - £ J e  x- approaches +

as t increases.



^  + f m  X ~ - J7 e
0 0having passed through aw a*) to become negative is not of physical 

significance. As pointed out above, the condition N(0)^ rnay,

for l-x <  0 be alternatively written N(o) >  (^) 1l-x L 

Summary

For x <1, N(t)— > (£3)  ̂ X whatever N(o).

For x >  1, N(t) -» 0 for N(0) <  (g) t

N(t)-* + cp for N(0) >  (5 )? ^

a.'+l



Appendix 9*2.

It has been asserted that the equation

-f = W  - wlT , OCX < 1 (9-2.1)dt 1

is consistent with the existence of positive rather than negative 

feedback.

Let m represent the strength of a stimulatory signal and S the 

size of the (stem cell) population receptive to this signal.

If mature cells, N in number, produce this molecular signal at a 

uniform rate, then, approximately,

m zz aN (9.2.2)

Cellular production rate Jf (t) may be assumed to be given by

J  (t) = f(m,S) (9-2.3)

where f is a function in two variables.

A simple form for f is

| (t) = 3 m.S(t) (2.2.4)

In general, the stem cell population will be depleted by the 

recruitment of stem cells in receipt of the signal.

viz S(t) = F(m) (9 .2.5 )

where F(m) is a decreasing function of m, and, since

m ^  aN, (9.2.6)

F(m) S3 F](ir) (9-2.7)

where F"l(K) is a decreasing function of N.

a  I



Thus, if

we have

H  = J (t) - wW (9.2.8)

H  ^  (3m F1 (W) - wN (9.2.9)

(pa) 1TF1 (n ) - wN (9.2.10)

1Since F'(n ) is decreasing with N, in any approximation of the form

N F1 (n ) N*, (9.2.11)

it is evident that x <£ 1. ' (9.2.12)

Equation (9.2.1) is therefore consistent with the kinetics of an 

autostimulatory system in which the number of stem cells is finite and subject 

to depletion by the signal.



y > j

More General Statement Of The Conditions For 
Stability In Cell Population Kinetics

The equation

~  = *)\lf - wN (9-3.1)ut

admits of more than one kinetic interpretation ( 1 ?-« — * H- )

To avoid ambiguities, consider the autonomous regulation of a cell 

population. The kinetics of cell number depend on a simple balance of 

cellular production rate f-̂ (N) and loss rate f ^ ( i S T ) .

viz ~  = fx(N) - f2 (N) . (9.3.2)
+0While it is usual in models of mitotic homeostasis hhe postulate 

functions f-̂ and f^ such that

"b f-i ‘b-f'p_ .  < ° and _  > 0,

this is strictly unnecessary.

The minimum conditions for the existance of a non-zero steady-state 

for equation (9*3.2) are that

y  0 for small N but —  0 fordt dt
large N.

Considerable latitude exists in the choice of f^ and f^ consistant 

with steady-state kinetics. In particular, functions having the properties

1̂
p> 0 and )> 0 are perfectly consistent with stability, provided that(i U c -*-«

O.S hi C>0 , or\dL
fl \—  Kfwhere K >  0) as N •-$> 0. The quantity K need not be finite,
x2
but physical consxra,ints usually require that it is.



v x
A function fn such that — rr- > 0 i.e. cellular production1 a .N ' ---

increases with cell number is consistent with positive feedback 

(autostimulation), although it is equally consistent with other mechanisms. 

The essential point is that a system whose only feedback is autostimulatory 

is not necessarily unstable.
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Tnt rodî  oti on .

The studies described in previous chapters permit tentative 
conclusions regarding the organisation of granulopoi esis in 
normal subjects. It seems probable that the regulation of 
granulopoiesis involves the integrated action of a number of 
control loops» at least some of which are prone to 
oscillations and instability. The possibility therefore 
arises that some recognized pathologies of the control of 
granulopoiesis are best understood in terms of the altered 
operation of individual control loops, or the deranged 
integration of several.
Alternatively, primary pathological disturbances unrelated 
to the dynamic control of granulopoiesis may, as a secondary 
effect, so alter the operation or integration of control 
loops as to give rise to overt derangement of control. In 
either case, it is possible that simulation studies may 
illuminate some aspects of the pathology of granulopoiesis.

