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Reverse transcription
Reverse transcription PCR
sense
sodium dodecyl sulphate 
SDS-polyacrylamide gel electrophoresis



SGB Stacking gel buffer
SPP signal peptic peptidase
ss single stranded DNA
SSCP single stranded conformation polymorphism
SL stem loop
SV40 simian 40 virus
TAH transfusion associated hepatitis
TBE Tris-boric acid-EDTA buffer
TEMED N,N,NTSl-tetramethylethylenediamine
T thymidine
TMB Tetramethyl benzidine
TMD transmembrane domain
TNF-R1 tumour necrosis factor-receptor 1
TP broth Tryptose phosphate broth
tRNA transfer RNA
(d)TTP (2'-deoxy)thymidine 5-triphosphate
U unit
UTR untranslated region
UV ultra violet
u uracil
V volts
VLP virus like particle
v/v volume per volume
WHO World Health Organisation
w/v weight per volume



Reference HCV isolates:

Genotype la H77 Accession no: AF011751

Genotype 3a NZL1 Accession no: D 17763

All patients studied in this thesis were infected with either genotype la  or 3a but for 
simplicity are usually referred to as genotype 1 or 3 (GT1 or GT3).

One and three letter abbreviations for amino acids

Amino acid Three letter code One letter
Alanine Ala A
Arginine Arg R
Asparagine Asn N
Aspartic acid Asp D
Cysteine Cys C
Glutamic acid Glu E
Glutamine Gin Q
Glycine Gly G
Histidine His H
Isoleucine lie I
Leucine Leu L
Lysine Lys K
Methionine Met M
Phenylalanine Phe F
Proline Pro P
Serine Ser S



Summary

Hepatitis C virus (HCV) infects over 170 million people worldwide. Chronic infection 

occurs in 50-80% of cases and eventually leads to cirrhosis and hepatocellular 

carcinoma. HCV can be classified into six genotypes. Genotypes 1, 2 and 3 have a 

world-wide distribution but their prevalence differs from one geographical area to 

another. In Scotland there is an approximate 50/50 split between patients infected with 

HCV genotype 1 and genotype 3. One difference which has been consistently 

demonstrated is the better response o f patients infected with genotypes 2 and 3 to 

interferon treatment than those infected with genotype 1.

The HCV lifecycle is only partly understood owing to the lack of a productive cell 

culture system. There is no vaccine to prevent infection by HCV. Given the predicted 

future impact of the disease, there is a great need to understand the molecular basis of 

the HCV life cycle. Protein translation is one of the important processes in HCV 

replication. It involves an internal ribosome entry site (IRES) in the 5’untranslated 

region (5’UTR). Comparison of the sequence and function o f the 5’UTR from different 

genotypes might differentiate features essential to the virus life cycle in all genotypes 

from those relevant only to individual genotypes. In this study, the 5’UTR region of 

genotype 3 was compared with that o f genotype 1 with respect to translation initiation 

and quasispecies composition. The association between translation efficiencies, serum 

viral loads and the histology of the liver was also investigated.

The work presented in chapters 3 and 4 was undertaken to compare the translation 

efficiencies o f genotypes 1 and 3 IRESs obtained from a number of infected patients. 

There are conflicting reports with respect to the translation efficiency of the 5’UTR in 

genotypes 1 and 3 (Buratti et al., 1997; Collier et al., 1998). These studies used only a 

single sequence as representative o f its genotype. In this study, the system developed 

by Collier et al. (1998) in this Institute was used to measure the translation efficiency 

of a number o f 5’UTR sequences matched with the relevant majority sequence from



genotype land 3 infected patients. In this system, the upstream reporter (renilla 

luciferase) is driven by the T7 promoter sequence and the IRES sequences are inserted 

before the downstream firefly luciferase reporter gene. Sixteen constructs (8 genotype 

1 and 8 genotype 3) containing different 5'UTR sequences from our patient cohort 

were constructed and their activities were measured in two different cell lines, 

BHKsinT7 and HuH7. Differences in the 5'UTR nucleotide sequence resulted in 

variations in IRES activity. Translation efficiencies differed in the two cell lines 

tested. Mean translational activities of genotype 1 isolates were statistically 

significantly higher than genotype 3 in BHKsinT7 cells in 3 out o f 5 experiments but 

further consideration o f the variation in the raw data led us to the conclusion that the 

differences may not be biologically relevant. We proceeded to repeat the experiments 

in HuH7 cells in which the differences in mean translational levels between genotypes 

were shown not to be significant.

To compare the translation efficiencies o f the 5’UTR combined with the putative core 

encoding region between genotype 1 and 3 patients, an attempt was made to construct 

clones matched with the majority sequence obtained from patients. Most previous 

reports suggested that the presence of core resulted in downregulation of HCV IRES 

activity. Unfortunately, no completely matched clone was identified. Therefore, the 

translation efficiency o f three random clones from each of 6 patients was measured. 

The results suggested that the presence of core region did not downregulate the 

translation efficiency o f 5’UTR as suggested previously. It was also shown that IRES 

activities of genotypes 1 and 3 constructs did not differ significantly.

The work described in chapter 5 was carried out to investigate the association between 

IRES activity, serum viral load and the histopathological appearance of liver biopsies 

from the patients. Serum viral loads were measured using real-time PCR (Taqman) and 

relevant liver biopsies scored using the Ishak scoring system. The viral loads ranged 

from 104 to 107IU/ml. Statistical analyses o f these data found no association between 

translation efficiency, viral load and liver histology. However, a strong correlation was 

observed between the presence of steatosis in liver biopsies taken from genotype 3 

infected patients compared to genotype 1.



The work presented in chapters 6 and 7 was undertaken in order to determine the 

quasispecies composition of 5'UTR sequences in serum and matched liver samples 

from 6 HCV infected patients using 2 different methods including cloning and single 

stranded conformation polymorphism (SSCP). Previous work carried out by 

P. Preikschat in our laboratory showed the presence of an identical majority sequence 

in paired serum and liver samples from 26 patients (11 genotype 1 and 15 genotype 3). 

It was hypothesized that a minor population of virus with low translational activity 

could replicate in liver cells in order to escape from immune surveillance and result in 

virus persistence. The majority sequence data did not either support or refute this 

hypothesis. Therefore, amplified 5'UTR products from matched serum and liver 

samples were cloned and sequenced in both directions (chapter 6). It was shown that 

the majority o f clones in serum and liver were identical to the majority sequence 

obtained from each patient. In addition, single, distinct variants were observed 

suggesting the presence of a quasispecies in 5'UTR. However, there is a limit to the 

number of clones which can be sequenced and nucleotide misincorporation due to Taq 

polymerase and reverse transcription errors will occur. In order to address whether any 

of the clones detected by the above method were present as more than 2.5% of the 

quasispecies, SSCP analysis was performed (chapter 7). An identical SSCP profile 

was observed in serum and liver samples from each patient. Taken together, the results 

obtained from cloning and SSCP analysis o f 5’UTR region from matched serum and 

liver samples did not support the hypothesis that a minor subpopulation of virus in 

liver cells exists which translates the polyprotein with a lower efficiency.
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Chapter 1 

Introduction

1.1. Historical background

1.1.1. Non-A, non-B hepatitis

The discovery of the hepatitis B surface antigen (HBsAg) in the mid 1960’s led to the 

introduction of serological tests to screen blood donors for hepatitis B infection. Hepatitis 

B virus (HBV) was the major cause of post-transfusion hepatitis prior to introduction of 

screening for HBsAg. The introduction of screening tests for HBV in 1970 reduced 

transfusion associated hepatitis (TAH) by approximately 80%. Despite the removal of all 

HBsAg-positive blood donations from the supply, transfusion associated hepatitis 

persisted. Later, Feinstone et a l (1975) discovered the hepatitis A virus (HAV) using 

immunoelectron microscopy on faecal samples from volunteers infected with this virus. 

Tests to detect IgM and IgG antibodies were then introduced and it became possible to 

screen non-HBV cases for HAV. It became apparent that another blood-borne agent was 

responsible and these cases were defined as having non-A, non-B hepatitis 

(NANBH)(Alter et al., 1975).

In 1978, two studies by Alter et a l (1978) and Tabor et a l (1978) reported the 

transmission of the NANBH agent to chimpanzees. Alter et a l administered plasma 

obtained from patients with NANBH to chimpanzees intravenously. The chimpanzees
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developed hepatitis but importantly, were negative for HAV, HBV or other hepatotropic 

viruses such as cytomegalovirus (CMV) and Epstein Barr virus (EBV). Ultrastructural 

changes, not reported in humans, were observed in the hepatocytes of the infected 

chimpanzees. The appearance of either cytoplasmic membranous tubules or intracellular 

particles of 20-27 nm or both were reported. Feinstone et al. (1983) extracted samples of 

human plasma which contained infectious doses of NANBH virus with chloroform which 

is a potent lipid solvent, and showed that the extract was non-infectious when tested in 

chimpanzees. This suggested that the agent might be a virus with a lipid envelope.

Subsequently, He et a l  (1987) determined the approximate size of one strain (H) of the 

NANBH viral agent by filtering it through polycarbonate membranes. The study indicated 

that strain H was 30 to 60 nm in diameter.

1.1.2. Cloning of the NANB hepatitis infectious agent

After more than a decade, attempts at identifying the NANBH agent by conventional 

immunological methods failed, possibly because of insufficient concentrations of viral 

antigen. Houghton et al. using their previous experience in cloning of the genome of 

hepatitis D virus, used molecular biological approaches to clone and express the genome 

(Choo et al., 1989) and then to develop immunoassays to detect antibody to the protein 

products of these clones (Kuo et al., 1989). In order to obtain infectious material with a 

high concentration of agent, they pooled large volumes of plasmapheresis samples from a 

chronically infected chimpanzee which had been shown to have an unusually high titre of 

the presumed virus. The plasma was centrifuged until a pellet was obtained. Because it 

was not known whether the virus had a DNA or a RNA genome, random primers were 

used to synthesise cDNA, which was cloned into the cloning vector A.gtl 1 and expressed 

in Escherichia coli (E.coli). This allowed the amplification of the cDNA and the proteins 

to be expressed. After the lysis of the bacteria, expressed proteins were screened with 

serum from a patient who had NANBH as a presumed source of antibodies and then with 

radiolabeled antiglobulin. After screening approximately 106 recombinants, a single 

positive clone, 5-1-1, was identified. To investigate the origin of clone 5-1-1, a larger
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clone, clone 81, was isolated from the same cDNA library using clone 5-1-1 as a 

hybridisation probe. Clone 81 did not hybridise to control human DNA or RNA derived 

from non-NANBH infected chimpanzees, however it did hybridise to RNA extracted from 

the liver tissue of an NANBH infected chimpanzee. This activity was abolished after 

treatment with ribonuclease but not deoxyribonuclease. The investigators concluded that 

the clones 5-1-1 and 81 were derived from an exogenous RNA molecule associated with 

NANB hepatitis infection. Further analysis showed that this was a positive sense single

stranded RNA molecule, approximately 10 kb in length containing one continuous 

translational open reading frame (ORF) presumed to be the genome of the virus. The 

virus responsible for NANB agent was renamed hepatitis C virus (HCV). The cloning of 

the HCV led to the development of immunoassays for detection of HCV antibodies (Kuo 

et al., 1989). Using the original clone 5-1-1 as a probe, three overlapping clones were 

isolated and ligated together to build clone cl 00 consisting of part of NS4 region of the 

HCV genome. This clone was expressed in yeast and the resultant polypeptide was used to 

capture HCV antibodies from serum samples.

1.1.3. Virus morphology

Before the identification of HCV in 1989, Feinstone et a l (1983) reported inactivation of 

the non-A, non-B hepatitis agent when infectious material was treated with chloroform 

suggesting that the particles were surrounded by a lipid envelope. Microfiltration 

experiments demonstrated that this agent had a diameter of less than 80 nm (Bradley et al., 

1990). Further filtration experiments by He et a l (1987) suggested a diameter of 30-60 

nm. After identification of HCV, immunogold electron microscopy studies have shown 

that HCV is a spherical particle with a lipid membrane envelope containing projections of 

6 nm. These particles were found in 1.14 to 1.16 g/ml fractions after sucrose density 

gradient centrifugation (Kaito et al., 1994). Similarly, Shimizu et a l (1996) detected virus

like particles with a diameter of approximately 50 nm in the liver of an infected 

chimpanzee. The buoyant density of HCV virions is heterogeneous, possibly due to 

association with immunoglobulins or low-density lipoproteins. In highly infectious sera, 

HCV was detected in fractions of low buoyant density (<1.06 g/ml), equivalent to that of
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low density lipoproteins (LDL) (Hijikata et al., 1993c). The higher-density fractions 

(~1.1 g/ml) possibly represent free virus or particles complexed with immunoglobulin 

(Choo et al., 1995) and correlated with lower infectivity.

1.1.4. Classification of HCV

The HCV belongs to the Flaviviridae family, and is a member of the genus hepaciviruses 

(Robertson et al., 1998). The other genera in the family are the pestiviruses and the 

flaviviruses. All viruses in the Flaviviridea family have enveloped virions with a positive 

sense RNA genome which is translated into a single long polyprotein with genes encoding 

structural protein at the N-terminal and those encoding non-structural proteins at the C- 

terminal ends of the genome. Individual proteins are produced by cleavage of the 

polyprotein by host and viral proteases. Comparative sequence analysis of the HCV 

genome revealed that HCV has a genetic organisation and polyprotein structure similar to 

the pestiviruses and, to a lesser extent, to the flaviviruses (Choo et al., 1991). There is 

limited amino acid similarity among these viruses including serine protease, and 

nucleotide triphosphatase (NTPase) domains of NS3 and the NS5B (Miller and Purcell,

1990). However, despite these similarities, pestiviruses and HCV differ significantly in 

amino acid sequence. Therefore, a third genus of the Flaviviridae family, the 

hepaciviruses, was proposed for classification of HCV (Robertson et al., 1998).

1.2. The HCV genome and its gene products

1.2.1. Processing of the HCV polyprotein

The HCV genome encodes a polyprotein that must be proteolytically cleaved to produce 

the 10 viral proteins (Figure 1.1). The structural proteins (core, El, E2 and p7) are in the 

N-terminal region of the polyprotein. Processing of the structural proteins has been 

shown to be catalysed by host signal peptidases in the endoplasmic reticulum (ER) lumen, 

as cleavage in a cell-free assay is dependent on the addition of microsomal membranes
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(Hijikata et al., 1991). The cleavage of core and El from the polyprotein probably occurs 

cotranslationally, however, E2 is generated from an E2-p7-NS2 precursor. This is 

subsequently cleaved into NS2 and E2-p7. Final processing of E2 is inefficient and two 

stable proteins are produced, E2 and E2-p7 (Lin et al., 1994). Cleavage in the non- 

structural protein region is mediated by two viral protease activities located in the NS2- 

NS3 region. The NS2/NS3 junction is cleaved in cis by a zinc-dependent metalloprotease 

that encompasses NS2 and the N-terminal portion of NS3 (Hijikata et al., 1993b). The 

remaining non-structural proteins are cleaved by the action of the serine protease domain 

of the NS3 protein.

1.2.2. Core

Core is the first protein encoded by the HCV open reading frame. Three species of core 

have been identified. p23 is a 191 amino acid product which contains the signal sequence 

which directs El to the endoplasmic reticulum (ER). Cleavage of the polyprotein occurs 

between residues 191 and 192 to generate the N-terminal end of El (Hijikata et al., 1991). 

The presumed mature form of core is produced by an additional cleavage between 

residues 174 and 191 to give a 21 kDa species (p21) (Hussy et al., 1996). Following 

expression in mammalian cells, p21 is the major form of core detected (Moradpour et al., 

1996). A third core-related species, termed p i6, has also been detected in studies using 

HCV-1, the prototype strain of the virus (Lo et al., 1994). Production of this species by in 

vitro translation does not require the presence of membranes and the protein has the same 

V-terminus as full-length core polypeptide. In the absence of El coding sequences, pi 6 is 

the predominant form of core produced in vitro and in transfected cells (Lo et al., 1994). 

Core is highly conserved between the 6 genotypes and the hydrophobicity profile of core 

identifies 3 domains within the protein (Hope and McLauchlan, 2000). Domain 1 (aa 1- 

122) contains clusters of lysine and arginine residues and has two hydrophobic regions. 

Domain 2 (aa 123-174) is more hydrophobic than domain 1, while domain 3 (aa 175-191) 

is highly hydrophobic and is the segment removed during processing of core that acts as 

the signal sequence for El. It has been shown that, after cleavage by signal peptidase, the 

signal peptide is further processed by the intramembrane-cleaving protease signal peptide
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peptidase (SPP) which promotes the release of core protein from the ER membrane 

(McLauchlan et al., 2002). This processing event allows the core to be free for subsequent 

trafficking to lipid droplets. Immunoelectron microscopy of expressing cell lines showed 

that the core protein was located along membranes outside the ER cistemae and on the 

surface of cytoplasmic lipid droplets (Barba et al., 1997; Moradpour et al., 1996). Domain 

II of core was reported to be essential for lipid droplet association (Hope et al., 2002). This 

region in HCV core is present in the corresponding protein of GBV-B. It is possible that 

interaction between core protein and lipid droplets is responsible for a common condition 

seen in HCV infected patients known as steatosis (McLauchlan, 2000).

Core is presumed to form the capsid shell o f the virus by comparison with the capsids of 

related flaviviruses and pestiviruses. However, very little is known about virus assembly 

as expression of the structural proteins in mammalian cells does not produce virus 

particles. The core protein present in virus like particles (VLPs) produced in insect cells 

transfected with a baculovirus expressing HCV structural proteins is similar in size to that 

expressed from a vaccinia recombinant in mammalian cells (Baumert et al., 1998).

Because VLPs are not released from infected cells, complete virus assembly cannot be 

analysed.

It has been shown that core is an RNA-binding protein (Santolini et al., 1994). The RNA 

binding region maps to the N-terminal 75 residues within domain I. The virus like 

particles produced by the baculovirus system have also been shown to encapsidate 

positive-sense HCV RNA (Baumert et al., 1998). It has been suggested that core protein 

could modulate translation from the IRES (Shimoike et al., 1999) but this effect has since 

been attributed to the core coding RNA sequence and not the protein itself (Wang et al., 

2000). One study has indicated the presence of an interaction between core and El but not 

E2 (Lo et al., 1996). A more recent study reported the involvement of the first domain of 

El in an interaction with core protein (Ma et al., 2002).

There are several cellular proteins with which core can interact. The region of core that 

associates with these proteins is located in domain I of the p21 species (McLauchlan,
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2000). These include heterogeneous nuclear ribonucleoprotein K (hnRNP K) (Hsieh et al.,

1998), lymphotoxin p receptor (LT-pR) (Chen et al., 1997), tumour necrosis factor 

receptor 1 (TNF-R1) (Zhu et al., 1998) and an RNA helicase from the DEAD box family 

of proteins (Owsianka and Patel, 1999). The interaction of core with TNF-R1 and LT- 

PR, both of which are known to be involved in apoptosis, may be indicative of an effect of 

core protein on apoptosis (Ruggieri et al., 1997). In contrast, it has been reported that 

expression of core in a human B cell line did not modify the main apoptosis pathways 

(Giannini et al., 2002). Core has also been implicated in cellular transformation and the 

development of hepatocellular carcinoma (Moriya et al., 1998), and transcriptional 

regulation (McLauchlan, 2000). It has been reported that core protein affects T cell 

responses by modulation of IL2 which may contribute to the persistence of HCV infection 

(Bergqvist et al., 2003). It seems that core has multiple effects on cells. However, these 

effects need to be confirmed in a model system which reproduces viral replication and the 

pathological conditions seen in humans. Many of these studies typically rely on systems 

which tend to produce high levels of protein. There are many conflicting data. In addition, 

some of differences may be attributed to core products derived from different HCV strains 

and different length of core protein have been expressed.

An additional HCV protein, the F protein or ARFP (alternate reading frame protein) of 17- 

20 kDa has been identified to be generated as a result of a +1 ffameshift in the N-terminal 

core coding region of genotype la (Varaklioti et al., 2002; Xu et al., 2001). The frame 

shift site is located in the A rich sequence at amino acids 10-12 of the polyprotein. The F 

protein is very unstable and short lived (Roussel et al., 2003) and primarily associated 

with the ER (Xu et al., 2003).

7



Chapter 1

1.2.3. E l and E2

HCV encodes two major glycoproteins, El and E2, which are believed to be exposed on 

the surface of the virus. The genes encoding these 2 putative envelope proteins are located 

downstream of the core protein and the proteins have molecular weights of approximately 

31 and 70 kDa respectively (Grakoui et al., 1993b).

Cleavage of El from the polyprotein is mediated by an ER-associated host signal 

peptidase between amino acids 191/192 and 383/384 (Hijikata et al., 1991). Cleavage at 

the C-terminus of E2 is not efficient and various E2 species have been described. These 

include E2, E2-p7 and E2-p7-NS2, which are released after cleavage between amino acids 

745/746, 810/811 and 1027/1028 respectively (numbering according to strain H77). The 

E2-p7-NS2 product is a short-lived precursor and is cleaved to release either E2 or E2-p7, 

which is stable and sometimes remains uncleaved (Lin et al., 1994).

Deglycosylation studies of HCV envelope proteins have shown that these proteins are 

highly modified by N-linked glycans (Dubuisson et al., 1994). El and E2 possess up to 6 

and 11 potential glycosylation sites, respectively (Goffard and Dubuisson, 2003). It has 

been shown that the glycosylation of El occurs post-translationally and is improved by the 

coexpression of E2 in cis (Goffard and Dubuisson, 2003).

Hydrophobic domains have been identified in the C-termini of the HCV glycoproteins 

which act as membrane anchors. Deletion of the hydrophobic domain results in secretion 

of the protein and this allows the transmembrane domain (TMD) to be mapped to specific 

residues. The TMD of E2 maps to aa 718 to 746 (Cocquerel et al., 1998) and is composed 

of two hydrophobic stretches connected by a short hydrophilic segment (Cocquerel et al.,

2000). The TMD of El has a similar organisation and was initially mapped to aa 311 to 

383 (Michalak et al., 1997). The TMDs of El and E2 are multifunctional. As well as 

anchoring the protein in the lipid membrane, their C-terminal halves act as ER signal 

sequences for E2 and p7 respectively and play a major role in subcellular localisation and 

assembly of the HCV envelope glycoprotein complex.
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Keck et al. (2004) identified an human monoclonal antibody (H-l 11) against a highly 

conserved region near the N terminus of El which was able to interact with El genotypes 

la, lb, 2b, and 3a. It blocked binding of HCV-like particles to infected target cells, 

suggesting the involvement of this epitope in virus binding and entry.

Hypervariable regions have been identified in the E2 envelope glycoprotein sequence 

(Kato, 2001; Weiner et al., 1991b). The first 27 amino acids of the E2 form the HVR1. 

The biological role of HVR1 is unknown. It has been reported that the anti-HVRl 

antiserum induced protection against homologous HCV infection in chimpanzees but not 

against the emergence of neutralization escape mutants (Farci et al., 1996). Penin et a l

(2001) showed that, despite the sequence variability of HVR1, the physicochemical 

properties of the residues at each position and the overall conformation of the HVR1 are 

highly conserved among the various genotypes. Another hypervariable region, HVR2, has 

been described in the E2 glycoprotein of HCV genotype lb strains. HVR2 is a stretch of 7 

amino acids (positions 91-97) showing up to 100% sequence diversity (Kato, 2001).

1.2.4. p7

p7 is a small protein of 63 aa located between E2 and NS2 in the polyprotein (Lin et al., 

1994). Processing of the polyprotein at the E2/p7 and p7/NS2 junctions is mediated by a 

host signal peptidase to release a highly hydrophobic 7 kDa product (Lin et al., 1994). 

However, cleavage at the E2/p7 junction is incomplete leading to the production of both 

fully processed E2 and uncleaved E2-p7 (Lin et al., 1994). The p7 polypeptide has a 

double membrane spanning topology with both N- and C-terminals oriented towards the 

ER lumen (Lin et al., 1994). In addition, the C-terminal transmembrane domain of p7 has 

a signal sequence function. The export of a fraction of p7 at the plasma membrane 

suggests that this polypeptide might have a functional role in several compartments of the 

secretory pathway (Carrere-Kremer et al., 2002). It has been demonstrated that core, El 

and E2 without p7 are sufficient for recombinant VLP formation in the insect cell 

expression system (Baumert et al., 1998). Very recent data indicate that the expressed
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form of p7 formed hexamers and functioned as a calcium channel in lipid membranes.

This activity could abrogated by the antiviral drug Amantadine (Griffin et al., 2003) .

1.2.5. NS2

The mature NS2 is a hydrophobic transmembrane protein with molecular mass of 23 kDa 

(reviewed by Kato, 2001). The function of NS2 in the virus life cycle is unclear. Its 

deletion did not abolish the replication of HCV replicons in cell culture, indicating that it 

is not required for viral replication (Blight et al., 2000). It has been shown that membrane 

association of NS2 is P7-independent and occurs co-translationally suggesting the 

presence of internal signal sequences in NS2. Four putative transmembrane domains 

(TMD) with both the N- and C-terminals in the ER lumen have been identified (Yamaga 

and Ou, 2002) (Figure 1.2). The C-terminal end of NS2 protein together with the N- 

terminal third of NS3 has proteolytic activity that is responsible for cleavage at the 

NS2/NS3 junction. Kolykhalov et at (2000) showed that point mutation in the NS2/3 

region can abolish HCV infectivity in chimpanzee. Cleavage at the NS2/3 site is catalysed 

by zinc. This activity is inhibited by metal chelators such as EDTA (Hijikata et al., 1993a). 

NS2 has also been shown to be involved in regulation of NS5A phosphorylation (Liu et 

al., 1999).

1 .2.6. N S3

The NS3 protein (about 70 kDa) is a multifunctional protein (Grakoui et al., 1993a). The 

protease activity is localised in the N-terminal 180 amino acids (Bartenschlager et al., 

1994) and the C-terminal 450 amino acids encode the helicase and nucleotide 

triphosphatase activity (Kim et al., 1995). The NS3 serine protease is responsible for cis 

cleavage at the NS3-4A junction and trans cleavage at the 4A-4B, 4B-5A and 5A-5B 

sites. NS3 has no membrane anchor, but it forms a noncovalent complex with NS4A 

which is membrane-anchored (Tanji et al., 1995a; Wolk et al., 2000). It has been shown 

that expression of NS3 in the absence of the NS4A cofactor was diffusely distributed in 

the cytoplasm and nucleus. The co-expression of NS4A, however, directed NS3 to the ER
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or an ER-like modified compartment (Wolk et al., 2000). The serine protease activity is 

required for infectivity of the HCV genome in chimpanzee (Kolykhalov et al., 2000). Due 

to the close proximity of the zinc ion to the catalytic serine residue, it is predicted to have 

a structural rather than a catalytic role. This is supported by the report that zinc can be 

substituted by cadmium or cobalt ions with no affect on the protease activity (Stempniak 

et al., 1997). The crystal structure of the NS3 serine protease (Yan et al., 1998) and RNA 

helicase (Cho et al., 1998) domains have recently been published which suggests the 

presence o f three distinct domains which are separated by deep clefts forming a Y shaped 

structure (Penin et al., 2004).

It has been shown that the NS3 helicase was able to unwind RNA and DNA homo and
^  I ^  I

heteroduplexes in a 3' to 5' direction (Tai et al., 1996) and this required Mg or Mn and 

ATP (Jin and Peterson, 1995). The NTPase activity is stimulated by double or single 

stranded RNA and DNA particularly by poly (U). The minimal requirement for both 

NTPase and helicase activities has been mapped to the C-terminal 466 amino acids of NS3 

(Kim et al., 1997) and mutations in either the NTPase or the helicase motifs affect both 

functions (Kim et al., 1997). It has been shown that the helicase activity is required for 

viral replication in chimpanzees. The N-terminal protease domain and the C-terminal 

NTPase/helicase domain have been analysed independently and shown to be sufficient for 

their respective activities (Kolykhalov et al., 2000).

1.2.7. NS4A and NS4B

The NS4 region of the polyprotein contains two proteins, NS4A and NS4B. NS4A 

consists of 54 aa and is 8 kDa in size. It acts as cofactor for the NS3 serine protease for 

efficient processing at NS3/4A, NS4A/B and NS4B/5A and stimulates cleavage at the 

NS4A/NS4B site. It has been shown that the N-terminal hydrophobic domain of NS4A 

mediated localisation of NS3 to the ER membrane (Wolk et al., 2000). It has also been 

reported that NS4A may bind directly to NS5B (with or without NS3) and enhance its 

polymerase activity (Ishido et al., 1998). NS4A has also been reported to form a stable 

complex with the NS4B-5A polyprotein, which may be required for NS3-mediated
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cleavage at the NS4B-5 A junction (Lin et al., 1997). In addition, NS4A has been 

identified as a modulator of NS5A hyperphosphorylation and this is mediated by the 

central region of NS4A, which is also involved in the interaction with NS3 ( Koch and 

Bartenschlager, 1999). A recent study reported an interaction between NS4A and NS2, 

although the functional role of this complex is unknown (Flajolet et al., 2000).

The NS4B protein has a molecular weight of approximately 27 kDa. There is little 

information available about the function of this protein. This hydrophobic protein is ER 

membrane associated and displays properties of a cytoplasmically orientated integral 

membrane protein (Lundin et al., 2003). Computer predictions of the membrane topology 

of NS4B suggested that it has four transmembrane segments (Lundin et al., 2003). It was 

recently reported that expression of NS4B induces the formation of a ER-derived 

membranous web that harbors all HCV structural and non-structural proteins (Egger et al., 

2002) as well as replicating viral RNA (Gosert et al., 2003). It has been shown that 

expression of NS4A/B slows the rate of ER-to-Golgi traffic. A reduction in protein 

secretion rate was observed for several proteins during NS4A/B expression in particular 

for major histocompatibility complex class I (MHC-I) molecules in the presence of a full- 

length HCV replicon (Konan et al., 2003; Lundin et al., 2003)

1.2.8. NS5A

Expression of the NS5A gene produces two proteins of 56 and 58 kDa in size. It is found 

in a basally phosphorylated form of 56 kDa and in a hyperphosphorylated form of 58 kDa 

(Kaneko et al., 1994; Tanji et al., 1994). Phosphorylation occurs mainly at serine residues 

and is mediated by a cellular kinase (Reed et al., 1997). Basal phosphorylation to produce 

p56 is independent of NS4A, however, the production of p58 needs NS3, NS4A and NS4b 

expression in cis (Neddermann et al., 1999). The work carried out by Koch et al (1999) 

suggested that a continuous NS3-5A sequence is required for NS5A 

hyperphosphorylation. Mutations at various positions in the NS3-4B region, not affecting 

polyprotein processing, could reduce or enhance this NS5A modification. It was 

concluded that structural integrity of each of these proteins, forming a protein complex, is
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essential for differential phosphorylation ofNS5A. The exact function ofNS5A is not 

clear. Adaptive mutations have been found to cluster in the central region of NS5A in the 

replicon system (Blight et al., 2000) suggesting that NS5A is involved in the viral 

replication process either directly or by interaction with cellular proteins.

NS5A has been shown to form a multisubunit complex with NS3, NS4A and NS4B 

(Macdonald and Harris, 2004) and NS5A has been co-precipitated with the remaining two 

non-structural proteins, NS2 and NS5B. This suggests that the HCV non-structural 

proteins form a replication complex as described for other single-stranded, positive sense 

RNA viruses (e.g. poliovirus). This complex is likely to be anchored on intracellular 

membranes and NS5A is localised in the cytoplasmic membrane surrounding the nucleus 

(Tanji et al., 1995b).

There are controversial reports suggesting that NS5A isolated from certain genotypes can 

bind to IFN-induced double-stranded RNA-dependent protein kinase (PKR) (Gale et al., 

1998; Gale et al., 1997), via a 40 amino acid stretch called the interferon sensitivity- 

determining region (ISDR). It has been reported that certain amino acid alterations or 

“mutations” in this region appears to have a correlation with response to IFN therapy in 

patients infected with HCV genotype lb (Enomoto et al., 1995). However, other studies 

(Aizaki et al., 2000) failed to find a correlation between ISDR sequence and ability to 

inhibit IFN activity. Subsequently it has been suggested that sequences in the C terminus 

ofNS5A are also required to inhibit IFN activity (Nousbaum et al., 2000). It has been 

shown that deletion of the ISDR did not affect the IFN sensitivity of HCV replicons 

(Blight et al., 2000). Polyak et al. (2001) demonstrated that NS5A expression in human 

cells induced the IL8 RNA and protein and this effect correlated with inhibition of the 

antiviral effects of IFN in an in vitro assays suggesting a further mechanism for inhibition 

of this antiviral pathway. Co-localisation of NS5A with core protein at the surface of lipid 

droplets has been shown (Shi et al., 2002), although the significance of this interaction has 

not been clarified.
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Figure 1.3. Crystal structure of the HCV NS5B polymerase.
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Palm (purple) and Thumb (green) subdomains are marked, as is the C-terminal 
Arm (yellow) with appropriate aa domain boundaries noted on the bar below. 
Subdomains and structural motifs (A l, A2 and B) are also labelled.
(taken from O’Farrell et al., 2003).
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1.2.9. NS5B

NS5B is 65 kDa in size and forms the C-terminus of the HCV polyprotein. It has been 

identified as an RNA dependent RNA polymerase (RdRp) (Behrens et al., 1996). It 

contains a GDD motif (Gly-Asp-Asp), residues 2737 to 2739, which is conserved in all 

RNA polymerases, and is essential for polymerase activity. Several crystal forms of NS5B 

have been produced from both HCV genotype lb, BK strain (Bressanelli et al., 1999; 

Lesburg et al., 1999) and the HCV genotype lb, J4 strain (O'Farrell et al., 2003). The 

crystal structure analysis of NS5B revealed the presence of the typical right-handed 

“fingers-palm-thumb” structure, with the RNA-binding tunnel lying between the “fingers” 

and “thumb” (Bressanelli et al., 1999) (Figure 1.3). It has been reported that NS5B 

interacted with NS3 and NS4A to form a replication complex and this complex was 

localised to the endoplasmic reticulum (Ishido et al., 1998). NS5B expressed alone was 

also associated with intracellular membranes (Hwang et al., 1997) so it is likely that HCV 

replicates on intracellular membranes. It has been demonstrated that a recombinant full- 

length NS5B is capable of copying the full-length HCV RNA genome in vitro, without the 

need for addition of other factors, although additional viral or cellular factors are probably 

necessary for regulation of RNA synthesis. The HCV RdRp was shown to use the 3’X tail 

of HCV RNA and 3’ end of minus strand as templates for RNA synthesis (Oh et al.,

1999). This specificity for the 3'X tail is suggested to be due to the recognition of specific 

stem-loop structures (SL2 and SL4) in the 3'UTR (Cheng et al., 1999).

1.3. HCV untranslated regions

1.3.1. 5’UTR

The 5’ UTR is the most conserved region of the HCV genome (Bukh et al., 1992) 

reflecting its importance in both viral replication and translation. Overall, the 5'UTR from 

different HCV strains share over 85% nucleotide sequence identity (Smith et al., 1995b). 

This 341-342 nt region is much longer than the 5’ UTRs of flaviviruses, which have an 

average length of 100 nts but is similar to that of pestiviruses such as bovine viral
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diarrhoea virus (BVDV) and classical swine fever virus (CSFV) (Brown et al., 1992).

The 5’UTRs of these viruses all contain several AUG triplets upstream of the initiation 

codon and they are all predicted to form extensive secondary structures. The first model 

of the secondary structure of the 5'UTR of HCV was proposed by Browne/ a l (1992).

This model was based on a comparative analysis of the sequences of multiple strains of 

HCV and members of the genus pestivirus such as bovine viral diarrhoea virus (BVDV) 

and hog cholera virus (HoCV). This model was modified by Wang et a l (1995) following 

the identification of a pseudoknot within the 5*NTR which is required for translation, and 

it was further refined by Honda et a l (1996a). Later, the same group (Honda et al., 1999) 

presented a different prediction of the secondary structure of domain II of the HCV 5'NTR 

based on a comparison of the HCV sequence with that of a newly discovered, hepatotropic 

tamarin virus, GB virus B. Kieft and co workers (1999) provided the first evidence that 

the IRES folds into a distinct three-dimensional structure at physiological salt 

concentrations using enzymatic and probing techniques. Point mutations that prevent 

folding of one or more domains disrupt IRES translation initiation activity, providing 

strong evidence that HCV IRES function requires formation of this tertiary structure.

The proposed HCV 5’ UTR contains four major structural domains designated I to IV with 

a pseudoknot structure upstream of the initiation codon (Figure 1.4). The most 5' structure 

appears to be a small stem-loop spanning nucleotides 1-22. This segment of the 5'UTR 

has the lowest level of sequence homology between HCV, the pestiviruses and GBV-B. 

The role of 5' end in IRES activity will be discussed later.

Domain II extends from nt 44 to nt 118 and consists of multiple stems and loops. Many of 

the nucleotides in the loop regions of this domain are identical in each of these viruses 

(HCV, pestiviruses, GBV-B) in contrast to the majority of nucleotides present in base- 

paired regions. Mutagenesis studies have shown that the structural integrity of this domain 

is crucial for efficient IRES-directed translation (Kalliampakou et al., 2002; Odreman- 

Macchioli et al., 2001) but deletion of this domain does not lead to complete loss of 

activity (Tsukiyama-Kohara et al., 1992). Sequence analysis studies have shown that the 

unpaired regions of domain II contain conserved nucleotide motifs which are also present

15



Chapter 1

in the corresponding IRES sequences from GBV-B and pestiviruses (Honda et al., 1999). 

These include nucleotides 81-85 (apical loop) and 71-73 and 92 -96 (adjacent bulge). A 

recent report using cryo-electron microscopy suggested that domain II is responsible for 

the induction of a conformational change in the 40S subunit which could play an important 

role in translation initiation by holding the HCV encoding RNA in the decoding site of the 

ribosome in position until the translational machinery is correctly assembled (Spahn et al., 

2001).

Domain III is the largest RNA structure within the 5TJTR and consists of several essential 

elements, including a large four-way junction (IIIabc)(Kieft et al., 2001) and the smaller 

stem-loop structures Hid, Ille and Illf. A pseudoknot structure in the HCV IRES was 

shown to be required for IRES activity, as mutations that destabilized tertiary interactions 

between residues of loop Illf with complementary residues in domain IV were 

accompanied by a marked reduction in translation initiation (Wang et al., 1995). A 

structural element containing stem-loops Ilia, b and c facilitated binding of eIF3 (Kieft et 

al., 2001). It has been reported that subdomains Hid, e and f, together with the pseudoknot 

structural element, constituted the binding site for the 40S ribosomal subunit (Spahn et al., 

2001). Nuclear magnetic resonance (NMR) analysis has suggested that stem-loop Hid 

folded into a loop which contains rich hydrogen-bonding potential for the formation of 

RNA-protein or RNA-RNA interactions (Lukavsky et al., 2000). The three guanosines in 

the loop are required for full IRES activity. Mutation of the three loop guanosines to 

cytosines had been previously shown to be deleterious to IRES activity in vitro (Kieft et 

al., 1999). In addition, the sequence of the loop of domain Hid is absolutely conserved 

among all HCV isolates. The domain Hid hairpin loop clearly plays an important role in 

the IRES-40S subunit interaction. Stem-loop Ille folds into a tetraloop structure suspected 

to have a role in the initial assembly of IRES-40S complexes.

Domain IV contains the AUG initiation codon. This stem loop structure has been 

predicted to exist only in HCV and GBV-B (Smith et al., 1995b). The stem-loop may play 

a key role in regulating the initiation of translation. It has been reported that the stability of 

the stem-loop is inversely correlated with the efficiency of internal initiation of translation
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(Honda et al., 1996a). There has been some controversy as to whether HCV sequences 

located downstream from the initiation codon influence the efficiency of IRES-mediated 

initiation. This will be discussed later.

1.3.2. 3’UTR

The predicted structure of the 3’ UTR contains three distinct regions: a variable region of 

approximately 40 nucleotides in length, a poly (U/UC) tract of variable length and a 

highly conserved sequence of 98 nt called the 3’X region (Tanaka et al., 1996). Computer 

predictions of the secondary structure show that the 3’UTR can form stable stem-loops 

(Blight and Rice, 1997) as shown in Figure 1.5. The importance of the 3’UTR for in vivo 

replication of HCV has been confirmed in a chimpanzee model (Yanagi et al., 1997). By 

injecting RNA of infectious clones with various deletion in the 3’UTR, it has been shown 

that the 3’X tail and the poly (U) region were both required for infectivity of HCV in 

chimpanzees, whereas the 5’ end of the variable region is not (Kolykhalov et al., 2000). 

Viral proteins may bind to 3’UTR. The NS3 protein was shown to bind to the poly (U) 

rich region and possibly to unwind the RNA secondary structure through its helicase 

activity (Kanai et al., 1995). It has been shown that NS5B bound to both the U-rich and 

3’X regions in the HCV 3’UTR (Oh et al., 2000). There are several cellular proteins that 

have been reported to interact with the 3’UTR. So far, the following proteins have been 

identified: Polypyrimidine tract-binding protein (PTB) which bound to both the poly (U) 

tract and the 3’X region (Tsuchihara et al., 1997), heterogeneous nuclear 

ribonucleoprotein C (hnRNP C) (Spangberg et al., 2000) and glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) (Petrik et al., 1999). La protein (Spangberg et al., 1999) also 

bound the 3’UTR and inhibited premature degradation of viral mRNA (Spangberg et al.,

2001). The 5’UTR has been reported to bind PTB, suggesting a possible interaction 

between the 5’ and 3’UTRs mediated by PTB. The functions of GAPDH, hnRNP C and 

ribosomal proteins in the HCV replication remain unknown. The role of the 3’UTR in 

translation of the HCV polyprotein will be discussed later.

17



43S pre-ntiation complex

•ADP+P,

PARP

Scanning

4 8 S  initiation com plex  
Met ^ w

l arge (60S* rtoosomal subunit joining ^
2 x GDP+Pj

8 0 S  initiation com plex

3'

Figurel.6. Schematic of proposed mechanism of translation initiation by 
cap-dependent mechanism.

Eukaryotic initiation factors (elFs) are depicted as coloured, numbered 
shapes in the figure.(taken from Gebauer, 2004)



Chapter 1

1.4. Translation
Protein synthesis takes place on ribosomes, large ribonucleoprotein assemblies of 

approximately 4 MDa acting in association with a number of accessory factors to 

‘translate’ the genetic information contained in messenger RNA (mRNA) molecules.

The translation process can be divided into three phases; initiation, elongation and 

termination. Translation initiation in eukaryotes is a complex event that is assisted by 

more than 25 polypeptides (Gebauer and Hentze, 2004).

1.4.1. Cap-dependent translation

The majority of the capped eukaryotic mRNAs are translated by the scanning mechanism. 

In eukaryotes, mRNA molecules usually carry a “cap” structure which consists of 

m7GpppN (where m7G represents 7-methylguanylate, p represents a phosphate group and 

N represents any base). This is located at the 5* end of eukaryotic mRNAs. This structure 

enhances translation by facilitating binding of translation initiation factors and the 40S 

ribosome subunit to the mRNA. A model of the scanning mechanism for eukaryotic 

translation initiation was proposed in 1978 by Kozak (1989). In this model (Figure 1.6), 

the methionine-loaded initiator tRNA (L-shaped symbol) binds to GTP-coupled eIF2, to 

form the ternary complex. This complex then binds to the small (40S) ribosomal subunit, 

eIF3 and other initiation factors to form the 43 S pre-initiation complex. The pre-initiation 

complex recognizes the mRNA by the binding of eIF3 to the eIF4G subunit of the cap- 

binding complex. In addition to eIF4G, the cap-binding complex contains eIF4E, which 

directly binds to the cap, and eIF4A, an RNA helicase that unwinds secondary structure 

during the subsequent step of scanning. eIF4G also contacts the poly (A)-binding protein 

(PABP) and this interaction is thought to circularise the mRNA. The 43 S pre-initiation 

complex scans the mRNA in a 5'—>3' direction until it identifies the initiator codon AUG. 

Scanning is assisted by the factors elFl and elFl A. Stable binding of the 43 S pre

initiation complex to the AUG codon forms the 48S initiation complex. Subsequent 

joining of the large (60S) ribosomal subunit results in the formation of the 80S initiation 

complex. Both AUG recognition and joining of the large ribosomal subunit induces GTP
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hydrolysis of eIF2 and eIF5B, respectively. Subsequently, the 80S complex catalyses the 

formation of the first peptide bond. (Gebauer and Hentze, 2004).

1.4.2. IRES-mediated translation

The initiation of translation in this system does not require a 5’ cap structure but requires a 

RNA segment upstream of the initiation codon which directs the 40S ribosome subunit to 

the site of translation initiation. This segment of highly structured RNA has been referred 

to as the “internal ribosome entry site” (IRES).

In 1988, it was discovered that uncapped picomaviral mRNAs were translated by an 

mechanism distinct from scanning (Jang et al., 1988). The development of bicistronic 

expression vectors containing the poliovirus 5’UTR (Pelletier and Sonenberg, 1988) or the 

encephalemyocarditis virus (EMCV) 5’UTR (Jang et al., 1988) located in the 

intercistronic region showed that this region (5’UTR) could confer internal initiation of 

translation on RNA. Translation of the downstream cistron occurred even when translation 

of the upstream cistron was abolished.

So far, all picomaviral RNAs have been found to contain IRES elements. The RNA 

genome of many other RNA viruses including HCV, classical swine fever virus, murine 

leukemia vims, simian immunodeficiency and cricket paralysis viruses use IRES- 

mediated translation. In addition, some cellular mRNAs, including translation initiation 

factors, transcription factors, oncogenes and growth factors, contain IRES elements in 

their 5’UTRs (Hellen and Samow, 2001).

1.4.3. IRES-mediated translation in picornaviruses

Picomaviruses have several characteristics that preclude their use of the cap-dependent 

scanning mechanism for initiation of translation. The RNA genomes of picomaviruses do 

not contain a cap structure but have a covalently linked protein called VPg at the 5’ end. A
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second feature of picomavirus genomes is the long highly structured 5' untranslated 

noncoding region (-600-1300 nucleotides) which makes cap-dependent translation 

initiation unlikely. The third feature is the presence of several upstream non-authentic start 

codons which could preclude a scanning ribosome mechanism (Bedard and Semler, 2004).

The picomavirus IRESs were initially divided into two groups based on sequence 

similarity and structure homology (Pilipenko et al., 1989). The type 1 IRESs are present in 

enteroviruses and human rhinoviruses, and the type 2 IRESs are found in cardioviruses 

and aphthoviruses (Figure 1.7). The type 1 IRES element has RNA structural domains A- 

H and J, and type 2 has structural domains B-C and E-I. A third type of IRES element has 

been identified in hepatoviruses which preserves the structural features of both the type 1 

and type 2 IRES elements. It includes the structural domains D and J which are absent in 

the type 2 IRES and the structural domain I which is absent in the type 1 IRES. However, 

the RNA structure of the type 3 IRES is closer to that of type 2 IRES than that of the type 

1 IRES.

At picomaviral IRES elements, almost all initiation factors (elFs) were found to be 

required for internal initiation, except the cap-binding protein eIF4E (Pestova et al.,

1996b). The presence of eIF2, eIF3 and ATP was absolutely essential for the binding of 

ribosomal 40S subunits to the EMCV IRES, while the additional presence of eIF4A, 

eIF4B and eIF4F served to improve this binding (Pestova et al., 1996a).

1.5. Initiation of translation by the HCV IRES

The first line of evidence supporting the presence of an IRES element within the 5’UTR of 

HCV came from in vitro translation studies by Tsukiyama-Kohara et al (1992). They 

constructed a bicistronic mRNA system in which the HCV 5’UTR was flanked by a 

chloramphenicol acetyle transferase (CAT) reporter gene as the first cistron and partial 

coding sequences (nts 342-1772) of the HCV as a second cistron. In this system, 

translation of CAT was driven by T7 RNA polymerase (cap-dependent) and the partial
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coding region of HCV by the 5’UTR. Efficient translation of both genes was demonstrated 

in rabbit reticulocyte lysates (in vitro) and translational products from the HCV RNA were 

confirmed using anti-HCV antibodies. However, in coxsackievirus infected cell extracts, 

in which cap-dependent translation was suppressed, only the core protein was detected 

suggesting that translation of second cistron occurred even when ribosome entry did not 

occur at the 5’ end of the bicistronic mRNA. Their data indicated that protein synthesis 

started at the fourth AUG preceding the large open reading frame.

The data presented by Wang et a l (1993) further supported the presence of an IRES using 

an in vivo system by introducing synthesized RNA into HepG2 cells. The 5’UTR of HCV 

was inserted between two reporter genes, CAT and firefly luciferase. Since the in vitro 

synthesised RNAs were uncapped, the CAT activity was not detectable. However, the 

expression of luciferase occurred both in vitro and in vivo providing evidence for the 

presence of an IRES element within the HCV 5’UTR.

An important discovery in the eukaryotic translation field was the finding that the HCV 

IRES could bind 40S subunits in the absence of any initiation factors, including the 

eIF2/GTP/initiator tRNA ternary complex (Pestova et al., 1998). The complex structure of 

5’UTR determined the correct positioning of the initiation codon in the ribosomal “P” 

(peptidyl) site in binary complexes. Subsequent addition of the ternary eIF2/GTP/initiator 

tRNA complex to IRES/40S subunit complexes was necessary and sufficient for formation 

of 48S complexes.

The 40 S subunit appears to interact with the HCV IRES at multiple sites as shown by the 

residues inaccessible to solvent upon 40S subunit binding. Domain Illb is not involved in 

405 subunit binding, but is known to make specific contacts with eIF3. The contact 

between domain lib and 40S has also been identified as shown in Figure 1.8 (Spahn et al.,

2001). It has been shown that a truncated HCV IRES lacking domain II bound to the 40S 

subunit with nearly wild type affinity (Kieft et al., 2001).
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The translation initiation factor 3 (eIF3) binds specifically to both the HCV IRES and the 

40S subunit, although it is not necessary for 48S complex formation. Human eIF3 has a 

molecular mass of -600 kDa and contains at least 11 subunits; four of these interact 

directly with the IRES (Sizova et al., 1998), but it is not yet known which subunit(s) are 

primary determinants of this interaction. The binding site for eIF3 has been mapped to the 

terminal half of domain III particularly in the apical stem Illb of domain III (Kieft et al., 

2001; Pestova and Hellen, 1999).The role eIF3 in HCV IRES translation is not yet known. 

eIF3 may destabilize incorrectly assembled 48S complexes (Kolupaeva et al., 2000).

1.5.1. Cellular factors involved in HCV Cap-independent translation

Several cellular proteins other than the elFs appear to interact with the HCV 5'UTR. In 

contrast to the type II IRESs observed in picomaviruses, HCV and pestivirus IRES 

elements can bind to 40S subunits even in the absence of all eukaryotic initiation factors, 

while subsequent binding of 60S subunits requires eIF2, eIF3 and other yet 

uncharacterized factors.

Both polypyrimidine tract binding protein (PTB) and La have been shown to play 

important roles in picomaviral translation (Belsham et al., 1995). This suggests that 

perhaps PTB may also support initiation from the HCV and pestivirus IRESs. PTB is a 57 

kDa nuclear protein that binds polypyrimidine tracts (Rijnbrand and Lemon, 2000). PTB 

was shown to bind to the HCV IRES (Ali and Siddiqui, 1995). However, these authors 

could not demonstrate that the binding of PTB has functional consequences for the 

efficiency of HCV translation. Immune-depletion of PTB from reticulocyte lysates 

resulted in reduced HCV IRES activity. However, attempts to restore the original activity 

by adding PTB failed, suggesting that other factors required for translation had been 

affected by the depletion procedure. Later, the data presented by Gosert et al (2000) 

showed that the transient expression of PTB from the upstream cistron of dicistronic 

transcripts stimulated cap-independent translation of a downstream cistron (12 fold) 

directed by HCV IRES elements placed within the intercistronic space in vivo. In contrast, 

another report by Kaminsky (1995) demonstrated that PTB was not essential for 

translation mediated by the HCV IRES. In addition to the weak binding of PTB to the
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HCV IRES, two other regions in the HCV RNA have been found to bind PTB. One is 

located in the 3’ part of the core coding sequence and includes an oligopyrimidine tract 

(Ito et al., 1998), and the other is located in the 3’UTR region of the HCV RNA. The 

PTB-binding region in the 3’ part of the core strongly inhibited translation, whereas the 

3’UTR appeared to relieve this inhibiting effect and enhances HCV translation in cis (Ito 

et al., 1998). Possibly these two PTB binding regions interact with each other via the PTB 

protein.

The second protein that appears to be involved in HCV translation is La. La antigen is a 

multifunctional 52kDa phosphoprotein which was originally identified in patients with 

autoimmune disorders such as systemic lupus erythematosus. Although a fraction of La 

antigen is found in the cytoplasm, the majority of the protein is localized in the nucleus. 

However, cellular stress such as that resulting from a viral infection causes redistribution 

of the nuclear La to the cytoplasm (Meerovitch et al., 1993). This protein was one of the 

first cellular proteins identified to interact with IRES elements and induce HCV IRES- 

mediated translation (Ali et al., 2000; Ali and Siddiqui, 1997). It has been reported that the 

La protein binds to a region in the 3’-part of the 5’UTR, between nt 291 and 347 which 

overlaps the polyprotein initiation site and stem-loop IV of HCV RNA. It was reported 

that the addition of very small amounts of recombinant La were able to stimulate 

translation directed by the HCV IRES by at least 60-fold in reticulocyte lysates (Ali and 

Siddiqui, 1997). The data presented by Ali et a l (2000) also support the functional 

requirement for La protein for HCV IRES activity in a liver-derived cell line (HuH7 cells).

Two other cellular proteins have been described to interact with the HCV IRES. Hahm et 

al. (1998) reported a cellular protein (68 kDa) called heterogeneous nuclear 

ribonucleoprotein L (hnRNP L) that specifically interacted with the 3' border of the HCV 

IRES spanning part of the core-coding sequence. It bound to a region of about 60 

nucleotides between the authentic HCV AUG at nt 342 and nt 402 in the HCV core 

protein coding sequence, i.e., directly downstream of the binding site for La mentioned 

above. This sequence represents the 3' end of the IRES and contributes to IRES function. 

Binding of hnRNP L to this sequence is correlated with IRES activity, suggesting that
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hnRNP L is also involved in the regulation of HCV IRES activity. The close vicinity of 

the binding sites for La and hnRNP L pointed to a possible interaction between these two 

proteins in HCV translation.

It has been reported that a 25 kDa protein bound to a sequence in domain II of the HCV 

IRES. Mutations affecting the binding of this 25 kDa protein also affected translation 

(Fukushi et al., 1997). Pestova et al. (1998) identified a 25 kDa protein cross-linked to 

HCV RNA. They identified the protein as ribosome protein S9. Another group suggested 

that ribosomal protein S5 interacted with the HCV IRES elements (Fukushi et al., 2001).

The cellular proteins described above shown to interact with viral IRES elements and 

stimulate IRES-mediated translation may act as “RNA chaperones” stabilising IRES 

secondary and tertiary structures to allow efficient translation to take place (Belsham and 

Sonenberg, 2000).

1.5.2. Assembly of the translation complex

Using data from the literature, a model of the HCV translation initiation pathway has been 

proposed (Lytle et al., 2002; Rijnbrand and Lemon, 2000). According to this model, the 

40S ribosome subunit containing eIF2, Met-tRNA and S9, interacts with the folded viral 

5’UTR such that the AUG codon is placed near the anticodon of the Met-tRNA. Two 

possible scenarios resulting in formation of the 48S preinitiation complex have been 

suggested (Figure 1.9). In the first proposal, the 40S ribosome subunit binds both eIF3 and 

the ternary complex including eIF2-GTP-Met-tRNA to form a 43 S preinitiation complex 

which is similar to that occurring in cap-dependent translation. The 43 S complex 

subsequently binds to the 5’UTR. Then, the 48S complex is formed by a conformational 

change in the IRES which places the AUG codon against the Met-tRNA anticodon (Figure 

1.9.A). The alternative scenario suggests that eIF3 and the 40S ribosome subunit are 

bound by the IRES. In a subsequent step, the ternary complex is incorporated into the 40S- 

RNA complex resulting in a conformational change in the viral RNA that places codon 

and anticodon opposite each other to form a 48S complex (Figure 1.9.B). Then, in both
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scenarios, subsequent binding of the 60S subunit results in the assembly of a functional 

80S ribosome, which starts to translate the HCV polyprotein. It should be noted that the 

precise order of these events remains uncertain.

1.5.3. Mapping the HCV internal ribosome entry site

Several approaches have been used to identify the minimal sequence required for HCV 

IRES dependent translation and to map the 5’ and 3’ borders of the HCV IRES elements. 

The commonly used technique has been the analysis of bicistronic RNAs in which two 

reporter protein coding sequences are separated by an IRES sequence. Translation of the 

upstream gene occurs in a 5’cap-dependent mechanism, while translation of the 

downstream reading frame is driven by the IRES element. Quantifiable reporter proteins 

like luciferase (Tsukiyama-Kohara et al., 1992; Wang et al., 1993) or chloramphenicol 

acetyl transferase (CAT) (Rijnbrand et al., 1995) have been used by several groups. 

However, the HCV core protein coding region (Fukushi et al., 1994; Tsukiyama-Kohara et 

al., 1992) or the complete HCV open reading frame have been used by other groups as the 

reporter sequence in order to study the translation efficiency in a more natural condition 

(Honda et al., 1996b).

1.53.1. The 5’ border of HCV IRES

An early study by Tsukiyama-Kohara et a l (1992) reported the 5' border to be located 

between nts 100 and 156. Later, Fukushi et a l (1994) reported that the entire 5'UTR was 

needed for IRES activity. Despite this report, most studies have shown the 5' border of the 

IRES to be at or near the 5' end of domain II (nt 44) (Honda et al., 1996b; Kamoshita et 

al., 1997; Reynolds et al., 1996). Honda et a l  (1999c) showed that deletion of nts 32-37 

did not have any effect on IRES activity, while substitutions at nts 45-46 had a strong, 

negative effect on translation (Honda et al., 1999). They suggested that the 5' border of 

the HCV IRES was between nts 38 and 46, i.e., just upstream of stem-loop II. As can be 

seen, most studies agreed that stem-loop I is not required for IRES activity. In fact, some 

studies have shown that removal of stem loop I enhanced the translation efficiency of the
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IRES (Honda et al., 1996b; Rijnbrand et al., 1995). In addition, the data presented by 

Kamoshita et a l (1997) suggested that the inhibitory effect of stem-loop I on IRES 

activity may be cell-type specific. They showed that RNA transcripts lacking nts 1-22 

were translated more efficiently in a HeLa cell lysate, but less efficiently in African green 

monkey kidney cells, suggesting that host cell-specific factors may interact with stem-loop 

I. More recently, Friebe et a l (2001) observed that deletions of stem loop I or the spacer 

sequence (nts 20-44) decrease RNA translation by two- to threefold in a bicistronic 

system in HuH7 cells. Luo et a l (2003) also reported that deletion and nucleotide 

substitutions in the 5’ proximal stem-loop structure resulted in reduction of translation of a 

reporter gene (CAT) by two- to five fold, suggesting that the 5’ proximal stem-loop RNA 

element also modulates HCV RNA translation.

I.5.3.2. The 3’ border of HCV IRES

The 3' boundary of the IRES is less certain. The IRES extends in a 3’ direction as far as 

the initiator AUG codon. It has been shown that the RNA pseudoknot involving stem-loop 

Illf was essential for translation of HCV (Wang et al., 1995). In early studies, efficient 

IRES activity was observed in dicistronic constructs containing between 3 (initiator AUG 

codon) and 8 nucleotides of the core-coding sequence (Rijnbrand et al., 1995; Tsukiyama- 

Kohara et al., 1992). In contrast, Reynolds et al (1995) reported a significant increase in 

IRES activity if 12 to 30 nts of core coding sequence were included in the RNA transcript. 

The importance of the first 24 nucleotides of the core-coding sequence in IRES-dependent 

translation was supported by the observation that chimeric polioviruses containing the 

HCV IRES required at least 24 nts of core-coding sequence for viral replication (Lu and 

Wimmer, 1996). A chimeric virus containing 370 nts of the core protein coding region 

showed the most efficient replication.

Two different explanations have been proposed for the discrepancy between these 

observations. First, Reynolds et a l suggested that a sequence homology existing between 

the firefly luciferase and HCV core nt sequences may be responsible for the IRES activity 

observed by Wang et a l (Tsukiyama-Kohara et al., 1992; Wang et al., 1993) in constructs
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containing the luciferase sequence fused directly to the HCV initiator AUG. Another 

explanation was that the fusion of some reporter gene sequences to the HCV 5'UTR may 

result in an RNA structure which may have an inhibitory effect on translation initiation 

(Honda et al., 1996a). It has been shown that the 40S ribosome interacted with the RNA 

directly at the site of the initiator AUG codon and structures around the AUG reduced 

IRES activity (Pestova et al., 1998). So it may be that the inclusion of the 5’ core coding 

sequence simply ensures the absence of an unfavourable base pairing structure around the 

AUG initiation codon. Taken together, the findings suggested that the minimal sequence 

for IRES function includes stem loops II and III as far as the initiator AUG codon and 

extends into the core encoding region which makes up part of the domain IV structure.

1.5.4. The impact of the 3’ UTR on HCV translation

The RNA of HCV, GBV-B and pestiviruses differs from other RNAs containing IRESs by 

the lack of a poly (A) tail at the 3’ end of the RNA. Instead there is a variable poly (U-C) 

stretch plus a conserved X region at the 3’ end (Kolykhalov et al., 1996). The X region 

seemed to form athree-stem-loop structure and bound to polypyrimidine tract-binding 

protein (PTB) (Tsuchihara et al., 1997). PTB has been reported to bind to the IRES region 

of HCV, and regulate its translation (Ali and Siddiqui, 1995). There are controversial 

reports regarding the effect of the 3’UTR on translation of HCV. One study published by 

Ito et a l (1998) suggested that the X region at the 3’ end of the HCV genome enhanced 

IRES-dependent translation weakly. They showed that HCV RNA containing the X region 

was translated three- to five fold more than the corresponding RNAs without this region. 

Mutations that abolished PTB binding in the X region reduced, but did not completely 

abolish, the enhancement of translation. However, they did not use the entire HCV 

3'UTR. In contrast, Murakami et a l  (2001) observed that the complete 3'UTR 

downregulated HCV translation in vitro. This inhibition was removed when the poly 

(U/UC) or stem-loop III (SL3) regions of the 3'UTR were deleted. The absence of 

regulation of HCV IRES activity by the 3'UTR has been reported by other studies. Fang & 

Moyer (2000) demonstrated that the presence or absence of the 3'UTR sequence did not 

affect translation efficiency in an in vitro system. Recently, the impact on translation

27



Entry

Endosome?

Uncoating

Translation NS3/4A N%4B NS5B
NS2 'LJLA-nssa

Nucleus

Release

Exocytosis

Cytoplasm

Receplor(s)? , 
Coreceptor(s)?

LDL-R? 
Scavenger-R? 
DC-SIGN (CD209)7 
L-SIGN (CD209L)? 
CD81?

Progeny
genom es

V/N/N
\ / \ / N

Figure 1.10. Putative hepatitis C virus (HCV) replication cycle.
ER=endoplasmic reticulum, (taken from Racanelli & Rehermann, 2003).



Chapter 1

efficiency of a series of mutations on the 3'UTR was analysed. The results showed that 

complete deletion of the variable region, the poly (U/UC) tract or the 3'X region did not 

modify HCV IRES activity (Friebe and Bartenschlager, 2002). Moreover, Kong & Samow

(2002) have shown that the HCV 3'UTR modulates neither the translation nor the stability 

of a chimeric mRNA. These results were supported by the data presented by Imbert et al.

(2003) suggesting that the HCV 3'UTR does not affect IRES-dependent translation 

efficiency, even in the presence of HCV structural or non-structural proteins in hepatic 

and non-hepatic cell lines tested.

1.6. Replication of HCV

Little is known about the mechanism of replication of HCV due to lack of an efficient 

culture system for its study. Because of the lack of convenient animal models and cell 

culture systems, the proposed model of replication has been suggested based on the 

relationship of HCV with the other members of Flaviviridea family and characterisation 

of recombinant HCV proteins (Figure 1.10). The detection of HCV non-structural 

proteins and viral RNA in the livers of infected patients (Blight et al., 1993) or 

experimentally infected chimpanzees showed that the liver is a main site of HCV 

replication. It has been reported that HCV can also replicate in peripheral blood 

mononuclear cells (PBMCs) (Cribier et al., 1995) and experimentally infected B and T 

cell lines (Mizutani et al., 1996).

How HCV enters the cell is unknown, but it may be by interaction with a receptor. Several 

putative receptors have been identified. The first to be identified was CD81(Pileri et al., 

1998). CD81 is a 25 kDa protein and a member of the tetraspanin superfamily of cell 

surface proteins. Binding of E2 was mapped to the major extracellular loop of CD81. This 

is the most variable part of the molecule but it is highly conserved in humans and 

chimpanzees, the only species permissive for HCV infection (Pileri et al., 1998). Analysis 

of inhibition of the E2-CD81 interaction by using a panel of anti-E2 monoclonal 

antibodies has shown that amino acids 412-417 of E2 are involved in this interaction
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(Owsianka et al., 2001). A more recent report suggested that CD81 is an entry coreceptor 

and that other cellular factors are involved during binding and entry (Cormier et al., 2004). 

The LDL receptor has also been proposed as a candidate for the HCV receptor. Agnello et 

al. (1999) showed a direct correlation between cell surface expression of LDL-R and the 

number of infected cells positive for the presence of HCV RNA using different cell lines. 

It has also been observed that HCV is not able to bind to COS-7 cells unless they express 

the LDL receptor (Monazahian et al., 1999). However, endocytosis of HCV has been 

reported in LDL-deficient fibroblasts (Agnello et al., 1999).

Other putative receptors that have been reported are human scavenger receptor class B 

type I (SR-BI) (Scarselli et al., 2002), asialoglycoprotein receptor (ASGP-R) (Saunier et 

al., 2003) and liver/lymph node-specific intercellular adhesion molecule-3-grabbing 

integrin (L-SIGN) which is a calcium-dependent lectin expressed on endothelial cells of 

liver and lymph nodes (Gardner et al., 2003).

Coprecipitation experiments have indicated that the non-structural proteins probably form 

a replicase complex on the cytoplasmic side of the ER membrane (Ishido et al., 1998) 

which is similar to other flaviviruses and pestiviruses. The NS5B protein is responsible 

for the synthesis of both plus- and minus-strand RNA, although the individual steps 

involved in this process are unknown. Numerous attempts have been made at propagating 

HCV in cell culture, through infection of either primary cells or established cell lines, or 

cultivation of primary cells from chronically infected patients (Ito et al., 1996; Lanford et 

al., 1994; Rumin et al., 1999). These systems suffer from both poor efficiency and poor 

reproducibility and none permitted detailed analysis of the replication cycle. The 

development of subgenomic HCV RNA replicons has allowed the study of RNA 

replication in the human hepatoma cell line (HuH7) (Lohmann et al., 1999; Pietschmann 

et al., 2002). This system will be covered in more detail in section 1.6.1.

The chimpanzee is the only known animal to support HCV replication but its use is 

limited by its scarcity, high maintenance costs and for ethical reasons. In the absence of a 

successful cell culture system, the chimpanzee has proved invaluable for the study of
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molecular infectious clones of HCV. A mouse model for HCV infection has been reported 

which relies on the transplantation of human hepatocytes into immunodeficient transgenic 

mice whose own hepatocytes degenerate spontaneously (Mercer et al., 2001).

The resultant chimeric mouse/human liver could be infected with serum from an HCV- 

infected patient. The chimeric livers were able to maintain relatively high levels of HCV 

RNA (3 x 104 to 3 x 106 copies/ml) for a period of 15-17 weeks. Successful infections 

were established with viral genotypes la, lb, 3a and 6a, with rapid increases in viral RNA 

titres to levels easily detected by standard commercial assays. Although promising, the 

transplantation of primary human hepatocytes into mice a few days after birth is 

technically difficult and requires specialised techniques.

1.6.1. Subgenomic replicon system

Recently, Lohmann et al. (1999) developed selectable subgenomic replicons which can 

replicate to high levels after transfection into the human hepatoma cell line HuH7 (Figure

1.11). A consensus genotype lb genome (Lohmann et al., 1999) was constructed from 

material cloned from the liver tissue of a chronically infected patient. The structural genes 

(and NS2) were replaced with the gene encoding the selectable marker neomycin 

phosphotransferase (neo) which confers resistance to the antibiotic G418. Translation of 

the neo gene was directed by the HCV IRES. Encephalomyocarditis virus (EMCV) 

internal ribosome entry site (IRES) directed translation of the HCV non-structural genes 

containing NS2 or NS3 up to NS5B including the 3'UTR. The RNA replicons were 

generated by in vitro transcription from DNA plasmid constructs. These bicistronic RNA 

transcripts were transfected into HuH7 cells and those cells harbouring the replicon were 

selected with G418. Selected colonies carried large amounts of HCV RNA (1000-5000 

RNA molecule per cell). Immunoprecipitation analysis confirmed the presence of the 

NS3, NS4, NS5A and NS5B proteins in the cytoplasm.

Blight et 0^.(2000) reported the identification of multiple adaptive mutations which cluster 

in a 30 amino acid region in the NS5A during propagation of the cells containing the 

replicon. These mutations enhanced RNA replication, which increased the G418
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transduction efficiency. However, since the complete structural region of the genome was 

deleted, virus assembly and particle release could not be studied with this system.

To establish a system that allows efficient replication of the complete HCV genome in cell 

culture, Pietschmann et al. (2002) constructed a full length replicon of genotype lb 

carrying cell adaptive mutations and showed that these genomes replicated stably and 

expressed all viral proteins for prolonged cultivation periods. However, no evidence of 

virus particle assembly was found, suggesting that host cell factors important for virus 

production are not present in HuH-7 cells. Later Blight et a l (2003) reported the 

establishment of efficient RNA replication systems for genotype la strain H77 containing 

adaptive amino acid substitutions in both NS3 and NS5A in the highly permissive HuH-

7.5 hepatoma subline. Although the production of infectious virus particles was not 

successful, it probably provides the framework to proceed toward this goal. Future 

research will may identify cellular factors needed to support HCV assembly and release in 

cell culture. This would allow construction of a model of the entire HCV replication cycle 

in cell culture.

1.7. Immune response to HCV

One of the first host defence mechanisms against viral infections is the non-specific 

immune response involving type IIFN secretion and natural killer (NK) cell activation. 

Recent data suggest that HCV replication induces the secretion of endogenous type I IFN 

but does not efficiently inhibit it in the human (Thimme et al., 2001). It has been reported 

that dendritic cells recovered from chronically HCV-infected patients showed an impaired 

capacity to activate natural killer (NK) cells in response to IFN-a stimulation. This 

impairment might affect IFN responsiveness in the acute phase of infection (Jinushi et al.,

2003). Various HCV proteins have been shown to inhibit the antiviral effects of IFN-a in 

vitro. Tseng and Klimpel (2002) suggested that binding of the HCV envelope 

glycoprotein E2 to CD81 might inhibit NK cell functions such as proliferation, cytokine 

production and cytotoxic granule release and also their ability to produce IFN gamma. In 

addition, the HCV NS3/4A serine protease blocks the phosphorylation and effector action
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of interferon regulatory factor-3 (IRF-3) which is a key cellular antiviral signalling 

molecule (Foy et al., 2003)

Antibodies targeting various HCV epitopes are generally detected 7 to 31 weeks after 

infection. Antibodies directed against HVR1 have been shown to be neutralizing, 

protecting chimpanzees against HCV infection after in vitro neutralization of the 

corresponding strain (Farci et al., 1994). However, it is not known whether control of 

HCV replication by neutralizing antibodies plays a major role in viral clearance. It has 

been suggested that variability in the HVR1 region could generate new HCV variants 

which are able to escape from neutralizing antibodies. However, several recent findings 

argue against a major role of ‘escape variants’ in the persistence of infection. Penin et al. 

(2001) demonstrated that, despite strong amino acid sequence variability, the 

chemicophysical properties and conformation of the HVR1 were highly conserved. The 

data presented by Cerino et a l (2001) demonstrated that it is possible to induce a broadly 

cross-reactive monoclonal antibody response to HVR1 variants which could also 

recognize viral particles. The recent development of infectious retroviral HCV 

pseudotypes, comprising HIV capsids bearing HCV envelope glycoproteins, have allowed 

the study of neutralizing antibodies during HCV infection (Bartosch et al., 2003). 

Logvinoff et al. (2004) found no association between the development of neutralising 

antibodies against these pseudo particles and viral clearance which occurred in two of 

seven acutely infected patients. Therefore, the role of the neutralizing responses in the 

control of HCV infection or persistence is still unclear.

The role of cellular immune responses in HCV has been better studied. Spontaneous HCV 

clearance has been shown to be associated with a sustained, vigorous and virus-specific 

CD4+ T-cell response in peripheral blood. This response is maintained for several years 

after viral clearance (Bertoletti and Ferrari, 2003). By contrast, the CD4+ T-cell response 

is weak, delayed or transient in patients who develop persistent infection. CD8+ T-cell 

(cytotoxic T lymphocyte, CTL) responses also play a major role in virus elimination. 

Spontaneous viral clearance in man and chimpanzees is associated with a strong, sustained 

and multispecific CD8+ T-cell- mediated response (Cooper et al., 1999; Thimme et al.,
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Figure 1.12. Phylogenetic analysis of nucleotide sequences in 
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(taken from Simmonds, 1995).



Chapter 1

2001). It has been reported that the ability of dendritic cells (DC) to stimulate the 

proliferation of allogeneic T cells following infection was dramatically impaired in 

patients with chronic HCV infection in comparison to naive-DCs (Bain et al., 2001). Other 

possible mechanisms include the defective functions of HCV-specific CD8+ T cells in 

chronically infected patients (Wedemeyer et al., 2002) and the appearance of escape 

mutations in epitopes which impaired class I MHC binding and/or CTL recognition 

(Erickson et al., 2001).

1.8. Genetic variability of the HCV genome

1.8.1. Genotypes

Analysis of full length or partial sequences of HCV strains isolated from various 

geographical regions of the world led to the classification of six HCV genotypes (Figure

1.12) and these genotypes have been further subdivided into subtypes within each 

genotype. The types have been numbered 1 to 6 and the subtypes a, b, c (Simmonds et al.,

1994). Differences between genotypes over the complete virus genome are relatively high 

with nucleotide differences of 30%-35%. Subtypes within a genotype have around 80% 

nucleotide identity. Isolates within a specific subtype have more than 90% nucleotide 

identity (Simmonds, 2004).

Direct sequence comparison of full-length HCV genomes is the ideal method for typing 

HCV but it is laborious and time consuming. A more rapid method is analysis of the 

5'UTR region by restriction fragment length polymorphism (RFLP) for clinical purposes 

(Davidson et al., 1995). For subtyping of HCV isolates, sequence analysis of additional 

regions of the genome such as the core, El or NS 5 is needed.

HCV genotypes differ throughout the geographical regions. Genotypes 1, 2 and 3 have a 

broad worldwide distribution, although their relative prevalence varies from one 

geographic area to another. In the United States and Western Europe, genotypes la and 

lb are predominant (McOmish et al., 1994). In Southern and Eastern Europe there is
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more frequent infection with genotype lb (Smith et al., 1995a) and in Japan, genotype lb 

accounts for up to 73% of infections (Takada et al., 1993). Genotypes 2a and 2b are 

commonly found throughout the United States, Europe and Japan. Genotype 3a is 

prevalent amongst intravenous (IV) drug users in the USA and Europe (Pawlotsky et al.,

1995) and is the most common genotype in Thailand (Kanistanon et al., 1997). A variety 

of genotype 3 subtypes can be found in Southern Asian and Indonesia, but genotype 1 

remains the predominant type (Smith et al., 1995a; Tokita et al., 1994). Genotype 4 is 

common in Egypt and Central Africa (Chamberlain et al., 1997a; Simmonds, 1995). Both 

genotype 5 and 6 have restricted distributions in South Africa (Ohto et al., 1994) and 

Hong Kong respectively (Chamberlain et al., 1997b; Di Bisceglie, 1998). In Europe, types 

lb and 2 are widely distributed particularly in older age groups who acquired HCV 

through blood transfusion whereas genotypes la and 3 are predominant in younger age 

groups likely to be those infected through intravenous drug use (Simmonds et al., 1996).