The studies previously described have left a number of 
problems unresolved. In particular, the studies described in 
chapters 8 and 9 provide indirect evidence for heterogeneity 
cf the stem cell population and for the need for inhibitory 
as well as stimulatory controls to enable granulopoiesis to 
be adaptively regelated with functional demand. Both the 
nature of presumed heterogeneity and the nature of presumed 
loops responsible for adaptive regulation remain uncertain.

Ir. cVia2 ter 6, however, prefersnce was established for 
a two-loop model which seems a not unreasonable ’first-order*



representation of the homeostatic control of granulocyte 
numbers. It may be appropriate therefore to consider the 
minimal changes to this model necessary for the 
representation of certain pathological modes of 
granulopoiesis, bearing in mind that the model can hardly 
fail to be a gross simplification of the rea.1 system.

Pathologies of the control of granulopoiesis can take 
many forms. In this chapter attention is focussed on 
disorders of granulopoiesis in which cyclical behaviour is 
apparent.
Cyclicity, whether spontaneous or induced experimentally is 
a phenomenon which may provide information pertinent to the 
temporal characteristics and mode of organization of the 
governing control system (1). In the case of granulopoiesis, 
cyclical neutropenia, and the cyclical form of chronic 
granulocytic leukaemia, are disorders which may be amenable 
to study from this point of view.

2£3



A Two-Loop kodel for the Control of Granulopoiesis,
IT

The model to he considered here is essentially that of 
chapter 6, This model incorporates two control loops (fig. 
10,3.) and is described by the delay-differential equations 

<*.&«   5 *__   ^  ____
5 T  ■' > a - p [ G w ] *  C G e  ] v

t-~c
   _  io G-s

cXt , + y* £ o  & "] Y

where G  ̂  , G g are the marrow find blood granulocyte 
populations respectively and , p , n ,y*- , ?< , ^ ,

j It a,re all parameters.
In chapter 6, interest was focussed on stability, with 
little interest in a model. once it was known to be unstable. 
In this chapter, it is necessary to consider particular 
modes of instability, so that unstable models are interesting 
as well as stable ones. This means that analogue simulation 
techniques are not suitable in the present case because, 
once instability occurs, ’analogue overload* is induced and 
the analogue representation of the form of the instability 
is likely to be distorted.
for present purposes, equations (10.1) and (10.2) were 
numerically integrated by digital means using a FORTRAN 
procedure adapted to solve time-delayed equations by hr. A. 
Griffiths of Y-Ard (Glasgow). A 0.1 day integration step was 
employed and the equations solved on the Y-ARD PDP-15 
d i gi t a 1 c cm pu t e r.
In initially choosing a set of parameters, it was possible

(|o-1) 

C 10- 2- )
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to draw on the experience gained from the analogue simulation 
studies. This offset one disadvantage of digital computation 
- the relative slowness of extensive parametric searching - 

by enabling the desired parametric changes to be specified 
inadvance (i.e. on-line parametric variation was necessary).

After a few preliminary computer runs, a set of 
parameters was chosen to represent normal granulopoiesis 
(table 10.1). for technical reasons connected with scaling 
of display facilities, it was found convenient to slightly 
alter the parameters from the values used in the studies 
described in chapter 6. The changes are much too small to be 
of physiological significance. Some derived quantities of 
physiological interest are given in table 10.2 and the 
response of the model to a mild perturbation is shown in 
fig. 10.2. V/ith the parameter values specified in table 
10.1, a 70 kg. man with blood volume of 5 litres and one 
half of all blood granulocytes marginated rather than 
circulating, a blood granulocyte concentration of 
7.7 x 10 cells / num. is the steady-state value. This is 
well within the norman physiological range, and quite close 
to the mean (2).



Depend once of System Behaviour on Value of nh me—Delay.

With all other parameters as in table 10.1, the obligatory 
maturation delay *£ was altered ans its effect on model 
response to a mild perturbation examined. The results of 
this study proved to be unambiguous : increasing 
increased the overshoot, reduced damping, increased the 
period of the oscillation and - v/ith sufficient increase - 
induced divergent oscillations and model instability. 
Reducing the time-delay did the opposite in all cases.