So far no correlation has been found between HCV genotype and the rate of persistence 

after acute infection, the severity of chronic liver diseases or the development of HCV 

associated extra-hepatic disorders (Pawlotsky, 2003a). A more recent study reported that 

acute infection in young Caucasian men with HCV genotype 3 leads more often to 

spontaneous clearance than infection with HCV genotype 1. Ninety three percent of 

individuals exposed to HCV genotype 1 but only 63% of individuals exposed to genotype 

3 experienced a chronic course of the infection (Lehmann et al., 2004). It has been shown 

that genotype 3 is more associated with the appearance of steatosis in the liver than other 

genotypes (Adinolfi et al., 2001a; Ramalho, 2003).

1.8.2. Variability in the HCV genome

Variation has been found throughout the whole HCV genome (Bukh et al., 1995). The 3’

X tail and 5’UTR are highly conserved between genotypes suggesting their essential role 

in replication and translation (Smith et al., 1995b). The core protein is the most 

conserved of the viral proteins (Bukh et al., 1994) followed by conserved regions in the 

NS3 and NS5B (Okamoto et al., 1992). Extensive variation has been shown in envelope
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proteins (El and E2) particularly a 27 amino acid stretch located at the N-terminal region 

of the E2 known as hypervariable region 1 (HVR1) (Hijikata et al., 1991; Weiner et al., 

1991a). This is the most variable region of the HCV genome. Other variable regions 

include a HVR2 located downstream of HVR1 in the E2 protein (Kato et al., 1992) which 

seems to be present only in genotype 1.

1.8.3. Viral quasispecies

One of the important characteristics of HCV, like many other RNA viruses, is that its 

genome shows significant genetic heterogeneity. Even in a single infected individual, 

HCV circulates as a population of closely related but heterogeneous sequences called a 

quasispecies (Martell et al., 1992). These variants together represent a "quasispecies" or 

form a "quasispecies distribution". As discussed in a review, (Smith and Simmonds,

1997), the term of quasispecies has been used incorrectly by many authors to refer to each 

of the distinct variants which together form the quasispecies. In this thesis, the term is 

used to describe the whole population of related sequences observed within a single 

infected patient.

“Quasispecies” was defined by Smith et al (1997b) as a population of viruses that share a 

common origin but which have distinct genomic sequences. The viral population in a 

single individual is composed of a sequence that is dominant called the master or majority 

sequence and a number of sequences differing from the majority sequence. The majority 

sequence does not provide information about the structure of the quasispecies.

The quasispecies nature of HCV has been attributed to the RNA polymerase lacking 

proofreading 3’-5’ exonuclease activity and therefore each round of replication is 

accompanied by the incorporation of mutations. The average rate of mutation in the HCV 

genome has been estimated to be 1.44 to 1.92 x 10'3 substitutions per site per year (Ogata 

et al., 1991).
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The flavivirus, GBV-C is closely related to HCV and its polymerase is presumed to have a 

similar error rate to that of HCV. However, compared to the 30% sequence diversity 

between HCV genotypes, GBV-C isolates from around the world differ by only 14% 

(Smith et al., 1997a). Therefore the heterogeneous nature of HCV cannot be explained 

solely by the error prone RNA polymerase.

The quasispecies nature of the virus is thought to confer advantage to the virus in that it 

allows rapid selection of a variant that displays “better fitness” in response to a new 

environmental pressure. It has been suggested that the diversity of HCV quasispecies in 

the HVR1 region contributes to the high level of chronicity seen in HCV-infected patients 

(Yuki et al., 1997) . This might be due to the selection of variants which are able to evade 

the immune system and therefore establish a persistent infection.

A difficulty in interpreting the degree of variation from nucleotide sequence data is that 

most data were obtained from amplification of the viral RNA by RT-PCR. Both reverse 

transcriptase and Taq DNA polymerase enzymes have high error rates themselves and 

therefore these errors could be incorrectly interpreted as virus heterogeneity. This needs to 

be taken into consideration when analysing the sequence diversity of a virus within an 

infected individual.

1.9. Natural history of HCV infection

1.9.1. Epidemiology and transmission

Hepatitis C infection has a worldwide distribution. According to World Health 

Organisation (WHO) estimates, approximately 3% of the world population, or about 170 

million people, may be infected with hepatitis C virus (WHO, 1997). The incidence of 

HCV in healthy volunteer blood donors in the USA varies between 0.17% and 1.4% 

(Murphy et al., 1996) and in the UK is 0.35% (Mutimer et al., 1995). Egypt has the 

highest reported prevalence worldwide with an estimate of 24% (Arthur et al., 1997)
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which has been shown to be due to reuse of needles during a national campaign to treat 

schistosomiasis infections during the 1970s (Frank et al., 2000).

HCV is transmitted primarily by exposure to infected blood. However, in up to 50% of 

cases, no recognisable transmission route could be identified (Van Damme and Vellinga,

1998).

1.9.1.1. Parenteral Transmission of HCV

By introduction of mandatory blood donor screening for anti-HCV in 1989, the incidence 

of post transfusion HCV was substantially reduced to less than 1% but was not completely 

eliminated. The increased sensitivity of third generation screening tests further reduced 

the risk of infection via blood transfusion. Prior to blood donor screening, haemophiliac 

patients and patients with immunoglobulin deficiency were at risk from contaminated 

batches of clotting factor and immunoglobulin, respectively (Heintges and Wands, 1997; 

Yap et al., 1994). In thalassemic children who received multiple blood transfusions, the 

incidence of HCV infection varied from 55% to 83% (Memon and Memon, 2002).

Intravenous drug use is currently the main risk factor for HCV transmission. The reported 

incidence varies between 31% (Nakata et al., 1994) and 98% (Westh et al., 1993) in 

different parts of the world. At least 60% of new HCV infections in the United States were 

related to intravenous drug use (IVDU) (Alter, 1999). Risk of infection has been reduced 

as a result of change in injection practice by the introduction of needle-exchange 

programmes (Hagan et al., 1995).

Healthcare professionals working with blood and blood products are at greater risk of 

contracting HCV via exposure to blood and needle-stick injuries. Transmission of HCV 

in the healthcare setting can occur from patient to patient and from patients to healthcare 

worker or vice versa. In most developing countries, unsafe injections have been the major 

cause of HCV transmission. The high prevalence of HCV in Egypt is associated with 

injections of anti-schistosomiasis treatment with unsterilised needles (Frank et al., 2000).
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Outbreaks of HCV have been reported among patients on chronic haemodialysis possibly 

as a result of nosocomial transmission due to environmental contamination from patient to 

patient or incorrect sterilisation procedures of dialysis machines between HCV positive 

and negative patients (McLaughlin et al., 1997). Procedures such as tattooing, piercing 

and acupuncture are also associated with potential risk of HCV transmission.

1.9.1.2. Non-parenteral Transmission of HCV

Cases of hepatitis C infection have been reported where there is no apparent evidence of 

parental exposure. Sexual transmission of HCV does occur, although it is infrequent 

(Memon and Memon, 2002). Co-infection with HIV seems to increase the risk of HCV 

sexual transmission (Lissen et al., 1993). Perinatal transmission of HCV occurred in 

between 0% and 15% and was most likely to occur at the time of delivery (Van Damme 

and Vellinga, 1998). It has been reported that the risk was increased by higher viral load in 

the mother (Zanetti et al., 1998). There has been no evidence of transmission of HCV via 

breast feeding (Polywka et al., 1999).

1.9.2. Prevention of HCV infection

No vaccine or effective prophylaxis is available for the prevention of HCV infection. 

Difficulties in HCV vaccine development include the heterogeneous nature of HCV which 

result in rapid changes within an infected individual. Another potential problem is the lack 

of long term immunity in individuals who resolve the infection. Therefore, there is 

potential for reinfection with either the same or a different HCV isolate. Prevention of 

HCV infection will be the best strategy for the near future. Screening is mandatory for 

donors of blood, organs, tissues, and semen. Otherwise screening is recommended only 

for those with a higher risk of having HCV infection such as individuals who received a 

blood transfusion or a transplant prior to donor screening, haemophiliacs, healthcare 

workers after exposure to HCV positive blood, haemodialysed patients, IVDUs and 

children bom to HCV-infected mothers. However, education of the public on the disease, 

its transmission and prevention could reduce the number of new infections.
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In many developed countries, drug use is the major source of HCV infection. Education 

has a major role to prevent the initiation of drug use in adults. Easy access to sterile 

syringes (syringe exchange programs) accompanied by counselling are important 

strategies for limiting HCV transmission (Taylor et al., 2000). Patients with known HCV 

infection should be counselled on how to limit their risk of transmitting HCV to others. 

They should be advised not to donate blood, organs or semen and not to share 

toothbrushes and razors. Education of healthcare workers to use standard precautions for 

prevention of transmission of blood-bome pathogens in healthcare is important 

particularly in the haemodialysis setting. Individuals with stable long-term relationships 

should be informed of the low risk of transmission, and encouraged to discuss the risk and 

the use of barrier precautions with their sexual partners. The use of condoms is strongly 

recommended in individuals with multiple partners and intra-venous drug users (IVDUs) 

(WHO, 1999)

1.9.3. Clinical features of HCV infection

The natural history of HCV infection is poorly documented because the onset of acute 

infection is often silent. Also, the interval between infection and the development of 

cirrhosis can exceed 30 years, which means there are few prospective studies.

I.9.3.I. Acute hepatitis C

Acute infection is usually asymptomatic. Clinical manifestations occur in only one third of 

patients. Symptoms, when they occur, are malaise, nausea and pain in the right upper 

quadrant of the abdomen. Jaundice occurs in less than 20% of infected patients (Alter et 

al., 1992). Symptoms and signs develop within 2 to 12 weeks of exposure to the virus 

(Marcellin, 1999a). HCV viral RNA becomes detectable by RT-PCR in serum 7 to 21 

days after exposure to infection (Farci et al., 1991) and antibodies appear within 20 to 150 

days (Hoofnagle, 1997). Serum alanine aminotransferase (ALT) levels begin to increase
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before the appearance of clinical symptoms. The rate of chronicity varies from 55% to 

91% (Wiese et al., 2000).

1.9.3.2. Chronic hepatitis C

HCV infection is characterised by a high incidence of chronicity demonstrated by the 

persistence of HCV RNA in serum. Serum ALT levels frequently fluctuate and may be 

normal or elevated in the same patient at different times. It has been shown that serum 

ALT levels are not a good predictor of liver fibrosis (Marcellin, 1999a). Fibrosis has been 

reported to develop into cirrhosis in 20-30% of patients within 2 or 3 decades (Takahashi 

et al., 1993). The role of viral factors in the progression of fibrotic process is not clear. 

However, several other factors have been reported to have a major role in progression of 

liver fibrosis toward cirrhosis. These includes high alcohol consumption, co-infection with 

HIV or HBV, diabetes, obesity and immunosuppression (Pawlotsky, 2004). HCV-related 

end-stage liver disease is now a leading cause of liver transplantation (Marcellin, 1999b; 

Pawlotsky, 2003b). Hepatocellular carcinoma (HCC) is the most severe complication of 

chronic HCV infection and it has been reported to occur in 1-4% of patients (Pawlotsky, 

2004).

1.9.3.3. Extrahepatic manifestations of HCV infection

Many extra-hepatic manifestations have been associated with HCV infection. HCV 

infection is most closely associated with essential mixed cryoglobulinaemia (aggregation 

of immunoglobulins in blood vessels in response to cold) and membranoproliferative 

glomerulonephritis (deposition of immune complexes in the capillaries of the glomeruli) 

(Manns and Rambusch, 1999; Teoh and Farrell, 2004). Review of 50 different studies 

showed that the HCV prevalence in patients with porphyria cutanea tarda is approximately 

50% higher than in the general population (Fargion and Fracanzani, 2003). An association 

between HCV infection and diabetes mellitus type 2 has also been reported (Mason et al., 

1999; Mehta etal., 2003).
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1.9.4. Genotypes and natural history of HCV

In contrast to the clear differences between genotypes in their response to antiviral 

therapy, the issue of whether the pathogenicity of HCV infection varies according to 

genotype is controversial, as there are multiple other host and viral factors which could 

influence the disease. There were reports that genotype lb was associated with a greater 

frequency of cirrhosis and the development of HCC than other genotypes (Bruno et al., 

1997; Dusheiko et al., 1994), while other studies have failed to show any relationship 

between disease severity and genotype (Benvegnu et al., 1997). Infection with genotype 3 

is associated with steatosis, a condition in which lipids accumulate in the liver (Rubbia- 

Brandt et al., 2000). It has been suggested that steatosis resulted from direct cytopathic 

damage by the virus to hepatocytes from a block in lipoprotein secretion (Serfaty et al., 

2001).

1.10. Treatment of HCV

1.10.1. Antiviral therapy

Interferon alpha (IFN-a) was the first recommended therapy for chronic hepatitis C and a 

6 months course of treatment led to normalisation of ALT levels, loss of detectable virus 

in blood and reduction of inflammation in liver biopsies in a few patients. However, IFN- 

a  monotherapy showed a sustained response (defined as undetectable HCV RNA in serum 

at 24-weeks after the end of treatment) in only a minority of patients. Extension of 

duration of treatment up to 12 months still resulted in a sustained response being achieved 

in only 13-25% of patients (Poynard et al., 1996). The combination of ribavirin and IFN- 

a  enhanced the sustained response rate, particularly for patients infected with HCV 

genotype 1 (McHutchison et al., 1998). Ribavirin is a guanosine analogue that has 

antiviral efficacy against respiratory syncytial virus. When used as monotherapy against 

HCV for 24 months, it reduced serum ALT levels but had no impact on HCV RNA levels 

in serum or liver (Di Bisceglie et al., 1995). Treatment of HCV infected patients with the
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combination of a standard interferon-a with ribavirin (in the respective doses of 3 million 

units of IFN-a three times a week and 800-1200 mg/day of ribavirin in a divided dose, 

depending on bodyweight) increased the overall sustained response up to approximately 

50%. Several factors have an important role in the response rate including genotype, viral 

load and presence of cirrhosis, age and gender. Patients with genotype 3 without cirrhosis 

had a sustained response rate of 65-75% after 6 months of combination treatment 

whereas, for genotype 1, high viral load and cirrhosis, it was 10-20% (Teoh and Farrell,

2004). More recently, the development ofpegylated IFN-a has improved sustained 

responses in comparison to monotherapy or the combination of IFN-a plus ribavirin 

(Fried et al., 2002). The attachment of polyethylene glycol to IFN increases the molecular 

weight. This slows the rate of absorption from subcutaneous sites resulting the 

prolongation of serum half-life and the biological effects. It allows once weekly rather 

than thrice weekly injections. The combination of pegylated IFN-a plus ribavirin provided 

sustained responses of approximately 80% for patients infected with non genotype 1 and of 

about 50% for patients infected with genotype 1 (Fried et al., 2002). It has been suggested 

that patients with genotype 1 infection should be treated for 48 weeks with a standard dose 

of ribavirin. Patients with HCV genotypes 2 or 3 could be treated for 24 weeks with a 

lower dose of ribavirin (Hadziyannis et al., 2004).

1.10.2. Predicting response to treatment

The molecular mechanisms responsible for failure of IFN-a treatment are not well known, 

but evidence indicates that both viral and host factors are involved. It has been shown that 

younger females responded better to IFN-a therapy than older males (Booth et al., 2001). 

Hayashi et al. (1998b) reported that the rate of sustained response to IFN-a therapy was 

33.3% in men aged 39 years or younger, 25.0% in men aged 40 years or older, 75.0% in 

women aged 39 years or younger, and 15.6% in women aged 40 years or older. Several 

clinical studies have reported that African American HCV infected patients had poor 

responses to treatment with IFN-a monotherapy or even with combination of IFN-a plus 

ribavirin (Layden-Almer et al., 2003; Reddy et al., 1999). Martinot-Peignoux et al (1995)
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reported that the average age of complete responders was 35 years, which was 5 years 

younger than the average age of nonresponders. One possible explanation is that older 

HCV patients are likely to have more advanced liver disease, such as fibrosis and 

cirrhosis. The presence of an inadequate immune response in the elderly may be another 

important factor responsible for decreasing the number of successful responses to IFN-a 

treatment in older patients. In fact, absence of cirrhosis has been associated with an 

increased response to IFN-a therapy (Jouet et al., 1994). Higher body mass index (greater 

than 30 kg/m2) and hepatic steatosis are associated with a poorer response to treatment 

(Bressler et al., 2003; McCullough, 2003).

Several viral factors have been reported to be predictive of responses to treatment. Viral 

genotype has been repeatedly shown to be the strongest predictive factor for treatment 

response, followed by pre-treatment serum viral titres and the duration and status of HCV 

infection at the time of treatment (Gao et al., 2004). It has been shown that being infected 

with genotypes 2 and 3 was predictive of a better response than with genotype 1. A higher 

pre-treatment viral load was associated with decreased rates of response (Hayashi et al., 

1998a). It has been reported that patients with fewer than 2xl06 copies/ml of viral RNA 

showed a 44% response rate, compared to 27% for those with greater than 2xl06 

copies/ml using combination therapy of IFN-a 2b plus ribavirin (Poynard et al., 1998). 

High quasispecies complexity at the beginning of treatment has been shown to be 

predictor of poor responses to treatment (Pawlotsky et al., 1998). It has been suggested 

that this is because the greater the diversity of variants, the greater the chance that IFN- 

resistant species will be present or escape mutants will be generated that will survive IFN- 

a  treatment. However, greater diversity may simply be related to higher viral load.

Alcohol consumption is considered one of the important exogenous factors associated 

with poor responses to treatment. Patients should be advised not to drink alcohol while 

they receive IFN-a treatment. One possible mechanism is direct inhibition of IFN 

activated signals in hepatocytes by alcohol (Nguyen et al., 2000). The fibrosis score and its 

rate of progression have been suggested as independent predictors of response to IFN 

treatment (Banner et al., 1995). Patients with cirrhosis are more resistant to treatment than
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those who have fibrosis, whereas patients with fibrosis are less responsive to treatment 

than those without fibrosis (Gao et al., 2004)
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1.11. The background to the work in this thesis

Previous studies have reported differences in IRES efficiencies when comparing 5’UTR 

sequences from two or three different HCV genotypes. A few studies compared translation 

efficiency of genotype 1 and 3 and reported contradictory results. One study reported that 

the 5’UTR of GT3 is 50% less able to direct translation initiation that the 5’UTR of GT1 

(Buratti et al., 1997), while another suggested the presence of similar translation efficiency 

(Collier et al., 1998). Patients infected with GT3 have a better response to treatment with 

interferon-a (IFN-a) either alone, or in combination with ribavirin. The causes and 

mechanisms of HCV resistance to IFN-a treatment are not understood. However, a lower 

translational efficiency of GT3 could contribute to the greater effectiveness of interferon 

therapy. Previous studies on translation efficiency measured the efficiency of translation 

of a single sequence as a representative of a genotype. No attempt had been made to 

ensure the sequences matched those actually found in patients so that it is not clear 

whether the observed IRES activity was genotype or actually only sequence specific. The 

effect of the core gene on translation of polyprotein by the HCV IRES is controversial. 

Several studies have found that including sequences encoding all or nearly full-length core 

protein in constructs appears to reduce the efficiency of reporter gene translation. It is not 

clear whether the core protein itself or the core encoding RNA sequence leads to 

suppression of IRES translation initiation. It was reported that the HCV core protein itself 

reduced the efficiency of HCV translation by binding to the IRES (Shimoike et al., 1999). 

In contrast, another study suggested that the core protein did not appear to have any 

specific effect on HCV IRES directed translation, and instead, it was reported that 

suppression of IRES activity resulted from an RNA-RNA interaction (Wang et al., 2000).

The significance of translational efficiency has not been explored in the clinical context. 

HCV replicates in the liver, yet no study has been reported in which translation efficiency 

has been related to serum viral loads and histological changes observed in the liver of 

infected patients. It is conceivable that a more efficient IRES may be correlated with a 

higher viral load and a greater ability to resist the inhibitory effects of interferon. The 

presence of a correlation between viral load and severity of histopathological changes in
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the liver has been controversial. Several groups reported that higher RNA levels in serum 

were associated with the presence of severe liver disease (Adinolfi et al., 2001b; Gretch et 

al., 1994; Kumar et al., 1994). In contrast, no correlation was reported by other studies 

(Anand and Velez, 2004; Lee et al., 2001; Zeuzem et al., 1996).

HCV infection is characterised by a high incidence of chronicity. Our group had 

hypothesized that the liver might contain minor variants with lower translational activity 

which would allow sufficient protein expression for viral replication but insufficient levels 

to induce immune recognition of infected liver cells resulting in persistent infection. 

Reviewing the literature, only two reports were found in which the differences between 

quasispecies composition in the 5’UTR between serum and liver were reported (Cabot et 

al., 1997; Jang et al., 1999). The presence of 5’UTR variants specific to liver samples 

which were not found in serum samples from the same individuals has been reported (Jang 

et al., 1999). Previous work by P. Preikschat in our laboratory showed the presence of 

identical majority sequences of 5’UTR in matched serum and liver samples from 26 

chronically HCV infected patients. However, majority sequence analysis is not able to 

detect minor variants in the quasispecies. Their detection would require other methods 

such as single-strand conformation polymorphism (SSCP) or sequencing of many cloned 

PCR products.

More detailed discussion of the background to each of the experiments performed is 

provided at the beginning of the relevant chapters.
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1.12. Aims and objectives

The aims of this project were to carry out experiments to answer the following questions:

A) Is the translation efficiency of HCV genotype 3 consistently lower than that of 

genotype 1?

B) Does the translation efficiency of the HCV IRES correlate with viral load and liver 

histology in HCV infected patients?

C) Is there evidence that variants within the HCV quasispecies with low translation 

efficiencies exist in the liver?

The following objectives were achieved:

1. To construct 5'UTR and 5TJTR plus core gene clones matched with majority 

sequences obtained from a number of genotype la and 3a infected patients in order 

to examine the translation efficiencies and determine whether there is a consistent 

difference between genotypes.

2. To measure serum viral load using real time PCR and histological index of liver 

biopsies using the Ishak scoring system to investigate possible correlations 

between translation efficiency, viral load and liver histology.

3. To clone and sequence the 5’UTR region from serum and matched liver samples 

from 3 genotype la and 3 genotype 3a infected patients to analyse the quasispecies 

composition.

4. To employ the technique of SSCP to analyse the 5 ’UTR region in the same 

samples to confirm, or otherwise, the cloning and sequencing data.
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Chapter 2

Materials and methods

2.1. Materials

2.1.1. Bacterial Strains

Plasmids were manipulated and propagated in the Escherichia coli (E. coli) competent 

Top 10F cells (Invitrogen) and Epicurian Coli XL 1-Blue cells (Stratagene).

2.1.2. Vectors

pRL vector (Collier et al., 1998) Kind gift from Professor

2.1.3. Synthetic oligonucleotides

Ordered from MWG-Biotech (Germany) and later from Sigma-Genosis Ltd

2.1.4. Kits and enzymes for RNA/DNA modification

Richard Elliott

pCRII-TOPO Lifetechnologies

Advantage -HF2 PCR kit, 

AdvanTaq Plus PCR kit 

QIAquick Gel Extraction Kit

BD Biosciences

BD Biosciences

Qiagen
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QIAprepSpin Miniprep Kit

QIAmp RNA extraction kit, SuperFect transfection reagent, 

Restriction Enzymes, CIP, T4 DNA ligase, NTPs 

Reverse transcriptase, RNase H 

RNasin

Taq DNA Polymerase in Storage Buffer A

Qiagen

Qiagen

Roche

Life Technologies

Promega

Promega

2.1.5. Mammalian cell lines and culture media

Laboratory stocks of human hepatoma cell lines (HuH7), baby hamster kidney (BHK-21) 

cells, baby hamster kidney cells expressing T7 RNA polymearse (BHKsinT7) and an 

African green monkey kidney cell line (CV1) were used.

Glasgow minimal Eagles Medium (GMEM), Dulbecco’s modified Eagles Medium 

(DMEM), new bom calf serum (NBCS), foetal calf serum (FBS), penicillin/streptomycin, 

L-glutamine, puromycin, non-essential amino acids and S.O.C medium were supplied by 

Life Technologies.

Phosphate buffered saline (PBS), PBS (A), versene, trypsin, L-broth, tryptose phosphate 

(TP) broth, were produced “in-house” by the media department.

2.1.6. Human sera

The sera were taken with written informed consent from the patients and consent for the 

study was given by West Glasgow Research Ethics Committee. Sera were stored in an 

MRC funded tissue store at Gartnaval General Hospital. Sera were separated within 4 

hours of sampling by C.A. Smith, L. Conroy, A. Orr and K. Stewart. Sera were stored in 

small aliquots at -20°C or in liquid nitrogen.
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2.1.7. Luciferase assay

Dual-Luciferase Reporter Assay Promega

2.1.8. Antibodies

Donkey anti-Goat IgG, horse radish peroxide (HRP) Promega

Goat anti-Luciferase antibody Promega

Mouse anti-core (JM122) Kind gift from

Dr.J.McLauchlan 

Rabbit anti-mouse HRP Sigma

Mouse monoclonal anti-B Actin Clone AC-15 Sigma

2.1.9. Chemicals

All chemicals were obtained from Sigma Chemical Co., BDH Chemicals Ltd or Roche.

ECL, Hybond nitrocellulose membrane Amersham

30% acrylamide, ammonium persulphate Bio-Rad

Dried skimmed milk Marvel

2.1.10. SSCP

Mutation Detection Enhancement Gel (MDE) Cambrex

SilverXpress Invitrogen

2.1.11. Commonly used solutions

Miniprep solution I 25mM Tris HC1 (pH 8.0), 50mM glucose, lOmM

EDTA (pH8.0)

Miniprep solution II 0.2M NaOH, 1% SDS

Miniprep solution III 3M potassium acetate, 5M acetic acid
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Ethanol

Agarose gel loading buffer

L-broth

L-broth agar

PBS (A)

PBST

Resolving gel buffer 

Running gel buffer 

Stacking gel buffer 

Stripping buffer 

Sample loading buffer 

for protein analysis

TBE(IX)

Towbin buffer

TE buffer 

Trypsin solution

Versene 

Wash solution

2.1.12. Virus stocks.

100% and 70% diluted with distilled water 

0.1M EDTA, 50% sucrose, lpg/ml bromophenol blue. 

lOg NaCl, lOg Bactopeptone and 5g yeast extract per litre. 

L-broth plus 1.5% (w/v) agar.

170mM NaCl, 3.4mM KC1, lOmM Na2HP04, 1.8mM 

KH2P04, 25mM Tris-HCl (pH 7.2).

PBS (A) plus 0.05% (v/v) Tween 20.

1.5M Tris-HCl (pH 8.9), 0.4% SDS.

40mM Tris, 185mM glycine, 0.1% SDS.

0.5M Tris-HCl (pH 6.8), 0.4% SDS.

62.5 mM Tris-HClpH6.7, 2% SDS, 100 mM

100 mM Tris-HCl pH6.9, 2% SDS, 10% Glycerol, 5% (3- 

mercaptoethanol, 1 pg/ml bromo-phenol-blue 

90mM Tris-HCl (pH 8.0), 90mM Boric Acid, ImM EDTA 

25mM Tris-HCl (pH 8.3), 192mM glycine, 20% (v/v) 

methanol.

lOmM Tris-HCl (pH 7.5), 1 mM EDTA

0.25% (w/v) Difco trypsin dissolved in PBS(A), 0.005%

(w/v) phenol red.

0.6mM EDTA in PBS(A), 0.002% (w/v) phenol red. 

800mM NaCl, lOOmM sodium acetate / acetic acid 

(pH 5.0).

vTF7.3 is a recombinant vaccinia virus that expresses T7 RNA polymerase (Fuerst et al., 

1986) and was obtained from Professor R.Elliott.
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2.1.13. Other materials and apparatus

X-Omat UV film was purchased from Kodak Ltd, as was developer and fixer for the 

KONICA. All tissue culture plasticware was supplied by Nunc.

2.2. Manipulation of DNA and RNA

2.2.1. Small scale preparation of plasmid DNA (Minipreps)

2.2.1.1. Using QIAprep Spin Miniprep Kit

The extraction of plasmid DNA from bacterial culture was performed using the QIAprep 

Spin Miniprep Kit according to the manufacturer’s instructions. Briefly, single colonies of 

transformed bacteria were inoculated into 5ml of L-broth containing lOOpg/ml ampicillin 

and incubated with shaking overnight at 37°C. Two 1.5ml aliquots of culture were 

centrifuged at 13,000 rpm for 30sec, the supernatant removed and the cell pellet 

resuspended in 250 pi Pre-Lysis solution (Buffer PI). This was followed by the addition 

of 250 pi of Cell Lysis solution (Buffer P2), which was mixed gently and thoroughly by 

inversion until the solution was clear and viscous. 350 pi of Neutralising solution (Buffer 

N3) was added before centrifugation for 10 min at 13,000 rpm. The supernatant was 

transferred to a QIAprep column and was centrifuged for 1 min before the addition of 

750pl of Wash solution (Buffer PE) and a further lmin centrifugation. DNA was eluted by 

the addition of 50pl dfUO or elution buffer (Buffer EB). The plasmid DNA was stored at - 

20°C.
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2.2.1.2. “In-house” Miniprep method

Colonies of transfected bacteria were inoculated into 2-3ml of LB broth containing 

ampicillin at lOOpg/ml and incubated in a shaker at 37°C overnight. One ml o f the 

overnight culture was transferred to a 1.5ml microcentrifuge tube and centrifuged at 

13,000 rpm for 30 sec. After decanting the supernatant, the pellet was resuspended in 100 

pi of ice cold Miniprep solution I and left at room temperature for 5 min. 200 pi o f freshly 

prepared Miniprep solution II was added, mixed gently and left on ice for 2-3 min. 150pl 

of Miniprep solution III was added, mixed by few inversions and left on ice for 2-3 min. 

150pl of phenol/chloroform was added to the mixture, vortexed and centrifuged at 13,000 

rpm for 5 min. The aqueous phase was transferred to a fresh tube, 800pl of 100% ice cold 

ethanol was added to precipitate the plasmid DNA and centrifuged for 10 min. The pellet 

was then washed with 70% chilled ethanol, air dried and finally resuspended in 50pl dt^O 

containing RNase at 20 pg/ml to remove any contaminating RNA.

2.2.2. Large scale preparation of plasmid DNA (Midipreps)

Large quantities of plasmid DNA were isolated from cells using the QIAfilter Plasmid 

Midi Kit as specified by the manufacturers instructions. 50ml of L-broth containing 100 

pg/ml ampicillin was inoculated with bacteria and incubated with shaking overnight at 

37°C. Cells were pelleted by centrifugation at 3,000 rpm for 15 min at 4°C. The 

supernatant was removed completely and the cell pellet resuspended in 4ml of cold 

Resuspension solution (Buffer PI) (containing RNase). 4ml of Cell Lysis solution (Buffer 

P2) was added and mixed by inversion before leaving at room temperature for no longer 

than 5 min. 4ml of chilled Neutralisation solution (Buffer P3) was added, immediately 

mixed by inversion and incubated in QIAfilter cartridge at room temperature for 1 Omin. 

The QIAGEN-tip 100 columns were equilibrated with 4ml of Equilibration solution prior 

to the addition of the supernatant which was allowed to flow through the column by 

gravity. Two 10ml aliquots of Wash solution (Buffer QC) were applied to the column and 

the DNA was eluted by the addition of 5ml of Elution solution (Buffer QF). The DNA 

solution was mixed with 3.5ml of room temperature isopropanol and the DNA precipitated
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by centrifugation at 11,000 rpm for 30 min at 4°C. The DNA pellet was washed with 70% 

ethanol and centrifuged at 11,000 rpm for 10 min at 4°C. Finally, the DNA was air-dried 

and resuspended in lOOpl of dt^O and stored at -20°C.

2.2.3. Quantification of plasmid DNA and oligonucleotides

DNA was quantified by reading the optical density of a 10'2 dilution of miniprep or 

midiprep DNA at 260 and 280 nm using a HeXiosa version 4.55 spectrophotometer. The 

formula below was used to determine the concentration of nucleic acids.

Concentration (pg DNA/ml)= O.D.260 x N x  100

O.D= value of 1 OD260 

N= OD reading 

100= dilution factor

A value of 1 OD260 is equivalent to: 50 pg/ml for double strand DNA

40 pg/ml for single strand DNA 

20 pg/ml for oligonucleotides (less than 30 bases 

in length)

Purity of nucleic acids was determined by readings at 260nm and 280nm (A260/A280), 

where a ratio of 1.8 indicated that the preparation was relatively free of protein 

contaminants.

2.2.4. Restriction enzyme digestion of DNA

All reactions were incubated at 37°C (or the temperature specified by the supplier) for 2-3 

hours in a total volume of 20pl which contained 10U of restriction enzyme per lpg of 

DNA in the buffer supplied for the enzyme. DNA fragments were analysed by agarose gel 

electrophoresis as described in 2.2.9.1.
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2.2.5. Dephosphorylation of linearised plasmid DNA

Removal of the 5’ terminal phosphates of digested vectors was carried out using calf 

intestinal phosphatase (CIP). Reactions were carried out in a total volume of 50pl 

containing 5 pi of lOx CIP buffer (Roche) and 1 unit of CIP per 5pg of DNA. The reaction 

was incubated at 37° C for 60 minutes followed by inactivation of enzyme by adding 5 pi 

of 0.2 mM EDTA and further incubation at 65°C for 10 minutes. The linearised, 

dephosphorylated vector was purified as described in 2.2.9.2 in preparation for ligation.

2.2.6. Extraction of RNA from human sera

HCV RNA was extracted from human sera using the “QIAamp viral RNA” kit from 

Qiagen, as specified by the manufacturer's instructions. For lysis of virus particles, a 

140pl aliquot of serum was added to 560pl of AVL buffer (viral lysis buffer) containing 

carrier RNA and mixed, then centrifuged for 1 min at 8,000 rpm. After incubation at room 

temperature for 10 min, 560pl of 100% ethanol was added and mixed. A 630pl aliquot of 

the solution was added to a QIAamp spin column and centrifuged for 1 min at 8,000 rpm. 

The filtrate was discarded and the remaining 630pl applied to the column and the 

centrifugation step repeated. The filter was washed with 500pl of buffer AW1, 

centrifuged at 1 min at 8,000 rpm and the filtrate discarded. This wash step was repeated 

with 500 pi of buffer AW2 and centrifugation at 14000rpm for 3 min. The RNA was 

eluted by the addition of 60pl buffer AVE or 50 pi of pre-heated (80°C) RNase-free water 

(DEPC H2O), incubation at room temperature for 1 min and centrifugation at 8,000 rpm 

for 1 min. The viral RNA was stored at -20°C until required.
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2.2.7. Reverse transcription of RNA

2.2.7.1. Omniscript reverse transcriptase

For the purposes of quantification, Omniscript reverse transcriptase (Qiagen) was used for 

the reverse transcription reaction. Briefly, 3 pi of RNA was added to 9.7 pi water and 

incubated at 65°C for 5 min then cooled to 4°C. To this was added a mix containing 2 pi 

of 10X RT buffer (Qiagen), 2 pi dNTP mix (5mM each dNTP), 40 pmoles VtagRT 

primer, 12U RNasin and 4U Omniscript reverse transcriptase. This mix was incubated at 

37°C for 60 min and then 93°C for 5 min before cooling to 4°C

2.2.7.2. Superscript reverse transcriptase

Reverse transcription was performed using “SUPERSCRIPT II” reverse transcriptase from 

Life Technologies. In a total volume of 12.5pl, 40 pmoles of primer (Vtag RT) was 

added to 3 pi of viral RNA. Primer annealing occurred by heating to 70°C for 10 min and 

cooling to 4°C. This was then added to a reaction mix containing 50mM Tris-HCl (pH 

8.3), 7.5mM KC1, 3mM MgCb, 20 units of RNAsin, lOmM DTT, ImM each of dGTP, 

dATP, dTTP and dCTP, and 200U of SUPERSCRIPT II reverse transcriptase to give a 

final volume of 20pl. The reaction was performed at 42°C for 50 min and then inactivated 

at 70°C for 15 min before cooling to 4°C. To remove RNA complementary to the cDNA, 

2 units of Ribonuclease H (RNase H) was added and the reaction incubated at 37°C for 20 

min. cDNA was stored at 4°C.

2.2.8. Polymerase chain reaction (PCR)

2.2.8.I. Amplification of 5'UTR

Amplification of 5’UTR was carried out using DNA templates containing 5’UTR and core 

regions generated by P. Preikschat in our laboratory as described in 2.2.8.2. Second round
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of PCR reactions were performed using the Clontech Advantage HF 2 PCR kit which 

contained AdvanTaq DNA polymerase, a small amount of a proofreading polymerase and 

Taq Start antibody to provide automatic hot-start PCR. For the second round PCR reaction, 

1 pi of the first round product was added to a 19pl reaction mixture containing HF2 PCR 

buffer, 0.2 mM each of dATP, dCTP, dGTP and dTTP, 5 pmoles of each primer and 0.5pi 

of the polymerase. PCR reactions were carried out under the following reaction 

conditions: a denaturation step of 94°C for 2 min and then thermal cycling of 94°C for 50 

sec (strand separation), 56°C for 30 sec (primer annealing) and 72°C for 50 sec (strand 

elongation) for 25 cycles. Finally, the reaction was heated to 72°C for 6 min for a final 

extension step and cooled to 4°C. For purification of the PCR product, the second round 

PCR reaction volume was increased to 50pl. All PCR reactions were carried out in a 

Biometra “TRIO-Thermoblock”.

2.2.8.2. Amplification of the 5'UTR and core

First round of PCR reactions were carried out by P. Preikschat using the Clontech Advan 

Taq Plus PCR kit as described here. 4pl of cDNA was added to a 16pl reaction mixture 

containing PCR buffer, 0.2mM each of dATP, dCTP, dGTP and dTTP, 5 pmoles of each 

primer and 0.5pi of the polymerase. PCR reactions were carried out under the following 

reaction conditions: a denaturation step of 94°C for 2 min and then thermal cycling of 

94°C for lmin (strand separation), 67°C for 50 sec (primer annealing) and 72°C for 2min 

(strand elongation) for 38 cycles. Finally, the reaction was heated to 72°C for 6 min for a 

final extension step and cooled to 4°C.

The entire 5’UTR and core regions were re-amplified using PCR products generated by P. 

Preikschat as template. PCR was performed using the Advantage-HF2 PCR kit 

(Clontech). In this round, lpl of the first round product was added to a 19pl reaction 

mixture containing the same components as for the first round reaction except, this time 

using a different set of primers. Following a 2 min denaturation step at 94°C, the reactions 

underwent thermal cycling of 94°C for 50 sec, 56°C for 30 sec and 72°C for 70 sec for 25
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cycles. Finally, the reaction was heated to 72°C for 6 min for a final extension step and 

cooled to 4°C. For purification of the PCR product, PCR reaction volume was increased to 

50pl.