Tv,e results of j ncreasing the delay from 7 days, as 
in fig. 10.2, to 10 days, 14 days and 20 days are shown in 
figs. 10.3, 10.4 and 10,5 respectively, With increasing ^  , 
the oscillation period increases monotonically, but not 
necessarily uniformly, as the period also depends on marrow 
transit time which is different with different phases of the 
oscillation.
With an abnormally large value of X  (10 days) the 
qualitative effect on the oscillation of other parameters 
was examined over a range larger than had been convenient 
v/ith the analogue simulation. V/ith one exception,, all noted 
effects were exactly as given in chapter 6. The exception 
was the parameter ; increasing this parameter over a wide 
range produced improving stability (as expected), but 
decreasing it showed a qualitative reverse! of effect at a 
critical threshold.

10 9As oi was reduced from 1,0 x 10 to around 2.5 x 10" , the
stabilitv worsened, with increasing divergence of
oscillation - as indicated by table 6.11, Thereafter, the

1 S 6



effect reversed and stability improved with further decreases 
in ol # Although such behaviour was not observed with any 
other parameter (in the ranges examined) it emphasizes the 
danger of drawing far-reaching conclusions from a restricted 
number of computer runs in restricted parametric ranges«

The de-stabilizing effect of increasing and
stabilizing effect of reducing it, appeared however, to be 
consistent over a sufficiently wide range to include all 
physiologically important conditions.

SIS’?



Pe.thogcupsi s of ,-~)ye~i j cal Poytrorerl a .

Prom the studies described in chapter 6 and in the present 
chapter it is possible to identify several possible causes 
of oscillatory granulopoiesis.
Since the primary loop controlling stem cell differentiation 
is prone to oscillation and is stabilized by the action of 
the loop regulating marrow transit, increasing the gain of 
the primary loop (increasing ), dnveasing the gain of the 
secondary loop (i*t>reasing ^ ) or ‘decoupling* the one loop
from the other (decreasing m * ) can induce sustained 
oscillations, or even instability. Likewise, increasing the 
time-delay ru or reducing the intrinsic damping of the 
primary loop (reducing p ) will tend to induce oscillatory 
or unstable behaviour.
In assessing the probability of any one of the above factors 
being causally implicated in the pathogenesis of cyclical 
neutropenia, two features of this disorder seem particularly 
noteworthy :
(a) In cyclical neutropenia, neutropenia is particularly 
evident at the nadir of each cycle, but is usually low at the 
peak as well, giving a reduced mean level overall.
(b) The period of the cycle is usually normal.
These features suggest that granulopoiesis is reduced 
overall in cyclical neutropenia and that maturation is 
basically normal. Attention is therefore directed to reduced 
granulopoiesis, either through low production or high death.

Reduced production (reduced ) has already been 
mentioned above ; its effect seems to depend on the amount

ass



of reduction which occurs* However, with the parameters 
chosen to represent normal granulopoiesis on the present 
model, up tc a four-fold reduction in granulopoiesis 
( t.oxio << o*. •< 2. S ) consistently decreased

stability. Thereafter, oscillations tended to damp down, as 
the level of granulopoiesis fell still lower. This suggests 
that a mild neutropenia resulting from reduced production 
is likely to be oscillatory,, but a severe neutropenia is 
unlikely to be oscillatory.
Increasing cell death rate (increasing ) consistently 
reduced stability over the range considered. This is 
illustrated in figs. 10.6 and 10.7 which show the model 
behaviour with two-fold and (about) eight-fold increases in 
the cell death rate ( <̂> - 5.00 and co = 20.00 respectively), 
(it should be noted however that this model does not 
incorporate any of the adaptive mechanisms discussed in 
chapter 9) which might complicate this conclusion).

On the evidence of the present studies, cyclical 
neutropenia is likely to be a variant of any mild chronic 
neutropenia resulting from decreased production (shortage of 
stem cells, C.S.H., death in maturation?) or increased cell 
death (autoimmune neutropenia, production of defective 
cells?).
This conclusion is in broad agreement with that reached by 
King-Snith and Worley (3) in similar studies to those 
described here. While much remains uncertain, cyclical 
neutropenia need no longer be considered a mysterious 
syndrome but rather p. not unlikely accompaniment ofKJ —

neutropenias arising in a variety of ways*



Simulation of Ovcliosl G-ranuloroiesis in Mveloid Leukaemia,   . - —  -  --------- — .      —    , - ■■ - -■ .    ■ r     -

As described in chapter 5, cyclical granulopoiesis has been 
reported to occur in some cases of chronic granulocytic 
leukaemia, an observation which may bear on the temporal 
organization of granulopoiesis in this disease. 
Interpretation of such phenomena depends on the acceptance 
of a particular model, for example, a linear analysis leads 
to the suggestion that some biological equivalent of 
'negative friction* (i.e. a forcing term) should be sought 
(4). However, the almost certainly non-linear character of 
the granulopoietic control system, and the presence of the 
obligatory tine-delay, make linear analysis inappropriate 
for this problem (5).
Instead, the matter is best considered using computer 
simulation of a mathematical model.
The o°oi H at j on in chronic gra nu 1 o c vt i c leukaemia di.ffers 
from, that in normal granulopoiesis or cyclical neutropenia 
in two major respects :
(a) The period of the oscillation is considerably greater 
than 20 days in all known cases - 40-50 days being common.
(b) The mean level of the blood neutrophil count r:i ses with 
time unless therapy is instituted.
The first of these observations strongly suggests that the 
granulocytic maturation time, and hence the time-delay, is 
substantially increased in C.G-.I. (3>5). To investigate this 
possibility, all parameters of the present model were set to 
the values given in table 10.1 and the time-delay increased 
until instability occurred, at about a value of 17 days

9lGO



for .
With %  --- 20 days j overt instability is seen, and takes the 
form of a divergent oscillation v/ith a period of rather more 
than 40 days (fig. 10).
However, several other features of 0.0.1. are not accounted 
for "by delayed maturation alone,
(a) The divergent oscillation seen in cyclical C.G-.L.. has a 
distinct tendency to ’climb away’ from the x-axis, rather as 
though a divergent oscillation were superimposed on a rising 
base-line,
(b) The clonal domination of PkJ positive cells in C.G.L. is 
unexplained. This anomaly, which occurs in erythroid as well 
as granulocytic cells is usually considered evidence for the 
selective advantage of a leukaenic pluripotential stern cell.
(c) Increased stem cell mature cell amplification, due to 
belayed maturation, could account for the granulocytosis of 
C.G.L. Evidence suggests however that the amplification 
factor is decreased rather than increased (6).
The simplest explanation of each of these features is that the 
C.G.L. involves an overgrowth of a stem cell population.

To simulate this, %  was restored to its previous value 
(7 days) and the parameter was replaced by the quantity 
o*. ( t + k €.r>̂  ^ to represent exponential growth of the 

stem cell population. V/ith c* = 1.0, k = 0.1, and m =  0.03, 
the model behaves as shown in fig. 10, 2 ,
A mild oscillatory tendency is seen, but this is of normal 
period and not divergent.
Seemingly, both a growing stem cell population and a delayed 
maturation in the granulocytic pathway are indicated.

3-6/



V/itli = 20 days, ^ ( 1 + k e/" ), = 1.0, k = 0.1 and
m  = 0.03 as before, the model exhibits the rising divergentNcl'j
oscillation seen in fig. 10. S . At least qu.̂ nti- fa11.vn■ 1,y , 
this does now resemble the oscillation seen in the cyclical 

form of C.G.L.



Discussi on.

Cyclical C.G.L* is a recently discovered syndrome, and it 
is not yet possible to assess its frequency of occurrence 
amongst all cases of C.G.L. Even if rare, however, a 
syndrome which may illuminate the pathogenesis of any form 
of leukaemia deserves consideration.
On the basis of the simulations described above, two separate 
changes appear necessary to the model for normal 
granulopoiesis in order that the cyclical form: of C.G.L., be 
represented. Apparently, continuous growth of the stem cell 
population, and delayed maturation of leukaemic granulocytes, 
must be introduced. If this conclusion is accepted, it seems 
natural to enquire whether the association of stem cell 
overgrowth with delayed maturation of granulocytes is causal 
or fortuitous.
If the extended period of cyclical C.G.L. is an incidental 
rather than essential accompaniment of leukaemogenesis, at 
least some cases of cyclical C.G.L. should exhibit normal 
periodicity. Conversely, some cases of cyclical neutropenia 
should result from an extended time-delay and exhibit an 
extended period. Neither of these possibilities has been 
reported to occur.
A non-fortuitous association might therefore be expected, and 
could arise in a variety of ways, not necessarily causal.
For example, the Ph,1 deletion presumably involves a number 
of different genes. Association of functionally independent 
events could result from the spatial proximity on a 
chromosome of deleted genes. Such a mechanism, shifts



attention to the regulation of chromosome conservation and 
chap3 ication.
An alternative mechanism, directly arising from the preceding 
considerations on C.G.X., leads to a theory of the 
pathogenesis of C.G.L. which may (in principle) he 
applicable to other varieties of neoplasia. Although 
speculative, this theory does not appear to have been 
proposed previously and it is suggested that it deserves 
consideration *
The basj c hypothesis is that the initial stages of cellular 
maturation following induction of differentiation are 
comparatively labile, stability being acquired during 
maturation. This permits the reversion of early cells to the 
stem cell poo], and can provide a two-way link between 
defects affecting a given channel of development and the 
pluripotential pool.