2.2.8.3. Amplification of cDNA for quantitation of viral load

For quantitation proposes, the cDNA was amplified by PCR using a Applied Biosystems 

“5700 sequence detection system” and all PCR reagents and primers were obtained from 

Applied Biosystems. Extraction of RNA and RT were carried out as described previously.

1 pi of cDNA was added to a mix containing 12.5 pi of PCR mastermix 

(“AmpliTaqGold” DNA polymerase and dNTPs), 7.091 pmoles of EMC HCV F (sense) 

primer, 1.225 pmoles of EMCHCV R (antisense) primer and 5.1 pmoles of EMCMGBP 

fluorescent probe as optimised by C.A. Smith previously. The cDNA was amplified with 

the following thermal cycling program: 50°C for 2 min, 95°C for 10 min and 40 cycles of 

95 °C for 15 sec and 60°C for 1 min. All reactions were quantified against a HCV positive 

serum of known titre and quantified RNA to generate a standard curve.

2.2.9. Electrophoretic separation and isolation of DNA

2.2.9.I. Agarose gel electrophoresis

Electrophoresis of DNA fragments produced by PCR or restriction enzyme digestion were 

carried out in horizontal slab gels containing 1-1.5% (w/v) agarose gel in lx  TBE or 

buffer containing a final concentration of 0.5pg/ml of ethidium bromide. DNA samples 

contained 0.2 volumes of loading dye. Agarose gel loading buffer was added to each DNA 

sample prior to electrophoresis at 60-100V in lx TBE buffer. An appropriately sized 

molecular weight marker (Roche) was included for comparison. Following 

electrophoresis, DNA was visualised under short-wave UV light or, for preparative gels, 

under long-wave UV light. Photography was carried out using the Bio-Rad “Gel Doc 

2000” Imaging system and accompanying software.
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2.2.9.2. Purification of DNA from agarose gels

100 ml horizontal slab gels (140mm xl20mm x 5mm) containing 0.8% (w/v) agarose and 

0.5 pg/ml of ethidium bromide were submerged in 1 x TAE buffer. 80 pi of PCR product 

with 20 pi gel loading dye were loaded and electrophoresed at 80-100 V for 60-90 

minutes. DNA was examined, photographed and the band of interest excised using brief 

exposure to long wave ultraviolet light. The DNA was recovered using the “QIAquick Gel 

Extraction Kit” (Qiagen), which uses a silica gel based system. Three volume of binding 

buffer (Buffer QG) containing the silica gel matrix was added to one volume of sliced gel 

and incubated at 50°C until the gel had dissolved. The solution was applied to the column 

after adding xl volume of isopropanol. The mixture was centrifuged at 13,000 rpm for 1 

min. DNA was washed with 750pl wash solution (Buffer PE) and the centrifugation step 

repeated. The pellet underwent further centrifugation for 1 min and the DNA was eluted 

by the addition of 30 to 50 pi of elution buffer (Buffer EB). The DNA was stored at -20 C

2.2.9.3. Phenol/Chloroform extraction

Proteins were removed from bulk restriction enzyme digestions (containing more than 5pg 

DNA) by the addition of an equal volume of a 25:24:1 solution of phenol: chloroform: 

isoamyl alcohol (Sigma). This mixture was mixed vigorously and centrifuged for 5 min at 

13,000 rpm. This resulted in the organic layer containing the protein being separated from 

the aqueous layer containing the nucleic acid. The aqueous layer was transferred to an 

equal volume of a 24:1 solution of chloroform:isoamyl alcohol to remove any residual 

phenol and the centrifugation step repeated. Finally, the aqueous layer was removed and 

the nucleic acid concentrated by ethanol precipitation as described in 2.2.9.4.
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2.2.9.4. Ethanol precipitation

The DNA was recovered from the aqueous phase by precipitation by adding 2 V2 volumes 

of ethanol and 1/10 volume of 3M sodium acetate. After mixing, the solution was placed 

on dry ice for 15 min and the precipitated nucleic acids collected by centrifugation at 

13,000rpm for 10 min. The pellet was washed with 70% ethanol and centrifuged at 

13,000rpm for 3 min. The pellet was then air-dried and resuspended in 10-50pl of dtLO.

2.2.10. Ligation of DNA fragments.

2.2.10.1. Ligation of DNA fragment into pRL vector (Collier et al., 1998)

Ligation reactions were carried out in a reaction volume of 10 pi containing 2 pi 5x 

ligation buffer (Gibco BRL), 1 unit T4 DNA ligase, 100 ng linearised vector, DNA insert 

and made up to final volume with dfLO. Vector and “insert” DNA fragments were ligated 

in a 1:3 molar ratio. Reactions were incubated at 25°C overnight before transformation of 

competent E.coli.

2.2.10.2. Ligation of DNA fragment into pCRII vector (TA cloning)

Ligation reactions were carried out in a reaction volume of 6 pi containing 1 pi of salt 

buffer, 1 pi of DNA insert, 1 pi of pCRII vector and made up to final volume of 6 pi with 

dH20. Reactions were incubated at room temperature for 15 min and transformed into 

competent E.coli (ToplO cells) as described in 2.3.2

2.2.11. Single Stranded Conformation Polymorphism (SSCP) analysis

2.2.11.1. Generation of double stranded DNA.

Generation of double stranded DNA was carried out as detailed in section 2.2.8.1 using 

primers PP-AC5 and NCR4 (chapter 7, Table 7.2).

60



Chapter 2

2.2.11.2. Purification of double stranded DNA

80pl of PCR product was run on a 1% agarose gel in TAE buffer as detailed in section 

2.2.9.2 and the DNA recovered by QIAquick Gel Extraction Kit. The DNA was eluted in 

50 pi of elution buffer. Concentration of DNA was estimated by running of lpl of product 

on a 2% agarose TBE gel alongside a DNA mass ladder marker (Invitrogen).

2.2.11.3. SSCP of PCR product

50ng of PCR product was mixed with 2x volume of loading solution (0.05% xylene 

cyanol, 20mM EDTA, 95% formamide). This mixture was heated and denatured at 95°C 

for 5 min and snap-cooled on ice and then subjected to modified nondenaturing PAGE 

(0.5 x MDE) at 200V for 18 hours at room temperature. The 0.5x MDE gels were 

prepared as specified by the manufacturer's instructions and consisted of 25 ml of MDE 

Gel Solution (2X), 6 ml of 10 x TBE Buffer, 40 pi of TEMED, 400 pi of 10% APS made 

up to 100 ml with df^O and poured into a vertical gel apparatus (Protein II kit from 

Biorad). Two lanes of molecular weight markers (Marker VI) and a standard clone (2c) 

were also run on each gel to test reproducibility. SSCP distinguishes DNA according to 

conformation so the markers did not indicate the molecular weights of sample fragments. 

The gel was stained in 1 pg/ml ethidium bromide for 30 mins followed by 3 washing steps 

(using 0.6 x Tris-borate-EDTA buffer) and the bands were visualised under ultraviolet 

light.

2.2.11.4. Silver staining method

Silver staining carried out using Silver Xpress® Silver staining Kit (Invitrogen) as 

described in manufacturer's instructions. Briefly, the gel was incubated in “Sensitising 

Solution” (198 ml dP^O and 2 ml sensitiser) for 20 min followed by 2 washing steps with 

dH20 for 5 min. The gel was incubated in gel “Staining Solution” (5ml of stainer A, 5ml
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Stainer B and 90ml dt^O) for 30 min followed by 2 washes for 5 min. Then the gel was 

incubated in “Developing Solution” (5ml Developer and 95ml dt^O) for 3-15 min and 

when the desired intensity was reached, 5 ml “Stopping Solution” was added and 

incubated for lOmin. Finally, the gel was washed 3 times with 200ml of H2O for 10 min.

2.2.11.5. Extraction of DNA from silver stained gel

Extraction of DNA from silver-stained polyacrylamide gel was performed as described in 

(Laskus et al., 1998). The bands of interest were cut out of the gel using a clean disposable 

scalpel and then crushed with a pipette tip in a 1.5ml microcentrifuge tube. 300 ml of 

dH20 water was then added and the tube was shaken for six hours at 37°C. The solution 

was filtered through a 0.45pm syringe filter, purified using a “QIAquick PCR Purification 

Kit” (Qiagen), and eluted in 30pl of elution buffer.

2.2.12. Automated DNA sequencing

Automated DNA sequencing was carried out using an ABI PRISM BigDye™ terminator 

Cycle Sequencing Ready Reaction Kit. Sequencing was carried out by Dr. G. Riboldi- 

Tunicliffe (Microarray and DNA Analysis Unit of the Sir Henry Wellcome Functional 

Genomics Facility, University of Glasgow).

2.3. Transformation of competent E.coli cells

Commercially available chemically competent TOPI OF cells (Invitrogen) were used to 

obtain plasmid DNA. A 50pl aliquot of cells was thawed on ice before the addition of 2pl 

0.5M P-mercapto ethanol and 2pl of the ligation reaction. This mixture was chilled on ice 

for 30 min and then incubated at 42°C for 30 seconds to “heat shock” the bacteria and 

then chilled on ice for another 2 min prior to the addition of 250pl S.O.C. medium. The 

cells were incubated at 37°C for 1 hour in a shaking incubator and then plated onto agar 

plates containing lOOpg/ml ampicillin and incubated at 37°C overnight. Occasionally.
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Epicurian Coli XL 1-Blue (Stratagene) cells were used for transformation using the same 

methods as described for TOPI OF cells. For blue/white selection, 40 pi of X-gal and 40 pi 

of IPTG were spread on each LB plate and incubated at 37°C until ready for use.

2.4. Maintenance of mammalian cells

2.4.1. BHK cells

Baby Hamster Kidney (BHK) cells were cultured in Glasgow minimal Eagles Medium 

(GMEM) containing 10% new bom calf semm (NBCS), 4% tryptose phosphate (TP) 

broth and 100 units/ml of penicillin/streptomycin at 37°C with 5% CO2 in 160cm tissue 

culture flasks. Cells were harvested at confluency, with a yield of 2-4x107 cells per flask. 

Cells were passaged by trypsinization (trypsin:versine 1:1 v/v) (10ml) for 2-3 min at room 

temperature and resuspended in supplemented GMEM to allow seeding of new flasks. 

Cells were incubated in a humidified CO2 incubator 37°C.

2.4.2. BHKsinT7 cells

BHKsinT7 cells expressing bacteriophage T7 RNA polymerase with puromycin selection, 

were treated as for BHK cells but were propagated in Glasgow minimal Eagles Medium 

(GMEM) supplemented with lpg /ml of Puromycin.

2.4.3. HuH7 cells

HuH7 cells were cultured in Dulbecco’s modified Eagles Medium (DMEM) containing 

10% foetal calf semm (FCS), 4mM L-glutamine, 2% tryptose phoshate (TP) broth, 1% 

non-essential amino acids and 100 units/ml of penicillin/streptomycin at 37°C with 5% 

CO2 in 160cm tissue culture flasks. Cells were harvested at confluency, with a yield of 

2-4x107 cells per flask.
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2.4.4. CV-1 cells

CV-1 cells (an African green monkey kidney cell line) were used to grow vTF7.3. The cell 

line was maintained in Dulbecco's modified Eagles Medium (DMEM) containing 10% 

foetal calf serum (FCS), 100 units/ml of penicillin/streptomycin at 37°C with 5% CO2 in 

160cm2 tissue culture flasks.

2.5. Transfection of mammalian cells

2.5.1. Transfection of pRL constructs into BHKsinT7 cells

On the day prior to transfection, 6 x 104 cells/well were seeded onto in a 24-well plate. On 

the day of transfection the cells had grown to approximately 60-80% confluency. Plasmid 

DNA (1.5 pg/well) was mixed with serum-free medium (“Optimem”) (100 pi) and 

subsequently mixed with Optimem (150 pi) containing lipofectin reagent (lOpl) provided 

from R. Elliott's laboratory prepared as described by Rose et al.{ 1991). The mixture was 

incubated at room temperature for 15 min, during which time, the cells were washed once 

with Optimem. Following incubation for 15mins, the mixture was immediately pipetted 

onto cells. Cells were incubated at 37°C for 3 hours whereupon the transfection mix was 

removed and 1 ml of appropriate cellular medium was added to each well. Cells were 

harvested 16 hours after the addition of serum. For each construct, two or three replicate 

wells were transfected.

2.5.2. Transfection of pRL constructs using vTF7.3 vaccinia virus

Subconfluent monolayers of HuH7 cells in 24-well plates were infected with vTF7-3, a 

vaccinia virus expressing T7 RNA polymerase at 5 PFU/cell in 300 pi of serum-free 

medium (Optimem; Gibco-BRL) for 30 min at 37°C. The inoculum was removed, and the 

cells were washed once with Optimem. The cells were then transfected with plasmid DNA 

(1.5pg/well) in 300 pi of Optimem containing 15 pi of liposomes. Cells were incubated 3
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hours at 37°C whereupon transfection mix was replaced with 1ml DMEM growth 

medium. The cells were harvested 16 h after addition of medium and assayed as described 

below. For each construct, two or three replicate wells were transfected. All constructs 

were tested in three separate experiments.

2.5.3. Growth and purification of vTF7.3

A confluent 175 cm2 flask of CV-1 cells was inoculated with 10 pi of stock (1x10 pfu/pl) 

in 5ml DMEM-5% FCS and incubated at 37°C for 1 hour with agitation every 15 minutes. 

The medium was replaced with 20ml DMEM-5% and returned to 37°C for approximately 

2 days until cytopathic effects were visualised. The infected cells were centrifuged at 3000 

rpm and resuspended in 4ml of lOmM Tris-HCl pH 9.0 at 4°C. The cells were disrupted 

by 3 cycles of freeze thawing (5 minutes in dry ice, 5 minutes at 37°C) before nuclei were 

pelleted at 10000 rpm for 5 minutes at 4°C and the supernatant removed to a sterile tube. 

The pellet was resuspended in 4ml lOmM Tris-HCl pH 9.0, recentrifuged and the two 

supernatants combined. A one tenth volume of trypsin solution was added and the sample 

incubated at 37°C for 30 minutes with frequent mixing. Four millilitre aliquots were then 

layered onto 12ml 36% (w/v) sucrose in 10 mM Tris-HCl pH 9.0 and centrifuged at 13000 

rpm in an SW29 rotor for 80 mins at 4°C. The supernatant was discarded and each pellet 

was resupended in 1ml Tris-HCl pH9.0, aliquoted and stored at -70°C

2.5.4. Titration of vTF7.3 stock virus

Thirty-five mm petri dishes containing 1 x 106 CV-1 cells were infected with dilutions of 

vTF7.3. Dilutions were carried out in a total volume of 1ml PBS and duplicate 100 pi 

volumes (for each dilution from 10‘5 to 10'9) were used for titration. The cells were 

incubated at 37°C for 60 min to allow the virus to adsorb with gentle agitation every 15 

min. The inoculum was removed, 2ml DMEM containing 5%FCS added and the cells 

incubated at 37°C for 2 days. Then the medium was removed and the cells gently covered 

with CIDEX (a commercial glutaraldehyde preparation diluted 1:1 with PBS) for 3-4 

hours to fix the cells. The CIDEX was removed and the cells stained with Giemsa for 10
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mins before washing with tap water. Virus plaques were visible as regions within the 

purple-stained cell monolayer.

2.6. Dual-Luciferase reporter assay

Firefly luciferase is a 61 kDa monomeric protein and is widely used as a bioluminescent 

reporter because its enzyme activity is closely coupled to protein synthesis. Renilla 

luciferase has also become widely used as a genetic reporter. In the dual-luciferase 

reporter assay, the activities of firefly (Photinus pyralis) and renilla (Renilla reniformis) 

luciferase are measured sequentially from a single sample. This dual measurement from a 

single sample is made possible because firefly and renilla luciferases have dissimilar 

enzyme structures and substrate requirements. These differences make it possible to 

selectively discriminate between their respective bioluminescent reactions. Using the 

Dual-Luciferase assay kit, it was possible to quench the luminescence from the firefly 

luciferase reaction (the experimental reporter) while activating the luminescent reaction of 

Renilla luciferase (the control reporter). Photon emission is achieved through oxidation of 

beetle luciferin in a reaction that requires ATP, Mg and O2. Coenzyme A is incorporated 

into this reaction to provide more favourable reaction kinetics, resulting in an extended 

glow-type luminescent signal with greater intensity. The firefly luciferase reporter is 

measured first by adding luciferase Assay Reagent II (LARII) to generate this glow-type 

signal. After quantifying the firefly luminescence, this reaction is quenched, and the 

renilla luciferase reaction is started by simultaneously adding Stop&Glo® Reagent to the 

same tube. The Stop & Glo® Reagent also produces a glow-type signal from renilla 

luciferase. This decays slowly over the course of the measurement.

2.6.1. Cell extract preparation

Dual-luciferase reporter assays were carried out according to the assay kit instructions 

(Promega)(Sherf, 1996). Cells were transfected and cultured for 16 hours. The cell culture 

medium was then removed and the cells were washed with 1ml PBS A. Passive Lysis 

Buffer (Promega) was diluted 1:5 in distilled H2O to make a lx  solution and lOOpl was
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added to each well (24 well plate), after removal of the PBSA. The culture plate was 

agitated for 20 mins until the cells came off the surface of the wells. Cells were pipetted 

up and down until an even suspension was obtained, which was then transferred to a 0.5 

ml microcentrifuge tube and centrifuged at 13,000 rpm for 1 min.

2.6.2. Luciferase quantification assay

Cell lysates, LARII ® and Stop & Glo buffer were thawed at room temperature. 100 pi of 

LARII was predispensed into disposable test tubes. Stop & Glo reagent was prepared by 

adding 20 pi of Stop & Glo 50 x substrate to 980pl of Stop & Glo buffer, sufficient for 10 

reactions. The luminometer (Turner designs TD- 20/20, Promega) was programmed to 

read dual luciferase levels. 20pl of cell lysates was added to each test tubes together with 

the LAR II and mixed. The samples were then placed in the luminometer and the 

experimental firefly luciferase reading in relative light units (RLU) was taken by the 

luminometer. When prompted, lOOpl of Stop &Glo Reagent was added to the tube and 

briefly mixed. The renilla luciferase reading was taken. The ratio of the firefly luciferase 

divided by the renilla luciferase was obtained and used as indicative of translation 

efficiency of 5’UTR.

2.6.3. Validation and normalisation of luciferase assay results

According to manufacturer’s instructions, the relationship between the light output 

catalysed by the interaction of both renilla and firefly luciferases with their substrates is 

linear over at least a 5 logarithmic range. As shown in Figure 2.1, the renilla activity is 

within the linear range from somewhere below 10 1 to 105 RLU. Therefore, to ensure all 

renilla levels were safely within the linear range, values below 10 RLU were regarded as 

indicating an invalid transfection level. Furthermore within each experiment, mean renilla 

levels were calculated and any value >2 standard deviations (SD) below the mean were 

considered to represent an inadequate transfection for that clone in that experiment.
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Figure 2.1. Comparison of the linear ranges of firefly and renilla luciferase 
in the dual luciferase assay.

As shown in this graph, the linear range of the firefly luciferase assay is seven 
orders of magnitude, providing detection sensitivity o f <1 femtogram 
(approximately 10 ~20 moles) o f experimental reporter enzyme. The renilla 
luciferase assay has a linear range o f greater than five orders o f magnitude and 
allows for the detection o f approximately 30 femtograms (3 x 1 0  ~19) of control 
reporter enzyme. Taken from manufacturer’s catalogue (Dual-Luciferase ® Reporter 
assay system, Promega).



Chapter 2

The firefly/renilla light output ratios obtained from matched 5’UTR and 5’UTR plus core 

clones of the H77c were taken arbitrarily as 100% where indicated. The mean 

firefly/renilla ratio obtained from each replicate was expressed as a percentage of the ratio 

from H77c.

2.7. Protein analysis by SDS-PAGE

Cells were washed with PBSA and lysed using lysis buffer. Lysates were centrifuged and 

boiled for 3 min after addition of SDS-PAGE denaturation buffer (sample loading buffer) 

(0.5ml) and allowed to cool on ice. Samples were subjected to SDS-PAGE using the Bio- 

Rad Miniprotein II apparatus. The apparatus and glass plates (10 x 8cm) were assembled 

according to the manufacturers instructions using 1.5mm wide spacers. A 10% 

acrylamide resolving gel mix was used containing 3.6ml of 30% acrylamide solution 

(consisting of acrylamide and A'.A’methylene bisacrylamide (ratio 37.5:1), 2.7ml of 

resolving gel buffer, 4.5ml of dfbO, 70pl of 10% ammonium persulphate (APS) and 5 pi 

of TEMED. Gels were poured and levelled using dfLO to leave a smooth interface after 

polymerisation. After polymerisation, the top surface of the resolving gel was washed 

with resolving gel buffer. The stacking gel was prepared containing 1ml of 30% 

acrylamide solution, 1.5ml of stacking gel buffer, 3.5ml dfLO, 50pl 10% APS and 5jnl 

TEMED. This was poured on top of the set resolving gel surface and a 1.5mm wide 

comb inserted to form loading wells for the protein samples. Following polymerisation, 

the comb was removed and gels were immersed in lx  running gel buffer and samples 

loaded alongside “rainbow protein marker” (Amersham Bioscience) (7 pl/lane). Gels were 

run at 100 V for 3 hour or until the dye front ran off the gel.

2.7.1. Electrobiotting to nitrocellulose membrane

Proteins were resolved by SDS-PAGE and were then transferred to a nitrocellulose 

membrane in a Bio-Rad mini transblot apparatus, as described by Towbin et al. (1979). 

Briefly, a blotting sandwich was set up where the gel and nitocellulose membrane were 

placed in contact with each other, between two pieces of Whatman 3mm paper which in

68



Chapter 2

turn were placed between two fibre pads. All materials were soaked in Towbin buffer 

prior to assembly of the sandwich and the sandwich was then transferred to the transblot 

apparatus and the reservoir filled with Towbin buffer. Electrotransfer was carried out at 

100mA for 1.5 hours at 4°C.

2.7.2. Immunodetection

Following transfer, membranes were incubated in PBS (A) containing 5% skimmed milk 

(Marvel) overnight to block non-specific binding of antibody. Membranes were washed in 

PBS A containing 0.05% (v/v) Tween-20, 6 times for 10 min and probed with the primary 

antibody diluted in 1% BSA in PBST for 3 hours at room temperature. Membranes were 

washed as previously and incubated with secondary antibody conjugated to HRP for 2h at 

room temperature. The membranes were washed for a final six times and the proteins 

detected using the Amersham enhanced chemiluminescence (ECL) system. The two 

supplied reagents, I and II in equal ratio, were mixed and placed on the membranes for 2 

min with agitation. The membranes were then placed between two sheets of mellanine 

and exposed to Kodak XS-1 film for 10-60 seconds.

2.7.3. Stripping membrane for reprobing

Bound primary and secondary antibodies were removed by incubating the membrane in 

stripping buffer (0.28 mM P-Mercaptoethanol, 2% v/v SDS, 62.5mM Tris-Cl pH 6.7) at 

50°C for 30 min with shaking followed by 3 x 10 min washes in PBS-T. Membranes 

could then be blocked and reprobed as previously described.

2.8. Computer software

Sequences were initially analysed and edited using the “Sequence Navigator” program 

(Applied Biosystems). Alignments and final editing of DNA and protein sequences were 

carried out using the programs PILEUP, PRETTY, GELASSEMBLE AND SEQED in the 

Genetic Computer Group sequence analysis package version 10.2. The Sequence
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Detector Software from Perkin-Elmer was used for detecting PCR product produced in the 

Perkin Elmer Applied Biosystems 5700 sequence detection system. EndNote 7.0 was 

used for creating a bibliography.

2.9. Statistical analysis

Statistical analysis was carried out in chapters 3 and 4 using both the Student t and Mann- 

Whitney tests. The Student t test is appropriate to test for the significance of observed 

differences between the means of 2 groups of measurements which fall into a normal 

distribution. One of the requirements for a valid t-test is that the standard deviations of the 

two groups being analysed should not be significantly different. If standard deviations do 

differ significantly, the Mann-Whitney test, a non-parametric test, can be used instead. It 

does not require the data to have similar standard deviations, nor to be normally 

distributed. In both tests, p value <0.05 was considered as significant but it should be 

noted that means have to differ by more to reach significance in the Mann-Whitney test.

The Spearman correlation coefficient test was used to analyse the correlations in chapter 

5. This test is a non-parametric test based on ranking the data to measuring the strength of 

the relationship between pairs of variables. The correlation coefficient is restricted to 

values within the range -1.0 to +1.0 with +1.0 showing a perfect positive correlation.

Statistical calculations were performed using SPSS version 11.0 (SPSS, Inc., Chicago 

IL).
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Chapter 3 

Comparison of translation efficiency of 5’UTRs derived 

from genotype 1 and 3 infected patients

3.1. Introduction
The 5’ untranslated region (5’UTR) of the HCV genome is highly conserved and forms a 

stable secondary and tertiary structure (Brown et al., 1992; Honda et al., 1996a). It has 

been shown that the 5’UTR of HCV is able to direct translation of the open reading frame 

(ORF) by a cap independent internal ribosome entry mechanism mediated by an internal 

ribosome entry site (IRES) situated within the 5’UTR (Tsukiyama-Kohara et al., 1992; 

Wang et al., 1993).

Four major structural domains can be distinguished in the HCV 5’UTR (Figure 3.1). The 

short stem loop I is formed by nucleotides 5 to 20. Some reports suggested that it is not 

required for IRES activity and may have an inhibitory effect on translation (Honda et al., 

1996b; Rijnbrand et al., 1995). In contrast, others have shown that deletion of the 5’ end 

resulted in a reduction (two to threefold) in IRES activity (Friebe et al., 2001; Luo et al., 

2003). It has been reported that stem loop II (nt 44-118) enhanced translation (Fukushi et 

al., 1994; Honda et al., 1996b; Reynolds et al., 1996). Lafuente et a l (2002), using 

transcripts that contained the sequences of the HCV IRES domains, showed specific 

RNA-RNA interactions between domains II and IV, and between domains II and Illabcd 

demonstrating the importance of domain II for IRES activity. Stem loop III forms the 

core of the IRES and showed weak translational initiation activity even in the absence of 

domain II (Tsukiyama-Kohara et al., 1992). Stem loop IV, which includes the initiator 

AUG codon, may play an important role in regulation of the initiation of translation on the 

viral RNA. It has been shown that the stability of this domain correlated inversely with 

translation efficiency (Honda et al., 1996a).

71



,200
UG,nib uuuc

UC Au u
U A
CCUA A

GC
GC
GC

C CGC
AU
G C a 

C AA 
A r U 

GCC 
GC 
AU 
CG 
CG 

175,  GA

lib Dla
'UG  
UA--225 
AU 

-A U .

CG 
UG 
GC 
CG 

75— GU 
AU

A
A

U CACCGG“ “ ij c 
G GUGGCC GGG C

GC CCC G G

IIIc

Ila
u  G

V
CG
GA JOO 
CGAU „ r 
c g u c ° u g

u c u u  c
A

C
A ,  .  A G G A  

U c  A /  G
50 U G

G C c  u c
UA 
CG

GC 
CG

150— GC
UA
CG 
UA 
GC 
GU
UG 250 
GC 
AU
UA AG

GCCG UAGUG G 
CGGA AGCGC.. G 
C A UG

,UU, nid

u

CG
CG

A g GA

\
275

25 c g  J25 a g ^ a
\  CG /  AU G

GCCA^. GACACUCCACCAUGAAUCACUCC A C C C C C C C U C C C G G G  GCCU A I H e  
ZZ G G A G G G C C C  J G G G .UCG CG"18 
CG 
CG 
CG

u  u
G A
I

325
U u  300

G C C VGGAUCCGAAGAC

Figure 3.1. Predicted secondary structure of the HCV 5’UTR.

The sequence and numbering shown is that o f GTla (H77c) 
and the structure is based on that proposed by Honda et al (1996).



Chapter 3

Differences in the efficiency with which the IRES of different genotypes of HCV direct 

translation from reporter genes have been reported. The first study (Tsukiyama-Kohara et 

al., 1992) investigated the relative efficiencies of 5’UTRs (lacking 49 nts at the 5’ end) 

from genotypes lb and 2b in directing translation using an in vitro system. They reported 

a higher level of IRES activity by genotype (GT) 2b than GT lb. Kamoshita et al (1997) 

used different cell lines to transfect bicistronic constructs containing the 5TJTR of 

genotypes lb and 2b, and found similar results to those described by Tsukiyama-Kohara. 

They also noticed that ratio of 2b IRES activity to that of lb was different in different cell 

lines. They suggested that this might be due to different distributions of host cellular 

factors between cell lines which interact with IRES elements. Honda et al. (1996b) 

reported that the full length 5'UTR sequence of a GT la strain was two fold more 

efficient in directing translation of the downstream core protein than GT lb (N strain) in 

vitro and in vivo. Later, the same group (Honda et al., 1999c) showed that differences 

were due to specific differences at nts 34-35 of the HCV genome. Substitution of the AG 

dinucleotide sequence at nts 34 and 35 of HCV-N with GA (present in HCV-H) restored 

its IRES activity to that of the la. Buratti et al. (1997) studied the IRES activity of 

representative sequences from genotypes lb, 2a and 3. They inserted full-length (nts 1- 

354) and truncated 5'UTR (nts 45 -342) sequences into a bicistronic expression vector 

containing human growth hormone (hGH) driven by the SV40 promoter and the CAT 

gene controlled by the HCV 5'UTR. The hGH levels were used to normalise the amount 

of cellular lysate used for measurement of CAT activity. They reported that the IRES 

activity of GT 3 was 50% of that observed for genotypes 1 and 2 in COS-1 cells. 

Comparable IRES activity was found between genotypes lb and 2. Later, Collier et al. 

(1998) cloned 7 different 5’UTR sequences (nt 18 of the 5’UTR to nt 15 of the core 

coding sequence ) from six different HCV genotypes (la, lb, 2b, 3a, 4a, 5a and 6a) into a 

bicistronic, dual luciferase reporter system. In contrast to Buratti’s observation, similar 

IRES activity was found between genotypes la and 3a. They reported that the genotype 2b 

IRES had the highest activity in four cell lines (BHK-21, HeLa, HuH7 and HepG2) while 

GT 6a had the lowest activity.
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Genotype is an established predictor of response to interferon (IFN) therapy. Numerous 

studies have shown that genotypes 2 and 3 are associated with a better response to 

treatment than GT 1. This is true whether IFN is used alone (Martinot-Peignoux et al., 

1995) or in combination with ribavirin (McHutchinson et al., 1998) or if the pegylated 

form of IFN is used (Zeuzem et al., 2000). Correlation between translation efficiency and 

response to treatment is an interesting possibility for study. Saiz et al. (1999) studied the 

5'UTR from 5 patients (a treatment responder and nonresponder from each of genotypes 

lb and 3a and a non-responder infected with GT 2). They concluded that the response to 

IFN therapy and the activity of the IRES are independent. It was shown that the IRES 

activity of GT 2 and 3a was higher than that of GT lb.

Bicistronic constructs have commonly been used to identify and assess the ability of 

candidate IRES elements. In these constructs, translation of the 3' reporter is driven by the 

putative IRES whereas the translation of 5' reporter is supported by a cap dependent 

mechanism. One potential problem is that the 3' reporter might actually be translated not 

from an IRES but from a monocistronic mRNA produced by splicing as suggested by 

Kozak (2003). A study published by Dumas et a l (2003) reported that the HCV 5'UTR 

DNA sequence contained a cryptic promoter starting at nucleotide 67 which was able to 

drive the expression of genes inserted downstream. This activity was not detected when 

the 5'UTR was replaced by the HCV 3'UTR or the poliovirus 5'UTR. They concluded that 

study of the translational activity of the HCV 5'UTR using bicistronic DNA constructs 

should be analysed at both translational and transcriptional levels. The presence of a 

strong promoter in the HCV 5'UTR cDNA could undermine the results reported by most 

studies using the bicistronic system to evaluate HCV IRES activity.

All previous studies measured the efficiency of translation of a single sequence as a 

representative of a genotype. Also, little or no attempt had been made to ensure the 

sequences matched those actually found in patients. It is not clear whether the observed 

IRES activity was genotype or actually only isolate specific. In the present study, I 

compared the ability of a number of GT 1 and 3 5’UTR sequences derived from patient 

samples to initiate translation in cell culture using a dual luciferase reporter system
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(Collier et al., 1998) to find out whether there is a consistent difference between the 

IRES activity of GT 1 and GT 3. Also, it was possible to study the effect of individual 

substitutions in 5’UTR sequences obtained from different patient on IRES activity. I also 

conducted an experiment to ensure the results I obtained could not be explained by the 

present of a cryptic promoter in the DNA encoding the HCV 5’UTR.

The work presented in this and the following chapter was based on initial work carried out 

by P. Preikschat in our laboratory. She amplified the 5’UTR and core regions from serum 

and liver samples obtained from 26 patients. Then, all PCR products were sequenced and 

majority sequences obtained as will be discussed in following sections. This allowed me 

to select specific variants for the translation study. I also used patients’ PCR products 

made by her as templates for re-amplification of 5’UTR and 5’UTR plus core regions for 

translation studies (discussed in chapter 4).

3.2. Study patients and samples

Liver biopsies and serum taken at the same time from 26 patients with chronic HCV 

infection, including 15 infected with GT la and 11 with GT 3a, were used in this study. 

All of these patients had been referred to the liver clinic at Gartnaval General Hospital, 

Glasgow for assessment and possible treatment of chronic hepatitis C. Informed written 

consent for taking the samples was obtained from the patients and the study was approved 

by West Glasgow Ethics Committee. None of the patients was on interferon based therapy 

at the time when samples were collected.

3.3. Patients’ majority sequences

The following steps were carried out by P. Preikschat. PCR products corresponding to the 

entire 5’UTR and the core coding region were amplified by RT-PCR from the serum and 

liver of 11 HCV GT la and 15 GT 3a infected patients using primers shown in Table 3.1 

using conditions described in section 2.2.8.2. The PCR products were sequenced directly.

I aligned the majority sequences of the 5’UTR and the 5’ end of core (nts 1-360) obtained
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Chapter 3

from GT 1 and 3 infected patients. These are shown in the Appendix (Figures A-l and A- 

2). No differences were observed between majority sequences derived from serum and 

liver taken from any individual patient.

3.3.1. Majority sequence of GT 1 samples

Figure 3.2.A summarises the differences between majority sequences obtained from GT 

la infected patients and the H77c reference sequence (EMBL accession no: AF011751).

In the majority sequences of the 11 GT1 samples, no deletions or insertions in the 5'UTR 

were observed and two of the patient sequences matched that of the reference sequence 

H77c (patients MH and MA). The most frequent differences were seen at position 204 

where cytosine was present in 5 and adenosine in 6 patients. Guanosine was present at 

position 107 in 8 and adenosine in 3. Most of the sequences presented in Figure 3.2.A 

differed from H77c by 1 nt (patients OS, BK, PE, SA, CD, TW), although differences of 2 

nt (LA, BH), and 3 nt (BA) were noted. The positions of the differences observed are 

shown related to the proposed secondary structure of the 5’UTR (Brown et al., 1992; 

Honda et al., 1996a) in Figure 3.3.A. Seven different majority sequences were selected for 

study of translation efficiency as indicated in Figure 3.2.A.

3.3.2. Majority sequence of GT 3 samples

For GT3 samples, NZL1 (EMBL accession no: D17763) was chosen as the reference 

sequence and no deletions or insertions were present in the GT3 majority sequences 

(Figure 3.2.B). Similar to results obtained with GT1, the most frequent difference from the 

reference sequence occurred in stem loop Illb (Figure 3.3.B). Position 201 (equivalent to 

203 in H77c) in loop Illb was the most variable in GT 3 with guanosine in 9 samples and 

adenosine in 6. A substitution of cytosine to uracil at position 202 (equivalent to 204 in 

H77c) was observed in 3 of 15 samples. One sample (JN) was identical to NZL1, 11 

differed by a single nt and 2 differed by 2 nt. Nine different sequences were used for 

further amplification and cloning (including 1 matching NZL1) as highlighted in Figure

3.2.B
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Chapter 3

3.4. Amplification of the 5’UTR region for study of relative 

translational activities of different sequences

I designed oligonucleotides to amplify the entire 5’UTR of HCV and 15 nucleotides of the 

core gene. The sequences of these primers and the nucleotide positions to which they bind 

can be seen in Table 3.1. BamHIrestriction endonuclease sites were incorporated into the 

5 ’ ends of the primers for second round amplification to facilitate future cloning. Samples 

from 7 GT 1 infected patients representing each majority sequence seen in the study were 

chosen for cloning. I used PCR products from the RT-PCR of 5’UTR and core carried out 

by P. Preikschat as template to amplify the 5'UTR (nts 1-356) using sense primer 

MMCG1 and antisense primer MMCG4. For amplification of sample CD, which had 2 

substitutions of C340U (cytosine to uracil at nucleotide position 340) and G350A in the 

majority sequence, primer MM6 was used as antisense primer in the second round of 

PCR. In GT 3 samples, 9 unique sequences were identified. Amplification of GT 3 

samples was carried out using primers PP5’UTR and PP5’UTR-R, except samples ME 

and SJ which had a substitution of adenosine to cytosine at position 340 so a different 

antisense primer (MM8) was used. High fidelity DNA polymerase (HF2, Clontech) was 

used to reduce errors resulting from misincorporation of bases by Taq DNA polymerase.

3.5. Construction of plasmids containing the 5?UTR (pRLN)

The empty pRL vector (Collier et al., 1998), kindly provided by R.Elliott, contained the 

renilla luciferase and firefly luciferase genes flanking a unique BamHI restriction site.

This site was used for insertion of PCR products containing the 5’UTR (Figure 3.4). 