Stability of Differentiation in Develonin/r Cells.

As reviewed in chapter 2, there exists a body of evidence 
that pluripotential ste^ cells differentiate in a particular 
developmental pathway vis. an intermediate nnipotential or 
•committed1 stem cell, Stem cell differentiation appears to 
be akin to embryonic induction and it is appropriate to take
account of evidence in this field.
From a review of embryonic induction in amphibia Jacobson (7) 
concluded that "Any group of cells may respond simultaneously
to several specific inductors,, the organ that emerges
depending on which sort of inductor first has sufficient
cumirulative effects ....Late in the sequence, the
responding cells become more firmly committed to a 
particular course of differentiation". In some cases, it is 
possible to demonstrate experimentally that progress toward, 
formation of one organ need not interfere with progress 
toward formation of another organ from the same cells, until 
a critical stage is reached (Tr°i) •
This evidence, together with that previously quoted, gives 
rise to the possibility that stem cell commitment is preceded 
by a phase of potentially reversible maturation during which 
reversion to the original (pluripotential) condition may 
still occur.
This possibility is consistent with recent 'multi-hit' 
models of the induction of cytodifferentiation. In 
particular, Okunewick's model (ID) of erythroid development 
postulates two separate inductive events, each mediated by 
erythropoietin. The possibility of reversion to the



plii.ripotential pool if the second inductive event does not 
follow sufficiently rapidly on the first is a feature of the 
model which can explain the ability of 'pure' erythroid 
nodules to generate granulocytic progeny and vice-versa.

A multi-hit model is also favoured by theoretical 
considerations of the advantage of having a single molecular 
species activating or repressing separate genes or groups of 
genes ®). Reversion of cells which have received inadequate 
induction for commitment again arises as a possibility* 

Finally? recent radiobiological evidence suggests 
that the transformation of a pluripotential to a committed 
stem cell is a temporally protracted process which involves 
maturation and cell division (IX). Taken in total, the cited 
evidence is consistent with the conceptual model of 
induction of granulocyte development shown in fig* 10.40.



Kinotion of Stem Cell Induction and Reversion,

Assuming the stem cell induction of fig* 10./0 , the 
mathematical formulation depends on explicit assumptions 
regarding the mechanism of reversion of maturing stem cells.
We now consider two simple models of this mechanism.
(a ) Ran d on F e c hani sm .
Suppose that maturing stem cells have constant probability 
of reversion per unit time until a critical point in their 
maturation (commitment) beyond which this probabi1ity is 
zero e
Let Stt'i be the instantaneous induction rate of stem cells to 
differentiate in some given pathway, Nit) the number of 
maturing stem cells in the reversible phase of maturation, 
r'C the transit time of the reversible phase, the 
proliferation rate and the reversion rate, with oc and 
positive c on s touts *

Then> CaC-fUt
=. fltW 00.3at

or fv

Nttl =  I I * <,at*
o

If R It"! is the instantaneous reversion rate and if a random 
reversion mechanism is postulated,

p  O . r
o

for ca constant induction rate § we have the steady-stateo
solutions i
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( oc - j3 J C ( 10. )
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For each stern cell induction therefore,

No, of committed cells

No. of reverted cells =

e

oi
JL. [_3 L

(10. S)

(io. <1 )

(b) Non- Re n. d om TlT o d e 1,
An alternative model results from supposing that maturing 
stem cells all complete the earliest phase of maturation 
until a critical commitment step is scheduled, which only a 
fraction -f of the cells take successfiilly.
The number of maturing stem cells preceding the critical 
step is therefore unaltered by the existence of reversion.
T hu s ,

N t O
( t o . io)

while
( i - -f 7 e (t - *t) ( io- ii )

Then, for each stem cell induction,

No of committed cells ■f
a U

e

Nc. of reverted cells —
ciTv

( io. iz ) 

(10.13)
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A Theory of the Pathogenesis of Tdyeloi d Leukaemia.

A theory of the pathogenesis (at least the cyclic form of)

defect of a leukaemic cell is a quantitative reduction in 
its rate of maturation between the pluripotential and 
granulocytic unipotential stem cell stages of development. 
Hence the maturation time is increased, with extended 
period of any observed granulopoietic cycling* However, the 
reversion rate and number of reverted cells per induced 
cells also depend positively 6n % .
Let us consider how increased 71 could result in the number 
of reverted cells per unit cell exceeding unity.
On the random model, equation (10.9) gives the necessary 
condition to be

of C.G-.L. may now stated. Suppose that the single intrinsic

>  i ( \o. |Cf )

or

while, on the non-random model, the condition is given by
( to. IC

The relationships (10.15) and (10.17) show that v/ith both 
models, a critical value of 7S exists beyond which induction 
Q-e di^fer^nti ation constitutes a source of gain rather than
cf loss of nlurirotential stem, cells



cell homeostasis which was developed, in chapter 7? it is not 
difficult to see that increasing 71 could have the effect of 
de-stabilizing the stem cell population control. Of course, 
total de—stabilization would he a relatively late 
development. Initially, the clone arising from the original 
deviant would gradually accumulate over normal clones, due 
to the increased reversion from induction. Eventually, 
however, continuous stem cell growth, of a pluripotential 
population consisting mainly of daughters of the primary 
deviant, might come about.
V/ith such a theory, a causal association between a protracted 
duration of maturation and the accumulation and steady 
growth of deviant stem cells, becomes comprehensible. 
Noreover, since responsiveness of the deviant cells to 
mitotic homeostatic control is presumed normal, the 
1 cybernetic* responsiveness of leukaemic cells to population 
depletion is explicable (see chapter 3, refs. 18-22).

huch of the aibove rests on the proposition that the 
cycle length seen in cyclic C.G.L. reflects a delayed 
maturation of leukaemic granulocytes. This is by no means 
the only possible explanation, ?or example, in linear 
oscillation theory, two superimposed oscillations can 
generate a ‘beat* oscillation whose frequency is that of the 
difference between the primary oscillations. Non-linear 
oscillations are more complex, but similar phenomena occur.

If oscillatory processes occur in adjacent channels 
( e granulopoiesis and erythropoiesis) which share a 
p 1 uripotentia 1 stem cell pool, a small difference between the

7.10



periods of the two processes could be manifested as a 'beat* 
oscillation of large period. Assessment of such a possibility 
would require a complex model representing several channels 
of cell production and their mutual coupling.

At present, the interpretations presented above seem
j

to provide the simplest and most direct explanations of a 
class of kinetic phenomena in myeloid leukaemia for which 
no explanations at all have previously been available.
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CONCLUSIONS.

The studies described constitute a preliminary attempt 
towards the conceptual unification of the major known facets 
of granulocyte production. This unification remains to be 
accomplished.
Nonetheless, recognition of small 'islands' of unification 
may precede the emergence of a coherent picture of the 
whole. The attempt to discern some such 'islands' has proved 
informative.
Granulopoiesis appears to be regulated.by mechanisms 
belonging to a class of systems which are potentially 
unstable. The main source of instability is the time-delay 
representing obligatory maturation of granulocytic 
precursors. Relatively low gains for the main feedback ?_oops 
therefore seem to be indicated (chapter 6),
There seems little doubt that at least one class of bone 
marrow stem cells display*mitotic homeostasis. Consideration 
of this form of control cannot in general be divorced from 
consideration of pattern formation and organ topology. In 
the particular case of stem cells, where a partial 
separation of these concepts may be possible, a simple 
theory of mitotic homeostasis leads to consideration of a 
further class of instabilities which may appniy to mitotic 
control systems of more general kinds (chapter 7).