BamHI sites were added to the 5’ ends of the PCR primers and hence into the PCR 

product as well. Both the PCR product and the pRL vector were cleaved with BamHI, 

purified and then ligated together and transformed into E.coli. Individual clones were 

cultured overnight and plasmid DNAs were extracted using an in-house miniprep method 

as described in chapter 2.2.1.2. Clones were selected for the presence of the inserted PCR 

product by digestion with BamHI. This released a 356 base fragment. Using the one 

restriction site {BamHI) presented problems in that both orientations of insert are possible.
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Chapter 3

However, the orientation of the insert within the vector was determined by cleavage with 

Ncol/Hindlll. A single Ncol site was identified in the 5’UTR sequence. A unique Hindlll 

site was present at the 3’ end of the firefly luciferase reporter gene. In total, 275 individual 

clones were screened for the presence and orientation of the insert. DNAs from clones 

with the correct orientation of insert were extracted using a Miniprep Kit (Qiagen) as 

described in chapter 2.2.1.1. and sequenced in both direction using primers 5’luc (5’ 

GCAAGAA GATGCACC TGATG 3’) as sense and 3’luc (5’ GCGTATCTCTTCATAG 

CCTT 3’) as antisense primer which bind to renilla and firefly luciferase reporter genes 

respectively. Nucleotide sequences were analysed using the "Sequence Navigator" 

program (Applied Biosystems) and aligned using the "PILEUP" and “PRETTY” programs 

[Genetic Computer Group (GCG) Wisconsin Programme Package]. Individual clones 

from each sample were sequenced until one was found which matched exactly that 

obtained by direct sequencing of the PCR product from the same patient sample. 

Construction of a matched clone from patient ME (GT3) was not successful. In total, 65 

individual clones were sequenced to identify 16 pRLN matched clones which could be 

used for translation studies.

3.5.1. Reconstruction of pRLN clones

One problem encountered during the construction of the pRLN matched clones was the 

occurrence of substitutions particularly at the “left hand” end of the 5’UTR, at the primer 

binding site, without any other mismatch with the majority sequence from the relevant 

patient. This would appear to have been due to random misincorporation of bases during 

primer synthesis. To try and resolve the problem without expensive sequencing of 

additional clones, a rebuilding strategy was carried out. As shown in Figure 3.5, clone 1 

which matched the majority at the 5' Ncol restriction site, and clone 2, which matched 

sequence 3’ to the Ncol site, were digested with Ncol /Hindlll. This released a short 

fragment containing most of the 5’UTR and the firefly luciferase gene and a long 

fragment containing the first 90 nts of the 5’UTR and the remainder of the pRL vector 

except for the firefly luciferase gene. Following purification by agarose gel 

electrophoresis, the long fragment from the first clone was ligated to the short fragment
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from the second clone. The resulting clone was then sequenced and found to match the 

majority sequence.

3.6. The effect of the first 17 nt of the 5’UTR on IRES activity

At the start of this study, the bicistronic dual reporter vector (pRL) containing the 5'UTR 

from H77c was obtained from P. Preikschat. Preliminary results of luciferase assays 

indicated that the IRES activity of most of the samples was higher than the activity of the 

clone thought to contain the entire IRES of H77c (Figure 3.6.A.B). Later, sequencing of 

this clone revealed the absence of 17 nucleotides comprising most of domain I of the 

5’UTR. In order to include these 17 nucleotides, pRLN H77c was reconstructed as 

described in section 3.5.1 using the existing pRLNH77c clone and a clone from patient PE 

(pRLNPE) and the resultant construct was sequenced and shown to match H77c. Both 

constructs were transfected into BHKsinT7 cells and translation activity was analysed.

The relative translation efficiency of the construct lacking the first 17 nts was 40% of that 

of the full length 5’UTR (Figure 3.6.C.D). The construct pRLNH77c containing the full 

5’UTR was used as the arbitrary 100% standard in all subsequent experiments.

3.7. Relative translation activities in BHKsinT7 cells

5’UTR isolates including H77c were tested for translation activity in BHKsinT7 cells. In 

this system, transcription of plasmid DNA is controlled by the T7 promoter. The mRNA 

for the renilla luciferase gene is translated by a cap-dependent mechanism and expression 

of firefly luciferase by the HCV IRES mechanism. Each sample was tested on three 

different occasions. The first experiment was carried out in triplicate and second, third, 

forth and fifth experiments in duplicate. During analysis of the data, it was noticed that the 

renilla and firefly luciferase activities obtained in the third experiment were noticeably 

lower than those achieved during other experiments (Table 3.2).

Applying the criteria described in methods (section 2.6.3) for evaluation of results of 

luciferase assays, renilla luciferase light output obtained from both replicates of pRLN
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Figure 3.6. The effect of the first 17 nucleotide of H77c on IRES activity in BHKsinT7 
cells.
A) Firefly and renilla luciferase light outputs (RLU) obtained from pRLN H77c (nt 18-356) 
and 5 isolates. Comparison of relative IRES activities of the 5 isolates with H77c lacking the 
first 17 nucleotides (B). C) Firefly and renilla luciferase light outputs obtained from 
constructs containing full length (nt 1-365) and truncated (nt 18-356) 5’UTR. D)
Comparison of IRES activity obtained from clone pRLNH77c (ntl 8-356) which was 
arbitrarily assigned as 100% with full length H77c. Data are presented as means +/- 
standard deviation (SD).
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H77c in the second experiment was more than 2 standard deviations from the mean renilla 

activity of all replicates in the experiment. These results were therefore considered invalid. 

The first two experiments did not include clones obtained from patients BH, RJ and JN. 

Therefore these clones were tested later along with the H77c clone. Primary data including 

firefly and renilla luciferase activities are shown in Table 3.2. Data omitted from further 

calculations because they did not meet the criteria set down in section 2.6.3. are shown in 

red.

It was impossible to compare IRES activities between experiments because of the lack of 

a valid H77c reference result in experiment 2. It was decided to analyse the mean 

firefly/renilla luciferase ratios obtained from each sample without normalisation to H77c 

taking each experiment separately. Figure 3.7 summarises the results for all 5 experiments. 

It is notable that, among GT1 isolates, the lowest translational activity was observed in the 

construct derived from patient OS, which had one substitution of A204C in loop Illb. 

Similarly, clones obtained from patients RJ (C121U) and RI (G34A and C204U) had 

consistently lower activity than other GT3 samples.

3.8. Relative translation activities in HuH7 cells

The IRES activities of 8 GT 1 and 8 GT3 isolates were compared in HuH7 cells. The 

plasmids were transfected into cells previously infected with vTF7-3, a recombinant 

vaccinia virus which expresses T7 RNA polymerase to allow cytoplasmic transcription of 

the bicistronic mRNA. All samples were tested in 3 different experiments. The criteria for 

validation of results were met for all replicates in all experiments except those indicated 

by red in Table 3.3. The mean firefly/renilla luciferase ratios obtained from all isolates 

were normalised against H77c in each experiment.

The relative IRES efficiency of the 8 GT3 isolates varied from 60% to 120% of that of 

H77c as illustrated in Figure 3.8. Relative IRES activities obtained from RJ (C121U) and 

RI (G34A and C204U) were consistently lower in comparison to other GT3 isolates in 

both cell lines tested. However, The 5’UTR derived from patient OS with a substitution
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Table 3.2. Firefly and renilla luciferase light outputs in BHKsinT7 cells.

Firefly and renilla luciferase light outputs (RLU) obtained from 5 experiments are 
shown. Results are shown in the order in which experiments were performed. pRLN 
constructs from patients BH, JN and RJ were tested separately along with H77c. 
Renilla values not meeting criteria for acceptance of results are shown in red. ND= not 
done

E xperim ent 1 Experim ent 2 Experiment 3

Sample c;i

Firefly
output
(RLU)

Renilla
output
(RLU)

Firefly/
Renilla

ratio

Mean
of

ratios

Firefly
output
(RLU)

Renilla
output
(RLU)

Firefly/
Renilla

ratio

Mean
of

ratios

Firefly
output
(RLU)

Renilla
output
(RLU)

Firefly/
Renilla

ratio

Mean
of

ratios
H77c 1 7494.0 187.9 39.9 1251 45.8 ND 887.7 14.8 60.1
H77c 1 6192.0 174.5 35.5 36.8 1174 45.5 ND ND 910.0 16.2 56.2 58.1
H77c 1 5715.0 163.2 35.0
BA 1 6320.0 190.2 33.2 2403 118.8 20.2 907.6 18.4 49.3
BA 1 4661.0 169.2 27.6 29.8 2103 97.9 21.5 20.9 788.6 17.6 44.8 47.1
BA 1 5221.0 181.6 28.8
SA 1 9481.0 358.7 26.4 3084 126.8 24.3 1100.0 20.3 54.1
SA 1 8756.0 318.2 27.5 26.7 2865 110.0 26.0 25.2 1043.0 21.2 49.3 51.7
SA 1 7977.0 306.3 26.0
PE 1 8218.0 233.9 35.1 3630 139.2 26.1 1418.0 22.4 63.3
PE 1 6956.0 224.6 31.0 33.0 3192 130.4 24.5 25.3 1549.0 25.2 61.6 62.4
PE 1 6982.0 212.8 32.8
CD 1 9981.0 319.1 31.3 2249 95.1 23.7 332.1 13.3 25.1
CD 1 8870.0 285.8 31.0 30.7 3457 122.4 28.3 26.0 365.2 15.7 23.2 24.2
CD 1 8765.0 293.4 29.9
LA 1 6758.0 220.4 30.4 2238 71.4 31.3 969.0 19.2 50.4
LA 1 7094.0 205.8 34.5 32.2 3531 119.0 29.7 30.5 749.9 17.2 43.6 47.0
LA 1 7200.0 227.5 31.6
o s 1 2863.0 115.3 24.8 1615 131.0 12.3 110.3 5.8 ND
OS 1 3448.0 124.0 27.8 25.8 1590 128.3 12.4 12.4 125.6 7.9 ND ND
os 1 3246.0 131.3 24.7
BH ND ND ND ND 1014.0 16.9 60.2
BH ND ND ND ND 1045.0 18.0 58.0 59.1
SJ 3 4699.0 157.7 29.8 2298 110.6 20.8 688.5 16.2 42.4
SJ 3 4430.0 157.0 28.2 29.1 2520 117.5 21.5 21.1 508.6 13.3 38.2 40.3
SJ 3 4174.0 143.2 29.2
JA 3 4652.0 151.4 30.7 2445 93.1 26.3 919.3 15.6 58.8
JA 3 5126.0 161.0 31.9 32.3 2663 91.3 29.2 27.7 894.6 15.8 56.8 57.8
JA 3 5182.0 151.6 34.2
RI 3 4592.0 215.7 21.3 2007 126.4 15.9 551.0 21.6 25.5
RI 3 4840.0 229.0 21.1 20.4 2195 133.1 16.5 16.2 389.0 16.5 23.5 24.5
RI 3 4291.0 227.3 18.9

MO 3 6103.0 183.8 33.2 2865 124.8 23.0 716.9 19.5 36.7
MO 3 5438.0 161.7 33.6 34.1 3431 124.3 27.6 25.3 478.7 14.7 32.7 34.7
MO 3 5565.0 157.1 35.4
FV 3 5465.0 230.5 23.7 1126 57.7 19.5 355.8 13.3 26.8
FV 3 5192.0 224.0 23.2 24.2 1251 58.7 21.3 20.4 220.5 10.9 20.3 23.5
FV 3 4782.0 185.3 25.8
BC 3 2703.0 109.1 24.8 1821 77.6 23.5 605.9 18.1 33.5
BC 3 2734.0 98.4 27.8 26.0 1753 83.2 21.1 22.3 446.3 14.6 30.7 32.1
BC 3 2601.0 102.2 25.5
RJ ND ND ND ND 196.5 16.0 12.3
RJ ND ND ND ND 174.2 15.3 11.4 11.9
JN ND ND ND ND 334.4 12.3 27.2
JN ND ND ND ND 351.3 11.2 31.5 29.3

Experiment 4 Experim ent 5
H77c 1 2517.0 301.0 8.4 514.9 133.7 3.9
H77c 1 2365.0 264.2 9.0 8.7 443.0 127.1 3.5 3.7
BH 1 1495.0 183.5 8.1 735.9 186.4 3.9
BH 1 1161.0 167.4 6.9 7.5 559.9 166.6 3.4 3.7
RJ 3 903.8 247.0 3.7 311.0 165.5 1.9
RJ 3 809.0 239.0 3.4 3.5 315.2 154.8 2.0 2.0
JN 3 1166.0 151.9 7.7 344.5 143.0 3.8
JN 3 1129.0 171.2 6.6 7.1 521.0 157.3 3.3 3.6



Figure 3.7. Relative IRES activities of GT1 and GT3 constructs in BHKsinT7 cells.

Firefly/renilla luciferase ratios obtained from each sample are shown separately in each 
experiment. GT1 and GT3 samples in each experiment are shown by white and hatched 
bars respectively. Results are shown in the order in which the experiments were 
performed. pRLN constructs from patients BH, JN and RJ were tested separately along 
with H77c. Data are presented as means +/- standard deviation (SD). Arrows indicate 
values missing because transfection levels were invalid as described (Table 3.2).
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A204C which had the least activity in BHKsinT7 cells, showed similar activity to H77c in 

HuH7 cells.

3.9. Is the IRES of GT 1 more efficient than that of GT 3?

The main aim of this study was to test IRES activity from a number of isolates from 

genotypes 1 and 3 in order to see whether there is a consistent difference between IRES 

activity of the two genotypes. It was shown that the IRES activity of each isolate could 

vary and there was overlap in translation efficiency between GT3 and GT1 isolates. 

Variation between IRES activities is greater between individual isolates within a genotype 

than between the mean activities of the 2 genotypes.

In studying the results obtained from BHKsinT7 cells, overall statistical analysis of IRES 

activities from the 2 genotypes was difficult in that values obtained varied by up to 20-30 

% from one experiment to another. Therefore, the IRES activities of GT1 and GT3 

isolates in BHKsinT7 cells were compared separately within each experiment. 

Firefly/renilla luciferase ratios obtained were compared within each experiment using the 

Mann-Whitney test which does not require the data to have similar standard deviations, 

nor for the data to be distributed normally as is necessary for the student t test. In all 

experiments, the mean IRES activity of GT 1 isolates was higher than GT3 isolates and in 

3 out of 5 experiments including experiments 1, 3 and 4 was significant at p<0.05 (Figure

3.9.A).

In HuH7 cells, the mean translational efficiencies of GT1 isolates were not significantly 

different from those of GT3 within experiments using either the student t test or the Mann- 

Whitney test (Figure 3.9.B). All renilla activities for H77c were valid according to criteria 

described in section 2.6.3. Therefore, it was possible to normalise results by setting the 

result from the H77c clone arbitrarily at 100%. Repeat analysis of combined data showed 

no significant difference (p>0.05) by applying both student t and the Mann-Whitney tests 

(Figure 3.9.C).
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Table 3.3. Firefly and renilla luciferase light outputs in HuH7 cells.

Firefly and renilla luciferase light outputs (RLU) obtained from 3 experiments are 
shown. Results are shown in the order in which the experiments were performed. 
Values are shown in red were excluded. ND: not done

Experiment 1 A Experiment 2 Experiment 3

Patient's
initial GT

Firefly
activity

Renilla
activity

Firefly/
Renilla

ratio

Mean
of

ratios
Patient's

initial
Firefly
activity

Renilla
activity

Firefly/
Renilla

ratio

Mean
of

ratios
Firefly
activity

Renilla
activity

Firefly / 
Renilla 

ratio

Mean
of

ratios
H77c
H77c

1 270.3 1615 0.167 H77c 415.5 6986 0.059
1 371.0 1961 0.189 H77c 276.4 5086 0.054 209.2 7092 0.029

H77c 1 288 1565 0.184 0.180 H77c 438.5 6936 0.062 0.060 219.2 6831 0.032 0.031
BA 1 | 331.7 | 1954 0.170 BA 437.1 7727 0.057
BA 1 | 437.8 2235 0.196 BA 621.7 9977 0.062 156.0 5668 0.028
BA 1 I 398.0 I 2300 0.173 0.180 BA 573.5 10056 0.057 0.059 235.0 7637 0.031 0.03
SA | 1 321.7 | 1655 0.189 SA 382.1 6333 0.06
SA 1 424.4 i 2055 0.206 SA 499.3 7549 0.066 149.7 5820 0.026
SA M i  534.0 ! 2508 0.213 0.203 SA 520.3 8812 0.059 0.062 277.4 8774 0.032 0.029
PE | 1 | 403.5 I 2083 0.194 PE 190.4 4731 0.04 I
PE 1 ! 400.4 1963 0.204 PE 293.9 6402 0.046 189.5 5734 j 0.033 |
PE 1 463.8 ! 2408 0.193 0.197 PE 287.4 6081 0.047 0.044 237.7 7393 | 0.032 0.033
CD ! 1 | 444.6 I 2142 0.208 CD 301.8 5997 0.05 i I
CD ! 1 
CD “ j 1

468.2 i 2133 0.220 CD 102.5 2416 0.042 120.3 5108 I 0.024 |
439.1 ! 2024 | 0.217 j 0.215 CD 285.2 5564 0.051 0.048 234.7 7207 0.033 0.029

LA M |  374.2 j 1771 j 0.211 ! LA 307.9 6699 0.046 I I
LA
LA

1 S 373.9 | 1811 ! 0.207 I LA 543.1 9875 0.055 143.6 6155 0.023 j
1 I 353.0 , 1817 i 0.194 j 0.204 LA 390.9 7482 0.052 [0.051 200.6 7141 | 0.028 0.026

OS
OS "

1 | 348.1 1833 I 0.190 [ OS 144.5 2310 0.063 I
1 | 353.4 I 2019 0.175 I OS 167.9 2559 0.066 288.6 8928 0.032 I

OS M l  465.0 | 2141 0.217 0.194 OS 178.8 2860 0.063 0.064 333.6 9486 | 0.035 0.034
I Experiment 1B BH 346.5 5850 0.059

H77
H77

1 I 235.7 1809 0.130 BH r678^9”1 9703 0.07 278.0 7975 0.035
1 | 210.6 j 1683 0.120 BH 697.2 10309 0.068 0.066 283.8 8260 0.034 0.035

H77 i l l  233.3 1778 0.131 |0.127 SJ 284.1 6078 0.047
bh
BH

1 ! 279.0 1917 0.146 | SJ 412.4 7709 0.054 315.8 10081 0.031 j
1 | 290.5 1904 0.153 SJ 462.9 8788 0.053 ” 0.051 269.4 8107 0.033 | 0.032

BH 1 1 1 298.3 i 1989 0.150 |0.150 JA 168 2937 0.057
SJ 3 172.7 ! 1691 0.102 | JA 289.6 4531 0.064 385.7 8607 0.045
SJ | 3 | 234.2 | 2073 0.113 JA 303.3 4766 0.064 | 0.062 375.7 8731 0.043 0.044
SJ i 3^ 251.8 ! 2280 0.110 0.108 RI 390.7 8279 0.047
JA 3 223.7 1419 0.158 | RI 138.9 2840 0.049 267.0 10222 0.026
JA 3 i 267.4 M 629 0.164 i RI 102.2 2048 0.05 0.049 152.8 6470 0.024 0.025
JA I 3 254.1 1635 0.155 0.159 MO 113.4 1733 0.065
R|___ 3 206.4 2115 0.098 | MO 139 1959 0.071 0.068 307.9 8099 0.038
RI 3 | 169.2 1648 0.103 MO 84.9 1165 ND 239.0 6685 0.036 0.037
RI 3 i 219.6 2140 0.103 0.101 FV 51.52 1047 ND

MO 3 i 265.6 1885 0.140 FV 92.35 1677 0.055 97.9 4510 0.022
MO 3 244.4 1565 0.156 FV 72.67 1397 0.052 0.054 165.4 6548 0.025 0.024
MO 3 281.6 1860 0.151 0.149 BC 46.9 817.4 ND
FV 3 182.1 I 1492 0.122 BC 99.89 1555 0.064 76.6 3076 0.025
FV 3 250.5 I 1841 0.136 i BC 96.8 1467 0.066 0.065 126.0 4416 0.029 0.027
FV 3 I 218.0 j 1791 0.122 |0.127 JN ND ! ND
BC I 3 ! 297.7 
BC i 3 ! 281.0

1900 | 0.157 JN 85.34 j 1531 0.056 196.0 5775 0.033
1832 I 0.153 i JN I 97.4 j 1483 0.065 0.056 221.3 I 6521 0.034 0.034

BC I 3 j 275.8 i 1844 | 0.150 10.153 RJ | 42.24 I 1164 ND . _ ! !
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Figure 3.8. Relative IRES activities of GT1 and GT3 constructs in HuH7 
cells.

Mean relative firefly/renilla luciferase ratios obtained from each sample in 3 
experiments are shown. GT1 and GT3 samples are shown by bold and hatched 
bars respectively. Results are shown in the order in which experiments were 
performed. Firefly/renilla luciferase ratios obtained from all samples were 
normalised against H77c. Data are presented as means +/- standard deviation 
(SD).
exp= experiment



Figure 3.9. Comparison of IRES activities of GT1 and GT3 constructs.

A) Mean IRES activities of GT1 (white bars) and GT3 (hatched bars) isolates in 
BHKsinT7 were compared within each experiment using the Mann-Whitney test.
B) Mean normalised IRES activities of GT1 and GT3 isolates in HuH7 cells were 
Compared within each experiment using the Mann-Whitney test.
C) Mean relative IRES activities of combined data from three experiments
were compared in HuH7 cells. Data are presented as means +/- standard deviation. 
Exp= experiment
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3.10. Comparison of relative translation efficiencies in 

BHKsinT7 and BHK cells

One report suggested that the 5’UTR cDNA has a cryptic promoter activity that can 

behave as a eukaryotic promoter in cells (Dumas et al., 2003). To test whether the 

expression of firefly luciferase in our experiments could be explained by this mechanism, 

it was decided to test two constructs; pRLNH77c (GT1) and that obtained from patient FV 

(GT3), in both BHK and BHKsinT7 cells. Unlike BHKsinT7 cells, ordinary BHK cells do 

not express T7 RNA polymerase, so transcription of DNA to RNA would not be expected 

and as a result no translation of either reporter genes would occur. In the presence of 

sufficient cryptic promoter activity in the 5’UTR DNA sequence to invalidate the results 

of our previous experiments, it would be expected that there would be firefly luciferase 

activity in BHK cells at a similar level to that in BHKsinT7 cells in the absence of renilla 

luciferase activity.

DNA constructs were transfected into both BHK and BHKsinT7 cells in duplicate wells 

and light outputs from firefly and renilla luciferases were obtained. In order to ensure that 

there was no promoter activity in the empty vector to drive the transcription of firefly 

luciferase, DNA from the pRL vector with no insert was also transfected. pGL3 was also 

transfected into both BHKsinT7 and BHK cells. In this vector, translation of firefly 

luciferase is controlled by strong eukaryotic SV40 promoter. As expected, no firefly 

activity was observed in either the BHKsinT7 or the BHK cell lines transfected with the 

pRL vector. Transfection of pGL3 resulted in high levels of firefly luciferase light output 

in both cell lines. pRLNH77c and pRLNFV transfected BHKsinT7 cells showed levels of 

renilla and firefly luciferase activities comparable to previous experiments. Unexpectedly, 

upon transfection of pRLNH77c and pRLNFV constructs into BHK cells, low levels of 

both renilla and firefly luciferase activities were observed (Figure 3.10.A). However, 

firefly luciferase activities were 80 times lower than the values seen in BHKsinT7 cells. 

This suggests that activity observed from constructs in BHKsinT7 cells throughout this 

project could not be explained simply by cryptic promoter activity.

81



Figure 3.10. Firefly and renilla luciferase activities in BHK and BHKsinT7 cells.

A) Renilla and firefly luciferase light outputs (RLU) obtained from transfection of pRLN 
H77c (GT1), pRLN FV (GT3), pGL3 and the empty pRL vector into BHKsinT7 and 
BHK cells are shown . Lower level of firefly (1/80) and renilla luciferase (1/8) activities 
were detected in BHK cells in comparison to BHKsinT7 cells. pGL3 containing the 
firefly reporter gene driven by the SV40 promoter was used as control construct for 
comparison of transfection efficiency. B) Renilla and firefly luciferase light outputs 
obtained from pRLNH77c, pRLNFV and pGL3 in BHKsinT7 and BHK cells are shown, 
(logarithmic scale)

A

Sample Cell line

Firefly
activity
(RLU)

Renilla
activity
(RLU)

Firefly/
Renilla

ratio
pRLNH77c BHKsinT7 320.20 74.83 4.27
pRLNH77c BHKsinT7 392.40 81.24 4.83
pRLNH77c BHK 4.76 8.43 0.56
pRLNH77c BHK 4.65 9.34 0.49
pRLN FV BHKsinT7 80.39 23.25 3.45
pRLN FV BHKsinT7 96.70 31.37 3
pRLN FV BHK 1.40 3.11 0.45
pRLN FV BHK 1.83 3.62 0.5

pGL3 BHK 1884.00 0
pGL3 BHK 2111.00 0
pGL3 BHKsinT7 2372.00 0.02 86933
pGL3 BHKsinT7 2744.00 0.01 250471
pRL BHKsinT7 0.00 58.57
pRL BHK 0.00 9.84

B
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3.11. Discussion

For the study of HCV IRES activities in vivo, bicistronic constructs were used in which 

5’UTRs amplified from infected patients were inserted between the two reporter genes. 

Both reporter enzymes were assayed in the same cell lysate preparation and the activities 

were determined by the same method. In the present study, the bicistronic reporter vector, 

pRL, constructed by Collier et al. (1998) was used which contains the renilla luciferase 

gene act as the 5' reporter and the firefly luciferase gene as the 3’ reporter. The ratio of 

firefly luciferase to renilla luciferase activity was used as a measure of IRES activity. In 

the cell cytoplasm, the T7 promoter drives transcription of the bicistronic mRNA 

containing the renilla luciferase, the HCV 5’UTR and the firefly luciferase.

The constructs were transfected into 2 cell lines. BHK sinT7 cells (Agapov et al., 1998) 

are able to express T7 RNA polymerase continuously from a noncytopathic replicon from 

sindbis virus (SINrepl9/T7pol). One problem with using the noncytopathic replicon to 

support the production of T7 RNA polymerase is the limitation on cell lines which can be 

used. The other method used was to supply T7 polymerase by co-infecting with the 

recombinant vaccinia virus, vTF7-3, to allow cytoplasmic transcription of the mRNA. The 

advantage of this is that different cell lines can then used for the assays. However, the 

cytopathic effects of vaccinia infection may interfere with cellular functions. These 

include the induction of early cell rounding, damage to the host genome and RNA, 

inhibition of host protein synthesis, and death of the infected cells (Tsung et al., 1996).

In BHKsinT7 cells, the renilla luciferase light output was 20-30 times lower than that of 

firefly luciferase. It is possible that efficiency of translation using the sindbis replicon 

system was lower than that directed by the HCV 5’UTR due to inefficient capping of 

transcribed RNA. Unlike BHKsinT7 cells, in vaccinia infected cells higher levels of 

renilla luciferase activity in comparison to firefly luciferase activity was observed 

suggesting that transcription of T7 polymerase by vaccinia virus is more efficient than that 

achieved by the sindbis constructs.
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We have compared the IRES activity of a number of isolates from GT 1 and 3 infected 

patients. It was important to ensure there were no artefactual base changes introduced by 

polymerase errors into the individual clones that were to be used to measure translation 

efficiency. Data presented in chapter 6 along with other studies suggested the presence of 

a quasispecies composition in the 5'UTR of the HCV genome (Soler et al., 2002). 

Previously, it has been shown that different 5'UTR sequences existing in an individual 

showed significant differences in their ability to promote translation both in vitro and in 

vivo (Laporte et al., 2000). Studying IRES activities from matched clones with the 

relevant majority sequence obtained from each patient was important because it reflects 

the behaviour of the major population within the quasispecies in the 5'UTR. I therefore 

ensured that only clones which matched exactly the sequence obtained by direct 

sequencing of the PCR product were examined.

In designing the constructs for this study, we included the sequences within the HCV 

RNA that were included in the earlier study by Collier et al. (1998) as representing the 

minimum IRES element. Our constructs contain the entire 5' UTR and 15 nts of the core 

coding sequence. There is controversy whether the HCV protein coding sequence 

downstream of the IRES is essential for IRES function. Reynolds et a l (1995) suggested 

that 14 to 32 nts of the HCV capsid-coding sequence are absolutely required for efficient 

IRES activity in in vitro and in vivo systems. In contrast, other studies have shown 

efficient IRES activity in the absence of core coding sequence (Rijnbrand et al., 1995; 

Wang et al., 1993). One explanation for the discrepancy between these studies was 

suggested by Honda et a l (1996a). The fusion of reporter gene sequences with the 5'UTR 

may form an RNA structure that is unfavorable for translation initiation. The inclusion of 

the 5' core sequence which constitutes part of domain IV may prevent base pair formation 

between the HCV sequence and the beginning of the firefly luciferase coding sequence 

(reviewed by Rijnbrand and Lemon, 2000). In the present study, the core coding 

sequences needed to form the proximal stem-loop of domain IV were included as in the 

study carried out by Collier (1998).
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The data presented in this study showed that deletion of 17 nts from the 5’ end of the 5’ 

UTR resulted in a two fold reduction in IRES activity. This is consistent with the findings 

reported by others that stem loop I contains RNA elements required for optimal HCV 

RNA translation (Friebe et al., 2001; Fukushi et al., 1994; Luo et al., 2003). It should be 

noted that deletion of stem loop I in our original construct (nt 1-17) was partial whereas 

these studies examined the construct lacking the entire domain I including nucleotides 1- 

20. Our result appeared to contradict the observations made by other groups which suggest 

an inhibitory role for stem loop I on translation by the IRES (Honda et al., 1996b). It has 

been suggested that the inhibitory effect of stem loop I (nts 1-22) may be cell type specific 

(Kamoshita et al., 1997). They reported that IRES activity of constructs lacking stem loop 

I was equally efficient in HeLa cells, but less efficient in African monkey kidney cells.

Of 8 GT 3 isolates tested for IRES activity in BHKsinT7 cells, patient RJ with a 

substitution C121U in the pyrimidine tract (nts 120-130) with an activity of 40% had the 

least activity. It is interesting that mutational analysis of the single stranded poly C region 

between domains II and III, consisting of nucleotides 120-125, suggested that this region 

played an essential role in maintaining the proper spacing of specific elements within the 

IRES and substitutions in this region could lead to the disruption of translation initiation 

(Varaklioti et al., 1998). No other isolate in our cohort had changes in this region.

When the different IRES activities were compared in each separate experiment using 

BHKsinT7 cells, the mean IRES activity of GT 1 isolates was significantly higher than GT 

3 isolates in 3 out of 5 experiments. It should be noted that the mathematics of the Mann- 

Whitney test make it “harder” to reach significance than with the student t test. However, 

in HuH7 cells which had been pre-infected with a recombinant vaccinia virus expressing 

the T7 RNA polymerase, the mean IRES activity of GT 1 isolates was not significantly 

greater than GT3 isolates. Studying IRES activity in cells of hepatic origin may be more 

appropriate than other cell lines, since those cells are the main site of HCV replication. 

However, it should be noted that HuH7 cells are derived from tumour cells, not normal 

hepatocytes. Buratti et a l (1997) reported that the GT 3a IRES was only 50% as active as 

lb in COS-1 (African Green Monkey kidney cells). However, the GT 3a constructs of
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Buratti et al. contained the first four residues of GT 1 core sequence rather than GT 3. 

Collier et al. (1998) reported similar activity for GT la and 3a in BHK and HuH7 cells. 

However, their constructs contained only nts 18 to 356 of the HCV genome thereby 

including 15 nt of the core coding region. The construct used in this study contained the 

full length 5’UTR and 15 nucleotides of the core coding region (nts 1-356). All these 

reports examined only one isolate as representative o f each genotype. Therefore, it is not 

clear whether the IRES activity observed was actually isolate specific. Also, no attempt 

was made to ensure that the sequences tested for IRES activity were matched with the 

majority sequence found in the patient. It is conceivable that the observed IRES activity 

was that of a minor variant in the quasispecies or contained errors generated by Taq 

polymerase or other enzymes.

A basic difficulty in performing statistical analysis of data from this study was that 

experiments were not performed in a randomised order. In each experiment, the order of 

testing of isolates was the same with GT1 isolates preceding GT3 isolates. This may have 

led to unrecognised bias. In the second experiment using BHKsinT7 cells, the renilla 

luciferase activity obtained from the reference sequence H77c, which was used for 

normalisation of data, did not meet the criteria set down for achieving an adequate renilla 

activity. Therefore, comparison of IRES activities of isolates was not possible between 

experiments. It was decided to compare the mean IRES activity of GT1 and GT3 isolates 

within each experiment in BHKsinT7 cells. It was shown that the difference between 

mean IRES activities of GT1 and GT3 isolates was statistically significant in 3 out of 5 

experiments. However, the biological significance is more uncertain. The renilla 

luciferase activities in the third experiment were approximately 10 fold lower than the 

other experiments in BHKsinT7 cells, possibly due to a low level of transfection or poor 

quality of the transfected cells, although the cells appeared as healthy as in the other 

experiments. It should be noted that all values remained clearly within the linear range of 

the luciferase assays except for the excluded values for OS, which, if included would have 

reduced the likelihood of the difference reaching statistical significance. Our feeling 

overall is that the low level of statistical significance of the differences in mean firefly to 

renilla luciferase ratios does not represent a real biological difference between GT1 and
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GT3 IRES elements in BHKsinT7 cells but this could be resolved only by conducting 

further similar experiments.

The relative firefly/renilla ratios obtained from a single transcript differed between 

experiments when using the same cDNA on different days. This variation was more 

noticeable in BHKsinT7 cells than HuH7 cells. This causes some concern and, in the 

future, it would be preferable to standardise cell culture conditions more closely than was 

the case in this work. The exact reason for the observed variation in ratios obtained from a 

single transcript is not clear. During this project, different batches of BHKsinT7 cells 

were used and no synchronization of cells was carried out prior to transfection. It is 

conceivable that T7 RNA polymerase activity may differ under certain circumstances such 

as the confluency, quality of cells or their passage number and history, which could result 

in generation of different levels of transcripts. If cellular trans-acting factors are available 

in limiting amounts, the presence of more IRES-containing transcripts would exhaust the 

/nms-acting factors needed for cap-dependent translation and as result the relative level of 

cap-independent to cap-dependent translation would increase. Another possible 

explanation is the position in the cell cycle of the majority of cells in the culture, which 

has been shown to play a role in the activity of certain IRES elements. Compared with 

cap-dependent translation, the activity of the IRES was greatest in actively growing cells 

and relatively reduced in resting synchronised HuH7 cells using bisictronic luciferase 

constructs similar to those used in this project (Honda et al., 2000). This suggests that 

HCV translation is regulated by cellular proteins that vary in abundance during the cell 

cycle. Differences in transfection efficiency may also influence the firefly/renilla ratios by 

an unknown mechanism although it appears to affect the translation of both reporters in 

the same DNA. In order to overcome the differences between ratios of each isolate in 

separate experiments, DNA from H77c was used in order to normalise the ratios. Finally, 

it is possible that the delay in adding one or other substrates in the luciferase assay could 

influence the results. This was not applicable during my experiments as the addition of 

substrates were carried out according to programme set up in the luminometer according 

to manufacturer’s instructions.
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Our study was not designed to address whether the response of individual patients to 

interferon therapy was related directly to the structure of the individual's viral 5'UTR. 

However, overall, GT3 infected patients have been shown repeatedly to respond to 

interferon-based therapies markedly better than that those with HCV GT1. If, on average, 

the 5'UTRs of GT3 isolates were less efficient at directing translation of the polyprotein, 

this could contribute to the greater effectiveness of interferon therapy. Our study results do 

not support this hypothesis. The lack of relation between 5’UTR sequence and response to 

interferon has been reported by other groups (Saiz et al., 1999; Soler et al., 2002).

Dumas et a l (2003) reported the presence of a strong cryptic promoter within the 5’UTR 

DNA sequence. They concluded that results obtained from using cells transfected with 

bicistronic DNA constructs containing the HCV 5’UTR should be analysed at both 

translational and transcriptional levels. I carried out a preliminary experiment to compare 

IRES activity in BHKsinT7 cells expressing T7 RNA polymerase and BHK-21 cells 

lacking T7 RNA polymerase. In the absence of T7 RNA polymerase, no RNA transcripts 

from the construct should be produced. Therefore, if there was a promoter activity in the 

5'UTR cDNA in our system, we would expect to have similar firefly luciferase activities 

in both cell lines. The data from this experiment was not able to exclude the presence of a 

possible cryptic promoter in the cDNA of the 5’UTR, as the constructs tested were 

circular and the presence of any promoter in the 5’UTR sequence could result in 

transcription of the entire plasmid including the renilla and firefly luciferase genes. 

However, it was concluded that the presence of such weak firefly luciferase activity was 

insufficient to invalidate the results of translation in BHKsinT7 cells by the authentic 

RNA IRES in this study. However, if time had permitted, I would also have performed 

Northern blot analysis and/or RT-PCR analysis to determine how much RNA transcript 

was produced in each experiment.
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Chapter 4 

Comparison of IRES activity of 5’UTR plus core regions 
from GT 1 and 3 infected patients

4.1. Introduction

The HCV core protein is believed to form the viral nucleocapsid. The core protein has 

been reported to have a wide range of biological activities such as interaction with host 

cell proteins including members of the tumor necrosis receptor family, apolipoprotein All 

and heterogeneous nuclear ribonuclear protein K (McLauchlan, 2000). It has been 

suggested that core protein modulates sensitivity to apoptosis (Ray et al., 1996) and 

induces liver steatosis (Fujie et al., 1999). It has been shown that the HCV core protein 

contains a unique domain which plays a vital role in the localization of core to lipid 

droplets (Hope and McLauchlan, 2000).

Interaction of the core protein with the genomic RNA of HCV and its effects on cap- 

independent translation mediated by the IRES have been studied by several groups (Kim 

et al., 2003; Reynolds et al., 1995; Rijnbrand et al., 2001; Shimoike et al., 1999; Wang et 

al., 2000; Zhang et al., 2002). The 3' boundary of the IRES is uncertain. Early studies 

demonstrated that the inclusion of nt 1 to 32 of the core protein coding sequences was 

essential for efficient IRES activity (Lu and Wimmer, 1996; Reynolds et al., 1995).

The data reported by Santolini et a l (1994) showed that core protein is an RNA binding 

protein and RNA binding domains have been localized to the N-terminal 75 amino acids. 

Shimioke et al. (1999) constructed a series of monocistronic plasmids containing HCV
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5’UTR and 5’UTR plus core fused to the firefly reporter gene and found that expression of 

core suppressed the firefly activity in a dose dependent manner in an in vivo system. It 

was also reported that amino acids 34-44 of core interact with the IRES RNA and 

contribute to the inhibition of translation (Zhang et al., 2002). This suppression was 

eliminated by frameshift mutations introduced into this region which abolished expression 

of the core protein, suggesting that it is the core protein rather than the core-coding 

nucleotide sequence that downregulated the efficiency of the HCV IRES activity. More 

recently, Li et a l  (2003) reported that a synthetic peptide representing amino acids 1-20 

of the core protein inhibited IRES activity in HepG2 cells.