In reality, mechanisms regulating granulocyte 
production must co-exist harmoniously with those responsible 
for mitotic homeostasis of bone marrow stem cells. The model 
studies, on the other hand, suggest the existence of



incongruity between these two classes of mechanism.
Resolution of this (apparent) paradox probably depends on a 
clearer understanding of stem cell heterogeneity, or 
possibly on a cell—cycle dependence of responsiveness to 
signals for differentiation (chapter 8).
A striking feature of granulopoiesis is its adaptive response 
to infections and endotoxins. A previously suggested 
explanation (Robinson-Tiangalik) invoked the concept of 
positive-feedback (autostimulatory) regulation. Somewhat 
surprisingly, pure positive feedback systems are not 
necessarily unstable. The conditions for stability, however, 
appear to be such as to eliminate adaptive regulation v/hen 
stability is present, and vice-versa. A more complicated 
system seems to be indicated (chapter 9)*
Neutropenia and leukaemia represent the two sides of 
deranged control of granulopoiesis. Phenomenological 
theories of the nature of these conditions can be proposed, 
using the model studies to provide conceptual guidance. It 
seems unlikely that these theories (whether true or false) 
would have been conceived without the use of models of the 
control of granulopoiesis (chapter 10),
The inadequacies of the work presented fall into two main 
groups,
In the first place, the models considered are conceptually 
simple - perhaps naive, contain numerous parameters of 
uncertain value and cannot yet provide a comprehensive 
representation of all known features of granulocyte 
production.
I ore seriously, however, it is illusory to suppose that any



form of controlled cellular production will prove amenable 
to understanding at the supracellular level*
The gravity of this asymmetry may he appreciated when it is 
considered that in the several discussions of neoplasia and 
leukaemia, no explanation was advanced for the occurrence of 
tumour progression* It seems unlikely that this enigmatic 
phenomenon will prove comprehensible at any level which 
takes cells or their multiples as its units.
Equally, however, the step from the knowledge of ceJi "fo i l  s

behaviour as a unit of a tissue is not a small one. A number 
of difficulties arise, some of them mathematical rather than 
chemical or anatomical. Studies of the behaviour of 
interacting feedback loops using mathematical models may 
assist in the resolution of these difficulties.
Finally, the ‘spin-off’ from an investigation may sometimes 
turn out to be its principal justification. In the present 
instance, it may be hoped that the methods of calculation 
developed in chapter 4 will permit analysis of cellular 
development in a wider class of situations than hitherto 
considered possible.
One important application might be the analysis of patterns 
of maturation of human granulocytes growing in culture. The 
experimental techniques have been available since 1970; the 
mathematical techniques are presented here.

comparing the development in culture of normal and 
leukaemic cells, it should be possible to determine

^ n o r v n a l i c .  S’
whether leukaemic development exhibits any of the ti^g
suggested in chapter 10. If so, the other questions raised 
will deserve consideration. If not, new information v/ill have 
been obtained, on which to base new theories.
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GLOSSARY.

The definitions given below are not comprehensive. They are 
intended only to explain the meaning of a term as it is 
specifically used in the foregoing dissertation, 
adaptive :• teleologically responsive to changed conditions, 
analytic :• expressible in terms of known mathematical 
cybernetics : study of control processes involving 

information transfer, 
deterministic r obeying strictly causal laws, 
differentiation : conversion of cells from (relatively)

unspecialized to specialized, 
erythrocyte : red blood cell; involved in gas transfer, 
erythropoiesis : erythrocyte production.
eukaryocyte : having a nuclear membrane (i.e. a higher cell), 
genotype : genetic complement of a cell, 
granulocyte : a white blood cell; involved in defence 

against infection, 
granulopoiesis : granulocyte production, 
haemopoiesis : (generic term for) blood cell production, 
homeostatic : tending to preserve equilibrium against 

disturbances. 
induction : commencement of differentiation.
'in vivo' : outside the living system (e.g. tissue culture), 
'in vitro' : inside the living system (e.g. animal 

experiments).
limit cycle : 'steady—state' oscillation of fixed period.
maororhame : scavenger cell found in tissues.



maturation : cellular development between induction and 
completion of differentiation, 

mitosis : cell division (in eukaryotic cells), 
monocyte : blood cell, possibly macrophage precursor, 
myeloid : (strictly) of marrow origin; (commonly) 

granulocytic„
neoplastic : 'new tissue'; used in reference to malignant

tumours.
phenotype : cellular characteristics other than the genetic 

complement,
platelet : blood cell; involved in coagulation processes, 
pluripotential : able to generate diverse progeny, 
prokaryotic : lacking a nuclear membrane (i.e. bacterial 

cell).
stable : having a finite, non-zero, well-defined equilibrium.
stochastic : obejoLng probabilistic laws.
teleologica,l : goal-directed.
thrombopoiesis : platelet production.
transcription : synthesis of BNA from'a NNA template.
translation : synthesis of protein from an BNA template.