In contrast, Wang et a l (2000) reported that suppression of IRES-directed translation 

resulted from an RNA-RNA interaction between the core coding nt sequence and the 

IRES RNA. They constructed a dicistronic reporter system containing the 5’UTR plus 66 

nt from core coding sequence (nt 1-407) and the 5’UTR plus 518 nt of core (nt 1-860) 

coding sequence fused in-frame directly with firefly luciferase along with two other 

constructs containing similar lengths of the core, but with frameshift mutations in the core 

sequence that resulted in translation of a nonsense sequence. A lower efficiency of 

translation was obtained from constructs containing nt 1-860 (17%) than in transcripts 

containing only 66 nt (nt 1-407) of core in HepG2 and HuH7 cells (60%). However, the 

translational analysis of the frameshift mutants showed similar results suggesting that this 

effect was due to the inclusion of the RNA sequence and not to the expression of the core 

protein. Ito et a l (1999) identified a region at the 3’ end of the core sequence which 

interacted with the polyprimidine tract binding protein (PTB) resulting in the inhibition of 

translation activity by the IRES. This inhibition was relieved by the presence of the X 

region at the end of the 3’ untranslated region. The presence of an RNA- RNA interaction 

between the IRES and the core coding sequence was further supported by study published 

by Kim et a l (2003). They demonstrated that nucleotides 428-442 of the core coding 

sequence annealed to nucleotides 24-38 of the 5’ UTR resulting in downregulation of cap- 

independent translation by the HCV IRES.
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Core protein (p23) is processed by a host signal peptidase at aa 191 to produce an 

immature form of the protein which is further processed by a host signal peptide peptidase 

(SPP) between aa 174-191 to produce what is thought to be the mature form of the protein 

(p21)(Figure 4.1). This latter processing event is important for conferring localization of 

core protein to lipid droplets (Hope and McLauchlan, 2000). Core is highly conserved 

between the 6 genotypes and the hydrophobicity profile of core identifies 3 domains 

within the protein. Domain I (aa 1-122) contains a high proportion of basic residues. 

Domain 2 (aa 123-174) is more hydrophobic than domain 1, while domain 3 (aa 175-191) 

is highly hydrophobic and acts as signal sequence for directing the viral El glycoprotein 

to the ER for further maturation prior to cleavage at aa 191 by a host signal peptidase 

(Santolini et a l 1994). One possible explanation for downregulation of translation 

observed with inclusion of full-length core is that when the ribosome reaches a signal 

sequence the RNA and translational machinery are translocated to the ER for further 

processing which slows down translation.

The data presented in this chapter are preliminary. The original plan was to construct 

5’UTR plus core clones matched with the majority sequence obtained from GT 1 and 3 

infected patients similar to those described for the 5’UTR alone. This was in order to 

compare translation efficiency by the IRES in HCV isolated from GT 1 and 3 infected 

patients using constructs containing 5’UTR plus core to determine whether there is a 

consistent difference between the 2 genotypes.

4.2. Amplification of 5’UTR plus core regions

I designed oligonucleotides to amplify the entire 5’UTR of HCV and core gene (nt 1-914). 

The sequences of these primers and the nucleotide positions to which they bind can be 

seen in Table 4.1. A. BamHI restriction sites were incorporated into the 5’ ends of the 

primers for second round amplification to facilitate future cloning. Samples from seven 

GT 1 infected patients with unique majority sequences were chosen for cloning. PCR 

products made by P. Preikschat as described in section 2.2.8.2 were used as template to 

amplify the 5'UTR plus core using sense primer MMCG1 and antisense primer MMCG2.
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From GT 3 infected samples, 7 unique sequences were identified. Amplification of GT 3 

samples was carried out using primers PP5’UTR and PPCORE-R. High fidelity DNA 

polymerase (HF2, Clontech) was used for amplification to reduce errors resulting from 

misincorporation of bases by Taq DNA polymerase. PCR products from two identical 

reactions were pooled and gel purified as described in section 2.2.9.2

4.3. Sequencing of core coding sequences from patients

In order to find clones matched with majority sequences from patients, the first step was to 

obtain the majority sequence from those patients. Since only incomplete or no core PCR 

product majority sequences were available, sequencing of the core coding region from 

studied patients was carried out using the sense and antisense primers shown in Table 

4.I.B. All sequences were edited using “Sequence Navigator” (Applied Biosystems) and 

then exported into GCG (Wisconsin Package, version 10.2-Unix). Several sequences 

from the 5’UTR and core regions were assembled, using “GelMerge” and “GelAssemble” 

programs to obtain the majority sequence for each patient. Alignments of the full core 

majority sequences from 7 GT1 and 7 GT 3 isolates are shown in Figures 4.2. and 4.3. 

respectively. Figure 4.4 shows the amino acid sequences of core protein observed in the 

patient samples analysed. In GT1 samples, only 5 out of 73 nucleotide differences were 

nonsynonymous. Of 72 nucleotide differences observed in GT3 samples, 4 were 

nonsynonymous.

4.4. Construction of plasmids containing 5'UTR plus core 

(pRLNC)

Amplified PCR products containing the 5'UTR plus entire core region (nt 1-914) obtained 

from serum samples were cloned into the pRL vector (Collier et al., 1998) using the 

unique BamHIrestriction site as shown in Figure 4.5.A. Individual clones were cultured 

overnight and plasmid DNAs were extracted using an in-house miniprep method as 

described in chapter 2.2.1.2. Plasmids were digested with Ncol and Hindlll restriction
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Chapter 4

enzymes to identify the orientation of the insert. In total, 337 clones were examined to find 

5 correctly orientated clones for each sample. Extraction of DNA for sequencing was 

carried out using Miniprep kit (Qiagen) as described in chapter 2.2.1.1. At least 2 clones 

for each sample were sequenced using 2 sense and 2 antisense primers to cover the entire 

5’UTR plus core region (Figure 4.5.B). Sequences obtained from different primers were 

assembled and compared to the majority sequence from each patient. In total, 28 clones 

were sequenced but no complete clone matched with the majority sequence was found. 

Clones differed by from 1 to 8 nucleotides from the majority sequence. Sequencing of 

more clones was not attempted because of the high cost of sequencing and time 

constraints.

4.5. Relative translation efficiency of 5’UTR plus Core 

constructs (pRLNC) to equivalent 5’UTR constructs (pRLN)

As mentioned previously, construction of clones containing the 5’UTR and full length 

core (pRLNC) which matched exactly the majority sequence obtained from patients was 

not successful therefore, as a compromise, it was decided to measure the IRES activity of 

3 clones containing 5’UTR and core from each patient. It was reasoned that if there was a 

consistent and significant difference in translation between genotypes, it would be evident 

with such an approach. I attempted to use constructs from three patients in each group 

(GT1 and GT3 patients) including those showing lowest and highest IRES activity as 

found in the previous study. Therefore, pRLNC plasmids obtained from patients OS, LA 

and PE from GT1 and RJ, FA and JA from GT3 were used for transfection. In total, DNA 

from nineteen pRLNC constructs including pRLNC of H77c was transfected into 

BHKsinT7 cells and the relative IRES activity measured. This experiment was carried out 

with duplicate wells and on two different occasions.

Table 4.2 shows the renilla and firefly luciferase light outputs obtained from two 

experiments. Comparison of IRES activity between constructs containing the 5’UTR and 

15 nts of core (pRLN) and 5’UTR plus full length core (pRLNC) was carried out as shown
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Chapter 4

in Figure 4.6. All renilla luciferase light output values met the criteria for acceptability 

(section 2.6.3). The IRES activity of the pRLNC clones is presented as the ratio of firefly 

to renilla activities, relative to that obtained from the corresponding pRLN construct 

which was taken as 100%. Constructs containing 5’UTR and full length core showed a 

reduction in relative translation efficiency to only 3-7% of the level seen with the 

corresponding pRLN constructs. No firefly activity was observed in cell extracts 

transfected with the construct JA-2. Sequencing of this clone in both directions revealed 

the presence of a deletion at nt 490 within the core coding sequence causing a ffameshift 

which generated 4 stop codons in the downstream core sequence. Therefore, no functional 

firefly protein would be predicted to be produced.

4.6. IRES activity in GT1 and GT3 pRLNC constructs

Figure 4.7 shows translation levels of pRLNC constructs in two experiments. There was a 

variation in translation efficiencies of the 3 different clones obtained from each patient. In 

order to examine genotype difference in IRES activity, the mean relative translation 

efficiency of all clones obtained from GT1 patients was compared with those obtained 

from GT3 in each separate experiment. No significant difference was observed between 

the IRES activities of GT1 and GT3 constructs in two experiments analysed separately 

using both student t and Mann-Whitney tests (Figure 4.7.C). Clone JA-2 was excluded 

from analysis.

The ratio of firefly to renilla obtained from pRLNC H77c was arbitrarily taken as 100% in 

each experiment and other ratios were normalised against that. No significant difference 

between IRES activity of GT1 and GT3 constructs was observed when combined 

normalised data from both experiments were analysed using student t or Mann-Whitney 

tests (Figure 4.8).

93



Figure 4.6. Comparison of relative IRES activity of pRLNC (5’UTR/core)
and relevant pRLN (5’UTR) clones from 6 patients in BHKsinT7 cells.

All constructs were tested in two separate experiments in duplicate wells. IRES 
activity of matched pRLN (5’UTR) clone from each patient was taken as 100%. 
Data are presented as +/- standard deviation (SD). IRES activity of GT1 (A) and 
GT3 (B) constructs are shown. Exp: experiment
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Figure 4.7. IRES activity of GT1 and GT3 pRLNC constructs in BHKsinT7 
cells.

Firefly/reni 11a luciferase ratios obtained from constructs containing 5’UTR and core 
sequences tested in BHKsinT7 cells in two separate experiments (A and B). IRES 
activity of GT 1 and GT3 constructs are shown by white and hatched bars 
respectively. Mean IRES activity of GT1 and GT3 constructs were compared in each 
experiment separately (C). Data are presented as +/- standard deviation.
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Figure 4.8. Comparison of mean IRES activity of GT1 and GT3 pRLNC constructs
in BHKsinT7 cells.

Firefly/renilla luciferase ratios obtained from each constructs were normalised against 
that obtained from pRLNC H77c in each experiment. The data from two experiments 
were combined and analysed using both student t and Mann-Whitney tests.
The data are presented as +/- standard deviation.
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Chapter 4

4.7. The effect of core on IRES activity

The results of luciferase assays revealed that the inclusion of the additional core coding 

sequence substantially reduced firefly luciferase light output. It is possible that fusion of 

the core protein to the firefly protein reduced the enzymatic activity of this protein 

resulting in lower production of light. In this case, the inhibitory effect of core would be 

overestimated. To assess better the extent to which the inclusion of the core-coding 

sequence affected translation, the next experiments were carried out. BHK-21 cells were 

infected with vTF7-3, a vaccinia virus expressing T7 RNA polymerase. This system was 

used in preference to the BHKsinT7 system because the proteins of interest are expressed 

at a higher level. The cells were then transfected with plasmid DNAs containing the 

5'UTR alone (pRLN) and 5TJTR plus entire core (pRLNC) of H77c and after 16 hours, the 

cells were lysed and cell extracts obtained. The pGL3 vector which contains the firefly 

gene driven by the SV40 promoter was also transfected as a control for the correct band 

size of the firefly protein. Luciferase assays were carried out using extracts of cells which 

had been transfected with pRLN and pRLNC constructs. The ratio of firefly to renilla 

observed from pRLNC was 5% of that obtained from the pRLN construct (Figure 4.9.D). 

However, the renilla luciferase activity, which indicated the transfection level, was 4 fold 

lower in pRLNC than that of pRLN constructs. In order to verify these results, western 

blot analysis was performed to assess the amount of downstream firefly protein expression 

using the same cell extracts tested by the luciferase assay. Figure 4.9.A shows the SDS- 

PAGE analysis of the translation products which clearly demonstrated the presence of 

each expected protein. pGL3, pRLN and pRLNC all showed expression of the firefly 

protein. In cells transfected with pGL3 and pRLN the protein size (61 kD) was as 

expected, but pRLNC gave expression of a protein with larger size in comparison to 

pRLN. Figure 4.9.B shows the expression of core protein from the pRLNC construct 

which is similar in size to the control full length core provided by Dr. J. McLauchlan. The 

presence of full length core indicated that cleavage of core protein by signal peptidase at 

the core/firefly junction has occurred. A lower abundance of the firefly protein was 

produced from pRLNC compared to pRLN. Densitometric analysis of bands showed that 

the firefly protein obtained from pRLNC was only 60% of that from pRLN (Figure 4.9.A).
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Chapter 4

Anti P-Actin antibody was used as an internal control to normalize the amount of total cell 

lysate loaded in each lane (Figure 4.9.C). Taking into account the 4 fold less transfection 

level of pRLNC in comparison to pRLN construct, it would be expected that the 

abundance of firefly protein in pRLNC construct would be only 25% of that from pRLN. 

From these data, it would appear that no downregulation of firefly luciferase expression 

occurred in the presence of core but rather, increased amount of downstream reporter 

protein has been produced. It should be noted that western blot analysis was carried out 

twice whereas, transfection and preparation of cell extract for western blot was carried 

only once.

4.7.1 Glycosylation of firefly luciferase protein

As described earlier, a very low level of firefly activity was detected by luciferase analysis 

of pRLNC constructs in comparison with equivalent pRLN constructs and, as a result, the 

firefly to renilla ratio was only 3-7% of that observed from the pRLN construct suggesting 

that inclusion of core into the 5’UTR reduced IRES activity sharply. In contrast, more of 

the firefly protein was detected by western blot analysis of pRLNC in comparison with 

pRLN once the transfection level was adjusted for. One important difference between the 

translation of the two constructs is that translation of pRLNC would be expected to occur 

in the ER due to presence of the signal sequence at the 3’ end of the core protein, whereas, 

pRLN would be translated in the cytoplasm. Therefore, pRLNC may be subjected to post 

translation modifications such as glycosylation and formation of disulfide bonds. 

Therefore, the amino acid sequence of the firefly protein was further examined. It was 

noticed that 3 predicted N-glycosylation sites were present at positions 21, 90 and 161 

(Figure 4.10). This suggests that firefly protein would be further modified by N- 

glycosylation in the ER resulting in the production of a heavier protein. This would 

explain the presence of bigger firefly band obtained from pRLNC constructs in western 

blot (Figure 4.9.A). Unfortunately, I was not being able to perform the experiment of 

removing the carbohydrate portion from the protein (deglycosylation) using glycosidases. 

It was also shown that 4 cysteine residues were present in the firefly amino acid sequence
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Chapter 4

suggesting the possibility of formation of disulfide bonds between different regions of the 

firefly protein in the ER.

4.8. Discussion

The work presented in this chapter was undertaken in the final part of my PhD. The data 

presented are preliminary and I was not able to answer some questions due to time 

limitation. The original plan was to compare the IRES activities of GT 1 and 3 using 

constructs containing 5’UTR plus entire core sequence matched with majority sequence 

obtained from each patient similar to the work carried out for 5’UTR. However, when 28 

different clones were partially sequenced, no clone matching the majority sequence was 

found even in the limited regions of core sequenced. Therefore no further sequencing was 

performed due to the high cost and time constraints.

The data presented here showed that the inclusion of full length core coding sequence 

significantly reduced the relative firefly to renilla activity in our bicistronic expression 

system to 3-7% of that observed for constructs containing 5’UTR plus 15 nt of core 

coding sequence in BHKsinT7 cells. It has been reported that inclusion of core coding 

sequence (nt 1-860) in a bicistronic reporter construct, similar to what was used in our 

study, reduced the relative luciferase activity to 17% and 61% in HepG2 and HuH7 cells 

respectively with the relative luciferase activity of a construct containing nts 1-404 (i.e. 48 

nt more than our pRLN constructs) normalized as 100% (Wang et al., 2000). Western blot 

analysis of translation products from an in vitro system suggested 70% reduction in IRES 

activity in constructs containing core coding sequence (1-860) in comparison to constructs 

containing 5’UTR alone (1-404). However, no such analysis was carried out on in vivo 

translation products. Another study by Zhang et a l (2002) reported that inclusion of full 

length core (nts 1-914) reduced IRES activity to 10% of that of constructs consisting of 

5'UTR (nts 1-341) alone in an in vivo system.

It was possible that fusion of core protein to firefly luciferase altered the conformation of 

the expressed protein such that the enzymatic activity of the fusion protein was reduced. In 

this case, the degree of suppression of IRES activity might be overestimated by the
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luciferase assay as previously reported (Wang et al., 2000). In order to test this, western 

blot analysis of cell extracts containing 5’UTR plus core was carried out. In addition, the 

same cell extracts were subjected to luciferase assays. The firefly/renilla ratio obtained 

from pRLNC constructs was only 5% of that obtained from pRLN. Western blot analysis 

revealed the presence of core protein which was apparently similar in size to positive 

control core and a heavier firefly protein. One possible explanation could be incomplete 

cleavage of core resulting in generation of bigger firefly protein. However, the presence of 

full length cleaved core did not support this scenario. Further analysis o f the firefly 

luciferase amino acid sequence showed the presence of 3 predicted glycosylation sites. It 

is likely that the inclusion of the core coding sequence containing signal sequences leads 

to translocation of the translation machinery to the ER which would be expected to result 

in glycosylation of the firefly protein. It was noted that the apparent size of firefly protein 

was increased consistent with glycosylation occurring at the predicted sites.

Unfortunately, there was no time to carry out electrophoresis following deglycosylation 

prior to SDS-PAGE to confirm this speculation. A lower abundance (60%) of firefly 

protein was produced from pRLNC compared with pRLN. However, taking into account 

the lower transfection level (25%) of pRLNC construct in comparison with pRLN, there 

would appear to be no downregulation of expression of firefly protein in pRLNC. In fact, 

it seemed that inclusion of core enhanced the production of firefly protein by 2 fold when 

the transfection level of pRLNC was taken into account. However, this experiment needs 

to be repeated. Another factor to be considered if repeating the work presented here, 

would be to measure the abundance of renilla protein in western blot analysis at the same 

time which would allow the quantitation of the level of transfection more accurately.

In addition to 3 glycosylation sites, 4 cysteine residues were identified in the firefly 

luciferase amino acid sequence. Disulfide bonds are formed by oxidation of thiol (-SH) 

groups in cysteine residues. The formation of disulfide bonds occurs during the folding of 

protein in the lumen of ER. Although disulfide bonds help to maintain the tertiary 

structure of protein, proper pairing of cysteine residues is very important for normal 

structure and activity. It is conceivable that misfolding of at least part of the firefly protein 

in the oxidative environment of ER lumen in addition to its glycosylation could interfere
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with its enzymatic function. It is also possible that formation of misfolded protein in the 

ER had a negative impact on the translational machinery. It has been shown that the 

accumulation of misfolded proteins in the ER triggers the unfolded protein response 

(UPR)-signalling pathway resulting in downregulation of protein synthesis by increased 

phosphorylation of eIF2-a (Brewer and Diehl, 2000).

The above concerns regarding the discrepancy between results obtained from western blot 

analysis and luciferase assay results regarding apparent downregulation of IRES activity 

seen in core coding constructs has not been addressed in previous reports looking at the 

effect o f core on translation efficiency. Our data emphasize that assessment of the 

inhibitory effect of core on IRES activity in bicistronic constructs cannot be made by 

interpretation of results obtained only from luciferase assays.

Different IRES activities were observed among clones tested from each patient. This 

suggests that changes in nucleotide sequence influence the IRES activity. We were not 

able to analyse the effect of individual substitutions since complete sequencing data was 

not available. No firefly activity was detected in clone JA-2. Further sequencing of this 

clone revealed the presence of a deletion at nt 490 within the core coding sequence. 

Because the -1 reading frame of the core gene contains 4 stop codons, no functional firefly 

would be produced due to premature termination of translation. This has been reported 

elsewhere (Varaklioti et al., 2002). However, the presence of a +1 ribosomal ffameshift 

within core coding region resulting in the production of a so called “F” protein has been 

reported in GT 1 (Xu et al., 2001).

As described earlier, generating constructs consisting of 5'UTR and full length core 

coding sequence matched with majority sequence from each patient was not possible, so it 

was decided to test 3 individual clones from each patient. It was thought that the mean 

IRES activity obtained from 3 clones could be used as representative of IRES activity 

from patient if the differences in their activities were negligible. However, there was 

difference in translation efficiencies of clones obtained from one patient. Therefore, it 

was decided to compare the mean IRES activity obtained from all GT1 clones with those
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of GT3. No significant difference was observed between translation efficiencies of 

constructs obtained from GT1 and GT3 samples.

It should be noted that clone JA-2 was not included in analysis as no translation of firefly 

luciferase gene resulted from this clone. The nonfunctional IRES sequence could result 

from error produced by Taq polymerase during PCR or by HC V RdRp during virus 

replication.

In summary, taken together, the preliminary results I obtained suggest that the inclusion of 

core into the 5’UTR did not suppress the IRES activity. Rather, it seemed to enhance its 

activity in our system. In addition, no significant difference was observed between 

translation efficiencies of the 5’UTR plus core constructs obtained from GT1 and GT3 

patients.
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Chapter 5 

Studying the relation between viral load, liver histology 

and translation efficiency of HCV in patients

5.1. Introduction

Most reports on quantitative detection of HCV RNA have used either signal amplification 

with the branched DNA assay (Urdea et al., 1991) or target sequence amplification by RT- 

PCR (Levis et al., 2001; Young et al., 1995). The HCV branched DNA assay “Quantiplex 

Bayer”(bDNA) is a commonly used automated method but it is expensive. It is based upon 

specific hybridisation of virus RNA by two specific probes (capture and extender probes) 

to the 5’UTR and core regions of HCV RNA. The detection limit of the bDNA second 

generation assay was 33,000 IU/ml. The detection limit of the bDNA 3rd generation assay 

has improved to 800 IU/ml which still limits its use for detection of low level viremia 

(Hawkins et al., 1997; Hofgartner et al., 2000). The Roche Amplicor Monitor assay, which 

is a standardised quantitative kit based on RT-PCR, is used widely for monitoring HCV 

replication during therapy. The dynamic range for Roche assay extends from 300 IU/ml to

200,000 IU/ml, an approximately 3 log linear range (Martinot-Peignoux et al., 2000). 

Therefore, samples with higher viral load should be diluted prior to quantitative PCR.

HCV RNA can be quantitated using TaqMan technology using a dual labelled fluorogenic 

probe (Takeuchi et al., 1999). In this system, a reporter and a quencher are attached to 5’ 

and 3’ ends of a probe as shown in Figure 5.1. When both dyes are attached to the probe, 

reporter dye emission is quenched. During each extension cycle the Taq DNA polymerase
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Figure 5.1. Schematic representation of TaqMan real-time PCR.

A) Primers and probe hybridise to a specific sequence of the target DNA.
B) the Taq polymerase enzyme cleaves the probe with its 5’ to 3’ nuclease activity.
C) The reporter dye and quencher dye are separated upon cleavage, resulting 
in fluorescent light emission by the reporter.The figure was modified
from the TaqMan Universal PCR mastermix catalogue (Applied Biosystems, 1998).
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cleaves the reporter dye from the probe by its 5' exonuclease activity (Holland et al.,

1991). This ends the activity of quencher and the reporter dye starts to emit fluorescence 

which increases at each cycle proportional to the rate of probe cleavage. The fluorescence 

signal is generated only if the target sequence for the probe is amplified during PCR. 

Because both primers and probe must hybridise to the target for amplification and 

cleavage to occur, non-specific amplification is not detected (Livak et al., 1995). The C j 

value is used for quantification of the samples. The parameter Cr (threshold cycle) is 

defined as the cycle number at which the fluorescence emission exceeds the fixed 

threshold. During the early cycles of PCR, amplification of the target sequence is in the 

exponential phase. As the reaction components in reaction tubes are limiting, the rate of 

target amplification increases until a plateau is reached. Real-time PCR monitors the 

fluorescence emitted during the reaction as an indicator of amplicon production during 

each PCR cycle.

In the past, a problem with measurement of viral load was that most laboratories 

worldwide used different assays with no standardized HCV RNA quantification units. For 

example, 1 copy/ml in “Amplicor HCV Monitor”, and 1 genome equivalent (Eq)/ml in 

“Quantiplex Bayer” did not represent the same amount of RNA in a clinical sample. Each 

unit was defined with standards of different lengths and sequences. This meant that these 

assays could not be used to decide the duration of treatment because the exact 

correspondence between the different units could not be evaluated. Recently, the World 

Health Organization (WHO) International Standard for HCV RNA quantification has been 

established (Saldanha, 1999). An international standard obtained from a GT 1 serum 

sample was designated and aliquotted into a batch of vials, each containing 50000 IU/vial 

in lyophilised form.

The mechanisms responsible for the onset and progression of hepatic damage during 

chronic HCV infection are not well known. Liver damage in chronic hepatitis C is seen 

initially as inflammation. Fibrosis progression, which is associated with chronic 

destruction of liver cells, results from chronic inflammation of the liver. Fibrogenesis is 

characterized by increases in collagen and other extracellular matrix constituents, such as
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fibronectin and proteoglycans (Rockey, 2000). Ultimately, cirrhosis develops when 

annular fibrosis surrounds nodules of liver cells. The lack of any relationship between 

HCV viral load and the severity of liver disease suggests that HCV itself is not cytopathic. 

It has been suggested that the presence of liver lesions is due to the local immune 

response. The only lesion that can be related to a direct pathogenic effect of HCV is 

steatosis, which is the accumulation of intracytoplasmic lipid droplets in hepatocytes. 

Steatosis is a feature of hepatitis C particularly in association with GT 3 infection. Indeed, 

it has been reported that HCV GT 3 is the only genotype responsible for virus-induced 

steatosis, whereas, in patients infected with other HCV genotypes, the presence of 

steatosis is related mainly to other exogenous metabolic factors (Poynard et al., 2003). It 

has been shown that transfected HCV core protein can cause lipid accumulation by cells in 

vitro (McLauchlan et al., 2002; Perlemuter et al., 2002).

Liver biopsy is an essential investigation to evaluate the grade and stage of liver disease in 

HCV infected patients. Grading is used to describe the severity of inflammatory activity in 

chronic hepatitis. Staging is a measure of fibrosis and architectural alteration. Several 

scoring systems have been introduced. In the Ishak scoring system (1995), grading 

includes assessment of portal, periportal and intra-acinar inflammatory cell infiltration, 

and various forms of liver cell damage and necrosis (grading 0 to 16) and staging includes 

fibrosis, architectural disturbance and cirrhosis (staging from 0 to 6).

Several investigators have tried to identify non-invasive markers which correlate with the 

histologic changes in liver. It has been suggested that higher aspartate aminotransferase 

(AST) levels may be associated with more severe necroinflammatory activity on liver 

biopsy (Assy and Minuk, 2000). Others have found no significant correlation (Luo et al., 

1998). Several groups reported that higher RNA levels in serum were associated with the 

presence o f severe liver histopatological changes (Adinolfi et al., 2001b; Gretch et al., 

1994; Kumar et al., 1994). In contrast, no correlation was reported by other studies 

(Anand and Velez, 2004; Lee et al., 2001; Zeuzem et al., 1996).
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Changes in the secondary or tertiary structure as well as of the primary nucleotide 

sequence of the IRES can result in a decrease in the efficiency of protein translation. 

Therefore, nucleotide substitutions in the IRES could correlate with clinically significant 

findings such as serum HCV RNA concentration or response to interferon. Translation is 

one of the processes in viral replication. It is possible that a more efficient IRES may be 

correlated with either a higher viral load (proven to be correlated with lower response to 

interferon) or to a greater ability to resist the inhibitory effects of interferon. Yamamoto et 

al. (1997) studied 25 patients infected with GT lb and found no association between 

sequence variation in the IRES and serum viral loads. Similar results were reported by 

Thelu et a l (2004) examining 14 patients. Several groups have attempted to correlate the 

variability in the 5'UTR with the response to treatment (Laporte et al., 2000; Nakazawa et 

al., 1994; Soler et al., 2002) but no such correlation has yet been found.

To date, the significance of translational efficiency has not been fully understood in the 

clinical context. HCV replicates in the liver, yet no study has attempted to relate 

translation efficiency to serum viral loads and histological changes observed in the liver of 

patients infected with HCV. In the present study, I analysed the relationship between the 

translation efficiency of constructs based on the nucleotide sequence obtained from each 

patient, serum HCV RNA concentrations and their relationship to the degree of liver 

damage using histological scoring of liver biopsies.

5.2. Clinical samples

Of 25 patients with chronic HCV infection studied, 13 were male and 12 female and 11 

were infected with GT 1 and 14 with GT 3. No serum aliquot was available from one of 

the patients. The mean age was 41 years ranging from 28 to 51 years. All of these patients 

were referred to the Liver Clinic at Gartnaval General Hospital, Glasgow for assessment 

and possible treatment of chronic hepatitis C. None was on interferon-based therapy at the 

time when samples were collected. Serum samples were stored at -70 °C. The formalin 

fixed liver biopsies were all reviewed and graded by one pathologist (Dr. K. Oien, 

Department of Pathology, Royal Infirmary). Biopsies were graded for intensity of
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necroinflammatory activity and scored for severity of fibrosis using the Ishak histology 

activity index (Ishak et al., 1995).

5.3. HCV RNA quantification

Serum aliquots which had not been thawed previously were used for RNA extraction. 

Total RNA was extracted using the QIAmp Viral Minikit (Qiagen) according to the 

manufacturer’s instructions as described in chapter 2.2.6. RNAs were reverse transcribed 

in a separate reaction using Omniscript Reverse Transcription Kit (Qiagen) and antisense 

primer VtagRT as described in chapter 2.2.7.1. Real time PCR was carried out after a 

reverse transcription step. The primers EMCHCVF (sense) and EMCHCVR (antisense), 

which had been designed previously in our laboratory to amplify a 166 bp fragment within 

the 5’UTR of the HCV genome, were used (Table 5.1). These primers match completely 

conserved sequences between GT 1 and 3 of HCV. The probe binding site is also 

completely conserved in all known isolates. DNA probes with conjugated minor groove 

binder (MGB) groups form extremely stable duplexes with single-stranded DNA targets, 

allowing shorter probes with higher melting temperature to be used for hybridisation 

based assays. PCR was performed using cDNAs, TaqMan Universal PCR Master Mix 

(Applied Biosystems) and the GeneAmp 5700 sequence detector system (Perkin Elmer, 

Foster City, CA) as described in chapter 2.2.8.3. (Figure 5.2). The fluorescence released 

from the TaqMan probe during PCR was proportional over the exponential phase of 

accumulation to the amount of PCR product, and thus to the amount of original HCV 

RNA in the sample. The real-time data of increasing fluorescence during PCR were 

plotted and the point at which the amplification plot crossed the threshold was defined as 

Ct- The amount of HCV RNA in the sample was calculated from Ctvalue using the 

standard curve which was generated from HCV positive sample 2000/187 previously 

calibrated to the World Health Organization (WHO) First International Standard for HCV 

RNA (NIBSC) (Saldanha, 1999) and also to synthetic transcribed RNA (Figure 5.3). 

Lyophilised WHO material was reconstituted in deionised water to a concentration of

100,000 IU/ml.
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Figure 5.3. Standard curve of 3 replicates of serial dilutions of transcribed RNA,
plotting quantity versus threshold cycle (CT). The vertical scale is the cycle where 
PCR product crosses the threshold. The horizontal scale is the log of the 
starting copy number. The linear relationship between CT value and initial 
transcribed RNA copy number is shown over five orders of magnitude.
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Table 5.1 Oligonucleotides primers for quantitation of RT-PCR

Primer Sequence 5' to 3' Position Use

VtagRT (as) TTTTTCTTTGAGGTTTAGGA 353-372 RT

EMCHCVF (s) TCTGCGGAACCGGTGAGTAC 147-166 PCR

EMCHCVR (as) TCTGCGGAACCGGTGAGTAC 295-313 PCR
HCV MGB (Probe) TCTGCGGAACCGGTGAGTAC 272-294 PCR

Nucleotide numbering according to H77c (AF 011751). 

s = sense 

as= antisense

5.3.1. Calibration of the assay

All reactions were quantified against an internal HCV positive serum (2000/178) of 

known titre (3xl06 IU/ml) which had been previously measured by C.A. Smith in our 

laboratory. The sample was used neat and at dilutions of 1:3, 1:30 and 1:300 to generate a 

standard curve. To increase the dynamic range of the assay, standard RNA dilutions which 

had been previously synthesised by C.A. Smith using one of the constructs made by C. 

Naim in R. Elliott's laboratory, were used in parallel with the samples. This RNA contains 

a sequence from the 5’UTR of HCV. In order to recalibrate the transcribed RNA against 

serum 2000/178, real time PCR was carried out using serum 2000/178 and transcribed 

RNA in triplicate wells. C j values obtained from 1:106 dilution of transcribed RNA was 

equivalent to that obtained from neat 2000/178 (Cr~31) (Figure 5.4). Dilutions of 1:107 to 

1:102 containing 10 5 to 1010 copy/ml from transcribed RNA were used in the same 

reaction to ensure that samples with higher viral loads were measured accurately.
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5.3.2. Comparison of TaqMan real time PCR and COBAS Amplicor 

Monitor Assay for the quantitation of HCV PCR

In order to confirm that the “in house” TaqMan HCV quantitative test accurately 

measured viral load from different samples, it was decided to measure viral load in a 

number of samples using the COBAS Amplicor HCV system (Roche) which is routinely 

used for quantitation of clinical samples. Therefore, 8 serum samples including 2 from 

patients with the highest and 2 from patients with lowest viral loads quantified by TaqMan 

from each group of GT1 and GT3 patients were chosen. Fresh previously unthawed serum 

aliquots from these samples were sent to Regional Virus Laboratory at Gartnaval General 

Hospital and quantification was carried out by G. Gunning. Although the upper limit of the 

linear range claimed by the manufacturer for the Amplicor Monitor test is 850,000 IU/ml, 

other studies indicate that the test reaches a plateau at concentrations above 500,000 IU/ml 

(Konnick et al., 2002). In the first experiment using COBAS Amplicor, all 4 samples were 

reported as higher than the upper limit of detection of the assay. Therefore, a second 

experiment was carried out using 1:10 or 1:100 dilutions of these samples and the results 

were corrected for the initial dilutions. As shown in Figure 5.5.A and graphically in figure 

5.5.B, the HCV RNA levels measured by COBAS Amplicor assay correlated significantly 

with those measured by TaqMan PCR assay in patients infected with GT1 and GT3 

(correlation coefficient (CC) = 0.98, Spearman test).
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Figure 5.5. Comparison of viral load quantitated by TaqMan and COBAS Amplicor.

A

Patient Genotype TaqMan COBAS Amplicor
RJ 3 6  x 1 0 6 3 x 1 0
ME 3 2.7 x 107 9 x I06

JN 3 1 x 1 0 5 9.2 x 104

CP 3 7.9 x 104 2  x 1 0 5

LA 1 9.7 x 105 1 . 5  x 1 0 6

TW 1 2 . 1  x 1 0 6 1 . 8  x 1 0 6

BH 1 2 . 1  x 1 0 “ 3.3 x 104

BA 1 2  x 1 0 4 1 . 5  x 1 0 4
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5.3.3. Quantitation of viral load in serum samples

HCV RNA in samples from 25 patients (11 GT 1,14 GT 3) was quantified using the 

TaqMan real time PCR assay. The copy number was determined based on a standard 

curve drawn using the known amount of the internal control serum 2000/178 as described 

above. The measurement of samples was performed in triplicate. The amount of HCV 

RNA in the serum samples was defined as the mean of the triplicate data. HCV RNA was 

detected in all samples tested as shown in Figure 5.6. Serum viral loads in samples varied 

from 4.8 x 104to 3.3 xlO7 IU/ml. Among GT 1 samples, a mean viral load of 2.5x 106 

IU/ml was observed, whereas in GT 3 samples, the mean viral load was 8.2 x 106 IU/ml. 

When using an unpaired Student’s t test for comparisons between the two genotypes, no 

significant difference in viral load was found (p =0.07).

5.4. Liver histology scoring

Liver biopsies from 21 of the 25 patients from whom sections could be found in the 

pathology department were assessed by one liver pathologist (Dr. Dr. K. Oien, 

Department of Pathology, Royal Infirmary) without knowledge of the patients’ 

characteristics including genotype or 5’UTR sequence. Biopsies were scored according to 

the Ishak scoring system (Ishak et al., 1995) and recorded as inflammation grade and 

fibrosis score respectively as shown in Table 5.2. The fibrosis score reflected different 

stages of fibrosis, including none (0 points), fibrous expansion of some portal tracts (1 

point), fibrous expansion of most portal tracts (2 points), occasional portal-to-portal 

bridging (3 points), marked bridging (4 points), bridging with occasional nodules (5 

points), and cirrhosis (6 points). The inflammation grade reflected composite score of 

grades for interface hepatitis, confluent necrosis, focal inflammation, and portal 

inflammation. According to this scoring system, the maximum was 18 points. Of 21 

patients only 4 had fibrosis stage 1 to 3 and no patient had cirrhosis. Inflammatory grades 

ranged from 2 to 5. The Ishak scores were then analysed to check for presence of any 

correlation with viral load and translation efficiency.
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Table 5.2. Ishak and steatosis scores in liver biopsies from patients 
infected with GT1 and GT3.
NF=No biopsies available

Patient Genotype

Grading Staging

SteatosisInflammation Fibrosis

MA 1 3 0 0
TW 1 2 1 2
BA 1 5 0 0
OS 1 5 0 0
BK 1 2 0 0
MH 1 3 0 0
PE 1 NF NF NF
SA 1 4 0 0
CD 1 5 3 1
LA 1 3 0 1
BH 1 3 0 0
FV 3 3 1 2
MO 3 2 0 0
GR 3 5 0 1
RJ 3 4 0 3
ME 3 5 0 2
MF 3 5 1 3
U 3 4 0 2
BC 3 NF NF NF
JN 3 5 0 1

MW 3 NF NF NF
SJ 3 3 0 1
BJ 3 4 0 1
RI 3 4 0 1
JA 3 NF NF NF
CP 3 NF NF NF
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In addition, biopsy sections were evaluated for the presence of steatosis. Steatosis was 

graded as absent or minimal (less than 1% of hepatocytes) (score 0), mild (<30% 

hepatocytes involved) (score 1), moderate (between 30 and 60% of hepatocytes involved) 

(score 2) or severe (>60% of hepatocytes involved) (score 3). Steatosis of the liver was 

observed in all GT3 infected patients except one, with scores ranging from mild (5 cases) 

to moderate (3 cases) to severe (2 cases). In GT 1 infected patients, only 3 out of 10 

patients had steatosis (2 mild, 1 moderate).

5.5. Analysis of the correlation between IRES activity, viral 

load and histological features

Table 5.3 summarises the data used for statistical analysis. Data analyses were performed 

using SPSS version 11.0 (SPSS, Inc., Chicago IL). The correlations between translation 

efficiencies, Ishak scores and HCV RNA titres were analysed by the nonparametric 

Spearman rank-order correlation coefficient. A p value less than 0.05 was considered 

statistically significant.

The relationship between the translation efficiency of the 5'UTR obtained from patients in 

HuH7 cells as described in chapter 3 and HCV RNA concentrations in serum of patients 

was investigated. In order to assess correlations, all patients having an identical 5'UTR 

sequence were considered to have the same relative IRES activity as the representative 

5'UTR isolate in HuH7 cells. The mean IRES activity (normalised) obtained from 3 

separate experiments from each isolate was used for analysis. The IRES activity did not 

correlate with serum HCV RNA levels in the patients studied (Correlation Coefficient 

(CC) = -0.34, p> 0.05).

The relationship between the IRES activity of isolates obtained from the translational 

study and the liver histology from patients containing the identical 5'UTR to those isolates 

were analysed. Similarly, no association was found between the grade of liver 

inflammation and the corresponding translation efficiency (CC= 0.17, p> 0.05). There was
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also no significant correlation between circulating HCV RNA titres and the degree of 

inflammation (CC= -0.3, p> 0.05).

When we compared the steatosis scores with the HCV genotype, we found a significant 

correlation (p=0.008) with the presence of GT 3.

Table 5.3. Patient data used for statistical analysis

Patient
GT

Inflam m ation
grade

Fibrosis
stage

Steatosis
grading

V iral load  
(IU/m l)

RTE in 
H uH 7  
cell %

MA 1 3 0 0 4 .7x l05 100
TW 1 2 1 2 1.51xl07 110.6
BA 1 6 0 0 1.3xl04 100.7
OS 1 6 0 0 3.1xl05 110.6
BK 1 2 0 0 3.1xl06 110.6
MH 1 2 0 0 4 .8x l06 100
PE 1 NF NF NF 8.3 xlO5 97
SA 1 4 0 0 7.6 xlO5 107
CD 1 5 3 1 4 x 105 110
LA 1 2 0 1 4.3 xlO6 97.4
BH 1 2 0 0 7.8 xlO4 115.3
FV 3 3 1 2 3.9 xlO6 90.4
MO 3 1 0 0 2.6 xlO6 120
GR 3 6 0 1 5.5 x10s 120
RJ 3 4 0 3 2.9 xlO7 62.8

ME 3 6 0 2 2.7 xlO7 Not done
MF 3 5 1 3 1.5 xlO6 120
LJ 3 4 0 2 1.6 xlO6 90.4
BC 3 NF NF NF 9.6 xlO6 107.8
JN 3 6 0 1 4.8 xlO4 114.9

MW 3 NF NF NF 3.3x 107 120
SJ 3 4 0 1 NF 92
BJ 3 4 0 1 8.8 xlO6 120
RI 3 4 0 1 6.3 xlO5 82.3
JA 3 NF NF NF 4.7 xlO5 123.6
CP 3 NF NF NF 3.4 xlO5 107.8

RTE= relative translation efficiency 
NF= not available
For details of scoring system, see text

110



Chapter 5

5.6. Discussion

The aim of this part of the study was to address whether there was a correlation between 

the degree of histological damage, the translation efficiency of the IRES and the HCV 

RNA titres in patients infected with GT1 and GT3. Using the TaqMan real time PCR 

assay, the HCV RNA levels in serum samples from 25 patients in our cohort were 

measured. All liver biopsies in this study were assessed by a single histopathologist to 

prevent inter-observer error.

In this study, using synthetic RNA, the linearity of the assay was conserved over a wide 

range of HCV copy numbers ranging from 104 to 1010. Therefore, it was ensured that no 

sample with a higher viral load than our internal HCV positive control was missed. None 

of our samples was measured at less than 104 IU/ml. In comparison to other quantitation 

methods, real-time PCR measures a much wider range of viral loads. The dynamic range 

of any assay is determined as how much target concentration can vary and still be 

quantified with equal sensitivity and specificity. Using TaqMan system, a wide range of 

detection has been reported ranging from 10 1 to 1010 (Enomoto et al., 2001).

The result of this study concurs with other studies in finding no significant differences in 

virus load among patients infected with GT1 and GT3 (Lau et al., 1996; Smith et al., 

1996). The presence of a higher viral load in serum of patients infected with GT 1 in 

comparison to GT2 and GT3 has been reported by several studies (Mahaney et al., 1994; 

Orito et al., 1994) and it has been argued that this difference might be related to the 

increased probability of achieving response to treatment observed in GT 2 and 3. These 

analyses require that the assays used to determine virus load are equally sensitive for each 

genotype. There is evidence that this was not the case for the original branched-DNA 

(bDNA-1) assay with a reported 2 fold reduction in the efficiency of detection of GT3 

compared with those of GT1 (Hawkins et al., 1997). The current version of the Amplicor 

assay has been shown to amplify all known genotypes with equal efficiency. The
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quantitative PCR assays used in this study ought to measure accurately viral load in all 

samples with the same efficiency because the 5’UTR sequences which were used in 

design of primers and probe are completely conserved in all isolates of all genotypes in 

GenBank. In order to confirm this, 4 serum samples including 2 patients with highest and 

2 patients with least viral load quantified by TaqMan from each group of GT1 and GT3 

patients were quantified by COBAS Amplicor HCV system by an independent worker 

blindly. Similar results to those obtained from TaqMan were reported using COBAS 

Amplicor test with a significant correlation between the results obtained from the two 

assays.

Sequence variability in the 5'UTR may cause variations in the efficiency of viral 

translation. It is conceivable that variation in translation efficiency may also correlate with 

clinical features such as response to interferon, serum viral load or extent of the liver 

damage. It had been previously been shown that the sequence variability of the IRES did 

not appear to correlate with any difference in serum HCV RNA concentration (Yamamoto 

et al., 1997). They examined pre-treatment sera from 25 patients with GTlb infection and 

found no correlation between the number of nucleotide changes in the IRES with viral 

load or interferon response. We believe this is the first study in which correlations 

between translation efficiency, serum viral RNA and liver histology has been studied. The 

data presented here did not support such correlations. However, an association may have 

been masked in our study, as, by chance, most patients had very mild disease on liver 

biopsy. Against this, the range of viral loads seen was similar to that seen in patients in 

general with hepatitis C including those with more severe liver disease (Personal 

communication, Dr. E.A.B, McCruden).

Studies assessing the relationship between serum viral titres and the severity of 

histological abnormalities have reported conflicting results. Some found no correlation 

between HCV viral loads and the extent of histological damage (Lee et al., 2001; 

McCormick et al., 1996; Zeuzem et al., 1996). On the other hand, Fanning et al. (1999) in 

a study on 77 Irish women who acquired their HCV infection through the administration 

of contaminated anti-D immunoglobulin, observed a significant correlation between
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serum HCV viral loads and the degree of hepatic inflammation in liver biopsy samples 

using the Ishak scoring system. In the present study, no correlation was observed between 

serum HCV RNA titres and the degree of hepatic inflammation supporting the idea that 

the severity of liver disease was independent of serum levels of hepatitis C virus. It is also 

possible that the number of cases studied in this project was not sufficient to show a 

correlation. The precise mechanism by which hepatitis C virus damages the liver is not 

known. It has been reported that a direct cytopathic effect of the virus is responsible for 

the primary form of liver injury. However, it is widely accepted that the degree of liver 

damage is more likely to be the result of an interaction between the virus and immune 

response of the host (Rehermann, 2000). The results of the present study along with others 

argue against a direct cytopathic effect of HCV.

Patients infected with GT 3 showed a higher prevalence of steatosis than those infected 

with GT1 in our study. It has already been shown that the prevalence of steatosis among 

the HCV genotypes is significantly different; patients infected with GT 3 showing the 

highest prevalence followed by type 2 infection and lastly type 1 infection (Adinolfi et a l , 

2001a; Rubbia-Brandt et al., 2004). The mechanisms responsible for development of 

steatosis in HCV infection are not understood. In transgenic mice, it has been shown that 

the HCV core protein induces hepatic steatosis (Moriya et al., 1998). Core protein 

expression within the mitochondria alters the double membrane structure and causes an 

impairment of lipid oxidation, which produces steatosis (Moriya et al., 1998). It has been 

reported that steatosis may influence liver fibrosis progression in GT 3 infected patients. In 

patients with HCV genotypes other than 3, progression of liver disease may depend on 

other factors, such as prolonged alcohol abuse or being overweight (Rubbia-Brandt et al., 

2004).

Our data demonstrate that the observed differences in circulating viral loads and biopsy 

scores could not be explained by the translational activity by the IRES measured in our 

system in Huh7 cells.
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Chapter 6 

Quasispecies composition of 5’UTR in serum and liver

6.1. Introduction

A characteristic of the HCV genome, like those of other RNA viruses, is sequence 

heterogeneity. The HCV population in each individual consists of mixture of a genetically 

different but closely related variants called a quasispecies (Martell et al., 1992). New 

variants are generated during virus replication as a result of errors made by the viral RNA- 

dependent RNA polymerase, which lacks proofreading activity. A quasispecies 

distribution within a population can be studied using different methods. The sequencing 

of cloned RT PCR products was the methodology first used to analyse HCV quasispecies 

(Martell et al., 1992). However, both cloning and sequencing are time-consuming and may 

not accurately reflect the true nature of the quasispecies makeup. Therefore, some other 

techniques based on differential gel electrophoresis mobility were developed such as 

single-strand conformation polymorphism analysis (McKechnie and McCruden, 2001), 

and heteroduplex tracking analysis (Gretch et al., 1996).

In the use of cloning and sequencing for determination of quasispecies composition, 

nucleotide sequence information is obtained through PCR amplification of virus-specific 

cDNA produced by reverse transcription of viral RNA. The enzymes used through these 

two steps, a reverse transcriptase (RT) and a thermostable DNA polymerase, exhibit 

relatively high error rates. Therefore, such error rates have to be taken into account 

together when considering the actual heterogeneity within a viral population (Smith et al., 

1997b).
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The 5' UTR, even though the most highly conserved part of the virus genome, shows a 

quasispecies distribution (Laporte et al., 2000; Lu et al., 2000; Malet et al., 2003; Soler et 

al., 2002; van Leeuwen et al., 2004). Soler et al (2002) sequenced 360 clones from 6 

patients infected with different HCV genotypes and showed that most substitutions were 

in unpaired regions of 5’UTR or clustered such that base pairing was maintained. 

Substitutions in paired regions of the 5’UTR would be expected to alter the stem loop 

structure of the IRES if there were not compensating substitutions such that base pairing 

was maintained. Alteration of the stem-loop structure would be expected to result in 

effects on the translation efficiency of the IRES. No nucleotide sequence changes were 

observed after interferon-a therapy suggesting that the quasispecies distribution of IRES 

sequences does not play a role in HCV resistance to interferon. Laporte et a l (2000) 

examined the sequence of 5' UTRs from the quasispecies characterized in the serum of a 

chronic HCV GT la infected patient and its corresponding translational activity. They 

showed that sequence heterogeneity between IRES elements led to important changes in 

their translation efficiency both in vitro and in different cell lines.

Differences in the composition of the quasispecies between that circulating in the blood 

and that in the liver within an infected patient have been reported in several studies. 

However, most of these studies were conducted on the E2 HVR1 region, in which the 

number of variants within quasispecies is expected to be especially high (Cabot et al., 

2001; Cabot et al., 2000; Navas et al., 1998). Only one report (Cabot et al., 1997) was 

found in which the 5’UTR quasispecies was compared in paired serum and liver samples 

from 1 patient. They cloned and sequenced the 5’UTR from paired serum (9 clones) and 

three different parts of liver explant (33 clones) of a patient undergoing liver 

transplantation and showed the presence of the same master sequence in both tissues. The 

proportion of master sequence in the three liver samples was variable, while the frequency 

of any other variants never surpassed 5% of total clones sequenced. In serum, the Pn ratio 

(the ratio of number of polymorphic sites to number of nucleotides sequenced) was lower 

than those in the liver samples. As can be seen, the comparison between 5’UTR in serum 

and liver has not been investigated properly.
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RNA extracted 
from serum or liver

Reverse transcription 
PP2-REV (GT1) (nt 1324-1304) 
MSQ10(GT3) (1300-1280)

HCV viral 
RNA

5’

cDNA

BamHI PP-AC5 
(nt 18-33)

PCR 1 product

/PP-AC5 
(nt 18-33)

5’

3’

PCR 2 product

5’UTR

PCR 1

PCR 2

Core

BamHI

3’

PP3 (G Tl)(nt 988-972)
PP1 (GT3) (nt 988-972)

PP-AC8 (GT1/3) (nt 752-738)

3’

5’

Figure 6.1. Schematic representation of 5’UTR/core RT-PCR.

This shows the amplification o f the 5’ UTR and core region from serum and liver ffon 
HCV GT 1 and 3 infected patients by reverse transcription and amplification o f cDNa 
by seminested PCR. Bases corresponding to a BamHI digestion site were added to fie 
3’ ends of the relevant primers to permit easy cloning and are represented by dotted 
lines. PCR 2 (seminested) was carried out only on serum and liver samples from 
patient LA and the liver sample from patient BH.
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The 5’UTR is the most conserved region of the HCV genome and contains an internal 

ribosomal entry site which directs translation of viral proteins (Honda et al., 1996b). 

Therefore, any change in the nucleotide sequence of 5’UTR may influence the amount of 

protein that is expressed. Primary work carried out by P.Preikschat in our laboratory 

showed that majority sequences obtained from serum and matched liver samples were 

identical in 26 HCV infected patients studied. It was hypothesized that the liver might 

contain minor variants with lower translational activity which allows sufficient protein 

expression for viral replication but insufficient levels to induce immune recognition of 

infected cells resulting in persistent infection. However, the majority sequencing data did 

not support or refute this hypothesis. The work described in this and the next chapter were 

carried out in order to examine the above hypothesis using two techniques. In this chapter, 

using a cloning and sequencing strategy, I have compared the circulating and intrahepatic 

quasispecies composition of the HCV 5’UTR derived from serum and liver tissues of six 

chronically infected patients to answer whether there are any differences in quasispecies 

makeup o f the 5'UTR region between serum and liver.

6.2. Study patients and samples

We chose, at random, paired serum and liver samples from 3 patients infected with GT1 

and 3 with GT3 from our cohort. None of the patients had received interferon treatment 

before the samples were obtained. Patients SA, LA and BH were infected with GT 1 and 

patients MO, RJ and ME with GT 3.

6.3. Amplification of 5’UTR/core from patients and comparison 

of resulting “majority” sequence

All the following steps were carried out by P. Preikschat in our laboratory. As shown in 

Figure 6.1, extracted RNA from non-thawed paired serum and liver samples was reversed
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transcribed to generate cDNA using Superscript II RT (Invitrogen). Single rounds of PCR 

involving 38 cycles were carried out for patients SA, MO, RJ, ME and cDNA from serum 

from patient BH (Table 6.1. A). In order to increase the yield of PCR product, for serum 

and liver samples from patient LA and the liver sample from patient BH, seminested PCR 

involving 58 cycles was carried out using primers PPAC5 and PPAC8 (Table 6.1.B).

Comparison of sequences obtained by direct sequencing of PCR products obtained from 

GT 1 infected patients with reference sequence H77c (EMBL accession number AF 

011751) revealed that all had a difference with G at nt 107 instead of A (G107A). Patient 

LA had a mix of G and A at nt 233 indicated by (R) and patient BH had A204C (Figure 

6.2A).

Differences in sequence in GT 3 patients were G203A in patient MO, C121U in patient RJ 

and A340C in patient ME when compared with reference sequence NZL1 (EMBL 

accession number D 17763). (Figure 6.2B)

6.4. Cloning of 5’UTR/core into pCR 2.1 vector

Gel purified PCR products generated by P. Preikschat as described in the previous section 

containing the 5'UTR and core of HCV were ligated by me into the pCR2.1 TOPO vector 

(Invitrogen), as described in chapter 2.2.10.2. Fourteen to 27 independently isolated 

clones from PCR products were selected using X gal selection. Plasmid DNAs containing 

the 5'UTR sequences were purified using columns (Miniprep Kit, Qiagen). Clones were 

selected for the presence of the correct size insert by digestion with EcoRl, which is 

present on both sides of the cloning site. The orientation of the insert within the vector was 

determined by cleavage with Hind III and Clal restriction enzymes as can be seen in 

Figure 6.3. DNA from 202 clones was quantified by spectophotometry and nucleotide 

sequenced.
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Table 6.1. Amplification of 5’UTR and core region from six patients.

(A) The number o f PCR cycles for each sample is shown. Seminested PCR was 
carried out for serum and liver samples from patient LA and the liver sample from BH. 
B) Oligonucleotide primers for RT-PCR of genotype 1 and 3 5’UTR 
and core regions.

A

B

Patient GT Sample ! PCR cycles , Comment
S. A. 1 Serum ; 38--------

1 Liver
L.A. 1 Serum 58 \ Seminested

1 Liver ! 58 ' Seminested
B.H. 1 Serum 38

1 Liver 58 Seminested
M.O 3 Semm 1 38 1

3 Liver 38
RJ. 3 Semm 38

3 Liver i 38
M E 3 Semm 38

3 Liver 38

Primer Sequence (5’ to 3’) Genotype Position Use

PP2-REV (as) GACCAGTTCATCATCATATCC 1 1304-1324 RT

MSQ10 (as) GCCATT CGGTGT C CTGAGAG 3 1280-1300 RT

PP-AC5 (s) TTGCTGGATCCGCGACACTCCACCAT 1+3 18-33 PCR 1/2

PP-AC8 (as) CCGACGCTGCAGATGTACCCCATGAG 3 752-738 PCR 2

PP1-REV (as) AGCAAGGATC CT CATACACAATACT 3 988-972 PCR 1

PP3-REV (as) AGCAAGGATCCGCCTCGTACACAATACT 1 988-971 PCR 1

PP4 (as) CCGGGAACTTGACGTCCT 1+3 400-417 Sequencing

Nucleotide numbering according to H77c (AF 011751) for genotype 1 and
NZL1(D17763) for genotype 3 samples.
s= sense, as= antisense
RT= reverse transcription
BamHI restriction sites are underlined.



Patient GT Sample nt-Position
107 204 I 233

SA 1
y

Serum
Liver

G -^ A ! |
G-V A .............“..7

LA 1
1

Serum
Liver

G >  A j ! G-^R  
G A  * | G-^R

BH 1
1

Serum
Liver

G -► A I A ->  C ! 
..G ^ A  f A ^ C  !

B Patient GT Sample nt-Position
121 203 340

MO 3 Serum ! G-^A !
3 Liver G -*A  !

RJ 3 Serum c - * u
3 Liver c  -► u

ME 3 Serum ! A -*C
3 Liver A—► C

Figure 6.2. Nucleotide differences between majority sequences of 
patients and reference sequences.

Tables A and B show changes in 5’UTR region in genotype 1 and 3 
patients studied respectively. H77c (AF 011751) andNZLl (D17763) 
were chosen as reference sequences for GT1 and GT3 respectively.
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6.5. Sequencing of clones

All clones containing insert were sequenced in both directions by the Microarray and 

DNA Analysis Unit of the Sir Henry Wellcome Functional Genomics Facility (IBLS), 

University of Glasgow, using an ABI 377 sequencer (Applied Biosystems) based on the 

dideoxy method developed by Sanger (Sanger et al., 1992). In this system, each 

dideoxynucleotide contained a specific fluorescent dye which could be excited by a laser. 

Dideoxynucleotides (ddNTP) contain a hydrogen group (H) on the 3’ carbon instead of a 

hydroxyl group (OH) which prevents the addition of further nucleotides after integration 

into DNA chain. The reactions were performed as linear amplification on a PCR machine 

by Dr. G. Riboldi-Tunnicliffe, using BigDye Terminators v 1.1 (Applied Biosystems), in a 

single tube containing all four ddNTPs which are each labelled with dyes which fluoresce 

at different wavelengths. The contents of tubes were subjected to clean up by ethanol 

precipitation and electrophoresis on a slab polyacrylamide gel in order to separate the 

different sized bands. The signals were then collected and analysed by the Sequencing 

Analysis 3.4.1 programme (Applied Biosystems). A coloured electropherogram was 

produced. In order to sequence only the 5’UTR region in the insert containing 5’UTR plus 

core, clones with correct orientation (5' to 3') were sequenced using M l3 Reverse primer 

(5’CAGGAAACAGCTATGAC3’) and PP4. For clones in the opposite orientation, M l3 

Forward (5’GTAAAACGACGGCCAG 3’) and PP4 were used (Figure 6.3). A fragment 

(nt. 33-336) was examined from the 5'UTR of HCV including stem loop II and III and part 

of IV. Reference sequences H77c and NZL1 were used to align the sequences obtained for 

GT1 and 3 respectively.

6.6. Comparison of liver and serum quasispecies composition in 

patients

The populations of 5’UTR sequences in paired serum and liver samples from 6 patients (3 

GT 1 and 3 GT 3) were analysed. Figures 6.4 to 6.9 summarise the results obtained. The 

same majority sequence was present in both the liver and serum in each patient and this
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sequence was the same as that observed by direct sequencing of the PCR product. The 

proportion of the predominant sequence varied from 26% to 73% of clones in serum 

samples and 25% to 60% in liver samples and in most patients, no other clone was 

detected more than once. The exception to this was patient LA in whom a mixed 

population of G and A was observed at nt position 233 (Figure 6.4). Forty six percent of 

clones from serum and 35% clones from liver had G at position 233. A change from U to 

C was found at positions 56 and 63 in two serum clones (d and f) but clone f  had two other 

changes which were not present in clone d. A change of A to G was present in clones n 

and q from the liver but clone n had three other changes therefore the variants were not the 

same. One clone (clone k) had an insertion of C at position 119/120.

In patient BH, (Figure 6.5), a change from U to C at position 37 was observed in clones d 

and e, however, clone d had an additional change of A to G at position 66. Clone f  from 

the serum sample had a deletion of C at position 120.

In patient MO, (Figure 6.8), with GT 3, from 37 clones analysed from serum and liver, 

clone e from serum and clone n from liver had an insertion of C at position 117/118. 

Another insertion of U was found in clone q from the liver sample at position 279/280. 

Clones r and n had deletion of G at position 118 and 227 in comparison with the majority 

sequence for this patient.

6.7. Artefactual sources of variation

One difficulty with interpreting this kind of nucleotide sequence data is that both reverse 

transcriptase and Taq polymerase have relatively high error rates, and for the latter this is 

compounded by multiple cycles of PCR. Errors produced during RT PCR amplification of 

the virus genome will be present in clones and therefore be interpreted as virus 

heterogeneity.
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Chapter 6

The frequency of differences from the majority sequence observed in the HCV 5' UTR 

target region was calculated as:

No. of differences in each group of sequences

No. of clones x sequence length in bp x No of PCR cycles

and expressed as the number of unique polymorphism sites per nucleotide per cycle 

(Smith et al., 1997b)

In total, 131 differences including 124 substitutions, 4 insertions and 3 deletions were 

observed amongst 202 clones sequenced. According to the manufacturer’s information, 

the error rate of Superscript II was 1/15000 bases sequenced. Again, according to the 

manufacturer, the error rate of AdvanTaq Plus was 0.66 errors/1000 bp/25 cycles or 2.6 

xl0'5per nt sequenced per cycle of PCR. The expected number of substitutions in the PCR 

reaction was calculated as the error rate of Taq (2.6 xl0'5) x length of fragment (303) x 

number of PCR cycles x number o f clones sequenced. As a result, the expected number of 

changes would be higher for those samples (serum and liver from patient LA and liver 

from Patient BH) involving more PCR cycles. This was confirmed by the number of 

observed changes in those two patients. As shown in Table 6.2, the predicted number of 

errors generated by enzymes for sequences obtained after 1 round of PCR was 50 bases 

and that for those generated using 2 rounds of PCR including serum and liver samples 

from patient LA and liver sample from patient BH was 19.7 bases. Instead, 84 

substitutions were observed in 125 clones involving 1 round of PCR and 40 substitutions 

amongst 43 clones generated by 2 rounds of PCR. In total, the expected number of 

changes were 69.6 nt, whereas, 124 nt changes were observed. Therefore, the number of 

observed substitutions obtained from cloning in this study was higher than errors predicted 

by RT and DNA polymerase used for amplification. In only one sample (SA, serum) the 

observed number of substitutions was lower than predicted.

120



Table 6.2. Frequency of nucleotide substitutions in the 5’UTR region 
derived from patient samples.

The expected number o f substitutions in each sample was calculated as the sum of 
errors produced by reverse transcriptase and Taq polymerase. Errors resulting from 
Taq polymerase were calculated as the error rate of Taq (2 .6  x 10'5) x length of 
5’UTR (303) x number o f PCR cycles x number o f clones.

' Number of Expected Observed i Observed
clones per PCR number of number of ! substitution

Patient : Tissue sample cycles substitutions I substitutions rate x(10 5)

MO Serum 22 38 7 10 3.9’
Liver 15 38 4.7 7 4

RJ Serum 27 38 8.5 14 4.5
Liver 14 38 4.3 10 6.2

ME Serum 19 38 6 13 5.9
Liver 17 38 5.3 10 5.1

SA Serum 15 38 ; 4.7 4 2.3
Liver 15 38 4.7 9 5.2

LA Serum ; 15 58 7.1 -17 6.4
Liver 14 58 6.3 13 5.2

BH Serum
.. 15

38 4.7 7 4
i Liver 14 58 | 6.3 ! 10 4

Total 202 69.6 124



Chapter 6

6.8. Characteristics of observed 5f UTR changes

Altogether, compared to the 5’UTR sequences obtained from majority sequences from 

each individual, 124 substitutions, 4 insertions and 3 deletions were found in 202 cloned 

sequences. Only 8 (6%) substitutions were transversions (changes from purine to 

pyrimidine or vice versa): A to C (2), C to A (1), G to C (2), A to T (2), T to G (1) and the 

reminder were transitions. These were substitutions of purine to purine: T to C (39), C to 

T (14), or pyrimidine to pyrimidine: A to G (45), G to A (18). Three out of 4 insertions 

were observed at position 119/120. The fourth insertion was at position 270/271. Three 

insertions and 2 deletions were observed in one patient (MO). All insertion and deletions 

were in regions predicted to be unpaired except one (nt 227).

6.9. Comparison of heterogeneity of sequences in serum and 

liver

In order to determine whether the liver samples contained more complex populations than 

serum samples, quasispecies complexity was calculated for all patients. Quasispecies 

complexity can be quantified using Pn (the ratio of the number of polymorphic sites to the 

number of nucleotides sequenced (Cabot et al., 2000).

To correct for differences in numbers of cycles of amplification in the calculation of Pn, 

the number of observed substitutions in serum and liver samples from patient LA and liver 

sample from patient BH which involved 58 cycles of PCR, were recalculated as:

No. of observed substitutions x 38 

58

Table 6.3. summarises the results obtained for the 6 patients. Clones obtained from liver 

samples from patients RJ and SA were more complex than clones obtained from paired 

serum samples. For patients MO and BH the complexity of clones obtained from serum 

samples was very similar to those from liver samples. In patients ME and LA, the
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Table 6.3. Sequence complexity of the 5’UTR in the liver and serum quasispecies 
of patients.

Appearances refers to the number o f times each sequence was observed
in the clones analyzed. Pn: the ratio o f number of polymorphic sites to number of
nucleotides sequenced.

Patient Tissue

Number of 
clones 

analyzed
Number of 
changes

Number of 
identical 

sequences

I
Appearances ; 

i (no of clones ) < Pn

M.O Serum 22 10 13 (59%) 1 (13), 9(1)  ; 1/666
Liver 15 7 9 (60%) : 1 (9), 6 (1) 1/649

R.J. Serum 27 14 18 (66%) 1 (17), 8 (1) 1/584
Liver 14 10 7 (50%) 1(7), 4(1 ) 1/303

M.E Serum 19 13 10 (52%) 1(10), 9(1) 1/442
Liver 17 10 10 (58%) 1(10), 7 (1) 1/515

S . A. Serum 15 4 11 (73%) 1(11), 4 (1) * 1/1136
Liver 15 9 6 (40%) 1(6), 9(1)  . 1/505

L.A. Serum 15 11 4 (26%) 1 (4), 1(2), 9(1; 1/413
Liver 14 8.5 4 (28%) 1(4), 1(2), 8 (i; 1/499

B.H Serum 15 7 9 (60%) 1(9), 6(1) 1/649
Liver 14 6.5 6 (42%) : 1 (6), 8(1)  , 1/652
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quasispecies complexity of clones derived from serum was higher than those obtained 

from liver samples. Figure 6.10.A shows the number of changes, which occurred per base 

in sequences obtained from paired serum and liver from each patient. No significant 

difference was found between complexities of sequences studied pooling all the data for 

liver and serum derived clones. (p> 0.05 Student’s unpaired t test). (Figure 6.10.B)

6.10. Comparison of variation between paired and unpaired 

regions

All substitutions were positioned onto the predicted 5’UTR secondary structure. Seventy- 

five (58%) were found in paired regions whereas the total number of nucleotides in paired 

regions predicted by the 5’UTR secondary structure was 197 (65%). Fifty six (42%) 

changes were positioned in unpaired regions whereas 106 (35%) of the total nucleotides 

were predicted to be unpaired. (Figure 6.11 and 6.12)

The number of changes occurring in nucleotides predicted to be unpaired was higher than 

in paired regions. Differences in Pn values were analysed by unpaired Student’s t test.

The rate of change (Pn) in paired and unpaired region was calculated. As shown in (Figure

6.10.C) the rate of change per nt in predicted unpaired regions was 0.0028 against 0.0018 

for paired regions. The difference was not significant (p>0.05).

6.11. Discussion

By cloning and sequencing PCR products spanning the 5’UTR, we demonstrated the 

existence of a quasispecies with the majority of clones corresponding exactly to the 

sequence obtained by sequencing the PCR product directly. Additionally, in each patient 

sample, there appeared to be a number of minor variants suggesting that the quasispecies 

nature of HCV includes variants in the 5’ UTR.

122



U d  UE6|/\J

o
o
Acu

_____________

CQ

ud

 ,

L O L O ^ - L O C O L O C N L O ^ — LO 
O ^ f O C O O C N O x — O O
o o o o o  o o o o o

u

a

i-4/
C/5

Eo
c
-o
cu#c
*s
JSo

C /5cuos
«u
3c
cu
c/5u-O

—o.
Eo
U

<u

3

3
(U
CD

£ 
■4—>
CU33

u

H
D
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GCCĜ C

7 3  G U ^ T
- ^ - A U  

A A 
A G
G U

A

U "!* A U  C 
G ^ f C G  U . .  UCUU<—

->-UA^U

y ° c >
A i U A  GGG

CACCGG 
GUGGCC 

A GGG G 
CCC U 

G

CG 
GC

^ U A 9 ^  
CG ~Z------UÂ T -^■Gu
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The study of HCV quasispecies composition is problematic. Sequencing of cloned PCR 

products is the most commonly used technique for quasispecies analysis. However, it is 

prone to artificial polymorphism introduced during RT-PCR. Both reverse transcriptase 

and Taq polymerase have high error rates. Therefore any errors resulting from RT PCR 

could be interpreted as virus heterogeneity. One approach to minimise the rate of errors 

introduced by DNA polymerase is to use proofreading DNA polymerases. It has been 

shown that the error rate for Taq polymerase is seven times higher than for proofreading 

DNA polymerases (Malet et al., 2003). In this study we used “Advan Taq Plus” 

polymerase which according to manufacturer’s instruction has an error rate of 2.6 x 10'5 

per nt sequenced per cycle of PCR.

It is possible that all variants present in quasispecies in each sample do not amplify with 

equal efficiency during RT PCR. One problem could be differential hybridisation of 

primers due to mismatches at the primer binding site. This could serve as a negative 

selection mechanism contributing to under-representation of variants containing those 

mismatching sites. Primers used during RT PCR in this study were designed from a 

conserved regions of the genome found by aligning as many sequences of the appropriate 

genotype that were available at the start of the project. At that time, there were many more 

complete and partial GTla than GT3a sequences so bias may be more problematic for 

GT3a. I would have liked to use a different set of primers external to those used for 

amplification of the 5’UTR and to sequence a number of clones containing the new PCR 

products in order to find out whether the same variants would be detected as in the 

original experiment. However, this would be costly.

There is evidence which suggests at least part of the observed differences in our clones 

reflected real variants within the quasispecies rather than errors produced during the 

amplification process. Firstly, the substitution rate in the 5’UTR was found to vary 

between the 6 patients and between serum and liver samples within the same patient in 4 

cases. Secondly, the observed substitution rates (4.5 x 10‘5 for sequences obtained from 1 

round and 5.3 x 10'5 for sequences obtained from 2 rounds of PCR) were higher than 

expected errors produced by reverse transcriptase and Taq polymerase (2.6 x 10'5) used
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for amplification. Thirdly, although the data presented in this chapter showed that most 

changes were unique to each clone, there were altered bases which were shared between 

more than one clone e.g. positions 56 and 63 in clones d and f  in patient LA and also the 

mixed position at nt 233. In addition, there were some nucleotide positions which were 

substituted more than once among different clones sequenced (e.g. position 37, 56, 63, 74, 

99 and 243 in clones obtained from GT 1 patients and positions 101, 132 and 147 in 

clones derived from GT 3 patients). Most artefactual substitutions would be expected to be 

found in only one of the multiple clones sequenced (Smith et al., 1997b). Fourthly, the rate 

of substitution observed in predicted unpaired regions was higher than those observed in 

predicted paired regions. Similar findings were reported by Soler et a l  (2002). These 

suggest that substitutions in unpaired regions are tolerated more than those in paired 

regions. Substitutions located in paired regions change the stem loop structure of the IRES 

which may cause translational and replicative disadvantage. Any change in a paired region 

requires a covariant substitution in the complementary base to preserve the secondary 

structure of 5’UTR. Only one such substitution was observed, in clone c from serum 

sample of patient LA, which had two complementary changes of A to G at position 185 

and T to C at position 212. The non-random distribution of observed changes suggests that 

errors introduced by DNA polymerase during the PCR reaction were unlikely to account 

for all the observed changes.

The data from our study support the presence of quasispecies in HCV 5’UTR which has 

been reported by other groups (Laporte et al., 2003; Martell et al., 1992; Soler et al.,

2002). The first report of the quasispecies structure of HCV 5’UTR was by Martell et al 

(1992). They cloned and sequenced 20 5’UTR clones from a serum sample from a patient 

infected with GT1 and found that 60% of the sequences were identical to the master 

sequence obtained from direct sequencing of PCR product and only 40% contained single, 

nonrepetitive base substitutions. In our study, between 26-73% of sequences obtained 

from serum were identical to their corresponding majority sequence. Three out of 4 

insertions were observed at position 119/120 which was also observed in other 5’UTR 

quasispecies studies (Laporte et al., 2000; Lu et al., 2000; van Leeuwen et al., 2004).
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Differences in the composition of the quasispecies between serum and liver have been 

reported mostly in the HVR1 region (Navas et al., 1998; Shimizu et al., 1997). Greater 

complexity in the liver could be due to the existence of different functional compartments 

in infected liver cells. It may also explained by the existence of sequences in the liver 

which are not able to become mature virions to be released into the circulating pool. 

Greater complexity in the serum could be explained by the contribution of minor variants 

replicating in extrahepatic sites (Laskus et al., 1998).

Only two studies were found to analyse the differences between quasispecies composition 

in the serum and liver in the 5’UTR (Cabot et al., 1997; Jang et al., 1999). However, the 

study by Jang et al. was carried out using SSCP analysis which will be discussed in the 

next chapter. Cabot et al, using cloning, examined the 5’UTR from three different biopsy 

samples from a liver explant from one patient with that from matched serum and found 

that the major sequence was present in a similar proportion in the 3 biopsies suggesting 

that quasispecies complexity in serum is not due to anatomical compartmentalization of 

virus replication. In their study, complexity (Pn ratio) of clones derived from serum was 

lower than those from liver. In our study, no significant difference was observed when the 

mean Pn ratio obtained from serum samples was compared with those obtained from liver 

from 6 patients.

The data from this study showed a higher rate of transitions (94%) than transversions (6%) 

in the 5’UTR fragment studied. The higher ratio of transitions in 5’UTR compared to the 

coding regions has been reported by other groups (Tanaka et al., 1993; Vizmanos et al., 

1998). However, these studies examined the variability of 5’UTR in different isolates and 

not in quasispecies. The 5’UTR is not a protein coding region therefore it cannot be under 

immune pressure as is the case for the HVR1 region. However, the influence of other 

selection processes on the 5'UTR in which the fittest variant for the environment would be 

selected cannot be excluded.

It has been reported that the GGG triplet between nucleotides 260 and 268 of the apical 

loop of stem loop Hid was very conserved (Soler et al., 2002). Assuming no selection
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against mutants, the expected number of mutations in this segment among clones studied 

would be 3.8 nts. Interestingly, this triplet was completely conserved among the clones 

studied here. It has been shown that this triplet is essential for IRES activity in vitro and in 

vivo in HCV as well in flaviviruses, pestiviruses, and GB virus B (Jubin et al., 2000) .

We have shown that a proportion of the observed substitutions in the 5’UTR derived by 

cloning and sequencing must represent variants present in the patient providing evidence 

for a quasispecies distribution in the 5’UTR. The data presented in this chapter did not 

support the original hypothesis that there is a subpopulation of virus in liver cells which 

has a lower IRES activity than the predominant HCV population circulating in the blood.

126



Chapter 7

Chapter 7

SSCP analysis of quasispecies composition of 5’UTR in

serum and liver

7.1. Introduction

Single-strand conformation polymorphism (SSCP) is one of the techniques widely used to 

identify a mutant sequence or a polymorphism in a known gene. In this technique 

(SSCP), the migration of single stranded DNA in non denaturing PAGE is analysed. The 

mobility of DNA fragment is characterised by the tertiary structure which it adopts. The 

PCR products are heat denatured and three dimensional structures emerge during cooling 

which depend on the primary nucleotide sequence. The technique allows the detection of 

single base changes which affect the folding of the DNA. Therefore, mixtures of DNA 

molecules of the same size, such as would be found when RT PCR is performed on 

material containing related RNA genomes as with hepatitis C, may be separated into 

bands of different mobility. The sensitivity of SSCP tends to decrease as fragment length 

increases.

The success of any particular SSCP experiment depends on the optimisation of conditions 

to maximise differential migration among fragments. This is of particular importance 

when analysing viral quasispecies as the number of expected bands cannot be determined 

beforehand. The original SSCP protocol used the incorporation of radioactive label and 

polyacrylamide gel electrophoresis on sequencing gels for detection (Orita et al., 1989) 

which was labour intensive and time-consuming. Simpler methods using polyacrylamide 

gel electrophoresis and non-radioactive staining such as silver staining have been

127



Chapter 7

proposed. To improve the resolving power of SSCP, a variety of methods have been 

suggested, for example adding glycerol, reducing temperature, increasing the length of the 

gels or the duration of the gel runs (Sentinelli et al., 2000).

According to the manufacturer, MDE (Mutation Detection Enhancement Gel, Cambrex) 

gel solution is a polyacrylamide-like matrix that has a high sensitivity for DNA 

conformational differences. Since its introduction, MDE has been used in other studies 

including the work carried out in our laboratory in order to study variation in the NS5A 

gene in response to interferon treatment (McKechnie and McCruden, 2001).

This technique has been used in many studies to examine the quasispecies nature of HCV, 

but in most, the target region was the HVR1 (Enomoto et al., 1994; Moribe et al., 1995). 

The 5' UTR is the most conserved region of the HCV genome. Only a few studies have 

compared the quasispecies composition between matched liver and serum samples from 

patients infected with HCV. Laskus et al (1998), using SSCP analysis, reported the 

presence of different 5'UTR variants in peripheral blood mononuclear cells (PBMCs) from 

those found in serum in 5 HCV infected patients co-infected with HIV-1 suggesting the 

presence of extrahepatic HCV replication in PBMCs. However, no difference in 

quasispecies makeup was observed between liver and serum samples. The work carried 

out by Jang et a l (1999) examined the differences between the quasispecies composition 

of 5'UTR sequences in matched serum and liver samples obtained from 6 chronically 

HCV infected patients using SSCP. They reported that liver samples from 4 patients 

contained variants which were not found in serum samples from the same individuals. 

SSCP analysis of PCR product amplified from serum and liver revealed consistent major 

band patterns, indicating the presence of an identical master sequence in four of the six 

patients studied. However, in each of these patients, additional bands specific to liver 

derived RNA were identified. In the remaining 2 patients, however, differences in master 

sequence were observed and it was concluded that the observed inconsistency was due to 

lower viral loads in those patients.
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The work presented in this chapter was undertaken to analyse the composition of the HCV 

quasispecies in the 5'UTR region using SSCP to answer the following questions:

1) Is there a difference in the composition of the 5'UTR quasispecies detectable between 

serum and liver from individual patients?

2) Are the results of quasispecies analysis by cloning and sequencing comparable with 

SSCP regarding variation in the 5'UTR of HCV? Specifically, are any of the variants 

detected by cloning present in sufficient quantity to be visible by SSCP?

7.2. Optimisation of SSCP

In order to determine the reliability and reproducibility of this technique, primary 

experiments were carried out using clones generated by V. McKechnie in our laboratory. 

The clones were obtained by blunt end ligation of the PCR product from the HVR1 region 

from a patient infected with HCV GT lb into the vector pUCl 19 (McKechnie and 

McCruden, 2001).

Plasmids 2c, 2d and 3d.2 containing the HVR1 inserts were amplified with primers EN3 

and EN4 (Table 7.1 .A) using the PCR conditions shown in Table 7.1 .B resulting in the 

amplification of a 352 nt fragment. The numbers of nt differences between clones are 

shown in Figure 7.1.A. The PCR products were analysed by SSCP as described in section 

2.2.11.3 to determine the number of variants with detectable differences in mobility. As 

expected, amplification using sense and antisense primers resulted in 2 separate bands 

consistent with each strand of DNA adopting a different conformation (Figure 7.1.B).
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Figure 7.1. SSCP analysis of HVR clones.

A) The number of nucleotide differences between clones 2d, 2c and 2d, 3d.2 
and 2c, 3d.2 are 33, 33 and 4 respectively. B) Individual clones 2d, 2c and 
3d.2 were analysed by SSCP. Detectable mobility differences were seen for 
the three clones. Gel stained with ethidium bromide and viewed under UV 
light. MVI, molecular weight marker (Boehringer Mannheim) was loaded 
alongside the individual clones to show the relative mobility.
As DNA does not migrate according to size in SSCP analysis, the bands of 
MVI were assigned letters only, not sizes (C,D)

A

3d.2 2c 2d
3d.2 4 33
2c 4 33
2d 33 33

MVI 2d 2c 3d.2

Band C L

Band D
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Table 7.I.A. Oligonucleotides primers for PCR of HVR1 from clones.

Primer Sequence 5 ’ to 3 ’ Position*

EN3 sense 
EN4 antisense

GC T T GGGATAT GAT GAT GAAC T GGT C 
GGTGTGGAGGGAGTCATTGCAGTT

1296 to 1321 
1623 to 1646

* Nucleotide positions are numbered according to the sequence HCV-1 (Choo et al., 
1991). This resulted in the amplification of a 352 nt fragment.

Table 7.I.B. Amplification conditions used for HVR1 region PCR.

Primer Number o f cycles PCR Conditions

EN3/EN4 25 94°C/ 1min 
60°C/ 1min 
72°C/1min

7.2.1. Sensitivity of SSCP when two variants present.

In order to determine the limit of detection of rare subpopulations, an experiment 

described by Enomoto et a l (1994) was performed with some modification. Two 

plasmids, pRLN MO and pRLN H77c, containing different 5'UTR sequences with 

different SSCP mobilities were mixed at various ratios from 500pg:500pg down to 990 

pg: lOpg per pi. Double stranded DNA was amplified by PCR using PPAC5 and NCR4 

primers and amplified products were gel purified and subjected to SSCP analysis. This 

experiment was carried out twice. In the first experiment, as shown in Figure 7.2, the 

upper band from H77c (minor variant) in both experiments disappeared as expected as the 

concentration decreased. However, both H77c and MO give faster migrating bands which 

seem to split and this made it difficult to see the disappearance of the lower band of H77c, 

particularly in the second experiment. The minor subpopulation (H77c) was visible at 

clone mixtures of 500pg:500 pg, 900pg:100pg, 950pg:50pg and 975pg: 25pg. Bands
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representing clone H77c were not visible at 990pg:10pg. Therefore, the technique was 

able to detect a minor variant representing only 2.5% of total population.

7.2.2. Sensitivity of SSCP analysis using Silver staining

In an attempt to increase the sensitivity, silver staining was performed using the Silver 

Xpress® silver staining Kit (Invitrogen) as described in chapter 2.2.11.4. It was claimed 

that this technique was 20 times more sensitive than ethidium bromide for the staining of 

double-stranded DNA in polyacrylamide gels (Boulikas and Hancock, 1981). In our case, 

comparison of SSCP gels stained with both techniques revealed that bands were clearer 

using silver staining but that, in any given gel, no additional bands were detected (Figure 

7.2).

7.3. Study patients

The same samples that were studied by cloning and sequencing as described in chapter 6 

were studied by SSCP. Patients SA, LA and BH, were infected with GT1 and patients 

MO, RJ and ME with GT3.

Comparison of direct sequences obtained from GT 1 patients with reference sequence 

H77c (EMBL accession number AF 011751) revealed that all had a difference with G at 

nt 107 instead of A (G107A). Patient LA had a mix of G and A at nt 233 and patient BH 

had A204C. (Figure 6.2.A)

Differences in sequence in GT 3 patients were at position G203A in patient MO, C121U 

in patient RJ and A340C in patient ME when compared with the reference sequence NZL1 

(EMBL accession number D 17763). (Figure 6.2.B)
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Extraction of RNA from the samples followed by PCR had been carried out by P. 

Preikschat in our laboratory as described in the chapter 6. Single rounds of PCR involving 

38 cycles were carried out for patients SA, MO, RJ, ME and the serum sample from 

patient BH. For serum and liver samples from patient LA and the liver sample from 

patient BH, seminested PCR involving 58 cycles was carried out using primers PPAC5 

and PPAC8.

7.4. Amplification of 5fUTR region for SSCP analysis
7.4.1. Control clones:

Plasmids, containing the majority sequence of the 5’UTR determined by direct sequencing 

of PCR products obtained by amplifying the serum from individual patients, were used as 

templates to generate control PCR product for SSCP. pRLN clones derived from samples 

H77c, SA, BH, LA (clone 1 and 6) from GT 1 and ME, MO and RJ from GT 3 were 

selected as templates for amplification of the 5’UTR using PPAC5 and NCR4 primers 

(Table 7.2. A). The band pattern of each product amplified from the relevant clone 

therefore represents the major variant within each sample in the absence of other variants 

in the quasispecies.

7.4.2. Patients samples:

For SSCP analysis of the PCR product from patient samples, I performed PCR using PCR 

products made by P. Preikschat as templates using primers PPAC5 and NCR4 (Table

7.2.A and 7.2.B). This resulted in the amplification of a 306 nt fragment which covered all 

of changes in patient majority sequences except the difference of A340C in nt 340 of 

patient ME. Therefore, amplified product for SSCP from this patient had an identical nt 

sequence with the NZL1 sequence over the region studied. PCR products were purified by 

gel electrophoresis and subjected to SSCP analysis
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Table 7.2.A. Oligonucleotides primers for PCR of 5’UTR.

Primer Sequence 5 ’ to 3* Position*

PP-AC5 sense 
NCR4 antisense 
VtagRT (RT)

TTGCTGGATCCGGCGACACTCCACCAT
CACTCTCGAGCACCCTATCAG
TTTTTCTTTGAGGTTTAGGA

18-33  
293 -313 
372-353

* Nucleotide positions are numbered according to the sequence HCV-1 (Choo et al., 

1991). BamHI site is underlined.

Table 7.2.B. PCR conditions used for amplification of 5’UTR region from clones and 

patient samples.

Primer Number o f Cycles PCR

PP-AC5/NCR4 30
94°C/ 1min 
60°C/1 min 
72 °C/ 1min

7.5. SSCP profile of representative clones

Clones obtained from patients within one GT differ from each other by only 1-2 nt. There 

are 20 nt differences between the two genotypes in the amplified region. Figure 7.4 

indicates that clones LA and SA sense and antisense strands had the same mobility and in 

clone BH, the two sense and antisense strand separated only slightly. To investigate 

whether SSCP detected the presence of mixed nts of A or G at nt 233 in patient LA, clones 

1(A in nt 233) and 6 (G in nt 233) were examined. No differences were found between 

mobility of the two clones (Figure 7.3). Clone H77c containing the reference sequence for
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Figure 7.3. SSCP analysis of clones matched with majority sequences of
patients.

Individual clones matched with majority sequence were subjected to SSCP 
analysis to determine if clones could be distinguished. MVI, molecular weight 
marker (Boehringer Mannheim) bands have been assigned the letters C and D. 
Clones from the two genotypes have different migration patterns. No detectable 
mobility difference was found between clones LA/1 with adenosine at position 
233 and LA/6 with guanosine at that position (boxed).

r
GTl GT3

MVI H77 LA/1 LA/6 SA BH ME MO RJ 2C 3d2

Band C
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comparison of direct sequences obtained from GT 1 patients was included. It is notable 

that two bands were seen with H77c.

Detectable mobility differences were seen between clones ME, MO and RJ derived from 

GT 3 samples and sense and antisense strands separated.

7.6. Effect of nucleotide 107 on SSCP pattern

By comparing the SSCP pattern of DNAs derived from GT 1 clones, it was noticed that 

both sense and antisense strands of clones from 3 patients had the same relative mobility. 

As shown in Figure 7.3, clones LA, SA and BH have a difference at nt 107 (G to A) from 

the sequence in H77c.

The effect of nt change at position 107 on the separation of sense and antisense strands 

was investigated using three other GT 1 clones which were available. Clones OS, BA and 

PE with known nt A at position 107 were used. These clones differ from H77c by 1 to 3 nt 

but A was present in each at nt 107. PCR products amplified from these clones showed 

similar mobility to H77c (Figure 7.4). In other words, the two sense and antisense strands 

showed different mobilities. Unfortunately no GT 3 clone with guanosine at the equivalent 

position was available to see if both positive and negative strands would migrate at the 

same speed under denaturing condition.

It has already been suggested that the 3’ end of minus strand of 5’UTR RNA does not fold 

into its mirror image (Schuster et al., 2002). In the secondary structure model of the 3’ end 

of HCV GT la minus strand RNA proposed by this group, nt 107 (A) is the first nt of 

stem-loop SL-CI, a highly stable stem loop, which is located in a linker region between 

SL-BI and SL-CI (Figure 7.5). It should be noted that, with SSCP, we examine DNA not 

RNA secondary structure, but we were nevertheless interested in looking at this 

phenomenon further.
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Figure 7.4. The effect of nucleotide differences at position 107 on SSCP.

To analyse the effect o f nucleotide differences at position 107, seven clones 
with known sequences were subjected to SSCP analysis. Clones LA/1, SA 
and BH have nucleotide A at position 107 instead of G in H77c, OS, BA 
and PE. Clone BH has an additional change of A to C at position 204 which 
is not present in other two clones. Clone 2c was used as internal marker. 
Marker VI represents molecular weight marker and bands are assigned letters 
only and not size. Silver staining was not performed.

MVI LA/1 SA BH H77c OS BA PE 2C
Band C —►
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RNA.
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I attempted to analyse the effect of the observed sequence difference at position 107 on the 

5’UTR secondary structure of sense and antisense strands on using the Zuker MFOLD 

program version 3.1 (Zuker, 2003). This analysis was carried out on DNA and 

corresponding RNA sequences in the same nucleotide region that was examined by SSCP. 

In order to test minus strands, sense sequences were reversed and complemented. As can 

be seen in Figure 7.6. the substitution of guanosine by adenosine at position 107 in the 

H77c sequence resulted in a completely different predicted secondary structure from the 

sense strand of DNA. In contrast to the predicted secondary structure from H77c in which 

both sense and antisense strands were completely different, there was no difference in 

predicted structure in the sequence containing adenosine at nt 107. RNA analysis showed 

different folding pattern in antisense compared to corresponding sense strand (Figure 7.7). 

However, the substitution of G to A at nt 107 did not result in different secondary 

structures in the relevant RNA as it did with DNA. These data help explain the presence of 

different mobility patterns observed in sense and antisense strands of DNA samples 

sharing guanosine at nt 107 including H77c, OS, BA and PE but not when adenosine was 

present at the same location.

7.7. SSCP analysis of 5’UTR from GT 1 patients

To determine whether SSCP would reveal other variants within the quasispecies, 

fragments derived from the HCV 5’UTR were amplified from paired serum and liver 

samples from three patients (patients LA, SA and BH). SSCP analysis of PCR products 

amplified from clone, serum and liver revealed indistinguishable major band patterns, 

although the patients were known to have differences in the nt sequence of their majority 

variant (Figure 7.8). However, in patients LA and BH, SSCP analysis revealed the 

presence of an additional faint band present only in liver derived DNA and absent from 

clone or serum derived DNA. In all cases, SSCP bands were detected reproducibly in two 

separate SSCP runs using the same PCR products.
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Figure 7.6 “Mfold” analysis of sense and antisense strands of the 5’UTR DNA.

The predicted secondary structure of the positive strand of H77c (A) and the 
relevant minus strand (B). Figures C and D show the secondary structure 
models of same sequence in which the nucleotide guanosine at position 
107 has been substituted with adenosine.



Figure 7.7 “Mfold” analysis of sense and antisense strands of the 5’UTR RNA.

The predicted secondary structure of the positive strand o f H77c RNA (A) and the 
relevant minus strand (B). Figures C and D show the secondary structure models of the 
same sequence in which the nucleotide guanosine at position 107 has been substituted 
with adenosine.



Figure 7.8. SSCP analysis of HCV 5’UTR sequences amplified from serum and
liver from GT 1 infected patients.

Lanes “C” represents sequences from clones matched with majority sequences 
from patients. Lanes “S” and “L” represent viral sequences from serum and liver. 
Two patients, LA and BH, had additional bands in liver samples shown by boxes.

Marker VI (Boehringer Mannheim) represents a molecular weight marker.
The band are assigned letters (C and D) only and not size as DNA does not 
migrate according to size on SSCP analysis. Clone 2C was used as marker.
The bands revealed by A) ethidium bromide and B) silver staining.

MVI LA SA BH
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Slight separation of both sense and antisense strands of sample BH was observed for the 

clone as well as serum and liver.

7.8. SSCP analysis of 5’UTR from GT 3 patients

Amplified PCR products from serum and liver from three patients (patients ME, MO and 

RJ) were analysed by SSCP. The fragment derived from the clone matched with majority 

sequence from the respective patient in each case. As shown in the Figure 7.9, the band 

pattern for each patient is quite distinctive due to differing single strand DNA (ssDNA) 

mobilities. However, an additional band present only in liver derived samples was not 

found in any of these patients. In contrast to GT 1 patients, SSCP profiles revealed that 

sense and antisense strands had differing mobilities in all patients.

7.9. SSCP analysis of DNA extracted from silver stained 

polyacrylamide gel

The following steps were carried out by S. Erwa, a student in our laboratory, as part of her 

short term project under my supervision. To further clarify the issue of the additional band 

in SSCP from two liver samples (patients LA and BH), the minor band was excised from 

the gel shown in Figure 7.8. For comparison, major bands were excised from two 

corresponding serum samples (LA and BH). Extraction of DNA from the excised band 

was performed as described in section 2.2.11.5. Purified DNA was amplified using 

primers PP-AC5 and NCR4. Amplification of gel extracted DNA from the serum sample 

from LA was not successful. The other bands were successfully amplified by PCR and 

purified by gel extraction.

PCR products recovered from the gel were subjected to electrophoresis along with the 

relevant matched clone and the original PCR product from the liver for comparison. Silver
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Figure 7.9. SSCP analysis of HCV 5’UTR sequences amplified from GT
3 infected patients.

Amplified DNA from serum and liver from three patients, ME, MO and RJ were 
analysed by SSCP. Lanes marked “C” represent sequences from clones matched with 
majority sequences from patients. Lanes “S” and “L” represent viral sequences 
from serum and liver. In all three patients, amplified DNA from clones, serum 
and liver showed identical mobility. Clone 2C were used as marker.
Marker VI represent molecular weight marker and bands are assigned letters only 
and not size.
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staining of the gel revealed that all samples shared a major band with identical mobility 

with the relevant control clone DNA (Figure 7.10). None of the minor bands recovered 

from liver samples showed similar mobility to the additional band present in the original 

PCR product from liver samples. Interestingly, PCR products recovered from the major 

band from serum and the minor band from liver in patient BH showed migration patterns 

identical to each other. DNA recovered from the liver of patient LA was similar to patient 

BH with an extra band. No DNA recovered from the gel band from serum sample was 

available for comparison in patient LA.

7.10. SSCP analysis of PCR product derived from new cDNA

In a further attempt to reproduce the minor band, we attempted to amplify a new cDNA 

template from the RNA extracted from the liver using the original RT-PCR primers used 

by P. Preikschat. However, PCR amplification was not successful. Therefore, RNA 

extracted from two sera and two livers were reverse transcribed using Vtag-RT primer. 

Two rounds of PCR were carried out. Firstly, the 5’UTR region was amplified using sense 

primer PP-AC5 and antisense primer Vtag-RT. For the second round of PCR, NCR4 was 

used as an anti-sense primer along with PP-AC5. SSCP analysis (Figure 7.11) revealed a 

major band identical to control cloned cDNA from the same sample. No additional bands 

were seen in DNA derived from liver samples. The data obtained by re-amplifying from 

cDNA and RNA together lead to the conclusion that the observed minor bands in liver 

derived samples in the primary experiment did not represent a real minor subpopulation. 

They were possibly attributable to the additional PCR cycles carried out on the two liver 

samples.

7.11. Discussion

To evaluate the cloning results and assess the profile of the HCV quasispecies in paired 

liver and serum samples from the same patients, SSCP analysis was performed as this
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Figure 7.10. SSCP analysis of DNA extracted from Silver stained gel.

The minor bands from the two liver samples (LA and BH) and major 
band (S*) from one serum sample (LA) were successfully extracted and 
amplified. Purified PCR products were loaded to SSCP and subjected to 
silver staining. Lanes C, L and S represent sequences obtained from 
matched clone, liver and serum respectively. L* and S* represent 
sequences recovered from silver stained gel. MVI, molecular weight 
marker, bands were assigned the letters C and D. Clone 2C was used as 
internal marker.
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Figure 7.11. SSCP analysis of PCR product derived from new cDNA.

SSCP analysis was performed using PCR products generated from new 
cDNA from serum and liver samples from patients LA and BH.
PCR product from new cDNA (S* and L*) were run along with
previously made products (S and L). MVI, molecular weight marker,
bands were assigned the letters C and D. Clone 2C was used as internal marker.
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approach overcomes some of the problems associated with cloning of PCR products and 

the study of individual clones. For instance, it is more rapid and less prone to generate 

false heterogeneity as the result of misincorporation of bases by enzymes.

Using standard clones, it was shown that this technique could detect a subpopulation 

comprising only 2.5 % of the RNA within a simulated quasispecies of two variants. The 

data from the previous chapter showed the presence of single, distinct variants along with 

the majority of identical clones with the consensus sequence obtained from each patient. 

However, none of variants detected by cloning was detected by SSCP. This suggests that 

the real proportion of variants in the population may be overestimated using the cloning 

system due to the limited number of clones sequenced. In other words, none of single 

variants detected by sequencing could constitute 2.5% or more of the total population.

It is possible that some changes in nt sequence do not alter the secondary structure in a 

way that leads to a different mobility pattern in SSCP. This was seen in clones 1 and 6 

from serum sample from patient LA which had only 1 difference at nt position 243. In 

contrast some changes appear to alter the secondary structure of DNA and resulted in a 

significant difference in mobility of single strand DNA (nt 107 in H77c). “Mfold” analysis 

showed that sense and antisense strands of H77c 5’UTR formed different secondary 

structures at DNA and RNA levels. However, substitution of guanosine with adenosine at 

position 107 resulted in a similar folding pattern for both sense and antisense strands, only 

in the case of DNA not RNA. These data explained the observed mobility difference 

between H77c and clones LA, SA and BH. It has been shown that that the 3’ end of the 

minus strand of 5'UTR does not fold into its mirror image (Schuster et al., 2002). In the 

secondary structure model of the 3' end of HCV GT la minus strand RNA proposed by 

this group, nt 107 is located in a linker region between two stem loops (SL-BI and SL-CI) 

(Figure 7.6). Therefore, it is conceivable that any change in this nt could lead to a drastic 

effect on the secondary and tertiary structure of the 5’UTR with possible functional 

consequences. However, “Mfold” analysis on the equivalent RNA structures suggested 

that substitution of G107A did not change the secondary structure as it did with DNA.
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At the first attempt, SSCP analysis of the serum and liver samples revealed the presence of 

a major band pattern, and a minor band in the liver samples from 2 of the 6 patients 

studied. In the remaining patients, the band pattern of serum and liver derived sequences 

were identical. Interestingly, the minor bands in liver samples were observed in those 

samples which involved three rounds of PCR. The association between the number of 

PCR cycles and presence of spurious bands in SSCP has been shown previously 

(McKechnie and McCruden, 2001). As mentioned earlier in this chapter, 3 rounds of PCR 

were carried out for 2 liver samples (Patients LA and BH) as well as serum sample from 

patient LA. In contrast to liver sample, no additional band was found in the matched 

serum from patient LA.

The presence of minor bands in the two liver samples was investigated further. Repeated 

SSCP analysis of PCR product resulting from amplification of extracted minor bands in 

two liver samples along with corresponding serum major bands, showed identical mobility 

pattern for major and minor bands extracted. To further investigate the reproducibility of 

minor variants observed in liver samples obtained from the two patients, SSCP analysis 

was repeated using new cDNA from the same extracted RNA samples. cDNA was 

generated using a different RT primer but still covering the entire region studied. No 

minor bands were observed in liver samples when reverse transcription using the different 

primer was performed. Therefore, it seems that the minor bands detected do not represent 

a real in vivo minor population of virus, but rather it was a part of the majority sequence 

with different migration due to an in vitro experimental factor probably Taq polymerase 

error during the additional rounds of PCR. We therefore decided not to proceed to the 

expense of sequencing the DNA from the minor band.

Only two studies were found which investigated the differences in quasispecies 

composition of 5TJTR between serum and liver using the SSCP technique (Jang et al., 

1999; Laskus et al., 1998). Jang et al showed indistinguishable major bands compatible 

with the presence of identical master sequences in serum, liver and liver-derived negative 

strand from four out of six patients. In the remaining two patients, the results were not 

consistent. They also found an additional band specific to liver-derived positive strand
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RNA, which were not present in either serum or liver-derived negative strand RNA in 4 of 

the 6 patients. In contrast, Laskus et a l (1998) compared the 5’UTR sequences obtained 

from serum and various organs including lymph nodes and liver in 5 HCV infected 

patients co-infected with HIV1 and found no differences in mobility pattern of bands from 

serum and liver samples in each patient. The results of our study revealed the presence of 

identical major bands in PCR products derived from paired serum and liver from each 

patient. However, no band specific to the liver samples was identified in line with the 

finding reported by Laskus et al.

One of the main problems with the use of SSCP in the analysis of quasispecies is that very 

few workers have rigorously standardised the method. Some groups did not report on the 

sensitivity of their assay and the amount of DNA loaded for SSCP analysis (Fujii et al., 

1996; Toyoda et al., 1997; Vuillermoz et al., 2004). Loading a standard amount of DNA is 

important. If less DNA is loaded, it is possible that some of the minor variants in 

quasispecies will be missed. On the other hand, loading greater amounts of DNA would 

increase the thickness of bands and might mask some variants. Using MDE gel, SSCP 

profiles in this work were reproducible when run for 18 hours at room temperature as 

originally reported by V. McKechnie (2001). In addition, the presence of matched clones 

with the majority sequence from each patient allowed us to compare the band profile of 

each patient with its proper control.

In summary, comparison of the single strand conformation polymorphism patterns 

revealed that the number and the mobility of bands were the same between the serum and 

liver in the 6 patients studied. Therefore, there was no evidence to support the existence of 

different variants of the 5’UTR in liver from those in serum which occurred at a level of 

more than 2.5% of the total population. However, this conclusion must be tempered by the 

knowledge that some majority sequences had the same mobility as others known to differ 

by one nucleotide. This means that I cannot exclude the presence of minor populations 

differing in nucleotide sequence but having identical mobility pattern to major population.
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Chapter 8 

General Discussion

The first aim of this study was to compare the translation efficiencies of the IRES of HCV 

isolates from GT1 and GT3 infected patients. While several previous studies have 

examined the translation efficiency of a single sequence as a representative of one 

genotype, this is the first report, to our knowledge, in which the translation efficiencies of 

two genotypes were compared using a number of sequences from each genotype. There is 

some variation in the 5’UTR even between different isolates of the same genotype. One 

problem with using a single sequence is that it is not clear whether the observed 

translational activity is specific for particular sequence used or reflects real genotype 

specific activity. I ensured that all 5’UTR constructs used for this study were completely 

matched with the majority sequence obtained from each patient. This means that the 

observed translation activities were a true reflection of the translational activity of the 

majority of virions existing in each patient.

I demonstrated in BHKsinT7 cells, which are of non hepatic origin, that the mean 

translational activity of GT1 samples was significantly higher than that of GT3 isolates in 

3 out of 5 experiments. However, in HuH7 cells, which are of hepatic origin, no 

significant difference was observed. It might be expected that liver derived cells would be 

more relevant for the study of the HCV life cycle including protein translation. HuH7 cells 

are permissive for replication of HCV using the subgenomic replicon system. The 

discrepancy between results obtained from two cell lines may be because of the 

differences in the way in which T7 polymerase was generated. Renilla luciferase light 

output levels were much higher in HuH7cells in which T7 polymerase was generated 

from a vaccinia construct which may have meant that translation was maximally
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stimulated and became limited by factors such as the supply of amino acids for 

incorporation into protein.

It was shown that nucleotide differences between isolates led to different translation 

activities in the two cell lines studied. Some of the substitutions led to lower translation 

efficiency such as the substitution of cytosine to uracil at positions 121 in patient RJ.

A bicistronic construct containing renilla luciferase as the upstream reporter gene and 

firefly luciferase as the downstream reporter gene was used for this study. It was based on 

that previously constructed by Collier (1998). Importantly, both reporter enzymes are 

assayed in the same cell lysate preparation. The upstream translation product acts to 

control internally for differences in transfection efficiency. IRES activities were studied in 

vivo using two different cell lines. Many authors have examined the IRES activity in cell 

free systems (in vitro) such as in rabbit reticulocyte lysates. One complication of the cell 

free system is that the optimal potassium ion concentration differs for cap-dependent and 

IRES dependent translation (Borman et al., 1995). Translations are carried out under 

conditions which favour either one or the other activity, making comparisons difficult.

I would contend that studying IRES activity in cell lines is more appropriate since it is 

likely that the conditions are closer to those in which the HCV 5’UTR initiates the 

translation of the polyprotein in the infected liver. It is important, however, to bear in 

mind that this system is only an experimental model for studying IRES activity which may 

be different from that which occurs in actual infection. It is also possible that other regions 

in the HCV genome influence translation initiation in addition to the sequences included 

in the present study. For example, the effect of core protein on IRES has been reported by 

several groups (Kim et al., 2003; Wang et al., 2000). There are controversial reports 

regarding the influence of the HCV 3’UTR on translation efficiency. One study reported 

the enhancement of IRES activity by the 3’UTR (Ito et al., 1998), whereas, others reported 

downregulation (Murakami et al., 2001) or absence of regulation of IRES activity by the 

3’UTR (Fang and Moyer, 2000).
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Chapter 4 provides preliminary data regarding translational activity of the 5’UTR in the 

presence o f the core encoding RNA and translated protein in GT1 and GT3 infected 

patients. Attempts to make the 5’UTR plus core constructs match with the majority 

sequence of patients were unsuccessful. Therefore, as an alternative approach, it was 

decided to test the translation efficiency of 3 unmatched clones from each patient blindly. 

In total, 6 patients were studied. It was reasoned that if there was a consistent and 

significant difference in translation between genotypes with such constructs, it would be 

evident. The mean translational activity of all GT1 constructs was compared with that 

obtained from three GT3 infected patients and showed no significant difference. It was 

shown that the inclusion of core sequence resulted in a marked reduction in firefly activity 

in BHKsinT7 cells which, in turn, caused a sharp decrease in firefly to renilla ratio, as 

indicative of IRES activity. The results from western blot analysis for expressed core and 

firefly proteins suggested that there was no reduction of the expressed firefly protein in 

comparison with constructs containing only 5’UTR. Instead it was likely that the presence 

of core increased the relative production of firefly protein. It seemed that the results 

obtained from luciferase assay and western blot were contradictory. Translation of the 

5’UTR (without core) constructs would be expected to occur in cytoplasm. The presence 

of signal sequences, however, in the nascent core polypeptide will result in the 

translocation of the translational machinery into the ER. This would result in other 

modifications such as the glycosylation and the formation of disulfide bonds in the firefly 

protein. Amino acid sequence analysis of the firefly protein showed the presence of three 

predicted glycosylation sites. An increased apparent size of the firefly protein detected by 

western blot was consistent with glycosylation occurring at the predicted sites. Therefore, 

the observed reduction in firefly activity in the luciferase assay could be explained by 

reduction of firefly protein enzymatic activity rather than downregulation of the IRES 

activity. Unfortunately, there was no time to carry out electrophoresis following 

deglycosylation prior to SDS-PAGE to confirm this speculation. Taken together, our 

results did not support the concept that the presence of core coding sequence suppresses 

IRES activity. The data presented here are in contrast to previous reports suggesting that 

the presence of core downregulates the IRES activity (Shimoike et al., 1999; Wang et al., 

2000).
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Chapter 5 provides data in which postulated associations between translation efficiency 

and viral load or liver histology in our patient cohort were investigated. Real time 

quantitation of serum viral loads in patients showed no significant differences between the 

two genotypes. The data did not support the presence of a correlation between the IRES 

activity and serum viral load. There was also no significant correlation between circulating 

HCV RNA titers and the degree of inflammation or fibrosis in the liver. Examination of 

liver biopsies showed the presence of mild disease in most patients. As reported elsewhere 

(Adinolfi et al., 2001a; Rubbia-Brandt et al., 2004), our data demonstrated that patients 

infected with GT 3a had a higher prevalence of steatosis than those infected with GTla.

The work presented in chapter 6, investigated the quasispecies makeup of 5’UTR in paired 

serum and liver samples. One hypothesis to explain the development of chronic infection 

was that the selection of variants of virus which replicated at low level occurred which 

would allow survival of infected cells in the presence of an immune response. Selection of 

mutations in a number of genes including the RNA polymerase could result in the 

generation of low-replication variants, but selection of variants with a less efficient IRES 

would result in a reduced level of protein translation which would have a direct effect on 

the amount of antigen produced. The resulting lower level of protein expression would 

reduce the possibility of the antigens being recognised by the immune system. Direct 

sequencing analysis of matched serum and liver samples from 26 chronically HCV 

infected patients carried out by P. Preikschat in our laboratory showed the presence of 

identical majority sequences in both tissues suggesting that the majority of hepatocytes 

were infected with the same variants that were present in the circulation. However, 

majority sequence analysis is not able to detect minor variants in the quasispecies 

composition of liver samples. In order to investigate this hypothesis further, the 

quasispecies composition of the 5'UTR in serum and relevant liver samples were 

examined in 6 patients using two different approaches. Firstly, a cloning and sequencing 

strategy was used. The majority of clones obtained from serum and matched liver samples 

had the identical sequence to the consensus sequence obtained from direct sequencing in 

each patient. It was demonstrated that a proportion of the observed substitutions in the
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5’UTR derived by cloning and sequencing must represent real variants present in the 

patient. The data from this study provided evidence for a quasispecies distribution in the 

5’UTR on which selection can occur for the fittest variants for the environment in which 

infection is occurring. Immune selection directly by antibody would not be an issue as this 

is not a protein coding region but the RNA sequence could be subjected to other selection 

processes such as change in secondary and tertiary structure altering the interactions with 

cellular proteins. No significant difference was observed in the complexity of sequences in 

serum and liver. The presence of quasispecies in the 5’UTR of HCV has been supported 

by some other studies (Laporte et al., 2000; Soler et al., 2002). Sequencing of cloned PCR 

products is the most commonly used method for quasispecies analysis. However, it has 

some limitations. One problem is that only limited number of clones can be sequenced due 

to the high cost of sequencing. This technique is also prone to artefactual polymorphism 

introduced during RT-PCR. Therefore, it was decided to use a different approach as an 

alternative method to examine the quasispecies makeup of the 5’UTR region.

The work presented in chapter 7 was undertaken to evaluate the quasispecies composition 

of the 5’UTR in serum and liver using SSCP analysis. Although SSCP has its own 

limitations, some of the problems of cloning and sequencing individual clones are 

overcome. The SSCP technique performed in this work could detect minor variants 

present as only 2.5% of the total population. I demonstrated that the band profiles obtained 

from matched serum and liver samples were identical in the 6 patients studied. This means 

that none of observed unique variants detected by cloning and sequencing were present in 

more than 2.5% of total population. Taken together, the results of sequencing and SSCP 

analysis of the 5’UTR, did not support the presence of different minor variants in the liver. 

I conclude therefore, that the hypothesis that variants in the liver with low translational 

activity exist which escape from immune surveillance is not consistent with the data I 

obtained.
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8.1. Future studies

It would be necessary to repeat the experiments using the pRLN constructs in BHKsinT7 

cells to remove doubts that transfection levels were adequate. To establish whether any 

differences observed in translation levels were really related to the cell line or to the 

different methods for supplying T7 RNA polymerase in BHKsinT7 and HuH7 cells, 

pRLN constructs could be transfected into BHK cells preinfected with vaccinia virus 

expressing T7 polymerase.

In order to discover whether a cryptic promoter exists in the 5’UTR DNA, it would be 

necessary to perform Northern blot and/or RT-PCR analysis in all cell lines used. The 

presence of shorter transcripts would suggest the presence o f promoter in the 5’UTR 

DNA.

My preliminary data suggested that the presence of full-length core encoding RNA and 

protein did not suppress the IRES activity as reported by other studies. Instead, it was 

suggested that the presence of core reduced firefly enzymatic activity by translocation of 

the protein into the ER which resulted in post translation modifications. If time had 

permitted, I would have repeated the whole experiment and carried out electrophoresis 

following deglycosylation prior to SDS-PAGE to confirm this speculation.

The most established biological difference between GT1 and 3 is the better response of 

patients infected with HCV GT 3 to treatment with interferon-a (IFN-a), either alone or in 

combination with ribavirin. The causes and mechanisms of HCV resistance to IFN-a 

treatment are not understood, but several viral genomic regions or viral proteins may 

affect the antiviral process induced by IFN (Pawlotsky, 2003b). No work has been done in 

order to address the differences of the effect of IFN-a on IRES activity in GT 1 and GT 3. 

As discussed in chapter 3, the bicistronic constructs made for the translation study 

included 8 different 5'UTR isolates for each genotype. If time had permitted, a number of 

these constructs from each GT would have been transfected into different cell lines
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followed by addition of IFN-a in serial dilutions. However, our constructs contain the T7 

promoter which drives the transcription of mRNA. Using vaccinia virus for production of 

T7 RNA polymerase in HuH7 cells is problematic as vaccinia virus is very sensitive to 

IFN-a. In order to avoid this, I suggest that plasmid DNAs could be transcribed in vitro to 

RNA before transfection into cells. Another suggestion would be the replacement of the 

T7 promoter with one which can be processed in mammalian cells such as the 

cytomegalovirus (CMV) promoter. The problem with this system is that the transcribed 

mRNA might be subjected to post transcription modification such as splicing in the 

nucleus. From this study, a number of questions could be answered:

Does IFN-a have an inhibitory effect on IRES activity?

If it does, is there a difference between the inhibition of GT 1 and 3 constructs?

I would also be interested to study the IRES activity of HCV GT2 using a number of 

isolates obtained from patients. Previous reports suggested that GT2b contained the most 

efficient IRES (Collier et al., 1998; Kamoshita et al., 1997). However, these groups used 

only a single 5’UTR sequence as representative of the genotype activity. Using the same 

methods applied in this study, the IRES activity of number of GT2 isolates could be tested 

in different cell lines.
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